

Modeling the Distribution of Crossovers and Interference with Mice DNA Data

by

© Shuhana Shahnaz

A practicum submitted to the School of Gradate Studies in partial fulfillment of the requirements for the degree of Master of Applied Statistics.

Department of Mathematics and Statistics Memorial University

April 2016

St. John's, Newfoundland and Labrador, Canada

Abstract

Chiasma and crossover are two related biological processes of great importance in the understanding genetic variation. The study of these processes is straightforward in organisms where all products of meiosis are recovered and can be observed. This is not the case in mammals. Our understanding of these processes depends on our ability to model them. In this study I describe the biological processes that underline chiasma and crossover as well as the two main inference problems associated with these processes: i) in mammals we only recover one of the four products of meiosis and, ii) in general, we do not observe where the crossovers actually happen, but we find an interval containing type-2 censored information. NPML estimate was proposed and used in this work and used to compare chromosome length and chromosome expansion through the crosses.

Acknowledgement

I would like to express my gratitude to the many people who helped me to finish this thesis. First, I would like to thank Professor JC Loredo-Osti for providing me the opportunity of taking part in Master of Applied Statistics program. I am very grateful for his help, guidance, kindness and financial support throughout my entire program of study. I would also like to acknowledge my thesis examiners Dr. Taraneh Abarin and Dr. Yildiz Yilmaz. I am gratefully indebted to them for their valuable comments on this thesis. I would also like to thank Dr. Elena de La Casa-Esperón for providing me with the data and suggesting the problem. My greatest gratitude goes to Nada Rose who patiently revised and corrected my thesis for English. I would also like to thank Dr. Chris Radford, Dr. Zhaozhi Fan, Leonce Morrissey, Jennifer Dawe, Kimberly Lucas, Lawrence Greening, Ros English and my classmates at Department of Mathematics and Statistics for their continuous support. My deepest gratitude goes to my parents for their love and unconditional support throughout my life and my studies. I must express my very profound gratitude to my husband for providing me with support and encouragement throughout my years of study and through the process of researching and writing this thesis. Finally, a special thanks goes to my daughter who sacrificed a lot of her childhood time giving me space to study. This accomplishment would not have been possible without their help. Thank you.

Statement of contribution

This thesis is written by Shuhana Shahnaz, under the supervision of Dr. JC Loredo Osti. Memorial University as a whole has a big contribution behind the thesis writing process. The problem stated on this thesis was suggested by Dr. Elena de La Casa-Esperón and she also provided the data.

Contents

Title page						
A	Abstract ii					
A	Acknowledgement					
\mathbf{St}	atem	ent of contribution ii				
Co	onter	iii				
\mathbf{Li}	st of	Tables v				
\mathbf{Li}	st of	Figures vii				
1	Intr	oduction 1				
2	Bio	ogy background 6				
	2.1	Introduction				
	2.2	Meiosis				
	2.3	Double Strand Break (DSB) process				
	2.4	Recombination as a biological process				
	2.5	Crossover rates variation $\ldots \ldots 15$				
	2.6	Crossover interference				
3	Met	hodology 19				
	3.1	Recombination Fraction:				
	3.2	Genetic map distance:				
	3.3	Genetic map function:				
	3.4	Modeling crossover interference				

	3.5	Poisson Process:	40		
	3.6	Distribution of the distance between consecutive crossover in the ab-			
		sence of interference	44		
	3.7	Distribution of the distance between successive crossovers	46		
		3.7.1 The non-parametric maximum likelihood (NPML) estimator for			
		interval censored data	47		
		3.7.2 Turnbull's self-consistent algorithm	51		
		3.7.3 Quadratic programming	53		
		3.7.4 Nonparametric analysis of censored time-to-event data \ldots .	55		
	3.8	Ratio of cM and MB	57		
4	Dat	a Description	58		
	4.1	Data Editing	59		
5	Dat	a Analysis and Results	62		
	5.1	Recombination Fraction	62		
	5.2	Distribution of genetic distance	63		
	5.3	Crossover Rate	63		
	5.4	cM and MB Ratio	63		
	5.5	NPML of Lambda	64		
	5.6	Comparison between expected difference between consecutive crossovers	66		
	5.7	Comments on interference	69		
6	Cor	nclusion	70		
Bibliography 73					
\mathbf{A}			79		
в		1	50		

List of Tables

5.1	Expected difference between consecutive crossovers
1	Estimated Genetic distance of Cross [(PERA X DDK) F_1 X B6] N_2 79
2	Estimated Genetic distance of Cross [PERC X DDK) $F_1 X B6]N_2 \ldots 86$
3	Estimated Genetic distance of Cross [(B6-Pgk1 ^a X DDK)F ₁ XB6]N ₂ (More
	skewed)
4	Estimated Genetic distance of Cross [(B6-Pgk1 ^a X DDK)F ₁ X B6]N ₂ (Less
	skewed)
5	Estimated Genetic distance of Cross [(SM X NZB) F_1 X NZB] N_2 92
6	Estimated recombination fraction of Cross [(PERA X DDK)F $_1$ X B6]N $_2$. 94
7	Estimated recombination fraction of Cross [PERC X DDK)F_1 X B6]N_2101
8	Estimated Recombination Fraction of Cross [(B6-Pgk1 ^a X DDK)F ₁ XB6]N ₂
	(More skewed)
9	Estimated Recombination Fraction of Cross [(B6-Pgk1 ^{a} X DDK)F ₁ X
	B6]N ₂ (Less skewed) $\ldots \ldots \ldots$
10	Estimated Recombination Fraction of Cross $\mbox{[(SM X NZB)} F_1 \mbox{ X NZB}\mbox{]} N_2$. 107
11	Inter Crossover Distance of Cross [(PERA X DDK) F_1 X B6] N_2 108
12	Inter Crossover Distance of Cross [PERC X DDK) F_1 X B6] N_2
13	Inter Crossover Distance of Cross [(B6-Pgk1 ^{a} X DDK)F ₁ XB6]N ₂ (More
	skewed)
14	Inter Crossover Distance of Cross [(B6-Pgk1 ^{a} X DDK)F ₁ X B6]N ₂ (Less
	skewed)
15	Inter Crossover Distance of Cross $[(SM X NZB)F_1 X NZB]N_2 \dots \dots 116$
16	Survival Functions of Cross [(PERA X DDK) F_1 X B6] N_2
17	Survival Functions of Cross [PERC X DDK) F_1 X B6] N_2
18	Survival Functions of Cross [(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ XB6]N ₂ (More skewed)122

19	Survival Functions of Cross [(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (Less skewed)125
20	Survival Functions of Cross [(SM X NZB)F1 X NZB]N2
21	Estimated Crossover Rate of Cross [(PERA X DDK)F $_1$ X B6]N $_2$ 129
22	Estimated Crossover Rate of Cross [PERC X DDK)F $_1$ X B6]N $_2$
23	Estimated Crossover Rate of Cross [(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ XB6]N ₂ (More
	skewed)
24	Estimated Crossover Rate of Cross [(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6] N_2 (Less
	skewed)
25	Estimated Crossover Rate of Cross [(SM X NZB)F $_1$ X NZB]N $_2$ 131
26	Ratio Information of Cross [(PERA X DDK)F $_1$ X B6]N $_2$
27	Ratio Information of Cross [PERC X DDK)F $_1$ X B6]N $_2$
28	Ratio Information of Cross [(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ XB6]N ₂ (More skewed) 142
29	Ratio Information of Cross [(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (Less skewed) 145
30	Ratio Information of Cross [(SM X NZB) F_1 X NZB] N_2

List of Figures

2.1	Scheme of Meiosis
2.2	Double strand break repair crossover model
2.3	Interfering and non-interfering crossover pathways (picture is taken
	from a PhD thesis by Roy 2014 [32]) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 14$
3.1	A speculative drawing of the model. Early structures (circular) bind
	randomly to the synaptonemal complex. Some initiate polymerization
	reactions thus becoming late nodules (oval). The growing polymers
	eject early structures. The ejected early structures are either degraded
	or bind to the synaptonemal complex that is free of polymer
3.2	The beam/film system
3.3	Effects of mechanical forces within chromosomes
4.1	Genetic map
5.1	Local ratio by physical distance
5.2	Observed data plot for chromosome 11
5.3	Clique intervals for chromosome 11

Chapter 1

Introduction

Mouse genetics research probably started in the 1860s. Mouse genetics is a valuable tool to understand fundamental biological processes like recombination, crossing over and interference in mammals. Mice are ideal for modelling complex human diseases as well as for drug efficacy testing. A lot of study has been done on the genetics of humans, mice and other organisms. Few of the related studies are described in brief in the following paragraphs.

In humans, strong positive crossover interference has been found. A study on 10 control men using methods which allow for direct identification of frequency and location of crossovers in specific chromosomes of pachytene cells were used [23]. Fitting the frequency distribution of intercrossover distances using the gamma model revealed that interference level varies significantly across the whole genome in the human male. Significant interindividual, inter- and intra-chromosomal variation in interference levels was observed in human males, with inter-arm interference levels providing the major contribution to interchromosomal crossover interference. Interference was observed to act across the centromere and smaller chromosomes exhibited stronger interference [23]. Other studies revealed that there is a possibility of two crossover pathways in humans [13]. A study on both sexes, where the genotype data were taken from more than 8,000 polymorphisms in 8 CEPH (Center for the Study of Human Polymorphisms) families, found evidence that both sexes have the same level of interference and there is evidence of individual variation in interference among the female. This study also showed that the gamma model fit far better than the four versions of the count-location model concluding that the gamma model is better for modeling interference. Comparing the five models, analysis of intercrossover distances showed better results than analysis of crossover counts [2].

Several works have been done in mouse genetics. Analysis of the distribution of immunofluorescent foci of mice, the foci that is visualized when protein complexes are involved in crossover, found strong interference among MLH1 foci in pachytene, among MSH4 foci in late zygotene and among replication protein A (RPA) foci. MSH4 foci and RPA foci both mark interhomolog recombinational interactions, most of which do not yield crossovers in the mouse. Interference in mice is not specific to crossovers and crossover interference occurs in two successive steps [4].

To understand the crossover process and factors that determine the location and relative activity of hotspots locations, 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice were observed [27]. It was found that a small number of the most active hotspots were responsible for the majority of crossovers. Overall female mice have a higher number of crossovers than the males. Regional crossover rate, hotspot position and activities are different in males and females. Crossover also depends on regional positioning relative to the chromosomal ends and local gene content, parental imprinting, and hotspot position [27]. From similar dataset it was found that crossover is regulated on at least three levels, chromosome-wide, regional, and at individual hotspots, and the regulation levels depend on sex and genetic background and not on gene content [1]. Shorter genomic interference distance in females than in males is the reason for difference in crossover rates in both sexes in mice, but the fundamental processes that regulate positioning of multiple crossovers along the chromosomes appear to be the same in the meiosis of both sexes [28]. Comparison of crossover in meiocytes from XY sex-reversed and XO females with that from XX female and XY male mice reveals that rate and pattern of crossover in XY and XO oocytes were virtually identical to those in normal XX females, which indicates that sex, not genotype, is the primary determinant of meiotic recombination patterns [25].

Of the three components of interference, distribution of the number and location of chiasmata are well modeled but still a lot of work needs to be done for chromatid interference. Several observations suggest that interference depends on genetic distance rather than physical distance. Foss, Lange, Stahl and Steinberg (1993) suggested a model in which interference is related directly to genetic distance. It is well known that chiasma event (C) can be resolved either with crossing over (C_x) or without crossing over (C_o) . This model predicted that tetrads with close double crossovers should be enriched for intervening C_o events compared to general population or tetrads with no crossovers. Predictions from this model have been compared with data from Drosophila, Neurospora and yeast. The model accurately predicts data from Drosophila and Neurospora but central prediction of the model is not fulfilled in yeast [7, 8]. The chi-square model (or gamma model) for the occurrence of crossovers, was first proposed in the 1940's as a description of interference that was mathematically understandable, but there was no biological basis. Afterwards, this model was justified from a biological perspective in different studies. Zhao, Speed and McPeek (1995) derived the probability for single spore or tetrad joint recombination pattern using the chi-square model under the assumption of no chromatid interference. Maximum likelihood is then used to estimate the chi-square parameter and genetic distances. The model applied to the data of different organisms and gave some insight into the underlying crossover process [42].

Chromatid interference and chiasma interference are generally assumed to be absent in analyzing genetic data although crossover interference has been observed in almost all organisms studied. Zhao and Speed (1998) suggested Markov models for both chromatid interference and chiasma interference to capture the main features of the genetic data [41]. The model presented by Teucher, Brockmann, Rudolph, Swalve and Guiard (2000) assumes that chromatid interference acts only in the neighborhood of a chiasma. They applied the model to three sets of data and found their model obtained a better fit compared to the model that assumes no chromatid interference. When they allowed heterogeneity of chromatid interference in the model, a further improvement in fit was achieved [39].

In this study, five different crosses of mice are considered in an effort to understand crossover process and interference, as well as view interferences from different angles using various statistical tools. NPML estimate was proposed and used in this work and used to compare chromosome length and chromosome expansion through the crosses.

Some biology background that is important to understand this study is provided in the following chapter. This chapter will give brief description of meiosis, double strand break process, recombination, crossover rate and interference. In the next chapter methodology of modeling interference is depicted. This chapter includes various statistical and mechanistic models that have been suggested over the year as well as detail description of some statistical tools to identify the presence of interference. Chapter 4 describes the data sets used in this study and the way the data sets were edited. Next chapter provides the methods that was applied to analysis the data. Results of data analysis and comments on interference in the data are also made in this chapter. The last chapter gives an over all idea about the study along with limitations.

Chapter 2

Biology background

2.1 Introduction

Genes are located at specific sites, named loci, along a chromosome. Alleles are defined as variants of a gene. In diploid organisms, except for the sex chromosomes, every locus has two alleles and this pair constitute the genotype at that autosomal locus. If the two alleles are identical, then we say it is a homozygous genotype; otherwise, it is a heterozygous genotype. Genotypes may not be observable, what is observable is phenotype. In the gene mapping studies, a number of marker loci on the same chromosome are typed and used as the basis for inference about a putative gene. When these loci are simultaneously followed in a pedigree, the phenomenon of recombination can often be observed [21]. In fact, recombination is the phenomenon on which gene mapping is based. Amongst sexual organisms recombination takes place during the formation of gametes at meiosis. In this chapter, I will review some of the basic concepts and processes related to recombination.

2.2 Meiosis

Meiosis is a process necessary for sexual reproduction and variability. It refers to a special type of two stage cell division, grossly divided in two stages: meiosis Iand meiosis II. In a cell, the chromosomes come in pairs. For each pair set, one chromosome is of maternal origin and the other is of paternal origin. The chromosomes in each pair are called homologous chromosomes. When a cell has two complete sets of each chromosome it is called diploid. Before meiosis begins, the cell goes through interphase where the DNA of each chromosome is replicated resulting in each chromosome having two sister chromatids. These sister chromatids are identical copies of a single chromosome joined by a common centromere. The maternally and paternally derived sister pairs then align to form a bundle of four chromatids. There is evidence of a direct association between DNA replication and double strand break (DSB) formation with the key aspect of such an association being faithfulness of replication since an anomalous gamete may result in a defective organism. So, to prevent anomalies there are several replication checking mechanisms that monitor the process from the beginning of replication until resolution of DSB and their various intermediates [24, 38].

Meiosis I starts with prophase I, which is the longest meiotic phase and is characterized by the emergence of DSB and the undergoing of synapsis by chromosomes. During synapsis, homologous chromosomes from the male and female pair up to form the so-called bivalents. The bivalents exchange chromosomal segments between nonsister chromatids reciprocally (COs) or non-reciprocally (non-COs). In metaphase I, after crossing-over, the chromosomes line up in the middle of the cell. At this time, they can organize themselves in different ways. Crossovers, along with their orientation, give a huge amount of variation to DNA in meiosis. When the chromosomes are done organizing themselves, the centrosomes move to either side of the cell and the spindle fibres are attached to the centromere of each of the homologous chromosome pair. During anaphase I, these pairs are pulled apart so that the homologous chromosomes are moved to either side. Then, in telophase I, new nuclei are formed in each side and the rest of the cell is divided during cytokinesis. This concludes meiosis I [43, 30].

Meiosis II starts with prophase II where there is no exchange of chromosomal segments but the nuclear envelope breaks down. In metaphase II the chromosomes line up again in the middle of the cells and spindles will attach to each of the centromeres. During anaphase II, centromeres are cleared and the sister chromatids pulled apart. Finally, during telophase II, cytokinesis takes place providing four new daughter cells. In a nut shell, meiosis consists of two consecutive cell divisions after chromosome replication in a cell containing sets of two chromosomes that results in the formation of four cells, each having only one set of single chromosomes, i.e. a set of four haploid cells. These cells are the gametes. Normally, only one of these gametes will go to the next generation; one from each parent. So, as a consequence of meiosis, the offspring are different from their parents as well as different from each other.

Figure 2.1: Scheme of Meiosis

2.3 Double Strand Break (DSB) process

DSB is a phenomenon that happens in early meiosis. A description of the molecular model for DSB and gap repair will give a clear idea about how the double strand gap is repaired and triggered the evolution of either crossover or non crossover event (see Figure 2.2). Gap repair using homologous chromosomes ensures that those genetic materials are restored. The process begins when a DSB appears in one homologue (a). Then, at the breaking point, an exonuclease (a type of enzyme which cleaves nucleotides) removes few nucleotides from 5' to 3' end (b).

Figure 2.2: Double strand break repair crossover model

This chewing off stops when it reaches a particular hotspot sequence where a 3'-OH terminus will be produced. Then the 3' ends of both of the strands will come and check whether there is a complimentary base to pair with. If one of them finds it, then the 3' terminus invades the complementary sequence in the homologue forming a displacement loop (D-loop), (c). This process is also known as single cell invasion. Then the D-loop will be enlarged by repair synthesis from the invading 3' end, until the other 3' end can anneal to complementary single stranded sequences. A second round of repair synthesis from the second 3' terminus completes the process of gap repair. The process of producing branches is denoted by dots in the figure. Thus gap repair by two rounds of single strand synthesis coupled with ligation of the break ends leads to connection of the homologies by two four-way DNA junctions; such an intermediate DNA structure is known as the double Holliday junction (d). Cleavage of the double Holliday junction leads to chiasma formation that can be resolved either by disengagement of the two pairs of strands, i.e. by cleavage at the two junctions resulting in a non crossover, or via its endonucleolytic cleavage mediated by resolvases resulting in a crossover event [17].

2.4 Recombination as a biological process

Recombination is a process in which chromosomes are split and randomly re-assorted during Anaphase I of meiosis. Genetic recombination makes changes in the genetic make up of the individuals. It begins with the appearance of DSBs which are mediated by Spo11 or some of its analogs. During synapsis, DSBs occur and these breaks are repaired by using homologous sequences as a template. As mentioned earlier, a DSB will result in either a reciprocal exchange, i.e. a crossover event, CO, or a gene conversion event, non-CO. If crossovers along each chromosome were absent, each gamete would be just one of the 2 parental homologes for each chromosome and with n pairs of homologes, there would be 2^n possible gametes. Furthermore, in such a case, parental chromosomes would remain intact through generations with little or no variation. Crossover thus enhances the possibilities of genetic diversity by shuffling the origin (paternal or maternal) of blocks of DNA on the gamete. Most certainly this shuffling happens under selection constraints and it is well regulated: too little shuffling may reduce the adaptability to changing environments and too much shuffling may break the favorable associations of alleles. When considering that the sizes of genomes of various organisms can differ by factors of 100 or more, while their recombination rates vary typically only by factors no longer than 3, we might see the importance of a regulated recombination rate. The role that COs play for faithful homologous replication is very important since they ensure proper orientation and spindle force. Once the bipolar forces are balanced, successful segregation happens when homologous chromosomes separate the COs. For proper segregation the number and distribution of COs is important. When gametes are formed, it is crucial that enough COs are placed throughout the genome [32].

It is clear that DSBs are precursors of COs (reciprocal exchanges between nonsister chromatids) and non-CO (non-reciprocal exchanges), but there are transitory molecules/stages, like displacement loops and double Holliday junctions, in the DSB model of recombination that seem to be associated only to CO formation. It seems that the decision of forming a CO or a non-CO is made after DSB formation but before Holliday junctions and single-end invasion formation [32].

For non-CO, the synthesis dependent strand annealing diversion has been suggested. In general, DNA repair relies in using a non-sister chromatid as a template. Whenever this is not possible, sister chromatids may be used to carry on the repair, avoiding CO formation which may lead to error-prone separation [32].

The pattern of crossover positions along the chromosome gives clues about how

crossovers were formed. There are at least two distinct crossover formation pathways to achieve synapsis and repair the double-strand-breaks. Each one is mediated and monitored by a specific group of protein. These two pathways are i) interfering crossover that depends on the Msh4-Msh5 complex, where crossovers are subject to special regulation i.e., it controls the position of COs, and ii) non-interfering crossover, mediated by the Mus81-Eme1 complex, where crossovers are not subject to such regulation. This means that at least a small portion of crossovers may form without interference. Figure 2.3 shows how Mus81 protein acts earlier in the crossover reaction to cleave the D-loop. A species might have only the interfering or strictly the non-interfering crossover pathway or a combination of both, depending on how they recombine. When both interfering and non-interfering are present, it has been hypothesized that some of the crossovers (putatively, those in the pairing pathway and occurring in early meiosis) occur independently, i.e., in absence of interference, whereas the remaining ones (putatively, those crossovers in the disjunction pathway and occurring in late meiosis) are subject to interference [13]. The majority of crossover events are thought to be generated by an interference-sensitive pathway. Interference strength and the proportion of the non-interfering events may vary for different gene families. Some studies showed that the proportion of non-interference crossovers varies across species usually from 5 to 30% [9]. Both of these pathways as well as the non-CO pathway begin with DSBs.

Figure 2.3: Interfering and non-interfering crossover pathways (picture is taken from a PhD thesis by Roy 2014 [32])

2.5 Crossover rates variation

Crossover rate varies among species and even within species. This suggests that sex and crossover interference play an important role in crossover rate. Mammals show a wide range of crossover rate and among mammalian species, mice possess an unusually low crossover rate [6]. Crossover rates follow similar patterns on most mouse chromosomes except for chromosome 19, which is the shortest one. Depending on the genetic background and sex, crossover rate and placement varies through the entire chromosome, at both the regional and local levels. The megabase scale control on crossover is considered as a regional level control. The regional distribution is determined by the positioning of the crossover with respect to centromere-telomere axis and interference. Positioning of individual hotspots of crossover is considered as a local level of control. In many species most crossover events occur in very limited intervals along the genome known as crossover hotspots. Hotspots do not affect the global crossover pattern. Most of the hotspots in mammals are 1 to 2 kb long and are unevenly distributed along the chromosome. Both sexes tend to have similar sets of hotspots, however, the level of activity of hotspots differs among regions for different sexes [27, 16, 1].

For some species crossover does not occur at all in one of the sexes. Crossover rates are significantly higher in females than in males in human, dog, pig, zebrafish, and most mouse strains. On the other hand, the sheep and wallaby male crossover rate is higher than that of the female. These differences are more pronounced in certain chromosomal regions. Mammalian meiosis differs with sex in various ways which could result in differences in crossover. Although meiosis takes much longer to complete and each stage of meiosis lasts longer in mammalian females than in males, temporal differences in initiation and progression of meiosis are likely to have little impact on differences in crossover rate. On the other hand, it is almost certain that differences in pairing and synapsis of homologs, as well as differences in intensity of crossover interference in sexes, causes differences in crossover rate in males and females.

Despite the fact that some regions of a chromosome tend to recombine much more than others depending on sex, if there is no interference, the relationship between genetic and physical distance remains approximately monotonic. Genetic distance can be used to compare the genetic similarity between different species and divergence between different sub-species. Genetic distance between two loci is defined as the average number of crossovers within that interval per meiosis. Its unit is Morgan, although the centimorgan is more commonly used. In the absence of interference, one Morgan indicates that the segment has on average one crossover per gamete. Physical distance refers to the count of consecutive base pairs between two positions in a DNA sequence (megabase). Its unit is base pairs (bp). A base pair is two chemical bases bonded to each other forming a rung of the DNA ladder. A Morgan may contain from several hundreds of bp to a few mega base pairs (mbp), depending upon the region of the chromosome. The physical distance covered by a centimorgan also varies with species. Nonetheless, there is an almost constant relationship between physical and genetic distance despite the proved presence of crossover hotspots. [25, 1].

2.6 Crossover interference

Crossovers along chromosomes are not events that happen completely at random. In fact, they may tend to be evenly spaced. This departure from "absolute" randomness is called interference. There are two types of interference: crossover, or position interference, and chromatid interference (CI). Chiasma interference and crossover interference refer to the same underlying process. Both of them refer to the suppression of the exchange of genetic material between paternal and maternal chromosomes of a given individual. This kind of interference is also commonly called genetic interference, but to avoid confusion, we will not use this term. Crossover interference is a process that occurs in many species, including mice. It affects the distribution of the number and location of crossovers. In general, it has been observed across species that formation of a crossover prohibits, or interferes, with the formation of a crossover in its neighborhood in both directions along a chromosome. From this phenomenon the process takes its name: crossover interference. Because of this interference, two crossovers tend not to be close to each other resulting in widely spaced and, to some extent, infrequent crossovers along chromosomes. Crossover interference can exercise its effect across whole chromosomes or be localized to some particular regions, like one of the chromosome arms. In different species, crossover interference acts over widely varying DNA blocks. In mice and humans, it is on the range of tens of mbp. Within a specific chromosome region, interference varies depending on the overall size and structure of the chromosome. The reason behind female mice chromosomes accommodating more multiple crossovers than male mice, is the shorter crossover interference distance in females compared to males when measured in *mbp*. For the same reason, triple crossovers are somehow common in female meiosis but very rare in males. Higher inter crossover distance indicates stronger interference. In the absence of interference, crossovers would have been distributed at random, i.e. their distribution would be uniform along the chromosome with respect to each other. However, because of crossover interference, there are constraints on the resolution of crossovers and even on the total number of crossovers. The basic constraint is that each pair of neighboring crossovers must have a certain number of non-crossover

events between them. During meiosis, each chromosome receives at least one crossover (the obligate crossover), but their density is limited by crossover interference which results in a strong tendency for shorter chromosomes to have more crossovers per unit of length than larger chromosomes do. Too many crossovers can be harmful from an evolutionary view point. Hence, it can be said that interference works as a mechanism to balance between too many or too few crossovers so that the mean number of crossovers per chromosome remains modest.

Chromatid interference refers to the suppression of exchanges by affecting the chances of a chromatid for participation in multiple exchanges or the chromatid sampling probabilities. It is a process where two nonsister chromatids forming a crossover, affect which two chromatids will be involved in the other crossovers in the same meiosis. [32, 25, 1, 7, 27].

Chapter 3

Methodology

To understand the models of crossover interference properly we need to understand recombination fraction, genetic map distance and genetic map function.

3.1 Recombination Fraction:

The recombination fraction between two loci on the same chromosome is the ratio of the number of recombinant gametes to the total number of gametes produced. Two loci on a gamete are said to be recombinant whenever there is an odd number of crossovers between them. Let us assume that the two loci are at positions a and b and the number of chiasmata occurring on the interval [a, b] of the four strand chromatid bundle is denoted by $N_{[a,b]}$. In the absence of interference, Mather's formula defines the recombination fraction θ as,

$$\theta = \frac{1}{2} Pr(N_{[a,b]} > 0) = \frac{1}{2} [1 - Pr(N_{[a,b]} = 0)]$$
(3.1)

From this equation it is clear that θ lies between 0 and 1/2 and it is a nondecreasing function of |b - a| [21].

3.2 Genetic map distance:

The genetic map distance or genetic distance, d, that separates two loci at positions a and b is defined as the expected number of crossovers on [a, b] per gamete or equivalently as half the number of chiasmata on [a, b] in the four strand bundle. Notice that the genetic distance is not a function of how physically far apart two loci are, but of how many crossovers we may expect to occur amongst them. The unit of this distance is Morgan. For a short interval, say, for (0,0.05), $\theta \approx d$, since in such a case, $E(N_{[a,b]}) \approx Pr(N_{[a,b]} > 0)$ [21].

3.3 Genetic map function:

Genetic map function, M, is a monotonic function that relates recombination fraction, θ , and genetic map distance, d, between pairs of loci along a chromosome by $\theta = M(d)$ [21]. From this relation, the genetic distance can be obtained by $d = M^{-1}(\theta)$. The simplest case in the map function could be $\theta = d$, with inverse $d = \theta$. This is quite satisfactory for small θ and d, say, in the interval (0, 0.05).

The recombination fraction and genetic distance of an interval differ only when there is a nonzero chance of multiple crossovers occurring in the interval. With the increase in the interval size, the chance of crossover also increases. If we denote the distribution of the number of crossovers, N, in a particular interval by $q_0, q_1, q_2, ...,$ where, $q_n = Pr(N = n)$, i.e., the expected proportion for a gamete of having n exchange points (crossovers) in the interval, then recombination fraction can be written as the probability of an odd number of crossovers in the interval,

$$\theta = \Pr(N = 2n + 1, \text{ for } n \in \mathbb{N})$$

$$= q_1 + q_3 + q_5 + \dots$$
(3.2)

and the genetic distance, by definition becomes,

$$d = E(Y) = q_1 + 2q_2 + 3q_3 + \dots$$
(3.3)

Suppose that in the interval the number of chiasmata on the four strand bundle follows Poisson distribution with mean d, i.e., under no interference,

$$q_n = \frac{e^{-d}d^n}{n!} \tag{3.4}$$

then, the recombination fraction can be expressed in terms of genetic distance as,

$$\theta = e^{-d} + \frac{e^{-d}d^3}{3!} + \dots = \frac{1}{2}(1 - e^{-2d})$$
(3.5)

and its inverse as,

$$d = -\frac{1}{2}\ln(1 - 2\theta)$$
 (3.6)

This map function is known as Haldane's map function. Though this function entails no chiasma interference, it is widely used for its computational simplicity.

Absence of both chiasma interference and chromatid interference are necessary and sufficient conditions for the chiasma process to follow a Poisson process, which imply Haldane's formula is a simple consequence of assuming that chiasma process is a Poisson process [33, 22].

3.4 Modeling crossover interference

The analysis of crossover interference is complicated when there are two formation mechanisms involved; interfering and non-interfering. A number of statistical analyses has been done to find out the relationship between linkage map distance and crossover interference in creatures with both types of crossovers [34, 37, 7, 36, 35]. These analyses were based on the assumption that noninterfering crossovers are distributed along the chromosomes independently of the interfering crossovers and each other, while interfering crossovers are distributed with respect to each other according to an Erlang or Gamma distribution. The purpose of these analyses was to estimate the numbers of crossovers of both kinds and the values of indices that reflect the degree of modality in the frequency distribution of intercrossover distances for the interfering crossovers [34].

The traditional indicators of interference give an indication of the strength of interference without consideration of the relative frequencies of crossovers occurring from two pathways [34]. Because of this, traditional indicators may not capture the salient features of the process and can potentially provide misleading results. The work presented here considers the two crossover formation pathways in greater detail and tries to model it. Modeling crossover interference can provide insights that cannot be reached by looking only at inter crossover distributions. Various models have been suggested over the years, some statistical and others mechanistic.

Statistical models are

- Standard non-interference,
- Count location model of chiasma,
- Renewal process model of chiasma,

- One pathway and
- Two pathway

Mechanistic models are

- The polymerization model of chiasma interference and
- Stress model of chiasma interference

Each of these models has their own merits and caveats. However, the lack of a clear likelihood formulation for mechanistic models leads us to prefer the statistical models [32]. Statistical models are mainly based on the distribution of genetic distances between successive crossovers [9].

Statistical models considering chiasma interference and no chromatid interference:

Count location model [21]: This model considers the total number of chiasma located independently along the bundle according to some common continuous distribution.

Let the total number of chiasmata along the four strand bundle be N and its distribution $q_n = Pr(N = n)$. Say, the individual chiasmata are located independently following a distribution F and let λ be the expected number of chiasmata along the four strand bundle. Then the map length, d, of an interval [a, b] can be shown to be,

$$d = \frac{1}{2}\lambda[F(b) - F(a)] \Rightarrow F(b) - F(a) = 2d\lambda^{-1}$$

If there are k+1 loci along a chromosome, then there would be k adjacent intervals which are, $I_1, I_2, ..., I_k$. Let us consider a subset, $S \subset \{1, 2..., k\}$ of intervals where the gamete is recombinant. Then the generating function of N can be written as,

$$Q(s) = \sum_{n=0}^{\infty} q_n s^n$$

Then, the Mather's formula for recombination fraction can be expressed as,

$$\theta = \frac{1}{2} Pr(N_{[a,b]} > 0) = \frac{1}{2} [1 - Pr(N_{[a,b]} = 0)]$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} Pr(N = n) [1 - Pr(N_{[a,b]} = 0 | N = n)]$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} q_n \{1 - [1 - F(b) + F(a)]^n\}$$

$$= \frac{1}{2} - \frac{1}{2} Q(1 - 2\lambda^{-1}d) \qquad (3.7)$$

Renewal process model [42, 41]: This model considers that the chiasmata arise as a stationary renewal process.

If chiasma events are randomly distributed along the four strand bundle, then every chiasma event either resolves in a crossover C_x or not C_o . When a chiasma event resolves as a C_x , the next m chiasma events must resolve as C_o events, and after $m C_o$'s the next chiasma event must resolve as a C_x , i.e., the chiasma events resolve in a sequence $...C_x(C_o)^m C_x(C_o)^m$ Thus the model is represented in the form $C_x(C_o)^m$. Let $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_{(n+1)}$ be a set of markers along a chromosome. Then, there are n + 1parameters that need to be specified, namely, m and the genetic distances between each consecutive pair of markers, $d_l, d_2, ..., d_n$.

Because the chiasma events are assumed to be randomly distributed along the four-strand bundle and if the number of chiasma events, s in an interval of genetic

length d follows the Poisson distribution with parameter λ , the chance of getting s number of chiasma events is, $\frac{e^{-\lambda}\lambda^s}{s!}$, for $s = 0, 1, \dots$ If p = m + 1, then only $\frac{1}{p}$ of these chiasma events resolve as a crossover event. Under the assumption of no chromatid interference, each strand has probability $\frac{1}{2}$ of being involved in a crossover. So, for s chiasma events, on average each strand will have $\frac{s}{2p}$ crossovers. Since the genetic distance is defined to be the expected number of crossovers on a single strand, under no interference, the genetic distance d and the Poisson parameter λ are related by $d = \frac{\lambda}{2p}$ i.e., $\lambda = 2pd$.

Suppose markers $\mathscr{A}_1, \mathscr{A}_2, ..., \mathscr{A}_n$, are laid out from left to right, and the chiasma events also occur from left to right. To keep things simple only two markers, \mathscr{A}_1 and \mathscr{A}_2 , are considered at first. As the process is stationary, the first chiasma event to the right of \mathscr{A}_1 has an equal chance of resolving as any of the m + 1 elements of $C_x(C_o)^m$. Say, $k_1 C_x$'s are between \mathscr{A}_1 and \mathscr{A}_2 . Depending on the number of C_o 's before the first C_x to the right of \mathscr{A}_1 and the number of C_o 's between \mathscr{A}_2 and the nearest C_x to the left of it, $k C_x$'s between the two markers can occur in p^2 possible ways. The number of C_o can vary anywhere from 0 to p-1. Therefore, the chance of k_1 number of C_x 's between \mathscr{A}_1 and \mathscr{A}_2 with Poisson parameter λ_1 can be computed as

$$\frac{e^{-\lambda_1}}{p} \sum_{i=1}^p \sum_{j=0}^{p-1} \frac{\lambda_1^{pk_1-p+i+j}}{(pk_1-p+i+j)!}.$$
(3.8)

The sum can be written in a matrix product form as

$$\frac{1}{p} \mathbb{1} D_{k_1}(\lambda_1) \mathbb{1}', \text{ where } \mathbb{1} = (1, 1, 1, ..., 1).$$
(3.9)

Each element in the first column of the above mentioned $D_{k_1}(\lambda_1)$ matrix corresponds to the last chiasma event between \mathcal{A}_1 and \mathcal{A}_2 being a C_x ; the second column corresponds to the last chiasma event being the first C_o after the k_1 th C_x , the *j*th column to the *j*th C_o after the k_1 th C_x . Therefore, the sum of the *j*th column multiplied by $\frac{1}{p}$ is the probability that there are k_1 crossovers between \mathcal{A}_1 and \mathcal{A}_2 , and the last chiasma event is the (j-1)th C_o after the k_1 th C_x . These probabilities can be defined as

$$(p_{k_1}^1 p_{k_1}^2 \dots p_{k_1}^p) = \frac{1}{p} \mathbb{1} \boldsymbol{D}_{k_1}(\lambda_1).$$
(3.10)

Now consider three markers, $\mathscr{A}_1, \mathscr{A}_2$ and , \mathscr{A}_3 and let the first chiasma event to the right of \mathscr{A}_2 be the *l*th C_o after a C_x , then the probability of k_2 crossovers between \mathscr{A}_2 and \mathscr{A}_3 with Poisson parameter λ_2 is

$$e^{-\lambda_2} \sum_{i=1}^{p} \frac{\lambda_2^{pk_2+l-i}}{(pk_2+l-i)!}.$$
(3.11)

Since the probability of $l C_o$'s between \mathscr{A}_2 and the first C_x and the probability of the last chiasma event between \mathscr{A}_1 and \mathscr{A}_2 is the p - l - 1th chiasma event after a C_x is the same and the probability is $p_{k_1}^{p-l-1}$, then the chance of k_1 crossovers between $\mathscr{A}_1, \mathscr{A}_2$ and k_2 crossovers between \mathscr{A}_2 and \mathscr{A}_3 can be written as

$$e^{-\lambda_2} \sum_{i=1}^{p} p_{k_1}^{p+l-1} \sum_{j=0}^{p-1} \frac{\lambda_2^{pk_2-p+i+j}}{(pk_2-p+i+j)!}.$$
(3.12)

In matrix form it can be written as

$$(p_{k_1}^1 p_{k_1}^2 \dots p_{k_1}^p) \mathbb{1} \boldsymbol{D}_{k_2}(\lambda_2) \mathbb{1}'.$$
(3.13)

From equation (3.3) and (3.6),

$$\frac{1}{p} \mathbb{1} \boldsymbol{D}_{k_1}(\lambda_1) \boldsymbol{D}_{k_2}(\lambda_2) \mathbb{1}'.$$
(3.14)

Generalizing the probability for n intervals can be written as

$$\frac{1}{p} \mathbb{1} \boldsymbol{D}_{k_1}(\lambda_1) \boldsymbol{D}_{k_2}(\lambda_2) \dots \boldsymbol{D}_{k_n}(\lambda_n) \mathbb{1}'.$$
(3.15)

This model is also called χ^2 model since the probability distribution of this model is a scaled version of χ^2 distribution.

Statistical models considering chromatid interference:

One pathway: Considers renewal process based on the sampling probability for every chromatid.

Two pathway [13, 14]: Considers a mixture of renewal processes but also takes into account the two pathway of chiasma formation.

Let $d_0, d_1, ..., d_n$ be the intercrossover distances along the four strand bundle of an infinitely long chromosome, where $d_0 + d_1 + ... + d_n = L$ is the length of the chromosome. Since χ^2 distribution is a special case of gamma distribution, then the map length, d, can be written as gamma distributed with rate λ and shape parameter p (where p = m + 1 as denoted in the earlier model. m is known as the interference parameter in this model) as
$$f(d|\lambda, p) = \frac{\lambda^p}{\Gamma(p)} d^{p-1} e^{-\lambda d}, \quad d > 0.$$
(3.16)

Suppose that in disjunction pathway the probability of occurring a crossover is q. Since the number of crossingover on a tetrad is twice that on a single product, then the rate becomes 2qp and the density for intercrossover distance is, f(d|2qp, p).

The distribution of the length to the first crossover depends on the stationarity and not on the start of the chromosome. The probability density of the length to one of the ends, d can be expressed as

$$g(d|q,m) = 2q(1 - F(d|2qp, p)), \quad d > 0.$$
(3.17)

where F is the cumulative distribution function of d.

The distribution of the length from the last crossover to the end of the tetrad can be calculated as a right censored distribution as follows

$$1 - F(d|2qp, p), \quad d > 0.$$
 (3.18)

We do not observe tetrad data, rather we observe single meiotic products. Assuming no chromatid interference, each chromatid has probability $\frac{1}{2}$ of getting each crossover. Then the density for the distances between observed crossovers or intercrossover distance is

$$f^*(d|q,m) = \sum_{k=1}^{\infty} \frac{f(d|2qp,kp)}{2^k}, \quad d > 0.$$
(3.19)

The starting has probability $\frac{1}{2}$ of getting the first crossover and then comes the additional intercrossover distances. Using the properties of convolutions the density for the distance from the start of the chromosome to the first crossover is

$$g^{*}(d|q,m) = \frac{1}{2}g(d|q,m) + \sum_{k=1}^{\infty} \frac{1}{2^{k+1}} \int_{d}^{\infty} g(x|q,m)f(d-x|2qp,kp)dx$$

= $q(1 - F^{*}(d|q,m)), \quad d > 0.$ (3.20)

The distribution of the distance from the last crossover to the end of the chromosome is obtained as a right-censored observation of the intercrossover distances and can be written as

$$1 - F^*(d|q, m), \quad d > 0. \tag{3.21}$$

The probability of having no crossovers, or not having a first crossover, is a rightcensored observation from the density of the distribution for the distance to the first crossover and is as follows:

$$1 - G^*(d|q,m),$$
 (3.22)

where G^* is the cumulative distribution function of g^* .

If we consider all 2^n possible ways to assign the crossovers to the pairing and

disjunction types, then we have to consider two sets of intercrossover distances. Say, $x_0, x_1, ..., x_k$ indicates intercrossover distances for disjunction type of crossovers and $y_0, y_1, ..., y_j$ for pairing type of crossovers, where j + k = n + 1 and $x_0 + x_1 + ... + x_k =$ $y_0 + y_1 + ... + y_j = L$.

The probability of the intercrossover distances for disjunction type of crossovers, where $q = 1 - \nu$ i.e., the probability that a randomly chosen crossover being interference is

$$Pr(x_0, x_1, ..., x_k | (1-\nu), m) = \begin{cases} 1 - G^*(d | (1-\nu), m), & \text{if } k = 0 \\ g^*(x_0 | (1-\nu), m) [1 - F^*(x_1 | (1-\nu), m)], & \text{if } k = 1 \\ g^*(x_0 | (1-\nu), m) [\prod_{i=1}^{j-1} f^*(x_i | (1-\nu), m)] [1 - F^*(x_k | (1-\nu), m)] \\ & \text{otherwise.} \end{cases}$$

The probability of the intercrossover distances for pairing type of crossovers where $q = \nu$ i.e., the probability that a randomly chosen crossover being interference free is

$$Pr(y_0, y_1, ..., y_j | \nu, 0) = \begin{cases} 1 - G^*(d|\nu, 0), & \text{if } j = 0\\ g^*(y_0|\nu, 0)[1 - F^*(y_1|\nu, 0)], & \text{if } j = 1\\ g^*(y_0|\nu, 0)[\prod_{i=1}^{j-1} f^*(y_i|\nu, 0)][1 - F^*(y_j|\nu, 0)], & \text{otherwise.} \end{cases}$$

Then considering the both pathways and all the 2^n possible divisions of the n crossovers, the probability of the observed pattern would be

$$Pr(d_0, d_1, ..., d_n | \nu, m) = \sum_{(x_0, x_1, ..., x_k), (y_0, y_1, ..., y_j)} Pr(x_0, x_1, ..., x_k | \nu, m) Pr(y_0, y_1, ..., y_j | \nu, 0)$$

Likelihood function can be written as the product of the probabilities of the individual meiotic patterns as,

$$\mathscr{L}(\nu, m | data) = \prod_{i} Pr[d_0(i), d_1(i), ..., d_n(i) | \nu, m]$$
(3.23)

This likelihood function can be maximized to estimate the parameters m and ν .

If the genetic length is known, then both the shape and scale parameters of the distributions do not vary freely. As the genetic length is known then the likelihood function (3.17) becomes a function of only one variable, which is ν and can be optimized more easily.

Standard non-interference models assumes that there is no interference, which is unrealistic. Still this model is widely used as this defect is partially compensated for by its computational simplicity. Count location and renewal process models takes chiasma interference into account but assumes that there is no chromatid interference. These models are better than standard non-interference model as chiasma interference has been observed in almost all organisms. Renewal model was built from biological perspective [21]. Zhao, Speed and McPeek [1995] compared the likelihood ratio statistics of count location model and renewal process model for various organisms and showed that renewal process model performed better than the count location model. But renewal process model has some limitations e.g., it assumes that the parameter m is integer, this model considers crossovers but does not include gene conversions [42]. One pathway and two pathway models consider renewal process as well as both chiasma and chromatid interference. Since interfering and non interfering pathways co-exist in most organisms and two pathway model incorporates both pathways, it is better to use two pathway model when a data has both pathways of chiasma formation [32]. The distribution of the distance between consecutive crossover that will be discussed in Section 3.6, is an easier way to estimate average genetic distance but does not consider interference. On the other hand, the non-parametric maximum likelihood estimator found through quadratic programming which will be discussed in Section 3.7.3, gives self-consistent estimate considering both chiasma and chromatid interference and it also satisfies certain important constrains. This approach is even better than Turnbull's self-consistent algorithm (Section 3.7.2) as it satisfies all KKT conditions as mentioned in Section 3.7.3.

Mechanistic models:

The polymerization model of chiasma interference [18]:

This model postulates that chiasmata points move as polymerizing signals along the chromosome. It proposes that early structures implied in crossover formation (like double strand breaks) randomly attach amongst and along the synaptonemal complexes of meiotic nuclei. Once attached, each structure has an equal chance per unit of time of initiating bidirectional polymerization reaction. These structures initiating a polymerization reaction will eventually promote reciprocal exchange and finally mature into crossovers. Furthermore, the growing polymers extend from their initiation site blocking the binding of early structures to the synaptonemal complex. As these polymers grow, bound structures that have not yet initiated such a reaction continue to have the opportunity to do so until they are ejected by the advance of a polymer initiated at a nodule located elsewhere on the same chromosome. The ejected structures move into the surrounding medium, where they are either degraded, reattach to an available site on the same synaptonemal complex, or reattach to a site on a different complex. A chromosome that received only a single structure would retain the structure since it could not be ejected, and would be guaranteed to have a single late nodule and thus a single crossover. The number of chromosome arms with zero crossovers is initially determined by a Poisson distribution based on the average number of early structures. In this model, there are more early structures than late nodules, thus there are fewer chromosome arms with zero crossovers than there would be if the number expected was based solely on the average number of late nodules. The number of chromosome arms with zero crossovers may be further reduced by the relocation of ejected early structures onto chromosome arms that were initially void of structures. These features of our model ensure that virtually all bivalent arms will eventually obtain at least one late nodule, provided a moderate excess of early structures is synthesized. This model was partly inspired by the proposal of Rasmussen and Holm (1978) for a redistribution from random crossover nodules associated with the synaptonemal complex at zygotene to the nonrandom nodules observed.

Figure 3.1: A speculative drawing of the model. Early structures (circular) bind randomly to the synaptonemal complex. Some initiate polymerization reactions thus becoming late nodules (oval). The growing polymers eject early structures. The ejected early structures are either degraded or bind to the synaptonemal complex that is free of polymer.

Stress model of chiasma interference [19]:

Based on the fact that in physical systems any local increase or decrease in mechanical stress at one position automatically tends to redistribute outward from that point, this model proposes that chiasma/crossover happens as a result of the stress generated by the normal expansion/contraction of the chromosome. i.e., the model postulates that chiasma/crossover forms to release the stress locally. Stress relief in the neighborhood of a chiasma point dissipates along the chromosome in both directions down the synaptonemal complex axis. The authors use a beam/film system to simulate the distribution of "crack" locations that can be used to model experimentally the observed distribution of meiotic chiasmata/crossovers.

The Beam/film system can easily be explained by a real life model. Consider an elastic metal beam which is coated on one side by a thin film of ceramic (Figure-3.2 A (1)). The film is not smooth along the edges. If this object is heated then, because of the difference in thermal expansion of the two materials, the metal beam will try to expand more than the ceramic film. This will force the ceramic film to stretch beyond its natural thermal expansion and cause a tensile stress within the film. The film then resists this stretching tendency. As a result, a balancing compressive stress within the metal plate is generated. But if the film is too thin compared to the beam, then the film cannot resist the stretch anymore resulting in a crack nucleation at the edge flaws. Once triggered, the crack extends to the entire width and height of the film (Figure-3.2 A (2)) which relieves the stress locally on either side of the affected site (Figure-3.2 B (2)). As the beam is very big compared to the film, it absorbs some of the relived stress and spreads some of the stress through its elasticity in such a way that the stress decreases gradually with distance from the site forming stress relief domains (Figure-3.2 B (3)). Cracks that occur due to additional stress tend to occur outside the stress relief domains of prior $\operatorname{crack}(s)$. Thus occurrence of a crack at one position interferes with the occurrence of a crack nearby and the end result is that the cracks are found almost evenly distributed along the beam.

Figure 3.2: The beam/film system.

Crossovers arise by stochastic selection of a few sites from a much larger array of undifferentiated precursor interaction sites. These precursor interactions can be taken as flaws and designation of certain interactions to be crossovers can be compared as a stress-promoted process corresponding to crack formation. Thus, when the key parameters are set at optimal values in this model, the number and distribution of cracks matches closely with those of crossovers. The three general properties that can be explained by the crack formation process in the beam/film system are: 1) Ensuring an obligatory event: adequate stress causes the first obligatory crack to happen at a unique site, just like every pair of homolog always receives at least one crossover. 2) Self-limiting spatial domains: unlike the stress relief domain that is discussed in the previous paragraph, chromosomes have different domains such as centromeres, imprinted regions, heterochromatic domains, etc. These domains are also self-limiting and thus can arise without unique genetic designation of boundaries similar to the domains described in the beam/film system. 3) Interference and even spacing: because of the interference, when there are two or more crossovers, they are not randomly distributed along the chromosome; rather they are evenly distributed just as in the real life example, when more and more cracks occur, they tend to find

the gaps between previous cracks showing a tendency to be evenly placed along the beam.

Chromosome function is governed by internal mechanical forces. The following points will describe the potential origin and effects of physical forces within chromosomes.

Origin of DNA/chromatin expansional force: any change in the chromatin fiber can expand the chromatin. When such expansion happens inside a cell where it is constrained by either external features, such as other chromatin, or by an internal network of intersegment interlinks, the chromatin will push on the constraining components and those constraints will also push back. Such pushing causes the expansion of chromatin and may give it a longer outline length.

Predicted effects: the stress along the length of chromatin tends to destabilize the DNA duplex and alter its natural qualities. Because of this stress the chromatin fiber could have a bulking shape (Figure-3.3 A) or smooth bending shape (Figure-3.3 B). This alteration could promote basic processes such as DNA replication, crossover, etc. and organizational processes such as wrapping of DNA around the nucleosome core, programmed chromatin loops, etc.

If the expansion happens while two chromatin are touching to each other, then a chromatin pressure will be created. It could raise two very opposite tendencies. Two chromatins could either tend to push one another apart, creating a force for separation, or they could tend to push into one another, creating a force for conjunction (Figure-3.3 C). According to the state of chromatin fiber either or both of the effects can happen. The separation force is responsible for separation of sister chromatids or homolog, separation of unrelated chromosomes into distinct territories, etc. Conjunction force, however, is responsible for intermingling of chromosome territories, linages between different chromatins or chromatin regions, etc.

Figure 3.3: Effects of mechanical forces within chromosomes

After prophase, the chromatin is organized into a linear array of loops and its base is formed by proteins giving it a form of geometric and structural axis (Figure-3.3 D). If expansion happens in these adjacent loops, they cannot move apart as they are attached to the underlying axis. In this case, the axis will feel the stretch (Figure-3.3 E), then it will attempt to extend and ultimately twist or break. This will give the chromatin loops more space to expand causing the axis to bend and writhe. This is the reason for the axial coiling of late-stage chromosomes.

The mitotic and meiotic programs are results of sequential global chromatin expansion and contraction. From the appearance of discrete compact individualized chromosomes, it is seen that the global chromatin expansion and contraction cycle happens as chromatin fiber is well folded at mid- G_1 , unfolds during S phase and G_2 and becomes compact at prophase. But videomicrographs of living Haemanthus chromosomes show that chromosomes increase in volume during prometaphase, decrease during metaphase, increase at preanaphase and again decrease during anaphase. At telophase, chromosomes expand before completely disappearing but fold into compact fibers at early G_1 . Thus mitotic consists of four sequential cycles of expansion and contraction.

The meiotic program also starts with chromatin expansion/contraction during $G_1 - S$ /prophase. After that meiotic prophase is longer than that of mitotic. Measurements of chromatin volume and electron microscope thin sections show that chromatin increases at leptotene, decreases at zygotene, increases at early-mid pachytene, decreases at late pachytene, increases at the diffuse stage and again decreases at diplotene. The latter three cycles of meitotic and meiotic are analogous. Meiosis is believed to be initiated by programmatic triplication of the last three cycles of the mitotic program.

A correlation has also been found between the change in histone H3 phosphorylation and global chromatin expansion and contraction in mitotic and meiotic.

In addition to the above mentioned effects, chromatin expansion could drive and direct topoisomerase to alter DNA supercoiling, catenation or decatenation. Mechanical forces within chromatin could alter the structural properties in associated proteins or RNAs. Microtubule-mediated bipolar spindle forces could create tension on centromere regions of a chromosome, which governs the beginning of anaphase.

Polymerization model can produce the regulation of recombination observed in both genetic and cytological experiments. This model is simple and biologically reasonable [18]. It explains interference and obligatory crossover rule [32]. The advantage of stress model is it ensures crossover interference and homoeostasis. But this model has a very complex implementation as certain heterogeneities must be introduced in the mechanical properties [32].

3.5 Poisson Process:

A stochastic process $\{X(t), t \in T\}$ is a collection of random variables. When t is interpreted as time, X(t) is called the state of the process at time t.

A stochastic process $\{N(t), t \ge 0\}$ is said to be a counting process when N(t) satisfies:

(i) N(t) is the total number of 'events' that have occurred up to time t.

- (ii) N(t) is integer valued.
- (iii) $N(t) \ge 0$.
- (iv) If s < t, then $N(s) \le N(t)$.

(v) For s < t, N(t) - N(s) equals the number of events that have occurred in the interval (s, t].

The counting process $\{N(t), t \ge 0\}$ is said to be a Poisson process with rate λ $(\lambda > 0)$, if:

(i) $N(0) \ge 0$.

(ii) The process has stationary and independent increments, which means the numbers of events that occur in disjoint time intervals are independent and the distribution of the number of events that occur in any interval of time depends only on the length of the time interval.

- (iii) $P[N(h) = 1] = \lambda h + o(h).$
- (iv) $P[N(h) \ge 2] = o(h)$.

The definition of Poisson process with rate λ implies that the number of events in any interval of length t is Poisson distributed with mean λt . That is, for all $s, t \geq 0$,

$$P\{N(t+s) - N(s) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \quad n = 0, 1, ..$$

Another important feature to be considered here is the distribution of interarrival

time. Let T_n denote the time between (n-1)st and the *n*th event. The sequence $\{T_n, n \ge 1\}$ is called the interarrival times. When given $T_n = t$, number of events is Poisson distributed with mean λt in an interval of t, then $T_n, n = 1, 2, ...$ are independent indentically distributed exponential random variables with mean $\frac{1}{\lambda}$ and the waiting time until the *n*th event is, $S_n = \sum_{i=1}^n T_i, n \ge 1, S_n$ has a gamma distribution with parameters n and λ [31].

Assuming that the number of chiasmata on an interval has a Poisson distribution implies that the distance between two successive chiasmata follows exponential distribution and the total interval, or distance, follows gamma distribution. Also, in a very short interval the chance of chiasmata being more than one is extremely rare. This holds if there is no interference. Under no interference, both chiasma and crossover processes are Poisson processes.

Now we will show that the crossover process is also a Poisson process. Say, under no interference chiasma process X is a Poisson process with mean λ . This also implies that the chiasma happening across disjoint intervals are mutually independent Poisson random variables. For a chromosomal interval t of length the distribution of X(t) is Poisson with mean λt . Since under no chromatid interference each chiasma results in a crossover independently in a given gamete with probability 0.5, then crossover process Y(t) consists of a Bernoulli thinning of X(t) with p = 0.5 which means that crossover process Y(t) is a thinned version of the chiasma process. In a Poisson process we can label each point with a mark and use these marks to distinguish between different events that have happened at a certain point. This is called marked Poisson process. Each chiasma point can be marked according to whether the chromatids participate in exchange or not so that when a gamete is sampled (observed), we identify as a crossover only the marked points where the chromatid participation is an exchange and consequently the crossover process is a thinned version of the Let, $X(t) \sim P(\lambda t)$ and each of these events be of type 1 with probability ω . $Z(t_1), Z(t_2), Z(t_3), \dots$ is a sequence of independent Bernoulli variables with $P(Z_i = 1) = \omega$ and let,

$$Y(t) = \sum_{i=1}^{X(t)} Z(t_i)$$

Then,

$$Y(t) = \sum_{i=1}^{\infty} Z(t_i) I_{[i \le X(t)]}$$

By independence of $Z(t_i)$ and X(t) for every i,

$$E(Y(t)) = \sum_{i=1}^{\infty} E(Z(t_i)) E(I_{[i \le X(t)]}) = \omega \sum_{i=1}^{\infty} E(I_{[i \le X(t)]}) = \omega E(t) = \omega \lambda t$$

By using the probability generating function,

$$E[s^{Y(t)}] = \sum_{n=0}^{\infty} E[s^{Y(t)} \mid X(t) = n] \ \frac{e^{-\lambda t} (\lambda t)^n}{n!}, \quad s \in [0, 1]$$

where,

$$E[s^{Y(t)} \mid X(t) = n] = E[s^{Z(t_1)}]^n = (1 + \omega(s - 1))^n$$

Then,

$$E[s^{Y(t)}] = \sum_{n=0}^{\infty} (1+\omega(s-1))^n \ \frac{e^{-\lambda t}(\lambda t)^n}{n!} = \exp\left(\lambda t(1+\omega(s-1))\right) \exp\left(-\lambda t\right) = \exp\left(\omega \lambda t(s-1)\right)$$

So Y(t) follows poisson distribution with mean $\lambda \omega t$.

Since the crossover process is a thinned version of the chiasma process, the intensity of the chiasma process is twice that of the crossover process.

Map function plays an important role in genetics for two reasons: i) genetic map distances are additive by definition, whereas recombination fractions are not; ii) recombination fractions are much easier to estimate from data as it refers only to features of chromosomes at the end points of intervals. On the other hand, to estimate a map distance, the information about crossovers in the interval between two loci is required and surely, this information cannot be observed [33]. Nonetheless, information about crossover is contained in recombination and through statistical techniques such information can be reached.

We can think of the distance between two crossover events along the chromosome as a waiting distance for an event to happen. In this way we have a stochastic process which is of similar structure to those time-to-event processes whose analysis techniques are used in survival analysis. If we could observe the distance between two successive crossovers, we would be able to estimate the distribution of the genetic distance between any pair of crossover sites. Unfortunately, we do not observe the crossover sites themselves, but their location between flanking markers. This means that our data set is really a set of double censored observations. We obtained our double censored data in the following way. Suppose, G is the distance between consecutive crossovers. For inter-crossover distance the data is type-2 double censored. To see this, we are considering two consecutive crossover events: the first one happening at some point in between the loci positions m_1 and m_2 and the next one happening in between m_3 and m_4 , with $m_1 < m_2 < m_3 < m_4$. Thus , the inter crossover distance is in the interval, $[m_3 - m_2, m_4 - m_1)$, i.e., in general, $d_i \, \epsilon \, [L_i, U_i)$. After getting the data in a double censored data format, we would like to estimate the distribution of the distance.

3.6 Distribution of the distance between consecutive crossover in the absence of interference

Suppose we have a random sample of individuals for which a double crossingover on a particular chromosome has been observed. Let n is the number of consecutive crossovers, i.e., the sample size. When there is no interference of any kind, the distance between consecutive crossovers is exponential, so estimation of its distribution is reduced to the estimation of the parameter of the exponential distribution with double censored data. As before, suppose that the length between a double crossover on a chromosome is d. Then, as per the discussion of the previous sections, it can be said that d follows exponential distribution with parameter λ . We do not observe d but we know that when a double recombination happens, $d_i \epsilon[L_i, U_i)$. To estimate the parameter by the maximum likelihood method, we proceed as follows. Say, $d_i \epsilon [L_i, U_i), i = 1, 2, \dots, n$.

Then the probability that d_i lies between L_i and U_i is,

$$\pi_i(\lambda) = \Pr\left(d_i \epsilon[L_i, U_i)\right) = F_\lambda(U_i) - F_\lambda(L_i)$$
$$= e^{-\lambda L_i} - e^{-\lambda U_i}$$
(3.24)

So, the likelihood of the data is,

$$\mathscr{L}(\lambda) = \prod_{i=1}^{n} \pi_i(\lambda),$$

Then, the log-likelihood is,

$$\ell(\lambda) = \sum_{i=1}^{n} \log \pi_i(\lambda)$$

=
$$\sum_{i=1}^{n} \log \left(e^{-\lambda L_i} - e^{-\lambda U_i} \right).$$
 (3.25)

Differentiating the log-likelihood twice with respect to λ ,

$$\frac{\partial \ell(\lambda)}{\partial \lambda} = \sum_{i=1}^{n} \frac{-L_i e^{-\lambda L_i} + U_i e^{-\lambda U_i}}{e^{-\lambda L_i} - e^{-\lambda U_i}}$$
$$= \sum_{i=1}^{n} \frac{U_i e^{-\lambda U_i} - L_i e^{-\lambda L_i}}{e^{-\lambda L_i} - e^{-\lambda U_i}}.$$
(3.26)

$$\frac{\partial^2 \ell(\lambda)}{\partial \lambda^2} = -\sum_{i=1}^n \frac{e^{-\lambda(U_i + L_i)}(U_i - L_i)^2}{(e^{-\lambda L_i} - e^{-\lambda U_i})^2}.$$
(3.27)

Then using the Newton-Raphson method in R, an estimate $\hat{\lambda}$ of λ can be found.

The asymptotic variance of $\hat{\lambda}$ is

$$Var(\hat{\lambda}) = \frac{1}{\sum_{i=1}^{n} \frac{e^{-\lambda(U_i + L_i)}(U_i - L_i)^2}{(e^{-\lambda L_i} - e^{-\lambda U_i})^2}}.$$
(3.28)

And an estimate of this variance would be obtained by plugging in $\hat{\lambda}$ in (3.28).

3.7 Distribution of the distance between successive crossovers

Suppose that we want to somehow quantify the effect of genetic interference for different chromosomes against a group of individuals of a given genetic makeup or such an effect on the same chromosome between groups of different genetic backgrounds.

A direct comparison of the distribution of the distance between successive crossovers $a \ la$ Kolmogorov-Smirnov may not be a good idea because the difference may occur due to the difference in the length of chromosomes of the individual basis or genetic group.

We could compare the expected value of the distance, but since we do not observe distance between successive crossovers, we need to find a way to estimate the mean of the distance. A more sensible alternative would be to compare the expected value of the distance between successive crossovers,

$$\hat{E}(d) = \int_0^\infty (1 - \hat{F}(t)) dt,$$

where F is the distribution of the positive random variable d. In any case, a good starting point would be the estimation of the distribution of the distance between successive crossovers. However, there is a small complication. We do not observe such a distance, but the end points of an interval that covers such a distance i.e., our data consist of intervals such that, $d_i \in [L_i, U_i)$.

This section deals with the problem of estimating the distribution of the interval censored distance between two successive crossovers.

3.7.1 The non-parametric maximum likelihood (NPML) estimator for interval censored data

We will start by finding the NPML estimator of the interval censored data. This problem can be reduced to one of maximizing the likelihood function subject to certain constraints. First the probability that a distance, d_i , lays in the observed interval $[L_i, U_i)$ is given by

$$Pr(L_i \leq d_i < U_i) = F(U_i) - F(L_i),$$

where F is the distribution that we want to estimate, non-parametrically. Furthermore, the probability of observing a particular set of intervals in a random sample of size n is given by the likelihood,

$$\mathscr{L}(F) = \prod_{i=1}^{n} (F(U_i) - F(L_i)).$$
(3.29)

Now, let $b_0 < b_1 < ... b_M$ be the grid of distances that include all L_i and U_i end points. We then get the set $\{[b_{j-1}, b_j), j = 1, 2, ..., M\}$ the observed end points, with this notation,

$$\mathscr{L}(\mathbf{F}) = \prod_{i=1}^{n} \sum_{j=1}^{M} I_{[L_{i},\infty)}(b_{j-1}) I_{(0,U_{i}]}(b_{j})(F(b_{i}) - F(b_{j-i})).$$
(3.30)

So that the log-likelihood function, $\ell(\mathbf{F})$, is given by,

$$\ell(\mathbf{F}) = \log \mathscr{L}(\mathbf{F}) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{M} I_{[L_{i},\infty)}(b_{j-1}) I_{(0,U_{i}]}(b_{j})(F(b_{j}) - F(b_{j-1})) \right).$$
(3.31)

The problem can be further reduced by noticing that the sample data may not provide information to estimate each $F(b_j)$, j = 1, 2, ..., M independently. For example, imagine that we have no data observations in a particular basic interval. Thus the data provides no evidence of a probability mass falling in such a basic interval. As a result, the estimator of $F(b_j)$ will be identical to that for $F(b_{j-1})$. Because of this, the M observed end points are aggregated, or consolidated, to include only the support of the non-parametric estimator of F. This set of intervals, say $\{[\ell_i, r_i)\}$ is found in such a way that they represent the maximum clique of the data [40, 11].

Thus, by construction, the maximal clique intervals are such that, $\ell_i \in \{L_1, L_2, ..., L_n\}$ and $\mathbf{r}_i \in \{R_1, R_2, ..., R_n\}$ and such that no interval endpoint L_i and R_i occurs between ℓ_i and \mathbf{r}_i . The maximum clique intervals are completely ordered in the real line and we assign them an index from 1 to J. On the maximal clique intervals \hat{F} is not decreasing, unless $\hat{F}(\mathbf{r}_i) - \hat{F}(\ell_i -) = 0$. In any other interval \hat{F} must be constant. Define,

$$\alpha_{ij} = I_{[L_i,\infty)}(\ell_j)I_{(0,U_i]}(\boldsymbol{r}_j), \ j = 1, 2, ..., J_{ij}$$

Therefore the vector $\boldsymbol{\alpha}_i \in \{0, 1\}^J$ indicates which maximal clique interval intersects with the *i*th observed interval $[L_i, U_i)$.

We know that $F(0) = F_0 = 0$ and our NPML have jumps only at each ℓ_j , j = 1, 2, ..., J. So, finding F consists of estimating the vector where the jumps occur. Define,

$$\Delta_j = F(\boldsymbol{r}_j^*) - F(\boldsymbol{\ell}_j), \, j = 1, 2, ..., J$$

where,

$$\mathbf{r}_j^* = \begin{cases} \mathbf{r}_j - & \text{if } \ell_j < \mathbf{r}_j \\ \mathbf{r}_j & \text{if } \ell_j = \mathbf{r}_j. \end{cases}$$

49

Now, estimation of the distribution F is equivalent to the estimation of Δ . So this is a constrained optimization problem. Then the NPML problem can be rewritten as,

$$\hat{\boldsymbol{\Delta}} = \arg \max_{\boldsymbol{\Delta}} \sum_{i=1}^{N} \log \eta_i(\boldsymbol{\Delta})$$
(3.32)

with

$$\eta_i(\mathbf{\Delta}) = \sum_{j=1}^J \alpha_{ij} \Delta_j.$$

Subject to,

$$\Delta_j \ge 0, \ j = 1, 2, ..., J$$

$$\sum_{j=1}^{J} \Delta_j = 1$$

so that $\hat{F}_j = \hat{F}_{j-1} + \hat{\Delta}_j$, j = 1, 2, ..., J, with $\hat{F}_0 = 0$ and $\hat{F}_j = \hat{F}(\ell_j)$. Then the log-likelihood function of $\boldsymbol{\Delta}$,

$$\ell(\mathbf{\Delta}) = \sum_{j=1}^{n} \log \eta_i(\mathbf{\Delta}).$$
(3.33)

It is strictly concave if the Hessian of $\ell(\Delta)$ is negative definite.

First derivative w.r.t Δ ,

$$\frac{\partial \ell}{\partial \Delta} = \sum_{i=1}^{n} \frac{\alpha_i}{\eta_i(\Delta)} = \beta.$$
(3.34)

The Hessian matrix is given by

$$\frac{\partial^2 \ell}{\partial \Delta \partial \Delta'} = -\sum_{i=1}^n \frac{\boldsymbol{\alpha}_i \boldsymbol{\alpha}'_i}{\eta_i^2(\Delta)}.$$
(3.35)

Notice that, because of the way the maximum clique intervals were constructed, the Hessian is a simple quadratic form of full rank and negative definite.

Since the objective function is concave and the constraints are linear; the Lagranian function to be optimized can be written as [10]

$$\sum_{i=1}^{n} \log \eta_i(\boldsymbol{\Delta}) + \sum_{j=1}^{J} \mu_j \Delta_j - \nu(\sum_{j=1}^{J} \Delta_j - 1),$$

where ν and $\mu_1, \mu_2, \dots \mu_J$ are Lagrange multipliers.

The estimate of Δ that satisfies all four Kraus-Khun-Tucker first-order necessary conditions will be the unique NPML estimate of Δ , because our problem is a strictly convex one.

The Kraus-Khun-Tucker first-order necessary conditions for a maximum are:

i) Primal constraints

$$\Delta_j \ge 0, \ j = 1, 2, \dots, J,$$
$$\sum_{j=1}^J \Delta_j = 1.$$

ii) Dual constraints

$$\mu_j \ge 0, \ j = 1, 2, ..., J.$$

iii) Complimentary slackness

$$\mu_j \Delta_j \ge 0.$$

iv) Stationarity

$$\beta_j + \mu_j - \nu = 0, \ j = 1, 2, ..., J,$$

where

$$\beta_j = \sum_{i=1}^n \frac{\alpha_{ij}}{\eta_i(\boldsymbol{\Delta})}.$$

The unique NPML estimate of Δ satisfies the conditions (i)-(iv) simultaneously, if in application these conditions are not met, then we do not have an NPML estimate.

3.7.2 Turnbull's self-consistent algorithm

It is easy to see that for interval censored data no closed form to the NPML problem exists. In the survival literature there is an algorithm proposed by Turnbull (1976) that produces the so-called self-consistent estimates.

In our context, the stationarity conditions (iv) above imply that,

$$\beta' \Delta + \mu' \Delta = \nu \, \mathbb{1}' \Delta \tag{3.36}$$

which together with the primary constraints (i) and the complementary slackness conditions (iii), we conclude that,

$$\boldsymbol{\beta}' \boldsymbol{\Delta} = \boldsymbol{\nu} = \boldsymbol{N},\tag{3.37}$$

because,

$$\boldsymbol{\beta} = \sum_{i=1}^{n} \frac{\boldsymbol{\alpha}_{i}}{\eta_{i}(\boldsymbol{\Delta})} \text{ and } \eta_{i}(\boldsymbol{\Delta}) = \boldsymbol{\alpha}_{i}^{\prime} \boldsymbol{\Delta}_{i}.$$
(3.38)

Expanding $\beta_j \Delta_j$ we have that

$$\beta_j \Delta_j = \sum_{i=1}^n \frac{\alpha_{ij} \Delta_j}{\eta_i(\Delta)} = \sum_{i=1}^n \pi_{ij}(\Delta), \text{ for } j = 1, 2, \dots J,$$
(3.39)

where $\pi()$ can be interpreted as the probability that the inter crossover distance for the *i*th observation lies in the *j*th maximum clique interval, given the observed data. Now,

equations (3.19)-(3.22) lead us to

$$\sum_{i=1}^{n} \pi_{ij}(\mathbf{\Delta}) + \mu_j \Delta_j = n \Delta_j$$

$$\Rightarrow \Delta_j = \frac{1}{n} \sum_{i=1}^{n} \pi_{ij}(\mathbf{\Delta}); \quad j = 1, 2, ..., J.$$

Based on this, the Turnbull's algorithm for our problem can be expressed as

1) Select an initial guess $\Delta^{(0)}$.

2) At the r-stage, compute the expected observation fractions in each maximum clique interval according to,

$$\pi_{ij}(\mathbf{\Delta}^{(r)}) = \frac{\alpha_{ij} \Delta_j^{(r)}}{\eta_i(\mathbf{\Delta}^{(r)})}$$

3) Obtain the update of $\Delta^{(r+1)}$ as

$$\Delta_j^{(r+1)} = \frac{1}{n} \sum_{i=1}^n \pi_{ij}(\boldsymbol{\Delta}^{(r)})$$

4) Whenever

$$\max_{j=1,2,\dots,J} |\Delta_j^{(r+1)} - \Delta_j^{(r)}| > \varepsilon$$

iterate again, i.e., increase r and go to step (2), otherwise stop.

The resulting vector $\hat{\Delta}^{SC}$ holds the self-consistant estimator of Δ .

As Turnbull (1976) pointed out, this procedure can be seen as an instance of the EM algorithm with the E-step and M-step being step 2 and 3 above, respectively.

Furthermore, Nettleton (1999) showed that the sequence of iterations of Turnbull's algorithm converges to a fixed point which belongs to the set of self-consistant estimates. The question that remains to be answered is whether $\hat{\Delta}^{SC}$ is also $\hat{\Delta}^{NPML}$ or not.

To answer this, note that when deriving the self-consistent equations we did not use the dual constraints (ii) of the Kraus-Khun-Tucker necessary conditions for the NPML estimator. Consequently, although $\hat{\Delta}^{NPML}$ is also self-consistant, the reciprocal does not hold, i.e., $\hat{\Delta}^{SC}$ is not necessarily NPML estimator. For example, suppose that the data are the intervals [0, 1), [1, 3), [1, 3), [0, 2), [0, 2), [2, 3). It is easy to see that the maximal clique intervals are [0, 1), [1, 2), [2, 3) the vector $(\frac{1}{2}, 0, \frac{1}{2})$ is a self-consistent estimate of Δ , so that $\Delta^{SC} \geq 0$ and $1'\Delta^{SC} = 1$. However, the Kraus-Khun-Tucker conditions are violated at this point, since, $\boldsymbol{\beta} = (6, 8, 6)'$ implies $\mu_2 = -2 < 0$. The NMPL estimate of Δ is $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.

Since Turnbull's algorithm did not enforce the dual constraints of the Lagrange multipliers $\mu_j \geq 0, j = 1, 2, ...J$, then there may exist points in the parameter space at which the estimates comply with the self-consistent equations, but one or more of the Langrange multipliers of the set $\{\mu_j\}$ are negative. Such self-consistent estimates cannot be the NPML estimate. Nonetheless, we can check if $\hat{\Delta}^{SC}$ is $\hat{\Delta}^{NPML}$ by verifying that $\hat{\mu}_j = N - \hat{\beta}_j^{SC} \geq 0, \ j = 1, 2, ..., J$.

3.7.3 Quadratic programming

Perhaps the most popular technique for solving constrained optimization problems like our NPML estimation problem, is quadratic programming. This approach consists of a battery of iterative algorithms on which a quadratic approximation of the constrained objective function is solved at each iteration.

For example, for our problem, we can take a second order Taylor series expansion

of the log-likelihood for the estimator at iteration r+1 about the estimate at iteration r, $\Delta^{(r)}$, i.e.,

$$\begin{split} \ell(\boldsymbol{\Delta}^{(r+1)}) &\approx \ell(\boldsymbol{\Delta}^{(r)}) + (\boldsymbol{\Delta}^{(r+1)} - \boldsymbol{\Delta}^{(r)})' \boldsymbol{\beta}^{(r)} \\ &+ \frac{1}{2} (\boldsymbol{\Delta}^{(r+1)} - \boldsymbol{\Delta}^{(r)})' \boldsymbol{H}^{(r)} (\boldsymbol{\Delta}^{(r+1)} - \boldsymbol{\Delta}^{(r)}), \end{split}$$

and maximize $\ell(\Delta^{(r+1)})$ subject to $\Delta^{(r+1)} \ge 0$ and $\mathbb{1}'\Delta^{(r+1)} = 1$.

The first three Kraus-Khun-Tucker necessary conditions for this quadratic programming NPML problem are similar to before and together with the gradient of the Lagranian, these can be written as,

- 1) $\mathbf{\Delta}^{(r+1)} \ge \mathbf{0}$ and $\mathbf{1}' \mathbf{\Delta}^{(r+1)} = 1$.
- 2) $\boldsymbol{\mu} \geq \mathbf{0}$.
- 3) $\boldsymbol{\mu} \bullet \boldsymbol{\Delta}^{(r+1)} = \boldsymbol{0}.$
- 4) $\boldsymbol{H}^{(r)}\boldsymbol{\Delta}^{(r+1)}\boldsymbol{\mu} = \nu \mathbb{1} + \boldsymbol{H}^{(r)}\boldsymbol{\Delta}^{(r)} \boldsymbol{\beta}^{(r)},$

where $\boldsymbol{\beta}^{(r)}$ and $\boldsymbol{H}^{(r)}$ are the gradient of $\ell(\boldsymbol{\Delta})$, evaluated at $\boldsymbol{\Delta}^{(r)}$ respectively. i.e.,

$$oldsymbol{eta}^{(r)} = \sum_{i=1}^N rac{oldsymbol{lpha}_i}{\eta_i(oldsymbol{\Delta}^{(r)})}$$

and

$$oldsymbol{H}^{(r)} = -\sum_{i=1}^{N} rac{oldsymbol{lpha}_{i} oldsymbol{lpha}_{i}^{\prime}}{\eta_{i}^{2}(oldsymbol{\Delta}_{i}^{(r)})}$$

An estimate of $var(\hat{\Delta})$ is given by the negative of the inverse of the Hessian matrix evaluated at the NPML estimate, i.e.,

$$v\hat{a}r(\hat{\Delta}) = \left(\sum_{i=1}^{N} \frac{\boldsymbol{\alpha}_{i}\boldsymbol{\alpha}_{j}'}{\eta_{i}^{2}(\hat{\Delta}^{NPML})}\right)^{-1}.$$

3.7.4 Nonparametric analysis of censored time-to-event data

To keep the calculation simpler, we used the nonparametric analysis of censored timeto-event to find the estimate of λ . The standard estimator of the survival function, proposed by Kaplan and Meier (1958), is known as the Product-Limit estimator. This estimator is defined as follows for all values of t in the range where there is data:

$$\hat{S}(t) = \begin{cases} 1 & if \ t < t_1, \\ \prod_{t_i \le t} (1 - \frac{a_i}{v_i}), \ if \ t_1 \le t \end{cases}$$
(3.40)

We suppose that the events occur at n distinct times $t_1 < t_2 < ... < t_n$. In the above equation a_i and v_i are the number of events and the number at risk at time t_i respectively. The Product-Limit estimator is a step function with jumps at the observed event times. The size of these jumps depends on the number of events observed at each event time t_i and on the pattern of the censored observations prior to t_i .

To get the estimate of the survival function for interval censored data, a modified Product-Limit estimator has been suggested by Turnbull (1974). To construct the estimator, let $0 = \tau_0 < \tau_1 < ... < \tau_m$ be a grid of time which includes all the points L_i and U_i for i = 1, ..., n. For the *i*th observation, define a weight α_{ij} to be 1 if the interval (τ_{j-1}, τ_j) is contained in the interval $(L_i, U_i]$ and 0 otherwise. That is, α_{ij} indicates whether the event which occurs in the interval $(L_i, U_i]$ could have occurred at τ_j . Hence, α_{ij} can be written as

$$\alpha_{ij} = I_{[L_i,\infty)}(\tau_{j-1})I_{(-\infty,U_i]}(\tau_j)$$

Starting with an initial guess at $\tilde{S}(\cdot)$ using Product-Limit estimator, as suggested

by Turnbull, the algorithm is as follows:

Step 1: Compute the probability of an event's occurring at time τ_j by $p_j = \tilde{S}(\tau_{(j-1)}) - \tilde{S}(\tau_j), j = 1, ..., m.$

Step 2: Estimate the number of events which occurred at τ_j by

$$\tilde{d}_j = \sum_{i=1}^n \frac{\alpha_{ij} p_j}{\sum_k^m \alpha_{ij} p_k} = \frac{p_j \sum_{i=1}^n \alpha_{ij}}{\sum_k^m \alpha_{ij} p_k}.$$
(3.41)

Here, $\sum_{k}^{m} \alpha_{ij} p_k$ is the total probability assigned to possible event times in the interval $(L_i, U_i]$.

Step 3: Compute the estimated number at risk at time τ_j by

$$\tilde{Y}_j = \sum_{k=j}^m \tilde{a}_k. \tag{3.42}$$

Step 4: Compute the updated Product-Limit estimator using the pseudo data found in Steps 2 and 3. If the updated estimate of $\tilde{S}(\cdot)$ is close to the old version of $\tilde{S}(\cdot)$ for all $\tau'_j s$, stop the iterative process, otherwise, repeat Steps 1-3 using the updated estimate of $\tilde{S}(\cdot)$. [20]

Since, to our knowledge, no standard statistical package was found to estimate the survival function based on Turnbulls algorithm, we implemented the algorithm in R [12].

3.8 Ratio of cM and MB

The ratio of genetic length to physical length (cM/MB) on a given chromosome is a measure commonly used to describe "crossover intensity" in a broad and informal sense. It is well known that this ratio varies with species and chromosome. It is also known that the ratio may not be constant across a given chromosome and these variations can be taken as a local indicator of interference. In our study we tried to measure the rate of change of the genetic distance (cM) with respect to physical distance (MB) between the markers. Inter marker genetic distances were estimated to take the ratio with the corresponding inter marker physical distances. This ratio has been calculated for all the chromosomes from all five panels. Comparing them across all the panels would give an idea of the variability of crossover rates among the different panels [26].

The local ratio of estimated genetic distance and physical distance was calculated by

$$r_i = \frac{d_i - d_{i-1}}{m_i - m_{i-1}},\tag{3.43}$$

where d_i is the estimated genetic distance at the *i*th locus and m_i is the physical distance at the *i*th locus.

As a reference an estimate of the overall ratio at each chromosome for every cross was calculated as,

$$\bar{r} = \frac{d_n - d_1}{m_n - m_1}$$
; where, $d_1 \le d_2 \le \dots \le d_n$ and $m_1 \le m_2 \le \dots \le m_n$ (3.44)

Chapter 4

Data Description

For this study, we used datasets from 5 different crosses. The crosses were cited using dams first, then sires for every data. Three of these datasets were generated at Jackson Laboratory, Bar Harbor, ME. The mouse strains were [(PERA X DDK)F₁ X B6]N₂ with chromosomes 1 to X and had 39 female individuals. [PERC X DDK)F₁X B6]N₂ with chromosomes 1 to X except chromosome 11 and had 36 females [15]. (SM X NZB)F₁ X NZB were used to produce female backcross progeny. Here we had 53 females with chromosomes from 1 to X [29].

The mice with backcross $(B6-Pgk1^a \ X \ DDK)F_1 \ X \ B6$ were used in two of the data sets. These two datasets originated from females that were genetically identical, but phenotypically different. In one group the X-inactivation pattern was more skewed towards the silencing of DDK X-linked genes (more skewed), while in the other group any of the two X chromosomes was randomly inactivated resulting in a similar number of cells with the parental phenotype (less skewed). The dataset that was less skewed had 81 females and the other one had 80. Both of these datasets had chromosomes from 1 to X [5].

4.1 Data Editing

Since we wanted to use standard software to estimate the genetic distance between consecutive markers which can be done through R/qtl, we formatted the file according to this particular data arrangement. As a starting point, we used the consensus genetic map as well as the physical distance from the appropriate sources. The data set was also checked for inconsistencies such as impossible or outrageous genotype and they were deleted.

We started our search for these positions from the following websites:

1.http://www.biolreprod.org/content/suppl/2006/10/18/biolreprod.106.056739.DC1/
biolreprod.106.056739-1.pdf
2. http://www.informatics.jax.org/
3.http://www.shigen.nig.ac.jp/mouse/mmdbj/top.jsp

In some cases neither the genetic distances (cM) nor the physical distances (MB) were found from the above mentioned sources. In those cases the following formulae of interpolation and extrapolation were used to find the starting values needed for the iterative estimation algorithm.

Linear Interpolation: Generally, linear interpolation takes two data points into account. Say we want to find the y of the point (x, y) which is in between (x_a, y_a) and (x_b, y_b) , the interpolant is given by [3],

$$y = y_a + (y_b - y_a) \frac{(x - x_a)}{(x_b - x_a)}$$

To find the genetic position of a marker in cM, the physical map in MB units was

used as x's and in the same way the genetic distances in cM were used as x's to find the physical map in MB.

Extrapolation: Suppose we have values for points (x_0, y_0) , (x_1, y_1) , (x_2, y_2) ... (x_n, y_n) and (x_{n+1}, y_{n+1}) , where either y_0 or y_{n+1} is unknown. The following formula can be used to find the unknown values,

$$y_0 = y_1 - \lambda(x_1 - x_0)$$
$$y_{n+1} = y_n + \lambda(x_{n+1} - x_n) \text{ where } \lambda = \frac{y_n - y_1}{x_n - x_1}$$

Once a full set of initial genetic distances was completed, we estimated genetic distance by EM algorithm and plotted them. From this we found that between some of the markers there were too many recombination events in chromosome 19 of cross $[(PERA \ X \ DDK)F_1 \ X \ B6]N_2$ and in chromosomes 5 and 16 of cross $[PERC \ X \ DDK)F_1 \ X \ B6]N_2$. This fact has been shown in Figure 4.1 (a) and (b). This can happen because of an anomaly in the data, recombination hotspot or chiasma interference.

Further investigation of the data shows that it was happening as those markers were showing either 'H' or 'A' for all the individuals, which is highly unlikely. So those markers were deleted from the data and the genetic distance was estimated again with the edited data. Figure 4.1 (c) and (d) are showing the final estimate of the genetic distance.

Furthermore, at one point of the data analysis it was found that some individuals had double recombination in the same place, which seemed to be very interesting. However, further examination revealed that it happened because of the misplacement of some markers. So, those markers were also deleted.

Once the data was massaged to remove gross errors, the analysis was undertaken.

(a) Genetic Map of Cross [(PERA X DDK)F1 X (b) Genetic Map of Cross [PERC X DDK)F1 X B6]N2 B6]N2

(c) Genetic Map of Cross [(PERA X DDK) F_1 X (d) Genetic Map of Cross [PERC X DDK) F_1 X B6] N_2 after deleting problem markers B6] N_2 after deleting problem markers

Figure 4.1: Genetic map

Chapter 5

Data Analysis and Results

5.1 Recombination Fraction

Once the genetic distance was estimated using an built-in function in R, it was used to obtain the estimated recombination fraction between adjacent markers using the Haldane function (eq. 3.23). For all the crosses, Tables 1 to 5 in Appendix-A give the chromosome number in the first column, marker name in the second column, consensus genetic distance in the third column and estimated genetic distance in the fourth column. Tables 6 to 10 provide the chromosome number in the first column, estimated genetic distance in the second column and recombination fraction for neighboring markers in the third column. In the table when the genetic distance is 0, the recombination fraction is also 0 as it is impossible to have any crossover. The probability of occurring crossover increases with the increase of genetic distances. The highest estimated genetic distance 79.98 in our data was found in chromosome 8 of $[(SM X NZB)F_1 X NZB]N_2$ and the corresponding recombination fraction was 0.39901135.

5.2 Distribution of genetic distance

From left to right, Tables 11 to 15 show chromosome number, individual ID and intercrossover distance for all crosses. Intercrossover distance was found using R code given in Appendix-B. Results from Tables 11 to 15 were used to find the results of Tables 16 to 20. The first and second column of Tables 16 to 20 give unique upper or lower bound of intercrossover distance and Product-Limit estimate (Section 3.7.4) respectively. R code to find Product-Limit estimate is given in Appendix-B. Results from Tables 16 to 20 were used to find distribution of genetic distance, F.

5.3 Crossover Rate

As described in Section 3.6 Crossover rate, its variance and standard deviation has been obtained by R code using the interval censored data for where there is double crossover as well as considering the data where there is only one crossover . R code is presented in Appendix-B. MLE was used to calculate the crossover rate. Estimated crossover rate for each chromosome with their variance and standard deviation are provided from Tables 21 to 25 in Appendix-A. The results in the tables show that variance or standard deviation is high for high crossover rate.

5.4 cM and MB Ratio

The ratio of genetic length to physical length (cM/MB) has been found to make a comment about the distribution of crossover rate and to find whether there is a sign of any kind of interference in the data. The results can be found in Appendix-A from Tables 26 to 30. From left to right the table depicts name of marker, ratio of cM and
MB, and overall ratio of corresponding chromosome. We could not get ratios for a few markers, as in those cases where both the estimated genetic distance and physical distance were zero. After plotting the ratios, the following kinds of graphs were found. Several graphs were made to comment on data; only two of them are presented here.

(a) [(pera x ddk) F_1 x b6] N_2 (b) [pera x ddk) F_1 x b6] N_2

Figure 5.1: Local ratio by physical distance

Sharp spikes in the graphs may occur either because there is hotspot of recombination or because of interference. In the above figure of $[(PERA \ X \ DDK)F_1 \ X \ B6]N_2$ for chromosome 9 we can see one sharp pick and for chromosome 19 we can see two sharp picks. This means there may be interference in these chromosomes. In the coming sections (Section 5.4 and 5.5) we aim to find more evidence of interference.

5.5 NPML of Lambda

To find the NPML of λ first the clique intervals needed to be found and for that we needed to plot the data. It was done for all the chromosomes of each cross, but only

chromosome 11 is shown here as an example.

The observed data for chromosome 11 of $[(B6-Pgh1^a \times DDK)F_1 \times B6]N_2$ (more skewed) is:

 $[35.00, 73.70), [35.00, 73.70), [25.94, 64.91), [25.94, 64.91), [6.59, 41.79), [54.35, 96.82), \\ [22.44, 54.35), [15.85, 35.00), [6.59, 41.79), [0.00, 42.47), [28.41, 54.35), [22.44, 54.35), \\ [54.35, 96.82)$

and in a plot this looks like:

Figure 5.2: Observed data plot for chromosome 11

Figure 5.3: Clique intervals for chromosome 11 So the maximum clique intervals are:

 $\dot{t}_1 = [28.41, 35), \ \dot{t}_2 = [35, 41.79), \ \dot{t}_3 = [54.35, 64.91)$

and the NPML of Δ is

$$\hat{\boldsymbol{\Delta}} = \left(\frac{1}{3}, \frac{5}{12}, \frac{1}{4}\right)'$$

Then the NPML of F(d) is

$$\hat{F}(d) = \begin{cases} 0 & \text{if } d < 28.41 \\ \frac{1}{3} & \text{if } 28.41 \le d < 35 \\ \frac{3}{4} & \text{if } 35 \le d < 54.35 \\ 1 & \text{if } d \ge 54.35 \end{cases}$$

and

$$\hat{\mathcal{E}}(d) = \int_0^\infty (1 - \hat{F}(t)) dt$$
$$= 37.641$$

 $\hat{F}(d)$ is found using nonparametric analysis of censored time-to-event method described in Section 3.7.4 and the result of that section is given in Tables 16 to 20 of Appendix-A. We found $\hat{\Delta}$ for all the chromosomes of all the crosses in the above way and checked if they satisfy $\hat{\mu}_j = N - \hat{\beta}_j^{SC} \ge 0, \ j = 1, 2, ..., J$ described in Section 3.7.2. R program for checking the condition is given in Appendix-B.

5.6 Comparison between expected difference between consecutive crossovers

To find if there is interference, we compared the expected genetic distance $\hat{E}(d)$, found considering both chiasma and chromatid interference, that is explained in the previous section and the expected genetic distance, $1/\hat{\lambda}$, found without considering interference, that is presented from Tables 21 to 25.

$\hat{E}(g)$	$1/\hat{\lambda}$	Cross
Chromosome-2		
85.36	66.418	[PERC X DDK) F_1 X B6] N_2
56.84	56.138	[(SM X NZB) F_1 X NZB]N $_2$
Chromosome-3		
32.785	34.466	[(PERA X DDK) F_1 X B6] N_2
chromosome-5		
49.372	53.268	[(PERA X DDK)F $_1$ X B6]N $_2$
6.925	12.730	[PERC X DDK) F_1 X B6] N_2
25.926	33.198	[(SM X NZB)F $_1$ X NZB]N $_2$
Chromosome-6		
0	0.680	[PERC X DDK) F_1 X B6] N_2
44.08	50.680	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
53.4	49.806	[(B6-Pgk1 ^a X DDK)F ₁ X B6]N ₂ (Less skewed)
23.68	30.147	[(SM X NZB)F $_1$ X NZB]N $_2$
Chromosome-7		
40.405	47.174	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
30.12	32.976	[(SM X NZB)F $_1$ X NZB]N $_2$
Chromosome-8		
52.52	56.640	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
Chromosome-9		
41.16	41.162	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
34.52	37.448	[(B6-Pgk1 ^a X DDK)F ₁ X B6]N ₂ (Less skewed)
0	4.239	[(SM X NZB) F_1 X NZB]N $_2$

Table 5.1: Expected difference between consecutive crossovers

$\hat{E}(g)$	$1/\hat{\lambda}$	Cross
Chromosome-10		
54.905	60.485	[(PERA X DDK) F_1 X B6] N_2
64.35	54.060	[PERC X DDK) F_1 X B6] N_2
45.746	55.417	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
Chromosome-11		
43.035	55.741	[(PERA X DDK) F_1 X B6] N_2
37.641	40.743	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
65.722	69.216	[(B6-Pgk1 ^a X DDK)F ₁ X B6] N_2 (Less skewed)
Chromsome-12		
34.18	47.295	[(PERA X DDK) F_1 X B6] N_2
27.21	41.677	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
25.53	50.375	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (Less skewed)
Chromosome-13		
36	43.298	[PERC X DDK) F_1 X B6] N_2
39.92	50.201	[(B6-Pgk1 ^a X DDK)F ₁ X B6] N_2 (Less skewed)
Chromosome-14		
24.555	30.298	[(PERA X DDK) F_1 X B6] N_2
26.84	43.610	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
Chromosome-15		
28.57	55.692	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
Chromosome-16		
25.18	29.890	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
Chromosome-17		
20.685	23.785	[(PERA X DDK) F_1 X B6] N_2
35.74	41.058	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6] N_2 (Less skewed)
Chromosome-18		
38.44	39.398	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6] N_2 (Less skewed)
Chromosome-20		
24.59	27.593	[PERC X DDK) F_1 X B6] N_2
39.71	51.587	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6]N ₂ (More skewed)
35.1	57.916	[(B6-Pgk1 ^{<i>a</i>} X DDK)F ₁ X B6] N_2 (Less skewed)

Only the results of the crosses and chromosomes are presented here for which nonparametric estimate of the survival function was found and for which the condition $\hat{\mu}_j = N - \hat{\beta}_j^{SC} \ge 0, \ j = 1, 2, ..., J$ was satisfied.

High differences between $\hat{E}(g)$ and $1/\hat{\lambda}$ give us evidence that there may be interference in 20 chromosomes. To know if the difference is significant we have to do a test. However, in this work such a test was not developed, then it goes beyond the scope of the present thesis.

The chromosomes that show evidence of interference are chromosomes 11 and 12 of [(PERA X DDK)F₁ X B6]N₂, chromosomes 2, 5, 10 and 13 of [PERC X DDK)F₁ X B6]N₂, chromosomes 6, 7, 10, 12, 14, 15 and 20 of [(B6-Pgk1^{*a*} X DDK)F₁X B6]N₂ (More skewed), chromosomes 6, 12, 13 and 20 of [(B6-Pgk1^{*a*} X DDK)F₁ X B6]N₂(Less skewed) and chromosomes 5, 6 and 9 of [(SM X NZB)F₁ X NZB]N₂.

5.7 Comments on interference

Results from Sections 5.3 and 5.5 show evidence of interference in several chromosomes of different crosses. But since both of them showed evidence of interference in chromosome 13 of [PERC X DDK) F_1 X B6] N_2 and chromosome 10 of [(B6-Pgk1^a X DDK) F_1 X B6] N_2 (More skewed), it is confirmed that they have interference.

Chapter 6

Conclusion

In mice we cannot recover the four products of meiosis, nor observe where the crossovers actually take place. For this reason, to infer about the crossover or chiasma process or check whether there is interference in the chromosomes, finding an appropriate model is necessary. Most statistical models use the genetic distance between successive crossovers as the basis for inference. However, since we do not know the exact location of crossovers, we cannot observe the distance between two successive crossovers and thus estimation of the distribution of the genetic distance is not possible. Fortunately we can find a set of flanking markers from the data, which means we then have a set of type-2 double censored observation.

The data sets that were used in this practicum consisted of five different crosses of female mice. Most of them were generated at Jackson Laboratory, Bar Harbor, Maine, US. Consensus genetic map and physical distance were found from some well known websites and interpolation and extrapolation method were used to find some missing cM and MB. After plotting the estimated genetic distance, some problem markers were identified and removed from the data. It is well-known that the chemistry of some markers results in genotype detection that is not reliable. When the data was ready to use, type-2 censored data was obtained, presented and used with the techniques in this manuscript.

Expected distance between consecutive crossovers was found through a likelihood that did not consider the phenomenon of interference i.e. assuming that the distance between consecutive crossovers follows exponential distribution. However, since ignoring the effects of interference is not practical, we turned our attention to nonparametric alternatives. Although among several non-parametric methods the quadratic programming based on the second order Taylor series expansion should be preferred, as the estimate found in this method satisfies all the KKT conditions, in this thesis we used the method suggested by Turnbull (1976) depicted in Section 3.7.4 for time-to-event data. Afterwards, the estimates were checked to see if they had met the KKT conditions. Only the ones that satisfied the condition were taken for further analysis.

Expected distances under interference and no-interference modes were then compared in Table 5.1 . The result revealed that out of a total of 99 chromosomes of five crosses in this thesis, 20 chromosomes may have interference. These chromosomes were, chromosomes 11 and 12 of [(PERA X DDK)F₁ X B6]N₂, chromosomes 2, 5, 10 and 13 of [PERC X DDK)F₁ X B6]N₂, chromosomes 6, 7, 10, 12, 14, 15 and 20 of [(B6-Pgk1^{*a*} X DDK)F₁X B6]N₂ (More skewed), chromosomes 6, 12, 13 and 20 of [(B6-Pgk1^{*a*} X DDK)F₁ X B6]N₂(Less skewed) and chromosomes 5, 6 and 9 of [(SM X NZB)F₁ X NZB]N₂. For a visual confirmation, graphs were plotted for local ratio by physical distance for these 20 chromosomes to look for the evidence of interference. The graphs confirmed that only two of the chromosomes, chromosome 13 of cross [PERC X DDK)F₁ X B6]N₂ and chromosome 10 of cross [(B6-Pgk1^{*a*} X DDK)F₁X B6]N₂ (More skewed) had interference. Although we only found two chromosomes with interference, more chromosomes of this study may have interference. One reason for getting this result may be due to the use of the non-parametric analysis method suggested by Turnbull (1976). Most of the estimates that we found by using this method, did not meet the KKT conditions. So, this may not be a good method to find evidence of interference in the chromosome. Applying primal active set strategies for convex quadratic programming might lead us to find estimates that satisfy the KKT conditions. This means we could end up finding more chromosomes that have interference. Another reason for finding a very small number of chromosomes with interference might be the small data sets used in this study. In Section 5.3, we showed how a graphical presentation of the data was used to make a decision about the evidence of interference. However, because of the small dataset in many chromosomes, we could not obtain enough data points in the graphs to make any comment about the interference.

At the beginning of this work, we considered different ways of modeling interference and made an extensive review. However, as time progressed we realized that inference on chromatid interference is a problem that requires of more exquisite models and larger data sets. We consider that physical models need to be taken into consideration to be able to assess the extent of chromatid interference. The magnitude of such endeavour falls beyond the scope of this thesis. Besides, fundamental models that may address some aspects of chromatid interference (like two pathway methods) require specialized data and such an information was not contained in our data set, so our contribution on this subject is a modest reviews that can be used as the basis of a comprehensive methodology.

Bibliography

- T. Billings, E. E. Sargent, J. P. Szatkiewicz, N. Leahy, I.-Y. Kwak, N. Bektassova, M. Walker, T. Hassold, J. H. Graber, K. W. Broman, et al. Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping. *PLoS One*, 5(12):e15340, 2010.
- [2] K. W. Broman and J. L. Weber. Characterization of human crossover interference. The American Journal of Human Genetics, 66(6):1911–1926, 2000.
- [3] E. Cheney and D. Kincaid. Numerical mathematics and computing. Nelson Education, 2012.
- [4] E. de Boer, P. Stam, A. J. Dietrich, A. Pastink, and C. Heyting. Two levels of interference in mouse meiotic recombination. *Proceedings of the National Academy* of Sciences, 103(25):9607–9612, 2006.
- [5] E. de La Casa-Esperón, J. C. Loredo-Osti, F. P.-M. de Villena, T. L. Briscoe, J. M. Malette, J. E. Vaughan, K. Morgan, and C. Sapienza. X chromosome effect on maternal recombination and meiotic drive in the mouse. *Genetics*, 161(4):1651–1659, 2002.
- [6] B. L. Dumont and B. A. Payseur. Evolution of the genomic rate of recombination in mammals. *Evolution*, 62(2):276–294, 2008.

- [7] E. Foss, R. Lande, F. Stahl, and C. Steinberg. Chiasma interference as a function of genetic distance. *Genetics*, 133(3):681–691, 1993.
- [8] E. J. Foss and F. W. Stahl. A test of a counting model for chiasma interference. Genetics, 139(3):1201–1209, 1995.
- [9] F. Gauthier, O. C. Martin, and M. Falque. Coda (crossover distribution analyzer): quantitative characterization of crossover position patterns along chromosomes. *BMC bioinformatics*, 12(1):1, 2011.
- [10] R. Gentleman and C. J. Geyer. Maximum likelihood for interval censored data: Consistency and computation. *Biometrika*, 81(3):618–623, 1994.
- [11] R. Gentleman and A. C. Vandal. Computational algorithms for censored-data problems using intersection graphs. *Journal of Computational and Graphical Statistics*, 10(3):403–421, 2001.
- [12] S. R. Giolo. Turnbull's nonparametric estimator for interval-censored data. Department of Statistics, Federal University of Paraná, pages 1–10, 2004.
- [13] E. Housworth and F. Stahl. Crossover interference in humans. The American Journal of Human Genetics, 73(1):188–197, 2003.
- [14] E. A. Housworth and F. W. Stahl. Is there variation in crossover interference levels among chromosomes from human males? *Genetics*, 183(1):403–405, 2009.
- [15] F. Y. Ideraabdullah, K. Kim, D. Pomp, J. L. Moran, D. Beier, and F. P.-M. de Villena. Rescue of the mouse ddk syndrome by parent-of-origin-dependent modifiers. *Biology of reproduction*, 76(2):286–293, 2007.

- [16] A. J. Jeffreys, L. Kauppi, and R. Neumann. Intensely punctate meiotic recombination in the class ii region of the major histocompatibility complex. *Nature* genetics, 29(2):217–222, 2001.
- [17] H. Khalil, H. Tummala, and N. Zhelev. Atm in focus: A damage sensor and cancer target. *Biodiscovery*, 5, 2012.
- [18] J. S. King and R. Mortimer. A polymerization model of chiasma interference and corresponding computer simulation. *Genetics*, 126(4):1127–1138, 1990.
- [19] N. Kleckner, D. Zickler, G. H. Jones, J. Dekker, R. Padmore, J. Henle, and J. Hutchinson. A mechanical basis for chromosome function. *Proceedings of the National Academy of Sciences of the United States of America*, 101(34):12592– 12597, 2004.
- [20] J. P. Klein and M. L. Moeschberger. Survival analysis: techniques for censored and truncated data. Springer Science & Business Media, 2005.
- [21] K. Lange. Mathematical and statistical methods for genetic analysis. Springer Science & Business Media, 2003.
- [22] K. Lange and N. Risch. Comments on lack of interference in the four strand model of crossing over. *Journal of mathematical biology*, 5(1):55–59, 1977.
- [23] J. Lian, Y. Yin, M. Oliver-Bonet, T. Liehr, E. Ko, P. Turek, F. Sun, and R. H. Martin. Variation in crossover interference levels on individual chromosomes from human males. *Human molecular genetics*, 17(17):2583–2594, 2008.
- [24] L. Liu, H. Parekh-Olmedo, and E. B. Kmiec. The development and regulation of gene repair. *Nature Reviews Genetics*, 4(9):679–689, 2003.

- [25] A. Lynn, S. Schrump, J. Cherry, T. Hassold, and P. Hunt. Sex, not genotype, determines recombination levels in mice. *The American Journal of Human Genetics*, 77(4):670–675, 2005.
- [26] V. G. Nagabhushana. Computational analysis of variability of recombination rates in mice. Master's thesis, University of Texas, Arlington, August 2008.
- [27] K. Paigen, J. P. Szatkiewicz, K. Sawyer, N. Leahy, E. D. Parvanov, S. H. Ng, J. H. Graber, K. W. Broman, and P. M. Petkov. The recombinational anatomy of a mouse chromosome. *PLoS Genet*, 4(7):e1000119, 2008.
- [28] P. M. Petkov, K. W. Broman, J. P. Szatkiewicz, and K. Paigen. Crossover interference underlies sex differences in recombination rates. *Trends in Genetics*, 23(11):539–542, 2007.
- [29] W. A. Pitman, R. Korstanje, G. A. Churchill, E. Nicodeme, J. J. Albers, M. C. Cheung, M. A. Staton, S. S. Sampson, S. Harris, and B. Paigen. Quantitative trait locus mapping of genes that regulate hdl cholesterol in sm/j and nzb/b1nj inbred mice. *Physiological genomics*, 9(2):93–102, 2002.
- [30] K. Ross, P. Fransz, and G. Jones. A light microscopic atlas of meiosis inarabidopsis thaliana. *Chromosome research*, 4(7):507–516, 1996.
- [31] S. M. Ross et al. Stochastic processes, volume 2. John Wiley & Sons New York, 1996.
- [32] S. B. Roy. Distribution of meiotic crossovers: heterogeneity, modeling interference, inter-pathway crosstalk. PhD thesis, Université Paris Sud-Paris XI, 2014.
- [33] T. P. Speed. Genetic map functions. In *Encyclopedia of Biostatistics*. John Wiley and Sons, Ltd, 2nd edition, 2005.

- [34] F. Stahl. Defining and detecting crossover-interference mutants in yeast. PloS one, 7(6):e38476, 2012.
- [35] F. W. Stahl and H. M. Foss. A two-pathway analysis of meiotic crossing over and gene conversion in saccharomyces cerevisiae. *Genetics*, 186(2):515–536, 2010.
- [36] F. W. Stahl, H. M. Foss, L. S. Young, R. H. Borts, M. F. Abdullah, and G. P. Copenhaver. Does crossover interference count in saccharomyces cerevisiae? *Genetics*, 168(1):35–48, 2004.
- [37] F. W. Stahl and E. A. Housworth. Methods for analysis of crossover interference in saccharomyces cerevisiae. *Meiosis: Volume 1, Molecular and Genetic Methods*, pages 35–53, 2009.
- [38] R. Strich. Meiotic dna replication. Current topics in developmental biology, 61:29-60, 2004.
- [39] F. Teuscher, G. Brockmann, P. Rudolph, H. Swalve, and V. Guiard. Models for chromatid interference with applications to recombination data. *Genetics*, 156(3):1449–1460, 2000.
- [40] A. C. Vandal, R. Gentleman, and X. Liu. Constrained estimation and likelihood intervals for censored data. The Canadian Journal of Statistics/La Revue Canadienne de Statistique, pages 71–83, 2005.
- [41] H. Zhao and T. P. Speed. Stochastic modeling of the crossover process during meiosis. Communications in Statistics-Theory and Methods, 27(6):1557–1580, 1998.
- [42] H. Zhao, T. P. Speed, and M. S. McPeek. Statistical analysis of crossover interference using the chi-square model. *Genetics*, 139(2):1045–1056, 1995.

[43] D. Zickler and N. Kleckner. The leptotene-zygotene transition of meiosis. Annual review of genetics, 32(1):619–697, 1998.

Appendix A

Table 1: Estimated Genetic distance of Cross [(PERA X DDK)F $_1$ X B6]N $_2$

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
1	rs13475712	6.5	6.5	1	rs13476012	58.7	61.77
1	rs13475735	8.7	11.9	1	rs3685663	59.5	64.41
1	rs3711079	10	23.38	1	rs3717264	59.5	64.41
1	rs4222215	15	26.01	1	rs3664662	59.5	64.41
1	rs13475771	15.3	26.01	1	rs3695581	63.1	72.76
1	rs3677683	17	26.01	1	rs13476089	63.1	72.76
1	01.029.481	17.8	26.01	1	rs6355835	67	75.39
1	01.035.780	21	34.37	1	01.135.010	70	75.39
1	01.041.550	25.7	39.78	1	rs13476147	73	78.02
1	01.046.600	25.7	39.78	1	rs6364156	73	78.02
1	mCV23591750	25.7	39.78	1	rs13476259	78	113.98
1	rs3716105	32.8	42.41	1	01.178.925	100	113.98
1	rs6356603	41	47.82	1	CEL-1-181947877	101	113.98
1	01.076.110	47	51.07	1	rs13476290	102	119.39
1	01.087.170	54.5	61.77	1	rs3654705	106.3	119.39
1	rs13475982	58.5	61.77	1	rs6246360	112	119.39
1	rs13475988	58.7	61.77	2	rs13476318	2	2
1	rs13475989	58.7	61.77	2	rs13476330	4	7.4
1	rs13475991	58.7	61.77	2	02.016.175	9.5	18.9
1	rs6342650	58.7	61.77	2	rs6181760	17	24.33
1	rs6358447	58.7	61.77	2	02.041.990	29	29.74
1	CEL-1-98681809	58.7	61.77	2	02.054.160	30.5	33.07
1	CEL-1-98799654	58.7	61.77	2	02.065.760	37	43.86
1	rs3695980	58.7	61.77	2	rs6371268	38.3	43.86

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
2	rs13476560	40.4	43.86	2	CEL-2-163612103	96	102.66
2	rs13476563	40.4	43.86	2	rs6219107	99	108.07
2	mCV25095764	44	46.5	2	rs3673248	100	113.47
2	CEL-2-79237503	47.9	46.5	3	rs6398851	4.6	4.6
2	rs3722345	48	49.13	3	rs13477046	16.5	22.98
2	02.079.300	48.1	49.13	3	D3Mit63	22	31.33
2	02.083.650	48.1	54.55	3	rs6239288	26.4	46.14
2	rs4223268	48.1	59.97	3	rs3696955	30	46.14
2	02.093.700	50.3	62.6	3	rs6226544	33.7	48.78
2	rs13476663	50.3	65.23	3	CEL-3-68001820	33.7	48.78
2	rs6249987	50.3	65.23	3	rs13477178	33.7	51.41
2	rs13476667	50.3	65.23	3	rs6198234	33.7	51.41
2	rs3674721	50.3	65.23	3	rs3698109	33.7	51.41
2	mCV25337624	50.3	65.23	3	rs13477190	33.7	54.04
2	rs13476684	50.3	65.23	3	rs13477210	35.2	54.04
2	rs13476689	51.4	65.23	3	rs3715352	35.2	54.04
2	rs3022892	51.4	65.23	3	rs13477215	35.2	54.04
2	rs3693678	51.4	65.23	3	gnf03.079.138	38.3	59.45
2	rs3701250	52.5	67.86	3	rs6376008	39.7	62.08
2	rs6276129	65.5	70.49	3	rs13477244	39.7	62.08
2	rs3723406	65.5	73.13	3	rs3720007	45.2	64.71
2	rs6340352	67	73.13	3	rs6391963	49.7	67.35
2	rs3697020	70	73.13	3	rs3686473	49.7	67.35
2	rs6411422	73	73.13	3	03.100.150	49.7	67.35
2	02.128.325	73	75.76	3	03.119.365	55	69.98
2	02.130.220	73.5	79.77	3	rs6214597	55	69.98
2	rs13476794	78	83.78	3	03.152.282	79.4	88.37
2	rs3710324	78	83.78	3	rs13477498	83.5	88.37
2	rs13476805	79.4	83.78	3	rs6331755	84.9	88.37
2	rs6360457	79.7	86.41	4	rs13477534	0	0
2	gnf02.141.261	80	86.41	4	rs13477546	1.9	0
2	rs6195594	81	89.05	4	04.011.950	5.2	0
2	rs3655895	81.7	89.05	4	rs13477592	5.2	2.63
2	rs3696870	82	89.05	4	rs13477599	6.3	2.63
2	02.146.685	82	89.05	4	04.021.985	6.3	8.16
2	rs3726342	92	97.4	4	04.029.760	7.5	26.21
2	rs6204920	92	100.03	4	rs13477662	12.1	29.3

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
4	04.042.340	14.5	34.71	5	05.108.560	61	62.59
4	04.049.500	21.9	34.71	5	CEL-5-120064766	67	70.94
4	rs13477741	32.3	34.71	5	05.117.270	67	70.94
4	rs6258088	40	40.12	5	05.121.625	72	73.57
4	04.078.330	40	40.12	5	rs13478521	72	73.57
4	04.099.005	49.6	42.75	5	05.135.860	81	81.94
4	rs13477895	50.8	45.38	5	rs3668534	86	90.31
4	rs3670382	54.4	45.38	6	06.002.580	0.6	0.6
4	rs3696331	56	48.02	6	06.005.375	2.6	0.6
4	04.115.380	57	48.02	6	rs3655269	3.2	6
4	rs3671259	57.6	48.02	6	06.033.580	15.8	23.17
4	rs13477972	59.1	48.02	6	06.063.270	29.42	26.82
4	04.128.160	60	57.91	6	mhcCD8b4	30.5	26.82
4	rs6268364	81	71.56	6	rs13478841	33.5	29.45
4	rs3693087	81	71.56	6	06.085.360	36.5	34.87
5	rs13478092	1	1	6	06.097.530	43	34.87
5	CEL-5-14611794	5	12.47	6	06.102.675	46.5	37.51
5	rs13478133	8	20.82	6	rs3655148	46.5	45.86
5	UT-5-19.849706	8	20.82	6	rs6204829	51.5	48.49
5	rs13478138	9	20.82	6	06.118.265	51.5	51.12
5	rs3706626	11	20.82	6	rs3695724	58.8	51.12
5	rs13478151	12	23.45	6	CEL-6-122563022	59.3	51.12
5	rs13478157	15	23.45	6	06.125.555	61.2	59.41
5	UT-5-30.642219	18	23.45	6	rs3670851	62.3	67.69
5	05.035.200	24	31.81	6	rs6339546	63.9	70.32
5	rs3716195	26	31.81	6	06.140.060	68	75.76
5	rs13478210	26	34.44	6	rs6387265	71.4	78.4
5	rs13478212	26	34.44	7	07.000.385	0	0
5	rs13478215	26	37.07	7	rs13479163	8	5.4
5	mCV27558149	39	51.88	7	mCV25220583	10.4	5.4
5	gnf05.061.650	41	51.88	7	CEL-7-29429804	18	10.81
5	05.067.560	41	51.88	7	rs6313526	23.5	10.81
5	05.071.190	42	51.88	7	rs6295036	23.5	10.81
5	05.073.500	44	51.88	7	CEL-7-36545579	24.5	10.81
5	05.085.655	45	51.88	7	rs13479238	24.5	10.81
5	05.091.725	45	54.53	7	07.047.960	26.8	10.81
5	rs13478428	54	57.18	7	gnf07.050.858	27.8	10.81

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
7	mCV23672419	27.8	10.81	9	09.052.500	31	22.41
7	rs3693038	27.8	10.81	9	09.060.410	35	25.05
7	rs13479274	27.8	10.81	9	rs6174757	38	27.68
7	rs13479276	27.8	10.81	9	rs13480267	41	27.68
7	rs6160140	27.8	13.44	9	rs13480277	42	27.68
7	rs3705155	37	16.08	9	rs13480285	43	27.68
7	rs13479317	37	16.08	9	rs3725272	49	46.07
7	rs3693876	37	16.08	9	09.094.990	52	46.07
7	rs13479321	37	18.71	9	09.104.660	60	56.39
7	rs13479334	37	18.71	9	rs13480436	61	63.01
7	rs13479338	37	18.71	9	rs6302293	67	63.01
7	07.077.280	40	31.88	9	gnf09.117.044	74	65.63
7	rs13479427	50.3	45.06	10	rs13480480	2	2
7	rs3719258	65.6	63.45	10	rs6192001	5	7.4
7	D7Mit291	66	68.73	10	10.009.900	7	10.04
7	rs3663988	69	76.93	10	10.011.300	7	12.68
8	rs13479627	8	8	10	rs13480506	7	12.68
8	08.020.285	8	12.24	10	rs13480525	9	15.31
8	08.029.780	13	17.16	10	10.038.835	26.5	45.97
8	rs13479741	28	46.28	10	D10Mit40	29	48.91
8	rs3726906	31.5	48.91	10	rs3165937	40.7	60.39
8	08.062.280	32	48.91	10	rs13480703	50	65.8
8	rs3712611	33	48.91	10	rs3705990	56	71.21
8	rs13479813	33	48.91	10	rs13480804	69.5	126.15
8	08.076.440	34	48.91	10	10.127.600	70	126.15
8	rs3690549	35.5	51.55	11	rs13480847	1.1	1.1
8	rs6296891	37	54.18	11	rs13480869	2.4	1.1
8	rs8236770	38.1	56.81	11	rs13480889	8	6.51
8	08.086.390	38.6	56.81	11	rs3678321	11	6.51
8	D8Mit322	61	83.34	11	rs3657760	17	28.75
8	rs13480026	67	94.91	11	rs13480997	20	31.38
8	rs4227456	67	94.91	11	mCV23044839	36	46.19
9	09.029.420	17	17	11	UT-11-68.607315	38	51.6
9	rs3669224	17	17	11	rs13481123	47	54.24
9	rs13480160	25	17	11	gnf11.093.966	47	54.24
9	09.038.640	26	17	11	rs3714299	53	62.59
9	09.043.100	27	22.41	11	rs3710148	56	70.94

Chr.	Marker	Gen.	Est.		Chr.	Marker	Gen.	Est.
11	rs6384437	65	89.33	ĺ	13	13.031.107	16	44.04
11	rs13481226	68	91.95		13	13.034.400	16	44.04
12	rs13481276	1	1		13	13.035.013	16	44.04
12	12.014.515	6	19.38		13	13.034.725	16	44.04
12	rs6187012	14	30.86		13	rs6259014	16	44.04
12	rs6223000	16	30.86		13	gnf13.045.330	30	58.85
12	12.032.830	16	30.86		13	rs6209128	34	58.85
12	gnf12.033.545	16	30.86		13	rs3700819	36	64.26
12	rs6243157	17	30.86		13	mCV22624058	36	64.26
12	rs3689063	25	45.67		13	CEL-13-60831741	36	66.89
12	rs13481465	25	45.67		13	13.061.625	36	66.89
12	rs3686891	28	48.3		13	13.066.450	40	69.53
12	rs3686378	29	48.3		13	rs6179438	43	81.02
12	rs13481531	29	48.3		13	13.080.001	44	86.43
12	mCV23169261	32	48.3		13	13.083.500	45	86.43
12	12.081.010	37	50.93		13	rs13481918	45	86.43
12	rs3696951	38	50.93		13	13.087.830	45	86.43
12	rs8259763	43	53.56		13	rs3655061	46	86.43
12	12.099.140	48	75.8		13	rs4230027	51	86.43
12	gnf12.101.501	50	75.8		13	rs3705092	59	89.07
12	CEL-12-101776500	52	78.42		13	rs13481992	59	89.07
13	D13Mit158	5	5		13	13.114.540	71	94.47
13	13.005.379	7	13.84		13	rs3657414	73	94.47
13	13.010.063	7	13.84		14	14.002.500	1.75	1.75
13	D13Mit172	7	13.84		14	rs6340768	1.75	1.75
13	13.010.368	7	13.84		14	rs13482084	2.5	1.75
13	13.011.447	7	13.84		14	14.006.480	3	1.75
13	13.013.030	7	13.84		14	rs3719629	3	1.75
13	13.013.605	7	13.84		14	14.015.365	5.5	4.38
13	rs3721858	7	22.19		14	14.020.160	7.5	4.38
13	13.017.553	7	27.61		14	rs3722090	12.5	12.74
13	13.020.344	8	33.03		14	14.032.950	13.5	18.2
13	13.019.050	10	33.03		14	mCV23384307	17	26.61
13	D13Mit135	10	33.03		14	rs13482179	17	26.61
13	13.021.844	10	33.03		14	rs6392664	22.5	29.24
13	RS6158895	11	33.03		14	14.055.010	22.5	31.89
13	13.028.853	14	41.39		14	rs13482214	27.5	34.54

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
14	14.058.715	28	34.54	15	15.078.600	46.7	56.53
14	rs6179045	28.3	34.54	15	rs3697744	48.5	59.16
14	14.065.150	32.5	42.85	15	rs3716673	57.8	61.8
14	CEL-14-65598536	42	48.22	15	rs3690173	63.4	70.14
14	rs13482259	43.5	48.22	16	rs4166445	20.9	20.9
14	rs6298191	44	48.22	16	rs4168890	20.9	23.52
14	14.074.265	44.3	48.22	16	16.029.450	22.2	23.52
14	CEL-14-71690454	44.3	48.22	16	rs4170974	23.5	23.52
14	rs3023412	44.3	48.22	16	16.031.880	24	28.93
14	rs6325141	44.3	50.86	16	rs4174174	27.8	28.93
14	rs13482301	44.5	53.49	16	16.035.790	27.8	28.93
14	rs3725470	44.5	53.49	16	rs4175353	27.8	28.93
14	gnf14.085.610	45	53.49	16	16.055.570	38	34.35
14	rs6395984	45	53.49	16	rs4197416	54	39.77
14	rs6407863	45	53.49	16	16.075.770	54	48.14
14	rs3706761	45	53.49	16	rs3656592	57.7	50.78
14	rs3655019	45	53.49	16	rs4217061	58	50.78
14	rs6291434	45	53.49	16	rs3164088	70.65	53.4
14	rs6176735	45	53.49	17	rs3662575	7.6	7.6
14	rs6299927	45	53.49	17	17.013.500	9.32	10.04
14	rs4139735	45	53.49	17	rs6270865	9.32	15.27
14	CEL-14-85152539	45	53.49	17	rs3667748	9.33	15.27
14	rs13482311	45	53.49	17	rs4231344	12.6	17.9
14	rs13482312	45	53.49	17	17.022.870	12.6	17.9
14	rs13482313	45	53.49	17	rs3724223	18.15	17.9
14	rs13482314	45	53.49	17	UT-17-33.238924	18.15	17.9
14	14.093.815	45	53.49	17	rs8242408	18.7	17.9
14	rs3708779	54	61.84	17	rs3682923	20.9	17.9
14	rs3683221	54.5	64.46	17	17.041.250	21.65	17.9
15	rs13482418	6.7	6.7	17	mCV25197172	22.5	20.53
15	15.017.570	14.5	15.99	17	17.043.515	22.9	20.53
15	rs13482490	14.5	37	17	rs8273969	33.5	32.01
15	15.030.400	14.8	42.41	17	rs3675634	42	50.4
15	15.053.380	26.2	53.89	17	rs3687741	55.7	61.9
15	rs3701449	26.2	53.89	17	D17Mit123	56.7	67.33
15	rs13482618	29.6	53.89	18	rs13483210	4	4
15	15.066.375	39	56.53	18	rs3656185	9	15.47

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
18	rs3691362	16	30.28	19	19.043.320	43	41.53
18	rs3714096	16	32.91	19	19.048.500	48	51.64
18	18.046.110	32	35.95	19	rs13483669	48	51.64
18	rs6350869	36	57.8	19	rs6257938	52	51.64
18	18.070.235	45	61.86	X	DXMit166	15.5	15.5
18	rs13483472	56	65.9	X	rs13483834	30.7	24.08
19	rs13483500	4	4	X	CEL-X-68179178	30.7	24.08
19	rs3671671	4	4	X	CEL-X-68645226	30.7	24.08
19	rs3713033	4	9.41	X	rs13483838	30.7	24.08
19	rs13483505	4	9.41	X	CEL-X-71104123	31	24.08
19	rs13483511	4	9.41	X	CEL-X-72627341	31	24.08
19	19.005.500	4	9.41	X	CEL-X-73027245	31	24.08
19	CEL-19-8529644	5	9.41	X	gnfX.070.167	31	24.08
19	UT-19-10.709331	7	12.04	X	rs13483858	31	24.08
19	rs6163293	7	12.04	X	CEL-X-74073918	31	24.08
19	rs3700209	7	12.04	X	CEL-X-74272691	31	24.08
19	rs6237846	7	12.04	Х	rs13483862	31	24.08
19	CEL-19-12911424	7	12.04	X	rs13483863	31	24.08
19	rs3692733	7	12.04	X	CEL-X-75125049	31	24.08
19	rs3669192	10.9	23.52	X	rs13483877	33.2	24.08
19	gnf19.017.711	15	26.15	X	rs13483803	33.5	24.08
19	rs3720318	15	26.15	X	gnfX.076.619	34.6	24.08
19	rs13483557	15	26.15	X	rs13483888	37	29.49
19	19.018.140	15	26.15	X	DXMit16	37	32.13
19	rs13483563	15	28.79	X	CEL-X-91222960	37	32.13
19	rs6392565	15	28.79	X	CEL-X-94143306	41.5	34.76
19	rs3672759	16.4	31.42	X	rs13483935	48.4	40.17
19	rs3653630	16.4	31.42	X	rs13484004	55	48.52
19	rs13483577	20	31.42	X	rs13484094	63	60
19	rs3090325	20	31.42	Х	DXMit29	73.3	62.77

NB: "Chr." is the chromosome number; "Gen." is the consensus genetic distance; "Est." is the estimated genetic distance.

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
1	01.029.481	17.8	17.8	5	05.046.885	28	17.79
1	01.035.780	21	26.91	5	05.067.560	41	23.69
1	01.041.550	25.7	32.8	5	05.071.190	42	23.69
1	01.046.600	26.2	32.8	5	05.073.500	44	23.69
1	01.070.445	36.9	51.56	5	05.085.655	45	23.69
1	01.076.110	47	58.04	5	05.091.725	45	23.69
1	01.135.010	70	124.67	5	05.108.560	61	26.55
1	D1Mit270	92.3	156.86	5	05.117.270	67	46.82
2	02.041.990	29	29	5	05.135.860	81	68.58
2	02.054.160	30.5	36.45	6	06.002.580	0.6	0.6
2	02.065.760	37	43.91	6	06.014.800	3.2	21.58
2	02.079.300	48.1	48.37	6	06.033.580	15.8	36.12
2	02.125.700	70	121.81	6	06.063.270	29.42	50.66
2	02.128.325	73	121.81	6	06.070.455	30.5	53.1
2	02.130.220	73.5	121.81	6	06.074.995	31.5	55.49
2	02.151.240	81.7	131.84	6	06.097.530	43	71.69
2	02.146.685	82	131.84	6	06.102.675	46.5	71.69
3	03.014.785	4.6	4.6	6	06.108.730	46.5	71.69
3	03.047.215	23.3	15.64	6	06.118.265	51	75.25
3	03.054.150	29.5	15.64	7	07.000.385	0.67	0.67
3	03.100.150	49.2	51.32	7	07.047.960	26.8	25.46
3	03.119.365	55	54.17	7	07.087.220	46.4	34.71
3	03.152.282	79.4	70.99	7	07.091.695	49.9	34.71
4	04.011.950	5.2	5.2	7	07.096.985	50	34.71
4	04.021.985	6.3	21.55	7	07.110.535	52.6	37.16
4	04.029.760	7.5	25.13	7	07.112.290	52.8	39.62
4	04.042.340	14.5	25.13	7	07.115.675	53	45.89
4	04.049.500	21.9	31.02	8	08.067.625	33	33
4	04.078.330	40	51.58	8	08.086.390	38.6	46.4
4	04.099.005	49.6	67.47	8	08.090.187	41	46.4
4	04.115.380	57	74.76	8	08.092.425	43	46.4
4	04.128.160	60	90.8	8	08.096.955	45	50.25
4	04.131.640	63	100.54	8	08.101.010	45	54.11
5	05.010.335	5	5	8	08.111.015	53	57.95
5	05.035.200	24	12.7	8	08.124.650	67	84.47
5	05.038.350	26	15.31	9	09.029.420	17	17

Table 2: Estimated Genetic distance of Cross [PERC X DDK)F_1 X B6]N_2

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
9	09.043.100	27	17	14	14.006.480	3	1.75
9	09.052.500	31	19.86	14	14.015.365	5.5	1.75
9	09.060.410	35	19.86	14	14.024.450	10	8.57
9	09.091.925	49	66.43	14	14.032.950	13.5	24.89
9	09.104.660	60	66.43	14	14.051.890	21	29.97
9	09.119.240-2	73	66.43	14	14.055.010	21.5	41.83
10	10.009.900	7	7	14	14.065.150	32.5	45.5
10	10.011.300	7	7	14	14.074.265	44.1	48.42
10	10.015.980	9	16.86	14	14.093.815	44.1	57.57
10	10.038.835	26.5	20.93	14	14.101.995	63	63.65
10	D10Mit95	51	81.21	15	15.030.400	14.8	14.8
10	10.127.600	70	97.46	15	15.044.240	18.2	21.05
12	D12Mit112	22	22	15	15.051.335	21.4	26.94
12	12.089.840	45	69.22	15	15.066.375	39	29.82
12	12.099.140	48	73.37	15	15.075.005	44.1	42.4
13	13.001.770	5	5	15	15.078.600	46.7	42.4
13	13.005.379	7	5	15	15.098.880	56.8	55.8
13	13.010.063	7	5	16	16.029.450	22.2	22.2
13	D13Mit172	7	7.86	16	16.031.880	26.5	22.2
13	13.010.368	7	7.86	16	16.055.570	38	31.59
13	13.011.447	7	10.72	17	17.013.500	9.32	9.32
13	13.013.030	7	13.58	17	17.022.870	11.7	12.9
13	13.013.605	7	13.58	17	17.038.280	20.43	18.8
13	13.017.553	7	16.44	17	17.041.250	21.65	18.8
13	13.020.344	8	16.44	17	17.052.240	29.4	27.99
13	13.019.050	10	16.44	17	D17Mit39	45.3	33.94
13	D13Mit135	10	16.44	18	18.025.640	16	16
13	13.021.844	10	16.44	18	18.042.400	22	22.45
13	RS6158895	11	16.44	18	18.051.990	26	25.31
13	13.028.853	14	29	18	18.061.750	37	31.2
13	13.031.107	16	29	18	18.072.500	47	31.2
13	13.034.400	16	29	19	19.003.270	4	4
13	13.035.013	16	29	19	19.018.140	15	10.73
13	13.034.725	16	29	19	19.043.320	43	34.56
13	13.061.625	36	41.67	19	19.048.500	51	40.62
13	13.080.001	44	44.57	Х	DXMit166	15.5	15.5
13	13.090.665	47	65	X	DXMit16	37	44.87
13	13.114.540	71	71.89	X	DXMit234	58	69.46
14	14.002.500	1.75	1.75	Х	DXMit29	73.3	88.72

NB: "Chr." is the chromosome number; "Gen." is the consensus genetic distance; "Est." is the estimated genetic distance.

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
1	D1Mit66	9	9	6	D6Mit384	27.5	28.22
1	D1Mit318	18.5	24.84	6	D6Mit65	46	57.6
1	D1Mit251	38.1	44.19	6	D6Mit25	65	87
1	D1Mit132	43.1	50.78	6	D6Mit201	74.1	99.55
1	D1Mit390	63.1	66.62	7	D7Mit178	0.5	0.5
1	D1Mit424	81.6	89.75	7	D7Mit117	11	25.66
1	D1Mit270	92.3	91	7	D7Mit310	18	32.27
1	D1Mit293	109.6	118.21	7	D7Mit30	37	49.84
2	D2Mit117	5	5	7	D7Mit323	50	56.42
2	D2Mit83	16	19.17	7	D7Mit291	66	92.98
2	D2Mit244	33	35.02	7	D7Mit223	72.4	102.45
2	D2Mit37	45	49.19	8	D8Mit157	2	2
2	D2Mit276	65	74.32	8	D8Mit191	21	38.53
2	D2Mit285	86	95.52	8	D8Mit348	44	67.92
2	D2Mit200	107	122.73	8	D8Mit166	56	91.05
3	D3Mit164	2.4	2.4	8	D8Mit322	61	110.4
3	D3Mit203	11.2	25.52	9	D9Mit126	6	6
3	D3Mit63	22	43.09	9	D9Mit90	9	18.56
3	D3Mit74	41	74.75	9	D9Mit97	29	25.14
3	D3Mit254	64.1	116.71	9	D9Mit270	43	34.63
3	D3Mit163	87.6	137.91	9	D9Mit212	61	66.3
4	D4Mit227	3.2	3.2	9	D9Mit281	68	74.31
4	D4Mit286	14.5	30.41	10	D10Mit298	3	3
4	D4Mit164	28.6	38.42	10	D10Mit214	19	37.04
4	D4Mit58	48.5	55.99	10	D10Mit40	29	49.6
4	D4Mit37	56.5	68.56	10	D10Mit66	49	72.73
4	D4Mit339	65.7	87.92	10	D10Mit233	62	97.87
4	D4Mit256	82.7	117.3	10	D10Mit269	70	105.87
5	D5Mit344	1	1	11	D11Mit71	1.1	1.1
5	D5Mit79	26	45.88	11	D11Mit151	13	20.45
5	D5Mit15	39	61.72	11	D11Mit20	20	33.01
5	D5Mit314	59	88.93	11	D11Mit5	37	48.86
5	D5Mit31	78	122.97	11	D11Mit66	47	55.45
5	D5Mit143	86	130.98	11	D11Mit67	57	74.8
6	D6Mit236	3.1	3.1	11	D11Mit168	71	97.92

Table 3: Estimated Genetic distance of Cross $\texttt{[(B6-Pgk1^a X DDK)F_1XB6]N_2}$ (More skewed)

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
12	D12Mit182	2	2	16	D16Mit191	57.8	73.47
12	D12Mit112	22	23.19	16	D16Mit106	71.45	81.48
12	D12Mit260	45	50.4	17	D17Mit78	8.18	8.18
12	D12Mit150	59	86.94	17	D17Mit175	17.7	16.19
13	D13Mit16	10	10	17	D17Mit7	32.3	35.55
13	D13Mit63	26	27.56	17	D17Mit39	45.3	49.72
13	D13Mit99	40	46.92	17	D17Mit123	56.7	62.28
13	D13Mit107	48	62.76	18	D18Mit67	4	4
13	D13Mit78	75	73.76	18	D18Mit60	16	18.17
14	D14Mit10	3	3	18	D18Mit123	31	41.3
14	D14Mit54	12.5	39.54	18	D18Mit47	50	53.87
14	D14Mit234	22.5	55.38	18	D18Mit144	57	60.45
14	D14Mit162	44.3	66.38	19	D19Mit42	5	5
14	D14Mit170	63	93.59	19	D19Mit111	15	22.55
15	D15Mit12	4.7	4.7	19	D19Mit66	41	29.12
15	D15Mit100	21	52.72	19	D19Mit137	55.7	48.47
15	D15Mit234	34.2	63.72	20	DXMit124	2.8	2.8
15	D15Mit189	48.5	81.29	20	DXMit166	15.5	32.18
15	D15Mit16	61.7	108.51	20	DXMit210	29.5	48.03
15	D15Mit79	66.2	108.51	20	DXPas29	42.15	63.87
16	D16Mit182	3.4	3.4	20	DXMit117	50.8	71.89
16	D16Mit166	21	48.29	20	DXMit135	69	91.24
16	D16Mit140	42.8	62.47				

NB: "Chr." is the chromosome number; "Gen." is the consensus genetic distance; "Est." is the estimated genetic distance.

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
1	D1Mit66	9	9	6	D6Mit384	27.5	30.76
1	D1Mit318	18.5	20.14	6	D6Mit65	46	54.26
1	D1Mit251	38.1	62.94	6	D6Mit25	65	84.16
1	D1Mit132	43.1	72.56	6	D6Mit201	74.1	93.76
1	D1Mit390	63.1	88.63	7	D7Mit178	0.5	0.5
1	D1Mit424	81.6	118.51	7	D7Mit117	11	23.99
1	D1Mit270	92.3	126.63	7	D7Mit310	18	30.67
1	D1Mit293	109.6	152.16	7	D7Mit30	37	58.34
2	D2Mit117	5	5	7	D7Mit323	50	62.23
2	D2Mit83	16	26.53	7	D7Mit291	66	108.07
2	D2Mit244	33	46.18	7	D7Mit223	72.4	122.44
2	D2Mit37	45	51.45	8	D8Mit157	2	2
2	D2Mit276	65	79.13	8	D8Mit191	21	41.92
2	D2Mit285	86	88.74	8	D8Mit348	44	65.41
2	D2Mit200	107	125.94	8	D8Mit166	56	83.24
3	D3Mit164	2.4	2.4	8	D8Mit322	61	99.3
3	D3Mit203	11.2	18.47	9	D9Mit126	6	6
3	D3Mit63	22	25.15	9	D9Mit90	9	20.38
3	D3Mit74	41	41.22	9	D9Mit97	29	28.5
3	D3Mit254	64.1	78.44	9	D9Mit270	43	44.58
3	D3Mit163	87.6	108.33	9	D9Mit212	61	58.96
4	D4Mit227	3.2	3.2	9	D9Mit281	68	73.34
4	D4Mit286	14.5	28.73	10	D10Mit298	3	3
4	D4Mit164	28.6	46.56	10	D10Mit214	19	14.14
4	D4Mit58	48.5	56.17	10	D10Mit40	29	30.21
4	D4Mit37	56.5	72.24	10	D10Mit66	49	49.86
4	D4Mit339	65.7	95.74	10	D10Mit233	62	77.53
4	D4Mit256	82.7	117.27	10	D10Mit269	70	95.36
5	D5Mit344	1	1	11	D11Mit71	1.1	1.1
5	D5Mit79	26	40.92	11	D11Mit151	13	12.25
5	D5Mit15	39	70.81	11	D11Mit20	20	42.14
5	D5Mit314	59	83.54	11	D11Mit5	37	59.98
5	D5Mit31	78	143.75	11	D11Mit66	47	69.59
5	D5Mit143	86	158.12	11	D11Mit67	57	95.14
6	D6Mit236	3.1	3.1	11	D11Mit168	71	118.63

Table 4: Estimated Genetic distance of Cross [(B6-Pgk1^a X DDK)F₁ X B6]N₂(Less skewed)

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
12	D12Mit182	2	2	16	D16Mit191	57.8	76.26
12	D12Mit112	22	47.81	16	D16Mit106	71.45	81.51
12	D12Mit260	45	73.34	17	D17Mit78	8.18	8.18
12	D12Mit150	59	101.01	17	D17Mit175	17.7	22.55
13	D13Mit16	10	10	17	D17Mit7	32.3	42.21
13	D13Mit63	26	44.65	17	D17Mit39	45.3	58.29
13	D13Mit99	40	79.31	17	D17Mit123	56.7	74.36
13	D13Mit107	48	84.57	18	D18Mit67	4	4
13	D13Mit78	75	110.11	18	D18Mit60	16	18.37
14	D14Mit10	3	3	18	D18Mit123	31	46.04
14	D14Mit54	12.5	28.53	18	D18Mit47	50	67.58
14	D14Mit234	22.5	48.19	18	D18Mit144	57	74.25
14	D14Mit162	44.3	57.8	19	D19Mit42	5	5
14	D14Mit170	63	68.95	19	D19Mit111	15	21.07
15	D15Mit12	4.7	4.7	19	D19Mit66	41	40.72
15	D15Mit100	21	30.23	19	D19Mit137	55.7	62.25
15	D15Mit234	34.2	36.91	20	DXMit124	2.8	2.8
15	D15Mit189	48.5	48.07	20	DXMit166	15.5	51.84
15	D15Mit16	61.7	60.81	20	DXMit210	29.5	64.58
15	D15Mit79	66.2	60.81	20	DXPas29	42.15	77.33
16	D16Mit182	3.4	3.4	20	DXMit117	50.8	86.94
16	D16Mit166	21	43.32	20	DXMit135	69	139.43
16	D16Mit140	42.8	70.99				

NB: "Chr." is the chromosome number; "Gen." is the consensus genetic distance; "Est." is the estimated genetic distance.

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
1	D1MIT20	18.5	18.5	7	D7Nds4	72.4	147.57
1	D1MIT22	32.8	60.21	8	D8MIT4	14	14
1	D1MIT92	64	106.46	8	D8MIT45	40	93.98
1	D1MIT34	81.6	121.77	8	D8MIT56	73	121.26
1	D1MIT17	106.3	168.03	9	D9MIT2	17	17
2	D2MIT1	1	1	9	D9MIT21	31	50.7
2	D2MIT88	30	42.72	9	D9MIT8	42	68.63
2	D2MIT35	45	99.56	9	D9MIT15	61	89.96
2	D2MIT49	95.5	150.84	10	D10Mit126	21	21
3	D3MIT12	49	49	10	D10Mit11	50	78.09
3	D3MIT11	49	50.91	10	D10MIT24	67	104.89
3	D3MIT38	70.3	97.2	11	D11MIT19	13	13
4	D4MIT2	6.5	6.5	11	D11MIT4	37	22.1
4	D4MIT17	31.4	16.94	11	D11MIT41	49	45.78
4	D4MIT9	44.5	32.28	11	D11MIT11	69	69.45
4	D4MIT11	57.4	59.1	12	D12MIT2	19	19
4	D4MIT312	69.8	74.43	12	D12MIT5	37	49.13
5	D5MIT228	18	18	12	D12MIT7	50	72.8
5	D5MIT114	44	65.78	12	D12MIT8	58	78.92
5	D5MIT7	45	73.95	13	D13MIT34	30	30
5	D5Mit10	54	86.79	13	D13Mit102	44	48.07
5	D5MIT239	58	86.79	13	D13MIT73	55	71.88
5	D5MIT316	59	86.79	13	D13MIT35	75	87.21
5	D5MIT209	63	90.71	14	D14MIT15	11	11
5	D5MIT65	68	90.71	14	D14MIT37	27.5	15
5	D5MIT370	70	92.64	14	D14MIT7	44.5	34.29
5	D5MIT29	72	96.53	14	D14MIT97	58	44.77
5	D5MIT99	80	114.16	15	D15MIT18	18.7	18.7
6	D6MIT50	3.3	3.3	15	D15MIT31	48.5	77.61
6	D6MIT3	33.5	30.1	15	D15MIT39	56.6	107.38
6	D6MIT44	51.5	53.78	16	D16MIT3	21	21
6	D6MIT15	74	77.45	16	D16MIT5	38	58.36
$\overline{7}$	D7MIT25	16	16	16	D16MIT70	57	95.41
7	D7MIT37	49.8	87.33	17	D17MIT50	23.2	23.2
7	D7MIT71	65.2	117.45	17	D17MIT20	34.3	30.89

Table 5: Estimated Genetic distance of Cross $\mbox{[(SM X NZB)}F_1 \mbox{X NZB}\mbox{N}_2$

Chr.	Marker	Gen.	Est.	Chr.	Marker	Gen.	Est.
17	D17MIT76	54.6	65.52	19	D19MIT27	43	74.48
18	D18MIT34	12	12	19	D19MIT71	54	85.38
18	D18MIT24	25	30.36	20	DXMIT89	3	3
18	D18MIT9	42	46.03	20	DXMIT1	29.01	37.64
19	D19MIT16	15	15				

NB: "Chr." is the chromosome number; "Gen." is the consensus genetic distance; "Est." is the estimated genetic distance.

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
1	5.4	0.0511862	1	5.41	0.05127596
1	11.48	0.10257426	1	0	0
1	2.63	0.02562028	1	0	0
1	0	0	2	5.4	0.0511862
1	0	0	2	11.5	0.1027332
1	0	0	2	5.43	0.05145541
1	8.36	0.07698481	2	5.41	0.05127596
1	5.41	0.05127596	2	3.33	0.03221532
1	0	0	2	10.79	0.09705177
1	0	0	2	0	0
1	2.63	0.02562028	2	0	0
1	5.41	0.05127596	2	0	0
1	3.25	0.03146627	2	2.64	0.02571515
1	10.7	0.09632581	2	0	0
1	0	0	2	2.63	0.02562028
1	0	0	2	0	0
1	0	0	2	5.42	0.05136569
1	0	0	2	5.42	0.05136569
1	0	0	2	2.63	0.02562028
1	0	0	2	2.63	0.02562028
1	0	0	2	0	0
1	0	0	2	0	0
1	0	0	2	0	0
1	0	0	2	0	0
1	2.64	0.02571515	2	0	0
1	0	0	2	0	0
1	0	0	2	0	0
1	8.35	0.07690019	2	0	0
1	0	0	2	2.63	0.02562028
1	2.63	0.02562028	2	2.63	0.02562028
1	0	0	2	2.64	0.02571515
1	2.63	0.02562028	2	0	0
1	0	0	2	0	0
1	35.96	0.25642909	2	0	0
1	0	0	2	2.63	0.02562028
1	0	0	2	4.01	0.03853413

Table 6: Estimated recombination fraction of Cross [(PERA X DDK)F $_1$ X B6]N $_2$

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
2	4.01	0.03853413	3	0	0
2	0	0	4	0	0
2	0	0	4	0	0
2	2.63	0.02562028	4	2.63	0.02562028
2	0	0	4	0	0
2	2.64	0.02571515	4	5.53	0.0523516
2	0	0	4	18.05	0.1515105
2	0	0	4	3.09	0.02996456
2	0	0	4	5.41	0.05127596
2	8.35	0.07690019	4	0	0
2	2.63	0.02562028	4	0	0
2	2.63	0.02562028	4	5.41	0.05127596
2	5.41	0.05127596	4	0	0
2	5.4	0.0511862	4	2.63	0.02562028
3	18.38	0.15380296	4	2.63	0.02562028
3	8.35	0.07690019	4	0	0
3	14.81	0.12818066	4	2.64	0.02571515
3	0	0	4	0	0
3	2.64	0.02571515	4	0	0
3	0	0	4	0	0
3	2.63	0.02562028	4	9.89	0.08973303
3	0	0	4	13.65	0.11945361
3	0	0	4	0	0
3	2.63	0.02562028	5	11.47	0.10249477
3	0	0	5	8.35	0.07690019
3	0	0	5	0	0
3	0	0	5	0	0
3	5.41	0.05127596	5	0	0
3	2.63	0.02562028	5	2.63	0.02562028
3	0	0	5	0	0
3	2.63	0.02562028	5	0	0
3	2.64	0.02571515	5	8.36	0.07698481
3	0	0	5	0	0
3	0	0	5	2.63	0.02562028
3	2.63	0.02562028	5	0	0
3	0	0	5	2.63	0.02562028
3	18.39	0.15387219	5	14.81	0.12818066
3	0	0	5	0	0

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
5	0	0	7	0	0
5	0	0	7	0	0
5	0	0	7	0	0
5	0	0	7	0	0
5	2.65	0.02580999	7	0	0
5	2.65	0.02580999	7	0	0
5	5.41	0.05127596	7	0	0
5	8.35	0.07690019	7	2.63	0.02562028
5	0	0	7	2.64	0.02571515
5	2.63	0.02562028	7	0	0
5	0	0	7	0	0
5	8.37	0.0770694	7	2.63	0.02562028
5	8.37	0.0770694	7	0	0
6	0	0	7	0	0
6	5.4	0.0511862	7	13.17	0.11578277
6	17.17	0.14532279	7	13.18	0.1158596
6	3.65	0.03519958	7	18.39	0.15387219
6	0	0	7	5.28	0.05010776
6	2.63	0.02562028	7	8.2	0.07562899
6	5.42	0.05136569	8	4.24	0.040652
6	0	0	8	4.92	0.04685684
6	2.64	0.02571515	8	29.12	0.22072189
6	8.35	0.07690019	8	2.63	0.02562028
6	2.63	0.02562028	8	0	0
6	2.63	0.02562028	8	0	0
6	0	0	8	0	0
6	0	0	8	0	0
6	8.29	0.07639217	8	2.64	0.02571515
6	8.28	0.07630744	8	2.63	0.02562028
6	2.63	0.02562028	8	2.63	0.02562028
6	5.44	0.05154511	8	0	0
6	2.64	0.02571515	8	26.53	0.20587404
7	5.4	0.0511862	8	11.57	0.10328898
7	0	0	8	0	0
7	5.41	0.05127596	9	0	0
7	0	0	9	0	0
7	0	0	9	0	0
7	0	0	9	5.41	0.05127596

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
9	0	0	12	11.48	0.10257426
9	2.64	0.02571515	12	0	0
9	2.63	0.02562028	12	0	0
9	0	0	12	0	0
9	0	0	12	0	0
9	0	0	12	14.81	0.12818066
9	18.39	0.15387219	12	0	0
9	0	0	12	2.63	0.02562028
9	10.32	0.0932462	12	0	0
9	6.62	0.06200474	12	0	0
9	0	0	12	0	0
9	2.62	0.02552539	12	2.63	0.02562028
10	5.4	0.0511862	12	0	0
10	2.64	0.02571515	12	2.63	0.02562028
10	2.64	0.02571515	12	22.24	0.17952377
10	0	0	12	0	0
10	2.63	0.02562028	12	2.62	0.02552539
10	30.66	0.22919254	13	8.84	0.08102632
10	2.94	0.02855234	13	0	0
10	11.48	0.10257426	13	0	0
10	5.41	0.05127596	13	0	0
10	5.41	0.05127596	13	0	0
10	54.94	0.33336462	13	0	0
10	0	0	13	0	0
11	0	0	13	8.35	0.07690019
11	5.41	0.05127596	13	5.42	0.05136569
11	0	0	13	5.42	0.05136569
11	22.24	0.17952377	13	0	0
11	2.63	0.02562028	13	0	0
11	14.81	0.12818066	13	0	0
11	5.41	0.05127596	13	0	0
11	2.64	0.02571515	13	8.36	0.07698481
11	0	0	13	2.65	0.02580999
11	8.35	0.07690019	13	0	0
11	8.35	0.07690019	13	0	0
11	18.39	0.15387219	13	0	0
11	2.62	0.02552539	13	0	0
12	18.38	0.15380296	13	14.81	0.12818066

Chr.	Gen. dis.	Recom. frac.		Chr.	Gen. dis.	Recom. frac.
13	0	0	Ì	14	0	0
13	5.41	0.05127596		14	2.64	0.02571515
13	0	0		14	2.63	0.02562028
13	2.63	0.02562028		14	0	0
13	0	0		14	0	0
13	2.64	0.02571515		14	0	0
13	11.49	0.10265374		14	0	0
13	5.41	0.05127596		14	0	0
13	0	0		14	0	0
13	0	0		14	0	0
13	0	0		14	0	0
13	0	0		14	0	0
13	0	0		14	0	0
13	2.64	0.02571515		14	0	0
13	0	0		14	0	0
13	5.4	0.0511862		14	0	0
13	0	0		14	0	0
14	0	0		14	0	0
14	0	0		14	0	0
14	0	0		14	8.35	0.07690019
14	0	0		14	2.62	0.02552539
14	2.63	0.02562028		15	9.29	0.08478017
14	0	0		15	21.01	0.17154229
14	8.36	0.07698481		15	5.41	0.05127596
14	5.46	0.05172446		15	11.48	0.10257426
14	8.41	0.07740761		15	0	0
14	0	0		15	0	0
14	2.63	0.02562028		15	2.64	0.02571515
14	2.65	0.02580999		15	0	0
14	2.65	0.02580999		15	2.63	0.02562028
14	0	0		15	2.64	0.02571515
14	0	0		15	8.34	0.07681557
14	8.31	0.07656158		16	2.62	0.02552539
14	5.37	0.05091683		16	0	0
14	0	0		16	0	0
14	0	0		16	5.41	0.05127596
14	0	0		16	0	0
14	0	0		16	0	0

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
16	0	0	19	0	0
16	5.42	0.05136569	19	0	0
16	5.42	0.05136569	19	0	0
16	8.37	0.0770694	19	0	0
16	2.64	0.02571515	19	11.48	0.10257426
16	0	0	19	2.63	0.02562028
16	2.62	0.02552539	19	0	0
17	2.44	0.02381421	19	0	0
17	5.23	0.04965764	19	0	0
17	0	0	19	2.64	0.02571515
17	2.63	0.02562028	19	0	0
17	0	0	19	2.63	0.02562028
17	0	0	19	0	0
17	0	0	19	0	0
17	0	0	19	0	0
17	0	0	19	10.11	0.09153424
17	0	0	19	10.11	0.09153424
17	2.63	0.02562028	19	0	0
17	0	0	19	0	0
17	11.48	0.10257426	X	8.58	0.07884198
17	18.39	0.15387219	X	0	0
17	11.5	0.1027332	X	0	0
17	5.43	0.05145541	X	0	0
18	11.47	0.10249477	X	0	0
18	14.81	0.12818066	X	0	0
18	2.63	0.02562028	X	0	0
18	3.04	0.02949429	X	0	0
18	21.85	0.17701428	X	0	0
18	4.06	0.03899536	X	0	0
18	4.04	0.03881093	X	0	0
19	0	0	X	0	0
19	5.41	0.05127596	X	0	0
19	0	0	X	0	0
19	0	0	X	0	0
19	0	0	X	0	0
19	0	0	X	0	0
19	2.63	0.02562028	X	5.41	0.05127596
19	0	0	X	2.64	0.02571515
Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
------	-----------	--------------	------	-----------	--------------
Х	0	0	Х	8.35	0.07690019
Х	2.63	0.02562028	Х	11.48	0.10257426
Х	5.41	0.05127596	Х	2.77	0.02694669

NB: "Chr." is the chromosome number; "Gen. dis." is the estimated genetic distance; "Recom. frac." is the recombination fraction.

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
1	9.11	0.08328268	5	0	0
1	5.89	0.0555631	5	2.86	0.02779742
1	0	0	5	20.27	0.16664496
1	18.76	0.15642408	5	21.76	0.17643239
1	6.48	0.06077663	6	20.98	0.17134515
1	66.63	0.36810474	6	14.54	0.1261674
1	32.19	0.23735374	6	14.54	0.1261674
2	7.45	0.06921544	6	2.44	0.02381421
2	7.46	0.06930159	6	2.39	0.02333778
2	4.46	0.04266869	6	16.2	0.13837488
2	73.44	0.38489922	6	0	0
2	0	0	6	0	0
2	0	0	6	3.56	0.03436219
2	10.03	0.09088017	7	24.79	0.19545828
2	0	0	7	9.25	0.08444786
3	11.04	0.09906148	7	0	0
3	0	0	7	0	0
3	35.68	0.25506127	7	2.45	0.02390944
3	2.85	0.02770297	7	2.46	0.02400464
3	16.82	0.14283134	7	6.27	0.05892801
4	16.35	0.13945813	8	13.4	0.11754611
4	3.58	0.03454841	8	0	0
4	0	0	8	0	0
4	5.89	0.0555631	8	3.85	0.03705507
4	20.56	0.16857283	8	3.86	0.03714765
4	15.89	0.13612584	8	3.84	0.03696247
4	7.29	0.06783472	8	26.52	0.20581521
4	16.04	0.13721582	9	0	0
4	9.74	0.08850038	9	2.86	0.02779742
5	7.7	0.07136399	9	0	0
5	2.61	0.02543049	9	46.57	0.30299914
5	2.48	0.024195	9	0	0
5	5.9	0.05565197	9	0	0
5	0	0	10	0	0
5	0	0	10	9.86	0.08948679
5	0	0	10	4.07	0.03908756

Table 7: Estimated recombination fraction of Cross [PERC X DDK)F $_1$ X B6]N $_2$

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
10	60.28	0.35024388	14	5.08	0.04830458
10	16.25	0.13873632	14	11.86	0.10558325
12	47.22	0.30554358	14	3.67	0.03538547
12	4.15	0.03982443	14	2.92	0.02836372
13	0	0	14	9.15	0.08361592
13	0	0	14	6.08	0.05724875
13	2.86	0.02779742	15	6.25	0.05875155
13	0	0	15	5.89	0.0555631
13	2.86	0.02779742	15	2.88	0.02798626
13	2.86	0.02779742	15	12.58	0.11122215
13	0	0	15	0	0
13	2.86	0.02779742	15	13.4	0.11754611
13	0	0	16	0	0
13	0	0	16	9.39	0.08560978
13	0	0	17	3.58	0.03454841
13	0	0	17	5.9	0.05565197
13	0	0	17	0	0
13	12.56	0.11106661	17	9.19	0.0839489
13	0	0	17	5.95	0.0560961
13	0	0	18	6.45	0.06051302
13	0	0	18	2.86	0.02779742
13	0	0	18	5.89	0.0555631
13	12.67	0.11192132	18	0	0
13	2.9	0.02817503	19	6.73	0.06296727
13	20.43	0.16770999	19	23.83	0.18955458
13	6.89	0.06436354	19	6.06	0.05707161
14	0	0	X	29.37	0.22211479
14	0	0	X	24.59	0.19423767
14	6.82	0.06375322	X	19.26	0.15984272
14	16.32	0.13924174			

NB: "Chr." is the chromosome number; "Gen. dis." is the estimated genetic distance; "Recom. frac." is the recombination fraction.

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
1	15.84	0.13576178	7	17.57	0.14814889
1	19.35	0.16045445	7	6.58	0.0616542
1	6.59	0.06174186	7	36.56	0.25933448
1	15.84	0.13576178	7	9.47	0.08627227
1	23.13	0.18517778	8	36.53	0.25919003
1	1.25	0.01234504	8	29.39	0.22222593
1	27.21	0.20984708	8	23.13	0.18517778
2	14.17	0.12339078	8	19.35	0.16045445
2	15.85	0.13583462	9	12.56	0.11106661
2	14.17	0.12339078	9	6.58	0.0616542
2	25.13	0.19752214	9	9.49	0.08643773
2	21.2	0.17278806	9	31.67	0.23460797
2	27.21	0.20984708	9	8.01	0.07401331
3	23.12	0.18511481	10	34.04	0.24689407
3	17.57	0.14814889	10	12.56	0.11106661
3	31.66	0.23455488	10	23.13	0.18517778
3	41.96	0.28397198	10	25.14	0.19758263
3	21.2	0.17278806	10	8	0.07392811
4	27.21	0.20984708	11	19.35	0.16045445
4	8.01	0.07401331	11	12.56	0.11106661
4	17.57	0.14814889	11	15.85	0.13583462
4	12.57	0.11114439	11	6.59	0.06174186
4	19.36	0.16052235	11	19.35	0.16045445
4	29.38	0.22217037	11	23.12	0.18511481
5	44.88	0.2962267	12	21.19	0.17272261
5	15.84	0.13576178	12	27.21	0.20984708
5	27.21	0.20984708	12	36.54	0.25923819
5	34.04	0.24689407	13	17.56	0.14807851
5	8.01	0.07401331	13	19.36	0.16052235
6	25.12	0.19746163	13	15.84	0.13576178
6	29.38	0.22217037	13	11	0.0987406
6	29.4	0.22228148	14	36.54	0.25923819
6	12.55	0.11098881	14	15.84	0.13576178
7	25.16	0.19770357	14	11	0.0987406
$\overline{7}$	6.61	0.06191713	14	27.21	0.20984708

Table 8: Estimated Recombination Fraction of Cross [(B6-Pgk1^a X DDK)F₁XB6]N₂ (More skewed)

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
15	48.02	0.30863012	18	14.17	0.12339078
15	11	0.0987406	18	23.13	0.18517778
15	17.57	0.14814889	18	12.57	0.11114439
15	27.22	0.2099051	18	6.58	0.0616542
15	0	0	19	17.55	0.14800812
16	44.89	0.29626745	19	6.57	0.06156652
16	14.18	0.12346609	19	19.35	0.16045445
16	11	0.0987406	20	29.38	0.22217037
16	8.01	0.07401331	20	15.85	0.13583462
17	8.01	0.07401331	20	15.84	0.13576178
17	19.36	0.16052235	20	8.02	0.0740985
17	14.17	0.12339078	20	19.35	0.16045445
17	12.56	0.11106661			

NB: "Chr." is the chromosome number; "Gen dis." is the estimated genetic distance; "Recom. frac." is the recombination fraction.

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
1	11.14	0.09986256	7	27.67	0.21250424
1	42.8	0.28757094	7	3.89	0.03742528
1	9.62	0.08751159	7	45.84	0.30010183
1	16.07	0.13743343	7	14.37	0.12489421
1	29.88	0.22493482	8	39.92	0.27497577
1	8.12	0.07494945	8	23.49	0.18743636
1	25.53	0.19993231	8	17.83	0.14997377
2	21.53	0.17494055	8	16.06	0.13736091
2	19.65	0.16248563	9	14.38	0.12496922
2	5.27	0.05001777	9	8.12	0.07494945
2	27.68	0.21256174	9	16.08	0.13750594
2	9.61	0.08742909	9	14.38	0.12496922
2	37.2	0.26239536	9	14.38	0.12496922
3	16.07	0.13743343	10	11.14	0.09986256
3	6.68	0.06253001	10	16.07	0.13743343
3	16.07	0.13743343	10	19.65	0.16248563
3	37.22	0.26249039	10	27.67	0.21250424
3	29.89	0.22498982	10	17.83	0.14997377
4	25.53	0.19993231	11	11.15	0.09994258
4	17.83	0.14997377	11	29.89	0.22498982
4	9.61	0.08742909	11	17.84	0.15004377
4	16.07	0.13743343	11	9.61	0.08742909
4	23.5	0.18749887	11	25.55	0.20005231
4	21.53	0.17494055	11	23.49	0.18743636
5	39.92	0.27497577	12	45.81	0.29998185
5	29.89	0.22498982	12	25.53	0.19993231
5	12.73	0.11238674	12	27.67	0.21250424
5	60.21	0.35003408	13	34.65	0.2499632
5	14.37	0.12489421	13	34.66	0.2500132
6	27.66	0.21244674	13	5.26	0.04992776
6	23.5	0.18749887	13	25.54	0.19999231
6	29.9	0.22504482	14	25.53	0.19993231
6	9.6	0.08734657	14	19.66	0.16255312
$\overline{7}$	23.49	0.18743636	14	9.61	0.08742909
$\overline{7}$	6.68	0.06253001	14	11.15	0.09994258

Table 9: Estimated Recombination Fraction of Cross $[(B6-Pgk1^a \ X \ DDK)F_1 \ X \ B6]N_2$ (Less skewed)

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
15	25.53	0.19993231	18	14.37	0.12489421
15	6.68	0.06253001	18	27.67	0.21250424
15	11.16	0.10002258	18	21.54	0.17500555
15	12.74	0.11246425	18	6.67	0.06244251
15	0	0	19	16.07	0.13743343
16	39.92	0.27497577	19	19.65	0.16248563
16	27.67	0.21250424	19	21.53	0.17494055
16	5.27	0.05001777	20	49.04	0.31249451
16	5.25	0.04983774	20	12.74	0.11246425
17	14.37	0.12489421	20	12.75	0.11254175
17	19.66	0.16255312	20	9.61	0.08742909
17	16.08	0.13750594	20	52.49	0.32499613
17	16.07	0.13743343			

NB: "Chr." is the chromosome number; "Gen dis." is the estimated genetic distance; "Recom. frac." is the recombination fraction.

Chr.	Gen. dis.	Recom. frac.	Chr.	Gen. dis.	Recom. frac.
1	41.71	0.28288914	8	27.28	0.21025301
1	46.25	0.30173429	9	33.7	0.24516708
1	15.31	0.13188032	9	17.93	0.15067312
1	46.26	0.30177394	9	21.33	0.17363771
2	41.72	0.28293256	10	57.09	0.34037807
2	56.84	0.33957796	10	26.8	0.20745804
2	51.28	0.32070937	11	9.1	0.08319933
3	1.91	0.01873979	11	23.68	0.18862185
3	46.29	0.30189284	11	23.67	0.18855957
4	10.44	0.09422123	12	30.13	0.22630671
4	15.34	0.13210113	12	23.67	0.18855957
4	26.82	0.20757504	12	6.12	0.05760281
4	15.33	0.13202754	13	18.07	0.15164987
5	47.78	0.30770934	13	23.81	0.18943038
5	8.17	0.07537429	13	15.33	0.13202754
5	12.84	0.11323855	14	4	0.03844183
5	0	0	14	19.29	0.16004675
5	0	0	14	10.48	0.09454573
5	3.92	0.03770274	15	58.91	0.34608383
5	0	0	15	29.77	0.22432901
5	1.93	0.01893226	16	37.36	0.26315448
5	3.89	0.03742528	16	37.05	0.26168148
5	17.63	0.14857086	17	7.69	0.07127825
6	26.8	0.20745804	17	34.63	0.24986317
6	23.68	0.18862185	18	18.36	0.15366445
6	23.67	0.18855957	18	15.67	0.13452126
7	71.33	0.37993802	19	59.48	0.34782851
7	30.12	0.22625197	19	10.9	0.09793728
7	30.12	0.22625197	20	34.64	0.24991319
8	79.98	0.39901135			

Table 10: Estimated Recombination Fraction of Cross $\mbox{[(SM X NZB)}F_1 X NZB]N_2$

NB: "Chr." is the chromosome number; "Gen dis." is the estimated genetic distance;

"Recom. frac." is the recombination fraction.

Chr.	ID	Inter Cross. Dis.	Chr.	ID	Inter Cross. Dis.
Chr1	1	(27.69, 49.87]		5	(0, 16.57]
	2	(74.2, 85.02]		7	(13.61, 24.54]
	5	(54.64, 102.08]		7	$(\ 0\ ,\ 16.57\]$
	10	(35.61, 74.2]		18	$(\ 47.15\ ,\ 69.76\]$
	28	(24.44, 39.17]		21	$(\ 25.32 \ , \ 45.12 \]$
	28	(0, 13.95]		23	$(\ 0\ ,\ 16.57\]$
	28	(0, 13.34]		32	(14.34, 39.86]
	33	(66.12, 107.48]	Chr7	1	$(\ 26.35 \ , \ 47.37 \]$
	34	(16.25, 62.91]		27	$(\ 21.07 \ , \ 39.66 \]$
	39	(27.57, 35.61]		34	(0, 13.48]
Chr2	1	(56.86, 76.38]		37	$(\ 58.05\ ,\ 68.73\]$
	10	(42.55, 53.54]		37	$(\ 0\ ,\ 13.48\]$
	14	(25.67, 41.86]		38	$(\ 39.66\ ,\ 63.45\]$
	14	(45.19, 64.33]	Chr8	$\overline{7}$	$(\ 66.18\ ,\ 86.91\]$
	15	(38.27, 46.33]		28	$(\ 7.9\ ,\ 37.06\]$
	15	(42.84, 50.87]		38	$(\ 10.53\ ,\ 66.18\]$
	26	(64.88,79.01]	Chr10	1	(63.81, 124.15]
	27	(48.1, 58.92]		16	(25.24, 110.84]
	28	(51.59, 65.73]		18	(25.24, 110.84]
	32	(30.64 , 37.28]		19	(10.82, 77.24]
	33	$(\ 35.49 \ , \ 43.53 \]$		25	$(\ 61.17\ ,\ 118.75\]$
	38	(48.11,58.94]		26	(58.53, 116.11]
Chr3	9	(10.53, 34.33]		28	$(\ 50.49\ ,\ 58.53\]$
	17	(7.9,28.92]		29	(25.24, 110.84]
	27	$(\ 38.65 \ , \ 65.39 \]$		32	$(\ 41.51\ ,\ 58.39\]$
	28	(8.35, 41.54]		35	(14.42, 50.49]
	29	(41.73, 62.75]	Chr11	3	$(\ 60.58\ ,\ 85.44\]$
	38	$(\ 36.02 \ , \ 47 \]$		11	$(\ 25.49 \ ,\ 56.08 \]$
	39	(23.84, 57.04]	Chr12	27	(28.92, 49.93]
Chr4	25	(34.59, 42.75]		35	(34.18, 74.8]
Chr5	$\overline{7}$	(50.13, 66.86]		39	(34.18, 74.8]
	15	(69.47, 89.31]	Chr13	1	(0, 8.84]
	16	(33.73,41.77]		1	$(\ 0 \ , \ 0.002 \]$
	25	(21.69, 44.87]		1	$(\ 55.69\ ,\ 67.18\]$
	29	(50.12, 69.94]		23	$(\ 61.46 \ , \ 72.28 \]$
Chr6	5	(16.25, 29.96]		34	(0,8.84]

Table 11: Inter Crossover Distance of Cross [(PERA X DDK)F1 X B6]N2

Chr.	ID	Inter Cross. Dis.	Chr.	ID	Inter Cross. Dis.
Chr13	34	(0, 0.002]	Chr15	37	(24.8,54.15]
	34	$(\ 0 \ , \ 8.35 \]$	Chr17	23	$(\ 0 \ , \ 7.67 \]$
	34	$(\ 66.88\ ,\ 80.63\]$		34	$(\ 41.37 \ , \ 49.43 \]$
	37	(0, 8.84]		37	$(\ 32.5\ ,\ 46.63\]$
	37	$(\ 0 \ , \ 0.002 \]$		37	$(\ 0\ ,\ 16.93\]$
	37	$(\ 67.18 \ , \ 72.59 \]$	Chr18	8	(5.67, 42.33]
	38	$(\ 45.04 \ ,\ 56.04 \]$	ChrX	6	(16.09, 33.02]
Chr14	3	$(\ 0\ ,\ 13.68\]$		39	(0, 0.002]
	38	(49.11, 60.09]			

NB: "Chr." is the chromosome number; "ID" is the individual ID; "Inter Cross. Dis." is the intercrossover distance.

Chr.	ID	Inter Cross. Dis.	Chr.	ID	Inter Cross. Dis.
chr1	2	(97.76,139.06]	chr6	21	(0,4.83]
	9	$(\ 66.63\ ,\ 124.06\]$		21	(0, 18.59]
	11	$(\ 6.48\ ,\ 124.06\]$	chr7	26	(0,34.04]
	18	$(\ 0 \ , \ 105.3 \]$		26	(4.91, 20.43]
	24	(5.89, 33.76]		36	(9.25, 36.49]
	24	(0, 25.24]		36	(0,4.91]
	27	(0, 91.87]	chr10	12	(4.07,74.21]
	33	$(\ 25.24 \ , \ 97.76 \]$		31	(64.35,90.46]
chr2	21	(4.46, 92.81]	chr13	13	(36,55.45]
	30	(85.36, 102.84]		14	(30.99,54.28]
chr4	9	(9.47, 46.38]	chr14	33	(33.26,43.75]
	11	$(\ 65.67 \ , \ 78.99 \]$	chr15	10	(0, 25.98]
	14	(43.74, 65.67]	chn-X	8	(0,53.96]
	36	$(\ 39.22 \ , \ 69.52 \]$		10	(0, 53.96]
chr5	10	(0, 5.09]		10	(0, 43.85]
	12	(13.85, 41.82]		23	(24.59,73.22]
				31	(24.59,73.22]

Table 12: Inter Crossover Distance of Cross [PERC X DDK)F $_1$ X B6]N $_2$

NB: "Chr." is the chromosome number; "ID" is the individual ID; "Inter Cross. Dis." is the intercrossover distance.

Chr.	ID	Inter Cross. Dis.	Chr.	ID	Inter Cross. Dis.
chn1	4	(41.78, 80.75]		78	(55.15, 90.52]
	4	(1.25, 51.59]		80	(0, 48.41]
	16	$(\ 66.16\ ,\ 109.21\]$	chr3	2	(41.96, 94.82]
	18	(41.78, 80.75]		3	(91.19, 135.51]
	25	(24.38, 67.43]		4	(73.62, 112.39]
	27	(23.13, 40.22]		27	(41.96, 94.82]
	31	(46.81,93.37]		36	(0, 73.62]
	36	(22.43, 64.91]		41	(41.96, 94.82]
	42	(24.38, 67.43]		45	(49.23, 114.31]
	48	(1.25, 51.59]		48	(91.19, 135.51]
	51	$(\ 0\ ,\ 38.97\]$		50	(91.19, 135.51]
	52	(19.35,41.78]		52	(0, 73.62]
	52	(40.22, 74.02]		53	(41.96,94.82]
	54	(66.16, 109.21]		61	$(\ 31.66\ ,\ 91.19\]$
	60	(24.38, 67.43]		63	(17.57, 72.35]
	62	(22.43, 64.91]		69	$(\ 31.66\ ,\ 91.19\]$
	63	(40.22,74.02]		71	(49.23, 114.31]
	68	(22.43, 64.91]		72	(31.66,91.19]
	72	(46.81, 93.37]		73	$(\ 31.66\ ,\ 91.19\]$
	73	$(\ 66.16\ ,\ 109.21\]$		75	$(\ 91.19\ ,\ 135.51\]$
chn2	11	$(\ 39.3\ ,\ 76.35\]$		77	$(\ 31.66\ ,\ 91.19\]$
	14	$(\ 46.33\ ,\ 87.71\]$		78	$(\ 31.66\ ,\ 91.19\]$
	20	$(\ 39.3\ ,\ 76.35\]$		80	$(\ 31.66\ ,\ 91.19\]$
	27	$(\ 21.2 \ , \ 73.54 \]$	chr4	3	$(\ 38.15\ ,\ 84.72\]$
	28	(21.2, 73.54]		6	$(\ 8.01\ ,\ 52.79\]$
	29	$(\ 60.5\ ,\ 103.56\]$		6	(12.57, 49.5]
	39	(76.35, 117.73]		$\overline{7}$	$(\ 31.93\ ,\ 78.88\]$
	54	$(\ 30.02\ ,\ 69.32\]$		10	(17.57, 38.15]
	54	(0, 46.33]		10	(19.36, 61.31]
	55	$(\ 30.02\ ,\ 69.32\]$		22	(49.5, 86.89]
	61	$(\ 14.17 \ ,\ 55.15 \]$		26	(49.5, 86.89]
	61	(21.2, 73.54]		53	$(\ 38.15\ ,\ 84.72\]$
	62	$(\ 30.02 \ , \ 69.32 \]$		56	$(\ 38.15\ ,\ 84.72\]$
	64	(55.15, 90.52]		58	(57.51, 114.1]
	66	$(\ 39.3\ ,\ 76.35\]$		60	(38.15, 84.72]

Chr.	ID	Inter Cross. Dis.] [Chr.	ID	Inter Cross. Dis.
	61	(57.51, 114.1]	1		6	(36.56,52.61]
	71	(31.93, 78.88]			17	(6.58, 60.71]
	78	(25.58, 65.36]			19	(30.76,92.48]
chr5	1	$(\ 27.21 \ , \ 77.09 \]$			23	(24.15, 67.32]
	3	(43.05, 121.97]			28	(30.76,92.48]
	6	(0,60.72]			54	(30.76 , 92.48]
	6	$(\ 27.21 \ , \ 77.09 \]$			65	(24.15, 67.32]
	$\overline{7}$	(77.09, 129.98]			71	$(\ 30.76\ ,\ 92.48\]$
	9	$(\ 0\ ,\ 43.05\]$		chr8	8	(52.52, 108.4]
	10	(15.84, 87.93]			21	$(\ 29.39\ ,\ 89.05\]$
	19	$(\ 43.05\ ,\ 121.97\]$			32	(52.52, 108.4]
	21	(15.84, 87.93]			34	(29.39, 89.05]
	24	$(\ 27.21 \ , \ 77.09 \]$			39	(52.52, 108.4]
	26	$(\ 61.25 \ , \ 85.1 \]$			48	(29.39, 89.05]
	34	(0, 61.25]			51	(29.39, 89.05]
	39	(15.84, 87.93]			55	$(\ 29.39\ ,\ 89.05\]$
	42	$(\ 27.21 \ , \ 77.09 \]$			60	(0, 65.92]
	44	(34.04, 69.26]			67	(23.13, 71.87]
	45	(0, 60.72]			76	$(\ 29.39\ ,\ 89.05\]$
	49	$(\ 27.21 \ , \ 77.09 \]$		chr9	28	$(\ 41.16 \ ,\ 55.75 \]$
	62	(77.09, 129.98]			42	$(\ 41.16 \ ,\ 55.75 \]$
	64	(77.09, 129.98]			49	$(\ 16.07 \ , \ 60.3 \]$
	65	$(\ 43.05\ ,\ 121.97\]$			65	$(\ 16.07 \ , \ 60.3 \]$
	66	$(\ 43.05\ ,\ 121.97\]$		chr10	6	$(\ 35.69\ ,\ 94.87\]$
	74	$(\ 43.05\ ,\ 121.97\]$			10	$(\ 35.69\ ,\ 94.87\]$
chr6	6	$(\ 0 \ , \ 54.5 \]$			27	$(\ 25.14 \ ,\ 56.27 \]$
	20	$(\ 0\ ,\ 58.78\]$			31	$(\ 35.69 \ , \ 94.87 \]$
	35	$(\ 29.38 \ , \ 83.9 \]$			45	$(\ 35.69 \ , \ 94.87 \]$
	38	(58.78,96.45]			51	$(\ 23.13\ ,\ 60.83\]$
	46	$(\ 29.38 \ , \ 83.9 \]$			55	$(\ 60.83 \ , \ 102.87 \]$
	60	$(\ 29.38 \ , \ 83.9 \]$			56	$(\ 60.83 \ , \ 102.87 \]$
	61	$(\ 29.38 \ , \ 83.9 \]$			59	$(\ 23.13\ ,\ 60.83\]$
	62	$(\ 58.78\ ,\ 96.45\]$			60	(12.56, 69.73]
	80	(29.38, 83.9]		chr11	2	(35, 73.7]
chr7	2	(6.61, 49.34]			11	(35, 73.7]
	3	(67.32, 101.95]			15	(25.94, 64.91]
	4	(24.15, 67.32]			18	(25.94, 64.91]
	6	(24.18, 55.92]			19	$(\ 6.59\ ,\ 41.79\]$

Chr.	ID	Inter Cross. Dis.	Chr.	ID	Inter Cross. Dis.
	23	(54.35, 96.82]		6	(28.57, 103.81]
	30	(22.44, 54.35]		11	(28.57, 103.81]
	41	(15.85, 35]		33	(28.57, 103.81]
	53	$(\ 6.59\ ,\ 41.79\]$		34	(28.57, 103.81]
	53	(0, 42.47]		36	(28.57, 103.81]
	70	(28.41, 54.35]		49	(28.57, 103.81]
	78	(22.44, 54.35]		61	(28.57, 103.81]
	80	(54.35, 96.82]		63	(28.57, 103.81]
chr12	6	(27.21, 84.94]	chr16	28	(11, 33.19]
	20	(27.21, 84.94]		39	(11, 33.19]
	21	(0, 48.4]		40	(14.18, 70.07]
	33	(27.21, 84.94]		44	$(\ 25.18 \ , \ 78.08 \]$
	49	(27.21, 84.94]	chr17	30	$(\ 33.53\ ,\ 54.1\]$
	50	$(\ 0\ ,\ 63.75\]$	chr18	74	(12.57, 42.28]
	56	(27.21, 84.94]	chr19	19	(0, 24.12]
chr13	60	(19.36, 52.76]	chr20	19	(39.71, 88.44]
chr14	13	(26.84, 90.59]		26	(39.71, 88.44]
	43	(26.84, 90.59]		56	$(\ 31.69\ ,\ 69.09\]$
	44	(15.84, 63.38]		60	(8.02, 43.21]
	61	(26.84, 90.59]		65	$(\ 31.69\ ,\ 69.09\]$
	67	(11, 54.05]		69	(39.71, 88.44]
chr15	5	(11, 76.59]		71	(39.71, 88.44]

NB: "Chr." is the chromosome number; "ID" is the individual ID; "Inter Cross. Dis." is the intercrossover distance.

Table 14: Inter Crossover Distance of Cross $\texttt{[(B6-Pgk1^a X DDK)F_1 X B6]} \mathbb{N}_2(\text{Less skewed})$

Chr.	ID	Inter Cross. Dis.	Chr.	ID	Inter Cross. Dis.
chr1	6	(54.07,89.22]		41	(9.61, 74.49]
	7	(9.62,68.49]		42	(9.61, 74.49]
	9	(68.49, 109.51]		43	(42.56, 99.41]
	10	(0, 45.95]		44	(42.56, 99.41]
	13	(55.57, 106.49]		55	(62.21, 120.94]
	14	(106.49,143.16]		60	(62.21, 120.94]
	17	$(\ 45.95 \ ,\ 63.69 \]$		62	(24.92, 74.13]
	27	$(\ 63.69\ ,\ 132.02\]$		64	(52.6, 83.74]
	31	(55.57, 106.49]		65	(9.61, 74.49]
	33	$(\ 63.69\ ,\ 132.02\]$		67	$(\ 32.95 \ , \ 62.21 \]$
	34	$(\ 0\ ,\ 45.95\]$		75	(52.6, 83.74]
	36	$(\ 25.69 \ , \ 98.37 \]$	chr3	16	(0, 53.29]
	37	$(\ 25.69 \ , \ 98.37 \]$		17	$(\ 16.07 \ , \ 59.97 \]$
	38	(29.88, 54.07]		19	(53.29, 89.86]
	41	$(\ 25.69 \ , \ 98.37 \]$		21	(22.75, 76.04]
	41	(8.12 , 63.53]		25	(59.97, 105.93]
	42	$(\ 38\ ,\ 79.6\]$		27	(53.29, 89.86]
	47	$(\ 63.69\ ,\ 132.02\]$		29	(37.22,83.18]
	50	$(\ 25.69 \ , \ 98.37 \]$		53	(59.97, 105.93]
	51	(9.62, 68.49]		54	(22.75, 76.04]
	51	$(\ 38\ ,\ 79.6\]$		70	(59.97, 105.93]
	54	$(\ 16.07 \ , \ 55.57 \]$		75	(22.75, 76.04]
	54	(8.12, 63.53]	chr4	6	(43.51, 92.54]
	56	$(\ 25.69 \ , \ 98.37 \]$		12	$(\ 0\ ,\ 39.57\]$
	68	(54.07, 89.22]		17	(43.51, 92.54]
	74	(0, 45.95]		18	$(\ 39.57 \ , \ 70.71 \]$
chr2	1	(62.21, 120.94]		23	(67.01, 114.07]
	6	(5.27, 52.6]		39	(9.61, 43.51]
	15	$(\ 37.29\ ,\ 79.76\]$		48	(49.18, 88.54]
	17	(42.56, 99.41]		54	$(\ 39.57 \ , \ 70.71 \]$
	18	(9.61, 74.49]		55	(27.44, 69.04]
	20	(9.61, 74.49]		62	(43.51, 92.54]
	25	(42.56, 99.41]		65	(43.51, 92.54]
	31	(42.56, 99.41]		66	(0, 27.44]
	32	(0, 46.81]		72	(17.83, 52.97]

Chr.	ID	Inter Cross. Dis.	Chr.	ID	Inter Cross. Dis.
	73	(49.18, 88.54]		23	(31.56,84.08]
	76	(25.68, 67.01]		28	(84.08, 121.94]
chr5	5	(0,72.94]		32	(49.73, 91.77]
	8	(102.83,157.12]		37	$(\ 31.56\ ,\ 84.08\]$
	10	(42.62, 142.75]		60	$(\ 34.35\ ,\ 61.73\]$
	11	(42.62, 142.75]		66	(3.89,77.4]
	12	(42.62, 142.75]		68	(38.24, 107.57]
	16	(0,69.81]		70	(38.24, 107.57]
	18	(102.83,157.12]		71	(49.73, 91.77]
	19	(0,72.94]		72	(38.24, 107.57]
	21	(60.21,87.31]		74	(77.4, 98.45]
	29	(42.62, 142.75]		78	(38.24, 107.57]
	30	(12.73, 102.83]	chr8	1	$(\ 41.32\ ,\ 97.3\]$
	33	(72.94, 117.2]		3	(0, 33.89]
	36	(12.73, 102.83]		13	(23.49, 81.24]
	39	(12.73, 102.83]		20	$(\ 0\ ,\ 63.41\]$
	40	(72.94, 117.2]		24	$(\ 41.32 \ ,\ 97.3 \]$
	42	(12.73, 102.83]		32	$(\ 41.32 \ ,\ 97.3 \]$
	48	(12.73, 102.83]		53	$(\ 41.32 \ ,\ 97.3 \]$
	51	(72.94, 117.2]		60	$(\ 41.32\ ,\ 97.3\]$
	56	(12.73, 102.83]		71	(23.49, 81.24]
	64	(12.73, 102.83]	chr9	53	(24.2, 52.96]
	66	(29.89, 82.54]		56	(8.12, 38.58]
	67	(12.73, 102.83]		68	$(\ 30.46\ ,\ 52.96\]$
	69	(42.62, 142.75]		69	$(\ 38.58\ ,\ 67.34\]$
	75	(12.73, 102.83]	chr10	6	(47.32, 81.22]
	78	(42.62, 142.75]		8	$(\ 35.72 \ , \ 74.53 \]$
chr6	26	(23.5, 81.06]		12	$(\ 35.72 \ , \ 74.53 \]$
	31	(23.5, 81.06]		18	(47.32, 81.22]
	34	(23.5, 81.06]		19	$(\ 35.72\ ,\ 74.53\]$
	40	(53.4, 90.66]		21	$(\ 27.67 \ , \ 65.15 \]$
	73	(23.5, 81.06]		29	$(\ 19.65\ ,\ 63.39\]$
	75	(29.9, 63]		35	$(\ 63.39\ ,\ 92.36\]$
	78	(23.5, 81.06]		44	(47.32, 81.22]
chr7	1	(3.89 , 77.4]		55	$(\ 19.65\ ,\ 63.39\]$
	17	(38.24, 107.57]		57	$(\ 0 \ , \ 27.21 \]$
	18	$(\ 3.89\ ,\ 77.4\]$		64	$(\ 35.72 \ , \ 74.53 \]$
	22	(34.35, 61.73]		78	(19.65, 63.39]

Chr.	ID	Inter Cross. Dis.	Chr.	ID	Inter Cross. Dis.
chr11	17	(53,106.38]		68	(5.26,65.46]
	29	(57.34,94.04]		77	(39.92, 100.11]
	36	(35.16,76.49]		79	$(\ 0\ ,\ 69.31\]$
	42	(53,106.38]	chr14	10	$(\ 29.27 \ , \ 65.95 \]$
	43	(47.73, 68.49]		20	$(\ 29.27 \ , \ 65.95 \]$
	46	(82.89, 117.53]		66	$(\ 29.27 \ , \ 65.95 \]$
	48	(53, 106.38]	chr16	5	$(\ 27.67 \ , \ 72.86 \]$
	54	(9.61, 53]	chr17	6	$(\ 35.74\ ,\ 66.18\]$
	56	(57.34,94.04]		75	(19.66, 50.11]
	61	(53,106.38]	chr18	15	$(\ 21.54 \ ,\ 55.88 \]$
	64	(17.84,57.34]		21	$(\ 27.67 \ , \ 63.58 \]$
	67	(57.34,94.04]		47	(49.21, 70.25]
	68	(53,106.38]		63	(0, 49.21]
	74	(82.89, 117.53]	chr20	6	$(\ 35.1\ ,\ 136.63\]$
	78	(53,106.38]		12	$(\ 35.1\ ,\ 136.63\]$
	80	(35.16,76.49]		15	(9.61, 74.85]
chr12	2	(25.53,99.01]		19	$(\ 35.1\ ,\ 136.63\]$
	7	(25.53,99.01]		20	(12.74, 74.53]
	31	(25.53,99.01]		21	$(\ 35.1\ ,\ 136.63\]$
	54	(25.53,99.01]		23	(12.74, 74.53]
	55	(25.53, 99.01]		27	$(\ 35.1\ ,\ 136.63\]$
	59	(25.53,99.01]		28	$(\ 35.1\ ,\ 136.63\]$
	63	(25.53,99.01]		31	$(\ 35.1\ ,\ 136.63\]$
	65	(0,71.34]		32	$(\ 22.36\ ,\ 87.59\]$
chr13	7	(39.92,100.11]		35	$(\ 35.1\ ,\ 136.63\]$
	13	(34.66, 74.57]		42	$(\ 22.36\ ,\ 87.59\]$
	29	(39.92,100.11]		45	(12.74, 74.53]
	30	(39.92,100.11]		56	$(\ 22.36\ ,\ 87.59\]$
	40	(39.92,100.11]		66	(25.49, 84.14]
	44	(5.26, 65.46]		72	$(\ 22.36\ ,\ 87.59\]$
	47	(39.92,100.11]		76	$(\ 35.1\ ,\ 136.63\]$
	60	(5.26, 65.46]			

NB: "Chr." is the chromosome number; "ID" is the individual ID; "Inter Cross. Dis." is the intercrossover distance.

Chr.	ID	Inter Cross. Dis.		Chr.	ID	Inter Cross. Dis.
chr1	1	(0,87.96]	Γ	chr5	2	(18.69, 30.75]
	2	(0,87.96]			2	(0, 21.52]
	9	(61.56, 149.53]			4	$(\ 26.86 \ , \ 78.53 \]$
	20	(0,87.96]			10	$(\ 8.17\ ,\ 68.79\]$
	25	(15.31, 107.82]			10	(9.74, 40.21]
	27	(0, 61.56]			14	$(\ 30.75\ ,\ 96.16\]$
	29	(0, 87.96]			21	$(\ 8.17\ ,\ 68.79\]$
	32	(61.56, 149.53]			23	$(\ 30.75\ ,\ 96.16\]$
	34	(46.25, 103.27]			37	$(\ 8.17\ ,\ 68.79\]$
	34	$(\ 0\ ,\ 61.57\]$		chr6	10	$(\ 0\ ,\ 50.48\]$
	36	(0, 87.96]			12	$(\ 0 \ , \ 47.35 \]$
	37	$(\ 0\ ,\ 61.57\]$			19	$(\ 23.68 \ , \ 74.15 \]$
	38	(0, 87.96]			47	$(\ 23.68 \ , \ 74.15 \]$
	40	(0, 61.56]		chr7	4	$(\ 30.12\ ,\ 131.57\]$
	40	$(\ 0\ ,\ 61.57\]$			6	$(\ 30.12\ ,\ 131.57\]$
	41	(0, 87.96]			7	$(\ 0 \ , \ 101.45 \]$
	41	(15.31, 107.82]			7	(0, 60.24]
	44	(0, 61.56]			11	$(\ 0 \ , \ 101.45 \]$
	45	(0, 87.96]			15	$(\ 0\ ,\ 60.24\]$
	49	(0, 87.96]			28	$(\ 0 \ , \ 101.45 \]$
	49	(15.31, 107.82]			28	$(\ 0\ ,\ 60.24\]$
chr2	5	(56.84, 149.84]			34	$(\ 0 \ , \ 101.45 \]$
	6	(56.84, 149.84]			35	$(\ 0 \ , \ 101.45 \]$
	19	(0, 108.12]			37	$(\ 30.12 \ , \ 131.57 \]$
	20	(0, 108.12]			44	$(\ 0 \ , \ 101.45 \]$
	22	(0, 98.56]			44	(0, 60.24]
	25	(0, 108.12]		chr8	2	$(\ 0 \ , \ 107.26 \]$
	27	(0, 98.56]			11	$(\ 0 \ , \ 107.26 \]$
	27	(0, 108.12]			18	$(\ 0 \ , \ 107.26 \]$
	31	(0, 98.56]			36	$(\ 0 \ , \ 107.26 \]$
	38	(56.84, 149.84]			42	$(\ 0 \ , \ 107.26 \]$
	42	(56.84, 149.84]		chr9	7	(0, 39.26]
	44	(0, 98.56]			24	$(\ 0\ ,\ 51.63\]$
	44	(0,108.12]			24	(0, 39.26]
	53	(56.84, 149.84]			35	(0, 51.63]
chr4	51	(26.82,57.49]			35	(0,39.26]

Table 15: Inter Crossover Distance of Cross $\texttt{[(SM X NZB)}F_1 X NZB]N_2$

Chr.	ID	Inter Cross. Dis.	Chr.	ID	Inter Cross. Dis.
	37	(0, 51.63]	chr15	1	(0, 88.68]
chr10	36	$(\ 0\ ,\ 83.89\]$		9	$(\ 0\ ,\ 88.68\]$
	47	$(\ 0\ ,\ 83.89\]$		15	$(\ 0\ ,\ 88.68\]$
chr11	3	(0, 47.35]		36	(0, 88.68]
	16	$(\ 23.68\ ,\ 56.45\]$		41	(0, 88.68]
	36	(0, 47.35]	chr16	$\overline{7}$	(0, 74.41]
chr12	5	$(\ 0\ ,\ 53.8\]$		48	(0, 74.41]
	20	$(\ 0\ ,\ 53.8\]$		52	$(\ 0\ ,\ 74.41\]$
	50	$(\ 0\ ,\ 53.8\]$	chr17	49	(0, 42.32]
chr14	5	$(\ 0 \ , \ 29.77 \]$	chr18	19	(0, 34.03]

NB: "Chr." is the chromosome number; "ID" is the individual ID; "Inter Cross. Dis." is the intercrossover distance.

Dis.	Nonpara. surv.	Dis.	Nonpara. surv.
Chr1		53.54	0.39611
0	1	56.86	0.39611
13.34	0.8	58.92	0.14381
13.95	0.8	58.94	0.14381
16.25	0.8	64.33	0.14381
24.44	0.8	64.88	0.14381
27.57	0.8	65.73	0
27.69	0.8	76.38	0
35.61	0.53333	79.01	0
39.17	0.32		
49.87	0.32	Chr3	
54.64	0.32	7.9	1
62.91	0.32	8.35	1
66.12	0.32	10.53	1
74.2	0.26667	23.84	1
85.02	0	28.92	0.50012
102.08	0	34.33	0.50012
107.48	0	36.02	0.50012
		38.65	0.50012
Chr2		41.54	0.49976
25.67	1	41.73	0.49976
30.64	1	47	0
35.49	1	57.04	0
37.28	0.79265	62.75	0
38.27	0.79265	65.39	0
41.86	0.79265		
42.55	0.79265	Chr5	
42.84	0.79265	21.69	1
43.53	0.57524	33.73	1
45.19	0.57524	41.77	0.6
46.33	0.57524	44.87	0.6
48.1	0.57524	50.12	0.6
48.11	0.57524	50.13	0.6
50.87	0.39654	66.86	0.3
51.59	0.39654	69.47	0.3

Table 16: Survival Functions of Cross [(PERA X DDK)F $_1$ X B6]N $_2$

Dis.	Nonpara. surv.	Weibull surv.	Dis.	Nonpara. surv.
69.94	0		41.51	1
89.31	0		50.49	0.75
Chr6			58.39	0.5
13.61	1		58.53	0.5
14.34	1		61.17	0.5
16.25	1		63.81	0.5
16.57	0.3		77.24	0
24.54	0.3		110.84	0
25.32	0.3		116.11	0
29.96	0.125		118.75	0
39.86	0.125		124.15	0
45.12	0.125			
47.15	0.125		Chr11	
69.76	0		25.49	1
			56.08	0.5
Chr7			60.58	0.5
0	1		85.44	0
13.48	0.66667			
21.07	0.66667		Chr12	
26.35	0.66667		28.92	1
39.66	0.33346		34.18	1
47.37	0.3332		49.93	0
58.05	0.3332		74.8	0
63.45	0			
68.73	0		Chr13	
			0	1
Chr8			8.35	0.55556
7.9	1		8.84	0.55556
10.53	1		45.04	0.55556
37.06	0.33333		55.69	0.55556
66.18	0.33333		56.04	0.37037
86.91	0		61.46	0.37037
			66.88	0.37037
Chr10			67.18	0.27778
10.82	1		72.28	0
14.42	1		72.59	0
25.24	1		80.63	0

. surv. Dis.	Nonpara. surv.
Chr	17
0	1
7.67	0.5
16.93	0.5
32.5	0.5
41.37	0.5
46.63	0
49.43	0
	. surv. Dis. Chr 0 7.67 16.93 32.5 41.37 46.63 49.43

NB: "Chr." is the chromosome number; "Dis." is the unique upper or lower bound of intercrossover distance; "Nonpara. surv." is the Product-Limit estimate.

Dis.	Nonpara. surv.	Dis.	Nonpara. surv.
chr-1		chr6	
0	1	0	1
5.89	1	4.83	0
6.48	1	18.59	0
25.24	0.625		
33.76	0.5	chr7	
66.63	0.5	0	1
91.87	0.25	4.91	0.66667
97.76	0.25	9.25	0.66667
105.3	0	20.43	0
124.06	0	34.04	0
139.06	0	36.49	0
chr2		chr10	
4.46	1	4.07	1
85.36	1	64.35	1
92.81	0	74.21	0
102.84	0	90.46	0
chr4		chr13	
9.47	1	30.99	1
39.22	1	36	1
43.74	1	54.28	0
46.38	0.33333	55.45	0
65.67	0.33333		
69.52	0	chrX	
78.99	0	0	1
		24.59	1
chr5		43.85	0
0	1	53.96	0
5.09	0.5	73.22	0
13.85	0.5		
41.82	0		

Table 17: Survival Functions of Cross [PERC X DDK) ${\tt F}_1$ X ${\tt B6]}\,{\tt N}_2$

NB: "Chr." is the chromosome number; "Dis." is the unique upper or lower bound of intercrossover distance; "Nonpara. surv." is the Product-Limit estimate.

Dis.	Nonpara. surv.	Dis.	Nonpara. surv.
chr1		103.56	0
0	1	117.73	0
1.25	1		
19.35	1	chr3	
22.43	1	0	1
23.13	1	17.57	1
24.38	1	31.66	1
38.97	0.66667	41.96	1
40.22	0.66667	49.23	1
41.78	0.66667	72.35	0.33333
46.81	0.66667	73.62	0.33333
51.59	0.375	91.19	0.33333
64.91	0.375	94.82	0
66.16	0.375	112.39	0
67.43	0	114.31	0
74.02	0	135.51	0
80.75	0		
93.37	0	chr4	
109.21	0	8.01	1
		12.57	1
chr2		17.57	1
0	1	19.36	1
14.17	1	25.58	1
21.2	1	31.93	1
30.02	1	38.15	0.8
39.3	1	49.5	0.6669
46.33	0.57143	52.79	0.66643
48.41	0.57143	57.51	0.66643
55.15	0.57143	61.31	0
60.5	0.57143	65.36	0
69.32	0.1	78.88	0
73.54	0.1	84.72	0
76.35	0.1	86.89	0
87.71	0	114.1	0
90.52	0		

Table 18: Survival Functions of Cross [(B6-Pgk1^{*a*} X DDK)F₁XB6]N₂ (More skewed)

Dis.	Nonpara. surv.	Dis.	Nonpara. surv.
chr5		chr8	
0	1	0	1
15.84	1	23.13	1
27.21	1	29.39	1
34.04	1	52.52	1
43.05	0.83333	65.92	0
60.72	0.30769	71.87	0
61.25	0.30769	89.05	0
69.26	0.30769	108.4	0
77.09	0.30769		
85.1	0	chr9	
87.93	0	16.07	1
121.97	0	41.16	1
129.98	0	55.75	0
		60.3	0
chr6			
0	1	chr10	
29.38	1	12.56	1
54.5	0.5	23.13	1
58.78	0.5	25.14	1
83.9	0	35.69	1
96.45	0	56.27	0.4
		60.83	0.4
chr7		69.73	0
6.58	1	94.87	0
6.61	1	102.87	0
24.15	1		
24.18	1	chr11	
30.76	1	0	1
36.56	1	6.59	1
49.34	0.125	15.85	1
52.61	0.125	22.44	1
55.92	0.125	25.94	1
60.71	0.125	28.41	1
67.32	0.125	35	0.66667
92.48	0	41.79	0.25
101.95	0	42.47	0.25

Dis.	Nonpara. surv.	Dis.	Nonpara. surv.
54.35	0.25	chr15	
64.91	0	11	1
73.7	0	28.57	1
96.82	0	76.59	0
		103.81	0
chr12			
0	1	chr16	
27.21	1	11	1
48.4	0	14.18	1
63.75	0	25.18	1
84.94	0	33.19	0
		70.07	0
chr14		78.08	0
11	1		
15.84	1	chr20	
26.84	1	8.02	1
54.05	0	31.69	1
63.38	0	39.71	1
90.59	0	43.21	0
		69.09	0
		88.44	0

NB: "Chr." is the chromosome number; "Dis." is the unique upper or lower bound of intercrossover distance; "Nonpara. surv." is the Product-Limit estimate.

Dis.	Nonpara. surv.	Dis.	Nonpara. surv.
chr1		79.76	0
0	1	83.74	0
8.12	1	99.41	0
9.62	1	120.94	0
16.07	1		
25.69	1	chr3	
29.88	1	0	1
38	1	16.07	1
45.95	0.59286	22.75	1
54.07	0.59286	37.22	1
55.57	0.59286	53.29	0.71429
63.53	0.3794	59.97	0.71429
63.69	0.3794	76.04	0
68.49	0.33333	83.18	0
79.6	0.06626	89.86	0
89.22	0.06626	105.93	0
98.37	0.06626		
106.49	0.06626	chr4	
109.51	0	0	1
132.02	0	9.61	1
143.16	0	17.83	1
		25.68	1
chr2		27.44	0.75
0	1	39.57	0.75
5.27	1	43.51	0.75
9.61	1	49.18	0.75
24.92	1	52.97	0.33333
32.95	1	67.01	0.33333
37.29	1	69.04	0
42.56	1	70.71	0
46.81	0.625	88.54	0
52.6	0.625	92.54	0
62.21	0.625	114.07	0
74.13	0		
74.49	0		

Table 19: Survival Functions of Cross [(B6-Pgk1^{*a*} X DDK)F₁ X B6]N₂(Less skewed)

Dis.	Nonpara. surv.	Dis.	Nonpara. surv.
chr5		chr8	
0	1	0	1
12.73	1	23.49	1
29.89	1	33.89	0.83333
42.62	1	41.32	0.83333
60.21	1	63.41	0
69.81	0.5	81.24	0
72.94	0.5	97.3	0
82.54	0.15385		
87.31	0.15385	chr9	
102.83	0.15385	8.12	1
117.2	0	24.2	1
142.75	0	30.46	1
157.12	0	38.58	0.5
		52.96	0
chr6		67.34	0
23.5	1		
29.9	1	chr10	
53.4	1	0	1
63	0	19.65	1
81.06	0	27.21	0.88889
90.66	0	27.67	0.88889
		35.72	0.88889
chr7		47.32	0.88889
3.89	1	63.39	0.25
31.56	1	65.15	0
34.35	1	74.53	0
38.24	1	81.22	0
49.73	1	92.36	0
61.73	0.22222		
77.4	0.22222	chr11	
84.08	0.22222	9.61	1
91.77	0	17.84	1
98.45	0	35.16	1
107.57	0	47.73	1
121.94	0	53	0.85714
		57.34	0.75

Dis.	Nonpara. surv.	Dis.	Nonpara. surv.
68.49	0.4	35.74	1
76.49	0.4	50.11	0
82.89	0.4	66.18	0
94.04	0		
106.38	0	chr18	
117.53	0	0	1
		21.54	1
chr12		27.67	1
0	1	49.21	0.5
25.53	1	55.88	0
99.01	0	63.58	0
71.34	0	70.25	0
chr13		chr20	
0	1	9.61	1
5.26	1	12.74	1
34.66	1	22.36	1
39.92	1	25.49	1
65.46	0	35.1	1
69.31	0	74.53	0
74.57	0	74.85	0
100.11	0	84.14	0
		87.59	0
chr17		136.63	0
19.66	1		

NB: "Chr." is the chromosome number; "Dis." is the unique upper or lower bound of intercrossover distance; "Nonpara. surv." is the Product-Limit estimate.

Dis.	Nonpara. surv.	Dis.	Nonpara. surv.
chr1		78.53	0
0	1	96.16	0
15.31	1		
46.25	1	chr6	
61.56	0.4	0	1
61.57	0	23.68	1
87.96	0	47.35	0
103.27	0	50.48	0
107.82	0	74.15	0
149.53	0		
		chr7	
chr2		0	1
0	1	30.12	1
56.84	1	60.24	0
98.56	0	101.45	0
108.12	0	131.57	0
149.84	0		
		chr9	
chr5		0	1
0	1	39.26	0
8.17	1	51.63	0
9.74	1		
18.69	1	chr11	
21.52	0.6	0	1
26.86	0.6	23.68	1
30.75	0.6	47.35	0
40.21	0	56.45	0
68.79	0		

Table 20: Survival Functions of Cross $[(SM X NZB)F_1 X NZB]N_2$

NB: "Chr." is the chromosome number; "Dis." is the unique upper or lower bound of intercrossover distance; "Nonpara. surv." is the Product-Limit estimate.

Chr.	Lambda	Var.	Std.]	Chr.	Lambda	Var.	Std.
1	0.022809	0.000054	0.007350	1	11	0.017940	0.000164	0.012818
2	0.019996	0.000034	0.005788		12	0.021144	0.000156	0.012491
3	0.029014	0.000126	0.011213		13	0.035578	0.000106	0.010311
4	0.025956	0.000676	0.026005		14	0.033005	0.000552	0.023501
5	0.018773	0.000071	0.008437		15	0.026607	0.000745	0.027288
6	0.044974	0.000267	0.016350		17	0.042043	0.000452	0.021257
7	0.031433	0.000169	0.012993		18	0.054837	0.004166	0.064548
8	0.023242	0.000192	0.013852		20	0.088851	0.004312	0.065662
10	0.016533	0.000030	0.005500					

Table 21: Estimated Crossover Rate of Cross [(PERA X DDK) F_1 X B6] N_2

NB: "Chr." is the chromosome number; "Lambda" is the estimated crossover rate; "Var." is the variance, "Std." is the standard deviation.

Table 22: Estimated Crossover Rate of Cross [PERC X DDK) F_1 X B6] N_2

Chr.	Lambda	Var.	Std.]	Chr.	Lambda	Var.	Std.
1	0.019952	0.000059	0.007682	1	7	0.103153	0.003913	0.062551
2	0.015056	0.000122	0.011043		10	0.018498	0.000185	0.013594
4	0.019553	0.000098	0.009891		13	0.023096	0.000272	0.016499
5	0.078557	0.003705	0.060868		14	0.026133	0.000687	0.026215
6	1.469909	51.738410	7.192942		15	0.364614	19.245570	4.386978
					Х	0.036242	0.000342	0.018505

NB: "Chr." is the chromosome number; "Lambda" is the estimated crossover rate; "Var." is the variance, "Std." is the standard deviation.

Chr.	Lambda	Var.	Std.	Chr.	Lambda	Var.	Std.
1	0.020257	0.000022	0.004660	11	0.024544	0.000049	0.007032
2	0.019107	0.000023	0.004763	12	0.023994	0.000096	0.009802
3	0.014468	0.000011	0.003246	13	0.030016	0.000979	0.031289
4	0.018894	0.000025	0.005021	14	0.022930	0.000121	0.010997
5	0.017459	0.000015	0.003899	15	0.017956	0.000041	0.006438
6	0.019732	0.000047	0.006866	16	0.033456	0.000325	0.018040
7	0.021198	0.000041	0.006387	17	0.023257	0.000551	0.023479
8	0.017656	0.000031	0.005562	18	0.040828	0.001882	0.043378
9	0.024294	0.000155	0.012467	19	0.389653	20.729680	4.552986
10	0.018045	0.000035	0.005898	20	0.019385	0.000057	0.007550

Table 23: Estimated Crossover Rate of Cross $\mbox{[(B6-Pgk1^a X DDK)F_1XB6]N}_2$ (More skewed)

NB: "Chr." is the chromosome number; "Lambda" is the estimated crossover rate; "Var." is the variance, "Std." is the standard deviation.

Table 24: Estimated Crossover Rate of Cross [(B6-Pgk1^{*a*} X DDK)F₁ X B6]N₂(Less skewed)

Chr.	Lambda	Var.	Std.		Chr.	Lambda	Var.	Std.
1	0.017542	0.000013	0.003570	1	10	0.020139	0.000033	0.005718
2	0.018246	0.000018	0.004248		11	0.014448	0.000013	0.003673
3	0.017462	0.000029	0.005414		12	0.019851	0.000059	0.007652
4	0.019736	0.000027	0.005234		13	0.019920	0.000040	0.006363
5	0.015068	0.000010	0.003201		14	0.022147	0.000173	0.013141
6	0.020078	0.000063	0.007938		16	0.021425	0.000496	0.022272
7	0.016688	0.000019	0.004331		17	0.024356	0.000310	0.017619
8	0.019756	0.000048	0.006916		18	0.025382	0.000173	0.013145
9	0.026704	0.000187	0.013660		20	0.017266	0.000020	0.004434

NB: "Chr." is the chromosome number; "Lambda" is the estimated crossover rate; "Var." is the variance, "Std." is the standard deviation.

Chr.	Lambda	Var.	Std.	Chr.	Lambda	Var.	Std.
1	0.027563	0.000053	0.007303	10	0.126885	2.980091	1.726294
2	0.017813	0.000029	0.005417	11	0.043946	0.000856	0.029265
4	0.024860	0.000649	0.025467	12	0.189596	3.097847	1.760070
5	0.030122	0.000122	0.011030	14	0.322766	16.795430	4.098223
6	0.033171	0.000343	0.018529	15	0.120657	1.127649	1.061908
7	0.030325	0.000125	0.011171	16	0.141439	2.239838	1.496609
8	0.101530	0.932314	0.965564	17	0.235358	11.814740	3.437258
9	0.235885	2.079055	1.441893	18	0.286289	14.692920	3.833134

Table 25: Estimated Crossover Rate of Cross $[(SM X NZB)F_1 X NZB]N_2$

NB: "Chr." is the chromosome number; "Lambda" is the estimated crossover rate; "Var." is the variance, "Std." is the standard deviation.

Marker	Ratio	Overall	Marker	Ratio	Overall
chr1			rs13476259	4.45	
rs13475712	0.88	0.602	01.178.925	0.00	
rs13475735	0.70		CEL-1-181947877	0.00	
rs3711079	1.64		rs13476290	1.11	
rs4222215	1.27		rs3654705	0.00	
rs13475771	0.00		rs6246360	0.00	
rs3677683	0.00				
01.029.481	0.00		Chr2		
01.035.780	1.32		rs13476318	0.65	0.657
01.041.550	1.03		rs13476330	1.99	
01.046.600	0.00		02.016.175	0.85	
mCV23591750	0.00		rs6181760	0.64	
rs3716105	0.25		02.041.990	0.35	
rs6356603	0.40		02.054.160	0.27	
01.076.110	0.86		02.065.760	0.92	
01.087.170	1.35		rs6371268	0.00	
rs13475982	0.00		rs13476560	0.00	
rs13475988	0.00		rs13476563	0.00	
rs13475989	0.00		mCV25095764	0.38	
rs13475991	0.00		CEL-2-79237503	0.00	
rs6342650	0.00		rs3722345	2.07	
rs6358447	0.00		02.079.300	0.00	
CEL-1-98681809	0.00		02.083.650	1.23	
CEL-1-98799654	0.00		rs4223268	0.65	
rs3695980	0.00		02.093.700	1.38	
rs13476012	0.00		rs13476663	0.56	
rs3685663	5.62		rs6249987	0.00	
rs3717264	0.00		rs13476667	0.00	
rs3664662	0.00		rs3674721	0.00	
rs3695581	0.60		mCV25337624	0.00	
rs13476089	0.00		rs13476684	0.00	
rs6355835	0.33		rs13476689	0.00	
01.135.010	0.00		rs3022892	0.00	
rs13476147	0.36		rs3693678	0.00	
rs6364156	0.00		rs3701250	1.15	

Table 26: Ratio Information of Cross [(PERA X DDK)F $_1$ X B6]N $_2$

Marker	Ratio	Overall	Marker	Ratio	Overall
rs6276129	1.81		gnf03.079.138	1.39	
rs3723406	1.71		rs6376008	0.57	
rs6340352	0.00		rs13477244	0.00	
rs3697020	0.00		rs3720007	0.32	
rs6411422	0.00		rs6391963	0.97	
02.128.325	1.52		rs3686473	0.00	
02.130.220	2.12		03.100.150	0.00	
rs13476794	0.84		03.119.365	0.17	
rs3710324	0.00		rs6214597	0.00	
rs13476805	0.00		03.152.282	0.57	
rs6360457	1.07		rs13477498	0.00	
gnf02.141.261	0.00		rs6331755	0.00	
rs6195594	5.18				
rs3655895	0.00		chr4		
rs3696870	0.00		rs13477534	0.00	0.477
02.146.685	0.00		rs13477546	0.00	
rs3726342	0.63		04.011.950	0.00	
rs6204920	9.39		rs13477592	0.57	
CEL-2-163612103	1.45		rs13477599	0.00	
rs6219107	1.38		04.021.985	1.55	
rs3673248	1.03		04.029.760	2.24	
			rs13477662	0.47	
chr3			04.042.340	1.16	
rs6398851	0.32	0.589	04.049.500	0.00	
rs13477046	1.02		rs13477741	0.00	
D3Mit63	1.01		rs6258088	0.30	
rs6239288	0.74		04.078.330	0.00	
rs3696955	0.00		04.099.005	0.13	
rs6226544	0.58		rs13477895	0.87	
CEL-3-68001820	0.00		rs3670382	0.00	
rs13477178	1.26		rs3696331	0.40	
rs6198234	0.00		04.115.380	0.00	
rs3698109	0.00		rs3671259	0.00	
rs13477190	1.21		rs13477972	0.00	
rs13477210	0.00		04.128.160	2.05	
rs3715352	0.00		rs6268364	0.74	
rs13477215	NaN		rs3693087	0.00	

Marker	Ratio	Overall	Marker	Ratio	Overall
chr5			mhcCD8b4	0.00	
rs13478092	0.28	0.628	rs13478841	0.38	
CEL-5-14611794	1.04		06.085.360	0.66	
rs13478133	1.55		06.097.530	0.00	
UT-5-19.849706	0.00		06.102.675	0.51	
rs13478138	0.00		rs3655148	2.09	
rs3706626	0.00		rs6204829	0.32	
rs13478151	2.46		06.118.265	0.75	
rs13478157	0.00		rs3695724	0.00	
UT-5-30.642219	0.00		CEL-6-122563022	0.00	
05.035.200	0.97		06.125.555	1.67	
rs3716195	0.00		rs3670851	4.81	
rs13478210	3.60		rs6339546	0.55	
rs13478212	0.00		06.140.060	0.89	
rs13478215	3.55		rs6387265	0.46	
mCV27558149	0.68				
gnf05.061.650	0.00		Chr7		
05.067.560	0.00		07.000.385	0.00	0.606
05.071.190	0.00		rs13479163	0.34	
05.073.500	0.00		mCV25220583	0.00	
05.085.655	0.00		CEL-7-29429804	0.47	
05.091.725	0.49		rs6313526	0.00	
rs13478428	0.50		rs6295036	0.00	
05.108.560	0.46		CEL-7-36545579	0.00	
CEL-5-120064766	1.02		rs13479238	0.00	
05.117.270	0.00		07.047.960	0.00	
05.121.625	0.59		gnf07.050.858	0.00	
rs13478521	0.00		mCV23672419	0.00	
05.135.860	0.63		rs3693038	0.00	
rs3668534	1.27		rs13479274	0.00	
			rs13479276	0.00	
Chr6			rs6160140	0.36	
06.002.580	0.12	0.553	rs3705155	1.17	
06.005.375	0.00		rs13479317	0.00	
rs3655269	0.55		rs3693876	0.00	
06.033.580	0.91		rs13479321	3.76	
06.063.270	0.13		rs13479334	0.00	

Marker	Ratio	Overall	Marker	Ratio	Overall		
rs13479338	0.00		rs3725272	1.02			
07.077.280	1.48		09.094.990	0.00			
rs13479427	0.76		09.104.660	1.06			
rs3719258	0.53		rs13480436	0.97			
D7Mit291	2.81		rs6302293	0.00			
rs3663988	2.95		gnf09.117.0	044 2.02			
Chr8			Chr10				
rs13479627	0.43	0.825	rs13480480	0.27	1.027		
08.020.285	2.24		rs6192001	1.09			
08.029.780	0.51		10.009.900	8.00			
rs13479741	1.82		10.011.300	1.89			
rs3726906	0.22		rs13480506	0.00			
08.062.280	0.00		rs13480525	0.64			
rs3712611	0.00		10.038.835	1.40			
rs13479813	0.00		D10Mit40	0.39			
08.076.440	0.00		rs3165937	0.42			
rs3690549	1.36		rs13480703	0.35			
rs6296891	0.87		rs3705990	0.68			
rs8236770	0.69		rs13480804	2.29			
08.086.390	0.00		10.127.600	0.00			
D8Mit322	0.79						
rs13480026	2.34		Chr11				
rs4227456	0.00		rs13480847	0.18	0.876		
			rs13480869	0.00			
Chr9			rs13480889	0.84			
09.029.420	0.48	0.576	rs3678321	0.00			
rs3669224	0.00		rs3657760	1.67			
rs13480160	0.00		rs13480997	0.25			
09.038.640	0.00		mCV23044	839 0.67			
09.043.100	1.22		UT-11-68.6	607315 1.71			
09.052.500	0.00		rs13481123	0.20			
09.060.410	0.33		gnf11.093.9	0.00			
rs6174757	1.34		rs3714299	1.45			
rs13480267	0.00		rs3710148	2.41			
rs13480277	0.00		rs6384437	2.41			
rs13480285	0.00		rs13481226	0.44			
Marker	Ratio	Overall	Diff.	Marker	Ratio	Overall	Diff.
------------------	-------	---------	-------	-----------------	-------	---------	-------
Chr12				13.028.853	1.99		
rs13481276	0.27	0.789		13.031.107	1.18		
12.014.515	1.34			13.034.400	0.00		
rs6187012	1.02			13.035.013	0.00		
rs6223000	0.00			13.034.725	0.00		
12.032.830	0.00			rs6259014	0.00		
gnf12.033.545	0.00			gnf13.045.330	1.47		
rs6243157	0.00			rs6209128	0.00		
rs3689063	0.83			rs3700819	1.19		
rs13481465	0.00			mCV22624058	0.00		
rs3686891	0.26			CEL-13-60831741	1.04		
rs3686378	0.00			13.061.625	0.00		
rs13481531	0.00			13.066.450	0.74		
mCV23169261	0.00			rs6179438	3.59		
12.081.010	0.47			13.080.001	0.58		
rs3696951	0.00			13.083.500	0.00		
rs8259763	0.58			rs13481918	0.00		
12.099.140	1.70			13.087.830	0.00		
gnf12.101.501	0.00			rs3655061	0.00		
CEL-12-101776500	0.69			rs4230027	0.00		
				rs3705092	0.94		
Chr13				rs13481992	0.00		
D13Mit158	1.06	0.822		13.114.540	0.70		
13.005.379	13.60			rs3657414	0.00		
13.010.063	0.00						
D13Mit172	0.00			Chr14			
13.010.368	0.00			14.002.500	0.29	0.634	
13.011.447	0.00			rs6340768	0.00		
13.013.030	0.00			rs13482084	0.00		
13.013.605	0.00			14.006.480	0.00		
rs3721858	2.59			rs3719629	0.00		
13.017.553	7.13			14.015.365	0.49		
13.020.344	1.95			14.020.160	0.00		
13.019.050	0.00			rs3722090	0.87		
D13Mit135	0.00			14.032.950	1.69		
13.021.844	0.00			mCV23384307	1.41		
RS6158895	0.00			rs13482179	0.00		

Marker	Ratio	Overall	Marker	Ratio	Overall
rs6392664	0.72		15.030.400	0.91	
14.055.010	0.55		15.053.380	0.52	
rs13482214	1.93		rs3701449	0.00	
14.058.715	0.00		rs13482618	0.00	
rs6179045	0.00		15.066.375	1.33	
14.065.150	1.55		15.078.600	0.00	
CEL-14-65598536	1.67		rs3697744	0.36	
rs13482259	0.00		rs3716673	0.48	
rs6298191	0.00		rs3690173	0.94	
14.074.265	0.00				
CEL-14-71690454	0.00		Chr16		
rs3023412	0.00		rs4166445	0.74	0.471
rs6325141	1.49		rs4168890	0.88	
rs13482301	0.33		16.029.450	0.00	
rs3725470	0.00		rs4170974	0.00	
gnf14.085.610	0.00		16.031.880	3.73	
rs6395984	0.00		rs4174174	0.00	
rs6407863	0.00		16.035.790	0.00	
rs3706761	0.00		rs4175353	0.00	
rs3655019	NaN		16.055.570	0.28	
rs6291434	0.00		rs4197416	0.67	
rs6176735	0.00		16.075.770	0.68	
rs6299927	0.00		rs3656592	0.33	
rs4139735	0.00		rs4217061	0.00	
CEL-14-85152539	0.00		rs3164088	0.39	
rs13482311	0.00				
rs13482312	0.00		Chr17		
rs13482313	0.00		rs3662575	0.81	0.724
rs13482314	0.00		17.013.500	0.47	
14.093.815	0.00		rs6270865	6.71	
rs3708779	0.65		rs3667748	0.00	
rs3683221	1.46		rs4231344	0.39	
			17.022.870	0.00	
Chr15			rs3724223	0.00	
rs13482418	1.91	0.648	UT-17-33.238924	0.00	
15.017.570	0.57		rs8242408	0.00	
rs13482490	2.99		rs3682923	0.00	

Marker	Ratio	Overall	Marker	Ratio	Overall
17.041.250	0.00		rs6392565	0.00	
mCV25197172	1.26		rs3672759	10.52	
17.043.515	0.00		rs3653630	0.00	
rs8273969	1.06		rs13483577	0.00	
rs3675634	1.04		rs3090325	0.00	
rs3687741	0.70		19.043.320	0.54	
D17Mit123	0.94		19.048.500	1.95	
			rs13483669	0.00	
Chr18			rs6257938	0.00	
rs13483210	0.33	0.858			
rs3656185	1.47		ChrX		
rs3691362	1.46		DXMit166	0.35	0.415
rs3714096	0.43		rs13483834	0.36	
18.046.110	0.25		CEL-X-68179178	0.00	
rs6350869	1.70		CEL-X-68645226	0.00	
18.070.235	0.36		rs13483838	0.00	
rs13483472	0.34		CEL-X-71104123	0.00	
			CEL-X-72627341	0.00	
Chr19			CEL-X-73027245	0.00	
rs13483500	1.07	0.972	gnfX.070.167	0.00	
rs3671671	0.00		rs13483858	0.00	
rs3713033	8.87		CEL-X-74073918	0.00	
rs13483505	0.00		CEL-X-74272691	0.00	
rs13483511	0.00		rs13483862	0.00	
19.005.500	0.00		rs13483863	0.00	
CEL-19-8529644	0.00		CEL-X-75125049	0.00	
UT-19-10.709331	2.05		rs13483877	0.00	
rs6163293	0.00		rs13483803	0.00	
rs3700209	0.00		gnfX.076.619	0.00	
rs6237846	0.00		rs13483888	2.16	
CEL-19-12911424	0.00		DXMit16	0.66	
rs3692733	0.00		CEL-X-91222960	0.00	
rs3669192	3.75		CEL-X-94143306	0.90	
gnf19.017.711	0.83		rs13483935	0.78	
rs3720318	0.00		rs13484004	0.37	
rs13483557	0.00		rs13484094	0.49	
19.018.140	0.00		DXMit29	0.26	
rs13483563	2.32				

NB: "Marker" is the name of marker; "Ratio" is the ratio of cM and MB; "Overall" is the overall ratio of corresponding chromosome.

Marker	Ratio	Overall	Marker	Ratio	Overall
Chr1			04.078.330	0.7	
01.029.481	0.54	1.008	04.099.005	0.76	
01.035.780	1.44		04.115.380	0.46	
01.041.550	1.12		04.128.160	1.19	
01.046.600	0		04.131.640	2.82	
01.070.445	0.79				
01.076.110	1.11		Chr5		
01.135.010	1.19		05.010.335	0.34	0.511
D1Mit270	0.9		05.035.200	0.31	
			05.038.350	0.81	
Chr2			05.046.885	0.29	
02.041.990	0.67	0.980	05.067.560	0.28	
02.054.160	0.62		05.071.190	0	
02.065.760	0.64		05.073.500	0	
02.079.300	0.33		05.085.655	0	
02.125.700	1.57		05.091.725	0	
02.128.325	0		05.108.560	0.17	
02.130.220	0		05.117.270	2.3	
02.151.240	0.77		05.135.860	1.17	
02.146.685	0				
			Chr6		
Chr3			06.002.580	0.12	0.651
03.014.785	0.26	0.503	06.014.800	1.7	
03.047.215	0.33		06.033.580	0.76	
03.054.150	0		06.063.270	0.53	
03.100.150	0.82		06.070.455	0.33	
03.119.365	0.18		06.074.995	0.52	
03.152.282	0.51		06.097.530	0.71	
			06.102.675	0	
Chr4			06.108.730	0	
04.011.950	0.35	0.796	06.118.265	0.38	
04.021.985	1.62				
04.029.760	0.44		Chr7		
04.042.340	0		07.000.385	33.5	0.427
04.049.500	0.82		07.047.960	0.6	

Table 27: Ratio Information of Cross [PERC X DDK) ${\tt F}_1$ X ${\tt B6]}\,{\tt N}_2$

Marker	Ratio	Overall	Marker	Ratio	Overall
07.087.220	0.24		12.099.140	0.44	
07.091.695	0				
07.096.985	0		Chr13		
07.110.535	0.18		13.001.770	1.09	0.958
07.112.290	1.38		13.005.379	0	
07.115.675	1.84		13.010.063	0	
			D13Mit172	143	
Chr8			13.010.368	0	
08.067.625	0.49	0.923	13.011.447	2.65	
08.086.390	0.78		13.013.030	1.77	
08.090.187	0		13.013.605	0	
08.092.425	0		13.017.553	0.72	
08.096.955	0.84		13.020.344	0	
08.101.010	0.94		13.019.050	0	
08.111.015	0.38		D13Mit135	0	
08.124.650	1.93		13.021.844	0	
			RS6158895	0	
Chr9			13.028.853	2.98	
09.029.420	0.48	0.923	13.031.107	0	
09.043.100	0		13.034.400	0	
09.052.500	0.3		13.035.013	0	
09.060.410	0		13.034.725	0	
09.091.925	1.62		13.061.625	0.5	
09.104.660	0		13.080.001	0.18	
09.119.240-2	0		13.090.665	2.18	
			13.114.540	0.29	
Chr10					
10.009.900	0.55	0.571	Chr14		
10.011.300	0		14.002.500	0.29	0.633
10.015.980	2.12		14.006.480	0	
10.038.835	0.18		14.015.365	0	
D10Mit95	1.17		14.024.450	0.76	
10.127.600	0.45		14.032.950	1.9	
			14.051.890	0.38	
Chr12			14.055.010	3.79	
D12Mit112	0.52	0.782	14.065.150	0.36	
12.089.840	1.07		14.074.265	0.32	

Marker	Ratio	Overall	Marker	Ratio	Overall
14.093.815	0.49		17.052.240	0.84	
14.101.995	0.72		D17Mit39	0.26	
Chr15			Chr18		
15.030.400	0.45	0.668	18.025.640	0.56	0.423
15.044.240	0.44		18.042.400	0.41	
15.051.335	0.98		18.051.990	0.29	
15.066.375	0.19		18.061.750	0.6	
15.075.005	1.44		18.072.500	0	
15.078.600	0				
15.098.880	0.66		Chr19		
			19.003.270	0.65	0.329
Chr16			19.018.140	0.5	
16.029.450	0.7	0.608	19.043.320	0.95	
16.031.880	0		19.048.500	1.17	
16.055.570	0.39				
			ChrX		
Chr17			DXMit166	0.35	0.642
17.013.500	0.64	0.352	DXMit16	0.63	
17.022.870	0.38		DXMit234	0.6	
17.038.280	0.47		DXMit29	0.74	
17.041.250	0				

NB: "Marker" is the name of marker; "Ratio" is the ratio of cM and MB; "Overall" is the overall ratio of corresponding chromosome.

Marker	Ratio	Overall	Marker	Ratio	Overall
chr1			Chr5		
D1Mit66	0.68	0.789	D5Mit344	0.19	1.077
D1Mit318	0.78		D5Mit79	1.15	
D1Mit251	0.53		D5Mit15	0.74	
D1Mit132	0.98		D5Mit314	0.62	
D1Mit390	0.34		D5Mit31	1.18	
D1Mit424	0.58		D5Mit143	0.64	
D1Mit270	0.12				
D1Mit293	1.24		Chr6		
			D6Mit236	0.17	0.706
Chr2			D6Mit384	0.68	
D2Mit117	0.58	0.707	D6Mit65	0.64	
D2Mit83	0.70		D6Mit25	0.96	
D2Mit244	0.59		D6Mit201	0.86	
D2Mit37	0.75				
D2Mit276	0.58		Chr7		
D2Mit285	0.62		D7Mit178	0.14	0.865
D2Mit200	1.00		D7Mit117	0.96	
			D7Mit310	0.47	
Chr3			D7Mit30	0.46	
D3Mit164	0.32	0.711	D7Mit323	0.34	
D3Mit203	1.18		D7Mit291	1.03	
D3Mit63	1.25		D7Mit223	1.18	
D3Mit74	0.67				
D3Mit254	0.96		Chr8		
D3Mit163	0.86		D8Mit157	0.22	0.865
			D8Mit191	1.33	
Chr4			D8Mit348	0.55	
D4Mit227	0.32	0.793	D8Mit166	0.97	
D4Mit286	0.82		D8Mit322	2.48	
D4Mit164	0.49				
D4Mit58	0.45		Chr9		
D4Mit37	0.70		D9Mit126	0.26	0.702
D4Mit339	1.14		D9Mit90	1.34	
D4Mit256	1.46		D9Mit97	0.36	

Table 28: Ratio Information of Cross [(B6-Pgk1^{*a*} X DDK)F₁XB6]N₂ (More skewed)

Marker	Ratio	Overall	Marker	Ratio	Overall
D9Mit270	0.37		D14Mit234	0.65	
D9Mit212	0.97		D14Mit162	0.51	
D9Mit281	0.77		D14Mit170	1.10	
Chr10			Chr15		
D10Mit298	0.35	0.771	D15Mit12	1.49	0.560
D10Mit214	2.02		D15Mit100	1.00	
D10Mit40	0.54		D15Mit234	0.79	
D10Mit66	0.58		D15Mit189	1.00	
D10Mit233	0.98		D15Mit16	1.34	
D10Mit269	0.55		D15Mit79	0.00	
Chr11			Chr16		
D11Mit71	0.16	1.106	D16Mit182	0.61	0.845
D11Mit151	1.07		D16Mit166	1.76	
D11Mit20	0.64		D16Mit140	0.36	
D11Mit5	0.71		D16Mit191	0.65	
D11Mit66	0.42		D16Mit106	0.77	
D11Mit67	1.35				
D11Mit168	1.42		Chr17		
			D17Mit78	0.55	0.841
Chr12			D17Mit175	0.48	
D12Mit182	0.18	0.939	D17Mit7	0.88	
D12Mit112	0.58		D17Mit39	0.67	
D12Mit260	0.64		D17Mit123	0.67	
D12Mit150	1.40				
			Chr18		
Chr13			D18Mit67	0.33	0.956
D13Mit16	0.49	1.005	D18Mit60	0.69	
D13Mit63	0.79		D18Mit123	0.99	
D13Mit99	0.56		D18Mit47	0.57	
D13Mit107	0.81		D18Mit144	0.86	
D13Mit78	0.47				
			Chr19		
Chr14			D19Mit42	0.49	1.167
D14Mit10	0.27	0.703	D19Mit111	1.47	
D14Mit54	1.60		D19Mit66	0.34	

Marker	Ratio	Overall	Marker	Ratio	Overall
D19Mit137	1.09		DXMit210	0.76	
			DXPas29	0.50	
Chr20			DXMit117	0.31	
DXMit124	0.33	0.904	DXMit135	0.58	
DXMit166	0.74				

NB: "Marker" is the name of marker; "Ratio" is the ratio of cM and MB; "Overall" is the overall ratio of corresponding chromosome.

Marker	Ratio	Overall	Marker	Ratio	Overall
Chr1			Chr5		
D1Mit66	0.68	0.789	D5Mit344	0.19	1.077
D1Mit318	0.55		D5Mit79	1.02	
D1Mit251	1.17		D5Mit15	1.40	
D1Mit132	1.43		D5Mit314	0.29	
D1Mit390	0.35		D5Mit31	2.09	
D1Mit424	0.75		D5Mit143	1.15	
D1Mit270	0.80				
D1Mit293	1.16		Chr6		
			D6Mit236	0.17	0.706
Chr2			D6Mit384	0.75	
D2Mit117	0.58	0.707	D6Mit65	0.51	
D2Mit83	1.07		D6Mit25	0.98	
D2Mit244	0.73		D6Mit201	0.66	
D2Mit37	0.28				
D2Mit276	0.63		Chr7		
D2Mit285	0.28		D7Mit178	0.14	0.865
D2Mit200	1.37		D7Mit117	0.90	
			D7Mit310	0.48	
Chr3			D7Mit30	0.73	
D3Mit164	0.32	0.711	D7Mit323	0.20	
D3Mit203	0.82		D7Mit291	1.29	
D3Mit63	0.48		D7Mit223	1.79	
D3Mit74	0.34				
D3Mit254	0.85		Chr8		
D3Mit163	1.22		D8Mit157	0.22	0.865
			D8Mit191	1.45	
Chr4			D8Mit348	0.44	
D4Mit227	0.32	0.793	D8Mit166	0.75	
D4Mit286	0.77		D8Mit322	2.06	
D4Mit164	1.10				
D4Mit58	0.24		Chr9		
D4Mit37	0.90		D9Mit126	0.26	0.702
D4Mit339	1.39		D9Mit90	1.54	
D4Mit256	1.07		D9Mit97	0.45	

Table 29: Ratio Information of Cross [(B6-Pgk1^{*a*} X DDK)F₁ X B6]N₂(Less skewed)

Marker	Ratio	Overall	Marker	Ratio	Overall
D9Mit270	0.63		D14Mit234	0.80	
D9Mit212	0.44		D14Mit162	0.48	
D9Mit281	1.39		D14Mit170	0.42	
Chr10			Chr15		
D10Mit298	0.35	0.771	D15Mit12	1.49	0.560
D10Mit214	0.66		D15Mit100	0.53	
D10Mit40	0.70		D15Mit234	0.48	
D10Mit66	0.50		D15Mit189	0.64	
D10Mit233	1.07		D15Mit16	0.63	
D10Mit269	1.22		D15Mit79	0.00	
Chr11			Chr16		
D11Mit71	0.16	1.106	D16Mit182	0.61	0.845
D11Mit151	0.62		D16Mit166	1.56	
D11Mit20	1.51		D16Mit140	0.70	
D11Mit5	0.80		D16Mit191	0.31	
D11Mit66	0.62		D16Mit106	0.51	
D11Mit67	1.79				
D11Mit168	1.45		Chr17		
			D17Mit78	0.55	0.841
Chr12			D17Mit175	0.83	
D12Mit182	0.18	0.939	D17Mit7	0.91	
D12Mit112	1.25		D17Mit39	0.78	
D12Mit260	0.60		D17Mit123	0.83	
D12Mit150	1.06				
			Chr18		
Chr13			D18Mit67	0.33	0.956
D13Mit16	0.49	1.005	D18Mit60	0.70	
D13Mit63	1.55		D18Mit123	1.18	
D13Mit99	1.00		D18Mit47	0.98	
D13Mit107	0.27		D18Mit144	0.87	
D13Mit78	1.10				
			Chr19		
Chr14			D19Mit42	0.49	1.167
D14Mit10	0.27	0.703	D19Mit111	1.35	
D14Mit54	1.12		D19Mit66	1.01	

Marker	Ratio	Overall	Marker	Ratio	Overall
D19Mit137	1.22		DXMit210	0.61	
			DXPas29	0.40	
Chr20			DXMit117	0.37	
DXMit124	0.31	0.904	DXMit135	1.57	
DXMit166	1.26				

NB: "Marker" is the name of marker; "Ratio" is the ratio of cM and MB; "Overall" is the overall ratio of corresponding chromosome.

Marker	Ratio	Overall	Marker	Ratio	Overall
Chr1			D5MIT29	0.96	
D1MIT20	0.58	0.938	D5MIT99	1.75	
D1MIT22	1.49				
D1MIT92	0.69		Chr6		
D1MIT34	0.5		D6MIT50	0.19	0.574
D1MIT17	1.37		D6MIT3	0.44	
			D6MIT44	0.63	
Chr2			D6MIT15	0.78	
D2MIT1	0.26	0.944			
D2MIT88	1.01		Chr7		
D2MIT35	1.95		D7MIT25	0.42	1.150
D2MIT49	0.58		D7MIT37	1.08	
			D7MIT71	1.11	
Chr3			D7Nds4	1.42	
D3MIT12	0.49	1.143			
D3MIT11	19.1		Chr8		
D3MIT38	1.1		D8MIT4	0.42	1.090
			D8MIT45	1.41	
Chr4			D8MIT56	0.65	
D4MIT2	0.25	0.589			
D4MIT17	0.28		Chr9		
D4MIT9	0.48		D9MIT2	0.46	1.060
D4MIT11	0.95		D9MIT21	1.66	
D4MIT312	0.83		D9MIT8	0.96	
			D9MIT15	0.72	
Chr5					
D5MIT228	0.56	0.881	Chr10		
D5MIT114	0.95		D10Mit126	0.79	0.921
D5MIT7	0.68		D10Mit11	0.88	
D5Mit10	1.27		D10MIT24	1.03	
D5MIT239	0				
D5MIT316	0		Chr11		
D5MIT209	0.53		D11MIT19	0.51	0.653
D5MIT65	0		D11MIT4	0.21	
D5MIT370	0.57		D11MIT41	1.16	

Table 30: Ratio Information of Cross $\mbox{[(SM X NZB)} F_1 \mbox{ X NZB}\mbox{]} N_2$

Marker	Ratio	Overall	Marker	Ratio	Overall
D11MIT11	1.03		Chr16		
			D16MIT3	0.73	1.302
Chr12			D16MIT5	1.38	
D12MIT2	0.45	0.840	D16MIT70	1.23	
D12MIT5	0.77				
D12MIT7	1.19		Chr17		
D12MIT8	0.5		D17MIT50	0.52	1.039
			D17MIT20	0.64	
Chr13			D17MIT76	1.21	
D13MIT34	0.65	0.767			
D13Mit102	0.51		Chr18		
D13MIT73	0.95		D18MIT34	0.33	1.036
D13MIT35	1.09		D18MIT24	1.29	
			D18MIT9	0.84	
Chr14					
D14MIT15	0.34	0.398	Chr19		
D14MIT37	0.14		D19MIT16	0.73	1.794
D14MIT7	0.69		D19MIT27	2.43	
D14MIT97	0.37		D19MIT71	0.74	
Chr15			Chr20		
D15MIT18	0.66	1.311	DXMIT89	0.31	0.580
D15MIT31	1.13		DXMIT1	0.58	
D15MIT39	1.93				

NB: "Marker" is the name of marker; "Ratio" is the ratio of cM and MB; "Overall" is the overall ratio of corresponding chromosome.

Appendix B

1.1) R code for table 11 to 15

data1=read.table("B2_4_estgen_code.txt")
nc=ncol(data1)
nr=nrow(data1)

```
#-----
```

```
chn=matrix(0,nc,2)
kk=0
jj=1
 for (i in 3:nc)
  {
       if(data1[1,i]==data1[1,i-1])
        jj=jj+1
         }
       else
         {
        kk=kk+1
        chn[kk,1]=data1[1,i-1]
        chn[kk,2]=jj
        jj=1
         }
   }
         chn[kk+1,1]=data1[1,i-1]
        chn[kk+1,2]=jj
```

#-----

mv=max(chn[,2])
mr=kk+1
nal=sum(chn[1:mr,2])

nrb=matrix(0:0,nr-2,mr) y=array(,c(nr-2,mv,mr)) z=array(,c(nr-2,mv,mr))

ub=array(,c(mv,nr-2,mr)) lb=array(,c(mv,nr-2,mr))

```
jj=0
for (l in 1:mr)
 {
 for (j in 3:nr)
  {
        k=0
       for (ii in 3:(chn[1,2]+1))
          {
               i= jj+ii
           if (data1[j,i-1]!=9)
               {
           if (data1[j,i]!=9)
           {
                 if(data1[j,i]!=data1[j,i-1])
                 {
                       k=k+1
                       y[j-2,k,l]=data1[2,i-1]
                       z[j-2,k,l]=data1[2,i]
                  }
            }
               else
                ł
           if (i < nc \&\& ii < (chn[1,2]+1))
           if (data1[j,i+1]!=9)
                {
                if(data1[j,i+1]!=data1[j,i-1])
                 {
                       k=k+1
                       y[j-2,k,l]=data1[2,i-1]
                       z[j-2,k,l]=data1[2,i+1]
                  }
                2
       }
         if(k >1)
       {
        for (m in 2:k)
            {
                 ub[m-1,j-2,l]=z[j-2,m,l]-y[j-2,m-1,l]
                 lb[m-1,j-2,l]=y[j-2,m,l]-z[j-2,m-1,l]
             nrb[j-2,1]=k-1
                 }
       }
 }
           jj=jj+chn[1,2]
 }
```

```
#-
          _____
nid = nr-2
mx = matrix(,nid,1)
for (j in 1:nid)
 {
       mx[j,1]=max(nrb[j,])
 }
       nrow = sum(mx[,1])
ncol = (2*mr) + 1
tdat = matrix(,nrow,ncol)
k=0
for (j in 1:nid)
{
       if(mx[j,1] != 0)
{
   for (i in 1:mx[j,1])
   {
    k = k + 1
    tdat[k,1]=data1[j+2,1]
 for (1 in 1:mr)
  {
    ll = (2*l)-1
       tdat[k,ll+1] = lb[i,j,l]
       tdat[k,ll+2]=ub[i,j,l]
   }
  }
}
}
```

```
tdat
```

#matrix(c(lb[1:4,1:5,1],ub[1:4,1:5,1]),ncol=2)
This command will show the interval for the 1st individual and Choromosom no 1.

1.2) R code for table 21 to 25

```
data=read.table("LiUi.txt",header=TRUE)
nr=nrow(data)
li=matrix(,nr,1)
li[,1]=data[,1]
ui=matrix(,nr,1)
ui[,1]=data[,2]
diff=ui-li
#-----
exnd=matrix(,nr,1)
ld=0.01
z <- 999
k \le 0
\#while(k < 5)
while (z > 0.000001)
£
for (j in 1:nr){
exnd[j]=exp(-ld*diff[j])
}
#function-----
sum1=0.0
for (j in 1:nr)
     {
sum1=sum1+(((ui[j]*exnd[j])-li[j])/(1-exnd[j]))
     }
#derivative of function-----
sum2=0.0
for (j in 1:nr)
     {
sum2=sum2+((diff[j]^2)*exnd[j]/((1-exnd[j])^2))
      }
#interation-----
ld.new <- ld + (sum1/sum2)
z \le abs (ld - ld.new)
ld <- ld.new
k <- k+1
}
#while loop ends here-----
var=1/sum2
var
std=var^{(1/2)}
std
```

1.3) R code for table 16 to 20

```
require(survival)
dat <- read.table('data_nonparametric.txt',header=T)</pre>
cria.tau <- function(data){
l <- data$left
r <- data$right
tau <- sort(unique(c(l,r[is.finite(r)])))</pre>
return(tau)
}
tau=cria.tau(dat)
S.ini <- function(tau){
m<-length(tau)
ekm<-survfit(Surv(tau[1:m-1],rep(1,m-1))~1)
So<-c(1,ekm$surv)
p \le -diff(So)
return(p)
}
p=S.ini(tau)
cria.A <- function(dat,tau){
tau12 <- cbind(tau[-length(tau)],tau[-1])</pre>
interv <- function(x,inf,sup) ifelse(x[1]>=inf & x[2]<=sup,1,0)
A <- apply(tau12,1,interv,inf=dat$left,sup=dat$right)
id.lin.zero <- which(apply(A==0, 1, all))
if(length(id.lin.zero)>0) A <- A[-id.lin.zero, ]
return(A)
}
A=cria.A(dat,tau)
Turnbull <- function(p, A, dat, eps=1e-7, iter.max=5000, verbose=FALSE){
n<-nrow(A)
m \leq -ncol(A)
Q<-matrix(1,m)
iter <- 0
repeat {
iter <- iter + 1
diff<- (Q-p)
maxdiff<-max(abs(as.vector(diff)))
if (verbose)
print(maxdiff)
if (maxdiff<eps | iter>=iter.max)
break
Q<-p
```

```
C<-A%*%p
p<-p*((t(A)%*%(1/C))/n)
```

}
cat("Iterations = ", iter,"\n")
cat("Max difference = ", maxdiff,"\n")
cat("Convergence criteria: Max difference < 1e-7","\n")
dimnames(p)<-list(NULL,c("P Estimate"))
surv<-round(c(1,1-cumsum(p)),digits=5)
right <- dat\$right
if(any(!(is.finite(right)))){
t <- max(right[is.finite(right)])
return(list(time=tau[tau<t],surv=surv[tau<t]))
}
else
return(list(time=tau,surv=surv))
}
Turnbull(p,A,dat)</pre>

1.4) R code for checking condition:

data <- as.matrix(read.table('data11_3.txt')) a<-data d<- as.matrix(read.table('del11_3.txt')) t=nrow(a) n=ncol(a) e=matrix(0,n,1) e=a%*%d eta=c(e) div=a/eta sss<-colSums(div) m<-t-sss m