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Abstract

We study the question whether there is a computational advantage in deciding properties

of Boolean functions given a succinct description of the function (such as a Boolean circuit)

as opposed to black-box access to the function. We argue that a significant computational

advantage for a large class of properties implies a non-trivial algorithm for the Circuit Sat-

isfiability (Circuit-SAT) problem. In particular, we show that if there is a property with

strong black-box lower bounds yet decidable in BPP, which also has a highly sensitive in-

stance computable by a small circuit, then there is a non-uniform sub-exponential algorithm

for the Circuit-SAT problem. Additionally, we analyze variants of this question for other

computational models.
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Chapter 1

Introduction

Solving a problem aside from the implications of the problem itself can reveal several facts

about the solver. The complexity of a task shows the ability to perform tasks of lesser or

equal complexity. The celebrated Rice’s Theorem, proved by Henry Gordon Rice[Ric53],

gives such a picture about Turing machines (TM) as problem solvers.

Rice’s Theorem states that any non-trivial semantic property of TMs is undecidable.

Semantic properties indicate something about the functionality of a TM and are independent

of machine’s syntactic description. Undecidability of semantic properties implies that the

only useful thing that one can do with the description of a TM is simply running it.

Rice’s Theorem elegantly reduces the Halting Problem to any non-trivial semantic prop-

erty of TMs. Therefore, before deciding anything interesting about the functionality of

programs, we must face the Halting Problem as if it is the simplest undecidable problem!

Rice’s theorem cannot be straightforwardly extended to models other than TMs. For

instance, a polynomial time TM is guaranteed to use a finite amount of time in its compu-

tation. Therefore, halting is not a problem for such machines and the idea of reduction from
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the Halting Problem is not valid for them. Understanding the functionality of these models

becomes easier, in the sense that it is decidable. But, we face the next barrier: intractability!

An analog of Rice’s Theorem can be particularly useful for generalizing and abstracting

proofs of hardness in models of finite computation. Proofs of hardness for circuit analysis

problems use a great variety of techniques from all areas of mathematics. For the TM model,

Rice’s Theorem eliminates the need for different proofs of undecidability by presenting a

general clean template.

Boolean circuits are a powerful model of finite computation. If a property about the

underlying Boolean functions is hard, then no efficient way is known to benefit from the

circuit description. Essentially brute-force is the best algorithm we can design to decide

such properties. Hard circuit problems show a similarity with undecidable problems in TM

Model. In the sense that, for none of these problems the syntax of a program helps in

understanding its semantics.

Additionally in the circuit model, the status of satisfiability among other hard problems

resembles that of the Halting Problem among other undecidable problems. As if it is the

simplest hard problem! Obviously, NP-completeness of the satisfiability problem means that

if any other problem NP-complete has an efficient algorithm so does satisfiability. But by

”simplest hard problem”, we mean a more fine-grained perspective of the complexity of the

satisfiability problem and its relationship with other NP-hard problems.

TMs are succinct representations of languages and Rice’s Theorem rules out the possibil-

ity of any advantage provided by a succinct representation for deciding semantic properties

of TMs. Circuits are succinct representations of Boolean functions. We study whether there

is an advantage in looking into the circuit description compared to accessing it in a black-box

manner for deciding semantic properties of circuits. Informally, black box is a type of access
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in which we know the size of the circuit, and we can ask input-output queries.

This thesis is based on the line of research initiated in the 90’s ([BS96, BGI+01b]) study-

ing the existence of Rice’s Theorem analogues for Boolean circuits, the first of which was

formulated by Borchert and Stephan[BS96]. They focused on counting properties, that is,

properties that only depend on the number of solutions, and have shown the following;

“Any non-empty counting property is UP-hard with respect to polynomial time
Turing reductions. A property is a counting property if it only depends on the
number of solutions. ”

In the early 2000’s, Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang
[BGI+01a] suggested a different analogue of Rice’s Theorem for Boolean circuits. Moti-
vated by cryptographic applications, they differentiated between algorithms analysing cir-
cuit descriptions and algorithms accessing circuits as a black-box. They made the following
conjecture which they called ”Scaled-down Rice’s Theorem”;

“Every property of Boolean functions F that can be computed in BPP given a
circuit for function f , can be computed in comparable probabilistic polynomial
time and with comparable success probability by a black-box algorithm with an
oracle access to f and an upper bound on its circuit complexity. ”

If Scaled-down Rice’s Theorem holds, then any property decidable in BPP, has at most

polynomial randomized query complexity in black-box. Contrapositively, assuming a super-

polynomial randomized query complexity in black-box, a BPP algorithm doesn’t exist. Here,

we will work with the following equivalent statement which we call ”black-box hypothesis”

:1

“Black-box Hypothesis: Let F be a property of Boolean functions such that
even a randomized algorithm has to examine a large fraction of bits of the truth
table of a function f to decide if f ∈ F . Then the complexity of deciding F is
not significantly less when a circuit computing f is given as an input. ”

Barak et al. disproved a variant of this conjecture for promise-BPP under the assumption

that one-way functions exist. However, the main statement remains open. The Scaled-down

1We are using the word ”hypothesis” at Russell Impagliazzo’s suggestion, since both proving and dis-
proving it would have interesting consequences.
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Rice’s Theorem is more general than the approach based on counting properties and can

explain the hardness of those properties as well.

Our Results

We study the implications of the black-box hypothesis for the hardness of Circuit-SAT. Our

result supports the intuition of satisfiability being the simplest NP-hard problem.

“Main Theorem: We show that Circuit-SAT has a non-trivial algorithm if
for some circuit analysis problem (satisfying a very general condition) there is a
super-polynomial gap in complexity between the algorithms accessing the circuit
description and the algorithms treating circuits as black-box. ”

Additionally, we show that in restricted models such as read-once branching programs,

algorithm that accesses a description may gain a super-polynomial advantage over any algo-

rithm that access the read-once branching programs as black-box.

More specifically, our main result is as follows. Let F be a property of Boolean functions.

Let succinct-F be a language LF = {〈C〉 | [C] ∈ F}, where [C] is a function computed

by a circuit C. If F is hard for black-box algorithms, but LF ∈ BPP , then Circuit-SAT

is solvable by a sub-exponential non-uniform family of circuits, provided that F either 1)

contains only easy functions (i.e. functions computable by circuits of ≈ Size(2o(n))), or 2) F

is sensitive on some easy inputs. In other words, there exists an easy Boolean function f such

that there is a significant number boolean functions f ′s disagreeing with f on a single point

such that F (f) 6= F (f ′). In particular, non-empty counting properties satisfy the second

condition, with an easy sensitive string of the form tt(f) = 0 . . . 01 . . . 1 such that adding or

removing a 1 flips the value of F (f). If that decision tree complexity is polynomially related

to sensitivity, the second condition can be replaced by a lower bound on the decision tree

complexity for F (on easy inputs), however it is not clear how to do that. In particular, it
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seems to involve giving a positive answer to a (generalization of) the well-studied Sensitivity

Conjecture.

Organization

• Chapter 2 contains the necessary definitions and notational conventions for introducing

the complexity theoretic analogues of Rice’s Theorem.

• In Chapter 3 we overview the two previous approaches for translating Rice’s Theorem

to circuit complexity theory.

• In Chapter 4, we discuss several ways to formulate analogues of Rice’s Theorem with

respect to different computational models and complexity classes. We will also present

the black-box hypothesis which can be viewed as an analogue of Rice’s Theorem for

general Boolean circuits and BPP time.

• Chapter 5 discusses the implications of the black-box hypothesis for hardness of Circuit-

SAT.

• In the last chapter, we present our conclusions, intuitions, and future work directions.
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Chapter 2

Preliminaries

In the world of circuits, we can make a distinction between circuit as syntax and the computed

Boolean function as semantics. White-box access to a program informally means accessing

the syntax of a program. The syntax of a circuit is a directed acyclic graph encoded as a

binary string. On the other hand, black-box access informally means using only the semantics

of a program by asking oracle queries. Our goal is correlating the hardness of circuit decision

problems in black-box and white-box. To make a meaningful comparison between these two

settings, we must define the circuit representation and the type of oracle access carefully. So

first, we need several basic definitions from circuit complexity theory about encoding and

representation in white-box and black-box.

2.1 Boolean Functions and Types of Access

An n-ary Boolean function is a function that maps the domain {0, 1}n to the co-domain

{0, 1}. Notation: tt(f) denotes the truth table of a Boolean function f .

Definition 2.1. A property of Boolean functions F is a subset of Boolean functions, where
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each slice Fn ⊆ {0, 1}2n is a subset of (truth tables of) Boolean functions of n variables. F

is non-trivial if for every (large enough) n, both Fn and its complement Fn are non-empty.

Definition 2.2 (Boolean Circuit). A Boolean circuit is a directed acyclic graph with m

nodes g1, g2, . . . , gm (in some fixed topological order) called gates, such that the first n nodes

g1, g2, . . . , gn take their value from the input g1 = x1, g2 = x2, . . . , gn = xn. Each of the

subsequent gates gi computes a Boolean function from a set of Boolean functions B called

basis gates which take their argument from the set of previously evaluated gates i.e.,

gi = φ(gi1 , gi2 , . . . , gid<i),

where φ is a function in B and d is the number of its arguments. The last gate gm is

distinguished as the output gate.

A circuit C computes a Boolean function f : {0, 1}n → {0, 1} if for every input string

x1 . . . xn ∈ {0, 1}n, f(x1 . . . xn) is equal to the value of gate gm in C(x1 . . . xn). [C] denotes the

Boolean function computed by circuit C. We equate a circuit (or an algorithm) outputting

1 with accepting and outputting 0 with rejecting. A circuit is satisfiable if there is at least

one input on which it outputs 1. We refer to the language of all satisfiable circuits as

Circuit-SAT.

|C| refers to the size of the circuit. In general, there are several related ways to define

circuit size: size of the string describing the circuit, number of edges, number of gates or

the sum of the number of edges and gates. Note that all these measures are polynomially

related. The number of edges is at most square of the number of gates, and description

length is:

O((#edges+ #gates) log(#edges+ #gates))
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Here we take |C| to be the length of the description of the circuit using the direct connection

language of [Ruz81] denoted desc(C). The size of a circuit on n inputs is at least O(n log n).

The circuit size of a Boolean function f , denoted by CircuitSize(f), is the size of the smallest

circuit computing f .

In this thesis, we mainly discuss circuits defined over the following basis, which we refer

to as general Boolean circuits: all the possible Boolean functions defined over two bits, the

constant 0, the constant 1 and the NOT gate. Since we are working with general circuits,

we assume constant fan-in without loss of generality.

Definition 2.3 (Semantic Property of Circuits). A semantic property F of circuits is a

property of Boolean functions that circuits compute. A language of circuits that satisfy a

semantic property F is called a metalanguage i.e. a metalanguage LF for F is:

LF = {desc(C) | [C] ∈ F}

Based on the distinction between a circuit and the function it computes, two access types

are defined:

Definition 2.4. An algorithm A decides property F in white-box if A decides the corre-

sponding metalanguage LF . That is, given as input a string desc(C) it accepts iff [C] ∈ F .

An algorithm in black-box model accesses the circuit using an oracle and the knowledge

of the size of the circuit description. An oracle OL for a language L is an external device that

is capable of reporting whether any string w is a member of L. An oracle Turing machine

MOL is a modified TM that has the additional capability of querying an oracle. Whenever

MOL writes a string on a special oracle tape, it is informed whether that string is a member

of A in a single computational step. An oracle for a Boolean function f is the language

Of : {x | f(x) = 1}. To simplify the notation, we often write ML, M f to mean MOL , MOf .
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Definition 2.5. An algorithm A decides F in black-box if Af (1n, 1m) accepts iff f ∈ F ,

where f : {0, 1}n → {0, 1}, m is an upper bound on circuit size of f and Of is an oracle for

the Boolean function f . Here, 1n and 1m represent n and m in unary.

We will be comparing the complexity of algorithms in white-box vs. black-box. As the

inputs to the black-box algorithm are given in unary, the size of the input to black-box

and white-box algorithms are essentially the same. Note that given desc(C), it is easy to

compute number of inputs n. In particular, we compare metalanguages in BPP with their

black-box counterparts.

Definition 2.6. A language L is in BPP if there exists a randomized algorithm A running

in probabilistic polynomial-time and such that for every x ∈ {0, 1}n,

x ∈ L⇒ Pr[A(x) accepts ] ≥ 2/3

x /∈ L⇒ Pr[A(x) rejects] ≥ 2/3

We say that a property F is decidable in BPP in the white-box setting iff LF ∈ BPP.

A property F is in black-box-BPP if there exists a randomized polynomial time algorithm

A, such that for every n, f : {0, 1}n → {0, 1} and m ≥ CircuitSize(f),

f ∈ F ⇒ Pr[Af (1n, 1m) accepts] ≥ 2/3

f /∈ F ⇒ Pr[Af (1n, 1m) rejects] ≥ 2/3.

2.2 Boolean Function Lower-Bounds in Black-Box Model

A Boolean function is a point function if it outputs 1 on exactly one input. We refer to the

Boolean function that outputs zero on every input as constant Zero function.
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Proposition 2.7. Checking satisfiability of n-ary Boolean functions needs 2n−1 oracle queries

by a randomized black-box algorithm.

Proof. This can be proved by a simple adversary argument. Alice thinks of a point function

f and Bob asks for values of f on different inputs. In the worst case, Alice answers 0 to all

the 2n − 1 first queries and 1 to the last query. To distinguish a point function from the

constant zero function with probability p > 1/2, at least half of the inputs must be queried.

Circuit complexity of point functions and all zero function is linear in n. Even though the

black-box algorithm is given the upper-bound cn log n for constant c on the size of the circuit,

it still needs to make exponentially many queries.

For a thorough discussion on lower bounds using different types of oracle queries see

[Ang88].

The query complexity of randomized and deterministic algorithms are polynomially re-

lated. So the black-box lower bound of Proposition 2.7 also implies a lower bound for

deterministic query complexity. Decision trees are a standard model for proving oracle lower

bounds. Presentation below follows [BDW02].

Definition 2.8 (Decision tree). A decision tree is a rooted ordered binary tree T . Each

internal node of T is labeled with a variable xi and each leaf is labeled with a value 0 or 1.

Given an input x ∈ {0, 1}n, the tree is evaluated as follows. Start at the root. If this is a leaf

then stop. Otherwise, query the variable xi that labels the root. If xi = 0, then recursively

evaluate the left sub-tree, if xi = 1 then recursively evaluate the right sub-tree. The output

of the tree is the value of the leaf that is reached eventually.

Definition 2.9 (Randomized decision tree). A randomized decision tree is defined like a

decision tree but each internal node is associated with a bias probability p ∈ [0, 1]. On input
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x1x2 . . . xn, tree evaluation is similar to a regular decision tree, but when an internal node is

reached, we follow the edge whose label agrees with xi with probability p.

Definition 2.10. Deterministic query complexity D(f) is the minimal depth of a decision

tree computing f . Randomized query complexity R2(f) is the minimal depth of a randomized

decision tree for f , where the subscript 2 indicates 2-sided error.

R2(f) and D(f) are polynomially related.

Theorem 2.11. [Nis91] D(f) < 27R2(f)3

Therefore, randomized algorithms cannot do significantly better than deterministic algo-

rithms in the black-box setting.

Another important algorithm is Circuit Evaluation. In black-box, we only need one oracle

query. In white-box, there exists a linear time algorithm.

Proposition 2.12. Let F be the property of outputting 1 on the all zero input (00 . . . 0).

Then the complexity of white-box and black-box is O(m), where n is the number of inputs

and m is the size of the given circuit abd m ≥ n.

Proof. The white-box algorithm evaluates the given circuit on 00 . . . 0. Circuit evaluation

takes linear time with respect to the size of the circuit. The black-box algorithm also takes

O(m) (to write the query) time because one oracle query in enough.

2.3 The Original Rice’s Theorem: A Brief Look

Rice’s Theorem [Ric53] gives a general test for determining the undecidability of certain

properties of TMs. Here, we only outline the proof to make an analogy with the black-box
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hypothesis. For the sake of simplicity we use a different terminology from the original proof.

To see a detailed proof [HU79] is a good source.

A property of languages is defined as a set of languages. Semantic properties of TMs are

properties of languages they accept. A semantic property is non-trivial if there is a TM that

satisfies the property and one that violates the property. Informally, Rice’s Theorem shows

that every property about the language recognized by a TM is either trivial or undecidable.

Theorem 2.13 (Rice’s Theorem). Let P be any non-trivial semantic property of TMs. Then,

the following language is undecidable;

LP = {〈M〉 : L(M) ∈ P}

The idea is a classic proof by contradiction using a clever reduction from the Halting

Problem. Suppose that P is decidable. Since P is non-trivial there must be some machine

ML that has this property. Without loss of generality, assume that P does not include the

empty language: otherwise, consider complement of P . Given machine M and input x, we

want to decide if M halts on x. We construct another machine R using ML:

R description: On input w do the following steps:

1. Run M on x

2. Run ML on input w

Now R satisfies P if and only if M halts on x. Because only in this case R behaves like ML

and if M doesn’t halt then R only accepts the empty language which by assumption does

not satisfy P .
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Chapter 3

Previous Work

The naive way to formulate an analogue of Rice theorem is by simply replacing the words

”Turing machine” with ”circuit” and the word ”undecidable” with ”intractable”;

“Every nontrivial semantic property of Boolean circuits is intractable. ”

This formulation is wrong. Some nontrivial semantic properties are easy, such as the

property of outputting zero on the all zero input (see Proposition 2.12). Therefore, any ana-

logue must present a more sophisticated characterization of hard semantic properties. There

are two lines of work for constructing a complexity theoretic analogue of Rice’s Theorem for

the circuit model: one based on hardness of Counting problems and one based on the notion

of obfuscation. In the next two sections, we overview these approaches.

3.1 Approach Based on Counting Problems

The quest for an analogue of Rice’s Theorem for circuits began in the 90s by Borchert

and Stephan[BS96] and was further developed by Hemaspaandra, Rothe and Thakur[HT01,
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HR00]. In this line of research, Counting Properties were the main focus to prove some

analogue of Rice’s Theorem. These properties only depend on the number of satisfying

assignments of the circuit–not their particular distribution. Generally, three specific types

of counting properties are defined:

Definition 3.1. Counting Properties: The notation #1 (and #0) denotes the total num-

ber of satisfying (respectively falsifying) assignments of a circuit.

• Absolute Counting: Let S be a subset of N

Absolute− Counting(S) = {C | #1(C) = n, n ∈ S}

• Gap Counting: Let S be a subset of Z

Gap− Counting(S) = {C | #1(C)−#0(C) = n, n ∈ S}

• Relative Counting: Let S be a subset of D (dyadic numbers):

RelativeCounting(S) = {C | #1(C)
#1(C)+#0(C)

= n, n ∈ S}

Borchert and Stephan proved the following hardness result for these problems:

Theorem 3.2. [BS96] Any nontrivial absolute (gap, relative) counting property of circuits

is UP-hard with respect to Turing reductions, where UP is the class of decision problems

solvable by an NP machine that for all inputs has at most one accepting path.

Moreover, absolute and gap counting problems have polynomial many-one reductions

to UP. Combined with NP and coNP being polynomial randomized reducible to UP, it

follows that

Theorem 3.3. [BS96] Satisfiability or its complement is randomized polynomial-time re-

ducible to any nontrivial absolute and gap counting problem.
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Following this work, Hemaspaandra and Rothe improved the above result for Absolute

Counting problem.

Theorem 3.4. [HT01] Every non-trivial absolute counting property of circuits is UPo(1)-

hard, where UPo(1) is defined similar to UP but allows the NP machine to have at most

o(1) accepting paths.

They argued that under plausible complexity-theoretic assumptions, this lower bound

cannot be improved to SPP hardness. SPP is the class of languages recognized by NP

machines such that for NO instances the number of accepting computation paths exactly

equals the number of rejecting paths, and for YES instances these numbers differ by 2.

Theorem 3.4 was further improved by Hemaspaandra and Thakur [HR00] to FewP-

hardness which is defined similar to UPo(1), but the accepting TM can have polynomial

ambiguity or non-determinism.

Counting problems are generally hard and intractable. However, it is not hard to find

hard properties of Boolean functions which cannot be described as counting problems. In

the next section, we introduce an analogue of Rice’s Theorem which is more general than

counting problems.

3.2 Approach Based on Obfuscation

In early 2000s, Barak et al. [BGI+01b] in their seminal work on the impossibility of black-

box obfuscation formulated a different analogue of Rice’s Theorem for circuits which they

named ”Scaled-down Rice’s Theorem”. Obfuscation is a fundamental cryptographic concept.

Informally, obfuscation is a compiler that modifies the syntax of programs to make it un-

intelligible to an adversary. Barak et al proved that the strongest notion of obfuscation is
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impossible.

Definition 3.5. A Virtual Black-box (VBB) circuit obfuscator is a Probabilistic Polynomial

Time (PPT) algorithm that given a circuit C outputs another circuit O(C) which satisfies

the following conditions,

1. Functionality : C and O(C) implement exactly the same Boolean function.

2. Polynomial slow-down: Size of O(C) is at most polynomially larger than C, i.e.

|O(C)| ≤ poly(|C|)

3. Virtual black-box : Anything that can be learned efficiently about O(C) can also be

learned by using only black-box access to C. More formally, for any PPT algorithm

A there is another PPT algorithm S and a negligible function α (growing slower than

the inverse of any polynomial) such that for all circuits C:

|Pr[A(O(C)) = 1]− Pr[S[C](1n, 1|C|) = 1]| ≤ α(|C|)

A virtual black-box TM obfuscator is also defined similarly just by replacing circuits with

TMs. Barak et al. proved that TM virtual black-box obfuscation is impossible uncondition-

ally. Assuming that one-way function exists, virtual black-box circuit obfuscation is also

impossible. In particular, because of the virtual black-box condition. The main idea of the

proof is constructing a family of un-obfuscatable Boolean functions F . There is a property

π for family F that given any circuit computing the function f ∈ F , this property can be

efficiently learned. On the other hand, using only black-box access it is impossible to learn

π.

Motivated by the impossibility of VBB, Barak et al. proposed a weaker notion of obfus-

cation called Indistinguishibility Obfuscation (IO) which is still very useful (see [SW14]). IO
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requires that for every two functionally equivalent circuits of equal size, their obfuscation be

indistinguishable. In 2013, Garg et al[GGH+13] proposed the first construction of efficient

IO.

VBB is a strong notion. To satisfy the conditions of VBB, for every property and every

function, it should be possible to find reasonably small circuits computing that function

from which it is hard to decide the property. The impossibility of VBB obfuscation rules

out this possibility. However, it may still be possible to have circuits that are somewhat

unintelligible. But, are there any circuits of reasonably small size from which it is hard to

decide a property? This observation led Barak et al. to suggest the following conjecture:

Conjecture 3.6 (Scaled-down Rice’s Theorem). Let L ⊂ {0, 1}∗ be a language such that

for circuits C and C ′, [C] = [C ′] implies that C ∈ L⇔ C ′ ∈ L. If L ∈ BPP then L is trivial

in the sense that there exist a PPT algorithm S such that,

C ∈ L→ Pr[S[C](1n, 1|C|) = 1] ≥ 2/3

C /∈ L→ Pr[S[C](1n, 1|C|) = 0] ≥ 2/3

Barak et al. left this conjecture as an open problem. However, they considered another

variant by generalizing the statement to promise problems. Promise problems are decision

problems where the input is promised to be from a specific subset. More formally, a decision

problem Π consists of a pair (ΠY ,ΠN), corresponding to Yes and No instances respectively.

They showed that the unobfuscatable circuit family is a counter example for the promise

version of the conjecture.

Scaled-down Rice’s Theorem has been the main motivation of this thesis. We will present

an equivalent formulation of it in the next chapter.
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Chapter 4

Black-Box Hypothesis and Its

Variants

Intuitively, to decide properties about the input-output behaviour of circuits or programs, it

seems easier to just run the program on some inputs instead of analyzing the syntax. Based

on Conjecture 3.6 from [BGI+01b], we formulate the black-box hypothesis to capture this

intuition:

Conjecture 4.1 (Black-box hypothesis). Let F be a property of Boolean functions. If

F ∈ BPP in the white-box setting over circuits, then F ∈ black-box BPP.

Informally, this hypothesis conveys that the complexity of deciding a semantic property

of circuits in white-box and black-box is comparable and white-box access does not really

provide a significant computational advantage.

It is an interesting question how the black-box hypothesis is related to P vs. NP problem.

Could it be the same problem only expressed in a different language and disguise? If P = NP,

then satisfiability (as explained in Proposition 2.7) has a exponential lower bound in black-
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box and a P-time (also BPP) algorithm in white-box. Therefore, Circuit-SAT would be

a counterexample to the black-box hypothesis. But if P 6= NP, would it imply that the

conjecture holds? This is not an easy question. To answer it, the exact relationship between

hardness in white-box and black-box must be explained.

4.1 Black-box Hypothesis in Other Models

The concept of white-box and black-box can be extended to other models of computation.

Based on the distinction between access types, an analogue of the black-box hypothesis can

be formulated. An analogue would generally follow this template:

“LetM be a model of computation and C a time complexity class. If a semantic
property ofM is decidable in C, it can also be decided in C using only black-box
access. ”

The black-box hypothesis says that for general Boolean Circuits, if Φ is semantic property

decidable in class BPP then deciding Φ in white-box is as hard as black-box. The above

template can also be modified for other models and time complexities. For instance, we

can only focus on some computationally limited subclass of general Boolean circuits or

deterministic polynomial time. Even by assuming TMs as the model M and the class of

undecidable languages as complexity class C, we can view the original Rice’s Theorem as

some variant of the black-box hypothesis.

4.1.1 Read-once Models

In this section we consider an analogue of the black-box hypothesis for models with read-

onceness property. A very important and useful class of models with this property is Read-

Once Branching Program.
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Definition 4.2 (Read-Once Branching Program). A branching program on the variable set

X = {x1, x2, . . . xn} is a finite directed acyclic graph with one source node and sink nodes

partitioned into two sets, Accept and Reject. Each non-sink node is labeled by a variable xi

and has two outgoing edges labeled 0 and 1 respectively. In a read-once branching program

(roBP), on each path from source to sink each variable occurs at most once.

Claim 4.3. Black-box hypothesis for roBPs is false, with satisfiability and equivalence as

counterexamples.

Proof. Testing equivalence of read-once branching programs is known to be in BPP [BCW80].

Given two roBPs, using Schwartz-Zippel lemma [Zip79, Sch80] we convert them to equiva-

lent polynomials and then evaluate them at some random point, the two are equal with high

probability if they agree on a random point.

Testing equivalence of programs is generally a hard problem, for TMs it is undecidable and

for circuits and general branching programs (without read-onceness) it is coNP-complete.

Satisfiability is also easy for this model of computation. Given the description of the graph,

to decide satisfiability we check if there exist a path from the source node to the sink 1.

Now consider how we test both satisfiability and equivalence in black-box. To check

equivalence, all the bits of the truth tables must be queried in the worst case. Because of

lower-bounds for point functions (see Proposition 2.7), exponentially many oracle queries are

necessary to find a satisfiable assignment. Therefore, equivalence checking and satisfiability

are two counterexamples for the black-box hypothesis in roBP model.

Note. Equivalence can be expressed as a semantic property by considering a specific family

of functions. For instance, the property of equivalence to all zero functions.

Another weaker subclass of read-once models is read-once CNF. That is a CNF formula
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in which each variable occurs at most once. Checking satisfiability in white-box is really

easy for read-once CNFs. These CNFs cannot have any conflicting occurrences of variables

because each variable occurs at most once. Given a description of the formula, it is easy to

find a satisfying assignment. So the white-box algorithm just needs to check if the CNF is

non-empty. On the other hand, black-box satisfiability requires at least exponentially many

queries in the worst case (because of point function lower-bounds Proposition 2.7). Generally,

for models of computation capable of computing point functions, if checking satisfiability is

easy, then the black-box hypothesis (for BPP) does not hold.

However, if we restrict the computational model to some very weak class that is exactly

learnable by oracle queries, then black-box hypothesis holds trivially. Learning with mem-

bership queries is a learning model in which a learner requests examples. A circuit class

C is exactly learnable in polynomial time (with membership queries), if after submitting

polynomially many oracle queries to the circuit C ∈ C the learner outputs a circuit C ′ such

that [C] = [C ′]. The learning is proper if C ′ ∈ C.

Observation 4.4. The black-box hypothesis is true for a class C that is properly exactly

learnable in P-time.

The black-box algorithm first learns the function by submitting polynomially many

queries and gains white-box access to the C-representation of a function. After learning,

the black-box algorithm can compute any property by simply applying the white-box algo-

rithm to what it has learned.
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4.2 Black-Box hypothesis in Other Complexity Classes

In the previous section, we considered Rice’s Theorem analogues for models other than

general Boolean circuits. In this section, we discuss a different variant by changing the

complexity class from BPP to deterministic sub-exponential time. We analyze if every

property of general Boolean circuits that takes sub-exponential time in white-box has a

sub-exponential time black-box algorithm. More precisely:

Conjecture 4.5 (Black-box hypothesis for sub-exponential time). Let F be a property of

Boolean functions and LF a corresponding metalanguage over circuits. If LF ∈ Time(2o(n))

in the white-box setting, then F ∈ Time(2o(n)) black-box.

We don’t intend to prove or disprove Conjecture 4.5, but we analyze its connection to the

black-box hypothesis for BPP and prove that a deterministic sub-exponential time coun-

terexample can imply a polynomial time counterexample. Since P ⊆ BPP, a polynomial

time counterexample also violates the original black-box hypothesis.

Padding is a technique for proving equality or inequality of complexity classes by trans-

forming classes to bigger classes. The transformation works by adding a certain amount

of dummy symbols to every language in a class and showing that equality scales up or en-

equality scales down. We define a padding scheme for circuits–specifically designed for our

conjecture.

Definition 4.6 (Padded Language). Let L be a metalanguage. Lpad is defined as the lan-

guage of all circuits with N = pad(n) > n many input that satisfy two conditions:

• pad(n) and its inverse pad−1(n) are computable in P.

• If the last pad(n)− n many variables are replaced with 1 the resulting circuit is in L.
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Lpad is the language of circuits with pad(n) input whose restriction to the first n inputs is

in L. This method of padding by adding dummy inputs makes Lpad a different metalanguage.

Note that similar to a classic padding argument, if the dummy symbols were added to

the circuit description, then the underlying Boolean function stays the same. The black-

box lower bound and white-box upper bound of Lpad can be computed with respect to

lower/upper bounds of L. Let C be a circuit with n variables and size m. Assume that,

• L is decidable in Tw(n)p(m) time in the white-box, where p(m) ∈ poly(m).

• L takes at least Tb(n)p′(m) time in the black-box, where p′(m) ∈ poly(m).

Lemma 4.7 (White-box upper-bound of padded language). Lpad is decidable in Tw(n)q(M)

for circuit of size M and pad(n) many inputs, where q(M) ∈ poly(M).

Proof. First we have to eliminate the dummy variables and then decide if the resulting circuit

is in L. Let Cpad be the input circuit with N inputs and of size m. So the algorithm takes 3

steps:

1. Compute n = pad−1(N) and plug in 11 . . . 1 in circuit for the last N − n variables.

2. Simplify the circuit to get a new one with only n variables.

3. Apply the algorithm that decides L to the simplified circuit.

Step 1 takes polynomial time T1(N) because pad(n), pad−1(N) are computable in P by

definition. Step 2 takes polynomial time T2(M) because circuit simplification by injecting

values is also in P . Simplification is a very simple algorithm similar to circuit evaluation

but only partial. The simplification algorithm greedily progresses by evaluating all the

gates that based on their available input, the output can be computed. And leaving the
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others un-evaluated. Finally, step 3 takes at most Tw(n)p(M). All these steps sums up to:

T1(N) + T2(N) + Tw(n)p(M) = Tw(n)q(M) for some q(n) ≥ T1(n), T2(n), p(n)

Lemma 4.8 (Black-box lower-bound of padded language). Deciding Lpad on inputs of length

N = pad(n) in black-box setting requires at least as many queries as deciding L on inputs of

length n. If Lpad is decidable in time T (N,M), then L can be decided in time T (pad(n), (m−

n+pad(n)) log(m+pad(n))/ log(m))+O((tpad(n)+m)∗ log(m−n+pad(n))/ log(m), where

tpad(n) is the time complexity of computing pad(n).

Proof. Suppose there is an algorithm A(N,M) which decides Lpad using Q(N,M) queries

and time T (N,M). Consider the following algorithm A′(n,m) deciding L:

Let C of size M on N inputs. Compute N = pad(n) and create an instance C ′ of

Lpad by adding pad(n) dummy input gates to C. The circuit C ′ has N = pad(n) and

M = SizePad(n,m) = (m − n + pad(n)) log(m − n + pad(n))/ log(m). Now, run A(C ′); if

A(C ′) accepts, accept C.

Now, if A(N,M) makes Q(N,M) queries, then so does the algorithm for L described

above. Thus, if Lpad is decidable with Q(N,M) queries, then the algorithm above decides L

using Q′(n,m) = Q(pad(n), SizePad(n,m)) queries.

The time complexity of the algorithm consists of complexity of creating C ′ plus the

complexity of running A(C ′). To compute the former, note that there are pad(n) − n new

gates and all gate names are now log(m − n + pad(n))-bit strings rather than log(m)-bit

strings, and also that the new circuit can be constructed in time linear to the output size.

The time complexity of running A(C ′) is A(N,M) for N,M as above.

Therefore, if there is no algorithm deciding L in time at most Tb(n,m) with Q(n,m)

queries, then there is no algorithm for Lpad with time complexity less than
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Tb(pad
−1(N), SizePad−1(M,N)) (where inverse of SizePad returns m).

Corollary 4.9. Suppose there is a language L with Tb(n) = 2Ω(n) and Tw(n) ∈ 2o(n), where

Tw and its inverse are polynomially computable. Then there is another language Lpad that

takes polynomial time in the white-box and super-polynomial time in the black-box.

Proof of Corollary 4.9. Take the amount of dummy inputs in padded language to be Tw.

Using Lemma 4.8 and Lemma 4.7 white-box complexity is Tw(n)q(M) and black-box is

Tb(n)q′(M).

Because the circuit has Tw(n) inputs, white-box complexity Tw(n)q(M) is a polynomial

with respect to the circuit size. But for the black-box complexity Tb(n)q′(M) we have:

Tw(n) = ω(Tb(n)). Because, Tb(n) as an exponential function cannot be bounded by any

polynomial of a sub-exponential function Tw(n). Therefore, we can say that Tb(n) is at least

super-polynomial with respect to number of variables n+ Tw(n).

In conclusion, the existence of a metalanguage with the following conditions violates

black-box hypothesis,

1. Exponential black-box lower-bound.

2. Sub-exponential white-box upper bound.

3. Upper bound of the white-box algorithm and its inverse be computable in P.

This variant for exponential time mainly helps in understanding the complexity of lan-

guages like satisfiability which have exponential lower-bounds in black-box. Even a slight

improvement in the white-box algorithm will have consequences such as violating the black-

box hypothesis or the Exponential Time Hypothesis.
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Chapter 5

Connections with Circuit-SAT

Rice’s Theorem shows that any counterexample to its statement implies an algorithm de-

ciding the Halting Problem. Following the approach of Rice’s Theorem, we study the impli-

cations of the black-box hypothesis counterexamples for the hardness of Circuit-SAT–which

may be a good candidate for the title of the easiest hard problem. To investigate the pos-

sibility of this intuition, we construct a non-trivial algorithm for Circuit-SAT assuming a

counterexample to Conjecture 4.1.

For several problems with exponential complexity in black-box the existence of a BPP

algorithm would immediately give a BPP algorithm for Circuit-SAT. However, no general

way to prove such connection is known.

Consider Parity-SAT: the language of all the circuits that the number of their satisfying

assignments is odd. Circuit-SAT is reducible to Parity-SAT by the following well-known

reduction.

Theorem 5.1 (Valiant-Vazirani Reduction [VV86]). There exists a PPT algorithm that on

input C, where C is a circuit of n variables, outputs a list of circuits C1, C2, . . . , Cn such
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that

• If C is unsatisfiable then all Ci are unsatisfiable.

• If C is satisfiable then with probability at least 1/2 some Ci is uniquely satisfiable.

Example 5.2 (Algorithm for Circuit-SAT Using Parity-SAT [VV86]). Let AP be the algo-

rithm for Parity-SAT and let C be the circuit for which we want to decide satisfiability.

Apply the Valiant-Vazirani reduction to get a list C1, C2, . . . , Cn. If AP (Ci) = 1 for some

i, then C ∈ Circuit-SAT , and C /∈ Circuit-SAT otherwise.

As another example, consider the language that for every n, circuits on n bits in the

language compute a fixed Boolean function on n bits for which there exists a polynomial

size circuit. Circuit-SAT is reducible to this language.

Example 5.3 (Algorithm for Circuit-SAT using fixed easy function). Let ffixed be a fixed

Boolean function such that size(ffixed) ∈ poly(n). Let Afixed be a BPP algorithm deciding

{C | [C] = ffixed}. The BPP algorithm with advice for Circuit-SAT works as follows-

assuming circuit C as input and circuit Cffixed as advice.

• C ′ = C ⊕ Cffixed

• if Afixed(C
′) = 1 then output 1 and 0 otherwise.

Because ffixed is a fixed Boolean function changing any bits of the truth table of Cffixed

results in Afixed not accepting it. So XORing the circuit Cffixed with a circuit that has at

least one satisfying assignment gives a new circuit that is not in the language.
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5.1 Properties of Easy Functions

The metalanguage defined in Example 5.3 consists of only one single easy Boolean function

for every n. The idea of this example can be extended to metalanguages that contain only

easy functions; an example of such is Succinct Minimum Circuit Size Problem (Succinct

MCSP). There are two ways to define Succinct MCSP, one with size given as a parameter,

and one with fixed size; we explain both cases.

Definition 5.4 (Succinct MCSP). Given a circuit C on n inputs and a number t ∈ [0, . . . , 2n/n]

given in unary, decide whether there exists a circuit for [C] of size less than t (Size is the

number of gates).

Circuit-SAT can be trivially decided by calling SuccinctMCSP (C, t) with t = n + 1.

Circuits of such complexity can only compute constants {0, 1} and input variables; the only

of these cases when C(1̄) = 0 is the constant 0 case, corresponding to unsatisfiable circuits.

Thus, if SuccinctMCSP (C, t) ∈ BPP , then Circuit-SAT ∈ BPP .

The converse is also true. If Circuit-SAT ∈ BPP (or even CNF -SAT ∈ BPP), then

polynomial time hierarchy collapses to BPP. SuccinctMCSP (C, t) ∈ Σp
2, which is in second

level of the polynomial hierarchy, and consists of languages solvable in NP with access to

a coNP oracle. SuccinctMCSP (C, t) can be decided by non-deterministically generating

a circuit of the required size and then using the coNP oracle to verify equivalence. As

BPP ⊂ Σp
2, the polynomial hierarchy collapses to BPP. The case when t is not an input

parameter is more involved.

Example 5.5. A BPP algorithm deciding MCSPt gives a BPTIME(poly(t(n), poly(|C|))

algorithm for Circuit-SAT. In particular if t(n) is polynomial, this is a BPP algorithm.
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Proof. Let F = {tt(f) | Size(f) < t(n)}, where t(n) ∈ ω(n), t(n) ∈ 2o(n) is a fixed non-

decreasing time-constructable function. We want to use it to decide satisfiability of a circuit

C on n variables.

Take a random string r of length t(n)k, and construct a circuit Cr on log |r| variables

y1, . . . , ylog |r| of size 2|r|/|r| = t(n)k/k log t(n). Cr is a exponential size circuit that can be

constructed without any simplification on truth table. Cr encodes all the position of all the

1 bits in the string r.

Here, k is chosen such that t(n + k log t(n)) < t(n)k/k log t(n) As r is a random string,

by Shannon’s counting argument r will have exponentially high circuit complexity with high

probability, so [Cr] /∈ F w.h.p.

Consider a circuit C ′ = C∧Cr. If C is unsatisfiable, [C ′] ≡ 0, and thus Size([C ′]) < t(n+

k log t(n)), so [C ′] ∈ F . Otherwise, for each satisfying assignment a1, . . . , an to the inputs

to C, C ′(a1, . . . , an, y1, . . . , y|r|) = Cr(y1, . . . , y|r|). In particular, Size([C ′]) ≥ Size([Cr]) >

t(n+ k log n).

Thus, a BPP algorithm deciding MCSPt gives a BPTIME(poly(t(n), poly(|C|)) algo-

rithm for Circuit-SAT. If t(n) is polynomial, this is a BPP algorithm (assuming the above

is repeated with several r’s to amplify success probability).

This case of MCSP can be generalized to any property F which contains only easy

functions.

Lemma 5.6. Let F be a non-empty (for all n) property that contain only functions f ∈

Size(t(n)), for some (computable) t(n) ∈ ω(n). If there is a BPP algorithm AF for LF ,

then there is a non-uniform randomized algorithm for Circuit-SAT that on circuits of size m

runs in time polynomial in t(n) with size t(n) advice.
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Proof. The structure of this proof resembles the original Rice’s Theorem proof, with the

main idea as in Example 5.5. Suppose we are given a circuit C on n variables. Construct

circuit Cr on k log t(n) variables as in Example 5.5. Now, C(x1, . . . , xn)∧Cr(y1, . . . , y|r|) has

circuit complexity ≥ t(n + |r|) iff C is satisfiable; in this case, [C ∧ Cr] /∈ F . When C is

unsatisfiable, circuit C ∧ Cr is unsatisfiable. However, now it is possible that 0̄ /∈ F .

In this case, the algorithm needs to know a circuit Cf on n + |r| variables for some

f ∈ F . Given such circuit, either as an advice, circuit (C(~x) ∧ Cr(~y)) ⊕ Cf (~x, ~y) will still

have high circuit complexity when C is satisfiable; however when C is unsatisfiable, it will

be equivalent to Cf , and so ∈ F . Thus, with high probability AF ((C ∧ Cr)⊕ Cf ) is 1 iff C

is satisfiable.

Remark. If for every n there is an algorithm Adv(n) producing in time polynomial in t(n) a

circuit Cf on n variables such that [Cf ] ∈ F , then non-uniformity is not needed. In the case

of MCSP we had an algorithm for constructing advice.

5.2 Properties with Easy Sensitive Instances

Let us recall the Example 5.3: the property of being equivalent to one nice and easy function.

This property contains only one function, by changing any bit of its truth table the resulting

function is not in the language anymore. This idea could be extended to other properties

using the concept of Sensitivity. The notion of sensitivity of Boolean functions was introduced

by Cook, Dwork, and Reischuk [CDR86].

Definition 5.7 (Sensitivity). Boolean function f is sensitive on the ith bit of input x if

flipping that bit changes the value of f(x). Sensitivity of f on input x denoted by S(f, x) is
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the number of bits in x to which f is sensitive. Sensitivity of a function s(f) is defined as

maxxS(f, x)

View a property F as a Boolean function on strings of length 2n for all n. First, suppose

that F has maximal (2n) sensitivity, and, moreover, for each n there is a maximally sensitive

input tt(f) where f has a small circuit Cf . This is a setting similar to Example 5.3. Let

AF (C) be a BPP algorithm deciding, given a circuit C, if tt(C) ∈ F . Now, if C has at most

1 satisfying assignment, it is enough to check whether AF (C ⊕ Cf ) = AF (Cf ): if there is a

satisfying assignment for C, it flips a sensitive bit of tt(Cf ), otherwise tt(C ⊕ Cf ) = tt(Cf ).

Theorem 5.8. Let LF ∈ BPP. Suppose that for every n, F has sensitivity s(F ) ≥ S: that

is, there exists a function f such that F (f) 6= F (f ′) for at least s functions f ′ which disagree

with f on one input. Additionally, suppose that f is computed by a small circuit Cf .

Then Circuit-SAT can be decided by a probabilistic algorithm with advice Cf in time

poly(|Cf |, |C|) with negligible probability of error on unsatisfiable inputs and success proba-

bility 1/2 ∗ (S − 1)/2n on satisfiable inputs.

Proof. To use the idea described above we need to guarantee that the circuit C for which

we want to decide satisfiability has at most one satisfiable assignment. This can be done

by applying the Valiant-Vazirani reduction. Assuming that f is a highly sensitive input we

have a non-trivial chance of hitting one of its sensitive bits. So we check AF (C(x⊕ r)⊕Cf )

where r is some random value. Repeating this process with more random values reduces the

error probability. Below is the algorithm for the process described;

Algorithm AlgCS for CircuitSAT

Input: A circuit C on n inputs.
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Advice: A circuit Cf such that tt(Cf ) is a S-sensitive string for F , and a truth

value of F ([Cf ])

1. Apply the Valiant-Vazirani reduction to C to obtain a list C1, . . . , Cn with

at least one uniquely satisfiable circuit in this list.

2. Let AF be a BPP algorithm for LF ; assume without loss of generality that

success probability of AF has been amplified to 1− p = 1− 1/2m
α

for input

size m and constant α > 1. For each Ci in this list, check if F ([Cf ]) 6=

AF (Ci(x ⊕ ri) ⊕ Cf ). If so, accept. (Here, ri are random strings of length

n).

Let AF run in time O(nd) for a constant d. Then running time of AlgCS is O(n∗ (|Cf |+

|C|)d).

Assume without loss of generality that success probability of AF has been amplified to

1− p = 1− 1/2m
α

for input size m and constant α > 1. If C is unsatisfiable, then AF rejects

C with probability 1− pn.

If C is satisfiable, then the success probability will be (1 − p)S/2n+1 = S/2n+1 −

S/2n+1+m2 ≈ O(S/2n). This is the probability of AF giving the correct answer multiplied

by the probability of hitting a sensitive bit of the advice.

Corollary 5.9. Under the conditions of Theorem 5.8, Circuit-SAT can be decided by a ran-

domized one-sided error algorithm AlgCS ′ with advice in time polynomial in |C|+ |advice|.

AlgCS ′ always rejects unsatisfiable circuits, and accepts satisfiable circuits with success prob-

ability 1/2 ∗ (S − 1)/2n, provided the advice is correct.

Proof. The idea is to eliminate the error probability generated by algorithm AF using non-

uniformity. Because BPP ⊂ P/poly [Adl78], the amount of randomness used by algo-
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rithm AF can be at most of polynomial length, so AF can be transformed to a nonuniform

polynomial-time deterministic algorithm. The algorithm AlgCS is modified to AlgCS ′ which

receives an additional advice for AF . The success probability of AlgCS ′ on satisfiable circuits

is just the probability of hitting exactly one sensitive bit which is 1/2 ∗ S/2n.

The idea of this Theorem 5.8 could be extended for checking satisfiability of other mod-

els. Generally any model closed under the Valiant-Vazirani reduction, ⊕ and conjunction

supports the algorithm of Theorem 5.8. Examples of such models are branching programs

and formulas over arbitrary basis which contains AC0[2] circuits.

Corollary 5.10. Let M be a computational model which allows conjunction, ⊕ for two

bits and an efficient, possibly randomized, reduction from M-SAT to M-UniqueSAT. Then

theorem Theorem 5.8 and corollary Corollary 5.9 apply with circuits replaced by M.

5.3 Sensitivity of Symmetric Properties

The analogue of Rice’s Theorem by Borchert and Stephan [BS96] could be seen as a special

case of the black-box hypothesis. Here, using the idea of Theorem 5.8 we show why these

properties are hard in general. Counting properties, Definition 3.1, are a special case of

Symmetric Properties. F is a Symmetric Property of Boolean functions if it only depends

on the Hamming weight of the truth table, so permuting the bits of the truth table doesn’t

change the value of F . Every symmetric property is described by a vector of the form

(F0, F1, . . . , F2n) ∈ {0, 1}2n+1, where Fi is the value of F when #1 = i. One nice property of

all symmetric properties (or functions) is their high sensitivity;

Lemma 5.11. [Tur84] If F is non-trivial symmetric; then s(F ) ≥ 2n/2.

33



Proof. There is a number k such that Fk 6= Fk+1. Without loss of generality suppose that

k ≥ 2n/2, then any string with k 1s has sensitivity k. Otherwise, any string with k + 1 1s

has sensitivity 2n − (k + 1) ≥ 2n/2.

Theorem 5.12. Let F be a symmetric property of Boolean functions and LF ∈ BPP be its

corresponding metalanguage. Then Circuit-SAT can be decided by a randomized one-sided

error polynomial-time algorithm with advice of size poly(n). This algorithm always rejects

unsatisfiable circuits and accepts satisfiable circuits with probability at least 1/4.

Proof. Without loss of generality, let k ≤ 2n/2. Let kbe the number of 1s in the truth table

of f such that flipping a bit from 0 to 1 flips F (f).

A sensitive input is encoded by Cf = ”x > k” which outputs 0 for inputs x ≤ k, when

x is interpreted as a binary number, and outputs 1 otherwise. The non-uniform algorithm

for Circuit-SAT receives an advice consisting of 1) a polynomial-length string r∗ to be used

as randomness for AF , and 2) a number k ≤ 2n. (size of k is less than n, representing

the sensitive input). Given k as advice, we can construct a circuit Cf (x) = ”x ≥ k” of

polynomial size which encodes a highly sensitive input.

To decide satisfiability of C, using the advice we first generate Cf . Then, we run Circuit-

SAT algorithm AlgCS ′(C) with advice Cf several times, and output 1 if on any of these

runs AlgCS ′(C) outputs 1. Since when C is satisfiable Prob[AlgCS ′(C) = 1] > 1/4, small

constant number of runs is enough to see a 1 with high probability.
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5.4 Eliminating Randomness for High Sensitivity

The algorithm of Theorem 5.8 always rejects unsatisfiable circuits, but on satisfiable circuits,

if the sensitivity is low, it has exponentially small probability of hitting a sensitive bit. In

this section, we improve the success probability of our algorithm when sensitivity is 2δn.

Theorem 5.13. Suppose that there exist a property F with LF ∈ BPP, such that for some

function f sensitivity s(tt(f), F ) ≥ 2δn and |Cf | ≤ 2o(n) for constant 0 < δ < 1. Then there

is a family of circuits Dm,n of size ≤ 2o(n) (with different function in o(n)) which decides

Circuit-SAT.

In [PP10], Paturi and Pudlak studied OPP algorithms for Circuit-SAT. OPP consists

of all the randomized polynomial-time algorithms with one-sided error, but exponentially

small success probability on satisfiable circuits. They showed that essentially all the OPP

algorithms are unlikely to achieve high success probability for deciding Circuit-SAT. OPP is

a very broad class of algorithms and their result rules out the possibility of anything better

than brute-force. OPP algorithms can be converted to families of probabilistic circuits

parametrized by n and m.

Definition 5.14. A probabilistic circuit C(x, z) is a circuit that takes two types of inputs:

x as the regular input and z as the required randomness.

Any algorithm with running time T (n,m) can be encoded as a probabilistic circuit of size

T (n,m) log(T (n,m)); this can be done by a construction similar to Cook-Levin theorem, see

[PF79]. The main result of [PP10], Exponential amplification lemma, is a recursive construc-

tion to amplify success probability of circuit families. Using the Exponential amplification

lemma, Paturi and Pudlak obtained families of deterministic circuits of non-trivially small

35



size that decides Circuit-SAT for several settings of parameters. In particular, if an OPP

algorithm has success probability 2−δn and running time 2o(n) · Õ(m), then deterministic

circuits of sub-exponential size can decide Circuit-SAT.

Lemma 5.15 (Exponential amplification lemma[PP10]). Let G be a family of probabilistic

circuits of size bounded by g(m,n) such that G decides Circuit-SAT with success probability

2−δn. Then there exist a circuit family G ′ deciding Circuit-SAT with success probability 2−δ
2n,

for all large enough n, where size of circuits in G ′ is bounded by g′(n,m) = O(g(dδne) +

5, Õ(g(n,m))).

proof of Theorem 5.13. First we convert AlgCS ′(C) of Corollary 5.9 to a circuit family.

Next, we amplify the success probability of this family using several iterations of the expo-

nential amplification lemma.

Let G0
m,n be the circuit family encoding algorithm AlgCS ′(C). Cf , F ([Cf ]) and r∗ the

required randomness can be easily hard-coded in circuits of G0
m,n.

For concreteness, let desc(Cf ) = 2n
γ

denote a bound on the size of |Cf |. The size of the

complete circuit G0
m,n is O(2kn

γ · nkγ+1 ·mk), where k is the exponent of the running time of

AF . Assuming that m ≤ |Cf | to bound smaller factors, |desc(G0
m,n)| = O(2kn

γ ·n(k+1)γ+1·mk).

Now, we apply the Exponential amplification lemma for t iteration to G0
m,n, where t ∈

ω(1) is a very slow growing function.

If 2o(n) = 2α(n) is the bound on advice circuit |Cf |, and k is the exponent of the running

time of AlgCS ′, then we need kt ∗ α(n) < β(n), where β(n) ∈ o(n). As t is non-constant,

success probability becomes 2δ
tn ∈ 2o(n). Now, using standard techniques to amplify success

probability (with 2δ
tn+O(n) trials and fixing randomness by the averaging argument), obtain

a deterministic circuit of sub-exponential size solving Circuit-SAT for circuits of description

size m on n variables.
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5.5 Sensitivity and Black-Box Lower Bounds

The efficiency of the non-uniform algorithm in Theorem 5.8 depends on the size of the advice

circuit. A small enough advice circuit computing a highly sensitive input can always be found

if:

1. High query complexity in black-box setting implies high sensitivity.

2. There exist a high sensitivity instance computable by a small (enough) circuit.

A proof of the first statement would show a polynomial relationship between query-

complexity and sensitivity. A proof of the second statement would show a connection between

sensitivity and succinct description.

Proving the connection between query complexity and and sensitivity will resolve one

closely related open problem: sensitivity conjecture (formulated in [NS94]).

Block sensitivity is a generalization of sensitivity. Let B be a subset of the bits of the

input x. B is a sensitive block of f on input x, if flipping all the bits of B flips the value of

f(x).

Definition 5.16 (Block Sensitivity). Block sensitivity of function f on input x denoted by

bs(f, x) is the maximum number of disjoint sensitive blocks of f on input x. Block sensitivity

of a function bs(f), is defined as maxxbs(f, x) (The maximum sensitivity over all the possible

inputs).

Block sensitivity upper bounds sensitivity ( because bs is a generalization of s). The exact

relationship between sensitivity and block sensitivity is unknown. Sensitivity conjecture

states that sensitivity can be bounded by a polynomial of block sensitivity. It has been
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shown that s(f)2 ≤ bs(f) for some functions [Rub95]. However, the best known upper-

bound for bs in terms of s is still exponential[APV15]. See [HKP11] for a recent survey

about progress on this conjecture.

Block sensitivity is polynomially related to several other complexity measures of Boolean

functions such as certificate complexity, polynomial degree and quantum query complex-

ity. In particular, it is polynomially related to randomized query complexity (defined in

Definition 2.10).

Theorem 5.17. [NS94] bs(f) ≤ 2 ∗R2(f)

Therefore black-box query complexity upper bounds sensitivity.

Corollary 5.18. Low black-box query complexity implies low sensitivity.

Proof. sketch: Randomized query complexity upper bounds block sensitivity and block sen-

sitivity upper bounds sensitivity.

However, the converse of the above corollary is hard to prove. Any progress on that would

be a great progress on the sensitivity conjecture. But, even assuming that block sensitivity

is a polynomial function of sensitivity is not enough for AlgCs to run in polynomial time,

because AlgCS needs a highly sensitive instance computable by a small circuit.

Looking back at the black-box hypothesis, we must pay attention that definition of hy-

pothesis is a bit different from pure oracle access. In Conjecture 4.1 the black box algorithm

knows the size of the circuit. This gives significant advantage for deciding some semantic

properties.

Consider the property of being equivalent to a function f that has exponential circuit

lower bounds. The black box algorithm immediately rejects any circuit of small size if it
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knows a lower bound. And on circuits of exponential size even if it needs to check the value

of the circuit on all possible inputs, the whole process takes polynomial time with respect to

the length of the input. So, the algorithm always takes polynomial time on all the inputs.

Because of such cases, we restrict our notation of a counterexample to properties that have

exponential query complexity on small circuits. We define the notion of a strong counter

example, as some property that violates the conjecture on small circuits. More formally;

Definition 5.19. A property F is a t-strong counterexample to black-box hypothesis if

LF ∈ BPP, yet any black-box algorithm requires query complexity (and thus running time)

of 2Ω(n) on circuits computing functions f of circuit complexity less than t, for any circuit

size. When we omit t, assume t = 2o(n).

For example, all point functions are computable by circuits of linear size. If the property

of being a point function has a BPP algorithm, it is a strong counterexample. With this

definition, we conjecture that if a strong counterexample exists then there exists a sensitive

input of small size.

Conjecture 5.20 (Easy instance sensitivity conjecture). Let R2,t(F ) and st(F ) be ran-

domized query complexity and sensitivity, respectively, over a subset of inputs f to F

such that f ∈ Size(t). Then there exists integer k > 0 and t′(n) = poly(t(n)) such that

R2,t(F ) ≤ st′(F )k.

This is a generalization of sensitivity conjecture, where the original conjecture is for

t = N . As an example, consider that checking satisfiability has exponential R2, and its

highly sensitive input, the constant zero function, has a small circuit. If this conjecture

holds, we can conclude the following:
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Corollary 5.21. If F is a t-strong counterexample to the black-box hypothesis with t = 2o(n),

and easy instance sensitivity conjecture holds for this t, then there is a family of circuits of

sub-exponential size deciding Circuit-SAT.

This follows immediately from theorem Theorem 5.13.
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Chapter 6

Conclusions

The black-box hypothesis leaves us with several new questions each of which is an interesting

direction for future research. Our algorithmic construction relies on the sensitivity of Boolean

functions. Nevertheless, our results cannot rule out the possibility of other algorithms that

may not use sensitivity and the Valiant-Vazirani reduction.

The non-uniformity of our algorithm for Circuit-SAT, resembles the proof of Rice’s theo-

rem. In that proof, a machine satisfying a property must be provided as advice for the argu-

ment to work. For uniform computation, the advice is compatible with any other machines.

Eliminating the non-uniformity of our algorithm would result in a uniform sub-exponential

algorithm for Circuit-SAT which violates ETH.

The further progress of our approach in understanding the connection of the black-box

hypothesis and Circuit-SAT, largely depends on the easy instance sensitivity conjecture. The

intuition of easy instance sensitivity suggests that a non-uniform randomized polynomial

time algorithm is possible if a counterexample to black-box hypothesis exists. Moreover, our

definition of strong counter example allows for refinement and weakening of the black-box
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hypothesis. Easy sensitivity conjecture seems provable for strong counter examples. This

would be the first step toward proving this the general black-box hypothesis.

The easy instance sensitivity conjecture connects sensitivity of Boolean function with

their descriptive complexity. Even independent of the black-box hypothesis, this is a fas-

cinating open problem. In particular, we don’t yet know if sensitivity conjecture implies

easy instance sensitivity or vice versa. A good research direction is to prove one of these

conjectures assuming that the other holds.

We also briefly discussed variants of the black-box hypothesis for other models of com-

putation and implications of learnability. In fact, restrictions of circuit model are more

realistic computational models. A more learning theoretic approach is to correlate the hard-

ness of learning and the hardness of teaching in a model, similar to the correlation between

white-box and black-box.

As explained in Chapter 4, black-box hypothesis trivially holds if the model under consid-

eration is exactly learnable by oracle queries. We didn’t consider other learning paradigms

such as approximate learning or probably approximately correct (PAC) learning and their

implications for the black-box hypothesis. Moreover, the interaction with the oracle of a

function in many learning problems is not limited to input-output queries; other query types

include equivalence, disjointness, subset, superset, etc (for definitions see [Ang88]). Com-

paring white-box and black box complexity by allowing other query types is interesting.

In this thesis, we used the word ”hypothesis” at Russell Impagliazzo’s suggestion, since

both proving and disproving it would have interesting consequences. Currently, our intu-

ition is not enough to support any of these possibilities. Therefore, it is very useful to

prove/disprove the hypothesis under plausible complexity theoretic assumptions for which

we already have some intuition. In particular, ETH (or strong ETH) and the existence of
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one way functions are relevant assumptions to try. The non-uniformity of our Circuit-SAT

algorithm doesn’t allow to relate our result with ETH easily. Also, we know that if one

way functions exist the generalization of this hypothesis to promise problems cannot hold.

Considering the recent progress on obfuscation, the existence of efficient indistinguishability

obfuscator is also a natural assumption that can be used for proving/disproving the black-box

hypothesis.
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