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Abstract

The marine controlled-source electromagnetic method (CSEM) is a geophysical technique

for mapping subsurface electrical resistivity structure in the offshore environment. It has

gained ground in recent years as a tool for remote detection and mapping of hydrocarbon

reservoirs as it serves as an independent yet complementary method to seismic acquisi-

tion. While CSEM data contains useful information about the subsurface, modelling and

inversion are required to convert data into interpretable resistivity images. Improvement

of modelling tools will assist in closing the gap between acquisition and interpretation of

CSEM data. The primary focus of this study was to explore the limits of our present mod-

elling capabilities in the context of marine electromagnetic scenarios. Software based on

the three-dimensional CSEM finite-element forward code CSEM3DFWD (Ansari and Far-

quharson, 2014; Ansari et al., 2015) was employed in this study. While testing of this

software had been expanded to models of relevance to mineral exploration, its performance

for models which are representative of marine geologic environments, in particular those

which are encountered in offshore oil and gas exploration, had not yet been investigated.

In this study, marine models of increasing complexity were built and tested, with the ul-

timate goal of synthesizing marine CSEM data for three-dimensional earth models which

were complete in their description of the subsurface. Computed responses were compared

to results existing in the literature, when available. To investigate the capability of the code

in modelling realistic scenarios, forward solutions were computed for a marine reservoir

model based on the real-life North Amethyst oil field, located in the Jeanne d’Arc Basin,

offshore Newfoundland. When the capability of modelling realistic earth models is fully

realized, forward modelling may be used to assess the utility of the marine CSEM method

as a tool for hydrocarbon detection and delineation in specific offshore scenarios.
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Chapter 1

Introduction

1.1 Marine CSEM in hydrocarbon exploration

The marine controlled-source electromagnetic (CSEM) method is a geophysical technique

for mapping subsurface electrical resistivity structure in the offshore environment. Resis-

tivity is a useful measurement in offshore hydrocarbon exploration because it is largely

influenced by pore fluid content, and thus may be useful in distinguishing between con-

ductive brine-saturated and resistive oil- or gas-saturated reservoirs. For example, seafloor

sediments saturated with brine or saline fluids have typical resistivities of about 1 ohm-m,

whereas sediments saturated with hydrocarbons may have resistivities of up to 100 ohm-m

or higher (Constable, 2006). Because of the sensitivity of the method to pore fluid prop-

erties, it is viewed as a complementary tool to conventional seismic methods in offshore

exploration and development for detection and delineation of hydrocarbons (Danielsen and

Bekker, 2011). The seismic reflection method excels in imaging subsurface structure, but

only provides a qualitative, and often ambiguous, interpretation of pore fluid properties

(Vieira da Silva et al., 2012; MacGregor and Tomlinson, 2014). Seismic attributes that may

indicate the presence of hydrocarbons, such as local high-amplitude anomalies known as
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“bright spots" and characteristic amplitude-variation-with-offset (AVO) responses, may be

explained by other changes in rock and fluid properties (Vieira da Silva et al., 2012). Inter-

pretation of pore fluid content from CSEM-derived resistivity alone can also be misleading

since variations in the earth’s electrical structure reflect not only pore fluid composition, but

also lithology, temperature, porosity, and permeability. Not all resistive anomalies encoun-

tered in the offshore exploration environment are associated with the presence of hydrocar-

bons (Key, 2003; MacGregor and Tomlinson, 2014). For example, evaporites, volcanics,

carbonates, and freshwater-saturated sands can exhibit high electrical resistivity relative to

their surroundings, and even variations in bathymetry or host rock resistivity may cause

anomalies (Constable, 2006; Srnka et al., 2006). Further, non-economic targets may occur

as thin horizons, thus disguising themselves as potential hydrocarbon reservoirs. By inte-

grating CSEM data with geophysical and geological data obtained via independent meth-

ods, whether through simple co-rendering or computationally demanding joint inversion,

subsurface structure may be interpreted with greater confidence.

Many papers provide extensive reviews of the history of the CSEM method and its

application in hydrocarbon exploration (e.g., Constable and Srnka, 2007; Constable, 2010;

Key, 2012b). While the marine CSEMmethod has existed as an academic technique for the

study of oceanic lithosphere since the late 1970s, its adaptation for commercial use within

the oil and gas industry did not begin until the early 2000s. This transformation from aca-

demic to commercial application was driven in large part by the expansion of hydrocarbon

exploration into deep water (>1000 m depth) and the associated technical and economic

challenges of the environment (Constable, 2006; Srnka et al., 2006; Constable and Srnka,

2007). The marine CSEM method is well-suited to the deepwater environment as a result

of preferential electrical coupling of transmitted fields to the subseafloor and the low elec-

tromagnetic (EM) noise level due to the filtering effect of the water column (Srnka et al.,

2006). Its application in shallow water is more challenging due to the dominance of the
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response by signal that has interacted with the atmosphere, often referred to as the airwave

(Constable and Weiss, 2006; Andréis and MacGregor, 2007). The airwave problem has

been well-studied and several solutions have been developed to mitigate its effect in shal-

low water (e.g. Amundsen et al., 2006; MacGregor et al., 2006; Andréis and MacGregor,

2008; Chen and Alumbaugh, 2011).

Since the early successes of marine CSEM field trials held by Statoil and Exxonmo-

bil offshore West Africa (described in Ellingsrud et al., 2002; Srnka et al., 2006; Con-

stable and Srnka, 2007), surveys have been conducted worldwide in both under-explored

and highly developed basins representing a diversity of geological environments and water

depths (e.g., Carazzone et al., 2008; Alcocer et al., 2012; Bouchrara et al., 2012; Gist et al.,

2013; Colombo et al., 2014). Beyond hydrocarbon mapping, the marine CSEMmethod has

been applied in petroleum exploration and development for geohazard screening in the shal-

low subsurface and structural imaging in environments which are ill-suited to conventional

seismic methods (e.g., Weitemeyer and Constable, 2010; Alcocer et al., 2012; Colombo

et al., 2014). As industry use of the method has become more widespread, acquisition and

data processing techniques have matured and companies have been motivated to develop

in-house software and expertise for CSEM integration and interpretation (Danielsen and

Bekker, 2011).

1.2 Electric and magnetic properties of sedimentary rocks

Three physical properties characterize the EM behaviour of a medium: electrical conduc-

tivity (s ; unit: siemens per metre, S/m), or its reciprocal, resistivity (r; unit: ohm-metre,

Wm), electrical permittivity (e; unit: farads per meter, F/m), and magnetic permeability (µ;

unit: henries per meter, Hm�1). Electrical resistivity is a measure of the opposition of a

material to the flow of current. Electrical permittivity is related to electric susceptibility
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ce, where e = (1+ce)e0 and e0 is the permittivity of free space, which is a measure of

the polarization of a material in response to an applied electric field. Analogously, mag-

netic permeability is related to magnetic susceptibility cm, where µ = (1+cm)µ0 and µ0

is the permeability of free space, which is a measure of the magnetization of a material in

response to an applied magnetic field.

In consideration of low-frequency EMmodelling, resistivity is the most important prop-

erty for characterization of the earth’s structure. Since displacement currents are negligible

for the frequencies at which marine CSEM data is acquired (Section 2.1.6), the electric

permittivity structure of the earth can be safely ignored (Chave et al., 1990). For reference,

the relative permittivity er (er = e/e0 = 1+ ce) of seawater is approximately 80 (Chave

et al., 1990), and the relative permittivities of sedimentary rocks are typically in the range

of 1–100 (permittivities between 10�9 and 10�11 F/m; Constable, 2010); since sedimentary

rocks are not intrinsically polarizable, their permittivity depends primarily on pore fluid

content (Chave et al., 1990). Martinez and Byrnes (2001) tabulate the bulk permittivities

of common earth materials. Since magnetic mineral content is generally low for sedimen-

tary rocks common to offshore oil and gas basins (Commer and Newman, 2008; Constable,

2010), the magnetic permeability µ is generally taken to be that of free space, i.e., µ = µ0

= 4p ⇥10�7 H/m, for marine CSEM modelling.

Resistivity is a highly variable property among earth materials (Figure 1.1). While

the resistivity of some lithologies is dictated by content of certain conductive or semi-

conductive minerals, e.g., native metals and metallic sulfides, most rock-forming minerals

are insulators, and so in situ conduction of electrical current is primarily via electrolytic pore

fluid (Kearey et al., 2002). The basic controls on rock resistivity are then pore fluid conduc-

tivity, pore fluid saturation, and volume and interconnectivity of pore space, i.e., porosity

and permeability. Both dissolved salt content and temperature are important considera-

tions because they influence pore water conductivity. The salinity of pore water reflects the
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Figure 1.1. Typical resistivity ranges of some common earth materials. After Palacky (1988).

amount of ions available to conduct electricity, and temperature and ion size, determined

by the minerals in solution, e.g., Na+, Ca++, and Mg++, influence the mobility of ions in

solution (Bassiouni, 1994; Keller, 1988).

For sedimentary rocks targeted in oil and gas exploration, the primary minerals – sili-

cates, carbonates, and oxides – are insulators (Telford et al., 1990); it should however be

noted that clay minerals, while not inherently conductive when dry, exhibit electrostatic

surface charges which affects pore fluid conductivity via surface adsorption of cations. Be-

cause of this ion exchange capacity, clay content generally increases a rock’s in situ con-

ductivity (Keller, 1988). For most clean, i.e. low or zero clay content, sedimentary rocks,

Archie’s law (1942) provides a reasonable estimate of in situ electrical resistivity. This

petrophysical law assumes that pore fluid is the only element contributing to a sedimentary

rock’s bulk resistivity. The bulk electrical resistivity rb of a sedimentary rock is related em-

pirically to its porosity f and pore fluid content, expressed in terms of pore water saturation
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Table 1.1. Parameters for Archie’s Law for sedimentary rocks of different ages. After Keller (1988).

Sedimentary rock description f a m

Weakly cemented detrital rocks, usually Tertiary in age 25 – 45% 0.88 1.37

Moderately well-cemented sedimentary rocks, usually Meso-
zoic in age

18 – 35% 0.62 1.72

Well-cemented sedimentary rocks, usually Paleozoic in age 5 – 25% 0.62 1.95

Sw and pore water resistivity rw, in the formula

rb = af�mS�n
w rw, (1.1)

where a, m, and n are empirical parameters known as the tortuosity factor, cementation

exponent, and saturation exponent, respectively (MacGregor and Tomlinson, 2014). These

parameters depend on rock type and mainly reflect pore geometry and degree of consolida-

tion (Bassiouni, 1994). Laboratory measurements indicate wide ranges of possible param-

eter values. For sandstone formations, a has been found to range from 0.35 to 4.78, and

m from 1.14 to 2.52 (Bassiouni, 1994). Table 1.1, after Keller (1988), illustrates standard

values of a and m for sedimentary rocks of different ages. The parameter n is introduced

when considering a rock with partial water saturation; values from 1 to 2.5 have been re-

ported, with a value of 2 found to provide a good empirical fit for clean, consolidated sands

(Bassiouni, 1994).

Archie’s law reinforces the ambiguity of formation fluid interpretation based on resis-

tivity alone since reasonable parameter ranges may account for variations of several orders

of magnitude in bulk resistivity. Moreover, any given resistivity might be explained by var-

ious combinations of parameter values. For example, assuming invariable a, m, n, and rw,

a high in situ resistivity may indicate either a high-porosity, oil-saturated rock, or a low-

porosity, water-saturated rock (MacGregor and Tomlinson, 2014). This again emphasizes
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the importance of interpreting marine CSEM resistivity in context of other geophysical and

geological information.

In the marine CSEM method, it is also important to consider the electrical structure of

the water column. Seawater is highly conductive due to its salinity, with the mean con-

ductivity of the Pacific Ocean at 3.2 S/m (⇡ 0.3 ohm-m), and that of the Atlantic Ocean

at slightly higher (Chave et al., 1990). The electrical structure of the water column varies

approximately linearly as a function of in situ temperature, with salinity and pressure ex-

erting a weaker dependence (Chave et al., 1990). Since temperature in the shallow section

is highly variable and can be anywhere from freezing temperature to greater than 30�C,

the conductivity of seawater is also highly variable (Constable, 2013). Below the thermo-

cline, which can occur at anywhere from 300 to 1000 m depth, temperature, and therefore

conductivity, become relatively stable (Chave et al., 1990; Constable, 2013). Key (2009)

illustrated through a series of one-dimensional (1D) inversions that incorrect representation

of seawater as a homogeneous layer may generate spurious features within inverted elec-

trical structure. For interpretation of real marine CSEM data, it is therefore advisable to

measure the seawater resistivity profile at the survey location, as is possible with the use of

a transmitter-mounted conductivity-temperature-depth sensor (Constable, 2013). The earth

models constructed in this study, both synthetic and real world-based, represent the seawa-

ter as a homogeneous layer of 0.3 ohm-m resistivity, as is fairly common practice in the

marine CSEM modelling literature. This must be acknowledged as an uncertainty when

interpreting modelling results for real-world scenarios.
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1.3 Introduction to geophysical EM modelling

1.3.1 Motivation

Geophysical methods exploit physical principles to gain information about the spatial distri-

butions of one or more of the earth’s physical properties through measurement of the related

fields (West and Macnae, 1988; Zhdanov, 2002). The purpose of geophysical modelling is

to use the governing mathematical relationships to transform between data, whether real or

synthetic, and possible spatial distributions of the related physical property. Through mod-

elling, we gain an understanding of what can be known about the directly unobservable

subsurface from a limited number of observations made at or near the surface (Vieira da

Silva et al., 2012).

The marine CSEMmethod uses the principles of electromagnetism, governed byMaxwell’s

equations (Section 2.1), to investigate the electrical structure of the earth. An artificial

source transmits a time-varying EM signal into the earth, where it is modified in both am-

plitude and phase by the earth’s electrical structure (Eidesmo et al., 2002; Constable, 2010).

Through modelling, measurements made at the seafloor of the electric and magnetic fields

can be related back to subsurface variations in electrical resistivity.

In pre-survey planning, modelling can be a crucial step for analysis of the sensitivity of

the CSEM method to structures of interest and optimization of acquisition parameters for

target resolution (MacGregor and Tomlinson, 2014). The sensitivity of the marine CSEM

method to a particular target is determined not only by electrical structure, but also by

survey considerations such as source-receiver offset, source configuration, and source fre-

quency content (e.g. Constable and Weiss, 2006; Key, 2009). In the post-survey stage,

modelling is essential for interpretation of observed data in terms of subsurface electrical

structure. These applications involve the processes of both forward modelling and inver-
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sion.

Commercial investment in marine CSEM technology has motivated the development of

interpretation tools to realize the full potential of marine CSEM data. Accordingly, recent

papers presenting new EM modelling methods frequently feature examples relevant to ma-

rine CSEM hydrocarbon exploration. In Chapter 2, methods for EM forward modelling

will be reviewed, with a particular focus on developments relevant to the marine CSEM

method. For models that make simplistic assumptions about the earth’s structure, analytic

or semi-analytic (i.e., numerically evaluated analytic) forward solutions for the electric and

magnetic fields may be derived; in the case of earth models with arbitrary complexity, nu-

merical approximation techniques such as the finite-difference or finite-element methods

are required for computation of the fields.

1.3.2 The forward and inverse problems

Forward modelling predicts geophysical data for a particular physical property distribution

or earth model. Conceptually, the forward problem involves mapping from the model space

M to the data space D , that is (Zhdanov, 2002)

G :M !D (1.2)

d=G(m) , (1.3)

where G is the forward operator that describes the mathematical relationship between the

set of model parameters m 2 M and observed data d 2 D . The forward problem has a

unique solution, meaning that for any given physical property distribution, a unique geo-

physical response exists. Given a preliminary, best-estimate earth model, forward mod-

elling can be used to determine the sensitivity of geophysical data to a target of interest and

the optimal acquisition parameters for detection of an anomalous response. It can also be
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used post-survey to validate potential earth models; if predicted data agree well with mea-

sured data, we might assume that the earth resembles our model. This is the foundation of

the inverse problem, which seeks to estimate a physical property distribution or earth model

from observed data.

The inverse problem can be conceptualized as the mapping (Zhdanov, 2002)

G�1 :D !M (1.4)

m=G�1 (d) , (1.5)

where G�1 is the inverse operator. In contrast to the forward problem, the inverse problem

typically has non-unique solutions, i.e., an infinite number of models may fit the observed

data equally well. For many inverse problems, the issue of non-uniqueness arises in the

attempt to recover a continuous physical property distribution, or a discrete distribution with

an arbitrary large number of degrees of freedom, from a limited number of observations

(Hohmann and Raiche, 1988; Snieder and Trampert, 1999). In general, the number of data

or observations does not equal the number of model parameters, and soG is non-square and

does not have a formal inverse. Since there is not enough information to uniquely determine

the solution to this type of inverse problem, we say that it is under-determined. This is the

general case for geophysical methods due to discrete sampling of the earth’s fields. The

inverse problem is therefore recast as an optimization problem that seeks to minimize the

difference between observed data and predicted data (Sen and Stoffa, 1995).

For EM problems, forward modelling requires solving Maxwell’s equations (Section

2.1) in the time or frequency domain. The EM behaviour of earth materials is defined

completely by three physical properties: electrical conductivity s (or the reciprocal quan-

tity, electrical resistivity r), permittivity e , and magnetic permeability µ . The EM forward
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problem can thus be symbolically described by the operator equation (Zhdanov, 2002)

{E,H}=G({s ,e,µ}) (1.6)

where G is the forward operator derived from Maxwell’s equations, and E and H are the

electric and magnetic fields (specifically, the electric field intensity and magnetic field in-

tensity) computed for an earth model defined by parameters s , e , and µ . For EM induction

methods, electrical conductivity is the most relevant of the three physical properties that

define the earth model (West and Macnae, 1988).

1.4 Thesis objective and overview

The focus of this study was to investigate the limits of our present three-dimensional (3D)

CSEM modelling capabilities, specifically in the context of marine CSEM hydrocarbon

exploration scenarios. Marine CSEM data for 3D earth models and survey parameters of

relevance to offshore hydrocarbon exploration were simulated using the 3D finite-element

forward code CSEM3DFWD (Ansari and Farquharson, 2011, 2013, 2014; Ansari, 2014;

Ansari et al., 2015). The finite element method is readily applied to boundary-conforming

unstructured meshes which provide more accurate representation of complex boundaries

associated with subsurface geology than rectilinear meshes. While the accuracy of the

electric and magnetic fields computed using the CSEM3DFWD code has been verified

for a number of simple earth models, its application to models representative of marine

sedimentary environments, and more realistic models in general, has been limited. This

study extended application of the code to marine models of increasing complexity, with

the ultimate goal of synthesizing marine CSEM data for 3D earth models complete in their

description of the subsurface. Crucial to CSEM forward modelling is the construction

of meshes which are suitable in terms of mesh refinement and quality. A progression of
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increasingly complex models allowed challenges associated with different model aspects

(e.g., thin, laterally extensive subsurface bodies and topographic or stratigraphic surfaces)

to be individually investigated and addressed.

In summary, the purposes of this study were three-fold: (1) to contribute to the contin-

ued development of the CSEM3DFWD code by extending its application to marine CSEM

scenarios; (2) to address the challenges of incorporating different realistic model aspects,

e.g., finite subsurface bodies and topographic or stratigraphic boundaries; and (3) to ulti-

mately generate synthetic data for a real-world model that was detailed in its description

of the subsurface, such that forward modelling could be used for practical application, e.g.,

feasibility studies to assess the utility of marine CSEM data for specific offshore hydrocar-

bon exploration and development scenarios.

The division of this thesis is as follows. In Chapter 2, the mathematics and physics gov-

erning geophysical EM phenomena are presented, as well as numerical methods for their

simulation. In Chapter 3, the marine CSEM method is reviewed in more detail to provide

context to the modelling scenarios. In Chapter 4, the general procedure for numerical mod-

elling is discussed, including earth model construction, mesh generation, problem formu-

lation, and finite element discretization, the latter two of which constitute the methodology

of the CSEMFWD forward code. In Chapter 5, numerical solutions for halfspace and sim-

ple 3D models are presented and validated against semi-analytic and numerical solutions

existing in the literature. Finally, in Chapter 6, a realistic marine reservoir model based

on the real-life North Amethyst oil field, located in the Jeanne d’Arc Basin, offshore New-

foundland, is presented. This model provided the opportunity to identify and attempt to

address some of the challenges involved in modelling real-life earth structure with unstruc-

tured meshes, both in terms of accuracy in representation of structure and management of

limited computational resources.
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Chapter 2

Geophysical EM modelling

2.1 Governing equations

Maxwell’s equations form the basis of classical electrodynamics and govern geophysical

EM phenomena. They comprise two scalar and two vector partial differential equations

in five vector fields (e, b, h, d, and j) that describe the generation and dynamics, or time

evolution, of the electric and magnetic fields due to charges, currents, and time-varying

fields. The two vector partial differential equations, representative of Faraday’s and Am-

père’s laws, may be coupled through constitutive relations that describe the interaction of

fields with matter. In the following sections, Maxwell’s equations will be introduced in the

time domain and subsequently transformed to their frequency-domain or time-harmonic

form suitable for discussion of frequency-domain EM induction methods. The presentation

and development closely follows Ward and Hohmann (1988).

2.1.1 Time domain

Maxwell’s equations describe the relationships between the EM fields and fluxes at position

r and time t. For a region free of applied sources, Maxwell’s equations may be expressed
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in differential, time-domain form as

—⇥ e=�∂b
∂ t

, (Faraday’s law) (2.1a)

—⇥h=
∂d
∂ t

+ j, (Ampère’s law) (2.1b)

— ·d= r, and (Gauss’s law) (2.1c)

— ·b= 0, (Gauss’s law for magnetism) (2.1d)

where

e is the electric field intensity in volts per metre (V/m),

b is the magnetic flux density in webers per square metre or teslas (Wb/m2 or T; 1 T

= 1 Wb/m2),

d is the electric displacement field in coulombs per square metre (C/m2),

h is the magnetic field intensity in amperes per metre (A/m),

j is the free electric current density in amperes per square metre (A/m2), and

r is the free electric charge density in coulombs per cubic metre (C/m3).

For regions containing applied electric sources, Maxwell’s equations take the inhomoge-

neous form (Ward and Hohmann, 1988; Haber, 2014)

—⇥ e=�∂b
∂ t

, (2.2a)

—⇥h=
∂d
∂ t

+ j+ jse, (2.2b)

— ·d= r, (2.2c)

— ·b= 0, (2.2d)
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where jse is the applied electric current density.

The auxiliary fields d and h are introduced to account for macroscopic material effects

due to bound charges and bound currents on the total electric and magnetic fields. When

dielectric and/or magnetic materials are exposed to external electric and magnetic fields,

they react to and in turn modify the total fields (Griffiths, 1999). This cyclical process

describes the phenomena of polarization in dielectric material and magnetization in mag-

netic material, which produce macroscopic bound charges and macroscopic bound currents,

respectively. With the introduction of the auxiliary fields, Maxwell’s equations may be ex-

pressed solely in terms of free charge and free current. The e and b fields and auxiliary d

and h fields are related through the linear and isotropic EM constitutive relations (Ward and

Hohmann, 1988)

d= ee, (2.3a)

b= µh, and (2.3b)

j= se, (Ohm’s law) (2.3c)

where e = e (r), µ = µ (r), and s = s (r) represent the dielectric permittivity, magnetic

permeability, and electrical conductivity, respectively. Equations (2.3a) – (2.3c) are empir-

ical relations that describe a material’s response to and affect on the electric and magnetic

fields, as measured by the physical material properties e , µ , and s . In general, the consti-

tutive relations are non-linear and anisotropic, where e = ẽee , µ = µ̃µµ , and s = s̃ss are tensors

whose components may depend on position as well as field strength, frequency, time, tem-

perature, and pressure. For most geophysical applications, earth materials are assumed to be

isotropic and homogeneous, and to possess physical properties dependent on position only,

i.e., s = s(r), such that the relations may be approximated as linear (Ward and Hohmann,

1988).

15



Electrical structure is rarely so simple to be well approximated by an isotropic model;

some degree of anisotropy is generally encountered due to spatial ordering of earth materi-

als from the grain and fabric scale to the lithological bedding scale (Løseth and Ursin, 2007;

Constable, 2010). For 3D CSEM imaging using multicomponent field data, any significant

anisotropy must be taken into account not only to avoid artefacts and misinterpretation, but

also to be able to simultaneously fit both inline and broadside data (Carazzone et al., 2008;

Constable, 2010; Newman et al., 2010). Several methods for 3D CSEMmodelling consider

fully generalized anisotropy where resistivity is treated as a symmetric 3⇥ 3 tensor made

up of six independent elements (e.g., Weiss and Newman, 2002; Løseth and Ursin, 2007).

Transverse anisotropy is a relatively simple instance of anisotropy where conductivity in the

horizontal bedding plane is constant but varies from conductivity in the vertical direction,

i.e., (Puzyrev et al., 2013)

s̃ =

0

B

B

B

B

@

sx 0 0

0 sy 0

0 0 sz

1

C

C

C

C

A

,

where sx = sy = shorz and sz = svert . In offshore sedimentary basins where layering is pri-

marily horizontal, electrical structure is often well approximated by transverse anisotropy,

with conductivity in the horizontal direction generally being greater than that in the vertical

direction, i.e., shorz > svert (Constable, 2010; Newman et al., 2010). The CSEM3DFWD

code used in this study can only accommodate isotropic conductivity models at this time.

A mathematical statement about the local conservation of charge, known as the continu-

ity equation (Griffiths, 1999), is contained within Maxwell’s equations and may be derived

by taking the divergence of equation (2.2b) and substituting equation (2.2c) in the resultant
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expression to obtain⇤

— · j=�∂r
∂ t

�— · jse. (2.4)

Note that conservation of charge is a fundamental physical law that is independent from,

but consistent with, Maxwell’s equations. Since the source current density jse is localized in

space to the source location and all other regions of space are source-free, we have, more

specifically,

— · j=

8

>

>

<

>

>

:

�∂r
∂ t

�— · jse at source location, and

�∂r
∂ t

everywhere else.
(2.5)

2.1.2 Frequency domain

The time dependence of the EM fields, e.g., e(r, t), can be transformed to a frequency

dependence, e.g., E(r,w), by computing the Fourier transforms of the EM fields. Taking

the 1D Fourier transform of equations (2.2a) – (2.2d), we obtain Maxwell’s equations in the

frequency domain,

—⇥E=�iwB, (2.6a)

—⇥H= iwD+J+Jse, (2.6b)

— ·D= r, and (2.6c)

— ·B= 0, (2.6d)

⇤The operators —⇥ and ∂/∂ t may be interchanged provided that d is piecewise continuous and that its
first and second derivatives exist and are continuous, based on Clairaut’s or Schwarz’ theorem for symmetry
of second derivatives.
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where we have made use of the Fourier transform pair (Hohmann, 1988)

F(r,w) =
Z •

�•
f(r, t)e�iwtdt (2.7)

and

f(r, t) = 1
2p

Z •

�•
F(r,w)eiwtdw. (2.8)

Transformation of the EM equations to the frequency domain is equivalent to assuming

a harmonic time dependence of eiwt for the EM fields (Hohmann, 1988). The continuity

equation (2.5) becomes, in the frequency domain,

— ·J=

8

>

>

<

>

>

:

�iwr �— ·Jse at source location, and

�iwr everywhere else.
(2.9)

Many EM induction methods, specifically, frequency-domain EM methods, employ

time-harmonic sources, that is, sources which vary sinusoidally in time at some specific

yet arbitrary angular frequency w; such time-harmonic sources generate time-harmonic,

steady-state EM fields. For these methods, frequency-domain analysis of the EM fields

is more convenient because the EM problem reduces from a four-dimensional problem in

(x,y,z,t) space to a 3D problem in (x,y,z) space at a fixed, single frequency w (Jin, 2014).

Because Fourier analysis tells us that any well-behaved, time-varying function can be ex-

pressed in terms of time-harmonic components, frequency-domain solutions can be ex-

tended to transient time-domain EM methods as well. Rather than time-stepping directly

in the time domain, it may be advantageous to instead approximate a transient response

as a sum of Fourier-transformed, time-harmonic fields at discrete, sampled frequencies

(Hohmann, 1988; Jin, 2014).
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2.1.3 The EM Helmholtz equations

By substituting the frequency-domain form of the constitutive relations into equations (2.6a)

and (2.6b), which describe the time evolution of the electric and magnetic fields, we obtain

expressions solely in terms of E and H,

—⇥E+ iµwH= 0 (2.10)

and

—⇥H� (s + iew)E= Jse. (2.11)

By making appropriate substitutions, these equations may be modified to expressions in-

volving only the electric or the magnetic field. Solving for H in (2.10) and E in (2.11), we

obtain

E=
1
s̃

—⇥H� 1
s̃
Jse (2.12)

and

H=� 1
iwµ

—⇥E, (2.13)

where

s̃ = s + iew. (2.14)

By substituting (2.12) into (2.10) and (2.13) into (2.11), we obtain two decoupled, second-

order partial differential equations in E and H (Zhdanov, 2002),

µ—⇥
✓

1
µ

—⇥E
◆

+ iwµs̃E=�iwµJse (2.15)

and

s̃—⇥
✓

1
s̃

—⇥H
◆

+ iwµs̃H= s̃—⇥
✓

1
s̃
Jse
◆

. (2.16)
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For a homogeneous region within which the parameters e , µ , and s are constant, equations

(2.15) and (2.16) become

—⇥—⇥E+ iwµs̃E=�iµwJse (2.17)

and

—⇥—⇥H+ iwµs̃H= —⇥Jse. (2.18)

For source-free regions, the divergence of the electric and magnetic fields is zero, i.e.,

— ·E= 0 and — ·H= 0, and the vector identity —⇥—⇥A= —— ·A�—2A can be used to

replace the curl-curl operators in equations (2.17) and (2.18) by Laplace operators to obtain

(Ward and Hohmann, 1988; Zhdanov, 2002)

—2E+ k̃2E= iµ0wJse (2.19)

and

—2H+ k̃2H=�—⇥Jse, (2.20)

where

k̃2 =�iµws̃ =�iµw (s + iew) =�iµsw +µew2. (2.21)

Equations (2.19) and (2.20) are inhomogeneous forms of the EM Helmholtz equations

—2E+ k̃2E= 0 (2.22)

and

—2H+ k̃2H= 0, (2.23)

20



which are the frequency-domain equivalents of the lossy or damped EM wave equations,

that is, the wave equations featuring first-order, conductivity-governed loss terms,�iµswE

and �iµswH (Haber, 2014). The EM Helmholtz equations describes a continuum of EM

behaviour from static (e.g., the direct-current, DC, resistivity method), to quasi-static (e.g.,

induction methods; see Section 2.1.6), to wave-like behaviour (e.g., ground penetrating

radar; Haber, 2014). The constant k̃, known as the propagation constant or wave number,

can be written in complex form as (Zonge and Hughes, 1988)

k̃ = a � ib ,

where the phase constant a is

a = w

"

µe
2

 

r

1+
⇣ s

ew

⌘2
+1

!#1/2

, (2.24)

and the attenuation constant b is

b = w

"

µe
2

 

r

1+
⇣ s

ew

⌘2
�1

!#1/2

. (2.25)

2.1.4 Plane waves in a homogeneous earth

For a uniform plane wave propagating in the +z or downward direction in a homogeneous

earth, equations (2.22) and (2.23) reduce to (Ward and Hohmann, 1988; Zhdanov, 2009)

∂ 2E
∂ 2z

+ k̃2E= 0 (2.26)

and
∂ 2H
∂ 2z

+ k̃2H= 0, (2.27)
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which have the plane-wave solutions (e.g., Zonge and Hughes, 1988; Zhdanov, 2009)

E= E+e�ik̃z+E�eik̃z (2.28)

and

H=H+e�ik̃z+H�eik̃z, (2.29)

where E+, E�, H+ and H� are undetermined coefficients. Recalling the complex form of

k̃, k̃ = a � ib , the solutions can be equivalently expressed as

E= E+e�iazeb z+E�eiaze�b z (2.30)

and

H=H+e�iazeb z+H�eiaze�b z, (2.31)

where the terms e±iaz and e±b z respectively indicate phase oscillation and amplitude atten-

uation or growth with respect to z. The reason for description of a and b as the phase and

attenuation constants, respectively, now becomes apparent. The phase constant a defines

the rate of change in phase as the wave propagates and the attenuation constant b defines the

rate of change in amplitude as the wave propagates. For a whole space, to avoid E,H! •

as z ! •, H+ and E+ must be set to zero; in the more general case of a homogeneous-

layered earth, H± and E± can be non-zero if boundaries are present which reflect a portion

of the incident field (Zhdanov, 2009). We can define the distance over which the field am-

plitude has decayed to 1/e of its initial value, known as the skin depth d , as the inverse of

the attenuation constant b (Zonge and Hughes, 1988),

d =
1
b
. (2.32)
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Skin depth can be used as a quantitative measure of the amount of inductive attenuation

experienced by an EM signal as it propagates with frequency w through a background of

conductivity s .

2.1.5 Mode decomposition in a homogeneous earth

For a source-free, homogeneous region, the EM fields may be decomposed about an arbi-

trary axis into two orthogonally polarized modes of propagation known as the transverse

electric (TE) and transverse magnetic (TM) modes, where ‘transverse’ refers to the direc-

tion normal to the reference axis (Chave and Cox, 1982; Ward and Hohmann, 1988). For a

1D earth in which structure varies in the vertical (z) direction, the reference axis is generally

taken as the z-axis; with this choice of axis, there is no coupling between the TE and TM

modes, i.e., the modes independently satisfy Maxwell’s equations (Chave and Cox, 1982;

Weidelt, 2007; Andréis and MacGregor, 2008; Chave, 2009). Mode decomposition theory

is elaborated in Stamnes (1986).

In the TE mode, the electric field is restricted to the horizontal plane and there exists

no vertical component of the electric field; current loops circle in the horizontal plane, and

coupling between adjacent layers is purely inductive (see Section 3.2 for further explanation

of inductive and galvanic coupling; Andréis and MacGregor, 2008; Chave, 2009). In the

TMmode, the magnetic field is restricted to the horizontal plane, and there exists no vertical

component of the magnetic field. Given the orthogonality of the electric and magnetic

fields, the electric field, and hence current loops, are restricted to the vertical plane, and

coupling between adjacent layers is both inductive and galvanic (Andréis and MacGregor,

2008; Chave, 2009). EM sources may produce one or a combination of the two modes

(see Chave, 2009). In the near-zero frequency (DC) limit, the TE mode vanishes and the

TM-mode response is exclusively galvanic (Chave and Cox, 1982). For optimal sensitivity

to thin, resistive horizontal layers such as hydrocarbon targets, the CSEM source must
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excite the TM mode of propagation; this issue will be discussed further in Section 3.2. In

Appendix A, through the use of Schelkunoff potentials, it is demonstrated that an arbitrary

field in a homogeneous, source-free region can be expressed as the sum of TE and TM

modes.

2.1.6 Low-frequency EM wave propagation in conductive media

To better understand the intrinsic resolution of the CSEM method, and low-frequency EM

methods in general, we revisit the EM Helmholtz equations. The physical description or

behaviour of EM wave propagation is defined in different asymptotic limits of the EM

Helmholtz equations. To review, the homogeneous EM Helmholtz equations are (equations

2.22 and 2.23)

—2E+ k̃2E= 0

and

—2H+ k̃2H= 0,

where

k̃2 =�iµws̃ =�iµw (s + iew) =�iµsw +µew2.

In free space and air, where conductivity is approximately zero, i.e., s ⇡ 0, the conductivity-

governed loss term �iµsw disappears, the wavenumber k is real-valued, i.e., k2 = µew2,

and the Helmholtz equations reduce to the frequency-domain equivalents of the lossless

EM wave equations. In lossless wave propagation, which is often used to approximate seis-

mic wave propagation, vertical resolution is proportional to frequency, energy loss is via

geometric spreading only, and resolution at depth or distance from source is essentially the

same as resolution at the near surface or near source (Constable, 2010). Physical phenom-

ena described by wave propagation are easily visualized using ray-tracing techniques (West
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and Macnae, 1988).

By contrast, in low-frequency EM methods where w < 100 kHz, the loss term �iµsw

dominates since earth materials have conductivities of many orders of magnitude larger

(typically 109) than their dielectric permittivity†, and the inequality s � ew holds (Zonge

and Hughes, 1988; Constable, 2010). In this limit, the wavenumber k is completely imag-

inary, i.e.,

k2 =�iµws , (2.33)

and the phase and attenuation constants a and b reduce to

a = b =

r

µsw
2

, (2.34)

such that the skin depth d becomes

d =
1
b
=

s

2
µsw

, (2.35)

which for µ = µ0, is approximately equal to

d ⇡ 503

s

1
fs

(SI units). (2.36)

In this regime, the Helmholtz equations reduce to the frequency-domain equivalents of the

diffusion equation. The regime in which diffusive EM behaviour arises is known as the

quasi-static or quasi-stationary regime since the fields are varying sufficiently slowly such

that in any region of non-vanishing conductivity, the system may be approximated to be in

equilibrium or steady state at all times (Grant and West, 1965; Ward and Hohmann, 1988;

Zhdanov, 2002).
†Earth materials typically have conductivities s > 10�4 S/m and permittivities e < 10�11 F/m (Zonge

and Hughes, 1988).
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The negligibility of terms related to ew indicates that the displacement current asso-

ciated with a time-varying electric field is negligible compared to the conduction current

associated with the flow of charge. In this limit, Ampère’s law reduces to its pre-Maxwell

form,

—⇥H= J+Jse, (2.37)

where we have included the source inhomogeneity Jse. Consequently, it can be shown in the

low-frequency case that the frequency-domain continuity equation reduces to

— ·J=

8

>

>

<

>

>

:

�— ·Jse at source location, and

0 everywhere else.
(2.38)

Description of the behaviour of low-frequency EM fields in conductive media as prop-

agative, which suggests wave-like behaviour, or diffusive is a contentious issue within the

geophysical EM community. Løseth et al. (2006) demonstrate that both undamped wave

propagation in nonconducting media and highly damped wave propagation in conducting

media may be treated in a unified mathematical framework; both the time-domain hyper-

bolic wave and parabolic diffusion equations transform to the elliptic Helmholtz equation

in the frequency domain, which has damped wave solutions. The behaviour of EM propa-

gation, as described by the EM Helmholtz equations, is characterized by the position of the

wavenumber k in the complex plane. There exists a continuum between undamped wave

propagation, which corresponds to a real-valued k, and highly attenuated propagation or

diffusion, which corresponds to an imaginary-valued k, and thus there is no clear cut-off

between wave-like and diffusive behaviour (Løseth et al., 2006).

While a full wave treatment will lead to correct solutions for low-frequency EM prop-

agation in conductive media, the diffusion equation affords simplification of the ensuing

mathematics. Further, behaviour of low-frequency EM propagation is decidedly in the dif-
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fusive limit, where wave propagation is both highly attenuated and highly dispersive. Solu-

tions of the diffusion equation to a transient source are characterized by a smoothing of the

fields in time toward equilibrium. Since many initial states tend toward the same final equi-

librium state, an attempt to recover an earlier configuration from the final state constitutes

an ill-posed problem. In contrast to the hyperbolic wave equation, which is time-reversal

invariant, i.e., changing t to �t leaves the equation unaltered, the parabolic diffusion equa-

tion is not. Diffusive EM fields evolve unidirectionally forward in time, that is, the fields at

a given point (r0, t 0) depend only on t < t 0, which precludes the existence of reflections and

refractions at interfaces (Chave, 2009). Further, propagation of a disturbance through space

is theoretically instantaneous (information propagation speed is infinite along characteristic

curves of constant time) and does not possess a wavefront, although an apparent speed may

be interpreted from the time it takes for fields to reach their maxima at a given distance

from source (Ward and Hohmann, 1988; Zhdanov, 2009).

In short, while low-frequency EM propagation in conductive media may be treated

within a wave framework, its behaviour resembles diffusion, which provides an equally

acceptable mathematical description.

2.2 1D EM modelling

The theory of EM field propagation in 1D media, i.e., media with properties varying in only

one direction, is well developed (e.g. Harrington, 1961; Wait, 1962; Ward and Hohmann,

1988). Closed-form expressions for the EM fields in a layered earth are readily available,

and several forward and inverse modelling codes have been written specifically for geophys-

ical applications (e.g. Chave and Cox, 1982; Flosadóttir and Constable, 1996; Løseth and

Ursin, 2007; Key, 2009). Due to the cylindrical symmetry of a layered earth, solutions for

the EM fields take the form of two-dimensional (2D) spatial Fourier or Hankel transforms
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that may be numerically evaluated using digital filter or quadrature methods (e.g. Anderson,

1982; Chave, 1983; Anderson, 1989; Key, 2012a). 1D solutions computed in this manner

are often referred to as semi- or quasi-analytic because the closed-form expressions require

numerical techniques for their evaluation.

1D modelling and inversion have often been used to cultivate an understanding of the

performance of the marine CSEM method in different exploration scenarios. Variations

on the so-called 1D canonical oil field or reservoir model are frequently featured in mod-

elling studies to investigate the effects of the environment (e.g., water depth, reservoir burial

depth, and reservoir thickness) and survey parameters (e.g., source frequency content and

source-receiver offset) on the ability of the method to resolve thin, buried resistive layers

(e.g., Constable and Weiss, 2006; Um and Alumbaugh, 2007; Key, 2009). The 1D canoni-

cal reservoir model consists of a 100 m-thick, 0.01 S/m (100 ohm-m) resistive layer buried

at a depth of 1000 m within a 1 S/m (1 ohm-m) sediment halfspace, with an overlying 3.3

S/m (0.3 ohm-m) sea halfspace (Figure 2.1). This model was inspired by the Girassol oil

field located offshore Angola, where the first marine CSEM field trial for industry was con-

ducted by Statoil in 2000 with support from the Southampton Oceanography Centre and

the Scripps Institution of Oceanography (Ellingsrud et al., 2002; Constable, 2010).

For structure that can be reasonably approximated by layers, 1D modelling provides

a best-case estimate of target resolution as well as guidance in survey design (Hoversten

et al., 2006). For complex structure where there is significant directional variation in re-

sistivity, 2D or 3D modelling is required to properly account for the CSEM response. The

downside of multidimensional modelling is that computation of the forward responses be-

comes much more demanding in terms of CPU time and memory usage (Hohmann, 1988).

For this reason, 1D modelling and inversion continue to have relevance for the purpose of

quick and simple interpretation of marine CSEM data. Moreover, while 3D CSEM sur-

veys are becoming the standard for commercial applications (Danielsen and Bekker, 2011),
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3.3 S/m sea

1.0 S/m sediments

1.0 S/m sediments

0.01 S/m hydrocarbon-saturated 
sediments

1000 m

100 m

Figure 2.1. The 1D canonical oil field or reservoir model inspired by the Girassol deepwater field,
offshore Angola. The model consists of a 100 m-thick, 0.01 S/m (100 ohm-m) reservoir embedded
at a depth of 1000 m within a 1 S/m (1 ohm-m) sediment halfspace, with an overlying 3.3 S/m (0.3
ohm-m) sea halfspace.

circumstances may persist where collected data are insufficient, both in terms of data cover-

age and measured field components, to properly constrain multidimensional interpretation

(Constable, 2010). Lastly, as will be demonstrated in this study, 1D modelling is an impor-

tant tool for verifying the accuracy of multidimensional numerical solutions; 1D modelling

is accurate for 3D tabular targets within lateral limits of the body (Constable and Weiss,

2006), and it can handle the large offsets and depths associated with large, computationally

taxing finite-difference or finite-element schemes (Flosadóttir and Constable, 1996; Løseth

and Ursin, 2007).

2.3 Numerical methods formultidimensional EMmodelling

With the exception of a few simple geometries, easily computable analytic or semi-analytic

forward solutions do not exist for arbitrary 2D or 3D earth models; instead, approximate

numerical solutions are sought (Hohmann, 1988). Numerical solution of EM problems

involves discretization of either the integral or differential form of Maxwell’s equations

on the computational domain W and application of appropriate boundary conditions at do-
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main boundary G. The process of discretization involves replacement of the continuous

governing equations by discrete approximations, thereby converting the original continu-

ous boundary value problem with an infinite number of unknowns into a discrete problem

with a finite number of unknowns (Saad, 2003; Jin, 2002). Discretization of the governing

equations gives rise to a system of equations of matrix form

Au= b,

where A is the system matrix involving operators defined by the governing equations, and

u and b are the solution and source vectors, respectively. Discretization is achieved by sub-

dividing the model domain into a number of subdomains or cells. Physical property values

are continuous functions of space within these subdomains and only allowed to be discon-

tinuous along subdomain boundaries. The EM fields are assigned within each subdomain

via interpolation from values computed at discrete elements of the mesh. The resultant

mesh is a discrete approximation to the true earth model, and the corresponding numerical

solution is an approximation to the true forward solution (Zhdanov, 2009). Construction

of the mesh is non-trivial since it will ultimately affect memory requirements, computation

time, and the accuracy and efficiency of the numerical solution (Jin, 2002; Avdeev, 2005).

The importance of mesh quality will be discussed in Section 4.2.2.

There are several common techniques for discretization of Maxwell’s equations, in-

cluding the integral-equation method, the finite-difference method, and the finite-element

method, the later two of which can be considered more generally as differential-equation

methods. The integral-equation method is based on the scattering equation, a second-type

Fredholm integral equation arising from decomposition of the EM fields into primary com-

ponents associated with some background conductivity distribution and secondary (also

known as anomalous or scattered) components arising from localized conductivity inho-
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mogeneities (e.g. Raiche, 1974; Hohmann, 1975; Wannamaker et al., 1984). The formula-

tion replaces the region of anomalous conductivity distribution with an equivalent volume

of scattering current and requires calculation of the Green’s functions for the background

model of the earth. Because it is only necessary to solve for the scattering current within

the anomalous body, the method requires discretization of only those regions of the model

with anomalous conductivity distribution. This dramatically reduces the size of the system

matrix and thus required memory for the integral-equation method as compared to other nu-

merical schemes. There are however several drawbacks that limit its application to general

geophysical EM problems. Firstly, calculation of the appropriate Green’s function is only

manageable for very simple (i.e., layered) background models of the earth (Avdeev, 2005;

Zhdanov, 2009). Secondly, the integral-equation formulation gives rise to dense system

matrices, that is, matrices in which most of the elements are nonzero. Lastly, any struc-

ture which deviates from the background model must be treated as a region of anomalous

conductivity. Earth models with large-scale and complex variations in conductivity thus

give rise to large, dense matrices (Avdeev, 2005; Zhdanov, 2009). In summary, while the

integral-equation method can in principle handle any model, practical limitations restrict

its use to compact bodies residing in a simple earth, and differential-equation methods are

typically employed for models of arbitrary size and complexity (Newman and Alumbaugh,

1995; Alumbaugh et al., 1996; Zhdanov, 2009).

The finite-difference method is based on local approximation of the partial differential

operators of Maxwell’s equations by operators derived from Taylor series expansions (Saad,

2003). The finite-difference operators act on discrete values of the EM field arising from

discretization of the model region using a structured mesh, i.e., a mesh with regular ordering

of nodes and predictable connectivity of elements (Zhdanov, 2009). The simplicity and ease

of implementation of finite-difference schemes make them a popular choice for 3D EM

modelling. The structured meshes do however have limitations in the accuracy with which
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they represent earth structure due to the staircasing of curvilinear boundaries. Moreover,

because of the structured nature of the mesh, refinement cannot be localized and instead

propagates in all three dimensions, leading to a mesh with a very large number of cells

(Constable, 2010).

By contrast, the finite-element method is readily applied to unstructured meshes which

are more flexible in their discretization, thus enabling more accurate representation of com-

plex structure as well as localized mesh refinement (Ansari and Farquharson, 2014). Unlike

structured meshes, where the ordering of nodes and cells is regular and predictable using

simple arithmetic, unstructured meshes require explicit storage of neighbouring nodes or

cells (Cheng et al., 2012). The division of the modelling domain into subdomains, or finite

elements, is commonly accomplished in 2D and 3D using triangular and tetrahedral ele-

ments, respectively, of variable shape and size (Zhdanov, 2009). Within each element, the

EM fields or potentials are represented as a sum of interpolation functions, also known as

expansion or basis functions (Jin, 2002). The linear coefficients of the basis function expan-

sion, that is, the degrees of freedom in the system, are typically associated with the nodes

and/or edges of the element (Schwarzbach, 2009); the former scalar-valued type is known

as a Lagrange nodal element, and the latter vector-valued type is known as a Nédélec edge

element. Vector-valued edge elements are often preferred to scalar-valued nodal elements

for discretization of the electric field because they conform to the requirement of continuity

of the tangential electric field and discontinuity of the normal electric field, and enforce

the zero-divergence electric field condition for a source-free cell (Schwarzbach et al., 2011;

Vieira da Silva et al., 2012; Ansari and Farquharson, 2014). There are many variations

on the finite-element method, depending on the choice of basis functions and technique

for determining the coefficients of the basis function expansions (Jin, 2002; Avdeev, 2005;

Zhdanov, 2009). The two most widely used methods to formulate the system of equations

are the variational method and the method of weighted residuals (Jin, 2002). Both meth-
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ods lead to weak formulations of the original boundary value problem, meaning that the

problem is reduced to one in which the governing differential equations are only required

to be satisfied in an average (integral) sense, rather than an absolute sense, over the global

domain (Ansari and Farquharson, 2014).

In contrast to the integral-equation method, differential-equation methods require dis-

cretization of the entire model domain (Newman and Alumbaugh, 1995; Zhdanov, 2009).

While this is a disadvantage in terms of overall problem size, the system matrices that arise

are sparse, meaning that they have very few nonzero entries, and numerical solvers which

are designed to exploit this matrix structure may be implemented to solve the system more

efficiently (Saad, 2003). Due to the size and complexity of 3D EM problems, iterative

solvers, in particular those based on Krylov subspace methods (e.g., the CG, BiCG, GM-

RES methods), are typically preferred to direct solvers (e.g., MUMPS) because they are

computationally less expensive; solution requires only computation and storage of matrix-

vector products (Avdeev, 2005; Streich, 2009; Vieira da Silva et al., 2012). Direct solvers

for sparse linear systems are commonly based on LU factorization, which can be viewed as

modified form of Gaussian elimination (Saad, 2003). In a finite and predictable number of

operations, a numerical solution is obtained which could be considered exact in the absence

of rounding errors. By contrast, iterative solutions generate successive, improving approx-

imate solutions based on some initial guess, and arrive at an acceptable solution when the

residual norm falls below a specified tolerance.

Iterative methods are less demanding than direct solvers in terms of storage require-

ments, but they are generally less robust to system ill-conditioning (Saad, 2003; Vieira

da Silva et al., 2012). The linear systems arising from finite-element discretization using

unstructured meshes are highly ill-conditioned, meaning that the output solution is highly

sensitive to changes or errors in input (Newman, 2014). The rate of convergence of the

iterative solver, or the number of iterations required to arrive at an acceptable approximate
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solution, depends on the condition number of the system matrix. The successful application

of iterative methods to EM problems depends on appropriate modification to the original

matrix system, known as preconditioning, to make the problem more amenable to itera-

tive methods (Saad, 2003). For finite-element solutions implementing iterative solvers, the

quality of the mesh is very influential on the condition number of the system matrix and

hence performance of the solver. The subject is further discussed in Section 4.2.2.

In addition to its robustness to ill-conditioning, a direct solver may be preferable to an

iterative solver for efficient multisource simulation in moderately sized problems. For a

system of the form Ax = b, given an invariable left-hand-side A, a one-time LU factoriza-

tion of A may be used for solving the system for multiple values of right-hand side b. This

initial matrix factorization involves many steps, but once completed, solutions for multiple

source locations can be inexpensively achieved using the same left-hand-side factorization

(Streich, 2009). To avoid the necessity of mesh refinement at all possible source locations,

in such instances a primary-secondary formulation is appropriate to remove source singu-

larities from discretization (e.g., Streich, 2009; Vieira da Silva et al., 2012, see Section

2.3.2.1).

2.3.1 2D EM modelling

2Dl modelling of marine CSEM refers to modelling in which the electrical structure of the

subsurface is assumed to be invariable along geological strike. Because the EM source field

is 3D, 2D forward algorithms collapse the source fields along-strike by Fourier transform-

ing the governing equations into the spatial wavenumber domain with respect to the strike

direction, i.e., the direction in which conductivity is invariable (Hohmann, 1988; Constable,

2010). For this reason, 2D modelling is sometimes referred to as a 2.5D problem (Unsworth

et al., 1993).

One of the first 2D forward codes for frequency-domain EM modelling was the finite-
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element code of Unsworth et al. (1993). Unsworth and Oldenburg (1995) implemented

this forward code into a marine CSEM inversion code for application to mid-ocean ridge

exploration, but this code has not largely featured in the literature (Constable, 2010). A

modified version of the 2D finite-element code of Unsworth et al. (1993) was also used by

MacGregor et al. (2001) in conjunction with the Occam’s inversion algorithm of Constable

et al. (1987) to invert a mid-ocean ridge CSEM data set, constituting the first 2D inversion

of real CSEM data.

Li and Key (2007) developed a 2D adaptive finite-element code, MARE2DCSEM (Mod-

eling with Adaptively Refined Elements for the 2D CSEM method), for forward modeling

of marine CSEM in the frequency domain with adaptive mesh refinement. This code was

developed at the Scripps Institution of Oceanography Marine EM Laboratory and is pub-

licly available. The accuracy of the code was validated through comparison of its solution

for the 1D canonical oil field model to that of Constable and Weiss (2006), and has also

been demonstrated on several complex offshore structural models (e.g., Li and Key, 2007;

Key, 2012c). In a companion paper by Li and Constable (2007), MARE2DCSEMwas used

to study the effects of variable seafloor topography on the marine CSEM response. Key and

Ovall (2011) later parallelized MARE2DCSEM and substituted a dual-weighted residual

method for the previous dual-error weighting method for a posteriori error estimation in

adaptive mesh refinement (see Li and Key, 2007; Key and Ovall, 2011, for details). More

recently, the forward algorithm was implemented along with the Occam inversion algorithm

(Constable et al., 1987) in the MARE2DEM (Modelling with Adaptively Refined Elements

for 2D Electromagnetics) code (Key, 2012c). The most recent version of code allows for-

ward and inverse modelling for isotropic or triaxially anisotropic conductive media using

electric dipole, magnetic dipole, or magnetotelluric sources.

Many other 2D forward and inversion codes have been applied to marine CSEM mod-

elling. Abubakar et al. (2008) developed a 2D staggered-grid finite-difference inversion
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code which allows for efficient simulation of multisource surveys through implementation

of a multifrontal LU decomposition algorithm. This inversion code was used to invert

CSEM data collected for an offshore Oregon gas hydrate mapping and characterization

study (Weitemeyer, 2008; Weitemeyer et al., 2011). Streich et al. (2011) present a 2D finite-

difference algorithm based on a primary-secondary electric field decomposition and enforce

explicit divergence conditions to stabilize the finite-difference system at low frequencies.

Kong et al. (2008) developed a 2D finite-element algorithm for marine CSEM modelling

in stratified anisotropic media also based on a primary-secondary approach. The 2D finite-

element code of Everett and Edwards (1993) was used in a modelling study of similar intent

to this project (see Boyce, 1996), but computes the transient step-on response.

For marine CSEM survey data collected along single lines, 2D modelling and inversion

may constitute a reasonable approach to data interpretation as the spatial density of such

data is inadequate for 3D modelling. This idea was addressed in a CSEM sensitivity study

conducted by Constable (2010). Constable (2010) used the 3D finite-volume code of Weiss

and Constable (2006) to demonstrate that the inline horizontal electric and magnetic field

components typically measured in a CSEM survey are primarily sensitive to structure be-

neath or between the source and receiver, and that changes in conductivity more than about

half the source-receiver separation in the crossline (broadside) or vertical direction have

little effect on the data. 2D modelling may be adequate for surveys involving a small to

moderate volume of data. Moreover, full 3D inversion of EM data remains a challenge due

to the significant computational requirements, as demonstrated by Commer et al. (2008).

2.3.2 3D EM modelling

Numerous numerical techniques have been employed for frequency-domain 3D modelling

of marine CSEM, including the finite-difference method (e.g., Newman and Alumbaugh,

1995, 1997; Commer and Newman, 2008; Sasaki and Meju, 2009; Newman et al., 2010)
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the finite-element method (e.g. Streich, 2009; Schwarzbach et al., 2011; Vieira da Silva

et al., 2012; Puzyrev et al., 2013; Ansari and Farquharson, 2014), and to a lesser extent, the

finite-volume method (e.g., Constable and Weiss, 2006; Weiss, 2013) and finite-integration

technique (e.g., Plessix et al., 2007).

2.3.2.1 Finite-difference schemes

The finite-difference codes of Newman and Alumbaugh (1995) and Sasaki and Meju (2009)

are implemented on Yee staggered rectangular grids (Yee, 1966), where the electric and

magnetic field vectors are assigned to the centers of the cell edges and cell faces, respec-

tively. This staggered scheme enforces conservation of electric current and a divergence-

free magnetic field (Newman and Alumbaugh, 1995). All of the finite-difference codes

mentioned above rely on a primary-secondary electric field decomposition wherein the

frequency-domain Helmholtz equation is formulated in terms of the secondary or scattered

electric field, i.e., (Newman and Alumbaugh, 1995; Sasaki and Meju, 2009),

—⇥—⇥Es+ iwµ0sEs =�iwµ0 (s �sp)Ep, (2.39)

where Es is the secondary or scattered field, Ep is the primary field, and sp = sp (r) is

the background resistivity model, typically chosen to correspond to a homogeneous whole

space or 1D layered halfspace. A primary-secondary decomposition removes the source

singularity from discretization, thus avoiding the numerical difficulties associated with large

and rapidly varying electric and magnetic field values, and the requisite mesh refinement,

in the vicinity of the source. Since the scattered field varies more smoothly in space near

the source than the total field, a coarser mesh may be employed without impacting accu-

racy (Streich, 2009). The electric field Helmholtz formulation has the advantage that the

electric field is solved for directly, thus avoiding the errors associated with numerical dif-
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ferentiation when a potential formulation is used (Weiss, 2013). The disadvantage of the

formulation is that the associated system is ill-conditioned at low frequencies, where the

second conductivity-related term tends to zero as iwµ0s ! 0. In this limit, the system

tends toward

—⇥—⇥Es =�iwµ0 (s �sp)Ep, (2.40)

which is a singular system, and therefore possesses an infinite condition number and non-

unique solutions (Aruliah et al., 2001). For ill-conditioned systems, an iterative solver may

be slow or fail to converge without adequate preconditioning to deflate the non-trivial null-

space of the curl-curl operator (Weiss, 2013).

In terms of practical usage, the finite-difference code of Newman and Alumbaugh

(1995), further developed in Alumbaugh et al. (1996), Newman and Alumbaugh (1997),

Commer and Newman (2008), and Newman et al. (2010), has been used extensively in the

marine CSEM community for modelling of real-life offshore hydrocarbon reservoirs (e.g.,

Green et al., 2005; Carazzone et al., 2005; Hoversten et al., 2006; Commer and Newman,

2008; Newman et al., 2010). The non-linear conjugate gradient inversion code of Newman

and Alumbaugh (1997) was notably employed by ExxonMobil for 3D CSEM imaging of

realistic and challenging targets (e.g., Green et al., 2005; Carazzone et al., 2005). Data

employed in these proof-of-concept studies were collected during ExxonMobil’s extensive

CSEM acquisition campaign offshore West Africa in the early 2000s. Green et al. (2005)

present a case study where 3D modelling was successful in pre-drill prediction of hydrocar-

bons in an environment where electrical structure was complicated by the presence of salt

and mixed lithology. Carazzone et al. (2005) used the code of Newman and Alumbaugh

(1997) for both constrained and unconstrained inversions of marine CSEM data collected

for a deepwater hydrocarbon reservoir located off West Africa. The finite-difference code

of Sasaki and Meju (2009) has been used in several studies focussing on the effects of wa-

ter depth and near-surface heterogeneities such as bathymetry, fizz gas, gas hydrates, gas
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seepage alteration halos, and channel-fill deposits on the marine CSEM response for 3D

rectilinear reservoir models.

2.3.2.2 Finite-element schemes

In recent years, a number of finite-element codes have been presented for EM modelling

(Badea et al., 2001; Börner et al., 2008; Um et al., 2010; Vieira da Silva et al., 2012; Ansari

and Farquharson, 2011). Finite-element techniques are more flexible than finite-difference

techniques in terms of the geometry of the mesh that can be employed. Börner et al. (2008)

and Um et al. (2010) present finite-element approaches for the time-domain which are ap-

plicable to time-domain EM methods rather than the frequency-domain CSEM method

considered in this work.

Schwarzbach et al. (2011) present a 3D finite-element adaptive mesh refinement code,

based on a primary-secondary electric field decomposition, which allows for use of higher

order Nédélec elements for finite-element approximation on an unstructured tetrahedral

mesh. For a two-halfspace, flat seafloor model, Schwarzbach et al. (2011) examine solu-

tion accuracy with varying polynomial degree for the finite-element expansion and found

that higher order polynomials (in this instance, polynomials of order 2 and 3) provide bet-

ter accuracy than polynomials of order 1 (i.e., linear edge elements). Use of higher order

polynomials may not be feasible however for complex models that result in large meshes

because of the associated increase in number of degrees of freedom in the system. For ex-

ample, finite-element discretization of a seafloor bathymetry model in Schwarzbach et al.

(2011) was limited to polynomials of order 2 because use of polynomials of order 3 ex-

ceeded available computational resources. Schwarzbach et al. (2011) also present solutions

for a two-halfspace, seafloor topography model, the same topography model as that pre-

sented in Chapter 5, and for the canonical disk model of Weiss and Constable (2006).
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Vieira da Silva et al. (2012) present a finite-element code which uses a primary-secondary

electric field decomposition and Nédélec edge elements for discretization of the electric

field, but implement their code on structured hexahedral meshes rather than unstructured

tetrahedral meshes. Puzyrev et al. (2013) present a finite-element forward code for CSEM

modelling in anisotropic media using a secondary potential formulation with the Coulomb

gauge to ensure uniqueness of the vector potential. Nodal finite elements are employed for

both the scalar and vector potentials. A parallelization strategy based on mesh-partitioning

or substructuring is implemented to reduce the program execution time. Numerical solu-

tions are validated for a two-halfspace, flat seafloor model and the canonical disk model.

The performance of the code is also demonstrated on both isotropic and anisotropic versions

of a realistic synthetic model.

2.4 Concluding remarks

Many semi-analytic and numerical codes have been developed which are applicable to sim-

ulation of frequency-domain marine CSEM data. For modelling of earth structure which

varies arbitrarily in three dimensions, 3D numerical methods are required to appropriately

capture the behaviour of EM fields. The finite-element method is readily applicable to

unstructured meshes which provide flexibility in representation of complex boundaries; it

may therefore be preferable to the finite-difference method which conventionally employs

structured, rectilinear meshes. The CSEM3DFWD code (Ansari and Farquharson, 2014)

employed in this study has several advantageous features: a total field formulation which

does not require consideration of a primary solution; a vector-scalar potential (A-f ) de-

composition which circumvents numerical difficulties associated with formulation in terms

of the electric field and, theoretically, allows investigation of inductive and galvanic con-

tributions; and application of vector-valued edge element basis functions for expansion of
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the magnetic vector potential A, which better conform to the physical behaviour of fields

across conductivity boundaries than scalar-valued nodal element basis functions.

Many numerical solutions are presented in the literature for simple 3D marine earth

models, but there exist few examples of application of 3D numerical methods to realis-

tic or real-world earth models. Those that do exist mainly occur as industry case studies

presented only in conference expanded abstracts, wherein the data and modelling software

are proprietary. Specifically, there exist few examples of more realistic earth models dis-

cretized using unstructured meshes instead of the more common rectilinear meshes. This

underscores the contribution of this thesis to the geophysical EM modelling literature in

presentation of finite-element solutions for a realistic 3D earth model where unstructured

meshes have been used for discretization of the model domain.
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Chapter 3

The marine CSEM method

3.1 Overview of the method

The marine CSEM method commonly employs a deep-towed horizontal electric dipole

(HED) source which transmits low-frequency EM energy to an array of multicomponent

EM receivers deployed at or near the seafloor (Srnka et al., 2006; Li and Key, 2007). As the

EM fields propagate or diffuse away from the dipole source, they are modified in both am-

plitude and phase by the resistivity structure of the earth, and the resultant, modified signal

is recorded at the receiver array (Key, 2012b). Targets are often thin, resistive, hydrocarbon-

saturated sedimentary layers embedded within the subsurface. Figure 3.1 illustrates the

standard CSEM survey configuration. The HED is the most effective source orientation

for detection of thin, horizontal to subhorizontal resistors due to the excitement of vertical

currents, or TM-mode fields, in the earth (Srnka et al., 2006; Constable and Srnka, 2007).

Reviews of less common CSEM acquisition systems can be found in MacGregor and Tom-

linson (2014), Key (2012b), and Edwards (2005). Alternative systems include a linear array

in which both source and receivers are towed on the same streamer, and a system in which

both the source and receivers are vertical electric dipoles. The latter system exclusively
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Figure 3.1. Schematic representation of the marine CSEM method. The HED transmitter is towed
close to the seafloor to maximize coupling of the electric field to the subsurface. Current lines are in-
dicated. This source configuration excites vertical currents normal to the horizontal or subhorizontal
boundaries of a resistive target layer, thereby generating a galvanic perturbation in the electric field.
The resultant electric and magnetic fields are recorded by receivers resting on the seafloor. Modified
from Constable and Weiss (2006).

excites TM mode fields (Chave, 2009), allows detection of resistors at shorter offset, and

potentially improves lateral resolution of seafloor structure, but is very sensitive to tilt angle

since the vertical electric field is small in comparison to the horizontal component (Mac-

Gregor and Tomlinson, 2014).

Due to the conductive nature of the earth, CSEM soundings are heavily constrained by

EM skin depth. In the marine environment, the highly conductive seawater has a shorter

skin depth than the less conductive sedimentary subsurface, and so fields travelling through

the subsurface experience less attenuation. Thus, for sufficient source-receiver offset, the

CSEM response measured at the seafloor will be dominated by fields which have travelled

through the subsurface (Constable and Srnka, 2007). Consider operation at 1 Hz in 3 S/m

(0.3 ohm-m) seawater overlying a 1 S/m (1 ohm-m) sedimentary subsurface. Neglecting

the effects of geometric spreading, over a distance of 5 km, fields propagating through the

subsurface will have decayed by approximately 10 skin depths to about 0.004% of their
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initial amplitude, while fields propagating through seawater will have decayed over 18 skin

depths to about 0.000001% of their initial amplitude. If we consider propagation within

a 0.01 S/m (100 ohm-m) layer, such as a hydrocarbon-saturated reservoir, over a distance

of 5 km, fields will have decayed by only one skin depth, that is, to about 37% of their

initial amplitude. The utility of the CSEM method for hydrocarbon applications therefore

stems from the favourable ratio of skin depths between the relatively conductive seawater

and relatively resistive subsurface (Constable and Srnka, 2007).

3.1.1 Source

The most commonly used source for marine CSEM acquisition is a HED, which excites

both TE- and TM-mode fields, the latter of which provide particular sensitivity to thin,

resistive layers. Chave (2009) presents 1D formulations for all four fundamental source

geometries – the HED, the vertical electric dipole, the horizontal magnetic dipole, and the

vertical magnetic dipole – and an analysis which provides insight into their suitability for

marine CSEM hydrocarbon exploration.

The electric dipole transmits a high-current, low-voltage oscillatory waveform at a low

fundamental frequency (Srnka et al., 2006). The physical transmitter consists of a neutrally

buoyant streamer carrying two electrodes which comprise the ends of a grounded electric

dipole (MacGregor and Tomlinson, 2014). Antenna length is typically from 100 to 300 m,

currents employed may be in the range of 100–1500 A, and typical frequencies are in the

range of 0.01–10 Hz (Constable, 2006; MacGregor and Tomlinson, 2014). Low frequencies

are required to allow penetration of the signal to several kilometers depth below the seafloor,

as dictated by EM skin depth (Srnka et al., 2006). The transmitter is towed at a speed

of about 0.5–1.0 m/s (1–2 knots; Myer et al., 2011), with 25–100 m clearance to avoid

obstructions on the seafloor. Towing the source close to the seafloor promotes maximal

coupling of transmitted energy to the seafloor and minimal coupling to air (Constable and
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Srnka, 2007; Constable, 2010; MacGregor and Tomlinson, 2014).

For frequency-domain EM, the source signal is typically a waveform customized to

spread energy across several frequencies or harmonics of some fundamental frequency in

the band of 0.1–10 Hz (Key, 2012b). Various oscillatory waveforms may be generated by

switching a DC current between the two electrodes of the dipole (Constable, 2006). De-

sign of the transmitter frequency spectrum is a compromise between penetration at low

frequency and structural resolution at high frequency, as constrained by skin depth. Ideally,

energy would be spread continuously across the frequency spectrum to promote sensitivity

to both shallow and deep electrical structure, but there is a finite amount of energy to be al-

located based on the source dipole moment (MacGregor and Tomlinson, 2014). Symmetric

square waveforms were initially in common use by contractors, with fundamental frequen-

cies of around 0.25 Hz and odd harmonics of decreasing current amplitude (Constable,

2006, 2010); current amplitude decreases as 1/n, where n is the harmonic number (Myer

et al., 2011). The square waveform has the advantage of transferring maximum energy

to the subsurface because the source is always transmitting at peak amplitude, but has the

disadvantage of concentrating most of the energy in the first harmonic (Mittet and Schaug-

Pettersen, 2008). Since inductive attenuation increases with frequency, it is beneficial to

distribute greater power to higher harmonics to counteract the loss of amplitude and boost

signal-to-noise ratio. Further, processing and interpretation of marine CSEM data benefit

from several high-power harmonics spaced over a large bandwidth (Constable, 2006; Mittet

and Schaug-Pettersen, 2008; Key, 2009). The present standard is to use generalized binary

(square pulse) waveforms with current amplitude spectra optimized for the environment and

target (e.g., Lu and Srnka, 2009; Mittet and Schaug-Pettersen, 2008; Myer et al., 2011).
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3.1.2 Receivers

The receiver array typically consists of 30 to 50 autonomous units placed along the seafloor

pre-survey (Srnka et al., 2006). The receivers are allowed to free fall through the water

column to their approximate planned positions on the seafloor; locations are selected with

reference to seismic information or based on pre-survey modelling (Srnka et al., 2006).

A typical commercial receiver consists of electric field-sensing dipoles and induction coil

magnetometers and is similar in design to that illustrated in Figure 3.2 and described in

Constable et al. (1998) and Constable (2013). The receivers are capable of recording up to

three components of the electric and magnetic fields, although they are typically configured

to record only the horizontal electric and magnetic fields in a survey (MacGregor and Tom-

linson, 2014). Horizontal electric field measurements are made using a system consisting

of low-noise and low-impedance silver-silver chloride electrodes mounted on the ends of

5 m-length dipole arms (Constable et al., 1998; Key, 2003). Magnetic field components

are measured by lightweight and low-power induction coil magnetometers (Key, 2003). An

acoustic unit is used to track the receiver through the water column during deployment and

recovery, as well as for release of the unit from its anchor at the end of the recording pe-

riod (Constable et al., 1998; Key, 2003). The unit rises to the surface with the help of glass

flotation spheres. In addition to the controlled source signal, the receivers record the natural

source magnetotelluric signal, although this is highly attenuated in deep water, as well as

excitations due to seawater motion. These natural source signals have incoherent phases

relative to the controlled source and may be suppressed using signal processing techniques

(Srnka et al., 2006).

Receiver, source, and navigation data are recorded in the time-domain and must be

converted to the frequency-domain for interpretation of CSEM data. Processing includes

spectral decomposition of the receiver time series data, that is, transformation of the time
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Figure 3.2. The Scripps Institution of Oceanography broadband EM receiver. The instrument can
be used to collect both MT and CSEM data. From Key (2003).

series data to amplitude and phase data as a function of both source-receiver offset and

frequency, normalization of the electric field amplitude with respect to source and receiver

considerations, and reconstruction of source-receiver geometry from navigation data (Lu

et al., 2006; Constable and Srnka, 2007). Transformation of time series data to frequency-

domain amplitude and phase data is accomplished by division or binning of the time series

into intervals corresponding to the transmitter period (Lu and Willen, 2011). Spectral de-

composition is then performed on each time bin via Fourier transform or least-squares fit

(Lu et al., 2006). Each bin is associated with a time, typically that at the center of the

bin, which can be related to transmitter location or source-receiver offset based on naviga-

tion information (Lu and Willen, 2011). The electric field magnitude is normalized by the

source dipole moment so that the amplitude is independent of dipole antenna length and

source current. The normalized electric field amplitude is presented in units of V/m[/Am]
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or V/Am2 (e.g., Constable and Srnka, 2007). To emphasize amplitude anomalies associated

with resistive target structure, it is common practice to further normalize the electric field

amplitude by either a halfspace response or by a receiver response assumed to be off-target

(Constable and Srnka, 2007).

3.2 Sensitivity of the method to hydrocarbon reservoirs

Low-frequency EM phenomena are difficult to visualize in terms of the underlying phys-

ical interactions. A harmonic source excites with the entire earth-sea-air system, and the

response measured at a receiver can be understood as the convolution of the source sig-

nal with an attenuative, diffusive earth (Myer et al., 2011; see Ward and Hohmann, 1988,

for discussion of Green’s functions). In this manner, the response can be thought of as a

spatial average of the system weighted by the sensitivity to each component of the system

(Constable, 2010). Sensitivity to a particular component has numerous controls includ-

ing resistivity, source-receiver offset, and various other geometric factors, e.g., orientation

relative to source field, physical dimensions, and depth. The conventional CSEM method

which employs a HED source is designed to optimize sensitivity to thin, horizontal to sub-

horizontal resistive bodies such as hydrocarbon reservoirs. The sensitivity of the method

to hydrocarbon-saturated reservoirs has in turn been described in terms of galvanic and in-

ductive interactions, TE and TM modes, and EM skin depth. An attempt is made here to

clarify these descriptions by reviewing the physical interactions between the source fields

and subsurface which modify the amplitude and phase of the EM fields.

3.2.1 Inductive and galvanic coupling

The EM fields excited by a harmonic source are modified not only in amplitude via 1/r3 geo-

metric spreading, but also in amplitude via galvanic effects associated with the direct flow of
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current, and in amplitude and phase via frequency-dependent inductive effects (Constable,

2010). Inductive and galvanic coupling between regions of differing electrical properties is

governed by the EM boundary conditions. Requirement for the continuity of the tangential

electric field component ET across an interface results in inductive coupling, while require-

ment for the continuity of the normal current density component JN across an interface

results in galvanic coupling, the later of which is more important for anomaly generation in

relation to thin, horizontal to sub-horizontal resistive bodies (Um and Alumbaugh, 2007).

Consider two adjacent regions with different conductivities s1 and s2. The boundary

condition governing the inductive coupling between electric fields in adjacent regions is the

requirement of continuity of the tangential electric field across the boundary separating the

regions, i.e.,

ET
1 = ET

2 , (3.1)

where the superscript T denotes the tangential component (Figure 3.3). Based on this con-

dition, if there exists an electric field in medium 1 with a component parallel to the boundary

separating the two regions, the generation of parallel currents within medium 2 is required

by Ohm’s law, i.e., J = sE. These currents will in turn induce magnetic fields, as dic-

tated by Ampère’s Law, —⇥H = J = sE. This inductive mechanism is very important

for generation of anomalous responses for conductive bodies embedded in less conduc-

tive backgrounds (e.g., metallic sulfide ore bodies) due to the generation of strong electric

currents within the body parallel to the interface, but is less important for targets that are

resistive relative to their backgrounds (Um and Alumbaugh, 2007; Um, 2011). Now let us

consider the galvanic interaction between two adjacent regions.

Galvanic coupling between two regions of different conductivity results from currents

passing normal to the boundary. In the absence of extrinsic sources, i.e., — · J = 0, the

continuity of the normal component of current density J, i.e., JN1 = JN2 , requires, by Ohm’s
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Figure 3.3. Decomposition of the electric field at a boundary into normal and tangential compo-
nents. After Wilkinson (2011).

law, that

s1EN
1 = s2EN

2 , (3.2)

and therefore generally EN
1 6= EN

2 (Chave and Jones, 2012). In order to satisfy the conti-

nuity of the normal component of the current density across a boundary, a surface charge

builds up at that boundary. The normal component of the electric displacement field D is

discontinuous across a boundary by the surface charge density rs, i.e.,

DN
1 �DN

2 = rs, (3.3)

where rs is in units of C/m2. If we make substitutions using the constitutive relation D =

eE, and further make the assumption that e1 = e2 = e (i.e., permittivity does not vary

between media), we can rewrite this boundary condition as

e
�

EN
1 �EN

2
�

= rs. (3.4)

As we have established, JN1 = JN2 = JN , and so considering Ohm’s law, J = sE, we may
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write

rs = e
�

EN
1 �EN

2
�

= eJn
✓

1
s1

� 1
s2

◆

. (3.5)

This equation indicates that where there exists a component of current density or electric

field normal to a conductivity boundary, a surface charge accumulates. The phenomenon

of surface charge accumulation may alternatively be approached starting from Maxwell’s

equations rather than the derived boundary conditions. Outside of extrinsic sources, i.e.,

— · J = 0, Gauss’s law, — ·D = r , states that the electric charge density is equal to (Chave

and Jones, 2012):

r = e— ·E= e— · (J/s) = eJ ·—(1/s) , (3.6)

where the product rule — ·(J/s) = 1/s (— ·J)+J ·(—(1/s)) has been employed. Equation

(3.6) indicates that charge accumulation only occurs at places where the current density J

has a component parallel to the conductivity gradient —s . Evaluating the dot product of

equation (3.6) results in equation (3.5).

Surface charge accumulation gives rise to secondary electric fields which have the ef-

fect of decreasing the total electric field in the more conductive (less resistive) region and

increasing the total electric field in the less conductive (more resistive) region. Consider

the simple 1D model illustrated in Figure 3.4, which consists of two adjacent halfspaces

with conductivities s1 and s2, divided by a vertical interface. The conductivity gradient is

normal to the boundary between regions and there exists a component of J normal to the

interface. In the case that s2 < s1, it is required by equation (3.5) that EN
2 > EN

1 . This

is achieved by accumulation of a positive surface charge with associated electric field Es,

which decreases EN in region 1 and increases it in region 2 (Vozoff, 1991).

In a geophysical context, for a thin, resistive target that exhibits a large conductivity

contrast relative to its background, charge accumulation can be significant if there exists a

substantial component of the electric current density, or electric field, normal to the bound-
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Figure 3.4. Charge accumulation at a conductivity boundary due to the requirement of continuity
of the normal component of current density, JN = sEN . The normal electric field EN

s due to the
surface charge distribution adds vectorially to the normal applied electric field EN

p on either side of
the interface, decreasing the net normal electric field EN

1 on the left and increasing the net normal
electric field EN

2 on the right. After Vozoff (1991).

ary of the resistive target. The resultant galvanic perturbation in the measured electric field

primarily accounts for the electric field amplitude anomaly produced by thin, horizontal

resistors excited by a controlled HED source, as will be discussed in Section 3.2.3.

3.2.2 The resistive layer as a TM-mode waveguide

The description of the thin resistive layer as a TM-polarized ‘leaky waveguide’ stems from

analysis of EM propagation in a layered earth model (e.g., Chave et al., 1990;Weidelt, 2007;

Chave, 2009; Løseth, 2011; Swidinsky, 2015). In a 1D representation of the earth’s subsur-

face, galvanic coupling between adjacent layers, and therefore resistive layer waveguiding,

are strictly TM-mode phenomena (Eidesmo et al., 2002; Weidelt, 2007; Chave, 2009).

Consider a thin resistive layer with resistivity on the order of 10–100 times that of

its halfspace background, overlain by a sea layer and in turn, an infinitely resistive air

halfspace (i.e., a finite-water depth adaptation of the canonical oil field model discussed
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in Section 2.2). In the TE mode, the electric field is polarized tangential to the resistive

layer, i.e., there exists no electric field component normal to its boundary, and coupling

between adjacent layers is exclusively inductive. A thin resistive layer has little impact

on TE mode propagation since it may inductively couple across the resistive layer to the

conductive halfspace below (Weidelt, 2007). By requisite of the continuity of the tangential

(horizontal) electric field at the air-sea interface, the purely geometrical 1/r3 decay of the

electric field in the air layer is imparted onto the electric field inside the water layer (Weidelt,

2007). In asymptotic limit (i.e., for sufficient source-receiver offset), the electric field inside

the water layer is dominated by the 1/r3-decay ‘air wave’ contribution.

In the TM mode, the magnetic field is polarized tangential to the resistive layer, i.e.,

there exists no magnetic field component normal to its boundary, and coupling between

adjacent layers is both inductive and galvanic. In the TM mode, the resistive layer, however

thin, disrupts vertical current flow and generates galvanic perturbations in the EM fields

(Eidesmo et al., 2002; Weidelt, 2007). The resistive layer guides the flow of EM energy

laterally along its extent, with concomitant energy leakage to the more conductive overly-

ing and underlying sediment layers (Eidesmo et al., 2002; Edwards, 2005; Chave, 2009;

Swidinsky, 2015). Given the relatively low conductivity of the resistive layer as compared

to its background, it serves as a low-attenuation pathway for TM-mode propagation. This

guiding of EM energy or fields is often visualized through mapping of the real part of the

Poynting vector, which represents the time-averaged energy flux (e.g., Chave et al., 1990;

Weidelt, 2007; Key, 2012b; Chave, 2009) or in 2D, through mapping of the current stream

function, which represents the magnetic field divided by magnetic permeability (e.g., Ed-

wards, 2005; Swidinsky, 2015). The overall effect of the presence of the resistive layer

is to modify current flow patterns in adjacent layers, thereby generating anomalous fields

that may be detectable at the seafloor under appropriate conditions (Eidesmo et al., 2002;

Chave, 2009; Swidinsky, 2015).
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3.2.3 Source field geometry

The sensitivity of the CSEM method to a particular target depends on the electrical proper-

ties of the target and its orientation relative to excited current flow or electric field direction.

For detection of thin, largely horizontal resistors such as hydrocarbon reservoirs, excitation

of vertical currents is important for galvanic coupling. A HED excites both galvanically

and inductively coupled modes of current flow in a stratified earth, but only in the direction

inline with the dipole axis is there significant vertical current flow.

The relative sensitivity of different HED source-receiver configurations to the presence

of thin resistive layers can be understood by examining the geometry of the source field in

both the inline and broadside directions (Figure 3.5). In the direction inline with respect

to the dipole axis, the electric field has a significant vertical component whose path may

be interrupted by horizontal resistors to produce a galvanic distortion of the electric field

amplitude that may be measured at the seafloor (Constable, 2010). In the direction broad-

side with respect to the dipole axis, the electric field is largely horizontal, meaning that

coupling between source and tabular resistors is mainly inductive (MacGregor and Sinha,

2000; Constable, 2010). At the low frequencies used for CSEM acquisition, for a thin resis-

tive layer, galvanic coupling (in addition to inductive coupling) in the inline configuration

will produce a larger anomalous response than inductive coupling alone in the broadside

configuration (Constable, 2010). The inline horizontal electric field is thus the most sensi-

tive to thin, laterally extensive resistive targets.

The difference in sensitivity between the inline and broadside horizontal electric fields

is well established and has been illustrated by numerous synthetic studies (e.g., Constable

and Weiss, 2006; Um and Alumbaugh, 2007; Constable, 2010). Comparing the difference

in 1D solutions for a two-halfspace model with and without a resistive reservoir layer, it can

be seen that there is a greater difference in the horizontal electric field amplitude between
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the two model variations for the inline configuration than for the broadside configuration

(Figure 3.6). Note that the solutions are presented for a 1 Hz HED source, but that trans-

mission frequencies employed in CSEM surveying may be much lower. As frequency de-

creases, inductive coupling becomes less significant and the discrepancy between the inline

and broadside horizontal electric field sensitivities increases.

3.2.4 Inductive attenuation

The EM fields excited by a CSEM source decay in space via both geometric spreading, and

more importantly in conductive media, inductive attenuation. The skin depth of a medium,

d =
p

2/wµ0s , defines the distance over which EM fields have decayed by 1/e, or 37%,

of their original amplitude. As conductivity and frequency increase, the skin depth of a

homogeneous medium decreases. Given an earth system composed of regions of different

conductivities, at a particular frequency, the tendency is that for a given source-receiver

offset, propagation through one part of the earth system dominates the observed CSEM

response (Constable and Srnka, 2007).

This effect is illustrated in Figure 3.7, where the 1 Hz inline horizontal electric field

amplitude and phase are illustrated for the 1D canonical reservoir model: a 100 m-thick,

0.01 S/m (100 ohm-m) resistive layer buried at a depth of 1000 m in a 1 S/m (1 ohm-

m) sediment halfspace, an overlying 1000 m-thick 3.3 S/m (0.3 ohm-m) sea layer, and

an overlying air halfspace. For comparison, solutions for wholespaces having the same

resistivities as the sea, sediment, and resistive layer are plotted alongside, as well as the 1D

solution for the background model (resistive layer absent).

With reference to Figure 3.7, there are four major divisions of the 1D reservoir re-

sponse as a function of source-receiver offset, characterized by gradual transitions from

one skin depth or attenuation regime to another. From the near offset up to approximately

1 km offset, the 1D reservoir response is dominated by fields which have propagated di-
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Figure 3.5. Geometry of the source field for an x-directed HED (TX) above a seabed (horizontal
plane). For an inline geometry, only the x- and z-components of the electric field are present; the
vertical component Ez couples galvanically with the underlying reservoir. For a broadside geometry,
the electric field is largely horizontal and therefore can only induce a relatively weak inductive
response in the resistive layer. As frequency decreases, the discrepancy between the inline and
broadside horizontal electric field sensitivities increases. Modified from Weiss (2007).
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Figure 3.6. The inline and broadside horizontal electric field components for the 1D canonical reser-
voir model using a 1Hz, 1 Am HED source located at 100 m above the seafloor. The two-halfspace
background response (dashed line) is also illustrated for comparison. In comparing the hydrocarbon-
saturated reservoir responses to the background responses for both the inline and broadside config-
urations, it is evident that the inline horizontal electric field is more sensitive to the presence of the
hydrocarbon-saturated reservoir than the broadside horizontal electric field.
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Figure 3.7. The inline horizontal electric field amplitude and phase (right, black solid line) for
the 1D canonical reservoir model. Solutions are illustrated also for wholespaces having the same
resistivities as the sea, sediment, and resistive layers (blue, green, and red dashed lines, respectively),
as well as for the 1D background model, i.e., no reservoir present (black dashed line). Solutions are
for a 1 Hz, 1 Am HED source simulated at a height of 100 m above the sea-sediment interface. At
near offset, the 1D reservoir model response is dominated by fields which have travelled directly
through the sea layer and the shallow sediment section. At intermediate offset, the response is
dominated by fields which have travelled through the resistive layer, resulting in an increase in
electric field amplitude. At large offset, the airwave becomes dominant with its characteristic 1/r3

dipole decay and infinite phase velocity.
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rectly through the seawater; exponential attenuation parallels and is close to that for a sea

wholespace, which has a skin depth of 277 m at 1 Hz. For offsets in the range of 1–2 km, the

1D reservoir response is dominated by fields which have propagated through the sediment

subsurface; the 1D reservoir solution gradually merges with that for a sediment wholespace,

which has a skin depth of 503 m at 1 Hz. The 1D background solution continues to follow

that of the sediment wholespace up to an offset of approximately 5 km, at which point fields

which have propagated above the air-sea interface (i.e., the airwave) begin to dominate the

response. The visible onset of the airwave is characterized by amplitude decay principally

via 1/r3 geometric spreading from a dipole source, that is, there is little inductive attenu-

ation, and near-constant phase. As air is infinitely resistive, it has an infinite penetration

depth and hence signal decay is via geometric spreading only while it travels along the air-

sea interface. The flattening of the electric field phase indicates near-synchronous arrival of

the dominant air signal across the receiver array and an apparent phase velocity comparable

to the speed of light (Constable and Srnka, 2007). In the presence of a resistive layer, the

visible onset of the airwave is delayed to farther offset. For offsets in the range of 10–20

km, the 1D reservoir response is dominated by fields which have propagated through the

buried resistive layer, which has a skin depth of 5030 m at 1 Hz. For offsets greater than 20

km, propagation through the air dominates.

Um and Alumbaugh (2007) explain the dependence of the CSEM response on source-

receiver offset generally:

At small separations, the measured EM response can be thought of as the di-

rect field generated by an HED source through seawater and shallow marine

sediments. At an intermediate distance, the anomalous galvanic and induc-

tive responses generated by the deeper structures become resolvable. At larger

separations, the air-wave response becomes dominant.

Thus we conclude that at sufficient source-receiver offset, the response is dominated
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by contributions from the subsurface and target that we are interested in imaging. This

sensitivity to the subsurface becomes weaker with decreasing water depth as the visible

onset of the airwave occurs at progressively shorter offsets (Constable and Srnka, 2007).

3.2.5 Water depth

The CSEM method behaves quite differently in the deep marine environment than it does

in the terrestrial or shallow marine environments. In fact, early assessment of the CSEM

method for offshore exploration in the 1980s foundered because exploration at the time

was restricted to the shallow marine environment (Constable, 2006). This difference in

behaviour inspired early advocates of the CSEMmethod for deepwater exploration to create

entirely new names for the marine technology, namely seabed logging by Statoil and remote

reservoir resistivity mapping by ExxonMobil (Constable, 2006).

The difference in nature of the CSEM response between the deep marine and shallow

marine environments stems from the finite skin depth of the sea layer. For sufficient wa-

ter depth, fields travelling to and/or from the air-sea interface will be attenuated such that

the airwave will not appear until very far offset, but for increasingly shallow water, the

filtering effect of the sea layer is lessened, and the airwave becomes dominant at progres-

sively shorter offsets as water depth decreases. The result is that for water depth less than

roughly 300 m, the resistor signature that would normally be apparent at intermediate offset

is masked by the airwave (Weiss, 2007).

The use of the term ‘airwave’ for the atmospheric coupling or interaction observed in

the marine CSEM method arose in analogy to the refracted airwave observed in the seismic

reflection method (Andréis and MacGregor, 2007). This is a simplistic interpretation of the

airwave since it does not take into account the short-ranging reflections at the air-sea and

sea-earth interfaces which result in coupling between the fields in the air and subsurface

(Weidelt, 2007; Løseth, 2011). Through asymptotic expansion of the electric field in the
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air, Weidelt (2007) illustrated that these reflections are significant at intermediate offsets,

but that the leading term with ⇠ 1/r3 decay is sufficient for description of the airwave in

the far-field. This leading term is a strictly TE mode phenomenon and is independent of the

parameters of the resistive layer (Weidelt, 2007).

The dominance of the airwave at shallow water depth is demonstrated in Figure 3.8,

which illustrates 1D solutions for the canonical oil field model (e.g., Figure 3.7) with vari-

able water depth. For shallow water depth, the difference between the resistor-present and

resistor-absent solutions is minimal due to the onset of the airwave at short offset. The onset

of the airwave is characterized by 1/r3 dipole decay since signal strength is reduced prin-

cipally via geometric spreading only, with minimal inductive attenuation associated with

travel through the sea section. The offset at which the airwave becomes dominant and over-

prints the signal from the subsurface, sometimes referred to as the critical distance (e.g.,

Um and Alumbaugh, 2007), is primarily controlled by water depth, or more specifically,

the ratio of seawater skin depth to water depth. Source frequency is a secondary control on

the critical distance since skin depth decreases as frequency increases.

For sufficiently deep water, the airwave does not appear in the CSEM response until

offsets at which the signal strength is well below the EM noise floor. For shallow water

however, the airwave is apparent at shorter offset. Since many hydrocarbon exploration

targets lie in relatively shallow water, various mitigation schemes have been developed to

reduce the masking effect of the airwave. Proposed mitigation schemes include: (1) data

reduction, which aims to quantify and subtract the airwave signature so as to obtain a re-

sponse corresponding exclusively to the seawater and subsurface (e.g., Amundsen et al.,

2006; Weidelt, 2007; Chen and Alumbaugh, 2011); (2) mode decomposition, where the

mode least affected by the interaction with the atmosphere is extracted and used in interpre-

tation (e.g., Andréis and MacGregor, 2008); (3) optimal survey design, where acquisition

parameters are chosen to maximize airwave attenuation and sensitivity to the target (e.g.,
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Figure 3.8. The inline horizontal electric field amplitude and phase for the 1D canonical reservoir
model with variable water depth d. Solutions are illustrated for water depths of 100 m (red), 500 m
(green), and 1000 m (blue), where the solid line indicates the resistor-present solution and the dashed
line indicates the resistor-absent (background) solution. The source is a 1 Hz, 1 Am HED at a height
of 100 m above the sea-sediment interface. As water depth decreases, it becomes more difficult
to discern the presence of the resistive layer due to the dominance of the airwave at increasingly
shorter offsets. The airwave is characterized by 1/r3 amplitude decay (geometric spreading only,
no inductive attenuation) and near-constant phase as the arrival of the airwave is near-synchronous
across receivers at far offset.
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MacGregor et al., 2006); and (4) the usage of time-domain CSEM in shallow water (e.g.,

Andréis and MacGregor, 2007; Weiss, 2007; Andréis and MacGregor, 2008; Li and Consta-

ble, 2010; Connell and Key, 2013). If data are appropriately modelled to account for the air

layer, mitigation schemes (1) and (2) are unneccessary (Constable, 2010). Further, although

time-domain CSEM potentially offers greater sensitivity to resistive targets in shallow wa-

ter (see Weiss, 2007), it has poorer signal-to-noise ratio than the frequency-domain CSEM

method and still requires accurate modelling of atmospheric coupling due to the insepara-

bility of target and airwave signatures.

3.2.6 Implications

Theoretically, at sufficient source-receiver offset, any horizontal resistive layer of sufficient

lateral extent and sufficiently large transverse resistance (vertically integrated resistivity, or

1D resistivity-thickness product) is detectable via the marine CSEM method (Constable,

2006; Constable and Srnka, 2007). If this statement is vague, it is because it is difficult

to articulate the conditions for detection in view of the numerous controls on sensitivity;

this underscores the impracticality of attempting to predict or interpret the CSEM response

without adequate modelling. Since the CSEM response measured at the seafloor is the

cumulative response to an earth volume, the response to a target cannot be isolated. It is

thus important in CSEM modelling to not only correctly model the electrical structure of

the target, but also that of its background (MacGregor and Tomlinson, 2014).
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Chapter 4

Methodology

The frequency-domain 3D CSEM finite-element forward code CSEM3DFWD (Ansari and

Farquharson, 2011, 2013, 2014; Ansari, 2014; Ansari et al., 2015) was used in this project

for simulation of marine CSEM data for a sequence of offshore earth conductivity mod-

els of increasing complexity. Simulations were performed for source parameters generally

representative of marine CSEM surveys, i.e., a HED source located a short distance above

the seafloor, with transmission frequencies in the range of 0.1–10 Hz. A monochromatic

source was simulated here, although real-life CSEM acquisition typically employs a source

with power concentrated in several harmonics across the 0.1–10 Hz frequency band. For

all models, a source with unity dipole moment (1 Am) was used to obviate the need for

normalization of the electric field amplitude by the dipole moment, since electric field am-

plitude is typically presented in units of V/Am2 (V/m[/Am]). The fields were calculated at

discrete points located a short distance (typically 0.0001 m) above the seafloor to simulate

an inline receiver array placed at the seafloor; receiver spacings simulated in modelling

were however denser than those typical of a marine CSEM survey to facilitate verification

of solution accuracy against semi-analytic or other numerical solutions. Numerical results

for simple, layered conductivity models were validated through comparison to 1D semi-
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analytic Hankel transform solutions. The 1D marine HED code developed and employed

in this study, named MARDIP1D, is outlined in Appendix A. For the 3D seafloor topogra-

phy model, results were validated against numerical solutions existing in the literature. All

three components of the electric and magnetic fields were computed using CSEM3DFWD,

but results focussed on the inline horizontal electric field solution because of the particular

sensitivity of the component to laterally extensive resistive bodies.

The basic procedure for numerical modelling of EM data involves: firstly, construction

of a geoelectric model and subsequent subdivision or discretization of the model domain,

i.e., meshing; and secondly, formulation of the EM boundary value problem, approxima-

tion of the governing equations by a discrete system, and solution of this discrete system.

In the following Sections 4.1 and 4.2, procedures for geoelectric model construction and

mesh generation will be reviewed. In Section 4.3, the methodology for the CSEM3DFWD

code will be presented, including formulation of the CSEM boundary value problem, its

discretization using the finite-element method, and solution of the resultant discrete system

using iterative methods.

4.1 Geoelectric model construction

A geoelectric model represents a 3D domain over which electrical properties vary spatially;

because the earth’s structure is complex, its true physical structure is typically approximated

by a simplified but reasonable earth model (Zhdanov, 2002). The geoelectric model must be

described or summarized in a format that is compatible with mesh generation and numerical

modelling software. In this work, models are defined as 3D polyhedral domains using

piecewise linear complexes (PLCs). A piecewise linear complex is composed of a set of

nodes, also known as vertices, and facets (connecting segments or polygonal surfaces) that

may be summarized in .poly file format. The .poly file format is described in detail in the
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documentation for mesh generation program TetGen (Si, 2006).

Generation of an appropriate .poly file for a simple 1D or 3D rectilinear model is rela-

tively straightforward and can be done manually, but for more complex structure, manual

definition becomes impractical. To facilitate .poly file generation for more complex mod-

els, in-house model-building software developed by Dr. Peter Lelièvre, as well as auxil-

iary programs for mesh manipulation and visualization, were employed. Of particular use

was the graphical 3D model-building assistant FacetModeller 3D, developed by Dr. Peter

Lelièvre and Gary Blades (Figure 4.1). This program allows users to graphically define a

3D polygonal domain using nodes and facets, as well as subdomains or regions to which

physical attributes may later be assigned. The program has several additional features to

facilitate model building, including built-in model viewing, import of previously defined

node and facet data (e.g., topographical surfaces), and import and digitization of geological

cross-sections. Once the polyhedral domain is constructed, the model may be exported in

.poly file format for meshing using TetGen software (Si, 2006) and/or in .vtu format for

visualization using Paraview software (Ayachit, 2015).

4.2 Mesh generation

4.2.1 Overview of TetGen software

Geoelectric models were meshed using release 1.4.3 of TetGen, a third-party, open-source

software package (Si, 2006, 2009). TetGen generates unstructured tetrahedral meshes suit-

able for finite-element and finite-volume numerical modelling using a Delaunay refinement

algorithm. The benefit of this discretization method to finite-element modelling is that

the Delaunay criterion promotes generation of well-shaped tetrahedra with small aspect

or radius-to-edge ratios over poorly shaped tetrahedra with large aspect or radius-to-edge

ratios (Figure 4.2).
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Figure 4.1. Screenshot of 3D graphical model-building software FacetModeller. The node and facet
groups comprising the 3D model may be graphically defined and manipulated using this software.

Q ≈ 0.645Q ≈ 0.612 Q ≈ 0.866

Q ≈ 2.5Q ≈ 2.541 Q ≈ 3.041
Figure 4.2. Examples of tetrahedra with different radius-to-edge ratios,Q. The top row of tetrahedra
with Q< 1 are relatively well-shaped, while the bottom row of tetrahedra with Q> 2 are relatively
badly shaped. From Si (2006).
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Figure 4.3. A planar Delaunay triangulation of a 2D point set. Two triangles and their corresponding
circumcircles are shown in colour for example. Modified from Si (2013).

A Delaunay triangulation of a d-dimensional point set V is a d-dimensional simplicial

complex D that satisfies the criterion that every simplex (e.g., tetrahedron for d = 3) in D

has a circumsphere whose inside contains no other vertex ofV and whose underlying space,

the union of all simplices, forms the convex hull of V (Figure 4.3; Si, 2015). A Delaunay

refinement algorithm generates and maintains a Delaunay triangulation while adding nodes

to eliminate poorly shaped elements (Cheng et al., 2012). In two dimensions, Delaunay

triangulation provides mathematical guarantees on mesh quality based on maximization of

the minimum angle within triangles. Generalized to higher dimensions, Delaunay triangu-

lation still maintains advantageous geometric properties, but the minimum angle, whether

considering face angles (i.e., the angle between two edges) or dihedral angles (i.e., the angle

between the edge intersection of two faces and a plane perpendicular to that edge), is not

maximized (Cheng et al., 2012). In this manner, Delaunay tetrahedralizations are not quite

as effective as planar Delaunay triangulations for generation of quality meshes.

Delaunay tetrahedralizations can be further characterized by how they handle domain

boundaries (constrained tetrahedralization) and cell shape and size criteria (quality tetrahe-

dralization; see Section 4.2.2). In constrained Delaunay tetrahedralization, both inner and
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outer domain boundaries are respected, i.e., the tetrahedralization is boundary-conforming.

The user may specify whether constraining boundaries are to remain completely unmod-

ified or may be further subdivided to improve mesh quality (Si, 2015). If boundaries are

permitted to be subdivided, the Delaunay criterion will hold locally for tetrahedra away

from boundaries, that is, for tetrahedra whose facets are not on the boundary (Si, 2009).

Some badly shaped tetrahedra may still result in proximity to sharp features where two

constraining surfaces meet at an acute dihedral angle (Si, 2015).

Given an input .poly file for an earth model, TetGen generates as output four files which

describe the domain tetrahedralization and are required as input for CSEM3DFWD; these

include a .node file, an .ele file, a .face file, and a .neigh file, which respectively contain

a list of nodes, a list of tetrahedra, a list of triangular faces, and a list of neighbours (i.e.,

tetrahedra adjacent to a given tetrahedron) for the mesh. For 2D triangular meshing of topo-

graphic surfaces within the model domain, such as the seafloor or stratal interfaces, Triangle

meshing software (Shewchuk, 1996) was employed; this software is also based on a Delau-

nay triangulation algorithm. The TetGen and Triangle software packages and accompany-

ing documentation are available at http://tetgen.berlios.de/plc.html (ac-

cessed August 2015) and https://www.cs.cmu.edu/~quake/triangle.html

(accessed August 2015).

4.2.2 Mesh quality and refinement

Generation of unstructured meshes of suitable quality for finite-element methods is a non-

trivial problem, both in the theoretical development of meshing algorithms and in their

application to discretization of partial differential equation (PDE) problems. Mesh qual-

ity is a complex function of several geometric features and has a significant effect on both

the accuracy of the numerical solution in terms of discretization and interpolation errors,

and the conditioning of the system matrix (Shewchuk, 2002; Du et al., 2009; Si, 2015).
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Iterative solvers are typically implemented in finite-element methods over direct solvers

because they are less restricted in terms of the size of problems they can handle, but an

inherent shortcoming is that they are less robust to ill-conditioning associated with mesh

geometry. For systems with a large condition number, iterative solvers will have slow per-

formance and the solution may fail to converge. At present, construction of a mesh suitable

for modelling may require more time and effort from the user or researcher than numerical

solution of the PDE problem on the mesh (Cheng et al., 2012).

The two most important mesh quality criteria for finite-element methods are cell shape

and size. In terms of cell shape, cells with very large (near 180�) or very small (near 0�)

angles should generally be avoided since their presence negatively impacts the accuracy

and convergence of the numerical solution (Si, 2013). Large angles cause interpolation

errors which in turn lead to large differences between the approximated and true solution,

and small angles exacerbate ill-conditioning of the system (Cheng et al., 2012). A common

shape measure for cells is their aspect ratio. There are several definitions of aspect ratio,

including the ratio of the maximum edge length to minimum height or altitude, or the

ratio of the circumradius to the inradius (Si, 2013; Cheng et al., 2012); these definitions

may be used equivalently in that a bound with respect to one measure results in a bound

with respect to the other measure (Si, 2013). The aspect ratio as a quality measure for

tetrahedra achieves the same objective as combined restrictions on both face angles and

dihedral angles (Si, 2013).

A similar but weaker measure of cell shape is the circumradius-to-shortest-edge ratio

(written for brevity as radius-to-edge ratio; Figure 4.4). The radius-to-edge ratio is a mea-

sure of the “roundness” of a tetrahedron, and can have values between • and
p
6/4( .= 0.612),

which is the radius-to-edge ratio of an ideal equilateral tetrahedron (Cheng et al., 2012; Si,

2015). Most badly shaped tetrahedra with small or large angles have large radius-to-edge

ratios, while most well-shaped tetrahedra have small radius-to-edge ratios (Figure 4.2). The
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lmin R

lmin

R

lmin

Figure 4.4. The circumradius-to-shortest-edge ratio of several tetrahedra. The radius-to-edge ratio
is a suitable quality measure for most tetrahedra, with the exception of slivers (right). While most
badly shaped cells have large radius-to-edge ratios, slivers can have radius-to-edge ratios as small as
1/

p
2 .
= 0.707. Modified from Si (2013).

radius-to-edge ratio Q is related to the minimum face angle qmin of a tetrahedron t by the

inequality relation (Si, 2015)

Q(t) = R
lmin

� 1
2sinqmin

,

where R is the radius of the circumsphere, lmin is the minimum edge length, and
p
6/4 

Q•. An upper bound on the radius-to-edge ratio enforces a lower bound on the minimum

face angle. By bounding the radius-to-edge ratio, Delaunay refinement algorithms eliminate

most badly shaped tetrahedra with small or large dihedral angles, with the exception of one

class of badly shaped tetrahedra known as slivers (Cheng et al., 2012). A sliver is a type of

flat, badly shaped cell that has a dihedral angle near 180� but has a radius-to-edge ratio as

small as 1/
p
2 .
= 0.707 (Figure 4.4, right). A second shape quality measure is required to

eliminate this type of badly shaped cell.

In the quality Delauney tetrahedralization, the user may explicitly specify both/either

an upper bound on the radius-to-edge ratio and/or a lower bound on dihedral angle (TetGen

releases 1.4.3 and onward). This second quality criterion attempts to screen out slivers.

Enforcement of quality criteria generally leads to good grading in the mesh, that is, transi-

tion from small to large cell size accomplished over a minimal distance while maintaining
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quality, well-shaped tetrahedra (Cheng et al., 2012; Si, 2015). This is important because

poor grading, or large local contrasts in cell size, can contribute to ill-conditioning of the

system. In TetGen release 1.4.3, the default values for maximum radius-to-edge ratio and

minimum dihedral angle are 2.0 and 5�, respectively. It should be noted that even with ap-

propriate quality criteria, in a constrained tetrahedralization which respects domain bound-

aries, some badly shaped cells may persist in proximity to sharp, constraining features (e.g.,

where bounding surfaces meet at acute dihedral angles; Si, 2015). For all tetrahedral mesh-

ing performed in this study, a maximum radius-to-edge ratio of 1.2 and minimum dihedral

angle of 5� were enforced. These quality criteria were assessed to provide a good balance

between mesh refinement for accuracy and problem size, as controlled by the number of

cells in the mesh.

In terms of cell size, small cell size offers greater accuracy, but a discretization with

a large number of small cells costs more computationally than one with a small number

of large cells (Cheng et al., 2012). Mesh generation must balance problem size, in terms

of number of cells in the mesh, and accuracy in numerical solution. In practice, the mesh

must be sufficiently refined to accurately represent: (1) the geometry of the earth’s struc-

ture, and (2) spatial variations in the EM field solutions, particularly in proximity to the

EM source, where the fields vary rapidly in space, and in proximity to the EM receivers,

where a high accuracy in solution is desired (Plessix et al., 2007; Vieira da Silva et al.,

2012). Further, in marine CSEM models, refinement at the receivers must be sufficient to

capture the jump in electric field due to the discontinuity of its normal component across the

sea-sediment (seafloor) conductivity boundary. While refinement is important for solution

accuracy, having small cell size extend to the boundaries of the domain drastically increases

the problem size, memory requirements, and convergence time of the iterative solver. For

computational efficiency, the mesh is ideally fine near the centre, where the source is ap-

proximately located, and increasingly coarse toward the edges (Hohmann, 1988; Newman
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and Alumbaugh, 1995; Streich, 2009).

Some numerical schemes attempt to automate the process of balancing refinement,

problem size, and accuracy by using adaptive mesh refinement based on an a posteriori

error estimate, where refinement is only added where necessary to improve the solution

(e.g., Key, 2012c; Schwarzbach et al., 2011). The approach taken in this study for mesh

refinement in the vicinity of the source and along receiver lines was manual insertion of

rectangular regions or blocks which enforced refinement by virtue of their dimensions or

proximity to constraining boundaries. For example, a block of dimensions 5 m ⇥ 5 m ⇥ 5

m might be inserted above or below the source, and a rectangular block of dimensions 10

m ⇥ 10 m ⇥ receiver line length might be inserted at z = 10 m above the seafloor, along

the simulated receiver line. These blocks were assigned the resistivity of the background so

that their presence did not modify the electrical structure of the model.

4.2.3 Domain boundaries

When enforcing Dirichlet boundary conditions of the first order (i.e., the values of the fields

are fixed at the boundaries of the domain; see Section 4.3.1), we assume that the field val-

ues go to zero at the boundaries of the mesh. To ensure that this is a valid assumption, the

boundaries of the volume must be placed far enough from the source that the field magni-

tudes become negligible at the boundaries. Placement of domain boundaries at sufficient

distance from the source is also required to maintain the validity of the assumption of zero

energy reflection at the boundaries of the domain (Newman and Alumbaugh, 1995). For

marine CSEM, where the decay of the fields is dictated by skin depth, we require that the

modelling domain extends several skin depths, ideally defined by the most resistive ele-

ment of the earth system, beyond the source location. A practical guideline is to place the

boundaries at approximately 8dave from the source location r0 = (x0,y0,z0), where dave is

the average skin depth of the system, or the skin depth of the most resistive background
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component, e.g., the resistive sedimentary half-space of the marine two-halfspace model

(SeyedMasoud Ansari, personal communication, 2013). This is only a general guideline,

as placement of receivers as well as location and extent of anomalous bodies within the do-

main may dictate adjustment of the boundaries to improve the convergence of the iterative

solver (SeyedMasoud Ansari, personal communication, 2013). Plessix et al. (2007) sug-

gest a similar skin depth-based approach for defining mesh boundaries. In their automated

gridding algorithm based on source location and frequency, grid dimensions are estimated

as
⇥

x0 � rxdave,x0+ rxdave
⇤

⇥
⇥

y0 � yxdave,y0+ rydave
⇤

⇥
⇥

zair,z0+ rzdave
⇤

,

where rx and ry are constants between 4 and 8, depending on the location of receivers, rz is

around 4, zair is the z-coordinate (depth) of the air-sea interface, and dave is the average skin

depth of the domain, which generally corresponds to the skin depth of a homogeneous sed-

iment background. When considering the choice of constants rx and ry, for a homogeneous

space, at four skin depths, the amplitudes of the EM fields have been reduced by 98%, and

at eight skin depths, the amplitudes have been reduced by 99.97% (Plessix et al., 2007).

4.3 The CSEM3DFWD forward code

The CSEM3DFWD forward code (Ansari and Farquharson, 2011, 2013, 2014; Ansari,

2014; Ansari et al., 2015) was written by Dr. Seyedmasoud Ansari, former PhD student

of the Department of Earth Sciences, Memorial University of Newfoundland and Labrador,

St. John’s, Newfoundland. The method is based on a scalar-vector potential formulation of

the induction EM problem with finite-element discretization based on the Garlerkin variant

of the method of weighted residuals. Decomposition of the electric field in terms of scalar

and vector potentials allows, in theory, investigation of the inductive and galvanic contri-

butions to the EM response, which in turn provides insight into the physical mechanisms
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involved in generation of a specific anomalous response. The code allows simulation of

various controlled-source configurations, including magnetic point sources, loop sources,

and grounded wire or electric dipole sources in both horizontal and vertical orientations.

Development of the CSEM3DFWD code was ongoing during completion of this work

and continues at present, with the result that two different versions of the code were used

in the course of this study. The following methodology describes the ungauged, quasi-

static code presented in Ansari and Farquharson (2014) and Ansari (2014), which was used

for all models not containing an air layer. For all models containing an air layer, an un-

gauged version which extended application to non-quasi-static, damped wave behaviour

was employed; modifications with respect to the previous quasi-static version are described

in Section 4.3.4. A similar version of the non-quasi-static code, modified to include explicit

gauge conditions for unique potentials, is described in Ansari et al. (2015).

4.3.1 Problem formulation

From Section 2.1.6, in the quasi-static limit (i.e., s � ew), Faraday’s and Ampère’s laws

in the frequency-domain reduce to

—⇥E+ iwB= 0 (4.1)

and

—⇥H�J= Jse, (4.2)

and the electric field Helmholtz equation for a homogeneous region reduces to

—⇥—⇥E+ iwµ0sE=�iwµ0Jse, (4.3)
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where we have made the assumption that µ = µ0. For low frequencies characteristic of

EM induction methods, equation (4.3) poses difficulties to numerical methods due to the

instability of the numerical solution with vanishing conductivity term iwµ0sE as iwµ0s !

0. The matrix system arising from discretization of equation (4.3) is ill-conditioned, and

iterative methods may struggle or fail to converge (Sasaki and Meju, 2009; Ansari, 2014).

To avoid numerical difficulties associated with a vanishing conductivity term, the electric

field is decomposed in terms of a scalar potential f (r,w) and vector potential A(r,w).

The Helmholtz theorem states that any 3D vector field F which is continuous and zero

at infinity can be resolved as the sum of the gradient of a scalar potential f and the curl of

a vector potential A, i.e., (Blakely, 1996)

F= —f +—⇥A. (4.4)

As a corollary to the Helmholtz theorem, since the divergence of the magnetic flux density

B is zero, i.e., — ·B= 0, there exists some vector potential A such that

B= —⇥A. (4.5)

Substituting equation (4.5) into equation (4.1), we obtain

—⇥ (E+ iwA) = 0. (4.6)

Another corollary to the Helmholtz theorem states that since —⇥ (E+ iwA) = 0, there

exists some scalar potential f for which

E+ iwA=�—f .
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Rearranging, we obtain an expression for the electric field E in terms of the vector potential

A and scalar potential f ,

E=�iwA�—f . (4.7)

Substituting this expression for E into equation (4.3), we obtain

—⇥—⇥A+ iwµ0sA+µ0s—f = µJse. (4.8)

This vector equation comprises three components in four unknowns: the three components

of vector potential A as well as the scalar potential f . An additional equation is thus re-

quired to solve for A and f . To form a square system, we include the continuity equation,

— ·J=

8

>

>

<

>

>

:

�— ·Jse at source location, and

0 everywhere else,
(4.9)

which we have shown, in Section 2.1, can be derived from Maxwell’s equations by taking

the divergence of Ampère’s law and substituting Gauss’s law, i.e., — ·D = 0. Using the

constitutive relation J= sE and substituting equation (4.7) into (4.9) yields

�iw— · (sA)�— · (s—f) =�— ·Jse. (4.10)

Equations (4.8) and (4.10) form a square system that is diagonally dominated by the vector

and scalar potential terms (Ansari and Farquharson, 2014). Using the finite-element method

of discretization, the system is solved for A and f . In order to obtain a unique solution,

boundary conditions must be applied to the boundaries of the computational domain. We

introduce W for the computational domain volume and G as its outer boundary. Dirichlet
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boundary conditions are applied at the outer boundary G of the form

(n⇥A)G = 0, (4.11)

and

fG = 0. (4.12)

4.3.2 Finite-element discretization

To discretize the PDE boundary-value problem outlined in Section 4.3.1, the Galerkin vari-

ant of the method of weighted residuals is used. In the method of weighted residuals, the

solution of the boundary value problem is approximated by minimizing the weighted resid-

ual of the relevant equations over the entire domain. The original boundary value problem

is then satisfied in a weak, weighted-integral (i.e., average) sense over the entire domain.

To apply the finite-element method, the computational domain is first subdivided into

subdomains, also known as cells or elements (note however that the term finite element

can also refer to the more primary elements of a cell, such as the nodes and edges; e.g.,

Schwarzbach et al., 2011). Unstructured tetrahedral meshes are employed because they are

able to accurately represent curvilinear boundaries and allow for local refinement within the

mesh. Within each element, the vector and scalar potentials are interpolated from values

calculated at the edges and nodes of each element, respectively. The vector and scalar

potentials are expressed as expansions in a finite number of vector and scalar basis functions

associated with the element edges and nodes, i.e.,

A=
nA

Â
j=1

AjN j (4.13)
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and

f =
nf

Â
k=1

fkNk, (4.14)

where N j and Nk are edge-element and nodal-element basis functions, respectively. The

expansion coefficients Aj and fk respectively represent the magnitude of the vector potential

at the jth edge and magnitude of the scalar potential at the kth node and are the unknowns

or degrees of freedom of the system. The upper summation bounds nA and nf represent

the number of edges and number of nodes within each tetrahedral element, i.e., nA = 6 and

nf = 4.

The behaviour of edge- and nodal-element basis functions at the boundaries of an ele-

ment make them a judicious choice for approximation of the vector and scalar potentials

from a physical standpoint; continuity of the tangential component of the electric field is

enabled by continuity of the tangential components of N and —N, and discontinuity of the

normal component of the electric field is enabled by discontinuity of the normal component

of —N (Figure 4.5). Further, since — ·N = 0 by construction, the divergence-free condi-

tion for the electric field, i.e., — ·E = 0, and the Coulomb gauge condition, — ·A = 0, are

implicitly satisfied within a source-free element (Ansari and Farquharson, 2014).

To apply the method of weighted residuals, we require a weak formulation of the prob-

lem described by equations (4.8) and (4.10). To accomplish this, we form residuals that we

require to be zero in a weak, weighted-average sense. A vector residual r is formed from

equation (4.8),

r= —⇥—⇥ Ã+ iwµ0sÃ+µ0s—f̃ �µ0Jse, (4.15)

where Ã and f̃ represent the approximated vector and scalar potentials. This vector residual

is minimized by setting its inner product with vector weighting function W on the domain

W to zero, i.e.,

R=
Z

W
W · rdW = 0. (4.16)
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Figure 4.5. Illustration of the behaviours of vector edge-element and scalar nodal-element basis
functions across two adjacent tetrahedra, (i, j,k,m) and (i, j,k, l), with shared face (i, j,k). Colour
indicates magnitude of the plotted quantity and arrows indicate direction. Panel (a) illustrates the
neighbouring tetrahedra and the grey-coloured plane on which the scalar and vector (arrow) plots of
panels (b)-(f) are projected; panel (b) is a scalar plot of the basis function Nj; from the left to right
cell, Nj is continuous. Panel (c) is a vector plot of the gradient of the scalar basis function, —Nj;
the tangential component of —Nj is continuous across the shared face, while its normal component
is discontinuous. Panel (d) is a vector plot of the vector basis function N ji; N ji is purely tangential
along and continuous across the shared face. Panels (e) and (f) are plots of additional vector basis
functions N jm and N jl associated with edges that are not along the shared face; across the shared
face, they are purely normal. From Ansari and Farquharson (2014).
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If the residual r can be made to be orthogonal to W, the inner product will be zero and

an accurate solution will be obtained. By substituting (4.15) into (4.16) and applying in-

tegration by parts to the first inner product term, W ·—⇥—⇥ Ã, we obtain the weighted

PDE

Z

W
(—⇥W) ·

�

—⇥ Ã
�

dW�
Z

g+G
W⇥

�

—⇥ Ã
�

·ndS

+ iwµ0
Z

W
sW · ÃdW+µ0

Z

W
sW ·—f̃dW = µ0

Z

W
W ·JsedW,

(4.17)

where g denotes the inner boundaries (i.e., element interfaces) of the mesh. A scalar residual

r is similarly constructed from equation (4.10),

r =�iw— ·
�

sÃ
�

�— ·
�

s—f̃
�

+— ·Jse, (4.18)

and is minimized by setting the integral of its product with scalar weighting function v over

the domain G to zero, i.e.,

r =
Z

W
vrdW = 0. (4.19)

By substituting (4.18) into (4.19) and applying integration by parts to the volume integrals

involving both potentials A and f , we obtain

iw
Z

W
—v ·sÃdW� iw

Z

g+G
vsÃ ·ndS

+
Z

W
—v ·s—f̃dW�

Z

g+G
vs—f̃ ·ndS=�

Z

W
v— ·JsedW.

(4.20)

The surface integral terms in equation (4.20) describe the behaviour of the normal current

density contributions from A and f . Using the relation J̃ = s Ẽ = s
�

�iwÃ�—f̃
�

, the
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surface integral terms can be combined into

iw
Z

W
—v ·sÃdW+

Z

W
—v ·s—f̃dW+

Z

g+G
vJ̃ ·ndS

=�
Z

W
v— ·JsedW.

(4.21)

With appropriate choice of weighting functions W and r, the surface integrals of equations

(4.17) and (4.21) can be made to be zero at the inner mesh boundaries (shared cell faces)

via mutual cancellation of terms in neighbouring cells. The surface integrals at the outer

mesh boundary G are forced to zero to conform to the Sommerfeld boundary radiation

condition that no energy reflects back from the infinite outer boundary. Regardless, the

outer boundary G is chosen to be sufficiently far from the source to effectually satisfy this

condition. In the Galerkin variant of the method of weighted residuals, the basis functions

used to approximate the vector and scalar potentials are used as the weighting functions,

i.e.,

W= N (4.22)

and

r = N. (4.23)

Using these basis functions for the weighting functions, substituting equations (4.13) and

(4.14) into equations (4.17) and (4.21), and expanding over the entire tetrahedralized do-

main, we obtain the finite-element equations

Nedges

Â
j=1

Ã j

Z

W
(—⇥Ni) ·

�

—⇥N j
�

dW+ iwµ0
Nedges

Â
j=1

Ã j

Z

W
sNi ·N jdW

+µ0
Nnodes

Â
k=1

f̃k
Z

W
sNi ·—NkdW = µ0

Z

W
Ni ·JsedW

(4.24)
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and

iw
Nedges

Â
j=1

Ã j

Z

W
—Nl ·

�

sN j
�

dW+
Nnodes

Â
k=1

f̃k
Z

W
—Nl · (s—Nk)dW

=�
Z

W
Nl— ·JsedW,

(4.25)

where i = 1, ...,Nedges, l = 1, ...,Nnodes, and Nedges and Nnodes are respectively the total

number of edges and total number of nodes in the mesh. The system of equations formed

by (4.24) and (4.25) is solved for the coefficients Ã j of the approximated vector potential

and coefficients f̃k of the approximated scalar potential.

4.3.3 Solution of the discrete system

The discrete system formed by equations (4.24) and (4.25) can be represented in matrix

form as:
0

B

@

C+ iwµ0D µ0F

iwG H

1

C

A

0

B

@

Ã

f̃

1

C

A

=

0

B

@

µ0S1

S2

1

C

A

, (4.26)

where C, D, F, G, and H are inner-product functionals defined by the left-hand side inte-

grals of equations (4.24) and (4.25), i.e.,

C=F (N) , (4.27a)

D=F (s ,N) , (4.27b)

F=F (s ,N,—N) , (4.27c)

G=F (s ,N,—N) , and (4.27d)

H=F (s ,—N) , (4.27e)
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or more specifically,

Ci j =
Z

W
(—⇥Ni) ·

�

—⇥N j
�

dW, (4.28a)

Di j =
Z

W
sNi ·N jdW, (4.28b)

Fik =
Z

W
sNi ·—NkdW, (4.28c)

Gl j =
Z

W
—Nl ·

�

sN j
�

dW, and (4.28d)

Hlk =
Z

W
—Nl · (s—Nk)dW, (4.28e)

where i, j = 1, ...,Nedges and l,k = 1, ...,Nnodes. Note that G is the transpose of F. S1 and

S2 are source terms defined by the right-hand side integrals of equations (4.24) and (4.25),

S1 =
Z

W
Ni ·JsedW (4.29a)

and

S2 =�
Z

W
Nl— ·JsedW. (4.29b)

The inner-product functionals of the coefficient matrix, (4.28a) – (4.28e), describe the in-

teractions among the vector basis functions, among the nodal basis functions, and between

the vector and nodal basis functions. The terms of the source vector, (4.29a) and (4.29b),

describe the interactions between the basis functions and the source function. Given the

choice of linear edge-element and nodal-element basis functions for the expansions of the

approximated vector and scalar potentials, closed-form formulae can be derived for the

integrals in equations (4.28) and (4.29).

Since options are limited for preconditioning of linear systems with complex coefficient

matrices, the complex-valued system is converted to a real-valued system via decomposi-
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tion into real and imaginary parts. Consider a system of the form

Au= b,

where A is a complex-valued matrix of order M, and u,b 2 CM. Decomposing the system

into real and imaginary parts i.e.,

(R+ iS)(x+ iy) = (a + ib ) ,

where R and S are real-valued matrices of order M and x,y,a,b 2 RM, the system can be

rewritten in real-valued form as (Axelsson and Kucherov, 2000)

0

B

@

R �S

S R

1

C

A

0

B

@

x

y

1

C

A

=

0

B

@

a

b

1

C

A

.

Following this model, the complex matrix equation (4.26) can instead be solved in its equiv-

alent real-valued form

0

B

B

B

B

B

B

B

@

C �wµ0D µ0F 0

wµ0D C 0 µ0F

0 �wG H 0

wG 0 0 H

1

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

@

ÃR

ÃI

f̃R

f̃ I

1

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

@

µ0S1

0

S2

0

1

C

C

C

C

C

C

C

A

, (4.30)

where ÃR, ÃI , f̃R, and f̃ I are the real and imaginary parts of the coefficients for the approxi-

mated vector and scalar potentials, respectively. Note that the real-valued coefficient matrix

is twice the size of its complex equivalent, and so the system now has twice the number of

unknowns.

In theory, to obtain a unique solution, the Dirichlet boundary conditions of equations
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(4.11) and (4.12) must be implemented on G, the outer boundary of the mesh. In the finite-

element discretization, on boundary G we have n⇥A= Aj and f = fk, where subscripts j

and k respectively denote all edges and all nodes on boundary G. To enforce the Dirichlet

conditions that coefficients Aj and fk associated with boundary G must be zero, all elements

of the rows of the coefficient matrix corresponding to the boundary edges and nodes, with

the exception of those elements occurring on the diagonal, are set to zero. The elements in

the corresponding rows of the source vector are also set to zero. In practice, it was found

that elimination of these rows in the coefficient matrix and source vector is unnecessary

(Ansari and Farquharson, 2014).

The matrix equation (4.30) is iteratively solved using the generalized minimum residual

(GMRES) solver from SPARSKIT (Saad, 1994). To improve convergence, a dual-threshold

incomplete LU factorization (ILUT) preconditioner, also from SPARSKIT, was employed.

Representing the matrix equation symbolically as Au = b, GMRES provides an approxi-

mate solution that minimizes the residual norm ||Au� b||2. After each iteration, GMRES

outputs the residual norm ||Aum� b||2, where um is the approximate solution at iteration

m. The residual norm can be plotted against the number of iterations to examine the con-

vergence behaviour of the solution. Ideally, this curve exhibits an initial rapid decrease in

the residual norm, followed by stabilization (i.e., convergence) at later iterations. For the

explicitly ungauged A – f system presented here, it has been demonstrated that conver-

gence associated with a decrease of 10 to 12 orders of magnitude in the residual norm is

sufficient for the iterative solver to provide an accurate solution (Ansari and Farquharson,

2014; Ansari, 2014).

Once the matrix equation (4.30) is solved for the real and imaginary parts of the vector

and scalar potential expansion coefficients, the electric field is calculated using equation

(4.7), i.e.,

E=�iwA�—f ,
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where A and f are obtained using the basis function expansions defined in equations (4.13)

and (4.14). Using equation (4.5), i.e., B = — ⇥A, and substituting H for B using the

constitutive relation B= µ0H, the magnetic field is calculated as

H=
1
µ0

—⇥A. (4.31)

4.3.4 Revisions for the non-quasi static regime

For non-quasi-static, damped wave behaviour, Ampère’s law retains the displacement cur-

rent term iewE, i.e.,

—⇥H� (s + iew)E= Jse, (4.32)

and the electric field Helmholtz equation consequently retains terms explicit in e , i.e.,

—⇥—⇥E+ iµ0wsE� iew2E=�iµ0wJse. (4.33)

Following the same process as done previously, we arrive at the decomposed system of

equations

—⇥— ⇥A+
�

iwµ0s +w2µe
�

A+(µ0s + iwµ0e)—f = µ0Jse (4.34)

and

�iw— · (sA)�— · (s—f)+w2e— ·A� iwe— ·—f =�— ·Jse. (4.35)

This system replaces the previous quasi-static system defined by equations (4.8) and (4.10).

Finite-element discretization of the new system defined by equations (4.34) and (4.35)
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yields a discrete system represented by the matrix equation

0

B

@

C+ iwµ0D+w2µ0D0 µ0F+ iwµ0F0

iwG+w2G0 H+ iwH0

1

C

A

0

B

@

Ã

f̃

1

C

A

=

0

B

@

µ0S1

S2

1

C

A

, (4.36)

where C, D, D0, F, F0, G, G0, H and H0 are inner-product functionals defined by the nodal-

element basis functions, edge-element basis functions, and physical properties s and e ,

Ci j =
Z

W
(—⇥Ni) ·

�

—⇥N j
�

dW, (4.37a)

Di j =
Z

W
sNi ·N jdW, (4.37b)

D0
i j =

Z

W
eNi ·N jdW, (4.37c)

Fik =
Z

W
sNi ·—NkdW, (4.37d)

F 0
ik =

Z

W
eNi ·—NkdW, (4.37e)

Gl j =
Z

W
—Nl ·

�

sN j
�

dW, (4.37f)

G0
l j =

Z

W
—Nl ·

�

eN j
�

dW, (4.37g)

Hlk =
Z

W
—Nl · (s—Nk)dW, and (4.37h)

H 0
lk =

Z

W
—Nl · (e—Nk)dW, (4.37i)

where i, j = 1, ...,Nedges and l,k = 1, ...,Nnodes. The discrete system represented by matrix

equation (4.36) is solved iteratively as described in Section 4.3.3.
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Chapter 5

Synthetic marine models

In this chapter, 3D finite-element solutions are presented for several simple marine mod-

els whose solutions are compared to 1D semi-analytic or 3D numerical solutions existing

in the literature. Structural elements common to offshore exploration environments, such

as topography, finite water depth, and thin, laterally finite resistive bodies were individ-

ually introduced in several simple synthetic models, which allowed modelling challenges

associated with each element to be individually investigated and addressed. The suite of

simple marine models permitted gradual familiarisation with model-building, meshing, and

forward-modelling software, and served to validate the accuracy of the CSEM3DFWD code

for simulation of CSEM data in marine environments. Further, results demonstrated the

necessity of 3D modelling to account for the effect on the observed CSEM response of

structure which varies in three dimensions, however simplistically. Convergence curves,

i.e., plots of the residual norm versus the number of iterations, are presented for several

examples to demonstrate the behaviour of the iterative solution. Convergence behaviour

and solution smoothness together provide a gauge of the acceptability of a numerical solu-

tion, which is particularly important for models for which analytic or precedent numerical

solutions do not exist. All finite-element solutions presented in this chapter were computed
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on an Apple Mac Pro with 2 ⇥ 4-core 2.8 GHz Intel Xeon processors and 24 GB RAM,

with the exception of the solutions for the finite-water depth model (Section 5.4), which

were computed on a HP ProLiant SL250s Gen8 compute node with 2 x 8-core 2.6 GHz

Intel Xeon processors and 96 GB RAM.

5.1 Marine halfspace model

The marine halfspace model is the most basic of marine models and consists of two conduc-

tive halfspaces: an upper 3.3 S/m (0.3 ohm-m) sea halfspace and a lower 1 S/m (1 ohm-m)

sediment halfspace. Figure 5.1 illustrates the unstructured mesh for the model, which has a

domain of |x|, |y|, |z| 10 km. A 1 Hz, unity dipole moment (1 Am) HED was simulated at

(x,y,z) = (0,0,100) m. An x-directed receiver line was simulated for |x| 5 km with 50 m

receiver spacing. Cell volume in the mesh varied from 2.0088 m3 to 2.3677⇥1010 m3. The

mesh was refined near the source, where the fields vary rapidly, and along the simulated

receivers, which were located at a height of 0.0001 m above the seafloor, or sea-sediment

interface. Refinement at source and receivers was achieved via insertion of blocks, or rect-

angular regions; these inserted blocks had the same conductivity as the regions in which

they were inserted so as not to modify the conductivity structure of the earth model. Note

how the mesh is highly refined near its centre, but that cells are allowed to increase in size

toward the outer boundary of the model domain. This grading from small cells in the centre

of the mesh to large cells at its boundaries is ideal for the conditioning of the system matrix

and the convergence of the iterative solver.

The unstructured mesh consisted of 507,236 elements, 81,323 nodes, and 588,960

edges, making the total number of unknowns in the associated finite-element system 1,340,566.

A Krylov subspace dimension of 200 was used for the GMRES solver and a fill-in factor

of 3 was used for the ILUT precondritioner. The iterative solver had a computation time of
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(a) xz-section of the full unstructured mesh.

(b) Enlarged xz-section of the unstructured mesh for better illustration of the refinement at source
and receivers.

Figure 5.1. xz-section for y = 0 km of the unstructured mesh for the marine halfspace model,
consisting of a lower 1 S/m (1 ohm-m) sediment halfspace and upper 3.3 S/m (0.3 ohm-m) sea
halfspace. The computational domain is |x|, |y|, |z|  10 km. Refinement was manually enforced
in the vicinity of the source, located at (x,y,z) = (0,0,100) m, and along the receiver line, which
extended to |x| 5 km, by insertion of blocks having the same conductivity as their background.

90



1e−15
1e−14
1e−13
1e−12
1e−11
1e−10
1e−09
1e−08
1e−07
1e−06
1e−05
0.0001

0.001
0.01

R
es

id
ua

l n
or

m

1000 2000 3000 4000 5000 6000
Iteration number

Figure 5.2. Residual norm versus number of iterations for the marine halfspace model with a simu-
lated source frequency of 1 Hz. After approximately 4500 iterations, the iterative solution stabilized
with a residual norm near 10�14.

approximately 3130 s (⇠ 0.9 h) for 6000 iterations and required approximately 8 GB (7719

MB) of memory; the total run time for CSEM3DFWD was 8007 s (⇠ 2.2 h). Figure 5.2

illustrates the residual norm as a function of number of iterations. A residual norm of 10�14

was achieved after approximately 4500 iterations, which represents a decrease of 11 orders

of magnitude.

Figure 5.3 illustrates the real and imaginary (in-phase and quadrature) parts of the finite-

element solutions for the three non-vanishing inline field components, Ex, Hy, and Ez. 1D

Hankel transform solutions, computed using the MARDIP1D code described in Appendix

A, are plotted alongside the 3D finite-element numerical solutions to demonstrate the accu-

racy of the numerical solutions. It can be seen that the CSEM3DFWD solutions generally

agree very well with the 1D Hankel transform solutions, with some misfit at offsets where

the fields vary rapidly, e.g., at near offset in proximity to the source, and where the fields

change sign (cusps in field amplitude plots of Figure 5.3). Marine CSEM data is typically
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Figure 5.3. The real and imaginary parts for the non-vanishing inline field components Ex, Hy, and
Ez for the marine halfspace model. 1D Hankel transform (HT) solutions are plotted alongside the
3D finite-element (FE) solutions to demonstrate the accuracy of the latter. The numerical solution
matches the semi-analytic 1D solution very well, with some misfit where the fields vary rapidly, i.e.,
at near offset and where the fields change sign (cusps in above plots).
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presented in amplitude-phase form to emphasize amplitude and phase anomalies arising

from galvanic and inductive field interactions within the subsurface. Figure 5.4 presents the

amplitude and phase for the inline horizontal electric field Ex.

5.2 Canonical disk model

The canonical disk model, first presented in Constable and Weiss (2006), and later in Weiss

and Constable (2006), is a popular model for demonstration of 3D modelling schemes. The

model is a 3D adaptation of the 1D canonical oil field model inspired by the Girassol oil

field located offshore Angola, which was the site of the first CSEM field trial for industry

(Ellingsrud et al., 2002; Constable, 2010). The baseline disk model consists of a 1 km-

diameter, 100 m-thick, 0.01 S/m (100 ohm-m) disk buried at a depth of 1 km within a 1

S/m (1 ohm-m) halfspace, with an overlying 3.3 S/m (0.3 ohm-m) sea halfspace (Figure

5.5). The source parameters illustrated in Figure 5.5 correspond to the configuration used

for the simulations presented in Figure 5.10.

Finite-element solutions were computed for the canonical disk model for various disk

diameters to demonstrate the behaviour of the CSEM response to a resistive target of finite

lateral extent. A 1 Hz, 1 Am HED was simulated above the edge of the disk at z = 100

m above seafloor, as illustrated in Figure 5.5. An x-directed receiver line was simulated

to extend over the disk to a maximum offset of 8 km, with receiver spacing of 50 m. The

receivers were positioned directly above the seafloor at z = 0.0001 m. Figure 5.6 illustrates

sectional views of the unstructured mesh for the 2 km-diameter disk model. The full model

domain had dimensions of 20 km ⇥ 20 km ⇥ 20 km, and was composed of 81,674 nodes,

589,923 edges, and 507,872 cells. Cell volumes ranged from 1.0125 m3 to 2.1081⇥1010

m3, with greater refinement around the source and receivers. The Krylov subspace dimen-

sion for GMRES was set to 200 and the fill-in factor for the ILUT preconditioner was set to
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Figure 5.4. The amplitude and phase of the inline horizontal electric field Ex for the marine halfs-
pace model. The 1D Hankel transform (HT) solution is plotted alongside the 3D finite-element (FE)
solution to emphasize the accuracy of the latter.
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100 m
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1000 m

Figure 5.5. Schematic of the baseline canonical disk model, which consists of a 1 km-diameter, 100
m-thick, 0.01 S/m (100 ohm-m) disk buried at a depth of 1 km within a 1 S/m (1 ohm-m) halfspace,
with an overlying 3.3 S/m (0.3 ohm-m) sea halfspace. The illustrated source parameters correspond
to the configuration used for solutions presented in Figure 5.10.

3 for all examples. For the 2 km-diameter disk model, the iterative solution required 5950

s (⇠ 1.65 h) for 10,000 iterations and 7724 MB of memory. Convergence was achieved af-

ter 6000 iterations with a residual norm decrease of approximately 11 orders of magnitude

(Figure 5.7).

Table 5.1 summarizes the mesh characteristics and iterative solution information for

the different diameter disk models. The 3 km-diameter disk model was notable in that it

required a greater number of cells in the unstructured mesh and that the solution did not

converge in less than 10,000 iterations (Figure 5.8, compare to Figure 5.7). Because of its

greater size, to attain an acceptable solution in a reasonable amount of time or iterations, the

Krylov subspace dimension for GMRES was set to 400. The 3 km-diameter disk problem

required 12 GB for solution and 10,161 s for 10,000 iterations, where convergence was

achieved after approximately 8000 iterations (Figure 5.9).

The finite-element solutions for the inline electric field amplitude and phase for various

disk diameters are illustrated in Figure 5.10, along with the 1D Hankel transform solutions

for an infinite-extent resistive layer and a homogeneous sediment halfspace (i.e., no resistive
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Figure 5.6. Unstructured mesh for the 2 km-diameter canonical disk model. The model consists
of a 0.01 S/m (100 ohm-m), 100 m-thick, 2 km-diameter disk embedded at 1 km-depth within a 1
S/m (1 ohm-m) sediment lower halfspace, and with an overlying 3.3 S/m (0.3 ohm-m) sea upper
halfspace. The full domain measures 20 km ⇥ 20 km ⇥ 20 km. Refinement was manually enforced
in the vicinity of the 1 Hz, 1 Am HED source located at (x,y,z) = (�1000,0,100) m, above the
edge of the disk, and along the x-directed receiver line extending to offset of 8 km.
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Figure 5.7. Residual norm versus number of iterations for the 2 km-diameter disk model. The
dimension of the Krylov subspace (dim_k) for GMRES was set to 200. After approximately 6000
iterations, the iterative solution stabilized with a residual norm near 10�14, which represents a de-
crease of 11 orders of magnitude from its initial value.

Table 5.1. Run information for the canonical disk model for different disk diameters, including total
number of cells in the input mesh, iterative solver memory usage and run time, and total run time
for CSEM3DFWD. The GMRES Krylov subspace dimension was set to 200 and the ILUT fill-in
factor was set to 3 for all examples, with the exception of the 3 km-diameter disk model, which used
a Krylov subspace dimension of 400.

Disk diameter Total number
of cells in mesh

GMRES
memory usage

GMRES run
time

CSEM3DFWD
total run time

(km) (GB) (h) (h)

1 453,660 7.2 1.2 2.3

2 507,872 7.7 1.7 3.0

3 656,189 12 2.8 4.9

4 458,859 7.2 1.2 2.3

5 488,547 7.5 1.3 2.5
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Figure 5.8. Residual norm versus number of iterations for the 3 km-diameter disk model, where the
Krylov subspace dimension (dim_k) for GMRES was set to 200. Due to the larger problem size of
the 3 km-diameter disk model, the solution did not converge in less than 10,000 iterations.
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Figure 5.9. Residual norm versus number of iterations for the 3 km-diameter disk model, where
the Krylov subspace dimension (dim_k) for GMRES was set to 400. The solution converged after
approximately 8000 iterations.
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Figure 5.10. The inline horizontal electric field amplitude and phase for the canonical disk model for
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(upper dashed black line) are plotted for comparison.
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layer present). The infinite-extent resistive layer is the 1D analogue to the 3D disk since the

resistive layer has the same thickness and burial depth as the disk. The results demonstrate

the edge effects of laterally finite layers on the CSEM response: for offsets less than the

disk diameter, the 3D finite-element solution follows the 1D solution for an infinite-extent

resistive layer, but for offsets greater than the disk diameter, the 3D solution falls below the

1D resistive layer solution and exhibits the same exponential decay rate as the halfspace

solution. The 1 km-diameter disk is essentially invisible to the CSEM method with less

than a 20% difference in amplitude relative to the homogeneous halfspace in its asymptotic

limit. In this instance, 1D modelling provided a best case, upper estimate of the target

response, but 3D modeling was required to properly account for the effects of finite target

extent.

5.3 Seafloor topography model

Unstructured meshes are advantageous over rectilinear meshes in that they are able to accu-

rately resolve surfaces with complex geometry without staircasing effects. To demonstrate

the applicability of unstructured meshes and the finite-element method to modelling of real-

istic, complicated geometries, results are presented here for a seafloor topography model in

which an irregular surface is introduced as the interface between a lower 1 S/m (1 ohm-m)

sediment halfspace and an upper 3.3 S/m (0.3 ohm-m) sea halfspace.

The seafloor topography model presented here represents our first attempt to include

irregular structural surfaces in a model. Irregular surfaces act as constraining features in

the mesh tetrahedralization and therefore have the potential to interfere with generation of

a quality mesh. In this instance, the challenge of generating a mesh of sufficient quality

for iterative solution was further complicated by the requirement for refinement along an

irregular surface; because of the irregularity of the seafloor, a different approach to receiver
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refinement had to be taken instead of the usual approach for flat seafloor models, which was

to insert rectilinear blocks in proximity to the seafloor.

The seafloor topography model was based on the ‘mmal25pm’ mesh available from

the INRIA (Institut national de recherche en informatique et en automatique: French Insti-

tute for Research in Computer Science and Automation) Gamma Group 3D mesh research

database (Figure 5.11). This mesh was previously incorporated in the seafloor topography

model of Schwarzbach et al. (2011), for which a finite-element solution was presented; the

aim in this study was to duplicate the results of Schwarzbach et al. (2011). The surface

mesh has a regular, rectilinear node spacing of 25 m, and total dimensions of 4 km ⇥ 4 km.

The nodal coordinates of the original mesh, as available from INRIA, were translated such

that the center of the mesh corresponded to (x,y,z) = (0,0,0)m. Transformation to relative

coordinates facilitated manipulation of and reference to the mesh, and had also been done

previously in Schwarzbach et al. (2011). An additional mesh, ‘mmal200pm’ (Figure 5.12),

which represents the same topography as that of ‘mmal25pm’, but with a node spacing of

200 m instead of 25 m, was also used in the development of the final version of the seafloor

topography mesh.

A 1 Am, 1 Hz, x-oriented HED source centered at (x,y,z) = (0,0,100)mwas simulated.

The x- and y-directed receiver lines followed the topography of the seafloor, with a receiver

spacing of 10 m and clearance of 0.0001 m. The receiver line was extended here to |x| 

1 km, as compared to the shorter offset range of |x|  500 m used in Schwarzbach et al.

(2011), in the interest of having a greater range of offsets for comparison of the 3D finite-

element seafloor topography solution to the 1D flat seafloor solution. Because a very high

accuracy was desired for comparison to the solution of Schwarzbach et al. (2011), greater

refinement was imposed in the vicinity of the source and along the near offset as compared

to the degree of refinement that would typically be employed.

The seafloor topography model implemented a domain of |x|, |y|, |z|  2 km to be com-
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Figure 5.11. Seafloor topography mesh ‘mmal25pm’, available from the INRIA Gamma Group
3D mesh research database. The dimensions of the mesh are 4 km ⇥ 4 km, with a rectilinear
node spacing of 25 m. The mesh coordinates have been translated such that the centre of the mesh
corresponds to (x,y,z) = (0,0,0) m. Topography z varies from �220 m to +180 m.
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Figure 5.12. Seafloor topography mesh ‘mmal200pm’, available from the INRIA Gamma Group
3D mesh research database. The mesh contains the same topography as ‘mmal25pm’, but with a
sampling, or node spacing, of 200 m.
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parable to the domain dimensions of �2 km  x,y  2 km, �1.5 km  z  2.5 km used

by Schwarzbach et al. (2011). Several iterations of the mesh design process were required

before a mesh was obtained which was suitable for forward modelling. The first prelimi-

nary mesh used the original ‘mmal25pm’ seafloor node data, with node spacing of 25 m.

Because this was a preliminary mesh trial, no attempt was made at the time to increase

refinement along the receiver line. The resultant 3D mesh consisted of 494,126 cells, as

compared to the 542,425 cells which composed the mesh of Schwarzbach et al. (2011), and

is illustrated in Figure 5.13. The performance of the iterative solver for this mesh was poor,

as demonstrated by the convergence curve in Figure 5.14. The system ill-conditioning may

have been caused by the absence of grading to large cell size toward the boundaries of the

mesh along the sea-sediment interface (see Figure 5.13), and/or by poor quality tetrahe-

dra resulting from implementation of both a fine and regular node spacing, which would

have constrained the tetrahedralization. A second mesh was constructed using the coarser

‘mmal200pm’ mesh, with the same domain boundaries. The resultant 3D mesh was very

coarse, consisting of only 7,210 cells (Figure 5.15). While the residual norm of the iterative

solution was rapidly reduced to a low value (Figure 5.16), the solution was not accurate due

to the coarseness of the mesh.

The final mesh for the seafloor topography model was constructed using a hybrid mesh

consisting of the ’mmal200pm’ mesh as its base, with a 2200 m⇥ 50 m rectangular section

of the finer ‘mmal25pm’ mesh inserted and centred along the x-directed receiver line (Fig-

ure 5.17). This mesh provided a compromise between mesh quality and solution accuracy.

To enforce refinement along the receiver line, the rectangular section of ‘mmal25pm’ was

duplicated and translated�5 m in the z direction; the proximity of the two surfaces resulted

in generation of cells on the order of (5 m)3. The final mesh consisted of 32,757 nodes,

237,084 edges, and 203,809 cells. A similar mesh was constructed for a y-directed receiver

line. For this model, the Krylov subspace dimension for GMRES was set to 200 and the
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Figure 5.13. Preliminary mesh for the seafloor topography model that was based on the
‘mmal25pm’ node data. The model domain is |x|, |y|, |z|  2 km. In this mesh, the seafloor sur-
face node spacing was 25 m in both the x and y directions out to the boundaries of the domain.
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Figure 5.14. Residual norm versus number of iterations for the preliminary seafloor topography
model whose mesh was based on the ‘mmal25pm’ node data (see Figure 5.13). The convergence
behaviour of the iterative solution is poor, likely because of ill-conditioning due to inadequate cell
grading and/or poor quality tetrahedra resulting from node constraints with fine (25 m) and regular
spacing.
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Figure 5.15. Preliminary unstructured mesh for the seafloor topography model which was based on
the ‘mmal200pm’ node data. In this mesh, the seafloor surface node spacing was 200 m in both the
x and y directions out to the boundaries of the domain.
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Figure 5.16. Residual norm versus number of iterations for the preliminary seafloor topography
model whose mesh was based on the ‘mmal200pm’ node data (see Figure 5.15). While the residual
norm was rapidly reduced, the solution was inaccurate due to the coarseness of the mesh.
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(a) xz-section of the final unstructured mesh for the seafloor topography model.

(b) Enlarged xz-section illustrating refinement at source and along near offset in detail.

Figure 5.17. xz-section of the final mesh for the seafloor topography model that uses the
‘mmal200pm’ mesh as its base with a 2200 m ⇥ 50 m rectangular section of ‘mmal25pm’ inserted
and centred along the x-directed receiver line. This hybrid mesh provided a compromise between
mesh quality and problem size.
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Figure 5.18. Residual norm versus number of iterations for the final seafloor topography model.
The dimension of the Krylov subspace for GMRES was set to 200. A residual norm decrease of
approximately 11 orders of magnitude was achieved after 6000 iterations.

ILUT fill-in factor was set to 3. The iterative solution required 5560 MB of memory and

1270 s (⇠ 21 min) computation time for 6000 iterations. A residual norm decrease of 11

orders of magnitude was achieved after approximately 6000 iterations (Figure 5.18).

Figure 5.19 illustrates the non-vanishing inline field amplitudes for the x-directed re-

ceiver line and Figure 5.20 illustrates the non-vanishing broadside field amplitudes for the

y-directed receiver line. The finite-element solutions computed using CSEM3DFWD are in

good agreement with those of Schwarzbach et al. (2011), which are also plotted in Figures

5.19 and 5.20. The 1D solutions for a flat seafloor model are also plotted in Figures 5.19 and

5.20 to illustrate how the seafloor topography solutions differ from the flat seafloor solu-

tions. Results indicate that the CSEM response in presence of variable seafloor topography

differs substantially from that observed in a flat seafloor environment due to significant lat-

eral variations in resistivity at the surface. These results suggest that seafloor topography

must be taken into account in modelling of real CSEM data to avoid misinterpretation.
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Figure 5.19. Inline field amplitudes for an x-profile of the seafloor topography model. The finite-
element solution of Schwarzbach et al. (2011) (red line), which was computed for |x|  500 m, as
well as the 1D Hankel transform (HT) solution for a flat seafloor model (sea-sediment interface at
z = 0; blue line), are plotted for comparison to the CSEM3DFWD finite-element (FE) solution (red
circles).
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Figure 5.20. Broadside field amplitudes for a y-profile of the seafloor topography model. The finite-
element solution of Schwarzbach et al. (2011) (red line), which was computed for |y|  500 m, as
well as the 1D Hankel transform (HT) solution for a flat seafloor model (sea-sediment interface at
z = 0; blue line), are plotted for comparison to the CSEM3DFWD finite-element (FE) solution (red
circles).
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5.4 Marine halfspace model revisited: Finite water depth

To test the capability of the code in modelling an air layer, and to identify any difficulties

therein, finite-element solutions for the electric and magnetic fields were computed for

several simple models consisting of a lower 1.0 S/m (0.1 ohm-m) sediment halfspace, an

overlying finite-thickness 3.3 S/m (0.3 ohm-m) sea layer, and an upper air halfspace, which

was assigned a nominal conductivity of 10�8 S/m (108 ohm-m). Water depths of 100 m and

500 m were modelled as examples of shallow and moderate water depths. The simulated

source was a 1 Hz, 1 Am, x-directed HED located at x,y,z= (0,0,50)m above the seafloor,

and the simulated receiver line extended in the x-direction for x  5 km with a receiver

spacing of 50 m. Figure 5.21 illustrates the unstructured mesh for the finite-water depth

model, which has total dimensions of |x|, |y|, |z|  12.5 km and consists of 1,191,086 cells

with volumes ranging from 0.0433 m3 to 2.959 ⇥1010 m3. Note that the lateral extent

of the water layer was terminated at 6.5 km, well before the domain boundaries, to allow

for grading to large cell size toward the boundaries of the domain; based on experience,

this is required for acceptable iterative solver performance and convergence of the finite-

element solution. With a Krylov subspace dimension of 600, the GMRES solver required

approximately 23.5 GB for solution of the matrix system corresponding to this mesh.

Figure 5.22 illustrates the real and imaginary parts of the inline field components for a

water depth of 100 m. The 3D finite-element solution for the horizontal electric field corre-

lates well with the 1D solution, but the finite-element solutions for the horizontal magnetic

and vertical electric fields deviate from the 1D solutions at far offset. Extension of the lat-

eral boundaries of the sea layer to 9 km did not improve the accuracy of Hy or Ez at far

offset, nor did extending the refinement 1.5 km beyond the end of the synthetic receiver

line. Further, the accuracy of the solutions was not improved by assigning a conductivity

corresponding to seawater to all cells with average z (calculated from node coordinates)
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(a) xz-section of the full unstructured mesh for the 100 m-water depth model.

(b) Enlarged xz-section of the unstructured mesh exhibiting the refinement at source and receivers.

Figure 5.21. xz-section of the unstructured mesh for the marine halfspace model with finite water
depth of 100 m, consisting of a 1 S/m (1 ohm-m) lower sediment halfspace, an overlying 100 m-
thick 3.3 S/m (0.3 ohm-m) sea layer, and an upper air halfspace. The full domain is |x|, |y|, |z| 12.5
km. Note the finite lateral extent of the sea layer, with |x|, |y|  6.5 km. Refinement was manually
enforced in the vicinity of the source, located at (x,y,z) = (0,0,50) m, and along the receiver line,
which extends to x 5 km.
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Figure 5.22. The real and imaginary parts for the non-vanishing inline field components Ex, Hy, and
Ez for the marine halfspace model with finite water depth of 100 m. The 1D Hankel transform (HT)
solutions are plotted alongside the 3D finite-element (FE) solutions to demonstrate the accuracy of
the finite-element solutions. At far offset, the 3D finite-element solution for Hy deviates from its 1D
counterpart. The finite-element solution for Ez is also inaccurate at far offset, but is much noisier.
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within the depth range of the sea layer, i.e., s = 3.3 S/m for all cells with (0 < zav < 100)

m, regardless of whether they were located within the bounds of the sea region. The moti-

vation for trying this measure was to impose the electrical properties of the sea layer to cells

within its depth range without imposing the regional boundaries that would prevent grading

to large cell size toward the domain boundaries. Since none of these measures improved

the accuracy of the finite-element solution for Hy and Ez at far offset, it appears that the

solution inaccuracy is not related to the finite lateral extent of the sea layer.

Using the same lateral extent of 6.5 km for the sea layer, the finite-element solutions

were computed for the same model but with a more moderate water depth of 500 m. The ac-

curacy of the finite-element solutions for the horizontal magnetic and vertical electric fields

at far offset was improved for increased water depth (Figure 5.23). For increased water

depth, there is greater spatial separation between the high-contrast conductivity boundary

of the air-sea interface and the lesser-contrast conductivity boundary of the sea-sediment

interface. This suggests that the inaccuracy in Hy and Ez for a water depth of 100 m was

related to the proximity of the air-sea interface to the observation or synthetic receiver loca-

tions near the sea-sediment interface (seafloor) for shallow water depth. It may then be that

mesh refinement in the vicinity of the receivers was inadequate for proper modelling of the

high conductivity contrasts. The vertical electric field component may have been particu-

larly prone to discretization error since it is discontinuous across conductivity boundaries.

Of the three inline field components illustrated in Figure 5.22, the finite-element so-

lution for the horizontal electric field is the smoothest and most accurate up to far off-

set. Figure 5.24 illustrates the inline horizontal electric field amplitude and phase for the

marine halfspace model with finite water depth of 100 m. In Figure 5.24, two 1D so-

lutions are plotted alongside the finite-element solution: the 1D solution computed us-

ing the MARDIP1D code described in Appendix A and employed throughout this thesis

for 1D computations, and the 1D solution computed using the open-source DIPOLE1D
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Figure 5.23. The real and imaginary parts for the non-vanishing inline field components Ex, Hy, and
Ez for the marine halfspace model with finite water depth of 500 m. The 1D Hankel transform (HT)
solutions are plotted alongside the 3D finite-element (FE) solutions to demonstrate the accuracy
of the finite-element solution. Compared to those for a water depth of 100 m (Figure 5.22), the
finite-element solutions for Hy and Ez are smoother and more accurate at far offset.
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Figure 5.24. The inline horizontal electric field amplitude and phase for the marine halfspace model
with water depth of 100 m. The 1D solutions computed using the MARDIP1D code described in
Appendix A and the DIPOLE1D code of Key (2009) are illustrated alongside the 3D finite-element
solution computed using CSEM3DFWD. There is some discrepancy between solutions in the far
offset, particularly in phase, with the finite-element solution more closely matching the DIPOLE1D
solution. The discrepancy between the two 1D solutions might be explained by different designs for
the digital filter operator used in the numerical evaluation of the Hankel transform field expressions.
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code of Key (2009), which is available online at http://marineemlab.ucsd.edu/

Projects/Occam/1DCSEM/. It can be seen that there is some discrepancy at far offset

between the finite-element solution and the 1D solutions, particularly in the phase, but that

they generally agree well. Of the two 1D solutions, the finite-element solution more closely

matches the DIPOLE1D solution. The discrepancy between the two 1D solutions, both

of which are formulated in terms of Hankel transforms and evaluated using digital filter

methods (e.g., Anderson, 1979), might be explained by different filter designs. The digital

filter operators used for numerical evaluation of the Hankel transform integrals are charac-

terized by the number, placement, spacing, and weighting of sampling points (Guptasarma

and Singh, 1997). The fast Hankel transform routine of Anderson (1979) used to evaluate

the Hankel transforms in the MARDIP1D code uses 283-fixed-point, fixed-spacing filters,

while the DIPOLE1D code uses 201-point filters in which placement and spacing of the

operator were chosen to optimize results (Key, 2009).

5.5 Summary

The CSEM3DFWD code has been demonstrated on and validated for several simple marine

earth models. In general, the 3D finite-element solution agrees well with 1D semi-analytic

solutions where available, with the exception of far offset fields for shallow water depths.

For models with finite water depth, depending on the thickness of the water layer, greater

mesh refinement than that employed in sea halfspace models may be required to reduce

discretization errors arising in the vicinity of high conductivity contrasts, particularly at far

offset where field amplitudes are attenuated. Unstructured tetrahedral meshes are demon-

strated to conform well to curvilinear and irregular mesh boundaries, demonstrating the

capability of unstructured meshes for accurate representation of realistic earth structure. In

regards to mesh construction, cell size grading has been demonstrated to greatly influence
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the conditioning of the system matrix and the convergence of the iterative solver; a transi-

tion from small cell size in the centre of the mesh to large cell size at its boundaries is ideal.

This precludes extension of constraining boundaries or structure to the boundaries of the

domain. For more complex models, constraining features which require high refinement

for accurate geometric representation should be restricted to the inner mesh to allow for

grading to larger cells at the outer boundary; in some instances, this may require artificial

extension or padding of the model domain or employment of a coarser mesh discretization

for structure located at a distance from the source-receiver line. For structure which varies

arbitrarily in three dimensions, 3D modelling has been demonstrated to be necessary for

accurate representation of the CSEM response, although 1D modelling may be accurate for

tabular targets so long as source and receiver are located within the lateral extent of the

target. In such instances, the off-target response exhibits an asymptotic slope characterized

by the skin depth of the background. Significant seafloor topography has been illustrated

to have a discernible effect on the CSEM response due to lateral variations in resistivity;

it is therefore advisable that seafloor topography be properly resolved in models of marine

environments where it is highly variable to account for its distortion of the CSEM response.
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Chapter 6

Realistic reservoir model based on the

North Amethyst oil field, Jeanne d’Arc

Basin, offshore Newfoundland

6.1 Introduction

In this chapter, 1D and 3D modelling results are presented for a realistic earth model based

on the North Amethyst oil field, located offshore Newfoundland. This model provided the

opportunity to identify and attempt to address some of the challenges involved in modelling

real-life earth structure with unstructured meshes, both in terms of accuracy in representa-

tion of structure and management of limited computational resources.

To provide context to the North Amethyst field, the tectonic evolution and stratigraphy

of the region are briefly reviewed. 1D modelling results for 1D earth models based on well

resistivity logs are subsequently presented; 1D modelling was performed as a precursor to

3D modelling to investigate how variations in electrical structure and survey parameters,

specifically frequency and offset, affected the sensitivity of the marine CSEM method to
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the target hydrocarbon reservoir. Finally, finite-element results are presented for 3D earth

models where the reservoir structure was constructed from seismic horizon data. The 3D

model represents the North Amethyst reservoir as a laterally finite resistive layer within a

halfspace sediment background. A realistic model would ideally resolve background re-

sistivity structure in detail since the CSEM response is a cumulative response to the entire

earth volume, but this is infeasible given the region’s structural complexity. Resolution

of thin, structural layers such as shallow water, stratigraphic units, or fault-bounded hy-

drocarbon accumulations requires a large number of elements in the unstructured mesh and

may lead to an ill-conditioned matrix system. Given the present unparallelized nature of the

CSEM3DFWDmodelling scheme, coupled with finite computational resources, the amount

of structural detail that could be included in the model was limited.

6.2 Oil and gas exploration in offshore Newfoundland

The North Amethyst oil field is located approximately 350 km southeast of St. John’s,

Newfoundland and Labrador, in the prolific Jeanne d’Arc Basin. The Jeanne d’Arc Basin is

part of a series of Mesozoic sedimentary basins located along Canada’s east coast which are

the focus of petroleum exploration and development activities due to the favourable associa-

tion of hydrocarbon play elements: an organic-rich, oil-prone source rock, reservoir-quality

sandstones, structural and/or stratigraphic traps, good migration pathways, and proper tim-

ing of hydrocarbon generation, migration, and trapping (McAlpine, 1990).

Figure 6.1 illustrates the Mesozoic and older basins located offshore Newfoundland, as

well as offshore land tenure region and licence information based on the Canada Newfound-

land & Labrador Offshore Petroleum Board’s (C-NLOPB) scheduled land tenure system.

Sectors, represented in purple in Figure 6.1, represent geographic areas nominated by in-

dustry that will become open to bidding in the next land tenure cycle (Call for Bids, Figure
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6.1). Successful bidders are issued Exploration Licences, which may proceed to Significant

Discovery Licences, and eventually Production Licences if the discovery is commercially

viable. The Eastern Newfoundland region (Figure 6.1) is a region of particularly high in-

dustry activity, with both fine-grid 2D and massive 3D seismic and exploration drilling

programs being planned for or having been executed in the deepwater Orphan and Flem-

ish Pass basins (C-NLOPB, 2014). The Jeanne d’Arc region (Figures 6.1 and 6.2), which

contains the shallow-water Jeanne d’Arc Basin, is characterized as mature because of its

well-understood geology, a result of extensive drilling and geophysical programs, and the

presence of multiple producing fields; exploration drilling and development activities con-

tinue in the region (C-NLOPB, 2014).

Industry activity in the northeast Grand Banks began in the 1960s with the acquisition

of exploration permits by Pan American Petroleum (later Amoco, now part of BP) and Mo-

bil Oil (now part of ExxonMobil). Initial drilling programs resulted in dry or uneconomic

wells, and Amoco eventually allowed its lands to expire (Sinclair et al., 1992). After a pe-

riod of no drilling and little seismic acquisition, several factors contributed to a rejuvenation

of activity in the region. Firstly, under the 1977 amendments to the Canada Oil and Gas

Land Regulations, renewal permits required at least one well to be drilled in each renewal

permit land area over a four-year period, and secondly, Petro-Canada was allowed to ac-

quire a 25% working interest in the lands (Sinclair et al., 1992). The first well drilled under

the new regulations, Hibernia P-15, was spudded in May, 1979, by Chevron and its partners

at the time and resulted in the discovery of Newfoundland and Labrador’s first economic

oil field, Hibernia (Sinclair et al., 1992).

Since then, over 400⇤ exploration, delineation, and development wells have been drilled

in the Newfoundland and Labrador offshore area. Twenty-four† significant discoveries have

been made, and three major oil field areas are currently in production, all of which are
⇤417 total wells as of September 2, 2015, C-NLOPB.
†24 significant discovery areas as of January 26, 2015, C-NLOPB.
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Figure 6.1. Newfoundland & Labrador offshore basins and licence information. The offshore area is
divided into eight regions under the C-NLOPB’s scheduled land tenure system. The North Amethyst
field is located in the Jeanne d’Arc region. At present, all regions are classified as ‘low activity’
in terms of exploration and development with the exception of the Eastern Newfoundland region,
which is classified as ‘high activity’, and the Jeanne d’Arc region, which is classified as ‘mature’.
Modified from C-NLOPB (2015b) and C-NLOPB (2015d).
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Figure 6.2. C-NLOPB licence information for the Jeanne d’Arc Basin. Production licences have
been issued for the Hibernia, Terra Nova, and White Rose producing field areas. The approximate
location of the North Amethyst Field is marked by the star. The Hebron asset contains three dis-
covered fields and encompasses four Significant Discovery Licence areas (1006, 1007, 1009, 1010;
dashed outline). Modified from C-NLOPB (2015a).
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located in the Jeanne d’Arc Basin: Hibernia, Terra Nova, and White Rose, as well as its

satellite expansion, North Amethyst (Figure 6.2). A fourth field, Hebron, which is also

located in the Jeanne d’Arc Basin, is anticipated to produce its first oil by end of 2017

(Ayre, 2011). In total, these fields account for 3170 MMbbls (million barrels) of proven

oil reserves, 1543 MMbbls of which have already been produced (C-NLOPB, 2015c). The

North Amethyst field, the basis for this CSEM modelling study, is a relatively small field,

with 75 MMbbls of proven reserves (C-NLOPB, 2015c).

6.3 Geological framework

6.3.1 Tectonic history of the continental margin of Newfoundland

The continental shelf of Newfoundland consists of a series of elongate, interconnecting

Mesozoic sedimentary basins and troughs whose development was concomitant to the

break-up of Pangea and opening of the present-day North Atlantic Ocean from Late Tri-

assic to mid-Cretaceous (Sinclair et al., 1992). The basins are underlain by Late Protero-

zoic to Late Paleozoic basement of the northern Appalachian Orogen and are separated by

elongate basement or sediment-covered ridges (McAlpine, 1990; Sinclair et al., 1992). The

network of basins share a common evolutionary history as evidenced by the widespread

occurrence of Late Triassic salt, mid and Late Jurassic carbonates, and Late Jurassic source

rocks, although differences in structure and stratigraphy exist based on isolation in later

stages of their evolution (Husky Oil Operations Limited, 2001; Enachescu, 2013). A major

peneplanation surface known as the mid-Aptian or Avalon Unconformity, which formed

during the second rift episode, truncates basin sedimentary strata and intervening basement

highs (McAlpine, 1990; Sinclair et al., 1992). Overlying the mid-Aptian Unconformity are

relatively undisturbed Upper Cretaceous and Tertiary strata (McAlpine, 1990).

Rifting associated with the opening on the Atlantic Ocean was accomplished in several
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episodes, initiating south of the Grand Banks in the Late Triassic, propagating northward

to east of the Grand Banks by mid-Cretaceous, and finally reaching the Labrador Sea by

the end of the Cretaceous (Sinclair et al., 1992; Enachescu, 2013). Three main rift stages

or phases can be identified to have affected the continental margin of Newfoundland: the

Tethys phase (Late Triassic–Early Jurassic), the North Atlantic phase (Late Jurassic–Early

Cretaceous) and the Iberia-Labrador phase (mid–Late Cretaceous; Husky Oil Operations

Limited, 2001). The Grand Banks area was mainly affected by the Tethys and North

Atlantic rifting episodes, with the Iberia-Labrador phase being more important for the

northern Grand Banks and Labrador Sea basins (Enachescu, 2013). Crustal extension and

salt tectonics resulted in generation of large anticlinal and structural-stratigraphic traps in

which preserved Mesozoic sandstone reservoirs were able to become hydrocarbon-charged

(Enachescu, 2013).

The Tethys phase was the most important rifting episode in determining the size and

configuration of the present-day Grand Banks basins. The main northeast-southwest-trending

basins were formed as half-grabens in the downthrow of a major crustal detachment (Husky

Oil Operations Limited, 2001). Early basin syn-rift fill consisted of continental and lacus-

trine deposits. In the Early Jurassic, a major marine transgression inundated the failed-rift

valley from the south, establishing a shallow marine environment from Early to Late Trias-

sic in which marine evaporites and carbonates were deposited (McAlpine, 1990; Enachescu,

2013). Rifting stalled south of the Grand Banks in Early Jurassic. In the post-rift period, the

epeiric basins deepened via thermal subsidence and developed significant accumulations of

marine shales and carbonates (Enachescu, 2013). It was at the end of this period that the

Late Jurassic (Kimmeridgian) Egret member was deposited, an organic-rich marine shale

that would serve as the primary source rock for hydrocarbon pools in the Jeanne d’Arc

Basin (Atkinson and Fagan, 2000).

Near the end of the Late Jurassic, rifting reinitiated to the east of the Grand Banks.

124



North-south-trending faults initiated separation of the Grand Banks from Iberia, formed

new basins, and modified and enlarged previously formed basins (Atkinson and Fagan,

2000; Husky Oil Operations Limited, 2001). The intersecting northeast-southwest and

north-south fault trends generated important fault-dependent traps throughout the Grand

Banks basins (Enachescu, 2013). Rifting continued to advance northward, initiating sep-

aration of Labrador from Greenland in the Early Cretaceous. During this rift stage, the

continental crust underlying the central Grand Banks was warped into a regional northwest-

southeast-trending arch known as the Avalon Uplift (present-day south bank high) which

extended from the Avalon Peninsula to the Newfoundland Ridge (McAlpine, 1990; Sinclair

et al., 1992; Atkinson and Fagan, 2000). Coarse clastics that constitute some of the main

hydrocarbon-bearing reservoirs, including the Jeanne d’Arc and Hibernia Formations, were

deposited in marginal marine and fluvio-deltaic settings during this time (Atkinson and Fa-

gan, 2000; Enachescu, 2013). Another episode of post-rift thermal subsidence followed,

during which marine clastics and carbonates were deposited.

The Iberia-Labrador rifting phase initiated mid-Cretaceous and heavily influenced the

development of the Orphan and Labrador Sea basins, although the Grand Banks were only

weakly influenced by this episode (Enachescu, 2013). Northwest-southeast-trending fault-

ing further fragmented the existing basins and intervening ridges, leading to new sources of

sedimentation (Atkinson and Fagan, 2000; Husky Oil Operations Limited, 2001). The main

reservoir rocks at the North Amethyst Field, including sandstones of the Ben Nevis/Avalon

(BNA) Formation, were deposited during this rift episode. Sediments were derived from

rift shoulders and uplifted intra-basinal ridges, with some evidence of sediment-recycling

from earlier clastics (Enachescu, 2013). By Late Cretaceous, rifting and continental sep-

aration were complete, and lithospheric cooling led to subsidence of the entire margin as

a relatively intact block which was later covered by Upper Cretaceous and Tertiary strata

which have remained relatively undisturbed (Sinclair et al., 1992).
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6.3.2 Stratigraphy of the Jeanne d’Arc Basin

The Jeanne d’Arc Basin is the deepest of the offshore Mesozoic basins, with an estimated

stratal thickness of about 20 km at its depocentre, and contains the most complete strati-

graphic record of the tectonic evolution of the Grand Banks area (McAlpine, 1990; Sinclair

et al., 1992). The basin is situated completely within the continental plate and lies in rel-

atively shallow water, with producing fields having water depths of approximately 90 to

130 m (Atkinson and Fagan, 2000; Enachescu, 2013). Other Mesozoic basins, such as the

Orphan and Flemish Pass basins (Figure 6.1) extend from the continental margin to the

continent-ocean boundary and are in comparatively deep water. For comparison, the Or-

phan Basin has variable water depth spanning from 200 to 4000 m, with the more prospec-

tive East Orphan Basin having water depths ranging from 1500 to 3500 m (Enachescu et al.,

2004). The Flemish Pass Basin lies in intermediate to deep water with 500 to 1500 m depth,

with most of the its large structural plays situated in water depths between 800 to 1200 m

(Enachescu, 2014). These basins were restricted during early rifting but opened oceanward

upon completion of continental separation (Enachescu, 2013).

Mesozoic and Cenozoic sedimentation and stratigraphy in the Jeanne d’Arc Basin was

strongly controlled by regional tectonic events that occurred in relation to the opening of the

North Atlantic Ocean and Labrador Sea, as described in the previous section (McAlpine,

1990). Major sedimentary sequences have been identified in the Jeanne d’Arc Basin which

can be correlated to pre-rift (referred to as ‘onset warp’; characterized by subsidence with

little faulting), syn-rift, and post-rift deposition (Figure 6.3). During the Tethys rift phase

(Late Triassic–Early Jurassic), syn-rift sedimentation within a northeast-trending graben

commenced with deposition of Eurydice Formation red beds in the Triassic under arid

continental conditions. This was followed by deposition of Argo Formation evaporites

and carbonate-dominated Iroquois Formation in the Early Jurassic under restricted inner-
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Figure 6.3. The lithostratigraphy of the Jeanne d’Arc Basin. Sedimentation was strongly controlled
by regional tectonic events related to the opening of the present-day Atlantic Ocean and can be di-
vided into pre-rift (onset warp), syn-rift, and post-rift depositional phases. From C-NLOPB (2015e).
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shelf and shallow marine conditions which developed due to gradual marine transgression

(McAlpine, 1990; Husky Oil Operations Limited, 2001). In the Middle Jurassic post-rift

period, subsidence, progressive deepening, and transition to a more open marine shelf en-

vironment was associated with deposition of marine shales and carbonates of the Downing

Formation (McAlpine, 1990; Husky Oil Operations Limited, 2001). Interbedded sand-

stones, shales, and limestones of the Voyager Formation prograde over upper Downing

Formation and represent transition to a shallow or marginal marine-deltaic environment

during a period of marine regression (McAlpine, 1990). Prior to renewed rifting in the Late

Jurassic, interbedded limestones, shales, marlstones and minor sandstones of the Rankin

Formation were deposited, including the organic-rich Egret Member which served as the

primary source rock for hydrocarbon systems in the Jeanne d’Arc Basin. The fine-grained,

laminated character of the Egret Member and its high organic content suggest a low-energy,

restricted depositional environment, such as a deepwater anoxic basin (McAlpine, 1990).

The upper boundary of the Rankin Formation is marked by the mid-Kimmeridgian (Late

Jurassic) Unconformity associated with uplift and onset of the second phase of rifting in

the Grand Banks.

Above the mid-Kimmeridgian Unconformity, syn-rift, sandstone-dominated fluvial, es-

tuarine, and deltaic sediments of the Jeanne d’Arc and Hibernia formations were deposited

in the south of the basin (McAlpine, 1990). The fluvial sandstones and conglomerates of

the Jeanne d’Arc Formation graded basinward (northward) into the distal-equivalent shales

of the Fortune Bay Formation (C-NLOPB, 2008). Braidplain and deltaic sandstones of the

Hibernia Formation were deposited until Early Cretaceous, after which a period of post-rift

subsidence and basin deepening prevailed in which the high seismic impedence ‘A’ and ’B’

Marker limestones, the Catalina Formation marines sandstones, and the Whiterose Forma-

tion shales were deposited (C-NLOPB, 2008).

During the final rift phase, which commenced mid-Cretaceous, proximal fluvial and
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shallow to deep estuarine sandstones of the BNA Formation and distal shales of the Nau-

tilus Formation were deposited (C-NLOPB, 2008). BNA sandstones serve as the principal

reservoir in the White Rose and North Amethyst oil fields. In the post-rift, passive margin

period from Late Cretaceous through Tertiary, the basin experienced thermal subsidence

and deepening during which fluvio-deltaic and open shelf clastics and minor limestones of

the Dawson Canyon and Banquereau Formations were deposited.

6.3.3 The White Rose oil field and its satellite North Amethyst

The White Rose field area, discovered in 1984, is located on the eastern margin of the

Jeanne d’Arc Basin, approximately 350 km east of St. John’s, Newfoundland. The field

area consists of a complex of rotated fault blocks within the hanging wall of the Voyager

Fault Zone, which abuts the field to the east; the field is bounded to the north and west by

the basinward-dipping flanks of the White Rose Diapir, and to the south by the uplifted Ter-

race block (Figure 6.4; Husky Oil Operations Limited, 2001). Northeast-southwest-, north-

south-, and northwest-southeast-trending faults associated with different rifting episodes

segment the field area. Figure 6.4 illustrates the time structure of the White Rose Complex.

Because there is no single seismic marker that is continuous over the entire White Rose

Complex, time structure mapping was done using a composite seismic marker constructed

from the ‘A’ Marker in the west, the Base BNA seismic marker in the central area, and the

mid-Kimmeridgian to Base Tertiary Unconformity seismic marker in the east (Husky Oil

Operations Limited, 2001). The major structural elements of the field include structural

highs associated with the White Rose Diapir in the north, the Amethyst Ridge in the south,

and the rotated blocks adjacent to the Voyager Fault Zone, and structural lows associated

with the Trave Syncline in the northeast and Grand Bruit Low in the southeast (Husky Oil

Operations Limited, 2001). Structure was heavily influenced by salt movement during the

third rifting episode, during which salt migrated into the White Rose Diapir and Amethyst
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Figure 6.4. Regional composite marker time structure map of the White Rose Complex, where
colour mapping reflects structural highs as red and structural lows as blue. The composite seismic
marker is constructed from the ‘A’ Marker in the west, the Base BNA seismic marker in the central
area, and the mid-Kimmeridgian to Base Tertiary Unconformity seismic marker in the east. The
major structural elements of the field include highs (red/orange) associated with the White Rose
Diapir in the north, the Amethyst Ridge in the south, and the rotated block directly adjacent to the
Voyager Fault Zone, and lows (blue/green) associated with the Trave Syncline in the northeast and
Grand Bruit Low in the southeast. From C-NLOPB (2001).
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Ridge from the saddle area in between the two features, forming the Trave and Grand Bruit

synclines (Husky Oil Operations Limited, 2001). Previous to this episode, the White Rose

Diapir and salt-cored Amethyst Ridge formed a continuous salt-cored structural high to the

west of the Voyager Fault Zone. The main hydrocarbon accumulations in the White Rose

area are associated with structural traps generated by salt diapirism.

The North Amethyst field is located within the northwest-southeast-oriented Amethyst

Ridge, a rotated fault block which is delineated by major faults to the north and east and

borders the Terrace portion of the White Rose South Avalon pool (Figure 6.4). Oil and

gas trapping is associated with the northwest-southeast-trending structural high near the

eastern boundary fault of the ridge (Figure 6.5). The main reservoir interval is the westward-

dipping BNA Formation, which consists of shallow-marine, fine-grained sandstones. The

North Amethyst field and adjacent South Avalon Pool have similar reservoir thicknesses,

but reservoir porosity and permeability are higher in the North Amethyst field because of

its shallower burial depth and diagenetic history (Figure 6.6).

6.4 1D sensitivity analysis

1D modelling was performed for the North Amethyst field prior to 3D modelling in order

to determine whether the CSEM method was likely to be sensitive to the BNA reservoir

target, and if so, to estimate the optimal offset and frequency for generation of a CSEM

anomalous response. Variations on a baseline 1D model were also used to study the effect

of simplifications in stratigraphy and variations in water and reservoir burial depths on the

CSEM response. The 1D marine HED code described in Appendix A was used to compute

the 1D inline horizontal electric field solutions presented here. Because 1D modelling

is computationally less demanding than 3D modelling, several variations of the baseline

reservoir model could be analysed in a short period of time. There is no single approach to
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Figure 6.5. Map of the top reservoir surface for the BNA Formation, with fluid contacts as well as
the location of well K-15 illustrated. Red, green, and blue represent gas-saturated, oil-saturated, and
water-saturated reservoir, respectively. Heavy black lines indicate interpreted faults. Modified from
C-NLOPB (2008).

West East

Gas
Oil

South Avalon Pool
White RoseNorth Amethyst Field

Figure 6.6. West to east structural cross-section through the BNA reservoir interval in the North
Amethyst field and adjacent White Rose South Avalon Pool, with fluid contacts as well as the path
of well K-15 illustrated. From C-NLOPB (2008).
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simplification of 3D structure to one dimension for construction of a 1D earth model; in this

study, the baseline 1D model was based primarily on a single well resistivity log exhibiting

a strong anomalous response due to the presence of hydrocarbons within the BNA reservoir.

Comparison of 1D results to 3D results in Section 6.5.3 emphasizes the limitations of 1D

models in accurately representing 3D resistivity structure.

6.4.1 Resistivity model construction

The 1D models presented here were derived from analysis of resistivity logs for the North

Amethyst exploration well K-15, and for the North Amethyst delineation wells E-17 and

H-14, all of which were drilled in water depths of approximately 120 m (Figures 6.7 and

6.8). The stratigraphic top picks, i.e., stratigraphic boundaries inferred from well logs,

illustrated in Figures 6.7 and 6.8 may be correlated to the lithostratigraphy of the Jeanne

d’Arc Basin, previously illustrated in Figure 6.3. The principal BNA reservoir interval is

marked at the top by the Ben Nevis Formation top pick, and at the base by the mid-Aptian

Unconformity. The high resistivity signature of the BNA reservoir interval in well log K-15

is due to hydrocarbon-bearing reservoir.

The resistivity logs employed in this study consisted primarily of wireline induction

measurements; the well log mnemonic AT/AHT90‡ represents the deep-reading (i.e., large

penetration depth) induction resistivity measurement made using Schlumberger’s array in-

duction imager tool (AIT). The mechanism of induction tools is based on generation of

eddy currents within the formation via a coil transmitting in the kilohertz range and mea-

surement of the resultant signal at a receiver coil. In an array induction tool, several arrays

of mutually balanced coils are employed whose signals are combined post-acquisition to

produce responses of variable reading depth and vertical resolution. Additional resistivity

logs consisted of logging-while-drilling (LWD) propagation measurements; the well log
‡AT/AHT90 = array induction resistivity with 2 ft. vertical resolution, 90 in. depth of penetration
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mnemonic P40H§ represents the deep-reading propagation resistivity measurement made

using Schlumberger’s array resistivity compensated (ARC) tool. LWD tools employ a

transmitter-receiver coil array where differences in measured phase (phase shift) and ampli-

tude (attenuation) between two receivers are converted into two independent measurements

of apparent resistivity.

To produce simplified models, the resistivity logs were visually sectioned into blocks

based on perceived low-frequency resistivity variations. Each block, typically correspond-

ing to a major formation, was assigned a single resistivity value based on visual estimate

of the mid-range resistivity for the interval, excluding geologically insignificant outliers or

spikes. This log-blocking procedure, while admittedly subjective, was judged adequate for

the purpose of constructing a 1D model, which inherently requires a certain degree of ap-

proximation in earth structure. The corresponding stratigraphic units were identified using

previously picked formation tops (see Figures 6.7 and 6.8).

The resistivity log of exploration well K-15 was ultimately chosen as the basis for the

1D North Amethyst model since it exhibits the strongest high-resistivity signature associ-

ated with hydrocarbon-saturated BNA reservoir, which has a baseline resistivity of approx-

imately 75 ohm-m (see Figure 6.8). This choice models the hydrocarbon-bearing reservoir

interval at a thickness of about 120 m and at a burial depth of about �2270 m true vertical

depth subsea (TVDss). The true thickness of hydrocarbon-bearing BNA Formation is struc-

turally controlled in the North Amethyst field and varies laterally from a minimum of 0 m

to a maximum of 160 m, with an average thickness of 50–60 m¶ where present. Maximum

reservoir thickness occurs at the minimum reservoir burial depth of �2226 m TVDss. The

1D solution presented here thus approaches the best-case, upper estimate of the possible

3D response, which would result from simplication of the hydrocarbon-bearing reservoir
§P40H = phase shift resistivity at 2 MHz, 40-in. transmitter-receiver spacing
¶Estimated by taking the difference in depth between the triangulated top reservoir surface for the 3D

model (Section 6.5.1), which has a near-regular node spacing of about 76 m, and the oil-water contact at
�2386 m TVDss.
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Figure 6.9. North-south cross-section through the eastern structural high of the Amethyst Ridge,
illustrating the difference between the true, variable hydrocarbon thickness (green) and the constant,
1D-modelled hydrocarbon thickness (hatching) for the BNA reservoir. y corresponds to the north-
south direction and z corresponds to true vertical depth subsea. The profile of the BNA reservoir top
is outlined in black, and the oil-water contact is indicated in blue.

interval to maximum thickness and minimum burial depth. Figure 6.9 illustrates the dif-

ference between the true, variable hydrocarbon thickness and the constant, 1D-modelled

hydrocarbon thickness in a north-south cross-section through the eastern structural high of

the North Amethyst Ridge.

The baseline 1D model featuring the BNA reservoir is presented in Figure 6.10 and

summarized in Table 6.1. Although the BNA reservoir contains both gas and oil, the gas-

oil contact at �2334 m TVDss is only weakly manifest in the resistivity log (Figure 6.10),

and so the gas- and oil-bearing zones were modelled as a combined hydrocarbon-bearing

zone. The oil-water contact is easily identified as the abrupt transition from a baseline resis-

tivity of approximately 75 ohm-m, associated with hydrocarbon-saturated BNA reservoir,

to a baseline resistivity of approximately 0.7 ohm-m, associated with water-saturated BNA

reservoir, at �2386 m TVDss (Figure 6.10). For 1D modelling, the oil-water contact was

rounded to �2390 m TVDss for simplification. A sea layer was included in the 1D model
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Figure 6.10. The 1D North Amethyst model featuring the hydrocarbon-bearing BNA reservoir.
The model was derived mainly from resistivity log K-15, which exhibits a high resistivity signature
associated with hydrocarbon-saturated BNA reservoir. Gas-oil and oil-water contacts for the BNA
reservoir are at �2334 m and �2386 m, respectively. Correlations between resistivity blocks and
major stratigraphy were inferred from well top stratigraphic picks (illustrated in Figures 6.7 and
6.8). Depth is in true vertical depth subsea (TVDss).
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Table 6.1. Parameters for the 1D North Amethyst model featuring the BNA reservoir.

Top TVDss Resistivity Stratigraphy Lithology Comments
(m) (ohm-m)

– 1.00E8 Air Infinitely resistive;
modelled as a
halfspace

0.00 0.30 Sea

�120.00 1.40 Banquereau
Formation

Shale with
sandstone or
siltstone at base

South Mara Member
sandstone often
present at base

�2150.00 25.00 Dawson Canyon
Formation

Marl and calcareous
shale

Base Tertiary
Unconfirmity marks
top; Petrel Member
argillaceous
limestone often
present at top

�2200.00 4.50 Nautilus Formation Siltstone and
calcareous shale
with minor
sandstone

�2270.00 75.00 BNA Formation Sandstone, siltstone,
and shale

Reservoir quality,
hydrocarbon-
saturated

�2390.00 0.70 BNA Formation Sandstone, siltstone,
and shale

Reservoir quality,
water-saturated

�2500.00 2.00 Whiterose (Cape
Broyle) Formation

Siltstone and shale Modelled as a
halfspace
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with thickness corresponding to the average water depth of the North Amethyst field area,

120 m. The burial depth of the BNA reservoir was modelled at 2150 m below seafloor,

or �2270 m TVDss. The air top-halfspace was assigned an arbitrarily large resistivity for

computations.

Variations on this model were tested where water depth and burial depth were modified

to observe the effect of these changes on the CSEM response. Burial depth was modified

by varying the thickness of the Tertiary Banquereau Formation; all other formation thick-

nesses were maintained. Finally, an even further simplified 1D model was prepared as a 1D

analogue to the eventual 3D model that would be tested: a hydrocarbon-bearing reservoir

embedded in a shale halfspace, with an overlying finite-thickness sea layer and air half-

space (Figure 6.11). The shale background was assigned the resistivity of the dominant

Banquereau Formation.

A second 1D model including the deeper Hibernia Formation reservoir was constructed

using a combination of resistivity log data from wells K-15 and E-17, with well K-15 rep-

resenting stratigraphy to the base of the BNA Formation and well E-17 representing stratig-

raphy of the Hibernia Formation and below (Figure 6.12; Table 6.2). Well E-17 exhibits the

resistivity response of hydrocarbon-bearing Middle and Basal Hibernia Formation, which

have baseline resistivities of approximately 10 and 25 ohm-m, respectively. Basal Hibernia

is the target for production in the northern portion of the North Amethyst field, and rep-

resents the Hibernia reservoir referenced here. The baseline resistivity for water-saturated

Basal Hibernia Formation is approximately 1–2.5 ohm-m; a value of 2.5 ohm-mwas chosen

for 1D modelling.

In both 1D models, stratigraphy below the reservoir intervals was modelled as a shale

halfspace and assigned a representative resistivity value of 2 ohm-m. Simplification of

stratigraphy below the resistive reservoir intervals to a shale halfspace was deemed appro-

priate since deeper stratigraphy is not expected to contribute significantly to the CSEM
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Figure 6.11.Simplified 1D resistivity model that served as an analogue to the 3D North Amethyst
BNA reservoir model. The model represents a hydrocarbon-bearing reservoir embedded in a 1.4
ohm-m shale halfspace background, with an overlying finite-thickness 0.3 ohm-m sea layer and air
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E-17 representing the Hibernia Formation and below. Well E-17 exhibits the resistivity response
of the hydrocarbon-bearing Middle and Basal Hibernia units in the northern portion of the North
Amethyst field. Depth is plotted in true vertical depth sub-sea (TVDss).
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Table 6.2. Parameters for the 1D North Amethyst model featuring both the primary BNA and
secondary Hibernia reservoirs.

Top TVDss Resistivity Stratigraphy Lithology Comments
(m) (ohm-m)

– 1.00E8 Air Infinitely resistive;
modelled as a
halfspace

0.00 0.30 Sea

�120.00 1.40 Banquereau
Formation

Shale with
sandstone or
siltstone at base

South Mara Member
sandstone often
present at base

�2150.00 25.00 Dawson Canyon
Formation

Marl and calcareous
shale

Base Tertiary
Unconfirmity marks
top; Petrel Member
argillaceous
limestone often
present at top

�2200.00 4.50 Nautilus Formation Siltstone and
calcareous shale
with minor
sandstone

�2270.00 75.00 BNA Formation Sandstone, siltstone,
and shale

Reservoir quality,
hydrocarbon-
saturated

�2390.00 0.70 BNA Formation Sandstone, siltstone,
and shale

Reservoir quality,
water-saturated

�2500.00 4.00 Upper Hibernia
Formation

Coarsening-upward
cycles of shale and
sandstone

Reservoir quality

�2580.00 10.00 Middle Hibernia
Formation

Coarsening-upward
cycles of shale and
sandstone

Reservoir quality

�2670.00 5.00 Lower Hibernia
Formation

Sandstone and shale Poor reservoir
quality

�2755.00 25.00 Basal Hibernia
Formation

Fining-upward
successions of
sandstone

Reservoir quality;
production target

�2880.00 2.00 Fortune Bay
Formation

Shale and siltstone Modelled as a
halfspace
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response measured at the seafloor. Further, from regional lithostratigraphy of the Jeanne

d’Arc Basin (Figure 6.3), shale is the predominant lithology below the hydrocarbon-bearing

sandstones of the BNA and Hibernia Formations. Furthermore, since well logs and seis-

mic interpretation for the North Amethyst field area do not extend much deeper than the

reservoir intervals of interest, assumptions must be made regarding the lithostratigraphy

underlying these intervals based on regional studies.

6.4.2 Results

6.4.2.1 Variable water depth and reservoir burial depth

The 1D BNA reservoir model was analysed in terms of inline horizontal electric field

anomaly for a suite of different reservoir burial and water depths. The inline horizontal elec-

tric field anomaly due to the presence of hydrocarbon-bearing reservoir was computed as

the percentage difference in the inline horizontal electric field amplitude, |Ex|, between the

hydrocarbons-present and hydrocarbons-absent scenarios, normalized by the hydrocarbons-

absent amplitude (Figure 6.13). The resistivity for the hydrocarbons-present scenario, 75

ohm-m, was determined from the oil-saturated BNA Formation resistivity log signature,

and the resistivity for the hydrocarbons-absent scenario, 0.70 ohm-m, was determined from

the water-saturated BNA Formation resistivity log signature.

The results of the analysis are summarized in contour plots of the inline horizontal elec-

tric field anomaly as a function of both frequency and source-receiver offset in Figure 6.14.

The three illustrated burials depths of 2150 m, 1120 m, and 620 m below seafloor are asso-

ciated with Banquereau Formation thickness of 2030 m (true thickness), 1000 m, and 500

m, respectively. A conservative threshold for anomaly detection in real data is a 20% differ-

ence in the inline horizontal electric field amplitude, as suggested in MacGregor and Tom-

linson (2014). Contours of the normalized inline horizontal electric field amplitude for the
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Figure 6.13. Colour contour plots of the logarithm of the normalized inline horizontal electric field
amplitude |Ex| for the baseline North Amethyst BNA reservoir model (see Figure 6.10), with a water
depth of 120 m and a burial depth of 2150 m, for the hydrocarbons-present and hydrocarbons-absent
scenarios. The |Ex| anomaly (bottom) is expressed as the absolute percentage difference in the inline
horizontal electric field amplitude |Ex| between the two scenarios, normalized by the hydrocarbons-
absent amplitude. The solid white contour indicates the 20% difference detectable anomaly thresh-
old. Contours of the logarithm of the hydrocarbons-present amplitude are superimposed as dashed
yellow lines on the anomaly contour plot to facilitate comparison of the signal strength at a given
anomaly magnitude to typical EM noise floor values (Table 6.3).
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Figure 6.14. Reservoir burial depth versus water depth contour plot matrix of the normalized inline
horizontal electric field anomaly due to the presence of hydrocarbons within the BNA reservoir,
expressed as the absolute percentage difference in |Ex|, as a function of source-receiver offset and
source frequency (0.01–10 Hz). The solid white contour indicates the 20% difference anomaly
threshold. The dashed yellow lines are superimposed contours of the logarithm of the horizontal
electric field amplitude, log10

⇥

|Ex|
�

V/Am2�⇤, for the hydrocarbons-present scenario. A portion of
the plot is muted, as coloured in black, where the electric field amplitude falls below the accuracy
threshold of the Hankel transform computation, approximately 10�16 V/Am2.
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Table 6.3. Summary of typical EM noise floor estimates for different water depths, compiled from
various sources. The general trend is that noise increases as water depth decreases.

Water depth (m) EM noise floor
�

V/Am2� Source

2000 5 ⇥ 10�16 Mittet and Morten (2013)

1500 10�15 MacGregor and Tomlinson (2014)

1000 10�16 Ellis and Keirstead (2011)

1000 10�16 Constable and Weiss (2006)

500 10�15 Ellis and Keirstead (2011)

330 10�14 Ellis and Keirstead (2011)

300 3 ⇥ 10�15 Mittet and Morten (2013)

100 7 ⇥ 10�15 Mittet and Morten (2013)

100 10�13 Ellis and Keirstead (2011)

40 1.5 ⇥ 10�14 Mittet and Morten (2013)

hydrocarbons-present scenario are superimposed on the plots of inline horizontal electric

field anomaly to facilitate comparison of anomaly magnitude to signal magnitude. In real

life acquisition and interpretation of CSEM data, there is a trade-off between anomaly mag-

nitude and signal-to-noise ratio. Real-life acquisition takes place in environments where the

EM noise floor is on the order of 10�16 to 10�14 V/Am2, depending on water depth (Ta-

ble 6.3). Thus, while an anomaly may theoretically be detectable at a given frequency and

offset based on modelling, it may not be detectable in practice.

Results indicate that for the true burial depth of 2150 m and true water depth of 120

m (Figure 6.13 and upper-left plot of Figure 6.14), the offset-frequency field in which the

hydrocarbon-bearing reservoir exhibits a detectable anomaly is restricted to relatively low

frequency and large source-receiver offset. 1D results thus suggest that the CSEM method

will be sensitive to the presence of the hydrocarbon-bearing BNA reservoir at sufficiently

low frequency and sufficiently large offset, for frequencies in the range of roughly 0.01–0.1

Hz and offsets greater than roughly 5 km. As water depth increases and/or burial depth
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decreases relative to the true values for the North Amethyst BNA reservoir model, the

frequency-offset field for anomaly detection expands, with a 20% difference anomaly ap-

pearing at shorter offset and higher frequency (Figure 6.14).

The expansion of the frequency-offset field as water depth increases and burial depth

decreases may be understood in terms of the physical thicknesses of the water and conduc-

tive overburden in relation to their skin depths. As the thickness of the water layer increases

relative to its skin depth, signal travelling to and from the sea-air interface is increasingly

attenuated; the result is that the offset at which the air signal begins to dominate the tar-

get response increases, such that the offset range for anomaly detection also increases. As

overburden thickness decreases relative to its average skin depth, signal travelling to and

from the resistive reservoir target is less attenuated; the result is that the anomaly magnitude

at a given offset increases, which in turn has the effect of decreasing the minimum offset

for anomaly detection. Further, as overburden thickness decreases, the frequency range for

anomaly detection extends to higher frequencies for which cumulative signal attenuation

would have previously been too severe for detection of an anomaly. One must keep in

mind however that at high frequency, signal is rapidly attenuated to near or below the noise

threshold and that signal-to-noise ratio may be insufficient in practice.

Note also that for shallow water depth (i.e., water depth = 120 m in Figure 6.14), there

are two distinct anomaly peaks in frequency-offset space: a stronger peak at nearer off-

set and a weaker peak at farther offset. The absolute percentage difference is presented in

Figures 6.13 and 6.14, but the stronger peak at nearer offset is a positive anomaly, and the

weaker peak at farther offset is a negative anomaly. For a given frequency, the stronger and

nearer-offset positive anomaly is associated with an increase in the inline horizontal electric

field measured at the seafloor due to signal which has been guided along the resistive target

layer with less attenuation than signal travelling directly through the water layer or through

the conductive overburden. The second weaker and farther-offset negative anomaly, which
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is less prominent at greater water depth, is possibly associated with deconstructive interfer-

ence of signal that has interacted with the resistive target and signal that has interacted with

the air layer (see Key, 2012b).

6.4.2.2 Inclusion of the secondary Hibernia reservoir

The hydrocarbon-bearing BNA Formation reservoir interval is the main production target

for the North Amethyst field, with the Basal Hibernia Formation being a secondary pro-

duction target in the northern E-17 well block of the field. Many stratigraphy simplications

were made in the design of the 3D North Amethyst BNA reservoir model, one of which

was omission of the Basal Hibernia reservoir. Simplification of earth structure is necessary

in modelling, but may impact the accuracy of the synthetic or forward-modelled solution

in approximating real-life geophysical observations. To understand how inclusion or ex-

clusion of a secondary, lower, hydrocarbon-bearing reservoir affects the CSEM response,

the inline horizontal electric field anomaly was computed for a 1D model including stratig-

raphy below the BNA reservoir, as illustrated in Figure 6.12, for the hydrocarbons-present

and hydrocarbons-absent scenarios for the Basal Hibernia reservoir.

Figure 6.15 illustrates the inline horizontal electric field anomalies and their difference

for the two scenarios. The presence of hydrocarbons in the Basal Hibernia Formation has

little effect on the frequency-offset field for detection of an inline horizontal electric field

anomaly, but its presence increases the magnitude of the anomaly. This result is consistent

with the view that the sensitivity of the marine CSEM method to thin resistive layers is

largely (but not entirely) galvanic, and exhibits behaviour that is similar to the transverse

resistance-equivalence observed in DC resistivity methods, at least at relatively low fre-

quency (Constable and Weiss, 2006; Constable, 2010; MacGregor and Tomlinson, 2014).

The presence of the Hibernia oil-bearing reservoir increases the transverse resistance of the

resistive layer interval, thereby increasing the magnitude of the electric field anomaly.
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Figure 6.15. The normalized inline electric field anomaly for the 1D North Amethyst model includ-
ing both the BNA and Hibernia reservoirs (see Figure 6.12), with and without hydrocarbons present
in the Basal Hibernia reservoir. The difference in anomaly due to the presence of hydrocarbons in
the Basal Hibernia reservoir in addition to the BNA reservoir is illustrated in the lower plot. The
presence of hydrocarbons in the lower Hibernia reservoir has the effect of increasing the magnitude
of the inline horizontal electric field anomaly as much as 20%, but does not appreciably impact the
frequency-offset field for detection of the anomaly.
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6.4.2.3 Simplification of stratigraphy: 1D analogue for the 3D model

The 3D North Amethyst reservoir model simplifies stratigraphy of the field area to a shale

halfspace with resistivity of 1.4 ohm-m, the baseline resistivity of the Tertiary Banquereau

Formation. Figure 6.11 illustrates the 1D analogue of this model, which consists of a

hydrocarbon-bearing reservoir embedded in a 1.4 ohm-m shale halfspace. Compared to

the detailed stratigraphy of the baseline 1D BNA reservoir model illustrated in Figure 6.10,

most notable is the absence of the Dawson Canyon and Nautilus Formations, both of which

partially consist of calcareous shale, accounting for their relatively high baseline resistivi-

ties of 25 ohm-m and 4.5 ohm-m, respectively.

Figure 6.16 demonstrates how the inline horizontal electric field anomaly changes with

simplification of background stratigraphy to a shale halfspace. The most noticeable effect

is an increase in the magnitude of the inline horizontal electric field anomaly, which is prin-

cipally a galvanic, or TM-mode, effect (see Section 3.2). Resistive layers act as waveguides

for low-attenuation propagation of EM fields and reduce penetration of the TM mode, or

vertical current, to deeper, underlying conductive sediments. Removal of the relatively re-

sistive Dawson Canyon and Nautilus Formations thus leads to greater current flow to the

resistive reservoir and a corresponding increase in anomaly magnitude. A more subtle ef-

fect of omission of the Dawson Canyon and Nautilus Formations is a slight shift of peak

anomaly to lower frequency, which is possibly an inductive effect associated with skin

depth. In the absence of the Dawson Canyon and Nautilus Formations, that is, in a rela-

tively more conductive background, lower frequencies are better able to penetrate to and

interact with the reservoir than more heavily attenuated higher frequencies.

151



0

5

10

15

20

O
ffs

et
 (k

m
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

Log10[Frequency (Hz)]

20

2040

−40

−100
−80
−60
−40
−20

0
20
40
60
80

100

|E
x| 

an
om

al
y 

di
ffe

re
nc

e

0

5

10

15

20

O
ffs

et
 (k

m
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

20

20
40

40

60

0

20

40

60

80

100

120

140

160

180

|E
x| 

an
om

al
y 

(p
er

ce
nt

ag
e 

di
ffe

re
nc

e)Simplified 1D model (3D analogue)

0

5

10

15

20

O
ffs

et
 (k

m
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

20

20

40

4060
80

100

0

20

40

60

80

100

120

140

160

180

|E
x| 

an
om

al
y 

(p
er

ce
nt

ag
e 

di
ffe

re
nc

e)Detailed 1D model

Figure 6.16. Comparison of and difference between the normalized inline horizontal electric field
anomalies for the 1D North Amethyst BNA reservoir model with detailed stratigraphy (see Fig-
ure 6.10) and with simplified stratigraphy (see Figure 6.11). The main difference between the two
models is the omission of the more resistive Dawson Canyon and Nautilus Formations (resistivi-
ties of 25 and 4.5 ohm-m, respectively), which leads to simplification of the model to a laterally
finite hydrocarbon-bearing reservoir embedded in a 1.4 ohm-m shale halfspace. The difference in
anomaly due to these simplifications is illustrated in the bottom plot. The overall effect of omission
of these resistive formations is an increase in anomaly magnitude and a subtle shift of peak anomaly
to lower frequency.

152



6.4.3 Summary and discussion

Simplification of background stratigraphy in the North Amethyst field to a homogeneous

halfspace does not appear to significantly alter the frequency-offset field for detection of

an inline horizontal electric field anomaly, but does modify the magnitude of the expected

anomaly. The 1D solution for the simplified 3D analogue model suggests that sensitivity to

the reservoir target will be greatest for frequencies in the range of 0.01–0.1 Hz and for off-

sets greater than 5 km. 1D modelling assumes an infinite lateral extent, uniform thickness

reservoir, whereas the true dimensions of the North Amethyst field are approximately 4 km

by 7 km, and hydrocarbon accumulation is not uniform but instead controlled by reservoir

structure. It is thus unclear whether the 3D solution will be comparable to the 1D solution

given the edge effects of laterally finite bodies on the CSEM response. 3D modelling results

for the canonical disk model would suggest that when both source and receiver are located

laterally within the limits of a resistive target, the 3D solution is well approximately by the

1D solution. The lateral dimensions of the BNA reservoir target do not however extend

far beyond the minimal offset required for manifestation and detection of an inline electric

field anomaly, as predicted by 1D modelling. An increase in water depth and/or decrease

in burial depth would however appear to increase the frequency-offset field for detection of

an anomaly.
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6.5 3D modelling

6.5.1 Resistivity model construction

The 3D North Amethyst reservoir model simplifies true stratigraphy and structure to a

hydrocarbon-bearing, laterally finite reservoir embedded in a shale halfspace, with an over-

lying finite-depth sea layer and upper air halfspace. Simplification of background structure

was required since accurate representation of the region’s structural complexity would have

led to an unmanageable problem in view of present capabilities. Preliminary 1D modelling

indicates that simplification of background stratigraphy and associated resistivity structure

to a shale halfspace does not significantly modify the frequency-offset field for detection

of an inline horizontal electric field anomaly, but that it does result in overestimation of

anomaly magnitude. While there are many other hydrocarbon pools within the White Rose

field area, compared to the main North Amethyst reservoir interval, these bodies are located

at a greater distance both laterally and vertically from the simulated source-receiver line,

which is positioned above the North Amethyst field on a regional structural high; for ex-

ample, equivalent reservoir in the adjacent South Avalon Pool is positioned approximately

600 m deeper than the BNA reservoir in the North Amethyst field (see Figure 6.6). Hydro-

carbon accumulations within adjacent blocks should thus contribute little to the cumulative

CSEM response measured at a receiver above the North Amethyst field.

The shale halfspace was assigned the 1.4 ohm-m baseline resistivity of the Tertiary

Banquereau Formation, which is the dominant lithostratigraphic unit overlying the BNA

reservoir in terms of thickness; it accounts for 2030 m of the 2150 m-burial depth of the

reservoir below seafloor. Resistivity values for hydrocarbon-saturated and water-satured

BNA reservoir, 75 ohm-m and 0.7 ohm-m, respectively, were also derived from the 1D

resistivity logs. Seawater was assigned a resistivity of 0.3 ohm-m, and air was assigned a
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resistivity of 108 ohm-m.

The structure of the BNA reservoir was constructed from 3D seismic horizon data

for the top and base reservoir surfaces, clipped within the fault-delimited bounds of the

Amethyst Ridge structure. Original surface data were in point or node format, with x and

y as UTM coordinates (m) and z as true-vertical-depth-sub-sea (TVDss; m). To simplify

model construction, the UTM x,y-coordinates were translated to relative coordinates using

the formulae:

xrel(i) = xutm(i)�


min(xutm)+
|max(xutm)�min(xutm)|

2

�

and

yrel(i) = yutm(i)�


min(yutm)+
|max(yutm)�min(yutm)|

2

�

,

where x,yutm represent the UTM coordinates, and x,yrel represent the relative, translated

coordinates. With this transformation, the origin of the model and mesh now lies at the

centre of the rectangle defined by the maximum lateral dimensions of the reservoir.

Generation of the reservoir surface meshes from the original seismic horizon node data

is summarized graphically in Figure 6.17 for the top reservoir surface. The reservoir top and

base surfaces were triangulated from node data using the 2D unstructured mesh generator

Triangle. The original node data for the top and base reservoir were unsuitable for direct in-

put to Triangle because of their high density and irregular spacing (Figure 6.17a). Polygons

defining only the lateral extent of the top and base reservoir were instead used as input. Tri-

angle’s Delaunay refinement algorithm only allows nodes to be added, and not destroyed,

when attempting to improve the quality of a mesh. By constraining triangulation only by

the lateral extent of the reservoir, and not imposing the original node density, generation of

a good quality mesh composed of well-shaped, equilateral triangles was promoted. Poly-

gons outlining the top and base reservoir were manually defined in FacetModeller using the

155



-2
.8

49
e+

03

z 
(k

m
) -2

55
0

-2
40

0

-2
70

0

-2
.2

26
e+

03

(a
)

-2
70

0

-2
.8

40
e+

03

-2
40

0

-2
.2

29
e+

03

-2
55

0

z 
(k

m
)

(b
)

-2
55

0

-2
40

0

-2
.8

40
e+

03

-2
.2

29
e+

03
z 

(k
m

) -2
70

0

(c
)

Fi
gu

re
6.
17

.R
es
am

pl
in
g,

ro
ta
tio

n,
an
d
m
es
hi
ng

of
th
e
to
p
re
se
rv
oi
rs
ur
fa
ce

fo
rt
he

3D
N
or
th

A
m
et
hy
st
B
N
A
re
se
rv
oi
rm

od
el
.T

he
ba
se

re
se
r-

vo
ir
su
rf
ac
e
w
as

si
m
ila

rly
m
od

ifi
ed

an
d
m
es
he
d.

(a
)T

he
or
ig
in
al

to
p
re
se
rv
oi
rn

od
e
da
ta

fr
om

se
is
m
ic

ho
riz

on
s.

Fa
ul
tt
ra
ce
s
ar
e
em

ph
as
iz
ed

by
sh
ar
p
ch
an
ge
s
in

z
an
d
th
e
ab
se
nc
e
of

no
de

da
ta
si
nc
e
fa
ul
tp

la
ne
s
ar
e
de
fin

ed
as

se
pa
ra
te
su
rf
ac
es
.(
b)

Th
e
re
sa
m
pl
ed
,r
ot
at
ed

(�
20

� )
,a
nd

x-
tra

ns
la
te
d
(+

40
0
m
)t
op

re
se
rv
oi
rn

od
e
da
ta
.R

es
am

pl
in
g
w
as

ef
fe
ct
ua
te
d
by

pr
ov
id
in
g
Tr
ia
ng

le
w
ith

a
po

ly
go

n
ou

tli
ni
ng

th
e
to
p
re
se
rv
oi
rt
o

m
es
h,

an
d
in
te
rp
ol
at
in
g
de
pt
h
(z
)f
or

th
e
ou

tp
ut

no
de

da
ta
se
tf
ro
m

th
e
or
ig
in
al

no
de

da
ta
se
t.
N
od

e
sp
ac
in
g
is
ap
pr
ox

im
at
el
y
76

m
du

e
to

th
e

en
fo
rc
em

en
to
fa

m
ax
im

um
tri
an
gl
e
ar
ea

of
25

00
m

2 .
R
es
am

pl
in
g
ha
sl
ed

to
sm

oo
th
ed

to
po

gr
ap
hy

w
he
re
fa
ul
td
is
pl
ac
em

en
ti
sn

ow
on

ly
w
ea
kl
y

ex
pr
es
se
d
in

th
e
re
se
rv
oi
rs
ur
fa
ce
.(
c)

Th
e
co
m
pl
et
e
un

st
ru
ct
ur
ed

tri
an
gu

la
rm

es
h
(n
od

es
an
d
ce
lls
)g

en
er
at
ed

fo
rt
he

to
p
re
se
rv
oi
rs
ur
fa
ce

us
in
g

Tr
ia
ng

le
.

156



original node datasets as guidelines. To ensure adequate node density to capture large-scale

variations in surface topography, a maximum triangle area of 2500 m2 was imposed during

meshing, which corresponds to the area of a 76 m-edge length equilateral triangle, thus

enforcing a node spacing of roughly 76 m. After the Delaunay-constrained triangulation

in x,y was generated for the reservoir surfaces, the z-coordinate for each output node was

interpolated from the original node data. The effective resampling of the reservoir surface

resulted in a smoothed topography retaining only subtle expressions of fault displacement

(Figures 6.17b and 6.17c). Considering our present capabilities, this was advantageous

since accurate representation of fault displacement would necessitate poorly shaped, elon-

gate cells and/or greater node density, and thus greater refinement, in the vicinity of faults;

neither was desirable due to the adverse effects on mesh quality and problem size. To facil-

itate definition of along-strike receiver lines in the coordinate system, the reservoir surfaces

were rotated �20� in space to orient the strike of the eastern ridge, which serves as the

hydrocarbon trap for the field (see Figures 6.5 and 6.6), with north-south. The data were

also translated+400 m in the x-direction so that the eastern ridge was aligned parallel to the

y-axis and centered at x = 1 km. An along-strike, y-directed receiver line was later defined

to be centered at x = 1 km (Section 6.5.2).

In FacetModeller, the meshed reservoir surfaces were imported into the full 30 km⇥ 30

km ⇥ 30 km model domain composed of a 1.4 ohm-m lower shale halfspace, an overlying

0.3 ohm-m, 120 m-thick sea layer, and a 108 ohm-m upper air halfspace (Figure 6.18). The

dimensions of the sea layer were 22 km ⇥ 22 km ⇥ 120 m. The model was exported from

FacetModeller in .poly file format and meshed using TetGen. A utility program was devel-

oped by Peter Lelièvre which cycles through the cells of the mesh and identifies those cells

which fall within the lateral and vertical limits of any two input surfaces, in this instance, the

top and base reservoir surfaces. Identified cells may then be assigned an attribute or phys-

ical property value based on their average z value. In this instance, cells falling above the
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oil-water contact at�2386 m TVDss were assigned the baseline resistivity of hydrocarbon-

saturated reservoir, 75 ohm-m, and cells falling below the oil-water contact were assigned

the baseline resistivity of water-saturated reservoir, 0.7 ohm-m.

The final 3D unstructured mesh for the baseline North Amethyst BNA reservoir model

is illustrated in various perspectives in Figures 6.19 through 6.21. Figures 6.19 and 6.20 il-

lustrate yz-sections of the unstructured mesh in normal and rotated view, respectively, along

a y-directed receiver line at x = 1 km. Figure 6.21 illustrates the unstructured mesh for the

BNA reservoir interval in isolation. Hydrocarbon accumulation within the reservoir inter-

val is associated with the fault-bounded, eastern structural high. Refinement was manually

enforced in the vicinity of the source and along the simulated receiver line via insertion

of rectangular blocks which were assigned the resistivity of the background so that their

presence did not modify the electrical structure of the model. The final 30 km ⇥ 30 km ⇥

30 km mesh consisted of 1,267,510 cells, 202,977 nodes, and 1,471,838 edges.

Variations of the baseline 3D resistivity model in hydrocarbon saturation, burial depth,

and water depth were tested. Specifically, modelling was performed for both the true reser-

voir hydrocarbon content, as defined by the oil-water contact, and for the scenario where the

reservoir interval was entirely hydrocarbon-saturated. These two scenarios roughly equate

to an average oil thickness of 60 m and 190 mk, respectively, although they represent dras-

tically different lateral oil extents. Six different combinations of water depth and burial

depth were modelled, based on the true water depth of 120 m, increased water depths of

1000 m and 2000 m, the true burial depth of approximately �2500 m TVDss average, and

a decreased burial depth of approximately �1500 m TVDss average. The increased water

depths of 1000 m and 2000 m are more comparable to water depths encountered in the

adjacent Orphan and Flemish Pass basins than in the relatively shallow Jeanne d’Arc Basin.

kEstimated as the average difference in depth between the top reservoir and base reservoir triangulated
surfaces, where the base reservoir depth was interpolated at the (x,y) coordinates of the top reservoir nodes.
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Figure 6.18. Screenshot of the 3D North Amethyst BNA reservoir model construction in FacetMod-
eller. The 3D model consists of a laterally finite reservoir (red = top; base = dark blue) embedded in
a lower shale halfspace (brown), with an overlying 120 m-thick sea layer (thin; poorly visible) and
upper air halfspace (light blue).
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Shale
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Water-saturated reservoir

Hydrocarbon-saturated reservoir

(a) yz-section of the full unstructured mesh for x = 1 km.

Water-saturated reservoir

Sea

Hydrocarbon-saturated reservoir

Shale

Legend

Air

(b) Enlarged yz-section of the unstructured mesh for x = 1 km, illustrating the sea layer and BNA
reservoir in greater detail.

Figure 6.19. Normal yz-section of the unstructured mesh for the 3D North Amethyst BNA reservoir
model, along a y-directed receiver line at x = 1 km. Refinement was manually enforced in the
vicinity of the dipole source location and along the receiver line by insertion of blocks having the
same resistivity as their background.
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Legend

Figure 6.20. Perspective (rotated) section of the unstructured mesh for the 3D North Amethyst BNA
reservoir model. The background is yz-sectioned at x = 2 km, but the full xyz-extent of the reservoir
interval is illustrated for x> 2 km.

Legend

Water-saturated reservoir

Hydrocarbon-saturated reservoir

Figure 6.21. The unstructured mesh for the isolated 3D BNA reservoir. Hydrocarbon accumulation
is associated with the fault-bounded, structural high on the eastern (+x) limit of the ridge. The oil-
water contact is at �2386 m TVDss. Tetrahedra with average z > �2386 m TVDss were assigned
the resistivity value of hydrocarbon-saturated reservoir, while tetrahedra with average z<�2386 m
TVDss were assigned the resistivity value of water-saturated reservoir.
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Figure 6.22. The y-directed, inline source-receiver geometry simulated for the 3D North Amethyst
model. The source-receiver array is oriented along the strike of the eastern structural high of the
North Amethyst ridge, which serves as a trap for hydrocarbon accumulation in the field area. The
diamond indicates the location of the y-directed, 1 Am-moment HED source, which is centered at
(x,y) = (1 km, �4 km) at a height of 50 m above seafloor. The simulated receiver line extends from
y = �4 km to y = 6 km and is centered at x = 1 km.

6.5.2 Along-strike, inline source-receiver geometry

For the 3D North Amethyst reservoir model, the source was simulated as a 1 Am, y-directed

HED centered at (x,y) = (1000,�4000) m and z= {�70,�950,�1950} m TVDss, which

corresponded to a height of 50 m above seafloor for water depth = {120,1000,2000} m

TVDss, respectively. As discussed previously, the reservoir surface data were rotated so

that the hydrocarbon trend was aligned parallel to the y-axis and centered at x = 1 km.

The along-strike, inline, y-directed receiver line extended from (x,y) = (1000,�4000) m to

(x,y) = (1000,6000)m, with z= {�119.9999,�999.9999,�1999.9999}m TVDss, which

corresponded to a height of 0.0001 m above seafloor for water depth = {120,1000,2000}m

TVDss, respectively. Figure 6.22 illustrates this inline source-receiver geometry against the

top reservoir surface. Simulated transmission frequencies were 0.025 Hz, which falls mid-
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Table 6.4. Run information for the different 3D North Amethyst reservoir model variations, includ-
ing total number of cells in the input mesh, iterative solver memory usage, and total run time for
CSEM3DFWD. Memory and run time correspond to the true hydrocarbon content scenario, i.e.,
hydrocarbons only present above the oil-water contact in the reservoir, and a simulated source fre-
quency of 0.5 Hz. The GMRES Krylov subspace dimension was 400 for all examples, and the ILUT
fill-in factor was 3.

Water depth Average burial
depth

Total number
of cells in mesh

GMRES
memory usage
(dim_k = 400;
l f il = 3)

CSEM3DFWD
total run time

(m) (m) (GB) (h)

120* 2416* 1,267,510 25 18.7

120 1416 1,237,772** 24 19.4

1000 2416 1,060,080 20.9 15.7

1000 1416 1,212,530 21.6 16.2

2000 2416 1,085,818 21 15.8

2000 1416 908,189 17.9 14.4
*True earth parameters **Employed coarser receiver refinement to minimize problem size

optimal frequency range for anomaly detection based on 1D modelling, and 0.5 Hz, which

falls mid-range of the typical frequencies employed in CSEM acquisition (0.01–10 Hz) and

serves as a comprise between target sensitivity at low frequency and structural resolution at

high frequency in view of real-life acquisition and interpretation of marine CSEM data.

6.5.3 Results

CSEM3DFWD run information for the different 3D North Amethyst reservoir model vari-

ations, including total number of cells in the input unstructured mesh, iterative solver (GM-

RES) memory usage, and total run time for the program, are summarized in Table 6.4 for

reference. Note that memory and run time correspond to the true hydrocarbon content sce-

nario, i.e., hydrocarbons only present above the oil-water contact in the reservoir, and a

simulated frequency of 0.5 Hz; modifications to source frequency and electrical properties

(e.g., to simulate a completely hydrocarbon-filled reservoir) result in modifications to the
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matrix system which may in turn result in modifications to program run time and memory

usage. The number of cells required in the mesh generally increased as water depth de-

creased and burial depth decreased owing to the increased proximity of mesh-constraining

structural features, e.g., the air-sea, seafloor, and reservoir boundaries. For all runs, the

GMRES Krylov subspace dimension was set to 400, and the fill-in factor was set to 3. All

simulations were completed on a HP ProLiant SL250s compute node with 2 ⇥ 8-core Intel

Xeon 2.6 GHz processors and 96 GB RAM.

6.5.3.1 True earth parameters

Figures 6.23 and 6.24 illustrate the 0.025 Hz and 0.5 Hz finite-element solutions, respec-

tively, for the real and imaginary parts of the inline field components Ey, Hx, and Ez for

the true North Amethyst BNA reservoir model. Hydrocarbon content was defined by the

oil-water contact at�2386 m TVDss, the water depth was 120 m, and the average reservoir

burial depth was �2416 m TVDss. In comparing the finite-element solutions for 0.025

Hz and 0.5 Hz, it is interesting to note that for 0.5 Hz (Figure 6.24), the solutions for Hy,

and particularly, for Ez, become increasingly noisy as offset increases and as field ampli-

tude decreases. It appears that mesh refinement was insufficient for the 0.5 Hz case to

provide resolution of such small field amplitudes. For the Ez component, the shortcoming

in refinement is likely exacerbated by the thinness of the sea layer, which places the high

conductivity contrast sea-air interface in close proximity to the high conductivity contrast

sea-sediment interface at which receivers are simulated. While the components Ey and Hx

are continuous across conductivity boundaries, Ez is discontinuous, and mesh refinement

must be sufficient to capture the rapid spatial variation in Ez for a smooth and accurate so-

lution. Since the inline horizontal electric field component Ey is smooth and any additional

refinement would result in a larger problem size, the mesh was not modified to improve the

accuracy of the horizontal magnetic and vertical electric field components.
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Figure 6.23. The 0.025 Hz solutions for the real and imaginary parts of the field components Ey, Hx,
and Ez for the 3D North Amethyst BNA reservoir model with true hydrocarbon content as defined by
the oil-water contact at�2386 m TVDss, true water depth of 120 m, and true burial depth of�2416
m TVDss average. The source is a y-directed HED centered 50 m above the seafloor at y = �4 km,
and the inline receiver array extends from y = �4 km to y = +6 km. Offset, i.e., source-receiver
separation, is displayed on the x-axis.
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Figure 6.24. The 0.5 Hz solutions for the real and imaginary parts of the field components Ey, Hx,
and Ez for the 3D North Amethyst BNA reservoir model with true hydrocarbon content as defined by
the oil-water contact at�2386 m TVDss, true water depth of 120 m, and true burial depth of�2416
m TVDss average. The source is a y-directed HED centered 50 m above the seafloor at y = �4 km,
and the inline receiver array extends from y = �4 km to y = +6 km. Offset, i.e., source-receiver
separation, is displayed on the x-axis.
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The inline horizontal electric field anomalies for the true 3D North Amethyst BNA

reservoir model for source frequencies of 0.025 Hz and 0.5 Hz, respectively, are presented

in Figures 6.25 and 6.26. For 0.025 Hz, the maximum inline horizontal electric field

anomaly was about 1.21% at 6500 m offset⇤⇤, drastically less than that predicted by 1D

modelling (see Figure 6.16). For offset less than 10 km, 1D modelling predicted a maxi-

mum anomaly of 106.73% at 9760 m offset. The 1D anomaly corresponding to the offset

for maximum 3D anomaly was 56.03%. For 0.5 Hz, the maximum inline horizontal electric

field anomaly was negligible, although this frequency is outside of the optimal frequency

range, as determined by 1D modelling, for CSEM sensitivity to target. The maximum 3D

0.5 Hz inline horizontal electric field anomaly was 0.11% at 5450 m offset, whereas the

maximum 1D 0.5 Hz anomaly for offset less than 10 km was 10.31% at 6300 m; a 1D 0.5

Hz anomaly of 8.66% occurred at 5450 m offset, the offset associated with maximum 3D

anomaly.

That the inline horizontal electric field anomalies were substantially less than those

predicted by 1D modelling was not unexpected given that firstly, the lateral dimensions of

the target do not extend far beyond the minimum offset for a 20% difference anomaly based

on 1D modelling, approximately 5 km. The 1D model assumed an infinite-extent reservoir,

whereas the maximum y-extent of the reservoir in the 3D model was approximately 7 km.

Secondly, the 1D model assumed a constant-thickness, constant-burial depth hydrocarbon-

bearing interval, whereas true thickness and burial depth vary laterally due to structural

control (see Figure 6.9). Since the CSEM method is sensitive to transverse resistance,

overestimation of thickness would result in overestimation of the inline horizontal electric

field anomaly. Given the high lateral variability in hydrocarbon thickness, 1D modelling

was inadequate for prediction of the 3D CSEM response.
⇤⇤Recall that receiver, or observation point, spacing is 50 m, and so offset is defined in 50 m increments.
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Figure 6.25. The 0.025 Hz inline horizontal electric field anomaly (Ein = Ey) for the true 3D North
Amethyst BNA reservoir model. The top and middle panels illustrate the inline horizontal electric
field solutions for the hydrocarbons-absent and hydrocarbons-present scenarios, respectively, and
the bottom panel illustrates the inline horizontal electric field anomaly, calculated as the percentage
difference between the hydrocarbons-absent and hydrocarbons-present amplitudes, normalized by
the hydrocarbons-absent amplitude The maximum inline electric field anomaly is approximately
1%, drastically less than that predicted by 1D modelling for offset less than 10 km.
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Figure 6.26. The 0.5 Hz inline horizontal electric field anomaly (Ein = Ey) for the true 3D North
Amethyst BNA reservoir model. The inline electric field anomaly is negligible at 0.5 Hz, although
this frequency falls outside of the optimal frequency range for target sensitivity and detection, as
predicted by 1D modelling.
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6.5.3.2 Variable hydrocarbon content, burial depth, and water depth

To understand what conditions would enable detection of the hydrocarbon target, 3D mod-

elling was extended to variations of the baseline (true) model in terms of water depth,

reservoir burial depth, and hydrocarbon content. The source frequency was simulated at

the more moderate 0.5 Hz in view of the typical range of frequencies employed in CSEM

acquisition (0.1–10 Hz). Based on 1Dmodelling, a transmission frequency of 0.5 Hz is non-

optimal for the true earth parameters, but provides sufficient sensitivity (>20% anomaly)

to the reservoir target for decreased burial depth and/or increased water depth (see Figure

6.14). Further, 0.5 Hz provides a better compromise between depth penetration at low fre-

quency and structural resolution at high frequency than 0.025 Hz, the 1D-predicted optimal

frequency for anomaly detection in the true earth model.

Figures 6.27 and 6.28 illustrate the 0.5 Hz inline horizontal electric field anomalies for

variations on the baseline (true) 3D North Amethyst BNA reservoir in terms of water depth

and reservoir burial depth for a reservoir with true hydrocarbon content, i.e., hydrocar-

bons present only above the oil-water contact (Figure 6.27), and for a reservoir completely

filled by hydrocarbons, i.e., hydrocarbons present throughout the reservoir interval (Figure

6.28). Plots illustrating the hydrocarbons-present and hydrocarbons-absent inline horizon-

tal electric field amplitudes corresponding to the inline horizontal electric field anomalies

presented in Figures 6.27 and 6.28 may be found in Appendix B; these plots are useful for

comparison of anomaly magnitude to electric field amplitude when considering the strength

of the signal-to-noise ratio.

The inline electric field anomaly generally increased with decreased reservoir burial

depth and/or increased water depth, and was manifest at nearer offset with decreased burial

depth, as consistent with 1D modelling results. Of note is that for the true hydrocarbon con-

tent (Figure 6.27), for an average burial depth of 1416 m, the maximum anomaly is greater
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for a water depth of 1000 m than for a water depth of 2000 m; the mean anomaly (or inte-

grated anomaly over all offsets) is however greater for a water depth of 2000 m than for a

water depth of 1000 m. Comparing between the plots of Figures 6.27 and 6.28, for a given

water depth and reservoir burial depth, the inline electric field anomaly is approximately

10–20 times greater with increased oil thickness. These results again highlight the sensitiv-

ity of the marine CSEM method to transverse resistance. Recall that the true hydrocarbon

thickness was approximately 60 m on average whereas a completely hydrocarbon-filled

reservoir corresponds to an average thickness of approximately 190 m; the lateral extent of

hydrocarbons was also much greater in the latter scenario.

6.5.4 Summary and discussion

1D modelling can lead to gross anomaly overestimation for targets of limited lateral extent

or with significant lateral variation in thickness, particularly when the lateral dimensions of

the target are less than or border the minimum offset required for detection. 1D modelling

remains however a good starting point for analysis of the frequency-offset field for anomaly

generation and detection because of the large range of frequencies and offsets that may

be considered in a trivial amount of time. By contrast, 3D modelling presented in this

chapter only considers single frequencies and a limited range of source-receiver offsets,

and requires considerable computational resources.

A deficiency of the 3D results presented here is that they are not representative of a 3D

survey since they consider only a single line orientation across the target. For simulation of

a 3D survey, many meshes, each specific to a particular source-receiver geometry, would be

required, or a single mesh with extensive refinement to accommodate many source-receiver

geometries; the latter approach may however lead to unmanageable problems in terms of

size and/or ill-conditioning. Such simulations may require several days, or even weeks, for

computation. Based on memory usage-scaling, which is roughly linear with problem size

173



(refer to Table 6.4), for a Krylov subspace dimension of 400 for GMRES, making full use

of the 96 GB available on select compute nodes, a maximum mesh size of approximately

4,800,000 cells might be manageable. Whether the solution would converge in a reasonable

number of iterations is however unknown, since system ill-conditioning may increase or be

exacerbated as problem size increases. Lastly, it should be noted that forward modelling

presented here only addresses the detectability, not the recoverability, of targets frommarine

CSEM data; no attempt has been made to complete a resolution or recoverability analysis

to predict the accuracy with which true electrical structure may be recovered from CSEM

data.

For the specific scenario of the North Amethyst reservoir modelled here, CSEM data

would suggest that based on true, or, as accurately modelled as possible, hydrocarbon con-

tent and distribution, the BNA reservoir does not present a favourable target for detection.

It has been demonstrated however that with increased water depth and or decreased burial

depth, anomaly generation is more substantial. The nearby Orphan and Flemish Pass basins

may be more prospective or favourable environments for acquisition of marine CSEM data

due to their greater water depths. Given regional lithostratigraphy, the prospect of hydro-

carbon targets with substantially shallower burial depth is poor within the Jeanne d’Arc

Basin. The other major reservoir-bearing intervals in the Jeanne d’Arc Basin, including the

Hibernia and Jeanne d’Arc Formations, occur at greater burial depths than the BNA For-

mation. For example, in the Hebron field, which includes Ben Nevis, Hibernia, and Jeanne

d’Arc reservoirs, average reservoir depths in TVDss are 1900 m, 2950 m, and 2900–4400

m, respectively (ExxonMobil Canada Properties, 2011). Based on simulations presented

here, it is conjectured that hydrocarbon anomaly generation at these burial depths would

require accumulations of greater lateral extent and/or resistivity-thickness product than the

North Amethyst hydrocarbon-bearing BNA interval.

On a final note, the North Amethyst field model presented here considers the hydrocarbon-
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bearing BNA interval in isolation, despite the presence of other hydrocarbon pools in lateral

and vertical proximity. The possible implications of omission of these bodies in the resis-

tivity model has been briefly discussed (Sections 6.4.2.2 and 6.5.1). In the future, should

modelling capabilities permit, it would be of interest to perform simulations for models

including hydrocarbon accumulations on a regional rather than local scale to observe the

effect on the measured CSEM response.
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Chapter 7

Conclusions

3D CSEM data has been simulated for several simple marine models existing in the litera-

ture as well as a realistic reservoir model using the CSEM3DFWD finite-element code in

conjunction with unstructured meshes. 3D finite-element simulations have demonstrated

that the CSEM response to resistivity structure with substantial lateral variability can devi-

ate significantly from 1D predictions; 3D simulation tools are therefore required for reliable

interpretation of CSEM data. The CSEM3DFWD code has been demonstrated to accurately

simulate CSEM data for models having finite-depth water and infinite air layers, scenarios

that had not previously been tested.

Unstructured meshes have been demonstrated to be able to accurately represent complex

resistivity structure arising from topography and stratigraphy, as in the seafloor topography

and North Amethyst reservoir models. The implementation of finite-element schemes on

unstructured meshes can however be challenging, as elaborated below. To the author’s

knowledge, the North Amethyst reservoir model presented here represents one of the few

examples in the 3D EM modelling literature of discretization of a realistic 3D model using

unstructured tetrahedral meshes. Modelling completed for the North Amethyst model does

not comprise a full CSEM feasibility study, but does contribute to our understanding of the
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conditions for CSEM hydrocarbon detection in the given regional stratigraphic setting.

In our opinion, the most significant impediment to modelling of more realistic, detailed

earth models is design and generation of the unstructured mesh, or further, understanding

how different parameters such as cell size, grading, and boundaries ultimately affect the

quality of the mesh and behaviour of the solution. Iterative solutions remain susceptible to

ill-conditioning, and thus are very much tied to the quality of the mesh. Experience with

fairly simple earth models has exposed multiple areas of difficulty related to unstructured

mesh design, in particular for models which feature thin layers and/or fine structural detail.

Ad hoc, user-overseen design of meshes of suitable quality for finite-element modelling has

proven to be cumbersome, requiring a great amount of time and input from the user. This

work has underscored the importance of improving mesh design and refinement procedures

to facilitate extension of modelling using unstructured meshes to more realistic, and by

requisite more complicated, earth models.

In view of mesh quality and system conditioning, mesh design best practice is to allow

adequate grading of the mesh from small cell size at the domain interior to large cell size at

its boundaries; this may require artificial extension of the mesh or coarsening of structure

away from the source-receiver line. Constraining features, while required for accurate ge-

ometric representation of geoelectric structure, should generally be kept to a minimum or

coarsened where possible (e.g., background structure located far from the source-receiver

line) so as not to interfere any more than necessary with the quality tetrahedralization of

TetGen. Such measures not only improve conditioning of the system, but keep problem

size in terms of cells, and hence nodes and edges, to a minimum. It is recognized however

that this may not always be possible when high resolution of structural detail is required,

such as for small or thin targets, or for significant lateral resistivity variations in proximity

to source and receivers, e.g., where seafloor topography is highly variable or non-target re-

sistive structures are present in the shallow subsurface. Further, as problem size increases,
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ill-conditioning of the system may be compounded, such that mesh quality which was ac-

ceptable for a smaller mesh may no longer be acceptable for a larger mesh. It may be

beneficial to explore alternative preconditioning measures in the future to further improve

the condition number of the system matrix prior to iterative solution.

Two models in this study have featured irregular structural or stratigraphic surfaces,

namely the seafloor topography model presented in Chapter 5 and the North Amethyst

reservoir model presented in Chapter 6, although a different approach was taken for each

in regards to surface meshing. In the former, a regular, rectilinear node spacing was pro-

vided as input to Triangle, while in the latter, only a polygon outlining the extent of the

surface was provided. When constructing meshes featuring topographic surfaces derived

from other data sets, it is suggested herein as best practice to supply to Triangle as input

for triangulation only a polygon defining the lateral boundary of the surface instead of the

original surface node data with arbitrary density and spacing. This allows Triangle to tri-

angulate the surface with the least amount of constraints, thus allowing the best quality

triangulation to be generated. The size of the cells can be controlled through implementa-

tion of an area constraint rather than an explicit node density. Depth, or the z-coordinate,

can later be interpolated on the triangulated surface from the original node data.

Concerning mesh refinement to ensure solution accuracy at observation points and

where the fields vary rapidly (e.g., at the source and near offset and in proximity to large

conductivity contrasts), implementation of an adaptive mesh refinement strategy may be

advantageous so as to only increase refinement where necessary to improve the solution

(see Key, 2009; Schwarzbach et al., 2011). It is difficult for the user to discern, prior

to solution, where and how much refinement is necessary for solution accuracy. Further,

manual refinement via insertion of artificial structures is very problem-specific. Consider

simulation of a full 3D CSEM survey requiring forward solutions for many source-receiver

geometries and frequencies. Manual design of multiple meshes, each optimized for a given
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source-receiver geometry, would be impractical. It may therefore be beneficial to explore

schemes which automate and optimize mesh generation according to such factors as source

frequency, source location, and source-receiver geometry (see Plessix et al., 2007; Commer

and Newman, 2008).

As increasingly realistic and complicated models are addressed, accurate reproduction

of geoelectric structure will necessitate a larger mesh in terms of cell size. Strategies for

minimizing system ill-conditioning have been proposed which also act to minimize problem

size, although they require user input. The attractiveness of iterative solutions stems from

their more moderate memory requirements as compared to direct solutions, although it has

been demonstrated herein that they may still be very high. The presently non-parallelized

structure of the forward code, in combination with finite computational resources, dictate

an upper limit on the problem size, and consequently the amount of structural detail, that

can be handled at present. In the future, it may be advantageous to investigate domain

decomposition procedures to reduce problem size and enable parallelization (see Puzyrev

et al., 2013).

As a final comment, 3D forward modelling is limited in its application in and of itself; it

would ultimately be desirable to implement CSEM3DFWD as the forward solve procedure

in an inversion routine that may be used to invert real-life CSEM data to produce resis-

tivity images of the subsurface which may be interpreted independently, or preferably, in

conjunction with other geological or geophysical data.
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Appendix A

MARDIP1D: A 1D marine HED

forward code

The 1D marine HED forward code used throughout this thesis, MARDIP1D, is based on

closed-form Hankel transform expressions for the electric and magnetic fields due to an

x-directed current element, i.e., a HED. The expressions were derived in Wannamaker and

Hohmann (1982) and Wannamaker et al. (1984) for specification of the electric and mag-

netic tensor Green’s functions for a time-harmonic electric dipole in a layered earth. Since

we consider the special case of the observation points being located in the same earth layer

as the source, as is true in the marine CSEM method, we require expressions for the fields

only in the source layer. These expressions were numerically evaluated using a fast Hankel

transform subroutine, the algorithm for which is described in Anderson (1979).

A.1 Theory

For an earth composed of n homogeneous layers, we wish to determine the electric and

magnetic fields at some point r= (x,y,z) in layer j which contains a current element Jxdv0
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at r0 = (x0,y0,z0). For a homogeneous region containing sources, Maxwell’s equations in

the frequency domain take the inhomogeneous forms (e.g. Wannamaker et al., 1984; Ward

and Hohmann, 1988)

—⇥E+ ẑH=�Jsm (A.1a)

and

—⇥H� ŷE= Jse, (A.1b)

where Jse and Jsm are volume distributions of applied electric and magnetic current, respec-

tively, the latter of which is a useful mathematical artifice, and where ẑ and ŷ are respec-

tively the impedivity and the admittivity, defined as ẑ = iµw and ŷ = s + iew (Ward and

Hohmann, 1988).

It is often easier to solve an EM boundary value problem formulated in terms of po-

tentials rather than solving for the electric and magnetic fields directly. A useful set of

potentials for decomposition of the electric and magnetic fields in a space composed of

homogeneous regions are the electric and magnetic Schelkunoff vector potentials A and

F (see e.g., Harrington, 1961; Ward and Hohmann, 1988). For some homogeneous re-

gion containing sources, A and F satisfy the frequency-domain inhomogeneous Helmholtz

equations (Wannamaker and Hohmann, 1982; Ward and Hohmann, 1988)

⇣

—2+ k2
⌘

A= Jse (A.2a)

and
⇣

—2+ k2
⌘

F= Jsm, (A.2b)

where k is the wavenumber, defined such that (Ward and Hohmann, 1988)

k2 = µew2� iµsw =�ẑŷ. (A.3)
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Note that the vector potentials A and F have the same directions as their sources. Using

this vector potential decomposition, the electric and magnetic fields may be expressed as

(Wannamaker and Hohmann, 1982; Ward and Hohmann, 1988)

E=�—⇥F� ẑA+
1
ŷ

—— ·A (A.4a)

and

H= —⇥A� ŷF+ 1
ẑ

—— ·F. (A.4b)

By expressing the dipole current source as an equivalent distribution of vertically ori-

ented electric and magnetic current sources, there only exists vertical components of the

Schelkunoff vector potentials, respectively designated f and q , which obey the scalar equa-

tions (Wannamaker and Hohmann, 1982)

⇣

—2+ k2
⌘

f = Jeqez (A.5a)

and
⇣

—2+ k2
⌘

q = Jeqmz, (A.5b)

where Jeqmz and Jeqmz are the equivalent vertical electric and magnetic source distributions,

respectively. Considering only vertical components of A and F, f and q , equation (A.4)

becomes, in cartesian coordinates (Wannamaker and Hohmann, 1982; Wannamaker et al.,

1984; Ward and Hohmann, 1988),

Ex =
1
ŷ

∂ 2f
∂x∂ z

� ∂q
∂y

, Hx =
∂f
∂y

+
1
ẑ

∂ 2q
∂x∂ z

, (A.6a)

Ey =
1
ŷ

∂ 2f
∂y∂ z

+
∂q
∂x

, Hy =�∂f
∂x

+
1
ẑ

∂ 2q
∂y∂ z

, (A.6b)

Ez =
1
ŷ

✓

∂ 2

∂ z2
+ k2

◆

f , and Hz =
1
ẑ

✓

∂ 2

∂ z2
+ k2

◆

q . (A.6c)
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Since Ez and Hz are formulated exclusively in terms of f and q , respectively, this choice

of potentials has separated the fields into TM and TE modes with respect to z. Now let us

consider an earth composed of n homogeneous layers, with the source located in layer j. If

we effect a 2D spatial Fourier transform of equation (A.5) using the Fourier transform pair

(Wannamaker and Hohmann, 1982)

f (x,y,z) =
1

4p2

ZZ •

�•
F (kx,ky,z)e+i(kxx+kyy)dkxdky (A.7a)

and

F (kx,ky,z) =
ZZ •

�•
f (x,y,z)e�i(kxx+kyy)dxdy, (A.7b)

a 1D scalar wave equation in z results whose general solution is composed of upward- and

downward-propagating plane waves. For some arbitrary layer l, the solutions take the form

(Wannamaker and Hohmann, 1982)

f�
l = f� �

l e+ul(z�dl�1) + f� +
l e�ul(z�dl�1) (A.8a)

and

q�
l = q� �

l e+ul(z�dl�1) + q� +
l e�ul(z�dl�1), (A.8b)

for z< z0, i.e., above the source, and

f+
l = f+ �

l e+ul(z�dl) + f+ +
l e�ul(z�dl) (A.9a)

and

q+
l = q+ �

l e+ul(z�dl) + q+ +
l e�ul(z�dl), (A.9b)
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for z> z0, i.e., below the source, where ul is defined such that

u2l = k2x + k2y � k2l . (A.10)

Note that in equations (A.8) and (A.9), the left-hand side superscripts + and � denote

z< z0 (above the source) and z> z0 (below the source), respectively, and the right-hand side

superscripts + and � denote downward- and upward-travelling waves, respectively. Under

this 2D spatial Fourier transformation, relation (A.6) becomes

Ex =
ikx
ŷ

∂f
∂ z

� ikyq , Hx = ikyf +
ikx
ẑ

∂q
∂ z

, (A.11a)

Ey =
iky
ŷ

∂f
∂ z

+ ikxq , Hy =�ikxf +
iky
ẑ

∂q
∂ z

, (A.11b)

Ez =

�

k2x + k2y
�

ŷ
f , and Hz =

�

k2x + k2y
�

ẑ
q . (A.11c)

The upward- and downward-travelling waves of equations (A.8) and (A.9) are coupled

through the reflection coefficients R� TM
l , R� TE

l , R+ TM
l , and R+ TE

l , as

f� +
l = R� TM

l f� �
l , (A.12a)

q� +
l = R� TE

l q� �
l , (A.12b)

f+ �
l = R+ TM

l f+ +
l , (A.13a)

and

q+ �
l = R+ TE

l q+ +
l . (A.13b)

The reflection coefficients are given by the formulae (Wannamaker and Hohmann, 1982;

Wannamaker et al., 1984)

R� TM
l =

Zl � Z̄� l�1
Zl + Z̄� l�1

, (A.14a)
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R� TE
l =

Yl � Ȳ� l�1
Yl + Ȳ� l�1

, (A.14b)

R+ TM
l =

Zl � Z̄+ l+1
Zl + Z̄+ l+1

, (A.15a)

and

R+ TE
l =

Yl � Ȳ+ l+1
Yl + Ȳ+ l+1

, (A.15b)

with the recurrence relations (Wannamaker et al., 1984; Ward and Hohmann, 1988)

Z̄� l = Zl
Z̄� l�1+Zl tanh(ulhl)

Zl + Z̄� l�1 tanh(ulhl)
, (A.16a)

Ȳ� l = Yl
Ȳ� l�1+Yl tanh(ulhl)

Yl + Ȳ� l�1 tanh(ulhl)
, (A.16b)

Z̄� 1 = Z1, (A.16c)

Ȳ� 1 = Y1, (A.16d)

Z̄+ l = Zl
Z̄+ l+1+Zl tanh(ulhl)

Zl + Z̄+ l+1 tanh(ulhl)
, (A.17a)

Ȳ+ l = Yl
Ȳ+ l+1+Yl tanh(ulhl)

Yl + Ȳ+ l+1 tanh(ulhl)
, (A.17b)

Z̄+ n = Zn, (A.17c)

and

Ȳ+ n = Yn, (A.17d)

where Zl is the impedance, Zl = ul/ŷl ,Yl is the admittance,Yl = ul/ẑl , and hl is the height of

the layer, hl = dl �dl�1. Here Z1, Y1, Zn, and Yn represent the impedances and admittances

of the top halfspace (l = 1) and the base halfspace (l = n). Equations (A.8) and (A.9) can
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thus be expressed as

f�
l = f� �

l

h

e+ul(z�dl�1) + R� TM
j e�ul(z�dl�1)

i

, (A.18a)

q�
l = q� �

l

h

e+ul(z�dl�1) + R� TE
l e�ul(z�dl�1)

i

, (A.18b)

f+
l = f+ +

l

h

R+ TM
l e+ul(z�dl) + e�ul(z�dl)

i

, (A.19a)

and

q+
l = q+ +

l

h

R+ TE
l e+ul(z�dl) + e�ul(z�dl)

i

. (A.19b)

For some layer l 6= j, the general solutions of equations (A.18) and (A.19) are constructed

solely from source-free secondary potentials. For the source layer l = j, the general solu-

tions for the potentials consist of both primary and secondary potentials, and so the coeffi-

cients may be decomposed into primary and secondary parts, i.e.,

f� �
j = fP� �

j + fS �
j , (A.20a)

q� �
j = qP� �

j + qS �
j , (A.20b)

f+ +
j = fP+ +

j + fS +
j , (A.21a)

and

q+ +
j = qP+ +

j + qS +
j , (A.21b)

where we have dropped the left-hand side + and � superscripts from the secondary co-

efficients since the upward- and downward-propagating secondary potentials are present

throughout the layer, not just above or below the source. The primary solutions fP j and
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qP j, which only arise in layer j containing the source, can be found by equating (A.11c)

with the vertical components of the electric and magnetic fields for current element Jxdv0

in a whole space of wavenumber k j (e.g., Harrington, 1961, p. 80; Ward and Hohmann,

1988, p. 169). The resultant expressions for the primary potentials are (Wannamaker and

Hohmann, 1982)

fP x
j =± Jxikx

2
�

k2x + k2y
�e�i(kxx0+kyy0)e�u j|z�z0| (A.22a)

and

qP x
j =�

Jxẑ jiky
2u j

�

k2x + k2y
�e�i(kxx0+kyy0)e�u j|z�z0|. (A.22b)

The secondary potentials can be determined by expanding equations (A.18) and (A.19) us-

ing the primary-secondary decomposition defined in (A.20) and (A.21), and subsequently

matching equivalent terms in z < z0 and z > z0 spaces. For example, the downgoing pri-

mary potential reflected at the top boundary (now secondary) and the downgoing secondary

potential reflected at the top boundary, both present in z < z0 space, are equivalent to the

downgoing secondary potential incident at the base boundary, present in z> z0 space. Only

one of the two quantities are required to define the total potential since they are equivalent,

and hence redundant. By matching equivalent terms for z< z0 and z> z0 spaces, the down-

going secondary potential coefficients are determined to be (Wannamaker and Hohmann,

1982)

fS �
j =

h

fP+ +
j + fP� �

j R� TM
j

i

R+ TM
j e�2u jh j

1� R+ TM
j R� TM

j e�2u jh j
(A.23a)

and

qS �
j =

h

qP+ +
j + qP� �

j R� TE
j

i

R+ TE
j e�2u jh j

1� R+ TE
j R� TE

j e�2u jh j
. (A.23b)

The coefficients fP� �
j , fP+ +

j , qP� �
j , and qP+ +

j depend on the source. For an x-directed
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current source, from equation (A.22) (Wannamaker and Hohmann, 1982),

fP� �x
j =�e�2u j(z0�d j�1) fP+ +x

j , (A.24a)

qP� �x
j =�e�2u j(z0�d j�1) qP+ +x

j , (A.24b)

fP+ +x
j =

�sxikx
�

k2x + k2y
�e+u j(z0�d j�l), (A.24c)

and

qP+ +x
j =

�sxẑ jiky
u j
�

k2x + k2y
�e+u j(z0�d j�l), (A.24d)

where we have defined sx = 1
2Jxe

�i(kxx0+kyy0). From equations (A.18), (A.20), (A.22),

(A.23), and (A.24), for an x-directed current element, the total potentials in source layer j

are (Wannamaker and Hohmann, 1982; Wannamaker et al., 1984)

f x
j =

sxikx
�

k2x + k2y
�

nh

±e�u j|z�z0|+ R� TM
j e�u j(z+z0�2d j�1)

i

+ Ax TM
j

h

e+u j(z�d j�1) + R� TM
j e�u j(z�d j�1)

io

(A.25a)

and

q x
j =

�sxẑ jiky
u j
�

k2x + k2y
�

nh

e�u j|z�z0|+ R� TE
j e�u j(z+z0�2d j�1)

i

+ Ax TE
j

h

e+u j(z�d j�1) + R� TE
j e�u j(z�d j�1)

io

.

(A.25b)

The electric and magnetic fields in (kx, ky) space in layer j for an x-directed current ele-

ment, also located in layer j, are obtained by substituting (A.25) into relation (A.11) and

evaluating the expressions. The electric and magnetic fields can be expressed in Cartesian

coordinates by applying the reverse Fourier transform defined in (A.7). To facilitate nu-

merical evaluation of the electric and magnetic field expressions, we convert the double

Fourier transforms with circularly symmetric integral kernels to Hankel transforms using
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the relation (Wannamaker and Hohmann, 1982; Ward and Hohmann, 1988)

ZZ •

�•
F
�

k2x + k2y
�

ei(kxx+kyy)dkxdky = 2p
Z •

0
F (l )lJ0 (lr)dl , (A.26)

where l 2 = k2x + k2y , r2 = (x� x0)2+(y� y0)2, and J0 (lr) is the zeroth order Bessel func-

tion of the first kind. The primary electric field components PEx j arising from the primary

or particular potential solutions are (Wannamaker and Hohmann, 1982; Wannamaker et al.,

1984)

PExx j =
Jx

4p ŷ j

("

(x� x0)2

R2

#

gP E
1 j� gP E

2 j+ k2j gP E
3 j

)

, (A.27a)

PEyx j =
Jx

4p ŷ j

⇢

(x� x0)(y� y0)
R2

�

gP E
1 j

�

, (A.27b)

and

PEzx j =
Jx

4p ŷ j

⇢

(x� x0)(z� z0)
R2

�

gP E
1 j

�

, (A.27c)

where the first subscript (i.e., x, y, and z) denotes the component direction, R = |r� r0|,

and we have defined

gP E
1 j =

e�ik jR

R



3
R2 +

3ik j
R

� k2j

�

, (A.28a)

gP E
2 j =

e�ik jR

R



1
R2 +

ik j
R

�

, (A.28b)

and

gP E
3 j =

e�ik jR

R
. (A.28c)

The secondary electric field components ES x j arising from the secondary or complementary

potential solutions are (Wannamaker and Hohmann, 1982; Wannamaker et al., 1984)

ES xx j =
Jx

4p ŷ j

("

2(x� x0)2

r3 � 1
r

#

gS E
1 j�

"

(x� x0)2

r2

#

gS E
2 j+ k2j gS E

3 j

)

, (A.29a)
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ES yx j =
Jx

4p ŷ j

⇢

2(x� x0)(y� y0)
r3

�

gS E
1 j�



(x� x0)(y� y0)
r2

�

gS E
2 j

�

, (A.29b)

and

ES zx j =
Jx

4p ŷ j

⇢

�(x� x0)
r

�

gS E
4 j

�

, (A.29c)

with Hankel transforms

gS E
1 j =

Z •

0

("

u j Ax TM
j +

k2j
u j

Ax TE
j

#

e+u j(z�d j�1)

�


u j

⇣

e�u j(z0�d j�1) + Ax TM
j

⌘

R� TM
j

�
k2j
u j

⇣

e�u j(z0�d j�1) + Ax TE
j

⌘

R� TE
j

�

e�u j(z�d j�1)

)

J1 (lr)dl ,

(A.30a)

gS E
2 j =

Z •

0

("

u j Ax TM
j +

k2j
u j

Ax TE
j

#

e+u j(z�d j�1)

�


u j

⇣

e�u j(z0�d j�1) + Ax TM
j

⌘

R� TM
j

�
k2j
u j

⇣

e�u j(z0�d j�1) + Ax TE
j

⌘

R� TE
j

�

e�u j(z�d j�1)

)

lJ0 (lr)dl ,

(A.30b)

gS E
3 j =

Z •

0

1
u j

�⇥

Ax TE
j
⇤

e+u j(z�d j�1)

+
h⇣

e�u j(z0�d j�1) + Ax TE
j

⌘

R� TE
j

i

e�u j(z�d j�1) lJ0 (lr)dl ,
(A.30c)

and

gS E
4 j =

Z •

0
l 2�⇥ Ax TM

j
⇤

e+u j(z�d j�1)

+
h⇣

e�u j(z0�d j�1) + Ax TM
j

⌘

R� TM
j

i

e�u j(z�d j�1) J1 (lr)dl ,
(A.30d)

and additional coefficients

Ax TM
j =

R+ TM
j e�2u jh je+u j(z0�d j�1)

h

R� TM
j e�2u j(z0�d j�1)�1

i

1� R+ TM
j R� TM

j e�2u jh j
(A.31a)
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and

Ax TE
j =

R+ TE
j e�2u jh je+u j(z0�d j�1)

h

R� TE
j e�2u j(z0�d j�1) +1

i

1� R+ TE
j R� TE

j e�2u jh j
. (A.31b)

Similarly, the primary magnetic fields arising from the particular potential solutions are

(Wannamaker and Hohmann, 1982; Wannamaker et al., 1984)

HP xx j = 0, (A.32a)

HP yx j =
�1
4p

�

z� z0
�

gP H
1 j, (A.32b)

and

HP zx j =
1
4p

�

y� y0
�

gP H
1 j, (A.32c)

where

gP H
1 j =

e�ik jR

R



1
R2 +

ik j
R

�

. (A.33)

The secondary magnetic fields arising from the complementary potential solutions are

(Wannamaker and Hohmann, 1982; Wannamaker et al., 1984)

HS xx j =
Jx
4p

⇢

2(x� x0)(y� y0)
r3

�

gS H
1 j�



(x� x0)(y� y0)
r2

�
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2 j

�

, (A.34a)

HS yx j =
Jx
4p

(

�
"

2(x� x0)2

r3 � 1
r

#

gS H
1 j+

"

(x� x0)2

r2

#

gS H
2 j+ gS H

3 j

)

, (A.34b)

and

HS zx j =
Jx
4p

⇢

(y� y0)
r

�

gS H
4 j

�

, (A.34c)
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with Hankel transforms
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and
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Z •
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l 2

u j

n
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Ax TE
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A.2 Algorithm

The algorithm for MARDIP1D, which requires computation of the electric and magnetic

fields in a layered earth due to a HED, where the observation points and source are both

located in the same layer, is summarized in Algorithm A.1, with reference to the perti-

nent equations introduced in the previous section. The Hankel transform expressions were

evaluated using the fast Hankel transform subroutine of Anderson (1979).
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Algorithm A.1 Part I: MARDIP1D forward solve procedure for the electric and magnetic
fields in a layered earth due to a HED, with both source and observation points located in
the same layer

Input:

Earth model {sl,erl,hl} for l = 1, ..,n, where n is the number of earth layers
Set of observation points {ri} for i = 1, ..,nobs, where nobs is the number of
observation points, and ri = (xi,yi,zi)
Source parameters w , I, dx, and r0 = (x0,y0,z0)

Output: Electric and magnetic fields E j (r), H j (r) for layer j containing the source

procedure MARDIP1D({sl,erl,hl}, {ri}, w , I, dx, r0)
for i= 1,nobs do . For all observation points

Compute ri, Ri
Evaluate the primary electric field EP j (ri) using (A.27) and (A.28)
Evaluate the primary magnetic field HP j (ri) using (A.32) and (A.33)
for all secondary field Hankel transforms defined in (A.30) and (A.35) do

call HANKEL⇤(ri, nord, HFUNC) to evaluate the Hankel transform of order
nord with kernel function HFUNC

end for
Evaluate the secondary electric field ES j (ri) using (A.29), (A.30), and (A.31)
Evaluate the secondary magnetic field HS j (ri) using (A.34), (A.35), and (A.31)
Sum the primary and secondary fields to obtain the total electric and magnetic

fields E j (ri) and H j (ri)
end for

end procedure

⇤Hankel subroutine developed by Anderson, 1979.
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Algorithm A.1 Part 2: Secondary field Hankel transform kernels and reflection coefficients
for source layer
function HFUNC(l ) . Representative kernel function, defined for each Hankel

transform
call LAYERS(l )
Evaluate the kernel of the secondary field Hankel transform, as defined in (A.30) or

(A.35), for a particular value of l
end function

procedure LAYERS(l )
for l = 1,n do . For all layers, including source layer j

Compute admittivity ŷl and impedivity ẑl
Compute wavenumber kl
Compute ul , ul =

q

l 2� k2l
Compute admittance Yl and impedance Zl

end for
Assign Ȳ1 = Y1, Ȳn = Yn, Z̄1 = Z1, and Z̄n = Zn
for l = 1, j�1,1 do . For layers above the source layer

Compute Ȳl and Z̄l using the recurrence relations defined in equation (A.16)
end for
for l = n�1, j+1,�1 do . For layers below the source layer

Compute Ȳl and Z̄l using the recurrence relations defined in equation (A.17)
end for
Compute source layer j reflection coefficients R� TM

j , R� TE
j , R+ TM

j , and R+ TE
j using

equations (A.14) and (A.15)
Compute coefficients Ax TM

j and Ax TE
j using equation (A.31)

end procedure
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Appendix B

Supplementary plots for the 3D North

Amethyst reservoir model

The hydrocarbons-present and hydrocarbons-absent solutions used for computation of the

inline horizontal electric field amplitude anomalies presented in Figures 6.27 and 6.28 for

variations of the 3D North Amethyst BNA reservoir model in terms of water depth, burial

depth, and hydrocarbon content are included in this appendix for reference.
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Figure B.1. The 0.5 Hz inline horizontal electric field and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 120 m, average burial depth = 2416 m, and true
hydrocarbon content, i.e., hydrocarbons present only above the oil-water contact in the reservoir.
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Figure B.2. The 0.5 Hz inline horizontal electric field and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 120 m, average burial depth = 1416 m, and true
hydrocarbon content, i.e., hydrocarbons present only above the oil-water contact in the reservoir.
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Figure B.3. The 0.5 Hz inline horizontal electric field and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 1000 m, average burial depth = 2416 m, and true
hydrocarbon content, i.e., hydrocarbons present only above the oil-water contact in the reservoir.
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Figure B.4. The 0.5 Hz inline horizontal electric field and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 1000 m, average burial depth = 1416 m, and true
hydrocarbon content, i.e., hydrocarbons present only above the oil-water contact in the reservoir.
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Figure B.5. The 0.5 Hz inline horizontal electric field and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 2000 m, average burial depth = 2416 m, and true
hydrocarbon content, i.e., hydrocarbons present only above the oil-water contact in the reservoir.
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Figure B.6. The 0.5 Hz inline horizontal electric fields and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 2000 m, average burial depth = 1416 m, and true
hydrocarbon content, i.e., hydrocarbons present only above the oil-water contact in the reservoir.
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Figure B.7. The 0.5 Hz inline horizontal electric fields and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 120 m, average burial depth = 2416 m, and the
reservoir interval completely hydrocarbon-filled.
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Figure B.8. The 0.5 Hz inline horizontal electric fields and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 120 m, average burial depth = 1416 m, and the
reservoir interval completely hydrocarbon-filled.
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Figure B.9. The 0.5 Hz inline horizontal electric fields and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 1000 m, average burial depth = 2416 m, and the
reservoir interval completely hydrocarbon-filled.
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Figure B.10. The 0.5 Hz inline horizontal electric fields and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 1000 m, average burial depth = 1416 m, and the
reservoir interval completely hydrocarbon-filled.
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Figure B.11. The 0.5 Hz inline horizontal electric fields and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 2000 m, average burial depth = 2416 m, and the
reservoir interval completely hydrocarbon-filled.
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Figure B.12. The 0.5 Hz inline horizontal electric fields and associated anomaly for the 3D North
Amethyst BNA reservoir model with water depth = 2000 m, average burial depth = 1416 m, and the
reservoir interval completely hydrocarbon-filled.
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