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Abstract 

Rapid development in industry have contributed to more complex systems that are prone to failure. 

In applications where the presence of faults may lead to premature failure, fault detection and 

diagnostics tools are often implemented. The goal of this research is to improve the diagnostic 

ability of existing FDD methods. Kernel Principal Component Analysis has good fault detection 

capability, however it can only detect the fault and identify few variables that have contribution 

on occurrence of fault and thus not precise in diagnosing. Hence, KPCA was used to detect 

abnormal events and the most contributed variables were taken out for more analysis in diagnosis 

phase. The diagnosis phase was done in both qualitative and quantitative manner. In qualitative 

mode, a networked-base causality analysis method was developed to show the causal effect 

between the most contributing variables in occurrence of the fault. In order to have more 

quantitative diagnosis, a Bayesian network was constructed to analyze the problem in probabilistic 

perspective.  
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Chapter 1 

Introduction 

1.1. Background 

In chemical, petrochemical, food processing, papermaking, steel, power and other process 

industries, there has been a continuing demand for higher quality products, lower product rejection 

rates, and satisfying increasingly stringent safety and environmental regulation [1]. Modern control 

systems become extremely complex by integrating various functions and components for 

sophisticated performance requirement [2, 3]. With such complexities in hardware and software, 

it is natural that the system may become vulnerable to faults in practice and fault diagnostic tools 

are the main requirements to endure the process safety and quality of products. The objectives of 

these tools are earlier detection of problems to take actions that mitigates the fault’s impact on the 

system [3]. 

Over the years, many fault detection and diagnosis methods have been developed, each method 

manages to capture or model some subset of the features of the diagnostic reasoning and thus may 

be more suitable than other techniques for a particular class of problems [4].  As such, hybrid 

frameworks consisting of a collection of methods performing cooperative problem solving is 

proposed as an alternative to individual methods. Such a hybrid framework is an effective way of 

utilizing all available information and overcoming limitations of individual methods [5-7]. This 
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combination of different methods allows one to evaluate different kinds of knowledge in one single 

framework for better decision making [7].  

1.2. Objective 

The goal of this research is to develop a process fault detection and diagnosis tool that gives 

definitive answer about the root cause of a fault and helps operator to save the process. To this 

aim, KPCA, causality analysis, and Bayesian networked-base diagnosis methods have been used 

in a hybrid framework. However, there are some challenges based on previous research in this 

area. This research tries to propose a comprehensive methodology to address those challenges. The 

main objectives of this research are as follows:  

 We propose to improve the root cause diagnosis of KPCA through integration with 

knowledge based methods, i.e. Granger causality, transfer entropy, for better diagnosing of 

process fault's root cause.  

 Using a BN to integrate process knowledge of diagnostic information from various 

diagnostic tools (i.e. KPCA, sensor check module) to precisely diagnose the root cause of 

fault.  

 Develop systematic methodology to build BN (i.e. causality network, conditional 

probability) utilizing process data. 

The innovation behind this paper is how to combine the knowledge of individual methods in a 

hybrid framework. The main purpose is to develop a systematic hybrid tool for industrial fault 

detection, identification and diagnosis. The combination of some single methods has been less 

focused in the recent literature and is the novelty of this research. 
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1.3. Thesis structure 

The rest of this thesis is organized as follows: the second chapter will briefly describe fault 

detection and diagnosis methods and will highlight the most relevant sections related to the main 

objective of this thesis. In the third chapter, combination of KPCA and causality analysis was 

implemented to detect industrial faults and qualitatively diagnose the root cause. In the fourth 

chapter, a hybrid method combining KPCA and Bayesian network was implemented for fault 

detection and diagnosis, also some implementation issues of Bayesian network which received 

less research were addressed in this chapter. Finally, in chapter five research findings were 

summarized and some future research directions were discussed. 
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Chapter 2 

Literature review 

2.1. Background 

Today’s plants in chemical and petrochemical industries are becoming larger, more complex, and 

operate with a large number of variables under closed-loop control. As industrial systems enlarge, 

the total amount of energy and material being handled increases. Corollaries of this trend imply 

that each hour of down-time is more expensive, and that the source of malfunction or fault is more 

difficult to locate. Fault is defined as “an unpermitted deviation of at least one characteristic 

property of a variable from an acceptable behavior” according to Isermann [8]. Faults in a system 

may lead to degraded performance, malfunctions, or failures. The consequences of a failure are 

usually more serious, such as partial or complete system breakdown [9]. Therefore, early and 

correct fault detection and diagnosis is imperative both from the viewpoint of plant safety as well 

as reduced manufacturing cost. By process monitoring it is possible to reduce occurrence of 

sudden, disruptive, or dangerous outages, equipment damage, and personal accident, and to 

produce higher quality products [3]. 
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2.2. Fault detection and diagnosing the root cause of the fault 

Fault is malfunction of a system component and includes instrument malfunction (sensor or 

actuator) and abnormality due to variation in process internal variables. Instrument malfunction 

cannot be propagated through the process while variation in process internal states will be 

propagated through system and will affect the other states. The observable effect of a fault is 

symptom. Although the existence of noise is normal to a certain extent in a process, it always 

affects the symptoms and makes the task of process monitoring hard. The four procedures 

associated with process monitoring are: fault detection, fault identification, fault diagnosis and 

process recovery. Fault detection is determining whether a fault has occurred. Fault identification 

is identifying the observation variables most relevant to occurrence of the fault. Fault diagnosis is 

determining where fault occurred, in other words, determining the cause of the observed out-of-

control status [3]. 

Methods of FDD methods can be broadly classified into two major categories: model based 

methods, and process history based methods. Model based methods are divided to qualitative and 

quantitative sections [1, 4, 10]. Here we briefly explain these methods (Fig. 2.1). 



6 
 

 

Figure 2.1. Fault diagnosis method (Venkatasubramanian, Rengaswamy et al. 2003) 

2.2.1. Model- based fault detection and diagnosis 

Model-based fault detection schemes are based essentially on analytical redundancy [11]. Sensor 

outputs are not independent from each other nor from the inputs to the system and given 

sufficiently accurate knowledge about a model representing the relationship between different 

variables in a process, the difference between the model outputs and the measurements are used to 

detect discrepancies. Clearly, model-based methods require an accurate analytical model of the 

system [10]. In general, a model based FDD system consists of two modules: residual generator 

and residual evaluator (Fig. 2.2). Residual generator compares the measurements of the system 

with the process model outputs and reports these differences as residuals. The residual evaluator 

receives the residuals and makes decision about faulty or normal state of the process [12]. Many 

model-based methods involve linearizing the model (if it is non-linear) about an operating 

condition in a narrow range and putting it into state space form (continuous or discrete), then 

calculating a residual vector from the measurements. The size of the residual can be compared to 
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a threshold to determine if a fault has occurred. Other properties of the residual vector are then 

evaluated to determine the type and magnitude. This can be accomplished by either designing the 

residual generation such that each element of the residual vector corresponds only to one particular 

fault, or by comparing the direction of the residual vector to the direction expected for each fault 

[13]. 

Residual 
generator

Residual 
evaluator

Fault detection 
and diagnosis

Process model

Process 
measurements

 

Figure 2.2. Model based fault detection strategy [13] 

In 1976, Willsky wrote the first major survey paper on model based FDD [14], especially on linear 

time invariant systems. This is followed by Isermann where he reviewed FDD design based on 

modeling and estimation method [13]. In 1988, the main properties of model based FDD was 

explained by Gertler where he presented the robustness and sensitivity considerations [15]. Frank 

developed an algorithm based on Artificial Intelligence-based FDD [16]. The offline and online 

algorithms in FDD was presented in a survey paper by Basseville [17].  

Model based methods can be divided into qualitative model based methods and quantitative model 

based methods. In quantitative models the relationships between the inputs and outputs are 

expressed by mathematical functions [10]. They compare the outputs of the real system with the 

expected value to detect and diagnose the faults. In quantitative model-based methods, the purpose 

is to detect a fault in the processes, actuator and sensors by comparing the difference between 

model and the process measurements that is called residual [8]. The main challenge in this method 
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is how to express the process in a model that accurately and comprehensively show the dependency 

between different parameters. In addition, chemical engineering processes are often nonlinear, 

which makes the design of fault diagnosis procedures more difficult. Furthermore, due to the on-

line requirements of the system, the implementation of the model-based fault diagnosis system 

strongly depends on the power of the computer system used. Thus, the rapid development of 

computer technology and control theory is a reason why the model-based fault diagnosis technique 

is becoming more accepted as a powerful tool to solve fault diagnosis problems in technical 

processes [20]. In qualitative models these relations are expressed by qualitative terms that are 

expressed either as qualitative casual models or as abstraction hierarchies for each unit in a process. 

In other words, it is in fact a knowledge base method that uses a set of if-then-else and inference 

engine to reach a conclusion [10] (more explanation is in section 2.2.3). Important reviews in the 

field of model-based methods include those by Chow and Willsky [21], Isermann [13], Basseville 

[17], Gertler and Singer [22], Frank [10], Isermann [11], Frank et al. [16], Isermann [8], 

Venkatasubramanian [10, 23]. 

2.2.2. Process history-based FDD 

Process history based methods are based on a large amount of historical process data and use a 

priori knowledge to extract features. Process data collected from the normal and abnormal 

operating conditions are used to develop measures for detecting and diagnosing faults. Since these 

methods are data-driven, the effectiveness of these methods is highly dependent on the quality and 

the quantity of the process data. Although modern control system allow acquiring huge amount of 

process data, only a small portion is usable as it is often not certain these data are  not corrupted 

and no unknown fault are occurring [4]. 
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According to the extraction process, the methods are divided into quantitative and qualitative 

methods. Methods that extract qualitative information include expert systems and qualitative trend 

analysis (QTA). Quantitative methods include neural networks and statistically derived models. 

Statistical models include those based on principal component analysis (PCA)/partial least squares 

(PLS) [23]. 

Both types of the model-based and history-based approaches have their advantages and 

deficiencies. According to the comprehensive review of Venkatasubramanian and Iserman model-

based FD can handle unexpected faults if complete knowledge of all inputs and outputs of the 

system including their dynamic relationships is available; however, in model-based FD such 

modeling information is not always available, and the modeling itself is not always accurate due 

to system complexities and nonlinearity. In contrast, data-driven FFD is easier to implement and 

thus widely selected for applications due to the lower requirement of a priori knowledge, while its 

performance yield to degradation by sensor failures and the limited coverage in the measurement 

space of the fault classifiers [4, 8]. 

In this thesis KPCA, which is nonlinear form of PCA, was used for detection of abnormality in a 

process. PCA is a multivariate analysis technique that extracts a new set of variables by projecting 

the original variables onto principal component space [24]. The extracted variables, called PCs, 

are linear combinations of the original variables in which the coefficients of the linear combination 

can be obtained from the eigenvectors of the covariance (or correlation) matrix of the original data. 

Geometrically, PCA rotates the axes of the original coordinate system to a new set of axes along 

the direction of maximum variability of the original data [25]. PCs are uncorrelated with each 

other, and the first few PCs can usually account for most of the information of the original data.  
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Determination of the appropriate number of PCs can be subjective. Several techniques exist for 

determination of the value of the reduction order like the percent variance test, the scree test, 

parallel analysis and the PRESS statistic [11, 26]. This method suffers from nonlinearity in the 

system data. 

In process monitoring with PCA models, it is assumed that a monitored process behaves linearly; 

however, when a process is nonlinear, a linear PCA model might not perform properly. Much 

research in this area has been performed to find a nonlinear version of PCA. Principal Curves [27], 

Kernel PCA [28], Mixture of Probabilistic PCA [29], Input Training Neural Networks [30] and 

Gaussian Process Latent Variable Model [31] are some of the suggested methods for implementing 

nonlinear PCA. Some of these methods which has been used in process monitoring is kernel 

principal component analysis (KPCA) which maps measurements via a mapping function from 

their original input space to a higher dimensional feature space where PCA is performed. The 

mapping function should be selected carefully, because its type determines the accuracy of the 

linearization [32]. 

An important property of the feature space is that the dot product of two vectors Фi and Фj can be 

calculated as a function of the corresponding vectors xi and xj, this is, 

Фi
T Фj=k(xi, xj)      (2.1) 

The function k (·, ·) is called the kernel function, and there exist several types of these functions. 

Some popular kernel functions are polynomial functions; radial basis, or Gaussian, functions; and 

sigmoidal functions [28, 32]. More explanation on calculation detail on this section is provided in 

Appendix. 
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To illustrate how a nonlinear mapping to an expanded dimensional space can change a nonlinear 

distribution to a linear distribution, the following illustrative example is given: suppose we have a 

nonlinear process with two variables, x1 and x2, and there are two data sets; one set has normal 

measurements and the other one faulty measurements. Fig. 2.3 shows the plots of these data sets; 

the normal measurements are marked with blue asterisks and the faulty ones with green dots. In 

this case it is impossible to apply linear PCA to separate the normal data from the faulty one. 

However, as shown in Fig. 2.3, if we add a third dimension to the plot, calculated as x1
2+ x2

2, it is 

really easy to separate the normal and faulty measurements with linear PCA. Therefore, even 

though the original data is nonlinear in a bi-dimensional space, its mapping to a tridimensional 

space is linear. Principal Curves [27], Mixture of Probabilistic PCA [29], Input Training Neural 

Networks [30] and Gaussian Process Latent Variable Model [31] are some of the other suggested 

methods for implementing nonlinear PCA. Some of these methods such as Kernel PCA (KPCA) 

and Principal Curves have been used for process monitoring [24, 33]. 

 

   (a)       (b) 

Figure 2.3. Normal and faulty data (a) nonlinear (b) linear (after applying kernel) 

 

Although PCA and its derivatives are powerful tools among data-driven methods, they work 

appropriately in detection phase and isolate the variables that have high contribution in occurrence 
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of fault [4, 34].  The highly contributed variables based on contribution plots are those variables 

in the process that has high amount of variation due to occurrence of fault; however, the highest 

contributed variable in contribution plots is not always the true root cause of the fault which makes 

the task of fault diagnosis difficult. In diagnostic methods, there should be enough evidence on 

considering a suspected variable as the root cause of a fault.  However, in PCA there is not enough 

evidence to diagnose the highly contributed variable as the true root cause of a fault. For example 

sensor fault diagnosis problem using PCA is studied by Dunia[35]. They have proved that the 

method of PCA filtering satisfies detection but since it does not satisfy the identifiability condition, 

they used an optimization approach to reconstruct the faulty data. In this method, the notion of 

Sensor Validity Index (SVI) is introduced. SVI is a number between zero and one. When a given 

sensor is healthy SVI is close to one and vice versa. So the faulty sensor is diagnosed; however, 

the problem still exist and this method cannot always find the faulty sensor. The reason is that 

some sensors are much more sensitive than others in a sensor array and therefore have more 

influenced to this kind of filtering. So this method needs to be combined with another technique 

which can conduct the diagnosis phase[36]. 

2.2.3. Knowledge base methods in FDD 

2.2.3.1. Fault tree analysis 

A fault tree analysis or FTA converts the physical system into a structured logic diagram in which 

the event symbols and logic symbols are used. FTA includes the following four steps: system 

definition, fault-tree construction, qualitative evaluation, quantitative evaluation [37]. Hessian et 

al. used a FTA to diagnose faults for an existing control-room HVAC system. This logic-based 

methodology was incorporated into the operating system design to improve system reliability [38]. 
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2.2.3.2. Signed digraphs 

A signed digraph or SDG uses graphical models to capture the root cause. A SDG is usually built 

by nodes and directed arcs, in which the nodes indicate state variables, failure origins and alarm 

conditions, and directed arcs show the relationship between these nodes. Shiozaki and Miyasaka 

developed a HVAC fault diagnosis tool using SDG. A real-time fault diagnosis system could be 

created using this tool [39]. Maurya et al. presented SDG methods which were used for safety 

analysis and fault diagnosis in chemical process systems [40]. 

2.2.3.3. The possible cause and effect graph 

The possible cause-effect graph (PCEG) model consists of a representation of knowledge about a 

process and an inference strategy. The PCEG model is designed to take advantage of a large 

number of families of concepts. The model assumes that each family of concepts describes a 

partition of the plant time set and that one concept in each family represents the normal state of 

the process. [41].  

As mentioned earlier, any diagnosis model captures certain features of diagnosis reasoning better 

than other diagnosis models. Some of the reasons which indicate that PCEG may be the appropriate 

model to use rather than another models include the need to include general partition, a potential 

which exists for varying set of measurements, first principle knowledge which exists about the 

process, existence of coupling or recycling, possibility of explanation of all scenarios, complexity 

of a system.  

2.2.3.4. Bayesian network 

Bayesian network can effectively characterize the complex causal relationships among variables 

of  a system with stochastic uncertainty [42]. It visually represents a  probabilistic relationship 
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among some variables that are related to each other by arcs [43].  The problems that have been 

solved with a BN include diagnosis, automated vision, sensor fusion, manufacturing control, 

transportation, ecosystem, environmental management and forecasting [44-47]. Suitability for 

small and incomplete data, ability to combine different kind of knowledge and sources, and 

network learning capability are among the advantage of using a BN [47].  A BN has both 

qualitative and quantitative parts [48]. The qualitative part is a directed acyclic graph consisting 

of hidden (happenings) and observed nodes (measurements) with statistical dependencies 

represented by the arcs connecting the various nodes [9, 49]. The nodes with arcs directed into 

them are termed as child nodes, whereas the nodes from which the arcs depart are parent nodes. 

The quantitative part is a Conditional Probability Table represents quantitatively the cause and 

effect among variables. The nodes without any parents are called root nodes. BN is in fact a couple 

(P, G) where: 

P is a directed acyclic graph in which the nodes are random variables and some edges that 

represents conditional independent variables. 

G is a set of conditional probability distributions for each node (or each variable) either may be a 

table, for discrete random variables, or distribution, for continuous random variables, although in 

practice only discrete and Gaussian random variables can be treated due to mathematical 

complexity of the other type of continuous distributions [9, 50]. Such a network is called 

Conditional Gaussian Network. In order to facilitate the computation in a Conditional Gaussian 

Network a discrete variable is not allowed to have a Gaussian variable as its parents [51-53]. 

The issue of distinguishing between sensor and process fault has recently been the matter of debate. 

Krishnamoorthy et al. used Bayesian network to determine if the abnormal behavior is due to 
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malfunction in the sensor or due to a process fault. They used  the same network to both verifying 

the values of sensors and decision making [54]. Mehranbod et al. proposed a BN-based method 

for both single and multiple sensor fault detection and identification. They showed their method is 

capable of detection and identification of instrumental fault (bias, noise and drift) in both cases 

[55]. Dey et al. addressed the variation in tool wear, workpiece hardness and stock size in 

production machining environment and developed a methodology for diagnosing the root cause of 

process variation that are often confounded in process monitoring [56]. Yu et al. developed a 

modified Bayesian network-based two stage fault diagnosing methodology. They incorporated the 

result of Independent Component Analysis (ICA) and a Bayesian network for this aim [36]. More 

interesting was the work done by Yu et al. in which they used a dynamic Bayesian Network for all 

detection, identification and diagnosis phase. Abnormality likelihood index was introduced for 

detection of abnormal events. Bayesian contribution index was used for determination of 

contribution of each variable in abnormal event. The updating of network has lead to determination 

of fault propagation pathway in this work [57]. 

The network in a Bayesian network represents a causal relationship between different variables 

(nodes). Most research worked with Bayesian network for fault diagnosis construct the network 

based on process knowledge [36, 57]. However, one cannot be confident about constructed 

network based on knowledge of the process. More reliable network is the one that is constructed 

in corporation of both process knowledge and process data. Among the techniques that can be used 

for determining causality using process data are Granger causality and transfer entropy that will 

be explained more in the next chapters. 

Despite the abundance of research in the diagnosing a fault via BN, it is still unclear how to train 

the network and calculate conditional probabilities. Also, there is still ambiguity whether one 
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should use normal or faulty data for network training [36, 57]. Except faults, raw data of a process 

contain all noise and normal process variations which are considered as normal states of the 

process. So the methodology which is trained with raw data will be sensitive even to normal 

variation of the process.  There is less focus on whether we should use the raw data directly or we 

need some preprocessing on data before using them for training purpose. Also loop handling is a 

concern in applying Bayesian network for industrial process fault diagnosis. Since BN is an acyclic 

network, the updating of the network is not possible when it contains a cycle. However, in 

industrial processes there are many cycles such as close loop control system or reflux flow. This 

limits the application of BN in such a case.  

2.3. Combined framework of fault detection and diagnosis 

Currently there is no method that has all features of fault detection and diagnosis in a process. Each 

method has its own advantages and drawbacks [4]. Also some techniques perform appropriately 

in detection while others perform well in diagnosis phase [5, 6, 34]. To have a more complete 

technique by which both detection and diagnosis phase can be done, researchers have proposed 

hybrid framework in which a collection of methods are employed to construct a more robust 

package for fault detection and diagnosis. This package brings the advantages of the single 

methods and overcomes some of the shortcomings of individual methods. This combination of 

different methods allows one to evaluate different kinds of knowledge in one single framework for 

better decision making [7].  

A hybrid approach for fault detection in nonlinear systems was proposed by Alessandri [58]. They 

used some estimators, which provides estimation of parameters which describe instrumental faults, 

for fault detection and isolation. The estimators were designed using an optimal estimation 



17 
 

function which are approximated feedforward neural networks and the problem is reduced to find 

the optimal neural weights. The learning process of the neural filters is split into two phases: an 

off-line initialization phase using any possible "a priori" knowledge on the statistics of the random 

variables affecting the system states, and an on-line training phase for on-line optimization of 

neural weights. The approach proposed by Alessandri is only a fault detection and isolation 

method, leaving fault identification problem unsolved. A hybrid robust fault detection and 

isolation in a nonlinear dynamic systems was proposed by Xiaodong et al [59]. They utilized some 

adaptive estimators for this purpose. The fault detection and approximation estimator (FDAE) has 

been used to detect the fault, and the remaining estimators which are fault isolation estimators 

(FIEs) were used for isolation of faults. In other words, under normal operating conditions (without 

faults) FDAE is monitoring the system to distinguish whether the system is working under normal 

or faulty state. Once a fault is detected, the bank of FIEs is activated for isolation purpose. The 

nominal mathematical model of the system is explicitly used for designing both FDAE and FIEs. 

Recently, Talebi et al. proposed a hybrid intelligent fault detection and isolation methodology 

using a neural network- based observer. The advantage of their method is that it does not rely of 

the availability of full state measurements [60]. In order to make fault effect clearer and 

recognizable, Ren et al. proposed a combined method of wavelet transform and neural network. 

They used multi-scale wavelet transform to prolong the effect of fault in residuals before feeding 

them to neural network [61]. Mylaraswamy provided a brief comparison of the various diagnostic 

methods to highlight the inadequacy of individual methods and motivate the need for collective 

problem solving [6]. Mallick et al. proposed a hybrid method of PCA and Bayesian network to 

this purpose. They used PCA in diagnosis phase and probabilistic Bayesian network in diagnosis 

phase [34]. This framework for collective problem solving has been the focus of some researchers. 
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Chen et al. proposed a wavelet-sigmoid basis neural network for dynamic diagnosis of failure in 

hydrocracking process [5]. However there is still more need to research in this area especially since 

it is somehow unclear how to use the outcome of first section as an input to the other section. In 

other words it is worthwhile to know how to combine the knowledge of individual methods in a 

hybrid framework. 

As mentioned earlier, currently there is no single diagnostic method or technique which is superior 

to all other techniques. Each method manages to capture or model some subset of the features of 

the diagnostic reasoning and thus may be more suitable than other techniques for a particular class 

of problems [5]. In such a case hybrid frameworks consisting of a collection of methods performing 

cooperative problem solving is proposed as an alternative to individual methods. Such a hybrid 

framework will be an effective way of utilizing all available information and overcoming 

limitations of individual methods [4, 6, 7]. This combination of different methods allows one to 

evaluate different kinds of knowledge in one single framework for better decision making. This is 

the novelty and the main contribution of this thesis which will focus on how to use information of 

some diagnostic methods in other diagnostic methods. However, based on the reviews literature, 

there are some gaps in diagnostic task. Some of thesis gaps are related to the network constructed 

for failure diagnosis which have been explained in section 2.2.3.4. Another problem is how to 

distinguish sensor failure from the failures which is related to process internal states. All these 

concern will be addressed in this thesis. 
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Chapter 3 

Combination of KPCA and causality analysis for root cause diagnosis of industrial process 

fault 

Abstract: Kernel principal component analysis (KPCA) based monitoring has good fault detection 

capability for nonlinear process data, however it can only isolate variables that have contribution 

in occurrence of fault and thus not precise in diagnosing. Since there is a cause and effect 

relationship between different variables in a process, accordingly a network based causality 

analysis method was developed for different fault scenarios to show causal relationship between 

different variables and to see the causal effect between the most contributing variables in 

occurrence of fault. It was shown that KPCA in combination with causality analysis is a powerful 

tool for diagnosing the root cause of a fault in the process. In this paper the proposed methodology 

was applied to Fluid Catalytic Cracking unit and Tennessee Eastman process to diagnose root 

cause for different faulty scenarios. 

Keywords: kernel principal component analysis (KPCA), causality analysis, transfer entropy, 

fluid catalytic cracking. 
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3.1. Introduction 

Rapid development in industry have contributed to more complex systems that are prone to risk of 

failure, which are inevitable in any kind of industrial systems [23, 62]. In applications where the 

presence of faults may lead to premature failure, increased operating costs, or other undesirable 

consequences, fault detection and diagnostics (FDD) tools are often implemented [4]. The 

objectives of these tools are earlier detection of problems and expedited corrective action that 

minimize the fault’s impact on the system [3]. For the purpose of FDD, no single method has all 

the desirable features and each of them deals with some limitations [4]. In such a case, hybrid 

frameworks consisting of a collection of methods performing cooperative problem solving is 

proposed as an alternative to individual methods. Such hybrid framework is an effective way of 

utilizing all available information and overcoming limitations of individual methods. This 

combination of different methods allows one to evaluate different kinds of knowledge in one single 

framework for better decision making [7]. 

The work of Venkatasubramanian and Rich is among the earliest research in hybrid framework. 

In order to achieve an efficient diagnostic tool without scarifying the flexibility and reliability, 

they integrated the process knowledge with rule-based approach in an object-oriented two-tier 

methodology in which the process specific knowledge is in top-tier and the process rule-based 

knowledge is in bottom-tier. The proposed diagnostic tool was able to identify the potential 

suspects [63]. The analytical methods in model-based fault detection and diagnosis are based on 

residual generation using parameter estimation; however, the robustness of the model-based 

methods is often under question since obtaining an accurate model for process, especially for 

chemical processes, is problematic.  To address this problem, Frank proposed the use of analytical 

methods and integrated them with knowledge-based methods. They concluded knowledge-based 
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methods (expert systems) complement the analytical methods of fault diagnosis [16]. An 

integration of neural network and expert system for fault diagnosis was done by Becraft et al. Once 

the process fault was diagnosed by neural network, the results was analyzed by a deep knowledge 

expert system to recover the process [64]. The use of hybrid methods became common and in 1997 

Mylaraswamy provided a brief comparison of the various diagnostic methods to highlight the 

inadequacy of individual methods and underscore the need for collective problem solving. They 

proposed a Dkit based hybrid method of neural network for detection of a fault and a SDG for 

diagnostic action [6]. Zhao et al proposed a wavelet-sigmoid basis neural network for dynamic 

diagnosis of failure in hydrocracking process [5]. A hybrid methodology consisting of PCA and a 

Bayesian network was done in which PCA was conducted for earlier fault detection and Bayesian 

network was implemented for the isolation of the fault [34]. However there is still more need for 

research in this area especially since it is somewhat unclear how to use the outcome of some 

diagnostic tools as an input to the other tools. The innovation behind this paper is how to combine 

the knowledge of individual methods in a hybrid framework. The main purpose is to develop a 

systematic hybrid tool for industrial fault detection, identification and diagnosis. In the proposed 

methodology we combine kernel principal component analysis (KPCA) and PCA with two 

different causality analysis techniques namely, transfer entropy and Granger causality 

respectively. We also address how to use these causality analysis tools as qualitative techniques 

for root cause diagnosis of a fault in real practical processes which have not been focused in 

literature. In the next section we describe the methodology with instruction for coupling these 

techniques. The rest of this paper is organized as follows: the second part will briefly explain 

KPCA, transfer entropy and Granger causality and will provide a mathematical example to 

compare the results of transfer entropy and Granger causality. In the next section the application 
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of proposed method on FCC and Tennessee Eastman Chemical process is described. Finally, we 

conclude the paper with some concluding remarks and directions for future research. 

3.2. Methods and techniques 

As one of the most popular statistical methods, PCA extracts usable information from raw data 

[3]. Though originally developed to reduce the dimensionality of data, PCA is appropriate for fault 

detection. For diagnosing the main root cause, PCA is not an accurate tool but still the contribution 

plots based on PCA are worthwhile for identification of some of the variables that has the most 

effect on the occurrence of the fault [65]. However, PCA is not optimal when the data of a process 

does not follow a linear trend. KPCA is better suited to deal with process nonlinearity. On the other 

hand, causality analysis techniques between process variables have been the interest of research 

[66]. Among these techniques Granger causality and transfer entropy are prevalent methods to 

ascertain the causal relationship between process variables [67, 68]. The idea of causality analysis 

was first introduced by Granger in 1969. According to Granger, a variable 'X' Granger causes the 

other variable 'Y', if incorporating the past values of 'X' and 'Y' helps to better predict the future of 

'Y' than incorporating the past values of 'Y' alone [69]. The notion of Granger causality has been 

applied in the study of numerous economic relationships including that between money and prices, 

wages and prices, exchange rates and money supply, and money and income [70]. The transfer 

entropy provides a wide variety of approaches for measuring causal influence among multivariate 

time series [71]. Based on transition probabilities containing all information on causality between 

two variables, the transfer entropy approach was proposed to distinguish between driving and 

responding elements [72], and is suitable for both linear and nonlinear relationships; it has been 

successfully used in chemical processes [73] and neurosciences [74]. 
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Although PCA and KPCA are powerful tools for detection of a fault in a system, it cannot precisely 

identify the root cause. On the other hand transfer entropy or Granger causality can determine the 

cause and effect relationship between variables in a process; however, they suffer from the 

complexity of calculation when too many variables are involved in the calculations [71]. Also 

when there are too many variables, the constructed network based on causality analysis will be 

complex and busy and it does not give enough evidence to qualitatively identify the root cause of 

a fault (Fig. 3.1- a and b). The general considerations in application of PCA, KPCA, Granger 

causality and transfer entropy and their drawbacks are given in Table 3.1. Taking the 

considerations of each of these individual methods into account, this paper proposes a hybrid 

method of fault detection and diagnosis in industrial processes. Based on this table, a good 

combination between these methods will be done by combining PCA with Granger causality for 

detection and diagnosis of a fault in a linear system and also by combining KPCA with transfer 

entropy for detection and diagnosis of a fault in a nonlinear system. Since most of practical process 

data is nonlinear, it is better to combine KPCA for detection of a fault with transfer entropy as a 

causality tool for diagnosis. In this paper, additionally, even for nonlinear data we use Granger 

causality as one of the other tools for causality analysis for two reasons. First, based on some 

literature it has been theoretically proved that when data has normal distribution, Granger causality 

and transfer entropy has the same results [75, 76]; however, there is no practical case study to show 

this in a real system. Besides the main objective of this paper which is root cause diagnosis of 

process faults, one of the other interesting objectives is to show equivalency of Granger causality 

and transfer entropy in some real case studies. Secondly, the original Granger causality method 

which is proposed by Granger is linear. Linear Granger causality has low power to show the causal 

effect between variables in a nonlinear system. A nonlinear Granger causality developed by 
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Hiemstra and Jones [77] to examine the dynamic relation between variables of stock markets but 

their test was questioned by Diks and Panchenko [78]. As a result, the nonlinear application of 

Granger causality is still under question. So in this paper, we use both transfer entropy and Granger 

causality as two tools of causality analysis and will compare their performance on two case studies. 

Fig. 3.2 illustrates the procedure in which first KPCA was applied on the data gathered from the 

process. The KPCA detects the fault and identifies the variables which have the most contribution. 

In the diagnoses phase, causality analysis was performed among those most likely variables 

contributing toward the fault, and a simple network was constructed which provides a 

straightforward estimation of the root cause of the failure. Causality analysis can be done either by 

Grange causality and transfer entropy method. By combining KPCA and causality analysis the 

combined framework is a more complete package for FDD in comparison to each individual 

method. 

Table 3.1. General consideration of process monitoring tools 

 Linear/ nonlinear Calculation Detection/diagnosis 

PCA Linear Simple Detection 

KPCA Nonlinear Complex Detection 

Granger causality Linear Simple Diagnosis 

Transfer entropy Linear/nonlinear Complex Diagnosis 
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Figure 3.2. Schematic illustration of the proposed FDD method 

 

3.2.1. Kernel Principal Component analysis (KPCA) 

PCA is a multivariate analysis technique that extracts a new set of variables by projecting the 

original variables into principal component space. The extracted variables, called PCs, are linear 

combinations of the original variables in which the coefficients of the linear combination can be 

obtained from the eigenvectors of the covariance (or correlation) matrix of the original data [79]. 

Geometrically, PCA rotates the axes of the original coordinate system to a new set of axes along 

the direction of maximum variability of the original data [25]. PCs are uncorrelated with each 

other, and the first few PCs can usually account for most of the information of the original data 

[3]. 

In process monitoring with PCA models, it is assumed that a monitored process behaves linearly. 

However, in most practical scenarios chemical processes are nonlinear, as such a linear PCA model 

is not optimal for fault detection. According to Cover’s theorem, the nonlinear data structure in 

the input space is more likely to be linear after high-dimensional nonlinear mapping (Fig. 3.3) 

[79]. KPCA exploits this property and projects data in higher dimensional space, subsequently PCA is 
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applied on the correlation matrix of the transformed variables. For example, a data set x is transformed into 

the feature space through mapping function Ф. The covariance of the mapped data is Ф(x).Ф(x).  

Ф is the mapping function which is usually not easy to determine [80]. Since only the dot product is required 

in the transformed space, an alternative is to use a kernel function k (·, ·) which can provide the dot product 

without the explicit mapping function as in Equation 3.1. 

𝑘(𝑥, 𝑥) = Ф(𝑥).Ф(𝑥)       (3.1) 

There exists several types of these functions. Some popular kernel functions are polynomial functions; 

radial basis, or Gaussian functions; and sigmoidal functions  [28, 32].  

 

Figure 3.3. Linearization with mapping function in KPCA 

3.2.2. Causality analysis based on Granger Causality 

Granger causality uses parameters from an (Auto Regressive) AR model fit to the system in 

question. A general form of the AR model which is used in system model prediction is shown in 

the following equation: 

𝑥𝑡 = ∑ 𝛼𝑖𝑥𝑡−𝑖 + 𝑒𝑡
r
i=1        ( .3 2) 
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Where x is a vector consisting r time series data points; α is a 𝑟 × 𝑟 coefficient matrix and e is the 

uncorrelated noise vector. The concept of the history-based causality introduced by Wiener and 

formulated by Granger has played a significant role in investigating the relations among the 

stationary time series [69, 81]. The original definition by Granger, which is called Granger 

Causality, refers to the improvement in predictability of a time series x that derives from the 

incorporation of the past of x itself and another series y, above the predictability based solely on 

the past of the x series [69]. Considering two time series x and y, there are two different linear 

regression model. One is a restricted model in which the prediction of x at time k is possible using 

the information of the past of x: 

𝑥𝑘 = ∑ µ𝑖𝑥𝑘−𝑖 + 𝜀𝑥𝑘
𝑝
𝑖=1       (3.3) 

where xk is the x time series at time k; xk-i is the i-lagged x time series; µ is the regressive 

coefficients; p is the amount of lag considered; and ε denotes the residual series for constructing 

xk.  

The second model is unrestricted model in which the prediction of x at time k is done using the 

past information of both x and y as follows: 

𝑥𝑘 = ∑ 𝛾𝑖𝑥𝑘−𝑖 + ∑ 𝛽𝑖𝑦𝑘−𝑗 + 𝜂𝑥𝑘
𝑞
𝑗=1

𝑝
𝑖=1     (3.4) 

where xk is the x time series at time k; xk-i and yk-j are respectively the i-lagged x time series and j-

lagged y time series; γ and β are the regressive coefficients; p and q are the amount of lag 

considered or model order; and η denotes the unrestricted model residual at time k. The µ, β, and 

γ parameters are calculated using least square method. In order to estimate the model, a small value 

of model order p results a poor estimation while a large value leads to problem of overfitting. Two 
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criteria are used to determine the model order namely, Akaike information criterion (AIC) [82] and 

Bayesian information criterion (BIC) [83]. For n variables, AIC and BIC are given as follows: 

𝐴𝐼𝐶(𝑝) = ln(|𝛴|) + 
2𝑝𝑛2

𝑇
      (3.5) 

𝐵𝐼𝐶(𝑝) = ln(|𝛴|) + 
ln(𝑇)𝑝𝑛2

𝑇
      (3.6) 

where Σ represents the noise covariance matrix and T is the total number of observations. When 

the variability of the residual of the unrestricted model is significantly reduced with that of a 

restricted model, then there is an improvement in the prediction of x due to y. In other words y is 

said to Granger cause x. This improvement can be measured by the F statistic: 

𝐹 = 
(𝑅𝑆𝑆𝑟−𝑅𝑆𝑆𝑢𝑟) 𝑞⁄

𝑅𝑆𝑆𝑢𝑟 (𝑇−𝑝−𝑞−1)⁄
~ 𝐹(𝑝, 𝑇 − 𝑝 − 𝑞 − 1)    (3.7) 

where RSSr is the sum of the squares of the restricted model residual, RSSur is the sum of the 

squares of unrestricted model residual, and T is the total number of observations used to estimate 

the model. F statistics approximately follows F distribution with degrees of freedom p and (T-p-

q-1). If the F statistic from y to x is significant, then the unrestricted model yields a better 

explanation of x than does the restricted model, and y is said to Granger cause x [84]. 

3.2.3. Causality analysis based on Transfer entropy 

For two process variables with sampling interval of τ , xi= [xi,  xi-τ, … ; xi-(k-1) τ] and yi=[yi, yi- τ,  … 

, yi-(l-1) τ],  transfer entropy from y to x is defined as follows [71]: 

𝑡(𝑥│𝑦) = ∑ 𝑃(𝑥𝑖+ℎ, 𝑥𝑖, 𝑦𝑖)  . 𝑙𝑜𝑔
𝑃(𝑥𝑖+ℎ│ 𝑥𝑖 ,𝑦𝑖)

𝑃(𝑥𝑖+ℎ│𝑥𝑖)
𝑥𝑖+ℎ,𝑥𝑖,𝑦𝑖

  (3.8) 

where P denotes the probability density function (PDF) and h is the prediction horizon. 
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Transfer entropy represents the measure of information transfer from y to x by measuring the 

reduction of uncertainty while assuming predictability [71]. It is defined as the difference between 

the information about a future observation of x obtained from the simultaneous observation of past 

values of both x and y, and the information about the future of x using only past values of x. The 

parameter values specially k, l, τ and h should be obtained based on several results and their 

comparison [68]. 

Using the above definitions, direction and amount of information transfer from x to y is as follows: 

𝑡(𝑥 → 𝑦) = 𝑡(𝑦│𝑥) − 𝑡(𝑥|𝑦)     (3.9) 

If t(x→y) is negative then information is transferred from y to x. Since at first there is no knowledge 

about which node is cause and which one is effect, choosing these nodes inversely will result in 

negative value. 

The advantage of using transfer entropy is that it is a model free method and can be applied to non-

linear data. It has already been proved to be very effective in capturing process topology and 

process connectivity. But it suffers from a large computational burden due to the calculation of the 

PDFs [71]. Non parametric methods, e.g. kernel method, can be used to estimate the PDF [85]. 

The Gaussian kernel function is used to estimate the PDF which is defined as follows [68]: 

𝐾(𝑣) =
1

√2𝜋
𝑒−

1

2
𝑣2

       (3.10) 

Therefore, a univariate PDF can be estimated by, 

𝑝(𝑥) =
1

𝑁.𝑑
∑ 𝐾(

𝑥−𝑥𝑖

𝑑
)𝑁

𝑖=1       (3.11) 

where N is the number of samples, d is the bandwidth chosen to minimize the error of estimated 

PDF. d is calculated by d = c.σ.N0.2 where σ is variance and c = (4/3)0.2≈1.06 according to the 
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“normal reference rule-of-thumb” approach. For a q-dimensional multivariate case the estimated 

PDF is given by [68]: 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑞) =
1

𝑁.𝑑1…𝑑𝑞
∑ 𝐾 (

𝑥1−𝑥𝑖1

𝑑1
) . 𝐾(

𝑥𝑞−𝑥𝑖𝑞

𝑑𝑞
)𝑁

𝑖=1   (3.12) 

where 𝑑𝑠 = 𝑐. σ(𝑥𝑖,𝑠)𝑖=1

𝑁
. 𝑁

−1
(4+𝑞)⁄

for 𝑠 = 1,… , 𝑞. 

3.2.4. Mathematical example on causality analysis 

A simple mathematical model is used to investigate the applicability of mentioned causality 

analysis, i.e. Granger causality and transfer entropy. Assume four correlated continuous random 

variables x, y, z and w satisfying: 

yk+1=0.8 xk +v1k 

zk+1 =0.6 yk+v2k   (3.13) 

wk+1= 0.6yk + v3k 

where x ~ N(0,1); v1, v2 and v3 ~ N(0,0.1); and y(0)=2.8. The simulation data set consists of 1000 

samples. Based on the mathematical relation between variables the causal network is shown in 

Fig. 3.4 and this network will be validated by the above mentioned methods.  

3.2.4.1. Validation by Granger causality 

In order to test Granger causality between variables, the time series should be stationary, i.e. 

statistical properties such as mean, variance, and autocorrelation all are constant over time. Eviews 

was used to see the cause and effect relationship between x, y, z and w. Eviews is a statistical 

software used to analyze time-series oriented problems. The results are shown in Table 3.2. When 

prob<0.05 the corresponding variable in that row has influence on the variable in the column. For 
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example probx→y=0.0000. It means that x has influence on y, consequently, there is an arc from x 

to y. Also proby→z=0.0000 and proby→w=0.0000 indicating arcs from y to z and y to w in the 

network. 

3.2.4.2. Validation by transfer entropy 

Transfer entropy was used to calculate mutual transfer entropy between all nodes. A Matlab code 

was developed for calculations. While calculating the TEi→j, multiple j-delays were given and the 

peak value of transfer entropy was considered over the delay (Table 3.3).  The TEx→y= 0.25 

indicating that x has influence on y. Also TEy→z= 0.56 and TEy→w= 0.54 indicating the arcs from 

y to z and y to w (Fig. 3.4).The calculation of probabilities in Equation 10 was done using histogram 

and it deals with some inaccuracy. Here a threshold of 0.1 was selected, thus the causal 

relationships between other variables were neglected and, consequently, the original network of 

the mathematical example will be verified in Fig. 3.4. 

Thus it is obvious, when variables are following a normal distribution, the Granger causality and 

transfer entropy are showing the same causal relationship in network construction. This has been 

verified by other researchers as well [75, 76]. 

 

 

 

 

 

 



33 
 

 

Table 3.2. Granger causality test results for mathematical model 

 x y z w  

x - 

- 

59226.84 

0.0000 

6.1749 

0.0956 

1.6337 

0.0741 

Chi-sq 

Prob. 

y 1.3044 

0.5209 

- 

- 

479.75 

0.0000 

439.20 

0.0000 

Chi-sq 

Prob. 

z 1.4758 

0.4761 

0.6921 

0.7074 

- 

- 

0.0686 

0.9663 

Chi-sq 

Prob. 

w 0.8374 

0.6579 

1.0960 

0.5761 

5.7775 

0.0556 

- 

- 

Chi-sq 

Prob. 

 

Table 3.3. Mutual transfer entropy values for mathematical model 

 x y z w 

x - 0.25 
<0.1 <0.1 

y - - 0.56 0.54 

z - - - 
<0.1 
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x

y

z w
 

Figure 3. 4. The network of mathematical example 

 

3.3. Industrial case studies 

3.3.1. Fluid Catalytic Cracking Unit (FCC) 

A FCC unit converts a number of heavy hydrocarbons with different molecular weights to lighter 

and more valuable hydrocarbons. The heavy hydrocarbons come from different parts of refinery 

and are diverse in chemical properties. FCC process was selected as one of the examples for this 

research. A schematic illustration of the FCC reactor/regenerator unit is shown in Fig. 3.5. There 

are three inputs to the system: fresh feed temperature, feed coke factor and ambient temperature. 

Also 20 variables are monitored during the process that all are shown in Table 3.4. Feed coke 

factor was considered to be 1.05 in all simulation studies. Therefore, two disturbances were 

introduced as faults to the system according to Table 3.5 [86]. 
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Figure 3.5. Schematic illustration of FCC process 

 

 

Table 3.4. Measured variable of FCC process 

No. Variables symbol 

1 Ambient air temperature Tamb 

2 Fresh feed temperature T1 

3 Effective coking factor Psi 

4 Reactor pressure P4 

5 Differential pressure ΔPRR 

6 Air flow rate into generator Fair 

7 Regenerator pressure P6 
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8 Furnace temperature T3 

9 Preheated feed temperature T2 

10 Riser temperature Tr 

11 Regenerator temperature Treg 

12 Spent catalyst level Lsp 

13 Cyclone temperature Tcyc 

14 Differential cyclone temperature DP 

15 Stack gas CO concentration Xco 

16 Stack gas O2 concentration XO2 

17 Coke wt fraction in spent catalyst Csp 

18 Coke wt fraction in regenerator Crgc 

19 Air blower flow inlet-surge F8 

20 Wet compressor inlet suction flow Fsucn,wg 

21 Combustion air suction flow Fsucn,comb 

22 Combustion air suction pressure P1 

23 Combustion air discharge pressure P2 
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Table 3.5. Fault scenarios in FCC 

Scenario No. Fault description 

1 5°C in atmosphere temperature 

2 Gradual increase of 10°C in fresh feed temperature  

 

In order to demonstrate the effectiveness of the proposed hybrid technique of KPCA and causality 

analysis, KPCA was used to detect the occurrence of fault. A training data set consisting of 1000 

samples gathered under normal operating condition is used to develop KPCA model and estimate 

the Hotelling T2. In order to build the KPCA model, the values of the 23 variables in the FCC 

process were normalized around the Zero by standard deviation. The sampling time of the data is 

1 second and a Gaussian kernel function was selected. Five principal components were selected 

that show 85% of the variations in the system. Only the eigenvectors and eigenvalues 

corresponding to selected PCs were considered. The threshold value based on normalized training 

data for Hotelling T2 was calculated as 9.71 at 95% confidence level.  

First abnormal event: The first faulty scenario begins with normal operation for 1000 seconds 

and then is followed by a 5°C increase in ambient air temperature for the remaining 4000 seconds.  

The Hotelling T2 and contribution plots of the KPCA analysis are shown in the Fig. 3.6. On Fig. 

3.6a, the Hotelling T2 shows the departure of variables from normal condition. This plot depicts a 

successful detection of this fault. As can be seen, there is a delay associated with the detection 

phase. It is because the magnitude of fault in ambient air temperature is not big enough to affect 

the process in a short time. Once these faults are detected, it is desired to isolate the occurred fault, 



38 
 

i.e. to identify those variables that are most correlated with occurred faults. Fig. 3.6b shows 

contributions of each variable in the fault occurrence. The calculation of contribution of each 

variables is calculated based on the method proposed by Alcala and Qin [87, 88]. The contribution 

plots are based on average of contribution of all samples when the process is in abnormal state.  It 

is obvious in this figure when there is a disturbance in ambient temperature, the other variables 

will be affected by this variation; however some variables will be affected more than others. It 

should be noted that the air enters to the regenerator through two air blower. One is a lift air blower 

that assists in catalyst circulation from the reactor to the regenerator. The other is a combustion air 

blower that provides the bulk of air required by the regenerator. So one expect that a variation in 

the ambient air temperature will mostly deviate the process in the regenerator side. This can be 

verified by the contribution plot since based on this plot, the following variables have significant 

contribution to the fault which all are in regenerator side: 

 Ambient air temperature 

 Regenerator pressure 

 Combustion air suction flow 

 Combustion air discharge pressure 

As the FCC process has 23 variables, it is difficult to decide about the root cause of a fault via the 

whole network containing all 23 nodes. The calculation of Granger causality and transfer entropy 

will be more complex when there are more variables. Even after doing such calculations, the 

constructed network was found too busy for visual illustration of the propagation path of the fault 

and diagnosing the root cause. The full network of FCC process is shown in Fig. 3.1a. It is obvious 

that the network is complicated and it is difficult to have an accurate estimation of the root cause 
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of the fault using this network.  Hence, KPCA was used to narrow down the problem and to screen 

the most significant variables for further analysis. In fault diagnosis phase, the purpose is to 

investigate the cause and effect relationship between the variables selected by contribution plot. 

Table 3.6a shows the results of Granger causality test for this scenario for the selected variables 

via KPCA. Where the prob<0.05, it rejects the null hypothesis and indicated that the variable in 

the row has influence on the variable in column. For example, based on the first column of Table 

3.6a no variable has effect on ambient air temperature.  In the second column, ambient air 

temperature has influence on regenerator pressure. Also in the third column of this table, ambient 

air temperature and combustion air suction flow have influence on combustion air discharge 

pressure and based on the forth column ambient air temperature has influence on combustion air 

suction flow. These results are in accordance with the results of transfer entropy test. The mutual 

transfer entropy values were calculated among the most important variables as determined by 

KPCA contribution plots and the results are shown in Table 3.7a. In this table, when the value of 

transfer entropy is positive, the variable in row has influence on the variable in column and when 

the value of transfer entropy is negative, the variable in column has effect on the variable in the 

row. For example according to Table 3.7a ambient air temperature has effect on regenerator 

pressure (TE Tatm → P6= 0.13 ). This is because variation in air temperature will affect the air density 

which is flowing to compressor and this compressor is adjusting the pressure inside the regenerator 

(P6). On the other hand, combustion air suction flow has effect on combustion air discharge 

pressure (TE Fsucn,comb → P2= -0.25) that is clearly interpretable based on process flow diagram. 

Among all 23 variables on FCC, the contribution plots of KPCA guide our focus more on the 

variables on a particular part of the process or among more important variables related to the fault, 

and causality analysis show the causal relationship between the variables in that particular part. 
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For example, in this faulty scenario the contribution plots bring our attention to regenerator side 

and highlights four suspected variables in that area. The causality analysis sketches the causality 

between those suspected variables to find the root cause. The values of transfer entropy approve 

the network that has been developed by Granger causality (Fig. 3.7a). Based on this network 

ambient air temperature affects the other three variables while it is not affected by other variables 

that indicates that ambient temperature is the root cause for this abnormal event.  Although the 

highest contribution from KPCA was for combustion air discharge pressure, but the simplified 

causality network shows that among these variables ambient temperature has the ability to effect 

the other variables. This simplified causality network is also consistent with the original network 

developed based on all 23 variables. However, it is simpler and clearer in describing the causality 

between variables. 
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(b) 

 

 

(c) 

 

Figure 3.6. KPCA results for FCC (a) T2 Hotelling. Contribution plots for (b) fault in ambient 

temperature (c) fault in fresh feed temperature 

 

 



42 
 

Second abnormal event: The second faulty scenario begins with normal operation for 1000 

seconds and then is followed by a 10°C increase in fresh feed temperature for the remaining 4000 

seconds. 

In detection phase of the proposed method, the KPCA model construction is the same as first faulty 

case. The Hotelling T2 and contribution plots of the KPCA analysis are shown on the Fig. 3.6. On 

Fig. 3.6a, the Hotelling T2 values exceed the threshold after fault initiated indicating a successful 

detection of the mentioned fault. As can be seen in Fig. 3.6a, there is a small delay associated with 

the detection phase; however the lag time is smaller than that of the first abnormal event. The 

reason is that increase in fresh feed temperature entering to the process will affect the process 

earlier than the case there is an increase in air temperature because more enthalpy will be entered 

to the process when the feed temperature increases rather than increase in air temperature. Fig. 

3.6c shows contributions to occurrence of the fault. Based on this figure, the following variables 

have significant contribution to process deviation from steady state when there is a variation on 

fresh feed temperature: 

 Fresh feed temperature  

 Furnace temperature  

 Preheated feed temperature 

 Regenerator pressure 

 Differential pressure. 

Selection of these variables from contribution plots bring the attention mainly to the furnace, the 

bottom of the reactor, and the pressure in the system. In the fault diagnosis phase, the causality 

analysis will show the causal effect among variables in the suspected area selected by KPCA 

analysis. Table 3.6b, shows the results of Granger analysis on this abnormal event. The first row 
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of this table shows that fresh feed temperature has effect on furnace temperature and preheated 

feed temperature which in entering to riser. Also furnace temperature has influence on preheated 

feed temperature. In the third row, a variation on temperature of the feed entering to the reactor 

riser will affect both the differential pressure and the regenerator pressure. The fourth row indicates 

that regenerator pressure also has influence on differential pressure between reactor and 

regenerator. The mutual transfer entropy values for this abnormal condition are given in Table 

3.7b. These results are in accordance with the results of Granger causality which all verify the 

causal effect elicited from process knowledge (Fig. 3.7b). Based on process knowledge, heat 

balance around furnace in steady state shows that the enthalpy of the preheated fresh feed 

temperature is equal to the enthalpy of fresh feed entering to the furnace plus the net amount of 

enthalpy given to the fresh feed by the furnace. At constant pressure in the furnace, the enthalpy 

is a function of temperature and consequently the preheated feed temperature (T2) is affected by 

fresh feed entering to the furnace (T1) and furnace temperature (T3). Also any variation in solid 

material temperature entering to the reactor will increase the enthalpy content in the reactor and 

this will affect the pressure of the unit.  Fig. 3.7b shows the constructed network based on both 

methods of causality analysis. Based on this network, fresh feed temperature has influence on the 

other variables, either directly or indirectly, while it cannot be affected by other variables 

indicating that this variable is qualitatively suspected to be the root cause of the abnormal variation 

in the process. 
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Table 3.6. Granger test results of variables in FCC unit. (a) Fault in ambient air temperature, (b) 

fault in fresh feed temperature 

 Tamb P6 P2 Fsucn,comb  

Tamb - 

- 

66.65 

0.0000 

3229.33 

0.0000 

4554.66 

0.0000 

Chi-sq 

Prob. 

P6 0.8719 

0.6466 

- 

- 

0.4768 

0.7879 

1.09 

0.5789 

Chi-sq 

Prob. 

P2 0.8940 

0.6395 

0.3213 

0.8516 

- 

- 

73.76 

0.4053 

Chi-sq 

Prob. 

Fsucn,comb 0.1874 

0.9105 

0.0941 

0.9540 

261.64 

0.0000 

- 

- 

Chi-sq 

Prob. 

(a) 

 T1 T3 T2 P6 ΔPRR  

T1 - 

- 

3536.90 

0.0081 

62441.16 

0.0000 

8733.5 

0.0843 

12344.3 

0.0763 

Chi-sq 

Prob. 

T3 4.8931 

0.0866 

- 

- 

399.07 

0.0000 

7844.4 

0.1023 

14938.3 

0.06943 

Chi-sq 

Prob. 

T2 3.9197 

0.1409 

2.1850 

0.3354 

- 

- 

89453 

0.0000 

45433.4 

0.0343 

Chi-sq 

Prob. 

P6 1232.554 

0.76534 

45.544 

0.75564 

564.433 

0.8874 

- 

- 

97546.6 

0.0000 

Chi-sq 

Prob. 

ΔPRR 
34.543 

0.98576 

7544.64 

0.4643 

9844.4 

0.3453 

3754.66 

0.64665 

- 

- 

Chi-sq 

Prob. 

(b) 
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Table 3. 7. Transfer entropy between the most effective variables in two fault scenarios (a) fault 

in ambient temperature (b) fault in fresh feed temperature 

 

 Tamb P6 P2 Fsucn,comb 

Tamb - 0.13 0.27 0.23 

P6 - - <0.1 <0.1 

P2 - - - -0.25 

(a) 

 T1 T3 T2 
P6 ΔPRR 

T1 - 0.24 0.38 <0.1 <0.1 

T3 - - 0.42 <0.1 <0.1 

T2 - - - 0.34 0.65 

P6 
- - - - 0.16 

(b) 

Tamb

P2

P6

Fsucn,comb

T1

T3

T2

(a) (b)

P6

ΔPRR

 

Figure 3.7.  Causal network of two faulty scenario in FCC (a) fault on ambient temperature (b) 

fault on fresh feed temperature 
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3.3.2. Tennessee Eastman Chemical Process 

In order to further demonstrate the performance of the proposed method, it was applied to diagnose 

some faults in Tennessee Eastman Chemical process. This process consists of five major units: a 

reactor, condenser, compressor, separator, and a stripper; and, it contains eight components: A, B, 

C, D, E, F, G, and H. The process flow diagram of this process is shown in Fig. 3.8. It consists of 

41 measured variables and 12 manipulated variables. Among measured variables, 22 variables are 

continuous process variables and 19 variables are related to composition measurements.  The 22 

continuous process variables are shown in Table 3.8 that are the main focus of this research.  There 

are 21 faults in this process but among them we concentrate our study on those that are mentioned 

in Table 3.9 [3]. 

 

Figure 3.8. Schematic of Tennessee Eastman process 
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Table 3.8. Measured variables in TE 

Variable Description 

XMEAS(1) A feed (stream 1) 

XMEAS(2) D feed (Stream2) 

XMEAS(3) E feed (Stream 3) 

XMEAS(4) Total feed (Stream 4) 

XMEAS(5) Recycle flow (Stream 8) 

XMEAS(6) Reactor feed rate (Stream6) 

XMEAS(7) Reactor pressure 

XMEAS(8) Reactor level 

XMEAS(9) Reactor temperature 

 

XMEAS(10) Purge rate (Stream 9) 

XMEAS(11) Separator temperature 

XMEAS(12) Separator level 

XMEAS(13) Separator pressure 

XMEAS(14) Separator underflow (Stream 10) 

XMEAS(15) Stripper level 

XMEAS(16) Stripper pressure 

XMEAS(17) Stripper underflow (Stream 11) 

XMEAS(18) Stripper temperature 

XMEAS(19) Stripper steam flow 

XMEAS(20) Compressor work 

XMEAS(21) Reactor Cooling Water Outlet temperature 

XMEAS(22) Separator cooling water outlet temperature 
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Table 3. 9. Fault scenarios in TE 

Fault no. Fault description 

IDV(6) A step in feed loss in A 

IDV(12) A random variation in condenser cooling water inlet temperature 

 

First abnormal event: The first faulty scenario is related to a normal operation for 500 seconds 

and a loss in A feed for remaining 500 seconds. This variation will affect the concentration of all 

components in the reactor. Consequently, this may change the process parameters in reactor and 

downstream units.  

Based on KPCA performance on these scenarios the T2 statistic was equal to 21.5 that is obtained 

based on confidence level of 0.95 and selection of four principal components, which show 85% of 

the variation in the system. Gaussian kernel function was selected in data analysis. As it is obvious 

in Fig. 3.9a there is a sharp jump in Hotelling T2 values and they exceed the threshold 

instantaneously when the abnormality initiated indicating that KPCA is able to detect the A feed 

loss quickly. The contribution plot of this scenario is also given in Fig. 3.9b. In this abnormal event 

the following variables have high contribution among other variables: 

 XMEAS(1): A feed  

 XMEAS(7): reactor pressure 

  XMEAS(9): reactor temperature 

  XMEAS(10): purge rate 
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 XMEAS(20): compressor work 

 XMEAS(21): reactor cooling water outlet temperature 

This indicates that a loss in A feed will affect the reactor and the compressor and the upstream of 

the separator that seems reasonable from process point of view. The reactants in this process are 

gaseous and a drop in the flow rate of one of these reactants will affect the pressure of the reactor. 

Also a loss in A feed concentration will deviate the kinetic of the reaction in the reactor since there 

is an exothermic reaction in the reactor and it may lead to variation in reactor temperature. 

Consequently the outcome of reactor will be different of normal outcome and this will affect the 

downstream units.  It should be noted that the reactant A will be stripped in the stripper and the 

downstream product of stripper does not contain the reactant A. It is obvious that a loss in A feed 

will affect the composition of the final downstream product. However, since this paper did not 

take into account the composition of different materials as variables and only considered the 

process variables, in contribution plot the parameters of stripper have not high value of 

contribution on abnormal process variation. Considering these variables, it is difficult to accurately 

find which variable is most suspected to be the true root cause of the fault. So it is substantial to 

now the cause and effect relation between variables involved in the process. 

The causality analysis methods suffer from the complexity of calculation when too many variables 

are involved in the calculations. Also, implementation of causality analysis on all variables in the 

process will not have precise and reliable fault diagnostic results because when there are too many 

variables, the constructed network based on causality analysis will be too complex, busy and 

difficult to qualitatively determine the root cause of the fault (Fig. 3.1b). So causality analysis was 

performed on the variables selected through KPCA in order to have a less busy network which 

facilitates the aim of fault diagnosis. Based on the Granger causality test on the most contributed 
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variables of this abnormal scenario (Table 3.10a) a simple networks will be constructed as in Fig. 

3.10a. In this table the variables in first column are cause and the variables in the first row are 

effect variables. If the prob<0.05, the variable in column has influence on the variable in row. For 

example probXMEAS(7)→XMEAS(9)= 0.0000. It means XMEAS(7) which is rector pressure has 

influence on XMEAS(9) which is reactor temperature. However, XMEAS(7), or reactor pressure, 

has not influence on XMEAS(1), which is A feed stream,  because probXMEAS(7)→XMEAS(1)= 0.1093. 

On the first faulty scenario and based on the first row of Table 3.10a, A feed stream has influence 

on reactor pressure. Based on second row, reactor pressure has influence on reactor temperature 

and based on the third row, reactor temperature has influence on purge rate, compressor work, and 

reactor cooling water outlet temperature. Based on this table one can construct a network 

containing six nodes and five arcs as it is shown in Fig. 3.10a. In order to further investigate the 

causal dependency between these nodes, the mutual transfer entropy values were computed for all 

pairs of this abnormal event (Table 3.11a). These results are in accordance with that of Granger 

causality and the constructed network based on transfer entropy is the same as Granger causality. 

As a result the constructed network based on causality analysis in all scenarios is sparse enough to 

guide us to find the root cause of the fault in the process. The proposed methodology finds A feed, 

XMEAS(1) as the main cause of fault since, according to figure 3.10a, this variable has influence 

on other variables while it is not affected by other variables. 
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(a) 

 

(b) 

 

(c) 

Figure 3.9. KPCA results for Tennessee Eastman (a) T2 Hotelling. Contribution plots for (b) 

IDV(6) (c) IDV(12) 
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Second abnormal event: The second fault is related to a normal operation of the process for 500 

seconds and then the fault initiated with a random variation in condenser cooling water inlet 

temperature. This variable is not among measured variables. The source variables connected to 

this fault are in literatures [89]. 

Since the training data for both faulty scenarios in Tennessee Eastman are the same, the KPCA 

model construction for the second faulty scenario is the same as the first one. Figure 3.9a shows 

the departure of T2 values beyond the threshold (threshold=21.5). Although the first faulty scenario 

that was a step variation in the process was detected abruptly, the detection of the second fault that 

is a kind of random variation in the process variable deals with a delay. The main reason is because 

the magnitude of the variation in condenser cooling water inlet temperature is less than the 

magnitude of the step in A feed flow rate. The contribution plot is given in Fig. 3.9c. The following 

variables have high contribution to this fault: 

 XMEAS(9): reactor temperature 

 XMEAS(11): separator temperature 

 XMEAS(13): separator pressure 

  XMEAS(14): separator underflow 

 XMEAS(16): stripping pressure 

  XMEAS(17): stripping underflow 

 XMEAS(21) : reactor cooling water outlet temperature 

Since this fault affects whole units of the process even the most downstream unit which is stripper, 

it seems that whole the process is under influence of this fault. 
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For the second abnormal event and based on the first row of Table 3.10b, reactor temperature has 

influence on both separator temperature and reactor cooling water outlet temperature. Bases on the 

second row, separator temperature has influence on separator pressure. The third row shows that 

the separator pressure affect the separator underflow and the forth row shows that separator 

underflow affects stripping pressure and stripping underflow. The constructed network is given on 

Fig. 3.10b. In order to further investigate the causal dependency between these nodes, the mutual 

transfer entropy values were computed for all pairs between variables selected by KPCA (Table 

3.11). These results are in accordance with that of Granger causality and the constructed network 

based on transfer entropy is the same as Granger causality. As a result the constructed network 

based on causality analysis in all scenarios is sparse enough to guide us to find the root cause of 

the fault. For this faulty scenario, when there is a random variation in condenser cooling water 

inlet temperature, reactor temperature was accurately diagnosed as failure cause. Since there is no 

measurement in condenser cooling water inlet temperature, this method is able to find the variable 

that is mostly affected by the main root (XMEAS(9)) and is able to propagate the fault to other 

variables.  
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Table 3.10. Granger causality test for Tennessee Eastman process. (a) IDV6, (b) IDV12 

 XMEAS(1) XMEAS(7) XMEAS(9) XMEAS(10) XMEAS(20) XMEAS(21)  

XMEAS(1) - 

- 

34654.89 

0.0000 

833.43 

0.5422 

184.83 

0.634 

8333.3 

0.234 

9034 

0.2338 

Chi-

sq 

Prob. 

XMEAS(7) 843.54 

0.1093 

- 

- 

23856.23 

0.0000 

4903.94 

0.2954 

8473.5 

0.2393 

232.43 

0.5423 

Chi-

sq 

Prob. 

XMEAS(9) 9433.34 

0.5343 

5433.5 

0.3433 

- 

- 

65921.45 

0.0252 

32403.34 

0.0000 

65332.5 

0.0000 

Chi-

sq 

Prob. 

XMEAS(10) 465.54 

0.6743 

845.64 

0.5323 

8394.4 

0.09842 

- 

- 

938.53 

0.7643 

9545.4 

0.1235 

Chi-

sq 

Prob. 

XMEAS(20) 9034.3 

0.4354 

584.43 

0.5434 

129.64 

0.76483 

7845.54 

0.3435 

- 

- 

834.34 

0.1334 

Chi-

sq 

Prob. 

XMEAS(21) 14924.4 

0.0754 

9453.45 

0.3234 

49334.34 

0.06343 

4544.24 

0.3434 

233.34 

0.74453 

- 

- 

Chi-

sq 

Prob. 

 (a) 

 XMEAS(9) XMEAS(11) XMEAS(13) XMEAS(14) XMEAS(16) XMEAS(17) XMEAS(21)  

XMEAS(9) - 

- 

4323.23 

0.0000 

20394.23 

0.32932 

232.32 

0.3343 

3498.343 

0.23543 

83439.34 

0.5343 

34782.23 

0.0000 

Chi-sq 

Prob. 
XMEAS(11) 89.5343 

0.6745 

- 

- 

98343 

0.0000 

89.34 

0.4343 

89394.3 

0.3434 

3534.34 

0.07644 

949.33 

0.5343 

Chi-sq 

Prob. 

XMEAS(13) 8634.3 
0.64553 

1244.44 
0.3352 

- 
- 

6444.3 
0.0000 

9543.3 
0.3353 

53433.3 
0.5333 

4343.23 
0.09443 

Chi-sq 
Prob. 

XMEAS(14) 8349.3 

0.0934 

789.98 

0.7866 

4578.7 

0.3447 

- 

- 

58909.09 

0.0000 

9579.87 

0.0000 

8906.8 

0.1009 

Chi-sq 

Prob. 
XMEAS(16) 9324.43 

0.5453 

7343.343 

0.5434 

8343.22 

0.2232 

39083.34 

0.4334 

- 

- 

4434.44 

0.5433 

66.97 

0.6997 

Chi-sq 

Prob. 

XMEAS(17) 9384.34 
0.4534 

834.33 
0.4332 

8422.2 
0.4222 

7278.254 
0.9873 

1222.22 
0.3222 

- 
- 

8732.2 
0.2433 

Chi-sq 
Prob. 

XMEAS(21) 76304.3 
0.54347 

1.4323 
0.8837 

52.432 
0.4382 

9722.33 
0.75222 

97622.2 
0.0683 

655.33 
0.8722 

- 
- 

Chi-sq 
Prob. 

 

(b) 
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Table 3.11. Transfer entropy between the most effective variables in two faulty scenarios in 

Tennessee Eastman (a) IDV6, (b) IDV12 

 XMEAS(1) XMEAS(7) XMEAS(9) XMEAS(10) XMEAS(20) XMEAS(21) 

XMEAS(1) - 0.22 <0.1 <0.1 <0.1 <0.1 

XMEAS(7) - - 0.43 <0.1 <0.1 <0.1 

XMEAS(9) - - - 0.45 0.32 0.23 

XMEAS(10) - - - - <0.1 <0.1 

XMEAS(20) - - - - - <0.1 

XMEAS(21) - - - - - - 

(a) 

 XMEAS(9) XMEAS(11) XMEAS(13) XMEAS(14) XMEAS(16) XMEAS(17) XMEAS(21) 

XMEAS(9) - 0.23 <0.1 <0.1 <0.1 <0.1 0.55 

XMEAS(11) - - 0.43 <0.1 <0.1 <0.1 <0.1 
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Figure 3.10. Constructed networks based on proposed technique for Tennessee Eastman process. 

(a) IDV6, (b) IDV12 
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3.4. Conclusion 

Although KPCA is a powerful tool in multivariate analysis for detection and even in identification 

of faults, it suffers in linking the fault to its root cause. In case of an abnormality on an industrial 

process, it is difficult for an operator to have an accurate diagnosis of the root cause of a fault 

based on the contribution plots in KPCA analysis. Besides, contribution plots may contain spurious 

contributions that are related to noise in the process variables. In such a case, combining KPCA 

with another method is worthwhile. Here it was shown that KPCA combined with causality 

analysis is an appropriate tool for process fault detection and diagnosis. The importance of this 

methodology is due to providing a visual cause and effect description among the variables that are 

most suspected to be the root cause of the fault. The proposed methodology was applied to FCC 

and Tennessee Eastman Chemical process. In both examples KPCA was able to detect the fault 

but could not diagnose the main cause of fault. Based on network construction, causality analysis 

diagnosed the root cause of the fault and showed the propagations pathway of the fault to other 

affected variables. Also in both examples, causality analysis was done by both transfer entropy 

and granger causality test and comparison between them verifies the previous theories in this area: 

when the process variables have Gaussian, exponential Weinman, or log-normal data distribution, 

Granger causality has the same result as transfer entropy which represents the amount of 

information that transfers from one variable to other neighbor or non-neighbor variable.[75, 76]. 
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Chapter 4 

Root cause diagnosis of process fault using KPCA and Bayesian network 

Abstract: This paper develops a methodology to combine diagnostic information from various 

fault detection and isolation tools to diagnose the true root cause of an abnormal event in industrial 

processes. Limited diagnostic information from kernel principal component analysis (KPCA), 

other on-line fault detection and diagnostic tools, and process knowledge were combined through 

Bayesian belief network (BBN). The proposed methodology will enable an operator to diagnose 

the root cause of the abnormality. Further, some challenge on application of Bayesian network on 

process fault diagnosis such as network connection determination, estimation of conditional 

probabilities, and cyclic loop handling were addressed. The proposed methodology was applied to 

Fluid Catalytic Cracking unit and Tennessee Eastman Chemical Process. In both cases, the 

proposed approach showed a good capability of diagnosing root cause of abnormal condition.  

4.1. Introduction 

In process industries, there has been a continuing demand for higher quality products and lower 

product rejection rates, satisfying increasingly stringent safety and environmental regulations [1]. 

Implementation and improvement of accurate control scheme have been essential over the recent 

decades in order to meet these ever increasing standards [90]. Modern control systems became 



58 
 

extremely complex by integrating various functions and components for sophisticated 

performance requirement [3, 40]. With such complexities in hardware and software, it is natural 

that the system may become vulnerable to faults in practice and fault diagnostic tools are required 

to ensure the process safety and quality of products. The objectives of these tools are early 

detection of faults and to minimize the impact of a fault on the system [3]. 

In the recent years extensive research has been conducted on process fault detection and diagnosis 

(FDD). According to the comprehensive review of Venkatasubramanian et al., FDD tools can be 

divided to model-based methods and process history based methods [4, 10, 23]. Model based 

methods require precise mathematical relationship between internal states of the process. Most of 

the times is impossible to have such a precise model [14, 91]. History based methods uses the data 

of the process that contain all normal and abnormal condition in the process and implement these 

data for training and fault detection purpose [92]. Although these methods are effective to detect 

faults early and widely used in process industries, the diagnosis of the faults is not precise. Various 

residual evaluation methods have been developed to uniquely identify the fault location, for 

example, generalized likelihood ratio test [15], and structured residuals [93].  However, the 

inaccuracy in fault diagnosis still exists and often these methods point towards response variables 

as the root cause. 

In order to overcome the limitations of individual methods and improve the diagnose ability of 

process faults, hybrid methods have been proposed by researches in recent years. A hybrid 

framework consists of collection of methods and utilizes information from several FDDs to 

overcome the limitations of individual methods [5-7]. This combination of different methods 

allows one to evaluate different kinds of knowledge in one single framework for better decision 

making [7]. For instance, the analytical methods in model-based fault detection and diagnosis are 
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based on residual generation using parameter estimation; however, the robustness of the model-

based methods is often under question since obtaining an accurate model for process, especially 

for chemical processes, is challenging.  To address this problem, Frank proposed the use of 

analytical methods and integrated them with knowledge-based methods. He combined the 

analytical methods with expert system approach which makes use of qualitative models based on 

available information of the process, facts and rules. Degree of ageing, used tools and history of 

operation are examples of expert knowledge. They concluded that knowledge-based methods 

complement the shortcomings of analytical methods of fault diagnosis [16]. An integration of 

neural network and expert system for fault diagnosis was done by Becraft et al. Once the process 

fault was localized by neural network, the results were analyzed by a deep knowledge expert 

system including information of the system structure, function and principles of operation [64]. 

Mylaraswamy provided a brief comparison of the various diagnostic methods to highlight the 

inadequacy of individual methods and underscored the need for collective problem solving. They 

proposed a Dkit based hybrid method of neural network for detection of a fault and a SDG for 

diagnostic action [6].  Zhao et al. proposed a wavelet-sigmoid basis neural network for dynamic 

diagnosis of failure in hydrocracking process [5].  

Process measurements are very noisy and there is uncertainty in the relationship between process 

variables. A BN model is an excellent tool to characterize processes with stochastic uncertainty 

using conditional probability-based state transitions [57]. Hence, it can be adopted to identify the 

propagating probabilities among different measurement variables so as to determine the operating 

status of processes and diagnose the root causes of abnormal events [56]. Researchers have used 

BN for improving process fault diagnosis in different ways. Due to stochastic nature of process 

variation, a false alarm may be generated in monitoring system while the process is operating in 
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normal condition. To address this problem, in the methodology proposed by Dey et al., data from 

multiple sensors were combined through a causal belief network to estimate probabilistic diagnosis 

of root cause of the process fault. They showed that the posterior probability of each node which 

shows the status of the node can be updated from evidence using Pearl massage passing algorithm 

[56]. Yu et. al proposed a Bayesian inference-based abnormality likelihood index to detect a 

process fault. In diagnosis phase they utilized dynamic Bayesian probability and contribution 

indices [57]. In complex processes, it is not economic to monitor all the variables while sometimes 

fault is originated in the non-monitored variables. To address this issue, Yu et al. investigated the 

possibility of combining modified ICA and BN for process FDD. The limited diagnostic results of 

ICA was used as evidence in BN updating and concluded that the combined framework of these 

two methods is a strong tool for FDD purpose for all monitored and non-monitored variables [36]. 

Despite these researches, there is still more need to research in this area especially since it is 

somewhat unclear how to use the outcome of data-based FDD methods as an input to the 

knowledge based root cause analysis in an automated fashion. Also in these researches, the causal 

relationships in the network were determined using process knowledge and conditional 

probabilities are assigned based on expert judgement which is subjective as it heavily depends on 

the knowledge and experience of individuals. Furthermore, there is ambiguity in whether one 

should use normal or faulty data for network training and details on preprocessing of training data 

is not discussed [36, 57].  Some application challenges arise due to the inherent limitations of 

Bayesian network. A BN in its original form is an acyclic directed graph. In chemical processes, 

however, cyclic loops appear due to material and heat integration; recycle streams, as well as 

information flow paths due to feedback control. As such, BNs needs to be adopted to represent 

chemical processes adequately. 
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Our research aims to fill these knowledge gaps with view to developing a comprehensive methods 

that can precisely diagnose the root cause of process fault and help the operator to take corrective 

actions. We propose a new methodology through integration of diagnostic information from 

various single variable and multivariable diagnostic tools using BN. We also address the 

application difficulties of BN related to process fault diagnosis. We used Granger causality and 

transfer entropy to determine the causal relationships between process variables. A detailed 

methodology for estimating conditional probabilities between variables is also proposed in this 

paper. Cyclic networks were dealt with through transformation of cyclic BN to acyclic-BN using 

pseudo-nodes. We demonstrated the efficacy of the proposed methodology through two case 

studies, i.e. FCC and Tennessee Eastman.  
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Figure 4.1. The proposed method for root cause diagnosis of process fault 
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4.2. Methodology: BN-based process monitoring approach 

The overall picture of the methodology is given in Fig. 4.1. The main components of the proposed 

methodology are: KPCA model, sensor fault detection module, and BN.  In an on-line setting 

KPCA will act as a primary tool for detecting process fault. Having detected the fault, next step 

would be to diagnose the root cause of the fault and the propagation pathway. The fault may be 

originated among internal states or it may be because of a sensor malfunction. It is important to 

isolate sensor faults using sensor validation module since these kind of faults breakdown the 

correlation between variables and the causality networks do not work effectively. A sensor check 

module can be designed using simple rule-based algorithms or more sophisticated algorithms such 

as bank of Kalman filter with weighted sum of squared residual (WSSR)  [94]. To keep the 

methodology simple, we used a rule-based algorithm.  If the sensors are working properly, the 

failure should be among process internal states. The BN is more appropriate to detect disturbance 

type faults. Thus, if it is a sensor fault the algorithm stops at this point. Otherwise it will proceed 

to determining the root cause of the fault. The average contributions calculated from the KPCA is 

used to preliminarily diagnose the causes of faults. This information is passed on to the trained BN 

as evidence. The trained BN based on its causal relations and conditional probabilities determine 

the true root cause of the fault. The training of the KPCA and BN is done in an off-line mode. 

Important steps in building a KPCA model are data normalization, determining the number of PCs, 

residual generation using training data set.  

BN has two components: construction of causal network and estimating the conditional 

probabilities. Granger causality and transfer entropy was applied for estimation of mutual causal 

relationship between variables and for construction of network. Knowledge of the process was 

used to verify the constructed network. If the network contained a loop, a dummy duplicate node 
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was created for one of the variables involved in the loop because Bayesian network cannot update 

cycles. Conditional probabilities among different nodes are the quantitative part of the network 

which was calculated using maximum likelihood method. Our objective was to reflect the causal 

relationships among the variables due to abnormal events as such we used the residuals from the 

KPCA to calculate the conditional probabilities. The residuals contain only the abnormal process 

variations thus conditional probabilities calculated from the residuals better reflect the propagation 

pathways of the faults. More detail on each section is presented in following sections: 

4.2.1. Kernel Principal Component analysis (KPCA) 

KPCA is an extension of PCA to deal with nonlinear data set. In KPCA, nonlinear data can be 

converted to linear form through high-dimensional mapping. For example, a data set x and z which 

are not separable in current space are linearly separable in nonlinear hyperplane with features Фi(x) 

and Фj(z). Thus KPCA is a two-step method: calculation of covariance matrix and dot products of 

variables in feature space, and singular value decomposition of covariance matrix in feature space. 

Finding the exact feature space is not straight forward and calculation of the dot products in the 

feature space can be prohibitive due to calculation complexities. Instead of explicitly transforming 

variables to feature space, dot product vectors in feature space is calculated using Kernel function. 

According to [87] the dot product of the transformed variables is given by the following equation: 

𝑘(𝑥, 𝑧) = Ф𝑖(𝑥).Ф𝑗(𝑧)      (4.1) 

The function k (·, ·) is called the kernel function, and there exist several types of these functions. 

Some popular kernel functions are polynomial functions, Gaussian functions, and sigmoidal 

functions [28, 32].  The fault detection in KPCA is done using Hotelling T2 which is similar to 

PCA. The contributions of each variable reflect some useful information in diagnosis. However, 
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unlike PCA contribution of KPCA model cannot be calculated easily because of the nonlinear 

transformation in KPCA. Alcala and Qin proposed reconstruction-based contribution (RBC) to 

overcome the aforementioned shortcoming and to estimate contribution of each variable [87, 88]. 

The procedure to estimate fault free data by eliminating the effect of fault from faulty data is 

defined as reconstruction. 

𝑧𝑖 = 𝑥𝑖 − 𝜉𝑖𝑓𝑖       (4.2) 

where zi is fault free data, xi is faulty data, 𝜉i is the direction of fault, and fi is the magnitude of 

fault.  RBC considers the reconstruction of a fault detection index (T2 or SPE) along the direction 

of a variable as the variable's contribution for that fault. In other words, the objective of RBC is to 

find fi of a vector with direction 𝜉i such that the fault detection index of the reconstructed 

measurement is minimized. The reason for minimization is that for fault free data the detection 

index should be minimum; however it is not zero because there is always some process normal 

variation and noise in a process. 

The residuals from the KPCA module were used to update the probability of the corresponding 

nodes in the BN. The residual components are calculated from: 

�̃� = 𝑃𝑓
𝑇Ф       (4.3) 

Where Pf
T   is related eigenvectors corresponding to remained PCs which are related to residuals 

and Φ is the mapped vector of observation space. The calculation of residual from equation 4.3 is 

not possible because of high dimensionality in feature space. Here we calculated residuals from 

the difference between faulty data and fault free data which is obtained from reconstruction: 

𝑒𝑖 = 𝑥𝑖 − 𝑧𝑖       (4.4) 

More details and the mathematics behind the theory is given in Appendix.  
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4.2.2. Sensor failure module 

In the proposed method, a rule-based sensor check module has been designed after KPCA unit to 

isolate sensor malfunction. According to Sharma et al. the following failures are probable in a 

sensor [95]: 

 FLAT LINE: The sensor reports a constant value for a large number of successive samples 

(Fig. 4.2b). 

 SPIKE: A sharp change in the measured value between two successive data points (Fig. 

4.2c).  

 NOISE: The variance of the sensor readings increases. Unlike SPIKE faults that affect a 

single sample at a time, NOISE faults affect a number of successive samples (Fig. 4.2d).  

In order to keep things simple we used the following rules to detect these faults: 

 When the difference between two consecutive observations is less than a very small value 

and this happens for five consecutive observations, the sensor is suspected to Flat line 

failure. 

 When the difference between two consecutive observations is a very large number in 

comparison with the standard deviation of data, the sensor is suspected to Spike failure. 

  If in any data window of N data points, q measured values of a sensor exceed the threshold, 

the sensor is suspected for Noise failure. 

Pseudo-code to apply the above heuristics is given in Fig. 4.3.  
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(d) 

 

Figure 4.2. Normal and faulty states of a sensor (a) Normal performance (b) flat line fault (c) 

spike fault (d) noise fault 

 

1. Input

Data- a m*n matrix (m: observations, n: variables)

2. Output: a diagnosis report

3. For each sensor si ϵ n

4.       If  Data( p+1, i)-Data( p,i) < ϵ  … (for five consecutive observations)

5.           Break

6.           Sensor →suspected

7.       If max(or min)-mean>> st.dev

8.            Break

9.            Sensor → suspected

10. If abs(m values- mean)> threshould for q samples a in window size N (N and q <m)

11.            Break

12.            sensor→suspected

13. if suspected

                       report →sensor fault diagnosed

 
Figure 4.3. Pseudo-code for sensor fault detection 

 

 

 

0 50 100 150 200 250 300 350 400 450 500
0.23

0.235

0.24

0.245

0.25

0.255

0.26

Sample no.

S
e
n
s
o
r 

m
e
a
s
u
re

m
e
n
t



68 
 

4.2.3. Bayesian network construction 

A BN is utilized to determine the fault origin and the pathway in which the fault is propagated. 

BN has two components: the causality network and conditional probabilities. Typically, in most 

cases the causal relationship and conditional probabilities are assigned based on process 

knowledge. In this study we show how to use process data to complement process knowledge. In 

order to construct the network, the mutual cause and effect relationship between variables should 

be determined. We employed Granger causality and transfer entropy to extract causal relationships 

among variables from process data. The detailed explanation on causality analysis and construction 

of the BN is described below: 

4.2.3.1. Causality analysis based on Granger Causality 

Wiener introduced the concept of history based causality, and later in 1969 Granger formulated it 

to show the cause and effect relationship among different variables in any system [69, 81]. 

According to Granger, a variable 'y ' Granger causes the other variable 'x ' if incorporating the past 

values of 'x' and 'y ' helps to better predict the future of 'x ' than incorporating the past values of 'x 

' alone [69]. Considering two time series x and y, there are two different linear regression model. 

One is a restricted model in which the prediction of x at time k is possible using the information of 

the past values of x: 

𝑥𝑘 = ∑ µ𝑖𝑥𝑘−𝑖 + 𝜀𝑥𝑘
𝑝
𝑖=1       (4.5) 

where xk is the value of x at time k; xk-i is the i-lagged value of x; µ is the regression coefficient; p 

is the number of time lagged variables considered; and ε denotes the residual series for constructing 

xk.  
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The second model is unrestricted model in which the prediction of x at time t is possible using the 

past information of both x and y as follows: 

𝑥𝑘 = ∑ 𝛾𝑖𝑥𝑘−𝑖 + ∑ 𝛽𝑖𝑦𝑘−𝑗 + 𝜂𝑥𝑘
𝑞
𝑗=1

𝑝
𝑖=1     (4.6) 

where xk is the x time series at time k; xk-i and yk-j are respectively the i-lagged x time series and j-

lagged y time series; γ  and β are the regression coefficients; p and q are the amount of lag 

considered or model order; and  η denotes the unrestricted model residual at time k. The µ, β, and 

γ parameters are calculated using least squares method. A small value of p or q leads to poor model 

estimation while large values result in problem of overfitting. Akaike Information criterion (AIC) 

[82] and Bayesian Information criterion (BIC) [66] are two criteria that are used to determine the 

model order. AIC and BIC are given as follows:  

𝐴𝐼𝐶(𝑝) = 𝑙𝑛(𝑑𝑒𝑡(𝛴)) + 
2𝑝𝑛2

𝑇
     (4.7) 

𝐵𝐼𝐶(𝑝) = 𝑙𝑛(𝑑𝑒𝑡(𝛴)) + 
𝑙𝑛(𝑇)𝑝𝑛2

𝑇
     (4.8) 

where Σ represents the noise covariance matrix and T is the total number of observations. When 

the variability of the residual of the unrestricted model is significantly reduced with that of a 

restricted model, then there is an improvement in the prediction of x due to y. In other words y is 

said to Granger cause x. This improvement can be measured by the F statistic: 

𝐹 = 
(𝑅𝑆𝑆𝑟−𝑅𝑆𝑆𝑢𝑟) 𝑞⁄

𝑅𝑆𝑆𝑢𝑟 (𝑇−𝑝−𝑞−1)⁄
~ 𝐹(𝑝, 𝑇 − 𝑝 − 𝑞 − 1)    (4.9) 

where RSSr is the sum of the squares of the restricted model residual, RSSur is the sum of the 

squares of unrestricted model residual, and T is the total number of observations used to estimate 

the model. F statistics approximately follows F distribution with degrees of freedom p and (T-p-
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q-1). If the F statistics from y to x is significant, then the unrestricted model yields a better 

explanation of x than does the restricted model, and y is said to Granger cause x [84]. 

4.2.3.2. Causality analysis based on Transfer entropy 

For two variables with sampling interval of τ , xi= [xi,  xi-τ, … ; xi-(k-1) τ] and yi=[yi, yi- τ,  … , yi-(l-1) 

τ],  information transferred from y to x is defined as follows [71]: 

𝑡(𝑥│𝑦) = ∑ 𝑃(𝑥𝑖+ℎ, 𝒙𝑖, 𝒚𝑖)  . 𝑙𝑜𝑔
𝑃(𝑥𝑖+ℎ│ 𝒙𝑖 ,𝒚𝑖)

𝑃(𝑥𝑖+ℎ│𝒙𝑖)
𝑥𝑖+ℎ,𝒙𝑖,𝒚𝑖

  (4.10) 

where P(.) denotes the probability density function (PDF) and h is the prediction horizon. k and l 

show the length of time series. Transfer entropy represents the measure of information transfer 

from y to x by measuring the reduction of uncertainty while assuming predictability [71]. It is 

defined as the difference between the information about a future observation of x obtained from 

the simultaneous observation of past values of both x and y, and the information about the future 

of x using only past values of x. It was shown that the parameter values can be chosen as: τ = h ≤ 

4, k = 0, and l = 1 for the initial trial [68]. Using the above definitions, direction and amount of 

net information transfer from y to x is as follows: 

𝑡(𝑦 → 𝑥) = 𝑡(𝑥│𝑦) − 𝑡(𝑦|𝑥)     (4.11) 

𝑡(𝑦 → 𝑥) is causality measure and is derived by comparing the influence of y to x with influence 

of x to y. If t(𝑦 → 𝑥) is negative then information is transferred from x to y. Since at first there is 

no knowledge about which node is cause and which one is effect, choosing these nodes inversely 

will result in negative value.   

The advantage of using transfer entropy is that it is a model free method and can be applied to non-

linear data. It has already been proved to be very effective in capturing process topology and 
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process connectivity [96]. But it suffers from a large computational burden due to the calculation 

of the PDFs. Histograms or nonparametric methods, e.g. kernel method, can be used to estimate 

the PDF [71]. The Gaussian kernel function is used to estimate the PDF which is defined as 

follows: 

𝐾(𝑣) =
1

√2𝜋
𝑒−

1

2
𝑣2

       (4.12) 

Therefore, a univariate PDF can be estimated by, 

𝑝(𝑥) =
1

𝑁.𝑑
∑ 𝐾 (

𝑥−𝑥𝑖

𝑑
)𝑁

𝑖=1       (4.13) 

where N is the number of samples, d is the bandwidth chosen to minimize the error of estimated 

PDF. d is calculated by d = c.σ.N0.2 where σ is variance and c = (4/3)0.2≈1.06 according to the 

“normal reference rule-of-thumb” approach. For a q-dimensional multivariate case the estimated 

PDF is given by [71]: 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑞) =
1

𝑁.𝑑1…𝑑𝑞
∑ 𝐾 (

𝑥1−𝑥𝑖1

𝑑1
) . 𝐾 (

𝑥𝑞−𝑥𝑖𝑞

𝑑𝑞
)𝑁

𝑖=1   (4.14) 

where 𝑑𝑠 = 𝑐. σ(𝑥𝑖,𝑠)𝑖=1

𝑁
. 𝑁

−1
(4+𝑞)⁄

 for 𝑠 = 1,… , 𝑞. 

4.2.3.3. Estimation of conditional probabilities 

Besides the causal network, a BN contains conditional probability tables for all nodes. These 

values quantify the amount of influence each node receives from its parents. In this paper, 

calculation of conditional probabilities was done by maximum likelihood estimation (MLE). 

Suppose a sample consisting of m variables and n observations. We write xj
(i) for the j’th 

observation of i’th variable. Given these definitions, the MLE for P(x) for x∈{1 . . . k} takes the 

following form (k is the number of states): 
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𝑃(𝑥) =
∑ [𝑥𝑗

(𝑖)
=𝑥]𝑛

𝑗=1

𝑛
=

𝑐𝑜𝑢𝑛𝑡(𝑥)

𝑛
      (4.15) 

[x(i)=x] is 1 if x(i)=x, otherwise it is equal to zero. Hence, ∑ [𝑥(𝑖) = 𝑥] = 𝑐𝑜𝑢𝑛𝑡(𝑥)𝑛
𝑖=1   is simply 

the number of times that the state x is seen in the training set, or number of times that state x is 

inside threshold that have been previously determined.  

Similarly, the MLE for the P(x│y) , x and yϵ {1….k}, takes the following form: 

𝑃(𝑥|𝑦) =
𝑃(𝑥,𝑦)

𝑃(𝑦)
 
∑ [𝑥𝑗

(𝑖)
=𝑥 𝑎𝑛𝑑 𝑦𝑗

(𝑖)
=𝑦]𝑛

𝑗=1

∑ [𝑦
𝑗
(𝑖)

=𝑦]𝑛
𝑗=1

=
𝑐𝑜𝑢𝑛𝑡𝑗(𝑥 𝑎𝑛𝑑 𝑦)

𝑐𝑜𝑢𝑛𝑡(𝑦)
  (4.16) 

This is a very natural estimate and equal to the number of times state both x and y  are seen within 

the threshold upon the number of times the label y is seen within the threshold [85]. 

In a process system, propagation path for fault and normal variation is often not the same [97]. 

The conditional probability in essence should reflect the causal relations between variables under 

faulty conditions.  In order to keep only the variation of abnormality and noise and to mitigate the 

effect of process variation on the conditional probability calculation, the residuals from KPCA 

analysis were used for calculation of conditional probabilities (Fig. 4.6). Also the residuals follow 

Gaussian distribution more closely compared to the raw data, as such gives better maximum 

likelihood estimates. In other words, conversion of data to residuals will mitigate process 

variations in variable values while keeping the causality of fault information inside, consequently 

conditional probabilities estimated from residuals reflect the causal relations for faulty variables 

more accurately.  
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4.2.3.4. Construction of BN: An illustrative example 

We will illustrate the network construction using Granger causality and transfer entropy and also 

estimation of conditional probabilities, for a simple dissolution tank system. [34]. In this system 

pure solid crystal is dissolved in a tank with water (Fig. 4.4). The flow of water to the tank is under 

control. Also the solid crystals are fed from a hopper to the tank through a rotary feeder. The 

control objective of this process is to maintain the level of water and concentration of crystal in 

the tank to desired set point. However, these two parameters are subjected to abnormal changes 

due to disturbance in the solid discharge.  

There are four variables in this process, water flow to the tank, RPM of the rotary feeder, level of 

water, and concentration of solid crystal in the tank. These four variables are taken as nodes in a 

network and their values within the operation of the process will be analyzed by Granger causality 

and transfer entropy for network construction. We used a statistical software Eviews to perform 

Granger causality analysis. The results of Granger causality analysis are shown in Table 4.1. In 

this table based on the F statistics when the prob<0.05, it rejects the null hypothesis and indicates 

the variable in the row has influence on the variable in column. For example, based on the first 

row of this table, water flow has influence on level and solid crystal concentration. Also the second 

row shows that the RPM has influence on level and solid crystal concentration as well. The 

network constructed based on this method is shown Fig. 4.5. Also we did causality analysis of the 

same system using transfer entropy. The results of transfer entropy are given in Table 4.2. In this 

model, there is time lag between inputs and outputs. In calculation of transfer entropy, several time 

delay values in the range of [-5:5] were considered and the value with the maximum transfer 

entropy was selected.  In Table 4.2, the value of transfer entropy indicates that the variables in 

rows have influence on the variables in columns. However, by comparison of the network 



74 
 

constructed by Granger causality and transfer entropy, there is a discrepancy in the results. Based 

on transfer entropy level of the tank has effect on solid crystal concentration; however, Granger 

causality does not confirm such a relation. The results of Granger causality are more accurate than 

that of transfer entropy because in calculation of conditional probability values of transfer entropy 

test, histograms were used that introduced some error to the calculation. In order to rectify the 

results, a threshold of 0.1 was set for transfer entropy values; only values above the threshold 

indicates that there is a significant causal relationship between the variables.  

 

 

Figure 4.4. Process flow diagram of dissolution tank system 
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Table 4.1. The result of Granger causality analysis for dissolution tank system 

 Water flow RPM Level Concentration  

Water flow - 

- 

66.65 

0.1253 

53239.33 

0.0000 

4554.66 

0.0000 

Chi-sq 

Prob. 

RPM 0.7632 

0.6466 

- 

- 

3424.43 

0.0000 

76434.5 

0.0000 

Chi-sq 

Prob. 

Level 53.332 

0.7524 

0.7613 

0.0934 

- 

- 

949.43 

0.5322 

Chi-sq 

Prob. 

Concentration 13.644 

0.8323 

6347.3 

0.0784 

361.54 

0.1125 

- 

- 

Chi-sq 

Prob. 

 

Table 4.2. Mutual transfer entropy values between nodes on dissolution tank system 

 water in Solid level concentration 

water in NA NA 0.16 0.25 

Solid NA NA 0.14 0.19 

Level NA NA NA 0.02 

 

Water 
flow

RPM

Level
Conc.

 

Figure 4.5. Constructed network for dissolution tank system using Granger causality and transfer 

entropy 
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Next we calculated the conditional probabilities for the system. Fig. 4.6 shows 2000 observations 

for level and water flow rate and their corresponding residuals for the dissolution tank system. The 

training data containing two kinds of variation in the system: normal process variation and 

variation due to abnormality and noise. As can be seen in this figure, in the case of raw data there 

are many fluctuations in data and sometimes they exceed the threshold but in reality these were 

normal operational changes in the process. However this is not the issue in residuals as the 

residuals do not contain process variations. In case of level, 644 samples exceeded the threshold 

but in the corresponding residuals only 91 samples exceeded the threshold. Also in case of water 

flow rate, 782 samples exceeded the threshold but in the corresponding residuals only 114 samples 

exceeded the threshold which is reasonable because the selected PCs for this system shows 0.85 

of variation in the system. Considering one standard deviation around the mean as normal 

threshold, the probability of level of the tank being in normal state is 71% for original data and is 

93% for residuals. Also the probability of water flow rate being in normal state is 68% for original 

data and is 81% for residuals. This is because in original data some process normal variations are 

incorrectly considered as fault. So conditional probability values calculated from the residuals are 

more accurate than that of from raw data.  
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(a) 

 

(b) 

Figure 4.6. Process value and generated residuals of dissolution tank system. (a) Level (b) water 

flow rate 
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4.2.4. Loop handling 

Since BN is acyclic network, while applying it for chemical processes with feedback controller or 

recycles, a special treatment is required to convert the network form cyclic to acyclic form. In 

order to capture the feedback effect in an acyclic network, we designed a duplicate dummy point 

as the feedback effect in recycle or controller. For example, in Fig. 4.7a, there is a causal 

relationship from Xi to Xo. Also based on the recycle loop there is a causal relationship from Xo to 

Xi as well. This loop has been treated as Fig. 4.7b and a dummy variable has been dedicated to 

variable Xi. It is obvious in Fig. 4.7b variable Xi has effect to variable Xo in the continuous line and 

also variable Xo has effect to variable Xi in the dash line.   

ProcessXi Xo outputinput

Xi Xo Xi Xo Xi

(a) (b)
 

 

Figure 4.7. Loop handling in Bayesian network 

4.3. Application of proposed methodology 

In order to demonstrate the effectiveness of the proposed hybrid technique based on KPCA and 

BN, the methodology was applied to two case studies, one without recycle (FCC) and one with 

recycle (Tennessee Eastman):  
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4.3.1. Fluid Catalytic Cracking 

FCC process converts a number of heavy hydrocarbons with different molecular weights to more 

lighter and more valuable hydrocarbons. The heavy hydrocarbons come from different parts of 

refinery and are diverse in chemical properties. A schematic illustration of the FCC unit 

reactor/regenerator section is shown in Fig. 4.8. The monitored variables are listed in Table 4.3. 

There are three inputs to the system: fresh feed temperature, feed coke factor and atmosphere 

temperature. Feed coke factor was maintained at 1.05 during the entire simulation. Two 

disturbances were introduced to the system through the other two inputs as described in Table 4.4 

[86]. 

 

 

 

Figure 4.8. Schematic illustration of FCC process 

 

 

 



80 
 

Table 4.3. Measured variable of FCC process 

No. symbol Variable 

1 Tair Air temperature 

Coking factor 

Fresh feed entering furnace 

2 Psi 

3 T1 

4 P4 Reactor pressure 

Differential pressure 

Air flow rate to regenerator 

5 DP 

6 Fair 

7 P6 Regenerator pressure 

8 T3 Furnace temperature 

9 T2 Fresh feed entering to riser 

10 Tr Riser temperature 

11 Treg Regenerator temperature 

12 Tcyc Cyclone temperature 

13 Csc Coke frac. In spent catalyst 

14 Crgc Coke frac. In regenerated catalyst 

 

Table 4.4. Fault scenarios in FCC 

Scenario No. Fault description 

1 5°C in atmosphere temperature 

2 Gradual increase of 10°C in fresh feed temperature 
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Fault scenarios: 

Step disturbance in ambient temperature: The first faulty scenario begins with normal 

operation for 1000 seconds and then is followed by a 5°C increase in ambient air temperature for 

the remaining 4000 seconds. The sampling time of the data generation is 1 second. The first 1000 

fault free samples were used as training data. Gaussian function was selected as kernel function 

for KPCA. All data are normalized around zero. Five principal components were selected that 

explain 85% of the variations in the system. The value of threshold was calculated as 9.71 at 95% 

of confidence level.  The Hotelling’s T2 and contribution plots of the KPCA analysis are shown in 

the Fig. 4.9. Based on Fig. 4.9a the Hotelling’s T2 identified departure from process normal 

condition. This plot depicts a successful detection of the abnormal condition. As can be seen, there 

is a long delay associated with the detection of this disturbance. It is because the magnitude of the 

variation in ambient temperature is not big enough to affect the process in a short time. Once the 

fault is detected, next step is to diagnose its root cause. The plot in Fig. 4.9c depicts the contribution 

plots to the T2. As it is obvious in Fig. 4.9c, when there is a disturbance in ambient temperature, 

the contribution plot cannot exactly diagnose the root cause of the fault, rather point towards few 

variables involved in the fault. However, regenerator pressure has the most contribution in this 

abnormal event, i.e. this variable has the highest variation among the variables in the propagation 

pathway of the fault. 
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Fig 4.9 (a) Hotelling T2 plot for disturbance in ambient air temperature in FCC 

 

Fig 4.9 (b) Hotelling T2 plot for disturbance in feed temperature in FCC 

 

Fig 4.9 (c) Contribution plot for disturbance in ambient air temperature in FCC 
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Fig 4.9 (d) Contribution plot for disturbance in feed temperature in FCC 

Having detected the fault, the first task is to determine whether this is a sensor fault or not. After 

testing all probable sensor faults, it was found that all sensors are working properly. Next we use 

BN to diagnose the root cause. In order to construct the network, all monitored variables and 

disturbances were considered as nodes. The cause and effect relationship between variables is 

determined by both causality analysis and process knowledge. Granger causality and transfer 

entropy were used to investigate the cause and effect relationship between variables and process 

knowledge that includes process flow diagram and expert knowledge were used as a confirmation 

to the constructed network. The conditional probabilities were obtained from historical data using 

MLE. In the historical data, both process faults were simulated (Table 4.4) and the data in training 

set are samples of all possible abnormal events. As explained in Section 4.2.4 the normal variation 

of process introduces inaccuracy in calculation of conditional probabilities.  Therefore, the 

residuals of KPCA were used for conditional probability estimation. 

When there is a variation in ambient temperature, based on the contribution plot (Fig. 4.9c), the 

regenerator pressure (P6) has the highest variation among all monitored variables in the process. 

We take this variable as evidence [Pevidence node7 (state 0)=100%] for BN updating and for further 

analysis in BN to find out the propagation path and the true root cause of the fault. The updating 
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of the network was done using GeNIe software. The updated network for the faulty condition is 

shown in Fig. 4.10a. The state 0 shows the faulty state for each variable and state 1 shows the 

normal state. Based on this figure ambient air temperature has a probability of 88% to be in faulty 

state [PTair(state=0)=88%],  pointing this node as the most potential root cause of the fault and 

this variation propagated in this system through regenerator temperature and will be reflected in 

regenerator pressure. The propagation path is given in Fig. 4.10b.  

 

(a) 

Tair Treg P6

 

(b) 

Figure 4.10. (a) BN for FCC process and (b) fault propagation pathway in FCC process for fault 

in ambient air temperature 
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Ramp disturbance on feed temperature: The second faulty scenario begins with normal 

operation for 1000 seconds and then is followed by a 10°C ramp in fresh feed temperature for the 

remaining 4000 seconds. The KPCA model construction is same as the first abnormal event. Fig. 

4.9b shows the departure of T2 values beyond the threshold that shows the successful detection of 

fault. After testing all sensors and being confident about their function, the root cause of the fault 

should be diagnosed among the internal states of the process. In the corresponding contribution 

plot (Fig. 4.9d) the furnace temperature has the highest contribution that means after the fault 

initiated this variable has the highest value of variation due to abnormality in the process. Based 

on this methodology this variable will be used as evidence node in the BN [Pevidence node8 (state 0)= 

100%]. Based on Fig. 4.11a, the updated network shows that the fresh feed temperature is the root 

cause of the abnormality in the process [PT1(state=0)=62%]. The propagation path is not lengthy 

and contains just two nodes (Fig. 4.11b).  
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(a) 

T1 T3

 

(b) 

Figure 4.11. (a) BN for FCC process and (b) fault propagation pathway in FCC process for fault 

in fresh feed temperature 

4.3.2. Tennessee Eastman Chemical Process 

In order to further illustrate the applicability of proposed method, the methodology is applied to 

benchmark Tennessee Eastman chemical process. The process consists of five major units: a 

reactor, condenser, compressor, separator, and stripper; and, it contains eight streams: A, B, C, D, 

E, F, G, and H. The flow diagram of this process is shown in Fig. 4.12. It consists of 41 measured 

variables and 12 manipulated variables. Among measured variables, 22 variables are continuous 

process variables and 19 variables are related to composition measurements.  The 22 continuous 
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process variables are shown in Table 4.5 that are the main focus of this research. There are 20 

potential faults in this process, among them we concentrate our study on those that are mentioned 

in Table 4.6 [3]. 

 

Figure 4.12. Schematic diagram of Tennessee Eastman process 
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Table 4.5. Measured variables in Tennessee Eastman 

Variable Description 

XMEAS(1) A Feed (stream 1) 

XMEAS(2) D Feed (Stream2) 

XMEAS(3) E Feed (Stream 3) 

XMEAS(4) Total Feed (Stream 4) 

XMEAS(5) Recycle Flow (Stream 8) 

XMEAS(6) Reactor Feed Rate (Stream6) 

XMEAS(7) Reactor Pressure 

XMEAS(8) Reactor Level 

XMEAS(9) Reactor Temperature 

XMEAS(10) Purge Rate (Stream 9) 

XMEAS(11) Separator temperature 

XMEAS(12) Separator level 

XMEAS(13) Separator pressure 

XMEAS(14) Separator Underflow (Stream 10) 

XMEAS(15) Stripper Level 

XMEAS(16) Stripper Pressure 

XMEAS(17) Stripper Underflow (Stream 11) 

XMEAS(18) Stripper Temperature 

XMEAS(19) Stripper Steam Flow 

XMEAS(20) Compressor Work 

XMEAS(21) Reactor Cooling Water Outlet temperature 

XMEAS(22) Separator Cooling Water Outlet Temperature 
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Table 4.6. Fault scenarios in Tennessee Eastman Chemical Process 

Fault no. Fault description 

IDV(6) Sudden loss of flow in feed A 

IDV(12) Random variation in condenser cooling water inlet temperature 

 

Fault scenarios: 

Sudden loss of feed A: The first faulty scenario is a loss in feed A at 500 second. This variation 

will affect the concentration of all components in the reactor. Consequently, this may change the 

process parameters in reactor and downstream units.  A training set consisting of 500 samples from 

the normal data was used to develop the KPCA model.  Gaussian kernel function was selected for 

linearization of data in KPCA. Four principal components were selected that captures 85% 

variation of the internal state of the process. The Hotelling’s T2 statistic was equal to 21.5 at 95% 

of confidence level. Fig. 4.13a shows that KPCA is able to detect this fault due to exceeding of T2 

values beyond the threshold. After a delay of 20 seconds, there is a sharp jump in Hotelling’s T2 

values for this fault and these values exceed the threshold instantaneously when the abnormality 

initiated indicating that KPCA is able to detect the A feed loss quickly. Next we confirmed using 

the sensor check module that all sensors are functioning well and moved on to detect the 

propagation pathway of fault in internal states using BN. 

The network construction and parameter estimation for Tennessee Eastman process was similar to 

FCC process using Granger causality and transfer entropy and was verified by process knowledge. 

Unlike FCC process, Tennessee Eastman contains a loop that makes the updating of the network 
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difficult. In order to deal with this issue, we designed a duplicate dummy point (pseudo point) for 

one of the variables involved in the loop. The constructed network in Fig. 4.14a shows that recycle 

flow, XMEAS(5), is involved in a loop in the network and was duplicated. One of these nodes is 

functioning as a parent node and the parameter estimation for this node was conducted like a parent 

node. The other node is like a child node and conditional probability values were considered for 

this node. Based on process knowledge it is obvious that variation in the feed A will affect the 

reactor feed rate because the inlet to the reactor in summation of A, D and E feeds. Since these 

feeds are gaseous, any variation in feed rate will affect the pressure in the reactor. Also it will 

affect the conversion due to change in residence time in the reactor which affects the temperature 

of the reactor due to the exothermic nature of the reaction. The contribution plot of each variable 

for the fault scenario is given in Fig. 4.13c. XMEAS(1), XMEAS(7), XMEAS(9) and XMEAS(21) 

have a high contribution in this faulty event; however, XMEAS(21) which is the reactor cooling 

water outlet temperature has the highest contribution and will be used as evidence in Bayesian 

network-based fault diagnosing module [PXMEAS(21) ( state 0)= 100%]. The result of updated 

network is shown in Fig. 4.14a. As can be seen in this figure, a variation in the Feed A propagates 

though the network, affecting all nodes in propagation pathway, and eventually show up on 

XMEAS(21), as the last node in the propagation pathway. The probability of Feed A to be in faulty 

state is 78%. In this abnormal scenario, between the true root cause, XMEAS(1),  and the faulty 

monitored variable, XMEAS(21), there are three intermediate variables (Fig. 4.14b).  
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Fig 4.13 (a) Hotelling’s T2 for the fault IDV(6) in Tennessee Eastman process 

 

Fig 4.13 (b) Hotelling’s T2 for the fault IDV(12) in Tennessee Eastman process 

 

Fig 4.13 (c) Contribution plot for the fault IDV(6) in Tennessee Eastman process 
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Fig 4.13 (d) Contribution plot for the fault IDV(12) in Tennessee Eastman process 

 

(a) 

XMEAS(1)XMEAS(1) XMEAS(6)XMEAS(6) XMEAS(7)XMEAS(7) XMEAS(9)XMEAS(9) XMEAS(21)XMEAS(21)

 

(b) 

Figure 4.14. (a) BN for Tennessee Eastman and (b) fault propagation pathway for the fault 

IDV(6) 
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Fault in condenser cooling water inlet temperature: The fault initiated with a random variation 

in condenser cooling water inlet temperature at 500 seconds. This variable is not among measured 

variables. The source variables connected to this fault are in literatures [89]. Since the training data 

for both faulty scenarios in Tennessee Eastman are the same, the KPCA model for the second 

faulty scenario is the same as the first one. Fig. 4.13b shows the departure of T2 values beyond the 

threshold (threshold=21.5). The random variation fault in the process variable was detected with 

a delay because the condenser cooling water inlet temperature is further downstream in the process 

and has less impact on the system compared to inlet feed. 

In this abnormal event, XMEAS(9), XMEAS(11), XMEAS(14) and XMEAS(21) have the most 

contribution to occurrence of the fault(Fig. 4.13d); however, XMEAS(14), which is separator 

underflow, has the highest contribution and this node was considered as evidence node in the BN 

[PXMEAS(14) (state 0)= 100%]. The updated network shows that separator temperature, 

XMEAS(11), is the root cause of this abnormality, having a value of 0.78 as the probability for 

faulty state (Fig. 4.15a). In this abnormal event, a variation on the condenser cooling water inlet 

temperature will deviate away the temperature of the downstream unit (separator temperature or 

XMEAS(11)). Since there is no measurement in condenser cooling water inlet temperature, this 

method is able to find the variable that is mostly affected by the main root (XMEAS(11)) and is 

able to propagate the fault to other variables.  As can be seen in Fig. 4.15b, this deviation will 

propagate through the network and will influence separator pressure, XMEAS(13), separator level, 

XMEAS(12), and eventually will effect separator underflow, XMEAS(14).  
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(a) 

XMEAS(11)XMEAS(11) XMEAS(13)XMEAS(13) XMEAS(12)XMEAS(12) XMEAS(14)XMEAS(14)

 

(b) 

Figure 4.15. (a) BN for Tennessee Eastman and (b) fault propagation pathway for the fault 

IDV(12) 

 

4.4. Conclusions 

This paper integrates diagnostic information from different diagnostic tools (KPCA, sensor 

validation module) and combine them with process knowledge using BN and generates a 

comprehensive methodology for process FDD. We focused on the different challenges that have 

received less research focus such as network construction, conditional probability estimation, and 
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loop handling. Sensor faults were separated from process fault using a sensor check module. BN 

was used to diagnose internal state faults and disturbance faults. The proposed methodology was 

applied to test different abnormal condition of FCC and Tennessee Eastman Chemical process. In 

both case studies, the proposed methodology demonstrated a very powerful diagnostic capability. 

The strength of the proposed method is it diagnoses root cause of fault as well as shows the 

propagation pathway of the fault. This information will help operators to take corrective action 

and recover the process quickly. However, there is still more need for research in this area. For 

example, most of processes are working in dynamic condition and process variables change with 

time. In such problems conditional probability of a variable at time t+1 depends on its status at 

time t and dynamic BN should be implemented for such a problem to handle the dynamic relation 

of the variables.  
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Appendix -Kernel PCA calculations [87, 88]: 

Given a sample containing n variables and m measurements, consider the nonlinear training set 

𝑿 = [𝑥1𝑥2 … 𝑥𝑚] 𝑇. An important property of the feature space is that the dot product of two 

vectors ∅𝑖  and ∅𝑗 can be calculated as a function of the corresponding vectors xi and xj, that is, 

∅𝑖
𝑇∅𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗)      (1) 

Assume that the vectors in the feature space are scaled to zero mean and form the training data as 

𝜒 = [∅1 ∅2 … ∅𝑚]𝑇. Let the sample covariance matrix of the data set in the feature space be S. 

We have, 

(𝑚 − 1)𝑆 =  𝜒𝑇𝜒 = ∑ ∅𝑖∅𝑖
𝑇𝑚

𝑖=1     (2) 

Thus, KPCA in the feature space is equivalent to solving the following eigenvector equation, 

𝜒𝑇𝜒𝜈 = ∑ ∅𝑖∅𝑖
𝑇𝜈 = 𝜆𝜈𝑚

𝑖=1      (3) 

Kernel trick premultiplies Eq.3 by χ: 

𝜒𝜒𝑇𝜒𝜈 = 𝜆𝜒𝜈       (4) 

Defining 

𝑲 = 𝜒𝜒𝑇 = [
∅1

𝑇∅1 … ∅1
𝑇∅𝑚

⋮ ⋱ ⋮
∅𝑚

𝑇 ∅1 … ∅𝑚
𝑇 ∅𝑚

] = [
𝑘(𝑥1, 𝑥1) … 𝑘(𝑥1, 𝑥𝑚)

⋮ ⋱ ⋮
𝑘(𝑥𝑚, 𝑥1) … 𝑘(𝑥𝑚, 𝑥𝑚)

]  (5) 

and denoting 

𝜶 = 𝜒𝜈       (6) 

we have  

𝑲𝜶 = 𝜆𝜶       (7) 

 

Equation 7 shows that α and λ are an eigenvector and eigenvalue of K, respectively. In order to 

solve ν from Eq.6, we premultiply it by χT and use Eq.3, 
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𝜒𝑇𝜶 = 𝜒𝑇𝜒𝜈 = 𝜆𝜈      (8) 

which shows that ν is given by 

𝜈 = 𝜆−1𝜒𝑇𝜶       (9) 

Therefore, to calculate the PCA model, we first perform eigen-decomposition of Eq.7 to obtain λi 

and αi. Then we use Eq.8 to find νi. 

Considering l principal components, the scores are calculated as: 

𝒕 = 𝚲−1
2⁄ 𝑷𝑇𝒌(𝑥)      (10) 

where 𝑷 = [𝛼1
𝜊 … 𝛼𝑙

𝜊] and 𝚲 = 𝑑𝑖𝑎𝑔{𝜆1 … 𝜆𝑙} are the l principal eigenvector and 

eigenvalues of K and 𝛼𝑖 = √𝜆𝑖𝛼𝑖
𝜊  and k(x) is:  

𝒌(𝑥) = 𝜒𝜙 = [𝜙1 𝜙2 … 𝜙𝑚]𝑇𝜙 = [𝜙1
𝑇𝜙 𝜙2

𝑇𝜙 … 𝜙𝑚
𝑇𝜙] =

[𝑘(𝑥1, 𝑥) 𝑘(𝑥2, 𝑥) … 𝑘(𝑥𝑚, 𝑥)]𝑇      (11) 

The T2 is calculated using kernel function as  

𝑇2 = 𝒌(𝑥)𝑇𝑷𝚲−𝟐𝑷𝑇𝒌(𝑥) = 𝒌(𝑥)𝑇𝑫𝒌(𝑥)   (12) 

where 𝑫 = 𝑷𝚲−𝟐𝑷𝑇       (13) 

Scaling: 

The calculation of covariance matrix holds if the mapping function in the feature space has zero 

mean. If this not the case, the vectors in the feature space have to be scaled to zero mean using the 

sample mean of the training data. The scaling of the kernel vector k(x) is  

�̅�(𝑥) = [�̅�1 �̅�2 … �̅�𝑚]𝑇�̅� = 𝑭[𝒌(𝑥) − 𝑲𝟏𝑚]  (14) 

Where F=I-E, I is the identity matrix, E is an 𝑚 × 𝑚 matrix with elements 1/m and 1m is a m 

dimensional vector whose elements are 1/m. 
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Reconstruction-based contribution of variable: 

The procedure to estimate fault free data by applying a correction in the faulty data is referred to 

as reconstruction. Reconstruction of the fault free data from faulty measurements can be done by 

estimating the fault magnitude along the fault direction. The task of fault reconstruction is to 

estimate the normal values zi, by eliminating the effect of a fault fi from faulty data xi, 

𝑧𝑖 = 𝑥𝑖 − 𝜉𝑖𝑓𝑖       (15) 

where 𝜉i is the fault direction. The objective of reconstructed based contribution is to find the 

magnitude fi of a vector with direction such 𝜉i that the fault detection Index of the reconstructed 

measurement is minimized; that is, we want to find fi such that 

𝑓𝑖 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐼𝑛𝑑𝑒𝑥( 𝑥 − 𝜉𝑖𝑓𝑖)    (16) 

The same concept can be applied to KPCA and find fi such that 

𝑓𝑖 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐼𝑛𝑑𝑒𝑥(𝒌( 𝑥 − 𝜉𝑖𝑓𝑖))    (17) 

The T2 Index is as follows: 

𝑖𝑛𝑑𝑒𝑥 = �̅�(𝑧𝑖)
𝑇𝐷�̅�(𝑧𝑖)     (18) 

�̅�(𝑧𝑖) is scaled kernel vector.  The derivative of the Index with respect to fi is  

𝜕(𝑖𝑛𝑑𝑒𝑥)

𝜕(𝑓𝑖)
= 2�̅�𝑇(𝑧𝑖)𝐷

𝜕�̅�(𝑧𝑖)

𝜕𝑓𝑖
     (19) 

The scaled kernel vector is �̅�(𝑧𝑖) = 𝑭[𝒌(𝑧𝑖) − 𝑲 𝟏𝒎].Then, we have that 

𝜕�̅�(𝑧𝑖)

𝜕𝑓𝑖
= 𝑭

𝜕𝒌(𝑧𝑖)

𝜕
      (20) 

So the derivative of Index will be 

𝜕(𝐼𝑛𝑑𝑒𝑥)

𝜕(𝑓𝑖)
= 2 𝐹 𝐷�̅�𝑇(𝑧𝑖)

𝜕𝒌(𝑧𝑖)

𝜕𝑓𝑖
      (21) 

To calculate the derivative of k(zi) with respect to fi, we now that 
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𝜕𝒌(𝑧𝑖)

𝜕𝑓𝑖
=

𝜕𝒌(𝑧𝑖)

𝜕𝑧𝑖

𝜕𝑧𝑖

𝜕𝑓𝑖
      (22) 

Since 𝒌(𝑧𝑖) = [𝑘(𝑧𝑖, 𝑥1), 𝑘(𝑧𝑖, 𝑥2)…  𝑘(𝑧𝑖, 𝑥𝑚)] and 𝑘(𝑧𝑖 , 𝑥𝑗) = exp (−(𝑧𝑖 − 𝑥𝑗)
𝑇
(𝑧𝑖 − 𝑥𝑗) 𝑐⁄ ), 

we have 

𝜕

𝜕𝑧𝑖
 𝑘(𝑧𝑖, 𝑥𝑗) = −2𝑘(𝑧𝑖, 𝑥𝑗)

(𝑧𝑖−𝑥𝑗)
𝑇

𝑐
   (23) 

and 

𝜕𝑧𝑖

𝜕𝑧𝑖
= −𝝃𝑖      (24) 

Therefore, the vector with the derivative of k(zi) respect to fi  

𝜕𝒌(𝑧𝑖)

𝜕𝑓𝑖
=

2

𝑐

[
 
 
 
𝑘(𝑧𝑖, 𝑥1)(𝑧𝑖 − 𝑥1)

𝑇

𝑘(𝑧𝑖, 𝑥1)(𝑧𝑖 − 𝑥2)
𝑇

⋮
𝑘(𝑧𝑖, 𝑥𝑚)(𝑧𝑖 − 𝑥𝑚)𝑇]

 
 
 
𝝃𝑖 =

2

𝑐

[
 
 
 
 𝑘(𝑧𝑖 , 𝑥1)(𝑥 − 𝑥1)

𝑇 − 𝑘(𝑧𝑖, 𝑥1)𝑓𝑖𝝃𝑖
𝑇

𝑘(𝑧𝑖 , 𝑥1)(𝑥 − 𝑥2)
𝑇 − 𝑘(𝑧𝑖, 𝑥2)𝑓𝑖𝝃𝑖

𝑇

⋮
𝑘(𝑧𝑖, 𝑥𝑚)(𝑥 − 𝑥𝑚)𝑇 − 𝑘(𝑧𝑖, 𝑥𝑚)𝑓𝑖𝝃𝑖

𝑇]
 
 
 
 

=
2

𝑐
[𝑩𝝃𝑖 −

𝒌(𝑧𝑖)𝑓𝑖]      (25) 

Where B is calculated as 

𝑩 =

[
 
 
 
𝑘(𝑧𝑖, 𝑥1)(𝑥 − 𝑥1)

𝑇

𝑘(𝑧𝑖, 𝑥1)(𝑥 − 𝑥2)
𝑇

⋮
𝑘(𝑧𝑖, 𝑥𝑚)(𝑥 − 𝑥𝑚)𝑇]

 
 
 
    (26) 

We can now calculate the derivative of Index as 

𝜕(𝑖𝑛𝑑𝑒𝑥)

𝜕𝑓𝑖
=

4

𝑐
𝐹𝐷�̅�𝑇(𝑧𝑖)[𝑩𝝃𝑖 − 𝒌(𝑧𝑖)𝑓𝑖]  (27) 

After setting the derivative equal to zero and solving for fi we obtain 



100 
 

𝑓𝑖 =
𝝃𝑖

𝑇𝑩𝑇 𝐹𝐷�̅�(𝑧𝑖)

�̅�𝑇(𝑧𝑖) 𝐹𝐷�̅�(𝑧𝑖) 
     (28) 
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Chapter 5 

Summary conclusion and future work 

In this thesis, the problem of collecting different fault diagnostic information and integrating them 

in a complete framework for early detection of a process abnormality and diagnosing the root cause 

of the failure is investigated. This thesis proposed two frameworks based on causality analysis and 

BN as strong tools for diagnosing root cause of fault.   Also there are some ambiguity in the 

application of Bayesian network for example, validating the causal relationships between 

variables, estimation of parameters of network, dealing with cyclic network, and distinguishing 

between instrumental failure and process failure which are addressed in this thesis.  

5.1. Conclusions 

 While applying different diagnostic tools, the outputs of some diagnostic tools contain 

useful information for other tools. In other words integrating some diagnostic methods and 

using their information in a hybrid framework will increase the accuracy of fault diagnosis 

task. 

 The sensitivity of KPCA to process variation is a promising point in the detection of an 

abnormality in the process. Although sometimes its detection is delayed depending of the 

magnitude of the abnormality, but even after a considerable lag it can detect the occurrence 
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of the abnormality quite early. Additionally the delay can be adjusted with the KPCA 

parameters such as confidence level and number of PCs.  

 KPCA method is not a strong tool in diagnosis and in the contribution plots it delivers some 

of the variables which has a substantial variations after the abnormality initiated. The root 

cause is often between the isolated variables indicating that the variation of the root cause 

of the abnormality leads to variation in the other nodes which are located in the propagation 

pathway. 

 Granger causality and transfer entropy can determine the causal relation between variables 

and are useful tools for network construction, but in case of having few variables they can 

be used to recognize the root cause in qualitative manner. 

 Although TE and Granger causality have different definitions but for variables with normal 

distributions they provide the same results.  

 Process variation is mitigated in residuals which are obtained from process data, however 

they keep the information of the data; resulting in more precise network parameter 

estimation. 

5.2. Suggestions for future work 

 Chemical processes operate in dynamic mode; resulting in time series data, and the status 

of a variable is determined based on its past status and the effect of other variables. In such 

a problems, using Dynamic Bayesian Network will contribute to more precise diagnostic. 

 Process recovery is the next step of fault detection and diagnosis methodology in which an 

action should be taken in order to mitigate the effect of the fault in whole process and keep 

the process in safe mode. This research did not work in this area; however it is worthwhile 

to integrate fault diagnostic method with process recovery. 
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 In sensor fault detection module, we kept the methodology simple by using rule based 

sensor fault detection module; however, bank of Kalman filters which is more precise 

method will result in a better sensor fault detection module and can be integrated with this 

methodology. 
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