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ABSTRACT 

Opto-microfluidics is a novel technology that integrates optical devices and systems with 

microchannels to investigate the properties of fluids. Opto-microfluidic devices have been 

increasingly recognized as important miniaturized devices for optical measurements, 

biological analyses, and chemical syntheses. These devices significantly reduce reagent 

consumption, waste production, analysis time and labour costs. Common fabrication 

techniques include soft lithography, microelectromechanical systems (MEMS) and hot 

embossing. 

In this dissertation, opto-microfluidic devices fabricated by two-photon 

polymerization (TPP) technique with femtosecond lasers and standard soft lithography 

are proposed. After analyzing the fabrication properties of the femtosecond laser, we 

choose optimal parameters to fabricate optical structures in photoresist material SU-8, and 

integrate them with microchannels which are produced by a standard soft lithographic 

technique. Diffractive grating, Mach-Zehnder interferometer (MZI) and optical microring 

resonators based refractive index (RI) and temperature sensors are designed, fabricated 

and demonstrated. The sensitivities in different conditions are thoroughly investigated. By 

combining fluid mechanics and optics, two functional opto-microfluidic devices realizing 

simultaneous particle sorting and RI sensing are successfully proved. In these devices, 

filters fabricated by femtosecond lasers are used to sieve and control the flow of particles 

in suspension, and then the purified liquid is induced into the optical structures to 

measure the RI. The opto-microfluidic devices described in this dissertation verify the 

practicability and effectiveness as a lab-on-a-chip platform.   
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Chapter 1 Introduction  

1.1 Opto-microfluidics 

Optofluidics refers to a platform of integrated optical devices and systems that performs 

investigation on the properties of fluids. By combining microfluidic and optical 

technologies, optofluidic devices integrate a roomful of laboratory equipment into a palm-

size chip to carry out optical measurements, biological analyses and chemical syntheses. 

Microfluidic and optofluidic devices significantly reduce reagent consumption, waste 

production, analysis time and labour costs. There is no distinct boundary between 

microfluidics and optofluidics because many techniques and applications are shared by 

these two disciplines. We use the term ñopto-microfluidicsò to refer to the research that 

takes advantage of both optics/photonics and microfluidics. A few monographs provide 

good reviews of the history and development in the field of opto-microfluidics [1-6].  

1.2 Two-photon polymerization 

Lithography has been demonstrated as an advanced microfabrication technique for 

microelectronics, opto-microfluidics and biomedicine. Various two-dimensional (2D) 

microdevices, such as the integrated semiconductor and capillary electrophoresis chips, 

have been applied in industry and medicine. However, as a planar technique, lithography 

lacks the capabilities to fabricate three-dimensional (3D) microstructures. Although layer-

by-layer assembly was proposed to produce 3D structures by stacking planar 2D patterns 

[7, 8], it is very difficult  and time-consuming to precisely align the micro/nano-structures. 
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Holographic lithography was developed to create periodic 3D microstructures, in which 

periodic interference patterns such as a hexagonal periodic structure [9], and face-

centered-cubic-type structure [10] are printed into the photoresist by multi-laser beam 

irradiation. However, this type of 3D microstructure is limited to patterns of interference. 

To achieve arbitrary 3D microstructures, microfabrication by two-photon polymerization 

(TPP) with a femtosecond laser is adopted in this study.  

1.2.1 Two-photon absorption  

Two-photon absorption (TPA) is a nonlinear process by which an atom or molecule 

simultaneously absorbs two photons to jump from the ground state to an excited 

electronic state (Fig. 1-1). The sum of the energies of the two photons equals the 

transition energy. The TPA process relates to the imaginary part of the third-order 

susceptibility in the material polarization. The polarization of material can be expressed 

as [11]: 

(1) (2) 2 (3) 3

0 0 0 0 ...P P E E Ee c e c e c= + + + +                                (1.1) 

where E is the electric field, 
( )mc  is susceptibility of the m

th
 tensor, and Ů0 is the electric 

permittivity of the free space. The real part of the third-order susceptibility (3)

realc  is related 

to the nonlinear refraction, and the imaginary part of the third-order susceptibility (3)

imagc  is 

related to the nonlinear absorption (TPA). The energy absorption can be described as: 

2
2 (3)

2 2

8
imag

dW
I

dt n c

p w
c=                                                     (1.2) 
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where n is the refractive index (RI) of the material, c is the speed of light in a vacuum, ɤ 

is the frequency of light, and I is the intensity of the light. 

 

Figure 1-1 Schematic diagram of one-photon absorption (OPA) and two-photon 

absorption (TPA) 

 

The TPA process was first proposed theoretically by Maria Göppert-Mayer in her 

doctoral dissertation in 1931 [12]. However, Eqn. (1.2) shows that TPA depends on the 

square of the light intensity (I
2
), and is therefore several orders of magnitude weaker than 

the one-photon absorption (OPA) at low photon intensities. High photon intensities, 

which are defined as the number of photons observed per unit time in a unit solid angle, 

are required to excite TPA. Therefore, TPA was not implemented until the invention of 

the laser thirty years later. In 1961, Kaiser et al. first proved that two-photon fluorescence 

was excited in a CaF2:Eu
2+ 

crystal [13]. When a laser beam is focused into the two-photon 

material, the excitation only occurs within a 3D localized spot (focal point) which has the 

greatest density (Fig. 1-2) [14]. Denk et al. utili zed this rule to construct a two-photon 

laser scanning fluorescence microscope in 1990 [15]. Since then, TPA based on optical 
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power limiting [16], fluorescence imaging techniques [17, 18], 3D data storage [19], 

photodynamic therapy [20], and microfabrication [21] have been reported. 

 
Figure 1-2 Observation of fluorescence excitation through the path of a laser beam 

 

1.2.2 Two-photon materials and fabrication 

The first two-photon microfabrication was reported by Maruo et al. in 1997. A Ti: 

sapphire laser was used to fabricate spiral structures, and the width of the spiral wire was 

1.3 µm [21]. Complex 3D microstructures and devices have been fabricated by TPA, such 

as a microbull [22], woodpile [23], microrotor [24, 25], microchain [26], and microlens 

[27].  

Figure 1-3 illustrates a typical microfabrication system with a femtosecond laser 

which is used in our lab. The Ti: sapphire femtosecond laser with a laser wavelength of 

800 nm and a repetition rate of 80 MHz is focused on a sample by an objective lens. A 

variable attenuator, consisting of a half-wave plate and a polarizer, is placed in the path of 
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the beam to control and continuously adjust the output power of the laser. A shutter 

triggered by a computer program is used to control the exposure time of the sample to 

laser irradiation. A power meter monitors the change of the laser power in real time 

through a beam splitter. By moving the translation stages (X, Y, Z directions) programmed 

by the computer, thereby adjusting the focal points in 3D, the desired features are 

fabricated. After exposure to the lasers, a development process is employed to wash away 

any unhardened materials with one or more solvents (generally ethanol), leaving only the 

created microstructures (Fig. 1-4). The smallest reported feature size can be made as 

small as 65 nm, which is much smaller than the diffraction limit, by using femtosecond 

laser pulses at 520 nm [28].  

 

 

Figure 1-3 Schematic illustration of a femtosecond laser microfabrication system  

 



Chapter 1 Introduction                                                                                                                   6 

 

 

 

Figure 1-4 Schematic illustration of 3D microfabrication with TPP technique 

 

Various polymerizable materials have been synthesized and applied. Negative- and 

positive-tone photoresists are two types of photosensitive materials that are used to 

construct microstructures with the TPP technique. The difference between the negative 

and positive-tone photoresists is that the unexposed portion can be dissolved into the 

photoresist developer and exposed portion is insoluble for a negative-tone photoresist as 

shown in Fig. 1-4, whereas for a positive-tone photoresist, the unexposed portion is 

insoluble and the exposed portion can be dissolved into the photoresist developer. Table 

1-1 lists some reported commercial photosensitive materials for TPP. SU-8 and Ormocers 

are two leading classes of negative-tone materials which have been widely applied for 

two-photon fabrication. Both materials show strong absorption in the ultraviolet (UV) 

region and high transparency in the visible and near infrared ranges. SU-8 is an epoxy-
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based negative photoresist, which has eight epoxy groups per monomer and contains a 

triaryl sulfonium salt photoacid generator (PAG). Under laser exposure, the PAGs absorb 

enough photon energy to generate strong catalyzed acid (polymerization does not take 

place during laser irradiation). During the sequent baking process, the acid diffuses in the 

photoresist to help open up the epoxy ring and gain much higher cross-linking. Then the 

unexposed resist is washed away by a nonpolar solvent due to the fact that the 

uncrosslinked resist has a low molecular weight, generating a negative structure [29]. 

Because the crosslinking occurs during the post-baking process and there is no RI 

modification before this moment, online monitoring is not possible. Liquid Ormocers can 

completely overcome this disadvantage. Ormocers are organic-inorganic hybrid polymers 

containing a highly crosslinkable organic network such as acrylates or epoxides as well as 

inorganic components which are often used as photocurable dental composites. Direct 

laser irradiation induces cross-linking of organic groups attached to an inorganic 

backbone. In this case, TPP is formed in real-time without a post-baking process. 

However, UV post-curing is needed to harden the structure after development and rinse 

processes [23]. 
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Table 1-1 A list of commercial two-photon polymerizable materials 

 

1.2.3 Applications of two-photon polymerization for microfabrication  

The unique capability to fabricate and control 3D structures on the micro/nanoscale using 

the TPP technique has found a wide range of applications, especially in biomedical 

Resin Manufacturer Type of material 
Type of 

exposure 
Ref. 

SU-8 MicroChem Epoxy Negative 29, 30 

Ormocer 
Micro resist 

technology GmbH 
Inorganic-organic hybrid Negative 23 

SCR500 
Japan Synthetic 

Rubber Co. 
Urethane acrylate Negative 

21, 22, 

27,28 

IPG RPO Inc. 
Inorganic-organic 

polysiloxane 
Negative 31 

LN1 Sartomer Urethane acrylate Negative 32 

SR348 Sartomer 
Ethoxylated bisphenol A 

dimethacrylate 
Negative 33 

Nopcocure 

800 

Japan Synthetic 

Rubber Co. 
Acrylic acid ester Negative 24 

NOA 

63/68 
Norland Products 

Mercapto-ester 

polyurethane 
Negative 24, 25 

SCR701 D-MEC Co. Epoxy Negative 34 

SZ2080 IESL-FORTH zirconiumïsilicon hybrid Negative 35 

AZ 
MicroChemicals  

GmbH 
Undisclosed Positive 36 

S1800 Shipley Undisclosed Positive 36, 37 
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science [38-43]. Gittard et al. proposed multifocus TPP technology for producing medical 

devices [44]. The multibeam system can simultaneously produce multiple micro-scale 

structures which greatly improve the efficiency of fabrication.   

TPP microfabrication has also been applied in the fabrication of photonic crystals 

(PCs), which are periodic optical nanostructures for controlling and manipulating the flow 

of photons. 3D woodpile structures with different periodicities in different two-photon 

polymerizable materials have been reported, and their exposure conditions, optical 

properties (transmission and photonic band gaps) and shrinkage were investigated 

[23,26,28,32,45]. Compared with the holographic patterning, two-photon fabrication 

possesses a significant advantage of ease in the integration of defects or cavities at an 

arbitrary location of a PC. Sun et al. demonstrated a missing ñlogsò resonance cavity 

within a PC [46]. More complex crystal geometries such as the diamond-lattice [47], 

spiral-architecture [48], slanted pore structure [49] and quasicrystal [50] were reported.  

Uses of the TPP technique in different optical applications have also received 

significant attention, for example, for various microoptical elements [51, 27]. Klein et al. 

fabricated suspended waveguides, couplers, Y-splitters, and MZIs between the ends of 

optical fibers [52]. The integration of convex and Fresnel lenses, gratings and solid 

immersion lenses on the tip of an optical fiber were reported [53]. A fiber optical device 

based on microring resonators fabricated on the side of optical fibers was demonstrated 

by Sherwood et al. [54]. Distributed feedback (DFB) dye lasers were achieved by 

fabricating Bragg gratings in dye-doped TPP materials [55, 56]. 
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Microfluidics has significantly benefited from the availability of the two-photon 

fabrication technique. Various fabrication techniques for microchannels were developed. 

Kumi et al. produced master structures with two-photon fabrication for microchannels 

with different cross-sections [57]. 2D and 3D flow systems were developed by directly 

exposing channel walls on a glass substrate [29]. Microchannels were also achieved by 

the TPP-assisted ablation technique in which a polymerized rib was generated by TPP 

during the first laser scan and a polymerized rib with a channel was ablated during the 

second laser scan [58]. Single-step self-enclosed microchannels were reported by Jariwala 

et al. Two parallel paths were scanned by the femtosecond laser. When the paths were 

close enough, a channel was formed by self-linking on the top of polymerized ribs [59]. 

In addition, functional 3D components created in the microfluidic system were reported. 

Light-drived microrotors such as microwheels [25, 60] and micropumps [34, 61] were 

directly fabricated into the microchannels. These microdevices are potential manipulation 

tools for biomolecules such as DNA and proteins. 2D and 3D filtration networks were 

integrated into the microfluidic system to separate impurities and cells with different sizes 

[62-64]. Wu et al. also reported an óóOFFôô and óóONôô functional microvalve which was 

controlled by different water flow directions [64].  

1.3 Motivation and contributions 

As mentioned above, the femtosecond laser induced TPP technique is a promising 

approach for fabrication of micro/nanoscale structures. Several achievements basing on 

TPP have been reached, such as PCs, microoptical elements and microfluidics. However, 

this technique is still in its infancy. New functional devices fabricated by TPP with the 
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advantages of high precision, flexibility and three dimension is expected to develop and 

apply in different fields. The goal of this thesis is to design various novel opto-

microfluidic devices with femtosecond laser induced TPP technique. These opto-

microfluidic devices are targeted to sensing applications such as RI and temperature 

measurement which will have great potential applications of clinical diagnostics, 

molecular analysis and chemical synthesis. 

In this thesis, the fabrication and characterization of femtosecond laser induced TPP 

is explored in Chapter 2, diffractive grating based, MachïZehnder Interferometer based 

and microring resonance based opto-microfluidic sensors are designed and tested in 

Charpter 3-5. Charpter 6 demonstrates the feasibility of an opo-microfluidic device for 

simultaneous particle sorting and RI sensing. 

The research in this thesis first successfully applies two-photon polymerization 

technique to opto-microfluidic devices; designs unique single-waveguide based Machï

Zehnder Interferometer sensors and achieves RI sensing and temperature testing; and 

realizes simultaneous particle sorting and optical measurement. 
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Chapter 2 Characterization of microfabrication 

with two-photon polymerization technique  

In this charpter, the characterization of the TPP fabrication is investigated. The detailed 

fabrication process and effects of focusing condition, scan speed, exposure time and pulse 

energy on the the diameter of a voxel are discussed. The study in this chapter provides 

basic guideline on how to choose optimal fabrication parameters to obtain designed 

patterns.  

2.1 Fabrication processes 

In the following sections, SU-8 from Microchem®, USA is used for fabricating various 

optical components. Due to weak adhesion strength between the glass and SU-8, rigorous 

procedures must be implemented to avoid SU-8 lift-off. Table 2-1 lists the relevant 

fabrication processes. A glass slide as the substrate is first cleaned in acetone, isopropyl 

alcohol (IPA) and distilled water with an ultrasonic cleaner (Branson® 8510, USA) for 10 

minutes, respectively, to remove the dust and grease. After drying with pressurized air, 

the glass slide is dehydrated in a 200 
o
C oven (Thermolyne® 1400, USA) overnight. SU-

8 resist is deposited on the glass slide, following a two-step spin-coating process: 10 

second spread spinning at 50 rounds per minute (rpm) first and then ramping to 3000 rpm 

for    30 s as the final spin (Headway Research, Inc., USA). After the spin-coating, the 

film is pre-baked at 65 
o
C (Sybron® nuovaII stir plate, USA) for 1 min followed by a soft 

baking at 95 
o
C (Sigma Systems, USA) for 3 min to evaporate the solvent. The spinning 

and baking time described above is for a 2 µm film of SU-8-2 resist. Other SU-8 series 
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such as SU-8-2075 and SU-8-3050 have different recommended spin rates and baking 

times which have been specified in the data sheets issued by Microchem Company. Laser 

exposure is performed with a femtosecond laser, and two post-exposure baking are 

adopted for crosslinking the exposed regions: 1 min at 65 
o
C and 1 min at 95 

o
C. The two-

step post-baking is used to minimize stress and resist cracking. The post-baked film is 

immersed into the SU-8 developer to dissolve the unexposed regions, rinsed with IPA and 

dried with high-speed spinning. Lastly, hard baking is adopted to reinforce the structures. 

Table 2-1 Processes of microfabrication with TPP technique 

Steps Materials/Conditions Time 

Substrate cleaning 

Acetone 

Isopropyl alcohol (IPA) 

Distilled water 

10 min 

10 min 

10 min 

Substrate  dehydration 200 
o
C 12 h 

Spinning 
500 rpm 

3000 rpm 

10 s 

30 s 

Soft-baking 
65 

o
C 

95 
o
C 

1 min 

3 min 

Laser exposure Femtosecond laser Variable 

Post exposure baking 
65 

o
C 

95 
o
C 

1 min 

1 min 

Development Developer 1 min 

Rinsing Isopropyl alcohol (IPA) 30 s 

Hard baking 95 
o
C 2 h 
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2.2 Voxel characterization 

Depending on the different applications of the TPP, voxels (volumetric pixel) of different 

sizes are needed in various structures. The size of a voxel determines the minimum unit of 

a microstructure. Lee et al. proved that the voxel size depends on many parameters as 

shown in Eqns. (2.1) and (2.2) [65, 66].  
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where d and l are the diameter and longitudinal dimension of a voxel, respectively, Eth is 

the exposure threshold for TPA, ɚ is the wavelength of the femtosecond laser, n is the RI 

of the resin, P is the laser power, t is the exposure time, and NA is the numerical aperture 

of an objective lens. Therefore, voxel size can be controlled by choosing optimized 

exposure parameters, such as laser power, exposure time and NA. 

In this section, a film with a thickness of about 1.0 µm is produced on the glass 

substrate. The diameter of a voxel is studied at different laser powers, focus locations, 

exposure times and numerical apertures (NA). In the following simulation, the exposure 

threshold Eth of SU-8 for TPA is 3.20 TW/cm
2
 [67], ɚ is 800 nm, n is 1.580 (at 800 nm), P 

is 20 - 60 mW, and NA is 0.8 for the 50× objective lens and 0.95 for the 100× objective 
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lens. Considering the step of the motion stage (500 nm/step) used in this study, the 

exposure time t for a line scan is t = 500/ v (ms), where v is the scan speed with a unit of 

nm/ms (or equivalently µm/s). 

2.2.1 Effect of focusing condition 

Lines are fabricated by adjusting the focusing of the femtosecond laser. Figure 2-1(a) 

shows scanning electron microscope (SEM) images of lines fabricated by a laser energy 

of 0.500 nJ/pulse through a 2× beam expander (Linos 2× - 8×) and an objective lens with 

a magnification of 50×. The scan speed is 20 µm/s. The lines will lift off the surface when 

the laser beam is focused too much above or below the film surface. Figure 2-1(b) shows 

an enlarged image of lines which are fabricated by focusing the laser beam on the 

location 1 µm above the surface. The lines become wobbly due to the fact that the line-

shaped coating almost lifts off the substrate. Figure 2-1(c) shows the results of measured 

diameters. The width of the line increases with the improvement in focusing, and reaches 

the maximum when the laser beam is focused on the film surface. Figure 2-2 gives SEM 

images of lines fabricated by a laser energy of 0.500 nJ through an objective lens with 

100× magnification. The scan speed is 20 µm/s. The diameter reaches its maximum when 

the laser beam is focused exactly on the film surface.  
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Figure 2-1 Lines exposed by femtosecond lasers of different focusing conditions: (a) an 

SEM image of lines, (b) an SEM image of lines with a focus at 1.0 µm above the 

interface, and (c) dependence of the width of line on focus condition. The laser pulses 

(0.500 nJ/pulse) are focused by an objective lens with a magnification of 50× (0.8 NA). 

The scan speed is 20 µm/s. 
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(a) 

 

(b) 

Figure 2-2 Lines exposed by femtosecond lasers of different focusing conditions: (a) an 

SEM image of lines, and (b) an enlarged SEM image for the first three lines in (a). The 

laser pulses (0.500 nJ/pulse) are focused by an objective lens with a magnification of 

100× (0.95 NA). The scan speed is 20 µm/s. 
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2.2.2 Effect of scan speed 

Lines are fabricated with a femtosecond laser of different scan speeds. Figure 2-3(a) 

shows a SEM image of lines fabricated by a laser energy of 0.500 nJ through a 2× beam 

expander and an objective lens with 50× magnification. The laser beams are focused on 

the film surface. The scan speed increases from 2 µm/s to 300 µm/s. A slower scan speed 

means longer exposure time. Therefore, a higher scan speed achieves a narrower line. We 

also notice that the lines change into separated dots when the scan speed is larger than 80 

µm/s. This is caused by the mechanism of the step motion stage. Therefore, the scan 

speed will be smaller than 80 µm/s to obtain homogeneous lines in the following sections. 

Figure 2-3(b) presents the dependence of the width on the scan speed. The theoretical 

result is calculated according to Eqn. (2.1). Figure 2-4 shows a SEM image of lines 

fabricated by a laser energy of 0.500 nJ through an objective lens with 100× 

magnification and the dependence of the width on the scan speed. The scan speed 

increases from 2 µm/s to 60 µm/s. Similar results are obtained, which have showed that 

the width of the line decreases with the increase of the scan speed. 

2.2.3 Effect of exposure time 

Dots are fabricated with a femtosecond laser of different exposure times which are 

controlled by a shutter (Uniblitz® VCM-D1). Figure 2-5 describes a SEM image of dots 

which are fabricated with a laser energy of 0.500 nJ through a 2× beam expander and an 

objective lens with 50× magnification and the dependence of the diameter on the 

exposure time. The exposure time varies from 100 ms to 3000 ms. Seven dots are 

fabricated with the same exposure time which are shown in the same row. The theoretical 
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result is obtained according to Eqn. (2.1). The diameter of the dot increases with the 

increase of the exposure time. 
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(b) 

Figure 2-3 Lines exposed by femtosecond lasers of different scan speeds: (a) an SEM 

image of lines, and (b) dependence of the width on the scan speed. The laser pulses 

(0.500 nJ/pulse) are focused by an objective lens with a magnification of 50× (0.8 NA). 

The theoretical result is obtained according to Eqn. (2.1). 
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Figure 2-4 Lines exposed by femtosecond lasers of different scan speeds: (a) an SEM 

image of lines, and (b) dependence of the width on the scan speed. The laser pulses 

(0.500 nJ/pulse) are focused by an objective lens with a magnification of 100× (0.95 NA). 

The theoretical result is obtained according to Eqn. (2.1).  
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(b) 

Figure 2-5 Dots exposed by femtosecond lasers of different exposure times: (a) an SEM 

image of dots, and (b) dependence of the diameter on the exposure time. The laser pulses 

(0.500 nJ/pulse) are focused by an objective lens with a magnification of 50× (0.8 NA). 

The theoretical result is obtained according to Eqn. (2.1).  
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2.2.4 Effect of pulse energy 

Lines are fabricated with different femtosecond laser energies. Figure 2-6 describes a 

SEM image of lines which are fabricated by laser beams through a 2× beam expander and 

an objective lens with 50× magnification and the dependence of the width on the pulse 

energy. The scan speed is 20 µm/s. The pulse energy varies from 0.375 nJ/pulse to 0.875 

nJ/pulse. Low pulse energy (< 0.375 nJ) cannot expose SU-8. High pulse energy (> 0.750 

nJ) will ablate the SU-8 film and ruin the sample. In the available pulse energy range, the 

width of the line increases with the increase of the pulse energy. 

In conclusion, the characterization of TPP using a femtosecond laser has been 

carried out in this chapter. The diameters of voxels fabricated at different fabrication 

conditions have been measured. The experimental results do not agree well with the 

simulation results based on Eqn. (2.1). The reason might be that the exposure threshold 

Eth of SU-8 for TPA is referenced from Ref. 67. The actual value might be a little 

different from that value. Following the experimental results obtained here, the diameter 

of voxel can be increased by using large pulse energy, long exposure time, or slow scan 

speed. 
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(b) 

Figure 2-6 Lines exposed by femtosecond lasers of different pulse energies: (a) an SEM 

image of lines, and (b) dependence of the width on the pulse energy. The laser pulses are 

focused by an objective lens with a magnification of 50× (0.8 NA). The scan speed is 20 

µm/s. The theoretical result is obtained according to Eqn. (2.1). 
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Chapter 3 Gratin g-based opto-microfluidic 

devices 

3.1 Introduction  

In this chapter, a diffractive grating is introduced. The fabrication process and the 

diffraction characterization are studied. Colour filters are realized by fabricating gratings 

with different thicknesses. RI sensing is also implemented by monitoring the transmission 

spectra of the zeroth order diffraction light. The effects of the resonance order and grating 

thickness on the sensitivity are discussed. 

3.1.1 Theory 

In optics, grating is a kind of periodic structure which diffracts light in different 

directions. A typical binary dielectric grating consists of alternating regions of high and 

low RI dielectric materials as shown in Fig. 3-1, in which ȿ is the grating pitch, d is the 

thickness of the grating, n1 and n2 are the RIs of these two dielectric materials, and a and 

b are the widths of the two regions, respectively. 

Assuming a planar wave passes through a grating, the transmission function Ű(x) is 

described as: 

1

2

( )
e

i

i

e
x

j

j
t

ë
=ì
í

       for 
n x n a

n a x n

L< < L+

L+ < < L+L
    0, 1, 2, 3,....

2

N
n= ° ° ° °       (3.1) 



Chapter 3 Grating-based opto-microfluidic devices                                                                 25 

 

 

where N+1 is the number of grating lines, and ű1 and ű2 are the phases of light that passes 

through the high RI region n1 and low RI region n2. Therefore, the phases can be 

expressed as: 
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where ɚ is the wavelength of light. 

 

(a) 

 

(b) 

Figure 3-1 Schematic illustration of a guided-mode resonance grating: (a) the 3D view, 

and (b) the side view 
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The Fraunhofer (far-field) complex-amplitude distribution U(f) can be calculated by 

Fourier transformation of the transmission function at the frequency of 
x

f
zl

=  [68] 
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where x is the coordinate along the grating direction, Ű(x) is the transmission function, ȿ is 

the grating pitch, m is the diffraction order, and y = x ï mȿ. 

Since the frequency f is equal to 
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Therefore, the intensity of the zeroth diffraction order (m = 0) is  

0

1 2

1 2 (1 ) 2 (1 )cos

2
1 2 (1 ) 2 (1 )cos[ ( )]

a a a a
I

a a a a
d n n

dj

p

l

= - - + -
L L L L

= - - + - -
L L L L

                               (3.5) 

where ŭű=  ű1 - ű2 is the phase difference. 

3.1.2 Fabrication and applications 

To date, various fabrication techniques have been proposed to obtain binary dielectric 

gratings, such as laser machining [69,70], microelectromechanical systems (MEMS) 

[71,72], soft lithography [73,74], and hot-embossing [75,76]. Figure 3-2 depicts a 

schematic illustration of various fabrication techniques. During laser micromachining 
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processes, a high power laser beam is focused on the surface of a planar material such as 

a metal, ceramics, polymer or glass, and then ablated periodic grooves are fabricated by 

controlling the movements of the laser beam (Fig. 3-2(a)). MEMS are the fabrication 

technique which originated from semiconductor device fabrication. There are three basic 

processes in MEMS technology: A structural layer such as silicon, polymer or metal film 

and a sacrificial layer such as photosensitive film are first deposited on the substrate 

sequentially; a grating pattern is transferred to the sacrificial layer by a lithographic 

technique; the grating structure is produced in the structural layer using a selective 

etching process (Fig. 3-2(b)). The soft lithographic technique emerged in the 1980s, and 

underwent rapid development in the 1990s [77]. Elastomeric materials, most notably 

polydimethylsiloxane (PDMS), are poured on the grating master, which is usually 

fabricated by laser micromachining or the MEMS technique, to form grating structures 

(Fig. 3-2(c)). Hot-embossing is a type of stamping technique, in which heat and forces are 

applied on the substrate and master to emboss the plastic material, commonly 

polycarbonate or polymethyl methacrylate (PMMA) (Fig. 3-2(d)). 

With the development of microfluidic and optofluidic techniques, a novel type of 

droplet or bubble grating was proposed [78-81]. The design for the formation of a droplet 

or bubble grating in a microfluidic chip is shown in Fig. 3-3. Immiscible liquids or gas are 

infused into a microchannel and then generate an interface at the T-junction. The high 

resistance to the continuously flowing fluid separates the dispersed liquid or gas into an 

array of periodic droplets or bubbles. 



Chapter 3 Grating-based opto-microfluidic devices                                                                 28 

 

 

 
 (a) 

 
(b) 

 
 (c) 

 
(d) 

Figure 3-2 Schematic illustration of different fabrication processes: (a) laser 

micromachining, (b) MEMS, (c) soft lithography, and (d) hot-embossing. 
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Figure 3-3 Schematic illustration of a droplet grating 

 

As an important optical component, diffraction grating has been widely used as a 

wavelength separation device in spectroscopy. Diffraction grating is also used in laser 

pulse stretching and compression. In addition, diffraction gratings can also work as 

optical filters, beam splitters and optical couplers. Here, we just focus on the applications 

of the binary dielectric grating in microfluidics and optofluidics. As shown in Eqn. (3.5), 

the diffraction intensity is related to the thickness of the grating and the RIs of the 

periodic regions. The microfluidic refractometers were designed to measure the RI of a 

liquid in the microchannel. Schueller et al. replicated a series of microchannels on PDMS 

and sealed them with a glass slide to form a PDMS-air (liquid)-PDMS grating (Fig. 3-4). 

Transmission intensities changed according to the RI of the liquid in the microchannel 

[82]. Yu et al. used immersion oil and a CaCl2 solution to generate a microfluidic droplet 

grating. RIs of the CaCl2 solutions were derived from the diffraction intensities [80]. Lei 

et al. integrated a grating on the tip of a multimode fiber, and inserted the fiber into a 

microchannel to test the RI of the fluid [83]. Another application of such microfluidic 

grating is the colour filter [80, 84]. By simply adjusting the RI of the fluid, different 

colours in the zeroth order are observed by a charge coupled device (CCD) camera when 

the white light passes through the grating. As a kind of ñsoftò elastomeric material, 
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PDMS will deform when a force is applied on them. Based on this phenomenon, 

Grzybowski et al. proposed a type of pressure sensor, in which strain was imposed on a 

PDMS grating, and a decrease of the grating thickness was induced. Pressure was 

calculated by monitoring transmission intensities [68]. Hosokawa et al. presented a 

microfluidic pressure sensor using the deformation of a PDMS microchannel grating to 

achieve the pressure in the microchannel [85]. Besides the applications of diffraction light 

mentioned above, a droplet signal generator [79] and microfluidic grating dye laser [86-

88] were also reported. In the dye laser design, dye solutions flow in the microchannel. 

After the dye was excited by the pump light, the laser was generated from the laser cavity 

consisting of a grating and a waveguide. 

 

Figure 3-4 Schematic illustration of a microchannel grating 

 

3.2 Grating characterization 

SU-8 gratings are fabricated using a femtosecond laser by scanning lines one by one. The 

most important advantage of this method is the flexibility . It is easy to write gratings with 

different periodicities ȿ, thicknesses d, and widths a by simply adjusting the laser power, 

scan speed, and focusing condition. Figures 3-5 and 3-6 show the SEM images of gratings 

with the periodicities of 5 µm and 3 µm, respectively. The laser beam is focused by a 50× 



Chapter 3 Grating-based opto-microfluidic devices                                                                 31 

 

 

objective lens with NA of 0.8, laser power of 0.625 nJ/pulse, and scan speed of 20 µm/s. 

The size of the gratings is 200 µm × 200 µm. 

 

Figure 3-5 SEM images of a grating with a periodicity of 5 µm. The size of the grating is 

200 µm × 200 µm. 

 

Figure 3-6 SEM images of a grating with a periodicity of 3 µm. The size of the grating is 

200 µm × 200 µm. 

 

 

 














































































































































































































































































































































































































