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ABSTRACT 

Opto-microfluidics is a novel technology that integrates optical devices and systems with 

microchannels to investigate the properties of fluids. Opto-microfluidic devices have been 

increasingly recognized as important miniaturized devices for optical measurements, 

biological analyses, and chemical syntheses. These devices significantly reduce reagent 

consumption, waste production, analysis time and labour costs. Common fabrication 

techniques include soft lithography, microelectromechanical systems (MEMS) and hot 

embossing. 

In this dissertation, opto-microfluidic devices fabricated by two-photon 

polymerization (TPP) technique with femtosecond lasers and standard soft lithography 

are proposed. After analyzing the fabrication properties of the femtosecond laser, we 

choose optimal parameters to fabricate optical structures in photoresist material SU-8, and 

integrate them with microchannels which are produced by a standard soft lithographic 

technique. Diffractive grating, Mach-Zehnder interferometer (MZI) and optical microring 

resonators based refractive index (RI) and temperature sensors are designed, fabricated 

and demonstrated. The sensitivities in different conditions are thoroughly investigated. By 

combining fluid mechanics and optics, two functional opto-microfluidic devices realizing 

simultaneous particle sorting and RI sensing are successfully proved. In these devices, 

filters fabricated by femtosecond lasers are used to sieve and control the flow of particles 

in suspension, and then the purified liquid is induced into the optical structures to 

measure the RI. The opto-microfluidic devices described in this dissertation verify the 

practicability and effectiveness as a lab-on-a-chip platform.   
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Chapter 1 Introduction 

1.1 Opto-microfluidics 

Optofluidics refers to a platform of integrated optical devices and systems that performs 

investigation on the properties of fluids. By combining microfluidic and optical 

technologies, optofluidic devices integrate a roomful of laboratory equipment into a palm-

size chip to carry out optical measurements, biological analyses and chemical syntheses. 

Microfluidic and optofluidic devices significantly reduce reagent consumption, waste 

production, analysis time and labour costs. There is no distinct boundary between 

microfluidics and optofluidics because many techniques and applications are shared by 

these two disciplines. We use the term “opto-microfluidics” to refer to the research that 

takes advantage of both optics/photonics and microfluidics. A few monographs provide 

good reviews of the history and development in the field of opto-microfluidics [1-6].  

1.2 Two-photon polymerization 

Lithography has been demonstrated as an advanced microfabrication technique for 

microelectronics, opto-microfluidics and biomedicine. Various two-dimensional (2D) 

microdevices, such as the integrated semiconductor and capillary electrophoresis chips, 

have been applied in industry and medicine. However, as a planar technique, lithography 

lacks the capabilities to fabricate three-dimensional (3D) microstructures. Although layer-

by-layer assembly was proposed to produce 3D structures by stacking planar 2D patterns 

[7, 8], it is very difficult and time-consuming to precisely align the micro/nano-structures. 
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Holographic lithography was developed to create periodic 3D microstructures, in which 

periodic interference patterns such as a hexagonal periodic structure [9], and face-

centered-cubic-type structure [10] are printed into the photoresist by multi-laser beam 

irradiation. However, this type of 3D microstructure is limited to patterns of interference. 

To achieve arbitrary 3D microstructures, microfabrication by two-photon polymerization 

(TPP) with a femtosecond laser is adopted in this study.  

1.2.1 Two-photon absorption  

Two-photon absorption (TPA) is a nonlinear process by which an atom or molecule 

simultaneously absorbs two photons to jump from the ground state to an excited 

electronic state (Fig. 1-1). The sum of the energies of the two photons equals the 

transition energy. The TPA process relates to the imaginary part of the third-order 

susceptibility in the material polarization. The polarization of material can be expressed 

as [11]: 

(1) (2) 2 (3) 3

0 0 0 0 ...P P E E E                                          (1.1) 

where E is the electric field, 
( )m  is susceptibility of the m

th
 tensor, and ε0 is the electric 

permittivity of the free space. The real part of the third-order susceptibility (3)

real  is related 

to the nonlinear refraction, and the imaginary part of the third-order susceptibility (3)

imag  is 

related to the nonlinear absorption (TPA). The energy absorption can be described as: 

2
2 (3)

2 2

8
imag

dW
I

dt n c

 
                                                     (1.2) 
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where n is the refractive index (RI) of the material, c is the speed of light in a vacuum, ω 

is the frequency of light, and I is the intensity of the light. 

 

Figure 1-1 Schematic diagram of one-photon absorption (OPA) and two-photon 

absorption (TPA) 

 

The TPA process was first proposed theoretically by Maria Göppert-Mayer in her 

doctoral dissertation in 1931 [12]. However, Eqn. (1.2) shows that TPA depends on the 

square of the light intensity (I
2
), and is therefore several orders of magnitude weaker than 

the one-photon absorption (OPA) at low photon intensities. High photon intensities, 

which are defined as the number of photons observed per unit time in a unit solid angle, 

are required to excite TPA. Therefore, TPA was not implemented until the invention of 

the laser thirty years later. In 1961, Kaiser et al. first proved that two-photon fluorescence 

was excited in a CaF2:Eu
2+ 

crystal [13]. When a laser beam is focused into the two-photon 

material, the excitation only occurs within a 3D localized spot (focal point) which has the 

greatest density (Fig. 1-2) [14]. Denk et al. utilized this rule to construct a two-photon 

laser scanning fluorescence microscope in 1990 [15]. Since then, TPA based on optical 
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power limiting [16], fluorescence imaging techniques [17, 18], 3D data storage [19], 

photodynamic therapy [20], and microfabrication [21] have been reported. 

 
Figure 1-2 Observation of fluorescence excitation through the path of a laser beam 

 

1.2.2 Two-photon materials and fabrication 

The first two-photon microfabrication was reported by Maruo et al. in 1997. A Ti: 

sapphire laser was used to fabricate spiral structures, and the width of the spiral wire was 

1.3 µm [21]. Complex 3D microstructures and devices have been fabricated by TPA, such 

as a microbull [22], woodpile [23], microrotor [24, 25], microchain [26], and microlens 

[27].  

Figure 1-3 illustrates a typical microfabrication system with a femtosecond laser 

which is used in our lab. The Ti: sapphire femtosecond laser with a laser wavelength of 

800 nm and a repetition rate of 80 MHz is focused on a sample by an objective lens. A 

variable attenuator, consisting of a half-wave plate and a polarizer, is placed in the path of 
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the beam to control and continuously adjust the output power of the laser. A shutter 

triggered by a computer program is used to control the exposure time of the sample to 

laser irradiation. A power meter monitors the change of the laser power in real time 

through a beam splitter. By moving the translation stages (X, Y, Z directions) programmed 

by the computer, thereby adjusting the focal points in 3D, the desired features are 

fabricated. After exposure to the lasers, a development process is employed to wash away 

any unhardened materials with one or more solvents (generally ethanol), leaving only the 

created microstructures (Fig. 1-4). The smallest reported feature size can be made as 

small as 65 nm, which is much smaller than the diffraction limit, by using femtosecond 

laser pulses at 520 nm [28].  

 

 

Figure 1-3 Schematic illustration of a femtosecond laser microfabrication system  
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Figure 1-4 Schematic illustration of 3D microfabrication with TPP technique 

 

Various polymerizable materials have been synthesized and applied. Negative- and 

positive-tone photoresists are two types of photosensitive materials that are used to 

construct microstructures with the TPP technique. The difference between the negative 

and positive-tone photoresists is that the unexposed portion can be dissolved into the 

photoresist developer and exposed portion is insoluble for a negative-tone photoresist as 

shown in Fig. 1-4, whereas for a positive-tone photoresist, the unexposed portion is 

insoluble and the exposed portion can be dissolved into the photoresist developer. Table 

1-1 lists some reported commercial photosensitive materials for TPP. SU-8 and Ormocers 

are two leading classes of negative-tone materials which have been widely applied for 

two-photon fabrication. Both materials show strong absorption in the ultraviolet (UV) 

region and high transparency in the visible and near infrared ranges. SU-8 is an epoxy-
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based negative photoresist, which has eight epoxy groups per monomer and contains a 

triaryl sulfonium salt photoacid generator (PAG). Under laser exposure, the PAGs absorb 

enough photon energy to generate strong catalyzed acid (polymerization does not take 

place during laser irradiation). During the sequent baking process, the acid diffuses in the 

photoresist to help open up the epoxy ring and gain much higher cross-linking. Then the 

unexposed resist is washed away by a nonpolar solvent due to the fact that the 

uncrosslinked resist has a low molecular weight, generating a negative structure [29]. 

Because the crosslinking occurs during the post-baking process and there is no RI 

modification before this moment, online monitoring is not possible. Liquid Ormocers can 

completely overcome this disadvantage. Ormocers are organic-inorganic hybrid polymers 

containing a highly crosslinkable organic network such as acrylates or epoxides as well as 

inorganic components which are often used as photocurable dental composites. Direct 

laser irradiation induces cross-linking of organic groups attached to an inorganic 

backbone. In this case, TPP is formed in real-time without a post-baking process. 

However, UV post-curing is needed to harden the structure after development and rinse 

processes [23]. 
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Table 1-1 A list of commercial two-photon polymerizable materials 

 

1.2.3 Applications of two-photon polymerization for microfabrication 

The unique capability to fabricate and control 3D structures on the micro/nanoscale using 

the TPP technique has found a wide range of applications, especially in biomedical 

Resin Manufacturer Type of material 
Type of 

exposure 
Ref. 

SU-8 MicroChem Epoxy Negative 29, 30 

Ormocer 
Micro resist 

technology GmbH 
Inorganic-organic hybrid Negative 23 

SCR500 
Japan Synthetic 

Rubber Co. 
Urethane acrylate Negative 

21, 22, 

27,28 

IPG RPO Inc. 
Inorganic-organic 

polysiloxane 
Negative 31 

LN1 Sartomer Urethane acrylate Negative 32 

SR348 Sartomer 
Ethoxylated bisphenol A 

dimethacrylate 
Negative 33 

Nopcocure 

800 

Japan Synthetic 

Rubber Co. 
Acrylic acid ester Negative 24 

NOA 

63/68 
Norland Products 

Mercapto-ester 

polyurethane 
Negative 24, 25 

SCR701 D-MEC Co. Epoxy Negative 34 

SZ2080 IESL-FORTH zirconium–silicon hybrid Negative 35 

AZ 
MicroChemicals  

GmbH 
Undisclosed Positive 36 

S1800 Shipley Undisclosed Positive 36, 37 
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science [38-43]. Gittard et al. proposed multifocus TPP technology for producing medical 

devices [44]. The multibeam system can simultaneously produce multiple micro-scale 

structures which greatly improve the efficiency of fabrication.   

TPP microfabrication has also been applied in the fabrication of photonic crystals 

(PCs), which are periodic optical nanostructures for controlling and manipulating the flow 

of photons. 3D woodpile structures with different periodicities in different two-photon 

polymerizable materials have been reported, and their exposure conditions, optical 

properties (transmission and photonic band gaps) and shrinkage were investigated 

[23,26,28,32,45]. Compared with the holographic patterning, two-photon fabrication 

possesses a significant advantage of ease in the integration of defects or cavities at an 

arbitrary location of a PC. Sun et al. demonstrated a missing “logs” resonance cavity 

within a PC [46]. More complex crystal geometries such as the diamond-lattice [47], 

spiral-architecture [48], slanted pore structure [49] and quasicrystal [50] were reported.  

Uses of the TPP technique in different optical applications have also received 

significant attention, for example, for various microoptical elements [51, 27]. Klein et al. 

fabricated suspended waveguides, couplers, Y-splitters, and MZIs between the ends of 

optical fibers [52]. The integration of convex and Fresnel lenses, gratings and solid 

immersion lenses on the tip of an optical fiber were reported [53]. A fiber optical device 

based on microring resonators fabricated on the side of optical fibers was demonstrated 

by Sherwood et al. [54]. Distributed feedback (DFB) dye lasers were achieved by 

fabricating Bragg gratings in dye-doped TPP materials [55, 56]. 
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Microfluidics has significantly benefited from the availability of the two-photon 

fabrication technique. Various fabrication techniques for microchannels were developed. 

Kumi et al. produced master structures with two-photon fabrication for microchannels 

with different cross-sections [57]. 2D and 3D flow systems were developed by directly 

exposing channel walls on a glass substrate [29]. Microchannels were also achieved by 

the TPP-assisted ablation technique in which a polymerized rib was generated by TPP 

during the first laser scan and a polymerized rib with a channel was ablated during the 

second laser scan [58]. Single-step self-enclosed microchannels were reported by Jariwala 

et al. Two parallel paths were scanned by the femtosecond laser. When the paths were 

close enough, a channel was formed by self-linking on the top of polymerized ribs [59]. 

In addition, functional 3D components created in the microfluidic system were reported. 

Light-drived microrotors such as microwheels [25, 60] and micropumps [34, 61] were 

directly fabricated into the microchannels. These microdevices are potential manipulation 

tools for biomolecules such as DNA and proteins. 2D and 3D filtration networks were 

integrated into the microfluidic system to separate impurities and cells with different sizes 

[62-64]. Wu et al. also reported an ‘‘OFF’’ and ‘‘ON’’ functional microvalve which was 

controlled by different water flow directions [64].  

1.3 Motivation and contributions 

As mentioned above, the femtosecond laser induced TPP technique is a promising 

approach for fabrication of micro/nanoscale structures. Several achievements basing on 

TPP have been reached, such as PCs, microoptical elements and microfluidics. However, 

this technique is still in its infancy. New functional devices fabricated by TPP with the 
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advantages of high precision, flexibility and three dimension is expected to develop and 

apply in different fields. The goal of this thesis is to design various novel opto-

microfluidic devices with femtosecond laser induced TPP technique. These opto-

microfluidic devices are targeted to sensing applications such as RI and temperature 

measurement which will have great potential applications of clinical diagnostics, 

molecular analysis and chemical synthesis. 

In this thesis, the fabrication and characterization of femtosecond laser induced TPP 

is explored in Chapter 2, diffractive grating based, Mach–Zehnder Interferometer based 

and microring resonance based opto-microfluidic sensors are designed and tested in 

Charpter 3-5. Charpter 6 demonstrates the feasibility of an opo-microfluidic device for 

simultaneous particle sorting and RI sensing. 

The research in this thesis first successfully applies two-photon polymerization 

technique to opto-microfluidic devices; designs unique single-waveguide based Mach–

Zehnder Interferometer sensors and achieves RI sensing and temperature testing; and 

realizes simultaneous particle sorting and optical measurement. 
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Chapter 2 Characterization of microfabrication 

with two-photon polymerization technique  

In this charpter, the characterization of the TPP fabrication is investigated. The detailed 

fabrication process and effects of focusing condition, scan speed, exposure time and pulse 

energy on the the diameter of a voxel are discussed. The study in this chapter provides 

basic guideline on how to choose optimal fabrication parameters to obtain designed 

patterns.  

2.1 Fabrication processes 

In the following sections, SU-8 from Microchem®, USA is used for fabricating various 

optical components. Due to weak adhesion strength between the glass and SU-8, rigorous 

procedures must be implemented to avoid SU-8 lift-off. Table 2-1 lists the relevant 

fabrication processes. A glass slide as the substrate is first cleaned in acetone, isopropyl 

alcohol (IPA) and distilled water with an ultrasonic cleaner (Branson® 8510, USA) for 10 

minutes, respectively, to remove the dust and grease. After drying with pressurized air, 

the glass slide is dehydrated in a 200 
o
C oven (Thermolyne® 1400, USA) overnight. SU-

8 resist is deposited on the glass slide, following a two-step spin-coating process: 10 

second spread spinning at 50 rounds per minute (rpm) first and then ramping to 3000 rpm 

for    30 s as the final spin (Headway Research, Inc., USA). After the spin-coating, the 

film is pre-baked at 65 
o
C (Sybron® nuovaII stir plate, USA) for 1 min followed by a soft 

baking at 95 
o
C (Sigma Systems, USA) for 3 min to evaporate the solvent. The spinning 

and baking time described above is for a 2 µm film of SU-8-2 resist. Other SU-8 series 
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such as SU-8-2075 and SU-8-3050 have different recommended spin rates and baking 

times which have been specified in the data sheets issued by Microchem Company. Laser 

exposure is performed with a femtosecond laser, and two post-exposure baking are 

adopted for crosslinking the exposed regions: 1 min at 65 
o
C and 1 min at 95 

o
C. The two-

step post-baking is used to minimize stress and resist cracking. The post-baked film is 

immersed into the SU-8 developer to dissolve the unexposed regions, rinsed with IPA and 

dried with high-speed spinning. Lastly, hard baking is adopted to reinforce the structures. 

Table 2-1 Processes of microfabrication with TPP technique 

Steps Materials/Conditions Time 

Substrate cleaning 

Acetone 

Isopropyl alcohol (IPA) 

Distilled water 

10 min 

10 min 

10 min 

Substrate  dehydration 200 
o
C 12 h 

Spinning 
500 rpm 

3000 rpm 

10 s 

30 s 

Soft-baking 
65 

o
C 

95 
o
C 

1 min 

3 min 

Laser exposure Femtosecond laser Variable 

Post exposure baking 
65 

o
C 

95 
o
C 

1 min 

1 min 

Development Developer 1 min 

Rinsing Isopropyl alcohol (IPA) 30 s 

Hard baking 95 
o
C 2 h 
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2.2 Voxel characterization 

Depending on the different applications of the TPP, voxels (volumetric pixel) of different 

sizes are needed in various structures. The size of a voxel determines the minimum unit of 

a microstructure. Lee et al. proved that the voxel size depends on many parameters as 

shown in Eqns. (2.1) and (2.2) [65, 66].  
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          (2.2)             

where d and l are the diameter and longitudinal dimension of a voxel, respectively, Eth is 

the exposure threshold for TPA, λ is the wavelength of the femtosecond laser, n is the RI 

of the resin, P is the laser power, t is the exposure time, and NA is the numerical aperture 

of an objective lens. Therefore, voxel size can be controlled by choosing optimized 

exposure parameters, such as laser power, exposure time and NA. 

In this section, a film with a thickness of about 1.0 µm is produced on the glass 

substrate. The diameter of a voxel is studied at different laser powers, focus locations, 

exposure times and numerical apertures (NA). In the following simulation, the exposure 

threshold Eth of SU-8 for TPA is 3.20 TW/cm
2
 [67], λ is 800 nm, n is 1.580 (at 800 nm), P 

is 20 - 60 mW, and NA is 0.8 for the 50× objective lens and 0.95 for the 100× objective 
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lens. Considering the step of the motion stage (500 nm/step) used in this study, the 

exposure time t for a line scan is t = 500/ v (ms), where v is the scan speed with a unit of 

nm/ms (or equivalently µm/s). 

2.2.1 Effect of focusing condition 

Lines are fabricated by adjusting the focusing of the femtosecond laser. Figure 2-1(a) 

shows scanning electron microscope (SEM) images of lines fabricated by a laser energy 

of 0.500 nJ/pulse through a 2× beam expander (Linos 2× - 8×) and an objective lens with 

a magnification of 50×. The scan speed is 20 µm/s. The lines will lift off the surface when 

the laser beam is focused too much above or below the film surface. Figure 2-1(b) shows 

an enlarged image of lines which are fabricated by focusing the laser beam on the 

location 1 µm above the surface. The lines become wobbly due to the fact that the line-

shaped coating almost lifts off the substrate. Figure 2-1(c) shows the results of measured 

diameters. The width of the line increases with the improvement in focusing, and reaches 

the maximum when the laser beam is focused on the film surface. Figure 2-2 gives SEM 

images of lines fabricated by a laser energy of 0.500 nJ through an objective lens with 

100× magnification. The scan speed is 20 µm/s. The diameter reaches its maximum when 

the laser beam is focused exactly on the film surface.  
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Figure 2-1 Lines exposed by femtosecond lasers of different focusing conditions: (a) an 

SEM image of lines, (b) an SEM image of lines with a focus at 1.0 µm above the 

interface, and (c) dependence of the width of line on focus condition. The laser pulses 

(0.500 nJ/pulse) are focused by an objective lens with a magnification of 50× (0.8 NA). 

The scan speed is 20 µm/s. 
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(a) 

 

(b) 

Figure 2-2 Lines exposed by femtosecond lasers of different focusing conditions: (a) an 

SEM image of lines, and (b) an enlarged SEM image for the first three lines in (a). The 

laser pulses (0.500 nJ/pulse) are focused by an objective lens with a magnification of 

100× (0.95 NA). The scan speed is 20 µm/s. 
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2.2.2 Effect of scan speed 

Lines are fabricated with a femtosecond laser of different scan speeds. Figure 2-3(a) 

shows a SEM image of lines fabricated by a laser energy of 0.500 nJ through a 2× beam 

expander and an objective lens with 50× magnification. The laser beams are focused on 

the film surface. The scan speed increases from 2 µm/s to 300 µm/s. A slower scan speed 

means longer exposure time. Therefore, a higher scan speed achieves a narrower line. We 

also notice that the lines change into separated dots when the scan speed is larger than 80 

µm/s. This is caused by the mechanism of the step motion stage. Therefore, the scan 

speed will be smaller than 80 µm/s to obtain homogeneous lines in the following sections. 

Figure 2-3(b) presents the dependence of the width on the scan speed. The theoretical 

result is calculated according to Eqn. (2.1). Figure 2-4 shows a SEM image of lines 

fabricated by a laser energy of 0.500 nJ through an objective lens with 100× 

magnification and the dependence of the width on the scan speed. The scan speed 

increases from 2 µm/s to 60 µm/s. Similar results are obtained, which have showed that 

the width of the line decreases with the increase of the scan speed. 

2.2.3 Effect of exposure time 

Dots are fabricated with a femtosecond laser of different exposure times which are 

controlled by a shutter (Uniblitz® VCM-D1). Figure 2-5 describes a SEM image of dots 

which are fabricated with a laser energy of 0.500 nJ through a 2× beam expander and an 

objective lens with 50× magnification and the dependence of the diameter on the 

exposure time. The exposure time varies from 100 ms to 3000 ms. Seven dots are 

fabricated with the same exposure time which are shown in the same row. The theoretical 
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result is obtained according to Eqn. (2.1). The diameter of the dot increases with the 

increase of the exposure time. 
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(b) 

Figure 2-3 Lines exposed by femtosecond lasers of different scan speeds: (a) an SEM 

image of lines, and (b) dependence of the width on the scan speed. The laser pulses 

(0.500 nJ/pulse) are focused by an objective lens with a magnification of 50× (0.8 NA). 

The theoretical result is obtained according to Eqn. (2.1). 
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(b) 

Figure 2-4 Lines exposed by femtosecond lasers of different scan speeds: (a) an SEM 

image of lines, and (b) dependence of the width on the scan speed. The laser pulses 

(0.500 nJ/pulse) are focused by an objective lens with a magnification of 100× (0.95 NA). 

The theoretical result is obtained according to Eqn. (2.1).  
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(b) 

Figure 2-5 Dots exposed by femtosecond lasers of different exposure times: (a) an SEM 

image of dots, and (b) dependence of the diameter on the exposure time. The laser pulses 

(0.500 nJ/pulse) are focused by an objective lens with a magnification of 50× (0.8 NA). 

The theoretical result is obtained according to Eqn. (2.1).  
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2.2.4 Effect of pulse energy 

Lines are fabricated with different femtosecond laser energies. Figure 2-6 describes a 

SEM image of lines which are fabricated by laser beams through a 2× beam expander and 

an objective lens with 50× magnification and the dependence of the width on the pulse 

energy. The scan speed is 20 µm/s. The pulse energy varies from 0.375 nJ/pulse to 0.875 

nJ/pulse. Low pulse energy (< 0.375 nJ) cannot expose SU-8. High pulse energy (> 0.750 

nJ) will ablate the SU-8 film and ruin the sample. In the available pulse energy range, the 

width of the line increases with the increase of the pulse energy. 

In conclusion, the characterization of TPP using a femtosecond laser has been 

carried out in this chapter. The diameters of voxels fabricated at different fabrication 

conditions have been measured. The experimental results do not agree well with the 

simulation results based on Eqn. (2.1). The reason might be that the exposure threshold 

Eth of SU-8 for TPA is referenced from Ref. 67. The actual value might be a little 

different from that value. Following the experimental results obtained here, the diameter 

of voxel can be increased by using large pulse energy, long exposure time, or slow scan 

speed. 
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(b) 

Figure 2-6 Lines exposed by femtosecond lasers of different pulse energies: (a) an SEM 

image of lines, and (b) dependence of the width on the pulse energy. The laser pulses are 

focused by an objective lens with a magnification of 50× (0.8 NA). The scan speed is 20 

µm/s. The theoretical result is obtained according to Eqn. (2.1). 
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Chapter 3 Grating-based opto-microfluidic 

devices 

3.1 Introduction 

In this chapter, a diffractive grating is introduced. The fabrication process and the 

diffraction characterization are studied. Colour filters are realized by fabricating gratings 

with different thicknesses. RI sensing is also implemented by monitoring the transmission 

spectra of the zeroth order diffraction light. The effects of the resonance order and grating 

thickness on the sensitivity are discussed. 

3.1.1 Theory 

In optics, grating is a kind of periodic structure which diffracts light in different 

directions. A typical binary dielectric grating consists of alternating regions of high and 

low RI dielectric materials as shown in Fig. 3-1, in which Λ is the grating pitch, d is the 

thickness of the grating, n1 and n2 are the RIs of these two dielectric materials, and a and 

b are the widths of the two regions, respectively. 

Assuming a planar wave passes through a grating, the transmission function τ(x) is 

described as: 
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where N+1 is the number of grating lines, and φ1 and φ2 are the phases of light that passes 

through the high RI region n1 and low RI region n2. Therefore, the phases can be 

expressed as: 

1
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n d

n d
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                                                    (3.2) 

where λ is the wavelength of light. 

 

(a) 

 

(b) 

Figure 3-1 Schematic illustration of a guided-mode resonance grating: (a) the 3D view, 

and (b) the side view 
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The Fraunhofer (far-field) complex-amplitude distribution U(f) can be calculated by 

Fourier transformation of the transmission function at the frequency of 
x

f
z

  [68] 
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where x is the coordinate along the grating direction, τ(x) is the transmission function, Λ is 

the grating pitch, m is the diffraction order, and y = x – mΛ. 

Since the frequency f is equal to 
m


, the intensity of the m

th
 order is  
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Therefore, the intensity of the zeroth diffraction order (m = 0) is  
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                               (3.5) 

where δφ= φ1 - φ2 is the phase difference. 

3.1.2 Fabrication and applications 

To date, various fabrication techniques have been proposed to obtain binary dielectric 

gratings, such as laser machining [69,70], microelectromechanical systems (MEMS) 

[71,72], soft lithography [73,74], and hot-embossing [75,76]. Figure 3-2 depicts a 

schematic illustration of various fabrication techniques. During laser micromachining 
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processes, a high power laser beam is focused on the surface of a planar material such as 

a metal, ceramics, polymer or glass, and then ablated periodic grooves are fabricated by 

controlling the movements of the laser beam (Fig. 3-2(a)). MEMS are the fabrication 

technique which originated from semiconductor device fabrication. There are three basic 

processes in MEMS technology: A structural layer such as silicon, polymer or metal film 

and a sacrificial layer such as photosensitive film are first deposited on the substrate 

sequentially; a grating pattern is transferred to the sacrificial layer by a lithographic 

technique; the grating structure is produced in the structural layer using a selective 

etching process (Fig. 3-2(b)). The soft lithographic technique emerged in the 1980s, and 

underwent rapid development in the 1990s [77]. Elastomeric materials, most notably 

polydimethylsiloxane (PDMS), are poured on the grating master, which is usually 

fabricated by laser micromachining or the MEMS technique, to form grating structures 

(Fig. 3-2(c)). Hot-embossing is a type of stamping technique, in which heat and forces are 

applied on the substrate and master to emboss the plastic material, commonly 

polycarbonate or polymethyl methacrylate (PMMA) (Fig. 3-2(d)). 

With the development of microfluidic and optofluidic techniques, a novel type of 

droplet or bubble grating was proposed [78-81]. The design for the formation of a droplet 

or bubble grating in a microfluidic chip is shown in Fig. 3-3. Immiscible liquids or gas are 

infused into a microchannel and then generate an interface at the T-junction. The high 

resistance to the continuously flowing fluid separates the dispersed liquid or gas into an 

array of periodic droplets or bubbles. 
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 (a) 

 
(b) 

 
 (c) 

 
(d) 

Figure 3-2 Schematic illustration of different fabrication processes: (a) laser 

micromachining, (b) MEMS, (c) soft lithography, and (d) hot-embossing. 
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Figure 3-3 Schematic illustration of a droplet grating 

 

As an important optical component, diffraction grating has been widely used as a 

wavelength separation device in spectroscopy. Diffraction grating is also used in laser 

pulse stretching and compression. In addition, diffraction gratings can also work as 

optical filters, beam splitters and optical couplers. Here, we just focus on the applications 

of the binary dielectric grating in microfluidics and optofluidics. As shown in Eqn. (3.5), 

the diffraction intensity is related to the thickness of the grating and the RIs of the 

periodic regions. The microfluidic refractometers were designed to measure the RI of a 

liquid in the microchannel. Schueller et al. replicated a series of microchannels on PDMS 

and sealed them with a glass slide to form a PDMS-air (liquid)-PDMS grating (Fig. 3-4). 

Transmission intensities changed according to the RI of the liquid in the microchannel 

[82]. Yu et al. used immersion oil and a CaCl2 solution to generate a microfluidic droplet 

grating. RIs of the CaCl2 solutions were derived from the diffraction intensities [80]. Lei 

et al. integrated a grating on the tip of a multimode fiber, and inserted the fiber into a 

microchannel to test the RI of the fluid [83]. Another application of such microfluidic 

grating is the colour filter [80, 84]. By simply adjusting the RI of the fluid, different 

colours in the zeroth order are observed by a charge coupled device (CCD) camera when 

the white light passes through the grating. As a kind of “soft” elastomeric material, 
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PDMS will deform when a force is applied on them. Based on this phenomenon, 

Grzybowski et al. proposed a type of pressure sensor, in which strain was imposed on a 

PDMS grating, and a decrease of the grating thickness was induced. Pressure was 

calculated by monitoring transmission intensities [68]. Hosokawa et al. presented a 

microfluidic pressure sensor using the deformation of a PDMS microchannel grating to 

achieve the pressure in the microchannel [85]. Besides the applications of diffraction light 

mentioned above, a droplet signal generator [79] and microfluidic grating dye laser [86-

88] were also reported. In the dye laser design, dye solutions flow in the microchannel. 

After the dye was excited by the pump light, the laser was generated from the laser cavity 

consisting of a grating and a waveguide. 

 

Figure 3-4 Schematic illustration of a microchannel grating 

 

3.2 Grating characterization 

SU-8 gratings are fabricated using a femtosecond laser by scanning lines one by one. The 

most important advantage of this method is the flexibility. It is easy to write gratings with 

different periodicities Λ, thicknesses d, and widths a by simply adjusting the laser power, 

scan speed, and focusing condition. Figures 3-5 and 3-6 show the SEM images of gratings 

with the periodicities of 5 µm and 3 µm, respectively. The laser beam is focused by a 50× 
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objective lens with NA of 0.8, laser power of 0.625 nJ/pulse, and scan speed of 20 µm/s. 

The size of the gratings is 200 µm × 200 µm. 

 

Figure 3-5 SEM images of a grating with a periodicity of 5 µm. The size of the grating is 

200 µm × 200 µm. 

 

Figure 3-6 SEM images of a grating with a periodicity of 3 µm. The size of the grating is 

200 µm × 200 µm. 
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According to the grating equation: 

sin m m      (normal incident)                                          (3.6) 

where θm is the angle between the m
th

 order diffracted ray and zeroth order diffracted ray, 

the diffracted angle depends on the wavelength and the periodicity. If a white beam 

passes through the grating, components of light with a single wavelength are separated 

into different directions, thus producing a dispersion spectrum. Figure 3-7 shows an 

experimental setup for observing the diffraction patterns. Two light sources are used in 

this setup. One is the ANDO® white light source with three adjustable wavelength ranges 

(400-1800 nm, 700-1800 nm, and 1000-1800 nm). The other one is an He-Ne laser with a 

wavelength of 632.8 nm. A single mode fiber (SMF) (Corning SMF28e) transfers the 

light beam from the light source to the grating. Through an objective lens, a CCD camera 

captures the diffraction patterns. Here, we use two types of CCD cameras. One is a 

Panasonic (Japan) GP-KR222 color digital camera which is sensitive to visible light, and 

the other one is a Hamamatsu system (Japan) including a camera head C2741-03 and 

controller C2471 which is sensitive from visible to near-infrared light. Figure 3-8 presents 

diffraction patterns captured by the Panasonic camera. The periodicities of the gratings 

are 2 µm and 3 µm, respectively. Both patterns are detected at the same site. m = 0, ±1 

orders are shown on the screen for the grating with a periodicity of 2 µm (Fig. 3-8(a) and 

(c)), and m = 0, ±1, ±2 orders are observed on the screen for the grating with a periodicity 

of 3 µm (Fig. 3-8(b) and (d)). The light with a shorter wavelength (blue colour) is closer 

to the zeroth order point than the longer wavelength light (red colour) for the same 

diffraction order which means that the short wavelength light has a smaller diffracted 
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angle. The diffracted light is closer to the center in a long period grating than in a short 

period grating at the same diffraction order which means a longer period grating has a 

smaller diffracted angle. In addition, Figure 3-8(b) shows that the light with a longer 

wavelength in the first order partly overlaps with the smaller wavelength light in the 

second order. Figure 3-9 exhibits another diffraction patterns detected by the Hamamatsu 

system. The same results are obtained as mentioned above. 

 

Figure 3-7 Experimental setup for the observation of diffraction patterns 
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                             (a)                                                                     (b) 

           
                             (c)                                                                     (d) 

Figure 3-8 Diffraction patterns observed with a Panasonic CCD camera: (a) and (c) Λ = 2 

µm, and (b) and (d) Λ = 3 µm. 

           
                            (a)                                                                       (b) 

Figure 3-9 Diffraction patterns observed with a Hamamatsu system: (a) Λ = 2 µm, and (b) 

Λ = 3 µm. 
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3.3 Colour filters 

The white light, which is a broadband light source, consists of monochromatic light of 

different wavelengths. Figure 3-10 shows a CIE 1931 colour space chromaticity diagram 

[89]. The blue numbers along the outer curved boundary correspond to the wavelengths 

of the monochromatic light. The co-ordinates are calculated from ratios of the XYZ 

tristimulus values
1
. The chromaticity diagram describes the colours observed by human 

eyes when monochromatic light mix together with different intensities.  

 

Figure 3-10 The CIE 1931 colour space chromaticity diagram. S1-S4 are the colours 

shown in Fig. 3-13. 

                                                 

1
 The human eye has three kinds of cones on the retina. They are especially sensitive to red (X), green 

(Y) and blue (Z), respectively. All colours are mixtures of these three colours. The XYZ tristimulus 

values are calculated using a colour-mapping function.  



Chapter 3 Grating-based opto-microfluidic devices                                                                 36 

 

 

Based on the Eqn. (3.5), we know that the intensity of the zeroth order relates to the 

duty cycle a/Ʌ and is a cosine function of 1/λ. Figure 3-11 shows calculated curves of I0 

in the wavelength range of 350 - 1750 nm at different ratios of a/Ʌ. The thickness d is 

1.50 µm, n1 is 1.596 (RI of SU-8 at 633 nm) [90], and n2 is 1.000 (air). Multiple periods 

are observed in spectral curves. The extinction ratio reaches its maximum at a/Ʌ = 0.5 and 

then diminishes with either an increase or decrease of a/Ʌ. However, wavelengths of 

peaks and valleys are independent of the grating’s periodicity Ʌ. Therefore, gratings with 

periodicities of 2, 5, 8 or 10 µm are employed to investigate the spectrum characterization 

of the zeroth order in this section.  
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Figure 3-11 Simulation on the transmission spectra of the zeroth order in different duty 

cycles according to Eqn. (3.5). The SU-8 grating is surrounded by air and the thickness of 

the SU-8 grating d is 1.50 µm. 
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where n is the order of the resonance mode. This means that this monochromatic light is 

filtered out. 

Grating colour filters are designed according to Eqn. (3.7). An SMF replaces the 

CCD camera to collect the zeroth diffracted light and transfer it to an optical spectrum 

analyzer (OSA) (Ando AQ-6315). As shown in Fig. 3-12, the top SMF and the sample are 

both mounted on separate XYZ motion stages. At first, the top fiber directly aligns with 

the bottom fiber without the sample by adjusting the XYZ motion stages. This process is 

monitored by a Newport® dual-channel power meter (2832-C, USA) which is connected 

to the bottom fiber. When a maximal reading is shown on the power meter which means 

the alignment is achieved, we substitute the power meter with the OSA, measure the 

spectrum of the light source Is, and then insert the sample between the two fibers to 

measure the spectrum of zeroth order diffracted light I. Normalized light intensity 

(grating efficiency) can thus be obtained by calculating I/Is. 

 

Figure 3-12 Photograph of an experimental setup for color filters 



Chapter 3 Grating-based opto-microfluidic devices                                                                 38 

 

 

Four groups of data are shown in Fig. 3-13. The colour images are captured by Leica 

DMR microscope (Canada). The blue curves show the measured normalized spectra of 

the zeroth order diffracted light from different samples. The red curves are the simulation 

results calculated with MATLAB software according to Eqn. (3.5). In the simulation, a/Ʌ 

is 0.5, n1 is 1.596, and n2 is 1.000. Due to the fact that the RI changes slightly with 

different wavelengths, there is a small discrepancy between the experimental data and 

simulation results. For the S1 sample with a graing thickness of 1.57 µm, the transmission 

spectrum shows the highest intensity at 491.8 nm which responses to a cyan colour for 

human eyes. For the S2 sample with a graing thickness of 1.76 µm, the highest intensity 

is shown at 550.5 nm which responses to a green colour for human eyes. When the 

grating thickness increases to 1.84 µm (S3), the peak moves to 566.1 nm which responses 

to a yellow colour for human eyes. The peak is 648.5 nm which responses to a red colour 

for human eyes for the S4 sample with a graing thickness of 2.15 µm. The grating 

samples with different thicknesses present different colours under microscope which 

match the chromaticity diagram depending on the spectra. We also notice that Figure 3-

13(d) has a smaller extinction ratio than (a), (b) and (c) due to its smaller duty cycle. The 

peak wavelengths λpeak with the same resonance mode are marked with pink stars. The 

linear relationship between the peak wavelength λpeak and thickness d is demonstrated in 

Fig. 3-14. Peak shifts to a longer wavelength region as the thickness increases.  
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Figure 3-13 Comparison between the experimental and simulation results. The 

thicknesses of the four samples are about 1.57, 1.76, 1.84, and 2.15 µm, respectively. Λ of 

(a), (b) and (c) is 2 µm and (d) is 5 µm. The simulation results are calculated with 

MATLAB software according to Eqn. (3.5), in which a/Ʌ is 0.5, n1 is 1.596, and n2 is 

1.000. 
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Figure 3-14 Dependence of the peak wavelength on grating thickness for samples in Fig. 

3-13 

 

In conclusion, colour filters are achieved with SU-8 gratings fabricated by a 

femtosecond laser. Colours from gratings of different thicknesses are observed through 

microscope. Compared with other grating-based colour filters reported in some papers 

[80, 84], the grating fabrication technique adopted in this study is much simpler. In 

addition, we demonstrate the practicability of such colour filters by identifying accurate 

spectral specifications with an OSA. 

3.4 Grating-based refractive index sensor 

3.4.1 Fabrication and experimental setup 

In this section, standard soft lithography is used to produce PDMS microchannels. 

Microchannel patterns are designed by AutoCAD software as shown in Fig. 3-15(a), and 

saved as an eps file. The file is resized by PhotoShop software and printed on transparent 
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plastic film with a resolution of 1200 dpi ×1200 dpi. SU-8-2075 with a thickness of 75.00 

µm is spin-coated on a glass substrate. After soft baking, the sample is aligned with the 

mask and exposed to UV light (28 mJ/cm
2
) for 18 s. SU-8 masters are obtained after post-

exposure baking and development. Figure 3-15(b) shows an SU-8 master. PDMS 

prepolymer and curing agent (Dow Corning Sylgard-184, USA) are mixed in a mass ratio 

of 10:1, degassed in a vacuum desiccator for 1 hour, poured on the master which is placed 

in a folded aluminium foil plate, and cured at 95 
o
C on a hotplate for 1 hour. Molds are 

then peeled off from the master, trimmed, and punched with a 22 gauge needle (ID 0.413 

mm, OD 0.718 mm) for access holes. 

 

           

(a)                                                                  (b) 

Figure 3-15 SU-8 master fabrication: (a) a designed mask structure, and (b) a fabricated 

SU-8 master on a glass substrate 

 

An SU-8 grating is first fabricated on a glass substrate, as shown in Fig. 3-16(a). The 

glass substrate and PDMS mold are treated with a plasma cleaner (PDC-001, Harrick 

Plasma, USA) for 40 s at a high radio frequency (RF), and then quickly attached together 

with a force to achieve irreversible bonding as shown in Fig. 3-16(b). The sample is 

baked at 95 
o
C for 12 hours to strengthen the bonding. Two capillary tubes (Upchurch 

Scientific® PEEK tubing, USA, ID 100 µm, OD 360 µm) are inserted into the access 
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holes and sealed by UV glue (DYMAX® 3013, USA). One end of a tube is inserted and 

sealed in a 22 gauge needle. The schematic illustration of the experimental setup is 

depicted in Fig. 3-16(c). An arc lamp of a higher power (Newport® 69907, USA) is used 

as the light source. The white light is focused on the grating through an objective lens 

with 20× magnification and 0.46 NA. A syringe (BD Luer-Lok
TM

 1mL, USA) driven by a 

syringe pump (Chemyx® Fusion 400, USA) smoothly pushes a liquid into the 

microchannel. Figure 3-16(d) is a photo of the experimental setup.  

            

                                (a)                                                                     (b) 

          

                                  (c)                                                                    (d) 

Figure 3-16 Grating based RI sensor: (a) an SU-8 grating on a glass substrate, (b) a 

substrate covered by a PDMS layer, (c) a schematic illustration of an experimental setup, 

and (d) a photo of the experimental setup. 
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3.4.2 Characterization of opto-microfluidic refractive index sensor 

Comparing to the grating for colour filtering, the grating for RI sensing discussed in this 

section should be thicker. As a result, more periods can be found in the spectral curve. 

According to Eqn. (3.2), the phase difference for peaks can be expressed as follows: 

8 22 ( ) / 2SUd n n n                                                   (3.8)   

where n is the order of resonance mode. Since both the peaks and valleys should be 

monitored in this study, Eqns. (3.7) and (3.8) can be re-arranged as: 

                    8 22 ( )SUd n n
q


 


 

                        for peaks          q is even 

                                                                                   for valleys         q is odd            (3.9) 

Figure 3-17 shows a spectral curve with a grating thickness of 2.15 µm in the air. 

Four peaks and valleys can be found in the curve. If the RI of the fluid n2 in the 

microchannel continuously changes, phase shifts occur, which correspond to the peak 

shifts in the spectral curve.  

So                      8
8

2 2
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                           (3.11) 

where Δn = n'Liquid - nLiquid. 

The slope of the peak shift is expressed as: 
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Figure 3-17 Transmission spectrum of the zeroth order signal from an air-surrounded 

grating with a thickness of 2.15 µm. 

 

When saline solutions with different concentrations, which possess different RIs 

[91], are infused into the microchannel, the zeroth order transmission spectra are recorded 

and analysed. The simulation on the transmission spectra, experimental transmission 

spectra, and dependence of peak wavelength on RI for gratings with the thicknesses of 

2.15 and 3.60 µm are shown in Figs. 3-18 and 3-19, respectively. The simulation results 

are calculated according to Eqn. (3.5), in which a/Ʌ is 0.5 and n1 is 1.596. It is apparent 

that a blue shift occurs with the increase of the RI of the fluid. 
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Figure 3-18 RI sensing measurement of a grating with a grating thickness of 2.15 µm: (a) 

simulation on the transmission spectra of the zeroth order according to Eqn. (3.5), (b) 

experimental results of the transmission spectra of the zeroth order, and (c) dependence of 

the peak wavelength on RI. The inset is the morphology of the grating. 
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Figure 3-19 RI sensing measurement of a grating with a grating thickness of 3.60 µm: (a) 

simulation on the transmission spectra of the zeroth order according to Eqn. (3.5), (b) 

experimental results of the transmission spectra of the zeroth order, and (c) peak 

wavelengths in different fluidic environments. The inset is the morphology of the grating. 
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The sensitivity is obtained from the slope of a linear fit. Only one resonance mode 

(q= 2) is observed for the grating with a thickness of 2.15 µm due to the fact that other 

transmission spectra of peaks and valleys move out of the range of the OSA, and the 

sensitivity is (-1.64 ± 0.17)×10
3
 nm per refractive index unit (RIU). However, five 

resonance modes (q= 2 ~ 6) are observed for the grating with a thickness of 3.60 µm. The 

sensitivity is about -3.59×10
3
 nm/RIU for the second-order mode, which decreases to -

0.99×10
3
 nm/RIU for the sixth-order mode. A relatively high sensitivity can be obtained 

in the lower order of resonance mode. The sensitivity is also dependent on the thickness 

of the grating. Figure 3-20 shows the RI sensitivities of different orders in gratings with 

the thickness range from 2.15 to 6.00 µm. The sensitivity of the grating is inversely 

proportional to the order of the resonance mode. For the grating with a thickness of 6.00 

µm, the sensitivity of the fifth-order mode is -2.31×10
3 

nm/RIU, which drops to                

-1.32×10
3
 nm/RIU for the grating with a thickness of 2.85 µm. Thicker grating has a 

higher sensitivity at the same order of the resonance mode. 

In conclusion, grating-based microfluidic RI sensors have been successfully 

designed and demonstrated. From the studies on the sensitivities in different situations, 

we find that a thicker grating in a lower order of the resonance mode possesses a higher 

sensitivity. In addition, unlike some fiber RI sensors in which the RI measurement range 

is limited by the fiber material, such as nmax = 1.460 for a glass fiber [92], the 

measurement range of the grating RI sensors we developed here is not restricted. 
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Figure 3-20 RI sensitivities of different orders of the resonance mode in gratings of 

various thicknesses 
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Chapter 4 Waveguide-Mach-Zehnder 

Interferometer based opto-microfluidic devices 

4.1 Introduction  

In this chapter, five new waveguide based Mach-Zehnder interferometer (MZI) structures 

are designed to achieve RI and temperature measurement. The effects of the waveguide 

size, chip length and microchannel length on the sensitivity are analysed both 

theoretically and experimentally. 

4.1.1 Theory 

The MZI is a device to detect the relative phase shift variation between two beams which 

are usually split from a single source. Figure 4-1 depicts a schematic diagram of a typical 

MZI. The light from the source is split into two beams, which then propagate through two 

different paths. A delay inserted into one of the paths results in a phase difference. When 

the two beams are finally recombined, this delay causes a change of the output light 

intensity. 

 

Figure 4-1 Schematic diagram of a typical MZI 
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The output light intensity can be expressed as follows: 

1 2 1 22 cos( )I I I I I                                                (4.1) 

where I is the output intensity, I1 and I2 are the intensities of the two beams, and δφ is the 

phase difference of the two beams. 

In opto-microfluidic devices, an MZI structure is typically integrated into an optical 

waveguide as shown in Fig. 4-2. The signal is first coupled into the waveguide, and then 

split into two arms. One arm acts as a reference arm to compare the phase difference, and 

the other arm is used to sense the phase changes due to the variations of the surrounding 

environment such as temperature [93, 94], concentration [95, 96], and RI [97]. 

  

Figure 4-2 Schematic illustration of an opto-microfluidic MZI 

 

In this configuration, the phase difference is 

1 22 ( )n n d





                                                  (4.2) 

where d is the length of the sensing arm, λ is the light wavelength, n1 and n2 are the RIs of 

the two paths, respectively. 
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4.1.2 Fabrication and applications 

The optical waveguide is an important component of the opto-microfluidic MZI. Among 

various types of optical waveguides prepared, the typical waveguide structures are 

silicon-based solid core and solid cladding waveguides, which can be fabricated by 

MEMS. Crespi et al. reported an opto-microfluidic MZI in which waveguides were 

directly written in a bulk fused silica by a Yb:KYW femtosecond laser [95]. Wang et al. 

integrated an opto-microfluidic MZI into a single-mode fiber by ablating half of the core 

with a femtosecond laser. The remaining half core became the reference arm and the 

missing part acted as the sensing arm [93]. Without fabricating any waveguide on their 

MZI, Lapsley et al. fabricated a micro-lens to expand the beams to simultaneously pass 

through a short microchannel and PDMS, and another micro-lens to focus the beams to a 

fiber. The microchannel and PDMS acted as a sensing arm and reference arm, 

respectively [96].       

One of the applications for opto-microfluidic MZI is RI sensing. When the 

microchannel (sensing arm) is filled with different liquids, phase differences are induced. 

RI is measured by monitoring the output intensity [93-96, 98]. Other applications of opto-

microfluidic MZIs are in biology. In the design of MZI biochemical sensors, one or 

several kinds of reagents such as antigens, antibodies and proteins are bound on the 

sensing arm. When solvents are injected into the microchannel, the chemical or biological 

reaction, which generates new materials, produces a variation in the RI of the sensing 

arm. As a result, the types of molecules and the concentrations in the solvents can be 

determined by the output intensity [97, 99-102].  
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4.2 Waveguides with hybrid cladding  

4.2.1 Waveguide characterization 

After the SU-8 thin layer is exposed to the irradiation of femtosecond lasers, an SU-8 core 

is generated on a glass substrate after baking and developing. In this section, we mix SU-

8-2 and SU-8-2075 with a ratio of 8:3, spin-coat the SU-8 with a spin speed of 1400 rpm, 

and expose SU-8 with a scan speed of 2 - 5 µm/s. As a result, the thickness of the core is 

about 7.00 µm, and the width of the SU-8 core is about 4.00 - 5.00 µm. A PDMS layer is 

bonded on the glass substrate via oxygen plasma treatment. A small air gap is formed 

between the PDMS and the glass as shown in Fig. 4-3(a) - (b). The RIs of the PDMS, SU-

8, glass, and air are 1.410, 1.573, 1.510, and 1.000, respectively. The glass substrate is cut 

into small pieces with a glass cutter. As shown in Fig. 4-3(c), the cross section of the 

glass substrate is quite smooth, so that a special polishing treatment is not needed. The 

distribution of the time average of the energy density at wavelength of 1550 nm is 

simulated using COMSOL software (Fig. 4-4). In this simulation, the size of the core is 

4.00 µm×7.00 µm, sizes of the glass and PDMS are both 20.00 µm×10.00 µm, and length 

of the air gap is 16.00 µm. The simulation result shows that the effective RI for the 

fundamental mode is 1.560. 
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 (a) 

 

 (b) 

 

                                                                     (c)                                                                               

Figure 4-3 Optical waveguides with an SU-8 core and hybrid cladding: (a) a waveguide 

chip, (b) the top view of the waveguide, and (c) the cross section of the waveguide. 
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Figure 4-4 Simulation on the time average of the energy density for the fundamental 

mode at the wavelength of 1550 nm. The size of the core is 4.00 µm×7.00 µm, the sizes 

of the glass and PDMS are both 20.00 µm×10.00 µm, and length of the air gap is 16.00 

µm. 

       

The waveguide chip is placed on a platform, and an SMF couples light from an Er
3+

 

dual-band broadband source (MPB Technologies EBS-7210) into the waveguide via a 

butt coupling method. A CCD camera with an objective lens (50×, 0.8 NA) is first used to 

collect the output light. Maximum output, which shows as a bright dot on the screen, is 

obtained by adjusting the XYZ motion stages below the fiber, illustrated in Fig. 4-5(a). 

Figure 4-5(b) shows a near field image on the cross section of a waveguide. The result 

agrees with the simulation. Then the CCD camera is replaced with another SMF which 

connects with a power meter on the other end. The maximum power shown on the power 

meter should be achieved by slowly adjusting the location of the SMF on the collecting 

side. Last, the power meter is replaced with the OSA. 
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                              (a)                                                                          (b) 

Figure 4-5 Waveguide characterization: (a) an experimental setup for butt coupling, and 

(b) a near field image on the cross section of a MZI based waveguide 

 

4.2.2 MZI characterization 

For a Corning SMF28e, the core is a cylinder with a diameter of 9 µm for its cross 

section. In contrast, the core of an SU-8 waveguide is a rectangle with a cross section of 

5.00 µm × 7.00 µm (width × height).  Therefore, when an SMF is carefully adjusted to 

the location between the SU-8 layer and glass layer, as shown in Fig. 4-6(a), most of the 

light is simultaneously coupled into the core and the glass layer, whereas very little light 

is scattered into the PDMS layer. Interference occurs at the other side of the waveguide 

when the transmitted light is collected by another SMF. Figure 4-6(b) shows a near field 

image on the cross section of an MZI chip. The bright dot is the output from the 

waveguide, the bright background comes from the transmitted light of the glass substrate, 

and the dark background originates from the PDMS layer. 
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(a) 

 

(b) 

Figure 4-6 MZI characterization: (a) a schematic illustration of the MZI chip, and (b) a 

near field image of the cross section of an MZI chip  

 

Therefore, the phase difference is 

82 ( )SU Glassn n d



 

                                                  (4.3) 

where nSU-8 is the effective RI of the SU-8 core (nSU-8 =1.560), nGlass is the RI of the glass 

(nGlass=1.510), and d is the length of the chip. As shown in Eqn. (4.3), the phase 

difference relates to the length of the chip. Figure 4-7 shows the transmission spectra of 

MZI chips with different chip lengths. More interference fringes are shown in the 

spectrum for the chip of 46.50 mm in length. The reason is that the chip with a longer 
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length results in a larger phase difference, and thus generates a shorter interference 

periodicity. 
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Figure 4-7 Transmission spectra of MZI chips with different chip lengths 

 

4.2.3 Mach-Zehnder Interferometer-based refractive index sensor 

An RI sensor is produced by attaching a PDMS layer with a microchannel on top of the 

SU-8 core (Fig. 4-8(a)). Liquids with different RI values can be injected into the 

microchannel. As a result, the SU-8 core in the microchannel has different effective RIs 
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depending on the liquid claddings. Figure 4-8(b) shows the photo of an MZI sensor chip. 

Table 4-1 shows the effective RIs of the cores with sizes of 4.00 µm×7.00 µm and 3.00 

µm ×4.18 µm
 
surrounded by NaCl solutions with different concentrations, which are 

calculated by the COMSOL software. A smaller core has a lower effective RI value, and 

the effective RI of the core increases with the increase of the liquid RI.  

 

(a) 

 

(b) 

Figure 4-8 MZI sensor: (a) a schematic illustration of an MZI sensor, and (b) an MZI 

sensor chip 
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Table 4-1 Effective refractive indices of NaCl solutions with different concentrations 

 

The phase difference between the SU-8 core and glass can be expressed as: 

( )
2

eff m effair c m Glass cn d n d d n d
 



  
                                     (4.4) 

where neff is the effective RI of the core in the microchannel, neffair is the effective RI of 

the core outside of the microchannel, dm is the length of the microchannel, and dc is the 

length of the chip. When the phase difference satisfies the condition: 

2m                                                                   (4.5) 

where m is the order of the MZI resonance mode, the attenuation peak wavelength λm can 

be expressed as:  

NaCl solution 

concentration (wt%) 
Air 

Distilled 

water 
4.0% 6.8% 9.8% 

RI of salt solution 

[91] 
1.000 1.333 1.340 1.345 1.350 

Effective RI of core 

(4.00 ×7.00 µm
2
) 

1.559823 1.560726 1.560763 1.560791 1.560819 

Effective RI of core 

(3.00×4.18 µm
2 

) 
1.548132 1.550289 1.550375 1.550439 1.550505 

NaCl solution 

concentration (wt%) 
12.5% 15.0% 18.0% 21.0% 24.0% 

Salt solution RI 1.355 1.359 1.365 1.370 1.376 

Effective RI of core 

(4.00×7.00 µm
2
) 

1.560848 1.560872 1.560909 1.560941 1.560981 

Effective RI of core 

(3.00×4.18 µm
2 

) 
1.550572 1.550628 1.550714 1.550789 1.550881 
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( )eff m effair c m Glass c

m

n d n d d n d

m


  
                                             (4.6) 

The peak shifts can be described as: 

 

, , ' ,

,

( ) ( )

( )

m n m n m n

eff m effair c m Glass c eff m effair c m Glass c

eff eff m eff n m

n d n d d n d n d n d d n d

m m

n n d n d

m m

  



 

      
 

 
 

       (4.7) 

where '

,eff n eff effn n n   . 

An MZI sensor chip with a chip length of 14.97 mm, core size of 4.00 µm ×7.00 µm, 

and the microchannel length of 4.00 mm is fabricated. The sensing results are shown in 

Fig. 4-9. The simulation on the transmission spectra in Fig. 4-9(a) is carried out using 

MATLAB software according to Eqns. (4.1), (4.4) and (4.7). The experimental results in 

Fig. 4-9 (b) are obtained by infusing different salt solutions into the microchannel. The 

transmission spectrum is recorded and the peak shift is measured in turn. The peak moves 

toward the longer wavelength side with the increase of the liquid RI. The comparison of 

the experimental and simulation results on the dependence of the peak shift on RI is 

shown in Fig. 4-9(c). Distilled water (n = 1.333) is used as the reference solution (δλ = 0) 

for these measurements. The experimental sensitivity (slope) is 45.7 ± 1.7 nm/RIU, and 

the simulation on the sensitivity is 43.6 nm/RIU. The experimental result agrees with the 

simulation result very well.  
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Figure 4-9 RI sensing measurement of an MZI chip with a chip length of 14.97 mm and 

microchannel length of 4.00 mm: (a) simulation on the transmission spectra of the MZI 

sensor in solutions of different RIs, (b) experimental measured transmission spectra of the 

MZI sensor in solutions of different RIs, and (c) comparison of the experimental and 

simulation results on the dependence of the peak shift on RI. The simulation is carried out 

using MATLAB software according to Eqns. (4.1), (4.4) and (4.7). 

 

As shown in Eqn. (4.7), the phase shift depends on the order of the resonance mode 

and length of the microchannel. Therefore, the sensitivity varies depending on the chip 

length and microchannel length. Figure 4-10 describes the peak shifts in the MZI chips 

with the same microchannel length (6.00 mm), core size (4.00 µm ×7.00 µm), and 



Chapter 4 Waveguide-MZI based opto-microfluidic devices                                                    62 

 

 

different chip lengths. The sensitivity is 94.0 nm/RIU in the chip with a chip length of 

11.78 mm, and decreases to 35.5 nm/RIU in the chip with a chip length of 20.71 nm. 

Figure 4-11 presents the peak shifts in the MZI chips with the same chip length (about 

15.00 mm), core size (4.00 µm ×7.00 µm), and different microchannel lengths. The 

sensitivity is 26.0 nm/RIU in the chip with a microchannel length of 2.00 mm, and 

increases to 96.8 nm/RIU in the chip with a microchannel length of 8.00 mm. Both 

simulations are carried out using MATLAB software according to Eqn (4.7), and distilled 

water (n = 1.333) is used as the reference solution (δλ = 0) for above measurements. 

According to the simulation in Table 4-1, the core with a smaller size has a smaller 

effective RI in the same environment. Therefore, different sizes of core are fabricated by 

adjusting the spin rate of the spin-coater and the scan speed of the femtosecond laser. 

Cores with the sizes of 4.85 µm×5.55 µm, 4.00 µm×5.55 µm, 3.35 µm×5.19 µm, and 

3.00 µm×4.18 µm
 
are achieved. Figures 4-12(a) and (b) present the transmission spectra 

of MZIs with core sizes of 4.00 µm×5.55 µm
 
and 3.00 µm×4.18 µm, respectively. The 

periodicities are 1.26 and 1.40 nm, respectively. The smaller core has a wider interference 

pattern due to the fact that the smaller core has a smaller effective RI than the larger core 

if they are made of the same material. The sensitivities of MZIs with different core sizes 

are measured. As shown in Fig. 4-12(c), the sensitivity of MZI increases from 32.5 to 

122.4 nm/RIU when the core size drops from 4.85 µm×5.55 µm
 
to 3.00 µm×4.18 µm. 

MZI with a smaller core is much sensitive to changes in the environment. Distilled water 

(n = 1.333) is used as the reference solution (δλ = 0) for these measurements. 
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Figure 4-10 Effect of chip length on RI sensing: (a)-(d) comparison of MZI peak shifts 

between the experimental data and simulation, and (e) comparison of MZI peak shifts 

with the same microchannel length and different lengths of chips. The simulation is 

carried out using MATLAB software according to Eqn (4.7). The length of microchannels 

is 6.00 mm. The lengths of the chips are 11.78, 15.55, 17.03, and 20.71 mm, respectively.  
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Figure 4-11 Effect of microchannel length on RI sensing: (a)-(d) comparison of MZI peak 

shifts between the experimental data and simulation, and (e) comparison of MZI peak 

shifts with the same length of chips and different lengths of microchannels. The 

simulation is carried out using MATLAB software according to Eqn (4.7). The length of 

chips is about 15.00 mm. The microchannel lengths are 2.00, 4.00, 6.00, and 8.00 mm, 

respectively. 
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Figure 4-12 Effect of core size on RI sensing: (a) and (b) transmission spectra of MZIs 

with different core sizes, and (c) dependence of the peak shift on RI 

 

In conclusion, we have successfully designed and fabricated opto-microfluidic MZI 

sensors based on a waveguide with hybrid cladding. This type of sensor can be used to 

measure the RI of any liquid below 1.573 (RI of SU-8 at 1550 nm). The experimental 

results nicely agree with the simulation based on Eqn (4.7). In addition, investigation on 



Chapter 4 Waveguide-MZI based opto-microfluidic devices                                                    66 

 

 

the influence of the sensitivities of the opto-microfluidic MZI sensors demonstrates that 

an MZI sensor with a shorter chip length, longer microchannel and smaller core size can 

achieve a higher sensitivity which is better for sensor applications. 

4.3 Waveguides with solid cladding 

 4.3.1 Waveguide characterization 

SU-8, SU-8-2000 and SU-8-3000 series are members of photoresist material SU-8 family 

from Microchem. Figure 4-13 shows the RIs of photoresists at different wavelengths 

according to the data sheet listed on the website of the manufacturer. The SU-8 series has 

the highest RI (n = 1.575 at 1550 nm), and the SU-8-2000 and SU-8-3000 series have the 

lower RIs. In each SU-8 series, SU-8 photoresists with different viscosities can be 

selected to obtain the desired film thickness. Therefore, in this section, we use SU-8-2 of 

SU-8 series and SU-8-3050 of SU-8-3000 series for the core and cladding materials, 

respectivitly. The core is first fabricated on the glass substrate by femtosecond laser 

exposure, baking and development. Then SU-8-3050 is spin-coated on the chip with a 

spin rate of 3000 rpm for 120 s. The SU-8-3050 is baked on a hotplate at 50 
o
C for 12 

hours. The thickness of the SU-8-3050 layer is about 20.00 µm. In order to obtain a 

thinner cladding thickness, a mixture of SU-8-3050 and SU-8-2 with the volume ratio of 

2:1 is also used as the cladding material. In the following experiments, if the cladding 

thicknesses are less than 20.00 µm, it means that the cladding is the mixture of SU-8-

3050 and SU-8-2. 
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Figure 4-13 Refractive indices of different SU-8 series 

The cladding is aligned with a slot mask fabricated by a femtosecond laser (1 kHz, 

0.3 mJ, 800 nm and 67 fs) and exposed to a mercury lamp for 25 s. After the chip is 

baked and developed, a waveguide structure is left on the glass substrate. A PDMS layer 

is bonded on the glass substrate via oxygen plasma treatment. Finally, the glass substrate 

is cut into small pieces with a glass cutter. Figure 4-14(a) and (b) illustrate a waveguide 

chip and the top-view of the waveguide, respectively. The width of the cladding is 300.00 

µm. The thin line in the middle of the cladding is the core. Figure 4-14(c) is the 

morphology of the cross section of the chip. The thickness of the cladding is about 20.00 

µm. 
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 (a) 

 

 (b) 

 

 (c) 

Figure 4-14 Waveguide with an SU-8 core and cladding: (a) a waveguide chip, (b) the top 

view of the waveguide, and (c) the cross section of the chip 
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4.3.2 MZI characterization 

Similar to the MZI structure shown in the section 4.2, an SMF couples light from an Er
3+

 

dual-band broadband source into the waveguide via the butt coupling method, shown in 

Fig. 4-15(a). Split beams pass through the core and the cladding, respectively. 

Interference occurs at the other side of the waveguide when the transmitted light is 

coupled into another SMF. Figure 4-15(b) presents a near field image on the cross section 

of the MZI chip. The rectangular-shaped white line comes from the beam passing through 

the cladding, and the bright dot in the middle of the white line comes from the beam 

passing through the core. 

 

(a) 

 

(b) 

Figure 4-15 MZI characterization: (a) a schematic illustration of a MZI structure, and (b) 

a near field image on the cross section of a MZI chip  
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The phase difference can be expressed as: 

2 ( ) 2eff co eff cl effn n d n d 


 

  
                                                 (4.8) 

1 2 1 22 cos( )I I I I I                                                            (4.9) 

where neff-co is the effective RI of the core, neff-cl is the effective RI of the cladding, Δneff is 

the RI difference between the core and cladding, and d is the length of the chip. As Eqn. 

(4.8) shows, the phase difference depends on the length of the chip. Figure 4-16 shows 

the transmission spectra of MZI chips with different chip lengths. A chip with a longer 

length induces a larger phase difference, and thus generates a shorter interference 

periodicity. This result is similar to the results obtained in section 4.2. 
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Figure 4-16 Transmission spectra of MZIs with different chip lengths 

 

4.3.3 MZI-based refractive index sensor 

When the phase difference satisfies the condition: 

2m                                                                   (4.10) 

where m is the order of the MZI resonance mode, the peak wavelength λm can be 

expressed as:      
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An RI sensor can be fabricated by attaching a PDMS layer with a microchannel on 

the top of an SU-8 waveguide (Fig. 4-17). Liquids with different RIs can be injected into 

the microchannel. As a result, the effective RI of the cladding changes depending on the 

liquids, whereas the effective RI of the SU-8 core is hardly affected by the liquid. 

Therefore, Eqn. (4.11) can be shown as: 
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
       (4.12) 

where '

,eff n eff effn n n   , neff is the effective RI of the cladding, d is the length of the 

chip, and L is the length of the microchannel. 

 

Figure 4-17 MZI chip for RI sensing 

 

Figure 4-18(a) shows the transmission spectra of an MZI chip with a core size of 

4.00 µm×6.50 µm×20.03 mm (width × height × length), cladding size of 300.00 µm 

×10.00 µm ×20.03 mm and microchannel length of 16.00 mm in different liquid 
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environment. A blue shift occurs with the decrease of liquid RI. Figure 4-18(b) exhibits 

the dependence of the peak shift on RI. The sensitivity is -119.6±6.8 nm/RIU. 
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 Figure 4-18 RI sensing measurement of an MZI chip with a core size of 4.00 µm ×6.50 

µm ×20.03 mm, cladding size of 300.00 µm ×10.00 µm ×20.03 mm, and microchannel 

length of 16.00 mm: (a) transmission spectra of MZI in different liquid environments, and 

(b) dependence of the peak shift on RI.  

 

4.3.3.1 Effect of cladding thickness 

Waveguides with different cladding thicknesses are fabricated on the glass substrates. The 

cladding thickness is controlled by adjusting the spin speed of the spin-coater. As shown 

in Eqn. (4.12), the peak shift relates to the effective RI difference of the cladding neff,n. 

Figure 4-19(a) simulates the effective RI of the cladding with the cladding thickness of 

10.00 – 20.00 µm. The effective cladding RI increases with the increase of the cladding 

thickness. Therefore, the MZI with a thicker cladding has a larger phase difference and a 

smaller intensity periodicity than the thinner cladding has. The result is demonstrated by 

Fig. 4-19(b). For the waveguide with a cladding thickness of 10.00 µm, the periodicity is 

11.68 nm which decreases to 7.19 nm for the waveguide with a cladding thickness of 
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18.50 µm. Figure 4-19(c) simulates the effective cladding RIs with the cladding thickness 

of 10.00 µm and 20.00 µm in different solutions. The cladding with the thickness of 

10.00 µm is more sensitive to the changes of the solution. The experimental results in Fig. 

4-19(d) prove that the chip with a thinner cladding has a higher sensitivity. All chips have 

the same core size of 4.00 µm × 6.50 µm, cladding width of 300.00 µm, and chip length 

of 22.80 mm. Distilled water (n = 1.333) is used as the reference solution (δλ = 0) for 

these measurements. 

4.3.3.2 Effect of chip length 

Two groups of MZIs with cladding thicknesses of 18.50 and 10.00 µm, and a cladding 

width of 300.00 µm are measured. The chip lengths are 32.00, 28.00, 22.00, and 20.00 

mm, respectively, in each group. The microchannel length is 16.00 mm, and the cross 

section of the core is about 4.00 µm ×6.50 µm. The experimental results are shown in Fig. 

4-20. If the microchannel length is the same, the sensitivity increases with the decrease of 

the chip length. In addition, the finding that an MZI chip with a thinner cladding 

possesses a higher sensitivity than the MZI chip with a thicker cladding at the same chip 

length is demonstrated again.  
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Figure 4-19 Effect of cladding thickness on RI sensing: (a) simulation on the effective RIs 

of the cladding with different cladding thicknesses, (b) transmission spectra of MZIs with 

the cladding thickness of 18.50 and 10.00 µm, respectively, (c) simulation on the 

effective cladding RIs with the cladding thickness of 10.00 µm and 20.00 µm in different 

solutions, and (d) dependence of the peak shift on RI. The width of the cladding is 300.00 

µm. 
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Figure 4-20 Dependence of the sensitivity on chip length. The core size is 4.00 µm×6.50 

µm. The black squares show the sensitivities of MZIs with the cladding size of 300.00 

µm×18.50 µm. The red dots show the sensitivities of MZIs with the cladding size of 

300.00 µm ×10.00 µm. The microchannel length is 16.00 mm. 

 

4.3.3.3 Effect on the core size 

In this section, different core sizes of MZI are produced by adjusting the scan speed of the 

femtosecond laser. The sizes of the core are 5.00 µm ×5.50 µm×22.66 mm, 4.00 µm×5.50 

µm×22.38 mm, 3.20 µm×5.50 µm×22.45 mm, and 2.80 µm×5.50 µm×22.92 mm, 

respectively. The cross section of the cladding, which is made of mixed SU-8-3050, is 

125.00 µm×11.50 µm. Figure 4-21(a) simulates the effective RI of a core with a core 

width of 2.80 – 5.00 µm. The effective RI increases with the increase of the core width. 

Therefore, according to the simulation, the MZI chip with a larger core has a larger phase 

difference and a smaller intensity periodicity. As shown in Fig. 4-21(b) and (c), the 

intensity periodicities are 11.12 and 12.62 nm for the MZIs with the core sizes of 5.00 

µm×5.50 µm and 2.80 µm×5.50 µm, respectively. Dependence of the peak shift on RI is 
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shown in Fig. 4-21(d). Distilled water (n = 1.333) is used as the reference solution (δλ = 

0) for these measurements. The sensitivity slightly increases with the decrease of the core 

size. The sensitivities in this group are larger than the values in Fig. 4-20 due to the fact 

that the width of the cladding has been reduced from 300.00 to 125.00 µm. 
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Figure 4-21 Effect of core size on RI sensing: (a) simulation on the effective RIs of the 

core in different core widths and same core height of 5.50 µm, (b) and (c) transmission 

spectra of MZIs with different sizes of core, and (d) dependence of the peak shift on RI. 

All MZI chips have a cladding cross section of 125.00 µm× 11.50 µm and microchannel 

length of 16.00 mm. 
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4.3.4 Mach-Zehnder Interferometer-based temperature sensor 

If the environmental temperature of the waveguide rises, both the effective RIs of the 

cladding mode and core mode change. If the change is different (neff,T), the attenuation 

peak wavelength shift λm,T is: 
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where                                         
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dn/dT is the thermo-optic coefficient of the material, ΔT=T′ - T, and Δneff,T is the RI 

difference of core and cladding at the starting temperature T. 

Therefore, the shift in the peak wavelength can be expressed as: 
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                 (4.14) 

A mini hotplate is attached to the bottom of the chip and installed on the platform. 

The microchannel is empty (air). The chip is heated from 19.2 
o
C to 73.2 

o
C with a step of 

2 
o
C. At each step, the transmission spectrum is recorded when the chip reaches the 

thermodynamic equilibrium. Figure 4-22(a) exhibits the transmission spectra of an 

attenuation valley at different temperatures. The core size is 4.00 µm ×5.50 µm ×22.88 

mm, which is made of SU-8-2, the cladding size is 125.00 µm ×10.00 µm ×22.88 mm, 

which is made of a mixture of SU-8-3050 and SU-8-2 with a volume ratio of 2:1, and the 

microchannel length is 16.00 mm. It can be observed that the valley shifts towards the 
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longer wavelength region with the increasing temperature. SU-8 material has a high 

negative thermo-optic coefficient of about -1.86×10
-4

 K
-1 

[103]. This result means that the 

cladding is more sensitive to the temperature change than the core. The sensitivity of the 

valley is analyzed using a linear fit, and a good linear function is exhibited as 

0.465±0.006 nm/
o
C. 
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 Figure 4-22 Temperature sensing measurement of an MZI chip with a core size of 4.00 

µm ×5.50 µm ×22.88 mm, cladding size of 125.00 µm ×10.00 µm ×22.88 mm, and 

microchannel length of 16.00 mm: (a) transmission spectra of MZI in different 

temperatures, and (b) dependence of the peak shift on temperature.  

 

According to Eqn. (4.14), the temperature sensitivity relates to the thermo-optic 

coefficient difference, RI difference of core and cladding, and wavelength except chip 

length. Four chips with the same cladding size of 300.00 µm×10.00 µm and core size of 

4.00 µm ×6.50 µm are investigated. Their lengths are 20.30, 22.94, 28.00 and 30.98 mm, 

respectively. Distilled water is infused into the microchannel. Figure 4-23(a) presents the 

dependence of the peak shift on temperature at different chip lengths. 24.7 
o
C is used as 

the reference temperature (δλ = 0) for these measurements. The sensitivity of the MZI 
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chip with a length of 30.98 mm is 0.459 nm/
o
C, and becomes 0.471 nm/

o
C when the chip 

length is 20.30 mm. The sensitivity is almost unchanged as shown in Fig. 4-23(b). The 

small discrepancy is caused by the difference of the peak wavelength λ. 

25 30 35 40 45

0

2

4

6

8

10

12
 d

cl
 = 10.00 m,  d

c
 = 22.94 mm

 d
cl
 = 10.00 m,  d

c
 = 30.98 mm

 d
cl
 = 10.00 m,  d

c
 = 28.00 mm

 d
cl
 = 10.00 m,  d

c
 = 20.30 mm

 

 

S
co

 = 4.00 µm ×6.50 µm

 w
cl
 = 300.00 m

P
e
a
k
 s

h
if
t 
(n

m
)

Temperature (
o
C)   

20 22 24 26 28 30 32
0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

S
e

n
s
it
iv

it
y
 (

n
m

/o
C

)

Chip length (mm)  

                                   (a)                                                                  (b) 

Figure 4-23 Effect of chip length on temperature sensing: (a) dependence of the peak shift 

on temperature for chips of different length, and (b) dependence of the sensitivities on 

chip length  

 

Taking the thermo-optic coefficient of the mixed SU-8 material as -1.86×10
-4

 K
-1

, 

the effective RIs of cladding at different temperatures have been calculated with 

COMSOL software, which are shown in Fig. 4-24(a) for claddings with thicknesses of 

10.00 µm and 20.00 µm. The thicker cladding has a higher effective RI and a larger 

effective thermo-optic coefficient than the thinner one. Therefore, according to the 

simulation, the MZI chip with a thicker cladding should have a higher sensitivity. The 

experimental results for the effects of cladding thickness are shown in Fig. 4-24(b), in 

which the chips have a core size of 2.80 µm ×3.60 µm, cladding width of 125.00 µm, and 

the cladding thicknesses of 10.07, 11.31, 17.65, and 21.84 µm, respectively. Distilled 
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water is infused into the microchannel. 21.7 
o
C is used as the reference temperature (δλ = 

0) for these measurements. The sensitivity of MZI with a thickness of 10.07 µm is 0.837 

nm/
o
C, which increases to 0.950 nm/

o
C when the thickness is increased to 21.84 µm.  The 

sensitivity increases with the increase of the cladding thickness, which agrees with the 

simulation. 
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Figure 4-24 Effect of cladding thickness on temperature sensing: (a) COMSOL 

simulation on the effective RIs of the cladding at different temperatures, and (b) 

dependence of the peak shift on temperature at different cladding thicknesses. The core 

sizes are 2.80 µm ×3.60 µm, the width of the cladding is 125.00 µm. 

 

Taking the thermo-optic coefficient of the SU-8-2 material as -1.86×10
-4

 K
-1

, the 

effective RIs of the core at different temperatures have been calculated with COMSOL 

software, which are shown in Fig. 4-25(a) for cores with the sizes of 5.00 µm×5.50 µm 

and 2.80 µm × 5.50 µm. The cladding is set to be 125.00 µm×11.50 µm. A smaller core 

has a lower effective RI and a larger effective thermo-optic coefficient than a bigger one. 
 

In the experiments, MZI chips with the cores of 5.00 µm×5.50 µm×22.66 mm, 4.00 

µm×5.50 µm×22.38 mm, 3.20 µm×5.50 µm×22.45 mm, and 2.80 µm×5.50 µm×22.92 
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mm are fabricated. The size of cladding, made of mixed SU-8-3050 and SU-8-2 with a 

volume ratio of 2:1, is 125.00 µm×11.50 µm. Distilled water is infused into the 

microchannel. The experimental results in Fig. 4-25(b) show that the sensitivity of MZI 

with a core size of 5.00 µm×5.50 µm is 0.414 nm/
o
C which increases to 0.849 nm/

o
C 

when the core size decreases to 2.80 µm×5.50 µm. 24.7 
o
C is used as the reference 

temperature (δλ = 0) for these measurements. The sensitivity increases with the decrease 

of the core size, which is manifested from the fact that the sensitivity increases from 

0.460 nm/
o
C in Figs. 4-22 and 4-23 to 0.900 nm/

o
C in Fig. 4-24. According to the 

simulation, if the cladding and core have the same thermo-optic coefficient, the 

temperature sensitivity should increase with the increase of the core size. However, the 

experimental result is the opposite. Therefore, we conclude that the SU-8-3050 material 

must have a higher thermo-optic coefficient than SU-8-2 material has. This is reasonable 

due to the fact that SU-8-2 and SU-8-3050 are made with different solvents. Figure 4-26 

shows the sensitivities of MZIs with the core sizes of 5.00 µm×6.50 µm×17.59 mm, 4.00 

µm×6.50 µm×17.59 mm, and 3.20 µm×6.50 µm×17.59 mm, respectively. The size of 

cladding, which is made of SU-8-3050, is 300.00 µm×20.00 µm×17.59 mm. 24.7 
o
C is 

used as the reference temperature (δλ = 0) for these measurements. In this situation, the 

sensitivities are almost independent of the core size and smaller than those in Fig. 4-24. 

Although the SU-8-3050 material has a higher thermo-optic coefficient, as concluded 

above, the lower RI of SU-8-3050 makes the higher Δneff dominate in Eqn. (4.14), and 

causes smaller sensitivities. 
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Figure 4-25 Effect of core size on temperature sensing: (a) simulation on the effective RIs 

of the core with the cross sections of 5.00 µm×5.50 µm and 2.80 µm×5.50 µm in different 

temperatures, and (b) dependence of the peak shift on temperature for the MZI chips with 

different core sizes. The cross section of the cladding is 125.00 µm×11.50 µm. 
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Figure 4-26 Dependence of the peak shift on temperature for MZIs with different core 

sizes. The cross section of the cladding is 300.00 µm×20.00 µm. 
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4.3.5 Refractive index calibration 

As mentioned in the previous section, the interference fringes are affected by the RI of the 

solution as well as the temperature. Therefore, a disturbance of temperature will influence 

the accurate measurement of analytes. Figure 4-27 (a)-(d) presents the transmission 

spectra of a MZI chip with a chip length of 28.77 mm under different environmental 

conditions. The core is made of SU-8-2 with a cross section of 2.80 µm×3.85 µm, and the 

cladding is made of mixed SU-8-3050 and SU-8-2 with a volume ratio of 2:1. The cross 

section of the cladding is 125.00 µm×10.00 µm, and the size of the microchannel is 1.00 

mm×75.00 µm×16.00 mm. The same interference order is selected for monitoring in this 

study. The valley wavelength is 1538.3 nm in distilled water at 25.7 
o
C, and shifts to 

1549.9 nm at 39.7 
o
C (red shift). When an NaCl solution with an RI of 1.359 is infused 

into the microchannel, the valley wavelength shifts to 1547.6 nm at 39.7 
o
C. When an 

NaCl solution with an RI of 1.380 is infused into the microchannel, the valley wavelength 

shifts to 1530.4 nm at 21.7 
o
C. Figure 4-27(e) describes the dependence of the shift of the 

transmission peak wavelength on the RI and temperature for the same interference order. 

Distilled water (n = 1.333) and 21.7 
o
C are used as the reference solution and temperature 

(δλ = 0) for these measurements, respectively. The sensitivity for temperature sensing is 

0.837 nm/
o
C, and the sensitivity for RI sensing is -83.0 nm/RIU.  Figure 4-27(f) shows 

the peak shifts in response to RI and temperature changes. In order to measure the 

accurate RI of a solution, the peak shift caused by temperature disturbance must be 

considered. The total wavelength shift can be expressed as: 

0.837 83.0T n                                                 (4.15) 
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where -83.0Δn is the peak shift caused by RI change, and 0.837ΔT is the peak shift caused 

by temperature change. If the temperature is known, the RI of liquid can be calibrated by 

this equation. The concentration can also be calibrated with the same method. Figure 4-

28(a) presents the sensing measurement of the RI and temperature for the same chip in 

the sucrose solutions. Distilled water (C = 0 
o
Bx) and 21.7 

o
C are used as the reference 

solution and temperature (δλ = 0) for these measurements, respectively. Figure 4-28(b) 

shows the peak shifts in response to RI and temperature changes. The wavelength shift 

can be expressed as: 

0.837 0.146T C                                               (4.16) 

In conclusion, we have successfully designed and fabricated an opto-microfluidic 

MZI sensor based on a waveguide, in which SU-8-2 is used as the core material and SU-

8-3050 or mixed SU-8-3050 is used as the cladding material. This sensor can be used to 

measure the environmental temperature and the RI of liquids below 1.575 (RI of SU-8). 

The RI sensitivity changes depending on the thickness of the cladding, length of chip, and 

size of core. The temperature sensitivity changes depending on the materials of the core 

and cladding, size of core, and cladding thickness. In addition, this type of MZI exhibits 

pronounced spectral interference fringes (larger extinction ratio) than the MZI in the last 

section due to the stronger transmission in the cladding. 
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Figure 4-27 Sensing measurement of the RI and temperature for an MZI chip with the 

chip length of 28.77 mm, core cross section of 2.80 µm×3.85 µm, cladding cross section 

of 125.00 µm×10.00 µm, and microchannel size of 1.00 mm×75.00 µm×16.00 mm: (a)-

(d) transmission spectra of the MZI under different environmental conditions, (e) 

dependence of the shift of the transmission peak wavelength on RI and temperature for 

the same interference order, and (f) peak shifts in response to RI and temperature 

changes. 
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Figure 4-28 Sensing measurement of the RI and temperature for an MZI chip with the 

chip length of 28.77 mm, core cross section of 2.80 µm×3.85 µm, cladding cross section 

of 125.00 µm×10.00 µm, and microchannel size of 1.00 mm×75.00 µm×16.00 mm: (a) 

dependence of the shift of the transmission peak wavelength on concentration and 

temperature for the same interference order, and (b) peak shifts in response to RI and 

temperature changes 

 

4.4 Waveguide with cores of different sizes 

4.4.1 MZI characterization 

In this section, we use the same core and cladding as mentioned in the last section as the 

main components of MZI. However, the size of the core purposely changed by adjusting 

the scan speed or adopting multiple scans.  Figure 4-29 depicts a schematic illustration for 

the MZI structure. Light is first coupled into a wide core by an SMF and propagated to a 

connector which is a core of much wider size to expand the light. Then the light is 

separated into three paths after it leaves the connector. One beam propagates along the 

core and two beams spread along the cladding. Interference occurs at the other side of the 

waveguide when the transmitted beams are coupled into another SMF. In order to prevent 
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the input light from coupling into the SU-8 cladding from the SMF, only a small part of 

the wide core is coved with the SU-8 cladding and most of the wide core is bald (air 

cladding).  

 

 

Figure 4-29 Schematic illustration of an MZI structure with a connector 

 

Figure 4-30(a) is the morphology of a connector. The connector with a size of 

300.00 µm× 20.00 µm× 6.50 µm (length × width × height) is fabricated by a multiple-

scan, the wide core with a width of 6.20 µm is fabricated with a scan speed of 1 µm/s, and 

the thin core with a width of 4.00 µm is fabricated by a scan speed of 5 µm/s. Figure 4-

30(b) is the COMSOL simulation on the light intensity distribution of this connector. It 

shows that the beam is expanded from 6.20 µm to 20.00 µm after it leaves the connector. 
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        (a) 

 

 

      (b) 

Figure 4-30 Connector chatacterization: (a) the morphology of a connector with the size 

of 300.00 µm× 20.00 µm× 6.50 µm, and (b) a COMSOL simulation on the light intensity 

distribution of the connector 

 

The phase difference equations are the same with the Eqns. (4.5) and (4.6). Here, d is 

the length of the thin core (sensing arm). Figure 4-31 shows the transmission spectra of 

the MZI chips with different thin core lengths. All chips have a connector with a size of 

300.00 µm× 30.00 µm× 5.50 µm, wide core with a width of 5.00 µm, thin core with a 

width of 3.20 µm, and cladding with a cross section of 300.00 µm×20.00 µm. The MZI 
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chip with a longer sensing arm induces a larger phase difference, and generates a shorter 

interference periodicity. This result is the same as those in section 4.2.2 and 4.3.2. 
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Figure 4-31 Transmission spectra of MZIs with different thin core lengths. All chips have 

a connector size of 300.00 µm× 30.00 µm× 5.50 µm, wide core with a width of 5.00 µm, 

thin core with a width of 3.20 µm, and cladding cross section of 300.00 µm×20.00 µm. 

 

In this design, the MZI is an asymmetric structure. Figure 4-29 depicts a schematic 

illustration in which light is coupled into the waveguide from the wide core side to the 

thin core side. In fact, the light can also be coupled into the waveguide from the thin core 
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side to the wide core side. Figure 4-32 presents transmission spectra of an MZI chip when 

light is coupled from different directions. When the light is coupled from the thin core 

side, the transmission intensity is weaker than the intensity coupled from the wide core 

side due to the fact that more light is lost in the cladding in this situation. However, light 

coupling directions do not affect the phase difference of the MZI. As shown in Fig. 4-32, 

the two interference patterns are the same. 
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Figure 4-32 Transmission spectra of an MZI obtained from different coupling directions 

 

4.4.2 Refractive index and temperature measurement 

For many applications, RI and temperature measurement is extremely important, which is 

studied here. The RI and temperature sensing results are shown in Figs. 4-33 and 4-34. In 

Fig. 4-33, the core of the MZI chip is made by SU-8-2 with a thin core length of 18.33 

mm, cross section of the wide core of 5.00 µm×5.50 µm, and cross section of the thin 

core of 3.20 µm×5.50 µm. The cladding is made of mixed SU-8-3050 and SU-8-2 with a 

volume ratio of 1:1 (n = 1.565 at 1550 nm) and a cross section of 125.00 µm×10.50 µm. 
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The size of the microchannel is 1.00 mm×75.00 µm×10.00 mm. The same interference 

order is selected for monitoring in this study. Figure 4-33(a) - (d) show that the peak 

wavelength is 1553.92 nm in distilled water at the temperature of 24.7 
o
C, which shifts to 

1565.6 nm at 36.7 
o
C (red shift). When an NaCl solution with an RI of 1.359 is infused 

into the microchannel, the peak wavelength shifts to 1551.92 nm at 24.7 
o
C and 1562.8 

nm at 36.7 
o
C (blue shift). Figure 4-33(e) describes the dependence of the shift of the 

transmission peak wavelength on RI and temperature for the same interference order. 

Distilled water (n = 1.333) and 21.7 
o
C are used as the reference solution and temperature 

(δλ = 0) for these measurements, respectively. The sensitivity for the temperature sensing 

is 1.023 nm/
o
C, and the sensitivity for the RI sensing is -97.9 nm/RIU. Figure 4-33(f) 

shows peak shifts in response to RI and temperature changes. Therefore, the total 

wavelength shift Δλ can be expressed as: 

1.023 97.9T n                                                (4.17) 

where ΔT is the change of the temperature, and Δn is the change of the RI.  

Figure 4-34 presents the measurements on another MZI chip. The core of the MZI 

chip is made by SU-8-2 with a thin core length of 19.05 mm, cross section of the wide 

core of 5.00 µm×5.50 µm, and cross section of the thin core of 3.20 µm×5.50 µm. The 

cladding is made of mixed SU-8-3050 and SU-8-2 with a volume ratio of 2:1 (n = 1.562 

at 1550 nm) and a cross section of the cladding of 125.00 µm× 11.50 µm. The size of the 

microchannel is 1.00 mm×75.00 µm×16.00 mm. Distilled water (n = 1.333) and 24.7 
o
C 

are used as the reference solution and temperature (δλ = 0) for these measurements, 
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respectively. Figure 4-34(a) shows that the sensitivity for temperature sensing is 0.636 

nm/
o
C, and the sensitivity for RI sensing is -178.8 nm/RIU. Figure 4-34(b) shows peak 

shifts in response to RI and temperature changes. Therefore, the total wavelength shift 

can be expressed as: 

0.636 178.8T n                                              (4.18) 

A comparison on the experimental results in Fig. 4-33 and Fig. 4-34 indicates that 

the first MZI chip has a higher temperature sensitivity due to a smaller RI difference 

between the cladding and core (Δneff), whereas the second MZI chip has a higher RI 

sensitivity due to a larger ratio of the microchannel length to the chip length (L/d). 

In conclusion, opto-microfluidic MZI sensors based on a waveguide of cores of 

different sizes have been proposed and demonstrated. Linear responses of peak 

wavelength to RI and temperature have been found. The effects of RI difference between 

the cladding and core (Δneff) and the ratio of microchannel length to chip length (L/d) 

have been discussed. The MZI sensor with a smaller RI difference between the cladding 

and core (Δneff) and a larger ratio of microchannel length to chip length (L/d) exhibits a 

higher sensitivity which is preferred for sensor applications. 
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Figure 4-33 Sensing measurement of the RI and temperature for an MZI chip with a thin 

core length of 18.33 mm, cross section of the wide core of 5.00 µm×5.50 µm, cross 

section of the thin core of 3.20 µm×5.50 µm, cladding cross section of 125.00 µm×10.50 

µm and the microchannel size of 1.00 mm×75.00 µm×10.00 mm: (a)-(d) transmission 

spectra of the MZI under different environmental conditions, (e) dependence of the shift 

of the transmission peak wavelength on RI and temperature for the same interference 

order, and (f) peak shifts in response to RI and temperature changes 
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Figure 4-34 Sensing measurement of the RI and temperature for an MZI chip with a thin 

core length of 19.05 mm, cross section of the wide core of 5.00 µm×5.50 µm, cross 

section of the thin core of 3.20 µm×5.50 µm, and cladding cross section of 125.00 

µm×11.50 µm: (a) dependence of the shift of the transmission peak wavelength on RI and 

temperature for the same interference order, and (b) peak shifts in response to RI and 

temperature changes. The size of the microchannel is 1.00 mm×75.00 µm×16.00 mm. 

 

4.5 Waveguide with symmetrical core 

In this section, MZIs with two connectors will be investigated.  One of the connectors is 

used to spread beams into the cladding and the other one is used to collect beams from the 

cladding. Figure 4-35 gives a schematic illustration of an MZI with a symmetrical core. 

Tapered SMFs with a focused spot size of 2.5 µm (OZ Optics, Canada) couple beams in 

and out of the wide cores. In order to prevent SMFs from directly coupling light into, or 

collecting light from, the cladding as in the MZI structure in section 4.3, SU-8 cladding is 

designed to cover only part of the wide core at both sides. Therefore, only the light in the 

wide core is propagated into the MZI structure, spread and collected at the other end. In 

addition, the uncollected beams in the cladding are scattered into the air before they 

propagate into the SMF. Figure 4-36 presents a COMSOL simulation result on the light 
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intensity distribution for an MZI with a connector size of 100.00 µm×30.00 µm (length × 

width) and thin core length of 600.00 µm between the two connectors. The light is 

expanded to a wider size in the first connector, and spreaded into the cladding and core. 

After these beams travel 600.00 µm in the core and cladding, a part of the light 

propagating in the cladding is coupled into the second connector. 

 

Figure 4-35 Schematic illustration of an MZI with a symmetrical core 

 

Figure 4-37 shows the experimental result and COMSOL simulation on the 

transmission spectra for an MZI with a thin core length of 20.00 mm between the two 

connectors. The size of the connector is 300.00 µm×30.00 µm. These two results agree 

very well. We also notice that the periodicity of the interference in the simulation is a 

little smaller than the experimental result. The reason is that we use RIs of 1.575 (core RI 

at 1550 nm) and 1.565 (cladding RI at 1550 nm) for the COMSOL simulation. In fact, the 

RI varies with the wavelength of the incident light. 
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Figure 4-36 COMSOL simulation on the light intensity distribution for an MZI with the 

connector size of 100.00 µm×30.00 µm, a thin core length of 600.00 µm between the two 

connectors, width of the thin core of 3.20 µm and width of the wide core of 4.00 µm. 
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Figure 4-37 Transmission spectra of an MZI with a thin core length of 20.00 mm: (a) the 

experimental result, and (b) the COMSOL simulation. The size of the connector is 300.00 

µm×30.00 µm. 
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4.5.1 Characterization of the connectors 

The functions of the connectors used in MZIs in this section are to spread and collect 

beams. The light spreading or collection capability can be calculated according to the NA 

of an optical fiber which is the maximum angle that an optical fiber can collect or emit 

light. The equation can be described as follows [104]: 

2 2sin core claddingNA n n n                                                (4.19) 

where n is the RI of the medium outside the fiber and θ is the maximum angle of 

acceptance. For an MZI connector, the equation is:  

              2 2sincore core claddingNA n n n                                  (4.20) 

2

2
sin 1

cladding

core

n

n
                                                   (4.21) 

According to Eqn. (4.21), the RIs of the cladding and core affect the maximum angle 

of acceptance θ which relates to the intensity distribution of light. However, the lengths 

and widths of the connectors also affect the light intensity distribution. Figures 4-38~4-41 

present four kinds of connectors with different lengths, widths and shapes, and their 

COMSOL simulation on the light intensity distribution, respectively. The rectangular 

connector with a size of 50.00 µm× 30.00 µm does not expand the beam widely enough, 

so most of light is coupled into the thin core. On the contrary, the rectangular connector 

with a size of 300.00 µm× 50.00 µm achieves lesser light coupling into the thin core. The 
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isosceles triangular connector with a vertex angle of 5.72
o
 contains the beams in the 

triangular region.  

                                      
(a)                                                                     (b) 

Figure 4-38 Rectangular connector with a size of 300.00 µm× 30.00 µm: (a) the 

morphology, and (b) the COMSOL simulation on the light intensity distribution. 

 

           

                              (a)                                                                     (b) 

Figure 4-39 Rectangular connector with a size of 300.00 µm× 50.00 µm: (a) the 

morphology, and (b) the COMSOL simulation on the light intensity distribution. 
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                               (a)                                                                   (b) 

Figure 4-40 Rectangular connector with a size of 50.00 µm× 30.00 µm: (a) the 

morphology, and (b) the COMSOL simulation on the light intensity distribution. 

 

           

                                 (a)                                                                 (b) 

Figure 4-41 Isosceles triangular connector with a size of 300.00 µm× 30.00 µm: (a) the 

morphology, and (b) the COMSOL simulation on the light intensity distribution. 

 

Figure 4-42 describes the transmission spectra of MZI chips with different kinds of 

connectors. All MZI chips have the widths of the wide and thin core of 5.00 and 3.20 µm, 

respectively, the width of the cladding of 125.00 µm, and a thin core length of 20.00 mm. 

The connector with a length of 50.00 µm and width of 30.00 µm has the strongest 

transmission intensity and weakest interference pattern’s visibility. According to         

Eqn. (4.21), the maximum angle of acceptance θ is 6.46
o
 for the cladding RI of 1.565 and 



Chapter 4 Waveguide-MZI based opto-microfluidic devices                                                    101 

 

 

core RI of 1.575. For the connector with a length of 50.00 µm, the beam can be expanded 

to a width of 11.32 µm. As a result, most of the beam is coupled into the thin core before 

it is expanded to the whole width of the connector, and only a fraction of the beam is 

scattered into the cladding, as shown in the simulation in Fig. 4-40(b). Therefore, the 

interference pattern’s visibility is weak and the transmission intensity is strong in this 

situation. The connector with a length of 300.00 µm and width of 50.00 µm has the 

weakest transmission intensity and strongest interference pattern’s visibility. According to 

the calculation, the beam can be expanded to the full width of the connector (50.00 µm) at 

the length of 220.80 µm. As a result, most of the beam is scattered into the cladding 

instead of coupling into the thin core, as shown in the simulation in Fig. 4-39(b). 

Therefore, the interference pattern’s visibility is stronger and the transmission intensity is 

weaker in this situation. For the connector with a width of 30.00 µm, the beam can be 

expanded to the whole width of the connector at a length of 132.50 µm. Therefore, the 

connectors with the width of 30.00 µm and a length larger than 132.50 µm exhibit almost 

the same transmission intensity and interference pattern’s visibility.  
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Figure 4-42 Transmission spectra of MZIs with different sizes of connectors. The sizes of 

the wide and thin core are 5.00 and 3.20 µm, respectively. The cladding width is 125.00 

µm and there is a thin core length of 20.00 mm between the two connectors. 
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4.5.2 Concentration and temperature sensing 

Similar to the other types of MZI mentioned above, this kind of MZI can also be used for 

RI and temperature sensing. A chip with a thin core size of 2.80 µm× 3.70 µm× 20.00 

mm, cladding cross section of 125.00 µm× 9.95 µm and connector size of 150.00 

µm×30.00 µm has been fabricated. The size of the microchannel is 1.00 mm×75.00 

µm×16.00 mm. Figure 4-43 presents a 3D surface profile of one connector observed by a 

ZYGO nexview
TM

 3D optical surface profiler. Figure 4-44 shows the dependence of the 

peak shift on temperature. 21.7 
o
C is used as the reference temperature (δλ = 0) for these 

measurements. The sensitivity is -0.595 nm/
o
C. 

Salt solutions are infused into the microchannel with a constant temperature of 21.7 

o
C. The dependence of the peak shift on NaCl concentration is shown in Fig. 4-45. 

Distilled water (C = 0 wt%) is used as the reference solution (δλ = 0) for these 

measurements. The sensitivity is -0.102 nm/wt%. The relationship between the peak shift 

in the temperature and NaCl concentration can be described as: 

0.595 0.102T C                                                       (4.22) 

 

Figure 4-43 3D surface profile of a connector observed by 3D optical surface profiler. 

The size of the connector is 150.00 µm×30.00 µm×3.70 µm. 
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Figure 4-44 Dependence of the peak shift on temperature. The MZI chip has a thin core 

size of 2.80 µm× 3.70 µm× 20.00 mm, cross section size of the cladding of 125.00 µm× 

9.95 µm, and connector size of 150.00 µm×30.00 µm. The size of the microchannel is 

1.00 mm×75.00 µm×16.00 mm. 
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Figure 4-45 Dependence of the peak shift on NaCl concentration. The MZI chip has a thin 

core size of 2.80 µm× 3.70 µm× 20.00 mm, cross section size of the cladding of 125.00 

µm× 9.95 µm, and connector size of 150.00 µm×30.00 µm. The size of the microchannel 

is 1.00 mm×75.00 µm×16.00 mm. 
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Sugar solutions are measured using the same chip and processes. Figure 4-46 shows 

the peak wavelength change as a function of sugar concentration, in which the sensitivity 

of the sugar concentration is -9.2×10
-2

 nm/
o
Bx. Distilled water (C = 0 

o
Bx) is used as the 

reference solution (δλ = 0) for these measurements. The relationship between the peak 

shift in the temperature and sugar concentration can be described as: 

20.595 9.2 10T C                                                     (4.23) 
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Figure 4-46 Dependence of the peak shift on sugar concentration. The MZI chip has a 

thin core size of 2.80 µm× 3.70 µm× 20.00 mm, cross section size of the cladding of 

125.00 µm× 9.95 µm, and connector size of 150.00 µm×30.00 µm. The size of the 

microchannel is 1.00 mm×75.00 µm×16.00 mm. 

 

In conclusion, opto-microfluidic MZI sensors based on waveguide with a 

symmetrical core have been designed and demonstrated. This type of sensor can be used 

to measure the RI, concentration and temperature of a liquid. The effects of length and 

width of the connector are discussed in theory and experiment. By choosing the optimum 

width and length of the connectors, a strong interference pattern can be obtained. 
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4.6 Waveguide with discontinuous core 

In this section, waveguide-MZI based opto-microfluidic devices with discontinuous cores 

are designed and fabricated. As shown in Fig. 4-47(a), a tapered SMF couples the light 

into the core. When a beam is transmitted into the gap with a length of l, part of the light 

is recoupled into the core, and the remaining light is scattered into the cladding. Light 

propagates along different paths with the same path length of d (length of the sensing 

arm). An SMF is used to collect the light that comes out from the core and the cladding to 

generate interference. Figure 4-47(b) is the morphology of a waveguide with a 

discontinuous core. The length of the gap is 250.00 µm.  

4.6.1 Effect of gap length 

Four groups of MZI chips have been prepared with gap lengths of 200.00, 150.00, 100.00, 

and 50.00 µm, respectively. All MZI chips have a core cross section of 4.00 µm× 4.50 

µm, sensing arm of 20.00 mm, and cladding cross section of 125.00 µm× 11.00 µm. 

Figure 4-48 presents the corresponding transmission spectra of the MZI chips. An MZI 

chip with a gap length of 200.00 µm manifests the largest extinction ratio. Figure 4-49 

shows the COMSOL simulation on the light transmission intensity at different gap 

lengths at the wavelength of 1561 nm. The simulation results prove that more light is 

scattered into the cladding layer in the chip with a longer gap. Therefore, a longer core 

gap induces higher fringe visibility. 
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                                                           (a) 

 

(b) 

Figure 4-47 MZI structure with a discontinuous core: (a) a schematic illusion of an MZI 

structure, and (b) the morphology of a waveguide with a discontinuous core. The gap 

length is 250.00 µm. 

  

4.6.2 Refractive index/concentration sensing 

A chip with a gap length of 150.00 µm, core cross-section of 4.00 µm× 4.50 µm, sensing 

arm of 21.05 mm, cladding cross section of 125.00 µm × 11.00 µm, and microchannel 

length of 16.00 mm is employed to sense the RI of the salt solution. Figure 4-50 shows 

the transmission spectra and dependence of the peak shift on RI. The sensitivity is            

-159.4 nm/RIU. A chip with a gap length of 200.00 µm, core cross section of 4.00 µm× 

4.50 µm, sensing arm of 20.63 mm, cladding cross section of 125.00 µm× 11.00 µm, and 

microchannel length of 16.00 mm is used to sense the concentration of the CaCl2 solution. 
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Figure 4-51 shows dependence of the peak shift on CaCl2 concentration. The sensitivity is 

-4.01 nm/M. 
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Figure 4-48 Transmission spectra of MZI chips with different gap lengths. All MZI chips 

have a core cross section of 4.00 µm× 4.50 µm, length of the sensing arm of 20.00 mm, 

and cladding cross section of 125.00 µm× 11.00 µm. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4-49 COMSOL simulation on the light transmission intensity at different gap 

lengths. 
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Figure 4-50 RI sensing measurement of an MZI chip with a gap length of 150.00 µm, 

core cross section of 4.00 µm× 4.50 µm, sensing arm of 21.05 mm, cladding cross section 

of 125.00 µm× 11.00 µm, and microchannel length of 16.00 mm: (a) transmission spectra 

of the MZI in different RI solutions, and (b) dependence of the peak shift on RI.  
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Figure 4-51 Dependence of the peak shift on CaCl2 concentration. The MZI chip has a 

gap length of 200.00 µm, core cross section of 4.00 µm× 4.50 µm, sensing arm of 20.63 

mm, a cladding cross section of 125.00 µm× 11.00 µm, and microchannel length of 16.00 

mm. 
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4.6.3 Temperature sensing 

A chip with a gap length of 200.00 µm, core size of 3.20 µm×4.17 µm, cladding size of 

125.00 µm×9.88 µm, and sensing arm of 24.29 mm is used for temperature sensing. 

Figure 4-52 shows the transmission spectra and dependence of the peak shift on 

temperature. 21.7 
o
C is used as the reference temperature (δλ = 0) for these 

measurements. The sensitivity is 0.519 nm/
o
C. 
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Figure 4-52 Temperature sensing measurement of an MZI chip with a gap length of 

200.00 µm, core size of 3.20 µm×4.17 µm, cladding size of 125.00 µm×9.88 µm, and 

sensing arm of 24.29 mm: (a) transmission spectra of the MZI at different temperatures, 

and (b) dependence of the peak shift on temperature. 

 

Due to significant wavelength shifts, temperature sensing characterization over a 

broader range is studied here. Figure 4-53 shows the transmission spectra at the 

temperatures of 20 
o
C and 182 

o
C, respectively. The MZI chip has a core cross section of 

4.00 µm×4.50 µm, sensing arm of 20.00 mm, and cladding cross section of 125.00 

µm×11.00 µm. The transmission spectrum has a smaller periodicity of interference at a 

higher temperature than at a lower temperature.  
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Figure 4-53 Transmission spectra of an MZI chip with a gap length of 200.00 µm, core 

cross section of 4.00 µm× 4.50 µm, sensing arm of 20.00 mm, and cladding cross section 

of 125.00 µm× 11.00 µm at 20 
o
C and 182 

o
C. 

 

Due to the large peak shifts over a wide range of temperature sensing, which is out 

of the range of the light source (1520 - 1620 nm) for a constant peak, we choose multiple 

peaks with the orders of interference of 136, 137, 138, 144 and 149 to measure the peak 

shift as shown in Fig. 4-54(a) and link the peak shifts together which will cause a small 

discrepancy. The experimental results in Fig. 4-54(b) show that the temperature 

sensitivity is almost constant over the low temperature range (20 - 100 
o
C), and increases 

over the high temperature range (>100
 o
C). 20 

o
C is used as the reference temperature (δλ 

= 0) for these measurements. Considering that the thermo-optic coefficient of material is 

usually a quadratic function of temperature [105-107], the RI difference of the core and 

cladding caused by temperature is set as: 

        2

,T ( ) ( )eff
core cladding

dn dn
n T a b T c T T

dT dT
                              (4.24) 

where a, b, and c are undetermined coefficients. Equation (4.14) can be written as  
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where δλT is the peak shift at the temperature of T, Tstart is the starting temperature, λTstart is 

the peak wavelength at the starting temperature, and Δneff,Tstart is the effective RI 

difference between the core and cladding at the starting temperature. In this case, the 

starting temperature is 20 
o
C (293 K), Δneff,Tstart is 5.62×10

-3
 which is calculated by 

COMSOL, and λTstart is 1532.5 nm. A polynomial fit is applied to this experimental data. 

neff,T is obtained as follows: 

,T 6 8 11 27.70 10 4.72 10 8.52 10
eff

core cladding

n dn dn
T T

T dT dT


         


       (4.26) 

which also proves that the thermo-optic coefficients of the SU-8 series are different. The 

RI difference between the core and cladding (Δneff,T) increases with the increasing 

temperature. As a result, a larger phase difference between the two arms is induced at a 

higher temperature and generates a smaller periodicity of the interference in the 

transmission spectrum. 
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Figure 4-54 Temperature sensing measurement of an MZI chip with a gap length of 

200.00 µm, core cross section of 4.00 µm× 4.50 µm, sensing arm of 20.00 mm and 

cladding cross section of 125.00 µm× 11.00 µm: (a) peak wavelengths for the peaks with 

the interference modes of 136, 137, 138, 144 and 149 at different temperatures, and (b) 

dependence of the peak shift on temperature. 
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4.6.4 Simultaneous measurement of refractive index and temperature 

Figure 4-55 describes transmission spectra of an MZI under different environmental 

conditions, the dependence of the shift of the transmission peak wavelengths on RI and 

temperature for the same interference order, and peak shifts in response to RI and 

temperature changes. The MZI chip has a core cross section of 4.00 µm× 4.50 µm, 

sensing arm of 20.00 mm, cladding cross section of 125.00 µm× 11.00 µm, and 

microchannel length of 16.00 mm. Distilled water (n = 1.333) and 21.7 
o
C are used as the 

reference solution and temperature (δλ = 0) for these measurements, respectively. The 

total wavelength shift can be expressed as: 

0.446 159.4T n                                                (4.24) 

Figure 4-56(a) presents the dependence of the shift of the transmission peak 

wavelengths on RI and temperature for another chip. Distilled water (n = 1.333) and 21.7 

o
C are used as the reference solution and temperature (δλ = 0) for these measurements, 

respectively. This chip has a core cross section of 3.20 µm×4.17 µm, sensing arm of 

24.29 mm, cladding cross section of 125.00 µm×9.88 µm, and microchannel length of 

16.00 mm. The sensitivity for temperature sensing is 0.519 nm/
o
C, and the sensitivity for 

RI sensing is -216 nm/RIU. Figure 4-56(b) shows the peak shifts in response to RI and 

temperature changes. Therefore, the total wavelength shift can be expressed as: 

0.519 216T n                                                (4.25) 
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Figure 4-55 Sensing measurement of the RI and temperature for an MZI chip with a core 

cross section of 4.00 µm× 4.50 µm, sensing arm of 20.00 mm, cladding cross section of 

125.00 µm× 11.00 µm, and microchannel length of 16.00 mm: (a)-(d) transmission 

spectra of the MZI under different environmental conditions, (e) dependence of the shift 

of the transmission peak wavelengths on RI and temperature for the same interference 

order, and (f) peak shifts in response to RI and temperature changes. 
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Figure 4-56  Sensing measurement of the RI and temperature for an MZI chip with a core 

cross section of 3.20 µm×4.17 µm, sensing arm of 24.29 mm, cladding cross section of 

125.00 µm×9.88 µm, and microchannel length of 16.00 mm: (a) dependence of the shift 

of the transmission peak wavelengths on RI and temperature, and (b) peak shifts in 

response to RI and temperature changes.  

 

A comparison on the experimental results in Fig. 4-55 and Fig. 4-56 indicates that 

the second MZI chip has a higher RI sensitivity due to the fact that a thinner cladding 

layer is more sensitive to the environment (larger δneff,n), and a higher temperature 

sensitivity due to a smaller core size (smaller Δneff,T). Using these two MZI chips, 

simultaneous measurement of RI and temperature can be achieved. If a solution sample is 

injected into the two chips, the peak shifts can be tested. The relationship between the 

peak shift and the changes in the temperature and RI of the liquid can be expressed with a 

matrix equation: 

                            

1

1

2

0.446 159.4

0.519 216

T

n






      

            
                                    (4.26) 

where Δλ1 and Δλ2 are the shifts in the interference wavelengths of the chips, respectively.  
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In order to prove the validity of the chip in Fig. 4-56, water samples of melted 

iceberg water, pond water and seawater are applied to the chip. The chip temperature is 

maintained at 21.7 
o
C. Distilled water is first infused into the chip for reference, and then 

water samples are injected into the microchannel. Figure 4-57 describes the experimental 

results. The RI of the iceberg is about 1.3347 which is a bit higher than distilled water. 

The RI of the pond water is 1.3360. The RI of the seawater is about 1.3393. By 

calculation [108], the salinity of seawater is about 3.26% which is reasonable for the 

seawater. 
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Figure 4-57  RI measurement on different water samples 

 

In conclusion, we have successfully designed and fabricated an opto-microfluidic 

MZI sensor based on a waveguide with a discontinuous core. The effects of gap length 

have been investigated. The MZI with a longer gap has a better fringe visibility. Different 

water samples have been tested with an MZI chip. These results prove the practicability 
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of opto-microfluidic devices for in situ monitoring of salinity with a high sensitivity and 

low cost. In addition, simultaneous measurement of the temperature and RI of solutions 

can be achieved by using two MZI chips. 
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Chapter 5 Optical microring resonator based 

opto-microfluidic devices 

5.1 Introduction  

In this chapter, ring-shaped and racetracktrack-shaped resonators are fabricated by 

femtosecond laser induced TPP technique, which exhibit linear responses to RI and 

temperature. The effects of the resonator size, resonance wavelength and polarization on 

the sensitivity are exploded in theory and experiment. Two-ring based and polarization 

based opto-microfluidic sensors for simultaneous RI and temperature measurements are 

achieved. 

5.1.1 Theory 

An optical microring resonator is an arrangement of an optical waveguide with one or 

several closed loops. When incident light is coupled into the loop from the input bus 

waveguide (input port), some light with special wavelengths is strongly confined inside 

the ring over multiple round-trips due to the constructive interference. As a result, the 

confinement of light causes a sharp drop of electromagnetic energy and generates 

multiple optical resonance modes in the output spectrum at the through port.  

As shown in Fig. 5-1, the interaction between the bus waveguide and ring can be 

described by the matrix relation: 

12

34

*

*

EE t

EE t





     
     
    

                                              (5.1) 



Chapter 5 Optical microring resonator based opto-microfluidic devices                                  121 

 

 

where t and κ are the transmission and cross-coupling coefficients, respectively. E1 is the 

electric field intensity of the input light, E2 is the electric field intensity of the output light, 

E4 is the electric field intensity of the cross-coupling light, and E3 is the electric field 

intensity of cross-coupling light after a round trip. 

 
Figure 5-1  Schematic illustration of an optical ring resonator 

 

The round trip in the ring is given by 

3 4

j

RE e E                                                    (5.2) 

where αR is the propagation loss coefficient per round trip of the microring, ϕ =2πneffL/λ , 

L is the circumference of the microring, neff is the effective RI of the microring, and λ is 

the wavelength of the light. 

The ratio of E2 and E1 can be derived from Eqns (5.1) and (5.2) to the following 

form: 
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where |t|
2
 and |κ|

2
 are the power splitting ratios of the coupler. The transmission T in the 

output port of the bus waveguide is 

22 2 2 2 2 2 2 22 2
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    (5.4) 

where tr is the real part of t.  

If |t|
2
+|κ|

2 
= 1 (lossless coupling) and |t| = tr, Eqn. (5.4) can be expressed as: 
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When cosϕ = 1, the transmission reaches minimum: 

 

 

22 2

2 22

2

1 2 1

RR R

R R R

tt t
T

t t t

 

  

 
 

  
                               (5.6) 

The transmission will be zero if |t|= αR.  

The resonance wavelengths which cause minimum transmission are expressed as 

[109]: 

2m eff effm n L n R                                              (5.7) 

where λm is the resonance wavelength, m is the mode number of the ring resonator, and R 

is the radius of the ring resonator.  
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5.1.2 Fabrication and applications 

With the development of micro/nanometer technology, the optical microring resonator 

received significant attention due to its high quality factor (Q) and sensitivity in the past 

decade. As an important optical component, various optical microring resonators have 

been designed for different purposes. According to the shapes of the mirocring, the 

resonator can be classified as ring-shaped [110, 111], racetrack-shaped [112, 113], slot 

ring-shaped [114], rectangular-shaped [115], and disk-shaped [116, 117]. Microring 

resonators can be fabricated with different dielectric materials such as silicon [110, 111, 

118], SU-8 [113, 119], PMMA [120], polystyrene (PS) [121], and ultra-fast ceramic 

[122]. Optofluidic ring resonators which use liquids as optical waveguides were also 

reported [115, 123]. Depending on the distance between the ring and the bus waveguide, 

these resonators can also be separated into those with gap coupling [110, 112, 119] and 

gapless coupling [113, 123]. The gap coupling resonators usually have gaps of several 

hundred nanometers between the looped waveguide and bus waveguide. Another 

interesting type of ring resonator is the capillary-based microfluidic structure in which the 

capillary and the tapered fiber are integrated into a miniaturized chip [124-127]. The 

capillary works as a ring resonator and light couples between the capillary and the tapered 

fiber. 

Ring resonators are very sensitive to environmental parameters such as temperature, 

liquid, gas, and coatings. Therefore, one of the important applications of ring resonators is 

sensing, such as RI detection. According to Eqn. (5.7), when a ring resonator is 

surrounded by a special liquid, the resonator generates specific resonance wavelengths to 
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respond to the RI of the liquid. As the liquid RI changes, a shift in the resonance mode 

can be detected. Based on this principle, a variety of chemical and biological liquids have 

been measured such as sodium chloride, glucose, DNA and proteins [116, 121, 128, 129]. 

Yebo et al. designed an ethanol vapour sensor by coating a thin layer of ZnO 

nanoparticles on a ring resonator. The RI of porous ZnO film changes with vapour 

adsorption which results in a shift of the microring resonance [112]. Temperature sensing 

is another kind of RI-based detection. The RIs of the dielectric material are different at 

different temperatures due to the thermo-optic coefficient. Therefore, temperature sensors 

are fabricated based on a ring resonator [109,130]. Teng et al. also devised an athermal 

ring resonator by overlaying a polymer cladding on the silicon wires [131]. A pressure 

sensor based on a ring resonator was reported by Zhao et al. in which mechanical 

deformation of the ring resonator induced resonance wavelength shifts [132]. Heavy 

water has been detected using a ring resonator due to the difference of optical absorption 

between H2O and D2O which gives different Q factors [117]. In addition, by combining 

with optofluidic technology, ring resonator based dye lasers in which the optical feedback 

is provided by whisper gallery modes have been reported [124,125]. Compared with 

conventional dye lasers, these structures possess advantages of simplicity and 

compactness. 
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5.2 Ring resonator 

5.2.1 Ring resonator simulation 

Figure 5-2 shows simulation on the transmission spectra in different values of |t|
2 

and αR
2 

according to Eqn.
 
(5.5). In the simulation, neff is 1.5583, and the radius of the ring R is 

60.00 µm. Multiple optical resonance modes, which are independent of |t| and αR, appear 

in the spectral curves. The interval of the neighbouring resonance wavelength (free 

spectral range) is about 3.96 nm. The extinction ratio is larger when there is a closer 

matching between the αR and |t|, and the Q factor rises with the increase of |t| or/and αR. 
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Figure 5-2  Simulation on the transmission spectra in different |t|
2 

and αR
2
 according to 

Eqn.
 
(5.5) 
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Figure 5-3 shows the COMSOL simulation on distribution of the electromagnetic 

energy of a ring resonator at the wavelengths of 1547 and 1550 nm, respectively. The 

straight bus waveguide with a width of 4.00 µm adjoins the bottom of a ring waveguide 

with a width of 4.00 µm and radius of 60.00 µm. The bus waveguide and ring consist of 

the same material, with an RI of 1.575 (SU-8-2), and surrounded by air. Less 

electromagnetic energy spreads into the looped waveguide at the wavelength of 1547 nm, 

whereas most of the electromagnetic energy is coupled and trapped into the looped 

waveguide at the wavelength of 1550 nm. As a result, a low energy output can be 

observed in the through port at the wavelength of 1550 nm. Figure 5-4 describes the 

simulation on the transmission spectrum in the wavelength range of 1535 -1565 nm, in 

which five optical resonance modes can be observed, including the one at 1550 nm. The 

free spectral range is about 7.2 nm, and the maximum extinction ratio is about 7.0 dB.  

  

                                   (a)                                                                       (b)       

Figure 5-3 COMSOL simulation on the distribution of the electromagnetic energy at the 

wavelengths of 1547 and 1550 nm, respectively. The ring resonator has a radius of 60.00 

µm and waveguide width of 4.00 µm. 
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Figure 5-4 COMSOL simulation on the transmission spectrum of a ring resonator with a 

radius of 60.00 µm and waveguide width of 4.00 µm in the wavelength range of 1535 -

1565 nm 

 

5.2.2 Ring resonator characterization 

SU-8-2 is first spin-coated on a cleaned glass slide with a spin speed of 850 rpm for 40 s, 

and baked on the hotplate at a temperature of 95
o
C for 50 mins. The thickness of the SU-8 

layer is about 4.30 µm. Then a ring-shaped structure and a straight line are scanned by the 

femtosecond laser with a scan speed of 5 µm/s. The ring structure is left on the glass 

substrate after the baking and developing processes. As shown in Fig. 5-5(a), a gapless 

type of ring with a radius of 60.00 µm is produced on the glass slide. The width of the bus 

waveguide is about 4.20 µm, and the width of the ring waveguide is about 4.50 µm. For 

protection from dust, the ring is covered with a PDMS layer. The same experimental 

setup as described in Chapter 4 is adopted to couple light from an Er
3+

 dual-band 

broadband source into the bus waveguide and transmit it into an OSA. Multiple periodic 

resonance modes appear in the transmission spectrum as shown in Fig. 5-5(b). According 

to Eqn. (5.6), the free spectral range can be expressed as: 
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Figure 5-5 Micro-ring with a radius of 60.00 µm and ring cross section of 4.48 µm×4.23 

µm: (a) the morphology, and (b) a transmission spectrum 

 

5.2.1.1 Effect of ring radius 

As shown in Eqn. (5.8), the free spectral range is dependent on the radius of the ring. 

Figure 5-6 presents the transmission spectra of ring resonators with a ring cross section of 

4.48 µm×4.23 µm and different radii. The free spectral range decreases with the increase 

of the radius of the ring. In the ring resonator with a radius of 60.00 µm, the free spectral 

range is about 3.90 nm, which drops to 1.95 nm in the ring resonator with a radius of 

120.00 µm. 
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Figure 5-6 Transmission spectra of ring resonators with a ring cross section of 4.48 

µm×4.23 µm and different radii 

 

5.2.1.2 Effect of resonance wavelength   

The free spectral range is also affected by the resonance wavelength chosen. Figure 5-7 

presents two segments of transmission spectra in the ranges of 1460 - 1470 nm and 1570 -

1580 nm for a ring resonator with a radius of 100.00 µm and ring cross section of 4.48 

µm×4.23 µm. In the first wavelength range, the free spectral range is about 2.10 nm, 
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which slightly increases to 2.30 nm in the second wavelength range. Therefore, the free 

spectral range increases at longer wavelengths. 
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Figure 5-7 Transmission spectra of a ring resonator with a radius of 100.00 µm and ring 

cross section of 4.48 µm×4.23 µm in different wavelength ranges 

 

5.2.1.3 Effect of core size  

In this case, the optical waveguide consists of SU-8-2 core and air cladding. If the core 

size changes, the effective RI of the waveguide (neff) will be affected accordingly. Figure 

5-8 depicts a group of ring resonators with the same radius (80.00 µm) and different core 

sizes. The free spectral range is about 2.99 nm in the resonator with a core size of 4.48 

µm×4.23 µm, which becomes 3.18 nm in the resonator with a core size of 2.50 µm×2.62 

µm. This is reasonable due to the fact that a waveguide with a smaller core has a smaller 

effective RI as proved in Table 4-1. 
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Figure 5-8 Transmission spectra of ring resonators with a radius of 80.00 µm and 

different core sizes 

 

5.2.1.4 Effect of ring number  

A multiple-microring with the same radius is fabricated to test the effect of ring number. 

Figure 5-9 shows the morphologies and transmission spectra of the ring resonators 

consisting of one ring and four rings with the radius of 80.00 µm and ring cross section of 

4.48 µm×4.23 µm, respectively. The free spectral ranges are not affected by the number 

of rings, but the full-width half-maximum of the resonance is much wider for the four-

ring resonator due to the fact that multiple rings have a larger loss than that of a single-

ring resonator. 
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Figure 5-9 Morphologies and transmission spectra of single ring and multiple ring 

resonators with a radius of 80.00 µm and ring cross section of 4.48 µm×4.23 µm. 

 

5.2.1.5 Effect of polarization  

A ring resonator with a rectangular-shaped core is fabricated using a slower scan speed. 

Transverse-electric (TE) and transverse-magnetic (TM) light transmit in the transverse 

and horizontal directions along the plane of the ring, respectively. For a rectangular-

shaped core, the different lateral boundary conditions for TE and TM modes cause a 

structural birefringence. As a result, TE and TM light possess different effective RIs. 

Figure 5-10(a) and (b) show the simulation on TE and TM modes for the waveguide with 

a cross section of 5.51 µm× 4.13 µm (width × height) at the wavelength of 1550 nm. The 
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effective RIs of TE and TM modes are 1.5611 and 15610, respectively. In the 

experiments, a fiber polarizer (Newport
®
) is connected between the SMF and OSA. The 

transmitted light with TE or TM mode is obtained by rotating the angle between the SMF 

and fiber polarizer. Figure 5-10(c) shows the transmission spectra of a ring resonator with 

the TE mode, TM mode and transmitted light without the polarizer (unpolarised light). 

The waveguide cross section is 5.51 µm×4.13 µm, and the radius is 80.00 µm. TE and 

TM modes present different resonance wavelengths due to the different effective RIs, 

whereas the unpolarised light shows the combination of the resonance wavelengths 

specific for the TE and TM modes. 
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Figure 5-10 Effect of polarization on resonance wavelength: (a) and (b) simulation on TE 

and TM modes for a waveguide with the cross section of 5.51 µm× 4.13 µm at the 

wavelength of 1550 nm, and (c) transmission spectra of a ring resonator with a waveguide 

cross section of 5.51 µm×4.13 µm and radius of 80.00 µm in different polarized modes. 
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5.2.3 Ring resonator based temperature sensing 

Due to the high thermo-optic coefficient of SU-8 material, this type of ring resonator can 

be used to sense temperature. The resonance peak shift Δλm,T is expressed as: 

,

, , , , ,

,

2 2
( )

m T

m T m T m T eff T eff T

eff T

R R n n
n n T T

m m T n T

   
  

 
                    (5.9) 

where δn/δT is the thermo-optic coefficient, and ΔT is the temperature change. 

Figure 5-11 shows the transmission spectra at different temperatures and dependence 

of the peak shift on temperature. The ring resonator has a radius of 60.00 µm and ring 

cross section of 4.48 µm×4.23 µm. A blue shift occurs as the temperature increases due to 

the negative thermo-optic coefficient of SU-8 material. The sensitivity is about -9.10×10
-2
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                                        (a)                                                              (b) 

Figure 5-11 Temperature sensing measurement of a ring resonator with a radius of 60.00 

µm and ring cross section of 4.48 µm×4.23 µm: (a) transmission spectra at different 

temperature, and (b) dependence of the peak shift on temperature  
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5.2.4 Ring resonator based refractive index sensing 

If the ring is covered by a microchannel (Fig. 5-12), the effective RI of the ring resonator 

can be modified by infusing liquids of different RIs. Therefore, a ring resonator based RI 

sensor is designed. The equation for RI sensing can be described as follows: 

   
, ,

, , , , , ,

,

2 2
( )

eff n m n

m n m n m n eff n eff n eff n

eff n

nR R
n n n

m m n

  
                        (5.10) 

where δneff,n is the change of the effective RI of the ring resonator.  

 

Figure 5-12 Schematic illustration of an optical ring resonator based RI sensor 

 

Figure 5-13 shows the transmission spectra in different RI environment and 

dependence of the peak shift on the RI in a wavelength range of 1465 - 1470 nm for a 

resonator with a radius of 100.00 µm and ring cross section of 4.48 µm×4.23 µm. A red 

shift occurs as the RI increases due to the fact that the effective RI increases with the 

increase of liquid RI which is proved in Table 4-1. The sensitivity is about 17.56 nm/RIU. 

In addition, resonance wavelengthes induced by both TE and TM modes can be clearly 

observed when the resonator is surrounded by liquids with RIs of 1.350 and 1.359, 
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respectively, whereas the extinction ratios of several resonance (TM mode induced) 

significatively decrease when liquid with a RI of 1.370 or 1.380 is infused into the 

microchannel. The reason is that the ring resonator has different transmission coefficients 

t and propagation loss coefficients αR for TE and TM modes and these coefficients also 

change with the environmental parameters such as RI and temperature. 
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Figure 5-13 RI sensing measurement of a ring resonator with a radius of 100.00 µm and 

ring cross section of 4.48 µm×4.23 µm: (a) transmission spectra in different RIs, and (b) 

dependence of the peak shift on RI  

 

5.2.5 Two-ring based simultaneous refractive index and temperature sensing 

5.2.5.1 Two-ring resonator 

A two-ring resonator is designed as shown in Fig. 5-14, in which the rings have the same 

radius. If the rings are covered with different materials such as gas, liquid, or polymer, the 

two rings will generate different resonance wavelengths which cause an alteration 

between the two resonance peaks. Two chip samples with a ring radius of 60.00 µm and 

ring cross section of 4.48 µm×4.23 µm are fabricated. In the first sample, two rings are 
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both surrounded by air. In the second sample, one of the rings is surrounded by air and 

the other one is surrounded by PDMS (n = 1.400). Figure 5-15(a) shows the transmission 

spectrum of the first sample. In this case, two series of resonance wavelengths, which are 

induced by the two rings, overlap. Figure 5-15(b) shows the transmission spectrum of the 

second sample. In this situation, the resonance wavelengths of the ring surrounded by air 

are almost unchanged when they are compared with the first sample, whereas the 

resonance wavelengths of the ring surrounded by PDMS shift to the red side due to the 

fact that the effective RI of the ring surrounded by PDMS is larger than that surrounded 

by air. In addition, the free spectral range of the ring resonator surrounded by air is 3.883 

nm which is slightly larger than that of the ring resonator surrounded by PDMS (3.857 

nm), as shown in Fig. 5-15(c). The reason is that the ring surrounded by PDMS has a 

higher effective RI than that of the ring surrounded by air. It has a smaller free spectral 

range according to Eqn. (5.8). The mode number of the two-ring resonator is also 

calculated by Eqn. (5.8). 

 

Figure 5-14 Schematic illustration of a two-ring resonator structure 
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Figure 5-15 Two-ring resonator: (a) a transmission spectrum of a two-ring resonator in 

which both rings are surrounded by air, (b) a transmission spectrum of a two-ring 

resonator in which one ring is surrounded by air and the other ring is surrounded by 

PDMS, and (c) resonance wavelengths induced by two rings. All rings have the same 

radius of 60.00 µm and ring cross section of 4.48 µm×4.23 µm.  

 

5.2.5.2 Simultaneous refractive index and temperature sensing 

In a unique two-ring resonator structure designed and fabricated in this study, illustrated 

in Fig. 5-16(a), a PDMS layer with a microchannel is employed to cover the two-ring 
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resonator. In this design, the microchannel covers one of the rings (Fig. 5-16(b)), and the 

PDMS layer covers the other ring (Fig. 5-16(c)). However, air still surrounds this ring due 

to an air gap generated between the PDMS and ring. Figure 5-17 presents a transmission 

spectrum for a two-ring resonator with a radius of 60.00 µm and ring cross section of 4.48 

µm×4.23 µm. The chip temperature is maintained at 27.7 
o
C, and the microchannel is 

filled with an NaCl solution with an RI of 1.359. Two series of resonance peaks 

alternately appear in the transmission spectrum. 

 

 

 (a) 

      

                                      (b)                                                         (c) 

Figure 5-16 Two-ring resonator sensor: (a) a schematic illustration of a two-ring resonator 

structure, (b) the morphology of a resonance ring covered by a microchannel, and (c) the 

morphology of the other resonance ring covered by a PDMS layer. Both resonance rings 

have a radius of 60.00 µm and ring cross section of 4.48 µm×4.23 µm. 
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Figure 5-17 Transmission spectrum of a two-ring resonator with a radius of 60.00 µm and 

ring cross section of 4.48 µm×4.23 µm. One of the rings is covered by PDMS, and the 

other ring is surrounded by an NaCl solution with an RI of 1.359. The chip temperature is 

maintained at 27.7 
o
C. 

 

5.2.5.2.1 Refractive index sensing  

NaCl solutions with different RIs are infused into the microchannel in turn to measure the 

resonance peak shifts. As shown in Fig. 5-18, the resonance wavelengths caused by the 

ring surrounded by air gap are unchanged, whereas the resonance wavelengths caused by 

the ring surrounded by liquid appear red shifted with the increasing RI of liquid. The 

sensitivity of the RI is about 24.2 nm/RIU. 
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Figure 5-18 Dependence of the peak shift of a two-ring resonator with a radius of 60.00 

µm and ring cross section of 4.48 µm×4.23 µm on RI 

 

5.2.5.2.2 Temperature sensing  

The microchannel is filled with distilled water. The temperature of the chip is increased 

by raising the temperature of the hotplate step by step. At each step, the transmission 

spectrum is recorded when the chip reaches a thermodynamic equilibrium. As shown in 

Fig. 5-19, both series of resonance wavelengths exhibit blue shifts with simlar 

sensitivities of -9.10×10
-2

 nm/
o
C and -9.22×10

-2
 nm/

o
C, respectively. The experimental 

results imply that the effective thermo-optic coefficient of a ring resonator δn/δT will not 

change in different RI environment.  
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Figure 5-19 Dependence of the peak shift of a two-ring resonator with a radius of 60.00 

µm and ring cross section of 4.48 µm×4.23 µm on temperature 

 

5.2.5.2.3 Simultaneous refractive index and temperature sensing 

In this case, the ring surrounded by air gap is used for sensing temperature, whereas the 

ring surrounded by liquid is used for RI sensing. Therefore, the relationship between the 

shift of the resonance wavelength and the changes in temperature and RI of the liquid can 

be expressed with a matrix equation: 
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                       (5.11) 

where ΔλAir and ΔλLiquid are the shifts in the resonance wavelengths of the air gap-

surrounded and liquid-surrounded rings, respectively, and ΔT and Δn stand for the 

changes in temperature and RI, respectively. Figure 5-20 presents transmission spectra of 

the two-ring resonator under different environmental conditions. The comparision of 
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actual and test values is listed in Table 5-1. The maxium error is only 0.46% which 

demonstrates that the experimental results agree with the matrix equation. 
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Figure 5-20 Transmission spectra of a two-ring resonator with a radius of 60.00 µm and 

ring cross section of 4.48 µm×4.23 µm under different environmental conditions. 
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Table 5-1 Comparison of actual values and test values in different environment for a two-

ring resonator with a radius of 60.00 µm 

Sample 
Actual value  Peak shift Test value Error% 

T(
o
C) RI(RIU) ΔλAir(nm) ΔλLiquid(nm) T(

o
C) RI(RIU) T RI 

1 
(Ref.) 

21.7 1.333 0 0 - - - - 

2 21.7 1.340 0.022 0.142 21.46 1.3398 1.1% 0.01% 

3 27.7 1.333 -0.434 -0.386 27.52 1.3354 0.65% 0.18% 

4 27.7 1.359 -0.434 0.346 27.52 1.3656 0.65% 0.46% 

 

5.3 Racetrack resonator 

5.3.1 Racetrack resonator characterization 

Racetrack resonator is a type of microring resonator with a racetrack-shaped structure. As 

shown in Fig. 5-21(a), two half circles connected with two straight lines are designed to 

generate a looped racetrack waveguide. The radius of the circle is R, and the length of the 

straight line (coupling length) is L. A straight bus waveguide is located at the bottom of 

the looped waveguide with a gap of G between the centers of the bus waveguide and the 

lower straight line. In this case, Eqn. (5.7) can be expressed as:     

                                      (2 2 )m effm R L n                                                    (5.12)    

Figure 5-21(b) shows the morphology of a racetrack resonator with a radius of 

60.00 µm, coupling length of 30.00 µm, and gap of 4.00 µm. The width of the bus 

waveguide is about 4.20 µm, and the width of the looped waveguide is about 4.50 µm, 

which means that the bus waveguide and the looped waveguide are entirely 
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interconnected. Figure 5-21(c) is a 3D profile of this racetrack resonator observed by a 

ZYGO nexview
TM

 3D optical surface profiler (USA), and Figure 5-21(d) is the 

transmission spectrum of this resonator. Compared with the transmission spectrum of a 

ring resonator in Fig. 5-5, the racetrack resonator exhibits a higher extinction ratio due to 

the fact that the longer coupling length induces a smaller transmission coefficient |t| of the 

resonator which causes a closer matching between αR and |t|.  
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Figure 5-21 Racetrack resonator: (a) a schematic illustration of a racetrack resonator 

structure, (b) the morphology of a racetrack resonator with a radius of 60.00 µm, coupling 

length of 30.00 µm, and gap of 4.00 µm, (c) 3D profile of a racetrack resonator observed 

by a ZYGO 3D optical surface profiler, and (d) transmission spectrum. 
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Figure 5-22 simulates a transmission spectrum of a racetrack resonator with a radius 

of 60.00 µm, gap of 4.00 µm, coupling length of 10.00 µm, and width of the waveguide 

of 4.00 µm in the wavelength range of 1535 - 1565 nm. Four optical resonance modes can 

be observed. The free spectral range is about 7.0 nm. The insets show the distribution of 

the electromagnetic energy of the racetrack resonator at the wavelengths of 1547 and 

1544.9 nm, respectively. The light propagates along the bus waveguide without influence 

by the looped waveguide at the wavelength of 1547 nm. However, the majority of the 

energy is trapped in the looped waveguide at the wavelength of 1544.9 nm which results 

in a low energy output at the through port. 

5.3.1.1 Effect of coupling length 

According to Eqn. (5.8), the free spectral range for a racetrack resonator is expressed as: 

2

1
1 (2 2 )

m m
m m m

effm R L n

 
  


   

 
           for 1m                 (5.13) 

in which the free spectral range is dependent on the radius R and coupling length L. If the 

radius remains a constant, the free spectral range will change with the coupling length. 

Figure 5-23 presents the transmission spectra of racetrack resonators with a radius of 

60.00 µm, width of waveguide of 4.50 µm, gap of 4.00 µm, and different coupling 

lengths. The free spectral range is about 3.60 nm when the coupling length is 30.00 µm, 

and drops to 2.80 nm when the coupling length is 90.00 µm. The free spectral range 

decreases with the increase of the coupling length. In addition, the extinction ratio of the 

resonance increases with the increase of the coupling length. In the ring resonator, the 
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maximum extinction ratio is about 5.0 dB as shown in Fig. 5-15.  It increases to 12 dB in 

the racetrack resonator with a coupling length of 10.00 µm, and reaches 30 dB in the 

racetrack resonator with a coupling length of 30.00 µm.  

 

Figure 5-22 COMSOL simulation on the transmission spectrum of a racetrack resonator 

with a radius of 60.00 µm, waveguide width of 4.00 µm, gap of 4.00 µm and coupling 

length of 10.00 µm. The insets show the distribution of the electromagnetic energy of the 

racetrack resonator at the wavelengths of 1547 nm and 1544.9 nm, respectively.  
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Figure 5-23 Morphologies and transmission spectra of racetrack resonators with a radius 

of 60.00 µm, gap of 4.00 µm and different coupling lengths. 
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5.3.1.2 Effect of resonance wavelength  

Figure 5-24 presents two transmission spectra in the wavelength ranges of 1530 - 1540 

nm and 1590 - 1604 nm for a racetrack resonator with a radius of 60.00 µm, coupling 

length of 90.00 µm, and gap of 4.00 µm. In the wavelength range of 1530 - 1540 nm, the 

free spectral range is about 2.50 nm, which slightly increases to 2.80 nm in the 

wavelength range of 1590 - 1604 nm. Therefore, the free spectral range increases with the 

increase of the resonance wavelength. 
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Figure 5-24 Transmission spectra of a racetrack resonator with a radius of 60.00 µm, 

coupling length of 90.00 µm, and gap of 4.00 µm at different wavelength ranges 

 

5.3.1.3 Effect of gap  

For the designed racetrack resonators, the gap (light coupling) region between the bus 

waveguide and coupling line is fabricated by multiple-scan with the femtosecond laser. 

Figures 5-25 and 5-26 show the experimental results of the racetrack resonators with a 

radius of 60.00 µm and different gap distances. Figure 5-27 indicates the extinction ratio 
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of the resonance in different gap distances. The racetrack resonator with a gap of 4.00 µm 

reaches a maximum extinction ratio of 30 dB due to the fact that the transmission 

coefficient |t| has the closest matching with the propagation loss coefficient αR, whereas 

the racetrack resonator with a narrower or wider gap has a lower extinction ratio of the 

resonance. 
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Figure 5-25 Morphologies and transmission spectra in racetrack resonators with a radius 

of 60.00 µm and racetrack gaps of 0 and 2.00 µm 
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Figure 5-26 Morphologies and transmission spectra in racetrack resonators with a radius 

of 60.00 µm and racetrack gaps of 4.00, 6.00 and 8.00 µm 
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Figure 5-27 Dependence of the extinction ratio of the resonance on gap distance 

 

5.3.1.3 Effect of polarization  

The cross section of the racetrack resonator is usually about 4.50 µm×4.15 µm (width × 

height) after an 850 rpm spin-coat and scanning with a speed of 5 µm/s. Figure 5-28 

describes the simulation on the field distribution of TE and TM modes for this core 

surrounded by air at the wavelength of 1550 nm. The effective RIs of TE and TM modes 

are 1.5583 and 1.5586, respectively. The TM mode has a slightly larger effective RI than 

the TE mode. As a result, when the unpolarised light is coupled into the bus waveguide, 

two series of racetrack resonances are induced by the TE and TM modes. In Fig. 5-29, 

TM and TE resonances sequentially appear in a transmission spectrum of a racetrack 

resonator with a radius of 60.00 µm, gap of 4.00 µm, and coupling length of 90.00 µm. 

The free spectral range of the TE mode is 2.623 nm which is almost the same as that of 

the TM mode (2.621 nm). 

 



Chapter 5 Optical microring resonator based opto-microfluidic devices                                  153 

 

 

                                
(a)                                                                    (b) 

Figure 5-28 COMSOL simulation on the field distribution of TE and TM modes. The 

core with a cross section of 4.50 µm×4.15 µm is surrounded by air. The light wavelength 

is 1550 nm. The effective RIs are 1.5583 and 1.5586, respectively. 
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Figure 5-29 Transmission spectrum (a) and free spectral range (b) of a racetrack resonator 

with a radius of 60.00 µm, gap of 4.00 µm, and coupling length of 90.00 µm. 

 

5.3.2 Racetrack resonator based temperature sensing 

Similar to the ring resonator, the resonance peak shift Δλm of a racetrack resonator can be 

expressed as: 
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This is exactly the same as Eqn. (5.9) in which the sensitivity of the temperature depends 

on the wavelength, effective RI, and thermo-optic coefficient. 

5.3.2.1 Effect of wavelength 

A racetrack resonator with a radius of 60.00 µm, coupling length of 90.00 µm, and gap of 

4.00 µm are fabricated. The microchannel is filled with distilled water. Figure 5-30 shows 

the dependences of the peak shift on temperature in two ranges of the wavelength. A blue 

shift occurs as the temperature increases due to the negative thermo-optic coefficient of 

the SU-8. The sensitivity is about -8.78×10
-2

 nm/
o
C in the range of 1528 - 1538 nm, 

which rises to -9.16×10
-2

 nm/
o
C in the range of 1589 - 1599 nm. This result matches Eqn. 

(5.14) in which the sensitivity is a linear function of the wavelength. 

5.3.2.2 Effect of coupling length and gap 

Several racetrack resonators with different coupling lengths and gaps have been 

investigated. Figure 5-31 presents the sensitivities of different samples. The sensitivities 

are about -8.80×10
-2

 nm/
o
C which exhibit no obvious dependence on the coupling length 

and gap. 
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Figure 5-30 Transmission spectra and resonance wavelengths at different temperatures. 

The racetrack resonator has a radius of 60.00 µm, coupling length of 90.00 µm, and gap 

of 4.00 µm. The microchannel is filled with distilled water. 
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Figure 5-31 Dependence of the temperature sensitivity of racetrack resonators with a 

radius of 60.00 µm on gap and coupling length 

 

5.3.2.3 Effect of polarization 

The temperature sensitivities of the TE and TM modes are also studied. Figure 5-32 

shows the simulation on the effective RIs of the TE and TM modes at different 

temperatures. The core with the cross section of 4.50 µm×4.15 µm is surrounded by 

water, and the light wavelength is 1550 nm. Both the effective RIs of the TE and TM 

modes decrease with the increase of the temperature. The slopes (effective thermo-optic 

coefficients) are almost the same. Figure 5-33 presents the transmission spectra and 

dependence of the resonance wavelength of a racetrack resonator on temperature. The 

racetrack resonator has a cross section of 4.50 µm×4.15 µm, radius of 60.00 µm, coupling 

length of 90.00 µm, and gap of 4.00 µm. The microchannel is filled with distilled water. 

The sensitivities of the TE and TM resonances have no obvious difference with a value of 

about -8.80×10
-2

 nm/
o
C. The reason is that TE and TM modes have the same effective 
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thermo-optic coefficient according to the simulation, and the effect of the difference in 

the effective RI can be neglected. 
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Figure 5-32 COMSOL simulation on effective RIs of the TE and TM modes at different 

temperatures. The core with a cross section of 4.50 µm×4.15 µm is surrounded by water. 

The wavelength is 1550 nm. 
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Figure 5-33 Effect of polarization on temperature sensing: (a) transmission spectra of a 

racetrack resonator with a core cross section of 4.50 µm×4.15 µm, radius of 60.00 µm, 

coupling length of 90.00 µm, and gap of 4.00 µm at different temperatures, and (b) 

dependence of the TE and TM resonance wavelength on temperature.  



Chapter 5 Optical microring resonator based opto-microfluidic devices                                  158 

 

 

5.3.3 Racetrack resonator based refractive index sensing 

The equation for RI sensing can be described as follows: 
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This is exactly the same as Eqn. (5.10), in which the sensitivity of the RI depends on the 

wavelength, effective RI, and RI difference. 

5.3.3.1 Effect of wavelength 

Figure 5-34 shows the dependence of the peak shift on the RI in two different wavelength 

ranges for a resonator with a radius of 60.00 µm, coupling length of 30.00 µm, and gap of 

4.00 µm. A red shift occurs with the increasing RI which has been proved in the ring 

resonator in section 5.2.3. The sensitivities are about 25.34 nm/RIU in the wavelength 

range of 1528 - 1540 nm and 28.37 nm/RIU in the wavelength range of 1588 - 1600 nm. 

Measurement performed at a longer resonance wavelength possesses a higher sensitivity 

of RI.  

5.3.3.2 Effect of coupling length and gap 

The RI sensitivities for the samples with different gaps and coupling lengths have also 

been studied, which is shown in Fig. 5-35. The sensitivities of the RI remain 25 nm/RIU 

regardless of the coupling length and gap. The sensitivity of a resonator with a coupling 

length of 30.00 µm and gap of 2.00 µm drops to 16 nm/RIU (red dot circle) due to 

polarization which will be discussed in the following section 5.3.3.3.  
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Figure 5-34 Transmission spectra and resonance wavelengths in different RI liquids. The 

racetrack resonator has a radius of 60.00 µm, coupling length of 30.00 µm, and gap of 

4.00 µm. 
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Figure 5-35 RI sensitivities for racetrack resonators with different gaps and coupling 

lengths. 

 

5.3.3.3 Effect of polarization 

Figure 5-36 presents the simulation on the effective RIs of the TE and TM modes 

surrounded by different liquids. Both the effective RIs of the TE and TM modes increase 

with the increase of the liquid RI. However, unlike the temperature changes, the effective 

RI of the TE mode is more sensitive to the changes of the liquid RI than that of the TM 

mode due to the fact that for a strip waveguide, the TE light which transmits in the 

transverse direction interacts with the liquid from left and right surfaces, whereas the TM 

light which transmits in the horizontal direction interacts with the liquid from the top 

surface. The RI sensitivities for the TE and TM modes have a great difference according 

to the experimental results shown in Fig. 5-37. The sensitivity of the TM mode is about 

16 nm/RIU, and the sensitivity of the TE mode is about 25 nm/RIU. TE resonances 

present a higher RI response than TM resonances. This is the reason that the RI sensitivity 
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of the resonator with a coupling length of 30.00 µm and gap of 2.00 µm drops to 16 

nm/RIU (TM modes) when the other RI sensitivities are 25 nm/RIU (TE modes) in Fig. 

5-35.  
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Figure 5-36 COMSOL simulation on effective RIs of the TE and TM modes in different 

RI liquids. The core has a cross section of 4.50 µm×4.15 µm, and the wavelength is 1550 

nm. 
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Figure 5-37 Effect of polarization on RI sensing: (a) transmission spectra of a racetrack 

resonator with a cross section of core of 4.50 µm×4.15 µm, radius of 60.00 µm, coupling 

length of 90.00 µm, and gap of 4.00 µm in different RI liquids, and (b) dependence of the 

TE and TM resonance wavelengths on RI. 
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5.3.4 Simultaneous refractive index and temperature sensing with a two-racetrack 

resonator 

A two-racetrack resonator has been fabricated on a bus waveguide. One of the racetracks 

is covered with a PDMS layer for temperature sensing, and the other one is covered with 

a microchannel for RI sensing. Figure 5-38(a) depicts the schematic illustration of the 

structure, and (b) presents the transmission spectrum of a two-racetrack resonator with a 

radius of 60.00 µm, coupling length of 30.00 µm, and gap of 4.00 µm. The microchannel 

is filled with an NaCl solution with an RI of 1.370. Two series of resonances appear on 

the spectrum, in which the group marked with red stars comes from the resonator covered 

with PDMS layer, whereas the other group marked with blue dots comes from the 

resonator covered with an NaCl solution. 

5.3.4.1 Refractive index sensing  

NaCl solutions with different RIs are infused into the microchannel in turn to measure the 

shifts of the resonance wavelengths. As shown in Fig. 5-39, the resonance wavelengths 

induced by the temperature sensing racetrack are unchanged, whereas a red shift appears 

in the resonance wavelengths induced by the RI sensing racetrack with the increase of the 

liquid RI. The RI sensitivity is about 16.46 nm/RIU.  
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Figure 5-38 Two-racetrack resonator: (a) a schematic illustration of a two-racetrack 

resonator, and (b) a transmission spectrum of a two-racetrack resonator with a radius of 

60.00 µm, coupling length of 30.00 µm, and gap of 4.00 µm. 
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Figure 5-39  RI sensing with a two-racetrack resonator. The two-racetrack resonator has a 

radius of 60.00 µm, coupling length of 30.00 µm, and gap of 4.00 µm.  
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5.3.4.2 Temperature sensing  

The microchannel is filled with distilled water, and the chip is heated on a small hotplate. 

The temperature of the resonator varies following the change in the temperature of the 

hotplate. As shown in Fig. 5-40, the resonance wavelengths induced by two racetracks 

both move to the blue side with almost the same sensitivities of -10.10×10
-2

 and                

-10.16×10
-2

  nm/
o
C. 
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Figure 5-40 Temperature sensing with a two-racetrack resonator. The two-racetrack 

resonator has a radius of 60.00 µm, coupling length of 30.00 µm, and gap of 4.00 µm. 

 

5.3.4.3 Simultaneous refractive index and temperature sensing 

From the experimental results described above, the relationship between the resonance 

wavelength and the changes in the temperature and RI of a liquid can be expressed with a 

matrix equation: 
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                               (5.16) 
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where ΔλAir and ΔλLiquid are the resonance wavelength shifts of the temperature sensing 

and RI sensing resonances, respectively, and ΔT and Δn stand for the changes in the 

temperature and RI, respectively. Figure 5-41 presents transmission spectra of the two-

racetrack resonator under different environmental conditions. The comparision of actual 

and test values is listed in Table 5-2. The maxium error is only 2.40% which 

demonstrates that the experimental results agree with the matrix equation.  
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Figure 5-41  Transmission spectra of a two-racetrack resonator with a radius of 60.00 µm, 

coupling length of 30.00 µm, and gap of 4.00 µm under different environmental 

conditions 
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Table 5-2 Comparison of actual values and test values in different environment for a two-

racetrack resonator with a radius of 60.00 µm  

Sample 
Actual value  Peak shift Test value Error% 

T(
o
C) RI(RIU) ΔλAir(nm) ΔλLiquid(nm) T(

o
C) RI(RIU) T RI 

1 
(Refer) 

21.7 1.333 0 0 - - - - 

2 21.7 1.350 0.024 0.242 21.46 1.3462 1.11% 0.28% 

3 31.7 1.333 -0.934 -0.912 30.95 1.3332 2.37% 0.02% 

4 26.7 1.350 -0.440 -0.286 26.06 1.3425 2.40% 0.56% 

 

Figure 5-42 presents the transmission spectrum of another two-racetrack resonator 

with a radius of 50.00 µm, coupling length of 30.00 µm, and gap of 4.00 µm. The 

microchannel is filled with distilled water. Two groups of resonances appear in the 

spectrum. The resonance wavelengths marked with red stars are induced by the racetrack 

covered with PDMS layer, and the resonance wavelengths marked with blue dots are 

induced by the racetrack covered with distilled water.  
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Figure 5-42 Transmission spectrum for a two-racetrack resonator with a radius of 50.00 

µm, coupling length of 30.00 µm and gap of 4.00 µm 
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Figures 5-43 and 5-44 show the RI and temperature sensing of this two-racetrack 

resonator. The experimental results are similar to those of the last sample. The RI 

sensitivity is about 17.22 nm/RIU, and the temperature sensitivities are about -8.41×10
-2

 

nm/
o
C and -8.20×10

-2
 nm/

o
C. Therefore, the relationship between the resonance 

wavelength and the changes in the temperature and RI of the liquid can be expressed with 

a matrix equation: 
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                         (5.17) 

Figure 5-45 presents transmission spectra of the two-racetrack resonator under 

different environmental conditions. The comparision of actual and test values is listed in 

Table 5-3. The maxium error is only 3.08% which demonstrats that the experimental 

results agree with the matrix equation. The resonance wavelength for RI sensing is 

smaller than the resonance wavelength for temperature sensing in two adjacent 

resonances. The resonance interval will decrease with the increase of the liquid RI. As a 

result, two resonance wavelengths could be overlapped for some liquids.  
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Figure 5-43  RI sensing of a two-racetrack resonator with a radius of 50.00 µm, coupling 

length of 30.00 µm, and gap of 4.00 µm 
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Figure 5-44  Temperature sensing of a two-racetrack resonator with a radius of 50.00 µm, 

coupling length of 30.00 µm, and gap of 4.00 µm 
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Figure 5-45  Transmission spectra of a two-racetrack resonator with a radius of 50.00 µm, 

coupling length of 30.00 µm, and gap of 4.00 µm under different environmental 

conditions 

 

Table 5-3 Comparison of actual values and test values in different environment for a two-

racetrack resonator with a radius of 50.00 µm  

Sample 
Actual value  Peak shift Test value Error% 

T(
o
C) RI(RIU) ΔλAir(nm) ΔλLiquid(nm) T(

o
C) RI(RIU) T RI 

1 
(Refer) 

25.7 1.333 0 0 - - - - 

2 25.7 1.350 -0.026 0.226 26.0 1.3476 1.17% 0.18% 

3 35.7 1.333 -0.936 -0.806 36.8 1.3392 3.08% 0.47% 

4 30.7 1.350 -0.390 -0.156 30.3 1.3460 1.30% 0.30% 
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5.3.5 Simultaneous refractive index and temperature sensing for multiple liquid 

samples  

Triple-racetrack resonator is designed as shown in Fig. 5-46. One of the racetracks which 

is covered with PDMS layer is used for temperature sensing, and the other two racetracks 

which are covered with microchannels are used for RI sensing. Therefore, two kinds of 

liquid samples can be infused into the microchannels to measure the temperature and RIs 

at the same time. This will markedly decrease the testing cost. As it is known that each of 

the racetracks generates one series of resonance pattern, in order to avoid overlapping 

three series of resonance patterns, the perimeters of three racetracks are slightly changed. 

Figure 5-47(a) presents the transmission spectrum of a triple-racetrack resonator with a 

radius of 60.00 µm, gap of 4.00 µm, and coupling lengths of 25.00, 30.00 and 35.00 µm, 

respectively. The resonator with a coupling length of 25.00 µm is covered with a PDMS 

layer, and the resonators with the coupling lengths of 30.00 and 35.00 µm are covered 

with microchannels which are filled with distilled water. Three series of resonances can 

be clearly distinguished. Figure 5-47(b) shows that the free spectral ranges are 3.522, 

3.585 and 3.687 nm, respectively. 

 
Figure 5-46 Schematic illustration of a triple-racetrack resonator for simultaneous RI and 

temperature sensing for multiple liquid samples 
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Figure 5-47 Transmission spectrum and free spectral ranges for a triple-racetrack 

resonator with a radius of 60.00 µm, gap of 4.00 µm, and coupling lengths of 25.00, 

30.00 and 35.00 µm, respectively. 

 

The racetrack with a coupling length of 25.00 µm is labelled as T sensing, and 

racetracks with coupling lengths of 30.00 and 35.00 µm are marked with RI sensing I and 

RI sensing II, respectively. Figure 5-48(a) shows the transmission spectrum at a 

temperature of 21.7 
o
C when both microchannels are filled with distilled water. Figure 5-

48(b) shows the dependence of the resonance wavelength on RI when the RI sensing I is 

filled with different salt solutions. The temperature sensing and RI sensing II resonance 

wavelengths do not change, whereas the RI sensing I resonance exhibits a linear response 

with a sensitivity of 28.2 nm/RIU. When the RI sensing II resonator is filled with 

different RI salt solutions, similar results have been obtained as shown in Fig. 5-48(c). 

The sensitivity of the RI sensing II resonance is about 24.2 nm/RIU. If the chip is heated 

on a hotplate, all series of resonance wavelengths exhibit blue-shifted. The sensitivities 

are about -8.65×10
-2

, -7.12×10
-2

 and -10.52×10
-2

 nm/
o
C, respectively.  
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Figure 5-48 RI and temperature sensing with a triple-racetrack resonator. The triple-

racetrack resonator has a radius of 60.00 µm, gap of 4.00 µm and coupling lengths of 

25.00, 30.00 and 35.00 µm. 

 

As shown in the experimental results described, the relationship between the 

resonance wavelength and the changes in the temperature and RI of the two liquids can be 

expressed with a matrix equation: 
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where ΔλAir, ΔλLiquid1 and ΔλLiquid2 are the resonance wavelength shifts of the temperature 

sensing and RI sensing resonances, respectively, and ΔT, Δn1 and Δn2 stand for the 

changes in the temperature and RIs, respectively. 

In conclusion, optical ring and racetrack resonators have been successfully designed 

and fabricated using TPP technique. The effects of size of the resonator, wavelength and 

polarization are investigated. By combining with microchannels, an innovative type of 

opto-microfluidic sensor for temperature and RI sensing has been achieved. Simultaneous 

temperature and the RI measurement of salt solutions are implemented. Comparing the 

ring and racetrack resonators, the racetrack resonator has a higher extinction ratio which 

makes it easier to distinguish the shifts of the resonance wavelengths. Also, a structure 

which can simultaneously measure the RI and temperature for two liquid samples has 

been designed. The technique demonstrated here significantly enhances the capability and 

efficiency of the testing at a reduced cost. 

 

 



Chapter 6 Opto-microfluidic devices for particle sorting and refractive index sensing      174 

 

 

Chapter 6 Opto-microfluidic devices for particle 

sorting and refractive index sensing 

6.1 Introduction 

Flow sorting is a process used to separate special cells or particles from heterogeneous 

mixtures according to their sizes, RIs, and densities etc. This is a vital technique in 

biological, chemical and environmental research. Flow cytometry is a well-established 

technology that identifies and divides particles by their physical or chemical 

characteristics, and is used in clinical diagnostics and biomedical research. First, particles 

carried by a flow stream pass through lasers one by one. At this moment, the scattered 

light and fluorescence signals are collected, measured and analyzed. According to the 

analysis results, the fluid stream is ejected into the air and breaks up into droplets which 

contain one particle for each droplet. The droplets carry a positive charge, negative 

charge, or remain uncharged depending on the characteristics of the particles. Then the 

charged droplets pass through a high power static electrical field and are displaced into 

different containers. The advantages of this technology are high accuracy and efficiency. 

However, the high cost and large volume of equipment limit applications for wider fields. 

With the development of microfluidic technologies in the past two decades, microfluidic 

sorters have drawn much attention due to the advantages of simplicity, lower cost, 

portability and less sample consumption [133, 134]. Various microfluidic sorters based on 

different flow separation methods have been reported such as dielectrophoresis (DEP), 
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optical force and magnetic force, etc. Different kinds of microfluidic sorters are listed in 

Table 6-1. 

Table 6-1 List of microfluidic sorters based on separation methods 

Method 
Characteristics 

of particle 
Disadvantages 

External instrument 

requirement 
Ref. 

Gravity Density, size Low resolution None 135 

Filtration Size Clogging Pump 62,63,136,137 

Laminar flow Size Shear stress Pump 142-147 

Dielectrophoresis 

(DEP) 

Size, 

permittivity 
Electric field 

Pump and voltage 

generator 
148-150 

Magnetic force 
Size, 

susceptibility 
Magnetic field 

Pump, magnetic 

particles, and 

magnet 

151,152 

Optical force Size, RI 
Optical 

irradiation 
Pump and laser 153-157 

Acoustic force Density, size 
Temperature 

increase 

Pump and acoustic 

actuator 
158,159 

 

Based on the earth’s gravity, Huh et al. developed a mass-dependent microfluidic 

sorting system [135]. Particles with different masses split into different flow paths in the 

microchannel along the direction of gravity. This simple design has no external 

instrument requirement, such as fluidic pumps, which avoids any damage to sample 

particles, especially live cells. However, this method only separates particles with 

significant differences in mass which limits general applications. 
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Filtration is a straightforward technique to divide particles based on size. Micro-

poles or micro-pores are fabricated in the direction perpendicular to the flow. Particles 

with sizes smaller than the gap are allowed to pass. Particles with sizes larger than the gap 

are blocked, and stop at the sieves [62, 63, 136]. Mohamed et al. successfully used four 

groups of sieving arrays with different gaps to separate red blood cells, white blood cells, 

and neuroblastomas [137]. However, this type of dead-end filtration cannot achieve 

continuous flow separation due to the clogging and jamming. To relieve clogging, cross 

flow filtration which combines filtration with hydrodynamics is developed [138-141]. In 

this method, micro-sieves are fabricated in the direction parallel to the channel. Smaller 

particles pass through the sieves due to the hydrodynamics, whereas larger particles 

which are blocked outside of the sieves are flushed into the mainstream fluid instead of 

being jammed at the sieves. The drawback of this method is that particles flowing with 

high flow velocity will suffer a strong shear stress which is high enough to damage cells. 

Laminar flow is the key flow feature in the microchannel. The Seki group designed a 

pinched segment in the micochannel based on the laminar flow to separate particles 

according to their sizes [142, 143]. High speed buffer liquid pushed and aligned the 

particles against the wall at the narrow pinched segment. The center of the smaller 

particles was closer to the wall than the center of larger particles due to the smaller radius. 

Therefore, an individual trajectory was generated based on the size of the particle. In the 

next widening channel, particles followed the diverged laminar flow streams to move to 

the respective collecting branch. The Seki group also reported hydrodynamic filtration, 

which had a similar principle as the pinched flow [144, 145]. Several side channels were 
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fabricated along the main channel. As liquid continuously leaked to the side channels, 

particles were pushed and aligned against the wall of the main channel by hydrodynamic 

force. At the following wider side channel, laminar flow streams forced smaller particles 

to enter the side channel, whereas larger particles followed their streams and still flowed 

in the main channel. Utilizing asymmetric bifurcation of laminar flow around obstacles, 

Sturm et al. described size-based particle separation devices [146, 147]. An obstacle 

matrix was fabricated in the microchannel. The matrix consisted of rows of posts. The 

gap between the posts in each row was a constant which was larger than the largest 

particle. However, the locations of the posts were asymmetrical row by row. The posts in 

each row had a slight shift in comparison to the former row. Smaller particles followed 

the laminar flow stream, whereas larger particles deflected out of the original laminar 

flow stream and jumped to another flow stream. However, these laminar flow techniques 

still cannot get rid of the effect of shear stress. 

Polarization occurs in an electric field for dielectric particles. When an 

inhomogeneous electric field is applied on the particles, they experience repelling or 

attractive forces along the electric field gradient depending on their dielectric properties. 

Therefore, DEP is used to manipulate the trajectories of the dielectric particles in the 

microfluidics. Using microfabrication technology, various metal electrodes are integrated 

into the microchannel to obtain a highly non-uniform electric field [148-150]. Under the 

effects of DEP and hydrodynamic forces, particles based on sizes or permittivities are 

divided. This method makes particles to be exposed to a high electric field which will 

influence the components of the particles, especially some sensitive cells.  
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Similar to the DEP method, magnetic forces are designed to separate particles 

depending on size and susceptibility. However, unlike with DEP, most of cells are not 

usually magnetic. Magnetic particles are used to bond cells through antigen-antibody 

interactions [151, 152]. A strong magnet is applied to the side of the microchannel to 

control the movement of magnetic-labeled particles. This method, by contrast, is safe. But 

strong magnetic fields still have the risk to induce physiological effects on cells.  

When a high-quality laser beam shines on a particle, the highly focused laser 

generates a strong gradient force to push the particle to the point with the highest energy 

in the beam (center or waist). This gradient force is called optical force and comes from 

the interaction of the particle with light such as reflection and refraction. Utilizing optical 

force, several optical sorting techniques are reported. Optical tweezers are a type of 

popular design [153-156]. In these designs, optical tweezers replace electrical plates to 

manipulate particles to respective channels in the flow cytometer. MacDonald et al. 

introduced a 3D optical interference pattern to the microchannel. Special particles 

followed the energy maxima to move to different flow streams [157]. Optical force is a 

convincing label-free and non-physical contact approach. But high light intensity can 

cause damage to biological properties.  

Acoustic force is another interesting method. An acoustic standing wave is generated 

between the side walls of a channel by a small transducer. Based on the density or size, 

particles are driven toward the channel center (nodal plane) by the acoustic force with 

different velocities, and then laminar flow pushes them to separation channels [158, 159]. 
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Ultrasonic vibration causes an increase of temperature. Therefore, acoustic force also 

risks damaging biological samples.  

Compared with the methods listed in Table 6-1, filtration and laminar flow are 

simpler methods due to the fact that fewer external instruments are required. Therefore, 

devices are cheap and highly portable. They offer widespread potential for clinical 

applications and environmental research in the field. High precision TPP microfabrication 

by the femtosecond laser can easily produce complicated 3D microstructures such as 

micropoles, micropores and sieve arrays from the microscale to the nanoscale.  

In the following sections, particle sorters fabricated by a femtosecond laser will be 

described. The separation function of the particle sorters is simulated by COMSOL 

software and tested with microspheres. By integration with an optical component, opto-

microfluidic devices which can realize simultaneous particle sorting and RI sensing are 

developed. 

6.2 Opto-microfluidic devices based on cross flow filtration and racetrack resonator 

6.2.1 Particle sorter  

6.2.1.1 Design 

Figure 6-1 illustrates the schematic structure of this opto-microfluidic device that was 

constructed in the current work, which consists of one main channel and two side channels. The 

particle sorting system consists of two sets of micropillars which are produced at the junctions of 

the main channel and side channels. The micropillars are obliquely located in the main channel 



Chapter 6 Opto-microfluidic devices for particle sorting and refractive index sensing      180 

 

 

against the flow direction. These two sets of pillars, labelled as Sieve I and Sieve II, are designed 

to separate microbeads (Thermo Scientific
TM

, USA) with the diameters of 10 and 5 µm. Particles 

with a diameter of 10 µm are blocked by Sieve I and swept into the outlet I channel. At the same 

time, particles with a diameter of 5 µm pass through Sieve I and flow to Sieve II. Then these 

particles are blocked at Sieve II and flushed into the outlet II channel. The purpose of the slope 

sieves is to generate a bigger drag force parallel to the sieves which can flush blocked particles 

into the side flow to avoid clogging. 

 

Figure 6-1 Schematic illustration of an opto-microfluidic device for particle sorting  

 

Photoresist materials SU-8-2 and SU-8-3050 with a mixed volume ratio of 1:1 

(Microchem®) are spin-coated and dried on a pre-cleaned glass substrate by standard procedures. 

The thickness is about 15.00 µm. The micropillars are written by femtosecond lasers. The typical 

width of a single-scan line with the scan speed of 5 µm/s is 4.00 µm. A multi-scan with a step of 
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2.00 µm is applied to these structures to generate sturdy micropillars which can resist the strong 

flow pressure from the suspension. Figure 6-2 presents two sets of micropillars, in which (a) and 

(b) show a row of micropillars with a slit of 6.50 µm and deviation of 5.00 µm between the 

adjacent pillars. This set of pillars is used to block particles with a diameter of 10 µm and is 

labelled as Sieve I. Figure 6-2(c) and (d) show a row of pillars with a slit of 3.50 µm and deviation 

of 3.00 µm between the adjacent pillars. This set of pillars is used to block particles with a 

diameter of 5 µm and is labelled as Sieve II. The size of pillars is 15.00 µm×10.00 µm×15.00 µm 

(length × width × height). The distance between Sieve I and Sieve II is 5.00 mm. A PDMS 

microchannel is produced by a standard soft lithographic method. Then the microchannel is 

bonded on the glass slide by careful alignment. Figure 6-3 exhibits the morphologies of Sieve I 

and Sieve II aligned with a microchannel. The size of the main channel is 300.00 µm× 15.00 µm× 

16.00 mm (width × height × length), and the cross section of the side channel is 125.00 µm×15.00 

µm. The micropillars can perfectly connect the top of the microchannel without any interspace. 

These two sieves are very suitable to separate white blood cells (10-15 µm) and red blood cells 

(6-8 µm).  
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                               (a)                                                                        (b) 

              

                               (c)                                                                      (d) 

Figure 6-2 Structures of two sets of micropillars: (a) the morphology of Sieve I, (b) the 

3D profile of Sieve I, (c) the morphology of Sieve II, and (d) the 3D profile of Sieve II. 

The size of pillars is 15.00 µm×10.00 µm×15.00 µm (length × width × height). 

 

 

           

                              (a)                                                                        (b) 

Figure 6-3  Morphologies of Sieve I and Sieve II aligned with a microchannel. The size of 

the main channel is 300.00 µm× 15.00 µm× 16.00 mm (width × height × length), and the 

cross section of the side channel is 125.00 µm×15.00 µm. 
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6.2.1.2 Simulation 

The liquid flow and particle trajectories in the microchannel are simulated by COMSOL 

software. Figure 6-4 shows the streamlines in the flow field which represent the 

trajectories of massless particles moving in the flow field. The parameters of the 

microchannel and sieves are exactly the same as the device structures. Liquid flows into 

the microchannel from the inlet channel with a velocity of 40 mm/s which means the flow 

rate is 10 µL/min. Figure 6-5 describes the simulation on trajectories of particles. The 

coloured background shows the magnitude of the flow velocity. Red colour stands for a 

higher flow speed, whereas blue colour represents a lower flow speed. 100 particles with 

the diameters of 10 and 5 µm are uniformly released from the inlet port, respectively. As 

time passes, most of the larger particles flow into the outlet I channel (Fig. 6-5(a)) and 13 

larger particles are blocked at Sieve I (Fig. 6-5(b)). However, the shear force pushes most 

of the blocked particles to gather at the branch side of Sieve I (Fig. 6-5(c)). For smaller 

particles, 13 particles pass through Sieve I (Fig. 6-5(d)). As time passes, 9 particles flow 

into the Outlet II channel and 4 particles jam at Sieve II (Fig. 6-5(e) and (f)). According 

to the simulation, the separation rate (defined as the ratio of particle number before and 

after the sieve) is 13%. The particle trajectories at the flow rate of 200 mm/s (50 µL/min) 

are also simulated as shown in Fig. 6-6. Comparing to the simulation at a lower flow rate, 

particles use shorter time to arrive at the same place, and more particles are flushed to the 

branch side of sieves by the crossflow forces, whereas the separation rate does not change. 
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Figure 6-4 COMSOL simulation on streamlines in the flow field 

 

 

Figure 6-5 COMSOL simulation on particle trajectories: (a), (b) and (c) larger particles, 

and (d), (e) and (f) smaller particles. The flow rate at the inlet channel is 40 mm/s.  
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Figure 6-6 COMSOL simulation on particle trajectories: (a), (b) and (c) larger particles, 

and (d), (e) and (f) smaller particles. The flow rate at the inlet channel is 200 mm/s.  

 

6.2.1.3 Experimental results 

The polystyrene microbeads (10 or 5 µm) are originally packaged as aqueous suspensions 

with 1% solid mass, respectively. Two microsphere suspensions with a volume ratio of 

1:1 are mixed and diluted with deionized water with a volume ratio of 1:900. The 

concentrations are 21 particles/µL for the 10 µm particles and 112 particles/µL for the 5 

µm particles. The mixed suspensions are pushed into the microchannel with the flow rate 

of 10 µL/min. Figure 6-7 shows the morphologies of sieves captured by a Panasonic CCD 

camera at different times. At the beginning, sieves are clean, as illustrated in Fig. 6-7(a) 

and (d). A larger particle appears at the right side of Sieve II which is caused by a 

contamination (Fig. 6-7(d)). For Sieve I, smaller particles pass through and larger 

particles stop. As more larger particles stack at Sieve I, nearby streams at Sieve I are 
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changed which makes the smaller particles lack sufficient drag force to move away. As a 

result, a slight jam happens at 274 s. We also notice that a larger particle is flushed to the 

branch side of Sieve I by the shear force, as indicated by a dash arrow in Fig. 6-7(b) and 

(c). For Sieve II, smaller particles are blocked and a particle-free liquid passes through. 

More smaller particles stopping at the branch side of Sieve II with time is also observed 

in Fig. 6-7(e) and (f). These experimental results prove that this type of particle sorter is 

practicable. 

 

 

Figure 6-7 Experimental results of particle sorting: (a), (c) and (e) Sieve I at different 

times of 0, 54 and 274 s, and  (b), (d) and (f) Sieve II at different times of 0, 60 and 285 s.   
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6.2.2 Refractive index sensing  

As the research results show in section 5.3, the racetrack resonator is a type of simple and 

highly effective structure for RI sensing. Hence, we use a racetrack resonator to test the 

RI of mixed suspensions in this section. As mentioned above, a particle-free liquid is 

obtained after the suspension passes through Sieve II. Therefore, after the two sieves are 

fabricated, a thin SU-8-2 layer is coated on the substrate and a racetrack waveguide is 

written. The cross section of the waveguide is 4.12 µm×5.00 µm. The radius, coupling 

length and gap of the racetrack resonator are 60.00, 30.00 and 4.00 µm, respectively. The 

size of the microchannel must be carefully designed according to the location of the 

racetrack waveguide. In order to make the alignment easier, the main channel at the outlet 

section is broadened to 1.00 mm. To avoid the collapse of the top wall due to the 

elasticity of PDMS, the height of this part is also increased from 15.00 µm to 50.00 µm. 

A photo of an opto-microfluidic chip is shown in Fig. 6-8. The inset is the morphology of 

the racetrack resonator aligned with the microchannel. The length of the chip is 30.00 mm.  

To test the practicality of this device, two sample suspensions are used. Sample I is a 

mixed distilled water suspension. In Sample II, sodium chloride is added to the mixed 

distilled water suspension to obtain a solution with a concentration of 9.8% and RI of 

1.350. In the experiment, different salt solutions with known RIs are first infused into the 

microchannel in turn to calibrate the RI. After washing several times with distilled water 

to get rid of the remaining salt solution, the device is infused with sample suspensions. 

The output results are compared with the calibration results, and then the RI of the sample 

solutions is calculated. Figure 6-9 presents the experimental results. The RI sensitivity of 
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this racetrack resonator is about 21.8 nm/RIU. The measured results show that the first 

sample solution has an RI of 1.3387, and the second sample has an RI of 1.3523. The 

errors are 0.43% and 0.16%, respectively.  

 

Figure 6-8 Photo of the opto-microfluidic chip for particle sorting and RI sensing. The 

inset is the morphology of a racetrack resonator. 
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Figure 6-9 Dependence of the resonance wavelength on RI. The racetrack resonator has a 

waveguide cross section of 4.12 µm×5.00 µm, radius of 60.00 µm, coupling length of 

30.00 µm, and gap of 4.00 µm.  

 

This type of opto-microfluidic device successfully realizes simultaneous separation 

of particles and measurement of the RI of solutions. The primary disadvantage of this 

device is the low separation rate. Another drawback of this device is that it requires a 

highly precise alignment technique which makes the sieves as close to the corner of the 

side channels as possible. Considering the factors above, a type of opto-microfluidic 

device based on hydrodynamic filtration and diffraction grating will be introduced in the 

following section. 
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 6.3 Opto-microfluidic devices based on hydrodynamic filtration and diffraction 

grating 

6.3.1 Particle sorter I  

6.3.1.1 Design 

In this section, innovative filtrations are designed to improve the separation rate. As 

shown in Fig. 6-10, this sorter consists of one main channel and two side channels. The 

main channel is arrayed with two sets of microsieves along the direction of the main 

channel wall: Sieve I and Sieve II. Sieve I is a row of periodic small pillars with the slit 

size smaller than the diameter of the smaller particles. Therefore, particle-free liquid is 

obtained from Sieve I by blocking all particles. Sieve II is a row of small pillars with a 

larger space between the slits. Smaller particles can pass through the slits, whereas larger 

particles are blocked. Few jams happen in this type of device due to a longer filtration 

length and a larger shear force along the main microchannel which pushes the blocked 

particles into the mainstream fluid.  

 

Figure 6-10 Schematic illustration of a particle sorter 
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6.3.1.2 Simulation 

COMSOL software is used to simulate the liquid flow and particle trajectories in the 

microchannel. Figure 6-11 shows the simulation on streamlines in the flow field. In the 

simulation, the length of the microchannel is set at 3.00 mm, and the width of the 

microchannels is 300.00 µm. The size of pillars is 23.00 µm×7.00 µm. For the Sieve I 

structure, the slit between the pillars is 4.00 µm. For Sieve II, the slit size is 7.00 µm. The 

lengths of Sieve I and Sieve II are 700 and 900 µm (labelled as filter length I). The flow 

rate at the inlet channel is 40 mm/s. Figure 6-12 describes the particle trajectories of 

larger particles (10 µm). 50 particles with a diameter of 10 µm are released from the inlet 

port. As time passes, 94% of the larger particles jam at Sieve II, 6% of the larger particles 

flow to the main outlet channel, and no larger particles stop at Sieve I. Figure 6-13 

describes the particle trajectories of smaller particles (5 µm).  As time passes, 70% of the 

smaller particles jam at the Sieve I, 24% of the particles pass through Sieve II, and 6% of 

the particles flow to the main outlet channel. According to the simulation results, the 

separation rate reaches 24% for smaller particles and most of the particles clog at the 

sieves. The coloured background in these two figures shows the velocity magnitude of the 

flow velocity. The maximum flow rate in this situation is 0.23 m/s. 
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Figure 6-11 COMSOL simulation on streamlines in the velocity field. Particle sorter I has 

a microchannel length of 3.00 mm and the width of 300.00 µm. The lengths of Sieve I 

and Sieve II are 700 and 900 µm, respectively.  

 

The characterization of flow velocity and particle trajectories for a longer sieve 

length (1400 µm for Sieve I and 1800 µm for Sieve II labelled as filter length II) is also 

simulated. Figure 6-14 presents the simulation on distribution of particles in different 

situations. For a longer sieve length, more particles jam at Sieve I due to the fact that the 

hydrodynamic force along the direction of the main channel is lower in a longer 

microchannel.  

 

 

 

µm 
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Figure 6-12 COMSOL simulation on particle trajectories of larger particles in particle 

sorter I 

(d)    t = 0.1 s m/s 

(c)    t = 0.05 s m/s 

(b)    t = 0.03 s m/s 

(a)    t = 0.015 s m/s 
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Figure 6-13 COMSOL simulation on particle trajectories of smaller particles in particle 

sorter I 

(d)    t = 0.1 s 
m/s 

(c)    t = 0.05 s 
m/s 

(b)    t = 0.03 s 
m/s 

(a)    t = 0.1 s 
m/s 
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                                    (a)                                                     (b) 

 
                                          (c)                                                     (d) 

Figure 6-14 Simulation on particle distribution of particle sorter I in the filter length I and 

II situations with the inlet flow rate of 40 mm/s 

 

6.3.1.3 Experimental results 

The same techniques for SU-8 pillar and microchannel fabrication are used in this section. 

Figure 6-15(a) and (b) present 3D profiles of Sieve I and Sieve II. The size of the periodic 

micropillar is 23.00 µm×7.00 µm×15.00 µm (length × width × height). The slits between 

the two adjacent pillars of Sieve I and II are 4.00 and 7.00 µm, respectively. Figure 6-

15(c), (d) and (e) show the morphologies of the microsieve structures. The lengths of 

Sieve I and Sieve II are 5.00 mm, respectively. Microchannels are carefully aligned and 
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bonded with the sieves as shown in Fig. 6-15(f)-(h). The height of the microchannel is 

also 15.00 µm. The widths of the main channel and side channels are all 300.00 µm.  

      

                               (a)                                                                       (b) 

   

                       (c)                                         (d)                                            (e) 

 

                      (f)                                           (g)                                           (h) 

Figure 6-15 Structures of microsieves: (a) and (b) 3D profiles of Sieve I and II, 

respectively, (c)-(e) morphologies of sieves under microscope, and (f)-(h) morphologies 

of sieves integrated with microchannels. 
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The same suspensions are used in this section. The mixed suspensions are injected 

into the microchannel with a flow rate of 10 µL/min. Figure 6-14 shows the morphologies 

of the sieves after they work for 10 minutes. Particles are blocked and jammed at Sieve I 

because the slit of the micropillars is smaller than 5 µm (Fig. 6-16(a) and (b)). When 

remaining suspensions flow to Sieve II, parts of smaller particles pass through it and the 

other particles are blocked and jammed at Sieve II. Comparing to the COMSOL 

simulation results, the experimental results show that some smaller particles jam at Sieve 

II. The reason is that the blocked Sieve II changes the nearby streams which makes the 

smaller particles lack sufficient drag force to move away. However, it can still be 

observed that more larger particles stack at Sieve II than at Sieve I which agrees with the 

simulation.  
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                                (a)                                                                    (b) 

      

                                (c)                                                                     (d) 

Figure 6-16 Particle sorter I: (a) and (b) Sieve I after it works for 10 minutes, and  (c) and 

(d) Sieve II after it works for 10 minutes.   
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6.3.2 Particle sorter II 

6.3.2.1 Designs and simulation 

According to the simulation on the particle sorter I, the separation rate is low due to the 

fact that most of the smaller particles jam at Sieve I. Therefore, the design here is slightly 

revised to increase the separation rate. As shown in Fig. 6-17, the functions of Sieve I and 

II are switched. Sieve I is used to separate smaller particles from the mixture, whereas 

Sieve II is used to obtain particle-free liquid. Figure 6-18 describes the simulation on 

streamlines in the flow field. The simulation parameters of this sorter are the same as for 

Fig. 6-11 except that Sieve I has a slit size of 7.00 µm and Sieve II has a slit size of 4.00 

µm. Figure 6-19 shows the particle trajectories of larger particles (10 µm). 100 particles 

with a diameter of 10 µm are released from the inlet port. As time passes, 78% of the 

larger particles jam at Sieve I, 22% of the larger particles flow to the main outlet channel, 

and no larger particles stop at Sieve II. Figure 6-20 shows the particle trajectories of 

smaller particles (5 µm). 100 particles with a diameter of 5 µm are released from the inlet 

port. As time passes, 77% of the smaller particles pass through Sieve I, 17% of the 

particles jam at the Sieve II, and 6% of the particles flow to the main outlet channel. 

According to the simulation results, the separation rate reaches 77% for smaller particles. 

The maximum flow rate is 0.19 m/s. 



Chapter 6 Opto-microfluidic devices for particle sorting and refractive index sensing      200 

 

 

 

Figure 6-17 Schematic illustration of a particle sorter 

 

 

Figure 6-18 COMSOL simulation on streamlines in the velocity field. Particle sorter II 

has a microchannel length of 3.00 mm and the width of 300.00 µm. The lengths of Sieve I 

and Sieve II are 700 and 900 µm, respectively.  
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Figure 6-19 COMSOL simulation on particle trajectories of larger particles in particle 

sorter II 

(d)    t = 0.2 s 
m/s 

(c)    t = 0.06 s 
m/s 

(b)    t = 0.03 s 
m/s 

(a)    t = 0.015 s 
m/s 
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Figure 6-20 COMSOL simulation on particle trajectories of smaller particles in particle 

sorter II 

(d)    t = 0.2 s 
m/s 

(c)    t = 0.06 s 
m/s 

(b)    t = 0.03 s 
m/s 

(a)    t = 0.015 s 
m/s 
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The characterization of particle sorter II with a longer sieve length (1400 µm for 

Sieve I and 1800 µm for Sieve II labelled as filter length II) is also simulated. Figure 6-21 

presents the simulation on distribution of particles in different situations. For a longer 

sieve length, more smaller particles pass through Sieve I and larger particles stack at 

Sieve I. 

 

 
                                (a)                                                          (b) 

 
                                      (c)                                                          (d) 

Figure 6-21 Simulation on particle distribution of particle sorter II in the filter length I 

and II situations with a inlet flow rate of 40 mm/s 
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6.3.2.2 Experiments 

Figure 6-22 shows the morphologies of sieves after they work for 10 minutes. Smaller 

particles pass through Sieve I, and larger particles are blocked, which agrees with the 

simulation. Although this design allows more particles to be separated, larger particles 

will block all the slits of Sieve I and smaller particles will block all the slits of Sieve II as 

time passes. The blocked sieves alter the streams which makes the sorter lose its function. 

As a result, smaller particles pile on Sieve I and larger particle stacks at Sieve II. In order 

to achieve a continuous sorting, particles must be swept away from the sieves by a strong 

shear force. Therefore, in the following section, the shapes of the microchannel are 

modified to increase the shear force significantly. 
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                                 (a)                                                                  (b) 

      

                                (c)                                                                   (d) 

Figure 6-22 Particle sorting II: (a) and (b) Sieve I after it works for 10 minutes, and  (c) 

and (d) Sieve II after it works for 10 minutes.   

 

6.3.2.3 Modified particle sorter II 

An internal wall is fabricated opposite the sieves to narrow the microchannel as shown in 

Fig. 6-23. When liquid flows to the narrow channel, a larger flow pressure is generated 

which more easily flushes stacked particles away by a strong hydrodynamic force. Figure 
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6-24 is the morphologies of a modified particle sorter. The width of the microchannel is 

300.00 µm and the distance between the sieve and the internal wall is 50.00 µm. Figure 6-

25 illustrates the simulation on streamlines in the flow field. Figure 6-26 shows the 

particle trajectories of larger particles (10 µm). 30 particles with a diameter of 10 µm are 

released from the inlet port. As time passes, 97% of the larger particles jam at Sieve I, 3% 

of the larger particles flow to the main outlet channel, and no larger particles stop at Sieve 

II. However, unlike larger particles in particle sorter II (Fig. 6-19), in which larger 

particles disperse throughout Sieve I, these larger particles only stack at the location near 

the side channel. Figure 6-27 describes the particle trajectories of smaller particles (5 µm). 

30 particles with a diameter of 5 µm are released from the inlet port. As time passes, 97% 

of the smaller particles pass through Sieve I, 3% of the particles jam at Sieve II, and no 

particles flow to the main outlet channel. According to the simulation results, the 

separation rate reaches 97% for smaller particles. The maximum flow rate is 0.45 m/s.  

 

Figure 6-23 Schematic illustration of a modified particle sorter 
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                                 (a)                                                                  (b) 

Figure 6-24 Morphologies of sieves integrated with a microchannel 

 

 

Figure 6-25 COMSOL simulation on streamlines in the velocity field. Modified particle 

sorter II has a microchannel length of 3.00 mm and the width of internal microchannels of 

50.00 µm. The lengths of Sieve I and Sieve II are 700 and 900 µm, respectively.  
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Figure 6-26 COMSOL simulation on particle trajectories of larger particles in modified 

particle sorter II 

(d)    t = 0.2 s 
m/s 

(c)    t = 0.05 s 
m/s 

(b)    t = 0.02 s 
m/s 

(a)    t = 0.01 s 
m/s 
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Figure 6-27 COMSOL simulation on particle trajectories of smaller particles in modified 

particle sorter II 

(d)    t = 0.2 s 
m/s 

(c)    t = 0.05 s 
m/s 

(b)    t = 0.02 s 
m/s 

(a)    t = 0.01 s 
m/s 
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The mixed suspensions are injected into the microchannel with a flow rate of 10 

µL/min. The morphologies of the device after it works for 10 minutes are presented in Fig. 

6-28. Suspensions flow in the middle of the channel. At the front segment of Sieve I (Fig. 

6-28(a)), only several smaller particles can be observed and no larger particles appear. 

However, at the segment of Sieve I opposite to the first side channel (Fig. 6-28(b)), a lot 

of larger particles are piled up. At Sieve II, both types of particles are rare. The 

experimental results completely agree with the simulation. This means that this sorter is a 

functional device with an ultrahigh separation rate and continuous sorting capability. Of 

course, we can also design a narrow microchannel to achieve the same filtration function. 

However, a narrow microchannel will definitely increase the difficulty of alignment. 

Fabrication of internal walls to control the liquid flow is much easier by TPP with the 

femtosecond laser. 

Depending on the simulation results, the separation rate of this sorter should be 

larger than 97%. Comparing the performance of this sorter with those of other reported 

filtration methods, such as the hydrodynamic filtration structure in Ref. [144] with a 

separation rate of 60% and the cross flow filtration in Ref. [140] with a maximum 

separation rate of 95%, our sieving method has a higher separation rate. Although Wei et 

al. reported that their porous membrane strtructure [136] can reach a separation rate of 

99.9%, the complex structure and operation procedures increase the labour costs and limit 

applications for wider fields. 
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                                 (a)                                                                  (b) 

     

 

                                   (c)                                                                 (d) 

Figure 6-28 Modified particle sorting II: (a) and (b) Sieve I after it works for 10 minutes, 

and  (c) and (d) Sieve II after it works for 10 minutes.   
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6.3.3 Refractive index sensing  

As shown in section 3.4.2, diffraction gratings are reliable structures for RI sensing. In 

this section a diffraction grating is produced on the glass substrate to test the RI. 

Comparing this structure to the racetrack resonator, the fabrication is easier than the 

former design. The grating can be produced at the same layer of the filters and there is no 

need to coat another SU-8 layer as in the former design. Figure 6-29 presents a 3D profile 

of a diffraction grating. The height of the grating is about 15.63 µm, the width is 5.10 µm, 

and the periodicity is 12 µm. Figure 6-30 describes the transmission spectrum of this 

diffraction grating surrounded by air in the range of 450 - 1250 nm. 14 resonance modes 

are observed from this diffraction grating. The transmission spectra of the diffraction 

grating surrounded by different salt solutions are shown in Fig. 6-31. A blue shift occurs 

with the increase of the RI of the liquid. Figure 6-32 presents the sensitivities of this 

diffraction grating at the corresponding resonance mode. An inverse proportional fit is 

applied to the data. The fit result shows that the height of the grating is 15.85 µm which is 

very close to the measured value of 15.63 µm. 
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Figure 6-29 3D profile of a diffraction grating with a height of 15.63 µm, width of 5.10 

µm, and periodicity is 12 µm.  
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Figure 6-30 Transmission spectrum of an air-surrounded diffraction. The height of the 

grating is 15.63 µm. 
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Figure 6-31 Transmission spectra of a diffraction grating surrounded by different salt 

solutions. The height of the grating is 15.63 µm. 
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Figure 6-32 RI sensitivities of different resonance orders. The measured height of the 

grating is 15.63 µm. 
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In order to make a liquid flow around the diffractive grating, the size of the side 

channel in which the particle-free liquid flows (the first side channel in particle sorter I or 

the second side channel in particle sorter II) is widened from 300.00 µm to 1.00 mm and 

thickened from 15.00 µm to 50.00 µm. The diffraction grating and sieves are aligned and 

bonded with the microchannel. Figure 6-33 shows an opto-microfluidic chip for particle 

sorting (particle sorter I) and RI sensing. The cross sections of the main channel and the 

second side channel are 300.00 µm×15.00 µm (width × height), the cross section of the 

first side channel is 1.00 mm×50.00 µm, and the length of the main channel is 16.00 mm. 

The inset is the morphology of the diffraction grating. Salt solutions with known RIs are 

infused into the microchannel to calibrate the RI, and two sample suspensions are injected 

into the microchannel in turn as explained in section 6.2.2. Figure 6-34 presents the 

experimental results. The sensitivity of the resonance mode is 3.80×10
3
 nm/RIU. The 

measured results show that the first sample solution has an RI of 1.3343, and the second 

sample has an RI of 1.3513. The errors are 0.10% and 0.08%, respectively.  
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Figure 6-33 Opto-microfluidic chip for particle sorting and RI sensing. The inset is the 

morphology of the diffraction grating with a height of 15.63 µm, width of 5.10 µm, and 

periodicity of 12 µm. 
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Figure 6-34 Dependence of the peak wavelength on RI 
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In this chapter, four types of particle sorters based on filtration have been presented. 

The particle trajectories are simulated to facilitate the understanding of the 

characterization of the sorters. The sorting functions are tested with a mixed particle 

solution. A continuous particle sorter with an ultrahigh separation rate is demonstrated. 

Opto-microfluidic devices are fabricated by integrating the particle sorters with optical 

structures (microring resonator and diffractive grating) which can achieve simultaneously 

particle separation and RI analysis. These highly efficient and accurate opto-microfluidic 

devices exhibit a promising prospect in biological and chemical applications.  
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Chapter 7 Conclusions  

Opto-microfluidic devices have been demonstrated to be powerful miniaturized devices 

for optical sensing, biological analysis and medical testing. The optical structures in these 

opto-microfluidic devices are usually produced by several fabrication techniques, such as 

MEMS, soft lithography and hot-embossing. However, these techniques need highly 

accurate masks during the fabrication. As a result, the optical patterns are limited by the 

shapes of the masks. Laser fabrication technique can effectively overcome this drawback 

with the unique advantages of high precision, flexibility, and 3D capability. In this Ph.D. 

thesis, several opto-microfluidic devices for RI sensing, temperature measurement, and 

particle sorting are proposed and fabricated by combining the femtosecond laser induced 

TPP technique with soft lithography. Simultaneous multiple-operation and multiple-

measurement have been achieved in these integrated miniature lab-on-a-chip devices.  

The feasibility of microfabrication with femtosecond laser induced TPP technique in 

an SU-8 layer is systematically explored. The characterization of voxels fabricated by 

different exposure parameters such as focusing position, exposure time and pulse energy, 

have been carefully investigated. The results show that a longer exposure time and larger 

pulse energy increase the size of the voxel and make the edges of a fabricated pattern 

more uniform. In addition, a high pulse energy poses a risk of damage to the SU-8 layer 

due to the fact that the pulse energy could be well over the SU-8 ablation threshold. 

Therefore, depending on specific applications, the exposure conditions should be 

carefully chosen in order to obtain optimized results.  
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Grating-based opto-microfluidic devices have been proposed and demonstrated. 

Gratings with different periodicities and thickness are fabricated on glass substrates. This 

type of SU-8 grating successfully diffracts light in different diffractive directions. As an 

application of this grating, colour filters are designed. Gratings with a thickness ranging 

from 1.50 to 2.00 µm are fabricated on the substrates. Various colours are exhibited from 

the zeroth diffraction light which can be easily observed from microscope. Another 

application for this grating is the RI sensor. Different liquids are introduced into the SU-8 

grating through a microchannel. The zeroth transmission spectrum shifts according to the 

RI of the liquid. An RI sensor with a sensitivity of -3.59×10
3
 nm/RIU (blue shift) is 

obtained in a grating with a thickness of 3.60 µm. The experimental results also prove 

that a grating with a larger thickness possesses a higher sensitivity.  

An approach to achieve an MZI has been proposed using a waveguide and a glass 

substrate. Two beams split from an SMF propagate in the waveguide and glass substrate, 

respectively. The interference occurs when the two beams are collected by another SMF. 

Different interferential spectra have been obtained in chips with different lengths. A 

longer waveguide chip has a smaller interferential periodicity. An application for this 

MZI chip is the RI sensor. Liquids are infused into a microchannel which surrounds the 

SU-8 core. The effective RI of the core changes according to the RI of the liquid, thus 

resulting in a shift of the spectrum. We investigate the peak shifts in chips with different 

microchannel lengths and chip lengths. An RI sensor with a sensitivity of 96.8 nm/RIU 

(red shift) has been obtained in an MZI chip with a microchannel length of 8.00 mm and 
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chip length of 16.17 mm. The sensitivity increases with the increase of the microchannel 

length and decrease of the chip length. 

 An MZI using a waveguide with an SU-8 core and SU-8 cladding has been 

proposed. Beams split from an SMF pass through the core and cladding, respectively. The 

interference occurs when the beams are recombined by another SMF. Different 

interferential spectra are obtained in chips with different lengths. A chip with a longer 

waveguide has a smaller interferential periodicity. Temperature and RI sensing are 

measured. By raising the environmental temperature, a variation between the effective RI 

of the core and cladding results in a red shift of the transmission spectrum. The sensitivity 

reaches 0.849 nm/
o
C in a chip with a core size of 2.80 µm ×5.50 µm× 22.92 mm (width × 

height × length), and cladding size of 125.00 µm ×11.50 µm × 22.92 mm. Different 

liquids change the effective RI of the cladding which induces a peak shift of the 

transmission spectrum. A blue shift occurs with the increase of the RI of the liquid. A 

sensitivity of -132.6 nm/RIU is achieved in a chip with a core size of 5.00 µm ×5.50 µm× 

22.66 mm, cladding size of 125.00 µm ×11.50 µm × 22.66 mm, and microchannel size of 

1.00 mm× 75.00 µm× 16.00 mm. We also modify this structure by adding one connector, 

two connectors or a gap in the core. Dissimilar beams propagate in the core and cladding 

all the time in the former design, light which first propagates in the core is scattered into 

the cladding at the modified structures (connector or gap). The effects of shape and size 

of the connector and interval distance of the gap are explored. Optimal parameters are 

chosen for fabricating three types of MZI-based opto-microfluidic devices to achieve RI 
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and temperature sensing. The sensing results are similar to those for the opto-microfluidic 

device mentioned above. 

Optical ring resonators are common optical structures in optofluidic devices. We 

first study a ring resonator structure. The effects of radius, wavelength, core size, number 

of rings, and polarization are studied. A resonator with a larger radius has a smaller free 

spectral range, and a resonator with a smaller core has a larger free spectral range. We 

also find that the transmission spectrum depends on the polarization of the light. For 

temperature sensing, a blue shift occurs with rising temperature. For RI sensing, a red 

shift occurs with the increase of RI. The temperature sensitivity is about 9.10×10
-2

 nm/
o
C, 

and the RI sensitivity is about 24.2 nm/RIU for a ring resonator with a cross section of 

4.48 µm×4.23 µm (width × height) and radius of 60.00 µm. When two rings are 

integrated in a bus waveguide, simultaneous temperature and RI measurement can be 

accomplished, in which one of the rings is used for temperature calibration and the other 

ring is used for RI sensing. A racetrack resonator is another structure studied. Comparing 

to a ring resonance, the racetrack resonance has a larger extinction ratio. The maximum 

extinction ratio can reach 30 dB for a racetrack resonance with a radius of 60.00 µm, gap 

of 4.00 µm, and coupling length of 30.00 µm. A strong dependence of the polarization on 

RI sensing is found. For a TM mode, the sensitivity is 16 nm/RIU, whereas for a TE 

mode, the sensitivity increases to 25 nm/RIU. Multiple-RI sensing is also proved by 

integrating multiple racetracks into the device. 
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By combining the optical structures mentioned above with the principle of a laminar 

flow in the microchannel, two types of innovative functional opto-microfluidic devices 

for simultaneous RI sensing and particle sorting have been demonstrated. One device is 

based on a cross flow filtration and racetrack resonator. Two sorts of filters with different 

sieve sizes are fabricated in the main channel close to the branches. Particles are 

separated by the sieves according to their sizes. Finally, a particle-free liquid flows to the 

output part of the main channel in which a racetrack resonator is integrated. By testing 

with two mixed sample suspensions, the experimental results agree with the simulation, 

and the RI sensing errors are 0.43% and 0.16%, respectively. The second type of device is 

based on a hydrodynamic filtration and diffraction grating. Two sorts of filters with 

different sieve sizes are fabricated in the main channel in a parallel direction to the main 

channel. Particle jamming is effectively decreased due to the fact that a hydrodynamic 

force parallel to the main channel flushes piled particles away. A particle-free liquid is 

induced into a side channel in which a diffraction grating is integrated. By testing with 

two mixed sample suspensions, the experimental results agree with the simulation, and 

the RI sensing errors are 0.10% and 0.08%, respectively. 
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