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Abstract

In this study, failure mode maps of composite sandwich panels are examined. Using

Euler-Bernoulli beam theory, theoretical models are developed. The developed models

are validated with established models in the literature. The models are compared with

the established models using experimental data from literature. By comparing the

developed models with the established models, it is concluded that the described

models provide sufficient accurate results. Failure mode maps are constructed by

using the non-dimensional form of the developed models. This concept of failure

mode map is extended to provide a useful design tool for composite sandwich beam

manufacturers. Also in this study, scaling laws are derived for a composite sandwich

beam using the rules of similitude. Scaling laws define the relationships between a

small specimen and a larger prototype structure. By using these scaling laws, it is

possible to design a small scale model and by extrapolating the data from the small

scale model, the behavior of a large scale prototype can be predicted. In the current

study, similitude conditions for composite sandwich beams are developed for three

loading conditions, uniformly distributed load, shear load and moment. To test the

scaling laws a three-point bending test and a four-point bending test are taken from

literature . Finite element analysis is used to obtain the stress distributions through

the thickness of these composite sandwich models. Using the similitude conditions

larger prototype of these models are created. Through-the-thickness stresses between

the model and the prototype are compared and found to be in excellent agreement.
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Chapter 1

Introduction

In high tech applications such as air-crafts, racing cars, spacecrafts, satellites, etc

high performance designs of components are necessary. These structures need to be

very light while having high stiffness and strength. Therefore, efficient and optimal

structural design is required. Structural efficiency can be achieved by using efficient

materials and by optimising the structural geometry. For an optimal design these

factors need to be considered in the design process. Composites materials are very

useful materials for the purpose of designing high performance structures. Compos-

ites have high stiffness and strength that can lead to a significant amount of weight

reduction.

Composite materials consist of fibers embedded in a matrix. The physical and

chemical properties of both fibbers and matrix do not change.Yet the produced com-

bined properties cannot be achieved by either of the constituents separately. Fibers

are the principal load carriers while matrix keeps them together. Most commonly

used fibers are glass, carbon, Kevlar etc. Polymers, metals, ceramics are used for
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matrix materials.

The most common form of composites is called laminate. A laminate is made

by stacking thin layers of fibers embedded in matrix. Fiber orientation and stack-

ing sequence can be controlled to generate a wide range of mechanical and physical

properties. Traditional materials such as aluminum, steel have equal properties irre-

spective of the direction. They are considered as isotropic materials. On the other

hand the properties of composites strongly depends on the direction of the laminate.

1.1 Composite Sandwich beams

Sandwich beams are most commonly used in aeronautical applications though they

are becoming popular day by day due to their widespread applications in both com-

mercial, residential and offshore purposes. In recent years, sandwich beams have been

used as building components in industrial, office and residential buildings particularly

as roof and wall cladding due to their ability to improve the structural and thermal

performance of buildings. Sandwich beams are a special class of composite materials

with the features of low weight, high stiffness and high strength. They are fabricated

by attaching two thin, strong, and stiff skins to a lightweight and relatively thick core

as shown in Figure 1.1.

Figure 1.1: Sandwich beam
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A sandwich beam is analogous to an I-beam in the sense that when subjected to

bending, the flanges carry in-plane compression and tension loads and the web carries

shear loads. In the case of sandwich beams the facesheets carry the in-plane com-

pression and tension loads and the core carries the shear loads. As with a traditional

I-beam, when the facesheets are further apart, the structure gains more stiffness. A

thicker core can achieve the same stiffness and provides a low density, which results

in a high stiffness-to-weight ratio. A typical sandwich panel consists of facesheets

with a much thicker structural core in between. Materials such as steel, stainless

steel, aluminum, composites are used as facesheet material. The function of the core

is to support the facesheets so that they do not buckle and to keep them in relative

position to each other. The core needs to be rigid in shear. The core of a sandwich

structure can be of many material or architecture. In general, cores fall into four types

(a) foam or solid core (b) honeycomb core (c) web core and (d) corrugated or truss

core. Foam or solid cores can consist of balsa wood, foams, plastic materials with a

wide variety of density and shear moduli. The facesheets are attached with the core

with an adhesive. To keep the facesheets and the core cooperating with each other,

the adhesive between the facesheets and the core must be able to transfer the shear

forces between them. The adhesive must be able to carry shear and tensile stresses

as well. The adhesive should be able to take up the same shear stress as the core.

It is important that the facesheets properly adhere to the core to give the expected

structural behavior.

The current study discusses the usage of sandwich beams for off-shore purposes.

In spite of having these properties, the usage of composite sandwich beams are lim-

ited in offshore applications. A possible reason for this is that Scott and Sommella
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[1] concluded that the acquisition cost per pound of composite material used can be

increasingly greater than that of the equivalent steel component as its weight ratio di-

minishes. In other words composites are more expensive than conventional materials.

Since 1971, there has been plenty of technological and manufacturing advancements

of composites. Hence it may be questionable to rely on a report that has been writ-

ten more than 40 years ago. Also, in their analysis no optimization tool was used for

the composite. An unoptimized design can lead to a higher cost. The current study

presents an optimization tool and similitude analysis of composite sandwich beams.

The design of composite structures is more complicated than metal structures due

to the fact that composites have orthotropic or anisotropic properties. However this

non-isotropic behaviour of composites gives the designers an opportunity to tailor the

properties to meet the design requirements. Although this improves the structural

efficiency, it also increases the number of design parameters. Therefore, it is neces-

sary to study how these parameters can be used to construct optimized and efficient

sandwich beams.

1.2 Thesis Outline

This thesis consists of two manuscripts, They are submitted for publication.

• Chapter 1 introduces the thesis and the research topic. It describes the ob-

jectives and provides a synopsis of the goals.

• Chapter 2 provides a brief literature review on sandwich beams. The literature

review is focused on foam core sandwich beams.
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• Chapter 3 is the first submitted manuscript that provides failure mode maps

for four distinctive failure modes of sandwich beams for the purpose of providing

a simple design tool for the designers and manufactures of sandwich beams.

Analytical studies are conducted for global buckling, wrinkling, core shear and

facesheet failures. A major contribution of the current work is introducing a

new approach for predicting the wrinkling failure of sandwich beams. From the

analytical expressions failure mode maps are constructed. The chapter explains

how these failure mode maps can be used for designing an optimum sandwich

beam.

• Chapter 4 is the second manuscript, which consists of a study of similitude

analysis of sandwich beams. Similitude studies can be found in the literature

for sandwich beams with isotropic facesheets. This chapter presents similitude

laws of sandwich beams with composite facesheets. The established similitude

laws are applied in finite element analysis to verify the laws. The scaling laws

provided in this chapter can be used to scale down a composite sandwich beam.

By testing the scaled down model and by analysing the failure of the prototype

can be predicted.

• Chapter 5 reviews the research work and outcomes. Possible future work is

also addressed.
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Chapter 2

Literature Review

Due to their considerable structural importance, many publications dealing with sand-

wich beams are in existence. The aim of this chapter is to provide a brief review of

sandwich beams that have been studied by researchers. The discussion and review

is mainly focused only on sandwich beams with isotropic foam cores with thin metal

or composite facesheets. A brief review of experimental and finite element studies

made by previous researchers to investigate the buckling behavior of sandwich beams

is also presented in this section. The review also discusses the various failure modes

sandwich beams may experience. A brief review of similitude study on sandwich

beams is also presented. Since before World War II, sandwich beams has been used

in aircrafts and in many structural applications. The structural analysis of sandwich

beams is being investigated since 1940s, especially in the aeronautical sector [2]. A

simple guideline to the principal aspects of the theory of sandwich construction can

be found in [2]. The behavior of sandwich structures of isotropic and composite mate-

rials is also discussed in [3]. For the past few decades, researchers have been studying
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sandwich beams and many research papers have been published. These literature

include analytical, experimental and finite element analysis of sandwich beams for

various situations and loading conditions.

2.1 Three-Point Bend Test

In the past many researchers conducted various experimental studies of sandwich

beams. These testing include three-point bend test, four-point bend test, compression

test etc. Kim and Swanson [4] carried out experiments on foam core sandwich beams

with carbon/epoxy facesheets under concentrated loading. The common failure modes

observed by them were core failure in compression and shear, delamination and fiber

failure in the facesheets. Their results showed that the failure modes and load levels

can be predicted for sandwich structures under concentrated loading. Tagarielli et al.

[5] experimented simply supported sandwich beams with glass-vinylester facesheets

and PVC foam core in three-point bending test. They investigated the initial collapse

modes, the mechanism that govern the post-yield deformation and parameters that

set the ultimate strength of these beams. The failure modes of the sandwich beams

in their experiments were face micro buckling, core shear and indentation. They

presented analytical expressions for the finite deflection behavior of the beams which

were in good agreement with the measured and finite element predictions. Kabir

et al. [6] investigated sandwich beams with very thin aluminum face sheets under

three-point bending loading conditions. The effect of the strength of the facesheets,

thickness of the foam core and bending span length on the failure modes was studied.

The experiments showed that thin facesheets sandwich beams experience indentation
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failure under the loading roller. They constructed failure maps which can be used for

the design of foam-cored sandwich beams with thin facesheets. Many researchers con-

ducted the three-point bend test on metallic foam core sandwich beams. McCormack

et al. [7] conducted three-point bend test on aluminum foam core sandwich beams.

They estimated the initial failure load and the peak load for the failure modes. The

dominant failure mode observed by them was core yielding while some of them failed

due to face wrinkling. Yu et al. [8] investigated the response and failure of dynam-

ically loaded sandwich beams with aluminum skin and aluminum foam core. The

sandwich beams failed due to the cracking of the core in tension. In some tests the

top facesheets failed due to wrinkling. Their final conclusion regarding the failure

initiation was the failures occur due to local damage. Steeves and Fleck [9] demon-

strated a systematic method for choosing the best materials for achieving minimum

mass design of a sandwich beam under three-point loading conditions. They con-

cluded that for low structural indices foam core is optimal, for higher structural load

indices honeycomb core is optimal.

2.2 Four-Point Bend Test

Many researchers conducted four-point bend test on sandwich beams. Chen et al.

[10] studied the behavior of sandwich composites in four point bending. The plastic

collapse modes of sandwich beams have been investigated experimentally and the-

oretically for the case of an aluminum alloy foam with cold-worked aluminum face

sheets. Plastic collapse is by three competing mechanisms: face yield, indentation

and core shear. This study has shown that the analytical formulae given by limit
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load analysis are in good agreement with the predictions. The formulae can be used

directly in minimum weight design. Mohan et al. [11] performed four-point bend

tests on alumina facesheets and alumina foam core with varying geometries to iden-

tify the failure modes. Analytical formulae for the failure modes were obtained and

a failure mode map was constructed with non-dimensional parameters. Sokolinsky et

al. [12] carried out four-point bend tests with aluminum facesheets and PVC foam

core. The experimental results were compared with the classical sandwich theory, and

with linear and geometrically nonlinear higher-order sandwich beam theory. Their

work suggests the use of the linear higher-order theory instead of classical sandwich

theory in design practice to better predict and avoid excessive bending deflections of

sandwich beams under concentrated loading.

2.3 Buckling of Sandwich beams

One of the particular features of sandwich beam is the complicated buckling or in-

stability behavior. Since buckling can quickly lead to failure this is of major concern

to the designers. A typical sandwich beam may buckle in to distinctive ways, local

buckling or wrinkling and global buckling. Many research papers have been published

regarding the buckling behavior of sandwich beams. Roberts et al. [13] tested or-

thotropic FRP sandwich beams for buckling in uni-axial compression. They used two

set of materials as the core material, balsa and PVC foam core. They measured the

experimental elastic buckling load. They concluded that the buckling load for foam

core beam is lower than the balsa core beam. Muc and Zuchara [14] studied a thin

walled sandwich plate with laminated composite faces subjected to axial compression
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loading for buckling. Stiftinger and Rammerstorfer [15] studied the local buckling

of facesheets. Analytical and finite element analysis were carried out for compres-

sive loading. Saoud and Grognec [16] in their paper studied the theoretical elastic

local/global buckling of rectangular sandwich plates under uniaxial or biaxial com-

pression. In their formulation they presented the facesheets by Love-Kirchoff plate

model and assumed that the core behaves as a 3D continuous medium. They solved

the bifurcation equation for the problem for critical displacements and the associated

buckling modes. They compared the results with finite element analysis which was in

good agreement with the analytical solution. In an earlier study Douville and Grognec

[17] studied the local and global buckling of the facesheet in which they assumed the

facesheet as Euler-Bernoulli beam and the core as 2D continuous solid. Léotoing et al.

[18] presented applications of a novel unified model for sandwich beams with closed-

form solutions for both global and local buckling. From their analytical study they

obtained critical loads for a simply supported beam, through the calculation of two

eigenvalues leading to the buckling modes. Jasion et al. [19] performed analytical,

numerical and experimental studies of the the local and global buckling of facesheets

in sandwich beams. They included the shear effect in their mathematical model. The

derived governing equation was solved and the critical loads were compared with finite

element analysis. Østergaard [20] studied the debonding of the facesheet due to local

buckling. His study showed that the sensitivity to the face sheet imperfection results

from interaction of local debond buckling and global buckling and the development

of a damaged zone at the debond crack tip. From the literature review discussed

above it can be asserted that researchers have conducted analytical, experimental

and numerical methods to study and understand the behavior of sandwich beams
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under various loading and boundary conditions. Researchers have conducted three-

point and four-point bend tests, compression tests and various analytical methods

to analyze the sandwich beam behavior. It can be noticed that the researchers did

not use any design criteria for constructing the sandwich beams. The current study,

focuses on developing a design tool for constructing optimized sandwich beams.

2.4 Finite Element Analysis

Finite element analysis is used by many researchers to compare with their experi-

mental or analytical data. Mohan et al. [11] performed finite element analysis using

ABAQUS finite element program. They simulated the brittle cracking of the facesheet

for a four-point bend test. Wu et al. [21] in their paper modeled a sandwich beam

as separated layers with appropriate constrains imposed between them. Their pro-

posed FEM model was used to simulate the failure behavior of a FRP sandwich

beam that is used in bus body. They compared the simulation results with other

numerical predictions and the experiment. They concluded that their model is very

efficient computationally for analyzing the failure issues of FRP sandwich structures.

Pokharel and Mahendran [22] studied the inadequacy of conventional effective width

formulae for sandwich beams with slender plates. They used experimental and finite

element analysis to improve the design tool. Muc and Zuchara [14] studied a thin

walled sandwich plate with laminated composite faces subjected to axial compression

loading. They compared their analytical formulae with finite element analysis. The

aim of their investigations was to point out the effects of the normal stresses and their

influence on the sandwich behavior. Awad et al. [23] in their paper presented the
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results of the experimental behavior and the non-linear finite element analysis (FEA)

of the GFRP sandwich beam. The experimental works investigate the behavior of the

GFRP sandwich beam, skincore interaction, and core behavior. A non-linear finite

element model was developed to simulate the behavior of the skincore interaction,

and the model was verified by comparing the results with those obtained from test-

ing. Bambal [24] in his research developed a modeling approach to predict response

of composite sandwich beams under static bending conditions. He attempted 2D and

3D solid with isotropic and orthotropic material properties in Finite Element (FE).

He concluded that his proposed modeling proved to give reasonably accurate predic-

tion for composite sandwich beams. From this brief review it can be seen that finite

element analysis is a method vastly used by the researchers to simulate or compare

their experiment or analytical results. In the current study, finite element analysis is

used to observe the stress distributions through the thickness of sandwich beams.

2.5 Similitude Study of Composites

Similitude study is of great importance when it comes to testing of a structure.

By using similitude laws a structure can be scaled down and experiments can be

conducted on the scaled down structure. In many cases testing a full scale structure

maybe impractical and expensive. For composite sandwich beams similitude rules are

not straightforward as the number of parameters are many. Many researchers studied

similitude analysis of composite beams. Similitude study of sandwich beams found

in literature is done by Frostig and Simitses [25, 26]. Their work presented scaling

laws for sandwich beams with isotropic facesheets. In the current study similitude
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conditions for sandwich beams with composite facesheets are developed.
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Chapter 3

Simplified Failure Mode Maps for

the Design of Sandwich Beams

A. S. Mondal, S. Nakhla

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

St. John’s, Newfoundland, Canada

An initial version of this work was published and presented in the OCEANS ’14

MTS/IEEE St. John’s conference. A version of this chapter is submitted in Jour-

nal of Composites Part A: Applied Science and Manufacturing. The author of this

manuscript Aninda Mondal developed this work under the supervision of Dr. Sam

Nakhla. Mr. Mondal’s contribution to this paper is as follows:

• Performed all literature searches required for background information.

• Performed all the analysis and calculations.

• Analysed the results.
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Dr. Sam Nakhla provided continuous technical guidance and editing of the manuscript.

In this chapter, the manuscript is presented with altered figure numbers, table num-

bers and reference formats in order to match the thesis formatting guidelines set out

by Memorial University.

Abstract: Failure modes of composite sandwich beams are outlined. Simplified the-

oretical predictions based on Euler-Bernoulli beam theory are introduced and dis-

cussed. Theoretical predictions are compared with other analytical models in open

literature. Further comparisons are held with test data available in literature. These

comparisons concluded sufficiently accurate predictions from simplified models. Fi-

nally, failure mode maps are constructed through consistent non-dimensionalization of

geometric and material parameters extending the applicability of failure mode maps

to provide useful design tool.

Keywords: Analytical Modelling, Sandwich Structure, Failure
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3.1 Introduction

The use of sandwich beams mostly increased after World War II [2]. Since then,

sandwich beams are becoming increasingly popular in sectors where high stiffness-

to-weight ratio is necessary such as aerospace and marine industries. The work of

Plantema [2] and Allen [27] focused on analysis of sandwich beams in terms of their

stiffness and strength while further work in the literature [28–31] focused on their

failure mechanisms. These failure mechanisms can be associated to either one of the

sandwich beam components, i.e. facesheet or core. For example, Plantema [2] and

Allen [27] presented discussions on sandwich beams buckling under in-plane loading.

These discussions clarify the crucial aspects of buckling failure in which a facesheet

debonds from the core. Facesheet debonding can occur in either one of two ways.

Complete debonding of the face from core which is also known as global buckling.

Alternatively a partial debonding may occur between face and core which is known

as local buckling or facesheet wrinkling. Carlsson and Kardomateas [28], Nui and

Talreja [29] and Mondal and Nakhla [30] studied buckling failure in various loading

scenarios. Various analytical approaches were used in [28–30] to develop expressions

for local buckling load conditions in sandwich beams. Daniel et al. [31] developed

a detailed investigation of failure modes in sandwich composite beams and their as-

sociated prediction criteria. In their investigation they highlighted the dependency

of failure modes on material properties and geometry of facesheets and core as well

as loading conditions. They also stressed on the essential need to carefully conduct

experiments on these beams to accurately delineate the conditions leading to fail-

ure. Also in [31] they outlined the failure modes in sandwich beams to be facesheet
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failure, core failure, global buckling, wrinkling and indentation failure under concen-

trated load. Facesheet failure is explained to be due to uniaxial tensile or compressive

stress, while the core commonly fails due to shear stresses [27]. Kim and Swanson

[4], McCormack et al. [7], Kabir et al. [6] have shown in their experimental studies

how the core of a sandwich beam fails in shear. Whereas facesheet debonding due

to manufacturing defects or impact loading reduces beam stiffness and increases the

potential of occurrence of global buckling [31]. Short wavelength buckling also known

as facesheet wrinkling is mainly governed by the through-the-thickness direction core

modulus. Finally, indentation failure takes place when external loads result in lo-

cal yield of core associated with significant local deformation of the facesheet into

the core. For example, a three-point bending test conducted without reinforcing the

facesheet under the load application points. In order to enhance the understanding

of failure modes in sandwich beams many researchers developed failure mode maps.

Petras and Sutcliffe [32] constructed failure mode maps for facesheet failure, core

shear, core crushing and wrinkling as a function of relative density and thickness of

the facesheet. Shenhar et al. [33] and Steeves and Fleck [34] also presented failure

mode maps for sandwich beams. Steeves and Fleck [34] constructed failure mode

maps for microbuckling, wrinkling, core shear and indentation failure to deduce the

aspect ratio of the facesheet and the core.

In the current study, simple analytical models are used to present an effective

methodology to construct the failure maps of sandwich beams for the purpose of

design optimization. Special attention is paid to the wrinkling failure mode to derive

its analytical modes based on the classical appraoch of Winkler foundation. Analytical

solutions for facesheet compressive failure, core shear failure, buckling and wrinkling
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are presented. The solutions are compared for accuracy with real test data or other

established solutions from literature. Failure maps are constructed for the failure

modes. Contour plots of these failure modes are constructed as a function of non-

dimensional core and facesheet thickness. From the contour plots, materials for the

facesheet and core can be chosen and a non-dimensional core and facesheet thickness

can be selected such that these failure modes can be avoided. To optimize the design,

mass of the sandwich beam is also considered.

3.2 Analysis

This section aims at discussing simplified models to predict sandwich beam failure

modes. For this purpose, a unified formulation based on Euler-Bernoulli beam (E-B

beam) theory is used. Failure modes discussed in this section are facesheet failure,

core failure, global buckling and wrinkling of facesheet. A general problem of a

simply supported sandwich beam is used throughout the analysis. The beam is under

distributed load q(x) and distributed moment m(x) as illustrated in Figure 3.1. The

detailed geometry of the cross section is shown in Figure 3.2.

For the purpose of comparison with test data, numerical predictions developed

within are compared to test results documented in [31]. Carbon/epoxy (AS4/3501-

6) and PVC foam Divinycell H250 are generally used for facesheet and foam core

unless otherwise mentioned. The material properties of these constituents and beam

geometry are adopted from [31] and provided in Table 3.1.
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Figure 3.1: Simply supported sandwich beam under uniform bending and moment

Figure 3.2: Cross section of a sandwich beam

3.2.1 Normal Stress in the Facesheet

As expressed by Daniel et al. [31] uniaxial stresses, tensile or compressive is re-

sponsible for facesheet failure. This is explained by realizing that the facesheet is

responsible for carrying normal stresses due to its increased normal stiffness in com-

parison to the soft core material. In [31] they recorded their observation by testing

a sandwich beam with carbon/epoxy face and aluminum honeycomb core. They ex-
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Table 3.1: Geometric and material properties of sandwich beam constituents [31]

Carbon/Epoxy Foam H250

Density (kg/m3) ρf = 1620 ρc = 250

Young’s Modulus (MPa) Ef = 147000 Ec = 403

Shear Modulus (MPa) - Gc = 117

Poisson’s Ratio νf = 0.25 νc = 0.32

Compressive Strength (MPa) σallow = 1930 -

Shaer Strength (MPa) - τallow = 5

Thickness (mm) t = 0.8 c = 25.4

Width (mm) b = 26

Length (mm) L = 406

plained the observed failure to be dominantly the result of compressive stresses in

the face. Moreover, they concluded the adequacy of linear bending theory to pre-

dict facesheet failure. Consequently in this section the normal stress in the facesheet

is predicted using Euler-Bernoulli beam theory for built-up sections as explained in

Gere [35]

σf =
EfMz

EfIf + EcIc
(3.1)

where, M is the maximum moment at the cross-section, Ef and Ec are the homoge-

nized moduli of the facesheet and core, respectively, and If , Ic are the second moment

of area of the face and core, respectively obtained at the beam midplane. The homog-

enized modulus of the facesheet, Ef , can be obtained using the extensional stiffness

matrix A as demonstrated by Mallick [36]. The facesheet is assumed to be symmetric
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around its own mid-plane to guarantee hygrothermal stability, hence

A =


A11 A12 0

A21 A22 0

0 0 A33

 (3.2)

The homogenized modulus Ef can be expressed as

Ef =
A11A22 − A2

12

tA22

(3.3)

In a four-point bending test conducted by Daniel et al. [31] compressive failure of

facesheet was observed. The sandwich beam had an aluminum honeycomb core which

has a longitudinal modulus of 9.5 MPa. The documented compressive failure moment

is 1.09 kN.m. The calculated predicted normal stress in the facesheet using Equation

(3.1) is 2061 MPa where the compressive strength of carbon/epoxy facesheet is 1930

MPa. The percentage difference of prediction of compressive failure using Equation

(3.1) is 6.8%. Therefore, the expression in Equation (3.1) provides sufficiently accurate

prediction of the facesheet compressive failure.

3.2.2 Shear Stress in the Core

Contrary to normal stresses the core of a sandwich beam is responsible for carry-

ing shear stresses [31]. Allen [27] modified the shear stress equation based on E-B

homogenous beam theory to account for a beam of compound cross-section.

τ =
V

EIeqb
ΣQE (3.4)
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where, V is the maximum shear force, EIeq is the total bending rigidity of the sand-

wich beam and the summation term is carried out over the product of the first moment

of area, Q and the corresponding modulus E of the section constituents. Allen [27]

also explained that the shear stress is maximum at the mid-plane of the sandwich

beam, if symmetric. Therefore, Equation (3.4) can be evaluated at the mid-plane as

τc =
V

EIeq

(
Ef td

2
+
Ecc

2

8

)
(3.5)

where, t is the thickness of the facesheet, c is the thickness of the core and

EIeq = EfIf + EcIc (3.6)

Daniel et al. [31] documented that shear failure occurs in the vicinity of the pro-

portional limit of the shear stress-strain curve of the core. Therefore, shear stress

failure can be predicted using Equation (3.5). As Equation (3.5) is developed using

E-B beam theory, it may over-predict the value of the shear stress. Other researchers

developed further solutions to increase the accuracy of shear stress prediction in the

core. For example, Steeves and Fleck [34] elected to use the nonlinear solution de-

veloped by Chiras et al. [37] to predict the shear stress in a sandwich beam. This

nonlinear solution is based on Timoshenko beam theory for the case of rigid-ideally

plastic core and elastic facesheets. The expression developed by Chiras et al. [37] is

τc =
2V − 8Efb(t/L)3δ

2bd
(3.7)
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where,

δ =
2V L3

48EIeq
+

2V L

4AGeq

(3.8)

where, AGeq is the total shear rigidity of the sandwich beam which can be approx-

imated as the shear rigidity of the core material. A three point bending test was

conducted by Daniel et al. [31]. The span length of the beam was 380 mm. They

documented that non-uniform shear deformation starts close to the proportional limit

of the stress-strain curve of the H250 foam which is 2.55 MPa. For this case, the pre-

dicted shear stress in the core using Equation (3.5) and (3.7) are 2.47 MPa and 2.42

MPa, respectively. The percentage differences of the calculated predicted load are

negative 3% and 5.1%, respectively. Therefore, the linear theory (E-B beam theory)

provides sufficiently accurate prediction to the onset of shear failure.

3.2.3 Facesheet Debonding

A sandwich beam is constructed by adhesively bonding two thin facesheets on both

sides of a soft core material, hence there exists the possibility of facesheet debonding

from core during load application. Facesheet debonding may occur due to fabrication

imperfections in the sandwich beam or external impact loading. Debonding results in

the reduction of facesheet bending stiffness. As stated earlier buckling of the facesheet

can be global or local, alternatively referred to as global buckling and wrinkling,

respectively. Many researchers have developed expressions to predict the buckling

and wrinkling loads for a sandwich beam using various methods.
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3.2.3.1 Global Buckling

Bauchau and Craig [38] provide an expression to predict global buckling load by

idealizing the facesheet as a simply supported beam resting on an elastic foundation

as shown in Figure 3.3 and 3.4. The stiffness of the elastic foundation is defined in

terms of the transverse modulus of the core, Ec. For this purpose, they used the

Principle of Minimum Total Potential Energy (PMTPE) based on E-B beam theory.

Figure 3.3: Global buckling of the facesheet (facesheet debonding)

Figure 3.4: Idealised facesheet in global buckling

The global buckling load as developed by Bauchau and Craig [38] is expressed in

terms of a wave number, n as

Pb =
n2π2Efbt

3

12L2
+
EcL

2

n2π2
(3.9)
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They identified the minimum global buckling load to correspond to a wave number

of unity. Meanwhile, in the tests conducted by Daniel et al. [31] no global buckling

was observed in the absence of manufacturing imperfections and impact damage.

Therefore, theoretical values of global buckling load is used in this study without

comparisons with test data.

3.2.3.2 Wrinkling (Local Buckling)

In two four-point-bending tests conducted by Daniel et al. [31] wrinkling of the

facesheet was observed for foam core sandwich beams. There exists in the literature a

number of expressions to predict facesheet wrinkling load. Hoff and Mautner derived

an expression as explained by Carlson and Kardamateas [28] using a linear decay

function. Plantema [2], Allen [27], Nui and Talreja [29] also established expressions

to predict the minimum wrinkling load. Recently, Mondal and Nakhla [30] developed

an expression based on E-B beam theory using the classical approach of Winkler

foundation. This approach is consistent with the one developed by Bauchau and

Craig [38] for global buckling. Principle of Minimum Total Potential Energy is used to

derive the expression. Face wrinkling is characterized by local instability or wrinkling

as shown in Figure 3.5 which has shorter wavelength than those associated with

global buckling of the plate. In order to develop a mathematical model for wrinkling

both relative displacement and slope are assumed to be zero at the boundaries of

the wrinkling length. Therefore, wrinkling of facesheet can be idealized as double

cantilever (clamped-clamped) beam resting on elastic foundation as shown in Figure

3.6.

The wrinkled length Lw of the beam is considered for the analysis, where Lw =
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Figure 3.5: Local buckling of the top facesheet

Figure 3.6: Idealised facesheet in wrinkling

αL(0 < α < 1). The bending stiffness of the facesheet is

Hf = EfIfo (3.10)

where, Ifo is the second moment of area of the face around its own centroid or mid-

plane. The load required to cause the facesheet to wrinkle is predicted using PMTPE

approach with the following assumed displacement field

w(x) = a(ξ2 − 2ξ3 + ξ4) (3.11)

where, ξ = x/L and a is an unknown displacement parameter. Total potential energy

of the system, Π, is the superposition of strain energies due to the bending of the

face, strain energy in the elastic foundation (the core) and potential energy of the
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applied load, P .

Π =
1

2

∫ Lw

0

Hf

(
d2w

dx2

)2

dx+
1

2

∫ Lw

0

Ecw
2dx− 1

2

∫ Lw

0

P

(
dw

dx

)2

dx (3.12)

Substituting Equation (3.11) into (3.12) and integrating we get,

Π = Hf
2a2

5L2
w

+
EcLwa

2

1260
− Pa2

105Lw

(3.13)

The total potential energy is expressed here as a function of unknown amplitude a.

Applying the PMTPE theory,

dΠ

da
=

(
4Hf

5L3
w

+
EcLw

630
− 2P

105Lw

)
a = 0 (3.14)

Either a is zero or the term in parenthesis is zero. In the latter case, P = Pw is the

wrinkling load at which wrinkling of the facesheet occurs.

Pw =
42Hf

L2
w

+
EcL

2
w

12
(3.15)

An expression for the wrinkling length can be derived by differentiating Equation

(3.15) with respect to the length (Lw). The expression for the minimum value of

wavelength Lw corresponds to minimum Pw is

Lw = 4

√
504Hf

Ec

(3.16)

Equation (3.16) can be substituted into (3.15) to find the minimum wrinkling load
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for the facesheet. The expressions derived by Hoff and Mautner which is explained by

Carlson and Kardomateas [28], Plantema [2], Allen [27] and Nui and Talreja [29] are

shown in Equations (3.17 - 3.20) respectively. Nui and Talreja [29] provided solutions

for short wavelength and long wavelength wrinkling. From the experimental data in

[31] and comparing them with the solutions provided by Nui and Talreja [29] it was

seen that wrinkling of the facesheet in the test was a short wavelength wrinkling.

Therefore, the solution for short wavelength provided by Nui and Talreja [29] is given

in Equation (3.20).

PHoff = 0.91bt 3
√
EfEcGc (3.17)

PAllen = btB1E
1/3
f E2/3

c (3.18)

where, B1 = 3[12(3− νc)2(1 + νc)
2]−1/3

PPlantema = 0.825bt 3
√
EfEcGc (3.19)

PTalreja = bt

[{ 3Ec

2(1 + νc)(3− νc)

}2/3

E
1/3
f +

(1− νc)Ec

(1 + νc)(3− νc)

+
{ Ec

(1 + νc)(3− νc)

}4/3

(
3

2Ef

)1/3

] (3.20)

Daniel et al. [31] documented that facesheet wrinkling failure was observed for sand-

wich beams with foam cores. They reported that the wrinkling behavior is controlled

by the core modulus. In a four-point bending test of a sandwich beam with Divinycell

H100 foam core they measured a critical wrinkling load of 14 kN. From their test a

comparison is held between analytical prediction and their measured wrinkling load.

The results from this comparison is provided in Table 3.2. Comparing the predicted

minimum wrinkling loads in Table 3.2 it can be seen that the current method provides

Mondal 2016 28



sufficiently accurate prediction of minimum wrinkling load.

Table 3.2: Comparison of predicted critical wrinkling load

Wrinkling Load in kN
(Percentage comparison with [31])

Current 17.8(%27.1)
Hoff and Mautner [28] 18.8(%34.3)

Allen [27] 16.6(%18.6)
Plantema [2] 17.0(%21.4)

Nui and Talreja [29] 17.2(%22.9)

3.3 Failure Mode Maps

In this section failure mode maps are constructed for different failure modes discussed

in the previous section. Using E-B beam theory as the unified basis for constructing

these maps guarantees consistent and straight forward approach. Also, consistent

non-dimensional parameters are used while constructing these maps for the same

purpose of unified basis. Moreover, the knowledge gain in comparing analytical pre-

dictions with test results from [31] is introduced into the developed maps. Finally,

the constructed maps are discussed and proposed as a design tool for sandwich con-

struction. Non-dimensional parameters are defined based on material properties and

geometry of the sandwich beam constituents. Allowable values for facesheet nor-

mal and core shear stresses are used to obtain the non-dimensional failure modes of

facesheet and core materials, respectively. While Euler buckling loads for simply sup-

ported and clamped-clamped beams are used for global buckling and wrinkling of the

facesheet, respectively. Finally, the total thickness of the sandwich beam is used to ob-
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tain non-dimensional dimensions of the cross-section. Therefore, the non-dimensional

dimensions of the cross section and sandwich beam length can be expressed as

t̄ =
t

h
; c̄ =

c

h
; b̄ =

b

h
; L̄ =

L

h
(3.21)

Non-dimensional normal stress in the facesheet is obtained from Equation (3.1)

σ̄ = M̄
3t̄(c̄+ t̄)

6t̄(c̄+ t̄)2 + Ēc̄3
(3.22)

where, M̄ = M/σallwbt(d/2). From the test conducted in [31] it is found that M̄ =

1.94.

Non-dimensional shear stress in the core is obtained from Equation (3.5)

τ̄ = V̄

[
c̄

c̄+ t̄
+
Ē

4

c̄3

t̄(c̄+ t̄)2

]
(3.23)

where, V̄ = V/τallwbc. From the test conducted in [31] it is found that V̄ = 1.03. Non-

dimensional global buckling load of the facesheet is obtained from Equation (3.9)

P̄b = 1 +
12ĒL̄4

π4b̄t̄3
(3.24)

Non-dimensional wrinkling load of the facesheet is obtained from Equation (3.15).

P̄w = 0.6161

√
ĒL̄4

b̄t̄3
(3.25)
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Using the properties of carbon/epoxy facesheet and H250 foam core given in Table

3.1 the following failure mode maps are constructed. Failure mode maps of non-

dimensional normal and shear stress are constructed from Equation (3.22) and (3.23).

To account for safety factor of 2, M̄ = 1 and V̄ = 0.5 are considered. The failure

mode maps for normal and shear stresses are shown in Figure 3.7. In Figure 3.7

Figure 3.7: Failure mode maps for non-dimensional normal and shear stress

the values on the lines denotes the values of non-dimensional stresses. The solid

line consisting a value of unity indicates that along this line the normal stress in the

facesheet is equal to the allowable stress of the facesheet. For design purpose, the

value of t̄ and c̄ should be such that the contour lines has a value less then unity as

this indicates that the stresses will be less than their corresponding allowable stresses.

Non-dimensional global buckling and wrinkling load are plotted in Figure 3.8. From
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Figure 3.8: Failure mode map for non-dimensional buckling and wrinkling

Figure 3.8 it is noticeable that global buckling load is higher than wrinkling load.

This indicates that wrinkling is likely to occur before buckling takes place. This is

also verified by the experiments conducted by Daniel et al. [31] where wrinkling was

observed while no debonding of the facesheet was observed for foam core sandwich

beams. Therefore, wrinkling should be considered more critical than buckling while

designing a sandwich beam. Figure 3.8 also indicates that the buckling and wrinkling

phenomena are independent of core thickness. This enables us to plot P̄b and P̄w

as a function of t̄ and Ē. A semi-log plot is constructed for t̄ vs 1/Ē in Figure 3.9.

From a designers perspective let us say, we want to choose a suitable facesheet and

core. A suitable ratio of Ef/Ec can be chosen from Figure 3.9. It is expected that

the facesheet of the sandwich beam has high value of P̄w so that it does not fail at a
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Figure 3.9: Contour plot for non-dimensional thickness of the facesheet (t̄) and
non-dimensional moduli (Ē)

low wrinkling load. Once the material is selected, the non-dimensional thickness (t̄)

of the facesheet can be selected using Figure 3.9. While choosing for a suitable (t̄) it

is necessary that the sandwich beam is optimized.

Sandwich beam can be optimized by minimising the mass of the beam. If the

density of the facesheet and the core is ρf and ρc, respectively, then the mass (ms) of

a sandwich beam is the sum of the mass of the facesheets (mf ) and the core (mc).

ms = mf +mc (3.26)

where, mf = 2bLtρf and mc = bLcρc. Non-dimensional mass of the beam is obtained
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from Equation (3.26).

m̄ =
ms

bLhρf
= (2t̄+ c̄ρ̄) (3.27)

where, ρ̄ = ρc/ρf . Equation (3.27) is plotted in Figure 3.10 along with the non-

dimensional normal and shear failure mode maps. Figure 3.10 shows that the thick-

Figure 3.10: Contour plot for non-dimensional mass, normal and shear stress

ness of the facesheet has higher contribution over the mass of the sandwich beam

than the thickness of the core. Figure 3.10 suggests that the thickness of the facesheet

should be kept low for designing a lightweight sandwich beam. Once a suitable t̄ is

chosen from Figure 3.9 and 3.10 a value of c̄ can also be selected. Then the selected

values of t̄ and c̄ can be verified from Figure 3.10 whether it is in the failure region

or not.
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3.4 Discussion and Conclusion

A general discussion of failure modes of sandwich beams is presented for the purpose

of arriving at unified basis. Euler-Bernoulli beam theory and the classical approach

of Winkler foundation are used as the unified basis. A special attention is made to

develop a simplified model for wrinkling failure. The developed model utilizes beam

theory and Winkler foundation approach within the framework of the PMTPE. The

developed wrinkling failure model is in good agreement with other analytical solutions

published in literature. Additionally all analytical predictions of presented failure

modes are compared to test data and other analytical solutions available in literature.

Comparisons prove adequate predictions of all simplified failure models. Furthermore

non-dimensional failure mode maps are presented for facesheet compressive failure,

core shear failure and global facesheet buckling and wrinkling. Non-dimensional mass

of sandwich is incorporated into failure mode maps to enable minimal weight selection.

Finally, a simple procedure is proposed to utilize the developed mode maps for optimal

design selection of sandwich beams with minimum weight.
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Abstract: This study addresses the structural similitude of sandwich beams with

laminated facesheet under generally applied loads. Euler-Bernoulli beam theory is

used to describe the governing equation of sandwich beams with soft core. Struc-

tural similarity conditions are derived in the cases of distributed, shear and bending

loads. These similarity conditions enable the design of a smaller test model from

which the behavior of a larger prototype can be predicted. Finite element analy-

sis is used to verify the derived similarity conditions and requirements. Comparisons

of through the thickness stresses are obtained and found to be in excellent agreement.

Keywords: Sandwich beam, Similitude
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4.1 Introduction

Since World War II the use of sandwich beams is increased in Aerospace, transporta-

tion and Marine industries. High stiffness-to-weight ratio of sandwich beams is their

major advantage making to suite these industries. Meanwhile, structural components

and applications in these industries are characterized by their large size. Moreover,

stringent requirements are imposed on the design of these structural components for

certification purposes. Certification requirements dictate testing full scale prototypes

of these structural components. Full scale prototype testing represents a challenging

undertaking for the designer in terms of high cost and special equipment require-

ments. Consequently identifying a scaled-down model of similar structural behavior

to the prototype for testing purposes can provide efficient and cost effective solution.

Structural similitude enables deriving similarity conditions between the prototype

and the scaled-down model possessing similar behavior. Meanwhile, the high number

of design parameters of sandwich beam with laminated facesheet represents a major

challenge in deriving associated similarity conditions. Therefore the objective of this

work is to identify the necessary constraints that allow developing these similarity

conditions for a sandwich beam with laminated facesheet under variety of applied

loads.

Many researchers conducted analytical, numerical and experimental studies on

similitude of composite structures. Simitses [39] studied similitude of flat laminated

surfaces. In his study he performed theoretical study on a small scale model of lam-

inated surface for bending, buckling and vibration. Using scaling laws he predicted

the behavior of a large-scale prototype. Simitses and Rezaeepazhand [40–42] studied
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structural similitude and scaling laws for flat and cylindrical laminated plates and

shells. Using matrix method, dimensional analysis and governing equation method

they presented the scaling laws for laminated plates. Shokrieh and Askari [43] used se-

quencial similitude method to study the similitude of composite laminates for impact

loading and buckling loading. Frostig and Simitses [25] presented similitude analysis

of a sandwich unidirectional beam under compressive buckling loads. Mckown et al.

[44] investigated scaling effects in fiber-metal laminates under low velocity impact.

Gurvich and Pipes [45] presented results of theoretical and experimental analysis of

size effect on strength of laminated composites. Qian et al. [46] conducted experimen-

tal studies for scaling laws of composite plates for impact damage. Jackson et al. [47]

analyzed and conducted experimental studies for similitude analysis of commposite

plates in tension and flexure. Similitude for laminated tube structures were studied in

[48–50]. Frostig and Simitses [26] studied similitude analyze of sandwich beam. Using

higher order sandwich theory they presented the necessary conditions for similarity

between a model and prototype for a sandwich beam with a foam core and isotropic

facesheets. In the current study, the governing differential equation based on Euler-

Bernoulli beam theory is used to derive the similitude conditions for sandwich beam

with laminated facesheet and soft core. Practical geometric and material guidelines

are delineated from the analysis and presented as requirements on the manufacturing

of scaled-down models. Finally, finite element analysis is used to verify the accuracy

of derived similarity conditions and manufacturing requirements.
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Figure 4.1: Sandwich beam subjected to a distributed load, shear load and moment

4.2 Mathametical Formulation

Considering a simply supported sandwich beam of length L and width b subjected to

a distributed load q(x), shear loads Vi and moments Mi as shown in Figure (4.1). In

the case of distributed load q(x) the governing differential equation for the beam in

terms of transverse deflection w(x) [3]

bD11
d4w

dx4
= q(x) (4.1)

where, D11 is the bending stiffness of sandwich beam. Using similitude theory the

variables in Equation (4.1) can be written as xp = λxxm. Where λ is the scale

factor of variable x and the indices p and m are used to denote prototype and model,
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Figure 4.2: Cross section of a sandwich beam

respectively. Therefore the prototype equation can be written as

bpD11p
d4wp

dx4
p

= qp (4.2)

While the model equation is

bmD11m
d4wm

dx4
m

= qm (4.3)

The relations between geometries, stiffness properties and loading conditions of the

prototype and the model in terms of the scaling factors λ’s are

bp = λbbm, D11p = λDD11m, wp = λwwm, xp = λxxm, qp = λqqm (4.4)

Rewriting Equation (4.2) in terms of the scaling factors

λbbmλDD11m
λwd

4wm

λ4
xdx

4
m

= λqqm (4.5)
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Dividing Equations (4.5) and (4.3) the scaling factors in the case of distributed load

satisfy

λbλD
λw
λ4
x

= λq (4.6)

In the case the beam is subjected to transverse shear load V , the governing differential

equation for the beam in terms of the transverse deflection w(x) [3]

bD11
d3w

dx3
= V (4.7)

Using the theory of similitude and similar to previous steps the scaling factors in the

case of shear load satisfy

λbλD
λw
λ3
x

= λV (4.8)

In the case of uniform bending load M , the governing differential equation for the

beam in terms of the transverse deflection w(x) [3]

bD11
d2w

dx2
= M (4.9)

Similarly the scaling factors in the case of bending moment satisfy

λbλD
λw
λ2
x

= λM (4.10)

Equations (4.6), (4.8) and (4.10) identify seven scale factors required to guarantee

consistent behavior between the prototype and model. The scale factors belong to

spatial geometry, loading, stiffness parameters of the sandwich beam. Spatial geom-

etry scale factors are λb ,λw and λx, load scale factors are λq, λV and λM and the
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stiffness scale factor is λD. Therefore, it is necessary to further alayze the stiffness

scale factor λD in terms of through the thickness geometry and material properties.

For this purpose a symmetric sandwich beam with laminated facesheet and foam core,

shown in Figure (4.3), is considered. The expression for the bending stiffness matrix

D can be found in [36]

D =
1

3

2n+1∑
k=1

Q̄k(h3
k − h3

k−1) (4.11)

where hk denotes through the thickness location and Q̄k is the reduced stiffness matrix

of the k-th layer or core and n is the number of layers in the facesheet. Equation

(4.11) can be expanded and written as

D =
1

3

[
Q̄1(h3

1 − h3
0) + Q̄2(h3

2 − h3
1) + ...+ Q̄k(h3

k − h3
k−1) + ...

+Q̄n(h3
n − h3

n−1) + Q̄c(h
3
n+1 − h3

n) + ...+ Q̄2n+1(h3
2n+1 − h3

2n)

] (4.12)

Assuming all layers in facesheet are of equal thickness tl, Equation (4.12) can be

further simplified and written in terms of total thickness of the facesheet t, core

thickness c, and the number of layers in the facesheet n.

D =
1

2
c2tl

n∑
k=1

Q̄k + 2cttl

n∑
k=1

Q̄k + 2t2tl

n∑
k=1

Q̄k +
2

3
t3

n∑
k=1

Q̄k(3k2 − 3k + 1)

−ct2l
n∑

k=1

Q̄k(2k − 1)− 2tt2l

n∑
k=1

Q̄k(2k − 1)− 1

12
Q̄cc

3

(4.13)

Mondal 2016 43



Figure 4.3: Cross-sectional geometry of a laminate sandwich beam

Therefore,

D11 =
1

2
c2tl

n∑
k=1

Q̄11k + 2cttl

n∑
k=1

Q̄11k + 2t2tl

n∑
k=1

Q̄11k +
2

3
t3

n∑
k=1

Q̄11k(3k2 − 3k + 1)

−ct2l
n∑

k=1

Q̄11k(2k − 1)− 2tt2l

n∑
k=1

Q̄11k(2k − 1)− 1

12
Q̄11cc

3

(4.14)

Equation (4.14) can be written for prototype as

D11p =
1

2
c2
ptlp

np∑
k=1

Q̄11kp + 2cptptlp

np∑
k=1

Q̄11kp + 2t2ptlp

np∑
k=1

Q̄11kp+

2

3
t3lp

np∑
k=1

Q̄11kp(3k2 − 3k + 1)− cpt2lp
np∑
k=1

Q̄11kp(2k − 1)

−2tpt
2
lp

np∑
k=1

Q̄11kp(2k − 1)− 1

12
Q̄11cpc

3
p

(4.15)
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and for the model as

D11m =
1

2
c2
mtlm

nm∑
k=1

Q̄11km + 2cmtmtlm

nm∑
k=1

Q̄11km + 2t2mtlm

nm∑
k=1

Q̄11km+

2

3
t3lm

nm∑
k=1

Q̄11km(3k2 − 3k + 1)− cmt2lm
nm∑
k=1

Q̄11km(2k − 1)

−2tmt
2
lm

nm∑
k=1

Q̄11km(2k − 1)− 1

12
Q̄11cmc

3
m

(4.16)

Identifying through-the-thickness scale factors

tlp = λtltlm , cp = λccm, tp = λttm,

np∑
k=1

Q̄11kp = λ∑ Q̄

nm∑
k=1

Q̄11km and Q̄cp = λQ̄cQ̄cm

(4.17)

After dividing Equation(4.15) with Equation(4.16) the following scaling ratios exists

λD =
c2
ptlp
∑np

k=1 Q̄11kp

c2
mtlm

∑nm

k=1 Q̄11km

=
cptptlp

∑np

k=1 Q̄11kp

cmtmtlm
∑nm

k=1 Q̄11km

=
t2ptlp

∑np

k=1 Q̄11kp

t2mtlm
∑nm

k=1 Q̄11km

=
t3lp
∑np

k=1 Q̄11kp(3k2 − 3k + 1)

t3lm
∑nm

k=1 Q̄11km(3k2 − 3k + 1)
=

cpt
2
lp

∑np

k=1 Q̄11kp(2k − 1)

cmt2lm
∑nm

k=1 Q̄11km(2k − 1)

=
tpt

2
lp

∑np

k=1 Q̄11kp(2k − 1)

tmt2lm
∑nm

k=1 Q̄11km(2k − 1)
=

Q̄11cpc
3
p

Q̄11cmc
3
m

(4.18)

Using the relations provided in Equation (4.17) into Equations (4.18) the following

conditions are realized

λD = λ2
cλtlλ

∑
Q̄ = λcλtlλtlλ

∑
Q̄ = λ2

tλtlλ
∑

Q̄ = λQ̄cλ
3
c (4.19)

Originally the stiffness scale factor λD is identified as one of seven scale factors of the

problem. Using Equation (4.19) λD can be replaced by five scale factor, namely, λc,

λt, λtl , λQ̄c and λ∑ Q̄. Consequently, a total of eleven scale factors are necessary and
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sufficient to correlate the model behavior to the prototype. These scale factors are

required to satisfy seven equations, namely, Equations (4.6), (4.8), (4.10) and (4.19).

Therefore, four conditions are required to be imposed to the problem to uniquely

determine the scale factors. These conditions are mainly dictated by manufacturing

requirements. It is intuitive to use the same material of the prototype to build the

model. For example, using the same foam material for the core and same prepreg

layers for the facesheet. It is also necessary to maintain identical stacking sequence

for the facesheet in the model as the prototype. On the other hand, no conditions

are imposed on the total thickness of the model; it needs to be determined from

equations. Imposing these conditions of identical materials and stacking sequence in

the facesheet result in

λtl =
tlp
tlm

= 1 (4.20)

and

λQ̄c = 1 (4.21)

Whereas,

λt =
tp
tm

=
nptlp
nmtlm

=
np

nm

= λn (4.22)

Which leads to the scale factor of total sum of reduced stiffness matrix of the facesheet,

λ∑ Q̄ =

∑np

k=1 Q̄11kp∑nm

k=1 Q̄11km

= λn (4.23)

Substituting the relations in Equations (4.20), (4.21), (4.22)and (4.23) into (4.19)

λD = λ2
cλn = λcλ

2
n = λ3

n = λ3
c (4.24)
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Equation (4.24) dictates equality of scale factors

λc = λn (4.25)

Inspecting Equations (4.22), (4.23) and (4.25) scale factors λt, λc, λ∑ Q̄ and conse-

quently λD can be expressed using only one scale factor λc. Rewriting Equations

(4.6), (4.8) and (4.10) in terms of these conditions

λbλ
3
n

λw
λ4
x

= λq (4.26)

λbλ
3
n

λw
λ3
x

= λV (4.27)

λbλ
3
n

λw
λ2
x

= λM (4.28)

Scale factors λb, λx and λn define the geometric scaling between the prototype and

model. Therefore imposing uniform geometric scaling, λb = λx = λn results in

λb
λn

λw
λn

λ4
n

λ4
x

=
λq
λn

(4.29)

λb
λn

λw
λn

λ3
n

λ3
x

=
λV
λ2
n

(4.30)

λb
λn

λw
λn

λ2
n

λ2
x

=
λM
λ3
n

(4.31)

Which in turn imposes these scale factors to the applied load

λq = λn, λV = λ2
n, λM = λ3

n (4.32)
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In conclusion, imposing conditions on manufacturing requirements using the same

materials and facesheet stacking sequence and performing uniform scaling in spatial

and thickness directions are the necessary and sufficient conditions to identify the

applied load scale factors.

4.3 Numerical Analysis and Comparison with Ex-

periments

Finite element analysis is used to investigate the accuracy of scale parameters de-

veloped within. ABAQUS v6.11 commercial finite element software is used for this

purpose. Three problems are considered for validation purposes,, namely, simply sup-

ported beam under uniformly distributed load, three-point bending and four-point

bending. In each case the geometry and materials of the test specimen(model) is out-

lined and a corresponding prototype specifications are obtained using derived scales.

Through-the-thickness normal and shear stresses in the models are compared to cor-

responding values in prototypes.

4.3.1 Sandwich beam under uniformly distributed load

In this section, a simply supported sandwich beam under uniformly distributed load is

proposed to evaluate the accuracy of the distributed load scale factor. The sandwich

beam is composed of T-300 carbon-epoxy facesheets with total of 80 layers in [0/90]s

and a phenolic foam core. Material properties of carbon-epoxy and phenolic foam are

obtained from Mallick [36] and Manalo [51], respectively, and are provided in Table
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4.1.

Table 4.1: Material properties of sandwich beam in distributed loading

Part Material E1 E2 ν12 G12 G13 G23

(GPa) (GPa) (GPa) (GPa) (GPa)

Facesheet Carbon/Epoxy T-300 133.44 8.78 0.26 3.254 3.254 3.2631

Core Phenolic Foam 1.32 - 0.29 - - -

An assumed prototype sandwich beam is 2 m long, 0.3 m wide and thicknesses of

facesheet and core are 0.012 m and 0.16 m, respectively. The applied uniformly dis-

tributed load is of intensity qp = 3500 N/m. A uniform geometric scaling of λn = 10

is used to obtain the geometry of a model of suitable size for testing. Hence, the

uniform distributed load to the model maintains λn ratio with that applied to pro-

totype; qm = 350 N/m. The facesheet in the model will be 8 layers in [0/90]s. The

model length is 0.2 m, width is 0.03 m and thickness of the facesheet and core are

1.2 mm and 16 mm, respectively. Both the model and the prototype are analysed

in ABAQUS for the purpose of comparing through-the-thickness normal and shear

stresses. The sandwich beam is modeled as three dimensional deformable shell dis-

cretized into a spatial mesh of 100\times 20 four-noded, reduced integration doubly

curved shell elements S4R. S4R is a 4-node, quadrilateral, stress/displacement shell

element with reduced integration and a large-strain formulation. The shell section is

defined according to provided stacking sequence of facesheet and respective thickness

of facesheet and core. Normal and shear stresses through-the-thickness are obtained

for the prototype and model and shown in Figures 4.4 and 4.5, respectively, in terms
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of the non-dimensional thickness. It can be noticed that normal and shear stress

predictions in the prototype and the model are in perfect agreement.

Figure 4.4: Normal stress distribution through the normalized thickness of model
and prototype for distributed loading
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Figure 4.5: Shear stress distribution through the normalized thickness of model and
prototype for distributed loading

4.3.2 Comparison with three-point bending test

In this section, a three-point bending test is chosen from literature [51] to investigate

the accuracy of the derived scaling laws in the case of shear load. In the three-point

bending test conducted by Manalo [51] the sandwich beam is composed of 10 layers

of Bi-axial [0/90] E-CR glass fibre facesheets and phenolic foam core. The obtained

properties of E-CR facesheet and phenolic foam core are provided in Table 4.2 [52].

The specimen length is 0.24 m, width is 0.05 m and thickness of the facesheet and

core are 3 mm and 14 mm, respectively. The observed failure mode of the sandwich
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beam from the three-point bending test is shear crack in the core and the failure load

occurred at Vm = 8.83 KN. For a uniform geometric scaling of λn = 10 the proto-

type length is 2.4 m, width is 0.5 m and thicknesses of the facesheet and core are 30

mm and 140 mm, respectively. Equation (4.32) predicts that the prototype should

experience failure at Vp = λ2
nVm = 883 kN. Both the model and the prototype are

analysed in ABAQUS for the purpose of comparing through-the-thickness maximum

shear stresses. The sandwich beam is modeled as three dimensional deformable shell

discretized into a spatial mesh of 100\times 20 four-noded, reduced integration dou-

bly curved shell elements S4R. The shell section is defined according to the stacking

sequence of facesheet and respective thickness of facesheet and core. Shear stresses

through the thickness are obtained for the prototype and model and shown in Fig-

ure 4.6 in terms of non-dimensional thickness. It can be noticed that shear stress

predictions in the prototype and the model are in perfect agreement.

Table 4.2: Material properties of sandwich beam used in 3-point bending test
[51, 52]

Part Material E1 E2 ν12 G12 G13 G23

(GPa) (GPa) (GPa) (GPa) (GPa)

Facesheet E-CR Glass Fiber 14.284 3.664 0.25 2.466 2.466 1.396

Core Phenolic Foam 1.32 - 0.29 - - -
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Figure 4.6: Shear stress distribution through the normalized thickness of model and
prototype for shear loading

4.3.3 Comparison with four-point bending test

In this section a four-point bending test is chosen from literature [53] to investigate

the accuracy of the derived scaling laws in the case of applied moment. In [53] they

tested a number of flat and curved sandwich beams with soft core to investigate the

effect of facesheet debonding on their free vibration response. For this purpose they

conducted a four-point bending static test of a flat sandwich beam and documented

the load of failure or debonding. In this four-point bending test the sandwich beam

is composed of carbon/epoxy facesheets and polyurethane foam core. The properties
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of carbon/epoxy facesheet and polyurethane foam core are provided in Table 4.3.

Table 4.3: Material properties of sandwich beam used in 4-point bending test [53]

Part Material E1 E2 ν12 G12 G13 G23

(GPa) (GPa) (GPa) (GPa) (GPa)

Facesheet Carbon/Epoxy 10.658 10.658 0.26 4.0 4.0 4.0

Core Polyurethane Foam 115 - 0.3 - - -

The beam length is Lm = 0.254 m, width is bm = 0.0254 m and thicknesses

of the facesheet and core are, 0.762 mm and 12.7 mm, respectively. The support

span length is 120mm and loading span is 40 mm. They [53] documented the initial

failure of the sandwich beam taking place at peak load of 715 N. Therefore the

maximum moment applied to the beam is Mm = 14.3 Nm. For a uniform geometric

scaling of λn = 10 the prototype length is 2.54 m, width is 0.254 m and thicknesses

of the facesheet and core are 7.62 mm and 127 mm, respectively. Equation (4.32)

predicts that the prototype should experience failure at Mp = λ3
nMm = 14300 Nm.

Both the model and the prototype are analysed in ABAQUS for the purpose of

comparing through-the-thickness maximum shear stresses. The sandwich beam is

modeled as three dimensional deformable shell discretized into a spatial mesh of

100\times 20 four-noded, reduced integration doubly curved shell elements S4R. The

shell section is defined according to stacking sequence of facesheet and respective

thickness of facesheet and core. Normal stresses through the thickness are obtained

for the prototype and model and shown in Figure 4.7 in terms of non-dimensional

thickness. It can be noticed that normal stress predictions in the prototype and the
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model are in perfect agreement.

Figure 4.7: Normal stress distribution through the normalized thickness of model
and prototype for applied moment

4.4 Discussion and Conclusion

In this paper, similarity conditions were developed for a symmetric sandwich beam

with laminated composite facesheets and a foam core where the beam was subjected

to bending. The foam core was assumed to be isotropic. The analysis was performed

using simple beam theory and classical lamination theory. Similitude conditions were

developed using the governing equation of the system. The scale factor λn was selected
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as the independent parameter. By deciding upon a certain value of scale factor λn,

the scale factor of all the other parameters can be known. The derived similitude

rules and conditions were tested and verified using finite element analysis. Real

experiments done in literature were modeled in finite element tool ABAQUS. The

stress distributions of both the small sandwich beam and the scaled up sandwich

beam were proven to be identical. Similitude conditions allow the designer to identify

the model size and loading conversion rules. Hence when testing the model and

identifying its failure load the current derived rules can be used to predict failure

load of the prototype. For future work experimental measurements will be obtained

for the purpose of comparison with the theoretical and numerical predictions. The

similitude analysis presented is a useful design tool as the similitude conditions found

from this study is simple and straight forward.
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Chapter 5

Conclusion

This chapter consists of a review of the main contributions of this thesis, followed by

an outlook on future work.

5.1 Review

The current thesis consists of two papers those are submitted for journal publication.

The current thesis discusses about designing of composite sandwich beams for offshore

purposes. In Chapter 1 advantages of composite sandwich beam are explained. In

spite of having good advantages over conventional materials composites are still not

popular in building offshore structures. The possible reason for this is that it is

still believed that composites are more expensive than conventional materials. An

unoptimised design of composites may lead to higher cost. Therefore it is necessary

to develop an optimisation design tool for composites. From literature review in

Chapter 2 it is found that many researchers conducted tests and performed analytical

studies on composite sandwich beams. They used higher order and complicated
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theories and methods to formulate design tools for sandwich beams. The focus of

Chapter 3 is designing of optimized sandwich beams. Simple theories are used for

developing the equations. Four failure modes are selected for the analysis. It is

identified that the facesheet of a sandwich beam may fail due to normal stresses,

global buckling and wrinkling whereas the foam core may fail due to shear. Analytical

expressions for these failure modes are introduced using simple theories and compared

with corresponding established expressions. It is concluded that the expressions using

simple theories give accurate enough results for the sake of design purposes. The

main contribution of this chapter is introducing a new expression for the facesheet

wrinkling. The expression is established by using E-B beam and PMTPE theories.

The established expression is compared with four other expressions for wrinkling

already established in literature. It is shown that the new approach can predict

the wrinkling of the facesheet with acceptable accuracy. The expressions for the

failure modes are later non-dimensioanlized. An advantage of non-dimensionalization

is that nondimensionalization can reveal characteristic properties of a system. These

non-dimensional form of the equations are used to construct characteristic failure

mode maps. Data from experiments conducted in literature is taken and used in

constructing the failure mode maps. Using the failure mode maps it is shown how

an optimized sandwich beam can be designed. The failure maps show that wrinkling

failure is more likely to occur than global buckling of the facesheet. The failure mode

maps provide which type of materials should be used. Also they provide safe zones

from which the dimensions of the constituents of a sandwich beam can be selected.

As sandwich beams require to be strong and also light, mass optimisation is also

incorporated in the design. It is a simple tool with which any size of sandwich beam
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can be designed.

After designing is complete it is necessary to manufacture and test the beams

before it can be used in the original structure. Testing of original structure is not al-

ways feasible and maybe expensive to do so in most cases. Therefore similitude study

of composite sandwich beams is done in Chapter 4. Similitude study of composite

sandwich beams is done for three loading conditions, distributed load, shear load and

moment load. The study is done using governing equation method. The reason for

choosing this method is that a governing equation is same for any system regarding

the size of the system. From analysis eleven unknown variables are identified. Using

practical manufacturing conditionis and constraints all these unknown variables are

expressed with a single known scale factor. The ratio of the number of layers between

the prototype and model is selected as the known scale factor. From analysis it is

found that the relation between the known scale factor and the dimensional scale

factors is linear. The distributed load, shear load and moment scale factors have

linear, quadratic and cubic relation with the known scale factor, respectively. From

the developed similitude conditions it is possible to test a small scale specimen and

by analyzing the failure mode of the small scale model failure mode of the large scale

prototype can be predicted. To verify the similitude conditions a three point bending

test and a four point bending test are selected from literature and they are mod-

eled in finite element tool ABAQUS. Using the developed similitude conditions larger

versions of these tests are also modeled in ABAQUS. Stress distributions through

the thickness of the beams are plotted and it is found that the stress distributions

between the small scale model and large scale prototype are identical. The similitude

conditions developed in this chapter can be used for conducting cost effective and
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feasible testing of sandwich beams.

5.2 Future Work

The analytical results found from the current study are compared with results from

literature. Developed conditions are verified by finite element analysis. For future

work the results developed in this work can be compared with experimental work.

Sandwich beams can be designed and constructed using the design tools and experi-

mental studies can be done. Also different sizes of sandwich beams maybe constructed

using the similitude conditions developed in this work and experimental study can be

conducted for further verification.
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Appendix A

Non-dimensionalisation of

Analytical Expressions

In this chapter the non-dimensionalisation procedure of the analytical expressions

used in chapter 3 is explained.

A.1 Normal Stress

The facesheets of a sandwich beam carries the normal stresses while the sandwich

beam is subjected to bending. Maximum normal stress acts at the top and bottom

edge of the sandwich panel. Maximum normal stress in the facesheet can be predicted

using the following expression

σf =
EfM(h/2)

EfIf + EcIc
(A.1)
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Equation (A.1) can be rewritten as

σf = M
h/2

If + ĒIc
(A.2)

where, Ē = Ec/Ef The non-dimensional normal stress σ̄ is defined as

σ̄ = σf/σallw (A.3)

where, σallw is the allowable normal stress in the facesheet. Substituting σf from

Equation (A.2) into Equation (A.3)

σ̄ =
M

σallw

h/2

If + ĒIc
(A.4)

Introducing the non-dimensional moment M̄ in Equation (A.4)

σ̄ = M̄
btd

2

h/2

If + ĒIc
(A.5)

The second moment of area of the facesheets can be written as

If =
btd2

2
(A.6)

The second moment of area of the core can be written as

Ic =
bc3

12
(A.7)
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Substituting the expressions from Equation (A.6) and Equation (A.7) into Equation

(A.5)

σ̄ = M̄
3htd

6td2 + Ēc3
(A.8)

Introducing the non-dimensional geometrical parameters t̄ and c̄ in Equation (A.8)

σ̄ = M̄
3t̄(c̄+ t̄)

6t̄(c̄+ t̄)2 + Ēc̄3
(A.9)

A.2 Shear Stress

Maximum shear stress in the core can be predicted using the following expression

τc =
V

EIeq

(
Ef td

2
+
Ecc

2

8

)
(A.10)

The total bending rigidity of the sandwich beam can be written as

EIeq ≈
Efbtd

2

2
(A.11)

Substituting the expression from Equation (A.11) into Equation (A.10) and introduc-

ing the non-dimensional geometric parameters similarly we get

τ̄ = V̄

[
c̄

c̄+ t̄
+
Ē

4

c̄3

t̄(c̄+ t̄)2

]
(A.12)
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A.3 Global Buckling

The global buckling of the top facesheet of a sandwich beam can be predicted for

n = 1 using the following expression

Pb =
π2Efbt

3

12L2
+
EcL

2

π2
(A.13)

The facesheet is assumed to be a simply supported beam resting on an elastic foun-

dation. The buckling load Pb is non-dimensionalised by the Euler buckling load PEuss

of a simply supported facesheet with no elastic foundation.

PEuss =
π2Efbt

3

12L2
(A.14)

Dividing Equation (A.13) with Equation (A.14) and introducing the non-dimensional

geometric parameters we get

P̄b =
Pb

PEuss

= 1 +
12ĒL̄4

π4b̄t̄3
(A.15)

A.4 Local Buckling (Wrinkling)

The local buckling load Pw is non-dimensionalised by the Euler buckling load PEucc of

a clamped-clamped facesheet with no elastic foundation. Expression for Euler buck-

ling load of a clamped-clamped facesheet with no elastic foundation can be written
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as

PEucc =
4π2Efbt

3

12L2
(A.16)

Expression for predicting wrinkling of a facesheet

Pw =
42Efbt

3

12L2
w

+
EcL

2
w

12
(A.17)

Dividing Equation (A.17) with (A.16)

P̄w =
Pw

PEucc

= 0.6161

√
ĒL̄4

b̄t̄3
(A.18)
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