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Abstract 

Osteoarthritis (OA) is the most common form of arthritis with a high socioeconomic burden, 

with an incompletely understood etiology. Evidence suggests a role for the transforming growth 

factor beta (TGF-ß) signalling pathway and epigenomics in OA. The aim of this thesis was to 

understand the involvement of the TGF-ß pathway in OA and to determine the DNA methylation 

patterns of OA-affected cartilage as compared to the OA-free cartilage.   

First, I found that a common SNP in the BMP2 gene, a ligand in the Bone morphogenetic protein 

(BMP) subunit of TGF-ß pathway, was associated with OA in the Newfoundland population. I 

also showed a genetic association between SMAD3 - a signal transducer in the TGF-ß subunit of 

the TGF-ß signalling pathway - and the total radiographic burden of OA. I further demonstrated 

that SMAD3 is over-expressed in OA cartilage, suggesting an over activation of the TGF-ß 

signalling in OA. Next, I examined the connection of these genes in the regulation of matrix 

metallopeptidase 13 (MMP13) - an enzyme known to destroy extracellular matrix in OA 

cartilage - in the context of the ‎TGF-ß signalling. The analyses showed that TGF-ß, MMP13, and 

SMAD3 were overexpressed in OA cartilage, whereas the expression of BMP2 was significantly 

reduced. The expression of TGF-ß ‎was positively correlated with that of SMAD3 and MMP13, 

suggesting that TGF-ß signalling is involved in up-regulation of MMP13. This regulation, 

however, appears not to be controlled by SMAD3 signals, possibly due to the involvement of 

collateral signalling, and to be suppressed by BMP ‎regulation in healthy cartilage, whose levels 

were reduced in end-stage OA. ‎ 

In a genome-wide DNA methylation analysis, I reported CpG sites ‎differentially methylated in 

OA and showed that the cartilage methylome has a potential to ‎distinguish between OA-affected 
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and non-OA cartilage. Functional clustering analysis of the ‎genes harbouring differentially 

methylated loci revealed that they are enriched in the skeletal system morphogenesis ‎pathway, 

which could ‎be a potential candidate for further OA studies. Overall, ‏the findings from the 

present thesis provide evidence that the TGF-ß signalling ‎pathway is associated with the 

development of OA, and epigenomics might be involved as a ‎potential mechanism in OA. 
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1.1. An introduction to osteoarthritis (OA) 

Osteoarthritis (OA), also known as degenerative joint disease, degenerative arthritis or 

osteoarthrosis, is the most common form of joint abnormality caused mainly by the gradual loss 

of articular cartilage, resulting in pain, stiffness, and limited range of motion, leading to 

functional disability in affected individuals [1]. It is highly frequent with a prevalence estimate 

of up to 20% worldwide [2]. Although knees, hips, hands and vertebral joints are the most 

common anatomical sites of involvement, any synovial joint could become affected by OA [3]. 

The cause of OA is not clearly understood. It appears that a combination of environmental, 

constitutional, and genetic factors play a role in its development and progression [3]. This 

chapter reviews OA definitions, its epidemiology, pathology and etiological factors, and presents 

the objectives and hypotheses of this dissertation. 

 

1.1.1. Definition  

The primary definitions of OA were based on the belief that OA is a normal consequence of 

aging, resulting from the gradual loss of hyaline cartilage due to tear and wear. Later 

investigations led to the separation of the process of normal aging from OA; and instead, OA 

was defined as a heterogeneous group of conditions resulting from multiple factors that lead to 

overlapping presentations caused by a variety of biochemical, hormonal and mechanical factors. 

The most recent standardized definition for OA has been suggested by the Osteoarthritis 

Research Society International (OARSI) in August 2015 as follows [4]: 

“Osteoarthritis is a disorder involving movable joints characterized by cell stress and 

extracellular matrix degradation initiated by micro- and macro-injury that activates 
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maladaptive repair responses including pro-inflammatory pathways of innate immunity. 

The disease manifests first as a molecular derangement (abnormal joint tissue 

metabolism) followed by anatomic, and/or physiologic derangements (characterized by 

cartilage degradation, bone remodeling, osteophyte formation, joint inflammation and 

loss of normal joint function), that can culminate in illness.” 

There have been attempts to classify OA diseases into specific diseases using the clinical and 

diagnostic measures such as the primary aetiology, the site of involvement, or the procedure used 

for the diagnosis [5]. The followings are some of the definitions of different subtypes of OA used 

in both research and clinical settings: 

Primary or idiopathic OA [6] is an idiopathic outbreak of OA in a previously intact joint without 

any known predisposing aetiology related to OA, and could be further classified as localized and 

generalized OA. 

Secondary OA [5], which occurs due to a known aetiology such as trauma, infection, congenital 

malformation, metabolic, endocrine, neurologic, and other medical conditions, has a known 

underlying cause. It is believed that a considerable portion of the primary OA will be eventually 

categorized as the secondary OA over time with the identification of the root factors of primary 

OA. 

Symptomatic OA uses the clinical signs and symptoms of OA including pain, stiffness, range of 

motion, and the level of disability to define and classify OA. A patient with symptomatic OA 

presents with its clinical symptoms, from which, pain and stiffness of the joint are the most 

frequent ones [7]. Symptomatic OA and radiographic OA are not always perfectly associated 

with each other [8]. 
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Radiographic OA is the presence of a joint abnormality in the radiography regardless of the 

existence of clinical presentations of OA. The traditional radiographic features used to define OA 

include joint space narrowing (JSN), osteophytes, subchondral sclerosis, cyst formation, and 

bone abnormalities. Although several grading systems are proposed for the classification of 

radiographic OA, Kellgren and Lawrence grading scale [9], which is mainly based on the JSN, 

osteophytes, and the sclerosis formation in the subchondral bone, is the most widely used method 

among both researchers and clinicians. 

Osteoarthritis could involve more than one joint. The first recognition of a polyarticular form of 

OA was reported in 1805 by Haygarth [10]. In 1926, Cecil and Archer [11] associated this 

condition with Heberden’s nodes - characteristic nodules in the distal interphalangeal joints 

described earlier by Heberden [12]. In 1952, Kellgren and Moore took advantage of the same 

definition and linked generalized OA (GOA) to the existence of Heberden’s nodes in the hands 

[13]. however, there is no consensus on a universal definition regarding GOA. The American 

College of Rheumatology [14] defines GOA as the involvement of at least two joints in addition 

to the spine; while, based on Dougados criteria [15], the presence of OA in the spine besides 

either bilateral digital or bilateral knee OA is representative of GOA. Meanwhile, a preference 

for the involvement of multiple hand joints, a female predominance, node formation, and early 

inflammatory symptoms are amongst some of the most frequently agreed features of GOA [16, 

17].  

Recognition of GOA in patients has a practical value as it is suggestive of a systematic etiology 

and requires different therapeutic, diagnostic, and investigative measures than the localized form 

of OA. Similar concept extends to any subcategory of OA e.g. inflammatory OA or metabolic 
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OA. It should be kept in mind that these classifications are not complete, and further 

identification of OA aetiologies are expected to classify it into many underlying conditions. 

 

1.1.2. Pathology of OA 

Diarthrodial joints, in which the majority of OA involvements occur [18], have a similar 

anatomical structure: two subchondral bones covered with a layer of articular cartilage, which 

are surrounded by the synovial membrane and the joint capsule, and the area between them is 

filled with synovial fluid. Normal articular cartilage is composed of chondrocytes surrounded by 

an extracellular matrix mainly including collagen type II and proteoglycans. It has no blood 

vessels, nerves or lymphatics [19]. It can be compressed by 20% of its original height, which is 

essential for the protection of the underlying subchondral bone by distributing large loads, and 

reducing stress and friction in the joints [20]. Synovial fluid is produced by the cells from the 

synovial membrane (synoviocytes) and is mainly composed of hyaluronic acid (HA), - 

responsible for its viscoelasticity - and nutrients. As the joint moves, it is perfused in and out of 

the cartilage similar to the absorption and emission of water by a sponge, playing a great role in 

the compression of the cartilage and its nutrition [21].  

The initiating mechanism in OA is supposed to be either a damage to normal cartilage by 

physical forces, or a failure due to a fundamentally defective cartilage [22]. Chondrocytes react 

to the injuries by releasing derivative enzymes and creating inadequate repair response. This is 

followed by a cascade of biochemical and inflammatory events that disrupt the dynamic 

equilibrium between synthesis and degradation of extracellular matrix components in the 

cartilage [23]. In early stages, due to the weakening of the collagen framework, an increase in the 
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water content of cartilage occurs [24, 25]. This hydration subsequently dilutes the concentration 

of proteoglycans and the other main components of extracellular matrix [26], resulting in the loss 

of cartilage stiffness [27]. In other words, loosening of the collagen network and the loss of 

proteoglycans are the two most important molecular processes that occur in the osteoarthritic 

cartilage. In compensation for this loss, an increase in the synthesis of proteoglycan occurs, 

leadings to the growth in the volume of the cartilage, which is an effort by the chondrocytes to 

repair the cartilage damage [28]. This stage could last for years to decades, and the hypertrophic 

repair of the cartilage is its main characteristic. However, eventually, the proteoglycan in the 

cartilage decreases to a very low level, resulting in softening the cartilage and losing its 

elasticity, leading to attrition and diminution in the water content of the cartilage [29]. Over time 

the loss of cartilage results in the narrowing of the joint space.  

Pathophysiologic changes also happen in other components of the joint [1]. After OA begins, the 

cartilage erosion continues until the exposure of the subchondral bone, resulting in the vascular 

invasion, increased thickness and an increased cellular population of the bone areas under 

pressure [30]. Osseous necrosis secondary to chronic compression of the bone or the intrusion of 

synovial fluid occurs in the traumatized bone, being represented as cyst degenerations ranging 

from 2 to 20 mm in diameter in the subchondral bone, which is also known as subchondral cyst 

or pseudocyst [31, 32]. They are covered with fibrous tissue and are filled with a gelatinous 

fluid. They can be connected to each other or the joint space through micro fractures in the bone. 

Irregular growth of new bony structures - osteophytes - also happens alongside the articular 

margin, in the non-pressurized segments of the joints. This is mainly due to vascularization of 

subchondral marrow, osseous metaplasia of synovial connective tissue, and ossifying 

cartilaginous protrusions [32], and is a remarkable pathological finding in radiography of OA 
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patients. These structures are represented as Heberden’s nodes in the distal interphalangeal 

joints. Osteophytes, as well as the articular cartilage, could further break up, resulting in the 

intra-articular loose bodies in the joint which result in a state interpreted as joint locking by the 

patients [33]. These degraded particles could cause the release of collagenase and other enzymes, 

resulting in synovitis [34], which happens in approximately 20 to 50% of joints with OA [35]. 

The synovitis consists of mild infiltration of lymphocytes, few macrophages, immunoglobulin-

producing plasma cells, and mast cells in synovial membrane [35, 36]. It does not express the 

classical features of inflammation. No immunoglobulin and complement inclusions exist in 

synovial cells [37], immunoblasts are absent in synovial fluid [38], the fluid white cell count is 

less than 2000 cells/ml – predominantly lymphocytes, and the complement levels in the fluid are 

normal [39].  

OA changes do not remain restricted to the joint, and other surrounding components including 

ligaments, neuromuscular apparatus, articular capsule, and the neighbouring muscles could also 

undergo pathological changes. In Figure 1.1, a schematic representation of OA joint and a 

normal one is illustrated. 
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Figure 1.1- Schematic illustration of a normal joint versus an OA joint [40] 

  

In the normal joint (a) the surface of the cartilage is smooth, and the joint space is broad, whereas 

in the osteoarthritic joint (b) the cartilage is thinned and degraded and the joint space narrowing 

is evident. Moreover, the subchondral bone is thickened, and its surface is uneven. New bone 

growth (osteophytes) is detectable at the margins of the joint; the synovium is inflamed, and the 

capsule can be thickened (Adapted from Peach et al. 2005 [40]). 

http://www.sciencedirect.com.qe2a-proxy.mun.ca/science/article/pii/S14714914050004#g
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1.1.3. Signs and symptoms of OA 

At the early stages of the disease, OA is mainly asymptomatic and as the disease progresses 

clinical signs of OA gradually appear. The followings are the most common clinical 

manifestations of OA: 

Pain is usually the first symptom that develops in OA joints. It aggravates with use and alleviates 

with rest. In later stages, it could happen during rest, at night in bed and does not alleviate with 

rest. The pain could also be described as a sharp, dull or snapping sensation by the patient, and 

could be obtained through both passive and active motion of the joint. Since there is no neural 

network in the cartilage, the origin of pain is related to the surrounding tissues such as 

subchondral bone, synovium, joint capsule, ligaments, and muscles [41]. 

Joint stiffness is a prominent sign of OA and especially occurs after any period of inactivity. It is 

common in the morning and usually lasts less than 30 minutes. It significantly decreases the 

range of motion in the joints and the ability of the patient to perform routine tasks [42]. 

Subluxation in the joints occurs in advanced OA and is described as a feeling of instability by the 

patient. It is usually accompanied by visible joint deformity. Heberden’s and Bouchard’s nodes, 

which appear as overgrown bony tissues similar to osteophytes in the distal interphalangeal 

(DIP) and proximal interphalangeal (PIP) joints, respectively, are a common finding in this stage 

of the disease. They usually begin after the age of 45 and affect women ten times more than men 

[43]. They could be either asymptomatic or painful and swollen. Involvement of the first 

carpometacarpal joint dramatically limits the patient’s ability to use his/her hand. 
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Reduced range of motion is a common clinical finding in the advanced stages of OA. Potential 

causes include joint surface incongruity, an increase of pain in motion, muscle and capsular 

contracture, loose bodies in the joints, and other mechanical problems. 

Another common sign of OA is crepitus in the joint movement. One could hear the sound of 

coarse crepitus (cracking and creaking) or it can be palpated by the medical examiner.  

Muscle weakness, tenderness, deformity and joint swelling are of other OA signs. OA is not 

associated with fever, weight loss, anorexia, or severe muscle atrophy. In the case of 

polyarticular involvement, it has a tendency to affect joints asymmetrically, especially in the 

hands [17]. These features of OA distinguish it from inflammatory arthritis. Osteoarthritis of 

specific joints will have specific symptoms. For instance, OA in the vertebral area, in the case of 

deformity, might mimic lumbar disc disease syndromes; or the joint deformity by knee OA could 

lead to valgus or varus knee abnormalities. 

To evaluate the clinical severity of the disease for epidemiological studies and clinical 

evaluations, several symptom severity scales (e.g. Western Ontario and McMaster Osteoarthritis 

Index [WOMAC]) are available, which are mainly based on the severity of symptoms including 

pain, stiffness, and functional disability. 

Traditional studies of OA mostly have considered the clinical status of the disease in their 

investigations. However, it is shown that the use of endophenotypes of OA can improve the 

power, especially in genetic studies. Endophenotypes are measurable intermediate phenotypes of 

a condition that are closer to the function of the gene product or basic pathophysiology of the 

condition than the disease status, and thus, can significantly improve the power in gene finding 



11 
 

studies of complex traits [44]. Examples of endophenotypes in OA include cartilage 

characteristics, joint shape or clinical symptoms such as pain. A few examples of using these 

alternatives in genetic research exist that are discussed in “OA candidate gene studies” and 

“GWAS” sections of this chapter (sections 1.3.2.4 and 1.3.2.5).  

 

1.1.4. Diagnosis 

The diagnostic measures for OA rely on evaluating symptoms, physical examination, imaging, 

and laboratory testing.  

In physical examination of the joints, signs and symptoms of OA including joint swelling and 

redness, visible joint malformations such as osteophytes, and the pattern of joint involvement 

should be thoroughly observed. The site of tenderness should be located by touching the joint 

area firmly. Shrug test is used to investigate the presence of crepitus in the joint [26]. Both 

passive and active movement of the joint is done to evaluate the range of motion [26]. 

Imaging is the next step in evaluating the susceptible joint. Although advanced imaging 

techniques such as Magnetic Resonance Imaging (MRI), computational tomography (CT), and 

ultrasonography (US) are available for the evaluation of joint, traditional radiography is still the 

gold standard for the diagnosis of OA. X-rays can reveal the presence of osteophytes, joint space 

narrowing, bone cysts and sclerosis. X-ray is also the most common method for assessing the 

need of surgical treatment in patients. Radiographic grading scales such as Kellgren and 

Lawrence grading system [45] have been proposed to determine the severity of OA (Table 1.1). 
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In early stages of OA development, X-ray could be normal as the involvement can be only 

limited to cartilage, which cannot be illustrated in X-ray. 

In OA, no significant laboratory finding exists since the majority of routine tests including blood 

count, sedimentation rate, urine analysis, and biochemistries are normal. More accurate tests 

such as rheumatoid factor, thyroid function tests, and cellular antibody are negative but are used 

for the differential diagnosis. Arthrocentesis may be done on the joints with large effusions. In 

OA the synovial fluid is clear, and the white cell count is less than 10,000 per one-millimeter 

cube of fluid. Viscosity, Glucose, and protein levels are normal, and no crystals are observed. 

Degradation components of cartilage in synovial fluid, serum, and urine has been the focus of 

studies recently; however none of them are being used yet as a routine clinical diagnostic 

measure for OA [46]. 

 

 

 

 

 

 

 

 



13 
 

Table 1.1- Kellgren and Lawrence grading system 

Grade Classification Criteria 

0 Normal No feature of OA 

1 Doubtful Minute osteophyte, doubtful narrowing of joint space 

2 Minimal Definite osteophyte, absent or questionable narrowing of joint 

space 

3 Moderate Moderate osteophyte, definite narrowing of joint space, some 

sclerosis, possible deformity 

4 Severe Large osteophyte, marked narrowing of joint space, severe 

sclerosis, definite deformity 
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The American College of Rheumatology proposes the following criteria for the diagnosis of 

knee, hip, and hand OA: 

Osteoarthritis of the hand: The existence of hand pain in addition to at least three of the 

following four features [47]: 

 Hard tissue enlargement of two or more of 10 selected joints (2nd and 3rd DIP, 3rd PIP, first 

carpometacarpal [CMC] joints) 

 Deformity of at least two of the above ten selected joints 

 Hard enlargement of two or more DIP joints 

 Fewer than three swollen metacarpophalangeal (MCP) joints  

Osteoarthritis of the hip: The existence of hip pain in addition to at least two of the following 

three features [48]: 

 Erythrocyte sedimentation rate (ESR) less than 20 mm/hour 

 Femoral and/or acetabular osteophytes evident on X-ray  

 Joint space narrowing evident on X-ray 

Osteoarthritis of the knee: The existence of knee pain in addition to at least three of the 

following six features [14]: 

 Greater than 50 years of age 

 Stiffness lasting less than 30 minutes 

 Crepitus on active motion of the knee 

 Bony tenderness 

 Bony enlargement 

 No palpable warmth 
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1.1.5. Management 

Once the disease develops, it is almost impossible to stop or halt its progression, and there is no 

way to cure OA completely. Therefore, the main goal of OA treatment is the control of pain by 

decreasing inflammation in the joint, adjuvant control with analgesics, and physical and 

occupational therapy modalities [49]. There are nonpharmacologic, pharmacologic, and surgical 

interventions available to reach these goals. 

Non-pharmacologic treatment 

Physical and occupational therapy including exercise and physical modalities such as ice packs, 

splints, and braces have been shown to be effective in improving the functional abilities of OA 

patients and alleviating the pain and stiffness [50]. One study on knee OA suggests that exercise 

improves the range of motion and integrity of the supporting motion, which subsequently 

reduces the pain and improves the function [50]. Aerobic exercise programs have been shown to 

improve walking times, aerobic capacity, and decrease depression and anxiety in OA patients 

compared to those who only performed a range of motion exercises [51]. Physical activity is also 

helpful in losing weight in overweight individuals, which is shown to be beneficial in OA 

outcome, especially in women [52]. Several clinical trials also indicated a beneficial role of 

acupuncture in OA patients [53]. 

Pharmacologic Treatment 

According to the guidelines by the American College of Rheumatology, the initial 

pharmacological treatment for hip and knee OA should start with Non-Steroidal Anti-

Inflammatory Drugs (NSAIDs) or an analgesic such as Acetaminophen [54]. A randomized, 
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crossover trial showed that 4 gram of Acetaminophen per day significantly reduced pain and 

improved function in patients with knee OA [55]. In the case of the progression of the disease 

and worsening of the pain, a short-term use of opioid-containing analgesics, including codeine 

and propoxyphene is suggested. There is no role for oral or intravenous corticosteroids in OA; 

however, evidence suggests that patients with a painful crisis of OA may benefit from an intra-

articular injection of corticosteroids [56]. Intra-articular injection of hyaluronic acid derivatives 

[57], and the use of nutritional supplements containing glucosamine and chondroitin sulfate [58] 

are other suggested non-invasive treatments for OA. 

Surgical intervention 

The lack of response to medical therapy, the presence of moderate to severe pain and functional 

disability may recommend surgical interventions. Internal derangement of the knee OA could be 

treated with arthroscopic debridement. In the case of significant malalignment of the knee or hip, 

osteotomy might be indicated. At advanced stages of the disease, according to the radiographic 

and clinical evaluations, total joint arthroplasty or replacement is performed, which has been 

shown to improve the quality of life significantly in advanced OA patients [59]. 

Future outlook of OA treatment 

Current practical therapeutic approaches for OA are only able to relieve the symptoms, and no 

method to stop the progression or cure the disease is available. Thus, most of the investigations 

are targeted toward the inhibition of the enzymes involved in the destruction of collagen. For 

instance, the use of Risedronate in Guinea Pig OA model has been shown to decrease 

chondrocyte loss and slow down X-ray progression [60]. Cartilage collagenase activity has been 
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suppressed by doxycycline in some animal studies, resulting in a reduction in the severity of OA 

[61]. Time-released transforming growth factor beta (TGF-ß) has repaired partial-thickness 

cartilage lesions in rabbit models [62]. Metalloproteinase inhibitors such as Tetracycline are also 

being tested in OA [63]. Other developments include tissue engineering using the transplantation 

of autologous chondrocytes after being cultured in vitro [64], and gene therapy for OA treatment. 

None of these approaches have gained value in routine clinical practice yet and are still being 

evaluated in research settings only. 

 

1.2. Epidemiology 

1.2.1. Prevalence and incidence of OA  

Prevalence and incidence of OA are differentially reported according to the methodology used 

for OA definition, site of involvement, age, and the population. Knees, hips, and hands are the 

most common sites of involvement, and thus, the majority of epidemiological studies have 

focused on OA of these sites. 

Prevalence of OA 

Prevalence of OA as determined by radiological findings is quite high. In 1926, in a systematic 

autopsy study of 1,000 cases, almost universal cartilage damage in individuals over 65 was 

observed [65]. However, radiographic findings of OA in the general population are less frequent 

since the minimal pathological changes are not always evident in X-ray. The prevalence of 

radiographic OA increases dramatically by the age. A study on a large number of randomly 

selected residents of a Dutch village found that 10-20% of women by the age of 40 years present 
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with radiographic features of OA of the hand or feet while this figure rose to 75% in women 

aged 60-75 years [66]. Radiographic hip OA is less common than knee OA, and both knee and 

hand OA tend to be more common in women (Figure 1.2) [66]. 

Self-reported and symptomatic OA is more limited due to the late onset presentations of the 

pathologic OA changes, although they still correlate with age. A study in the UK [67] reported 

that 18.1% of patients over 55 years registered with the practice had a clinical diagnosis of knee 

OA. In contrast to radiographic OA, the prevalence of symptomatic hip OA is less common than 

knee OA. 

The prevalence of Osteoarthritis in Canada is sparsely reported. The 10-year prevalence of OA 

from 1991 to 2001 in British Columbia (BC) was reported as 10.8% through BC medical service 

plan [68]. Another study reported a prevalence of 14.7% among an Inuit population of the North 

West Territories in 1982 [69]. The prevalence in Ontario (ON) has been reported to be 7.5%-

12.1% by the Local Health Integration Networks (LHINs) [70]. The 2011 report by the Arthritis 

Alliance of Canada estimated that 4.4 million people in Canada (10% of men and 15% of 

women) were living with OA in the year 2010, and this number was expected to reach over 10 

million by the year 2040 [71]. 

Incidence of OA 

Similar to the prevalence of OA, the incidence of OA highly correlates with age, gender, and the 

joints studied (Figure 1.3). In a population study from Rochester, Minnesota, OA incidence rates 

for hip and knee adjusted for age and sex was reported to be 47.3 per 100,000 person-years and 

163.8 per 100,000 person-years, respectively [72]. Another study on the data from a health 

organization in the north-east US [73], reported that the incidence of hand, hip, and knee OA 
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increases with age, especially after the age of 50, and women have a higher incidence rate than 

men. In both sexes and all joints the incidence rates decrease after the age of 80 years, which is 

hypothesized to result from a higher mortality rate before that age due to the increased 

comorbidities associated with OA [74, 75]. 
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Figure 1.2- Estimates for the prevalence of radiographic osteoarthritis (OA) affecting the distal 

interphalangeal (DIP) joint, knee and hip in a large Dutch population sample 

 

Adapted from Arden et al. 2006 [76] 

 

Figure 1.3- Incidence of osteoarthritis by site and sex 

 

Adapted from Arden et al.   2006 [76 ]  
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1.2.2. Socio-economic burden of OA 

OA is one of the leading causes of disability and public health problems in developed countries 

and elsewhere. According to the report by Center for Disease Control and Prevention in 2010, 

OA-affected more than 27 million people in the US, imposed 11.1 million dollars on outpatient 

visits and 13.2 billion dollars on OA-related job absence [77]. In 2004, OA resulted in over 11 

million physician and outpatient visits, 662,000 hospitalizations, and more than 632,000 total 

joint replacements, with accompanying hospital costs of $22.6 billion in the US [78]. In the 

National Health Interview Study [79], OA and related disorders just after heart disease and back 

disorder are the third leading chronic condition causing work limitation.  

The disability caused by OA results in enormous costs in lost earnings, care, and hospitalization. 

Each year nearly 1 million years of human potentials are lost because of OA disability [78]. 

These burdens are increased by significant co-morbidities, which occur more commonly in OA 

patients, such as metabolic syndrome, diabetes, cardiovascular disease, and the adverse effects of 

NSAID therapy [74, 75]. The rise in the OA prevalence due to longer life expectancies and 

obesity epidemics is expected to add significantly to the burden of OA [80]. It is predicted that 

by the year 2030, 25% of adults in the United States will have physician-diagnosed arthritis [81], 

among which OA will be the most common form. 

In Canada, arthritis as a whole affects more than 4.2 million Canadians (>10% of the population) 

and its prevalence has been expected to grow to 21-26% of the population by 2020. It is the most 

common chronic condition among Canadian women and the third among men [82]. More than 

59% of Canadians with OA suffer from limitations in regular activities, twice as much as those 

with other chronic conditions [82]. More than 80% of hip replacement surgeries and 90% of knee 
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replacement surgeries are due to OA in Canada. The total impact of general arthritis has been 

estimated to be $33 billion each year, and it is estimated that the total cost spent on arthritis since 

2010 will reach $233.5 billion by the end of 2015 [82]. Canadians with arthritis have a higher 

likelihood of developing other physical and mental conditions and are more prone to be in need 

of hospitalizations, which will add to the direct costs associated with OA [82]. The statistics 

about general arthritis can be well extended to OA as it is the most common form of arthritis.  

 

1.3. Aetiology and risk factors 

1.3.1. Environmental Factors 

OA is a multifactorial disease, meaning that a variety of systemic factors (i.e. age, gender, 

hormone levels, genetics, and nutrition), intrinsic joint factors (i.e. anatomic variants, muscle 

weakness, misalignment, and joint laxity), and extrinsic risk factors (e.g. repetitive physical 

activities and obesity) interplay in both its development and progression [83, 84]. The main focus 

of this dissertation is to understand the genetic aetiology of OA; however, a brief overview of the 

major known non-genetic factors, which play a role in OA pathogenesis and interact with the 

genetic factors, should also be considered and are reviewed in the following section. 

 

1.3.1.1. Age  

The incidence and prevalence of OA are highly correlated with age, such that based on all 

reports the incidence of symptomatic OA exponentially increases with age in all joints [85, 86]. 

The National Health and Nutrition Examination Survey reports the prevalence of OA to be less 
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than 0.1 percent in those aged 25 to 34 years old versus a rate of over 80 percent in those older 

than 55 years [87]. Aging is thus considered as one of the strongest risk factors of OA. This does 

not, however, imply that OA is an inevitable disease of aging since it could also occur in some 

youth while some elderly live up to an advanced age with no signs of OA. The relationship 

between age and OA could be explained by a series of physiologic changes that occur during the 

process of aging, which predispose the joint to OA. These include impaired neuromuscular joint 

protective mechanisms [88], increased joint instability [89], and the rise in body mass index. The 

reconstruction abilities and resilience of cartilage decreases with age due to a reduced anabolic 

response to growth factors, thinning of the cartilage plate, reduction in the number of 

chondrocytes, and the physiological decrease in the extracellular matrix capacity to maintain 

water [90]. Nevertheless, the physiological changes in aging cartilage are different from those in 

OA cartilage, although they may predispose the joint to OA. 

 

1.3.1.2. Sex 

The age-related rise in the OA risk is more evident in females compared to males. Although the 

incidence rate of OA before the age of 50 is not broadly different between males and females, the 

prevalence and incidence of OA of the hand and knee more significantly increases in women 

compared to men after the age of 50 [91]. However, the rise in the frequency of hip OA remains 

steady in both sexes [92]. Overall, because the majority of OA-affected individuals are older than 

50, OA appears to be more associated with female sex. The relative risk of developing OA for 

women compared to males has been estimated to be 2.6 after adjustment for age, weight, and 

smoking status [93]. In addition, women with OA tend to have more severe symptoms and faster 
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progression than men and they are more likely to undergo total joint replacement surgery [94]. It 

has been suggested that these differences might be explained by the role of sex hormones and 

menopause leading to estrogen deficiency [95]. However, the evidence for these hypotheses is 

not strong enough to explain the role of sex in OA development. Other studies suggest that male 

and female cartilage respond differentially to the sex hormones [96].  Kinney et al. showed that 

the chondrocytes from both males and females codes an estrogen receptor, although only female 

chondrocytes respond to estradiol supplementation [97]. On the other hand testosterone hormone 

has shown to have a receptor on both males’ and females’ chondrocytes, although it only 

responds to the hormone in males [98]. These observations may suggest that chondrocytes are 

constitutionally regulated in different ways among males and females, which could explain the 

differences in OA presentations in two sexes [96]. 

 

1.3.1.3. Obesity 

Obesity is the strongest modifiable risk factor for OA [99], which has a variable role in different 

joints. It appears that it has the strongest effect on the knee OA. Development of knee OA occurs 

years earlier and progresses faster in obese individuals [100, 101], and there is evidence that the 

risk of knee OA decreases in low weight individuals [102]. The effect of obesity for hip OA, 

however, is less evident than knee OA [103]. Some studies have also indicated an increased risk 

of hand OA in obese individuals [104]. The apparent mechanism for the association of obesity 

with hip and knee OA is likely to be the result of excessive overloading of the knee and hip 

during weight bearing activities, beyond the tolerance of the cartilage and ligaments. However, 

metabolic factors associated with obesity, including circulating adipocytokines, adiposity-linked 
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glucose, lipid abnormalities, and chronic inflammation may also have an influence on the joints 

of overweight and obese individuals [105, 106, 107], and explain the moderate association of 

obesity with hand OA. Studies on mice suggest that OA is not merely related to body weight in 

mice; instead, a complex interaction of intrinsic and extrinsic factors associated with obesity may 

contribute to the incidence and severity of OA [108].  

 

1.3.1.4. Physical activity, lifestyle, and occupations 

The relationship between physical activity and OA is not entirely clear. Studies suggest that at 

least some types of repetitive joint usage contribute to OA development [109]. Individuals in 

occupations requiring a high physical activity including farmers, construction workers, and 

labourers have a higher prevalence of early onset OA [109, 110]. Repetitive lifting, carrying 

heavy objects, vibration, abnormal work postures, kneeling, squatting, climbing and 

continuously repeated movements are amongst the specific activities associated with OA [111]. 

These effects on OA risk could be amplified in individuals with excess body weight [112]. 

Studies also suggest a role for participation in competitive sports and vigorous exercise in OA 

[113]. In contrast, other studies reported individuals with life-long high levels of physical 

activities without OA development [114], and some studies found no overall associations 

between the activity level and OA [115]. Furthermore, more recent studies suggest that regular 

physical activity is not only harmful but also beneficial to joint health and prevents the 

development and progression of knee OA [116]. Vigorous activity has been associated with 

better joint health in people aged 50 to 79 [117], and women who walk regularly are less likely 

to have early signs of joint abnormalities, such as cartilage degeneration [118]. While imposing 
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higher workload to the joint might be the explanation for the harmful effect of physical activity, 

the increase in muscle mass and strength, and the decrease in body weight could also be the 

likely reason for the protective effects of regular exercise from degenerative changes of the 

joints. The outcome is also highly dependent upon the health of the joint. Neuro-anatomically 

normal joints are considered to be at risk of OA in both the absence of physical activity and 

repetitive high impact exercise but not recreational and low impact activity, whereas neuro-

anatomically abnormal joints are at risk even upon exposure to low impact recreational activities 

[119, 120]. 

 

1.3.1.5. Injuries and joint abnormalities 

Joint injuries including fractures and dislocations, meniscal and cruciate ligament tears of the 

knee impose a very high risk of later OA development to the injured joints [121]. This risk is not 

only caused by the direct trauma and injury but also the disruption of normal joint mechanics and 

load distributions within the joint. Although OA development may occur following the injury in 

any joints or individuals, studies suggest that chances are much higher in individuals who 

already have OA in other joints, or in those with other susceptibility factors to OA [122]. 

Abnormal loading distribution could be the result of congenital abnormalities such as slipped 

capital femoral epiphysis of the hip, acetabular dysplasia, leg perthes, developmental dysplasia 

of the hip. These abnormalities are associated with a very high risk of early development of OA 

in the affected joint [123].  

Mechanical alignment of the knee, as indicated by the hip-knee-ankle is another important 

determinant of load distribution in the knee [124]. The proportion of weight-bearing load 



27 
 

transmission through the medial and lateral compartment of the knee is roughly adjusted. In 

varus and valgus mal-alignments, the prevalence of knee OA with medial and lateral 

compartment involvement is more frequent [125]. OA knees with a varus mal-alignment have a 

3-4 fold increased risk of further joint space narrowing in the medial compartment, while OA 

knees with a valgus malalignment have a similar increased risk of narrowing of the lateral 

compartment joint space [126]. 

These forms of OA, which result from a previous injury or malalignment, are examples of 

secondary OA. In genetic studies, in particular this dissertation, the presence of this type of OA 

should be evaluated as an exclusion criterion. 

 

1.3.2. Genetics 

Genetic factors are implicated in the development, progression, and presentations of OA. As 

stated in the previous sections, OA occurs at different rates in various populations. While 

Caucasian  populations tend to have higher frequencies of hip/knee OA and joint replacements 

due to OA, the  incidence of hip OA is much less common in Asian and African populations, and 

also emigrants from these populations. The prevalence of hip OA has been reported to be as low 

as 1-4% among the black populations from Jamaica, South Africa, Nigeria, and Liberia [127], 

and  OA of the hip is known to be a rare disorder in the Hong Kong Chinese population [128]. 

The prevalence of OA is much higher among the Caucasian population of Europe and America. 

As well, within the East Asians, the prevalence of OA tend to much higher in developed 

countries such as Japan as compared to less developed countries including Vietnam [129, 130]. 

Although the population genetic differences can account for the variation in OA prevalence, very 
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limited investigations have been performed to determine the effect of genetics on OA through 

estimating the prevalence of OA among Afro-Caribbean, West Indians, and East Asians who 

have migrated to Europe or America. Therefore, the main evidence for the involvement of 

genetics in OA comes from family based and twins studies. The evidence has led to the conduct 

of candidate gene and genome-wide studies in search of susceptibility loci. More recently 

epigenetic studies are further contributing towards the elucidation of the pathophysiology of OA. 

In the following sections, the current knowledge regarding genetic and epigenetic involvement in 

OA will be discussed. 

  

‎1.3.2.1. Familial aggregation - family-based studies 

The first mention of a hereditary component to OA dates back to 1881 when Charcot [131] 

commented that “Heberden’s nodes are  a hereditary disease that may appear in several  members 

of the same family.” ‏ In  1889 ‏, Duckworth [132] ‏‏found that the nodes in  a multigenerational 

family with a female predominance. In 1941, Stecher studied 74 individuals with multiple 

Heberden  concluded that the nodes were most likely the result of a single autosomal‏ s nodes  and‏'‏

gene defect with a ‏dominant inheritance in women and recessive in men [133]. In 1963, Kellgren 

et al. [134] examined the relationship of the nodes to ‏OA at other sites .  He reported that the 

nodes were associated with multiple joint OA ,  and called ‏the condition nodal generalized 

OA .  He also indicated ‏that the condition was twice as common in the relatives of the affected 

individuals compared to ‏the general population . ‏‏‏ 

Familial aggregation studies are the primary measure in examining whether a complex trait runs 

in ‏families. The risk ratio of a disease for a relative of an affected individual compared with that 
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of ‏the general population is the measure used for this purpose [135]. The late onset of OA 

occurrence ‏does not allow intergenerational family studies, ‏and thus most family-based studies 

of OA have focused  on estimating the risk ratio of the siblings of affected individuals. Since OA 

is a heterogeneous condition with the involvement of different sites ,  the use of specific 

 radiographic / clinical criteria to determine the status of the disease remains an issue.  As‏

such ,  familial aggregation studies of OA conducted on a variety of radiographic (e.g. KL 

grading) and clinical (e.g. conduct of total joint replacement surgery) traits have led to variable 

risk ratios. Regardless of the ‏criteria used ,  the results indicate a strong familial aggregation as 

compared to several autoimmune ‏and metabolic conditions with high genetic impacts (Table 

1.2). 
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Table 1.2- Comparison of relative risk ratios reported for the siblings of affected individuals 

with  OA and non  OA traits from different studies on various populations [136]‏-‏

Trait Sibling‎recurrence‎risk‎ratio‎ 

Non-OA‎traits 

Rheumatoid arthritis 5.00 

Juvenile rheumatoid arthritis 15.00 

Celiac disease 7.50–30.00 

Obesity 1.60–1.91 

Hyperglycemia 1.39–1.81 

Type 2 diabetes 1.20–1.60 

Hypertension 1.22–1.34 

OA-related‎traits 

Total knee replacement 4.81 

Anteromedial OA 3.21 

Hip osteophytes grade 3 4.27 

Total hip replacement 1.87–8.53 

Hip KL grade ≥3 4.99 

Hip Joint space width≤1.5 mm 5.07 

Hand OA diagnosis 4.40 

Hip OA diagnosis 3.90 

Spine OA diagnosis 2.20 

Hip and Spine OA diagnosis 4.70 

Hip and Hand OA diagnosis 3.40 
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JSN radiographic progression of OA 3.00 

Osteophyte radiographic progression of OA 1.50 
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Table 1.2 clearly shows that the effect is joint specific, and it is varied based on the type of trait 

and definition used or the population in which the study was done. The data presented proves 

that OA runs in families; however, this does not imply that the observed effect is entirely due to 

genetics since the familial aggregation also reflects the environmental factors that are shared 

within a family. The alternative method that is used to prove the genetic influence in OA is the 

application of classical twin studies. 

 

1.3.2.2. Heritability - Twin studies 

‎Classical twin studies compare the concordance of a trait among monozygotic twins to that of 

dizygotic twins. This method estimates the heritability, which is defined as the degree to which 

the genetic variations determine the population variability in the trait. The heritability of OA has 

been estimated for a variety of OA-related traits and joints after adjustment for OA risk factors. 

From such studies, the influence of genetics on radiographic markers of hand, hip and knee OA 

is reported to be from 39% to 65%. The heritability of the progression of OA has been estimated 

to be higher, 62% for osteophyte progression and 72% for JSN progression [137]. Similar to 

familial aggregation, the heritability also seems to be joint specific. For instance, the heritability 

estimate in the medial compartment of the knee is much higher than that in the lateral 

compartment [138]. Table 1.3 represents the heritability of a variety of OA-related traits 

estimated from different twin studies as compared to other complex human traits. As it can be 

seen, OA traits have heritability close to many other complex conditions with an established 

genetic influence such as type I diabetes. 
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Table 1.3- Heritability of OA-related traits compared to other complex traits [139,140] 

Trait Heritability  

OA-related traits 

Radiographic knee OA 39% 

Radiographic hip OA 60% 

Radiographic hand OA 59% 

Femoral cartilage volume 61% 

Tibial cartilage volume 76% 

Patellar cartilage volume 66% 

Change in medial cartilage volume 73% 

Change in lateral cartilage volume 40% 

Change in medial knee osteophyte grade 69% 

Change in lateral knee osteophyte grade 33% 

Change in knee JSN grade 74% 

Lumbar spine OA 74% 

Cervical spine OA 73% 

Non-OA traits 

Obesity 70% 

Leukemia 1% 

Asthma 30% 

Colon cancer  13% 

Hypertension 30% 

Migraine 53% 
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Type 2 diabetes 26% 

Type 1 diabetes 88% 

Schizophrenia 81% 

Sexual orientation 60% 

Height 55%-81% 
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1.3.2.3. Linkage analyses‎ 

The considerable estimation of heritability justified the search for OA genetic susceptibly loci. 

This search started from identifying the chromosomal regions linked to the segregation of OA in 

families. The method of choice in complex diseases is non-parametric linkage analysis which 

searches for the chromosomal segments that are shared more often than what is expected 

according to the Mendelian rules of inheritance among two relatives (most commonly sib-pairs) 

who share the trait. To date, five genome-wide linkage analyses have been performed on families 

with hand, hip or knee OA from the UK, Finland, Iceland, and the US. These analyses have 

found a number of relatively broad genomic intervals that may harbour OA susceptibility genes 

in chromosomes 2, 4, 6, 7, 11, 16, 19 and X [136, 141]. A meta-analysis of these reports has 

narrowed down these regions to 7q34–7q36.3, 11p12–11q13.4, 6p21.1–6q15, 2q31.1–2q34, and 

15q21.3–15q26.1 as the most likely loci to harbor OA susceptibility genes [142]. Some of these 

intervals have been further analyzed using association and candidate gene studies. This has led to 

the discovery of genetic variants associated with OA in the interleukin 1 (IL1) gene cluster in 

Chr 2q11-q13, matrilin 3 (MATN3) in Chr 2p24.1, interleukin 4 receptor (IL4R) in Chr 16p12.1, 

secreted frizzled-related protein 3 (FRZB) in Chr 2q32.1, and bone morphogenetic protein 5 

(BMP5) in chromosome 6p12.1 [143]. An ideogram of the regions identified through linkage 

analyses of OA is presented in figure 1.4. 
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Figure 1.4- Ideogram of the regions identified through genome-wide linkage analyses of OA 

 

The red rectangles represent the identified regions. 
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1.3.2.4. Candidate gene studies‎ 

The influence of genetics on the development and progression of OA happens through several 

known biological pathways involved in the processes of the inflammatory response, bone 

remodeling, oxidative stress, and skeletal shape determination [141]. The genes involved in these 

processes, those reported being associated with other musculoskeletal conditions and those 

coding for the cartilage extracellular matrix (ECM) have a potential to be implicated in OA and 

have been studied in OA candidate gene searches. The number of reported genetic associations 

from such studies according to HuGE Navigator - a continuously updated source of genetic 

associations – is over 250 [144]. The majority of them have never been replicated or resulted 

from studies with low power, and thus are most likely spurious findings. Table 1.5 presents 

selected genetic association findings of OA along with their potential mechanism of 

involvement. Similar to twins and aggregation studies, the genetic associations reported here are 

site, sex, and population specific. The results of such reports need to be treated with caution 

since the majority of them have failed to produce replicable associations. 

Some of the OA genetic association studies have benefited from using OA endophenotypes in 

gene hunting. An example would be a genetic association between variants in the PACE4 gene 

and OA-related pain [145].  
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Table 1.5- Selected candidate genes with variants associated with OA and their potential function 

[136, 141, 144, 146] 

Category Gene 

symbol 

Gene name Gene function related to OA 

Inflammation ‎IL1 Interleukin 1 gene cluster Induces cartilage catabolism and 

protease activity 

IL6 Interleukin 6 Pro-inflammatory cytokine 

HLA Human leukocyte antigen Determination of the specificity of 

immune response 

IL10 Interleukin 10 Inhibition of IL1 synthesis 

ASPN Asporin Regulation of TGF-ß mediated 

chondrogenesis 

ECM molecules MATN3 Matrilin 3 Controlling interaction between 

collagen and Aggrecan 

COL2A1 Type II collagen Major collagen found in cartilage 

COMP Cartilage oligomeric matrix 

protein 

Cartilage matrix macromolecule 

CILP Cartilage intermediate layer 

protein 

Regulation of cartilage matrix gene 

expressions through TGF-ß 

mediation 

BMP2 Bone morphogenetic protein 2 Growth factor involved in 

chondrogenesis and osteogenesis 

Bone BMP5 Bone morphogenetic protein 5 Regulation of articular chondrocyte 
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morphogenetic 

proteins 

development 

GDF5 Growth differentiation factor 5 Regulation of growth and 

differentiation of bone and cartilage 

FRZB Frizzled-related protein 3 Antagonist of Wnt signalling 

Wnt-Frizzled 

Signalling  

LRP5 Low-density lipoprotein receptor-

related protein 5 

Co-receptor of Wnt signalling in 

canonical beta-catenin pathway 

ADAM12 A disintegrin and 

metalloproteinase domain 12 

Metalloproteinase involved in cell-

cell fusion and osteoclast formation 

Protease and 

their inhibitors 

MMP1 Matrix Metallopeptidase 1 Cleaves cartilage matrix collagen 

AACT Alpha1 antiproteinase antitrypsin Inhibitor of matrix metallopeptidase 

OPG Osteoprotegrin Regulation of osteoclastogenesis 

Chondrocyte 

differentiation 

ESR1 Estrogen receptor alpha Modulates proteoglycan degradation 

through metalloproteinase expression 

VDR1 Vitamin D receptor 1 Bone metabolism and remodeling 

DIO2 Type II iodothyronine deiodinase Activation of thyroid hormone 

DIO3 Type III iodothyronine deiodinase Activation of thyroid hormone 

ANP32A Acidic nuclear phosphoprotein 32 

family, member A 

Tumor suppressor gene regulating 

apoptosis 

Apoptotic 

Pathway, 

Mitochondrial 

damage 

mtDNA 

variants 

Mitochondrial  haplogroups 

and  mtDNA variants 

Mitochondria-driven apoptosis 
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Among all of the reported associations, a variant in Growth Differentiation Factor 5 (GDF5) is 

the most replicated SNP by independent studies. GDF5 is one of the ligands in the bone 

morphogenetic pathway (BMP) of transforming growth factor beta signalling family. Miyamoto 

et al. first reported an association of rs143383 (T>C), located in the 5’UTR of GDF5 with both 

knee and hip OA in a Japanese and Chinese population [147]. The T allele was shown to confer a 

greater risk to OA compared to the C allele with an odds ratio of 1.30 - 1.70. The same 

phenomenon was observed among Caucasians in studies from the UK and Spain, although with a 

lower effect size [148]. The risk allele is shown to be associated with a lower expression of the 

gene in both cell culture and mRNA extracted from human OA cartilage [149]. The variant has 

also been reported to be associated with a variety of skeletal conditions including several human 

skeletal dysplasia, congenital hip dysplasia, lumbar disk degeneration, the risk of bone fracture, 

and height [150]. A recent meta-analysis in 7,965 cases and 12,747 controls has reported a 

significant association between this variant and hip, knee, and hand OA [151]. The BMP 

pathway in the TGF-beta family will be discussed in further details in chapter five.  

 

1.3.2.5. GWAS‎ 

Genome-wide association studies (GWAS) were made available as a consequence of the 

fulfilment of the Human Genome and HapMap projects in 2007. These studies are used to test 

the associations of genetic markers tagging to relatively small genomic intervals (LD blocks) that 

are expected to contain the causative genetic variants for complex traits. The first large scale OA 

genomic variant study tested 72,000 markers for hip OA and identified a variant in LRCH1 in a 

Japanese population, which later failed to produce replicable associations [152]. Another study 
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using the testing of over 500,000 markers on knee OA identified an SNP in the 5’UTR of the 

COX2 gene [153]. The product by this gene is involved in response to inflammation through the 

synthesis of prostaglandins. Another GWAS on hand OA reported rs716508 in the first intron of 

A2BP1 (Ataxin 2 binding protein   1)  in a UK population [154], which was later replicated in a 

Finnish population with radiographic osteoarthritis of the hands [155]‏. The gene codes for a 

transcription factor, mediating the neuron-specific  ‏splicing pattern of the calcitonin gene-related 

pre - mRNA .   

The next GWAS was reported by ‏the Rotterdam study in the Netherlands ,  where the testing of 

over 000 ‏,‏ 500 ‏  variants in 1,341 ‏OA  patients and 3,496 controls, with a replication sample 

of  15,000 OA patients and 40,000 controls ‏, revealed an SNP tagging to Chr 7 q 22 [156]. The 

significance of this region in OA is not entirely clear. The region is a haplotype block   containing 

six genes, five of which are expressed in human  cartilage .  One of these ,  HBP1, is a suppressor of 

WNT signalling pathway and its expression  levels are reported to  be  lower among ‏carriers of the 

risk allele of the SNP. Among other variants reported in GWAS are SNPs in ‏HLA  class II/III, 

BTNL2, DVWA, and DOT1L genes [157]. The latter gene among these (DOT1L), was identified 

using the study of OA endophenotypes. It was found to be associated with cartilage thickness, as 

measured by joint space width on X-ray [158]. The other genes from this list are ‏involved in 

immunologic  response and regulation of WNT signalling.  

The two  largest GWAS conducted to date are those by the ARCOGEN study and the TREAT -

 OA consortium. The ARCOGEN study was conducted in two stages .  In the first stage ,  7,410 OA 

cases and 11,000  controls were examined, and the second stage was performed on 5,000 OA 

cases and 40,000 controls [157]. The completion of the two phases reported a total of nine 
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variants with genome-wide significant p-values located nearby the MCFL2, GNL3/GLT8D1, 

TP63, SUPT3H/CDC5L, FILIP1/SENP6, ASTN2, KLHDC5/PTHLH, CHST11, and FTO genes. 

The involvement many of these genes in OA is not understood. The signal from FILIP1 is 360 

kb away from COL12A1, a member of cartilage ECM. PTH and CHST11 are reported to be 

expressed higher in OA chondrocytes. TP63 is reported to be associated with facial morphology, 

and the deficient mice develop limb and craniofacial defects. CDC5L is in the same LD block as 

RUNX2, which is a transcription factor essential for osteoblast development and  proper bone 

formation [157]. The GWAS by TREAT-OA consortium was performed on 11,000 hip OA and 

 NCOA3, which is known to have reduced expression in‏ controls and reported variants in‏ 67,000

OA [157].   

Genome-wide association studies have been criticized on the applicability of the findings .  The 

identified signals do not ‏necessarily represent functional SNPs, and the effect sizes are strikingly 

small .  Studies on OA ‏have led to the same conclusion that there is no variant with a large effect 

size, and the odds ratios range ‏between only 1.10 ‏ to 1.30. OA genetic components seem to be a 

result of the accumulation and  interaction of a vast number of genetic loci with small effect sizes‏. 

The present studies have not  taken into account the rare variants ,  copy number variants ,  and 

genetic / environment interactions. As a result ,  the variants identified altogether represent a tiny 

portion of the OA heritability .  Future ‏studies accounting for these issues will likely determine a 

better understanding of OA genetic ‏component .  
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1.3.2.6. Epigenetics‎ 

Epigenetics refers to the heritable changes in the DNA that are beyond the genetic code. They 

include methylation of CpG dinucleotides in the DNA, modification of histones, and regulatory 

RNAs. Epigenetics is increasingly being used to study complex traits such as OA. The rationale 

for studying epigenetics in OA is based on three criteria. 1) A lack of full concordance among 

monozygotic twins, suggests the involvement of post-zygotic DNA changes. 2) Variations in the 

expression of many of the regulatory components and extracellular matrix molecules in the OA 

cartilage could be caused by epigenetic regulations. 3) The epigenetic marks that escape 

reprogramming during gametogenesis may be responsible for a portion of missing heritability of 

OA, which has remained unexplained [159]. Despite these strong hypotheses, epigenetics is not 

extensively studied in OA.   

The first epigenetic studies of OA focused on the DNA methylation changes in the promoter of 

the aberrantly activated degradative enzymes (e.g. MMP3, MMP9, MMP13, and ADAMTS4) and 

lower expressed cartilage molecules including collagen and Aggrecan genes. The summary of 

these studies suggests a hypermethylation of ECM genes (e.g. COL9A1, ACAN) and a lower 

methylation of some of the sites in the genes coding for degradative enzymes that are associated 

with their aberrant expression in OA chondrocytes [159]. These methylation changes were also 

shown to be triggered by treatment by inflammatory regulators including IL-1 and TNFα and 

hormones such as Leptin in vitro [159]. These studies were based on selected few CpG sites 

across the promoter and did not explore the effect of the intergenic and trans-regulatory elements 

on the gene expression, which could make them prone to bias. Among other studies on the OA 

DNA methylation changes are the demethylation of an enhancer element within the nitric oxide 
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synthase (NOS) gene, which is shown to increase transcription activity through an increased 

binding of the transcription factor NF-κB, resulting in the suppression of cartilage matrix 

synthesis [160]. DNA methylation can also modulate the effect of OA genetic susceptibility loci. 

For instance, the effect of the single nucleotide polymorphism (SNP) rs143383 in GDF5 ‏, the 

most replicated genetic association locus in OA, is thought to be caused ‏by ‏the variable 

methylation of the CpG dinucleotide created at the location of the SNP, leading  to altered 

expression of the gene [161]. The handful of genome-wide methylation studies performed to date 

have also identified several potential candidate genes including RUNX1, RUNX2, TGFB1, miR-

128 and COL11A2 [162], and emphasized the involvement of inflammation and immunity in OA 

pathogenesis [163]. 

Fewer studies have investigated the involvement of histone modifications and regulatory RNAs 

in OA. Chemical modification of histone residues at specific sites have shown to occur in OA. 

IL-1 treatment of human osteoarthritic chondrocytes is reported to increase H3K4 di- and tri-

methylation of the promoters of cyclooxygenase 2 (COX2) and inducible nitric oxide (iNOS) 

genes and leading to their increased expressions [164]. The expression of these genes contributes 

to oxidative stress and increased protease activity in cartilage. Histone acetylation is removed by 

enzymes called histone deacetylases (HDACs) [165]. Several HDACs are upregulated in OA 

chondrocytes including HDAC1, HDAC2, and HDAC7. The first two are shown to repress the 

expression of collagen and Aggrecan while the latter one increases the expression of MMP13 

[165, 166]. Consistently, the inhibition of HDACs in a rabbit anterior cruciate ligament 

transaction model (ACLT) was followed by less severe cartilage erosion [167]. Altered 

expression of several micro RNAs is reported in OA, among which miR-140 has gained the most 
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attention in OA research. Its expression levels are increased during chondrogenesis, but reduced 

during OA progression [168].  

miR-140 null mice are born normally, but within four months they present with craniofacial 

deformities, shorter long bones, and an early onset OA-like disease [168]. Genes targeted by 

miR-140 in mice models include HDAC4 (a repressor of RUNX2), CXCL12, and SMAD3. In 

humans miR-140 has shown to decrease the expression of ADAMTS5 and LGFB5, leading to a 

rise in Aggrecan production.  

The knowledge on histone modification and regulatory RNA changes in OA is sparsely gained 

from few candidate gene studies and a large scale analysis is not yet performed. Understanding 

the epigenomic changes in OA will have a potential therapeutic value since the epigenetic marks 

have the ability to be modified through medication therapy. 

 

‎1.4. Transforming growth factor-beta signalling pathway in osteoarthritis‎ 

Transforming growth factor-β (TGF-β) is an intracellular pathway consisting of over 30 proteins 

acting as receptors, ligands, and signal transducers. They have direct effect on cellular processes, 

including cell proliferation, recognition, differentiation, morphogenesis, apoptosis, tissue 

homeostasis, and regeneration through regulating the expression of a large set of nuclear genes 

[169]. The superfamily is composed of two subfamilies, TGF-β, and BMP, each having own 

distinct ligands, receptors, and signal transducers, activating distinct sets of target genes. The 

signalling is initiated by the binding of the ligand to the receptor on the cell surface, which 

activates the non-canonical pathway at the cell surface and the canonical pathway inside the cell 
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[170]. The signal in canonical pathway is generated through the phosphorylation of SMAD2 and 

SMAD3 (in TGF-ß pathway), and SMAD1, SMAD5 and SMAD8 (in BMP pathway). This leads 

to the formation of co-SMAD complex with SMAD4, which binds to other transcription factors 

in the nucleus and regulates gene expressions (Figure 1.5) [171].  
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Figure 1.5- Schematic illustration of TGF-ß superfamily (Adapted from Zhai et al. 2015 [172])
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The alterations in the pathway have been reported to lead to several human diseases  including 

OA [173].  A large number of studies on different components of ‏TGF-β  pathway report skeletal 

 TGF-β  genes deficiencies [174]. The findings of such studies‏ malformations in animals with the‏

suggest ‏that ‏the BMP signal pathway is required for early chondrogenesis while TGF-β  signals 

are crucial for  maintaining articular cartilage homeostasis by suppressing the process of terminal 

hypertrophic  differentiation in chondrocytes   [174].   The maintenance of cartilage function by 

TGF -β, however,  is assumed to be related to a narrow range of bioactive TGF-β levels, 

concentrations below or above which may lead to aberrant alterations in TGF-β pathway, 

resulting in abnormal cartilage function [175]. In compliance with this, mice overexpressing 

SMURF-2, an E3 ubiquitin ligase known to inhibit TGF-β signalling, spontaneously develop an 

OA-like phenotype and have decreased levels of SMAD3 phosphorylation [176]. As well, TGF-

β/SMAD3 signalling upregulation is shown to increase the expression of metalloproteinases in 

cartilage [177], and multiple intra-articular injections of TGF-β in mice joint also resulted in 

changes in articular  cartilage with strong resemblance to both experimental and spontaneous 

mice OA [178].  

A large number of the associated genes discovered in human studies are members of the TGF-β 

family. GDF5, harbouring the most replicated OA genetic variant association, encodes a ligand 

molecule to the BMP pathway. Polymorphisms in BMP2, TGFB1, Asporin, and SMAD3 are also 

found to be associated with OA [146]. Point mutations in SMAD3 [179, 180] have been reported 

to be the cause of the Aneurysm-Osteoarthritis Syndrome, a rare syndromic disease characterized 

with early-onset polyarticular OA, aneurysms of the main arteries, and several connective tissue 

disorders. Mutations in TGFB1 are found in Camurati-Engelmann disease (CED), an autosomal 

dominant progressive diaphyseal dysplasia characterized by progressive cortical thickening and 
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subsequent sclerosis of the long bones [181]. TGFB isoforms and their receptor (ALK5) are 

reported to be downregulated in human OA cartilage [182]. In OA cartilage the expression of 

BMP receptor (ALK1) is positively correlated with the expression of MMP13, while the TGF- 

receptor (ALK5) expression is correlated with a higher level of cartilage matrix component, 

further highlighting the role of TGF-β  pathway in cartilage maintenance [183]. Despite the 

numerous reports of the involvement of the pathway in OA, in vivo human studies of these genes 

are very limited. This thesis is one of the first examples of such studies in humans. 

  

1.5. Hypotheses ‎and Objectives 

This thesis aimed to understand the etiology of OA regarding genetics and epigenomics with two 

main perspectives, namely the role of transforming growth factor beta and epigenetics in OA.  

First, I hypothesized that the Newfoundland and Labrador population had a potential to detect 

robust genetic associations of OA. Although Canada, in general, has a diversity of cultures and 

ethnicities, the present NL population almost entirely originates from nearly 20,000 migrants 

from south-west England and the south of Ireland in the mid-1700s [184]. This founding 

population experienced a low level of in-migration over centuries, which resulted in NL being 

one of the few isolated Caucasian populations worldwide. This has resulted in lower population 

genetic diversity and longer linkage disequilibrium blocks, making it a unique source for 

studying the genetics of complex traits [184]. We  aimed to replicate the previously reported 

genetic associations of OA in a cohort from the Newfoundland and Labrador population. 

Second, I hypothesized that the SMAD3 gene was associated with generalized OA. The rationale 

behind this hypothesis came from the recent report of a syndromic form of generalized OA, 
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called Aneurysm Osteoarthritis syndrome (AOS). Patients affected by this syndrome present 

with early onset generalized OA, aneurysms of main arteries and various connective tissue 

disorders. AOS was reported to be caused by eight missense mutations in SMAD3 [179].  I 

hypothesized that because of the similarity in the phenotypes of the two conditions SMAD3 could 

be a potential candidate for a generalized form of OA, and I aimed to examine the association of 

SMAD3 common genetic variants with the OA involvement of multiple joints in a cohort from 

the Chingford study (UK). 

Since the SNP association identified in the second project was located in a non-coding part of the 

gene, in the third project, I hypothesized that the association of SMAD3 with OA could be 

through  its expression regulation. The  objective was to examine the difference in the expression 

of SMAD3 in cases and controls and  to test whether the expression was regulated by the 

promoter DNA methylation of the gene.  

The results of the first three projects underpinned involvement of TGF-ß signalling  pathway in 

OA. In the fourth project, I questioned the regulation of matrix degeneration by  matrix 

metallopeptidase 13 (MMP13) in the context of TGF-ß  signal transduction by SMAD3 and 

the  effect of the BMP pathway. I aimed to examine the  expression levels and pair-wise 

correlations of four genes in the pathway including TGFB1 and BMP2 as  ligands, SMAD3 as an 

intracellular mediator, and MMP13 as a  targeted gene in human cartilage tissues obtained from 

OA patients and healthy controls.   

In the last project, I investigated the role of genome-wide DNA methylation changes in human 

OA cartilage. A genome-wide DNA methylation analysis in OA-free and OA-affected  cartilage 

from human hips and knees using the Illumina Infinium HumanMethylation450  BeadChip was 
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conducted.  I also examined the potential of the identified methylation sites in distinguishing OA-

free and  OA-affected cartilage in addition to identifying the pathways the differentially 

methylated genes are enriched in. 
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Abstract 

Objective: Over 200 genes have been reported to be associated with osteoarthritis (OA), but most 

of them have not been replicated in an independent sample. Using the newly collected cohort 

from a genetically isolated population – the Newfoundland and Labrador population, I attempted 

to replicate 69 previously reported OA-associated SNPs. 

 

Methods: A case-control study design was utilized in this study. Patients undergoing total 

hip/knee joint replacements due to severe OA were collected as cases. A group of healthy 

individuals with no evidence of OA was used as controls. Sixty-nine SNPs were genotyped 

either by Sequenom iPLEX Gold method or Illumina GWAS genotyping platform. The cross-

reference was performed on both methods in a subset of samples for genotyping quality control. 

A logistic regression model was used to test for associations between the SNPs and OA. 

 

Results: A total of 126 cases and 348 healthy controls were included in the final analysis. OA 

patients were on average nine years older than healthy controls (p<0.0001), but there was no 

difference in BMI. I was unable to replicate the previously reported associations. Two SNPs, 

rs2294995 (COL9A3), and rs1049007 (BMP2) showed an association with p<0.05, but the 

significance did not survive the Bonferroni multiple testing correction. 
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Conclusion: A lack of replication might be due to study design, complexity of OA, method of 

OA ascertainment, populations studied, or false positives in the original publications. A study 

with a larger sample is needed to confirm the association of two SNPs with OA. 

 

Introduction 

Osteoarthritis (OA) is the most common form of arthritis causing joint pain, stiffness, limited 

range of motion, joint deformity, and disability [185]. Its prevalence is on the rise due to 

population aging and increasing the prevalence of obesity. Knee, hip, hand, spine, and foot are 

the most affected joints while the greatest public health burden results from the hip and/or knee 

OA [186]. To date, there are no drugs available for rebuilding the damaged cartilage, nor is there 

a clear understanding of the pathogenesis of the disease. Total joint replacement therapy is the 

only choice for people with advanced OA. In the US alone, the total number of hip and/or knee 

joint replacement surgery due to OA is 350,000 each year [76], and the annual per person cost of 

those living with OA has been estimated to be around $5,700 [187]. Arthritis, mostly OA, costs 

$128 million per year in medical care and other indirect expenses including those resulting from 

work limitation and loss of productivity in the US [188]. 

Although the etiology of OA is not completely understood, it is believed that OA is a 

multifactorial condition developing and progressing as a result of a combination of different 

environmental and genetic factors [189]. The main non-genetic risk factors include age, gender, 

obesity, previous joint injury, and joint mal-alignments [190]. Evidence suggests a strong genetic 

component to OA. From twin studies this genetic influence has been estimated to be between 

40% and 65% for knee, hip [191], and hand OA [192], and first-degree relatives of individuals 
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with spine, hand, hip, or polyarticular OA have a two- to three-fold increased risk of the disease 

[193, 194]. 

To date, nine Genome-Wide Association Studies (GWAS), along with a large number of 

candidate gene studies and linkage analyses, have been performed on OA. Although some OA-

associated genes such as GDF5 have been replicated in independent research, the majority of the 

studied loci yielded inconsistent results [195]. This might be due to the genetically 

heterogeneous nature of the disease or false positive findings in the initial studies. Genetically 

isolated populations have advantages for complex disease gene mapping because of their reduced 

genetic heterogeneity and extended LD [184]. The Newfoundland and Labrador population is a 

young, isolated founder population with a high degree of both genetic and cultural homogeneity 

exhibiting extended linkage disequilibrium and an increased kinship coefficient, which provides 

a unique source for investigating both single gene diseases and complex traits [196, 197]. The 

aim of the present study was to replicate previously reported OA-associated genes using this 

unique population. 

 

Methods and Materials 

Subjects 

The study was part of the Newfoundland Osteoarthritis Study (NFOAS) that was initiated in 

2011 and aimed at identifying novel genetic, epigenetic, and biochemical markers for OA. OA 

patients were recruited from those who underwent total knee or hip replacement surgery due to 

primary OA between Nov. 2011 to Jun. 2013 in St. Clare’s Mercy Hospital and Health Science 

Centre General Hospital in St. John’s, the capital city of Newfoundland and Labrador (NL) 
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province of Canada. A group of healthy people who do not have any evidence of either knee or 

hip OA was used as controls. The controls were selected from a previous genetic association 

study for type II diabetes and obesity. The controls completed a questionnaire regarding any 

ongoing symptoms, previous diagnosis and medication history. A rheumatologist also examined 

each subject. The controls were selected for this study if they had no musculoskeletal pain, a 

prior diagnosis of osteoarthritis, were not taking acetaminophen or NSAIDs and had a normal 

physical examination as it relates to the skeletal system. All cases and controls in this study were 

from NL. The study was approved by the Health Research Ethics Authority (HREA) of 

Newfoundland and Labrador (HREA11.311), and written consent was obtained from all the 

participants. 

Height and weight measurements were obtained from the patient’s hospital medical record. Body 

mass index (BMI) was calculated as weight in kilograms divided by squared height in meters. 

Age was calculated at the time of surgery or visit date. 

Genotyping 

HuGE Navigator [144], a continuously updated database in human genome epidemiology, 

indexes all of the genetic association studies for a given disease or trait. There were 231 genes 

reported to be associated with OA as of June 2013, only a few of which have been tested in 

replicating studies. Due to a limited budget, it was decided to replicate all the SNPs that were 

reported in OA GWAS studies plus some SNPs from candidate studies. 

Blood samples were obtained from all study participants, and DNA was extracted by using a 

standard protocol. All OA cases were genotyped by Sequenom iPLEX Gold method [198]. 

Briefly, a 384-well plate chip on Sequenom platform using mass spectrometry was used for 
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genotyping. Each multiplex PCR was done using 30ng of DNA (n=1: 1.25X PCR buffer Roche, 

2mM MgCl2 Roche, 0.5M dNTPs, 0.11uM PCR primer pool oligos ordered from IDT, 0.15U/µL 

Roche FastStart) and the amplification was done following this cycling protocol: [95°C 15min, 

45x (95°C 20sec, 58°C 30sec, 72°C 60sec), 72c 3min]. The SAP reaction was done to clean the 

PCR product following by the single base extension reaction using mass-modified 

dideoxynucleotide terminators of an oligonucleotide primer which anneals immediately upstream 

of the polymorphic site of interest. After extension, the Salt Adduct Removal Step was run using 

6mg of resin. The product was then spot on a Sequenom 384-well chip using a Nanodispenser 

and loaded onto the Mass Spectrometer for reading. 

All the controls were previously genotyped using Illumina HumanHap550-Duo BeadChip at 

Centrillion Biosciences at Palo Alto, California. Cross-validation of genotyping quality was 

carried out on 31 controls that were genotyped by both Sequenom iPLEX Gold method and 

IlluminaHumanHap550-Duo BeadChip. 

 Statistical analysis 

Distribution of age, gender and BMI was examined and tested between OA cases and controls by 

either Chi-squared test or Student t-test wherever appropriate. Concordance between the two 

genotyping methods was evaluated by calculating genotype concordance rate in those subjects 

who were genotyped by both methods. Hardy-Weinberg Equilibrium (HWE) test was performed 

for each of the SNPs by Chi-squared test and removed in the subsequent analysis if the p-value 

<0.05. Chi-squared test was utilized to test the association between each of the SNPs and disease 

status and logistic regression modeling was used to adjust for potential confounders including 

age, sex, and BMI since the cases and controls were different regarding these variables. The 
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significance level was set at the alpha level of 0.0007 after correcting for multiple testing with 

the Bonferroni method. All analyses were done using STATA/SE 11.2 (Stata Corp, College 

Station, Texas, USA) except for HWE test which was performed by PLINK version 1.07 [199]. 

 

Results 

A total of 126 OA cases and 348 controls were included in this study. Among OA cases, 50 were 

males, and 76 were females, 42 had a total hip replacement, and 84 had total knee replacement 

due to primary OA. Controls (146 men and 202 women) were healthy subjects who did not have 

evidence of joint OA. Characteristics of the study participants are presented in Table 2.1. OA 

cases were significantly older than healthy controls and had a slightly higher BMI, which was 

not significant. 
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Table 2.1- Descriptive statistics of the study population 

Variables OA  

(n=126) 

Healthy  

Controls (n=348) 

P-value
¶
 

Age (yr) 63.8±0.87 54.8±0.81 <0.0001 

BMI (kg/m
2
) 33.05±0.67 31.7±0.39 0.07 

Sex (% female) 60.3% 58.1% 0.65 

Figures stand for Mean ± SE unless stated. 
¶
P-value for comparison between OA cases and 

healthy controls  
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105 SNPs located in 71 genes were genotyped by Sequenom iPLEX Gold method for all cases 

and 52 healthy controls. Sixty-nine of these 105 SNPs were included in Illumina HumanHap550-

Duo BeadChip and genotyped for all controls and therefore the subsequent analysis was focused 

on these 69 SNPs. 31 healthy controls were genotyped by both methods and were used to cross-

validate the quality and accuracy between two genotyping methods. The genotype concordance 

rates for all 69 SNPs were 100%, indicating the comparability of the two genotyping methods. 

Two SNPs were deviated from HWE and excluded from the subsequent analyses. Table 2.2 

presents the results of the univariable and multivariable analyses of the association of each of the 

remaining 67 SNPs between OA and healthy controls. I found that the minor alleles of 

rs2294995 (located in COL9A3) and rs1049007 (located in BMP2) were associated with one-

third reduced risk for OA, but the significance did not reach the Bonferroni correction for 

multiple testing. 

In the joint specific analyses, three SNPs were associated with knee OA [COL9A3 rs2294995 

(OR:0.51, 95%CI: 0.32-0.8, P=0.004), HFE rs1799945 (OR:1.67, 95%CI: 1.06-2.6, P=0.025), 

and PACE4 rs900414 (OR:0.63, 95%CI: 0.41-0.97, P=0.036)], and five SNPs with hip OA 

[EDG2 rs10980705 (OR:0.4, 95%CI: 0.19-0.89, P=0.024), IL1RN rs315952 (OR:0.5, 95%CI: 

0.26-0.93, P=0.03), BMP2 rs1049007 (OR: 0.56, 95%CI: 0.33-0.95, P=0.03), IL1RN rs9005 

(OR:1.69, 95%CI: 1.03-2.78, P=0.038), and COX2 rs5277 (OR:1.74, 95%CI: 1-3.01, P=0.048)], 

but all the significance did not reach the Bonferroni multiple testing correction (Table 2.3). 
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Table 2.2- Results of the association tests for each SNP between OA cases and healthy controls* 

Genetic variant Risk  

Allele 

Univariable Multivariable Risk Allele Freq. 

Gene symbol SNP OR (95% CI) P-value OR (95% CI) P-value Controls Cases 

BMP2 rs1049007 (A/G)  A 0.69 (0.50 - 0.94) 0.021* 0.64 (0.45 - 0.90) 0.011* 0.43 0.35 

COL9A3 rs2294995 (A/G) A 0.64 (0.46 - 0.90) 0.010* 0.65 (0.46 - 0.94) 0.021* 0.33 0.24 

TLR8 rs5744080 (T/C) T 1.20 (0.94 - 1.53) 0.130 1.31 (1.00 - 1.71) 0.040* 0.41 0.48 

PACE4 rs900414 (A/G) A 0.76 (0.54 - 1.06) 0.109 0.70 (0.48 - 1.01) 0.060 0.31 0.26 

MTHFR rs1801133 (A/G) A 1.32 (0.98 - 1.78) 0.068 1.36 (0.98 - 1.89) 0.065 0.31 0.38 

ADAM12 rs1871054 (A/G) G 1.20 (0.90 - 1.61) 0.219 1.33 (0.96 - 1.85) 0.085 0.46 0.50 

IL18 rs1946518 (A/C)
 
 A 1.15 (0.85 - 1.55) 0.363 1.33 (0.95 - 1.85) 0.097 0.40 0.44 

DIO3 rs945006 (A/C) C 0.81 (0.52 - 1.26) 0.356 0.69 (0.43 - 1.13) 0.139 0.15 0.12 

ADAM12 rs3740199 (C/G)  C 1.26 (0.95 - 1.68) 0.107 1.25 (0.91 - 1.70) 0.163 0.47 0.53 

ADAM12 rs1044122 (A/G)  A 1.21 (0.88 - 1.67) 0.234 1.26 (0.89 - 1.78) 0.196 0.23 0.27 

IL4R rs2234895 (C/T) T 0.70 (0.38 - 1.28) 0.244 0.65 (0.34 - 1.25) 0.199 0.08 0.06 

PTGS2/COX-2 rs20417 (C/G) G 1.23 (0.82 - 1.83) 0.319 1.33 (0.86 - 2.06) 0.201 0.15 0.18 

ASTN2 rs4836732 (C/T) C 1.19 (0.89 - 1.58) 0.243 1.22 (0.90 - 1.66) 0.208 0.48 0.53 
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HFE rs1799945 (C/G) C 1.30 (0.89 - 1.91) 0.178 1.30 (0.86 - 1.96) 0.214 0.15 0.19 

DIO2 rs225014 (C/T) T 1.27 (0.95 - 1.69) 0.108 1.22 (0.89 - 1.67) 0.214 0.36 0.42 

IL6 rs1800797 (A/G) A 0.78 (0.58 - 1.05) 0.098 0.82 (0.60 - 1.13) 0.228 0.41 0.35 

IL6 rs1800796 (G/C) G 0.70 (0.35 - 1.38) 0.310 0.60 (0.32 - 1.31) 0.230 0.05 0.04 

GLTBD1 rs6976 (C/T)  C 0.89 (0.66 - 1.2) 0.447 0.82 (0.60 - 1.13) 0.230 0.41 0.38 

IL1B rs1143633 (A/G)  A 1.18 (0.88 - 1.58) 0.272 1.20 (0.87 - 1.64) 0.260 0.34 0.38 

COX2 rs5277 (C/G)  G 1.14 (0.77 - 1.67) 0.518 1.26 (0.82 - 1.93) 0.285 0.15 0.17 

IL1B rs1143634 (C/T)  T 0.88 (0.63 - 1.25) 0.485 0.83 (0.57 - 1.19) 0.305 0.23 0.21 

VDR rs731236 (C/T) T 1.16 (0.87 - 1.55) 0.302 1.17 (0.85 - 1.60) 0.329 0.42 0.46 

IL1RN rs315952 (A/G)  G 0.83 (0.59 - 1.15) 0.255 0.84 (0.59 - 1.19) 0.332 0.28 0.25 

ESR1/alpha rs2234693 (G/A) G 0.80 (0.61 - 1.06) 0.130 0.87 (0.64 - 1.18) 0.370 0.46 0.40 

ANP32A rs7164503 (A/G) G 0.92 (0.57 - 1.49) 0.737 0.79 (0.47 - 1.33) 0.375 0.11 0.10 

HLA class II/III rs7775228 (A/G) G 1.20 (0.77 - 1.86) 0.414 1.22 (0.75 - 1.99) 0.417 0.11 0.13 

DIO2 rs12885300 (A/G)  A 0.82 (0.60 - 1.12) 0.222 0.87 (0.62 - 1.22) 0.421 0.36 0.32 

EDG2 rs10980705 (A/G)  G 0.82 (0.58 - 1.16) 0.256 0.86 (0.59 - 1.25) 0.427 0.23 0.19 

CHST11 rs835487 (A/G) A 0.84 (0.62 - 1.15) 0.280 0.87 (0.62 - 1.22) 0.431 0.36 0.32 
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IL1A rs1800587 (A/G) A 0.94 (0.69 - 1.30) 0.727 0.88 (0.62 - 1.25) 0.473 0.29 0.28 

Matrilin3 rs8176070 (C/T)  C 0.95 (0.70 - 1.29) 0.755 0.89 (0.63 - 1.25) 0.496 0.35 0.34 

SUPT3H/CDC5L rs10948172 (A/G)  G 0.87 (0.63 - 1.20) 0.406 0.89 (0.63 - 1.26) 0.504 0.31 0.28 

pTGS2/ PLA2G4A rs4140564 (C/T)  C 1.56 (0.87 - 2.81) 0.137 1.24 (0.65 - 2.35) 0.515 0.05 0.08 

LRCH1 rs912428 (A/G) A 1.06 (0.74 - 1.52) 0.745 1.13 (0.77 - 1.68) 0.532 0.20 0.21 

IL18R1/IL18RAP rs2287037 (C/T) T 1.05 (0.78 - 1.42) 0.743 1.11 (0.80 - 1.54) 0.539 0.35 0.36 

IL1B rs16944 (A/G) A 1.03 (0.76 - 1.40) 0.835 1.11 (0.79 - 1.55) 0.543 0.34 0.35 

TLR-3 rs3775296 (G/T) T 1.03 (0.72 - 1.48) 0.868 1.12 (0.77 - 1.65) 0.549 0.18 0.18 

IL4 rs2070874 (C/T) T 0.89 (0.58 - 1.37) 0.598 0.87 (0.53 - 1.42) 0.566 0.13 0.12 

MCF2L rs11842874 (A/G)  G 0.87 (0.52 - 1.46) 0.592 0.86 (0.50 - 1.48) 0.580 0.09 0.08 

CALM2 rs10153674 (A/G)  A 0.98 (0.65 - 1.48) 0.917 0.88 (0.56 - 1.39) 0.587 0.15 0.14 

A2BP1 rs716508 (C/T) T 1.12 (0.82 - 1.53) 0.461 1.09 (0.77 - 1.54) 0.615 0.31 0.34 

FTO rs8044769 (C/T)  C 0.83 (0.62 - 1.11) 0.208 0.92 (0.67 - 1.27) 0.621 0.48 0.43 

HLA class II/III rs10947262 (A/G)  A 1.20 (0.68 - 2.13) 0.530 1.16 (0.63 - 2.15) 0.632 0.06 0.07 

TXNDC3 rs4720262 (C/T) T 0.88 (0.64 - 1.22) 0.452 0.92 (0.65 - 1.30) 0.634 0.28 0.26 

ADAMTS5 rs2380585 (A/G) A 0.93 (0.65 - 1.34) 0.701 0.91 (0.62 - 1.36) 0.658 0.21 0.20 
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TLR-9 rs187084 (A/G) G 1.01 (0.76 - 1.35) 0.928 0.93 (0.68 - 1.28) 0.673 0.41 0.41 

IL1RN rs419598 (A/G) G 1.02 (0.74 - 1.39) 0.922 0.93 (0.66 - 1.31) 0.691 0.30 0.30 

GDF5/ASPN rs13301537 (C/T) C 1.03 (0.75 - 1.42) 0.840 1.07 (0.76 - 1.52) 0.698 0.28 0.28 

ESR2/beta rs1256031 (C/T) T 1.16 (0.86 - 1.56) 0.335 1.06 (0.77 - 1.47) 0.717 0.45 0.48 

TRPV1 rs8065080 (A/G) A 0.98 (0.72 - 1.32) 0.875 0.94 (0.68 - 1.31) 0.724 0.38 0.38 

TNF-A rs1800629 (A/G) A 0.94 (0.64 - 1.39) 0.765 0.93 (0.61 - 1.41) 0.738 0.18 0.17 

IL4R rs1805013 (A/G) A 1.09 (0.49 - 2.42) 0.838 0.87 (0.36 - 2.09) 0.760 0.03 0.04 

AACT rs4934 (C/T) T 0.91 (0.68 - 1.21) 0.501 0.96 (0.70 - 1.31) 0.800 0.48 0.46 

IL1R1 rs1465325 (C/T) C 0.95 (0.65 - 1.40) 0.808 0.95 (0.62 - 1.44) 0.802 0.17 0.17 

LEP rs2060715 (A/G) A 0.85 (0.63 - 1.13) 0.264 0.96 (0.70 - 1.32) 0.808 0.48 0.44 

TP63 rs12107036 (A/G)  A 1.04 (0.78 - 1.38) 0.795 1.03 (0.76 - 1.42) 0.832 0.48 0.49 

ESR1/alpha rs2228480 (C/T) T 0.89 (0.62 - 1.27) 0.513 0.96 (0.65 - 1.41) 0.835 0.22 0.20 

NFKB1A rs8904 (C/T)  C 0.96 (0.70 - 1.33) 0.820 0.97 (0.69 - 1.38) 0.871 0.31 0.31 

HAPLN1 rs179851 (C/T) C 0.92 (0.67 - 1.25) 0.588 1.03 (0.74 - 1.44) 0.873 0.32 0.31 

LEP rs12706832 (C/T) T 0.86 (0.64 - 1.15) 0.303 0.97 (0.71 - 1.34) 0.875 0.47 0.44 

IL1RN rs9005 (C/T) C 1.09 (0.80 - 1.49) 0.577 1.02 (0.73 - 1.43) 0.909 0.31 0.33 
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RAGE rs2070600 (A/G) A 1.39 (0.77 - 2.5) 0.280 1.04 (0.52 - 2.07) 0.921 0.05 0.07 

COL2A1 rs2070739 (C/T) T 0.92 (0.57 - 1.47) 0.720 0.98 (0.59 - 1.62) 0.922 0.11 0.10 

UQCC rs6087704 (A/G) G 1.02 (0.75 - 1.37) 0.911 1.02 (0.73 - 1.41) 0.926 0.35 0.35 

WISP1 rs2929970 (C/T) C 0.99 (0.74 - 1.32) 0.952 0.99 (0.72 - 1.36) 0.958 0.49 0.49 

ESR2/beta rs1256049 (C/T) T 0.69 (0.28 - 1.69) 0.418 0.98 (0.38 - 2.55) 0.973 0.03 0.02 

GDF5 rs224329 (C/T) T 1.01 (0.74 - 1.36) 0.964 1.00 (0.72 - 1.39) 1.000 0.34 0.34 

*OR: Odds Ratio, CI: Confidence Interval. P-values smaller than 0.05 are indicated with an asterisk. 
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Table 2.3- Results of the joint specific multivariable association tests for each SNP*  

Genetic variant Risk  

Allele 

Knee OA (N=84) Hip OA (N=42) 

Gene symbol SNP OR (95% CI) P-value OR (95% CI) P-value 

COL9A3 rs2294995 (A/G) A 0.51 (0.33 - 0.81) 0.004 1.12 (0.68 - 1.85) 0.664 

HFE rs1799945 (C/G) C 1.67 (1.07 - 2.63) 0.025 0.99 (0.51 - 1.92) 0.981 

PACE4 rs900414 (A/G) A 0.64 (0.41 - 0.98) 0.040 0.90 (0.52 - 1.53) 0.687 

IL1B rs1143633 (A/G)  A 1.39 (0.98 - 1.99) 0.067 1.00 (0.61 - 1.64) 0.997 

ADAM12 rs1871054 (A/G) G 1.41 (0.97 - 2.04) 0.069 1.04 (0.64 - 1.70) 0.865 

ASTN2 rs4836732 (C/T) C 1.37 (0.96 - 1.96) 0.086 0.90 (0.55 - 1.46) 0.664 

TLR8 rs5744080 (T/C) T 1.29 (0.96 - 1.72) 0.087 1.02 (0.68 - 1.51) 0.934 

SUPT3H/CDC5L rs10948172 (A/G)  G 0.73 (0.49 - 1.09) 0.122 1.31 (0.81 - 2.12) 0.269 

ADAM12 rs3740199 (C/G)  C 1.31 (0.92 - 1.86) 0.131 1.33 (0.83 - 2.14) 0.230 

BMP2 rs1049007 (A/G)  A 0.74 (0.51 - 1.09) 0.132 0.57 (0.34 - 0.96) 0.033 

IL6 rs1800797 (A/G) A 0.77 (0.53 - 1.10) 0.154 0.88 (0.55 - 1.41) 0.583 

pTGS2/ PLA2G4A rs4140564 (C/T)  C 1.55 (0.84 - 2.88) 0.164 0.40 (0.09 - 1.68) 0.210 

IL18 rs1946518 (A/C)  A 1.28 (0.88 - 1.86) 0.19 1.17 (0.72 - 1.90) 0.514 
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GDF5 rs224329 (C/T) T 0.78 (0.53 - 1.14) 0.198 1.37 (0.86 - 2.20) 0.188 

DIO3 rs945006 (A/C) C 0.70 (0.40 - 1.20) 0.205 0.76 (0.38 - 1.54) 0.449 

PTGS2/COX-2 rs20417 (C/G) G 1.38 (0.84 - 2.27) 0.206 1.46 (0.77 - 2.76) 0.246 

IL4R rs2234895 (C/T) T 0.61 (0.28 - 1.33) 0.21 0.91 (0.37 - 2.26) 0.846 

GLTBD1 rs6976 (C/T)  C 0.82 (0.56 - 1.19) 0.286 1.11 (0.68 - 1.81) 0.680 

IL1A rs1800587 (A/G) A 0.81 (0.54 - 1.21) 0.299 1.04 (0.63 - 1.72) 0.876 

UQCC rs6087704 (A/G) G 0.83 (0.57 - 1.21) 0.332 1.34 (0.83 - 2.14) 0.230 

IL6 rs1800796 (G/C) G 0.69 (0.32 - 1.49) 0.341 0.43 (0.11 - 1.67) 0.221 

ADAM12 rs1044122 (A/G)  A 1.21 (0.82 - 1.78) 0.344 1.11 (0.65 - 1.87) 0.708 

DIO2 rs12885300 (A/G)  A 0.84 (0.57 - 1.23) 0.363 0.92 (0.56 - 1.50) 0.734 

ESR1/alpha rs2234693 (G/A) G 0.85 (0.60 - 1.21) 0.375 0.91 (0.57 - 1.45) 0.687 

GDF5/ASPN rs13301537 (C/T) C 1.19 (0.80 - 1.76) 0.389 0.84 (0.48 - 1.47) 0.540 

WISP1 rs2929970 (C/T) C 0.86 (0.60 - 1.24) 0.426 1.22 (0.76 - 1.96) 0.419 

IL1RN rs9005 (C/T) C 0.86 (0.58 - 1.28) 0.461 1.69 (1.030 - 2.78) 0.038 

IL1B rs1143634 (C/T)  T 0.86 (0.57 - 1.30) 0.477 0.80 (0.46 - 1.39) 0.428 

LRCH1 rs912428 (A/G) A 1.17 (0.76 - 1.80) 0.477 1.08 (0.60 - 1.94) 0.805 
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CHST11 rs835487 (A/G) A 0.88 (0.60 - 1.28) 0.489 0.84 (0.51 - 1.37) 0.481 

FTO rs8044769 (C/T)  C 0.88 (0.62 - 1.27) 0.508 0.98 (0.61 - 1.58) 0.931 

TNF-A rs1800629 (A/G) A 1.17 (0.74 - 1.85) 0.509 0.61 (0.30 - 1.27) 0.191 

TXNDC3 rs4720262 (C/T) T 1.13 (0.77 - 1.66) 0.524 0.56 (0.31 - 1.02) 0.057 

COL2A1 rs2070739 (C/T) T 1.20 (0.68 - 2.13) 0.529 0.87 (0.39 - 1.95) 0.743 

HLA class II/III rs10947262 (A/G)  A 1.26 (0.60 - 2.62) 0.542 1.78 (0.74 - 4.27) 0.197 

IL1RN rs315952 (A/G)  G 1.12 (0.77 - 1.65) 0.55 0.50 (0.27 - 0.93) 0.030 

LEP rs12706832 (C/T) T 0.90 (0.63 - 1.28) 0.552 1.32 (0.84 - 2.08) 0.232 

MTHFR rs1801133 (A/G) A 1.12 (0.78 - 1.60) 0.552 1.29 (0.80 - 2.08) 0.304 

ANP32A rs7164503 (A/G) G 0.85 (0.48 - 1.50) 0.564 0.83 (0.39 - 1.78) 0.634 

CALM2 rs10153674 (A/G)  A 0.86 (0.51 - 1.45) 0.572 1.02 (0.52 - 1.98) 0.960 

IL1R1 rs1465325 (C/T) C 1.13 (0.72 - 1.79) 0.595 0.87 (0.45 - 1.69) 0.688 

EDG2 rs10980705 (A/G)  G 1.11 (0.74 - 1.68) 0.609 0.42 (0.20 - 0.89) 0.024 

ESR2/beta rs1256049 (C/T) T 0.77 (0.27 - 2.16) 0.613 0.76 (0.19 - 2.95) 0.686 

ADAMTS5 rs2380585 (A/G) A 0.91 (0.60 - 1.38) 0.654 0.65 (0.35 - 1.20) 0.168 

MCF2L rs11842874 (A/G)  G 0.87 (0.47 - 1.63) 0.669 0.99 (0.46 - 2.16) 0.982 
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LEP rs2060715 (A/G) A 0.93 (0.66 - 1.33) 0.704 1.18 (0.75 - 1.86) 0.485 

HLA class II/III rs7775228 (A/G) G 1.11 (0.65 - 1.91) 0.706 1.15 (0.58 - 2.27) 0.686 

ESR1/alpha rs2228480 (C/T) T 0.92 (0.59 - 1.43) 0.709 0.90 (0.49 - 1.66) 0.740 

DIO2 rs225014 (C/T) T 1.07 (0.74 - 1.53) 0.726 1.37 (0.85 - 2.22) 0.193 

TP63 rs12107036 (A/G)  A 1.06 (0.75 - 1.50) 0.74 0.95 (0.60 - 1.51) 0.836 

IL1RN rs419598 (A/G) G 0.94 (0.64 - 1.38) 0.751 1.38 (0.83 - 2.29) 0.214 

IL4 rs2070874 (C/T) T 1.08 (0.64 - 1.83) 0.778 0.58 (0.24 - 1.38) 0.221 

VDR rs731236 (C/T) T 1.05 (0.74 - 1.50) 0.778 1.29 (0.81 - 2.06) 0.276 

HAPLN1 rs179851 (C/T) C 0.95 (0.65 - 1.39) 0.801 1.13 (0.69 - 1.85) 0.620 

Matrilin3 rs8176070 (C/T)  C 0.95 (0.66 - 1.38) 0.803 0.79 (0.47 - 1.31) 0.354 

TLR-3 rs3775296 (G/T) T 0.96 (0.60 - 1.51) 0.845 1.42 (0.82 - 2.45) 0.213 

NFKB1A rs8904 (C/T)  C 0.97 (0.65 - 1.44) 0.869 1.03 (0.62 - 1.70) 0.920 

ESR2/beta rs1256031 (C/T) T 1.02 (0.72 - 1.46) 0.893 1.15 (0.72 - 1.84) 0.549 

COX2 rs5277 (C/G)  G 0.97 (0.58 - 1.61) 0.899 1.74 (1.01 - 3.02) 0.048 

AACT rs4934 (C/T) T 0.98 (0.69 - 1.41) 0.932 0.94 (0.59 - 1.48) 0.778 

TLR-9 rs187084 (A/G) G 1.01 (0.71 - 1.44) 0.947 1.08 (0.68 - 1.73) 0.735 
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IL18R1/IL18RAP rs2287037 (C/T) T 0.99 (0.69 - 1.43) 0.953 0.97 (0.6 - 1.56) 0.893 

A2BP1 rs716508 (C/T) T 0.99 (0.67 - 1.46) 0.961 1.09 (0.67 - 1.78) 0.728 

RAGE rs2070600 (A/G) A 1.01 (0.49 - 2.1) 0.968 0.72 (0.24 - 2.14) 0.557 

TRPV1 rs8065080 (A/G) A 0.99 (0.69 - 1.43) 0.972 0.74 (0.45 - 1.22) 0.240 

IL4R rs1805013 (A/G) A 1.01 (0.39 - 2.6) 0.982 0.65 (0.15 - 2.87) 0.567 

IL1B rs16944 (A/G) A 1 (0.68 - 1.47) 0.992 1.46 (0.88 - 2.42) 0.140 

‎*OR: Odds Ratio, CI: Confidence Interval. ‎ 
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Discussion 

The study is one of the few efforts on the replication of the previously identified genetic variants 

in OA. Advantages of the current study include using a genetically homogeneous population and 

advanced OA cases. A smaller population genetic heterogeneity and the use of advanced OA 

cases are believed to increase the study power in OA genetic association studies. This is because 

advanced OA cases are expected to carry more risk alleles, and population homogeneity is 

thought to reduce genetic diversity and make it easier to identify the specific SNPs associated 

with complex traits. 

Although I was unable to replicate any of the SNPs that were previously reported to be 

associated with OA with a stringent significance level, two SNPs showed a potential to be 

associated with OA. One is rs2292995 located in COL9A3, which is a gene coding for the 

structural components of the articular cartilage. The gene has been associated with multiple 

epiphyseal dysplasia type 3 [200], and primary OA [201]. The second SNP is rs1049007 located 

in BMP2, which is involved in TGF-β signalling pathway that has been implicated in OA [175]. 

Because the associations for these SNPs did not reach the statistical significance after the 

Bonferroni correction was applied, they warrant further investigation in a larger cohort. 

The join specific analyses were performed to replicate potential joint specific associations. 

Considering the small sample size in this analysis, the results should be regarded as exploratory. 

The two replicated SNPs from the BMP2, and COL9A3 genes were present among those SNPs 

reaching the threshold of alpha<0.05 but in different joints. This shows that the association of 

these genes with OA can be joint specific, and the future replication studies may rather be 

performed on the individuals affected with the respective joints only.  
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SNP rs143383 located in GDF5 gene is by far the most replicated SNP that is associated with 

OA. It was initially discovered in the Asian population [147], followed by replication studies in 

European populations [149], and several meta-analyses confirmation [202, 203]. The SNP was 

not included in the Illumina GWAS genotyping platform, but a proxy SNP, rs224329, which has 

r2=0.92 with rs143383 was used instead. However, I could not detect any association between 

rs224329 and OA. Small sample size in the current study might be a possible explanation, but the 

results are the same as in the recent large GWAS on OA performed in the UK population [204], 

in which over 7,410 OA cases and 11,009 unrelated population controls were included. The NL 

population is shown to have ancestry admixture of almost entirely British and Irish populations, 

and its genetic structure resembles those populations [205]. Considering the genetic similarity 

between the NL and British populations may suggest that the GDF5-OA association is 

population specific. 

Data on the replication of previously reported OA-associated genes are limited. GOAL study 

[206] utilized a large number of symptomatic radiographic knee or hip OA and controls to 

replicate 68 variants in 12 genes including IL1A, IL1B, IL1RN, IL4R, IL6, COL2A1, ADAM12, 

ASPN, IGF1, TGFB1, ESR1, and VDR, but they did not replicate any of these associations. All 

the genetic variants they studied were included in this study. Similarly, these SNPs were not 

associated with OA in this sample; neither did they in the large genome-wide meta-analysis 

[207]. 

Failure in the replication of previously reported genetic associations is common to the point that 

less than 5% of the reported associations could be replicated in an independent study [208], 

which along with other factors has raised criticism on the usefulness of association studies [209]. 

The reasons for the failures are numerous: initially reported associations might be false positives 
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or replications might be false negative findings resulting from a biased sampling, hidden or 

uncorrected population stratification, small sample sizes. The association might only hold true 

for the population in which the association was reported due to the differences and specificity of 

LD patterns across different populations. The complexity of multifactorial traits is another issue. 

The effect of multiple genetic variants and heterogeneity means that the presence of all of the 

risk alleles together may not be required for the disease to develop; therefore, distribution of risk 

alleles in two groups of cases from different or even the same population might be different from 

each other. All these factors are aggravated in the study of OA due to the age dependency and 

the lack of a unique method for the ascertainment of the study subjects used by different 

investigators. 

The reasons mentioned above could partially explain why it was not possible to replicate the 

examined SNPs in this study. Also, this study has been limited by some factors: sample size is 

relatively small. Considering this sample size and assuming minor allele frequency of 35% in 

controls, the study has 80% power only to detect an OR of 1.8 or above at an alpha level of 0.05. 

The minimum detectable OR would be 2.5 if the significance level were defined at 0.0007 after 

taking into account multiple testing. However, the study power is maximized by the optimal 

case-control ratio and using extreme severe OA cases. It was recently shown that NL population 

has slightly subtle population stratification [205], which might lead to false negatives. 

In conclusion, we were unable to replicate the previously reported OA-associated genes, but two 

SNPs showed suggestive associations with plausible biological mechanisms. Further studies are 

needed to test this hypothesis. 
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Abstract 

Background: A newly described syndrome called Aneurysm-Osteoarthritis Syndrome (AOS) 

was recently reported. AOS presents with early-onset osteoarthritis (OA) in multiple joints, 

together with aneurysms in major arteries, and is caused by rare mutations in SMAD3. Because 

of the similarity of AOS to idiopathic generalized OA (GOA), I hypothesized that SMAD3 is also 

associated with GOA and tested the hypothesis in a population-based cohort.  

 

Methods: Study participants were derived from the Chingford study. Kellgren-Lawrence (KL) 

grades and the individual features of osteophytes and joint space narrowing (JSN) were scored 

from radiographs of hands, knees, hips, and lumbar spines. The total KL score, osteophyte score, 

and JSN score were calculated and used as indicators of the total burden of radiographic OA. 

Forty-one common SNPs within SMAD3 were genotyped using the Illumina HumanHap610Q 

array. Linear regression modelling was used to test the association between the total KL score, 

osteophyte score, and JSN score and each of the 41 SNPs, with adjustment for patient age and 

BMI. Permutation testing was used to control the false positive rate. 

 

Results: A total of 609 individuals were included in the analysis. All were Caucasian females 

with a mean age of 60.9 ± 5.8. I found that rs3825977, with a minor allele (T) frequency of 20%, 

in the last intron of SMAD3, was significantly associated with total KL score (β= 0.14, 

Ppermutation= 0.002). This association was stronger for the total JSN score (β= 0.19, 

Ppermutation= 0.002) than for total osteophyte score (β= 0.11, Ppermutation= 0.02). The T allele 
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is associated with a 1.47-fold increased odds for people with 5 or more joints to be affected by 

radiographic OA (Ppermutation= 0.046). 

 

Conclusion: I found that SMAD3 is significantly associated with the total burden of radiographic 

OA. Further studies are required to reveal the mechanism of the association. 

 

Introduction 

Osteoarthritis (OA) is the most common form of arthritis in the elderly, characterized 

pathologically by focal areas of damage to the articular cartilage centered on load-bearing joints. 

It is associated with the new bone formation at the joint margins (osteophytes), changes in the 

subchondral bone, variable degrees of mild synovitis, and thickening of the joint capsule [1] 

which lead to the presentation of pain, stiffness, and disability. Its prevalence—already high—is 

increasing due to population aging and the increase in obesity. Eighty percent of individuals over 

75 years of age have radiographic OA changes in at least one of their joints [76]. According to a 

report from the Arthritis Community Research & Evaluation Unit in April 2010, the prevalence 

of self-reported and physician-diagnosed OA in individuals over age 45 ranged from 2.3%-11% 

in the low/middle-income countries to 8%-16% in the USA [70]. In the same year, it affected 27 

million people in the USA, imposing a burden of over 11 million dollars on outpatient visits and 

over 13 billion dollars on OA-related job absence [77]. Half of all adults will develop 

symptomatic OA of the knee at some points in their lives [210]. 
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OA is a multifactorial disease whose etiology is incompletely understood. It is believed that a 

number of different environmental and genetic factors interact in its initiation and progression 

[189]. Evidence suggests that genetic factors play a major role in OA, although they may be site- 

and sex- specific. From twin studies, this genetic influence has been estimated to be between 

40% and 65% on hand and knee OA [192]. First-degree relatives of individuals with spine, hand, 

hip, or polyarticular OA have a two- to three-fold increased risk of the disease [193, 194]. The 

nature of the genetic influence in OA is still unclear, but it is likely to involve a combination of 

effects on structure (i.e. collagen), alterations in cartilage, bone metabolism, and inflammation 

[211]. Although the genetic influence on OA was recognized more than 130 years ago [131], 

genetic variants identified so far account only for a small fraction of its heritability [212]. This 

may reflect several factors including the heterogeneous nature of the disease, the tendency to use 

less severe phenotypes in genetic searches and the reliance on underpowered studies [213]. 

Generalized OA—a subtype of primary OA—is characterized by the involvement of multiple 

joints, and is believed to have a stronger genetic component than individual joint OA [214]. 

However, genetic data on generalized OA are limited. 

Recently, a new syndrome called Aneurysm-Osteoarthritis Syndrome (AOS) was reported [179]. 

Patients with AOS present with early-onset OA affecting multiple joints including feet/ankle, 

hand/wrist, knee, hip, facet joints, uncovertebral joints and also exhibit degeneration of the 

intervertebral discs [179, 180]. Eight rare mutations in the SMAD3 gene (Similar to Mothers 

Against Decapentaplegic type 3) were identified as responsible for AOS in eight unrelated 

families. Subsequent studies reported additional SMAD3 mutations [215, 216] and also a CNV 

(copy number variant) [217] linked to AOS. The SMAD3 gene encodes a protein that belongs to 

the SMAD protein family, that are downstream mediators of the transforming growth factor beta 
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(TGF-β) signalling pathway [218], which inhibits terminal hypertrophic differentiation of 

chondrocytes and is essential for maintaining the integrity of articular cartilage [218, 219]. This 

regulatory pathway also stimulates osteogenesis and bone formation [220]. 

 SMAD3 knock-out mice develop a degenerative joint disease similar to human OA [221]. 

Although a few studies on SMAD3 and single-joint OA have been reported, no data are available 

regarding the role SMAD3 plays in generalized OA. Because of the similarity with AOS, in 

which multiple joints are also affected, I hypothesized that the SMAD3 gene played a role in 

idiopathic generalized OA. I tested this hypothesis in a large population-based cohort of 

individuals who had a radiographic assessment of multiple joints.  

 

Methods and Subjects 

Subjects 

The study subjects were women aged 43-67 years at baseline (1988–1989) who were 

participating in the Chingford Study, a prospective population-based study of OA and 

osteoporosis. The Chingford Study cohort comprises 1,003 women derived from the register of 

an extensive general practice in North London, who are similar to the UK population for most 

demographic variables [222]. 

Height, weight, and details of concomitant diseases, operations and medications were recorded 

for all subjects. DNA was extracted from blood by standard phenol or salting-out methods. At 

both baseline and ten years later, all subjects completed a standardized medical history 

questionnaire. 
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Ethics 

The Guys & St Thomas' Trust and the Waltham Forest Trust ethics committees approved the 

Chingford study protocol. Written consent was obtained from all participants. The current study 

was a secondary analysis of de-identified data from the Chingford Study; thus, no further ethics 

approval was needed. 

Radiography 

Plain films of all joints were obtained from a standard posteroanterior view at baseline and again 

9-11 years later. The distal interphalangeal (DIP), proximal interphalangeal (PIP) and first 

carpometacarpal (CMC) joints of the thumbs, the knee- and hip-joints, as well as four lumbar 

spinal joints (L1-L5),  were assessed for radiographic OA according to the Kellgren & Lawrence 

(KL) score using a 0-4 scale [223]. Joint Space Narrowing (JSN) and osteophyte characteristics 

were each scored on a 0-3 scale using a standard atlas [224]. All radiographs were independently 

assessed by two trained observers (DJ Hunter and DJ Hart). In cases of disagreement, a third 

adjudicator was used. The intra- and inter-observer reproducibility of the scoring measured on a 

subgroup of 50 hands had a Kappa statistic of approximately 0.68 for all sites and features. 

For the current study, the most recent radiographic and demographic data were used, including 

cross-sectional radiographic data for hip, spine, knee and hand from years 8, 9, 10, and 11 and 

the age and body mass index (BMI) from the 8th year of the study. All patients were visited at 

year 8 when the demographic information was collected. Due to the schedule of the radiology 

department, different joints were assessed in different years (between year 8 and year 11). Total 

KL score, osteophyte, and JSN scores were used as indicators of the total burden of radiographic 

OA, which was calculated by summing up the individual scores of each joint. Total radiographic 
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scores have been used by researchers in clinical, biomedical, and genetic studies of OA [214, 

225] as an indicator of the total burden of OA. In addition, individuals were evaluated for the 

criteria required for a diagnosis of generalized OA. To this end, joints were defined as being 

affected by OA if the KL score was ≥2. OA of either the DIP or PIP joint groups was defined as 

the presence of OA in at least two of the relevant joints. A diagnosis of GOA was based on the 

definition used by Cooper et al. [17]. Fourteen joints or joint groups were considered: the four 

lumbar joints together with the left and right knee, hip, DIP group, PIP group and thumb CMCs. 

GOA was defined as the presence of OA in at least five of these 14 joints. Those with fewer than 

five joints affected were designated as controls. 

Genotyping 

The samples were genotyped using the Illumina HumanHap610Q array. The normalized 

intensity data was used by the Illuminus calling algorithm [226] to assign genotypes. No calls 

were assigned if an individual's most likely genotype was called with a posterior probability 

threshold of less than 0.95. Sample exclusion criteria were: (i) sample call rate <98%, (ii) 

heterozygosity across all SNPs ≥2 s.d. from the sample mean; (iii) evidence of non‐European 

ancestry as assessed by PCA comparison with HapMap3 populations; (iv) observed pair-wise 

IBD probabilities suggestive of sample identity errors; (v) SNP exclusion criteria included (i) 

Hardy‐Weinberg p‐value<10
−6

, assessed in a set of unrelated samples; (ii) MAF<1%, assessed in 

a set of unrelated samples; (iii) SNP call rate <97% (SNPs with MAF≥5%) or <99% (for 

1%≤MAF<5%). For the current study, I retrieved genotype data for all 41 SNPs within the 

SMAD3 gene which were available on the array after consideration of exclusion criteria. 
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Statistics 

Since the distribution of the total KL, JSN, and osteophyte scores was skewed, a logarithmic 

transformation was performed to approximate a normal distribution. Subsequent analyses were 

performed on the log-transformed values. A linear regression model, testing for an additive 

genetic model, was used to test the association between each of the 41 candidate SNPs and the 

total KL, JSN, and osteophyte scores individually. A logistic regression model was used to test 

the association between each of the 41 SNPs and the total radiographic scores. Potential 

confounders such as age and BMI were considered in both models. All SNP associations with 

p<0.05 in the initial analyses were subject to permutation testing to control the false positive rate. 

The permutation method is well established as a robust approach for obtaining empirical 

significance levels while minimizing Type I errors [227, 228], and has been used to correct for 

multiple testing in genetic association studies [229]. Because of the infinite permutation with this 

study’s sample size, a Monte Carlo permutation procedure was used, and the phenotype labels 

were reshuffled 10,000 times. The permutation-based p-value was calculated as the proportion of 

the statistic on all the reshuffled data sets greater than the observed statistic [229]. In permutation 

testing, it is assumed that if the first data is true, the shuffled data should also be true. The 

generated permutation p-value represents the probability of deviation from this assumption. This 

significance level was defined as a permutation-based p-value of less than 0.05 in this study.  All 

analyses were conducted using STATA/SE 11.2 (Stata Corp, College Station, Texas, USA). 
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Results 

All study subjects were Caucasian females. Radiographic data for spine, hips, knees and hand 

joints were available for 796, 794, 614, and 687 individuals, respectively. The age and BMI data 

were available for 843 participants with a mean age of 61.2 ± 5.8 and a mean BMI of 26.7 ± 4.7. 

Total KL, osteophyte, and JSN scores were available for 609, 603, and 607 individuals 

respectively. As expected, patients with GOA—defined as having 5 or more joints affected—

were, on average, older than those with fewer than five affected joints, and also had a higher 

BMI (Table 3.1). The frequency of subjects with a different number of affected joints is 

presented in Table 3.2.  

Forty-one common SNPs within the SMAD3 gene were genotyped and passed quality control. 

They were scattered randomly throughout the SMAD3 gene, but none was located in exons 

(Figure 3.1). The average pairwise R
2
 between SNPs was 0.07. 

I found that SNP rs3825977 was significantly associated with all phenotypes analyzed, viz. total 

KL, osteophyte and JSN scores. The differences in these traits among individuals with different 

genotypes are presented in Figures 3.2-3.4.  
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Table 3.1- Descriptive statistics of the study population  

 GOA (n=247) Controls (n=360) P-Value 

Age 64.21±0.34 58.71±0.3 P<0.0001 

BMI 27.50±0.26 26.02±0.2 P<0.0001 

Figures are mean ± SD, and Student’s T-test was used for the comparison 

Table 3.2- Frequency of patients with a different number of joints affected.  

Number of joints affected Frequency (%) 

0 43 (7.06%) 

1 62 (10.18%) 

2 83 (13.63%) 

3 93 (15.27%) 

4 80 (13.14%) 

5 51 (8.37%) 

6 64 (10.51%) 

7 38 (6.24%) 

8 36 (5.91%) 

9 22 (3.61%) 

10 15 (2.46%) 

11 12 (1.97%) 

12 9 (1.48%) 

13 1 (0.16%) 

Total 609 (100%) 
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Figure 3.1- Distribution and LD pattern of 41 genotyped SNPs in SMAD3 gene 

 



85 
 

Figure 3.2- Total KL and genotypes of rs3825977 

 

Error bars indicate Standard Error  of  the  mean 
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Figure 3.3- Total osteophyte and genotypes of rs3825977 

 

Error bars indicate Standard Error  of  the  mean 
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Figure 3.4- Total JSN and genotypes of rs3825977 

 

Error bars indicate Standard Error  of  the  mean 
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After adjustment for age and BMI, the minor (T) allele of rs3825977—with 20% allele 

frequency—was associated with a 0.14  increase in log total KL score (95% CI 0.04-0.20, 

Ppermutation= 0.002). The association is stronger for log total JSN score with β = 0.19 (95%CI 0.07-

0.31, Ppermutation= 0.002) than for log total osteophyte score with β= 0.11 (95%CI 0.01-0.20, 

Ppermutation= 0.02). Two other SNPs—rs6494629 and rs2118612—were significant for only total 

osteophyte score in the univariate analysis but not in a multivariate analysis. All the results of 

univariate and multivariate linear regression analyses for total KL, osteophyte and JSN scores for 

all 41 SNPs are presented in Tables 3.3-3.5, respectively. 
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Table 3.3- Univariate and multivariate linear regression for total KL score and each SNP 

 Univariate Analysis Multivariate Analysis 

SNP Coefficient (95% CI) P-value Coefficient (95% CI) P-value 

rs3825977 0.178 (0.068 - 0.288) 0.002 0.143 (0.048 - 0.238) 0.003 

rs6494629 -0.085 (-0.171 - 0.001) 0.053 -0.051 (-0.125 - 0.023) 0.179 

rs745103 -0.052 (-0.137 - 0.034) 0.237 -0.05 (-0.123 - 0.024) 0.183 

rs718663 -0.069 (-0.274 - 0.137) 0.513 -0.102 (-0.278 - 0.075) 0.259 

rs11637659 -0.054 (-0.166 - 0.059) 0.351 -0.058 (-0.155 - 0.039) 0.241 

rs2118612 -0.091 (-0.206 - 0.024) 0.119 -0.058 (-0.157 - 0.041) 0.253 

rs16950687 0.044 (-0.051 - 0.14) 0.358 0.039 (-0.043 - 0.121) 0.348 

rs11631839 0.05 (-0.037 - 0.136) 0.257 0.034 (-0.04 - 0.109) 0.365 

rs12900401 -0.115 (-0.318 - 0.088) 0.266 -0.079 (-0.254 - 0.096) 0.374 

rs893473 -0.06 (-0.176 - 0.056) 0.307 -0.043 (-0.143 - 0.057) 0.400 

rs744910 -0.027 (-0.115 - 0.061) 0.547 -0.028 (-0.104 - 0.048) 0.477 

rs1470002 0.069 (-0.023 - 0.16) 0.143 0.026 (-0.053 - 0.106) 0.513 

rs2278545 -0.042 (-0.188 - 0.103) 0.567 -0.04 (-0.165 - 0.086) 0.535 

rs11071939 -0.082 (-0.245 - 0.081) 0.323 -0.047 (-0.187 - 0.093) 0.513 

rs2118610 0.016 (-0.07 - 0.103) 0.711 0.023 (-0.053 - 0.098) 0.558 

rs11637581 0.012 (-0.08 - 0.104) 0.799 0.025 (-0.055 - 0.104) 0.537 

rs2053295 0.068 (-0.063 - 0.2) 0.307 0.036 (-0.078 - 0.149) 0.537 

rs12914140 -0.056 (-0.231 - 0.118) 0.525 -0.051 (-0.201 - 0.099) 0.506 

rs920293 0.042 (-0.101 - 0.186) 0.562 0.037 (-0.088 - 0.161) 0.563 

rs4601989 0.055 (-0.052 - 0.163) 0.314 0.026 (-0.067 - 0.119) 0.585 
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rs6494633 0.015 (-0.072 - 0.102) 0.742 0.022 (-0.054 - 0.098) 0.566 

rs2053294 0.059 (-0.073 - 0.191) 0.382 0.031 (-0.083 - 0.145) 0.595 

rs12915039 0.031 (-0.075 - 0.138) 0.563 0.024 (-0.068 - 0.116) 0.608 

rs4147358 -0.037 (-0.145 - 0.071) 0.503 -0.021 (-0.115 - 0.072) 0.654 

rs7183244 -0.033 (-0.12 - 0.054) 0.455 -0.018 (-0.093 - 0.057) 0.645 

rs7359174 -0.078 (-0.217 - 0.06) 0.267 -0.025 (-0.144 - 0.094) 0.679 

rs2289263 0.04 (-0.044 - 0.123) 0.352 0.013 (-0.059 - 0.086) 0.723 

rs17293443 -0.007 (-0.11 - 0.096) 0.897 -0.016 (-0.105 - 0.072) 0.722 

rs3809572 -0.008 (-0.141 - 0.124) 0.900 -0.02 (-0.134 - 0.095) 0.734 

rs12913547 0.08 (-0.029 - 0.189) 0.151 0.017 (-0.078 - 0.111) 0.732 

rs7181878 -0.038 (-0.124 - 0.049) 0.390 -0.011 (-0.086 - 0.064) 0.772 

rs11071938 0.007 (-0.087 - 0.100) 0.884 -0.01 (-0.091 - 0.071) 0.803 

rs11639295 0.016 (-0.080 - 0.112) 0.748 -0.011 (-0.094 - 0.072) 0.795 

rs1992215 0.011 (-0.083 - 0.104) 0.825 -0.009 (-0.09 - 0.072) 0.82 

rs12901499 0.001 (-0.087 - 0.088) 0.989 -0.006 (-0.081 - 0.07) 0.886 

rs731874 -0.02 (-0.110 - 0.070) 0.658 0.005 (-0.074 - 0.083) 0.907 

rs12708492 -0.001 (-0.091 - 0.088) 0.974 0.004 (-0.073 - 0.081) 0.912 

rs4776344 -0.04 (-0.172 - 0.091) 0.547 -0.004 (-0.118 - 0.11) 0.945 

rs7162912 -0.008 (-0.103 - 0.088) 0.876 0.002 (-0.08 - 0.084) 0.962 

rs12102171 -0.005 (-0.123 - 0.112) 0.932 0.002 (-0.1 - 0.103) 0.976 

rs10518707 0.01 (-0.078 - 0.098) 0.819 -0.001 (-0.077 - 0.075) 0.981 

N: Number of individuals with genotyping data for each SNP, CI: Confidence Interval 

 



91 
 

Table 3.4- Univariate and multivariate linear regression for total osteophytes score and each SNP 

 Univariate Analysis Multivariate Analysis 

SNP Coefficient (95% CI) P-value Coefficient (95% CI) P-value 

rs3825977 0.143 (0.031 - 0.255) 0.012 0.106 (0.01 - 0.201) 0.03 

rs2118612 -0.119 (-0.235 - -0.003) 0.044 -0.089 (-0.188 - 0.01) 0.078 

rs6494629 -0.094 (-0.181 - -0.007) 0.034 -0.062 (-0.137 - 0.012) 0.100 

rs12914140 -0.103 (-0.28 - 0.074) 0.253 -0.101 (-0.252 - 0.049) 0.187 

rs16950687 0.048 (-0.049 - 0.144) 0.333 0.044 (-0.038 - 0.126) 0.296 

rs3809572 -0.046 (-0.18 - 0.088) 0.499 -0.058 (-0.172 - 0.056) 0.320 

rs11637581 0.023 (-0.071 - 0.116) 0.635 0.034 (-0.046 - 0.113) 0.405 

rs2053295 0.083 (-0.05 - 0.215) 0.222 0.047 (-0.066 - 0.161) 0.411 

rs2053294 0.076 (-0.058 - 0.209) 0.268 0.045 (-0.069 - 0.16) 0.435 

rs7359174 -0.1 (-0.24 - 0.039) 0.159 -0.047 (-0.166 - 0.072) 0.436 

rs11631839 0.042 (-0.046 - 0.129) 0.350 0.029 (-0.045 - 0.104) 0.442 

rs745103 -0.028 (-0.115 - 0.058) 0.520 -0.029 (-0.102 - 0.045) 0.444 

rs11637659 -0.024 (-0.138 - 0.09) 0.683 -0.033 (-0.13 - 0.064) 0.501 

rs12900401 -0.116 (-0.323 - 0.091) 0.270 -0.06 (-0.236 - 0.117) 0.507 

rs7183244 -0.038 (-0.126 - 0.051) 0.403 -0.022 (-0.097 - 0.053) 0.569 

rs12708492 0.018 (-0.072 - 0.108) 0.691 0.023 (-0.053 - 0.1) 0.549 

rs1470002 0.06 (-0.033 - 0.153) 0.208 0.021 (-0.058 - 0.101) 0.600 

rs2278545 -0.031 (-0.179 - 0.117) 0.679 -0.033 (-0.158 - 0.093) 0.612 

rs12901499 -0.014 (-0.102 - 0.075) 0.763 -0.021 (-0.097 - 0.054) 0.583 

rs2118610 0.015 (-0.073 - 0.103) 0.737 0.019 (-0.056 - 0.095) 0.619 
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rs6494633 0.013 (-0.075 - 0.101) 0.768 0.019 (-0.057 - 0.095) 0.621 

rs893473 -0.045 (-0.162 - 0.071) 0.446 -0.027 (-0.127 - 0.072) 0.589 

rs7181878 -0.04 (-0.127 - 0.048) 0.376 -0.017 (-0.092 - 0.058) 0.664 

rs718663 -0.004 (-0.21 - 0.202) 0.970 -0.035 (-0.21 - 0.14) 0.694 

rs12913547 0.086 (-0.025 - 0.197) 0.127 0.02 (-0.075 - 0.115) 0.677 

rs4601989 0.049 (-0.06 - 0.159) 0.374 0.02 (-0.073 - 0.113) 0.670 

rs920293 0.031 (-0.115 - 0.176) 0.678 0.026 (-0.099 - 0.15) 0.686 

rs10518707 -0.001 (-0.09 - 0.089) 0.986 -0.014 (-0.09 - 0.062) 0.724 

rs1992215 0.002 (-0.093 - 0.097) 0.970 -0.014 (-0.095 - 0.067) 0.737 

rs12102171 0.014 (-0.105 - 0.133) 0.822 0.017 (-0.084 - 0.118) 0.741 

rs11071939 -0.056 (-0.221 - 0.108) 0.500 -0.024 (-0.164 - 0.116) 0.736 

rs17293443 -0.002 (-0.107 - 0.103) 0.969 -0.013 (-0.102 - 0.076) 0.767 

rs744910 -0.009 (-0.099 - 0.08) 0.837 -0.012 (-0.088 - 0.064) 0.757 

rs2289263 0.036 (-0.049 - 0.121) 0.401 0.011 (-0.061 - 0.084) 0.759 

rs11071938 0.001 (-0.094 - 0.096) 0.991 -0.012 (-0.094 - 0.069) 0.768 

rs4147358 -0.023 (-0.132 - 0.086) 0.677 -0.01 (-0.103 - 0.082) 0.826 

rs731874 -0.034 (-0.125 - 0.057) 0.465 -0.007 (-0.085 - 0.071) 0.861 

rs7162912 -0.002 (-0.098 - 0.095) 0.972 0.007 (-0.075 - 0.09) 0.862 

rs4776344 -0.042 (-0.175 - 0.091) 0.537 -0.009 (-0.123 - 0.104) 0.874 

rs12915039 0.008 (-0.101 - 0.116) 0.891 0.006 (-0.087 - 0.099) 0.896 

rs11639295 0.029 (-0.069 - 0.126) 0.563 0.001 (-0.082 - 0.084) 0.988 

N: Number of individuals with genotyping data for each SNP, CI: Confidence Interval 
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Table 3.5- Univariate and multivariate linear regression for total JSN score and each SNP 

 Univariate Analysis Multivariable Analysis 

SNP Coefficient (95% CI) P-value Coefficient (95% CI) P-value 

rs3825977 0.222 (0.094 , 0.35) 0.001 0.187 (0.066 , 0.309) 0.003 

rs11637581 0.058 (-0.05 , 0.166) 0.292 0.068 (-0.033 , 0.17) 0.186 

rs12914140 -0.124 (-0.327 , 0.08) 0.233 -0.126 (-0.317 , 0.066) 0.199 

rs745103 -0.063 (-0.163 , 0.037) 0.215 -0.058 (-0.152 , 0.036) 0.227 

rs12900401 -0.148 (-0.387 , 0.092) 0.226 -0.136 (-0.361 , 0.09) 0.237 

rs2118612 -0.096 (-0.23 , 0.039) 0.163 -0.075 (-0.201 , 0.052) 0.246 

rs17293443 -0.052 (-0.172 , 0.068) 0.394 -0.063 (-0.176 , 0.05) 0.276 

rs4601989 0.084 (-0.042 , 0.21) 0.192 0.06 (-0.059 , 0.18) 0.319 

rs1470002 0.09 (-0.017 , 0.197) 0.100 0.051 (-0.05 , 0.153) 0.322 

rs7359174 -0.112 (-0.274 , 0.049) 0.172 -0.076 (-0.229 , 0.076) 0.326 

rs2118610 0.034 (-0.067 , 0.135) 0.505 0.041 (-0.055 , 0.138) 0.398 

rs6494633 0.032 (-0.07 , 0.133) 0.541 0.04 (-0.057 , 0.136) 0.420 

rs4147358 -0.061 (-0.187 , 0.064) 0.338 -0.048 (-0.167 , 0.071) 0.430 

rs12102171 -0.056 (-0.193 , 0.082) 0.426 -0.049 (-0.178 , 0.081) 0.460 

rs12708492 0.034 (-0.07 , 0.138) 0.516 0.035 (-0.063 , 0.133) 0.482 

rs731874 -0.059 (-0.165 , 0.046) 0.269 -0.036 (-0.136 , 0.065) 0.487 

rs7162912 0.022 (-0.09 , 0.134) 0.698 0.037 (-0.069 , 0.142) 0.497 

rs6494629 -0.047 (-0.148 , 0.053) 0.357 -0.029 (-0.125 , 0.066) 0.551 

rs718663 -0.043 (-0.282 , 0.195) 0.722 -0.067 (-0.291 , 0.157) 0.557 

rs2053295 0.055 (-0.098 , 0.209) 0.478 0.042 (-0.102 , 0.187) 0.566 
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rs11071939 -0.077 (-0.269 , 0.114) 0.426 -0.052 (-0.232 , 0.128) 0.568 

rs2278545 0.037 (-0.133 , 0.208) 0.667 0.036 (-0.125 , 0.196) 0.661 

rs2289263 0.044 (-0.053 , 0.142) 0.374 0.02 (-0.073 , 0.112) 0.677 

rs2053294 0.036 (-0.119 , 0.192) 0.644 0.027 (-0.119 , 0.174) 0.715 

rs12915039 0.031 (-0.094 , 0.156) 0.624 0.021 (-0.097 , 0.139) 0.726 

rs11637659 -0.013 (-0.145 , 0.119) 0.849 -0.02 (-0.144 , 0.105) 0.755 

rs16950687 0.023 (-0.089 , 0.134) 0.689 0.015 (-0.09 , 0.12) 0.779 

rs744910 -0.008 (-0.111 , 0.095) 0.879 -0.013 (-0.11 , 0.085) 0.798 

rs12913547 0.067 (-0.061 , 0.195) 0.307 0.015 (-0.106 , 0.136) 0.809 

rs4776344 -0.013 (-0.167 , 0.142) 0.873 0.016 (-0.13 , 0.162) 0.83 

rs11639295 0.034 (-0.079 , 0.147) 0.558 0.011 (-0.096 , 0.117) 0.843 

rs1992215 0.009 (-0.101 , 0.118) 0.875 -0.01 (-0.114 , 0.093) 0.846 

rs11071938 0.007 (-0.103 , 0.116) 0.905 -0.01 (-0.114 , 0.094) 0.850 

rs7181878 -0.018 (-0.119 , 0.083) 0.728 -0.003 (-0.099 , 0.093) 0.948 

rs893473 -0.014 (-0.149 , 0.121) 0.839 -0.004 (-0.131 , 0.123) 0.956 

rs11631839 0.009 (-0.092 , 0.11) 0.860 -0.002 (-0.097 , 0.093) 0.968 

rs7183244 -0.016 (-0.119 , 0.087) 0.758 0.002 (-0.096 , 0.099) 0.970 

rs920293 -0.004 (-0.172 , 0.164) 0.965 0.003 (-0.156 , 0.162) 0.971 

rs12901499 0 (-0.103 , 0.103) 0.998 -0.001 (-0.098 , 0.096) 0.977 

rs3809572 0.004 (-0.151 , 0.16) 0.958 0.001 (-0.145 , 0.148) 0.985 

rs10518707 0.006 (-0.098 , 0.109) 0.911 0.001 (-0.097 , 0.098) 0.988 

N: Number of individuals with genotyping data for each SNP, CI: Confidence Interval 
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Furthermore, I categorized the study participants into two groups: one with ≥5 joints affected 

(GOA) and one with <5 joints affected and examined the association of each group with each of 

the 41 SNPs. I found that the T allele of rs3825977 was significantly associated with a 1.47-fold 

increased risk of GOA (95% CI 1.02-2.1, Ppermutation= 0.046) after adjustment for age and BMI 

(Table 3.6). All results of the associations with each of the 41 SNPs are presented in Table 3.7.  
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Table 3.6- Association between GOA and rs3825977 

  Multivariable Analysis MAF  

Variables OR (95% CI) P-value Ppermutation Cases Controls 

rs3825977 (T vs. C allele) 1.47 (1.02 - 2.1) 0.037 0.046 0.23 0.17 

Age ( per year) 1.20 (1.16 - 1.25) <0.0001 - - - 

BMI (per kg/m
2
) 1.09 (1.04 - 1.15) <0.0001 - - - 

Logistic regression was used. MAF: Minor allele frequency, OR: Odds Ratio, CI: Confidence 

interval 

Table 3.7- Univariate and multivariate logistic regression for GOA and each SNP 

 Univariate Analysis Multivariable Analysis MAF 

SNP OR (95% CI) P-value OR (95% CI) P-value Controls GOA 

rs3825977 1.48 (1.08 - 2.03) 0.016 1.47 (1.02 - 2.1) 0.037 0.17 0.23 

rs12914140 0.62 (0.36 - 1.05) 0.076 0.53 (0.28 - 0.98) 0.044 0.08 0.05 

rs11637581 1.2 (0.93 - 1.57) 0.166 1.36 (1.00 - 1.84) 0.050 0.28 0.32 

rs745103 0.82 (0.64 - 1.05) 0.116 0.77 (0.58 - 1.02) 0.068 0.47 0.42 

rs2118612 0.71 (0.5 - 0.99) 0.044 0.71 (0.48 - 1.05) 0.087 0.20 0.15 

rs7359174 0.67 (0.44 - 1.01) 0.057 0.7 (0.44 - 1.14) 0.153 0.13 0.09 

rs3809572 0.86 (0.59 - 1.26) 0.438 0.75 (0.48 - 1.18) 0.212 0.13 0.11 

rs2278545 0.79 (0.51 - 1.2) 0.269 0.74 (0.45 - 1.2) 0.224 0.11 0.09 

rs893473 0.8 (0.57 - 1.12) 0.197 0.79 (0.53 - 1.18) 0.247 0.19 0.16 

rs2118610 1.1 (0.86 - 1.41) 0.451 1.18 (0.89 - 1.58) 0.250 0.48 0.51 

rs11071938 0.93 (0.71 - 1.21) 0.579 0.83 (0.61 - 1.14) 0.254 0.31 0.30 
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rs6494633 1.09 (0.85 - 1.4) 0.496 1.18 (0.88 - 1.57) 0.269 0.48 0.50 

rs11071939 1.14 (0.72 - 1.82) 0.568 1.34 (0.79 - 2.29) 0.279 0.07 0.08 

rs1992215 0.94 (0.72 - 1.23) 0.659 0.84 (0.62 - 1.15) 0.285 0.31 0.30 

rs6494629 0.8 (0.62 - 1.02) 0.075 0.86 (0.65 - 1.14) 0.300 0.51 0.45 

rs17293443 0.92 (0.69 - 1.24) 0.600 0.87 (0.62 - 1.23) 0.434 0.24 0.23 

rs7162912 0.91 (0.7 - 1.2) 0.521 0.9 (0.65 - 1.23) 0.492 0.37 0.35 

rs744910 0.93 (0.72 - 1.2) 0.590 0.91 (0.68 - 1.21) 0.502 0.49 0.47 

rs1470002 1.03 (0.8 - 1.34) 0.804 0.9 (0.66 - 1.22) 0.506 0.37 0.38 

rs731874 0.99 (0.77 - 1.29) 0.96 1.1 (0.82 - 1.48) 0.524 0.30 0.30 

rs12900401 0.76 (0.42 - 1.37) 0.358 0.8 (0.4 - 1.61) 0.536 0.06 0.04 

rs11637659 0.93 (0.67 - 1.29) 0.665 0.89 (0.62 - 1.29) 0.551 0.19 0.18 

rs2289263 1.02 (0.8 - 1.29) 0.893 0.92 (0.7 - 1.22) 0.573 0.47 0.48 

rs12901499 0.98 (0.76 - 1.25) 0.846 0.92 (0.69 - 1.23) 0.576 0.48 0.47 

rs11631839 1.11 (0.87 - 1.42) 0.414 1.07 (0.81 - 1.42) 0.629 0.46 0.49 

rs10518707 1 (0.78 - 1.28) 0.993 0.93 (0.7 - 1.25) 0.637 0.48 0.48 

rs718663 0.96 (0.53 - 1.74) 0.902 0.85 (0.43 - 1.69) 0.645 0.05 0.05 

rs920293 1.11 (0.74 - 1.67) 0.625 1.11 (0.69 - 1.78) 0.664 0.09 0.10 

rs4776344 0.95 (0.65 - 1.39) 0.806 1.07 (0.7 - 1.66) 0.749 0.13 0.13 

rs7183244 0.91 (0.71 - 1.17) 0.463 0.95 (0.72 - 1.27) 0.754 0.41 0.39 

rs2053294 1.14 (0.78 - 1.66) 0.503 1.06 (0.69 - 1.64) 0.794 0.12 0.13 

rs12102171 1.02 (0.73 - 1.43) 0.905 1.04 (0.71 - 1.53) 0.845 0.16 0.16 

rs11639295 1.11 (0.85 - 1.46) 0.447 1.03 (0.75 - 1.41) 0.851 0.29 0.31 

rs7181878 0.94 (0.73 - 1.2) 0.612 1.02 (0.77 - 1.36) 0.867 0.50 0.48 
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rs4601989 1.07 (0.79 - 1.46) 0.653 0.97 (0.69 - 1.38) 0.881 0.2 0.22 

rs4147358 0.95 (0.69 - 1.29) 0.733 0.98 (0.68 - 1.4) 0.895 0.21 0.2 

rs12915039 1.01 (0.75 - 1.38) 0.925 0.98 (0.69 - 1.4) 0.911 0.22 0.22 

rs16950687 1.03 (0.79 - 1.35) 0.827 1.02 (0.75 - 1.39) 0.911 0.28 0.28 

rs12708492 0.98 (0.76 - 1.27) 0.905 0.99 (0.74 - 1.33) 0.958 0.48 0.48 

rs12913547 1.19 (0.87 - 1.63) 0.266 0.99 (0.69 - 1.42) 0.965 0.19 0.22 

rs2053295 1.11 (0.76 - 1.61) 0.582 1.01 (0.66 - 1.55) 0.965 0.13 0.14 

OR: Odds Ratio, CI: Confidence Interval, MAF: Minor allele frequency 
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Discussion 

In the present study, I demonstrate a significant association of SNP rs3825977—located in the 

last intron of SMAD3—with the total burden of radiographic OA. This SNP is more strongly 

associated with total JSN score than with total KL score or osteophyte score, suggesting that the 

potential mechanism for the association is more likely through cartilage loss rather than 

osteophyte formation. The same SNP has previously been reported as associated with increased 

breast cancer risk for BRCA2 mutation carriers [230]. Although the possible effect of the SNP on 

SMAD3 function is still unclear, it is believed that the effects on both breast cancer and 

generalized OA susceptibility are mediated through the TGF-β signalling pathway [231]. 

None of the other SNPs in this study were found to be associated with OA. This might be 

explained by the LD pattern of the gene as shown in figure 3.1. Since none of the tested SNPs 

are in high LD with each other, it can be presumed that the mechanism of association for the 

specific SNP identified here is independent of the other potential associated SNPs within the 

gene.  

Data on the associations between the SMAD3 gene and GOA are limited and, to my knowledge, 

no genetic or genome-wide association study has been performed on GOA. A study by Yao et al. 

[232] was the first to report a connection between SMAD3 and OA. This paper described a 

missense mutation located in the linker region of the SMAD3 protein which resulted in an 

increased expression of matrix metalloproteinase (MMP) 2 and 9 in the serum of one OA 

mutation carrier compared to MMP expression in other OA patients and controls. Another study 

by A. Valdes and colleagues [233] reported the association of a variant in the SMAD3 gene with 

hip and knee OA. In that study, the frequency of the major (G) allele of rs12901499—located in 
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the first intron of SMAD3—was increased in patients undergoing hip or knee replacement as 

compared to controls. A recent study by Jiang Liying et al. [234] found this SNP was also 

associated with hand and knee OA in a northeast Chinese population. However, I did not observe 

a significant association with rs12901499, which is not in LD with rs3825977 (R
2
= 0.01). This 

may have resulted from the different methods used for the definition and classification of OA in 

this study and the previous studies which used either end-stage OA (requiring total joint 

replacement) or symptomatic OA, neither of which is necessarily concordant with radiographic 

OA [235]. Alternatively, one or both of these SNPs may be non-functional but rather in LD with 

causal variants in the gene that were not typed in these studies. It is possible that causal variants 

exist in the vicinity of rs3825977, and in fact, a query using HaploReg v4.1 database (BROAD 

institute, Cambridge, Massachusetts, US) found eight SNPs in the same region with an R
2
>0.8 

with rs3825977. Therefore, a ‏ fine mapping ‏approach using the sequence data will likely 

determine the possible causative variant with the ‏strongest association in the last intron of 

 The database also predicted that the SNP makes a transcription factor binding motif ‏.‏ SMAD3‏

change between AP-2 and EBF. The possible effect of this change on the gene regulation will 

have to be determined through functional studies. 

Cartilage homeostasis depends on a balance between the catabolic and anabolic activities of 

chondrocytes being controlled by numerous cytokines and growth factors. TGF-β‎is an important 

molecule that plays a critical role in the development, growth, maintenance and repair of 

articular cartilage by modifying the metabolism of the chondrocyte. Deregulation of TGF-β 

signalling and responses have been shown to be involved in OA [176]. The SMAD family 

proteins, including SMAD3, are important intracellular signals in the TGF-β pathway [219]. 

Another possible mechanism by which SMAD3 acts to maintain cartilage homeostasis is by 
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inducing the expression of type II collagen and repressing MMP-13. A recent study by Chen and 

colleagues [236] showed that SMAD3 (FL/FL) mice were severely deficient in both type II 

collagen and Aggrecan due to the proteolytic activity of MMP-13, which is usually down-

regulated by TGF-β signals mediated through SMAD3. 

There are some limitations in the study. All the participants were female, which limits the 

generalizability. Given its unknown function, it is not clear whether the associated SNP is causal. 

The SNP has to be tested in a replicating study to determine the reliability of this finding. The 

findings are merely obtained from radiographic data which does not necessarily represent the 

clinical presentations, and thus, the results may not be directly applicable to symptomatic OA. 

 

Conclusions 

I demonstrated that the SMAD3 gene was associated with the total burden of radiographic OA. 

As a marker, it has a potential in identifying those with increased risk of OA, thus permitting 

earlier joint-preserving intervention. It also has potential as a molecular target for developing 

new OA drugs. 
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Abstract 

Objectives: To compare the SMAD3 gene expression between human osteoarthritic and healthy 

cartilage and to examine whether the expression is regulated by the promoter DNA methylation 

of the gene. 

 

Methods: Human cartilage samples were collected from patients undergoing total hip/knee joint 

replacement surgery due to primary osteoarthritis (OA) or hip fractures as controls. DNA/RNA 

was extracted from the cartilage tissues. Real-Time Quantitative PCR was performed to measure 

gene expression, and Sequenom’s EpiTYPER was used to assay DNA methylation. Methylation 

and expression assays were used in the same population. Mann-Whitney U test was utilized to 

compare the methylation and expression levels between OA cases and controls. Spearman's rank 

correlation coefficient was calculated to examine the association between the methylation and 

gene expression.  

 

Results: A total of 58 OA patients (22 males, 36 females; mean age 64±9 years) and 55 controls 

(12 males, 43 females; mean age 79±10 years) were included in the study. SMAD3 was 

expressed on average 83% higher in OA cartilage than controls (p=0.0005). No difference was 

observed for the DNA methylation levels of the four CpG sites in the SMAD3 promoter region 

between OA cases and controls. No correlation was found between the SMAD3 expression and 

the promoter DNA methylation.  

 



104 
 

Conclusions: This study demonstrates that SMAD3 is significantly over-expressed in OA. This 

over-expression, however, cannot be explained by the DNA methylation in the promoter segment 

that was studied. The results suggest that TGF-β/SMAD3 pathway may be over activated in OA 

cartilage and has potential in developing targeted therapies for OA. 

 

Introduction 

Osteoarthritis (OA), affecting 250 million people worldwide, is the most common form of 

arthritis [237]. It presents with joint pain, stiffness, joint deformity, and disability [185], and 

imposes a high socio-economic burden on societies [238]. Despite the high prevalence and 

socioeconomic burden, the pathogenesis of OA remains elusive [239, 240]. The evidence is 

accumulating to suggest that “Similar to Mothers Against Decapentaplegic type 3 (SMAD3) 

gene” plays a role in the development of OA ]176]. 

SMAD3 is one of the important intracellular signal transducers of the transforming growth factor 

beta (TGF-β) signalling pathway, which is known to play a critical role in the development, 

homeostasis, and repair of the cartilage [241]. A lack of TGF-β/SMAD3 signalling activity is 

suggested to contribute to OA development. SMAD3 deficient chondrocytes exhibit a decreased 

TGF-β activity and an enhanced inappropriate terminal maturation ]242]. Mice overexpressing 

SMURF-2, an E3 ubiquitin ligase known to inhibit TGF-β signalling, spontaneously develop an 

OA-like phenotype and have decreased levels of SMAD3 phosphorylation [176]. Consistent with 

these findings is that the SMAD3 knocked-out mice develop a degenerative joint disease similar 

to human OA [221]. These mice are severely deficient in both type II collagen and Aggrecan as a 

result of an increased proteolytic activity of matrix metalloproteinase 13 [236]. Aligned with 
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this, a patient with knee OA was found to have a missense mutation in the linker region of the 

SMAD3 protein and an elevated serum level of matrix metalloproteinase (MMP-2 and MMP-9) 

[232].  

Eight missense point mutations in SMAD3 [179, 180] have been reported to be the cause of the 

Aneurysm-Osteoarthritis Syndrome, a rare syndromic disease characterized with early-onset 

polyarticular OA, aneurysms of the main arteries, and several connective tissue disorders. A 

single nucleotide polymorphism (SNP) mapping to the first intron of SMAD3 was reported to be 

involved in the risk of both hip and knee OA in European populations [233], and in a northeast 

Chinese population [234]. Recently, I found that an SNP located in the last intron of SMAD3 was 

significantly associated with the total burden of radiographic OA [243]. Given the location of 

this SNP in the gene, it is more likely that the effect of the SMAD3 on later-onset OA is 

regulatory. We, therefore, undertook this study to investigate whether gene expression of 

SMAD3 is different between OA-affected and healthy cartilage and whether the different 

expression is due to the promoter DNA methylation changes. 

 

Methods  

Subjects 

The study was part of the ongoing Newfoundland Osteoarthritis Study (NFOAS) that was 

initiated in 2011, aiming at identifying novel genetic, epigenetic, and biochemical markers for 

OA [244, 245]. OA patients were recruited from those who underwent total knee or hip joint 

replacement due to severe primary OA between November 2011 and December 2013 in St. 

Clare's Mercy Hospital and Health Science Centre General Hospital in St. John's, the capital city 
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of Newfoundland and Labrador (NL), Canada. Healthy controls were recruited in the same 

hospitals from those who underwent hemiarthroplasty of the hip due to hip fracture with no 

evidence of OA. OA diagnosis was made based on the American College of Rheumatology 

criteria [14, 48] and the judgement of the attending orthopaedic surgeons. The pathology report 

on the removed cartilage was reviewed for all subjects to ensure the accuracy of the diagnosis 

and the status of any cartilage degeneration in the controls. The consent rate of the study was 

90%. The study protocol was approved by the Health Research Ethics Authority (HREA) of 

Newfoundland and Labrador (HREA11.311), and written consent was obtained from all the 

participants.  

Demographics and anthropometrics 

Demographic information was obtained by a self-administered questionnaire with the help of the 

research staff if necessary. Anthropometric data including height and weight was retrieved from 

their hospital admission charts and medical records, and body mass index (BMI) was calculated 

by dividing weight in kilograms by squared height in meters. Age was calculated at the time of 

the surgery. 

DNA/RNA isolation 

Four pieces (~200mg each) of cartilage tissues were retained from either tibial plateau or femoral 

heads during the surgery. The samples were then flash-frozen and stored in liquid nitrogen until 

the experiment. DNA and RNA were extracted from the same piece of the cartilage tissue to 

avoid sampling bias. Up to 200mg frozen cartilage tissue was transferred to the homogenizing 

cylinder together with 1 ml TRIzole lysis reagent and 200μl guanidine thiocyanate and 

homogenized using a cryogenic mill (Spex Freezer Mill, model 6770, Metuchen, New Jersey, 
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USA) with the following parameters: two cycles of 2 minutes grinding at maximum frequency 

with 10 minutes cooling down between grinding cycles. The homogenate was then transferred to 

a new 2ml RNase-free tube and incubated for 5 min at room temperature. Then, 200μl 

chloroform was added, and the mix was vortexed vigorously, before being incubated for 2-3 min, 

followed by centrifugation at 12,000xg at -4°C for 15 min. Following centrifugation, the sample 

separated into 3 phases: the aqueous phase containing RNA, the interphase, and the organic 

phase containing DNA. RNeasy Lipid Tissue Mini Kit (Qiagen, Venlo, the Netherlands) was 

then used for extracting total RNA from the aqueous phase according to the manufacturers’ 

protocol. The DNA was extracted using Phenol-Chloroform method from the interphase and 

organic phase. 

SMAD3 expression measurement 

Complementary DNA (cDNA) synthesis from the extracted RNA was done using Maxima H 

Minus First Strand cDNA Synthesis Kit (K1682, Vilnius, Lithuania). One hundred ng of RNA 

from each sample primed with 0.5 µl of random primer was denatured at 65°C for 5 minutes and 

chilled on ice before addition of a reverse-transcription solution containing 2µl of 5x buffer, 0.5 

µl Ribolock, 1 µl of 10mM dNTPs mix (Invitrogen, California, USA), and 0.5µl Maxima 

polymerase in a final volume of 20µl. The cDNA-synthesis reaction was performed at 42 °C for 

60 minutes and followed by 5 minutes at 70°C. One µl of the converted cDNA was subject to 

quality control by PCR amplification of the SMAD3 and GAPDH genes followed by agarose gel 

electrophoresis. 

Expression quantification of SMAD3 was performed using ABI 7900HT Fast Real-Time PCR 

System on 96-well plate. GAPDH was used as an internal reference gene to normalize the 
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relative quantification of the targeted gene - SMAD3. GAPDH and SMAD3 amplification primers 

were designed using NCBI primer-blast tool for the shortest isoforms of the genes, and the 

sequences were blasted in NCBI BLAST tool to ensure 100% coverage of all of the isoforms as 

well as minor similarly to other genomic sequences. Primers were validated using a 4-point 

dilution series of two random cDNA samples. The primer efficiencies were found to be within 

the acceptable range, i.e. 106% and 110% for GAPDH and SMAD3, respectively. Table 4.1 

presents the primer sequences used and the size of PCR products. qPCR was then performed in 

triplicate using 5µl of cDNA, 10µl SYBR Green (Power SYBR® Green PCR Master Mix, 

Applied Biosystems, 4367659), and 0.4µl of forward and reverse primers in a final volume of 20 

µl. Cycling conditions were: 95˚C for 10 min, 95˚C for 15 sec, and 60˚C for 1 min, repeated for 

45 cycles, followed by melt-curve analysis. One of the control samples was selected as calibrator 

and the relative quantification (RQ) of SMAD3 expression in each sample was calculated as fold 

changes in relation to the calibrator using the Livak method [246] The average of the calculated 

RQ values in every group was used as fold change in the expression levels between the 

comparison groups.  

SMAD3 promoter methylation assay 

Bisulfite conversion of DNA was conducted using the EpiTect Bisulfite Kit (Qiagen, Venlo, the 

Netherlands). Briefly, 50 ng of genomic DNA in 2 µl water was mixed with 38 µl RNase-free 

water, 85 µl Bisulfate Mix, and 15 µl DNA protect water in a final volume of 140 µl. The 

conversion reaction and DNA clean-up were conducted according to the manufacturer’s 

instructions. 
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SMAD3 promoter DNA methylation was quantified using the Sequenom EpiTYPER platform 

[247]. Primers for the target region were designed using EpiDesigner (www.epidesigner.com, 

Sequenom) and the PCR target sequence was tested with program RSeqMeth implemented in R. 

Table 4.1 presents the primer details. The converted DNA was subject to PCR amplification, 

SAP (shrimp alkaline phosphatase) treatment, in vitro RNA transcription, base specific cleavage 

(MassCleave sites in figure 4.5), and analysis on mass spectrometer according to the 

manufacturer’s protocol. The generated mass signals were translated into quantitative DNA-

methylation levels (beta-values ranging 0-1) by MassARRAY EpiTYPER Analyzer software. On 

every bisulphite plate, standard DNA samples with 0%, 50%, 100% methylations were included 

as controls for the technical steps of the experiment. 

 Statistics 

Descriptive statistics were summarized using either mean or percentage and comparisons 

between OA cases and controls were performed using the student’s T-test or chi-squared test 

wherever appropriate. Non-parametric Mann-Whitney U test was utilized to compare the gene 

expression and methylation levels between OA cases and controls and a non-parametric 

regression model was used to adjust for potential confounders. Spearman's rank correlation 

coefficient (rho) was calculated to examine the relationship between the promoter DNA 

methylation and gene expression. All the statistical analysis was conducted using STATA/SE 

11.2 (Stata Corp, College Station, Texas, USA). The significance level was defined as α level of 

0.05. 
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Table 4.1- Primers used in qPCR and EpiTyper experiments  

 Primer sequence (5’>3’) Product 

size 

SMAD3 reverse primer 

- qPCR 

GGCTCGCAGTAGGTAACTGG 91 bp 

SMAD3 forward 

primer - qPCR 

GCATGGACGCAGGTTCTCC 

GAPDH reverse 

primer - qPCR 

TCGCCCCACTTGATTTTGG 106 bp 

GAPDH forward 

primer - qPCR 
GCAAATTCCATGGCACCGT 

SMAD3 reverse primer 

- EpiTyper CAGTAATACGACTCACTATAGGGAGAAGGCTTCCAACCATTAAAAAATAACCAAAA 

208 bp 

 

 

 

SMAD3 forward 

primer - EpiTyper AGGAAGAGAGAAAGGATTTGAATTATAGGAGGATAG 
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Results 

A total of 113 study participants were included in the study, 58 (11 knee OA and 47 hip OA) of 

whom were categorized as OA cases and 55 as healthy controls (hip fracture patients). Overall, 

69% of the participants were female, and 31% were male. Controls were on average 15 years 

older than OA cases (p<0.0001) and had a lower BMI than OA cases   (p<0.0001).  Table 4.2 

presents the characteristics of the study population. Pathological examination of the joint 

cartilage confirmed all the OA cases. It also confirmed that 21 controls had healthy cartilage, but 

the other 34 controls had age-related minor degenerative changes. The gene expression 

experiment was performed on 38 patients with OA (32 hips and 6 knees) and 28 healthy controls, 

and the methylation analysis was conducted for 49 patients with OA (38 hips and 11 knees) and 

51 controls. Since 52 subjects had data on both methylation and expression, they were included 

in the methylation-expression correlation analysis. 
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Table 4.2- Characteristics of the study population 

 Cases (n=58) Controls (n=55) P-value 

Age (yrs.) 64.2 ± 10.2 79.3 ± 9.4 <0.0001 

BMI (kg/m2) 31.7 ± 0.9 23.5 ± 0.8 <0.0001 

Sex (females; %) 62% 78% 0.06 

Values are expressed as mean ± standard deviation unless indicated otherwise. 
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SMAD3 expression in cartilage 

I first examined the SMAD3 expression between the controls with intact healthy cartilage, and 

those with minor age-related degeneration and found no difference among the two groups. The 

average RQ values were 1.25 ± 1.05 and 1.35 ± 0.69 for the two groups (p= 0.37), respectively. 

We, therefore, combined these two groups together and used them as controls in the subsequent 

analyses.  

The mean RQ values of the SMAD3 were 2.37 ± 1.30 in OA cartilage and 1.30 ± 0.89 for 

controls. This represents 83% increased expression of SMAD3 in OA cartilage compared to 

controls (p=0.0005) (Figure 4.1). Similar results were observed when analyses were done 

separately for knee and hip OA (72% increase for knee OA, p= 0.01; 84% increase for hip OA, 

p= 0.001), but no difference was found between knee OA and hip OA (p= 1.00) (Figure 4.2). 
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Figure 4.1- Relative quantification of SMAD3 expression in human cartilage between OA cases 

and controls 

 
Mann-Whitney U test was used for the comparisons. 

 

Figure 4.2- SMAD3 expression between different joints and genders 

 
Mann-Whitney U test was used for the comparisons. 
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I found that SMAD3 expression was not associated with age and BMI in either OA or healthy 

cartilage (all p>0.07). However, I found that females tended to have a lower expression than 

males, but only significant in OA cartilage (p=0.05) (Figures 4.2 - 4.4). The significant 

difference in the SMAD3 expression between OA cases and controls remained after adjustment 

for sex using non-parametric regression (p=0.001). 
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Figure 4.3- SMAD3 expression by age among cases and controls 

 

Spearman's rank correlation  coefficient was used.‏ 

 

 

 

 

 

 

 

 

 

 



117 
 

Figure 4.4- SMAD3 expression by BMI among cases and controls 

 

Spearman's rank correlation  coefficient was used.  
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DNA methylation in the SMAD3 promoter region 

The upstream 600bp sequence of the first exon of the longest isoform of SMAD3 (Figure 4.5) 

was retrieved from the Ensemble genome browser (ENST00000327367) and copied into the 

EpiDesigner [247], from which a 208bp region was identified as optimal for the experiment 

design, containing the largest number of detectable CpG sites. The identified sequence was 

subsequently blasted in UCSC blast and confirmed to be part of the active promoter. It contained 

5 CpG sites, 4 of which were successfully assayed by the EpiTyper [247]. These four sites are 

located 413bp, 442bp, 455bp, and 475bp upstream of the first exon of SMAD3, respectively 

(Figure 4.5). The methylation levels at these four CpG sites were similar between OA cases and 

controls (Figure 4.6) (all p>0.05). The same results were observed when the analyses were done 

for knee OA and hip OA, respectively (p>0.05). I also calculated the Spearman’s rank 

correlation coefficients between each CpG site and the SMAD3 expression and found no 

correlations (Table 4.3, Figure 4.7) (all p>0.05). 
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Figure 4.5- Location of the four CpG sites in the promoter region of SMAD3 

 

 

 

 

 

 

 

 

 

 

 

The DNA segment within the 600bp region (red arrow) upstream of the first exon of SMAD3 was the targeted region for the 

methylation assay using EpiTyper. A 208bp segment within the region (lower horizontal line) containing 5 CpG sites was amplified, 

of which 4 CpG sites were successfully assayed by the EpiTyper (red dots) and one was not analyzed (gray dot). The breaks represent 

the fragmentation in MassCLEAVE reaction sites. Locations of the CpG sites on Ensembl-Havana GENCODE gene set (release 22): 

CpG1: chr15:67,062,688; CpG2: chr15:67,062,708; CpG4: chr15:67,062,721; CpG5: chr15:67,062,750  
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Table 4.3- Spearman correlation coefficient between methylation levels and gene expression 

 CpG 1 CpG 2 CpG 4 CpG 5 

Controls (n=22) -0.14 -0.31 0.18 -0.06 

OA (n=30) 0.04 -0.20 0.11 -0.01 

Combined (n=52) 0.12 -0.02 0.16 0.01 

P-value for all tests >0.05  

Figure 4.6- Methylation levels of the four CpG sites in the SMAD3 promoter in OA cases and 

healthy controls 

 

None of the comparisons was significant (all p>0.05). Mann-Whitney U test was used for the 

comparisons. 
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Figure 4.7- SMAD3 gene expression by methylation of the four CpG sites 

 

Spearman's rank correlation  coefficient was used. 
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Discussion 

To the best of my knowledge, this is the first study investigating SMAD3 gene expression and its 

promoter DNA methylation in human osteoarthritic and healthy cartilage tissues. I found that 

SMAD3 was significantly overexpressed in the osteoarthritic cartilage compared to the healthy 

cartilage. The over-expression is independent of the DNA methylation in the SMAD3 promoter 

region and appears not to be joint specific. 

SMAD3 is one of the intracellular mediators of TGF-β signalling pathway, which is involved in 

diverse cellular processes including proliferation, differentiation, migration and apoptosis, as 

well as extracellular matrix (ECM) synthesis and degradation [248, 249]. Its activity is essential 

to the maintenance of the cartilage [250]. The signalling suppresses the catabolic effects of IL-1 

and TNF-α on cartilage degradation and prevents the degradation of ECM molecules through 

enhancing the production of protease inhibitors, such as tissue inhibitors of metalloproteinase 

(TIMP) [251]. Decreased phosphorylation of SMAD3 was previously observed during the OA 

progression of murine models of OA [252, 253], and it was also shown that SMAD3 knocked out 

mice develop OA-like features [221]. These observations indicate that a lack of TGF-

β/SMAD2/3 signalling activity is involved in the development of OA, particularly early onset 

OA [221]. Thus, it was expected that SMAD3 expression is lowered in OA cartilage. In the 

current study, however, I observed that SMAD3 was significantly over-expressed in OA 

cartilage.  

The observed paradox can be interpreted in lines of two possible mechanisms happening during 

OA development. First, the over activity of TGF-β pathway could be indicative of an attempt in 

the cartilage to repair the damage occurred during the process of OA development. OA initiation 
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is thought to be caused by an attempt in the cartilage to repair an initial cartilage injury [254, 

255]. The response results in overproduction and accumulation of collagen and proteoglycans, 

leading to cartilage swelling and breakage, subchondral bone cavity formation and osteophytes 

growth, and finally the involvement of the whole joint and OA presentation [254, 255].  

The second possible explanation could be related to the hypothesis that only a narrow range of 

bioactive TGF-β levels can maintain cartilage health, and any concentrations below or above this 

range may lead to aberrant alterations in TGF-β pathways, resulting in abnormal cartilage 

function [256]. In line with this hypothesis, multiple intra-articular injections of TGF-β in mice 

joint led to changes in articular cartilage with a strong resemblance to both experimental and 

spontaneous mice OA [178]. Enhanced expression of TGFβ1 and TGFβ3 was detected in 

developing osteophytes and articular cartilage during murine experimental osteoarthritis, and the 

inhibition of endogenous TGF-β  prevented osteophyte formation [252]. Increased activity of 

TGF-β was also observed in other joint tissues. High concentration of active TGF-β1 in the mice 

subchondral bone was reported to initiate osteoarthritic changes in the bone and cartilage [257]. 

Induced expression of TGFβ1 from the synovial lining layers resulted in OA-like changes in the 

murine knee joint including hyperplasia of synovium and chondro-osteophyte formation  [258]. 

Increased activity of TGF-β can also enhance the expression of cartilage degradative enzymes 

such as matrix metallopeptidase 13 (MMP13). A study showed that TGF-β can up-regulate the 

levels of MMP13 in normal cartilage in vitro and mimic the in situ distribution of the increased 

MMP13 in both OA and rheumatoid arthritis affected cartilage [259]. This phenomenon has also 

been observed in other tissues. Activation of TGF-β /SMAD3 pathway enhances MMP13 

expression in squamous carcinoma cells [260], breast cancer cells [261], human gingival 
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fibroblasts [262], and osteoblastic cells [263]. These results favor this hypothesis, but require 

further studies to investigate SMAD3 and MMP13 simultaneously in human joint tissues.  

It is not clear yet what causes an increased SMAD3 expression in OA cartilage. DNA 

methylation is thought to regulate gene expression. I examined the correlation between a portion 

of the promoter DNA methylation and SMAD3 expression but found no correlation. A recent 

study by Raine et al. [264] examined whether the expression of SMAD3 in OA cartilage was 

correlated with rs12901499, an SNP reported to be associated with OA [233]. They found no 

correlation between this SNP and SMAD3 expression in OA cartilage but identified another SNP, 

rs8031440, located at 3’UTR, to be associated with the expression of SMAD3. The SNP was 

weakly associated with OA. The study also found that SMAD3 expression in knee OA cartilage 

was different from hip OA cartilage, which is in contrast to what I found in the current study. 

The reason for this discrepancy is not clear. It may have resulted from the differences in the 

cohort characteristics such as age and sex between this study and theirs. The study by Raine et 

al. [264] did not include healthy control cartilage, making the interpretation of their results 

difficult. 

It should also be considered that potential confounders may bias the results since a previous 

study reported that females had lower SMAD3 expression than males [265]. Consistently, I also 

found that females had lower expression of SMAD3 in cartilage than males. However, the 

significant difference in SMAD3 expression between OA-affected cartilage and controls was not 

altered after adjustment for sex, indicating sex can not explain the observed association. I also 

examined the effects of age and BMI on SMAD3 expression and found there was no significant 

association. However, there was a trend of decrease in SMAD3 expression with increasing age in 

OA cases only and an increase with BMI in both OA cases and controls (Figure 4.3). It is 
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possible that this trend might become significant with a larger sample size. Further studies with a 

large sample size are needed to rule out the confounding effects of age and BMI on the observed 

association.  

The strength of the current study is the use of human cartilage rather than animal models or 

cultured cells, thus having a direct application to OA patients. I extracted DNA and RNA from 

the same sample and minimized the bias in examining the correlation between DNA methylation 

and gene expression due to differential sampling. However, I only measured mRNA expression 

level, which may not reflect the corresponding protein levels as well as their phosphorylated 

SMAD3 isoforms. This is particularly of importance since the function of the SMAD3 protein 

depends on not only its expression levels but also its phosphorylation status. In addition, it is 

notable that the small sample size was small, and a chance of false-positive findings should be 

considered in this regards. Further, only four CpG sites in the SMAD3 promoter were 

investigated, and I cannot rule out the association with DNA methylation at other CpG sites in 

the gene. Also, DNA methylation levels are known to be dynamic in cells, and change on a 

timely basis and thus the levels in this study may represent the situation and the time the samples 

were obtained. However, I assume that the same situation applies to both cases and the controls 

in this study, and the main differences that I am observing in this study are because of the 

differences in the disease status of the subjects, not the constitutional variability of DNA 

methylation. I captured the promoter region of the longest isoform of the SMAD3 gene while 

there are several different isoforms of the gene and possibly multiple promoters, and I may have 

missed the isoform-specific CpG sites. Obtaining cartilage tissue samples from healthy 

individuals is near impossible ethically, and I used cartilage samples from hip fracture patients as 

controls, which may not  necessarily represent true healthy cartilage. However, I examined the 
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pathology reports and confirmed the healthy status of those control cartilage samples. OA 

patients were all at end-stage of the disease. Thus, the findings may not be related to OA 

initiation and progression. Lastly, I only studied cartilage tissue, limiting the generalizability of 

the findings to other joint tissues.  

In conclusion, I demonstrated that SMAD3 was over-expressed in osteoarthritic cartilage 

independent of the promoter DNA methylation, suggesting TGF-β/SMAD3 pathway may be 

over activated in OA cartilage, which may have a potential for developing targeted therapies for 

OA.  
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Abstract   

Introduction: In vitro and animal model of osteoarthritis (OA) studies suggest that TGF-β 

signalling is involved in OA, but human data is limited. I undertook this study to elucidate the 

role of TGF-β signalling pathway in OA by comparing the expression levels of TGFB1 and 

BMP2 as ligands, SMAD3 as an intracellular mediator, and MMP13 as a targeted gene between 

human osteoarthritic and healthy cartilage. 

 

Methods: Human cartilage samples were collected from patients undergoing total hip/knee joint 

replacement surgery due to primary OA or hip fractures as controls. RNA was extracted from the 

cartilage tissues. Real-time quantitative PCR was performed to measure gene expression. Mann-

Whitney U test was utilized to compare the expression levels of TGFB1, BMP2, SMAD3 and 

MMP13 in the human cartilage between OA cases and controls. Spearman's rank correlation 

coefficient (rho) was calculated to examine the relationship between the expression levels of the 

four genes studied, and non-parametric regression was used to adjust for age, sex, and BMI.  

 

Results: A total of 32 OA cases (25 hip OA and 7 knee OA) and 21 healthy controls were 

included. The expression of TGFB1, SMAD3, and MMP13 were on average 70%, 46%, and 

355% higher, whereas the expression of BMP2 was 88% lower, in OA-affected cartilage than 

that of controls (all p<0.03), respectively, but no difference was observed between hip and knee 

OA (all p>0.4). The expression of TGFB1 was correlated with the expression of SMAD3 

(rho=0.50, p=0.003) and MMP13 (rho=0.46 p=0.007) in OA-affected cartilage and the 

significance remained after adjustment for age, sex, and BMI. The expression of BMP2 was 
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negatively correlated with both TGFB1 (rho=-0.50, p=0.02) and MMP13 (rho=-0.48, p= 0.02) in 

healthy cartilage, but the significance was altered after adjustment for the covariates. There was 

no correlation between the expression of SMAD3 and MMP13.  

 

Conclusions: These results demonstrate that MMP13 expression is associated with an increased 

expression of TGFB1 in OA-affected cartilage, possibly through SMAD-independent TGF-β 

pathway. Furthermore, TGF-β/SMAD3 is over-activated in OA cartilage; yet, the consequence of 

this over-activation remains to be established.  

 

Introduction 

Osteoarthritis (OA), the most common rheumatic condition, is primarily a disease of articular 

cartilage and subchondral bone [1]. It presents with joint pain, stiffness, deformity, and joint 

failure at advanced stage [185], and imposes a high socio-economic burden on society [266]. 

Although the pathogenesis of OA remains elusive, mounting evidence suggests that transforming 

growth factor β (TGF-β) signalling plays a role in the development of OA [172]. 

TGF-β signalling is involved in diverse cellular processes including proliferation, differentiation, 

migration, and apoptosis, as well as extracellular matrix (ECM) synthesis and degradation [249]. 

It plays a critical role in the development, homeostasis, and repair of the cartilage [172]. 

Population-based association studies have identified genetic variants in different components of 

TGF-β signalling to be associated with OA. A single nucleotide polymorphism (SNP; T29>C) in 

the transforming growth factor beta 1 (TGFB1) gene was reported to be associated with the 
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incidence of spinal osteophyte formation in a Japanese population [267]. SNPs rs2278422, and 

rs8179181, located in the 6th intron of TGFB1, have been associated with knee and hip OA 

susceptibility in a British Caucasian population [206]. Camurati–Engelmann disease (CED), 

which presents with long bone osteosclerosis, is caused by mutations in TGFB1, which lead to 

elevated TGF-β1 activity [181].  

The Asporin gene (ASPN) has been shown to inhibit TGF-β signalling-mediated syntheses of 

cartilage-specific  extracellular matrix components, such as type II collagen (COL2A1) and 

Aggrecan (AGC1) in chondrocytes [268]. The Aspartic acid (D) repeat polymorphism in ASPN 

has been associated with OA in Asian populations [268, 269] .When compared to common ASPN 

D-13 allele, the D-14 allele was found to be overrepresented in knee and hip OA patients, 

relative to healthy controls [268], resulting in greater inhibitory effects on TGF-β induced 

expression of AGC1 and COL2A1 [270]. Additionally, the ASPN variant, rs13301537,  was 

recently reported to contribute to knee OA risk in the Chinese Han population [271].  

Apart from TGFB1, other components of the TGF-β  signalling pathways have also reported 

being associated with OA. Growth differentiation factor 5 (GDF5), a member of the TGF-β 

superfamily, has been associated with OA in Asian and European populations [147, 272]. The 

risk allele (T) in SNP rs143383 (T/C), located in the promoter of GDF5, was found to confer 

lower GDF5 transcription activity both in vitro and in human cartilage [147, 149]. The SNP is 

located in the promoter of the gene, and its risk allele is shown to be associated with a reduced 

expression of the gene [140, 142]. Polymorphisms in the GDF5 gene have also been associated 

with other skeletal disorders such as congenital hip dysplasia, Hunter-Thompson-type acro 

mesomelic dysplasia, type C brachydactyly, and Grebe-type chondrodysplasia [172, 273]. 



131 
 

In an attempt to replicate OA associated loci in the Newfoundland and Labrador population, I 

previously reported an association between SNP rs1049007 located in the bone morphogenetic 

protein 2 (BMP2) gene and OA [274]. BMP2 is also a member of the TGF-β superfamily. Given 

the SNP is a synonymous polymorphism, what the relationship between the SNP and OA 

remains to be discovered. Mutations in Mothers Against Decapentaplegic Homolog 3 (SMAD3), 

one of the intracellular mediators of TGF-β signalling, are known to cause the Aneurysm-

Osteoarthritis Syndrome, presenting with early-onset polyarticular OA [179]. In my previous 

study, I found an SNP in the last intron of SMAD3 to be associated  with the total burden of 

radiographic OA [243], although the exact mechanism for the association needs to be 

established. 

However, most of these studies focused on a single gene at a time. Given that those genetic 

variants are not functional, how these genes exert their effect on OA remain to be investigated. 

We, therefore, undertook the current study to elucidate the role of TGF-β signalling pathway in 

OA by simultaneously examining the expression levels and pair-wise correlations of four genes 

including TGFB1 and BMP2 as ligands, SMAD3 as an intracellular mediator, and matrix 

metallopeptidase 13 (MMP13) as a targeted gene in human cartilage tissues obtained from OA 

patients and healthy controls.  

 

Methods  

Subjects 

The study was part of the ongoing Newfoundland Osteoarthritis Study (NFOAS) that was 

initiated in 2011, aiming at identifying novel genetic, epigenetic, and biochemical markers for 
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OA [245]. OA patients were recruited from those who underwent total knee or hip joint 

replacement due to primary OA between November 2011 and December 2013 in St. Clare's 

Mercy Hospital and Health Science Centre General Hospital in St. John's, the capital city of 

Newfoundland and Labrador (NL), Canada. Healthy controls were recruited from the same 

hospitals from those who underwent hemiarthroplasty of the hip due to fractures of the femoral 

neck but did not have evidence of hip OA based on their hip X-ray data which were further 

confirmed by pathological examination on the removed femoral head cartilage. OA diagnosis 

was made based on the American College of Rheumatology criteria [14, 48], and the judgement 

of the attending orthopaedic surgeons. The pathology reports on the removed cartilage were 

reviewed for all subjects to ensure the accuracy of the diagnosis and the status of any cartilage 

degeneration in the controls. The study was approved by the Health Research Ethics Authority 

(HREA) of Newfoundland and Labrador (HREA11.311), and written consent was obtained from 

all study participants. The consent rate was 90%. 

 

Demographics and anthropometrics 

Demographic information was obtained by a self-administered questionnaire with the help of the 

research staff, if necessary. Anthropometric data including height and weight was retrieved from 

their hospital admission and medical records and body mass index (BMI) was calculated by 

dividing weight in kilograms by squared height in meters. Age was calculated at the time of the 

surgery. 
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RNA isolation 

Four pieces (~200mg each) of cartilage tissues were retained from either the tibial plateau or 

femoral heads during the surgery. The samples were then flash-frozen and stored in liquid 

nitrogen until the experiment. Up to 200mg frozen cartilage tissue was transferred to the 

homogenizing cylinder with 1 ml TRIzol lysis reagent and 200μl guanidine thiocyanate and 

homogenized using a cryogenic mill (Spex Freezer Mill, model 6770, Metuchen, NJ, USA) with 

the following parameters: two cycles of 2 minutes grinding at maximum frequency with 10 

minutes cooling down between grinding cycles. The homogenate was then transferred to a new 

2ml RNase-free tube and incubated for 5 min at room temperature. RNeasy Lipid Tissue Mini 

Kit (Qiagen, Venlo, Netherlands) was used for extracting total RNA from the aqueous phase as 

per the manufacturers’ protocol. 

 

Gene expression measurement 

Gene expression experiment was conducted as described in Chapter 4. The same primer set was 

used for SMAD3. Primers for TGFB1, MMP13, and BMP2 are shown in Table 5.1.  
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Table 5.1- Primers used in qPCR experiments 

 Primer sequence (5’>3’) Product 

size 

SMAD3 reverse primer  GGCTCGCAGTAGGTAACTGG 91 bp 

SMAD3 forward primer  GCATGGACGCAGGTTCTCC 

TGFB1 reverse primer CTCAATTTCCCCTCCACGGC 114 bp 

TGFB1 forward primer TCCTGGCGATACCTCAGCAA 

MMP13 reverse primer  AGGTAGCGCTCTGCAAACTGG 

92 bp 
MMP13 forward primer  AGCTGGACTCATTGTCGGGC 

BMP2 reverse primer  CTTGCGCCAGGTCCTTTGAC 111bp 

BMP2 forward primer  CCACCATGGTCGACCTTTAGGA 

GAPDH reverse primer  TCGCCCCACTTGATTTTGG 106 bp 

GAPDH forward primer  GCAAATTCCATGGCACCGT 
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Statistics 

Descriptive statistics were summarized using either mean or percentage and comparisons 

between OA cases and controls were performed using Student’s t-test or Chi-square test 

wherever appropriate. Mann-Whitney U test was utilized to compare gene expression levels 

between OA cases and controls. Spearman's rank correlation coefficient (rho) was calculated to 

examine the relationship between the expression levels of the four genes studied, and a non-

parametric regression model was used to adjust for potential confounding factors including age, 

sex, and BMI. The association between each of the genes studied and the covariates including 

age, sex, and BMI was also examined. All the statistical analysis was conducted using 

STATA/SE 11.2 (Stata Corp, College Station, Texas, USA). The significance level was defined 

as at α level of 0.05 [275].  

 

Results 

A total of 53 study participants were included in the study: 32 (7 knee OA and 25 hip OA) OA 

cases and 21 healthy controls. This cohort combination is different from the one used in Chapter 

4. All of them were Caucasians. 70% of the study participants were females, and 30% were 

males. Controls were on average 12 years older than OA cases (p=0.0002) and had a lower BMI 

than OA cases  (p<0.0001).  Table 5.2 presents the characteristics of the study population.  
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Table 5.2- Characteristics of the study population 

 Controls (n=21) OA (n=32) P 

Age (yrs) 76.45 ± 10.93 64.30 ± 10.43 0.0002 

BMI (kg/m
2
) 23.79  ±  1.03 32.25  ±  1.35 <0.0001 

Sex (% females) 76 66 0.4 

Values are expressed as mean ± standard deviation unless indicated otherwise. 
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Gene expression differences between OA and controls 

Pathological reports on the cartilage confirmed the status of all the OA cases. It also found that 

14 controls had healthy intact cartilage, but 7 other controls had age-related minor degenerative 

changes in their cartilage. I, therefore, compared the differences in the expression of the four 

genes between the healthy intact cartilage samples and those with age-related minor degenerative 

changes in the controls. I found that there was no difference (all p>0.2; Table 5.3). Then, I 

compared the expression of the four genes between hip and knee OA cases; again, I found no 

difference (all p>0.13; Table 5.3). Consequently, I combined hip OA and knee OA together and 

compared them with the data from all 21 controls.  
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Table 5.3- Gene expression comparison between hip vs. knee OA, and intact healthy cartilage vs. 

cartilage with minor degeneration in controls 

Gene Hip OA 

(n=7) 

Knee OA 

(n=25) 

P Healthy controls 

(n=14) 

Controls with minor 

degeneration (n=7) 

P 

TGFB1 6.40 ± 2.16 5.71 ± 2.51 0.42 3.35 ± 1.74 4.36 ± 1.89 0.20 

SMAD3 2.55 ± 1.59 2.62 ± 0.76 0.56 1.84 ± 1.46 1.60 ± 1.14 1.00 

MMP13 1.74 ± 2.21 0.90 ± 0.74 0.53 0.31 ± 0.53 0.41 ± 0.80 0.82 

BMP2 0.15 ± 0.02 0.08 ± 0.01 0.13 1.17 ± 0.31 1.23 ± 0.46 0.65 

Figures are RQ mean ± standard deviation 
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I found that all four genes were expressed in OA-affected and healthy cartilage. The expression 

of TGFB1, SMAD3 and MMP13 was on average 70%, 46%, and 355% higher, whereas the 

expression of BMP2 was 88% lower, in OA-affected cartilage than that in controls (all p<0.03), 

respectively (Figure 5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 



140 
 

Figure 5.1- Comparison of the expression levels of BMP2, TGFB1, SMAD3, and MMP13 

in  human cartilage between OA cases and controls 
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The expressions of TGFB1, BMP2, and MMP13 were not associated with age, sex, and BMI 

either in OA cases or controls (all p > 0.09). However, I found that the expression of SMAD3 

was correlated with age (rho= -0.35, p= 0.05) and BMI (rho= 0.38, p= 0.03). SMAD3 was also 

expressed higher in females than in males (48% higher, p=0.04). These differences were only 

observed in individuals with OA but not between controls. 

Relationship between TGFB1, BMP2, SMAD3, and MMP13 expression 

I found that the expression of TGFB1 was significantly correlated with the expression of SMAD3 

(rho= 0.50, p= 0.003) and MMP13 (rho= 0.46, p= 0.007) in OA-affected cartilage but not in 

healthy cartilage (Table 5.4). The significance became even stronger after adjustment for age, 

sex, and BMI (p=0.002 and p<0.0001, respectively).  

I also found that the expression of BMP2 was negatively correlated with both TGFB1 (rho=-

0.50, p=0.02) and MMP13 (rho=-0.48, p= 0.02) in healthy cartilage but not in OA-affected 

cartilage (Table 5.4). However, the significances were altered after adjustment for age, sex, and 

BMI. 

I found there was no correlation between the expression of SMAD3 and MMP13 either in OA-

affected cartilage or controls (Table 5.4).  
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Table 5.4- Spearman’s correlation coefficients (rho) between the expression of TGFB1, BMP2, 

SMAD3, and MMP13 in OA-affected and healthy cartilage, respectively 

 Controls (N=21) OA (N=32) 

TGFB1 & SMAD3 rho=0.07, p=0.7 rho=0.50, p=0.003 

TGFB1 & MMP13 rho=0.28, p=0.2 rho=0.46, p=0.007 

SMAD3 & MMP13 rho=0.05, p=0.83 rho=0.15, p=0.390 

BMP2 & TGFB1 rho=-0.50, p=0.02 rho=0.24, p=0.210 

BMP2 & MMP13 rho=-0.48, p=0.03 rho=0.17, p=0.350 
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Discussion  

To the best of my knowledge, this is the first study of using human cartilage samples to 

demonstrate a significant association between the expression of TGFB1 and MMP13, suggesting 

TGF-β signalling pathway switches its protective role in normal cartilage observed from in vitro 

studies [172], to a damaging factor in advanced OA, possibly through SMAD-independent TGF-

β pathway.   

Evidence from animal models of OA indicates that increased expression of TGFB1 is involved in 

OA development. Multiple intra-articular injections of TGF-β in mice joint results in changes to 

articular cartilage with a strong resemblance to both experimental and spontaneous mice OA 

[178]. High concentrations of active TGFB1 in the mice subchondral bone is reported to initiate 

osteoarthritic changes in the bone and cartilage [257], and induced expression of TGFB1 from 

the synovial lining layers results in OA-like changes in the murine knee joint including 

hyperplasia of synovium and chondro-osteophyte formation [258]. Data from human joint tissue, 

however, are limited. Pombo-Suarez et al. [276] studied cartilage samples obtained from 11 

patients with hip OA and 11 patients with a femoral neck fracture and found that all three TGFB 

isoforms including TGFB1 were significantly and highly expressed in osteoarthritic cartilage. 

My results are consistent with theirs, demonstrating a 70% increase in TGFB1 expression in OA-

affected cartilage. Since I only measured the mRNA expression of TGFB1, these results may not 

reflect the corresponding protein levels. Pombo-Suarez et al. [276] found that the increased 

mRNA levels of TGFB isoforms was in relation to an increased percentage of TGF-β positive 

staining chondrocytes, indicating that mRNA expression of TGFB isoforms is well correlated to 

their protein levels. However, Wu et al. [182] performed a proteomic analysis of articular 

cartilage from 7 knee OA and 7 healthy controls and found a 16 fold decreased protein 
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expression of TGFB1 in OA cartilage, suggesting the effect of TGFB1 in OA may be joint 

specific. I included cartilage samples from both knee and hip OA patients but did not find any 

difference in the mRNA expression of these three genes. The reason for the discrepancy between 

these results and the Wu’s [182] is unclear. However, possible reasons leading to false positives 

include sampling bias due to different population sources, control cartilage of unspecified origin, 

and the utilization of less stringent significance level (raw p-value <0.03) given the large number 

of proteins (n=814) examined in their study. Furthermore, apart from TGF-β1, no other protein 

involved in the TGF-β signalling was found to be significantly different, indicating caution 

should be used in interpreting their results.  

Verdier et al. [277] reported that expression levels could vary, based on the OA stage and the 

level of involvement. In the immunohistochemical analysis of cartilage tissues obtained from six 

hip OA patients and four controls, TGF-β1 staining was increased in slightly altered areas, 

reduced in more degraded cartilage, but markedly increased in the osteophytes, suggesting 

TGFB1 may take part in the hypertrophic stage of the OA process. Unfortunately, I do not have 

cartilage severity data to assess the distribution of TGFB1 expression in different layers of 

cartilage.  

The consequence of increased TGFB1 activity is unknown. In vitro studies showed that activity 

of TGF-β sub-pathway had a protective role in articular cartilage [4]. However, Pombo-Suarez et 

al. [28] found that none of the expression levels of the three isoforms of TGF-β were correlated 

with the expressions of main proteins in human cartilage, i.e. COL2A1 and AGC1, suggesting the 

expected role of TGF-β pathway is altered in human OA cartilage. Moldovan et al. [259] found 

that TGF-β can upregulate the levels of MMP13 in cultured cartilage explants and cause a 

mimicking of the in situ distribution of the increased MMP13 observed in both OA- and 
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rheumatoid arthritis affected cartilage. My results are consistent with theirs with a strong 

correlation between expressions of TGFB1 and MMP13 in OA-affected cartilage, suggesting 

TGF-β switches from a protective role observed from in vitro studies to a damaging factor in 

OA-affected cartilage. A similar phenomenon has also been reported for other tissues including 

squamous carcinoma [260], breast cancer [261], human gingival fibroblasts [262] and osteoblasts 

[263]. 

MMP13 is a major enzyme targeting cartilage for the degradation of types II, IV, and IX 

collagen, proteoglycan, osteonectin and perlecan [278]. Its overexpression has been shown to be 

related to cartilage destruction among both human OA patients and animal models of OA [239]. 

It seems that TGF-β signalling regulates expression of MMP13 through SMAD-dependent 

pathway in squamous carcinoma cells [260], and in human gingival fibroblasts [262]. In mice, 

primary chondrocytes TGF-β  signals through SMAD3 rapidly repress MMP13 expression but 

induce its expression in the absence of SMAD3 [236]. Alternatively, TGF-β has been described 

as increasing MMP13 expression in osteoblast cells through a combination of SMAD-dependent 

and SMAD-independent pathways [263]. In the current study, I found there was no correlation 

between SMAD3 and MMP13 expression in either normal or OA cartilage, suggesting that the 

association between TGFB1 and MMP13 expression in OA-affected cartilage is primarily 

through the SMAD-independent pathway.  

TGF-β receptors can exert their effect through collateral signalling via mitogen-activated protein 

kinase (MAPK) and phosphoinositide 3-kinase (PI3K) proteins [172]. The biochemical blockade 

of MAPK pathway abolishes TGF-β induction of MMP13 in human breast cancer cell lines 

[261], and the inhibition of the MAPK pathways reduces TGFB1-stimulated MMP13 expression 

in the rat osteosarcoma cell line (UMR 106-01) [263], favouring the SMAD-independent 
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pathway for enhanced MMP13 expression in OA cartilage. The regulation might also occur 

through other mechanisms including inflammatory factors. It is reported that TGF-β1 treatment 

increases the expression of pro-inflammatory cytokines, including interleukin 1 (IL-1) and 

metalloproteinase-1 in synovial fibroblasts from rheumatoid arthritis and normal individuals 

[279], and IL-1 secretion by chondrocytes has shown to stimulate MMP13 expression and 

cartilage degradation in OA [280]. This data also showed that the increased expression in 

MMP13 was disproportional to the increased TGFB1 expression, suggesting other factors may 

also play a role in increasing MMP13 expression in OA cartilage. Blaney Davidson et al. showed 

that an increase in activin A receptor type II-like 1  (ALK1) expression (BMP pathway receptor) 

was associated with elevated MMP13 expression in human osteoarthritic cartilage [281], 

suggesting BMP sub-pathway may also be involved in the regulation of MMP13 expression in 

human cartilage. In the current study, I found that BMP2 expression was negatively associated 

with both TGFB1 and MMP13 expression in healthy cartilage, suggesting that BMP2 can inhibit 

MMP13 expression either directly or indirectly, but this inhibitory effect disappeared because of 

the reduced BMP2 expression in OA-affected cartilage. However, the significant correlation 

between BMP2 and TGFB1/MMP13 was altered after adjustment for potential confounding 

factors. Sample size might be the blame. I conducted a posthoc power calculation using data on 

SMAD3 which had the smallest effect size in this study. For the given sample size and the 

observed effect size, I had 100% study power. An independent study is needed to confirm the 

effect of BMP pathway in the regulation of MMP13 expression. 

Although SMAD3 appeared not to be associated with MMP13 expression in this study, its 

expression was highly correlated with TGFB1 and was increased in OA cartilage compared to 

controls, suggesting that TGF-β /SMAD3 signalling is also over activated in OA. This enhanced 
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activity may indicate a reparative response by chondrocytes to the cartilage damage resulting 

from OA progression, through TGF-β /SMAD3 signalling. While TGF-β signals through 

Smad1/5/8 route are shown to lead to deleterious cartilage response, the signals through 

SMAD2/3 are mainly  protective, which indicates that TGF- β/SMAD3 signalling is essential for 

the cartilage maintenance [282]. In line with this, decreased phosphorylation of SMAD3, an 

indication of decreased signalling activity, has been reported  during OA progression of murine 

models of OA [252, 253], and SMAD3 knockout  mice have shown to develop OA-like features 

in their joints [221]. Further studies are needed to elucidate the consequence of the over activity 

of TGF- β/SMAD3 pathway. 

The strength of the current study is the use of human cartilage rather than animal models or 

cultured cells, thus having a direct application to OA patients. However, I only studied cartilage 

tissue, limiting the generalizability of the findings to other joint tissues involved in OA. mRNA 

expression levels may not reflect the corresponding protein levels, but previous studies found 

that mRNA levels of TGFB1 were well correlated with its protein levels [260], suggesting this is 

not a concern. However, this study is cross-sectional, and I cannot conclude a causal relationship. 

In the end, it is notable that the small sample size of the study did not allow for clear 

interpretations of the effect of confounding variables such as age, sex, and BMI on the 

expression correlations and changes. 

 

Conclusions  

I demonstrated that TGFB1 switched its protective role as observed using in vitro studies to a 

damaging factor in human OA cartilage, leading to an increased expression of MMP13, possibly 
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through the SMAD-independent pathway.  Further, I found that TGF-β/SMAD3 pathway was 

also over activated, but the consequence needs to be established.  
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Abstract 

Objectives: To describe the genome-wide DNA methylation  changes in hip and knee 

osteoarthritis (OA) and identify novel genes and pathways involved  in OA by comparing the 

DNA methylome of the hip and knee osteoarthritic cartilage tissues with those  of OA-free 

individuals.   

 

Methods: Cartilage samples were collected from hip or knee joint replacement patients either 

due to primary OA or hip fractures as controls. DNA was extracted from the collected cartilage 

and assayed by Illumina Infinium HumanMethylation450  BeadChip array, which allows for the 

analysis of >480,000 CpG sites. Student T-test was conducted for each CpG site  and those sites 

with at least 10% methylation difference and a p-value <0.0005 were defined  as differentially 

methylated regions (DMRs) for OA. A sub-analysis was also done  for hip and knee OA 

separately. DAVID tool v6.7 was used for the functional annotation  clustering of the DMR 

genes.  Clustering analysis was done using multiple dimensional scaling and hierarchical 

clustering methods. 

 

Results: The study included five patients with hip OA, six patients with knee OA and seven  hip 

cartilage samples from OA-free individuals. The comparisons of hip, knee and combined 

hip/knee OA  patients with controls resulted in 26, 72, and 103 DMRs, respectively. The 

comparison between  hip and knee OA revealed 67 DMRs. The overall number of the sites after 

considering the  overlaps was 239, among which 151 sites were annotated to 145 genes. One-fifth 

of these genes were  reported in previous studies. The functional annotation clustering of 
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the  identified genes revealed clusters significantly enriched in skeletal system morphogenesis 

and development. The analysis revealed significant difference among OA and OA-free cartilage, 

but less difference between hip OA and knee OA.  

 

Conclusions: I found that a number of CpG sites and genes across the genome  were 

differentially methylated in OA patients, a remarkable portion of which seem  to be involved in 

potential etiologic mechanisms of OA. Genes involved in skeletal  developmental pathways and 

embryonic organ morphogenesis may be a potential area for further OA studies.  

 

Introduction 

Osteoarthritis (OA), affecting 250 million people worldwide, is the most common form of 

arthritis [237]. It is characterized by gradual loss of articular cartilage and subchondral bone 

changes, presents with joint pain, stiffness, joint deformity and disability [185], and imposes a 

great socio-economic burden on societies, mainly as a result of hip and/or knee involvement 

[283]. 

OA is a multifactorial condition arising from the combination and interaction of natural and 

environmental factors [284]. Age, gender, obesity, previous joint injury, mal-alignments, and 

genetics are known to be of the major risk factors for OA; yet, the etiology of OA remains 

incompletely elucidated [285]. In pathology, an imbalance between catabolism and anabolism of 

the molecules in the cartilage extracellular matrix is a major finding in OA [286]. Since these 

changes are suggested to result from an altered gene expression related to epigenetic 
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modifications of the OA candidate genes [240], it is hypothesized that epigenetic changes in 

chondrocytes could be a key factor in OA pathogenesis [287]. DNA methylation is by far the 

most extensively studied epigenetic regulator in complex diseases, and it has long been thought 

that its changes plays a key role in the onset and progression of complex diseases by linking the 

genetic and environmental risk factors [288].  

To date, only a few studies have been undertaken to examine the role of DNA methylation in 

OA. Candidate gene studies have shown the upregulation of catabolic factors of Matrix 

metallopeptidase 9 (MMP9), Matrix metallopeptidase 13 (MMP13), Leptin receptor (LEPR), and 

A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) [240], as well as 

the down-regulation of anabolic molecule collagen, type IX, alpha 1 (COL9A1) [289], caused by 

the promoter hypo- and hyper- methylations of the corresponding genes. Demethylation of an 

enhancer element within the nitric oxide synthase (NOS) gene is shown to increase transcription 

through elevated binding of the transcription factor NF-κB, which leads to suppression of the 

synthesis of cartilage matrix [290]. DNA methylation can also modulate the effect of OA genetic 

susceptibility loci; for instance, the effect of single nucleotide polymorphism (SNP) rs143383 in 

GDF5 -- the most replicated genetic association locus in OA - is thought to be caused by the 

methylation level variability of the CpG dinucleotide created at the location of the SNP, leading 

to altered expression of the gene [291]. The handful of genome-wide methylation studies 

performed to date have also identified several potential candidate genes including runt-related 

transcription factor 1&2 (RUNX1, RUNX2), transforming growth factor beta 1 (TGFB1), micro 

RNA 128 (miR-128) and collagen, type XI, alpha 2 COL11A2 [292], suggesting the involvement 

of inflammation and immunity in OA pathogenesis [163]. Despite the invaluable information 
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obtained about the pathogenesis of complex diseases from epigenetic studies, the area still 

remains as one of the least investigated fields in OA research.  

In the present study, I conducted a genome-wide DNA methylation analysis in OA-free and OA-

affected cartilage from human hips and knees using the Illumina Infinium 

HumanMethylation450 BeadChip in the hope of providing novel insights into the pathogenesis 

and treatment of OA. 

 

Methods 

Samples and patients’ information 

The study was part of the ongoing Newfoundland Osteoarthritis Study (NFOAS) that was 

initiated in 2011, aiming at identifying novel genetic, epigenetic, and biochemical markers for 

OA [244, 245]. OA patients were recruited from those who underwent total knee or hip joint 

replacement due to primary OA between November 2011 and December 2013 in St. Clare's 

Mercy Hospital and Health Science Centre General Hospital in St. John's, the capital city of 

Newfoundland and Labrador (NL), Canada. OA-free controls were recruited in the same 

hospitals from those who underwent hemiarthroplasty of the hip due to hip fracture with no 

evidence of OA. OA diagnosis was made based on the American College of Rheumatology 

criteria [14, 48] and the judgement of the attending orthopaedic surgeons. Cartilage samples 

were collected from the articular surfaces of the tibial plateau or femoral head where the OA 

lesion occurred. The pathology report of the cartilage following the surgery was reviewed for all 

subjects to ensure the consistency of the diagnosis and the status of cartilage degeneration among 

the control subjects.  
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Demographic information was obtained by a self-administered questionnaire with the help of the 

research staff if necessary. Anthropometric data including height and weight was retrieved from 

their hospital admission and medical records and body mass index (BMI) was calculated by 

dividing weight in kilograms by squared height in meters. Age was calculated at the time of the 

surgery. 

DNA extraction 

Four pieces (~200mg each) of cartilage tissues were retained from either tibial plateau or femoral 

heads during the surgery. The samples were then flash-frozen and stored in liquid nitrogen until 

the experiment. Up to 200mg frozen cartilage tissue was transferred to the homogenizing 

cylinder together with 1 ml TRIzole lysis reagent and 200μl guanidine thiocyanate and 

homogenized using a cryogenic mill (Spex Freezer Mill, model 6770, Metuchen, New Jersey, 

USA) with the following parameters: two cycles of 2 minutes grinding at maximum frequency 

with 10 minutes cooling down between grinding cycles. The homogenate was then transferred to 

a new 2ml RNase-free tube and incubated for 5 min at room temperature. Then, 200μl 

chloroform was added, and the mix was vortexed vigorously, before being incubated for 2-3 min, 

followed by centrifugation at 12,000xg at -4°C for 15 min. Following centrifugation, the sample 

separated into 3 phases: the aqueous phase containing RNA, the interphase, and the organic 

phase containing DNA. The DNA was extracted using Phenol-Chloroform method from the 

interphase and organic phase. 

DNA methylation profiling  

DNA methylation assay was conducted using the HumanMethylation 450 Bead-Chip microarray 

(Illumina, San Diego, California, USA), which analyzes the methylation status of 485,000 
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methylation sites throughout the genome, covering 99% of RefSeq genes at an average of 17 

CpG sites per gene across the 5-UTR, gene promoter regions, first exon, gene body, and 3-UTR, 

and covering 96% of University of California, Santa Cruz-defined CpG islands and their flanking 

regions. Briefly, DNA is first bisulfite converted, which results in unmethylated cytosines being 

converted to uracils, whereas methylated cytosines are not converted. The bisulfite-converted 

DNA is amplified, fragmented and hybridized to the arrays. For each CpG site, methylation 

levels are measured by probes attached to beads, one each for unmethylated and methylated 

DNA, followed by an allele-specific base extension that includes a fluorescent label. Different 

labels are used for the T (unmethylated) or C (methylated) alleles. The array is fluorescently 

stained and scanned, and the intensities of the unmethylated and methylated bead types are 

measured. DNA methylation values, described as “beta values (β)”, are recorded for each locus 

in each sample and represent the ratio of the intensity of the methylated bead type to the 

combined locus intensity. The array has several features that make it a powerful option for 

genome-wide DNA methylation profiling: (i) multi-sample format allows for interrogation of 12 

samples on a single BeadChip i.e. it is high-throughput and cost-effective; (ii) low sample input 

(500ng genomic DNA); (iii) reproducibility (>0.98 between technical replicates) [293, 294]. The 

genome-wide DNA methylation data is available at http://www.ncbi.nlm.nih.gov/projects/geo/ 

with accession number GSE73626. 

Statistical analysis 

R packages minfi (version 1.6.0) [295] and minfiData (version 0.3.4) [296] were used in R 

version 3.1.2 to convert signal intensity data into methylation data. Beta values were calculated 

as M/(M+U), where M represents the fluorescent signal of the methylation probe and U accounts 

http://www.ncbi.nlm.nih.gov/projects/geo/
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for the methylation signal of the unmethylated probe. The β values range from 0 (no 

methylation) to 1 (100% methylation) [297].   

For the purpose of quality control, CpG probes with detection p-value above 0.01, those located 

 in sex chromosomes and at SNPs, and those with deviation from bimodal distribution were‏

 To eliminate the difference caused by two type design  probes‏ .removed from further analysis‏

(type I and type II), beta-mixture quantile normalization (BMIQ) method [298] was used 

to  normalize the raw methylation level data.  

To identify DMRs, the average beta values were compared between the groups of interest using a 

student T-test assuming equal variances [299]. Given the small sample size, I was not able to 

correct for multiple testing as none of the tests reached the strict threshold of genome-wide 

significance (10e
-6

). Instead, to minimize false positives, I reported the loci with at least 10% 

methylation difference and p-value ≤ 0.0005. I believe this is an acceptable threshold given the 

small sample size, to obtain the trends of change and not necessarily genuine associations in this 

analysis. The identified loci were examined using a linear regression model to determine if they 

were  associated with age.  Genomic annotation of DMRs was carried out using the Infinium 

HumanMethylation450 BeadChip annotation file (http://www.illumina.com).  

Gene‏ontology‏analysis 

DAVID bioinformatics database functional tool [300] was used to identify the enriched gene 

ontology (GO) terms. Gene symbols were used as input for the analysis. Medium classification 

stringency was used. Enriched GO terms with a Bonferroni corrected p-value of less than 0.05 

were reported.  
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Phenotype clustering 

Hierarchical clustering and multiple dimensional scaling were performed on all individuals 

after  genome-wide methylation distance reduction. The distance was calculated between samples 

taking into account the genome-wide methylation levels of each sample. Then a matrix 

containing the pairwise distances between the samples was created. Using singular value 

decomposition, the matrix was transformed into three matrixes, two of which were orthogonal (U 

and V) and one was diagonal (D). A new matrix was generated using the multiplication of V and 

D, containing 12 rows representing each sample and 24 columns representing each dimension. 

Every two dimensions were plotted against each other. Clustering was further illustrated using 

heat maps  of the top 800 loci with the greatest variations in methylation levels across the entire 

study  population after the same methodology of dimension reduction. To obtain these 800 sites, 

the cross-population  variance for each CpG site was calculated. The clustering was performed 

for the top 200, 400, 600, 800, and above  sites with the  highest variance . The top 800 samples 

resulted in the best visual grouping of the three  phenotypes while the numbers beyond this figure 

did not change the pattern.   

Ethics statement 

The study protocol was approved by the Health Research Ethics Authority (HREA) of 

Newfoundland and Labrador (HREA11.311), and a written informed consent was obtained from 

all the participants. 
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Results 

Subjects 

The study included cartilage samples from 5 patients with hip OA, six patients with knee OA, 

and 7 OA-free hip controls. All subjects were females. The OA-free population were on average 

about ten years older than the affected group and had a lower BMI. Table 6.1 shows the 

characteristics of the study population. 
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Table 6.1- Characteristics of study population 

 OA-free Hip Knee OA P Hip OA P 

Age 78.2±11.6 65.3±10.6 0.06 64.4±13.8 0.09 

BMI 26.0±4.6 34.6±8.3 0.03 32.3±9.5 0.15 

Figures are Mean± standard deviation; the p-values were obtained using student’s T-test between 

OA-affected and OA-free individuals.  
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Differentially methylated loci 

A total of 384,266 CpG sites were included in the final analysis after quality control. A total of 

72, 26, and 103 CpG sites was identified from the comparison of knee OA, hip OA, and 

combined knee/hip OA versus hip controls, respectively. The comparison of hip and knee OA 

resulted in 67 DMR CpG sites. After removing the overlaps between these analyses, a total of 

239 CpG sites showed more than 10% difference in β values among the comparison groups with 

all p <0.0005. Methylation levels of these sites were not associated with age. Almost half of the 

sites (53%) showed hypomethylation and the remainders represented hypermethylation in OA 

compared to controls. This was, however, reversed among the sites with the highest methylation 

difference, since most of them were hypomethylated in OA as seen in Table 6.2. Table 6.3 

presents the β value differences in each comparison. Among the reported sites, 151 sites were 

annotated to 145 genes; 119 of the sites are located in CpG islands; 79 sites are located in 

enhancers, 46 in regions with regulatory features, and 28 in DNAse Hypersensitivity sites. From 

the sites annotated to genes, the majority (46%) were located in gene bodies, 11% were in 

5’UTR, 11% were in 3’UTR, 5% were in the first exon, and 27% were located within 1,500 bp 

upstream the transcription start site. Table 6.2 shows the DMRs with β value differences above 

15% between knee/hip OA and OA-free cartilage. The complete list of the DMRs is presented in 

Table 6.3. 
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Table 6.2- Top CpG sites differentially methylated in knee/hip OA compared to OA-free 

cartilage 

CpG Δβ P-value Gene 

symbol 

UCSC location group UCSC island 

group 

Enhancer 

cg22669656 -0.22 0.0004 PGS1 Body  Yes 

cg11905061 0.21 0.0004 AGAP1 Body S_Shore  

cg27390206 -0.21 0.0002 BLMH Body  Yes 

cg09140531 -0.21 0.0004    Yes 

cg14223856 -0.21 0.0005    Yes 

cg13688786 -0.20 0.0003 MYO18A Body  Yes 

cg22022821 -0.20 0.0002     

cg10340048 -0.20 0.0002    Yes 

cg02464866 -0.20 0.0004   N_Shore Yes 

cg05033952 -0.20 0.0001   N_Shore  

cg19629120 -0.19 0.0005 EFCAB6 3'UTR   

cg04973183 -0.19 0.0004    Yes 

cg00150785 -0.19 0.0004   N_Shore Yes 

cg12027254 -0.19 0.00004 TNRC6C Body  Yes 

cg14068309 -0.19 0.0002 EIF2B1 3'UTR   

cg13556934 -0.18 0.0003   N_Shelf Yes 

cg14022778 -0.18 0.0004 FHAD1 Body   

cg02017450 0.18 0.0004    Yes 

cg23074762 -0.18 0.0002 CHSY1 Body  Yes 
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cg04228742 -0.18 0.0002     

cg22203890 -0.18 0.0005     

cg17611936 0.18 0.0003 PRKAG2 Body   

cg07107113 -0.17 0.0004 FBLIM1 5'UTR S_Shore  

cg12582728 -0.17 0.0004    Yes 

cg07404223 -0.17 0.0002    Yes 

cg25002179 -0.16 0.0005 STARD13 5'UTR;Body;TSS1500  Yes 

cg17025149 -0.16 0.0001    Yes 

cg26043955 -0.16 0.0004    Yes 

cg26919145 -0.16 0.0002 LDLRAD3 Body  Yes 

cg09425279 -0.16 0.0003   N_Shelf  

cg06712559 0.16 0.0004 AGRN Body Island Yes 

cg02099390 -0.16 0.0002 OSBPL10 Body  Yes 

cg11805414 -0.16 0.0005    Yes 

cg04038680 -0.16 0.0002 SHISA9 Body  Yes 

cg25341923 -0.15 0.0001 KRTAP4-7 TSS1500   

cg14728071 -0.15 0.00004 MLLT10 3'UTR   

cg03667871 -0.15 0.0004 NEK7 TSS1500 N_Shore  

cg13258453 -0.15 0.0002    Yes 

cg23010507 -0.15 0.0001   S_Shelf Yes 

cg12158488 -0.15 0.0002    Yes 

Δβ: difference in methylation value between sample groups (OA cartilage - intact); UCSC: 

University of California, Santa Cruz; 5’-UTR: 5’-untranslated region; N: North; S: South; Shore: 

immediate surroundings of CpG islands; Shelf: distant surroundings of CpG islands; TSS 200: 

within 200 bp of transcription start site. TSS 1500: within 1500 bp of transcription start site. 
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Table 6.3- CpG sites differentially methylated in knee/hip OA compared to healthy cartilage  

CpG Gene Region Difference in Beta values 

Hip/knee OA vs. 

OA free cartilage 

Knee OA vs. OA 

free ‎cartilage 

Hip OA vs. OA 

free ‎cartilage 

Hip OA vs. Knee 

OA 

cg27394794 A1CF Body -0.103021    

cg04573661 AASDH TSS1500  -0.205279   

cg03213833 ADARB2 Body  -0.286976   

cg11905061 AGAP1 Body 0.210268    

cg06712559 AGRN Body 0.159346    

cg12899423 ALX4 Body 0.147695 0.182835   

cg19894728 ATXN7L1 Body -0.114155    

cg23730617 B3GALNT1 TSS1500    -0.185146 

cg25764534 BIN3 Body  0.104192   

cg27390206 BLMH Body -0.209088    

cg27143664 C14orf38 Body -0.130948    

cg23276912 C1orf212 TSS1500  -0.113101   

cg10916651 C1QA TSS200    0.108015 

cg08166362 C3orf37 Body    -0.112695 

cg22199118 C8orf34 5'UTR;1
st
 Exon -0.104984    

cg13551505 CACNA2D4 Body -0.101028 -0.112074   

cg23327859 CCNT1 TSS1500    -0.117283 

cg27106290 CDH12 TSS200  -0.182634   

cg10303842 CDH12 5'UTR;1
st
 Exon  -0.105454   

cg20429981 CDK11B;LOC728661 Body;5'UTR    0.132189 

cg23074762 CHSY1 Body -0.181762    

cg01413281 CHUK TSS1500  -0.210765   

cg05516020 CLCN7 Body -0.120175    

cg26066361 CLEC7A 1
st
 Exon    0.111099 

cg06551161 CLP1;CLP1 TSS1500    -0.218961 
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cg12138483 CLPP TSS1500 -0.132099    

cg01487542 CMAH TSS200;Body    0.136506 

cg10908116 COL4A1 Body   -0.188257  

cg16524108 COQ6;FAM161B TSS1500;Body  -0.135545   

cg27318087 CPPED1 Body  -0.16637   

cg17641876 CPT1B;CHKB TSS1500;Body   -0.1261  

cg27410679 CRHR1 Body    0.139596 

cg01462727 CYP24A1 Body  -0.308772   

cg07054208 DCDC2 TSS1500    -0.134915 

cg19931902 DEFB129 TSS1500 -0.123362    

cg20728490 DNTT 5'UTR;1stExon -0.109343 -0.129115   

cg11969108 DPP6 Body -0.125924    

cg19629120 EFCAB 3'UTR;3'UTR -0.194821    

cg14068309 EIF2B1 3'UTR -0.185456    

cg16324018 ELMOD3; RETSAT TSS1500;Body  -0.10651   

cg14671809 ERC2 3'UTR  0.21432   

cg17279365 ESRRG 5'UTR    0.54009 

cg22357390 ETV6 Body -0.106365    

cg11562401 FAM19A5 Body  -0.140515   

cg07107113 FBLIM1 5'UTR -0.172251    

cg14022778 FHAD1 Body -0.182901    

cg04988917 FKSG83 TSS1500  -0.136044   

cg19177125 GATA6 Body    -0.158489 

cg06679990 GLI1 Body -0.125178    

cg00362680 GLI3 Body -0.109003    

cg20148127 GLIS1 5'UTR  -0.131564   

cg17154975 GPR133 Body -0.131627    

cg07785447 GSC Body    0.143192 

cg01163842 GSC Body    0.227057 

cg04387592 GUCA1A 5'UTR -0.125863  -0.141964  
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cg24974365 HAND2 Body    0.345116 

cg26729101 HBQ1 TSS1500  -0.158386   

cg26495711 HDAC4 Body -0.13355    

cg04625975 HNRNPA3P1 Body    0.110269 

cg01593673 HOXB3 5'UTR  -0.147136   

cg22660542 HOXC8 TSS1500    0.168632 

cg23685155 HOXC9 Body    0.284029 

cg02773086 HOXD3 TSS1500  0.30235  0.344425 

cg01293179 HOXD8 Body    -0.219926 

cg15991405 HOXD9 Body  -0.135009  -0.228901 

cg12969193 HOXD9 Body    -0.245435 

cg06150772 HRNBP3 5'UTR -0.122901 -0.140676   

cg19442493 HRNBP3 5'UTR   -0.101717  

cg19815720 HTR3C TSS200 -0.121236 -0.103268   

cg27027427 IFIT3 Body;TSS1500   -0.134842  

cg14340103 IL21 TSS1500   -0.107352  

cg15152331 ITGB6 Body  0.107484   

cg18942298 JPH2 Body -0.144872    

cg01575590 KCNQ2 Body -0.121138    

cg17022362 KCNQ2 Body -0.136883    

cg25341923 KRTAP4-7 TSS1500 -0.152813    

cg20634798 LCE3A 1stExon    0.201253 

cg26135325 LCE3A 1stExon    0.196904 

cg26919145 LDLRAD3 Body -0.163533    

cg03050981 LEPR 5'UTR -0.136643 -0.155669   

cg25788513 LOC100188947 Body  -0.103142   

cg23343309 LOC150185 TSS1500  -0.116973   

cg07676709 LOC404266;HOXB6 Body  -0.13161   

cg16770054 MAD1L1 Body    0.102319 

cg26537478 MEIS1 Body    0.442717 



166 
 

cg05877497 MEIS1 Body    0.537868 

cg11362604 MEIS2 Body    0.286791 

cg03951374 MEIS2 1stExon;Body;5'UTR    0.101942 

cg14728071 MLLT10 3'UTR -0.152616    

cg18637380 MTHFD1 TSS1500 -0.128176    

cg13688786 MYO18A Body -0.204580    

cg00729885 NBEA Body  0.36108   

cg03667871 NEK7 TSS1500 -0.152465 -0.16889   

cg12044531 NIN 3'UTR -0.149347    

cg26489750 NLRP2 3'UTR -0.123049    

cg24307499 NLRP2 Body  -0.123286   

cg07429087 NMUR2 3'UTR  -0.104922   

cg12986700 NPFFR2 5'UTR;Body    0.210622 

cg16170380 OR11A1 1stExon -0.110280    

cg12080717 OR11L1 1stExon -0.103754    

cg20867746 OR51S1 TSS1500 -0.105627    

cg02099390 OSBPL10 Body -0.159326    

cg05986505 OSR2 TSS1500  0.264363   

cg27319188 PACS1 Body    0.183381 

cg05477457 PALLD Body  0.154197   

cg08189448 PAPPA TSS200    0.189692 

cg04462132 PARK2 Body   -0.120193  

cg10629004 PAX1 3'UTR   0.212762  

cg11164441 PDE6B Body   -0.105268  

cg11320144 PDYN TSS1500  -0.105703   

cg23975251 PEX14 Body   -0.149433  

cg03068346 PFKP Body   -0.109451  

cg22669656 PGS1 Body -0.220716    

cg03803861 PLCXD3 TSS1500 0.114606    

cg09050331 PRDM14 TSS1500  0.145683   
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cg17611936 PRKAG2 Body 0.176367 0.220172   

cg12304937 PRKAR1B Body -0.115834    

cg16197388 PSG3 3'UTR -0.1227 -0.142669   

cg19741675 PSORS1C1 5'UTR   -0.102053  

cg01394116 RBM22 TSS1500  -0.164379   

cg21090457 ROBO2 Body -0.149873 -0.151843   

cg00424286 RPS6KA2 Body    0.104957 

cg07902192 RUNX2 Body -0.143582    

cg00442802 SAA3P TSS1500 -0.144992    

cg09699193 SEMA5A 5'UTR  -0.161465   

cg04038680 SHISA9 Body -0.155409    

cg18074184 SLC10A4 TSS1500    -0.13289 

cg14995160 SLC18A2 3'UTR   -0.103794  

cg20388916 SLCO2A1 Body  0.121495   

cg26059632 SPRR2A TSS1500 -0.118555    

cg10661163 ST7OT4;ST7OT1;ST7 TSS1500;Body    -0.100255 

cg25002179 STARD13 5'UTR;Body;TSS1500 -0.1638    

cg18847227 SUMF1 TSS1500    -0.132954 

cg23083424 SYNPO2L TSS200 -0.119664    

cg22378919 TBX15 5'UTR    0.155047 

cg06884495 TDRD9 TSS200    -0.121617 

cg02937313 THAP1 TSS1500  -0.168846   

cg13314965 TM4SF19 TSS1500 -0.134876    

cg12027254 TNRC6C Body -0.185722    

cg11559731 TOX TSS1500   0.10719  

cg20071744 TRAPPC9 Body    0.110648 

cg16422492 TRIM72;PYDC1 Body;TSS200  -0.102686   

cg22081905 TRPM5 Body    0.104541 

cg11937920 UACA Body;TSS1500 -0.149382 -0.160089   

cg18889780 UCHL1 TSS1500  0.109206   
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cg09305680 UTP23 TSS1500    0.270613 

cg19907796 VAX2 Body 0.126749  0.146154  

cg02774935 YPEL1 TSS1500 0.117408    

cg06545761 ZCCHC14 3'UTR   -0.135392  

cg16727006 ZCCHC14 Body   -0.142668  

cg23238231 ZNF521 Body    -0.215518 

cg00150785   -0.18856    

cg01478628   -0.124007    

cg01549315   0.141595 0.159916   

cg02017450   0.182854    

cg02097429   -0.115893 -0.120603   

cg02464866   -0.201143    

cg02555944   -0.100254    

cg04228742   -0.181463    

cg04973183   -0.194445 -0.218185   

cg05033952   -0.200003    

cg06410273   -0.147566    

cg07404223   -0.166132    

cg08189043   -0.101672    

cg08236537   -0.129884    

cg09140531   -0.208274    

cg09318857   -0.103781    

cg09425279   -0.163148    

cg09932730   -0.112782 -0.133961   

cg10201735   -0.108855    

cg10340048   -0.203169    

cg11351841   -0.10315    

cg11805414   -0.157269    

cg12158488   -0.151087    

cg12399687   -0.133118  -0.144144  
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cg12582728   -0.167141    

cg12760319   -0.120773 -0.154492   

cg13258453   -0.152225  -0.199005  

cg13397166   -0.131556    

cg13556934   -0.183866    

cg13607993   -0.110454    

cg14223856   -0.208172    

cg15272641   -0.1204    

cg15609373   -0.146004    

cg15994519   -0.108552    

cg17025149   -0.163611 -0.190251   

cg21249771   -0.138605    

cg22022821   -0.204191  -0.265695  

cg22203890   -0.176764    

cg23010507   -0.151239    

cg23153661   -0.124432    

cg24757553   0.12996    

cg26043955   -0.163536  -0.202862  

cg26196162   -0.129839    

cg14592399    0.109712   

cg24138867    -0.169935   

cg25843866    0.16252   

cg17171786    0.140878   

cg21776682    0.113997   

cg24415066    0.378201   

cg12754260    -0.140132  -0.152867 

cg16138557    -0.131028   

cg13441058    0.134108   

cg07536144    0.163068   

cg08018143    -0.186449   
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cg15372218    -0.12534   

cg23348270    0.277439  0.304979 

cg11246774    -0.184875   

cg09817024    0.175003  0.175612 

cg14356225    -0.351866   

cg08873424    0.167794   

cg15275309    -0.110718  -0.1184 

cg00333870    -0.1351   

cg04234597     -0.115774  

cg05334656     0.226141  

cg05573844     0.142033  

cg05552543     -0.117198  

cg27403071     -0.108052  

cg04588138      0.100713 

cg10481584      0.104582 

cg26469220      -0.143677 

cg03913423      -0.14046 

cg04517282      0.179701 

cg22855900      0.143314 

cg14671000      -0.151115 

cg01519253      0.208831 

cg01419670      -0.149344 

cg09889228      -0.119094 

cg10111328      -0.259716 

cg12547939      0.100249 

cg14132364      0.173478 

cg26399903      0.120465 

cg02622133      0.105884 

cg25941985      -0.28141 

cg10536898      -0.238791 
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cg01637125      0.128925 

cg02166394      0.250803 

cg03787282      0.118125 

cg19506686      -0.214439 

All p-values≤0.0005; the cell numbers represent the differences between the mean beta values for every two comparison groups. 
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Functional annotation clustering of the differentially methylated loci 

The annotation clustering was conducted for the 145 genes. Table 6.4 shows those GO terms 

with a Bonferroni corrected p-value<0.05. The most significant terms are related to skeletal and 

embryonic organ system development and homeobox (HOX). By increasing the classification 

stringency, the GO terms were classified into 31 clusters, among which only two yielded 

significant Bonferroni corrected p-values including Embryonic and skeletal system development 

and HOX genes (enrichment scores 6.48 and 5.52, respectively). The analysis was repeated after 

the removal of 33 genes which were only identified in the comparison of knee OA and hip OA, 

to concentrate further on the main objective of the study, i.e. the differences between OA-

affected and OA-free cartilage. Similar to the previous clustering, the GO terms included skeletal 

and embryonic system development, but no HOX genes.  
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Table 6.4- Enrichment clustering of the differentially methylated genes 

Term Gene 

count 

% of the 

total 

genes 

entered 

Genes in each 

pathway from the 

results 

Fold 

enrichment 

Bonferroni 

P-value 

GO:0048705~skeletal 

system morphogenesis 

14 9.6 GSC, TBX15, PAX1, 

GLI3, HOXB3, 

HOXD9, HOXC8, 

HOXD8, HOXC9, 

OSR2, HOXD3, 

HOXB6, ALX4, 

RUNX2 

14.96 8.39E-09 

GO:0048704~embryonic 

skeletal system 

morphogenesis 

10 6.9 HOXD9, HOXB3, 

GSC, OSR2, TBX15, 

HOXC9, HOXD3, 

HOXB6, ALX4, GLI3 

21.00 9.89E-07 

GO:0001501~skeletal 

system development 

17 11.7 CYP24A1, GSC, 

TBX15, GLI3, PAX1, 

GLI1, HOXD9, 

HOXB3, HDAC4, 

HOXC8, HOXD8, 

HOXC9, OSR2, 

HOXD3, HOXB6, 

ALX4, RUNX2 

6.38 8.98E-06 

GO:0048562~embryonic 

organ morphogenesis 

12 8.3 HOXD9, HOXB3, 

GSC, OSR2, TBX15, 

HOXC9, HOXD3, 

HOXB6, VAX2, ALX4, 

GLI3, GLI1 

10.80 1.43E-05 

GO:0048706~embryonic 

skeletal system 

development 

10 6.8 HOXD9, HOXB3, 

GSC, OSR2, TBX15, 

HOXC9, HOXD3, 

HOXB6, ALX4, GLI3 

15.54 1.55E-05 

GO:0003002~regionalizati

on 

13 8.9 GSC, VAX2, PAX1, 

GLI3, GLI1, HOXB3, 

HOXD9, HOXC8, 

HOXC9, HOXD8, 

HOXD3, HOXB6, 

ALX4 

7.91 9.34E-05 

GO:0043565~sequence-

specific DNA binding# 

20 13.8 GSC, ESRRG, VAX2, 

MEIS1, GLI3, GLI1, 

HOXD9, HOXB3, 

HDAC4, HOXC8, 

HOXD8, MEIS2, 

HOXC9, HAND2, 

4.03 1.02E-04 
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GATA6, HOXD3, 

HOXB6, THAP1, 

ALX4, ETV6 

GO:0048568~embryonic 

organ development 

12 8.3 HOXD9, HOXB3, 

GSC, OSR2, TBX15, 

HOXC9, HOXD3, 

HOXB6, VAX2, ALX4, 

GLI3, GLI1 

8.35 2.05E-04 

Homeobox# 12 8.3 HOXD9, HOXB3, 

HOXC8, GSC, 

HOXD8, MEIS2, 

HOXC9, HOXD3, 

HOXB6, VAX2, ALX4, 

MEIS1 

6.96 3.14E-04 

GO:0007389~pattern 

specification process 

14 9.6 GSC, VAX2, PAX1, 

GLI3, GLI1, HOXB3, 

SEMA5A, HOXD9, 

HOXC8, HOXD8, 

HOXC9, HOXD3, 

HOXB6, ALX4 

6.27 3.57E-04 

SM00389:HOX# 12 8.3 HOXD9, HOXB3, 

HOXC8, GSC, 

HOXD8, MEIS2, 

HOXC9, HOXD3, 

HOXB6, VAX2, ALX4, 

MEIS1 

5.65 5.84E-04 

IPR017970:Homeobox, 

conserved site# 

12 8.3 HOXD9, HOXB3, 

HOXC8, GSC, 

HOXD8, MEIS2, 

HOXC9, HOXD3, 

HOXB6, VAX2, ALX4, 

MEIS1 

6.62 6.07E-04 

IPR001356:Homeobox# 12 8.3 HOXD9, HOXB3, 

HOXC8, GSC, 

HOXD8, MEIS2, 

HOXC9, HOXD3, 

HOXB6, VAX2, ALX4, 

MEIS1 

6.54 6.87E-04 

IPR012287:Homeodomain

-related# 

12 8.3 HOXD9, HOXB3, 

HOXC8, GSC, 

HOXD8, MEIS2, 

HOXC9, HOXD3, 

HOXB6, VAX2, ALX4, 

MEIS1 

6.46 7.77E-04 

GO:0009952~anterior/post

erior pattern formation# 

10 6.9 HOXD9, HOXB3, 

HOXC8, HOXD8, 

8.55 0.002 
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HOXC9, HOXD3, 

HOXB6, ALX4, PAX1, 

GLI3 

DNA-binding 

region:Homeobox# 

10 6.9 HOXD9, HOXB3, 

HOXC8, GSC, 

HOXD8, HOXC9, 

HOXD3, HOXB6, 

VAX2, ALX4 

7.34 0.004 

IPR001827:Homeobox 

protein, antennapedia 

type, conserved site# 

5 3.4 HOXB3, HOXC8, 

HOXD8, HOXD3, 

HOXB6 

26.69 0.01 

GO:0043009~chordate 

embryonic development# 

13 8.9 GSC, TBX15, PAX1, 

GLI3, HOXB3, 

HOXD9, HOXC9, 

OSR2, HAND2, 

GATA6, HOXD3, 

HOXB6, ALX4 

4.70 0.02 

GO:0009792~embryonic 

development ending in 

birth or egg hatching# 

13 8.9 GSC, TBX15, PAX1, 

GLI3, HOXB3, 

HOXD9, HOXC9, 

OSR2, HAND2, 

GATA6, HOXD3, 

HOXB6, ALX4 

4.66 0.02 

GO:0003700~transcription 

factor activity# 

21 14.5 TBX15, GSC, ESRRG, 

VAX2, MEIS1, GLI3, 

GLI1, HOXD9, 

HOXB3, HOXC8, 

HOXD8, MEIS2, 

HOXC9, HAND2, 

GATA6, HOXD3, 

MLLT10, HOXB6, 

ALX4, ETV6, RUNX2 

2.64 0.02 

Developmental protein# 17 11.7 GSC, ZNF521, VAX2, 

MEIS1, PAX1, GLI1, 

HOXD9, HOXB3, 

SEMA5A, HOXC8, 

HOXD8, HOXC9, 

HAND2, HOXD3, 

HOXB6, ROBO2, 

ALX4 

3.06 0.03 

All of the GO terms above were clustered into one annotation cluster with an overall enrichment 

score of 3.95. #The GO terms were only significant before the removal of the genes differentially 

methylated between hip OA and knee OA. 
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Clustering of hip OA, knee OA, and OA-free cartilage 

I used multiple dimensional scaling and hierarchical clustering to classify the three phenotypes in 

the study, i.e. hip OA, knee OA, and OA-free hip cartilage. Due to the small sample size, the 

classification was not perfect; however, some trends were observed which are worthy of 

consideration. As it is seen in the plots (Figure 6.1), samples from each phenotype tend to cluster 

together, although a few outliers exist. Overall, OA-free hip cartilage samples tend to be 

different from hip OA and knee OA samples. Although hip OA and knee OA samples are very 

close together, the similarity to OA-free hip cartilage is more seen in hip OA rather than knee 

OA samples. Scaling beyond the 2
nd

 dimension was not informative (not shown). Similar 

patterns are observed from the heat map and dendrogram as shown in Figure 6.2.  
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Figure 6.1- Multiple dimensions scaling of hip OA, knee OA, and OA-free hip cartilage 

 

Similarities between hip OA, knee OA, and OA-free cartilage, drawn from log-spectral 

decompositions for each subject as represented in the two-dimensional space by multiple 

dimensional scaling (MDS). Each dot represents one sample. Colors represent the type of 

involvement and the site samples obtained. X- and Y- axes represent the first and the second 

dimension reductions. 
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Figure 6.2- Hierarchical clustering and heat map of hip OA, knee OA, and OA-free controls* 
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*Top: Cluster dendrogram was created using the genome-wide information; Bottom: Heat map 

shows the top 800 CpG sites with the most variation across hip OA, knee OA, and OA-free hip 

cartilage samples. Rows represent CpG sites. Columns represent samples. Dark blue indicates 

hypermethylation and light blue/white indicates hypomethylation. 
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Discussion 

Our study is one of the few reports on the status of genome-wide methylation of DNA from OA-

free and OA-affected human cartilage. I found a number of CpG sites differentially methylated 

in hip and knee OA, identified the pathways enriched in the sites, and attempted to classify hip 

and knee OA and OA-free cartilage according to their genome-wide DNA methylation profiling. 

The majority of the CpG sites I identified were novel and only about one-fifth of them was 

reported by the previous epigenetic studies of OA (Table 6.5) [163, 292, 301, 302]. Similarly, 

most of the genes differentially methylated were not known to play a role in OA, although 

several of them were previously reported as candidate genes to OA or other bone metabolic 

conditions. They include cg07902192 in RUNX2, involved in the regulation of matrix 

metallopeptidase 13 in OA cartilage [303], cg03050981 in LEPR, associated with knee OA 

[304], bone marrow density and bone hemostasis [305], cg05516020 in CLCN7, associated with 

bone marrow density [306], cg17279365 in ESRRG, associated with multiple bone disease 

phenotypes [307], cg14340103 in IL21, being upregulated in synovial biopsies of rheumatoid 

arthritis patients [308], cg18637380 in MTHFD1, associated with response to osteosarcoma 

chemotherapy [309], cg10629004 in PAX1, associated with congenital scoliosis [310], and 

cg10908116 in the alpha-1 subunit of collagen type IV gene (COL4A1). 

 

 

 



181 
 

Table 6.5- The genes and CpG sites mutually reported between this study and previous 

epigenome-wide studies of OA 

CpG UCSC reference gene name 

cg05877497 MEIS1 

cg11362604 MEIS2 

cg09305680 UTP23 

cg24974365 HAND2 

cg23685155 HOXC9 

cg23348270  

cg00729885 NBEA 

cg24415066  

cg02773086 HOXD3 

cg22378919 TBX15 

cg01163842 GSC 

cg04625975 HNRNPA3P1 

cg02464866  

cg22199118 C8orf34 

cg07785447 GSC 

cg05334656  

cg03913423  

cg07676709 LOC404266; HOXB6 

cg01462727 CYP24A1 

cg13556934  

cg14671000  

cg23238231 ZNF521 

cg10629004 PAX1 

cg05573844  

cg11562401 FAM19A5 

cg09889228  

cg06551161 CLP1 

cg27106290 CDH12 

cg03213833 ADARB2 

cg01293179 HOXD8 

cg10111328  

cg10536898  

cg22660542 HOXC8 

cg26537478 MEIS1 

cg16324018 ELMOD3;RETSAT 

cg19177125 GATA6 

cg01593673 HOXB3 
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cg16197388 PSG3 

cg25941985  

cg19506686  

cg01519253  
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Although most of the DMR genes in this study were of unknown significance in OA, the 

functional analysis revealed their enrichment in relevant pathways; i.e. skeletal and embryonic 

organ system development and homeobox. The latter was only found from the genes 

differentially methylated in the comparison of knee OA and hip OA methylation. Since 

homeobox genes are responsible for the body segmentation procedure and specification of lower 

limbs from upper limbs, it is likely that the DMRs from the knee OA and hip OA comparison 

represent the processes required for body segment specifications rather than the underlying 

genetic difference between hip OA and knee OA. Knee and hip cartilage are primarily one tissue 

but located in different body segments. It is very likely that the epigenomic differences between 

them be minimal. Since they are located in different segments of the body, chondrocytes or their 

predecessors must have obtained different modifications of homeobox genes during 

organogenesis, and these modifications have remained unchanged until an advanced age. 

Consistent with this, the same gene ontology term has also been reported by Den Hollander  et al. 

who made a comparison between genome-wide methylation of articular cartilage DNA from hip 

OA and knee OA [301]. The small number of genome-wide methylation studies of OA have 

reported inflammation and immunity [163, 302], transforming growth factor beta signalling 

[311], and developmental pathways [312]. This study, however, points out the involvement of 

skeletal system development in OA, which is in accordance with the findings of Delgado-Calle et 

al. who reported the enrichment of genes associated with the development of the appendicular 

skeleton and limb morphogenesis in a genome-wide methylation study of femoral bone [313]. In 

this process, the anatomical and physical structures of the skeleton are generated and organized. 

Skeletal shape, which is tightly regulated by genetics [314], is suggested as a possible 

mechanism for the influence of genetics in OA incidence. An abnormal center-edge angle and 
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acetabular dysplasia are shown to be associated with an increased risk of hip OA [315], and  a 

significant difference in the shape of the intercondylar notch between the OA and non-OA 

individuals  is reported [316]. Wnt signalling and bone morphogenetic proteins are among the 

pathways involved in OA, which also control skeletal development in animal models, and it is 

suspected that their mechanism of action in OA could be due to their effect on skeletal shape 

[136]. 

My clustering analysis of the three phenotypes in the study shows that OA-affected cartilage has 

a trend of distinct methylation profiling compared to OA-free cartilage. The hip OA and knee 

OA clustering, however, is not perfect and is suggesting that although hip OA and knee OA 

could have different epigenomic landscape, they are very similar to each other. The only minor 

differences observed in hip OA and knee OA might only be joint specific differences that could 

have been observed if OA-free knee and hip cartilage were studied. Den Hollander et al. 

performed the only comparison of the hip OA and knee OA  [310], who successfully grouped hip 

OA and knee OA into separate clusters . The main conclusion in that study was based on the OA -

 affected cartilage ,  and ‏similar to this study the major ‏pathways they identified enriched in the 

DMRs between hip OA and knee OA, was homeobox,  which strengthens the hypothesis that the 

observed differences in hip and ‏knee OA might be due to differences in the joints rather than the 

disease status .  

My study is limited by several factors. Due to technical issues I studied a small sample size, and 

as the result, none of the DMRs reported reached Bonferroni corrected significance. The cases 

and controls were different in age, which might influence the status of DNA methylation. The 

controls were selected from the population of patients with possible osteoporosis who may not 

necessarily represent healthy cartilage epigenome. In addition, I did not have information on the 
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pathological scoring of the OA joints, which could partially explain why the clustering was not 

perfect. Due to financial issues, I did not validate the methylation levels using alternative 

methods such as pyrosequencing and did not perform functional experiments to add more to the 

mechanism of involvement. These limitations will likely be tackled by future studies attempting 

to replicate and further studying these findings. Despite these limitations, the trends observed in 

the study are informative and add to the current knowledge on the pathogenesis of OA. 

 

Conclusion 

Through a genome-wide methylation study of OA-free and OA-affected human cartilage, I was 

able to identify a number of CpG sites with methylation changes in OA. I also reported that 

genes involved in skeletal system morphogenesis are differentially methylated in OA and might 

be candidate genes for further OA studies. I found a small difference between the overall 

landscapes of hip OA and knee OA; however, OA-free hip cartilage samples had a trend towards 

differentiation from the OA-affected ones. These findings shed light on the pathophysiology of 

OA and can pave the road for further research in the field. 
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‎7.1. General discussion and concluding remarks‎ ‎ 

OA is a highly prevalent and seriously disabling disease with a significant burden at both the 

individual and population levels. This has led to a surge of research in delineating its underlying 

cause to understand its pathogenesis further in the hope of developing new therapeutic measures 

for OA. The current thesis has added to the growing body of literature on OA by attempting to 

replicate the OA associated genetic loci in the Newfoundland and Labrador (NL) population, 

studying the role of transforming growth factor beta (TGF-ß) signalling pathway in OA patients, 

and investigating the genome-wide DNA methylation changes in OA. 

First, I attempted to replicate the previously reported OA genetic loci using the NL population, a 

homogenous population with a recent ancestry which makes it ideal for testing the robustness of 

genetic associations (Chapter 2). The majority of the SNPs that I tested did not show a 

significant association in the NL population. This might have resulted from several factors: 1) 

many of the reported SNP associations in complex disease are false positives and replication 

rates are generally low; 2) since most associated SNPs are thought to be in linkage 

disequilibrium (LD) with the functional loci and the LD patterns vary across populations, it is 

very likely that associations do not replicate in different populations; and 3) the definitions of the 

phenotypes can be varied in different studies. This analysis, however, resulted in the association 

of two SNPs located in COL9A3 and BMP2, the latter being a member of TGF-ß signalling 

family. This was of interest as a recent report of a syndromic form of OA had highlighted the 

SMAD3 gene, another member of the TGF-ß pathway. My study found that, indeed, a 

polymorphism in SMAD3 is involved in generalized OA (Chapter 3). A non-coding SNP located 

in the last intron of SMAD3 was found to be significantly associated with the total radiographic 

burden of OA obtained from the radiographic assessment of the common joints of OA 
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involvement; namely, hips, knees, hands, and spine. Given the position of this SNP, I assumed 

that its mechanism of action is quantitative and examined the expression changes of the gene in 

OA-affected and healthy cartilage (Chapter 4). The results showed higher SMAD3 mRNA levels 

in the affected cartilage, suggesting a higher activity of TGF-ß signalling pathway in advanced 

stages of OA. While the cause of this up-regulation is not clear, my study found that the 

overexpression of SMAD3 in OA-affected cartilage was not due to the promoter DNA 

methylation of the part of the gene promoter studied. 

Since the initial findings of the first three projects were signifying the role of TGF-ß signalling in 

OA pathogenesis, I aimed to understand the connection of the genes I had studied, i.e. SMAD3 

and BMP2, in the disease processes, e.g. regulation of matrix metallopeptidase, in the context of 

the TGF-ß pathway (Chapter 5). My analyses showed that, indeed, the TGF-ß pathway is 

overactivated in end-stage OA cartilage, which results in up-regulation of MMP13, the major 

enzyme destructing the collagen matrix and leading to cartilage loss in OA. This regulation, 

however, was found to be not controlled through SMAD3 signalling, and to be suppressed by 

BMP regulation in healthy cartilage, which has reduced levels in end-stage OA.  

This showed that the pathway was differentially regulated in healthy and OA cartilage. However, 

it is not clear whether this change, characterized by a lower activity of the BMP pathway and a 

lack of suppression of destructive signalling by the TGF-ß/MMP13 route, is the cause or 

consequence of OA, or whether it is directly related to OA at all, only occurring as a by-product 

of other pathological events during the course of OA development. A longitudinal study design 

would better address this question. If it is proved to be a causal factor in OA development, the 

outcome would be promising for designing new OA therapies by specifically targeting the TGF-
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ß pathway to reverse this dysregulation, which would result in lower matrix metalloproteinase 

levels and cartilage degradation.  

This thesis also contributed to the limited amount of knowledge about the DNA methylation 

changes in OA. I investigated the genome-wide methylation levels of cartilage DNA among hip 

and knee OA and OA free hip cartilage (Chapter 6). I reported CpG sites differentially 

methylated in OA and showed that the cartilage methylome has a potential to distinguish 

between OA-affected and non-OA cartilage. Functional clustering analysis of the genes 

harbouring differentially methylated loci revealed that they are enriched in skeletal system 

morphogenesis pathway, which could ‎be a potential candidate for further OA studies. One of the 

ontology terms among these pathways was “limb morphogenesis”. This may indicate that the 

utilized DNA might have contained elements of bone DNA besides cartilage DNA. As obtaining 

cartilage DNA was extremely a difficult task and those cartilage samples with bone 

contamination yielded a better result than pure specimens, it is likely that this hypothesis is 

relevant, but it has to be evaluated by replication studies. There ‎was almost no overlap ‎ ‎between 

the genes found in the epigenomic study of OA and those from ‏other chapters‎. ‎The explanation 

for this would be the small sample size in the epigenomic study‎, ‎which did not allow for 

identifying all of the potential genes involved in OA‎. ‎Also, ‏it ‎should be considered that the 

mechanism of involvement for DNA methylation can be different ‏from DNA sequence variants, 

and thus they may not necessarily be overlapping‎.‎ 

In conclusion, the current work has shed light on some of the least investigated aspects of 

human ‎studies of OA including ‎ epigenomics of OA and the role of the TGF-ß pathway in OA. 

The strength of my study is the use of human OA cartilage from end-stage OA patients, whereas 

the majority of the similar data available previously were obtained from animal models. The 
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ultimate goal of OA research is to understand OA pathogenesis, and through which, to develop 

new therapeutic measures for this disabling devastating disease. I am confident that these 

findings have made us one step closer to this objective. 

 

7.2. Limitations 

Despite the useful findings in my study, this work has several limitations that need to be 

considered while interpreting the results. The main issue is regarding the sample size and 

representativeness of the samples. Since it is tough to obtain healthy human cartilage specimens, 

the control population of this study was selected from patients with femoral hip fracture - most 

commonly due to osteoporosis - whose samples may not necessarily represent healthy cartilage. 

It is likely that the molecular mechanisms underlying osteoporosis are in effect in those cartilage 

samples, which could enhance/conceal false/true differences between the OA cartilage and real 

healthy cartilage, and predispose the results to bias. However, my control samples were 

examined by pathologists and determined to be not different histologically from healthy cartilage 

samples. The sample size in the replication study (Chapter 2) was not sufficient to detect 

associations with small effect size typically expected from complex genetic studies, and it is 

possible that some genetic associations are missed in my study. This has to be addressed by 

replicating the study in a larger cohort.  

Other issues will regard the complexity of OA and classification of the disease. OA is not a 

cartilage disease only, and it affects the whole component of the joint including the synovial 

membranes, subchondral bones, and surrounding muscles. This is while my investigations were 

only limited to the cartilage (Chapters 4-6). In addition, I did not investigate gene regulations 
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beyond the mRNA levels (e.g. protein levels and modifications which are considered to be closer 

to the phenotype, i.e. OA). The OA population who took part in the study were selected from the 

end stage group who were undergoing total joint replacement surgery, and the result of the study 

could not represent the earlier stages of the disease (Chapters 2, 4-6). The diagnosis of OA was 

based on clinical guidelines (except for Chapter 3), whereas alternative strategies to detect OA, 

such as radiography, are commonly used by other researchers, leading to a common source of 

variability in the findings of my study and those of others. It is worthy of consideration that in 

none of the chapters endophenotypes or deep phenotyping of OA was taken into account in the 

analyses, as no information on these important subjects had been obtained from the participating 

patients. 

 

7.3. Future directions 

The work in this thesis is a step towards future investigations in the field of genomics and 

epigenomics of OA. Aside from the fact that the findings of this thesis will have to be replicated 

and confirmed in independent studies, several other hypotheses remain to be tested.  

In the first project, two SNPs showed a trend of association with OA in the NL population. The 

blood sample size in NFAOS has reached 550 by now, which could provide a greater power for 

conducting a replication study. The SMAD3 SNP that was identified in the Chingford cohort 

(Chapter 3) may also be tested to find whether it confers an association in the NL population. 

Given I found a differential expression in OA and healthy cartilage for SMAD3, the effect of that 

SNP on the gene expression regulation can be tested ideally using a gene expression reporter 

assay in chondrocytes. Other experiments which can likely add more to the regulation of SMAD3 
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in OA is measuring its protein levels as well as the phosphorylation levels of the SMAD3 protein 

as an indicator for the activity of the TGF-ß/SMAD3 signalling. It is also of interest to examine 

the relationship between the components of TGF-ß pathway and the expression of the 

extracellular molecules in collagen including collagen and Aggrecan. Currently, Dr. Zhai’s lab is 

conducting an experiment on human cartilage samples obtained from OA joints to examine the 

effect of treatment with TGF-ß and BMP proteins on the regulation of other components of the 

pathway and cartilage matrix genes expressions. This will likely further expand my 

understanding of the TGF-ß pathway in OA development.  

The last topic that remains to be further investigated is the role of the genes involved in skeletal 

system morphogenesis in OA. My epigenomic study (Chapter 6) together with a few other 

studies support the role of these genes in OA, whereas the area remains to be investigated. 

Functional studies will likely determine the effect of the methylation sites in those genes on gene 

expressions and association studies will identify the genomic variations within those regions that 

are associated with OA. Investigations of other fields that can proceed from this thesis include 

quantitative trait loci, genome-wide gene expressions, histone modifications, and DNA 

methylations using high-throughput technologies and the study of rare genomic variants and 

copy number variations, none of which have by far been investigated in OA genomics. Other 

factors that can be used for unraveling the etiology of OA, is the use of gene-gene and gene-

environment interaction studies, as well as the use of endophenotypes and deep phenotyping to 

enhance the study power in detecting OA candidate genes. To my best of knowledge, the latter 

(deep phenotyping) has never been used in OA research despite its obvious potential in a 

heterogeneous condition like OA.  
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Consent to Take Part in Research 

 

  

TITLE:           Newfoundland Osteoarthritis Study (NFOAS)    

 

INVESTIGATOR(S): Drs. G. Zhai, A. Furey, G. Martin, P. Rahman, R. Green, and G. Sun. 

 

You have been invited to take part in a research study.  It is up to you to decide whether to be in 

the study or not.  Before you decide, you need to understand what the study is for, what risks you 

might take and what benefits you might receive.  This consent form explains the study. 

 

The researchers will: 

 

discuss the study with you 

answer your questions 

keep confidential any information which could identify you personally 

be available during the study to deal with problems and answer questions 

 

If you decide not to take part or to leave the study, your normal treatment will not be affected. 

 

Introduction/Background: 

You have a form of arthritis called osteoarthritis. Many people in Newfoundland and other 

places have arthritis, but we still don’t know much about what causes it. We know that what you 

inherit from your parents plays a part because if you have a close relative with arthritis, you are 

more likely to get the disease yourself. You inherit genes (made up of DNA) from both your 

parents. As part of this study we will be examining DNA from osteoarthritis patients and 

comparing it with DNA from those who do not have arthritis. 

 

2.    Purpose of study: 

We will recruit about 1000 people who have osteoarthritis and 1000 people who don’t have, and 

be looking to see how the genes you inherit from your parents contribute to the cause of arthritis. 

We will also look to see whether small changes to these genes within the joints themselves can 

make a difference. 
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3.    Description of the study procedures and tests: 

You are going to have a knee or hip joint replaced because of arthritis in the joint.  You will get 

exactly the same treatment whether you decide to join our research study or not. 

 

If you join the study we will ask you for some extra tubes of blood (up to 4 extra tubes) when 

you have your routine blood collection. From this blood we will prepare your DNA (the material 

that makes up your genes) that we will store in a freezer. We will test the DNA from hundreds of 

arthritis patients to find changes that could be involved in causing arthritis. 

 

We will ask you to complete a questionnaire about your general medical history plus a short 

form just about your arthritis. We will help to complete the questionnaires, if you would like. 

 

During your joint surgery we will be keeping small samples of the cartilage, subchondral bone, 

synovial membrane, and of the fluid inside the joint, which are normally thrown away. This 

material may also be tested for its genetic content.  

 

We also ask your consent to access your medical records, both now and as long as this study 

continues (at least 5 years). This lets us compare the symptoms you have or may develop, and 

when you get them, to any genetic changes we may find. 

 

4.    Length of time: 

Completing the questionnaires should take about 30 minutes. 

There is nothing else for you to do. 

 

5.    Possible risks and discomforts: 

Bruising/discomfort after blood sample. 

 

6.    Benefits: 

It is unlikely that this study will benefit you personally. We hope that our findings may help in 

preventing arthritis in the future or in finding better treatments. 

 

7.    Liability statement: 

Signing this form gives us your consent to be in this study.  It tells us that you understand the 

information about the research study.  When you sign this form, you do not give up your legal 

rights.  Researchers or agencies involved in this research study still have their legal and 

professional responsibilities. 

 

8.    What about my privacy and confidentiality?  

Protecting your privacy is an important part of this study. Every effort to protect your privacy 

will be made. However it cannot be guaranteed. For example we may be required by law to 

allow access to research records. 

When you sign this consent form you give us permission to  

Collect information from you 

Collect information from your health record  

Share information with the people conducting the study 

Share information with the people responsible for protecting your safety        
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Access to records 

The members of the research team will see health and study records that identify you by name. 

Other people may need to look at the study records that identify you by name. This might include 

the research ethics board. You may ask to see the list of these people. They can look at your 

records only when one of the research team is present. 

 

Use of records 

The research team will collect and use only the information they need for this research study.   

      

This information will include your  

date of birth 

sex 

medical conditions 

medications 

the results of tests and procedures you had before and during the study 

information from study interviews and questionnaires 

 

Your name and contact information will be kept secure by the research team in Newfoundland 

and Labrador.  It will not be shared with others without your permission. Your name will never 

appear in any report or article published as a result of this study. 

 

Information collected for this study will be kept for at least five years after the end of the study. 

 

If you decide to withdraw from the study, the information collected up to that time will continue 

to be used by the research team.  It may not be removed. This information will only be used for 

the purposes of this study. At any time, you may ask that your DNA and any other specimens be 

destroyed. 

 

After your part in this study ends, we may continue to review your health records to check that 

the information we collected is correct.  

 

Information collected and used by the research team will be stored by Dr. Zhai who is the person 

responsible for keeping it secure.  

 

Your access to records 

You may ask the study doctor or researcher to see the information that has been collected about 

you.   

 

9.    Questions: 

If you have any questions about taking part in this study, you can meet with the investigator, Dr. 

Guangju Zhai, 709-864-6683 who is in charge of the study at this institution.   

 

Or you can talk to someone who is not involved with the study, but can advise you on your rights 

as a participant in a research study.  This person can be reached through: Health Research Ethics 

Authority (HREA) at 709-777-6974 or email: info@hrea.ca     

  

mailto:info@hrea.ca
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Future use of DNA or other samples: 

 

In order to preserve a valuable resource, your DNA and other samples may be stored at the end 

of this research project.  It is possible that these samples may be used in a future research project. 

Any future research would first have to be approved by a Research Ethics Board (REB). 

 

Please tick one of the following two options: 

 I agree that my samples can be used for an approved research project without 

contacting me again, but only if my name* cannot be linked, in any way, to the 

samples. 

 Under no circumstances may my samples be used for future research.  My samples 

must be destroyed at the end of this present project. 

 

*Includes name, MCP number or any other identifying information. 

 

 

 

The DNA and other samples from this study will be stored in St. John’s, NL for an indefinite 

period of time.  

 

At any time, you may ask that your DNA and any other specimens be destroyed. To do this 

please call Dr. Zhai at (709) 864-6683, contact anyone else on the research team, or contact the 

Office of the HREA at 709-777-6974 or email: info@hrea.ca   

 

To protect your samples, we will ask that you confirm your request in writing before we destroy 

them. 

 

 

After signing this consent you will be given a copy. 

mailto:info@hrea.ca
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Signature Page 

 

Study title:  Genetics of Osteoarthritis in Newfoundland 

                                                                                                                                    

Name of principal investigator:  Dr. G. Zhai            

                                                                                            

To be filled out and signed by the participant: 

 

Please check as appropriate: 

 

I have read the consent form.              Yes { }     No { } 

I have had the opportunity to ask questions and to discuss this study.        Yes { }     No { } 

I have received satisfactory answers to all of my questions.          Yes { }     No { } 

I have received enough information about the study.           Yes { }     No { } 

I have spoken to _________ and he/she has answered my questions         Yes { }     No { } 

I understand that I am free to withdraw from the study          Yes { }     No { } 
at any time 

without having to give a reason 

without affecting my future care 

I understand that it is my choice to be in the study and that I may not benefit.     Yes { }     No { } 

I agree that the study doctor or investigator may read the parts of my hospital records which are 

relevant to the study.                                                                                              Yes { }     No { } 

 

I agree to take part in this study.                  Yes { }     No { } 

                                                     

___________________________________           __________________________ 

Signature of participant                        Date 

 

____________________________________           _________________________ 

Signature of witness                                              Date 

 

 

To be signed by the investigator or person obtaining consent 

 

I have explained this study to the best of my ability. I invited questions and gave answers. I 

believe that the participant fully understands what is involved in being in the study, any potential 

risks of the study and that he or she has freely chosen to be in the study. 

 

             

Signature of investigator/person obtaining consent  Date 

 

Telephone number:    _________________________ 
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Genetic Study of Osteoarthritis in the Newfoundland Population 
 

General Questionnaire 
 
 
 
 
 
 

 
Date form completed:        
 (dd/mm/yyyy)     

  /   /     
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Instruction for completing the questionnaire: 

 
Please answer all questions to the best of your ability (leave blank if unknown). 

Please write in block letters using the boxes where provided. 

Use a black/blue pen. 

Cross out any mistakes & write correct answers just below the relevant boxes. 

Indicate your response by filling in the box next to the most appropriate answer or by 

writing clearly in the boxes or space provided. 

Your answers will be completely confidential. 

 
 
 
 
Self administered:  
 
 
Research assistant administered:       
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Name and address 
 
Surname  
                              
  
Given name  
                              
 
Title  
          
 
Maiden Name (if applicable) 
                              
 
Address  
                              
 
                              
 
Province                             Postal code 
                    
 
 
Date of Birth (dd/mm/yyyy) 
  /   /     
 
 
Place of Birth 
City/Town 
                    
 
Province/Country 
                    

 
 
Gender:  Male   Female  
 
 
MCP number:  
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1. Ethnic: White  Black  Other , please specify  

2.  Height:                                                                                                                          cm 

3. Weight:                                                                                                                          kg 

4a. Smoker:                                                    yes (current)         no          ex-smoker  

4b. If Yes, how many cigarettes do/did you smoke a day?                                      

5a. In the past 4 weeks approximately how many units of alcohol did you drink per week? 

(1 unit = 1 glass of wine/½ pint of beer /1 shot of sprit)?                      

5b. Do you think your drinking habits in the last 4 weeks reflect your typical drinking 

habit?                                                                                                                   Yes   no, less than 

usual   no, more than usual  

6a. How heavy were you when you were born?   

                                                                                      grams or  lbs  ozs 

6b. If weight unknown, were you                                  Light  Average  Heavy  

6c. Were you born prematurely (more than 1 week early)                    Yes  No  

7a. How heavy were you at age 20 yrs?                                                             kg 

7b. How heavy were you at age 50 yrs?                                                             kg 

 

For women only: 

8. At what age did your period start?                                                                       

9. At what age did your period stop?                                                                        

 

Section 1: Demographics 
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10a. Have you had a hysterectomy (removal of the womb)?                     Yes  No  

10b. If Yes, how old were you?                                                                                            

10c. Did the hysterectomy include removal of the ovaries?   

                                                                                                       Yes  No  or Unknown  

11. Have you ever taken an oral contraceptive pill?                                    Yes   No  

12a. Have you ever taken hormone replacement therapy?                       Yes   No  

12b. If Yes, how long in total did you take it for? 

                                                                                                                    Less than 3 months  

                                                                                                                             3 to 12 months  

                                                                                                                                   1 to 5 years  

                                                                                                                   Longer than 5 years  

13. How many live births have you had?                                                                         

 

 

 

 

 

 

 

 

 

Section 1: Demographics (continued) 
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Section 2 - Occupation 

 

14a. What was your current/last occupation (job title)?  

14b. In what industry did you carry out this occupation (eg farming, shipyard, car factory, 

shoe shop, hospital, insurance office)?  

14c. Number of years in job:                                                                                                

15a. What was the main occupation that you held for the longest period of time (job title)?  

 

15b. In what industry did you carry out this occupation (eg farming, shipyard, car factory, 

shoe shop, hospital, insurance office)?  

15c. Number of years in job:                                                                                                

For your main occupation in an average working day, did you: 

16. Sit for more than two hours in total?                            Yes  No  Don’t know  

17. Stand or walk for more than two hours in total?       Yes  No  Don’t know  

18. Kneel for more than one hour in total?                         Yes  No  Don’t know  

19. Squat for more than one hour in total?                         Yes  No  Don’t know  

20. Drive for more than 4 hours in total?                             Yes  No  Don’t know  

21. Walk more than 2 miles in total?                                     Yes  No  Don’t know  
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Section 2 – Occupation (continued) 

 

22. In the course of your work how often on average did you lift or carry weights of 10 kg 

or more? 

                                                                                                                                              Never   

                                                                                                          Less than once per week   

                                                                                                             1 to 10 times per week   

                                                                                                More than 10 times per week  

23. In the course of your work how often on average did you lift or carry weights of 25kg or 

more (Equivalent to half a bag of cement) 

                                                                                                                                           Never   

                                                                                                       Less than once per week   

                                                                                                          1 to 10 times per week   

                                                                                              More than 10 times per week  
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Section 3 – Medical history (1) 

 

Please list in the box below all medication that the patient is currently taking:  

 

 

 

 

 

Have you EVER been told by a Doctor or other health professional that you have ANY of the 

following conditions (please tick all that apply to you): 

Cardiology 

24. Congenital Heart Disease                                      29. Angina                                      

25. Coronary Heart Disease                                        30. High Cholesterol                    

26. Heart Attack                                                              31. Deep Vein Thrombosis        

27. Hypertension (high blood pressure)                 32. Varicose Veins                       

28. High Blood Pressure in Pregnancy                     33. Pulmonary Embolism         

 

Immunology/Chest Medicine                                           Gastroenterology/Endocronology 

34. Asthma                                                                       38. Heartburn                                

35. Hayfever                                                                    39. Irritable Bowel Syndrome   

36. Eczema                                                                       40. Crohn’s                                      

37. Sinusitis                                                                     41. Diabetes                                      

 

Neurology/Psychiatry                         

42. Dyslexia                                                                    46. Stroke                                        

43. Clinical Depression                                               47. Motion Sickness                      

44. Anxiety/Stress Disorder                                     48. Migraine                                    

45. Epilepsy                                                      
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Section 3 – Medical history (2) 

 

Have you EVER been told by a Doctor or other health professional that you have ANY of the 

following conditions (please tick all that apply to you): 

 

Oncology/Cancers 

49. Breast Cancer                                             51a. Skin Cancer                                        

                                                                                    if yes, was it:  

50. Colon Cancer                                              51b. Melanoma                                           

                                                                                    51c. Basal Cell Carcinoma                       

                                                                                    51d. Squamous Cell Carcinoma             

 

Rheumatology 

52. Gout                                                                 56. Osteoporosis                                      

53. Paget’s Disease                                             57. Carpal Tunnel                                    

54. Bunions                                                          58. Tennis Elbow                                      

55. Frozen Shoulder                                          59. Golfer’s Elbow                                    

 

Dermatology/Skin                                                  Hearing 

60. Acne (that caused scarring)                   63. Hearing Loss                                        

61. Viral Warts                                                  64. Tinnitus (ringing in ears)                 

62. Cold Sores                                               

 

Opthalmology/Eyes                                                 Urology 

65. Glaucoma                                                     69. Incontinence (leak urine)                

66. Cataract                                                        70. Polycystic ovary syndrome             

67. Myopia (short sightedness)          

68. Age-related Macular Degeneration (AMD)   
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Section 3 – Medical history (3) 

 

Please answer the following questions by ticking the appropriate box: 

 

71a. Have you ever lost the use of an arm, leg, vision, or ability to speak?  

                                                                                                                                         Yes  No  

71b. If Yes, how long for :                      less than 24 hours  or more than 24 hours  

72a. Do you usually bring up phlegm from your chest in winter?              Yes  No  

72b. Do you usually bring up phlegm on most days for at least 3 months a year?  

                                                                                                                                        Yes  No  

73a. Have you had heartburn or acid regurgitation in the last year?        Yes  No  

73b. If Yes, how many times have you had heartburn/acid regurgitation in the last year? 

                                                                                                            Less than once a month  

                                                                                                                   About once a month  

                                                                                                                  Once a week or more  

74a. Have you been bothered by recurrent headaches?                              Yes  No  

74b. If Yes, do you still have recurrent headaches?                                       Yes  No  

74c. If Yes, are your most troubling headaches 

                                                                                                                                        One sided  

                                                                           Accompanied by sensitivity to light/noise  

                                                                                   4 to 72 hours in duration if untreated  
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Section 3 – Medical history (4) 

 

Please answer the following questions by ticking the appropriate box: 

 

75. Since turning 16 have you ever fractured or broken a bone?  Yes  No  

If Yes, please tick which of the following bones you have fractured or broken 

                         Wrist  Arm  Ribs  Hip  Ankle  Vertebra  Other  

76. In the past 3 months have you had pain in your back on most days?  

                                                                                                                          Yes  No  

If Yes, does this pain typically radiate to either leg?                        Yes  No  

77. In the past 3 months have you had any pain in any part of your body lasting at least 24 

hours?                                                                                                              Yes  No   
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Section 4 – Nodal status 

 

We are interested in knowing whether you have any finger nodes. These sometimes relate 

to arthritis at the hand and other joints. A finger node is a firm, bobbly swelling on the back 

of the finger joint. 

For example:  

A finger without nodes:                                              A finger with nodes: 

 

 

 

 

When you meet with the research assistant, please look at your hands and then answer the 

following questions: 

78a. Do you think you have any nodes/swellings on your hands?     Yes  No  

If Yes, for each hand please circle the finger joint(s) where you have these nodes. (You may 

circle several joints). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

L R 

Base of thumb 
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Section 4 – Nodal status (continued) 

 

78b. If Yes, at what age did the nodes first develop?                                                      

78c. How many nodes do you have on the:                                                   left hand   

                                                                                                                                  right hand  

79. Which hand do you write with?                                                                                Left  

                                                                                                                                                 Right  

80a. Have you suffered from pain in the fingers for most days for at least one month? 

                                                                                                                                        Yes  No  

80b. If Yes, at what age did you first develop ‘significant’ pain in your fingers?   

81. Do you have pain in the base of your thumb (as arrow on drawing)?   

                                                                                                                                        Yes  No  
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Section 5 – Family History of Osteoarthritis 

 

82. Does/did your mother suffer from osteoarthritis of the knee/hip? 

                                                                                                            Yes  No  Don’t know  

        If Yes, has/did your mother had/have a total joint replacement of the knee/hip? 

                                                                                                            Yes  No  Don’t know  

83. Does/did your father suffer from osteoarthritis of the knee/hip? 

                                                                                                             Yes  No  Don’t know  

          If Yes, has/did your father had/have a total joint replacement of the knee/hip? 

                                                                                                             Yes  No  Don’t know  

84. Does/did your brothers/sisters suffer from osteoarthritis of the knee/hip? 

                                                                                                             Yes  No  Don’t know  

         If Yes, has/did your brothers/sisters had/have a total joint replacement of the 

knee/hip?                                                                                         Yes  No  Don’t know  

 

 

 

 

 

 

 

 


