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Abstract

This thesis shows how to compile a program expressed by a novel hardware
description language, the State Machine Algol-Like Language (SMALL), into Field-
Programmable Gate Amays (FPGAs). A "netlist generator” for the SMALL language is
created to transform a parallel Algorithmic State Machine (ASM) chart into a structural

VHDL description. The one-hot encoding technique is used for the transformations. The

structural VHDL description for the netlist is si and i by P

VSS (VHDL System Simulator) and Synopsys FPGA Compiler, respectively. The netlist
is very simple and the components of the netlist consist of only D-type flip-flops and
basic gates. The Design Manager of the Xilinx Alliance Series version 1.4 is used to
produce configuration data for Xilinx FPGA chips. The Xilinx XC4000 family is

employed as the target FPGA device.

The simulation results for several SMALL programs indicate that the netlist generator
performs the specified requirements for all the statements and all the operators in the

SMALL language.

Using the netlist generator and existing place-and-route tools makes the
implementation of SMALL programs on FPGAs easy. This research offers a significant
advance on the original SMALL implementation. Due to its simplicity and simple
semantics, it is believed that the SMALL language will be widely used in many areas in

the future.
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Chapter 1

Introduction

Several hundreds of hardware ipti have been in the past

decades (Wodtko, 1987). Only some of these languages are designed to describe
synchronous behavior. SMALL (State Machine Algol-Like Language) is a novel
hardware description language that has been developed especially for both teaching and
synchronous state-machine design purposes by Norvell (1997) at Memorial University of
Newfoundland. It consists of a simple set of symbols and notations that replace schematic
diagrams of digital circuits. SMALL, as a hardware-oriented programming language,
could be applied into many areas as follows (Norvell, 1996 and 1997).
* Itisoriented toward teaching sequential circuit design.
* Itcan be embedded in a larger specification language.
e It can aid design communication, hardware simulation and the
transformation of designs from a higher level (such as state
machine) to a lower level (such as gates).
o It can be used in design derivation from specification.

® It can be used in rapid development.



e The program written in SMALL can be directly compiled into

without human i

Due to its simplicity in sequential circuit design, in formal semantics. and in time
model, the SMALL language will be more widely used in the future and its further
development becomes more important. The purpose of this thesis is to compile programs
expressed in the SMALL language into Field-Programmable Gate Arrays (FPGAs), a
technology that allows a design expressed in the SMALL language to be implemented
without a conventional fabrication plant. The entire compilation process can be divided
into the four stages shown in Figure 1.1. First, the text of a SMALL program is converted
to a parallel Algorithmic State Machine (ASM) chart. At the second stage. the netlist for
the SMALL program is created. The next stage is to synthesise from the structural VHDL
(The VHSIC Hardware Description Language) netlist. The final stage implements the
netlist using a specific Xilinx FPGA chip. It should be noted that the functional
simulation is carried out in order to verify that the Netlist Generator performs the

specified requirements before the third stage.

The Netlist Generator is written in the functional language Gofer (Jones, 1991, 1993,
and 1994; Cunningham, 1995; and Wadler, 1995). The input to the Netlist Generator is a
parallel ASM (Algorithmic State Machine) chart that is generated by the compiler’s
front-end. Its output is a structural VHDL source file describing a netlist composed of
simple gates and flip-flops. Synopsys VSS (VHDL System Simulator) is used for
simulation that verifies the netlist circuit created by the Netlist Generator matches the

requirements. Synopsys FPGA Compiler (FC) is adopted for synthesising the gate-level
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Figure 1.1: The Framework of This Thesis



VHDL iption and ic hardware ion. Design Manager of the Xilinx
Alliance Series version 1.4 is employed to produce the configuration data for a specific
Xilinx FPGA chip. The Xilinx XC4000 family FPGA logic is chosen as the target

technology.

The rest of this thesis is organised as follows:

Chapter 2 provides an introduction to the SMALL programming language and
discusses related approaches.

Chapter 3 describes in detail the design and implementation of the Netlist Generator

for the SMALL language, including algoriths iptions and ion circuits.
Chapter 4 gives the hardware implementation of the netlist for the SMALL language

using a Field Programmable Gate Array (FPGA). Several examples are simulated to

verify that the Netlist Generator produced in Chapter 3 meets the specified requirements.

Finally, Chapter 5 contains some concluding remarks.



Chapter 2
Literature Review

This chapter is intended to provide an introduction to the SMALL programming

language and to review related work. An ing of the original i ion of

the SMALL language will be helpful in order to comprehend the Netlist Generator. An
example of a SMALL program used for synthesis and simulation in later chapters is also

presented.

2.1 SMALL: A Programming Language for State
Machine Design

One essential contribution of this thesis is the creation of a Netlist Generator for the

SMALL programming language. In order to the design and i ion of
the Netlist Generator, this section briefly describes the SMALL programming language.
The following is a review based on the SMALL documentation (Norvell, 1996).

2.1.1 The SMALL Language

SMALL stands for State Machine Algol-Like Language. Its relationship to ASM



charts is almost the same as the relationship between high-level software languages (like
Algol) and flow charts. In the SMALL language, signals are used to carry information
instantaneously and registers are used for storing information through time. The value of
a signal is determined in the current clock period; however, the value of a register is the
latest value assigned 10 it in a previous clock period. The following two forms are used
for the declarations of the signals and the registers, respectively.
sig signal_name T C
regq register_name T C
In the above forms, sig and reg are keywords; signal_name and register_name are
identifiers. T is a type that is either bool or array n of T at present and C is the
scope of the declarations. In order to communicate with external world, the keyword

global could be added to the beginning of the declarations.

The statements in the SMALL language include:

.

s ! expression which places data on a signal s; this is called as “assert statement”.

r < expression which places data in a register r; this is called as “assignment
statement”.

* tick which expresses the end of one clock and the start of the next.

. 0 ;. r_n which a sequence of statements

executed consecutively from left to right.
e if expression then statement 0 else statement_| £i which is an alternative

composition and means that when the expression is true, the statement statement_0 is

d; ise, the statement r_I is executed.



while expression do statement od whose meaning is that the starement is executed

if the expression is true; the expression is in the clock period following

the completion of the statement.

repeat statement until expression whose meaning is that the statement is
executed, and if the expression is true in the last clock period of the statement. the
repeat statement is complete; otherwise, the loop is restarted in the next clock

period.

par statement_0 || statement_| || ... || statement_n rap which is a parallel

composition and which will end as soon as all the processes have ended.

skip which simply ends immediately.

stop which stops the interpreter.

In the SMALL language, the concept of duration is important. It is defined as the
difference between the initial and final clock period by Norvell (1997). According to the
definition, the duration of assert and assignment statements is 0; tick and skip have
duration 1 and 0, respectively. The duration of a parallel statement is the maximum of the
duration of the processes and that of a sequence of statements is the sum of the duration
of each statement. In the sequence of statements, the final clock period of statement_i is
also the initial clock period of statement_i+1. For the altenative composition, whether
statement_0 or statement_l is chosen, the start time of the chosen statement is the same
as the start time of the whole alternative composition. The finish time of the alternative
composition depends on the finish time of statement_0 when the value of the expression

is true at the start time. In the case of a false value for the expression, the finish time



of the alternative composition is the same as the finish time of statemeni . For the
while statement, when the expression is true during a clock period. the statement is
executed in the same clock period and the loop is restarted in the first clock period after
the last clock period used by the starement; when the expression is £alse, the while
statement ends immediately. Therefore. the duration of the while statement is related to
its loops. Similar to the while statement, the duration of the repeat statement is also
related to its loops. Both looping forms imply a delay immediately before the loop is
restarted.

A number of the operators i i The ions are divided into

seven categories, including identifiers, constants, unary expressions, binary expressions,

subscript i subarray ions and array i In the next section, an

example will be given to illustrate the above statements and some operalors in the

SMALL language.

2.1.2 The Formal Semantics of SMALL

A specification is a predicate on behaviours. In SMALL, the starting time, the final
time, and values of signals and registers over all time are used to describe the behaviours.
The following variables representing times and time varying functions describe the
behaviour of a command with a global signal s: T;and aglobal registerr:
7.

t: xnat The starting time.
t': xnat The final time.
s : wire.T, The value of s during each clock period.



5 : wire.bool Whether s is asserted during each clock period.
r:wire.T. The value of r during each clock period.
7 : wire.bool Whether r receives a new value after each clock period.

In the above definition, xnar is a set of times and wire.T represents a function. xnar

and wire. T are defined as follows:

Xxnat = nat \Jx
wire.T =xnat - T

The formal ics is ined by semantic ions which are in

(Norvell, 1997). Their definitions include that primitive commands are specifications and

that composition operators equal operators on specifications.

The following example specification obtained from (Norvell, 1997) can explain some
simple semantics.
F=t+ 1 AStAst=ratAFIAr.(t+1)=10

A d that i this ification will have the following meanings:

The duration of the command is 1.

* During its first clock period, the signal s has the same value as the register .

* 10 will be assigned to r between its two clock periods.
2.1.3 An Example Program Written in SMALL

Figure 2.1 shows an example written in SMALL to illustrate many expressions and
statements in the language. This example is obtained from (Norvell, 1996) and will be

synthesised and simulated in Chapter 4.



par
global signal go : bool
global signal done : bool
global signal multiplier : array 4 of bool
global signal multiplicand : array 4 of bool
global reg p : array 8 of bool
while true do
reg a: array 4 of bool
reg b: array 4 of bool
reg count: array 2 of bool
repeat / Initialize while waiting to start.
plag4] <- 4 of 0
count <- 0 as 2 bits
a <~ multiplicand
b < multiplier
until go
tick

repeat // Invariant: the product thus far (multiplicand * the first

/lcount bits of multiplier) is the last 4+count bits of p.
1/ Form product of a and b{0].
signal pp : array 4 of bool
if b[0] then pp !a else pp ! 4 of 0 fi
// Add this to the most significant 4 bits of p.
signal sum : array 5 of bool

sum ! p(4@4] uplus pp// Replace the top 4 bits of the
// product with the 5 bit sum. To make room, shift.

pI5@3] <-sum
pl3e0] <-p(3ei)
b <- b(3@1] ++ (0]
count <- count plus (1 as 2 bits)
until count = 3 as 2 bits
tick
repeat dome ! 1 until not go
od
]
global signal go : bool
global signal dome : bool
global signal multiplier : array 4 of bool
global signal multiplicand : array 4 of bool
go'1 multiplier ! [1,1,0,0] multiplicand ! [0,1,0,0)
tick
repeat skip until done
rap

Figure 2.1: A Sequential Multiplier
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The example in Figure 2.1 is used to multiply two 4-bit numbers to produce an 8-bit
result. [t produces one partial product in each clock period. By shifting the partial product
and adding the multiplicand if a bit in the multiplier is 1 in each clock period, the final
product can be obtained after five clock periods. Many signal and register declarations
and statements appear. For example, Line 0 to Line 42 is a parallel composition. Assert

and i are used to send data to the signals or the

registers. For example, the statements such as p(4@4]<-4 of O, multiplier !

(1,1,0,0]. and multiplicand ! [0,1,0,0] initialise the partial product, the

iplier, and the multipli pectively. There are many jons and operators
in the example. For instance, the expression, p [4@4] in Line 11, presents the segment of
length 4 beginning at index 4 and the "4 of O’ expresses an array of length 4 that is the
same as (0, 0,0, 0]. Because index 0 is used for the least significant bit, the expression
'las 2 bits'in Line 29 means the 2 bits unsigned magnitude representation of 1 and
has the value [1,0]. The operators such as 'uplus’ in Line 24. '++' in Line 28 and
‘plus’ in Line 29 distribute to array of boolean level. From the above example, it is
shown that SMALL has many distinguishing features that other hardware description
languages lack. Compared with other hardware description languages, SMALL's

simplicity will help it to be used in many practical areas.

2.2 The Original Implementation of the SMALL Language

The following paragraph from (Norvell, 1996) describes the original implementation
of the SMALL language.



The current implementation is in Gofer version 2.30 and uses the
prelude cc.prelude. Gofer is a functional language designed and
implemented by Mark P. Jones and is very similar to Haskell. Extensive

use is made of monads and an imperative programming style.

The implementation of the SMALL language is shown in Figure 2.2. The original
implementation consists of all components other than the Netlist Generator. In Figure 2.2,
the front-end is composed of Lexer, Parser. and Analyzer. The function of each

component shown in Figure 2.2 is described in the following.

The lexer takes a source program written in the SMALL language as its input and
outputs a token sequence. The parser creates an abstract syntax tree and finds all syntax
errors. The analyzer creates an intermediate representation of the source program from
the abstract syntax tree. It has several functions. The first is to check the source program
for compile-time errors such as type errors and misuses of identifiers. The second is to
produce a requirement table that is a list of all signals and registers, including the extra
signals introduced for each process in order to coordinate termination of the parallel
processes. These signals and registers are used to nun the program. The last function is
the generation of an ASM chart representation of the program. The ASM chart expresses
the control-flow of the source program. It is a collection of nodes connected by directed
edges. Nodes are divided into five varieties: state nodes, dummy nodes, assert nodes,
assignment nodes, and condition nodes and are labelled by expressions. The next step is
one of two alternatives. Either the executer simulates execution of the ASM chart with

test inputs, or the Netlist Generator translates the ASM chart to a gate-level
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Figure 2.2: The Implementation of the SMALL Language
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implementation in terms of gates and flip-flops.

2.3 The Main Contributions of This Thesis

One essential contribution of this thesis is the creation of a Netlist Generator for the
SMALL programming Language. The ASM chart and requirements table is taken as the
input to the Netlist Generator. The output will be a netlist composed of gates and flip-
flops and expressed by a VHDL entity declaration and a structural architecture

declaration. The Synopsys VSS is used for the i i ion of the

VHDL description to verify that the Netlist Generator performs the specified
requirements. The detailed design and implementation of the Netlist Generator for the

SMALL language will be presented in the following chapter.

Another contribution of this thesis is to implement such netlists with FPGAs. The
Synopsys FPGA Compiler is adopted for the gate-level synthesis and logic optimisation.
The Design Manager of the Xilinx Alliance Series is used to create configuration data for
Xilinx FPGA chips. Some information about pre-placement and routing and post-layout
for implementing a sequential multiplier shown in Figure 2.2 on a Xilinx XC4028EX-3-

PG299 FPGA will be provided in Section 4.4.

2.4 Related Work

There has been some previous work on compiling a program written in a selected

language into hardware, such as FPGAs and silicon. The difference between synchronous



and methods for ing the timing in circuits should be noted. In
synchronous communication, a2 message is sent and received simultaneously. without
communication delay. An asynchronous communication has a time delay when a
message is sent and received. Usually, local handshaking signals are used in the
asynchronous method; a global clock is used in the synchronous method. The following

is a review of the related work.

An early work is done by Martin (1986). He developed a compiler from a concurrent

programming language into delay-insensitive circuits that are obtained by a series of

il i The ilation is divided into the four steps:

P 2

process it il i i 1! ion. and operator

reduction. The circuits are correct by construction.

The work of Weber er al. (1992a and 1992b) on Joy, a simple yet complete
programming language for circuits, is similar to that of Martin. They have modelled

delay-insensitive circuits as directed graphs and proved the correctness of their

compilation algorithm. The resulting circuits are of some primary

each of the components is described by a wiring diagram and a finite-state automaton.

Guo and Luk (1995) have provided a logy for iling a design
in the Ruby language into FPGAs. The Ruby language is intended for the specification

and synthesis of the circuits described by relati jons of their

(Rossen, 1990) and allows simple relations to be composed into more complicated ones

by using higher-order functions. With mathematically based compilation tools, the



correct hardware can be produced from high-level descriptions very rapidly. The
refinement module and the floorplanning module of their compilation system are also

discussed in detail.

Another close work presented by Berry and Gonthier (1992) and Jagadeesan er al.
(1995) has involved the hardware implementation of the ESTEREL synchronous
programming language which is based on the "Synchrony Hypothesis” and has well-
defined mathematical semantics. Berry and Gonthier have shown an algorithm to

translate ESTEREL programs into deterministic automata. Berry (1995) has provided the

direct hardware i ion that ESTEREL into boolean
circuits by using the current ESTEREL or software iling and
technology.

LUSTRE is a synchronous declarative language devoted to real-time systems and is
suitable for data path description. Thuau and Pilaud (1990) have divided the compilation
of a LUSTRE program into two steps: expanding all the nodes to get a single system of

and ing a finite The verification tool LESAR is developed

for proving the correctness of a circuit.

The VHDL (Lipsett et al., 1989; Patterson, 1994) and Verilog (Thomas and Moorby,
1991) languages provide the digital system designer with accurate description and
modelling of a system at a wide range of levels, from the highest behavioural level of
abstraction to the lowest structural gate level. Many people are interested in circuit

synthesis with VHDL or Verilog. Greaves (1995) has worked on defining formal



semantics for the Verilog language that is used for simulation and compilation into

hardware. Gschwind and Salapura (1995) have proposed a VHDL design methodology

for FPGAs to integrate the i i ion and i ion processes.

Hehner er al. (1998) presented two new ways to implement ordinary programs with
logic gates. They have adopted local delays and given a framework for the proof of

correct circuits in terms of a formal semantics for programs and circuits.

The most closely related work is conducted by Page and his group (Page and Luk,
1991; He et al., 1993; and Page, 1996). They have compiled programs written in a subset
of occam into FPGAs. A "normal form™ method (He er al., 1993) is used for processing
into a netlist and for proving the correctness of their compilation. Page and Luk (1991)
have described a prototype compiler written in the functional language SML that
transforms Handel, an occam-like language, to a netlist. Page (1996) has further
implemented his hardware-software codesign by compiling the Handel language into a
netlist, which is suitable for Xilinx Dynamically Programmable Gate Arrays (DPGAs)

technology.

This research is also related to and influenced by the above work. We have focused on
compiling programs in the SMALL language into a netlist, which can be loaded into a
Xilinx FPGA. Compared with the work of Page ef al., the main difference is that, Page er
al. considered the implementation of control hardware for channel communication and

used a flip-flop in their assignment control hardware; this research has not. This is



because assi and assert in SMALL have a duration of 0

rather than 1.

The one-hot encoding is used as the encoding technique in this thesis. [t uses one flip-
flop per state node. Gschwind and Salapura (1995) have proved that one-hot encoding is
both the fastest encoding and one of the smallest representations as it makes the best use

of the flip-flops on an FPGA.



Chapter 3

Design and Implementation of the Netlist
Generator for SMALL

The purpose of this thesis is to compile programs expressed in the SMALL language
into FPGAs. To do so, a Netlist Generator for’ the SMALL language has been created to
transform parallel ASM charts to structural VHDL files. The ASM chart is obtained after
the source SMALL program is processed by the front-end stage shown in Figure 2.2. The
VHDL file describes a netlist that is a collection of devices and wires implementing the
program. The devices in our netlist consist of simple gates and D-type flip-flops. The
Netlist Generator is programmed using the functional language Gofer (Jones, 1994;
Cunningham, 1995; and Wadler, 1995). Based on (Norvell, 1998), this chapter will give

detailed design and implementation for the Netlist Generator.

3.1 Specification for the Netlist Generator

The input to the Netlist Generator is an ASM chart. The output will be a VHDL file
composed of an entity declaration for a device and a structural architecture for the same

device. This section will provide an example ASM chart and the data-flow diagram for



the Netlist Generator. An example VHDL description will be given in Section 3.9.

3.1.1 An Example ASM Chart

In order to illustrate ASM charts, Figure 3.1 shows a simple SMALL program
describing a parity generator and some test inputs. The function of the program is that at
each clock period, the ouBit is the parity of those inBits that have been seen in the
previous clock periods. A timing diagram of the program is given in Figure 3.2. It can be
seen that in Figure 3.2, the output named owBir is [0,0,1,1,0] if the input named

inBitis [0, 1,0, 1, 1] in the first five clock periods.

global sig inBit: bool
global sig ourBit: bool
par

while true do
repeat
outBit ! O
until inBit
tick
repeat
outBir !
until inBit

-

tick
tick
tick
tick
tick

MO o

Figure 3.1: The Example SMALL Program



Figure 3.2: A Timing Diagram of the Program Shown in Figure 3.1

This program shown in Figure 3.1 can be converted to a parallel ASM chart form by a
front-end that has been implemented by Norvell. It is noted that a requirements table is
included in the parallel ASM chart in this chapter. The ASCII descriptions of the ASM
chart of the SMALL program are shown in Figure 3.3, in Figure 3.4, and in Figure 3.5. A

diagram of the ASM chart appears in Figure 3.6.

(“inBit",Signal "inBit"True of type bool)
("outBit",Signal "outBit"True of type bool)
("#r*1",Signal "#r* 1" True of type bool)
("#140",Signal "#1°0"True of type bool)

Figure 3.3: The ASCII Form of the Example ASM Chart: Entities
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ASM charts are composed of "Entities”, "Nodes". and "Edges”. The collection of
entities shown in Figure 3.3 is called a "requirements table” and lists all the registers and
signals used for communication across space or time in the source program. The

requirements table provides the following information for each entity:

o The name of the entity.

®  Whether the entity is a signal or register.

*  Whether the entity is local or global.

e Forasignal entity, the active value of the signal.

e The entity's type. that is, bool or an array.

It is noted that signals "#r*1" and "#1*0" shown in Figure 3.3 are introduced in order

to coordinate termination of the parallel processes.

Figure 3.4 represents a collection of nodes. These nodes are divided into five kinds:
state nodes, dummy nodes, assert nodes, assignment nodes, and condition nodes. For
each node, the node number and the node type are needed. Additional expressions are
used for the assert nodes, the assignment nodes, and the condition nodes. Assert nodes
and assignment nodes are labelled with two expressions representing the target signal or
register and the value. The expression labelling a condition node is a boolean and is used
to determine which branch is taken. Condition nodes are also labelled with the numbers
of the nodes to branch to. Their detailed descriptions are given in Section 3.6, which

discusses the generation of circuits for nodes.



The ASM Chartis

36

GRAPH Labels

(35.%CondNd (#1*0.((22,17).bool)) then 31 else 34)
(34.%StateNd)

(33.%CondNd (¥r*1.((22.17).bool)) then 31 eise 32)
(32.%StateNd)

(31,%DummyNd)
(30.%AssertNd(#r*1.((22,17),bool))!(True,((22.17).bool)))
(29.%AssertNd(#1*0,((22,17),bool))!(True.((22,17),bool)))
(28.%StateNd)
(27.%AssertNd(inBit,((27,17).bool))!(True.((27.25),bool)))
(26,%StateNd)
(25.%AssentNd(inBit,((26,17).bool))!(True.((26,25),bool)))
(74 %SmeNd

it,((25,17), !(False.((25.25).bool)))

'/oSweNd)
%AssertNd(inBit,((24,17),bool))!(True.((24.25),bool)))
.%StateNd)

(19, %A inBit((23.17). % ((23.25),bool)))
(18.%StateNd)

(17.%StateNd)

(16.%CondNd (inBit,((20,28).bool)) then 14 else 15)

(s %DummyN )

( DummyNd)

(13. .%Asscn.Nd(oulBiL(( 19,27),bool))!(True.((19,36),bool)))
(12.%DummyNd)

(11.%StateNd)

(10,%StateNd)

(9.%CondNd (lnBlL((lG.ZS)‘bool)) then 7 else 8)
(8,%DummyN )

(7.%DummyN

(6. %AssenNd(oule((l 5,27),bool))!(False,((15.36),bool)))
(5.%DummyNd)

(4.%CondNd (Tnu.((l},l}) bool)) then 2 else 3)

(0,%StateNd)

Figure 3.4: The ASCII Form of the Example ASM Chart: Nodes



Adjacency
(34.030D

(15,(17])
(13,(16))

(12.[13])

(10.[5))
(8.(10))
6.09)
o.0
G.[6)
@[5D
(L[4D
[C1))

Figure 3.5: The ASCII Form of the Example ASM chart: Edges



The edges shown in Figure 3.5 express a collection of references to successor nodes.
They are very useful in connecting nodes. These edges and the nodes shown in Figure 3.4
form a node-labelled directed graph. Figure 3.6 shows the graph of the example ASM
chart that represents the control-flow of the source program in Figure 3.1. In Figure 3.6,
the first node is always a state node named Node 0. [t represents the start of the program.
In this example, a parallel statement appears at the beginning of the program so that a
parallel branch is produced. Therefore, Node 0 has Node 1 and Node 19 as its successor
nodes. For each tick statement, each while loop. and each repeat loop in the source
program, the front-end will generate one state node. These state nodes represent the
control state of the program. They are used to wait for the coming of the next clock
period. Therefore, a timing delay is implied in the while loops and the repeat loops.
For assert nodes, assignment nodes, and dummy nodes, no timing delay exists. Condition
nodes are generated for while loops and repeat loops. Each condition node has two

branch nodes as its successor.
Expressions come in seven forms: identifier expressions, constant expressions, unary
binary i i) array i subarray i and

array building expressions. Each expression consists of its type and its location (line

number and column number) in the source program. The detailed discussion about
expressions will be given in the Section 3.7, which describes generating expression
circuits.

It is believed that the clear understanding of the ASM chart is very important for

understanding the netlist generation.



Parallel

loops

29:41%0 ! 1

Figure 3.6: An Example ASM Chart



3.1.2 Data Flow Diagram for the Netlist Generator

Figure 3.7 gives the data flow diagram for the Netlist Generator. The processes for

the Netlist Generator include the following:

Generate the circuits of signals and registers according to "Entities" in Figure 3.3.
*  Generate node circuits in terms of "Nodes" in Figure 3.4.

*  Generate the circuits of expressions for the nodes that have the expressions.

Link all the above circuits according to the edges of the graph in Figure 3.5.
* Form an output VHDL file representing the final circuits stored in the "Netlist”

shown in Figure 3.7.

The following sections will describe the modules that implement the above processes,

including the algorithms and the resulting circuits.

3.2 Utility Module

This module has defined some useful data types and useful functions. Gofer notations
used in this module and other modules are explained in Appendix F. Especially, the
Assoc type constructor is widely used in this thesis. Its definition is as follows:

type Assoca b =[(a b)]

In the above type synonym, Assoc is the name of a new type constructor; a and b are
type variables representing the arguments of Assoc. [ (a, b)] is a type expression.
Assoc a b represents a finite map that associates members of type a with members of type

b.
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Requirements Table ASM Chart

Signals

Devices and Wires

Figure 3.7: Data Flow Diagram for the Netlist Generator



3.3 Netlist Module

In this section, the data structure of the netlist and the types of gates and flip-flops
used in the netlist are defined. The functions that create wires and connect devices are

also described.

3.3.1 Netlist

The netlist consists of devices and wires. The devices chosen in this study include
multi-input and one-output gates such as or-gates, and-gates and xor-gates, one-input and
one-output gates such as not-gates and buffers, and D-type flip-flops.

For the devices, a data type named DeviceKind is defined in the following form.

- Device name
Input ports
Output ports

data DeviceKind = DevK String
[(PortName, Bool))]
[PortName)

The String represents the device name. The type named PortName is the same as
String and is used to indicate whether the port is input or output. In the case of input

ports, the Bool is used to describe whether the port can connect to more than one wire.

The devices used in the netlist are defined as follows:

andGate, orGate, xorGate, inverter, dFlipFlop, buffer :: DeviceKind
andGate = DevK "AND2" [("in", True)] ["out"]

orGate = DevK "OR2" [("in", True)] ["our"]

xorGate = DevK "XOR2" [("in", True)] ["our"]

inverter = DevK "INVERTER" [("in", False)] ["out"]

dFlipFlop = DevK "DFLIPFLOP" (("in", True)] ["out"]

buffer = DevK "BUF" [("in", False)] ["our"]
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For the wires, the type [nOutLoc is an enumerated type defined as

data [nQOutLoc =  InString == Input wire
| Out String ---- Output wire
| Local —== Local wire

The String in the above definition represents the wire name.

For the netlist, its type is defined as

data Netlist = NL Int - The number of devices and wires
(Assoc DevicelD DeviceKind) - Device map
(Assoc WirelD InOutLoc) — Wire

(Assoc DevicelD (Assoc PortName [W:relD])) -—- Connection map
In the above form, the type named Device/D and the type named WirelD represent the
identifiers of devices and wires, respectively. From the definition of the type Nerlist, it
can be seen that the data structure of the netlist shows the characteristics of devices and

wires and the relationship between the device and its wires.

3.3.2 Functions

The functions exported from the Netlist module are called creareDevice,
createLocalWire, createlnputWire, createOutputWire, and connect. They have the
following meanings:

® createDevice is used to create devices.

createLocalWire, createlnputWire, and createOQutputWire are used to create local
wires, input wires, and output wires, respectively.

connect is used to connect wires to ports of devices. This function needs to check that

the device has the port and then to confirm that, unless permitted, the port is not

already ise the error i ion will be given.




3.4 Netlist State Module

This module defines some data types and some functions. For the Netlist state, the
tuple type named NLGStare is defined as (Netlist, WireTab, ReqTab). The type named
ReqTab is intended to describe the characteristics of the signals and registers. The type
named WireTab represents a function from Strings to WireTabEntries. WireTab and

WireTabEntries are declared as follows:

data WireTabEntry

= WTELocSig DeviceID  --the identifier of the input gate.

WirelD - the identifier of the wire named s.
| WTEGlobSig DevicelD - the identifier of the input gate.
WirelD -- the identifier of the input wire named
- assert_global_s.
WirelD ~ the identifier of the wire named s.

| WTELocReg DeviceID - the identifier of the input gate named val.
Device. - the identifier of the input gate named assign.
WirelD -~ the identifier of the wire named r.

| WTEGlobReg DeviceID - the identifier of the input gate named val.
DevicelD - the identifier of the input gate named assign.

WirelD -- the identifier of the input wire named val_global _r.
WirelD -- the identifier of the input wire named

-- assign_global_r.
WirelD -- the identifier of the wire named r.

| WTENode DevicelD -~ the identifier of the input gate named go.
ire. — the identifier of the output wire named done_N.
| WTECondNode DeviceID  -- the identifier of the input gate named go.
WirelD - the identifier of the done_N_then wire.

WirelD -- the identifier of the done_N_else wire.
Node -- the identifier of the gate named thenNode
Node - the identifier of the gate named elseNode
| WTEDataType String
| Sig'ToDevice DevicelD String

| RegWToDevice DevicelD DevicelD String

type WireTab = Assoc String WireTabEntry



The type named y contains i ion such as the identi of input
gates and output wires for nodes. for local signals. and for local registers. For global
signals and global registers. additional identifiers of input wires are needed. The
information about signals and registers will be used in the generating signal and register
circuits module and the generating expression circuits module. For condition nodes,
additional identifiers of nodes are used to choose the control flow. The information about
condition nodes is used in connecting node circuits module. The last three lines in

WireTabEntry declaration are used to keep the names of signals and registers for output.

Functions such as createDeviceM. ireM,  createOt

createLocalWireM. and connectM are the monad forms of the functions defined in the

netlist module. The functions named update Wi and { update the

wire table and the requirements table.

3.5 A Module for Generating Signal and Register Circuits

One of the processes for the Netlist Generator is to transform all the signals and
registers used in the source program into their circuit descriptions. The algorithms for the

transformation and the resulting circuits are shown in this section.

3.5.1 Generating Signal Circuits

In the SMALL language, signals are used to carry information through space and the
values of the signals are determined in the current clock period. Figure 3.8 shows the



circuit representations of the signals in the requirements table. It is noted that signals
have an active level. The value of the active level of a signal depends on the default value

that is the value of the signal in clock periods where it is not asserted. The default value

of an active true signal is false and vi¢ ing to the ition and the assert
node circuit, an or-gate is chosen in active-true signal circuit as shown in Figure 3.8(a)
and Figure 3.8(c). An and-gate is used in active-false signal circuit as shown in Figure
3.8(b) and Figure 3.8(d). In Figure 3.8(c), an input wire named assert_global_s, an or-
gate named assert, and its output wire named s are used to represent an active-true global
signal s. The circuit representation of each active-false global signal s is shown in Figure
3.8(d). It consists of an input wire named assert_global_s, an and-gate named assert, and
its output wire named s. The buffer and its output wire named global_s as shown in
Figure 3.8(c) and Figure 3.8(d) are added for the need of the output VHDL file. In the
specification of the Netlist Generator, every global signal is defined as the output port of
the VHDL file that can not be used as an input to an internal component. Therefore, the
signal s is used as both input and output and global_s is only used as an output port. The
same goes for registers. It is noted that input wires named assert_s_0, assert_s_l, and
assert_s_N are not generated here and only shown for illustrative purpose. They are from
the outputs of the and-gates or or-gates produced in the circuits of the assert nodes that
use the signals as the targets. Section 3.8 gives a simple example to explain the

relationship between signal circuits and assert node circuits.

For a signal that has the type array n of T, the circuit representation of each

element in the array should be generated. The identifiers of the gates named assert, the
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assert_s_0.
assert 5
assert s N

(a) Active_True Local Signal Circuit

assert s 0
assert_s s
assert_s N

(b) Active_False Local Signal Circuit

global_s

(c) Active_True Global Signal Circuit

s > global_s

(d) Active_False Global Signal Circuit

Figure 3.8: The Signal Circuits
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input wires named assert_global_s. and the output wires named s shown in Figure 3.8 are
added to the wire table when the circuit of each signal named s is created.

3.5.2 Generating Register Circuits

The circuits of the registers in the requirements table are generated in Figure 3.9. The
D-type flip-flops are used in the circuits for the registers to store information. The value
of a register is the latest value assigned to it in a previous clock period. For each local
register named 7, as shown in Figure 3.9(a), its transformation is composed of three or-
gates, two and-gates, a not-gate, a D-type flip-flop, and several wires. In Figure 3.9(b),
additional input wires named val_global r and assign_global_r, a buffer, and a wire
named global_r are needed for each global register named 7. The buffer is generated for
the same reason as the buffers in Figure 3.8. All flip-flops in the netlist use the same
clock line. The clock is designed as a global VHDL signal. Similar to the transformations
of the signals, input wires named val_r_0, val_r_1, val_r_, assign_r_0, assign_r_I, and
assign_r_N are not generated here and only shown for illustrative purpose. They are the
output wires named val_Targer and assign_Targer produced in the circuits of the

assignment nodes that use the register as the target (see Figure 3.13).

The transformation of a register that has the type array n of T is similar to the
transformation of the signal that represents an array. As shown in Figure 3.9, the
identifiers of the two input or-gates named val and assign, the input wires named
val_global_r and assign_global_r, and the output wire named r are updated to the wire
table when the circuit of each register named 7 is created.



(a) Local Register Circuit

(b) Global Register Circuit

Figure 3.9: The Register Circuits




3.6 A Module for Generating Node Circuits

This module generates the circuits of all the nodes in the ASM chart. Each node is
labelled. Labels come in five varieties: dummy nodes, state nodes. assert nodes,
assignment nodes, conditional nodes. The function named genOneNdCircuit generates
the circuit for one node. When the circuits are generated for dummy nodes. state nodes.
assert nodes, and assignment nodes, the identifiers of the input or-gate named go and the
output wire named done_N are kept in the wire table. For condition nodes, the identifiers
of the input or-gate named go and the two output wires named done_VN_then and

done_N_else and two nodes named thenNode and elseNode are stored in the wire table.

The dummy nodes are place-holders. The control flow goes directly through these
nodes. The circuit of a dummy node simply consists of an or-gate and an output wire, as
shown in Figure 3.10. The wires named done_p0, done pl, and done_pM are not
generated here and they are from the output wires that are produced in the circuits of the

predecessor nodes. The same goes for all node types.

The state nodes represent the control state of the program. They are used to wait for
the coming of the next clock period. The first node listed in the ASM chart is always a
state node and represents the start of the program. As shown in Figure 3.11(a), its circuit
is composed of a D-type flip-flop, an inverter, and three wires. The input wire is a true
wire. It is required that the output wire should be true in the first clock period in order to

start the program. Figure 3.11(b) gives the circuit generated for a state node numbered V.
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Figure 3.10: The Dummy Node Circuit

N done N
=

(a) The Initial State Node Circuit

(b) The Circuit of the State Node Numbered N

Figure 3.11: The State Node Circuits



The assert nodes are used to transfer information to signals. In the ASM chart. assert
nodes are labelled with two expressions: target and value. The target expression
represents the lefi-hand-side of an assert statement and will be a signal. The value
expression indicates the right-hand-side of an assert statement and will be one of seven
kinds of expressions described in the next section. Figure 3.12 gives the assert node
circuits. Before generating the assert node circuits, the circuits of the two expressions are
created. In Figure 3.12. the value expression circuits are represented by a box labelled
value or by several boxes labelled value0, valuel, ... , valueN in the case of an array
target. As mentioned in generating signal and register circuits module, the output wire
named assert_Target in Figure 3.12(a) will be the input of the or-gate in the circuit for the
target signal of the assert node. The assert_Targer output in Figure 3.12(b) will be the
input of the and-gate in the circuit for the target signal of the assert node. The circuit in
Figure 3.12(c) is generated for an assert node whose value expression is an array
expression and whose target expression is an active-true array signal. The output wires
named assert_Target0, assert_Target!, ... , assert_TargetN will be inputs to several or-
gates in the circuit for the target signal of the assert node. Asserting an active-false array

signal circuit is not shown. It can be obtained according to Figure 3.12(b).

The assignment nodes are used to store information in registers. Similar to assert

nodes, each assi node is i with a target ion and a value

The target i the left-hand-side of an assignment
statement and will be a register. The value expression indicates the right-hand-side of an

assignment statement and will be one of seven kinds of expressions described in the next
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valuel

assert_TargetN
valueN

(c) Asserting an Active-True Array Signal Circuit

Figure 3.12: The Assert Node Circuits



section. The circuits shown in Figure 3.13 are used to represent the assignment nodes.
Figure 3.13(a) represents an assignment node whose target expression is a bool type
register. The box labelled value represents the circuit of the value expression of the
assignment node. The wires named assign_Targer and val_Target are the input wires of
the or-gates named assign and val in the target register circuit, respectively. The wire
named done_X of this node circuit will be the input wire of the or-gate in its successor
node. The circuit shown in Figure 3.13(b) is generated for an assignment node that has an
array type register and an array expression. Each of the boxes that are labelled va/ue0,
valuel, ..., valueN represents a value output wire of the array expression. Each of the
output wires named val_Targer0, val_Targetl, ... , val_TargetN will be the input wire of
an or-gate named val in the target register circuit. The wires named assign_Targe0,
assign_Target!, ..., assign_TargetN will be the input wires of the several or-gates named

assign in the target register circuit.

The condition nodes have associated a condition expression that will be true or false
and two nodes called rhenNode and elseNode. When the expression is true, the node
named rhenNode will be executed; when the expression is false, the node named
elseNode will be executed. The circuit for each condition node is generated as shown in
Figure 3.14. It is composed of an or-gate named go, two and-gates named rhen and else,
an inverter, a box and several wires. The inverter is used to implement the choice of the
control flow. In Figure 3.14, the box labelled condition expression represents the
expression circuit of the condition node circuit. The output wire named done_N_then in

the condition node circuit will be the input wire of the go gate of the node named



done
one_p

5 done_N
—-L—{dam M g/ assign_Target
¢ assign Jarget

(2) Assigning a Register Circuit

done N
fone.

—come

assign_Target0

_—_D_valj_mxﬂ)
[ i g
val_Targetl

vilgel assign_TargetN

argetN

(b) Assigning an Array Register Circuit

Figure 3.13: The Assignment Node Circuits



thenNode. The output wire named done_V_else in the condition node circuit will be the

input wire of the go gate of the node named elseNode.

done_p0
Gnepr—) N\
done pM p J dhen done_N_then

done N _else

condition else
expression

Figure 3.14: The Condition Node Circuit

3.7 A Module for Generating Expression Circuits

This module will all i that are i with assert nodes,

assignment nodes, and condition nodes into their corresponding circuits. When
generating the circuits of these nodes, the expressions will be transformed into their

circuit representations as a part of these node circuits. In the SMALL language, there are

seven kinds of i identifier expressi constant i unary
binary i subscript i subarray i and array
building i Each ion is into a circuit with the value outputs

for the value of the expression and an overflow output that indicates whether overflow
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occurred in the calculation of the value output. When adding or subtracting two's
complement numbers and if the result is too large or too small to be represented in the
specified range, we say that "overflow" occurs. The function named genExpCircuits is

defined to i the ion. Its input is the

the type and the location and other information. Its outputs are wires representing the
value outputs and the overflow output. For each kind of expression. the following gives

its circuit representation.

The constant expression, true, is implemented by a true wire as the output value and
a false wire as the overflow output. The constant expression. false, is implemented by

a false wire as the output value and a false wire as the overflow output.

An identifier expression is a string referring to a signal or a register in the requirements
table. The output value of the identifier expression referring to a bool type signal or
register is the output named s or r of its signal or register circuit. The false wire is used to
express the fact that no overflow occurs in generating the identifier expression circuit. In
the case of the identifier referring to an array type signal or register, the output values
will be a list of the outputs of every element in the array. The overflow output will be

false wire.

A unary ion consists of an ion and an operator that is one of not, -,
and overflow. The not expression is implemented by an inverter as shown in Figure
3.15(a). The overflow expression will be true if there is overflow in the evaluation of

its operands. The overflow output is the disjunction of all overflow outputs of the



operands. The same goes for other expressions that have no specific explanation of
overflow. The expression -B distributes to the array of boolean level and is two's
complement negation. A ripple carry negater should be used for its implementation. For
convenience, this thesis uses a ripple carry adder and inverters instead. The circuit will be

discussed in array operations.

A binary expression contains two expressions and one operator that is one of &. or.

» /=, ++, plus, -, and uplus. The former six operators and

the not operator distribute to the bit level. Their meanings are given in (Norvell, 1998).
Their expressions are implemented by the circuits shown in Figure 3.15. It is noted that
the inputs in Figure 3.15 are the value outputs of the operands. The operators, = and /=,
are used to compare two expressions. [f the value outputs of the two expressions have the
same value, the expression "4 = B" will have a true result; otherwise, the expression "A
/= B" will have a true result. Similar to the negation operator, the operators such as ++,
plus. -, and uplus distribute to the array of boolean level. The function named

distributelbM is defined to i these ions for one di i or multi-

dimensional array operands. Because the results of multi-dimensional array operands can
be obtained by applying these operators to the one-dimensional arrays, the following
simply describes the definitions and the circuit implementations of these operators on
one-dimensional arrays. Detailed definitions on these operators can be found in (Norvell,

1996 and 1998).

The ion, 4 ++ B, i the ion of two arrays. A function named

catM is defined to generate circuits for this operation. The value outputs of the expression
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(a) Expression "not a" Circuit (b) Expression "a & b" Circuit

a
aorb
b
(c) Expression "a or b" Circuit (d) Expression "a => b" Circuit

a<=b 2 a=b
b
(e) Expression "a <= b" Circuit (f) Expression "a ==b" Circuit
a
a=/=b
b
(g) Expression "a =/=b" Circuit

Figure 3.15: The Expression Circuits
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consist of the value outputs of the expression A as the start and the value outputs of the
expression B as the end. The expression 4 uplus B implements the unsigned addition of
two numbers. The result length is one more than the length of the longer of A and B. No
overflow occurs in the above two operations. However, if there is overflow in evaluating

4 or B, the overflow outputs of the above two ions are true. The ion, A

plus B, carries out the two's complement addition of two numbers. The binary

A4 - B, i the two's ion of two numbers.

Functions named uplusM. plusM, and minusM are defined to generate circuits for these
operations. The unary expression, - B, is used for the two's complement negation of a
number. A function named minusM is defined for the expression that is the same as
[false, false, ..., false] - B. A ripple carry adder shown in Figure 3.16 is generated for the
circuits of the expressions with uplus and plus operators. A function named genddder
is defined 10 generate circuits for the ripple carry adder. In Figure 3.16, each box
represents the circuit shown in Figure 3.17 and generated for a full adder. The following
logic equations for the full adder are described in (Lenk, 1972).

S =ABCyp+ ABCip+ ABCin + ABCin
=A©BOC,

Cou=AB + (4 + B)Cin
In the above equations, A and B and C,, are the inputs; S and C,,, represent the outputs
for the sum and the carry; C. is 0 for the addition of the least significant bits.

For operations with - B and 4 - B, a ripple carry subtracter should be used. However,

for the convenience, this thesis uses a ripple carry adder and inverters to implement the
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Figure 3.16: A Ripple Carry Adder Circuit



operations. Before using the function named genAdder, we implement the operation with
not for every element in B and set the initial carry named Carryin0 to 1 to make the

adder perform subtraction.

The overflow output for the operation with uplus is false. Figure 3.18 shows the
overflow output circuit for the operation with plus. In Figure 3.18. 4_Sign and B_Sign
are the sign bits of the two operands; S_Sign is the sign bit of the sum: Overflow

represents whether overflow occurs. The logic equation for Figure 3.18 is as follows:
Overflow=S_Sign A_Sign B_Sign +S_Sign A_Sign B_Sign

Figure 3.18 is also used to generate the overflow output circuit for the expression 4-8
and the expression -B; however, the inverters should be used for the expression B. The

logic equation is changed to the following form.
Overflow =S_Sign A_Sign B_Sign +S_Sign A_Sign B_Sign

An array building expression is a list of expressions. The value outputs of the array
building expression are a bundle of the value outputs of the expressions. An or-gate is
used for disjoining all overflow outputs of the expressions in the array to get the overflow

output of the array building expression.

A array ion contains an ion as an operand and a constant

number as the subscript. The value output of the subscripted array expression is selected
from the value outputs of the operand in terms of the constant number. The overflow

output of the operand is the overflow output of the subscripted array expression.
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Figure 3.18: The Overflow Output Circuit for Operators: "plus” and -



A subarray ion is of an ion as an operand and two constant
numbers as the length and as the starting subscript. The value outputs of the subarray
expression are a subsequence of the value outputs of the operand in terms of the two
constant numbers. The overflow output of the subarray expression is the same as the

overflow output of the operand.

3.8 A Module for Connecting Node Circuits

This module links all the node circuits in terms of the edges in the ASM chart and the
information from the wire table. The function named connectNode is defined in this
module. The output wire named done_J of each node except for a condition node will be
connected to every or-gate named go of its successor node. In the case of a condition
node, the output wire named done_N_then will be linked to the go gate of its thenNode
node and the output wire named done_ _else will be connected to the go gate of its

elseNode node. Once the nodes are connected, the netlist is complete.

A simple SMALL example shown in Figure 3.19 is used to illustrate how to generate
the circuits of signals and assert nodes and how to connect these circuits. Figure 3.20
gives an ASM chart for the SMALL program shown in Figure 3.19. Each node shown in
Figure 3.20 is transformed into its corresponding circuit as shown in Figure 3.21. For
example, the flip-flop labelled 1 and the inverter labelled 1 represent Node 0 and the or-
gate labelled go!/ is generated to represent Node 1, a dummy node. In Figure 3.20, the
done_N wire of each node is also labelled in Figure 3.21. According to the done_N wires,

all the node circuits are connected to represent the circuit of the SMALL program shown



global sig a: bool "

while true do n
a ! true n
tick "
a ! false 4
tick n
a ! true "6

od mn

Figure 3.19: A Simple SMALL Program

in Figure 3.19. From Figure 3.21, it can be seen that the or-gate labelled assert and a
buffer are used to represent the circuit of global signal a. It has three inputs that are the
outputs from three and-gates. Each of these and-gates is generated for one of three assert
nodes. And-gates labelled 3, 4, and 5 are used for the assert statements of the SMALL
program in Line 2, Line 4, and Line 6, respectively. For example, the or-gate labelled go6
and the and-gate labelled 4 are used to represent Node 7 in Figure 3.20 that is an assert
node and represents the assert statement in Line 4 in Figure 3.19. The or-gate labelled
205 and the flip-flop labelled 2 generated for Node 6 are used for the tick statement in
Line 3. The tick statement in Line 5 is converted 1o a state node labelled 8 and
represented by the or-gate labelled go7 and the flip-flop labelied 3. The or-gate labelled
209 and the flip-flop labelled 4 represent the implicit t ick statement in the while loop.
The or-gate labelled go2, the inverter labelled 2, and two and-gates labelled 1, 2 are
generated for Node 4 that is a condition node. The condition expression is always true so

the done_2_then wire is always excuted.



done_0
0 |

done_7
done_8
done 9
] ® el
State Dummy Assert Assign Condition

Figure 3.20: An ASM Chart for the SMALL Program Shown in Figure 3.19



Figure 3.21: The Circuit of the SMALL Program Shown in Figure 3.19

3.9 Output to VHDL Module

Using the IEEE std_logic_1164 packages, this module produces a VHDL source file
that represents the final netlist circuit generated by the above modules. The entity
declaration of the VHDL file includes the name of the ports, the direction of its data flow,
and the data type. The output ports are composed of the output of every global signal and
register. The input ports include the clock, the power, the ground, the wire named
assert_global_s for each global signal called s, and the wires named assign_global_r and
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val_global_r for each global register called r. The input of the D-type flip-flop in the
initial state node circuit is also considered as an input port. For multi-dimensional arrays,
a package is used to declare several one-dimensional array types and these ports will have
user-defined array types. The file contains a VHDL structural description of the

and their i ions by signals. The components consist of and-gates.

or-gates. Xor-gates, not-gates, buffers, and D-type flip-flops. The and-gates. the or-gates.
and the xor-gates have two-inputs and one-output. The not-gates and the buffers have
one-input and one-output. Their VHDL descriptions will be given in the next chapter. An
example VHDL output description for the SMALL program shown in Figure 3.1 is given

in Figure 3.22.

library [EEE;
use [EEE.std_logic_1164.all;

entity SMALL_OUTI1 is
port (assert_global_outBit : in std_logic;

ground : in std_logic;

global_outBit : out std_logic;

global_inBit : out std_logic);
end SMALL_OUTI;

architecture Structure of SMALL_OUT! is

signal wire199, wire197, wire195, wire193, wire190, wire157, wirel 56,
wirel53, wirel51, wire149, wirel47, wire146, wire145, wire144,
wire139, wirel37, wirel35, wirel33, wirel31, wire129, wire128,
wire127, wire126, wire121, wire120, wirel17, wirel16, wirel 13,
wirel11, wire109, wire107, wirel05, wirel03, wire102, wirel01,
wire100, wire95, wire94, wire91, wire90, wire87, wire85,
wire83, wire82, wire79, wire77, wire75, wire74, wire71,
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Wire69, wire67, wire66, wire63. wire61. wire59, wires8.
wireS5, wire53, wire51, wire30, wired7, wired5, wired3,
wired1, wire39. wire37, wire36, wire33. wire32, wire31.
wire30, wire25, wire24, wire21, wire20, wirel9. wirel8.
wirel3, wirel |, wire7, wire2: std_logic:

component OR2
port (I1, 12 : in std_logic: Ol : out std_logic);
end component:

component AND2
port (I, 12 : in std_logic: O1 : out std_logic):
end component;

component BUF
port (I1 : in std_logic: O1 : out std_logic);
end component;

component INVERTER
port (Il : in std_logic; O1 : out std_logic);
end component;

component DFLIPFLOP
port (clock, D : in std_logic; Q : out std_logic):
end component;

begin

Device200: OR2 port map ( assert_global_inBit. wire199, wire2);
Device198: OR2 port map ( wire55, wirel97. wire199);
Devicel96: OR2 port map ( wire63, wire195, wire197);
Devicel94: OR2 port map ( wire71, wire193, wire195);
Devicel92: OR2 port map ( wire79, wire87, wire93);

Devicel91: OR2 port map ( assert_global_outBit, wire190, wire7);
Devicel89: OR2 port map ( wuel 11, wirel37. wire190);

UF port map ( wired7, wirel3);
Dev:cclBG BUF port map ( wire41, wirel8);
Dmcclls BUF port map ( wire21, wire24);

UF port map ( wire59, wire53);
UF port map ( wire61, wire58);
Devicel79: BUF port map ( wire67, wire61);




Device178: BUF port map ( wire69, wire66);
Devicel77: BUF port map ( wire75, wire69);
Devicel76: BUF port map ( wire77, wire74);
Devicel75: BUF port map ( wire83, wire77);
Device174: BUF port map ( wire85, wire82);
Devicel73: BUF port map ( wirel57, wire85);
Devicel72: BUF port map ( wirel07, wire90);
Devicel71: BUF port map ( wirel05, wire94);
Devicel170: BUF port map ( wirel09, wire100);
Devicel69: BUF port map ( wire103, wire105);
Devicel168: BUF port map ( wirel02, wire107);
Devicel67: BUF port map ( wirel 13, wire109):
Devicel66: BUF port map ( wirel33, wirel16);
Devicel65: BUF port map ( wirel31, wire120);
Devicel64: BUF port map ( wirel35, wire126);
Devicel63: BUF port map ( wirel29, wirel31);
Devicel62: BUF port map ( wirel28, wirel33);
Devicel61: BUF port map ( wire139, wire135);
Devicel60: BUF port map ( wirel53, wire144);
Devicel59: BUF port map ( wirel47, wire149);
Devicel58: BUF port map ( wire146, wire151);
Devicel55: INVERTER port map ( wirel56, wirel57);
Devicel54: DFLIPFLOP port map ( clock, d_input, wire156);
Devicel52: OR2 port map ( wire91, wirel 57, wire153);
Devicel43: AND2 port map ( wirel45, wire144, wire147);
Devicel42: AND2 port map ( wirel44, power, wirel46);
Devicel41: INVERTER port map ( power, wirel45);
Devicel38: OR2 port map ( wirel51, wire121, wire139);
Devicel36: AND2 port map ( wirel35, ground, wire137);
Device125: AND2 port map ( wire127, wire126, wire129);
Devicel24: AND?2 port map ( wirel26, wire2, wire128);
Device123: INVERTER port map ( wire2, wirel27);
Devicel 19: DFLIPFLOP port map ( clock, wire120, wirel21);
Devicel 15: DFLIPFLOP port map ( clock, wirel16, wirel17);
Devicel12: OR2 port map ( wirel 17, wire95, wirel13);
Devu:el 10: AND2 port map ( wire109, power, wirel 11);
ice99: AND2 port map ( wirel101, wire100, wire103);
AND?2 port map ( wxreloo wmz, wirel02);

port map wire87);
FLIPFLOP port map ( clock, wire82, wire83);
AND2 port map ( wire77, power, wire79);
: DFLIPFLOP port map ( clock, wire74, wire75);



Device70: AND2 port map ( wire69, ground, wire71);
Device65: DFLIPFLOP port map ( clock. wire66, wire67):
Device62: AND2 port map ( wire61. power, wire63);
Device37: DFLIPFLOP port map ( clock, wires8. wire59);
Devices4: AND? port map ( wire53, power, wires3);
Deviced9: DFLIPFLOP port map ( clock, wireS0, wire31);
Device46: AND2 port map ( wiredS, power, wired7);
Device44: OR2 port map ( wire149, wire37, wiredS);
Deviced2: AND2 port map ( wired 1, power, wired3);
Device40: OR2 port map ( wire51, wire25, wiredl);
Device38: OR2 port map ( wire32, wire20, wire39);
Device35: DFLIPFLOP port map ( clock, wire36, wire37);
Device29: AND2 port map ( wire31, wire30, wire33);
Device28: AND2 port map ( wire30, wirel I, wire32);
Device27: INVERTER port map ( wirel 1, wire31);
Device23: DFLIPFLOP port map ( clock, wire24, wire25);
Device17: AND2 port map ( wirel9, wirel8, wire21);
Devicel6: AND2 port map ( wirel8, wirel3, wire20);
Devicel5: INVERTER port map ( wirel3, wirel9);
Device9: BUF port map ( wire7, global_outBit);
Deviced: BUF port map ( wire2, global_inBit);

end Structure;

Figure 3.22: An Example VHDL Output Description

58



Chapter 4

Hardware Implementation of the
SMALL Language with FPGAs

This chapter shows the hardware implementation of SMALL programs with Field
Programmable Gate Arrays (FPGAs). CAD tools provided by Canadian Microelectronics

Corporation (CMC) are used for the hardware implementation of the programs written in

the SMALL language. First, the Netlist Generat ibed in Chapter 3 the

SMALL program to a structural VHDL file whose components are simple gates and

clocked D-type flip-flops. Then a functi i ion of the VHDL iption is
carried out with the Synopsys VSS (VHDL System Simulation ) (Xilinx, 1995). After the
simulation, a graph in Waveform Viewer Window can be used to verify that the circuit
performs the specified requirements. The Synopsys FPGA Compiler is used for
synthesising and optimising the gate-level VHDL description. Finally, the Design
Manager of the Xilinx Alliance Series version 1.4 (Xilinx, 1997b) is used to create
configuration data for Xilinx FPGA chips. The Xilinx XC4000 family is employed as the
target FPGA device. Several SMALL programs were compiled, simulated and
synthesised to verify that the Netlist Generator performs the specified requirements for all
statements and operators of the SMALL language.
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4.1 Background

In order to provide about hard: impl ion of the SMALL

program, this section introduces some basic knowledge of the VHSIC Hardware
Description Language (VHDL) and Field Programmable Gate Arrays. The design

is also di: ed

4.1.1 VHDL: VHSIC Hardware Description Language

'VHDL was developed by the Very High Speed Integrated Circuits (VHSIC) Program
Office of the Department of Defense for use as a standard language in the
microelectronics community during 1980's (Ott and Wilderotter. 1994). VHDL is a
powerful language and can be used in many ways. In this study, VHDL is used for
describing the circuit created by the Netlist Generator. The [EEE std_logic_1164 package

is chosen because it is used in most new VHDL synthesis tools.

A structural description of a system contains the components and their
interconnections by signals. Compared with i ipti the I

description is more concrete and easier to synthesise into hardware. An example of the
structural VHDL description has been given in Section 3.9. It is the netlist output of the
program written in the SMALL language in Figure 3.1 and will be simulated and

synthesised in later sections. The structural VHDL description includes an overall library

a "use”" an entity i signal

declarations, and port map associations. The "library" specification is used in Synopsys
simulation and synthesis. An entity declaration includes the name of each port, the
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direction of its data flow, and the data type. A component declaration contains the name
of the component and its ports. For each port. its name, data flow direction. and data type
are declared. A signal declaration consists of the name and the data type of the signal.
The body of the VHDL description starts with the "begin" keyword. The component

instantiation statement is the basic unit in the iption. Each i is

of a label. the name of the component and a mapping between the port names in the

and the actual The signals used in the port map are the declared

ports and declared signals.

In this study, VHDL is also used to describe a test bench file that provides a simple

method for testing circuits. Many and signal

appear in the test bench file for providing stimuli to some input ports of the structural

'VHDL description output produced by the Netlist Generator.

4.1.2 Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is a programmable and reconfigurable

logic device for rapid pi ping and i ion of digital systems in
mid-1980s. Due to the short ti rket and the low ing cost, FPGAs are
now very popular in hardware design. FPGAs are of

blocks bya il ion network. The user can customize

the function of each block and its connections. The size, structure, number of blocks, and

the interconnection are different among FPGA architectures. This difference in
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architectures is determined by different programming technologies. different software.

and different models of use (Trimberger. 1994).

Xilinx families of FPGAs are the most widely used FPGA families due to their
features. The first commercially used FPGA series, the Xilinx XC2000, was introduced
in 1985. Now more Xilinx generations such as XC3000. XC4000, and XC5000 exist.
Although there are many variations on FPGA design. all the Xilinx FPGA families are

of three main an array of cells called configurable

logic blocks (CLBs), a i ring of inp tput blocks (IOBs), and

For each family member in a generation, the CLB

array size is different. For example, XC4002A has 8x8 CLB array size and the CLB array
size of XC4013 is 24x24. In the hardware implementation of the SMALL language, the
XC4000 (Xilinx, 1997a) architecture is used as the target technology. As Xilinx's third-
generation, the XC4000 family FPGAs are used as the programmable logic devices based
on static memory resources. [t is a popular and advanced technology for large design and
for using placement and routing tools. Based on Oldfield and Dorf (1995) and Trimberger

(1994), this section simply describes the Xilinx XC4000 architecture.

Figure 4.1 (Oldfield and Dorf, 1995) shows a simplified block diagram of the XC4000
CLB. It includes three combinational function generators (G', F', H'), two flip-flops, and
their interconnect control logic. In Figure 4.1, Fi_F: F3 Fs Gi. G2, G3. Gs, C1.C2. G5, Cs,
and clock are the thirteen CLB inputs, and the four CLB outputs are XQ, X, YQ, Y. Each
of the two main lookup-table-based function generators (F' and G') has four independent
inputs. A third function generator (H') has three inputs (F, G', H,) from the

62



€10 000¥IX 241 Jo wesBeiq Yool paytiduiis v ‘| 3inBig

wio

o

O noriowns
001

63



outputs of F' and G’ and from outside the CLB. The two D-type flip-flops with the same
clock (K) and clock enable (EC) inputs, a third common input (S/R) can get their inputs
from the function generators or from external signals. The F' and G' lookup tables in each
CLB can be configured as a 16x2 or 32x1 bits of memory cells. The flexibility and

symmetry of the CLB architecture helps in placement and routing, during which inputs,

outputs, and the ions can arbitrarily exch positions within a CLB.

A block diagram of the XC4000 input/output block (IOB) is represented in Figure 4.2

(Trimberger, 1994). The IOB acts as the interface between external package pins and the

e
s cows | Ve

Figure 4.2: The XC4000 IOB



internal logic. Each IOB is used for one package pin. It can be arranged for input. output.
or bi-directional signals. The XC4000 IOB contains test structure for testing internal
logic or external logic. A useful function in the XC4000 IOB is that a master three-state

control places all the /O blocks in a high impedance mode when it is active.

Figure 4.3 (Tri 1994) the XC4000 i There are many

routing resources in the interconnect of any two points on the chip. Three kinds of
interconnect. named as single-length lines, double-length lines, and long lines, are
determined by the relative length of their metal segments. The single-length lines are a
grid of horizontal and vertical lines at switchbox between each block. Double-length lines
travel two CLBs before going to a switchbox. Long lines can be broken in the centre of

the chip to give two half-long lines for better routability.

4.1.3 The Design Procedure and Environment

The entire process of compiling a SMALL program to an FPGA chip is divided into

the following phases.

* Using the SMALL Simulator, an optional simulation of the SMALL program can be
obtained.

* The SMALL program is compiled by the SMALL compiler to obtain a structural
VHDL description that uses the [EEE std_logic_1164 package.

® The i i ion of the 'VHDL iption is carried out with

Synopsys VSS to verify that the netlist circuit created by the Netlist Generator

performs the specified requirements.
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e Synopsys FPGA Compiler (FC) is used for the gate-level synthesis and logic
optimization.
* The configuration data for a specific Xilinx FPGA chip. XC4028EX-3-PG299, is

produced by the Design Manager of the Xilinx Alliance Series version 1.4.

4.2 Simulation with the Structural VHDL Description

This section shows the functional simulation results for several SMALL programs.
The components used in the structural VHDL files of the SMALL programs and the test

bench files for the simulations are also described.
4.2.1 Components

The components used in the architecture of the structural VHDL description include
and-gates, or-gates, and xor-gates that have two-inputs and one-output, inverters and
buffers that have one-input and one-output, and D-type flip-flops. Their VHDL

descriptions are as follows.

For an and-gate, the name of the component is AND2 and the port names are [1, 12,

and O1. The following is the VHDL description of the and-gate.

library [EEE;
use [EEE.std_logic_1164.all;

entity AND2 is
port(I1, I2 : in std_logic;
Ol : out std_logic);
end AND2;
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architecture STRUCTURAL of AND2 is

begin
O1 <=11 and I2;
end STRUCTURAL:

* For an or-gate, the name of the component is OR2 and the port names are I1, 12, and

Ol. The VHDL description of the or-gate is similar to that for the and-gate.
* For an xor-gate, the name of the component is XOR2 and the port names are I1, 12,
and O1. The VHDL description of the xor-gate is also similar to that for the and-gate.
* For a buffer, the name of the component is BUF and the port names are I1 and Ol.
The following is the VHDL description of the buffer.
library IEEE;
use [EEE.std_logic_1164.all;
entity BUF is
port( I1 :in std_logic;
Ol : out std_logic);
end BUF;
architecture STRUCTURAL of BUF is
begin
Ol <=1I1;
end STRUCTURAL;

* For an inverter, the name of the component is INVERTER and the port names are [1

and O1. The VHDL description of the inverter is similar to that for the buffer.
® For a D-type flip-flop, the name of the component is DFLIPFLOP and the port names
are clock, D, and Q. The clock of each D-type flip-flop in the netlist is the same. All

the D-type flip-flops used in the netlist are defined as the falling-edge triggered flip-



flops. It is noted that when the input of the D-type flip-flop is 'U'. its output is '0".
This is because the output of the D-type flip-flop used in the initial state node circuit
is required to be false in the first clock period and to be true in the following clock
periods. For this purpose, the D input of this D-type flip-flop is named d_input and
defined as an input port in the VHDL output of the SMALL program. In the test
bench, the d_input signal is set up with 'U' at the beginning and then becomes true
before the second clock period and keeps true in the following clock periods. The
following is the VHDL description of the D-type flip-flop.

library [EEE;

use [EEE.std_logic_1164.all;

entity DFLIPFLOP is

port(clock, D : in std_logic;
Q : out std_logic);

end DFLIPFLOP;

architecture STRUCTURAL of DFLIPFLOP is
signal internal _state : std_logic;
begin
FLIPFLOP : process(D.clock)
begin
if (D=’U ) then

elsif ( clock =0’ and not clock’stable) then

Q<=D;
end if;

end process FLIPFLOP;

end STRUCTURAL;



4.2.2 Test Benches

Douglas and Thomas (1994) have defined the test bench as “the name given to the
VHDL code that generates the input signals for the design being simulated and monitors
the desired outputs.” When simulating the VHDL output of the Netlist Generator, the
'VHDL description of the test bench is created to give test inputs to the netlist circuit. The
test bench file is not synthesised. Figure 4.4 shows the VHDL description of the test
bench used in simulating the VHDL output description that is shown in Figure 3.22. It

mainly consists of entity i i signal i the

statement part, and the configuration declaration. The entity name is declared as
SMALL_TEST! and no ports exist for this test bench. TEST is the identifier of the
architecture. SMALL_OUTI is the component name and is the same as the entity name
shown in Figure 3.22. This component and that entity have the same ports. The signal
declaration includes the signal name and the data type. For some signals, the signal
initializations are also used. In this example, the power, ground, and clock signals are
initialized to0 ‘1", '0', '0’, respectively. The statement part includes concurrent statements

that are composed of the instantiation of the SMALL_OUT! component and signal

assignment statements. The final part is the i ion that the
above part for testing the structural architecture of the SMALL_OUT1 (Navabi, 1993).

For each SMALL program, its simulation can be carried out in two ways. One is to
use the parallel statement in the SMALL program for generating some input signals, as
shown in Figure 3.1. In the corresponding test bench shown in Figure 4.4, we do not need
to assign a value and a time to the input signal such as the assert_global_inBit signal.
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library IEEE;
use [EEE.std_logic_1164.all;

entity SMALL_TESTI is
end SMALL_TESTI:

architecture TEST of SMALL_TEST] is

component SMALL_OUT1
port(assert_global_outBit : in std_logic:
assert_global_inBit : in std_logic;
d_input : in std_logic;
clock : in std_logic;
power : in std_logic;
ground : in std_logic:
global_outBit : out std_logic;
global_inBit : out std_logic);

end component;

signal assert_global_outBit: std_logic :=="0;
signal assert_global_inBit: std_logic :='0'; "
signal global_outBit, global it, d_input: std_logic;
signal ground: std_logic
signal clock: std_logic
signal power: std_logic
begin

AAL: SMALL_OUT! port map (assert_global_outBit, assert_global_inBit, d_input.
clock, power, ground, global_outBit, global_inBit);

clock <= not clock after 10 ns;

d_input <="U’, power after 5 ns;

—assert_global_inBit <="0", '1" after 20 ns, ‘0" after 40 ns, '1" after 60 ns, "

-'1" after 80 ns, '0" after 100 ns, '1" after 120 ns;

end TEST;

configuration conf SMALL_1 of SMALL_TEST] is

for TEST

end for;
end conf SMALL_I;

Figure 4.4: The Test Bench for the VHDL Output Shown in Figure 3.22
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However, its circuit representation generated by the Netlist Generator is more
complicated, as shown in Figure 3.22. The other is not to use the parallel statement in the

SMALL program for some input signals. as shown in Figure 4.5. Its structural VHDL

description shown in Figure 4.6 is not so i as the VHDL iption shown in
Figure 3.22. However. its corresponding test bench shown in Figure 4.7 is little different
from the test bench shown in Figure 4.4. The difference is shown by using // in Figure 4.4
and in Figure 4.7. The output signal such as the global_outBit is the same in the two

ways.

4.2.3 Simulation Results

Using the Synopsys VHDL System Simulator. the circuit produced by the Netlist
Generator is simulated to verify its functionality. This section shows the functional
simulation results for several SMALL programs. In all the simulation results, the clock
period used for the simulations is 20 ns. The D-type flip-flops in the netlist circuits are

defined as falling-edge triggered flip-flops.

Example 1: A Parity Generator

The source SMALL program is shown in Figure 3.1 and in Figure 4.5, respectively.
Figure 4.8 represents the simulation result of the program in Figure 3.1 with its VHDL
output description shown in Figure 3.22 and its test bench shown in Figure 4.4. Figure

4.9 shows the simulation result of the program in Figure 4.5 with its VHDL output



description shown in Figure 4.6 and its test bench shown in Figure 4.7. As described in
Section 4.2.2, Figure 4.8 and Figure 4.9 are obtained in two ways for a parity generator. It
can be seen that in both figures, the output named GLOBAL_OUTBIT is [0, 0. 1, 1, 0] if
the input named GLOBAL _INBIT is [0, 1. 0, 1. 1] in the first five clock periods. This
result is the same as the result that is obtained from the SMALL simulator, i.e. without
the Netlist Generator. That is, at each falling-edge of the clock. the GLOBAL_OUTBIT
is the parity of those GLOBAL_INBITs that have been seen in the previous clock periods

(the parity of the empty sequence is 0) (Norvell, 1996).

global sig inBir: bool
global sig outBit: bool

while true do
repeat

outBit !
until inBit

o

tick

repeat
outBit !
until inBit

-

od

Figure 4.5: A Parity Generator Written in the SMALL Language



--The following is a VHDL source file representing the circuits stored
~-in the Netlist store.

iibrary IEEE:
use [EEE.std_logic_1164.all;

entity SMALL_OUT is

port (assert_global_outBit : in std_logic;
assert_global_inBit : in std_logic:
d_input : in std_logic;
clock : in std_logic;
power : in std_logic;
ground : in std_logic;
global_outBit : out std_logic;
global_inBit : out std_logic);

end SMALL_OUTI;
architecture Structure of SMALL_OUT1 is

signal wire96, wire79, wire78, wire75, wire73, wire71, wire69,
wire68, wire67, wire66, wire61, wire59, wire57, wires5,
wire53, wire51, wire50, wire49, wired8, wired3, wired2,
wire39, wire38, wire35, wire33, wire31, wire29, wire27,
wire25, wire24, wire23, wire22, wirel7, wirel 6, wirel3,
wirel2, wire7, wire2: std_logic;

component OR2
port (11, 12 : in std_logic; O1 : out std_logic);
end component;

component AND2
port (I, 12 : in std_logic; O1 : out std_logic);
end component;

component BUF
port (I1 : in std_logic; Ol : out std_logic);
end component;

component INVERTER

port (I1 : in std_logic; O1 : out std_logic);

end component;

component DFLIPFLOP

port (clock, D : in std_logic; Q : out std_logic);

7



: BUF port map ( assert_global_inBit. wire2);

- OR2 port map ( assert_global_outBit, wire96, wire7);

2 OR2 port map ( wire33, wire39, wire96);

UF port map ( wire29. wirel2);

: BUF port map ( wire27, wirel6);
Device92: BUF port map ( wire31, wire22);
Device91: BUF port map ( wire25, wire27);
Device90: BUF port map ( wire24, wire29);
Device89: BUF port map ( wire35, wire31);
Device88: BUF port map ( wire55. wire38);
Device87: BUF port map ( wireS3, wired2);
Device86: BUF port map ( wire57, wireds|
Device85: BUF port map ( wire51, wire53);
Device84: BUF port map ( wire30, wiress);
Device83: BUF port map ( wire61, wire57);
Device82: BUF port map ( wire75, wire66);
Device81: BUF port map ( wire69, wire71);
Device80: BUF port map ( wire68, wire73);
Device77: INVERTER port map ( wire78, wire79);
Device76: DFLIPFLOP port map ( clock, d_input, wire78);
Device74: OR2 port map ( wire79, wirel3, wire75);
Device65: AND2 port map ( wire67, wire66, wire69);
Device64: AND2 port map ( wire66, power, wire68);
Device63: INVERTER port map ( power, wire67);
Device60: OR2 port map ( wire73, wired3, wire61);
Device58: AND2 port map ( wire37, ground, wire59);
Device47: AND2 port map ( wire49, wired8, wireS1);
Device46: AND2 port map ( wire48, wire2, wire50);
Deviceds: INVERTER port map ( wire2, wire49);
Deviced1: DFLIPFLOP port map ( clock, wire42, wire43);
Device37: DFLIPFLOP port map ( clock, wire38, wire39);
Device34: OR2 port map ( wire39, wirel7, wire35);
Device32: AND2 port map ( wire31, power, wire33);
Device21: AND2 port map ( wire23, wire22, wire25);
Device20: AND2 port map ( wire22, wire2, wire24);
Devicel9: INVERTER port map ( wire2, wire23);
DevicelS: DFLIPFLOP port map ( clock, wire16, wirel7);
Devicel1: DFLIPFLOP port map ( clock, wirel2, wirel3);
Device9: BUF port map ( wire7, global_outBit);
Deviced: BUF port map ( wire2, global_inBit);

end Structure;

Figure 4.6: The Structural VHDL Output for a Parity Generator Shown in Figure 4.5

s



library [EEE;
use [EEE.std_logic_1164.all;

entity SMALL_TEST! is
end SMALL_TESTI:

architecture TEST of SMALL_TEST1 is

component SMALL_OUT1

port(assert_global_outBit : in std_logic:
assert_global_inBit : in std_logic;
d_input : in std_logic;
clock : in std_logic
power : in std_logic:
ground : in std_logic;
global_outBit : out std_logic;
global_inBit : out std_logic);

end component;

signal assert_global_outBit: std logi
--signal assert_global_inBit: std_logi
slgnal assert_global_i mB glolul ouan, global inBit, d_input: std loglc.

signal power: std_logic
begin

AAL: SMALL_OUT!] port map (assert_global_outBit, assert_global_inBit, d_input,
clock, power, ground, global_outBit, global_inBit);
clock <= not clock after 10 ns;
d_input <="U’, power after 5 ns;
assert_global_inBit <='0", ‘1" after 20 ns, ‘0’ after 40 ns, "' after 60 ns,
'1" after 80 ns, '0" after 100 ns, '1" after 120 ns; "
end TEST;

configuration conf_SMALL_1 of SMALL_TEST]1 is
for TEST

end for;
end conf_SMALL_L;

Figure 4.7: The Test Bench for the VHDL Output Shown in Figure 4.6



] 50 100 1s0 200 250 300
I 1 L L 1

/SMALL_TEST1/ASSERT_GLOBAL_OUTBIT
/SMALL_TEST1/ASSERT_GLOBAL_INBIT
/SMALL_TEST1/GLOBAL_OUTBIT
/SMALL_TEST1/GLOBAL_INBIT
/SMALL_TEST1/D_INPUT
/SMALL_TEST1/GROUND
/SMALL_TEST1/CLOCK
/SMALL_TEST1/POWER

1si2/mnt/projects/ying/cad/mosis0.5/XILINX/Synopsys/SMALL TEST1.cougar.21l
7/12/1998 13:22:44 Page 1,1 of 1,1

Figure 4.8: The Simulation Result of a Parity Generator Shown in Figure 3.1
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/SMALL_TESTI/ASSERT_GLOBAL_OUTBIT
/SMALL_TESTY/ASSERT GLOBALNBIT | | | | | |

/SMALL_TEST1/GLOBAL_OUTBIT '—7 ﬁﬂjﬂ_"—
/SMALL_TEST1/GLOBAL_INBIT
/SMALL_TESTH/D_INPUT
/SMALL_TEST1/GROUND i i .
/SMALL_TEST1/CLOCK TJ—E VTAA_T_;D—LHI J_L—LWJ_

/SMALL_TEST1/POWER

1si2/mnt/projects/ying/cad/mosis0.5/XILINX/Synopsys/SMALL TEST1.cougar.21
7/12/1998 13:5:4 Page 1,1 of 1,1

Figure 4.9: The Simulation Result of a Parity Generator Shown in Figure 4.5



Example 2: A Sequential Multiplier

The sequential multiplier written in the SMALL language is shown in Figure 2.1. It
implements the multiplication of two 4-bit numbers to produce an 8-bit product. The

| VHDL ipti ing its netlist circuit and the test bench are given

in Figure A.l and in Figure A.2 of Appendix A, respectively. Figure 4.10 shows the
simulation result when the multiplier and the multiplicand are 3 and 2 in the decimal
system. The numbers displayed in Figure 4.10 are expressed in the hexadecimal system.
For example, the multiplier named GLOBAL_MULTIPLIER and the product named
GLOBAL _P are represented as C and 00 in the first clock period, respectively. After five
clock periods, the product is reported as 60 in the hexadecimal system, i.e. [0, 1, 1, 0, 0,
0. 0. 0] as a binary array. Recalling that SMALL uses an Isb first encoding, this

represents the number 6. Therefore, the output result of the Netlist Generator is verified.

Example 3: A Serial Adder

The serial adder written in the SMALL language is shown in Figure 4.11. It
implements the addition of two numbers. The two statements shown in Figure 4.11, d <-
a=>bande!a<=b,are not useful for the adder. They are used to test the functions of
the operators such as => and <=. The structural VHDL descriptions representing its
netlist circuit and test bench are given in Figure B.1 and in Figure B2 of Appendix B,

respectively. Figure 4.12 shows the simulation result when the two additions named as
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» SMALL_TESTI&/ASSIGN_GL 08AL_Pl07)

> SMILL_TESTI6/VAL_GLOBSL _P{07)

P SMALL TESTIS/ASSERT_GLOBAL MLLTIPLICANX03)
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Figure 4.10: The Simul Result of a

Page 1.1 of 1,1

ial Multiplier Shown in Figure 2.1
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GLOBAL_A and GLOBAL _B are given as in the test bench shown in Figure B.2. The

result can be verified using the SMALL simulator as shown in Figure 2.2.

global sig bool

> o

global sig bool
global reg ¢ : bool

bool

LY

global reg
global sig e : bool

global sig x : bool

while true do

x ! a =/=b=/=c
c<-a&bora&corb&c

d<-a=>b

elta<=h

od

Figure 4.11: A Serial Adder Written in the SMALL Language



fo 50 100 1s0 200 250 300
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/SMALL_TEST4/ASSIGN_GLOBAL_C
/SMALL_TESTeVAL_GLOBAL_C
/SMALL_TEST4/ASSIGN_GLOBAL D
/SMALL_TEST&WVAL_GLOBAL D
/SMALL_TEST/ASSERT_GLOBAL X
/SMALL_TEST4/ASSERT_GLOBAL_E
/SMALL_TEST4/ASSERT_GLOBAL B
/SMALL_TEST4/ASSEAT_GLOBAL_ A
/SMALL_TEST&/D_INPUT
/SMALL_TESTa/GLOBAL_C
/SVALL_TEST&/GLOBAL_D
/SMALL_TEST4/GLOBAL €
/SMALL_TEST4/GLOBAL_X
/SMALL_TESTa/GLOBAL 8
/SMALL_TEST&/GLOBAL_A
/SMALL_TEST4/GROUND
/SMALL_TEST4/CLOCK
/SMALL_TESTsPOWER

. S/XIL /SOALL_TEST4.c

1lsi2/mnt, 3 /ying/
8/12/1998 13:16:59

Page 1,

Figure 4.12: The Simulation Result of a Serial Adder Shown in Figure 4.11
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Example 4: The Operation of Two-Dimensional Arrays

This example is used for verifying the operation of two-dimensional arrays. An

example SMALL program is shown in Figure 4.13.

par

global signal a : array 2 of array 3 of bool
global signal b : array 2 of array 3 of bool
global signal ¢ array 2 of array 3 of bool
global signal d : bool

global register e : array 2 of array 3 of bool
global register f : array 2 of array 3 of bool

clta&bd
d'!al/=5b
e<-a-b
f <= <=c

tick
1
global signal array 2 of array 3 of bool

a :
global signal b : array 2 of array 3 of bool
global signal ¢ : array 2 of array 3 of bool

a(0] ! 5 as 3 bits
afl] ! 3 as 3 bits
b(0] ' 5 as 3 bits
b[1] ! 5 as 3 bits

Figure 4.13: The SMALL Program for Example 4.



The structural VHDL description for the netlist generated from this example is too
long to be shown in this thesis. The VHDL description for the user-defined data types in
the example is given in Figure C.1. The VHDL description of the test bench for
simulating the example is shown in Figure C.2. It is noted that in Figure C.1 two one-
dimensional array types are declared instead of one two-dimensional array type. This is
because some synthesis tools only support one-dimensional arrays (Naylor and Jones,
1997: Airiau er al.. 1994). Figure 4.14 represents the simulation result of the program
shown in Figure 4.13. The result is confirmed using the SMALL simulator as shown in

Figure 2.2.

Example 5: The Operation of Three-Dimensional Arrays

This example is used for verifying the operation of three-dimensional arrays. Its
SMALL program and the VHDL descriptions for data types used in Example 5 and for
the test bench are shown in Figure 4.15, in Figure D.1. and in Figure D.2 of Appendix D,
respectively. For the same reason as Example 4, the structural VHDL description for
Example 5 is not shown in this thesis. Figure 4.16 represents the simulation result of the
program shown in Figure 4.15. Similar to Example 4, the VHDL description shown in
Figure D.1 is used to declare all the user-defined data types for the operation of the three-
dimensional arrays in Example 5. Three one-dimensional array types are declared instead

of one three-dimensional array type.



> /SMALL_TEST38/ASSIGN_GLOBAL_F(0)(02)
> /SMALL_TESTIWASSIGN_GLOBAL_F(1)(02)
/SMALL_TEST38/VAL_GLOBAL_F(0)(02)
/SMALL_TESTI®/VAL_GLOBAL_F(1)(02)
/SMALL_TEST3@/ASSIGN_GLOBAL_E(0)(0:2)
/SMALL_TESTI9/ASSIGN_GLOBAL_E(1)(0:2)
/SMALL_TESTI®/VAL_GLOBAL_E(0)(0:2)
/SMALL_TESTI8/VAL_GLOBAL_E(102)
/SMALL_TEST38/ASSERT_GLOBAL_D
/SMALL_TEST3@ASSERT_GLOBAL_C(0)(0:2)
/SMALL_TEST38/ASSERT_GLOBAL_C(1)(0:2)
/SMALL_TEST3®/ASSERT_GLOBAL_8(0)(0:2)
/SMALL_TEST3WASSERT_GLOBAL_8(1)(0:2)
/SMALL_TEST3WASSERT_GLOBAL_A(0)(0:2)
/SMALL_TEST3WASSERT_GLOBAL_A(1)(02)
/SMALL_TESTI&/GLOBAL_F(0)(02)
/SMALL_TEST38/GLOBAL_F(1)(02)
/SMALL_TEST38/GLOBAL_E(0)(02)
/SMALL_TESTI8/GLOBAL_E(1)(02)
/SMALL_TEST38/GLOBAL D
/SMALL_TEST39/GLOBAL_C(0)(02)
/SMALL_TESTI9/GLOBAL_C(1)(0:2)
/SMALL_TEST38/GLOBAL_8(0)(02)
/SMALL_TEST38/GLOBAL_8(1)(02)
/SMALL_TEST38/GLOBAL_A(0)(02)
/SMALL_TESTI8/GLOBAL_A(1)(02)
/SMALL_TEST39/GROUND
/SMALL_TEST3/D_INPUT
/SMALL_TEST3a/CLOCK
/SMALL_TEST38/POWER
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Figure 4.14: The Simulation Result of the SMALL Program Shown in Figure 4.13
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par

global signal a : array 2 of array 2 of array 2 of bool
global signal b : array 2 of array 2 of array 2 of bool
global signal ¢ : array 2 of array 2 of array 2 of bool
global signal d : array 2 of array 2 of array 3 of bool
global register e : array 2 of array 2 of array 3 of bool

¢ ! a plus b
d ' a uplus b

]
global signal a : array 2 of array 2 of array 2 of bool
global signal b : array 2 of array 2 of array 2 of bool

global signal ¢ : array 2 of array 2 of array 2 of bool

af0][0] ! 3 as 2 bits
b[0]1[0] ! 3 as 2 bits

Figure 4.15: The SMALL Program for Example 5

Example 6: The SMALL Program in Pattern Matching

This example SMALL program, as shown in Figure 4.17, is applied to a simple
pattern matching problem. In the example, a | by 3 image and a | by 2 pattern are used
for simulation. The problem size is quite small because of limitations in the current
version of the SMALL language, discussed in Chapter 5. The VHDL descriptions for the
netlist circuit and for the test bench of Example 6 are shown in Figure E.1 and in Figure
E.2 of Appendix E, i Figure 4.18 the sii ion result of Example

6. The image named GLOBAL_IMAGE(0:2) is chosen as [0, 1, 0] and three kinds of
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P50 100 150 200 250 30

> /SMALL_TESTI7/GLOBAL AOKTI© 1) o
> /SMALL_TEST37/GLCBAL_ A(TKONO 1) o
> /SMALL_TESTI7/GLOBAL A(TKN® 1) °

/SMALL_TEST37/GROUND

/SMALL_TEST37/0_INPUT o]

/SMALL_TEST37/6L0CK

SMALL_TEST37/POWER

2 /x1L TESTI7 . cougar
5/12/1998 13:34:47 Page 2,1 of 2,1

Figure 4.16: The Simulation Result of the SMALL Program Shown in Figure 4.15



patterns are tested. In Figure 4.18. when the pattern named GLOBAL _PATTERN(0:1)
is [1. 1]. the test result named GLOBAL_FOUND(0:1) is [0, 0]. This means the pattern
is not found. When the pattern named GLOBAL_PATTERN(0:1) is [0, 1], the test result
named GLOBAL_FOUND(0:1) is [1, 0]. This means the pattern is found at location 0.
When the pattern named GLOBAL_PATTERN(0:1) is [1, 0], the test result named
GLOBAL_FOUND(0:1) is [0, 1]. This means the pattern is found at location 1.

global signalimage:array 3 of bool
global signal panern : array 2 of bool
global signal found : array 2 of bool
global signal go : bool

global signal dome : bool

par
while true do

while not go do skip od

par //Sequential search at location 0.
if pattern(0] == image(0]
then tick

if pattern(1l] == image[1]
then found[0] ! true
£fi

i //Sequential search at location 1.
if partern(0) == image[l]

then tick



if pattern(1] image[2]
then found(1] ! true
£fi
£i
rap

done ! true

od

/Ntest code goes here.

repeat
image ! [0, 1, 0]
pattern ! (1, 1]
go! true

uncil done

tick

repeat
image ! [0, 1, 0]
pattern ! [0, 1]
go! true

until done

tick

repeat
image ! [0, 1, 0]
pattern t (1, 0]
go! true

until done

tick

rap

Figure 4.17: The SMALL Program Used in Pattern Matching



so 100 150 200 250

SMALL_TESTES/ASSERT_GLOBAL_DONE
/SMALL_TESTEEASSERT_GLOBAL_GO

> /SMALL_TESTEE/ASSEAT_GLOBAL_IMAGE(0 2)

> /SMALL_TESTE&/ASSERT_GLOBAL_FOUND(® 1)

> /SMALL_TESTE&/ASSERT_GLOBAL_PATTERN(O1)
/SMALL_TESTB&/GLOBAL_DONE
/SMALL_TESTE/D_INPUT
/SMALL_TESTE&/GLOBAL_GO

/SVALL_TESTBB/GLOBAL_FOUND()

Elsmu._rssrmwam.._souw(o n
/SMALL_TESTES/GLOBAL_FOUND(1)

Y /SMALL_TESTESGLOBAL_PATTEAN( 1)

/SMALL_TESTSS/GLOBAL_PATTERN(O)

/SMALL_TESTES/GLOBAL_PATTERN(1)

/SMALL_TESTB&/GLOBAL_MAGE(0 2)

/SMALL_TESTER/GLOBAL_IMAGE(D)

/SMALL_TESTER/GLOBAL_IMAGE(1)
/SMALL_TESTBS/GLOBAL_IMAGE(2)

/SMALL_TESTEE/GROUND

/SMALL_TESTBECLOCK

/SMALL_TESTS&/POWER

11/12/1998 17:26:26

TRST66.cougar.2f
Page 1,1 of 1,1

Figure 4.18: The Simulation Result of the SMALL Program Shown in Figure 4.17



The above examples are simple applications of the SMALL language. After the
SMALL language enhancements and the Netlist Generator improvements. the SMALL

language will be widely used in many applications.

4.3 Gate-Level Synthesis

The Synopsys FPGA Compiler is used for the gate-level synthesis. The synthesised
gate-level design will be saved as an _sxnf file that is imported into the Design Manager
of the Xilinx Alliance Series version 1.4 for place and route. Figure 4.19 and Figure 4.20
represent the synthesis results of the SMALL programs shown in Figure 3.1 and in Figure
2.1, respectively. In Figure 4.19. the circuit for a parity generator consists of twelve D-
type flip-flops and other simple gates. In Figure 4.20, the circuit for a sequential
multiplier is more complicated and can not be clearly seen because it is composed of

hundreds of gates and tens of D-type flip-flops.

4.4 Hardware Implementation with FPGA

The Design Manager of the Xilinx Alliance Series version 1.4 is used to create
configuration data for Xilinx FPGA chips. A Xilinx XC4028EX-3-PG299 FPGA is
chosen as the target device. The SMALL program for a sequential multiplier is

implemented with the above FPGA. The i ion process is of

translating the design netlist, mapping the logic to CLBs, assigning all logic blocks to
specific locations and interconnect elements on a die, and creating a configuration file

that is used to program the FPGA.
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Figure 4.19: The Synthesis Result of the SMALL Program Shown in Figure 3.1
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Figure 4.20: The Synthesis Result of the SMALL Program Shown in Figure 2.1
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For the design named SMALL_OUTI16. which is the structural VHDL output

ofa ial iplier. the pi and routing area and

timing reports show the following information:

Xilinx FPGA Design Statistics

FG Function Generators: 437
H Function Generators: 0
Number of CLB cells: 465
Number of Hard Macros and

Other Cells: 0
Number of CLBs in

Other Cells: [}
Total Number of CLBs: 465
Number of Ports: 48
Number of Clock Pads: 1
Number of [OBs: 47
Number of Flip Flops: 29
Number of 3-State Buffers: [
Total Number of Cells: 513

The post-layout timing report file includes the following design information:
Design statistics:

Minimum period: 107.893ns (Maximum frequency: 9.268MHz)
Maximum net delay: 91.205ns



Chapter 5

Conclusions

Hardware compilation is a technique that allows the hardware design to be
implemented by a purely software process. This approach is attracting increasing interest
since it provides the designer the flexibility of introducing design changes and
, after i ion, when an FPGA chip is used. This thesis has

presented the Netlist Generator and hardware implementation of a novel hardware
description language SMALL. [t has described the entire process for compiling the

SMALL program into a Field-Programmable Gate Array.

The input to the Netlist Generator s a parallel ASM chart of a SMALL program. It is
obtained from the SMALL program by a front-end that has been implemented by
Norvell. The output of the Netlist is a VHDL iption. The

function of the Netlist Generator is to transform the ASM chart to the structural VHDL

description that represents the circuit stored in the netlist.

The algorithm of the transformations from an ASM chart to a netlist is simple.



Currently. the one-hot encoding technique is applied. When new statement forms are
added to the SMALL language, the netlist generation method described in this thesis is

not changed if the statement is transformed into one of the five kinds of nodes.

The netlist created by the Netlist Generator is also very simple. [ts components consist
of only D-type flip-flops and basic gates including two input and-gates. two input or-
gates, two input Xor-gates, inverters and buffers. All D-type flip-flops use the same clock

line. The detailed circuit stored in the netlist is provided in this thesis.

Using the Synopsys VHDL System Si ion, the VHDL iption for the netlist is

simulated with a test bench to verify the functionality of the Netlist Generator. The
simulation results for several SMALL programs show that the Netlist Generator performs
the specified i for all the and all the op in the SMALL

language. For multi-dimensional arrays in the SMALL language, several one-

dimensional array types are declared instead of one multi-dimensional array type. The

level thesis and the pl d with a specific FPGA chip make designs

g

expressed in the SMALL language easily implemented using FPGAs.

The Xilinx XC4000 series FPGAs are chosen as the target technology of the
compilation process since these high-capacity programmable logic devices offer rapid
prototyping and implementation of digital systems with the low manufacturing cost. An
alternate technology could be used to implement the netlist created by the Netlist
Generator. It includes full custom designs, standard cell designs, gate array designs, and

ASICs, etc. VHDL is used for the target language. The structural VHDL description



representing the resulting the circuit stored in the netlist is simulated to verify that the
Netlist Generator performs the specified requirement. It should be noted that the

compiler’s netlist is not dependent on the target language.

One current problem is that the SMALL compiler developed in Gofer in this thesis
needs too much space and too much time. In order to reduce the compiling time, a
compiled functional language, Haskell. is recommended to implement the SMALL
compiler. Moreover, the change of the type constructor Assoc in the util module from a

list of pairs to a balanced binary tree will save more compiling time and space.

Since the SMALL language is missing useful constructs such as modules and a
parallel ‘for’ construct. only simple applications of the SMALL language are currently
implemented with FPGA chips. For a large and more complicated application, language
enhancements need to be carried out. For example, data types such as integer types.
floating point types, enumerated types, and structures may be added to the current data
types. In addition, computed array indices, more arithmetic operators, and more

a parallel ‘for are also desirable. The Netlist Generator

will have some changes with the language The ilati ique for

these extensions and a proof of the compilation scheme should be developed.

Some optimisation opportunities exist. For the netlist created by the Netlist Generator,
simplifying some gates will make the circuit more optimal and efficient. For example,
when one of two inputs of an and-gate is false, the output of the and-gate is false so that a

false wire can be used to represent the and-gate. When implementing the SMALL



programs with FPGAs, the Synopsys FPGA Compiler provides the capability to optimise

the circuit for area and speed.

The Netlist Generator proposed in this thesis performs the specified requirements for

the SMALL language. Its and the hardware i ion of the SMALL
language have offered a significant advance on the original SMALL implementation. It is
believed that the SMALL language will be widely used in many areas in the future

because of its simplicity and simple i ially after the SMALL language

and further i to the Netlist Generator.
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Appendix A

The VHDL Descriptions Representing the
Netlist Circuit and the Test Bench for a
Sequential Multiplier

-File name: mult_out.vhd

--Author: Ying Shen

-Data: Feb. 26.1999

—The following is a VHDL source file representing the circuits generated from a
—~SMALL program that implements the multiplication of two 4-bit numbers.

library [EEE;
use [EEE.std_logic_1164.all;

entity SMALL_OUTI6is
port (assign_global_p : in std_logic_vector(0 to 7);
val_global_p : in std_logic_vector(0 to 7);
assert_global_muitiplicand : in std_logic_vector(0 to 3);
assert_global_multiplier : in std_logic_vector(0 to 3);
assert_global_done : in std_logic;

assert_global_go : in std_logic;

d_input : in std_logi
clocl

global_multiplicand : out std_logic_vector(0 to 3);
global_multiplier : out std_logic_vector(0 to 3);
global_done : out std_logic;
global_go : out std_logic);

end SMALL_OUTI6;

architecture Structure of SMALL_OUT16 is

signal wire880, wire877, wire874, wire871, wire868, wire865, wire862,
wire859, wire833, wire831, wire827, wire825, wire809, wire804,
wire799, wire795, wire793, wire777, wire775, wire770, wire769,
wire766, wire764, wire762, wire760, wire759, wire758, wire757,
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wire752, wire750, wire748, wire746,
wire738, wire736, wire734, wire732,
wire720. wire718,
wire710, wire708, wire706, wire705.
wire697, wire694, wire693, wire690,

wire724, wire72;

wire683, wire682, wire681, wire676,
wire668, wire666, wire664, wire662,
wire654, wire652, wire650, wire648,
wire642, wire641, wire640, wire639,

wire629, wire628, wire627. wire620.
wire616, wire615, wire608, wire607,
wire603, wire596, wire594, wire592,
wire584, wire582, wire580, wire578,
wire570, wire568, wire566. wire564,
wire556, wire554, wire553. wire552,
wire548, wire547. wire538, wire537,
wire333, wire526, wire525, wire524,

wire744, wire742, wire740.
wire730, wire728. wire726,
wire716, wire714, wire712.
wire704, wire703, wire698.
wire688, wire686, wire684,
wire674, wire672, wire670.
Wire660, wire658, wire656,

, Wire646, wire644, wire643,

wire632, wire63 1, wire630,
wire619, wire618, wire617,
wire606, wire605, wire604,
wire590, wire588, wire586,
wire576, wire574, wire572,
wire562, wire560, wire558,
wire551, wire550, wire549,
wire536, wire535, wire534.
wire523, wire522, wire521,

wire514, wire512, wire510, wire508, wire506, wire504, wire503,
wire502, wire501, wired96, wired94, wired92, wired91, wired8s,
wired87, wired84, wired82, wired81, wired78, wired77, wired74,
wire472, wired70, wire468, wired66, wired64, wired63, wired62,
wire461, wired56, wire434, wiredS3, wired50, wired49, wired46,
wired44, wiredd2, wired40, wired38, wired36, wired34, wired32,
wire430, wired28, wire426, wired24, wired22, wire420, wire418,
wire417, wired 14, wire412, wired 10, wire408, wired07, wired06,
wire405, wired00, wire399, wire396. wire394, wire392, wire390,
wire388, wire386, wire385, wire382, wire381, wire380, wire379,
wire374, wire373, wire370, wire369, wire368, wire367, wire362,
wire360, wire358, wire356, wire354, wire352, wire350, wire348,
wire346, wire344, wire343, wire342, wire341, wire340, wire339,
wire338, wire330, wire329, wire328, wire327, wire326, wire325,
wire324, wire316, wire315, wire3 14, wire313, wire312, wire311,
wire310, wire302, wire301, wire300, wire299, wire298, wire297,
wire296, wire288, wire287, wire286, wire285, wire284, wire283,
wire282, wire274, wire273, wire272, wire271, wire270, wire269,
wire268, wire260, wire259, wire258, wire257, wire256, wire255,
wire254, wire246, wire245, wire244, wire243, wire242, wire241,
wire240, wire232, wire231, wire230, wire229, wire228, wire227,
wire226, wire218, wire217, wire216, wire215, wire214, wire213,
wire212, wire201, wire200, wire199, wire198, wire197, wire196,
wire195, wire183, wire182, wirel81, wirel180, wirel79, wire178,
wirel77, wire165, wire164, wire163, wirel62, wirel61, wire160,
wire159, wire147, wire146, wirel45, wirel44, wirel43, wirel42,
wirel41, wire129, wire128, wirel27, wirel 26, wirel25, wire124,
wire123, wirel 11, wirel 10, wirel09, wire108, wirel07, wire106,
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wire105, wire93. wire92, wire91. wire90. wire89. wire88.
wire87, wire75. wire74. wire73, wire72, wire71, wire70.
wire69. wireS5, wire30. wiredS, wire40. wire33, wire28,
wire23. wirel8, wirel 1, wire6, wire3, wirel: std_logic:

component OR2
port (I1, 12 : in std_logic; O1 : out std_logic);
end component;

component AND2
port (I1, 12 : in std_logic: Ol : out std_logic):
end component;

component XOR2
port (I1, 12 : in std_logic; Ol : out std_logic);
end component;

component BUF
port (I1 : in std_logic; O1 : out std_logic);
end component;

component INVERTER
port (11 : in std_logic: O1 - out std_logic);
end component;

component DFLIPFLOP
port (clock, D : in std_logic: Q : out std_logic);
end component;

begin

Device883: BUF port map ( wire392, wirel);

Device882: BUF port map ( wire396, wire3);

Device881: OR2 port map ( val_global_p(4), wire880, wire141);
Device879: OR2 port map ( wire586, wire744, wire880);
Device878: OR2 port map ( assign_global_p(4), wue877 wirel42);
Device876: OR2 port map ( wire582, wire740, wire8’

Device875: OR2 port map ( val_global_p(5), wire874, wire159);
Device873: OR2 port map ( wire588, wire746, wire874);
Device872: OR2 port map ( assign_global_p(5), wire871, wire160);
Device870: OR2 port map ( wire582, wire740, wire871);
Device869: OR2 port map ( val_global_p(6), wire868, wire177);
Device867: OR2 port map ( wire590, wire748, wire868);
Device866: OR2 port map ( assign_global_p(6), wire865, wire178);
Device864: OR2 port map ( wire582, wire740, wire865);
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Device863: OR2 port map ( val_global_p(7), wire862, wire195):
Device861: OR2 port map ( wire392, wire750. wire862);
Device860: OR2 port map ( assign_global_p(7). wire859. wire196);
Device858: OR2 port map ( wire382, wire740, wire859);
Device857: BUF port map ( wire724. wire212):
Device856: BUF port map ( wire722, wire213):
Device855: BUF port map ( wire726, wire226);
Device854: BUF port map ( wire722, wire227);
Device853: BUF port map ( wire728, wire240);
Device852: BUF port map ( wire722, wire241);
Device851: BUF port map ( wire730, wire254);
Device850: BUF port map ( wire722, wire255);
Device849: BUF port map ( wire646, wire354);
Device848: BUF port map ( wire648, wire356);
Device847: BUF port map ( wire650, wire358);
Device846: BUF port map ( wire652, wire360);
Device845: BUF port map ( wire654, wire362);
Device844: BUF port map ( wire390, wire367):
Device843: BUF port map ( wire370, wire373);
Device842: BUF port map ( wire394, wire379);
Device841: BUF port map ( wire382, wire385):
Device840: BUF port map ( wire410. wire399);
Device839: BUF port map ( wire414, wired05);
Device838: BUF port map ( wire408, wire410);
Device837: BUF port map ( wired07, wired12);
Device836: BUF port map ( wire420, wired17):
Device835: BUF port map ( wired32, wire420);
Device834: OR2 port map ( ground, wire833. wire422);
Device832: OR2 port map ( ground, wire83 1, wire833);
Device830: OR2 port map ( ground, ground, wire831);
Device829: BUF port map ( wired44, wired32);
Device828: OR2 port map ( ground, wire827, wire434);
Device826: OR2 port map ( ground, wire825. wire827);
Device824: OR2 port map ( ground, ground, wire825);
Device823: BUF port map ( wire770, wiredd4);
Device822: BUF port map ( wire468, wired49);
Device821: BUF port map ( wire466, wired53);
Device820: BUF port map ( wire470, wired61);
Device819: BUF port map ( wire464, wired66);
Device818: BUF port map ( wire463, wired68);
Device817: BUF port map ( wired74, wire470);
Device816: BUF port map ( wire508, wired77);
Device815: BUF port map ( wire506, wired81);
Device814: BUF port map ( wire510, wire501);
Device813: BUF port map ( wire504, wire506);
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Device812: BUF port map ( wire503, wire508):
Device811: BUF port map ( wire560, wire510);
Device810: OR2 port map ( ground, wire809, wire514);
Device808: OR2 port map ( wire512, wire554, wire809):
Device807: BUF port map ( wire574, wire560);
Device806: BUF port map ( ground, wire562);
Device805: OR2 port map ( ground, wire804, wire564);
Device803: OR2 port map ( wire562, ground, wire804);
Device802: BUF port map ( wire582, wire574);
Device801: BUF port map ( wire594, wire582);
Device800: OR2 port map ( ground, wire799, wire596);
Device798: OR2 port map ( ground, ground, wire799);
Device797: BUF port map ( wire686, wire656);
Device796: OR2 port map ( ground, wire795, wire658);
Device794: OR2 port map ( ground, wire793, wire795);
Device792: OR2 port map ( ground, ground, wire793);
Device791: BUF port map ( wire688, wire668);
Device790: BUF port map ( wire690, wire681);
Device789: BUF port map ( wire684, wire686);
Device788: BUF port map ( wire683, wire688);
Device787: BUF port map ( wire710, wire693);
Device786: BUF port map ( wire708, wire697);
Device785: BUF port map ( wire712, wire703);
Device784: BUF port map ( wire706, wire708);
Device783: BUF port map ( wire705, wire710);
Device782: BUF port map ( wire722, wire712);
Device781: BUF port map ( wire732, wire722);
Device780: BUF port map ( wire740, wire732);
Device779: BUF port map ( wire752, wire740);
Device778: OR2 port map ( ground, wire777, wire742);
Device776: OR2 port map ( ground, wire775, wire777);
Device774: OR2 port map ( ground, ground, wire775);
Device773: BUF port map ( wire766, wire757);
Device772: BUF port map ( wire760, wire762);
Device771: BUF port map ( wire759, wire764);
Device768: INVERTER port map ( wire769, wire770);
Device767: DFLIPFLOP port map ( clock, d_input, wire769);
Device765: OR2 port map ( wired50, wire770, wire766);
Device756: AND2 port map ( wire758, wire757, wire760);
Device755: AND2 port map ( wire757, power, wire759);
Device754: INVERTER port map ( power, wire758);
Device751: OR2 port map ( wire764, wire698, wire752);
Device749: AND2 port map ( ground, wire740, wire750);
Device747: AND2 port map ( ground, wire740, wire748);
Device745: AND2 port map ( ground, wire740, wire746);
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Device743: AND2 port map ( ground, wire740, wire744);
Device737: AND2 port map ( ground, wire732, wire738);
Device735: AND2 port map ( ground. wire732. wire736);
Device733: OR2 port map ( ground, ground. wire734);
Device729: AND2 port map ( wireS5, wire722, wire730);
Device727: AND2 port map ( wire50, wire722. wire728);
Device725: AND2 port map ( wired5, wire722, wire726);
Device723: AND2 port map ( wired0, wire722, wire724);
Device719: AND2 port map ( wire33, wire712, wire720);
Device717: AND2 port map ( wire28, wire712, wire718);
Device715: AND2 port map ( wire23, wire712, wire716);
Device713: AND2 port map ( wirel8, wire712. wire714);
Device702: AND2 port map ( wire704. wire703, wire706);
Device701: AND2 port map ( wire703, wire6, wire705);
Device700: INVERTER port map ( wire6, wire704);
Device696: DFLIPFLOP port map ( clock, wire697, wire698);
Device692: DFLIPFLOP port map ( clock, wire693. wire694);
Device689: OR2 port map ( wire694, wired82, wire690);
Device680: AND2 port map ( wire682, wire681, wire684);
Device679: AND2 port map ( wire681, wire274. wire683);
Device678: INVERTER port map ( wire274, wire682);
Device675: AND2 port map ( wire668. wire260, wire676);
Device673: AND2 port map ( wire668, wire246, wire674);
Device671: AND2 port map ( wire668, wire232, wire672);
Device669: AND2 port map ( wire668, wire218. wire670);
Device665: AND2 port map ( wire656, ground, wire666);
Device663: AND2 port map ( wire6356, ground, wire664);
Device661: AND2 port map ( wire656, ground, wire662);
Device659: AND2 port map ( wire656, ground, wire660);
Device653: AND2 port map ( wire594, wire644, wire654);
Device651: AND2 port map ( wire594, wire643, wire652);
Device649: AND2 port map ( wire594, wire631, wire650);
Device647: AND2 port map ( wire594, wire619, wire648);
Device645: AND2 port map ( wire594, wire607, wire646);
Device638: XOR2 port map ( wire632, wire642, wire643);
Device637: XOR2 port map ( wire352, wire201, wire642);
Device636: OR2 port map ( wire639, wire641, wire644);
Device635: OR2 port map ( wire352, wire201, wire640);
Device634: AND2 port map ( wire632, wire640, wire641);
Device633: AND2 port map ( wire352, wire201, wire639);
Device626: XOR2 port map ( wire620, wire630, wire631);
Device625: XOR2 port map ( wire350, wire183, wire630);
Device624: OR2 port map ( wire627, wire629, wire632);
Device623: OR2 port map ( wire350, wire183, wire628);
Device622: AND2 port map ( wire620, wire628, wire629);



Device621: AND2 port map ( wire350. wirel83, wire627);
Device614: XOR2 port map ( wire608. wire618, wire619);
Device613: XOR2 port map ( wire348, wire165, wire618);
Device612: OR2 port map ( wire615, wire617, wire620);

Device611: OR2 port map ( wire348, wire165, wire616):

Device610: AND2 port map ( wire608, wire616, wire617);
Device609: AND2 port map ( wire348, wirel65, wire615);
Device602: XOR2 port map ( ground, wire606, wire607);

Device601: XOR2 port map ( wire346, wire147, wire606);
Device600: OR2 port map ( wire603, wire605, wire608);

Device599: OR2 port map ( wire346, wire147, wire604);

Device598: AND2 port map ( ground, wire604, wire605);

Device597: AND2 port map ( wire346. wirel47, wire603);
Device593: OR2 port map ( wire668, wire656, wire594);

Device59 i i
Device58
Device58
Device58:
Device58
Device57
Device57’
Device57:
Device57'
Device56
DeviceS6’
Device56:
Device55
Device55.
Devices:

AND2 port map ( wire337, wire510, wire558);
AND2 port map ( wire525, wire510, wire556);
R2 port map ( wire552, wire553, wire554);
Device545: INVERTER port map ( wire537, wire549);
Device544: INVERTER port map ( ground, wire548);
Device543: INVERTER port map ( wire344, wire547);
Device542: AND2 port map ( wire548, wire547, wire551);
Device541: AND2 port map ( wire551, wire537, wire553);
Device540: AND2 port map ( wire549, wire550, wire552);
Device539: AND2 port map ( ground, wire344, wire550);
Device532: XOR2 port map ( wire526, wire536, wire537);
Device531: XOR2 port map ( ground, wire344, wire536);
Device530: OR2 port map ( wire533, wire535, wire538);

: OR2 port map ( ground, wire344, wire534);
'AND2 port map ( wire526, wire534, wire535);
Device527: AND2 port map ( ground, wire344, wire533);
Device520: XOR2 port map ( ground, wire524, wire525);
Device519: XOR2 port map ( power, wire330, wire524);
Device518: OR2 port map ( wire521, wire523, wire526);
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Device517:
Device516:
Device515:
Device511:
Device500:
Deviced99:
Device498:
Deviced95:
Deviced93:
Device490:
Device489:
Deviced86:
Deviced8s:
Deviced83:
Device480:
Device476:
Device473:
Deviced71:
Deviced60:
Deviced59:
Device458:
Devicedss:
Deviced52:
Device448:
Devicedds:
Deviced41:
Device439:
Deviced37:
Deviced35:
Device429:
Deviced27:
Device425:
Deviced23:
Deviced16:
Deviced13:
Deviced04:
Deviced03:
Deviced02:
Device398:
Device395:
Device393:
Device391:
Device389:
Device387:
Device384:

OR2 port map ( power. wire330, wire522);

AND2 port map ( ground. wire522. wire523);
AND2 port map ( power, wire330. wire521);

‘OR2 port map ( ground, ground, wire512);

AND?2 port map ( wire502, wire501, wire504);
AND2 port map ( wire501, wire494, wire503);
INVERTER port map ( wire494, wire502):

OR2 port map ( wire484, ground, wired96);
AND2 port map ( wire492. wire488, wired94);
INVERTER port map ( wire491, wire492);

XOR2 port map ( power, wire344. wired91);
INVERTER port map ( wire487, wire488);

XOR2 port map ( power, wire330, wire487);

OR2 port map ( ground, ground, wire484);
DFLIPFLOP port map ( clock, wire481, wire482):
DFLIPFLOP port map ( clock, wired77, wire478);
OR2 port map ( wire478, wired54, wire474);
AND? port map ( wired70, power, wired72);
AND2 port map ( wire462, wired61. wired64
AND2 port map ( wired61, wired56, wire463);
INVERTER port map ( wire456, wire462);
INVERTER port map ( wire6, wire456);
DFLIPFLOP port map ( clock. wired53, wired54);
DFLIPFLOP port map ( clock. wired49, wire450):
AND2 port map ( wired44, power, wire446);
AND? port map ( wired32, ground, wired42);
AND2 port map ( wire432, ground, wire440);
AND2 port map ( wire432, power, wired38);
AND2 port map ( wire432, power, wire436);
AND2 port map ( wire420, ground, wire430);
AND2 port map ( wire420, ground, wire428);
AND2 port map ( wire420, power, wire426);
AND2 port map ( wire420, ground, wired24);
DFLIPFLOP port map ( clock, wire417, wire418);
OR2 port map ( wire418, wire400, wire414);
AND2 port map ( wire406, wire405, wire408);
AND?2 port map ( wire405, wirel 1, wire407);
INVERTER port map ( wirel 1, wire406);
DFLIPFLOP port map ( clock, wire399, wire400);
AND2 port map ( wire394, power, wire396);

‘OR2 port map ( wire762, wire386, wire394);
AND2 port map ( wire390, power, wire392);

OR2 port map ( wire412, wire374, wire390);

‘OR2 port map ( wire381, wire369, wire388);
DFLIPFLOP port map ( clock, wire385, wire386);
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Device378:
Device377:
Device376:
Device372:
Device366:
Device365:
Device364:

Device351

Device349:
Device347:
Device345:
Device337:
Device336:
Device335:
Device334:
Device333:
Device332:
Device331:
Device323:
Device322:
Device321:
Device320:
Device319:
Device318:
Device317:
Device309:
Device308:
Device307:
Device306:
Device305:
Device304:
Device303:

Device289:
Device281:
Device280:
Device279:
Device278:

Device277:
Device276:

AND?2 port map ( wire380, wire379, wire382);
AND?2 port map ( wire379. wirel, wire381);
INVERTER port map ( wirel. wire380);
DFLIPFLOP port map ( clock, wire373, wire374);
AND2 port map ( wire368, wire367, wire370);
AND?2 port map ( wire367, wire3, wire369);
INVERTER port map ( wire3, wire368);

: OR2 port map ( wire676, wire666, wire352);
OR2 port map ( wire674, wire664, wire350);
OR2 port map ( wire672, wire662, wire348);
OR2 port map ( wire670, wire660, wire346);
DFLIPFLOP port map ( clock, wire343, wire344);
AND?2 port map ( wire342. wire344, wire341);
OR2 port map ( wire341, wire340, wire343);
INVERTER port map ( wire339, wire342);
AND?2 port map ( wire339, wire338, wire340);
OR2 port map ( wire732, wire510, wire339);
OR2 port map ( wire738, wire558, wire338);
DFLIPFLOP port map ( clock. wire329, wire330);
AND?2 port map ( wire328, wire330, wire327);
OR2 port map ( wire327, wire326, wire329);
INVERTER port map ( wire325, wire328);
AND?2 port map ( wire325, wire324, wire326);
OR2 port map ( wire732, wire510, wire325);
OR2 port map ( wire736, wire556, wire324);
DFLIPFLOP port map ( clock, wire315, wire316);
AND2 port map ( wire314. wire3 16, wire313);
OR2 port map ( wire313, wire312, wire315);
INVERTER port map ( wire311, wire314);
AND?2 port map ( wire311, wire310, wire312);
OR2 port map ( wire712, wire560, wire311);
OR2 port map ( wire720, wire572, wire310);

- DELIPFLOP port map ( clock, wire301, wire302);
: AND2 port map ( wire300, wire302, wire299);

: OR2 port map ( wire299, wire298, wire301);

: INVERTER port map ( wire297, wire300);

: AND2 port map ( wire297, wire296, wire298);

: OR2 port map ( wire712, wire560, wire297);
OR2 port map ( wire718, wire570, wire296);
DFLIPFLOP port map ( clock, wire287, wire288);
AND?2 port map ( wire286, wire288, wire285);
OR2 port map ( wire285, wire284, wire287);
INVERTER port map ( wire283, wire286);

: AND2 port map ( wire283, wire282, wire284);

- OR2 port map ( wire712, wire560, wire283);
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Device275: OR2 port map ( wire716, wire568, wire2!
Device267: DFLIPFLOP port map ( clock. wire273. wire274);
Device266: AND2 port map ( wire272, wire274, wire271);
Device265: OR2 port map ( wire271, wire270, wire273);

: INVERTER port map ( wire269, wire272);

: AND2 port map ( wire269, wire268, wire270);

2: OR2 port map ( wire712. wire560. wire269):
OR2 port map ( wire714, wire366. wire268);
Device253: DFLIPFLOP port map ( clock, wire259, wire260);
Device252: AND2 port map ( wire258. wire260, wire257);
Device251: OR2 port map ( wire257, wire256, wire259);
Device250: INVERTER port map ( wire255, wire258):
Device249: AND2 port map ( wire255, wire254, wire256);
Device239: DFLIPFLOP port map ( clock, wire245, wire246);
Device238: AND2 port map ( wire244, wire246, wire243);
Device237: OR2 port map ( wire243, wire242, wire245);
Device236: INVERTER port map ( wire241, wire244);
Device235: AND2 port map ( wire241, wire240. wire242);
Device225: DFLIPFLOP port map ( clock, wire231, wire232);
Device224: AND2 port map ( wire230, wire232, wire229);
Device223: OR2 port map ( wire229, wire228. wire231);
Device222: INVERTER port map ( wire227, wire230);
Device221: AND2 port map ( wire227, wire226, wire228);
Device211: DFLIPFLOP port map ( clock, wire217. wire218):
Device210: AND2 port map ( wire216, wire218. wire215);
Device209: OR2 port map ( wire215, wire214. wire217);
Device208: INVERTER port map ( wire213, wire216);
Device207: AND2 port map ( wire213, wire212, wire214);
Device194: BUF port map ( wire201, global_p(7));
Device193: DFLIPFLOP port map ( clock, wire200, wire201);
Device192: AND2 port map ( wire199, wire201, wire198);
Devicel91: OR2 port map ( wire]198, wire197, wire200);
Device190: INVERTER port map ( wire196, wire199);
Devicel89: AND2 port map ( wirel96, wire195, wire197);
Devicel76: BUF port map ( wirel83, global_p(6));
Devicel75: DFLIPFLOP port map ( clock, wirel82, wire183);
Devicel74: AND2 port map ( wire|81, wire183. wire180);
Device173: OR2 port map ( wire180, wire179, wire182);
Device172: INVERTER port map ( wirel78, wirel81);
Devicel71: AND2 port map ( wirel78, wire177, wirel79);
Devicel58: BUF port map ( wirel65, global_p(5));
Devicel57: DFLIPFLOP port map ( clock, wire164, wirel65);
Devicel56: AND2 port map ( wirel63, wire165, wirel62);
Devicel55: OR2 port map ( wirel62, wirel61, wire164);
Devicel54: INVERTER port map ( wire160, wirel63);
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Devicel33: AND2 port map ( wirel60, wirel59. wirel61);
Device140: BUF port map ( wire147, global_p(4));
Device139: DFLIPFLOP port map ( clock, wirel46, wire147);
Devicel38: AND2 port map ( wirel45, wire147, wirel44);

OR2 port map ( wire144. wire143, wire146);
INVERTER port map ( wirel42, wirel45);
AND?2 port map ( wirel42, wirel41. wirel43);
BUF port map ( wire129, global_p(3)):
DFLIPFLOP port map ( clock, wirel28, wire129);
Device120: AND2 port map ( wire127, wirel29, wire126);
Devicel19: OR2 port map ( wire126, wirel25, wire128);
Devicel18: INVERTER port map ( wire124, wire127);
Devicel17: AND2 port map ( wire124, wire123, wire125);
Devicel 16: OR2 port map ( wire582, assign_global_p(3), wire124);
Devicel 15: OR2 port map ( wire584, val_global_p(3), wire123);
Device104: BUF port map ( wirel 11, global_p(2));
Device103: DFLIPFLOP port map ( clock, wirel 10, wire111);
Device102: AND2 port map ( wire109, wirel11, wire108);
Devicel01: OR2 port map ( wire108, wire107, wirel 10);
Device100: INVERTER port map ( wire106, wire109);
Device99: AND2 port map ( wire106, wire105, wire107);
Device98: OR2 port map ( wireS74, assign_global_p(2), wirel06);
Device97: OR2 port map ( wire580, val_global_p(2), wire105);
Device86: BUF port map ( wire93, global_p(1));
Device85: DFLIPFLOP port map ( clock, wire92, wire93);
Device84: AND2 port map ( wire91, wire93, wire90);
Device83: OR2 port map ( wire90, wire89, wire92);
Device82: INVERTER port map ( wire88, wire9l);
Device81: AND2 port map ( wire88, wire87, wire89);
Device80: OR2 port map ( wire574, assign_global_p(1), wire88);
Device79: OR2 port map ( wire578, val_global_p(1), wire87);
Device68: BUF port map ( wire75, global_p(0));
Device67: DFLIPFLOP port map ( clock, wire74, wire75);
Device66: AND2 port map ( wire73, wire75, wire72);
Device65: OR2 port map ( wire72, wire71, wire74);
Device64: INVERTER port map ( wire70, wire73);
Device63: AND2 port map ( wire70, wire69, wire71);
Device62: OR2 port map ( wire574, assign_global_p(0), wire70);
Device61: OR2 port map ( wire576, val_global_p(0), wire69);
Device57: BUF port map ( wires5, global_multiplicand(3));
Devices3: OR2 port map ( wire430, assert_global_multiplicand(3), wireS5);
Device52: BUF port map ( wire50, global_multiplicand(2));
Deviced8: OR2 port map ( wire428, assert_global_multiplicand(2), wire50);
Device47: BUF port map ( wired5, global_multiplicand(1));
Device43: OR2 port map ( wire426, assert_global_multiplicand(1), wire45);
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UF port map ( wire40. global_multiplicand(0)):

RZ port map ( wire424, assert_global_multiplicand(0), wired0):
map ( wire33, global_multiplier(3));

Device31: 0Il2 port map ( wired42, assert_global_multiplier(3), wire33);

Device30: BUF port map ( wire28, global_multiplier(2));

UF port map ( wire23, global_multiplier(1));
R2 port map ( wire438, assert_global_multiplier(1), wire23);
Device20: BUF port map ( wirel18, global_muiltiplier(0));
Devicel6: OR2 port map ( wire436, assert_global_multiplier(0), wirel8);
Devicel3: BUF port map ( wirel 1, global_done);
Device9: OR2 port map ( wire472, assert_global_done, wirel1);
Device8: BUF port map ( wire6, global_go);
Deviced: OR2 port map ( wire446, assert_global_go, wire6);
end Structure;

Figure A.1: The Structural VHDL Output D iption for a

--File name: mult_test.vhd
—Author: Ying Shen
--Data: Feb. 26,1999
--The following is a VHDL description of the test bench that is used to test the circuit
~-described in Figure A.1

library IEEE;
use [EEE.std_logic_1164.all;

entity SMALL_TEST16 is
end SMALL_TESTI6;

architecture TEST16 of SMALL_TESTI16 is

component SMALL_OUT16

pon(asslgn_globu.l_p in std_logic_vector(0 to 7);
val_global_p : in std_logic_vector(0 to 7);
assert_global_multiplicand : in std_logic_vector(0 to 3);
assert_global_multiplier : in std_logic_vector(0 to 3);
assert_global_done : in std_logic;
assert_global_go : in std_logic;
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global_p : out std_logic_vector(0 to 7);
global_multiplicand : out std_logic_vector(0 to 3);
global_multiplier : out std_logic_vector(0 to 3);
global_done : out std_logic;
global_go : out std_logic);

end component;

signal assign_global_p : std_logic_vector(0 to 7) := "00000000";
signal val_global _p - std_logic_vector(0 to 7) := "00000000
signal assert_global_multiplicand : std_logic_vector(0 to 3)
signal assert_global_multiplier : std_logic_vector(0 to 3) ==
signal assert_global_done : std_logic :='0;

signal assert_global_go : std_logic :="0";

signal global_multiplicand, globa.l_multipliel: std_logic_vector(0 to 3);
signal global_p : std_logic_vector(0 to 7);

signal ground: std_logic I’
signal global_done, global _go‘ d_input : std_logic;
signal clock: std_logic

AAL: SMALL OUTI6 pon map (assngn _global_p, val_global_p,
assert_global_ assert_global_done,
assert_global_go, d_input, clock. powe! ground. global_p, global_multiplicand ,
global_multiplier, global_done, global_go);

clock <= not clock after 10 ns;

d_input <="U', power after 5 ns;

end TESTI16;

configuration conf SMALL_16 of SMALL_TEST16 is

for TEST16

end for;

end conf SMALL_16;

Figure A.2: The VHDL Description of the Test Bench for a Sequential Multiplier
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Appendix B

The VHDL Descriptions Representing the
Netlist Circuit and the Test Bench for a
Serial Adder

~-File name: adder_out.vhd

--Author: Ying Shen

--Data: Feb. 26.1999

--The following is a structural VHDL description created by the netlist generator for
-- the serial adder in Figure 4.11.

library [EEE;
use [EEE.std_logic_1164.all;

entity SMALL_OUT4 is
port (assert_global_x : in std_logic;
assert t_global_e : in std [oglc,
d

d_input : in std, iog:c.
clock : in std_logic;
srd logic,

global
global_a : out std_logic);
end SMA.LL OUT4;

architecture Structure of SMALL_OUT4 is
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signal wirel33, wirel32, wirel29, wire127, wirel25, wirel23. wire122,
wirel21, wirel20, wirel 15, wire113. wirel11, wire109, wirel07,
wirel05. wire103, wire101, wire99. wire97, wire95, wire93.
wire91., wire89, wire87, wire8S, wire83, wire8l, wire79.
wire77, wire75, wire74, wire71, wire69, wire67, wire65.
wire64, wire61. wire59, wire58, wireS3, wired8, wire42.
wired1, wire40, wire39, wire38, wire37, wire36, wire24,
wire23, wire22, wire21, wire20, wirel9. wirel8, wire7. wire2: std_logic;

component OR2
port (I1, 12 : in std_logic; O1 : out std_logic);
end component;

component AND2
port (I1, 12 : in std_logic; O1 : out std_logic);
end component;

component XOR2
port (I1. 12 : in std_logic: O1 : out std_logic);
end component;

component BUF
port (I1 : in std_logic: O1 : out std_logic);
end component;

component INVERTER
port (I1 : in std_logic; Ol : out std_logic);
end component;

component DFLIPFLOP
port (clock, D : in std_logic; Q : out std_logic);
end component;

begin

Devicel43: BUF port map ( assert_global_a, wire2);
Devicel42: BUF port map ( assert_global_b, wire7);
Devicel41: BUF port map ( wire61, wires8);
Device140: BUF port map ( wire71, wire61);
Devicel39: BUF port map ( wire81, wire71);
Device138: BUF port map ( wire105, wire81);
Devicel37: BUF port map ( wirel27, wirel05);
Devicel36: BUF port map ( wirel29, wire120);
Device135: BUF port map ( wire123, wirel25);
Devicel34: BUF port map ( wirel22, wirel27);
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Devicel31: INVERTER port map ( wirel32, wirel33);

Devicel30:
Devicel28:

FLIPFLOP port map ( clock, d_input, wire132);
: OR2 port map ( wire133, wire59, wirel29);

Devicel19: AND2 port map ( wirel21. wirel20, wirel23);

Devicel 18:

: AND2 port map ( wire120, power, wire122);

Devicel17: INVERTER port map ( power, wirel21);

Devicel 14:
Devicell12:

: AND2 port map ( wire105, wirel 11, wirel15);
: OR2 port map ( ground, wire109, wirel13);

Device110: XOR2 port map ( wire24, wirel07, wirel11);
Device108: OR2 port map ( ground, ground, wire109);
Devicel06: XOR2 port map ( wire7, wire2, wire107);
Device102: AND2 port map ( wire99, wire81, wire103);
Device100: OR2 port map ( wire97, wire93, wirel01);

Device98:
Device96:
Device94:
Device92:
Device90:
Device88:
Device86:
Device84:
Device82:
Device78:
Device76:
Device73:
Device72:
Device68:
Device66:
Device63:
Device62:
Device37:
Device55:
Device51:
Device50:
Deviced6:
Device35:
Device34:
Device33:
Device32:
Device31:
Device30:
Device29:
Device28:
Devicel7:
Devicel6:

OR2 port map ( wire95, wire91, wire99);

OR2 port map ( ground, ground, wire97);
AND2 port map ( wire24, wire7, wire95);

OR2 port map ( wire89, wire85, wire93);

OR2 port map ( wire87, wire83, wire91);

OR2 port map ( ground, ground, wire89);
AND2 port map ( wire24, wire2, wire87);

OR2 port map ( ground, ground, wire85);
AND?2 port map ( wire7, wire2, wire83);

AND?2 port map ( wire75, wire71, wire79);
OR2 port map ( ground, ground, wire77);

'OR2 port map ( wire7, wire74, wire75);
INVERTER port map ( wire2, wire74);

AND2 port map ( wire61, wire65, wire69);
OR2 port map ( ground, ground, wire67);

OR2 port map ( wire2, wire64, wire65);
INVERTER port map ( wire7, wire64);
DFLIPFLOP port map ( clock, wire58, wire59);
BUF port map ( wire53, global_x);

OR2 port map ( wirel 15, assert_global_x, wire53);
BUF port map ( wire48, global_e);

OR2 port map ( wire69, assert_global_e, wired8);
BUF port map ( wired2, global_d);
DFLIPFLOP port map ( clock, wire41, wire42);
AND2 port map ( wired0, wire42, wire39);
OR2 port map ( wire39, wire38, wired1);
INVERTER port map ( wire37, wire40);

AND2 port map ( wire37, wire36, wire38);
OR2 port map ( wire71, assign_global_d, wire37);
OR2 port map ( wire79, val_global_d, wire36);
BUF port map ( wire24, global_c);
DFLIPFLOP port map ( clock, wire23, wire24);

us



Devicel5: AND2 port map ( wire22, wire24, w1r=21).

Device9: BUF port map ( wire7. global_b);
Device4: BUF port map ( wire2, global_a);
end Structure;

Figure B.1: The Structural VHDL Output Description for a Serial Adder

--File name: adder_test.vhd

--Author: Ying Shen

--Data: Feb. 26,1999

~The following is a VHDL description of the test bench that is used to test the circuit
~-described in Figure B.1

library IEEE;
use IEEE.std_logic_1164.all;

entity SMALL_TEST4 is
end SMALL_TEST4;

architecture TEST4 of SMALL_TEST4 is

component SMALL_OUT4

gn_global
val_global_c : in std_logic;
assert_global_b : in std_logic;
std_logic;
d_input : instd |_logic;
clock : in std_logic;
power : in std_logic;
ground : in std_logic;

19



global_x : out std_logic;

global_e : out std_logic;

global d : out std_logic;

global_c : out std_logic;

global_b : out std_logic;

global_a : out std_logic);
end component;

signal assign_global_c, val_global_c: std_lo;
signal assign_global_d, val_global
signal assert_global x : std_logic
signal assert_global_e : std_logic :='0";

signal assert_global_b. assert_global_a, d_input : std_logic;

signal global_c, global_d, global_e, global_x, global_b, global_a : std_logic:
signal ground: std_logic

signal clock: std_logic
signal power: std_logic :='1";
begin

BAI: SMALL_OUT4 port map (assert_global_x, assert_global_e, mp_globa.l_d.
val _global d, assign_global_c, val_global_c. assert_global_b,
assert_global_a, d_input, clock, power, ground, global_x, global_e.
global_d, global_c, global_b, global_a);

clock <= not clock after 10 ns;

d_input <='U', power after 10 ns;

assert_global_a <='0", 1" after 20 ns, '0" after 40 ns, '1" after 60 ns,

‘1" after 80 ns, '0" after 100 ns, '1" after 120 ns;
assert_global_b <="1", 0" after 20 ns, ‘0 after 40 ns, ‘0’ after 60 ns,
‘1" after 80 ns, '0' after 100 ns, '1' after 120 ns;

end TEST4;

configuration conf_SMALL_4 of SMALL_TEST4 is
for TEST4
end for;

end conf_SMALL _4;

Figure B.2: The VHDL Description of the Test Bench for a Serial Adder



Appendix C

The VHDL Descriptions Representing the
Array Types and the Test Bench for the
Operations of Two-dimensional Arrays

—File name: packaged.vhd

—Author: Ying Shen

--Data: Feb. 26,1999

--The following is a VHDL description used for defining the types of two-dimensional
--arrays in Example 4.

library [EEE;
use [EEE.std_logic_1164.all;

package P is

type A236 is array (0 to 2) of std_logic:
type B236 is array (0 to 1) of A236;
type A235 is array (0 to 2) of std_logic:
type B235 is array (0 to 1) of A235;
type A234 is array (0 10 2) of std_logic:
type B234 is array (O to 1) of A234;
type A119 is array (0 to 2) of std_logic;
type BI19 isarray (0to 1) of A119;
type A118 is array (0 to 2) of std_logic;
type Bl118 isarray (Oto 1) of A118;
type A117 is array (0 to 2) of std_logic;
type B117 isarray (Oto 1) of Al17;
type A77 is array (0 to 2) of std_logic;
type B77 is array (O to 1) of A77;

type A76 is amray (0 to 2) of std_logic;
type B76 is array (O to 1) of A76;

type A4l is array (0 to 2) of std_logic;
type B41 is array (O to 1) of Ad1;

type A40 is array (0 to 2) of std_logic;
type B40 is array (0 to 1) of A40;
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type AS is array (0 to 2) of std_logic;
type BS is array (0 to 1) of AS;
type A4 is array (0 to 2) of std_logic:
type B4 is array (0 to 1) of A4;

end P;
Figure C.1: The VHDL Description for Data Types Used in Example 4

--File name: example4_test.vhd

--Author: Ying Shen

--Data: Feb. 26,1999

--The following is a VHDL description of the test bench used in Example 4.

library [EEE;
use [EEE.std_logic_1164.all;
use WORK.Pali;

entity SMALL_TEST38 is
end SMALL_TEST38;

architecture TEST38 of SMALL_TEST38 is

component SMALL_OUT38
port (assign_global_f: in B235;
val_global_f: in B234;
assign_global_e: in B118;
val_global_e: in B117;
assert_global_d : in std_logic;
76;

global d : out std_logic;
global_c: out B77;



global_b: out B41;
global_a: out BS);

end component:

signal assign_global_f : B235:=("000", "000"):
signal val_global_f : B234:= ("000", "000);

signal assign_global_e : B118:= ("000", "000");
signal val_global_e : B117:=("000", "000");
--signal assert_global_d : B112:=("0000". "0000");
signal assert_global_d : std_logic
signal assert_global_c : B76:= ("000". "000’
signal assert_global_b : B40 = ("000", "000");
signal assert_global_a : B4 == ("000". "000");
signal global_f : B236;

signal global_e : B119;

signal global_d : std_logic;

signal global_c : B77;

signal global_b : B41;

signal global_a : BS;

slgnal ground: std Iog:c =0

signal power: std_logic
begin

AAL:SMALL_OUT38 porlmap(mxgn_globa.l f. val_global_f,
assign _globll e, val_glol

assert_global_d, assert _glob-l_c. asen t_global_b.
assert_global_a, d_input, clock, power, ground.global _f,
global_e, global_d, global_c,global_b. global_a);

clock <= not clock after 10 ns;

d_input <="U", power after 3 ns;

end TEST38;

configuration conf_SMALL_38 of SMALL_TEST38 is
for TEST38

end for;

end conf SMALL_38;

Figure C.2: The VHDL Description of the Test Bench for Example 4
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Appendix D

The VHDL Descriptions Representing the
Array Types and the Test Bench for the
Operations of Three-dimensional Arrays in

Example §

—File name: packageS.vhd
—-Author: Ying Shen
~-Data: Feb. 26,1999

--The following is a VHDL description used for defining the types of three-

-- dimensional arrays in Example 5.

library [EI
use [EEE.. std |_logic_l164.all;

package P is

type A167 is array (0 to 2) of std_logic;
type B167 is array (0 to 1) of A167;
type C167 is array (0 to 1) of B167;
type A166 is amray (0 to 2) of std_logic;
type B166 is array (0 to 1) of A166;
type C166 is array (0 to 1) of B166;
type Al13 is array (0 to 1) of std_logic;
type B113 isarray (O to 1) of Al13;
type Cl13 isarray (Oto 1) of B113;
type Al112 is array (0 to 1) of std_logic;
type Bl12 isarray (O to 1) of A112;
type Cl112isarray (Oto 1) of B112;
type A59 is array (0 to 1) of std_logic;
type B39 is array (0 to 1) of AS9;

type C59 is array (0 to 1) of B59;

type A58 is array (0 to 1) of std_logic;
type B58 is array (0 to 1) of AS8;

type C58 is array (0 to 1) of B58;

type AS is array (0 to 1) of std_logic;
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type B3 is array (0 to 1) of AS;
type C5 is array (O to 1) of BS;
type A4 is array (0 to 1) of std_logic;
type B4 is array (0 to 1) of A4;
type C4 is array (0 to 1) of B4;

end P;

Figure D.1: The VHDL Description for Data Types Used in Example 5

--File name: exampleS5_test.vhd

-Author: Ying Shen

--Data: Feb. 26,1999

-The following is a VHDL description of the test bench used in Example 5.

library [EEE;
use [EEE.std_logic_1164.all;
use WORK.P.all;

entity SMALL_TEST37 is
end SMALL_TEST37;

architecture TEST37 of SMALL_TEST37 is

component SMALL OUT37

global a: out C5);

end component;



(000 0007, ("000°. "000");
00", "00™). ("C0", "00"));
(("00". "00"). ("00". "00™)):

00", "00"), ("00", "00™));

signal global_d : C167;
signal global_c : C113;

signal ground: std_logic := "0
signal d_input : std_logic:
signal clock: std_logic
signal power: std_logic

begin

AAI: SMALL_OUT37 port map (
assert_global_d, assert_global_c. assert_global_b.
assert_global_a, d_input. clock. power, ground,
global_d, global_c,global_b, global_a);

clock <= not clock after 10 ns;

d_input <="U’, power after 10 ns;

end TEST37;

configuration conf_SMALL_37 of SMALL_TEST37 is
for TEST37

end for;

end conf_SMALL_37;

Figure D.2: The VHDL Description of the Test Bench for Example 5
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Appendix E

The VHDL Descriptions Representing the
Netlist Circuit and the Test Bench for
Example 6

~File name: image_out.vhd
~-Author: Ying Shen

--Data: Feb. 26,1999

—The following is a VHDL description created by the netlist generator for
—Example 6.

library [EEE;
use [EEE.std_logic_1164.all;

entity SMALL_OUT66 is
port (assert_global_done : in std_logic;
assert_global_go : in std_logic;
assert_global_found : in std_logic_vector(0 to 1);
assert_global_pattemn : in std_logic_vector(0 to 1);
assert_global_image - in std_logic_vector(0 to 2);
d_input : in std_logic;
clock : in std_logi
power : in std_logic;
ground : in std_logic;
global_done : out std_logic;
global_go : out std_logic;
global_found : out std_logic_vector(0 to 1);
globul_panem out std_logic_vector(0 to 1);
global_image : out std_logic_vector(0 to 2));
end SMALL_OUT66;

architecture Structure of SMALL_OUT66 is
signal wire501, wired99, wired96, wire494, wired91, wire489, wire486,

wire484, wired81, wired79, wired76, wired74, wire455, wired44,
wired33, wired24, wired22, wired19, wired17, wire392, wire391,
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wire388, wire386, wire384, wire382. wire381, wire380, wire379.
wire374, wire372, wire370, wire368. wire367. wire366. wire365,
wire360, wire358, wire357, wire354. wire352, wire350. wire349.
wire348, wire347, wire342, wire340. wire339, wire336, wire335,
wire332, wire330, wire328, wire327, wire326, wire325, wire320.
wire318, wire317, wire314, wire312, wire310, wire308, wire306,
wire305, wire304, wire303, wire298, wire296, wire295, wire292,
wire291, wire288, wire286, wire284, wire283, wire282. wire281,
wire276, wire274, wire273, wire270. wire268, wire266, wire264,
wire262, wire260, wire258, wire256, wire255. wire252, wire251.
wire250, wire249, wire244, wire243, wire240, wire239, wire238,
wire237, wire232, wire230, wire228, wire227, wire224, wire222,
wire220, wire218, wire216, wire214. wire212, wire210, wire208.
wire206, wire204, wire202, wire200, wire198, wire196, wire195,
wire194, wire193, wire188, wire187, wire184, wire183, wire180,
wire178, wire176, wirel 74, wire172, wire170, wire168, wire166,
wire164, wire162, wirel 60, wirel58. wirel 56, wirel 54, wirel52,
wirel51, wirel50, wire149, wirel44. wire143, wire140, wire139,
wire136, wirel34, wire132, wire130, wire128, wire126, wire124,
wire122, wire120, wirel 18, wire116, wirel 14, wirel 12, wirel10.
wire108, wirel07, wire106, wire105, wire100, wire99, wire96,
wire95, wire92, wire90, wire88, wire86, wire84, wire82,

wire81, wire78, wire77, wire76, wire75, wire70, wire69,

wire66, wire65, wire64, wire63, wire58, wire56, wire54,

wire52, wired8, wire43, wire38, wire33, wire26, wire21,

wirz14, wire9, wired: std_logic;

component OR2
port (11. 12 : in std_logic; O1 : out std_logic);
end component;

component AND2
port (I1, 12 : in std_logic; Ol : out std_logic);
end component;

component XOR2

port (I1, 12 : in std_logic; Ol : out std_logic);
end component;

component BUF

port (I1 : in std_logic; Ol : out std_logic);
end component;

component INVERTER
port (I1 : in std_logic; O1 : out std_logic);
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end component;

component DFLIPFLOP
port (clock, D : in std_logic: Q : out std_logic):
end component;
begin
Device502: OR2 port map ( assert_global_image(0), wire501. wire);
Device500: OR2 port map ( wire130, wire499, wire501);
Device498: OR2 port map ( wire174, wire218, wire499);
Deviced497: OR2 port map ( assert_global_image(1), wired96. wire9);
Device495: OR2 port map ( wire132, wired94, wired96);
Deviced93: OR2 port map ( wire176, wire220, wired94);
Device492: OR2 port map ( assert_global_image(2), wire491. wire14);
Device490: OR2 port map ( wire134, wired89, wired91);
Device488: OR2 port map ( wire178, wire222, wired89);
Deviced487: OR2 port map ( assert_global_pattern(0), wire486. wire21);
Device485: OR2 port map ( wire122, wircd84, wired86);
Device483: OR2 port map ( wire166, wire210, wire484);
Deviced82: OR2 port map ( assert_global_pattern(1), wired81, wire26);
Device480: OR2 port map ( wire124, wired79, wired81);
Device478: OR2 port map ( wire168, wire212, wire479);
Device477: OR2 port map ( assert_global_go, wire476, wired3);
Device475: OR2 port map ( wirel16, wire474, wired76);
Device473: OR2 port map ( wire160, wire204, wire474);
Device472: BUF port map ( wire88, wire52);
Device471: BUF port map ( wire92, wire54);
Device470: BUF port map ( wire262, wire56);
Device469: BUF port map ( wire266, wire58);
Device468: BUF port map ( wire86, wire63);
Device467: BUF port map ( wire66, wire69);
Device466: BUF port map ( wire90, wire75);
Device465: BUF port map ( wire78, wire81);
Device464: BUF port map ( wirel 12, wire95);
Deviced63: BUF port map ( wirel 10, wire99);
Device462: BUF port map ( wirel 14, wire105);
Device461: BUF port map ( wire108, wirel10);
Device460: BUF port map ( wire107, wirel12);
Device459: BUF port map ( wirel 18, wirel14);
Device458: BUF port map ( wire126, wirel18);
Device457: BUF port map ( wirel36, wire126);

Device456:
Deviced54:
Deviced53:

‘OR2 port map ( ground, wired55, wire128);
‘OR2 port map ( ground, ground, wire455);
BUF port map ( wirel 56, wire139);
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Deviced52:
Deviced51:
Device450:
Deviced49:
Device448:
Deviced47:
Deviced46:
Deviced4s:
Deviced43:
Deviced42:
Deviced41:
Deviced40:
Deviced39:
Deviced38:
Deviced37:
Deviced36:
Deviced3s:
Deviced34:
Deviced32:
Deviced31:
Deviced30:
Deviced29:
Deviced28:
Deviced27:
Deviced26:
Deviced25:
Deviced23:
Deviced21:
Device420:
Device418:
Deviced16:
Deviced15:
Deviced14:
Deviced13:
Deviced12:
Devicedl11:
Device410:
Deviced09:
Device408:
Deviced07:
Deviced06:
Deviced05:
Deviced04:
Deviced03:
Deviced02:

BUF port map ( wirel 54, wire143);

BUF port map ( wirel 58, wire149);

BUF port map ( wirel 52, wirel54);

BUF port map ( wirel51, wirel56);

BUF port map ( wirel62, wire158);

BUF port map ( wirel70, wire162);

BUF port map ( wirel 80, wire170);

OR2 port map ( ground, wired44, wirel72);
'OR2 port map ( ground, ground, wire444);
BUF port map ( wire200, wire183);

BUF port map ( wirel98, wire187):

BUF port map ( wire202, wire193);

BUF port map ( wirel96, wire198);

BUF port map ( wirel95, wire200);

BUF port map ( wire206, wire202);

BUF port map ( wire214, wire206);

BUF port map ( wire224, wire214);

OR2 port map ( ground, wired33, wire216);
OR2 port map ( ground, ground, wire433);
BUF port map ( wire230, wire227);

BUF port map ( wire258, wire230);

BUF port map ( wire260, wire237);

BUF port map ( wire240, wire243);

BUF port map ( wire264, wire249);

BUF port map ( wire252, wire255);

OR2 port map ( wire244, wired24, wire260);
OR2 port map ( wire308, wired22, wire424);
OR2 port map ( wire286, wire268, wire22);
OR2 port map ( wire256, wired19, wire264);
OR2 port map ( wire352, wired17, wire419);
OR2 port map ( wire330, wire312, wire417);
BUF port map ( wire288, wire268);

BUF port map ( wire292, wire281);

BUF port map ( wire284, wire286);

BUF port map ( wire283, wire288);

BUF port map ( wire310, wire291);

BUF port map ( wire370, wire303);

BUF port map ( wire306, wire308);

BUF port map ( wire305, wire310);

BUF port map ( wire332, wire312);

BUF port map ( wire336, wire325);

BUF port map ( wire328, wire330);

BUF port map ( wire327, wire332);

BUF port map ( wire354, wire335);

BUF port map ( wire370, wire347);
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Deviced01: BUF port map ( wire350. wire352):
Device400: BUF port map ( wire349, wire354);
Device399: BUF port map ( wire372, wire357);
Device398: BUF port map ( wire374, wire365):
Device397: BUF port map ( wire368, wire370);
Device396: BUF port map ( wire367, wire372);
Device395: BUF port map ( wire388, wire379);
Device394: BUF port map ( wire382, wire384);
Device393: BUF port map ( wire381, wire386);
Device390: INVERTER port map ( wire391, wire392);
Device389: DFLIPFLOP port map ( clock, d_input, wire391);
Device387: OR2 port map ( wire228, wire392, wire388);
Device378: AND2 port map ( wire380. wire379, wire382);
Device377: AND2 port map ( wire379, power. wire381);
Device376: INVERTER port map ( power, wire380);
Device373: OR2 port map ( wire386, wire358, wire374);
Device364: AND2 port map ( wire366, wire365, wire368);
Device363: AND2 port map ( wire3635, wire360, wire367);
Device362: INVERTER port map ( wire360, wire366);
Device359: INVERTER port map ( wired3, wire360);
Device356: DFLIPFLOP port map ( clock, wire357, wire358);
Device346: AND2 port map ( wire348, wire347, wire350);
Device345: AND2 port map ( wire347, wire340, wire349);
Device344: INVERTER port map ( wire340, wire348);
Device341: OR2 port map ( ground, ground, wire342);
Device338: INVERTER port map ( wire339, wire340);
Device337: XOR2 port map ( wired, wire21, wire339);
Device334: DFLIPFLOP port map ( clock, wire335, wire336);
AND2 port map ( wire326, wire325, wire328);
AND2 port map ( wire325, wire318, wire327);
: INVERTER port map ( wire318, wire326);
Device319: OR2 port map ( ground, ground, wire320);

: INVERTER port map ( wire317, wire318);
(OR2 port map ( wire9, wire26, wire317);
Device313: AND2 port map ( wire312, power, wire314);
Device302: AND2 port map ( wire304, wire303, wire306);
Device301: AND2 port map ( wire303, wire296, wire305);
Device300: INVERTER port map ( wire296, wire304);
Device297: OR2 port map ( ground, ground, wire298);
Device294: INVERTER port map ( wire295, wire296);
Device293: XOR2 port map ( wire9, wire21, wire295);
Device290: DFLIPFLOP port map ( clock, wire291, wire292);
Device280: AND2 port map ( wire282, wire281, wire284);
Device279: AND2 port map ( wire281, wire274, wire283);
Device278: INVERTER port map ( wire274, wire282);
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Device275:
Device272:
Device271:
Device269:
Device265:
1: AND2 port map ( wire260, power, wire262);

Device2
Device25

Device254:
Device248:
Device247:
Device246:
Device242:
Device236:
Device235:
Device234:
Device231:
Device226:
Device223:
Device221:
Device219:
Device217:
Device21l:
Device209:
Device207:
Device203:
Devicel92:
Devicel91:
Devicel90:
Devicel86:
Devicel82:
Devicel79:
Devicel77:
Devicel75:
Devicel73:
Devicel67:
Devicel65:
Devicel63:
Devicel59:
Devicel48:
Devicel47:
Devicel46:
Devicel42:
Devicel38:
Devicel35:
Devicel33:

OR2 port map ( ground, ground, wire276):
INVERTER port map ( wire273, wire274):
XOR2 port map ( wirel4, wire26, wire273);
AND2 port map ( wire268, power, wire270);
AND2 port map ( wire264, power, wire266);

OR2 port map ( wire251, wire239, wire258);
DFLIPFLOP port map ( clock, wire255, wire256);
AND? port map ( wire250, wire249. wire252);
AND2 port map ( wire249, wires6, wire251);
INVERTER port map ( wire36, wire250);
DFLIPFLOP port map ( clock. wire243, wire244);
AND2 port map ( wire238, wire237, wire240);
AND?2 port map ( wire237, wire58, wire239);
INVERTER port map ( wires8, wire238);

AND?2 port map ( wire230, power, wire232);
DFLIPFLOP port map ( clock, wire227, wire228);
OR2 port map ( wire392, wire188, wire224);
AND2 port map ( wire214, ground, wire222);
AND2 port map ( wire214, power, wire220);
AND?2 port map ( wire214, ground, wire218);
AND2 port map ( wire206, power, wire212);
AND2 port map ( wire206, power, wire210);

OR2 port map ( ground, ground, wire208);

AND2 port map ( wire202, power, wire204);
AND2 port map ( wirel94, wire193, wire196);
AND2 port map ( wire193, wired8, wire195);
INVERTER port map ( wire48, wire194);
DFLIPFLOP port map ( clock, wire187, wirel88);
DFLIPFLOP port map ( clock, wire183, wirel84);
OR2 port map ( wire184, wirel44, wire180);
AND2 port map ( wirel70, ground, wire178);
AND2 port map ( wirel 70, power, wire176);
AND?2 port map ( wirel70, ground, wire174);
AND?2 port map ( wirel62, power, wire168);
AND2 port map ( wire162, ground, wire166);
OR2 port map ( ground, ground, wirel64);

AND?2 port map ( wirel58, power, wire160);
AND?2 port map ( wirel50, wire149, wirel52);
AND2 port map ( wire149, wire48, wirel151);
INVERTER port map ( wired8, wire150);
DFLIPFLOP port map ( clock, wirel43, wirel44);
DFLIPFLOP port map ( clock, wire139, wire140);
OR2 port map ( wire140, wire100, wire136);
AND2 port map ( wire126, ground, wire134);
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Devicel31: AND2 port map ( wire126, power, wirel32);
Devicel29: AND2 port map ( wire126, ground, wire130);
Devicel23: AND2 port map ( wirel 18, ground, wire124);
Devicel21: AND2 port map ( wirel 18. power, wire122);
Devicel19: OR2 port map ( ground. ground, wire120);
Devicel15: AND2 port map ( wirel 14, power, wirel16);
Device104: AND2 port map ( wire106, wirel05, wire108);
Devicel03: AND2 port map ( wire105, wire48, wire107);
Device102: INVERTER port map ( wired8, wire106);
Device98: DFLIPFLOP port map ( clock, wire99, wire100);
Device94: DFLIPFLOP port map ( clock, wire95, wire96);
Device91: AND2 port map ( wire90, power, wire92);
Device89: OR2 port map ( wire384, wire82, wire90);
Device87: AND2 port map ( wire86, power, wire88);
Device85: OR2 port map ( wire96, wire70, wire86);
Device83: OR2 port map ( wire77, wire65, wire84);
Device80: DFLIPFLOP port map ( clock, wire81, wire82);
Device74: AND2 port map ( wire76, wire75, wire78);
Device73: AND2 port map ( wire75, wire52, wire77);
Device72: INVERTER port map ( wire52, wire76);

Device68: DFLIPFLOP port map ( clock, wire69, wire70);
Device62: AND2 port map ( wire64, wire63, wire66);
Device61: AND2 port map ( wire63, wire54, wire65);
Device60: INVERTER port map ( wire54, wire64);

Device50: BUF port map ( wire48, global_done);

Deviced6: OR2 port map ( wire232, assert_global_done, wire48);
Device45: BUF port map ( wire43, global_go);

Device40: BUF port map ( wire38, global_found(1));

Device36: OR2 port map ( wire270, assert_global_{ I'ound(l) wire38);
Device35: BUF port map ( wire33, global_found(0));
Device31: OR2 port map ( wire3 14, assert_globai_found(0), wire33);
Device28: BUF port map ( wire26, global_pattern(1));
Device23: BUF port map ( wire21, global_pattern(0));
Devicel6: BUF port map ( wirel4, global_image(2));

Devicel 1: BUF port map ( wire9, global_image(1));

Device6: BUF port map ( wired, global_image(0));

end Structure;

Figure E.1: The VHDL Description for the Netlist Circuit of Example 6
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~File name: image_test.vhd

—Author: Ying Shen

--Data: Feb. 26,1999

~The following is 2 VHDL description of the test bench used in Example 6.

library [EEE;
use [EEE.std_logic_1164.all;

entity SMALL_TEST66 is
end SMALL_TEST66;

architecture TEST66 of SMALL_TEST66 is

component SMALL_OUT66

port(
assert_global_done : in std_logic;
assert_global_go : msld _logic;
assert_global_found : in std_logic_vector(J to 1);
assert_global_pattern std_logic_vector(0 to 1);
assert_global_image : in std_logic_vector(0 to 2);
d_input : in std_logic;
clock : in std_logi
power : in std_logic;
ground : in std_logic;
global_done : out std_logic;
global_go : out std_logic;
global_found : out std_logic_vector(0 to 1);
global_pattern : out std_logic_vector(0 to 1);
global_image : out std_logic_vector(0 to 2));

end component;

signal global_done, d_input, global _go std_logic;

signal global_found, global |_pattern: std. lngu: vector(0 to 1);
signal global_image:
signal ground: std_logi
sxgrul clock: sxd Iugu:




begin

AAl: SMALL_OUT66 port map ( assert_global_done. assert_global_go.
assert_global_found, assert_global_pattern, assert_global_image.
d_input, clock, power, ground, global_done, global_go.
global_found. global_pattern, global_image);

clock <= not clock after 10 ns;

d_input <='U’, power after 5 ns;

end TEST66;

configuration conf SMALL_66 of SMALL_TEST66 is

for TEST66

end for;
end conf_SMALL_66;

Figure E.2: The VHDL Description for the Test Bench of Example 6
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Appendix F
A Brief Introduction to Gofer

This section describes some Gofer features that are used in this thesis. More details

about Gofer can be found in (Cunningham, 1995; Jones, 1991. 1993. and 1994).
F.1 What is Gofer?

Goferisa i i i (in other words, an interpreter) that

was implemented by Mark P. Jones for his research activities (Jones, 1991). The
language supported by Gofer is very similar to Haskell (Bird, 1998). It has many

standard features of modem it i such as lazy

evaluation, ploymorphic functions, higher-order functions, strong typing, pattern
matching, and user-defined algebraic types. It also has a language feature called a

class, that is used for inheritance and overloading.
F.2 Functions

The functions in Gofer are divided into standard functions and user-defined
functions. All standard functions, for example, the division function named div or "/",
are included as part of a large collection of functions called the 'standard prelude’.
They are automatically loaded into the Gofer system while we start the Gofer
interpreter. We can also define our own functions in the form of a text file that can be
loaded and used by the Gofer system.
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F.3 Data Types

Gofer supports simple types, list and tuple types. function types, and user defined
types. It is noted that all function names must begin with a lower-case letter and all
type names must begin with an upper-case letter.

The simple types include the following four types: Bool, Char, Int, and Float.
They support boolean literals. character literals, integer literals, and floating point
literals, respectively.

A function specified as having type 1/ —> r2, where ¢/ and 12 are types, takes an
argument of type ¢/ and returns a result of type 2.

(1] is the type of a list whose elements are lists of values of type . The length of a
list is variable. Therefore. [Char] represents the type of lists of characters. We can
define the data type String as follows: type String = [Char] and use it to express string
literals. It is noted that the above definition is a declaration for a type synonym. That
is, the type alias String can be used in place of the specified type expression.

The tuple in Gofer is very similar to the structure in C. If ¢/, 22, ..., tn are types and
n 2 2, then (1], 12, ..., tn) represents a type of n-tuples. For example, a type of 3-
tuples, (Netlist, WireTab, ReqTab), is defined in this thesis.

The mostly used types in this thesis are user defined types declared by the keyword
data. The definition of the types is as follows:

data Datatype a; a; = an, = constr; | constrz| | constrm
In the above definition,
® Datatype is the name of a new type constructor of arity n (n 20).
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® a; a; - a, are distinct type variables representing the » arguments of the
data type.
® constr;. constry, - . constrn, (m = 1) describe the way in which the

elements of the new data type are constructed.

For example, data Colour = Red | Green | Blue defines a new data type Colour that
is an enumerated type with elemeuts Red. Green, and Blue. The following recursive
definition represents a binary tree data type Tree:

data Tree = Empty | Node Int String Tree Tree

Given the above definition, the constructor function Node takes four arguments that

have types: Int, String, Tree. Tree, respectively and returns a Tree.

F.4 The Use of Monads

The monad concept is from category theory (Wadler, 1995). This thesis uses
monad to model programs that make use of an internal state. For example, a new data
type is defined as follows:

data StateExTrans s a = SET (s -> Ok_Errs a)

where s and a are type variables, and Ok_Err is defined as

data Ok_Err s a = Oks a String | Err String

The functor and monad structures for the above state transformers are described by

Norvell's program named stateExMonad (Norvell, 1996). The following function is
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one of functions that have used the type StateExTrans.

getNetlist :: StateExTrans NLGState Netlist
getNetlist = SET(\(n. w, r)-> Ok(n, w.r)n"" )

F.5 The 'do' Notation

The do notation is used to provide a more attractive syntax for monadic

programming. This thesis has used a lot of de notations in the following forms:

o do expression

which can be translated to expression.

do expression
morelines

which can be translated to expression "bind" (\ _ -> do morelines)

e do pattern <- expression
morelines

which can be translated to expression "bind" (\ pattern -> do morelines)

* do let declarationList
morelines

which can be translated to

let declarationList
in  do morelines

In the above expressions, the "bind’ operator is defined as

(a 'bind’ k) s = let (r,s) = as
in krs'
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