

Compiling a Synchronous Programming Language
into Field Programmable Gate Arrays

By

roYing Sbea. B.Eag•• M.Eng.

A thesis submitted to the School of Graduate Studies
in partial fulfilment afthe requirements for

the degree of Master of Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

May 1999

St. John's Newfoundland Canada

To my parents and my sisters

Abstract

This thesis sho""S how to compile a program expressed by a novel hardware

description language. the State Machine Al&ol-Like Language (SMALL). into Field­

Programmable Gate AJTays (FPGAs). A -nctlist generator" for the SMALL language is

created 10 transform a parallel Algorithmic State Machine (ASM) chan into a suuctwaJ

VHDL description. The one-hot encoding technique is used for the transformations. The

structural VHDL description for the netlist is simulated and synthesised by Synopsys

VSS (VHDL System Simulator) and Synopsys FPGA Compiler. respectively. The netlist

is very simple and the components of the netlist consist of only D-type flip-flops and

basic gales. The Design Manager of the Xilinx Alliance Series version 1.4 is used to

produce configuration data for Xilinx FPGA chips. The Xilinx XC4000 family is

employed as the target FPGA device.

The simulation results for 5Cveral SMALL programs indicate that the nedist generator

pcrfonns the sp«ified requirements for all the statements and all the operators in me

SMALL language.

Using the nctlist generator and existing place-and·route 10015 makes the

implementation of SMALL programs 00 FPGAs easy. This research offCt"S a significant

advance on the original SMALL implementation. Due to its simplicity and simple

semantics. it is believed that the SMALL language will be widely used in many areas in

the future.

Acknowledgements

r would like to take this oppornmily to appreciate the help and assistance from

man~' people in my study for !he degree of Master- of Engineering. Particularly. I would

like to thank my supervisor. Dr. Theodore S. Norvell. for h.is guidance and financial

suppon through the program. His broad knowledge in Electrical and Computer

Engineering has greatly helped in every stage of my resean:h program. The generous

financial support from Memorial University is also greatly appreciated.

I am \'ery grateful for !he assistance provided by my fellow graduate students.

namely Mohsin Riaz. Vaser EI·Sayed and Zhikai Ding in usinR some software packages.

Thanks are also due Dr. James J. Sharp, Dr. Mahmoud R. Haddam and Mrs. Moya

Crocker for their help during my graduate studies at Memorial.

Spet:ial appreciation goes to my parents who have stayed in St. JOM's for a whole

year to look after my son Kevin during my graduate studies. Their dedication is very

helpful to my family. Finally. I would like to thank my husband Fanyu for his help and

encoUl1lgement.

Contents

Abstract

Acknowledgcmenu

Contenls

List of Figures

Lisc of Abbre~i.tioDs

I Introduction

2 Literature Review

2.1 SMALL: A Programming Language for State Machine Design

2.1.1 The SMALL Language

2.1.2 The Formal Semantics of SMALL

2.1.3 An Example Program Written in SMALL

2.2 The Original Implementation of the SMALL Language

2.3 The Main Contributions of This Thesis .

2.4 Related Work

iii

vi

Ix

II

14

14

3 Design and Implematation of tbe Netlist Genentor for SMALL 19

3.1 Specification for the Netlist Generator 19

3.1.1 AnExampleASMChart

3.1.2 Data Flow Diagram for the Netlist Generator

3.2 Utility Module

3.3 Netlist Module

3.3.1 Netlist

3.3.2 Functions

3.4 Netlist State Module

3.5 A Module for Generating Signal and Register Circuits

3.5.1 Generating Signal Circuits

3.5.2 Generating Register Circuits

3.6 A Module for Generating Node Circuits .

3.7 A Module for Generating Expression Circuits .

3.8 A Module for Connecting Node eircL..

3.9 Output to VHDL Module.

.. Hardware l..plemetilatioD of the SMALL Langu.ace with FPGA

4.1 Background.

4.1.1 VHDl: VHSIC Hardware Description Language

4.1.2 Field Prog:ramrnable Gate Arrays

4.1.3 The Design Procedure and Environment

4.2 Simulation with the Structural VHDL Description

20

27

27

.... 29

2.
... 30

.... 31

....... 32

.. 32

.. 35

..37

. 43

.51

. ... S4

5.

..60

... 60

..61

.... 6S

.... 67

4.2.1 Compoomts

4.2.2 Test Benches

4.2.3 Simulation Results

..... 67

........... 70

........72

4.3 Gate·Level Synthesis 92

4.4 Hardware Implementation with FPGA 92

5 CondusioDs 96

RdereDcn 100

A The VHOL Desc:riptio.s R~l"ftftItiDl tlae Ndlist Circuit aad
the Test Bnd for a Sequeatial Multiplier 103

8 The VHOL Descriptio.. Repnwarmltbe Netlist Circuit aad
the Test 8eBdll fora Semi Adder 116

C The VHOL Descriptioas RepresealiDI the ArTlIly Types aad
thlf TltSt Beach for tbe Opuatioas o(T",o-OimeDsio.al Arrays 121

D The VHDL Descriptio., Repre:MDtia. tbe ArTlIlY Types aDd tbe Tat
Beacb (or tlae Ope...tio•• o(Tlu''ft-Dimeasioaal Amy, ia EUlllple! 124

Tbe VHDL DacripdolU ReprelClllial tbe Netlist Circuit aad
tbe Test BeadI fer ED.ple 6 111

A Brid' I.trodudie. to G.(er 136

List of Figures

LI The Framework of This Thesis.

2.1 A Sequential Multiplier ... 10

2.2 The lmplcmcnwion ohhe SMALL language 13

3.1 The Example SMALL Program . 20

3.2 A Timing Diagram of the Program Shown in Figure 3.1 .. 21

3.3 The ASCII Form of the EllOample ASM Chart: Entities. . 21

3.4 The ASCII FonnoftheExampleASMChatt:Nodes 23

3.5 The ASCII Fonnofthe Example ASM Chart: Edges .24

3.6 An Example ASM Chan •••• . . 26

3.7 DalaFlow Diagram for the NctJist GencTator .. 28

3.8 The Signal Circuits .. 34

3.9 The Register Circuits

3.10 The Ownmy Node Circuit

3.11 The State Node Circuits

3.12 The Asscn Node Circuits

3.13 The Assignment Node Circuits

3.14 The Condition Node Circuit

3.15 The Expression Circuits

.. 36

.38

.38

... 40

.42

.. 43

.46

3.16 A Ripple CatTY Adder Circuit. . 48

3.17 A Full Adder Circuit SO

3.18 The Overflow OutpUt Circuit for ()pcrators: plus and • . SO

3.19 A Simple SMAlL Program 52

3.20 An ASM Chart for lbc SMALL Program Sho\o\"D in Figure 3.19.. 53

3.21 The Circuit of the SMALL Program Shown in Figure 3.19 54

3.22 An Example VHDL Output Description 58

4.1 A Simplified Block Diagram ofthc XC4000 CLB 63

42 The XC4000 lOB 64

4.3 The XC4000 Interconnect ... 66

4.4 The Test Bench for the VHDL Output Shown in Figure 3.22 .71

4.5 A Parity Generator Written in the SMALL Language .. 73

4.6 The Structural VHDL OutpUt for a Parity Gcncrawr Shown in Figure 4.5 75

4.7 The Test Bench forthc VHDL Output Shown in Figure 4.6 76

4.8 "The Simulation Result of a Parity Generator Shown in Figure 3.1 .. . 77

4.9 The Simulation Result ora Parity Generator Shown in Figure 4.5 . .78

4.10 "The Simulation Result of a Sequential Multiplier Shown in Figure 2.1 80

4.11 A Serial Adder Written in the SMALL Language

4.12 The Simulation Result ofa Serial Adder Shown in Figure 4.11

... 81

..... 82

4.13 The SMALL Program for Example 4 83

4.14 "The Simulation Result oftbe SMALL ProlJtUD Shown in Figure 4.13 85

4.15 The SMALL Propam for Example 5

vii

.... 86

4.16 The Simulation Result ofthe SMAlL Program Sho\l,"ll in Figure 4.15 88

4.17 The SMALL Program Used in P::mem Matching 90

4.18 The Simulation Result of the SMALL Program Shown in Figure 4.17. . 91

4.19 The Synthesis Resultofthc SMALL Progr.un Sho"'"ll in Figure 3.1 93

4.20 The Synthesis Result of the SMAlL Pro&f'3lll Shown in Figure 2.1 94

A.I The StrUCtutaJ VHDL Output DescriptiOD for a Sequential Multiplier 114

A.2 The VHDL Description of the Tcst Bench for a Sequcntial Multiplier liS

8.1 The SU\lctutaJ VHDL Output Description for a Serial Adder

8.2 The VHDL Description ofme Test Bench for a Serial Adder

C.I The YHDL Description for Data Types Used in Example 4

C.2. The YHDL Dcscriptionofthe Test Bench for Example 4

0.1 The VHDL Description for Data Types Used in Example S

0.2 The VHDL Description of the Test Bench for Example 5

E.1 The YHDL Description for the Netlist Cin::uit of Example 6

E.2 The YHDL Description for the Test Bench of Example 6

viii

... 119

. 120

.... 122

......... 123

....... 125

... 126

... 133

...... 135

List of Abbreviations

ASM Chart Algorithmic Stale Machine Chan.

ASIC Applicatioo Specific Integraled Circuit.

CAD Computer.A.idcd Design.

eLB Configurable Logic Block.

CMe Canadian Microelectronics Corporation.

DPGA Dynamically Programmable Gate Array.

FPGA Field Programmable Gate Amy.

lOB InputiOulput BIQl;k.

SMALL SUlle Machine Algo!·like language.

Synopsys Fe Synopsys FPGA Compiler.

Synopsys VSS Synopsys VHDL System Simulator.

VHDL VHSIC Hardware Description Languaac.

VHSIC Very High Speed IntegraIed CimJit.

Chapter 1

Introduction

Several hundreds of hardware description languages have been presenled in the past

d~ade5 (Wodtko. 1987). Only some of these: languages are desipcd to describe

synchronous behavior. SMALL (State: Machine Algol-like language) is a novel

hardware description language that !las been developed especially for both leaching and

synchronous stale-machine design purposes by Norvell (1997) at Memorial University of

Newfoundland. It consists of a simple: set of symbols and notations that replace schematic

diagrams of digital circuits. SMALL. as a bardware-;ented programming language.

could be applied into many areas as follows (Norvell, 1996 and 1997).

It is oriented toward teaching sequential cin::uit desiifl_

It can be em.bedckd in a larger specification language.

It can aid design communication. hardware simulation and the

transformation of designs from a higher level (such as stale:

machine) to a lowet' level (such as gates).

It can be used in design derivation from specification.

It can be used in rapid development.

The program written in SMALL can be directly compiled into

hardware without human intervention.

Due to its simplicity in sequential circuit design, in fannal semantics. and in lime

model. the SMALL languageill be more ""idely used in the fuwre and its further

development becomes more important. The purpose of this thesis is to compile programs

expressed in the SMALL language into Field-Programmable Gate Artays (FPGAs). a

technology that allows a design expressed in the SMALL language to be implemented

without a conventional fabrication plant. The entire compilation process can be divided

into the four stages sho.....n in Figure 1.1. First. the text of a SMALL program is con\'erted

to a parallel Algorithmic State Machine (ASM) chart. At the second stage. the nedist for

the SMALL program is created. The next stage is to synthesise from the structueal VHOL

(The VHSIC Hardware Description Language) netlist. The final stage implements the

netlist using a specific Xilinx FPGA chip. h should be noted that the functional

simulation is carried out in onkt" to verify that the NetliSl Generator performs the

specified requirements before the third stage.

The Nellist Generator is wrinen in the functional language Gofer (Jones, 1991. 1993.

and 1994; Cunningham. 1995; and Wadler. 1995). The input to the Nellist Generator is a

parallel ASM (Algorithmic State Machine) chart that is generated by the compiler's

front-end.. Its output is a structural VHDL SOW'Ce file describing a nctlist composed of

simple gates and nip-nops. Synopsys VSS (VHDL System Simulator) is used for

simulation that verifies the netlist circuit created by the Netlist Generator matches the

requirements. Synopsys FPGA Compiler (FC) is adoped fot synthesising the gate-level

Figure 1.1: The Framework ofThis Thesis

VHDl description and automatic ~0U'e gmer-uion.. Design Manager of the Xilin.,;

Alliance Series version 1.4 is employed to produce the configuration data for a specific

Xilin.'C FPGA chip. Tbe Xilinx XC4000 family FPGA logic is chosen as the larget

technology.

The rest of this thesis is organised as follows:

Chapter :2 provides an introduction to the SMALL programming Ianauage and

discusses related approaches.

Chapter 3 describes in detail the design and implementation of the Netlist Generator

for the SMALL language. including algorithm descriptions and translation circuits.

Chapter 4 gives the hardware implementation of the netlist for the SMALL language

using a Field Programmable Gate Array (FPGA). Several examples are simulated to

verify that the Nellist Generator produced in Chapter J meets the: specified requirements.

Finally. Chapter S contains some concluding remarks..

Chapter 2

Literature Review

This chapter is intended to provide an introduction 10 the SMALL programming

language and to review related work. An underslanding of the original implementation of

the SMALL language lAil! be helpful in order to comprehend the Netlist Generator. An

example of a SMALL program used for synthesis and simulation in later chapters is also

presented.

2.1 SMALL: A Programming Language for State
Machine Design

One essential contribution of lhis thesis is the creation of a Netlist Generator for the

SMALL programming language. In order to understand the desian and implementation of

the Nctlist Generator, this section briefly describes lhe SMALL programmina language.

The following is a review based OQ the SMALL documentation (Non-"ell. 1996).

2.1.1 The SMALL LaDeuace

SMALL stands for State Machine AJgol-Like Languaae. Its relationship to ASM

charts is almost the same as the relationship between high-level software languages (like

Algol) and flow cham. In the SMALL language. signals arc used 10 carry information

instantaneously and registers are used for storing information Ihrough lime. The value of

a signal is dctermined in the cWTent clock period: ho....-e\-"ef. the value of 11 register is the

latest value assigned to il in a previous clock period. The following IWO fonns are used

for the declarations of the signals and the registers. respecti"ely.

o5ig signal_name TC

req regisler_nome T C

In the above forms. 05 io; and reg are keywords: sigrJal_name and register_name are

identifiers. Tis a~-pe lhat is cilherbool oraccay n of Tatpresmt and C is the

scope of the declarations. In order to communicate with external 'A'Otid. the keyword

global could be added to !he beginning orlbe declarations..

The statements in the SMALL language include;

s ! expression which places data on a signal s: this is called as "assert slatement".

r <. expression which places data in a register r, this is called as "assignment

statement".

cick which expresses the end of one clock and the start orlbe next.

slDlemenJ_O slaJemenJ_I ... slotemenJ_n which represents a sequence of swements

executed conseculively from left to right.

if expression then starement_O else stotement_l fi which is an alternative

composilion and means that when the expression is true. the statement SIQtemenl_O is

executed; otherwise. the SIDlemenJ SIQlemenl_1 is executed.

while uprusion do statement od whose meaning is that the sta/emem is executed

if the expression is true; the expression is reevaluated in the clock period follo\\;ng

the completion of the statement.

repeat slOtement until expression whosc meaning is that the statement is

executed. and if the expression is uue in the last clock period of the statemem. the

repeat statement is complete; otbetwi.se. the loop is restarted in the next clock

period.

~ar statement_O II slOtement_' II. II statement_n rap which is a parallel

composition and which will end as soon as all the processes have ended.

skip which simply ends immcdialtly.

stOP which stopS the interpreter.

In the SMALL language, the concept of duration is important. It is defined as the

difference between the initial and fmal clock period by Norvell (1997). According 10 the

deflRition. the dWlltion of assert and assignment statements is 0; tick and skip have

duration I and 0, respectively. The duration ofa parallelstaltment is the maximum of the

duration of the processes and that of a sequence of statements is the sum of the duration

of each statement. In the sequence of statements, the fmal clock period of stolementj is

also the initial clock period of statement_i+'. For the alternative composition, whethcT

statement_0 or stalemenl_' is chosen, the stan time of the chosen statement is the same

as the start time of the whole alternative composition. The finish time of the aIltmative

composition depends on the finish time of slatement_O when the value of the expression

is true at the: start time. In the case ofa false value for the expression, the flRish time

of the alternative composition is the same as the finish time of staleMeNj. For the

while statement. when the expression is true during a clock period. the Jlatemenl is

executed in the same clock period and the loop is rcstaned in the fim clock period after

the last clock period used by the stateMent; when the upreniofl is false. the whi le

statement ends immcdilUely. Therefore. the duration of the whi Ie statemenl is related to

its loops. Similar to the while statement. the duration of the repeat. statement is also

related to its loops. Both looping forms imply a delay immediately before the loop is

A number of the operators constiNte ell:pressions. The expressions are divided into

seven categories. including identifiers. constants. unary expressions, binary expressions.

subscript expressions, subarray expressions and array expr-essions. In the next section. an

example will be given to illusu-ate the above statements and some opcralOr5 in the

SMAll language.

2.1.2 The Form•• ~m.nric:sof SMALL

A specification is a predicate on behaviours. In SMALL. the starting lime. the final

lime, and values of signals and registcr5 over all time arc used to describe the behaviours.

The following variables representing times and time varying functions describe the

behaviow- of a conu:naDd with a q lobal signal s ; T. and a global reQister r ;

/';XflQt

s; wire.T.

The starting time.

The final time.

The value ofs during each clock period.

S : wire.booI

r: wire.T~

r: wire. boo/

Whether s is asserted dwing each clock period.

The value of r during each clock period.

Whether r receives a new value after each clock period.

In !he above definition. VWI is a set of times and wire. T repn:sents a function. rno,

and wire. T are defined as follows:

x1Ul/-na' uoo
wi,e. T - xnol --I> T

The fonnal semantics is detennined by semantic equations which are presented in

(Norvell. 1991). Their definitioos include that primitive commands are specifications and

that composition oper.1tors equal operators on specifications.

The following example specification obtained from (Norvell. 1991) can explain some

simple semantics.

,'·t+ 1 1\ $.II\S.'-,.11\ r.tl\r.(t +1)-10

A command that implements this specification will have the following meanings:

The duration of the command is 1.

During its fust dock period, the sianaJ S has the same value as the regiSler,.

10 will be assigned to, between its two clock periods.

2.1.3 A. Example Proanm Writtea iD SMALL

Figwe 2.1 shows an example written in SMALL to illustrate many expressions and

statements in the language. This example is obtained from (Norvell. 1996) and will be

synthesised and simuJated in Chapter 4.

~r 00
global signal go bool III
global signal don~ : bool 1/2

global signal militipli~r : array 4 of bool 113
global signal militiplicand : array 4 of bool ff~

glooal reg p : arra.y 8 of bool ffS
while ~rue do ff6

reg a: array 4 of bool ff 7
reg b: array 4 of bool ff 1
reg count: array 2 of bool ff9
repeat. ff Initia.lize while~tjng to swt. 1/10

p[4@4j <- 4 of 0 ffll
count <- 0 as 2 bit.$ ffU
a <- multiplicand ffl3
b <- militipli~r ffl4

until go filS
tick 1/16
repeat. ffInvariant: the prod~thu5far (multiplicand· the linl 1117

flcount bits of multiplier) is the last 4+count bits ofp. 1f18
IIFormproductofaandb(O). 1119

signal pp : array 4 of boo 1 ff20
if b[O] then pp !Q else pp ! 4 of 0 ti 1121
f/ Add this to the most signiflQlll 4 bits of p. 1f22
sign<1l1 sum: array 5 of bool 1m
sum ! p[4@41 uplus ppffReplac:ethetop4bitsofthe: 1/24

II productith the S bit sum. To make room. d1ift. I12S
p[S@3J <-sum 1126
p[3@OJ <-p[3UI 1127
b <- b[3lHl ++ (OJ 1121
count <- COllnt plus (1 as 2 bits) 1m

until count - 3 as 2 bit.s I{)O
tick 1131
repeat done ! 1 until nOt go 1132

~ 113)

I 1134
global sign"l go : bool I/3S
global sign"l doM : bool 1136
global signal multiplitr : array 4 of bool //37
global signal multiplicand : arny 4 of bool /131
go!l multiplitr![l,l,O.Oj multiplicant/![O,l,O,OJ /139
tick 1/40
repeat skip until done f/41

rap ~

Fia;ure 2.1: A Sequential MuJriplier

10

11le example in FigW'C 2.1 is used to multiply N.1) 4-bit numbers to prndl)Ce an S-bit

result. It produces one panial product in each clock period. By shifting the panial product

and adding the multiplicand if a bit in the multiplier is 1 in each clock period. the final

product can be obtained after five clock periods. Many signal and register declarations

and statements appear. For c:x.ample, Line: 0 to Line: 42 is a parallel composition. Assert

statements and assignment statements are used to send data to the: signals or the:

::-egisters. For example. the: statements such as p[4@4Jc:;-4 of O. multiplier!

[1, 1 , 0, 01. and multiplicand ! (0, 1 , 0, 0 J initialise: the partial product. the

multiplier. and the multiplicand. respectively. 11lere arc: many expressions and operators

in the example. For instance. the: expression. p (4@4 J in line: II. presents the segrnc:nt of

length 4 beginning at index 4 and the: '4 0 f 0' expresses an. array of length 4 that is the:

same as {O, 0, 0, 01 . Because index 0 is used for !he least significant bit. the expression

'1 as 2 bi cs' in Line 29 means the 2 bits wtSigned magnitude representation of 1 and

has the value [1, OJ. The: Opc:nlors such as 'uplus' in Line 24. '++' in line: 28 and

'plus' in Line: 29 distribute to anay of boolean level. From the: above example. it is

sho\.\lT\ that SMALL has many distinguisllins features that other hardware: description

languages lack. Compared with other hardware description languages, SMALL's

simplicity will help it to be: used in many practical areas.

2.2 The Origiaallmplemealatioa of the SMALL Laaguage

The following paragraph from (Norvell. 1996) describes the: original implementation

of the SMALL language.

The current implementation is in Gofer version 2.30 and uses the

prelude cc.preJude. Gofer is a functional language designed 3nd

implemented by Mark P. Jones and is \'ery similar to Haskell. Extensive

use is made of monads and an imperative programming style.

lOe implementation of the SMALL language is shown in Figure 2.2. The original

implementation consists of all components other than the Netlist Generator. In Figure 2.2.

the front-cnd is composed of Lexer. Parser. and Analyzer. The func:tion of each

component shown in Figure 2.:! is described in the: following.

The lexer takes a source program wrinen in the SMALL language as its input and

outputs a token sequence. The~r creates an abstract syntax tree and finds all syntax

e!TOrs. The analyzer creates an intermediate representation of the source program from

!he abstr.K:t synta.'I: tree. It has several functions. lbc first is to check the source program

for compile-time errors such as type errors and misuses of identifiers. The second is to

produce a requirement table that is a list of all sigmls and registers. including the extra

signals introduced for each process in order to coordinate termination of the parallel

processes. These signals and regiSteB are used to tim. the program. The last function is

the generation of an ASM chart representation of the pTOsram. The ASM chart expresses

the conU'OI-flow of the source program. It is a collection of nodes connected by directed

edges. Nodes are divided into five varieties: state Dodes. dummy nodes, assert nodes.

assignment nodes. and condition nodes and are labelled by expressions. The next step is

one of two alternatives. Either the executer simulates execution of the ASM chart with

test inputs, or the Netlist Generator translates the ASM chan to a pte.level

12

Source Progr.un Wrinen in SMALL

Simulation Result

Original Implementation

NetJist

Fiaure 2.2: The Implementation oCthe SMALL Lanauage

implementation in terms ofgates and flip-flops.

2.3 The Main Contributions of This Thesis

One essential contribution of this thesis is me creation of a NelliSI Gentrator for the:

SM.>\LL progr.unming Language, The ASM chart and requirements table is taken as the:

input 10 !he Nellist GentralOf". The outputill be a nellist composed of gates and Dip­

flops and expressed by a VHDL enlilY declaration and a struclUraJ archilecture

declaration. The Synopsys VSS is used for !he functional simulation of the structural

VHDL description to verify !hal the Nellist Generatew performs the: specified

requirements. The detailed design and implementation of the Netlist Generator for the

SMALL language will be presented in the following chapter.

Ano!her contribulion of this !hesis is 10 implement such nedists with FPGAs. The

Synopsys FPGA Compiler is adopled for the Kale-level synthesis and 100ic optimisalion.

The Design Manager of the Xilinx Alliance Series is used 10 create configuration data for

Xilinx FPGA chips. Some infonnation about pre-placement and routing and post-layout

for implementing a sequenlial multiplier shown in Figure 2,2 on a Xilinx XC4028EX-)·

PG299 FPGA will be provided in Section 4.4.

2.4 Related Work

There has been some previous work on compiling a program wrinen in a selected

language into hardware. such as FPGAs and silicon. The difference bet\l.'een syncbronous

and asynchronous methods for conuolling the timing in circuits should be noted. In

synchronous communication. a message is sent and received simultaneously. "ithout

communication delay. An asynchronous communication has a time delay when a

message is sent and reeeh·ed. UsuaJly. local handshaking signals are used in the:

asynchronous method; • global clock is used in the synchronous method. The follo"ing

is a review of the related woric.

An early work is done by Martin (1986). He developed a compiler from a conCWTent

prog~ing language into delay-insensitive circuits that are obtained by a series of

semantics-preserving transformations. The compilation is divided into the foUl steps:

process decomposition. handshaJcing expansion. production-rule expansion. and Operalor

reduction. The circuits are correct by consttuetion.

The work of Weber et af. (l992a and 1992b) on Joy, a simple yet complete

progr.unming language for circuits. is similar to thai of Manin. They have modelled

delay-insensitive circuits as directed graphs and proved the correcmess of r.heir

compilation algorithm. The resulling circuits are composed of some primary components:

each of the components is described by a wiring diagram and a finite-slale automaton.

Guo and Luk (1995) have: provided a methodology for compiling a design expressed

in the Ruby language into FPGAs. The Ruby language is intended for the specification

and synthesis of the circuits described by rel.tional absttactions of their behaviour

(Rossen. 1990) and allows simple relations to be composed into more complicated ones

by using higher-onkr ftmctioD$. With mathematically based compilation tools, the

"

correct hardware can be produced from nigh-level descriptions very rapidly. The

refinement module and the l100rplanning moduJe of lheir compilation system are also

discussed in detail.

Another close work presented by Berry and Gonthier (1992) and Jagadecsan et oJ.

(1995) has involved the hard\o\'ate implementation of the ESTEREL synchronous

progranuning language wnich is based on the ~Synchrony Hypothesis~ and has well­

defined mathematical semantics. Berry and Gonthier have shown an algorithm to

translate ESTEREL programs into deterministic automata. BerTy (1995) has provided the

dir~t hard....we implementation that transfonns ESTEREl prolf301s into boolean

circuits by using the current ESTEREL hardware or software compiling and verification

t~hnology.

LUSTRE is a synchronous declarative language devoted to real-time systems and is

suitable for data path descripc:ion. Thuau and Pilaud (1990) have divided the compilation

of a lUSlltE program into two steps: expanding all the nodes to get a single system of

equations and producing a finite automaton. lbe verification tool LESAR is developed

for proving the correctness of a circuit.

The VHDL (Lipsett et 01., 1989; Patterson. 1994) and Verilog (Thomas and Moorby,

1991) languages provide the digital system designer with accurate description and

modelling of a system at a wide range of levels. from the highest: behaviOW'1ill level of

abstraction to the lowest struenua1 gate Icvel. Many peoplc are interested in circuit

synthesis with VHDL or Verilog. Grea,,'cs (1995) has worked on defining fonnal

I.

semantics for the Veri.log language that is used for simulation and compilation into

hardware. Gschwind and Salapura (1995) ha•.:e proposed a VHDL design methodology

for FPGAs to integrate: the modelling. verification and implementation processes.

Hehner et al. (1998) presented TWO new~ys to implement ordinary programs with

logic gates. They have adopted local delays and given a framework for the proof of

corr«t circuits in terms of a formal semantics for programs and circuits.

The most closely related work is conducted by Page and rns group (Page and Luk.

1991: He et 01., 1993; and Page. 1996). They have compiled programs written in a subset

of occam into FPGAs. A -nonna1 fonn- method (He tt 0/., 1993) is used for processing

into a netliS(and for proving the COrTeCtnesS of their compilation. Page and Luk (1991)

have dcscribed a prototype compiler wrinen in the fimctional language SML that

ttansfonns Handel. an occam-like language. to a netlisl.. Page (1996) has further

implemented his haniware-sotN.'3re codesign by compiling the Handel language into a

netlist. which is suitable for Xilinx Dynamically Programmable Gate Arrays (OPGAs)

technology.

This research is also related to and influenced by the ab!:we work. We have focused on

compiling programs in the SMALL language into a netliS(, which. can be loaded into a

Xilinx FPGA. Compared with the work of Page tt a!.• the main difference is that. Page et

al. consideTed the implementation of control hardware for channel communi<:ation and

used a flip-flop in their assignment control h.ardware; this research. has noL This is

"

because assignment statements and assert statcments in SMALL ha"e a dUllUion of 0

r3therthan I.

The one-hal encoding is used as the encoding techniqUC' in this thesis. It uses one flip­

flop per stale node. Gschwind and Salapwa (1995) have proved that one-hot encoding is

both the fasteSI encoding and one of the smallest I"C'pf'C'Sentations as it makes the best use

of the flip-Oops on an FPGA.

"

Chapter 3

Design and Implementation of the Netlist
Generator for SMALL

The purpose of this thesis is to compile programs expressed in lhe SMALL language

into FPGA$. To do so. a Nellis! Gcneralor for the SMALL language has been created to

transform parallel ASM charts to suuctural VHDL files. The ASM chart is obtained after

the source SMALL program is processed by the front-end stage sho\loll in Figure 2.2. 1lJe

VHDL file describes a netJist that is a collection of devices and wires implementing the

program. The: devices in our nedist consist of simple gates and D-rype fliP'"flops. The

Nellist Generator is programmed using the functional language Gofer (Jones, 1994;

Cunningham. 1995: and Wadlef, 1995). Based on (Norvell. 1998), this chapter will give

detailed design and implementation for the Netlist Generator.

3.1 Specification for the Netlist Generator

The input to the Netlist Genen.lOI' is an ASM chart. The outpuI: will be a VHDL file

composed of an mtiry declaration for a device and a suue:tural architecture for the same

device. This section will provide an example ASM chart and the data·f1ow diagram for

the Netlist Generator. An example VHDl description v.ill be Jivm in Section 3.9.

3.1.1 An Example ASM Chart

In order 10 illustrate ASM charts. Figure 3.1 shows a simple SMALL program

describing a pari[y generator and some test inputs. The function or the program is that at

each clock period. the outS;, is the parity or those inBits thaI have been seen in !he

previous dock periods. A timing diagram or the program is gh-m in Figure 3.2. It can be

seen that in Figure 3.2. the output named oUIBil is (0. O. 1. 1. 0] ir the input named

inBit;s (0.1. O. 1. IJ in the ftrS! five dock periods.

global 51g inSil: bool
global 51g outBil: bool
par

while true do
repeat

ourSit ! 0
until inSit
tiCk
repeat

outSit ! 1
until inSit

od

" inSir ! tick
inBir ! tick
inBir ! tick
inBir ! tick
inSir ! tick

rap

Figure 3.1: The Example SMALL Program

'0

inBit

outBit

dock:

u

Figure 3.2: A Timing Diagram of the Program Shown in Fi&ure 3.1

This program shown in Figure 3.1 can be converted to a parallel ASM chan form by il

front-end that has been implemented by Norvell. It is noted that a requirements table is

included in the parallel ASM chart in this chapter. The ASCII descriptions of the ASM

chart of the SMALL program are shown in Figure 3.3. in Figure 3.4. and in Figure 3.5. A

diagram of the ASM chan appears in Figure 3.6.

("inBit",Signai "inBit"Trueof~ bool)

("outBit".Signal "outBit"True of type bool)

("#r4 I",Signal. "~I"Truc oftype boo!)

("IFI-O",Signal "#I-O"'True oftypc boot)

Figure 3.3: The ASCII Form of the Eltampte ASM Chan: Entities

ASM charts are composed of -Entities-. -Nodes". and -Edges". The collection of

entities sho'4-n in Figure 3.3 is called a -requirementslable" and listS all the registers and

signals usN foc communication across space Of time in the source program. The

requirements table provides the following information for each entity:

The name ofthe entity.

Whether the entity is a signal or register.

Whether the entity is local or global.

For a sianaJ entil}'. the active value of the sipal.

The entity's type. that is. bool or an amty.

It is noted that signals -/1,..1" and -'1-0- shown in Figure 3.] are introduced in order

to coordinate termination oflhe paraJlel processes.

Figure].4 represents a collection of nodes. These nodes arc: divided into five kinds:

state nodes. dummy nodes. assert nodes. assignment nodes. and condition nodes. For

each node, the node number and the node type are needed. Additional expressions are

used for the assert nodes. the assignment nodes. and the condition nodes. Assert nodes

and assipment nodes are labelled with two expressions repr-esenting the target signal Of

register and the value. The expRSSion labelling a condition node is a boolean and is used

to determine which branch is Ialccn.. Condition nodes are also labelled with the numbers

of the nodes to branch to. Their detailed descriptions are given in Section 3.6. which

discusses the generation of circuilS for nodes.

21

The ASM Chan is
36
GRAPH labels
(35.Y.condNd (tWO.(22. I 7).bool»then 31 else 34)
(34.%SlateNd)
(33.%CondNd (Jtr-1.«22.17).bool» then 31 else 32)
(32.%SlaleNd)
(31.%DununyNd)
(30.%AssertNd(Nr" 1.«22.17).bool»!(True.«22.17).bool»)
(29.%AssertNd(NI-O,«22.17),bool»!(True.«22.17).bool»)
(28.%StateNd)
(27.%AssertNd(inBit,«27.17).bool»!(True.«27.25),bool»)
(26.%StaleNd)
(25.%AssenNd(inBil,«26.11).bool»!(True.«26.25).boo1)))
(24.%StateNd)
(23.%AssertNd(inBit.«25.17).bool»!(Fa1sc.«25.1S).bool»)
(22."A.SlateNd)
(21.%AsscrtNd(inBit.«24.1 7).bool»!(True.«24.25).bool»)
(20.o/oSlaleNd)
(19.o/.AssertNd(inBit.«23.1 7).boo1))!(fa1se.«23.25).bool»)
(18.YoStateNd)
(17.o/oStaleNd)
(16.'Y.condNd (inBit.«20.28).bool» then 14 else IS)
(15.%DwrunyNd)
(14.%DummyNd)
(U.%AssenNd(outBit.«19.21).bool»!(True.«19.36).bool)))
(12.%DwrunyNd)
(11.%StateNd)
(IO.%SlateNd)
(9.%CondNd (inBit.«16,28).bool)) then 7 else 8)
(8.%DummyNd)
(7.%DummyNd)
(6.%AssenNd(outBit,(IS,27),bool))!(False.(15.36).bool)))
(5.%DummyNd)
(4,%CondNd (Truc:,«13.23),bool)) lhen 2 else 3)
(3,%DwnmyNd)
(2.%DummyNd)
(1.%DummyNd)
(O.o/oSweNd)

Figure 3.4: The ASClI Form oflhc Example ASM Chan: Nodes

23

Adjacency
(34.(30))
(32.{29))
(30.{35))
(35.0)
(29,(33))
(33.0)
(31.0>
(28.(30))
(3.[29))
(27,[28))
(26.[27))
(25,(26))
(24.(25))
(23,(24J)
(22,[23))
(21.[22))
(20.[21))
(19.(20))
(0.(19.1]l
(18.[1))
(14.(18J)
(l7.(I2J)
(15.(11])
(13,(16))
(16.0)
(12.(13J)
(11.[12J)
(7.(11))
(10.[5])
(8.(10))
(6,(9])
(9.0)
(5.[6))
(2.[5))
(1.[4))
(4.0)

Figure 3.5: The ASCII Fonn oCthe Example ASM chan: Edges

"

The edges SOO""'n in Figure 3.5 express a collection of references to successor nodes.

They are very useful in connecting nodes. These edges and the nodes shown in Figure 3.4

form a node-labelled directed graph. Figure 3.6 sho"''S the graph of the example ASM

chan that represents the control-flow of the source program in Figun: 3.1. In Figure 3.6.

the first node is aI\\'"aYs a stale node named Node O. It represents the stan of the program.

In this example. a parallel statement appears at the beginning of the program so that a

parallel branch is produced. Therefore. Node 0 has Node 1 and Node 19 as its successor

nodes. For each tick statement, uch whi le loop. and each repeat. loop in the source

prognun. the fronl~ will generate one state node. 1bcse state nodes represent the

control stale of the program. They are used to wait fOf" the coming of the next clock

period. T'hereforc. a timing delay is implied in the while loops and the repea.t loops..

For assen nodes. assignment nodes, and dummy nodes, no timing delay exists. Condition

nodes are generated for while loops and repeat loops. Each condition node has two

branch nodes as its successor.

Expressions come in seven fonns: identifier expressions, constant expressions, unary

expressions. binaly expressions. subscripted array expressions. suban'ay expressions. and

array building expressions. Each expression consists of its type and its location (line

number and column number) in the soUTee program.. The detailed discussion about

expressions will be given in the Section 3.7, which describes generating expression

circuits.

It is believed that the clear understanding of the ASM chart is very imponant for

understanding the netlist generation.

"

Parallel1_

26

~
~
~
''''' .

34

28

~
19: inBit! 0

f.IKl
0 0

State Dwnmy Assert Assign Condition

Figure 3.6: An Example ASM Chart

26

3.1.2 Data Flow Diagram (or tbe Netlist Geaerator

Figure 3.7 gives the data now diagr.un for the Nedist Generator. The processes for

the Nellist Generator include the following:

Generat~ the circuits of signals and registers according to "Enlitics" in Figure 3.3.

Generate node circuits in terms of "Nodcs" in Figure j.4.

Generate the circuits of expressions for the nodes chat have the expttSSions.

link a1llhc above circuits according to the edges ofthc graph in Figure 3.5.

Form an output VHDL file repTCStnting the final circuits stored in the "Netlistft

sho\\-TI in Figure].7.

The following sections will describe the modules that implemenl the above processes.

including the algorithms and the resulting circuits.

3.2 Utility Module

This module has defined some useful data types and useful funclions. Gofer notations

used in this modwe and other modules arc explaiMd in Appendix F. Especially, the

Assoc lype cOOSlJ'UCtor is widely used in this lhcsis. lis derwtion is as follows:

rype: ASSOCQ b - [{a, b)J

In the above type synonym. Assoc is the name of a new type consttue:tor; Q and b are

type variablcs representing the arguments of Assoc. [(a, b) 1 is a type expression.

A.rsoc a b rcprcscnts a finite map that associates members of type a with members of type

b.

Figure 3.7: Data Flow Diagram for the Netlist Generator

21

3.3 Nellisl Module

In lhis section. the data structure of the ne1liSl and the [)'peS of gates and flip-flops

used in the nellist are defmed. The functions that create wires and connect devices are

also described.

3.3.1 Netlist

The netlist consists of devices and wires. The devices chosen in this study include

multi·input andonc~ptes such as or-gates. and-gates and xor·gales. one-input and

onC-OUlpul gates such as not-gates and buffcn. and O.type flip-flops.

For the devices. a data [)'pC named De"';ceKjnc/ is defined in the following Conn.

data DeviccKind - DevK Siring
[(PorrName, Bool)]
[PortName)

--- Device name
-····lnpulportS
------ Output ports

The String represents the device name. The type r1llJned PorrName is the same as

String and is used to indicate whether the pon is input or output. In the case of input

pons.. the Bool is used 10 describe whether lite pon can connect to more than one \loire.

The devices used in the Dellist ate defined as follows:

andGoJe. orGale, xOl'Gmc, inverter, dFlipFlop. bufftr ': DeviceKind
andGmc" DevK"AND1" [ri,,-, Tnte») ["011/"]
orGale '" DevK "OR]" [("in", Tne») ["out")
xorGate" DevK~XOR2~Win", Tl'1Ie» rout"]
inverter -!AvK"lNVERTER" [Cin~, rille)] ["out"]
dFlipFiop - DevK "DFLlPFLOr ("in~.True» (~ouJ~)

buffer -DevK"BUF'" ("in", FaIN») [~out"J

29

For the wires. the type InGutL« is an enumerated type defined as

d_t11 InOl/tLoc" In String
I Out String
I Local

The String in the above definition represents the wire: name.

For the netlist. its type is defined as

-lnputwire
--Output wire
- Local\loite

dua Netlist .. NL lat -- The number of devices and wires
(AsJ'oc DevicdD DeviceKind) --- Device map
(Assoc WirdD InOutLoc) _ Wire map
(Assoc DevicdD (AJ'$oc PortName (WirdD») - Connection map

In the above form. the type named DeviceJD and the type named WirelD represent the

identifiers of devices and wires, respectively. From the definition of the type Nellist, it

can be seen that the data structure of the netlist shows the characteristics of devices and

",ires and the relationship between the device and its wires.

3.3.2 Functioas

The functions exported from the NelliSI module are called createDevice,

creoteLocolWire. createinputWire. createOlltputWire. and co_ct. They have the

following meanings:

creoteDevice is used to create devices.

createLocaJWire, creoteinputWire, and creote(}utputWire ace used to creaJ:e local

wires, input wires, and output ~ires.. respectively.

connect is used to connect wires to pons of devices. This function needs 10 check that

the device has the port and then to confirm that. unless permined, the port is not

already connected; otherwise the error information will be jiven.

3.4 Nellist State Module

This module defines some data types and some functions. For the Netli5t statc, the

tuple type named NLGState is defined as (Nellisl. W;reTob, ReqTab). The type named

ReqTab is intended to describe the characteristics of the signals and registers. The type

named "'ircrab represents a function from Strings to WireTob&rtrieJ. "';rcTab and

WireTabEntries are declared as (0110","'$:

data WireTobEntry

- the identifier of the input gale.
··lhe identifier oCthe wire named s.
- the identifier oCthe input gate.
•• the identifier of the input wire named
- assertJlobaJ_s.
- the identifier of the wire named s.
- the identifier oCthe input gale named val.
- the identifier aCthe input gate named assign..
- the identifier oCthe wire named r.
- the identifier of the input gale named vaL
- the identifier of the input gate named assign.
- the identifier of the input wire named vaJJlobal_r.
- the identifitT of the input wire named
- assign-sJobal_r.
•- the identifier of the wire named r.
- the identifier of the input gate named go.
- the identifier of the output ~ire named done_No
- the identifier oflhe input gate named go.
- the identifier of the dooe N then wire.
- the identifier of the dooe- N-elseire.
- the identifier of the gate Bamed then:.\lode
- the identifier oflhc gate named elscNode

WirdD
I WTELocReg DevicelD

!Xl>icelD
WireJD

r IVTEGfobReg DevicelD
De'llicelD
WirelD
WirelD

WirelD
I lJ'TENode DevicelD

Wire/D
1wrECondNotk DnricelD

WirelD
WirelD
Node
Node

I WTEDataType String
ISigWToDevice DevicelD String
I RegWToDevice DevicelD {)evicelD String

• WTELcx:Sig DevicelD
ntireID

I WTEGlobSig DeviceJD
WirelD

cype WireTab-AssocString WireTobEfIl1)'

"

The type named Wi,.eTabEntry contains infonnation such as the identifiers of input

gates and output wires for nodes. for local signals. and for local registers. For global

signals and global registers. additional identifiers of input wi~ ate needed. The

infonnation about signals and registCTS "ill be used in the generating signal and register

circuits module and the generating expression circuits module. For condition nodes.

additional identifiers ofnodcs are used to choose the control flow. The infonnation about

condition nodes is used in connecting node circuits module. The last three lines in

Wi,.eTabEmry declaration are used to keep the names of signals and registers for output.

Functions such as c,.eate!kvice},,{. c,.eatelnputWi,.e,\f. c,.ealeOulputWi,.eM·.

cr-eateLocaIlVi,.eM. and COMtctM an: the monad fonns of the functions defined in lhe

Mllist module. The functions named updotelVi,.eTabM and updoteReqTabM update the

\~;re table and the requirements table.

3.5 A Module for Generating Signal and Register Circuits

One of the processes for the Netlist Generator is to ttansfonn all the signaJs and

registers used in the source program into their circuit descriptions. The algorithms for the

transformation and the resulting circuits arc shown in this section.

3.5.1 GeneratiDI SiC.al Circuits

In the SMALL language, signals arc used to carry information through space and the

values of the signals an: determined in the cW'mn clock period. Figure 3.8 shows the

circuit rep«:sentations of the signals in the requirements rable. It is noted that sil!fl3ls

ha\"e an active level. Thc value of the acti\-C le\'d of a si&nal depends on the default value

that is the valuc of the signal in clock periods~ it is not asserted. The default \-alue

of an acLive uue signal is false and vice-versa. According to the definition and the assert

node circuit. an or·gate is chosen in acLive-true signal circuit as shown in Figure 3.8(a)

and Figure J.S(c). An and-gate is used in active-false signal circuit as shown in Figure

3.8(b) and Figure 3.8(d). In Fi&ure 3.8(c), an input wire named asseTt--a:lobaiJ. an or·

gate named assert, and its output \\I'ire named s are used to represent an acLive-1NC global

signal s. The circuit representation of each acth'c-false global signal s is shown in Figure

J.8(d). [t consists of an input wire named assen....llobal_s. an and-gate named assert. and

its output wire named s. "!be buffer and its output win: named global_s as shoYlol1 in

Figure J.8(e) and Figure 3.8(d) are added for the need of the output VHDL file. In the

spe<:ification of the Netlist Generator, every global signal is defined as the ourput port of

the VHDL file that can not be used as an input to an internal componcnt. Therefore. the

signal s is used as both input and output and global_s is only used as an output port. The

same goes for registers. It is noted that input wires named assert_s_O, asscrt_s_I, and

3SSCrt_S_N are not genetated here and only shown for illustrative purpose. They are from

the outputs of the and-gates or or-gates produced in the circuits of the assert nodes that

use the signals as the tugets. Section 3.8 gives a simple example to explain the

relaLionship between signal circuits and assert node circuits.

For a signa! that has the type array n of T, the circuit represenwion of each

clement in the array should be &cncrated. The identifiers of the gates named assert, the

~~ 5

~

(a) Active_True Local Signal Circuit

(b) Active_False Local Signal Circuit

assen ~lobal s

~~:¥~
asscn s N

(c) Active_True Global Signal Circuit

(d) ActiveJalse Global Signal Circuit

Figure 3.8; The Signal Circuits

J4

inpulires named asscrtJlobal_s. and the OUlpUI wires named s shown in Figure 3,8 are

added to the wire table when the circuil of each signal named s is created.

3.5.2 Generatiog Register Circuits

The circuits of the registers in the requirements table are generated in Figure 3.9. The

O-type flip-flops are used in the circuits for the register'S to store information. The value

of a regisler is the latest value assigned to il in a previous clock period. For each local

regiSler named r. as $00"""11 in Figure].9(a). its uansformatioo is composed of lh.ree or-

gates. two and-gales. a nol·gate, a O.type flip-flop, and several wires. In Figw-e 3.9(b),

additional input wires named vaJJlobalJ and assign...,globaiJ. a buffer. and a wire

named globalJ are needed for each global register named r. The buffer is generated for

the same: reason as the buffers in Figure 3,8. All nip-flops in the nelliS(use the same

clock line. The clock is designed as a global YHOL signal. Similar to the transformations

assign_r_N are nol generated here and only shown for illustrative purpose. They ate the

oulputires named val_TQI'ger and assign_Target produced in the cin:uits of the

assignment nodes thai use the register as the: target (see Figure 3.13).

The transformation ofa register that has me type array n of Tis similar to the

transformation of the signal that represents an amy. As sho\lo"n in Figure 3.9, the

identifiers of the two inpul or-gates named val and assip, the input wires named

vaJ...,globalJ and assianJlobalJ, and the output wire named r are updated 10 !he wire

table when the circuit of each register named r is created.

"

(a)Loc:al RcgiSlerCircuil

(b) Global Rcaister Circuit

FiB'ft 3.9: The Register Circuiu

J'

3.6 A Module for Generating Node Circuits

This module generates the circuits of all the nodes in the ASM chan. Each node is

labelled. labels come in five varieties: dwnmy nodes. state nodes. assert nodes.

assignment nodes. conditional nodes. The function named genOneNdCircliit generates

the circuit for one node. When the circuits are generated for dummy nodes, state nodes.

assen nodes. and assignment nodes. the identifiers of the input or-gate named go and the

output wire named done_H are kept in the wire table. For condition nodes, the identifiers

of the input Of-gate named go and the two output wires named done_N_then and

done_H_else and ~'O nodes named tlrenNode and efseNode are stored in the wire table.

The dummy nodes are place-holders. The conuol flow goes directly through these

nodes. The circuit of a dummy node simply consistS of an or-gale and an output ""ire. as

shown in Figure 3.10. The wires named done...,PO. done....Pl. and done""pM are nOI

generated here and they are from the ourpul wires that are produced in the circuits of the

predecessor nodes. The same goes for aU node types.

The state nodes represent the conlrol state of the program. They are used to wait for

the coming of the next clock period. 'The first node listed in the ASM chart is always a

state node and represents the start of the program. As shown in Figure 3.II(a). its circuil

is composed of a D-type nip-nop. an inverter, and three wires. The input Mre is a true

wire. II is requirtd that the output wire shouJd be true in the first clod: period in order to

start the program. Figure 3.11(b) gives the cin:uit generated. for a stale node numbered N.

)7

Figure 3.10: The Dummy Node Circuit

(a) The Initial State Node Circuit

done
one

d~ne M
go

(b) The Cin:uit of the State Node Numbered N

Figure 3.11: The Stale Node Circuits

JI

The assert nodes are used to transfer information to signals. In the ASM chan. assert

nodes are labelled with two expressions: target and \·a!uc. The target expression

represents the lelt-hand·side of an assert statement and will be a signaL The value

expression indicates the right-band-side of an assert Statement and will be one of se....en

kinds of expressions described in the next section. Figure 3.12 gives the assert node

circuits. Before &enerating the assert node circuits. the circuits of the IWO expressions are

created. In Figtn 3.12. the value e."<pression circuits are feprt:SCnted by a box labelled

\'alue Of by several boxes labelled va/ueO. \'olue/, ... , va/ueH in the case of an array

target. As mentioned in generating signal and register circuits module. the output ~m

named assert_Target in Figure 3.12(a) 'Nill be the input of the or-gate in the circuit fO(' the

tatget signal of the assert node. The assert_Tcuger output in Fiaure 3.12(b) will be the

input of the and-gate in the circuit for the target signal of the assert node. 1be circuit in

Figure 3.12(c) is generated for an assert node whose value expression is an array

expression and whose larget expression is an active-true array signal. The OUtput wires

named assen_TargetO. assert_Target/, ...• assert_TargetN will be inputs to several or­

gates in the circuit for the target signal of the assert node. Asserting an active-false array

signal circuit is not sho"'ll. II can be obtained accordina to Figure 3.12(b).

The assignment nodes are used to store information in registers. Similar to assert

nodes. each assignment node is associated with a target expression and a value

eXJXeSSion. The target expression rept'eSCnlS the left-hand-side of an assignment

statement and will be a register. The vaJuc expression indicates the right-band-side of an

assignment statement and will be one of seven IOnds of expressions described in the next

"

assert Tar et

(a) Asserting an Acth·e·True Signal Ci~uit

done

(b) Asserting an Active-False Signal Ci~uit

assert T etO

assert T etl

~ ~
~

(c) Asserting an Active-True Array Signal Circuit

Fi,we 3.12: The Assert Node Circuiu

section. The circuits shown in Figure 3.13 arc used 10 repr-esent!he assigrunent nodes.

Figure 3.13(a} rqnsents an assignment node whose larget expression is a bool type

register. The box labelled value represents the circuit of the value expression of the

assignment node. The wires named assign_Target and val_Target are the input wires of

the or·gates named assign and val in the target register circuit. respectively. The wire

named done_N of this Dade circuit will be the input wire of the or-gate in its successor

node. The circuit sho\o\n in Figure 3. 13(b) is generated for an assignment node that has an

arm)' type register and an amy expression. Each of the boxes that are labelled ~·alueO.

I·olue I• l:alueN represents a value output wire of the array expression. Each of the

output wires named val_TargetO. val_Targetl • ...• vaJ_TargerNwill be the input wire of

an or-gate named val in the target register circuit. The wires named assign_TargetO.

assign_Targetl• assign_TargelNwill be the input wires of the several or-gates named

assign in the target register circuit.

The condition nodes have associated a condition expression that \o\ill be true or false

and twO nodes called thenNode and elseNode. When the ell:prcssion is true. the node

named /henNode will be executed; when the expression is false. the node named

elseNode will be executed. The circuit for edCh condition node is generated as shown in

Figure 3.14. It is composed of an oc·pte named go. two and-gates tWncd then and else,

an inverter. a box and several wires. The invmer is used to implement the choice of the

control flow. In Figure 3.14, the box labelled condition expression represents the

expression circuit of the condition node circuit. The output wire named dORe_N_then in

the condition node circuit will be the input wire of the go gate of the node named

"

done
000

done assi Tar et

val Tar et

(a) Assigning a RcaisterCircuit

done N
asSI n Tar elO

val T elO

ani T etl

val T etl

valuel assian TarsetN

r====; ~
~

(b) Assigning an AlTay Rcgister Circuit

Figure 3.13: The Assignmcnl Node Circuits

rhenNode. The output wire named done_N_else in the condition node circuit \\ill be the

input \\ireofthe go gate of the node named elseNode.

Figure 3.14: The Condition Node Circuit

3.7 A Module for Generating Expression Circuits

This module \\ill uansfonn all expressions that are associated \\ith assert nodes,

assignment nodes, and condition nodes into their cOfTCSpOnding circuits. When

generating the circuits of these nodes. the expressions \\ill be transformed into their

circuit representations as a pan of these node circuits. In the SMALL language, there arc

se~n kinds of expressions: identifier expressions, constant expc-essions, unary

expressions, binary expressions, subscript expressions, subarray expressions and arn.y

building expressions. Each expression is transformed into a circuit \\ith the vaJue outputs

for the value of the expression and an overflow output that indicates whether overflow

occurred in the calculation of lhe value output. \Vhm adding or subuacting two's

complement numbers and if the result is too large or too small 10 be represented in the

specified range. we say that "overflow" occurs. The function named genupGrcuiu is

defined 10 implement the transformation. Its input parameter is the expression containing

the type and the location and othel" information. Its outputs are wires reprnenting the

\-alue outputs and the overflow output. For each kind of expression. the follo"';ng gi\'es

its circuit representation.

The constant expression. true. is implemented by a true wire as the output value and

a false wire as the overflow output. The constant e.xpresskln. fa lse. is implemented by

a false "'ire as the output value and a false "'ire as the overflow output.

An identifier expression is a siring referring to a signal or a register in the requirements

table. The output value of the identifier expression referring [0 a boot type signal or

register is the output named J Of' of its signal or register circuit. The false wire is used to

express the fact that no overflow occurs in generating the identifier expression circuit. In

the case of the identifier refening 10 an amty type signal or register. the output values

will be a list of the outputs of every element in the array. The overflow output will be

false wire.

A unary expression consists of an expression aI'Id an operator that is one of not. -.

and overflow. The not expression is implemented by an. inverter as sho"'n in Figure

3.15(a). 1bc overflow expression will be true if there is overflow in the evaluation of

its operands. The overflow output is the disjunction of all overflow outputs of the

operands. The same goes for other exprusions that ha\'e no specific explanation of

overflow. The expression -8 distributes to the array of boolean level and is t\o\'o's

complement negation. A ripple carry negater should be used for its implementation. For

convenience. this thesis uses a ripple carry adder and inverters instead. The circuit v.ill be

discussed in array operations.

A binary expression conwns (wo expressions and one operator thai is one of &. or.

"'>. <-. --. -/-, "', /-, ++-, plus, -, and uplus. The former six operators and

the not operator distribute: to the bit level. Their meanings are given in (Norvell. 1998).

Their expressions are implemented by the circuits shov.n in FiiU"' 3.15. It is noted that

the inputs in Figure 3.15~ the vaJue outputs of the operands. The operators. - and /"".

are used to compare two expressions. If the value outputs of the two expressions have the

same value. the expression ~A _ B" will have a U'Ue result; otherwise. the expression ~..t

/- 8~ will have a true result. Similar to the negation operator. the operators such as ++,

plus. -. and uplus distribute to the alTay of boolean level. The function named

distributelbM is defined to implement these operations for one dimensional or multi­

dimensional array operands. Because the results of rnulti-dimensionaJ array operands can

be obtained by applying these operators to the one-dime:nsional amlys. the following

simply describes the definitions and the: circuit implementations of these operators on

one-dimensional arrays. Detailed definitions on these operators can be found in (Norvell,

1996 and 1998).

The expression. A ++ B. implements the catenation of two arrays. A function named

carM is defined to aene:rate circuits for this operation. 1be value outputs of the expression

"

(a) Expression ~not a~ Circuit

(e) Expression ~a <- b~ Circuit

(b) Expression ~a & b~ Circuit

(d) Expression ~a -> b~ Circuit

(f) Expression "a - b~ Circuit

Fieure 3.15: The Expression Circuits

consist of die value outputs of the e.~pression A as the start and the value outputs of the

expression B as the end. The expression A uplus B implements the unsigned addition of

two numbers. The result length is one mon: than the length of the longer of A and B. No

overflow occurs in the above two operations. Ho.....ever. if there is overflo..... in e..'a1ualing

A or B, the overflow outputs of the: above two expressions ~ true, The expression. A

plus B, carries out the IWO'S complement addition of t.....o numbers. The binary

expression. A-B. implements the two's complement subtraction of two numbers.

Functions named upilaM. piwM. and minwM are defined to generate cin:uits for these

operations. The unary expression, - 8. is used for the two's complement negation of a

number. A function named minusM is defined fOT the expression that is the same as

(fal~. false•."., false]- B. A ripple clln'y adder shown in Figure 3.16 is generated for the

circuits of the expressions with uplus and plus operators. A function named genAdder

is defined to generate circuits for the ripple carry adder. In Figure 3.16. each box

represents the circuit shown in Figure 3.17 and generated for a full adder. The following

logic equations fOt'" the full adder are described in (lenk. 1972).

S-ABC.+AsC.+ABC.+ABC.
~AlBBlBC.

Cow"" AB + (A + B)C/Io

In the above equations. A and B and C.,. are the inputs; S and C_ represent the outputs

for the sum and the carry; C. is 0 for the addition ofthe least significant bits.

For operations with • B and A - B, a ripple cany subtracter should be used. However,

for the convenience, this thesis uses a ripple carry adder and inverters to implement the

"

Figure 3.16: A Ripple Carry Adder Circuit

..

operations. Before using the function named grnAddn. we implemenl the operation \\oith

no t. for every elemenl in B and SCI the initial catTy named Corryl"O to 1 to make the

adder perfonn subtraction.

The overflow output for the operation "'ith UplU5 is false. Figure 3.18 she"'S the

overflow outpul circuic for the operation with plus. In FiiUfe 3.18. A_Sign and B_Sign

are the sign bits of the N.U operands; S_SilPl is the sign bit of the sum: (ft-rrflow

represems whether overflow OCCUfS. The logic equation for FiKure 3.18 is as follows:

Figwe 3.18 is also used to generate the overflow outpul circuit for the expression A-B

and the expression ·B; however. the inverters should be used for the e){pression B. The

logic equation is changed to the following form.

An array building expression is a lis! of expressions. The value outputs of the amy

building expression are a bundle of the value outputs of the expressions. An or-gale is

used for disjoining all overflow outputs of the expressions in the array to get the overflow

OUtpUI of the arn.y building expression.

A subscripc:ed azny expression contains an expression as an operand and a constant

number as the subscript. The value output of the subscriJXed array expression is selected

from the value outputs of the operand in terms of the constant number. The overflow

output ofme operand is the overflow outpUt ofthc: subscripc:ed array expression.

Figure 3.17: A Full Adder Circuit

Figure 3.18: The Overflow Oulput Circuit ror Operators: ~plus~ and·

A subanay expression is composed of an expression as an opmlnd and two constant

numbers as the length and as the starting subscript. The value oUlpUts of the subanay

expression arc a subsequence of the value ourputs of the operand in lenns of the two

constant numbers. The overflow outpUt of the subarTay expression is the same as the

overflow output of the operand.

3.8 A Module for Connecting Node Circuits

This module links all the node circuits in terms of the edges in the ASM chart and the

information from the wire table. The funclion named conneclNode is defined in this

module. The ourpU! wire named done_N of each node except for a condition node will be

connected to every or-gate named go of its successor node. In the case of a condition

node. the output wire named done_N_then will be linked to the &0 gate of its ,hC'I.Node

node and the output ",ire named done_N_else -.viII be connected to the go gate of its

elseNode node. Once the nodes are connected. the netlist is complete.

A simple SMALL example shown in Figure 3.19 is used 10 illustrate how to generate

the circuits of sips and assen nodes and how to connect these circuits. Figure 3.20

gives an ASM chan for the SMALL program shown in Figure 3.19. Each node shown in

Figure 3.20 is transformed into its conesponding circuit as shown in Figure 3.21. For

example, the flip-flop labelled) and the invener labelled 1 represent Node 0 and the or­

gate labelled gol is generated to represent Node 1, a dwnmy node. In Figure 3.20, the

done_N wire of each node is also labelled in Figure 3.21. According to the done_N wires,

all the node circuits are connected to represent the circuit of the SMALL program shown

global sig a: bool 110

while crue do III

Q ! true /12
tick 113

Q ! false 114
tick 115
Q ! true 116

od In

Figure 3.19: A Simple SMALL Program

in Figure 3.19. From Figure 3.21. it can be seen that the or·gate labelled assert and a

buffer are used to represent the circuit of global signal a. It has three inputs that are the

outputs from thre-e and-gates. Each of these and-gates is generated for one of three assert

nodes. And-gatcs labelled 3. 4, and 5 are used foc the assert statements of the SMALL

program in line 2, Line 4, and Line 6, respectively. For example. the or-gate labelled 806

and the and-gate labelled 4 are used to represent Node 7 in Fiiure 3.20 that is an assert

node and represents the assert statement in Line 4 in Figure 3.19. The or-gate labelled

goJ and the flip-flop labelled 2 generated for Node 6 are used for the t.ick nacemenc in

Line 3. The c.ick statemenC in line 5 is converted to a state node labelled 8 and

represented by the oc·gate labelled go7 and the flip-flop labelled 3. The or-gate labelled

g09 and the flip-flop labelled 4 represent the implicit tick statement in the whi le loop.

The or-gate labelled g02, the inverter labelled 2. and two and-8ates labelled 1, 2 are

generated for Node 4 that is a condition node. The condition expression is always true so

State Dummy Assert Assign Condition

Figure 3.20: An ASM Chart for the SMALL Program Shown in Figure 3.19

53

Figure 3.21: The Circ:uitofthe SMALL Program Shown in Figure 3.19

3.9 Output to VHDL Module

Using the IEEE stdJogic_ll64 packages, this module produces a VHDL source file

thaI represents the finaJ netlist cin:uic generated by the above modules. The entity

declaration ofllJe VHDL file includes the name oftbe pons. the directioo of its data flow,

and the data type. "The output pons are composed of the output of every globaJ sipal and

regisler. The input pons include the clock, the power, the ground., the wire named

asscn-ilobal_s for each global siana' called s, and the w;res named assignJlobalJ and

val~lobalJ for each alobal register called r. The input of the D-type nip-flop in the

initial state node circuit is also considered as an input port. For multi-dimension.al atTays.

a package is used to declare scveral one-dimensional anay types and these ports will have

user-defined array typeS. The file contains a VHDl structural description of the

components and their interconnections by signals. The components consist of and..gates.

or-gales. xor-gates, not-gates. buffers. and O-type nip-flops. The and-gates. Ihe or-gates.

and the xor-gates ha"'e N."O-inputs and one-output. The not-gates and the buffen have

one-input and one-outpul. Their VHDL deKriptions will be given in the next chapler. An

example VHDL output descriplion for the SMALL progr.un shown in Figwe 3.1 is given

in Figwe 3.22.

library IEEE;
use IEEE.std_logic_II64.all;

entity SMALL_OUT! is
PO" (assenJlobal_outBit: in std_loiic;

asscrt....8lobal_inBit : in std_logic;
d_input: in steUolic;
clock: in std_logic;
power: in stdJogic;
ground: in sldJogic;
global_outBit : OUI S1dJogic;
globaUnBit: out steUogic);

end SMALl_OUTI;

architecture StruetureofSMAlL_OUTI is

signal wirel99, wirel97, wirel9S, wirel93, wirel90, wirelS7, wire1S6.
wirelS3, ""ireISI, wire149, wirel47, wire!46, wirel4S, ","ireI44,
wire 139, wirel37, wirel3S, wirel33, wire131, wirel29, wire128.
wire!27, wirel26, wire121, wirel20, wire!!7, wire I 16, wire I 13,
wirelll, wirel09, wirelO7, wire lOS, wirelO3, wire 102, wirelOl,
wirelOO, wire95, wire94, wire91, wire9O, wireS7. wire85,
wireS3, wire82, wire79, 'Nicen. wire7S. wire74, wire71.

"

....ire69,ire67, wite66,ire63. ""ire61. wireS9,ireS8.
\\oire5S. "l.mS3. wireS 1. wireSO. \\ire47, wire4S, \\oire43.
\\irc4l, "l.ire39. \\ire37, wire36, \\ire33. wileJ2. wire31.
\\ire30. wire2S. wire24, wire21. wirelO. \\oirel9. \\ireI8.
\\ireD. \\irel!. wire7. wire2: stdJogic;

component OR2
pon (11.12: instd_logic; 01 : out stdJogic);

end component:

component At'lD2
pon(ll, 12: in stdJogic: 01 : outstd_logic):
~nd component:

component BUF
pon (II : in SldJOiic; 01 : out sId_logic):

end component;

component lNVERTER
pon(ll : in sldJogic: 01 ; outstd_logic);

end component;

component DFUPFlOP
pon (clock, 0 : in stdJogic; Q out sed_logic);

end component:

Device200: OR2 port map (as.sertJ!obaUnBit. wire 199. wirel);
Devicel98: OR2 pan map (wireSS, \\ireI97. wirel99);
Devicel96: OR2 port map (wire63, wirel9S. wireI91);
Devicel94: OR2 port map (wire71. wire193, wireI9S);
Devicel92: OR2 ponmap (wire79, wird7, \\ireI93);
Devicel91: OR2 port map (asser1Jlobal_outBit. \\ircl90, wire?):
Device189:0R2 port map (wirellI, wireD7. wirel90);
Devicel88: BUF port map (wire43, wirell);
Devicel87: BUF port map (wire47. wirelJ);
Devicel86: BUF port map (wire4I, wireI8);
Devicel8S: BUF port map (wire21. wire24):
Devicel84: BUF port map (wire4S. wire30);
Devicel83: BUF port map (wiren, wire36);
Devicel82: aUF port nap (wireS3, wireSO);
Devicel8l: BUF port map (wireS9, wireS3);
Devicel80: aUF port map (wire6l. wireS8);
Devicel79: BUF port map (wire67. wire6I);

Devicel78: BUF port map (wire69. wire66):
Devicel77: BUF port map(wire7S. wire69):
Devicel76: BUF port map (wire77. l,o,ire74);
Devicel7S: BUF port map (wireS). wire77):
Device174: BUF port map (wireSS. wire82);
Device173: BUF port map (wire I S7. wire8S);
Devicel72: BUF pon map (wire107. wire90);
Devicel7l: BUF port map (wire105. wire94);
Devicel70: BUF port map (wirel09, wire 100);
Devicel69: BUF port map (wire103. wirelOS);
Devicel68: BUF port map (wire102. wire 101):
Devicel67: BUF port map (mll3. wire 1(9):
Devicel66: BUF port map (ireI33.....irell6);
Devicel6S: BUF port map (wireI31. wireI20);
Devicel64: BUF port map(wirel3S.....ire I26):
Devicel63: BUF port map (wireI29. "ireI31):
Devicel62: BUF port map (wire128. wireD3);
Devicel61: BUF port map (.....ireI39.....ireDS);
Devicel60: BUF pon map (wire1S3. wire 144);
DevicelS9: BUF pon map (wire147. wire 149);
DevicelS8: BUF port map (....ireI46, wire I 51);
Devicel5S: lNVERTERpon map (wireI56. wireIS7);
DevicelS4: DFLIPFLOP pon map (dock. d_input. wireI56);
Devicel52: ORl port map (v.ire9I. wire157. wireIS3);
Devke143: AND2 pln map (wireI45. wirel44. wireI47);
Devicel42: AND2 pln map (wirel44. power. wirel46);
Devicel41: rNVERTER pon map (power. wireI45);
Devicel38: OR2 port map (wireISI. wire121. wire I39);
Devicel36: AND2 port map (wireI3S, ground, wireI37);
Devicel2S: AND2 pln map (wireI27. wire126. wireI29);
Devicel24: AND2 pln map (wire126. wire2. wireI28);
Device123: lNVERTER port map (wire2. wireI27);
Devicell9: DFLIPFLOP port map (dock, wire120. wireI21);
DevicellS: DFLIPFLOP pon map (dock, wire116. wirell7);
Devicel12: ORl pln map (wirell7, wire9S, wireI13);
DevicellO: AND2 pon map (wirel09, power, wirelll);
Device99: AND2 pln map (wirelOl. wire 100, wireI03);
Device98: AND2 pln map (.....ire100, wire2, wire102);
Device97: INVERTER port map (wire2, wirelOI);
Device9J: DFLlPFLOP port map (dock, wire94, wire9S);
Qe\.ice89: DFLIPFLOP port map (dock, wire90, wire9I);
Device86: AND2 port map (wireSS, ground. wireS7);
Device81: DfLlPFLOP port map (clock, wird2. wireS3);
Device7S: ANDl port map (wire77, power, wire79);
Device73: DFLIPFLOP pon map (dock. wire74. wire7S);

57

Device70: AND2 port map (wire69. ground. wire7l);
DC\'ice6S: DFLIPFLOP pon map (clock. wire66. wire67);
Device62: AND2 pon map (wire6!. power. wire63);
DeviceS7: DFLIPFLOP pon map (clock., ",ireS!. "ireS9);
Device54: AND2 port map (wireS3. power. wireS5);
Device49: DFLIPFLOP port map (clock, wireSO. wireS!);
De\'ice46: AND2 port map (\l,ire4S. power. \l,ire47);
Dcvice44: OR2 poet map (wircI49. wire37. w1n:45);
Device42: AND2 port map (wire4l. power. wire43);
Device40: OR2 pon map (wireS!. wire25. wire41);
Device3!: OR2 port map (wire32. wire20. wire39);
Device35: DFLIPFLOP pon map (clock. wire36. wire37);
[)evice29: AN02 port map (\l,ire31. wire30. wire33);
[)evice2!: AN02 port map (wire30. wire I I. wire32);
Device27: INVERTER pon map (....irel!. wire31);
Device23: DFlIPFLOP port map (clock. wire24. ",ire2S);
Devicel7: AND2 pon map (wireI9. wirel!. wire21);
Devicel6: AND2 pon map (wirel8. ",ireI3. wire20);
Device 15: lNVERTER pon map (wire!3. wire 19);
Device9: aUF port map (wire7. aloba.l_outBit);
[)evice4: aUF pon map (wire2. globaUnBit);

end Struenue;

Figure 3.22: An Example VHDL Output Descriplion

"

Chapter 4

Hardware Implementation of the
SMALL Language with FPGAs

This chapter shows the hard\lo'afe implementation of SMALL programs with Field

Programmable Gate AlTays (FPGAs). CAD tools provided by Canadian Microelectronics

Corporation (CMC) are used for the hardware implementation of me programs ",Tinen in

the SMALL language. F~ the Netlisl Generator described in Chapter 3 transforms the

Sf\.1ALL program to a structural VHDL file whose components are simple gates and

clocked Ootype nip-Oops. 1ben a functional simulation of the VHDL description is

carried out \loith the Synopsys VSS (VHDL System Simulation) (Xilinx. 1995). After the

simulation, a grapb in Waveform. Viewer Window can be used 10 verify that the circuit

performs the ~ified requirements. The Synopsys FPGA Compiler is used for

synthesising and optimising the gate-level VHDL description. Finally. the Design

Manager of the Xilinx Alliance Series version 1.4 (XHinx. 1997b) is used to create

configuration data for Xilinx FPGA chips. The Xilinx XC4000 family 15 employed as the

target FPGA device. Several SMALL programs were compiled, simulated and

synthesised to verify that the Netlist Generator performs the specified requirements for all

statements and operators ofthc SMALL language.

"

4.1 Background

In order to provide background about hardware implementation of the SMALL

program, this section introduces some basic knowledge of the VHSIC Hardware

Description Language (VHOl) and Field Programmable Gate Arrays. The design

procedure environment is also discussed.

4.1.1 VHDL: VHSIC Hardware Deoscription Language

VHDL \\o'aS developed by me Vcry High Speed Integrated Circuits (VHSfC) Program

Office of the Depanment of Defense for usc as a standard lanaU3ge in the

microelectronics community during 1980's (On and Wildcroner. 1994). YHDl is a

powerful language and can be used in many ways. In this study. VHDL is used for

describing the circuit created by the Nctlist Generator. The IEEE stdJogic_ll64 package

is chosen because it is used in most new VHDl synthesis tools.

A structural description of a system contains the components and their

interconnections by signals. Compared with behaviowal descriptions. the suucnual

description is more concrete and easier 10 synthesise into hardware. An example of the

structural VHDL description has been given in Section 3.9. II is the nel1ist output of the

program wrinen in the SMALL language in Figure 3.1 and will be simulated and

synthesised in later sections. The struc:tural VHDL description includes an ovenJl library

statement, a ~use~ statement, an entity declaration, signal declarations. component

declarations, and pon map associations. The ~library~ specification is used in Synopsys

simulation and synthesis. AD entity declaration includes the name of each POrt. the

..

direction of its data now, and the data type. A <:omponmt declaration contains the name

of the component and its pons. For each port. its name. data now direction. and data I)--pe

are dedared. A signal declaration consists of the name and the data type of the signal.

The body of the VHDl description stans with the ·begin* keyword. The component

instantiation statement is the basic unit in the description. Each instantiation is <:omposed

of a label. the name of the component and a mapping beN.'ttf\ the pon. names in the

instantiation and the actual componenl. The signals used in the pan. map are the declared

pons and dedared signals.

In this study, VHDl is also used to describe a test bench file that provides a simple

method for testing <:in:uits. Many con<:urrent statements and signal assignment statnnents

appear in the lesl bench file for providing stimuli to some inpul ports of the slructural

VHDl description output produced by the Nellist Generalor.

4.1.2 Field Proanmmable Gate Arrays

A Field Programmable Gale Array (FPGA) is a programmable and rc:configurable

logic devi<:e developed for rapid proloryping and implementalion of diaital systems in

mid-19805. Due to the shan. time-to-markel and the low manufacturing cost. FPGAs are

now very popular in hardware: design. FPGAs are composed of programmable fun<:tion.aI

blocks surrounded by a programmable inlCtCOnnection netWOrk.. 1be user can cU510miu

the function of each block and its connections. The size, SlrUCtute, number of blocks, and

the interconnection are diffe~1 among FPGA archite<:tures. This difference in

architectures is detennined by different programming technologies. different software.

and different models of use (Trimbcrger. 1994).

Xiliml: families of FPGAs are the most widely used FPGA families due to their

features. The first commerciaJly used FPGA series, the Xilinx XC2000, was introduced

in 1985. Now more Xilinx generations such as XCJOOO. XC4000. and XC5000 exist.

Although there are many variations on FPGA design. aJl the Xilinx FPGA families are

composed of three main configurable components: an array of cells caJled confii1Jl3ble

logic blocks (CLBs), a sunoundinl rectangular rinK of input/output blocks (lOBs). and

programmable interconnect rnow-ces. For each family member in a generation, the ClB

array size is different. For example. XC4002A has 8)(8 CLB array size and the ClB array

size of XC401J is 24>124. In the hardware implementa:ion of the SMALL language. the

XC4000 (Xilinx. I997a) architectun: is used as the wget technol0aY. As Xilinx's third­

generation. the XC4000 family FPGAs are used as the programmable logic devices based

on static memory resources. It is a popular and advanced technology for large design and

for using placement and routing tools. Based on Oldfield and Dorf (1995) and Trimberger

(1994). this section simply describes the Xilinx XC4000 architectwe.

Figure 4.1 (Oldfield and Dorf. 1995) shows a simplified block diaaram of the XC4000

elB. It includes three combinational function generators (G', F', H'), two flip-flops. and

their interconnec;t contJ'Ollogic. In Figure 4.1. FI.F1. Fl. F.a. GI.Gz. GJ. G.. CI.Cz. Cl. Col.

and clock are the thirteen CLB inputs, and the four ClB outputs are XQ, X. YQ. Y. Each

of the two main lookup-table-based function generators (F' and G') has four independent

inputs. A third function generator (H') has three inputs (F, G', HI) from the

62

63

'"-J
U

§
i3x

outpUIS of F' and G' and from outside the CLB. The IWO D·type flip-flops with the same

clock (K) and clock enable (EC) inputs. a third common input (SIR) can get their inputs

from the function generators or from external signals. The F' and G' lookup tables in each

CLB can be configured as a 16)(2 or 32)(1 bilS of memory cells. The flexibility and

symmetry of the eLB architecture helps in placement and routing, during which inputs.

OUlpUlS, and the funclions can arbitrarily exchange positions within a CLB.

A block diagram of the XC4000 input/output block (lOB) is represented in Figure 4.2

(Trimberger. 1994). The lOB aclS as the interface between external package pins and the

Figure 4.2: The XC4000 lOB

64

internal logic. Each lOB is used for one package pin. It can be arranged for input. OUtput.

or bi.<Jirectional signals. The XC4000 lOB contains test structure for testing internal

logic or external logic. A useful function in the XC4000 lOB is that a master three-state

control places all the UO blocks in a high impedance mode when it is acti"e.

Figure 4.3 (Trimberger. 1994) n:presents the XC4000 interconnect. There are many

routing fCSOurces in the interconnect of any two points on the chip. Three kinds of

interconnect. named as single-length lines, double-length lines. and long lines. are

detennined by the relative length of their metal segments. The single-length lines are a

grid of horizontal and verticallinc:s at switchbox between each block. Double-length lines

travel two CLBs before going to a switchbox. Long lines can be broken in the centre of

lhe chip to give twO half-long lines for better mutability.

4.1.3 The Desiln Procedure aad Eaviroameat

1be entire process of compiling a SMALL program to an FPGA chip is divided into

the following phases.

Using the SMALL SimulatOf, an optional simulation of the SMALL program can be

obtained.

The SMALL program is compiled by the SMALL compiler to obtain a Stnlctura!

VHDL description that uses the IEEE stdJogic_ll64 package.

1be functional simulation of the sttuenual VHDL description is carried out "'itb

Synopsys VSS to verify that the nctIist circuit created by the Nellist Generator

performs the specified requirements.

"

+-~~--

& EJ

EI H ~

Figure 4.3: The XC4000 Interconnect

66

Synopsys FPGA Compiler (FC) is used for the aate-Ievel synthesis and logic

optimization.

The configuration data for a specific Xilinx FPGA chip. XC4028EX-J-PG299. is

produced by the Design Manager of the Xilinx Alliance Series version 1.4.

4.2 Simulation witb tbe Structural VHDL Description

nus section shows the functional simulation results for several SMALL programs.

The components used in the stnlC1\ltal VHOL files of the: SMALL programs and the test

bench files for the simulations are: also describN.

4.2.1 Compo.eats

The components used in the architecture of the muctuTa.l VHOl description include

and-gates. or-gates, and xor-gates that have !Wo-inputs and one-outpur. inverters and

buffers that have one-input and one-oulpUL and D-type flip-flops. Their VHOl

descriptions are: as follows.

For an and-gate, the name of the eomponent is AND2 and the port names an: II. 12.

and 01. The following is the ¥HOL description of the and-gate.

library IEEE;
use IEEE.suUoaicU IM.aIl;

entityAND2is
port{lI. 12 ; in std_logic;

01 ; out stdJogic);
endAN02;

67

architecnue STRUCTURAL of AND2 is

begin
01 <"'II and 12;

end STRUCTURAL;

For an or-gate. the name aClhe component is OR2 and the pon names are JI, 12, and

0\. The VHDL dc:scription of the or-gatc is similar 10 lhal (<< the and-gate.

For an xor-galc. the name of the component is XQR2 and the poIt names arc 11. 12.

and 01. "The VHDL description oCthe xor-gate is also similar to that for the and-gille.

For a buffer. the name o(thc component is aUF and the port names are II and 0\.

The following is the VHDL description of the buffer.

library IEEE:
use IEEE.std_logic_ll64.all;

entity BUF is
port(II ; in Sid_logic;

01 ; out SId_logic);
end BUF;

architecture STRUCTURAL of aUF is

begin
01 <-II;

end STRUCTURAL;

For an inverter, the name of the component is INVERTER and the pon names are II

and 01. The VHDL description oCtbe inverter is similar to thai for the buffer.

For a O.type fli~nop. the name of the component is DFLIPFLOP and the port rwnes

are dock, D, and Q. The clock of each O·type flip-flop in the netlist is the same. All

the [)..type flip-flops used in the Det.l.ist are defined as the falling-edgc triUered flip-

..

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

flops. It is noted that when the input of the D-type flip-flop is 'U'. its oulput is '0'.

This is because the output of the D-type flip-flop used in the initial Slate node circuit

is required 10 be false in the first clock period and 10 be true in the following clock

periods. For this purpose. the D input of this D.type nip-flop is named d)nput and

defined as an inpul port in the VHDL OUlpul of the SMALL program. In the test

bench. the d_input signal is set up with 'U' at the begiMing and then becomes true

before the second clock period and keeps true in the following clock periods. The

following is the VHDL description of the Ootype flip-flop.

library IEEE;
use IEEE.sldJogic_II64.a11;

entiry OFLJPFLOP is
port(c1ock. 0 : in std_IOCic;

Q : out std_logic);
end oFtIPFLOP;

arcttitecture STRUCTURAL of OFLIPFLOP is

begin

FUPFLOP process(D.c1ock)

begin

if (rP'U') then
Q<"~;

e1sif (clock - '0' and not c1ock'stable) then

Q<-O;
end if;

end process FLIPFLOP;

end STRUCTURAL;

..

4.2.2 T"t Ikoches

Douglas and Thomas (1994) have defined the test bench as ~the name given to the

VHDl code that generates the input signals for the design being simulated and monitor!

the desired outputs.~ When simuJating the VHDl output of the NetiiSi Generator, the

VHDl description of the test bench is crealed III give test inputs to the nellist circuit. The

test bench file is DOt synthesised. Figure 4.4 shoW'S the VHDl description of the test

bench used in simulating the VHDl output description that is shown in Figure 3.22. It

mainJy consists of entity dedarations. componenl declarations. signal declarations. the

statement part. and the configuration declaration. The entity name is declared as

SMALL_TEST! and no ports exist for this test bench. TEST is the identifier of the

architecture. SMAll_OUT! is the component name and is the: same as the entity name

shown in Figure 3.22. This component and that entity have the same ports. The signal

declaration includes the signal name and the: data type. For some signals, the: signal

initializations ate also used. In this example. the power, ground, and clock signals are

initialized to 'I', '0', '0', respectively. The statement pan includes COfICWtent statements

that arc composed of the instantiation of the SMAll_Olin component and signal

assignment statements. The final part is the configwation declaration that configures the

above part for testing the structunll an:hitecnare of the SMAlL_OUTI (Navabi, 1993).

For each SMALL program. its simulation can be carried out in two ways. One is to

use the parallel statement in the SMALL program fOl'" generating some input signals. as

shown in Figure 3.1. [0 the comsponding test beneh shown in Fiaure 4.4, we do not need

10 assign a value and a time to the input signal sucb as the assertJIobaUnBit si&nai.

70

library IEEE:
use IEEE.std_logic_II64.a1l:

entity SMALL TEST! is
endSMALL_fuT1:

architecture TEST ofSMALL_TESTI is

component SMALL_OUT I
port(a.sscrt.....s:lobal_outBit: in std_logic;

asscrt.....s:lobaUnBit; in std_logic:
d_input: in stdJogic:
clock: in std_logic:
power: in std_logic;
ground: in stdJogic;
g1obal_outBit : out std_logic;
globaJ_inBit : out std_logic);

end component;

signal asscrt...,.global_outBit: std_logic :- '0';
signal asscrt-ilobaUnBit: std_logic :- '0': 1/
signaJ global_outBit. alobaUnBit. d_input: SId_logic;
signal ground: Sid_logic := '0';
signal clock: Sid_logic :- '0';
signal power: stdJogic:"" 'I':
begin

AAI: SMALL_OUT I pon map (assert.....s:lobal_outBit. assen.....s:lobal_inBit. d_input.
clock. power. groWKi. global_outBit, globaUnBit);
dock <- not clock after 10 05;
d_input <"" 'U', poYo'Cr after 5 0$;
-asscn-ilobal_inBit <-'0'. 'I' after 20ns. '0' after 40 ns. 'I' after 60 ns. 1/
-'I' after 80 05, '0' after 100 ns, 'I' after 120 ns;
end TEST;

configurationconCSMALL_1 ofSMALL_TESTI is
for TEST
end for.

cndconf_SMALL_I;

Figure 4.4: The Test Bench fordle VHDL Output Shown in Figure 3.22

71

However. its circuit representalion generated by the Nellist Generator is more

complicated.. as sho\\o"l1 in Figure 3.22. The other is nOI to use the parallel statement in the

SMALL program for some input signals. as sho\\"l1 in Figure 4.5. its structural VHDl

description sho,",,'n in Figure 4.6 is not so complicated as the VHDL description sOO....l\ in

Figure 3.22. However, its corresponding lest bench shown in Figure 4.7 is little different

from the test bench sho"'n in Figure 4.4. The difference is sho\\o'n by using /I in Figure 4.4

and in Figure 4.7. The output signal such as the global_outBit is the same in the two

ways.

4.2.3 Simulation Results

Using the Synopsys VHDl System Simulator. the circuit produced by the Nellist

Generator is simulated. to verify its functionality. This section shows the functional

simulation results for se,,·eraI. SMALL programs. In all the simulation mults. the clock

period used for the simulations is 20 AS. The O.type flip-flops in the nedist circuits are

defined as falling..e:dge mggered flip-flops.

Enmple 1: A Parity GeIIeRCOr

The source SMALL prosrarn is shown in Figure 3.1 and in Figure 4.5. respt"Cuvcly.

Figure 4.8 represents the simulation result of Ihc: program in Figure 3.1 with its VHDL

output description shown in Figure 3.22 and its test bench shown in fiaure 4.4. Figure

4.9 shows the simulation result of the program in Figure 4.5 with its VHDl output

n

description shown in Figure 4.6 and its test bench shown in Figure 4.7. As described in

Section 4.2.2. Figure 4.8 and Figure 4.9 are obtained in t-Av \lo"3.ys fOt' a parity generator. II

can be seen tIw in both figures. the output named GlOBAL_OUTBIT is to. O. I. I. 0) if

the input named GlOBAL_INBIT is [0. I. O. 1. I) in the first five dock periods. This

result is the same as the result that is obtained from the SMALL simulator. i.e. \loithout

the Nellist Generator. That is. at each failing-edge of the clock. the GlOBAL_OlfTBlT

[s the parity of those GlOBAL_lNBITs that have been Setn in the pre,..ious clock periods

(the parity of the empty sequence is 0) (NoOo·ell. 1996).

global 5ig inBil: bool
global 5ig our8il: bool

.....hile true do

repeat
outBit ! 0

until inBir

t:ick

repeat:
outBir ! 1

until inSil

od

Figure 4.5: A Parity Generator Written in the SMALL language

"

••The: following is a VHDl source: file: re:presenting the: circuits siored
-in lhe: Ne:tlist store.

jibrary IEEE:
use IEEE.sld_logic_II64.aJl:

e:nliry SMALL_DUn is
pon (assert....slobal_outBit ; in std_Iogic;

assert....slobaJ_inBit ; in std_logic;
d_input: in stdJogic;
clock; in std_logic;
powe:r: in sid_logic;
ground: in skUogic:
global_outBit : out std_logic:
globaUnBit; out std_logic);

architecture SUUCNte orSMALl_DUn is

signal wire96, wirc79. wire7S, wire7S......ire73, wire7L wire69.
wire68, wire67. wire66. wire6l. wire59,ire57. wire55.
wire53, wireS I. wireSO, wire49. wire48. wire43, wire42.
v.ire39. wire38......ire3S, wireJ3. wire31. wire29, wirc:27.
wire2S. wire24. wire23. wirc:22. wire I 7, wirc:16......irel3.
wirel2. wire7. wild; std_logic;

component OR2
pon (I 1.12 : in stdJogic; 01 ; out stdJogic);

end component;

component AND2
port (11.12; in stdJogic; 01 : out stdJogic);

e:nd component;

component BUF
pon(ll: in std_logic; 01 ; out std_logic);

end component;

component INVERTER
pon(ll ; in std_logic; 01 :outstd_Iogic);

e:nd component;

component DFUPFlOP
port (clock., 0 : in SId_logic; Q out 5teUog:ic:);

end component;
begin

De\.ice98: BUF pon map (asscrt...,globaUnBit. wirel);
Device97: OR2 port map (asscrt...,global_outBit. wire96. wire7);
Device95: OR2 pon map (win:33. wire59. wire96):
D~vice94: BUF port map (wire29.....ire12);
Device93: BUF port map (Voirel7. wireI6);
Device92: BUF port map (wirdlire22);
Device91: BUF port map (wire2S. wire27);
Device90: BUF port map (Voire24.....ire29);
Device89: BUF port map (wire3S. wire31);
Dcvicc88: BUF port map ("ireSS....."ire38);
DeviceS7: BUF pon map ("",ireS3. wire42);
Dcvice86: BUF port map ("",ireS7. \\.ire48);
Dcvice85: BUFponmap ("",ireSI. wire53);
Dcvice84: BUF port map ("",irc50. wireSS);
DeviceS3: BUF port map (wirc6l. wireS7);
Device82: BUF port map (wire7S.....ire66);
DeviceSI: BUF port map (wire69. wire71);
Device80: BUF port map (wirc68. wire73);
Device77: INVERTER port map (wire78. \\.ire79);
Device76: DFLIPFlOP port map (clock. d_inpuL wire78);
Dcvice74: OR2 port map (wire79. wirel3. wire7S);
Devicc6S: AN02 port map (wire67. wire66. wirc69);
Devicc64: AND2 port map (wire66. power. wirc68);
Devicc63: fNVERTER port map (power. wirc67);
Devicc60: ORl port map (wire13. wire43, wirc6I):
DeviceS8: AN02 pon map (wireS7. ground. wire59);
Device47: AND2 port map (wire49. wire48, wireS I);
Device46: AND2 port map (wire48, wire2. wireSO);
Device45: INVERTER port map (wire2. wire49):
Devicc4l: DFLIPFlOP port map (clock, wire42, wire43);
Device37: DFLIPflOP port map (clock, wire38. win:39);
Dcvice34: ORl port map (wire39. wirel7, wire3S);
Dcviee32: AND2 port map (wirdl. POWCt', wire33);
Dcvice21: AN02 port map (wire23, wire22. wire2S);
Dcvice20: AN02 port map (wire22, wire2, wire24);
Devicel9: INVERTER port map (wire2, wire23);
Device1S: DFUPFlOP port map (clock, wirel6, wirel7);
Device11: DFLIPFlOP port map (clock, wirel2, wire13);
Device9: BUF port map (wiu1, a1obal_outBit);
Device4: BUF port map (wire2, globaljnBi1);

end Structure;

Figure 4.6: The Struetwal VHDl Output for a Parity Generator Shown in Figure 4.5

"

library IEEE;
use IEEE.std_logic_ll64.a1I;

~nlity SMALL_TEST I is
~ndSMALL_TESTI;

architecture TEST ofSMAlL_TESTI is

componenl SMALL_OUT!
port(assen.....slobal_oulBit : in skUogic:

assen.....slobal_inBit: in stdJogic:
d_inpul : in suUogic:
dock: in std_Iogic;
power: in std_logic;
ground: in sui_logic;
global_oulBil : out Sld_logic:
global_inBit: out stdJogic);

end component:

signal assen-ilobal_oulBit: sldJogic :- '0';
••signal assenJlobal_inBit: SldJogic :- '0'; /I
signal assenJlobaUnBit, globaI_ouIBit, global_inBit. d_input: std_logic:
signal ground: std_logic :- '0':
signal dock: Sid_logic :- '0';
signal po.....er: std_logic :- 'I':
begin

AAI: SMALL_OUT! port map (assert--8lobaJ_oulBit. assert...,global_inBit, d_input.
clock. power, ground, global_outBit. globaUnBil):
dock <- not dock after 10 ns;
d_inpul <-'U', power after S~
assen...,globaUnBit <0=1)', T after 20 ns, '0' after 40 os. 'I' after 60 ns,

'l'aftcrIOns,·O'afterIOOns,'I'aft~rI20ns: /I
~nd TEST;

cOfifiguralion conf_SMALL_l ofSMALL_TESTI is
for TEST
~nd for.
end cOnf_SMALL_I;

Figure 4.7: 1be Test Bench for !he VHDL Output Shown in Figure 4.6

"

ISMALl_TEST1/ASSEAT_GLOBAL....OUTBrT

ISMAU_TESTI/ASSERT_GL08AL_lNBrT

ISMAU_TEST1IGlOBAL-0UTB1T

ISMALL_TEST1IGlO8Al_rNBIT

ISMALL_TEST11O_INPUT

ISMALL.....TESTlIGROU"oIO

ISMALL_TEST1ICLOCI(

1SMAU._TEST1/POWEA

250

rj 1 ~ IlJ1JlJlJll r ilJ1llilI

~.U/mnt:/p.t"Qj.c::t./y1.nq/c::.d/l:QO• .1.0. 5/X:IL:INX/Synop.y./SMAL~TEST~.couq&r. 21

7/12/1998 13:22:44 P&q_ 1,1 o~ 1,1

Figure 4.8: The Simulation Result of a ParilY Generalor Shown in Figure 3.1

77

5.

ISMALL_TESTI/ASSERT_GLOSAL._0UT81T

/SMALL.-TEST1/ASSERT_GLoeAL._INB IT

ISMALL_TEST1IGLOBAl...OUTBIT

/SMAlL TEST1IGL08AL_lNBrr

1SMALJ._TEST11D_INPUT

ISMALL_TESTIIGFlCll..lNO

ISMALL..TEST1ICl.OCK

ISMALL_TEST1IPOWER

1.i2/mnt/projeets/ylnq/c:ad!Jllosls0 . 5/XILINX/Synop.y./SMAL:r.....TEST1.. cougar. 21.

7/12/1998 13:5:4 P_g_ 1.,1. o~ 1,1

Figure 4.9: The Simulation Result ofa Parity Generator Shown in Figure 4.5

78

The sequential multiplier wrinen in the SMALL language is shown in Figure 2.1. II

implements the multiplication of two 4-bit numbers to produce an 8·bit produt1. The

structural VHDL descriptions representing its netlist circuit and the test bench are given

in Figure A.l and in Figure A.2 of Appendix A. respectively. Figure 4.10 shows the

simulation result when the multiplier and the multiplicand are 3 and 2 in the decimal

system. The numbers displayed in Figure 4.10 are expressed in the hexadecimal system.

For example, the multiplier named GLOBAL_MULTiPLIER and the product named

GLOBAl_P are represented as C and 00 in the flISt clock period. respeclh·ely. After five

clock periods. the product is reported as 60 in the hexadecimal system. i.e. [0. I, I, O. O.

O. O. 0) as a binary anay. Recalling that SMALL uses an 1m first encoding, this

represents the number 6. Therefore. the output result of the Netlist Generator is verified.

Esample J: A~ml Adder

The serial adder wrinen in the SMALL language is shown in Figure 4.1 I. It

implemenlS the addition of two numbers. The two statements shown in Figure 4.1 I, d <.

a-=> b and It ! a <- b. are not useful for the adder. 1bey are used 10 test the functions of

the operators such as ..> and <-. The structunll VHDL descriptions representing its

netliS! circuit and test bench are given in Fisure 8.1 and in Figure B.2 of Appendix B.

respectively. Figure 4.12 shows the simulation result when the two additions named as

79

... /SMAIl.._Tg;rrl6'MiiSIGIJ_GLadAJ..]VJ:7J

... /SMAIl.._TQ;Tlefll.aL_GI..OSAL._PCO:7J

... /SMALL._Tg;rrlelA9SERT3il.~.aLJ',11l.1IP1...ICAAlO:O:J)

.. ISMALL._TGlSTleIASSERT3,~..cg.aLJ"'1l.1IP1...IER(o::il

/SMALL._TGlSTlelA9SERT30l~.aL_OCNE

/SMAIl.._TliiGTleIASSERT3il..alAL.3;,()

... ISMAIl.._TGlSTleo'Gl.C'W._""UL.TIA..lCAND(o:8

~
/SMAIl.._TGlSTleo'Gl.C'W._""UL.TIPl...IER(O::e

/SMALL. Tg;rrleo'Gl.C'W. ""UL.TIA..IERVJ)

/sMALL.=Tg;rrleo'Gl.C'W.=""UL.TIA..IER(l)

/SMALL._TQ;TlelGLClQAL._""UL.TIPl...IERC2)

ISMALL._TGlSTlelGl..CQOL_""UL.TIPL1ERQJ

l
$=~~:=~~

/SMAl...L._Tg;rrlelGLClQAL._Pl:Zl

ISMAl...L._T~lC1IGLClQAL._Pl:;tJ

ISMAl...L._Tl:BTlelGLClQAL._Pl(4)

ISMAl...L._TliiGTlelGLClQAL._Pl:51

/SMAl...L._TSlTlelGLClQAL._Pl:e)

ISMAl...L._TEBTlelGLClQAL._Pl(7)

/sMALL._TliiGTleIGROUNO

ISMAIl.._TGIST'6'GI..OSAL._Da.lE

ISMAIl.._TGlSTle/Q..CQAL_OO

ISMAIl.._Ta>Tle/O_NPUT

/sMAIl.._TIiiGT,6'Q.OCX

ISMAIl.._TliilTl6'flC:mER

..L.i2!.mt./pr.o jeet..!yiag!ea::l/lIIO.i .0. S/xrLIJl'X/SYDOp.y./SfALL--"S-ST1.fi .OO\l9'.IIIr..~

U!1.2/1.998 l.S:1.0:&1. P.IIIge1..1o:l!1..1.

Figure 4.10: The Simulation Result ofa Sequential Multiplier Shown in Figure 2.1

80

GlOBAL_A and GlOBAL_B are given as in the test bench sho'olo'll in Figure B.2. The

result can be verified using the SMALL simulator as sho""n in Figure 2.2.

global si9 a bool

global sig b bool

global reg c bool

global reg d , bool

global s1g . bool

global 5ig :r bool

while true do

:r ! a -/-b-/-c

c <- a & b or a & c or b & c

d <- a -> b

e ! a <- b

od

Figwe4.11: A Serial Adder Wrinen in thcSMALL Language

.. ,.. 15. '00 ... JO.

ISMALl-TESTo&(ASS1GN_GL09A/...C

ISMAI.L.-TEST~AL_GLC6Al.....C

ISMAI.L.-TEST&lASSlGH_~OBAL.....P

ISt.tAL,-TEST4NAL_GL08AL....D

ISMALl-TEST4IASSERT_GL08ALJC

ISMALLTEsn/ASSERT_GL09ALJ:

/SMALL..TEST4IASSERT_GL08AL....B L JL
ISMALL..TEST....ASSERT_Gl..OBAL.....A

ISMALL.-TEST.uD..JNPUT ~ nISMALL,..T&sT"IGLC8A!...-C

ISMALL.-TEST4JGLOBALD JLJL
ISMALL.-TEST"'-'GL09Al..,E

~J'SMALL..TEST...c;LOBAL..x

I$tIlAlJ_TEST-MOLC8Al..JJ

1SMALL....TEST'-'<>LOBAL-" --'U U
/SMALL.-TEST<l./GAC'JUN 0

ISMALL.-TEST4JCLOo< lJ1JlJUlJ1JLf1i
fSMALL...TEST4IPOWEA.

1N2/.-t~/pc.i..-c./y"",lceoU_.uo.S/X%LJIIX/~/~~t'•. c
8/12/1". 1S:1.:'. • ... 1.

Figure 4.12: The Simularioo Resultofa smaJ AdderSbown in Figurc4.11

12

This example is used for verifying the operation of two-dimensionaJ arrays. An

example SMALL program is sM'""n in Figure 4.13.

par

global signal a : array 2 of array 3 of bool
global signal b : array 2 of array 3 of bool
global signal c : array 2 of array 3 of bool
global signal d : bool
global register e : array 2 of array 3 of bool
global regist.er f : array 2 of array 3 of bool

c ! a & b
d ! Q j- b
e <- a - b
f <- - c

c.iclo;

"
global signal a
global signal b
global signal c

array 2 of array 3 of bool
array 2 of array 3 of bool
array 2 of array 3 of bool

a[O] 5 as 3 bit.s
a[l] 3 as 3 bits
b[Oj 5 as 3 bits
b{lj 5 as 3 bits

"p

Figw-e 4.13: The SMALL Program for Example 4.

"

The sttuetural VHDL description for the Detlist aenerated from this elWnple is too

long to be shown in this thesis. The VHDl description for the user-defmed data types in

the example is given in Figure CI. The VHDL description of the test bench for

simulating the example is shown in Figure: C.2. It is noted that in Figure C.I two one­

dimensionaJ array types are declared instead of one ty,'o-dimensional array t)'pc. This is

because some synthesis tools only support one-dimensional arrays (Naylor and Jones.

1997: Airiau er 01., 1994). Figure 4.14 represents the simulation result of the program

SOO\\"II in Figure 4.13. The resull is confmncd using the SMALL simulator as sbo""", in

Figure 2.2.

Eumple 5: Tile Operatioa of Tllrfto-Dimeasioaal AITlIIIYs

This example is used for verifying lhe operation of lhree-dimensional arrays. Its

SMALL program and the VHDl descriptions for data types used in Example 5 and for

the test bench are shown in Figure 4.1 S. in Figure 0.1. and in Figure 0.2 of Appendix D.

respectively. For the same reason as Example 4. the suucrural VHDl description for

Example 5 is not shown in this thesis. Figure 4.16 represents the simulation result of the

program shown in Figure 4.15. Similar to Example 4. the VHDL description shown in

Figure D.I is used to declare all the user-defincd data types for the open.tioo of the three·

dimensional alTaYS in Example 5. T1u'ec one-dimensional amty types are declared instead

of one lhree-dimcnsional array type.

...

-I
-.

fIll.:1JUJ J" ,-I r..iJULl -

.. 1SMAU._TEST:IiIIASSlGN_GlO8Al._F(O)(O:2:I

.. ISMAl...l..-TEST:IiIIASStGN_C lO8AL...F(lXG:2l

.. ISMAl...l..-TES1"3a'VAl.....CL.08Al.._F(O)(O:2)

.. ISMAU..-TEST:JeI\I'...l._GlO8AI....F(IXO:2)

.. ISMAU._TEST..ASSlGfIl_GlOBAi._E(Q)(O:2)

.. ISMAU...-TEST3IIIASSlGN_C lO8AL._E(IKG:2)

.. ISMAll...-TEST:JeI\I'Al.._G lO8AL._EtOl(Q:2)

.. ISMAI...l.."..TEST:JeI\I'Al.._G lO8AL....E(lI(O:2)

ISMAU...-TEST3IIIASSEAT_Gt.08AI._O

:=~:==:=~::: F~~=~=,~~~~~=
.. ISMAu.....TEST3IIASSERT_GlOBAl.._8COXO:2J

.. 1SMAU._TEST3IIIASSEAT_GlO8Al...8C1J(O:2)

.. ISMAU......TEST3IIASSEAT_G~OXO:2)

.. ISMAU.....TEST3IIASSeRT_ClO8Al_A(ll(O:2) I;====::j:::=====.. ISMAu.....TEST3&'GlOBAl.._F<Ol(O:2) 0 i

.. ISMAll_TEST3IIGlO8Al.._F<IJ(O:2)

.. ISMAU......TEST3&'Gt.08Al..-EIO)(O:2)

.. fSMAU._TES"f»Gl.ClBAL..E(lX0:21

ISMAl..L...TEST3&'GL08Al.J)

.. ISMAL.l.-TES"f»Gl.08Al.._ce:OJ(Q:2)

.. ISMAl..l_TEST»'Gl.Cl8AL.-C(lJ{O:2)

.. ISMAl..L...TEST3a'GlOBAl_8(O)(0:2)

.. ISMAU....TES"f»Gl.08Al.._8IfJ(0:2)

.. JSMAU...TEST3&'GLOBAI....-A(O)(O:2)

.. ISMAU._TEST':JM>l.08Al......A(lI(O:2)

JSMAU...TEST3&'G1"IOlJM)

ISMAt..L.-TEST3IIO_1NPUT

ISMAU....TEST3a'Cl.OCK

""'AU..""""",,""

l.:1.2/_t/projec:t·/y.1nv/Cad./.....1.0. 5/laLnlX/.yaop.ya/-.u.....ftftl•.co"9~.21
./12/1". 15:15:2. Paq-e 1,1 o~ 1,1

Figure 4.14: The Simulation Result orthe SMALL Program Shown in Fiaure 4.13

"

par

global signal a
global signal b
gloool signal c
global signal d
glooal register

c ! a plus b
d ! a uplus b

"

array 2 of array 2 of array 2 of bool
array 2 of array 2 of array 2 of bool
array 2 of array 2 of array 2 of bool
array 2 of array 2 of array 3 of bool

array 2 of array 2 of array 3 of bool

global signal a array 2 of array 2 of array 2 of bool
global signal b array 2 of array 2 of array 2 of bool
global signal c : array 2 of array 2 of array 2 of bool

a(OI [0) 3 as 2 bits
b[OI [0) ! 3 as 2 bits

rap

Figun:4.1S: The SMALL Program for Example S

Esample 6: The SMALL Program In P.nem M.tebiDI

This example SMALL program. as shown in Figure 4.17. is applied to a simple

pattern matching problem. In the example. a 1 by 3 image and a 1 by 2 pattern are used

for simulation. The problem size is quile small because of limitations in the current

...mien oftbe SMALL language, discussed in Chapter S. The VHDL descriptions for the

nellist circuit and for the test bench of Example 6 are shown in Figure £.1 and in Figure

E.2 of Appendix E. respectively. Figure 4.18 represents the simulation result of Example

6. The image named GLOBAL_lMAGE(O:2) is chosen as [0. I, OJ and three kinds of

..

.. iSMALl.,..TES'T31IASSE>tT-'JLOBAL_OlO)(Ol(02)

.. ISMALl.,..TES'T37/ASSSlT_GLOBAL_C(O)(I)(021

.. !SPolAu._:rES'T3l1ASSEAT_GL~O(I)(O)(O·2)

:~~::;::::~:~=~::::~ F-~--"';'~--~--l

:::~~::;:::;~:~==:~::::: F======~====9
:::~~:::~::::~~:~=~:;:;~:·1': F-----~-=-~9
.. JSMALL"...TEST37IASSERT_GLOBAL_8(OX1lIO 11

.. ISMAL~TEST37lASSERT_GLC6AI.,....e:l)(Ol(O·'1

.. JSMAL~TEST3l1ASSEAT_GLOBAL_eel)(11('0:11

.. JSMALL,..TEST3l1ASSEAT_~A(0)(0}{Cl1

.. ISMALL...TEST31lASSERT_GLOBAL_A(CI)(1j<01)

.. ISMAL~TeST31IASSEAT_GLOBAL_A(1)(Ol(O11

.. ISMALt,..TEST37IASSERT_GL08Al.,..All1PllO 11 F.J====:;c:====1

.. J'SMALt,..TEST37JGl.OBo"<l.....O(O)(O)(02) ~

.. ISMALt,..TEST37JGL06l\.L,..0(0)(ll(021

.. iSMALL"...TEST37JGLO&\L_0(1)(C)(C2)

.. JSMALL"...TEST37JGLO&\L,..0(1)(11(ll21

.. iSMALL"...TEST37JGLc:6AL....C(O)(C)(C·l)

.. >SMALt,..TEST37JGLOBAt,..Q(O)(lXO_I)

.. iSMALt,..TEST37JGL09AL....C(1)lOj(O:11

.. iSMALt,..TEST37JGLO&\L....C{1l(1IlO·,1

.. iSMALL"...TEST37.<iL06AL....8(Ol{Ol(O 11

.. ISMALt,..TEST37JGl.08o'U.-8(Ol(lXO.l)

.. ISMALL....TEST37JGL.O&\L..8(1l(OXO 11

.. ISMALL,..TE5T37,oOL08"l,..8(1l('J(0 11

.. JSMALL"...TEST37IGl.08o'U.-A(O'l(Ol(O')

.. ISMALL"...TEST37/GLO&\l....A(ll)(1)(O.11

L81.2/mit/pEOj~/y.t..n9/cad./IIo• .t..O. S/X:Z:L:Z:IQl:/~op.,..I.-u._TU'l':n.COU9.~.1!

S/12/1"' 1':34:47 1.1 or 2,1

11

.. ISOotAl-l...-TEST37IGlO8JU..,..A(OI('I(O.II

.. 1SMAt.l...-TEST37/GlC1BAL..)lo('l(CII(O'1

.. 1SMAt.l...-TEST371Gt.C1BAL..)Io(1)('I(O II

1SMAt.l...-TEST37IGRCUNCl

I'SMAU-.-TEST371O_'NPUT

1SMAt.l...-TESTa71O..OCk

ISfoolALl...-TES"a7If>OWER

~.U/_/...'._.lyuo.,/Clw£I_.£..O.S/Jt:D.DIX/~/-.s....ftan"7.•--..•. 1~
5/1.2/1... 1..::s.-:." 2,1. .e 2.1

Figure 4.16: The Simulation Result of the SMALL Program Shown in Figure 4.15

u

patterns are lesled.ln Figure 4.18. when the pattern named GlOBAL_PATTERN(O:I)

is [I. I), the test result named GlOBALJ0UNO(D:I) is (0. OJ. This means the panern

is nol found. When the panern named GlOBAL_PATTERN(O:l) is (0. I), the lesl result

named GLOBALJOUND(O:I) is [I. OJ. This means the pattern is found allocation O.

\\-'hen the panern named GlOBAL]ArrERN(O:I) is (I. 0), the test resull named

GLOBALJOUND(O: I) is [D. I]. This means the pattern is found at localion I.

global Signal image; array 3 of bool
global signal polle". array 2 of bool
global signal found: array 2 of bool
global signal go : bool
global signal done : bool

par

while true do

while not go do skip od

pa ~ flSeqUertliai scan:h at location O.

if poltern[D] ...- image{O]

then tick

if pattern [1] -- image fl]

then fouml[O] ! t.rue

fi

fi

r I !/Sequential sean:h at location I.

if paltern(O] -- image (1]

t.hen tick

s.

if patlern(IJ ,.,. image[2J
then found[11 ! true
fi

fi

done ! true

od

I I Iltest code goes here.

repeat
image! [0, 1, 01
pattern ! [1, 11
go! true

until done

tick

repeat
image! [0, 1, OJ
pattern! [0, IJ
go! true

until done

tick

repeat
image! [0, 1, 01
pattern! [1, OJ
go! true

until done

tick

rap

Figure 4.17: The SMALL Program Used in Pattern Matching

..

.'SMI'ou.,.T£Sfll&rASSEI'IT_CJl.OBAI.....OCWE

.'5Mo\u.....

T

EST'M'ASSEftT_Ql.OB.o'l..-GO ~~~~~;E~~~~~... ISMo\u..TEST....ASSERT_G~IMo'oQEl021

... ISM.'LJ..TE5T'8llIAS&ERT"_QI.OBI'oI.....FOUNO(O II

... 1SMo'u".t"ESfllIlIASS£A'T_GI.OSM...)·...TTEl'IN(O-'l

ISMALl,..TESTMIGlOBlllL....OCll'lE

ISMALL".TESTe6IO_'NPtIT

15_u.....TEsreetGl..08I'l..-GO

T JSM,O,Ll,..TESTMlGL06Al..FOUNO(C 11

[ISMo\lI....TESTS'GlOBAl...FOUNOtOl ~ '-,..,- _

fSMAU.....TESTM'GLOBAL..,.FOUNOt')

ISMo\Ll..TESfMGlO8oo'l....p...TTI"RiNjO ')

:::;=::~::=~ r-1==fI'--------
fSMAu...,n:ST'B6Gl.C8IloL_lWoQE(02I

tSMALl._T'ESTIWOI..OB.o\L..""'-"'GElOI

fSMAl..L..TUT-..oLCl8l'l...lM,oIIQEl;I'

ISMAU....TESTSSfGl.Cl8oAl.-
'
MAOEl2)

/SMALl....TESTl\M:iAOUNO

/S_Ll....TEST~M:LOO<

ISMAlL".TESTlll!iPO¥tER

l.1.2/-.nt./p_~/r'i.A9'/c.d.'-.UO.5/xn.lIDl:/8yaop~./~_~".cou.,.c_21

11/12/1... 17:2.:2. ...,. 1,1 o~ 1.1

Figure 4.18: The Simulation Result of the SMALL Program Shown in Fipre 4.17

The atxwe examples arc simple applications of the SMAlL language. After the

SMALL language enhancements and the Netlist Generalor improlOements. the SMALL

language \loill be '4idely used in many applications.

4.3 Gate-Level Synthesis

The Synopsys FPGA Compiler is used for the gate-level synthesis. The synthesised

gate-Ie\lel design will be saved as an .sxnf file !hat is imponed into the Design Manager

of the Xilinx Alliance Series version 1.4 for place and route. Figure 4.19 and Figure 4.20

represent the synthesis results of the SMALL programs sho\loTl in Figure 3.1 and in Figure

2.1_ respectively. In Figure 4.19. the circuit for a parity generator consists of ~"Clve [)..

lypC flip-flops and other" simple gates. In Figure 4.20. the circuit for a sequenlia!

muhiplier is more complicated and can not be clearly seen because it is composed of

hundreds of gates and tens of O·type flip-flops.

4.4 Hardware Implementation with FPGA

The Design Manager of the Xjlin:c Alliance Series version 1.4 is used lO creale

configunuion data for Xilinx. FPGA chips. A Xilinx XC4028EX·3·PCr299 FPGA is

chosen as the target device. The SMALL pros:nm for a sequential multiplier is

implemenled with the above FPGA. 1be implementation process is composed of

translating the design netlisl, mapping the logic to CLBs, assigning all logic blocks 10

specific locations and inlercoMcct clements on a die, and creating a configuration file

that is used 10 PfOKnUD the FPGA.

92

Figure 4.19: The Synthesis Result of the SMALL Program Shown in Figure 3.1

93

Figure 4.20: The Synthesis Result of the SMALL Program Shown in Figure 2.1

94

For the design named SMAlL_OUTl6. which is the suuelUJal VHDL output

description of a sequential multiplier. the pre-placement and routing Synopsys area and

timing reportS show the following information:

Xilinx FPGA Design Statistics

FG Function Generator5: 437
H Function GencratOr5: 0
Number ofeLB «115: 46S
Number of Hard Macros and

OtMrCells:
NumberofCLBs in

Other Cells: 0
Total NwnberofCLBs: 465

Number ofPoru: 48
Number of Clock Pads: I
Number ofIOBs: 47

Number of Flip Flops: 29
Numberof3-State Buffers: 0

Total NwnberofCells: 513

The post-layout timing !'Cpon file includes the following design infonnation:

Design swistics:

Minimum period: 107.893ns (Maximum frequency: 9.268MHz)
Maximwnnctdelay: 91.20Sns

"

Chapter 5

Conclusions

Hardware compilation is a lecl:nique thaI allows the hard~ design to be

implemented by a purely software prtll:css. This approach is attracting increasin& intef'eSt

since it provides the designer the flexibility of introducing design changes and

improvements. after implementation. when an FPGA chip is used. This thesis has

presented the Nellist Generator and hardware implementation of a novel hardware

description language SMALL ft has described the entire process for compiling the

SMALL program into a Field-Programmable Gate Array.

The input to the Netlist Gcneraaoris a par.1Jlcl ASM chartofa SMALL program. It is

obtained from the SMALL program by a front-end that bas been implemented by

Norvell. The output of the Ndlist Generator is a struetunJ VHDL description. The

function of the Netlist Generator is to uansform the ASM chart to the suuctUJal VHDl

description that represents the circuit $lOre<! in the netlist.

The algorithm of the transformations from an ASM chart to a netJist is simple.

..

CWTenlly. the one-hot encoding IKhnique is applied. When new statement rorms are

added to the SMALL language. the nellist generation method described in this thesis is

not changed irthe statement is transronned into one orthe five kinds or nodes.

The netlist cruted by the Netlist Gener3tor is also very simple. Its components consist

or only D-type flip-flops and basic gates including two input and-gates. two input or­

gates, two input xor-gates, imreners and buffers..-'\ll D-type flip-Oops use the same clock

line. The detailed circuit stored in the netlist is provided in this thesis.

Using the Synopsys VHDL System Simulation. the VHDt description ror the netlist is

simulated with a test bench to verify the funclionality or the Nellist Generator. The

simulation results ror several SMALL programs show that the Nellisl Generator perfonns

the specified requirements ror all the statements and all the operators in the SMALL

language. For multi-dimensional arrays in the SMALL language. several one­

dimensional array types are declared instead or one multi..<fimensional array type. The

gate-level synthesis and the place-and-route with a spttific FPGA chip make designs

expressed in the SMALL language easily implemented using FPGAs.

The Xilinx XC4000 series FPGAs are chosen as the target technology or the

compilation process since these high-<:apac:ity programmable logic devices offer rapid

Pfototyping and implementation of digital systems with the low manufaclWing cost. An

alternate tKhnology could be used to implement the nedist created by the Netlist

Generator. It includes full custom designs, standard cell designs, gate array designs, and

ASICs, elc. VHDl is used ror the target language. The stl'UCnuaJ VHDl description

representing the resulting the circuit stored in the netlist is simulated to verify that the

Netlist Generator performs the specified requirement. It should be ooted that the

compiler's netlist is not: dependent on the target language.

One CUITent problem is that the SMALL compiler developed in Gofer in this thesis

needs too much space and too much time. In order to reduce the compiling time. a

compiled functiooaI language. Haskell, is recommended to implement the SMALL

compiler. Morco...er. the change of the type constructor Assoc in the util module from a

list of pairs to a balanced binary tree will save more compiling time and space.

Since the SMALL language is missing useful constJ'UctS such as modules and a

parallel 'for' construct.. only simple applications of the SMALL language are currently

implemented with FPGA chips. For a large and more complicated application. language

enhancements need 10 be carried out. For example. data typeS such as integer typeS.

tloating point types, enumerated typeS, and structures may be added to the cumnt data

types. In addition. computed array indices, more arithmetic operators, and more

statements, including a parallel 'for' statement. are also desirable. The Netlist Generator

""ill have some changes \loith the language enhancements. The compilation tedutiquc for

these extensions and a proofof the compilation scheme should be developed.

Some optimisation opportunities exist. For the netlist created by the Netlist Generator,

simplifying some gates will make the circuit more optimal and efficient. For example,

when one of two inputs ofan and-gate is false, the output of the and-gate is false so that a

false wire can be used to represent the and-pte. When implemetltina the SMALL

..

programs with FPGAs. the Synopsys FPGA Compiler provides die capabiliry to oplimise

die circuit fOf" area and speed.

The Netlisl Generator proposed in this lhesis perfonns the specified requirements for

the SMALL language. Its de"'e!opment and the hardwale implemenwion of the Sro.tALL

language have offerN a significant advance on the originaJ SMALL implementation. It is

belie\'ed that the SMALL language will be widely used in many areas in the furure

because of its simpliciry and simple semantics. especially after the SMALL language

enhancements and further improvements 10 the Netlist Generator.

..

REFERENCES

Airiau, R., Berge. J.-M.• and Olive. V. (1994). Circuit Synthesis with VHDL KJuwer
Academic Publishers., pp. 52-53.

Berry, G. (1995). The COflS"ucti~SeMtllllics ofPure hurd. Dr.lft Version 2.0.

Berry, G. and Gonthier, G. (1992). ~ The Esterel Synchronous Programming
Language: Design. Semantics, Implementation.· Science of Computer
Programming. 19:87-152.

Bird. R. (1998). Introduction 10 Functional Programming using Haskell. 2"" edition.
Prentice Hall Press.

Cunningham. H. C. (1995). "Noles on Funclional Programming "'1th Gofer. ~

Technical Report UMCIS-1995-01

Greaves. D. (1995)." The CSYN Venlog Compiler and Other Tools," Field­
Programmable Logic and ApplicatiotlS. eds. W. Moon: and W. luk. Springer.
pp. 198-207.

Gschwind. M., and Salapura, V. (1995). "A VHDL Design Methodology for FPGAs."
Field-Progro1NPl4bJe Logic and Applications. cds. W. Moore and W. Luk.
Springer. pp. 208·217.

Guo. S., and Luk, W. (1995). "Compiling Ruby into FPGAs. W Fidd.Pf'ogrammable.
Logic and Applications. cds. W. Moore and W. Luk. Springtt.

He. Jifeng. Page, 1., and Bowen, J. (199]). ~ Towards a Provably Correct Hardware
Implementation ofOccam.M Corre.ct Hculh.·af'e. Design and Vrf'ijication ,\lelhods.
eds. G. J. Milne, and L. Piette, Springcr.Verlag, pp. 214-22S.

Hebner, E. C. R., Norvell, T. 5., and Paige. R.. F. (1998). MHigh·Level Circwt Design.M
to be published in ACla In/o""miorL

Jagadeesan, L. J•• PUdlOl, C., and Olnhausen. J. E. (1995). "A Formal Approach 10
Reactive Systems Software: A Telecommunications Application in ESTEREL,M
Workshop on IndwtrioJ-Stre.nglh Formal Specijication Techniques, pp. 132·144.

Jones, M. P. (1991). "An InU'Oduction toGofer Version 2.20," Gofer Qn·Line
Document.

Jones. M. P. (1993). ~Gofer-FWEtiooal Programming EnvironmenL Version 2.28.~

Gofer On-line Document.

Jones. M. P. (1994). "The Implementation of the: Gofer Functional Programming
SYSIC~m•• Research Repon YALEUIDCSJRR·1030. Yale Urriversity. New Haven.
Connecticut. USA.

Lenk. J. D. (1972). Handbook 0/ Logic Circuits. Reslon Publishing Company, fne .•
Reston, Virginia. pp. 83-113.

Lipsen.. R.. Schaefer, C., and Ussery. C. (1989). VHDL: Hard-...·are Description and
Design. Kluwer Academic Publishers.

Martin. A. J. (1986). ~Compiling Communicating Processes into Drlay.lnsensitive
VlSJ Circuits•• Distributed Computing. pp.226-234.

Navabi. Z. (1993). VHDL: AI1O!ysis and Modellingof Digilal Systems. McGraw-Hili.
Inc.•

Naylor. 0 .. and Jones. S. (1997). VHDL: If logic Synthesis Approach, Chapman &.
Hall.

Norvell. T. S. (1996). SA,ULL Hard-...·are Description Language. unpublished.

Norvell. T. S. (1997), ~ SMALL: A Programmina language for State Machine
Design.~ Canadian Conference for Electrical and Computer Engineering.

Norvell. T. S. (1998). Specification. and' .mge List for the Nellist Genera/or.
unpublished.

Oldfield. J. V,. and Dorf. R. C. (1995). Field Programmable Gate ArrayS". John
Wieley &. Sons., IDe.• New York..

Ott, D. E.• and Wildcroner. T. 1. (1994). A ~s;gner's Guide to YHDL Synthuis.
Klu","-er Academic Publishers. pp. 47.50.

Page. I. (1996), ~Coostrueting Hardwarc-SofN,-are Syslem from a Single Dcscription.~

Journal 0/ VLSI Signal Processing, pp. 87-107,

Page, I., and Luk, W. (1991).· Compiling occam into Field-Programmable Gate
Arrays." Field-Programmable Gate Arrays. eds. W. Moore. and W. Luk.,
Abingdon EE &'CS Books, pp. 271-283.

Panerson. D. A. (1994). Computer Organisation cl Design: The Hart:bt'are/Software
'fifer/ace. Morgan Kaufmann Publishers. Inc.. San Francisco. California.
pp.184-194.

Rossen. L. (1990). ~Ruby Algebra. ~ lksigning Correct Circuits. eds. G. Jones. and M.
Sheeran. Springer-Verlag. pp. 297-314.

Thomas. D. E.. and Moorby, P. (1991). Th£ VerilogHard."..are Description L:Jnguage.
Kluwer Academic Publishers.

Thuau. G.. and Pilaud, D. (1990). "Using the Declarative Language LUSTRE fot
Circuit Verification,R DesigningCorrecrCirCUits. eds. G. Jones, and M. Sheeran.
Springer-Verlag, pp. 313-326.

Trimbcrger, S. (1994). RSRAM Programmable FPGAs. ~ Field.Programmoble
Gale Array Technology. eds. S.M. Trimbcrgtt. Kluwer Academic Publishers.
pp.15-90.

Wadler. P. (1995). ~Monads for Functional Propammine," AtA'anced Functional
Programming, cds. J. Jeuring and E. Meijer. Springer Verlag, LNCS 925.

Weber, S., Bloom B.• and Brown, G. (1992a). "Compiling Joy 10 Silicon." AtA'anced
Research in VLSI and Parallel Systems. cds. T. Knight. and 1. Savage. MIT
Press. pp. 79-98.

Weber. S.. Bloom B., and Brown,G. (I 992b). ~ Compiling Joy intO Silicon: An
Exercise in Applied StruetunJ Operational Semantics." SemantiCJ: Foundations
And Applications, Lectw'e NOleS in Computer Sci~ 666. cds J.W.de Bakker.
W.-P.de Roever, and Rozenberg, Springer-Verlag.

Wodtko. A. (1981). ~RT Languages in Goal-Qrienled CAD Algorithms. R

Hardware ~scription umguages. cds. R. W. Hanenstein, Elsevier Science
Publishers B. V. (North-Holland).

Xilinx. (1995). Synopsys (}{Sf) for FPG.~s lnlerfacefl'utorlal Guide.

Xilinx. (1997a). XC4000£ lDJd XC4000X Series Field Programmable Gate Arrays.

Xilinx. (l997b). ALLIANCE Series Software-Quick Start Guide.

102

Appendix A

The VHDL Descriptions Representing the
Nellist Circuit and the Test Bench for a
Sequential Multiplier

-File name: mult out.vhd
--Author: Ving Shen
-Data: Feb. 26.1999
-The following is a VHDl sowu file representing the circuits generated &om a
-SMALL program thai implemcnlS the multiplication of two 4-bit numbcn.

library IEEE:
llSe IEEE.std_logic_II64.all;

enliry SMALI.._OUT16 is
port (assign...,globaCp : in sldJogic_veclOr(O to 7);

val....alobal...p: in std_logic_vector(O 10 7);
assertJlobal_multiplicand : in std_logic_vector(O to 3);
asscrtJlobal_multiplic:r: in sld_logic_vector(O to 3);
assertJlobaUlone : in stdJogic;
assert...,8lobal...,go : in sid_logic;
d_input : in sldJogic;
clock: in std_logic;
power; in $Cd_logic;
ground ; in sUUogic;
global,J) : out sUUogic_ vector(O to 7);
global_multiplicand: OUI suUogic_vec:tor(O to J);
global_multiplier: out std_logic_vector(O to 3);
global_done: out stcUogic;
globaJ.....ao : out std_logic);

end SMALL_OUTJ6;

architecture Structure ofSMALL_OUT16 is

signal wire880. wire877, wird74, wire871, wirc868. wire865, wire862.
wire859. wire833. wireS3) , wire827. wire825, wire809, wire804.
wire799, wire795. wire793, wire777, wire77S, wire770. wire769,
wire766, wire764, wire762. wire760, wire7S9, wire7S8, wire7S7.

INire7S2.lNire7S0. wire748. wire746. wire744. wire742. wire740.
"ire738. "irc736. wire734. wire732. wire730, wire728. wire726.
"ire724. \OIite72Z. "ireno. wire718. "ire716. wire714. witc712.
wire71O. wire:708. wire706. y,ire705. y,ire704. y,ite70l.....ire698.
wire697. wire694. wire693, y,ire690. wire688, wire686. "ire684.
"ire683. wire682. wire681. wire676. wire674, wire672. wite670.
wire668. wire666. wire664. wire662, wire660. wite6S8. wire6S6.
wire654. wire652. wire650. wire648. wire646. wire644. wire643.
\loire642. wire64l. y,ire640, wire639. wite632. v.ire631. y,ire630.
....ire629. wire628. wite627. wire620. wire619. wire618. wire617.
witc616. wire615. wire608. wire607, wire606. wite605. wire604.
\loire60l. "m596. wireS94. wireS92. wire590. wireS88. wire:586,
wireS84. wireS82. wireS80. wireS78, wireS76, wireS74, wireS72.
wire570. wireS68. wireS66. wireS64. wireS62. wire560. wireSS8.
"ire5S6. "ireS54. wireSS3. wireSS2. wireSSI. wireSSO. wireS49.
witcS48. wire:.547. y,ireS38.....ireS37. wires36. v.ireS3S. wireS34.
wire533. wire:526. wireS25. wire524. "ire523. wire.522. "ires21.
\loireSl4. wireS 12. wireS 10. y,ireS08, wireS06. wire504. wire50l.
wire502. "ireSOI. wire496. wire494, wite492. wire491. wire488.
wire487, wire484. wire482. wire48 I. wire478. wire477. wire474,
wire472. wire470. wire468. wire466. "ire464. wire463.....ite462.
\loire46l. wire4S6. "ire454. wire4S3. wire450. wire449. wire446.
"ire444. wire442. wire440. "ire438. wite436. wire434. wire432.
wire430. wire428. wire426, wire424. wite422. wire420. witc418.
wire417. wire414. wire412. wire410. wite408. wirc407. wire406.
wire40s. wire400. wire399.....ire396. wire394. wirc392. wire390.
wireJ88.....irel86. wire38s. ""irel82, wire381. wire380. wire379.
wire374. wirel73. wire370. wirel69. wire368. wire367. "irc362.
wire360. wirelS8. "ire3S6. wiIc354. "ire3S2. wirc3S0. wireJ48.
wire346.....irc344. wireJ43. wire342.....ire341, wirel40. wirell9.
wirc338, wire330. wire329, wire328. wirc327. wireJ26. wire32S.
wire324. wircJ16, wireJIS, wirc314. wirc313, wire312. wire311.
wire3lO. wireJ02. wire301. wirelOO, wire299, wire298, wire297.
wire296, wire288, wire287, wire286. wire28S, wire214. wirc28J.
"ire282. wirc274, wire273. wire272. wire271,ire270. wire269.
wirc26S. wire260, wire2S9. wire258. wire2s7, wire2S6, wire2SS.
wire2S4, wire246, wire24S. wire244, wirc243, wire242. wire241.
wire240, wire2J2, wire2ll. wire2l0. wire229, wire22S. wire221.
wire226, wire218. wire21'. wire216, wire2lS, wire214. wire21J,
wire212, wire201, wire200. wirel99, wire198, wirc191, wirel96.
wire195. wirelSl. wire182, ",ireISI, wire180. wirel79, wire I78.
wirel71. wirel6s, wirel64, wirel6l. wire162. wire161, wirel60.
wire159, wire I47, wirel46. wirel45, wirel44. wirel4l, wire142.
wire141. wire I29, win:128. wirel27, wire126, wire125, wire124.
wirel2l. wireili. witellO, wirel09, wirel08, wirc101, wirel06,

"ire lOS. "'ird3. wire92. wirc9l. wire90. wire89. wirc88.
wire87. wire7S. wire74. wire73. "'ire72. "'ire71. wire70.
"ire69. wireSS. wireSO. wire4S. "'ire40. wire33. wirc28.
\\ire13. "';rel8. wirel!. wire6. wire3, \loirel: sid_logic:

component ORl
port (II. 12 : in sldJogic; 01 : out stdJogic);

end component:

component AND2
port (11.12: in std_logic; 01: out stdJogic):

end componenl:

component XORl
port (II, 12: in std_logic: 01 : out stdJogic):

end component;

component aUF
port (II : in Sid_logic: 01 : OUI std_logic):

end component:

component tNVERTER
port (II : in std_1OSic; 01 : out stdJogic);

end component;

component DFllPFLOP
port (clock., 0: in sld_logil:: Q out std_logic);

end component:

begin

Device8S3: BUF port map (wire392, wirel);
DeviceS82: BUF port map (wire396. wire3):
Device88I: ORl port map (val-8lobalJl(4), wire880. wireI41);
Device879: ORl pen map (wireS86. wire744. wire880);
Device878: ORl port map (assian....&lobal...PC4). wire877. wireI42);
Deviee876: ORl pon. map (wireS82. wire740. wire877);
DeviceS7S: ORl port map (val-8lobal....P<S). wirc874. wireIS9);
Device873: ORl port map (wire588, wire746. wire874);
Dcvice8n: ORl pon map (assianJIobal...,P(S). wire871. wircl60);
Device870: ORl pon map (wireS82. wirc740. wire871);
Device869: ORl pon map (val..e1obalJl(6). wire868. wirel77);
Device867: ORl pon map (wircS90. wirc748. wire868);
Device866: ORl port map (assiiOJlobaJ...,P(6). wire86S. wireI78);
Device864: ORl pon map (wireS82. wire740. wirc86S);

'05

Device863: OR1 port map (val-Slobal....P(7). "",ire862, \\oireI9S);
Device861: OR1 port map (wire592. wire7S0. wire862);
DeviceS60: OR2 port map (assign....a1obalJl(7). "",ire8S9. wirel%);
De..iceS58: ORl port map (\loire582. wire740. \loire8S9);
Device857: BUF port map (wire724. wire212);
OeviceS56: BUF port map (....ire722. wire213):
Device85S: BUF port map (wire726. wire226):
Device854: BUf port map (wire722. wire221);
Device853: BUF port map (wirens. wire240);
Device852: BUF port map (wire722.....ire241):
Device851: BUF port map (wire730. Yoire2S4);
Device850: BUF port map (wire722. wire25S);
Device849: BUF port map (wire646, wire3s4):
DeviceS48: BUf port map (\loire648, wire3s6);
Device847: BUF port map (wire650. wire3s8):
Devic:eS46: BUf port map (....ire6S2. wire360);
Deviu845: BUF port map (wite654. wire362);
Dcvic:c844: BUF port map (wicc390. wire367);
DeviceS43: BUF port map (wire370, wird73):
Device842: BUF port map (wire394, wire379);
Device841: BUF port map (wire382. wire38s):
Device840: BUF port map (....irc410. \loire399);
Deviu839: BUF port map (wire414, wire40S);
DeviceS38: BUF port map (wire408, wirc410);
Device837: BUF port map (wire407, wire412);
DeviceS36: BUF port map (wire420, wire417);
Device83s: BUF port map (wire432, \loire420);
DeviceS34: ORl port map (pound, wire833. wire422);
Device832: OR2 port map (ground, wire831. \loire833);
DeviceS30: ORl port map (ground. ground. wireS31);
Device829: BUF port map (wire444, wire432);
Device828: OR2 port map (ground. wire827, wire434);
DeviceS26: OR2 port map (ground. wire82s. wire827);
Deviu824: ORl port map (growxl. ground. wird2S);
Device823: BUF port map (wire770, wire444);
DeviceS22: BUF port map (wire468. wire449);
Device82I : BUF pon map (wire466. wire4s3);
DeviceS20: BUF port map (wire470, wirc46 I):
Deviu8l9: BUF port map (wire464, ""ire466);
Deviu8l8: BUf pon map (wirc463. wirc468);
DeviceSl7: BUF port map (wire474. \loire410);
Device816: BUF port map (wires08, wire477);
DeviceSl5: BUF port map (wires06, wire48 I);
Dcvicc814: BUF port map (wires10, wiresOl);
Dcvice813: BUf port map (wire504, wirc5(6);

106

Device812: BUF pon map (wireS03, wireS08);
Device811: BUf pon map (\loire560. wireS 10);
Dc'Oice810; OR2 pan map (ground. wire809, \loireSI4);
Device808: OR2 pan. map (wireSI2. \loire5S4. wire809);
Dcvice807; BUF port map (\loireS74. wireS60);
Device806: BUF pon map (ground. wireS62);
Dcvice80S: OR2 pon map (ground. wire804, wircS64);
Dcvice803; OR2 pon map (wireS62, ground. wire804);
Device802: BUF pon map (\loireS82. \loireS74);
Dcvice801; BUF port map (....irc594. wireS82);
Dcvice800: OR2 pan. map (ground. wire799, wireS96);
Device798: ORl pon map (ground. ground. wire799);
Device797: BUF port map (wire686. wire6S6);
Dcvice796: OR2 port map (groWKI. wire79S. wire658);
Dcvice794: OR2 port map (ground. wire793. wire79S);
Dcvice792: OR2 poet map (growd. ground.. wire793);
Device79l: BUF port map (wire688. wirc668);
Device790: BUF poet map (wire690. wire681);
Device789: BUF port map (wire684. wire686);
Device788: BUF port map (wire683, wirc6B8);
Device787: BUF port map (wire710. wirc69J);
Dcvicc786: BUF port map (wire708. wire697);
Device78S: BUF port map (wire712. wire70J);
Dcvice784: BUF port map (wire706. wir(708);
Device78J: BUF port map (wire70S, wir(710);
Dcvice782: BUF port map (wire722. wire712);
Device781: BUF port map (wire732. wire72Z);
Dcvice780: BUF port map (wire740, wire7)2);
Dcvice779: BUF port map (wire7S2. wir(740);
Device778: OR2 port map (groWKI. wire777. wire742);
Dcvice776: OR2 port map (groWKI. wire77S. wire777);
Dcvice774: OR2 port map (groWKI. ground. wirc77S);
Dcvice773: BUF port map (wire766. wire757);
Dcvice772: BUF port map (wire760, wirc762):
Dcvicc77l: BUF port map (wirc7S9, wirc764);
Devicc768: INVERTER port map (wire769. wirc110);
Dcvicc761: DFLIPFLOP port map (clock, d_inpul, wir(769);
Devicc76S: OR2 port map (win:4S0. wire770, wire766);
Dcvicc7S6; AND2 port map (wire1S8, wire7S1. wire760);
Devicc7SS: AND2 port map (wiR751.power, wire7S9);
Devicc7S4: rNVERTER port map (power, wire7S8);
Devicc7S1: OR2 port map (wirc164, wirc698, wire7S2);
Dc:vicc749: AND2 port map (groWKI, wire140, wirc7SO);
Devicc747: AND2 port map (groWld, wire740, wire748);
Dcvicc74S: AND2 pon map (&round. wire140, wire146);

10'

Device74): AND2 pon map (ground. wire740. \\ire744):
Device737: AND2 pon map (ground. wire7J2. \\ire7J8):
Device735: AND2 pon map (ground. \\oire7J2. \~ire136):

Device133: ORl port map (ground.. ground. ""ire134):
Device729: AND2 pon map (",ire55. wire122. ",irenO);
Device721: AND2 pon map (wire50.....ire122. wire728);
Device725: AND2 port map (loloire4S. wire122. \\ire126);
Device723: AND2 pon map (wire40. wire122. wire724):
Device119: AND2 port map (wire33. wire712. wire720):
Device717: AND2 pon map (wire28. \\oire712. \\oire7l8):
Device115: Ai'lIl2 port map (wire23. ",ire712. wire7l6):
De..ice7t3: A..'l'D2 pon map (wireI8. wire712. \\oire7l4);
Device702: AND2 port map (Iololre704. wire103. wire706);
Device701: AND2 port map (wire703. wire6. wire70S);
Device700: fNVERTER port map (wire6. wire704);
Device696: DFLIPFLOP pon map (clock. wire697. \\ire(98);
Device692: DFLIPFLOP pon map (clock. wire693. wire(94);
Device689: ORl pon map (",ire694. wire482.....'ire690);
Device680: AND2 port map (wire682, wire681, wire684):
Device679: AND2 pon map (wire681, wire274, wire683);
Device678: INVERTER port map (l,I,ire274. wire682);
Device615: AND2 port map (wire668. wire260. wire676):
Device673: AND2 pon map (wire668. wire246. wire674);
Device611: AND2 pon map (wire668. wire232. wire672);
Device669: AND2 pon map (wire668, wire218. wire670):
Dcvice665: AND2 port map (wire6S6, ground. wire666):
Device663: A.ND2 port map (wire6S6. ground. wire664);
Dcvice66l: AND2 pon map (wire6S6. ground. wire662);
Device659: AND2 pon map (\\oire6S6. ground, wire660);
Device653: AND2 port map (wire594. wire644, wire6S4);
Device651 : AND2 pon map (wireS94, wire643, wire652):
Device649: AND2 pon map (wircS94, wire63 I. wire650):
Device647: AND2 pon map (wireS94. wire619. wire648);
Device645: AND2 port map (wireS94. wire607. wire6%);
Dcvice638: XORl port map (wire632. wire642. wire643);
Device637: XORl ponmap(wirdS2, wire201. wire642);
Device636: OR2 port map (wire639. wire64l. wire644);
Device635: OR1 port map (wire3S2. wire201. wire640);
Device634: AND2 pon map (wite632. wire64O. wire64I);
Device633: AND2 port map (wire3S2. wire201. wire639);
Device626: XORl port map (wire620.....ire630. wirc631);
Device625: XOR2 port map (wire350. wire183. wire630);
Device624: ORl pon map (wire627, wire629, wire632);
Device623: OR2 port map (wire3S0. wire183. wire628);
Dcvice6Z2: AND2 port map (wire620. wire628. wire629);

101

Dcvice621: AND2 port map (\\ire350. wire183. wire627):
Dcvice614: XOR2 port map (wire608. y,ire618. wire619):
Device6l3: XOR2 port map (wire348. \\ire165. wire618):
Device612: OR2 port map (wire6IS. wire617. wire620);
Devicc6ll; OR2 port map (wire348.....ircI6S. wire616);
Dcvice610: AND2 port map (wire608. wire616. wire6I7):
Device609: AND2 pon map (wireJ48•;reI65. wire6IS):
Dcvice602: XOR2 pon map (ground. wire606. wire607):
Dcvice60l: XOR2 pon map (wirc346. wire147......ire6(6):
Dcvice600: OR2 port map (wire60J. wire605. wire608):
Device599: OR2 pon map (wire346. wirc141. wire604);
Dcvice598: AND2 pon map (iround. wire604. wire6(5);
Device597: AN02 port map (wircJ46. \\irel47. \\ire60J):
Dcvice593: OR2 pon map (wire668. wire656. wire594);
Dcvice591: AN02 pon map (wire362. wire582. wire592):
Dcvice589: AND2 port map (wire360. wire582.....ire590):
Dcvice587: AN02 pon map (wire358. wireS82. wireS88):
Dcvice58S: M'D2 pon map (wire3S6, wire582. wire586);
Dcvice583: AN02 port map (wire354. wire582. wire584):
Dcvice579: AN02 pon map (wirel29. wire574. wire580):
Device577: AND2 port map (wirelil. wire574. wire578):
Device575: AN02 port map (wire93. wire574, wire576):
Device57I : AND2 pon map (ground. wire560. wire572):
Dcvice569: AND2 port map (wire3 t6. wireS60. wireS70)j
Dcvice567: AND2 pon map (wire302. wire560......ire568):
Dcvice565: AND2 port map (wire288. wire560. wire566);
[)evice557: AND2 port map (wire537. wire510. wireS58);
Dcvice5SS: AN02 pon map (wire525. wire510. wire556):
Device546: OR2 port map (wire552. wire553. wire554):
Device545: INVERTER port map (wire537. wire549):
Device544: INVERTER port map (ground. wire548);
Device543: INVERTER port map (....;re344. wircS47);
Device542: AND2 port map (wireS48. wireS47. \\ireS51);
Devicc541: AND2 port map (wire55 I. wireS37. wireSS3):
Device540: AND2 pon map (wire549. wire550. wireS52);
Device539: AND2 port map (ground. wire344. wireSSO);
DcviceS32: XORl port map (wire526. wire536. wireS37);
Device53I : XOR2 pon map (ground. wire344. wire536):
Dcvice530: OR2 port map (wire533. wire535. wireS38);
DeviceS29: OR2 port map (ground. wire344. witeS34);
DeviceS28: AND2 port map (wire526. wireS34. wireS3S):
Dcvice527: AND2 port map (ground. wire344. wireS33);
DeviceS20: XOR2 port map (ground. wire524. ~S2S):
DeviceS 19: XOR2 port map (power. wire330. ~524);
DeviceSl8: OR2 port map (wireS21. wireS23. wireS26);

109

DeviceS 17: OR2 pon map (power. wird30. wireS22);
Device516: AND2 port map (ground. ireS22. wireS2J):
DeviceS1S: A.'lD2 port map (power ireJ30. wire52!);
DeviceS!!: OR2 port map (ground. ground.....ireSI2);
DeviceSOO: AND2 port map (\\oi~S02.wireSOI. wire504);
Device499: AN02 port map (wire501. wire494. wire50J);
Device498; INVERTER port map (wire494. wireS02):
Device49S: OR2 pon map (wire484. ground. wire496);
Device493; AND2 pon map (\\oire492. wire488. wire494):
Device490: INVERTER port map (\\oire491. wire492);
Device489: XOR2 pon map (power. wire344. wire491);
Device486: lNVERTER pon map (wirc487. wiR488);
Device48S: XOR2 pon map (power. wiR330. \\oire487);
Device483: OR2 pon map (ground. ground. \\oire484);
Device480: DFLIPFLOP port map (clock, wire481. wire482):
Device476: DFLIPFLOP pon map (clock. wire477. wire478);
Device473: OR2 pon map (wire478. wire454. wire474):
Device471: AND2 port map (wire470. po.....er. wire472):
Device460: AND2 port map (wire462, wirc461. wire464):
Device459: AND2 pon map (wire461. wire456. wire463);
Device458: lNVERTER pon map (wire4S6. wire462);
Device4SS; INVERTER pon map (wire6. wire456);
Device4S2: DFllPFlOP pon map (clock, wire453. wire4S4);
Device448: DFLIPFLOP pon map (clock, wirc449. \\oire4S0):
Device44S: AND2 port map (wire444. power......ire446);
Device44!: AND2 port map (wire4J2. ground. wire442);
Device439: AND2 port map (wire432. ground. wire440);
Device437: AND2 port map (wire432. power. wire438);
Device4)5: AND2 port map (wire432. power. wire436);
Device429: AND2 port map (wire420. ground, wire430):
Device427: AND2 port map (wire:420. ground. wire428);
Device42S: AND2 port map (wire420, power. wire426);
Device423: AND2 port map (wire420. ground, wire424);
Device416: DFLIPFLOP port map (clock.. wire417. wire:418);
Device4l3: OR2 port map (wire418.....ire400. wire:414);
Device404: AND2 port map ('4ire406. wire40S. wire408);
Device4Q3: AND2 port map (wire:405. wirel1. wire407);
Device402: INVERTER port map (wire1!. wire406);
Device398: DFLIPFLOP port map (clock.. wire399. wire400):
De\ice39S: AND2 port map (wire394. power. wireJ96);
Device393: OR2 port map (wire762. wire386. wire394);
Device391: AND2 port map (wire390. power. wireJ92);
DeviceJ89: OR2 port map (wire412. win:374. wire390);
Device387: OR2 port map (wire381. wire369. wire388);
Dcvice384: DFLIPFLOP port map (dock, win:385. wireJ86);

Dc\'ice378: AND2 pen: map (wireJ80. wircJ79. wireJ82);
DcviceJ77: AND2 port map (wire379. wire 1. wireJ81):
DeviceJ76: INVERTER port map (wire!. wire380):
DcviceJ72: DFLIPFLOP port map (dock. wireJ73. wireJ74);
DeviceJ66: AN02 pon map (wireJ68, \\.ireJ67. wire370);
Device365: AND2 port map (wireJ67, wireJ, wire369);
Device364: INVERTER port map (wird, \\.ireJ68):
Device35!; ORl port map (wire676. wire666. wire352);
Dcvice349: OR2 port map (wire674. wire664. \l,ire350);
Device347: ORl port map (wire672. wire662. wireJ48):
Dcvice345: OR2 port map (wire670. wire660. wire346);
Device337: DFLIPFLOP port map (clock. wire343. wire344);
Device336: AN02 port map (wireJ42. wire344. wire34 I);
Device335: OR2 port map (wire34!. wire340. wire343):
Dcvice334: INVERTER port map (wi.re339, \l,ireJ42):
DcviceJ33: AND2 port map (wire339, wire3J8. wire340);
Device332: OR2 port map (wire732, wire51O, wire339):
DeviceJ31: OR2 port map (wire738, wireS58. wirc3J8);
Device323: DFliPFLOP port map (clock. wire329, wireJJO):
Device322: AND2 port map (wire328, wire3JO. wire327);
Device321: OR2 port map (wircJ27, wire326, wire329):
DeviceJ20; INVERTER pon map (wire325, \\.ire328):
Device319: AND2 port map (wire325, wire324. wire326);
DeviceJ18: OR2 port map (wire732, wire51O. wire325):
Device317: ORl port map (wire736. wire556. wire324);
DeviceJ09: DFliPFLOP pon map (clock. \\.ire31S. wireJ16);
DeviceJ08: AND2 port map (wire314. wire316. wire313):
DeviceJ07: OR2 port map (wire31J, wire312. wireJ 15):
Device306: INVERTER pon map (wire311, wire314):
Device305: AND2 port map (\\.ire3II, wire310. wire312);
DeviceJ04: ORl pon map (wire1l2. wire560. wire311);
Device303: ORl pon map (wire720, wire572, wire310);
Device295: DFLIPFLOP port map (clock.. wire301. wire302):
Device294: ANa2 port map (wireJOO, wire302. \\.ire299);
Device293: ORl port map (wire299, wire298, wire301):
Device292: INVERTER pon map (wire297. wire300):
Device291: ANa2 port map (wire291. wire296. wire298);
Device290: ORl port map (\\-ire712. wire560. wire291):
Device289: ORl pon map (wile7l8. wireS70, wire296):
Device28I : DFliPFLOP port map (clock.. wire287. wire288);
Device280: ANa2 port map (wire286. wire288. wire28S);
Device279: OR2 port map (wire285. wire284, wire281):
Device278: INVERTER pon map (wire283. wire286);
Device277: AN02 pon map (wire283. wire282. wire284);
Device276: ORl port map (wire712. wireS60. wire283);

Device27S: ORl port map ('ol.ire716. \\.ire568. \\.irc282);
Device267: DFLlPflOP pon map (clock. \\ire273. wirc2N):
Device266; AND2 pon map (wire2n. wire274. wire271);
Device265: ORl pon map (\\.ire271. wire270. wirc273);
Devicc264: INVERTER pon map (wirc269. wirc272):
Device263: AND2 pon map (wire269. \\.ire268. wire270):
Device262; OR2 port map (\\ire712. wire560. wire269):
Device26I: ORl pon map (wice714. wire566. 'ol.ire268);
Device25J: DFLlPflOP pon map (clock. wire2S9. wire260);
Device252: AND2 pon map (wire258. wire260. \\.ire257):
Device2SI: ORl pon map (wire2S7. \\ire256. wire2S9):
Device250: INVERTER pon map (wire2SS. wire258):
Device249: AND2 pon map (wire2S5. wire2S4. \\ire2S6);
Dcvice239: DFLIPFLOP pon map (clock. wire24S. wire246);
Device238: AND2 pon map (wire244. \\.ire246. wire243);
Device237: ORl pon map (wire24J. wire242. wire245);
Device2J6: INVERTER pon map (wire241. wire244);
Device23S: AND2 pon map (wire241. wire240. wire242);
Device22S: DFLIPFLOP pan map (clock. \\.ire2J I. \\.;re2J2):
Device224: AND2 pon map (\\;re230. wirc232. wire229);
Device223: OR2 port map (wire229. wire228. wirelJI):
Dcvice222: INVERTER pon map (wire227. wire230);
Device221 : AND2 pon map (wire227. wire226. wire228);
Device211: DFLIPFLOP pon map (clock. wire217. v.irc218):
Device210: AND2 pon map (wire216. wire218. wirc215):
Device209: ORl pon map (wire2lS. wire214. \\;relI7);
Device208: INVERTER pon map (wire213. wire216);
Qe\;ce207: AND2 port map (wire2IJ. v.;re212. \\.;re214):
Devicel94: BUF pon map (wire201. globalJ'{7»:
Device193: DFLIPFLOP pan map (clock. y,;re200. wire201):
Device 192: AND2 port map (wire!99,;re201. wire198);
Devicel91: ORl port map (wireI98. wirel97. wire200);
Devicel90: INVERTER pon map (wirel96, wirel99);
Device 189: AND2 port map (wire 196. wire 195, wire197);
Device176: BUF port map (wire! 13. globaJ""p(6»:
Devicel7S: DFLIPFLOP port map (clock. wire182. wirellJ):
Device174: AND2 port map (wire III. wirel8J. wircIIO);
Device173: ORl pon map (wilellO, wire179, \\.ireI82);
Deviceln: INVERTER port map (wire!78. \\-ireI81):
DeviccJ71: AND2 port map (wire178. \\-irel77, \\;rel79);
Devicel58: BUF pon map (v.mI65, global'-p<5»;
Devicel57: DFLIPFLOP pon map (clock. wire I64. wireI6S):
Device 156: AND2 pon map (wire163, wire 165. wire 162);
DevicelSS: ORl pon map (wireI62. wire161. wirel64);
DcvicelS4: INVERTER pon map (wirel60. wireI6J);

'"

Devicel53: AND2 port map (wirel60. wire1S9.....ireI61):
Devicel40: aUF port map (wirel47. globalJ{4»;
Dc:vicel39: DFLIPFLOP port map (clock. wirel46. wireI47):
Dc:vicel38: AND2 port map (wirel45. wire 147. wireJ44):
Device 137: OR2 pon map (wirel44. wire143. wirel46);
Devicel36: rNVERTER port map (....ire142.....ireI4S);
Device 135: AND2 port map (wire142. wirel4!. wireI4J);
Devicel22: BUF port map (wireI29. globaJ....p<3»;
Devicel21: DFLIPFLOP port map (clock, wire128. wireI29):
Device120: AND2 port map(wire127. wire129. wireI26);
Devicel19: OR2 port map (wireI26. wirel25, wireI28):
Devicel18: rNVERTERport map (wire124. wireI27);
Devicel 17: AND2 port map (wire124, ",ireI23. wireI2S):
Dc:viceI16: OR2 pon map (wireS82, assignJlobalJl{J). wireI24):
Devicell5: OR2 pon map (wireS84. vaI.....&lobaJJl(3). wireI23);
Dc:vicel04: BUF pon map (wireili. globaJJl(2»;
Devicel03: DFLIPFLOP pon map (clock, wirellO. wirelll);
Devicel02: AND2 pon map (wirel09. wireili. wireI08):
Dc:vicelOl: OR2 pon map (wire108. wirel07. wire I 10);
DevicelOO: rNVERTERpon map (wirel06. wire 109);
Device99: AND2 ponmap (wirel06, wireIOS. wireI07);
Device98: OR2 port map (.....ittS74. assign.....&loba.lJl(2). wirel06);
Device97: ORl pan map (wireS80, valJlobal..Jl{2), wire lOS);
Device86: aUF pon map (",ire93. g1obal.Jl{I»;
DeviceS5: DFUPFLOP port map (clock, wire92. wire93);
Device84: AND2 port map (wire91, wire93, wire90);
DeviceS3: OR2 pon map (wire90, wireS9, wire92):
Device82: INVERTER pon map (wireSS. wire9l);
DeviceS I : AND2 port map (wire88. wire87. wire89):
DevicdO: ORl port map (wireS74, assign.....&lobal...P<l). wireS8);
Device79: OR2 port map (wireS78. valJlobaIJl(I).....ire87):
Device68: aUF pon map (",ire7S. global.Jl{O»;
Device67: DFUPFLOP port map (clock, wire74. wire7S):
Device66: AND2 port map (wire73, wire7S, wire72);
Device6S: OR2 port map (wire72. wire7l. wire74);
Device64: INVERTER pon map (wire70. wire73);
Device63: AND2 port map (wire70. wire69. wire71);
Device62: ORl port map (wireS74, assign.....aJobal..,P(O)......ire70);
Dcvicc6l: OR2 port map (wire576. valJlobaJJl{O).....ire69):
DeviceS7: BUF pon map (wire55. global_multiplicand(J»:
Device53: ORl pon map (wire430, assert....BlobaI_multiplicand(J). wireSS);
Device52: BUF pon map (wireSO. global_multiplicand(2»;
Devic:e48: OR2 pon map (wire428. a.sscrt.,ilobatmultiplicand(2). wireSO):
Device47: BUF port map (wire4S. global_multiplic:and(I»;
Devic:e43: OR2 port map (wire426, assertJlobal_rnultiplicand(l). wire4S);

Device42: aUF port map (wire40. gJobal_muhiplicand(O»:
Devicd8: ORl port map (wi~24. asscTt...,llobal_multiplicand(O). \l,ire40);
DevicdS: BUF port map (wird3. global_multiplier(3»;
Device3l: ORl port map (wire442. assertJlobaJ_multiplier(3). \\-'itcH);
DeviceJO: BUF port map (wire28. global_multiplier(2»;
Device26: ORl port map (wire440. assert....alobal_multiplier(2). wire!8);
Device2S: BUF port map (wire23. global_multiplier(I»;
Device21: ORl port map (wire438, assert-Blobal_multiplier(I). wireZ3);
Device20: aUF port map (wireI8, global_multiplier(O»;
Device16: ORl port map (wire436. assen...,global_multiplier(O). \l,ireI8):
Devicel3: BUF port map (wirell, alobal_dooe);
Device9: ORl port map (\Iooirc472. asscrt...,llobal_done, \',-irell);
DeviceS: aUF port map (\',-ire6. globalJo);
Device4: ORl port map (wire446. assertJlobal....Jo. wire6):

end Stnx:ture:

Figure A.I: The Structural VHDL Output Description fOfa Sequential Multiplier

-File name: mult !eSt.vhd
-Author: Ying Sben
-Data: Feb. 26.1999
_.The following is a VHDL description of the test bench that is used to tesl the cireuit
--described in Figure A.I

library IEEE;
use IEEE.stdJoaic_II64.all;

entity SMALL_TESTI6 is
end SMALL_TESTl6;

architecture TESTI6 ofSMALL_TESTI6 is

component SMALL_OUTI6
port(assignJlobal...,p: in std._logic_vector{O to 7);

val....i1obal...,p: insuUogic_vector{O to 7);
assert.....slobal_multiplicand : in s«Uogic_vector(O to 3);
assertJlobal_multiplier : in std_logic_vector(O to 3);
assertJlobal_done : in std._logic;
assert...,llobal....Jo : in std._Josie;

'"

d_input: in stdJogic:
dock: in sldJogic;
power: in sldJogic;
ground; in std_logic:
global"p: out std_loaic_v«tor(O 10 7):
global_multiplicand; out stdJogic_,.cctor(O to 3);
global_multiplier; OUI std_logic_VCCIOr(O 10 3):
global_done: out sid_logic;
g[obal......i0: out std_logic);

end component;

signal assignJlobal...,p: sKUogic_vc:c::tor(O to 7):- ~OOOOOOOO~:

signal valJlobaI""p: std_logic_vC:C::lor(O to 7) :- ~()()()()()()()(~;

signal as.sertJlobal_multiplicand: stdJogic_vector(O 10 3):"'" ~OOOON;

signal as.sertJlobal_multiplier: sldJogic_VCCIOr(O 10 l):- ~OOOO~;

signal assertJlobal_done : Sld_locic ;- '0';
signal assertJiobalJo : stdJogic :- '0';
signal global_multiplicand. global_multiplier: std_logic_vcctor(O 10 l);
signal global...,p; stdJogic_vcctor(O 10 7);
signal ground: std_logic ;- '0':
signal global_done. global-fl,o. d_input: std_logic:
signal clock; sldJogic :- '0';
signal power: suUogic :5 '1';
begin

AA I: SMALl_OUTI6 port map (usignJ10bal...p. valJlobal...,p.
assenJlobal_multiplicand. assenJlobal_multiplier. assenJlobal_done.
assenJlobalJo. d_input. clock. power. ground.. global...p. global_multiplicand .
global_multiplier. global_done. globalJo);
clock <- not clock mel" 10 ns;
d input <='U'. power aJkr 5 ns;
~d TESTl6;
configuration conCSMALL_16 ofSMALl_TESTl6 is
forTESTl6
end for;

end conCSMALl_16;

Figure A.2: The VHDl Description of the Test Bench for a Sequential Multiplier

'IS

Appendix B

The VHDL Descriptions Representing the
Netlist Circuit and the Test Bench for a
Serial Adder

··File: name: adder out.vhd
--Author: Vine Shin
--Data: Feb. 26.1999
-The following is a suucnual VHDL description created by the netlist generator for
-the serial adder in Figwe4.11.

libral)' IEEE:
use IEEE.std_logic_II64.all;

entity SMALL DUH is
port (asscn-ii~bal_x : in stdJogic;

asscrtJlobal_c : in std_logic;
assign.....8lobal_d : in std_logic;
...al.....8lobaJ_d : in stdJogic;
assign.....8loba1_c: in std_logic;
valJlobal_c ; in s«Uogic;
assen.....8lobal_b: in std_logic;
asscnJ;lobaJ_a : in std_logtc;
d_inpul : in std_logic;
clock; in std_logic:
power: in std_'oaic;
ground: in std_logic;
globaJ_x: out stdJOIic;
glob&!_e : out std_Josie;
g1obal_d: out std_Iogic;
global_c : out steUoiic;
global_b: out std_logic;
g!obal_a: out suUogic);

end SMALL_OUT4;

architecture Structure ofSMALL_OUT4 is

116

signal wirel33. \\mIJl. wire 129. wire127. \vireI25. wirel2J. wire Ill.
wire121. wire120.....irellS. wircll3. wirell!. wirel09. wirel07.
....mIOS. wire103. wirelOI. \\ire99. wire97......if'e9S. wire93.
wire91. wireS9. wireS7.....ire8S. wild3.....irellire79.
wire77. wire7S. wire74. wire7!. v.ire69. \\ire67. \\ire6S•
....ire64.....ire61. wireS9. wireS!. '-l.ire5J. \\ire48. wire42.
....ire4I.~. wird9. wire38. wireJ7.....ireJ6......ire24.
wireZ). \\m22. wire21. wire20. wirel9. wird8. wire7. \\ire2: stdJogic:

component OR2
port (rl.12 : instd_logic: 01: OUt std_logic):

end component;

component AND2
port (11.12: in std_logic; 01 : out std_logic);

end comporttllt;

component XOR2
port (II. 12 : in sUUogic: 01 : out std_logic);

end component;

component BUF
port(11 :instd_logic;OI : out std_logic);

end component;

component [NVERTER
port (II : in std_logic: 01 : out sid_logic);

end component:

componenl DFLlPFLOP
port (clock., D: in stdJogic: Q oul SId_logic):

end component;

begin

Devicel43: BUF port map (assettJlobal_a.ircZ);
Devicel42: BUF pan map (asstrtJlobal_b. wire7);
Devicel41: BUFponmap (wire6l. wireS8);
Devicel40: BUF port map (wire1l. wire61);
Device:139: BUF pan map (wire8l. wire71);
Device 1)8: BUF port map (wircIOS, wire81);
Devicel)7: BUF pon map (wireI27. wirel0S);
Device 136: BUF pon map (wire129, wiJ'e120);
Devicel35: BUF pon map (wire123. wiJ'cI2S);
Devicel34: BUF pon map (wire I22. wircI27);

Device13I: fNVERTERport map (wire1J2. wireI33):
Device I30: DFUPFlOP pon map (clock. d_inpul. wire I32):
Devicel28: ORl pon map (wireD3. ~ireS9. wireI29);
Devicell9: AND2 port map (wire121. wire 120. wird 23);
Device 118: AND2 ponmap ("ireI20. power. wireI22):
De\"icelI7: lNVERTERport map (pown. wireI21):
Devicel14: AN02 port map (wireIOS. wire I I I. wire I IS);
Device112: ORl port map (ground. wircl09. "ireI13);
DevicellO: XOR2 pon map (wire24. wire107. ",irelll):
Devicel08: ORl pon map (ground. ground. wirel09):
Devicel06: XOR2 pon map (wire7, wire2. wireI07);
Devicel02: AN02 pon map (wire99. wireSI. wild OJ);
OevicelOO: ORl pon map (v,ire97. wire9J. wireIOI):
Device98: ORl port map (wire9S. wire9l. wire99);
Device96: ORl port map (ground. ground, "ire97);
Oevice94: AND2 port map (wire24. wire7. wire9S):
Device92: ORl port map (wire89. wirdS, wire9J);
Oevice90: ORl pon map (wire87. wire83, wire9I);
Dcvice88: ORl pon map (ground. ground. wire89);
Ocvice86: AND2 port map (wire24. wire2. wire87);
Device84: ORl pon map (ground. ground, wire8S);
Ocvice82: AND2 port map (wire7. wire2. wire8J);
Ocvice78: AND2 port map (wire7S. wire71, wire79);
Oevice76: ORl pon map (&round. ground, wire77);
Oevice7J: ORl port map (wire7. wire74. wire1S);
Device72: INVERTER port map (wire2. wire14);
Device68: AND2 port map (wire6l. wirdiS. wire69);
Oevice66: ORl pon map (ground. ground. wire61);
Device63: ORl pon map (wire2. wire64. wirdiS);
Device62: INVERTER port map (wire1.....ire64);
DeviceS7: DFLlPFlOP port map (clock, wireS8. wireS9);
DeviceS5: BUF port map (wireS3. global_x):
DeviceSI: ORl port map (wireIIS. assert....llobal_x. wireS3);
DeviceSO: BUF port map(~8. 8Iobal_e);
Oevice46: ORl pon map (wire69. assert....i1obal_e. wire48);
Device35: BUF port map(~2. global_d);
Device34: DFLlPFlOP port map (clock, wire4l. wire42):
DeviceJJ: AND2 port map (wire40. wire42. wire39);
DeviceJ2: ORl port map (wire39. wire38. wire41);
DeviceJl: INVERTER port map (wireJ7, wire40);
DeviceJO: AND2 port map (wire31. wire36. wire38);
Device29: ORl port map (wire71. assiP....i1obal_d, wire37);
Device28: ORl pon map (wire79. val....i1obaCd. wire36);
Device11: BUF port map (wire24. global_c);
Devicel6: DFLIPFLOP port map (clock. wire23. wire24);

OI'

Devicel5; AND2 PO" map (\\oire22. wird4. wire21);
Device 14: OR1 PO" map (\\oire21, wire20, wire2J);
Devicel3: INVERTER po" map (wire 19. wire22);
Devicel2: AND2 PO" map (wirel9. "'ire IS, wi~20);
Devicell: OR2 po" map (wireSI. a5signJlobal_c. wireI9);
Device10; OR2 PO" map (wireIOJ. valJlobal_c, wireIS);
Devicc9: BUf port map (wire7, global b);
Device4; BUf PO" map (wire2. globa(a);

endSttuerure;

Figure B.I: The Structural VHDLOutput Description fora Serial Adder

--File name: adder tesl.vhd
--Author. Ving S~n
-Data: Feb. 26.1999
-The following is a VHDL description of the test bench that is used to test the circuit
--described in Figure B.l

libmylEEE;
use IEEE.suUogic_II64.all:

entity SMALL_TEST4 is
end SMALL_TEST4;

architecrure TEST4 ofSMALL_TEST4 is

component SMALL_OUT4
pon (assert...,global_x; in std_logic;

assenJlobal_e: in stdJogic;
assignJlobal_d : in std_logic;
val...,global_d: in steUogic;
assign....a1obal_c: in std_logic;
valJlobal_c : in std_logic;
assert.....alobal_b: in std_logic;
asseM......a1obal_a: in std_logic;
d_input ; in std_logic;
dock; in stdJogic;
power: in sui_logic;
ground: in std_logic;

global_x: out sid_logic:
global_e : out std_logic;
global_d : oUI std_logic;
global_c: out SId_logic:
global_b : out SId_logic;
global_a: out sid_logic);

end componenl;

signal assign-Slobal_c, val-Slobal_c: sid_logic :- '0';
signal assign-slobal_d. val...,global_d: sid_logic :- '0';
signal assen...,global_x: sldJogic:- '0';
signal as.sen--&Iobal_e: std_logic:- '0';
signal assert--&Iobal_b. asset1--&!obaI_a. d_input: Sid_logic;
signal global_c. global_d. global_e. global_x, global_b. global_a Sid_logic;
signal ground: std_Iogic :- '0';
signal clock: std_logic:- 'I';
signal power: std_logic :- 'I';
begin

BAI: SMALL_OUT4 pon map (asscn--&!oba.UL assenJlobal_e. assignJIobaI_d.
val...,global_d. assignJlobal_c. valJlobal_c, assenJlobal_b.
assen-a1obal_a. d_input, clock, power, ground. global_x, global_c.
global_d, global_c. global_b, global_a};

clock <- nol dock after 10 ns:
d_input <- 'U'. power after 1005;
asset1Jlobal_a <- '0'. 'I' after 20 ns. 'O'after4O os. 'I' after 60 M.

'I' after 80 M. '0' after 100 05. 'I' after 12005:
assen...,global_b <- '1', '0' after 20 05, '0' after 40 05, '0' after 60 ns,

'1' after 80 ns. '0' after 100 05. 'I' after 120 ns:
end TEST4;
configuration conCSMALL_4 ofSMALL_TEST4 is
forTEST4
end for,

end conCSMALL_4;

Figure B.2: The VHDL I.>escription of the Test Bench for a Serial Adder

120

AppendixC

The VHDL Descriptions Representing the
Array Types and the Test Bench for the
Operations of Two-dimensional Arrays

-File name: paclcage4.vhd
-Author: Ving Shen
-DaJa: Feb. 26.1999
••The following is a VHDL description used for defining the types of ~'O-dimensionaJ
·-arrays in Example 4.

library IEEE;
use IEEE.std_logic_II64.a1l:

package P is

type: A236 is array (0 to 2) ofstd_logic:
type 8236 is array (0 to 1) of A236:
type A235 is atTay (0 to 2) ofstd_logic:
type 8235 is array (0 to I) of A23S;
type: A234 is array (0 to 2) ofs«Uogie;
type 8234 is array (0 to I) of A234;
type: AI19 is array (0 to 2)ofs«Uogic:
type 8119 is array (010 ()or A119;
type AilS is array (0 to 2)ofstd_logic;
type BI18 is array (010 I)of AI 18:
type AI17 is anay (0 10 2) ofSId_logic:
type BIl7 is array (010 norAll?;
type: A77 is array (0 to 2) of s«Uogie;
type 877 is array (0 to I) of An;
type A76 isanay (010 2) ofstd_logic;
type: 876 is array (0 to I) of A16;
type A41 is array (0 to 2) ofstd_logic;
typeB41 is array (010 l)ofA41;
type A40 is array (0 to 2) of5t(Uogic;
type B40 isanay (Oro I)of A40;

type AS array (0 to 2) of s«Uogic:
type BS ilmIy(O to I) of AS:
type A4 ilmIy (0 to 2) ofstdJogic:
type 84 array (0 to I) of A4:

endP:

Figure C.I: The VHDL Description for Data Types Used in Example 4

··File name: example4_test.vhd
··Author: Ying Shen
--Data: Feb. 26.1999
-The following is a VHDl description of the test bencb used in Example 4.

library IEEE;
use IEEE.std_logic_II64.a1I;
use WORKP.a1i;

entity SMALL_TESn8 is
endSMALL_TEST38:

architecture TESTI8 ofSMALl_TEST38 is

component SMALL_OUIJ8
port (assign...,globalJ: in B235;

val.....&lobaIJ in 8234;
assign.....&lobal_e: in 8118;
val.....&lobal_e: in 8117;
as5ertJlobal_d: in std_logic;
assert.....BlobaJ_c: in 876;
assert.....8lobaJ_b: in 840;
assertJlobaI_a: in 84;
d_lnput: in s«Uogic;
clock: in std_logic;
power: in std_logic;
ground : in std_logic;
globalJ: out 8236;
global_e: out 8119;
global_d : out stdJogic;
global_c: out 877;

122

global b: out 841;
globa(a: out BS);

~nd component;

signal assignJlobalJ: B235:- rOOO~. ~OOO~);

signal valJlobalj: B234:-rOOO~.~OOO~);
signal assignJlobal_c : Bl1&;- rOOO". "000"):
signal valJlobal_c: BI17:-(~OOO"."000"):
-signal asscrtJlobaJ_d: BI12:-nl()()O~.~OIX)(n;

signal asscnJlobal_d : steUogic ;-- '0':
signal asscrt...,.g.lobal_c : 876:- n)OO~. ~OO(n;
signal asscnJlobaJ_b : B40 :- ("OOO~, ~OOO");

signal assenJlobal_a : 54 :- n)OO~. "000");
signal global r: 8236:
signal global-e: 8119:
signal global=d : stdJogic:
signal global_c : B77:
signal global b; 841:
signal globaCa : BS;

signal ground; std_logic ;- '0';
signal d_input ; Sid_logic;
signal clock; sldJogic :- '0';
signal power: std_logic :- '1';
begin

AAI: SMALL_OUTI8 pon map (assign..,globalj. valJlobaIj,
assignJlobal_e. valJlobal_c.

assert..,global_d.. assenJlobaI_c. a.sser1.J;lobaJ_b.
asscnJlobaJ_a. d_input. clock, power. ground.globalj.
global_c. global_d. e1obaU:.global_b. global_a);

clock <- nor. clock after 10 05;
d_input <= 'U', PO~"C1" after 3 ns;
endTEST3S;

configwatioo conf_SMALL_38 ofSMALL_TEST38 is
forTEST3S
end far;

cnd conCSMALL_38;

Figure C.2: Thc VHDl Description of the Test Bench for Example 4

123

Appendix D

The VHDL Descriptions Representing the
Array Types and the Test Bench for the
Operations of Three-dimensional Arrays in
ExampleS

-File name: packageS.vhd
-Author: Vini Shen
-Data.: Feb. 26.1999
.-The following is a VHDl descnption used for defining the types of three­
•• dimensional arrays in Example S.

library IEEE;
use IEEE.suUogic_ll64.a1I;

package P is

type AI67 isanay (0 to 2) OfSldJogic:
type 8167 is array (0 to I) of A167;
typeCI67 is array (010 1)0£8167;
t)-pe AI66 is array (0 to 2) oCstd_logic;
type 8166 is array (0 to I)of AIM;
typeCI66 is anay (0 to 1)0£8166;
type AII3 is array (0 to I) ofstd_logic;
type BII3 isanay (010 t)oC AIIJ;
lypeCl13 is array (010 I) 0£8113;
type AI12 is array (0 to l)ofstd_logic;
type BI12 isanay (010 l)of A112;
typeCI 12 is array (0 to l)ofB1I2;
type A59 is array (0 to I) of steUO⁣
type 859 is array (0 10 I) of A59;
typeC59 is array (0 to 1)0(859;
type ASS is array (0 to I) of suUogic;
type ass is array (0 10 l)oC ASS;
type C58 is array (0 10 1) oCBS8;
type AS is array (0 to I) ofstd_logic;

124

t}-pe85 array (0 to l)ofA5;
type C5 array (0 to I) of85;
lYpeA4 array (0 to l)ofstd_logic;
type 84 array (0 to 1) of A4;
typeC4 amy (0 10 l)of84;

end P:

Figure 0.1: The VHDl Description for Data Types Used in Example 5

-File name: exampleS_tesLvhd
-Author: Ying Sben
-Dala: Feb. 26,1999
-The following is a VHDl description of the test bench used in Example s.

library IEEE;
usc: IEEE.Sld_logic_II64.a1l;
useWORK..P.a1I;

entitY SMALL_TESB7 is
end SMAlL_TESn7;

arthitecnue TEST)7 ofSMALL_TEST37 is

c:omponent SMALL_OUT37
pon(asscn..alobal_d: in CI66;

asseft..alobal_c:: in C112;
asseft..a1obal_b: in C58;
assen....slobal_a: in C4;
d_input: in std_logic:;
c:lock : in stdJogi<:;
power: in std_Logic:;
ground : in std_Logic;
global_d: outC167;
global_c: outCll);
giobal_b: out C59;
global~a: out C5);

end c:omponent;

signal assert...,global_d: CI66:- (COOO-. ft()()l:n. n)()()ft. -000-»:
signal assert...,global_c;: CI12:-(COOft. -O<n.cOO". "00"»:
signal asscrt...,global_b: C58 :_«ftOO". "00"). ("00". "OOft»:
signal assert...,global_a: C4 :- (COO". "00"). ("00". "00"»:
signal global d: C167;
signal gIobaCc;: Cl13:
signal global b: C59;
signal globaCa : C5;

signal ground: stdJogic; :- '0':
signal d_input : SId_logic;:
signal clock: suUogk ;- '0':
signal power: Sid_logic :-'1 ':

begin

AAI: SMALl_0UT37 pan map (
assert...,globaJ_d. assen_global_c. a5Sen...,global_b.
assen...,global_a. d_inpul. clock. power. ground.
global_d, globaJ_c.global_b. global_a):

clock <.. not clock after 10 ns:
d_input <- 'U', powerafier 10 ns:
end TEST37;

configuration c;onf SMALL 31 of SMALL TESTI7 is
for TESTI7 - - -
end for:

end conf_SMALl_J1:

Figure Dol: 'The VHDl Description of tile Test Bench for Example 5

126

Appendix E

The VHDL Descriptions Representing the
Netlist Circuit and the Test Bench for
Example 6

--File name: imagc_out.vhd
--Author: Ying Shen
-Dala: Feb. 26.1999
-The following is a VHDL description created by the netlist generator for
-Example 6.

library IEEE;
use [EEE.std_Iogic_II64.a1I:

entity SMALL_OUT66 is
port (asscrt-BlobaJ_donc : in stdJogic;

asscrtJlobal..JI:o ; in stdJogic;
3SSertJlobalJound : in steUoaic_vector(O 10 I);
asseTt...,&lobaljlancm : in std_logic_YCClor(O to I);
assertJlobaUmaae: instd_logic_vector(O to 2);
d_input: in SId_logic;
clock: in suUogic;
power: in std_logic;
ground: in sId_Josie;
global_done: out std_logic;
globaiJo : out std_logic;
global_found: out stdJogic_vedOl(O to I);
global..J'll!UTD : out std_1o&ic_vector{O to I);
global_image: out SICUogic_vector(O to 2»;

end SMALL_OUT66;

architecture SlIUCture ofSMALL_OUT66 is

signal wireSOl, wire499. wire496, wire494. wire491, wire489, wire486.
wire484, wire481. wire479, wire476. wire414, wire4SS, wire444.
wire433, wire424, wire422. wire419. wire417. wire392. wire391,

121

wire388. \loire386. \loire384. wire382. wireJ8l. \loireJ80. \loireJ79.
wire374. \loireJ72. \loire370. wire368. \loireJ67. \loireJ66. wire365.
....ire360. wireJ58. wireJS7. \loireJ54. wireJS2. wireJ50. wire349.
....ireJ48. wireJ47. wireJ42. wire340. wire3J9, 'o\ire336. \loire335.
\~ire3J2. wire330. wireJ28. wire327. wire326. wire325. wire320.
wire318, wire317. wire314. wire312. wireJIO, wireJ08. \loire306.
wireJ05, wire304, wireJ03. wire298, wire296. \loire29S. wire292.
wire29l. wire288. wire286, wire284. wire283. wire282. wire281.
wire276. 'Nire274, wire273. \o\o"ire270. \lom268. wire266, wire264.
wire262. wire260. wire258. wire256. wire255. wire252. wire25 t.
wire250. wire249, wire244. \loire24J, wire240. wire2J9, \\oire2J8.
wirel37,ire232. wire2JO. \loire228. wire227. wire224, wile222.
"'ire220, wiR'218, wire216, wirell4, wire212. \loire210. \loire208.
wire206, wire204, wire202. wire200. ""'re 198, wire196. wire195,
wirel94, wire19J. wire188. wire187, wirel84, wire1S3. wire180,
\loire178. wire176, wire174. wire In. wire170. 'o\ireI68. wire166.
\loire164. wire162. wirel60. wite158. wire156. \loirelS4. win: 152.
wirelSI. wirel50, wire149. wirel44. wire143. \loirel40. 'o\mU9,
wirelJ6......ireI34. wire132. wire130. wire128. wire126. wire124.
wire!22. wire120. wire I 18. wire I 16. wire I 14, wire112. wirel 10.
wirel08. wirel07, wirel06. wire105, wire 100, wire99, wire96.
wire9S, wire92. wire90, wire88. wire86, wire84. wire82.
wire8!. wire78, wire77, wire76, wire75. wire70. wire69.
wire66. wire6S. wire64, wire63. wire58. wire56. wireS4.
wire52. wire48. wirc4J, wireJ8, wire)). wire26. wire21,
wir:14. wire9. wire4: std_logic;

component ORl
pon (II. 12 : in std_logic; OJ : out stdJogic);

end component;

component AND2
pon (II. 12 : in std_logic; OJ : out sldJogic);

end componenl;

componenl XOR1
pon (II, 12: in Sld_logic; OJ ; out suUogic);

end component;

component BUF
pon{ll: in std_logic; 01 : out std_logic);

end component;

component INVERTER
port(ll : in stdJogic:01 : out stdJogic);

12.

end component:

component DFLIPFLOP
port (clock. 0 : in std logic; Q out 5tdJogic):

end component; -

begin

De\'ice502: OR2 port map (assc:rt-BJobaljmage(O). wire50L wire4);
Device500: ORl port map (wire130. wire499. wire501):
Device498: OR2 port map (wire174. wire218. wire499):
Device497: OR2 port map (as5Crt-ilobaUmage(I). wire496. wire9);
Device495: OR2 port map (wire 132, wire494. wire496);
Device493: OR2 port map (wireI76. wire220. wire494);
Device492: OR2 port map (assc:rt.-alobaUmage(2). loloire491. wireI4);
Device490: OR2 port map (wire I34. wire489. wire491):
Device488: OR2 port map (wire 178, wire222, wire489);
Device487: OR2 port map (assc:rtJ1obal....Partem(O). wire486. wire21);
Device485: OR2 port map (wirel22, wire484, wire486);
Device483: OR2 port map (wire 166, wire210, loloire484);
Device482: OR2 port map (assertJlobaJ....P3nem(I). wire481.ire26):
Device480: OR2 port map (wire124, wit'e479, wire4II);
Device478: OR2 port map (wirel61, wire212, wire479);
Dcvice4n: ORl port map (assetlJlobal...,iO.....ife476. wire43):
Dcvice475: OR2 port map (wire I 16, wire474. wife476);
Device473: ORl port map (wirel60, wire204. wire474);
Device472: BUF port map (wire81, wireS2);
Device47t: BUF port map (wire92, wire54);
Dcvice470: BUF port map (wire262,ire56);
Dcvice469: BUF port map (wire266, wire58);
Dcvice461: BUF port map (wire86, wirc63);
Device467: BUF port map (wire66, wirc69);
Dcvice466: BUF port map (wire90, wire7S);
Dcvice46S: BUF port map (wire71. wire81);
Device464: BUF port map (wire112, wire9S):
Device46J: BUF port map (wirellO, wire99);
Device462: BUF port map (wire114, wireI05);
Device46l: BUF port map (wire108,ireIIO);
Device460: BUF port map (wireI07. wire I12);
Device4S9: BUF port map (wirell8, wire I14);
Device458: BUF port map (wireI26. wire I II);
Device4S7: BUF port map (wireI36. wireI26);
Device4S6: OR2 port map (ground.. wire45S. wireI28);
Device454: ORl port map (ground, ground, wire455);
Device45J: BUF port map (wirc:l56, wireI39);

De:vice452: BUf pan map (wirelS4. wireI43);
Device451: BUFpon map (wireIS8. wireI49);
Device450: BUF pon map (wireIS2. wirel54);
Device449: BUF pon map (winISI. wireI56);
Device448: BUf pon map (wireI62. wireIS8);
Device447: BUF pon map (~ireI70.wireI62);
De:vice446: BUF pon map (""ireISO. wireI70):
Ocvice445: ORl pon map (ground. witc444. wire In);
De:vicc443: ORl port map (ground. ground. wire444);
Devicc442: BUF pan map (wirc200. wire183);
Device441: aUF pon map (wire198. wire187);
Device440: BUF port map (win202. wireI93);
Dcvice439: aUF port map (wire196. wire 198);
Dcvi«438: BUF port map (wircI9S. wirc200);
Dcvicc437: BUF port map (~ire206.""ire202);
Devicc436: aUF pon map (",ire214. wire206);
Dcvice435: BUf port map (""ire224. ""ire214);
Device434: ORl port map (ground. wirc433. wire216);
Device432: ORl port map (ground. ground. wire433);
Device431: aUF port map (wire230. wire227);
Dcvicc430: BUF port map (wire258. wirc230);
Device429: BUF port map { ""ire260. ""ire237);
Dcvicc428: aUF pan map (wire240. wire243);
Ocvicc427: aUF port map (wire264. wirc249);
Devicc426: BUF port map (wire2S2. wirc2S5);
Dcvice425: ORl port map (wirc244. wire424. wirc260):
Device423: ORl port map (wirc308. wire422. wirc424):
Devicc421: ORl port map (wirc286, wire268. wirc422);
Dcvice420: ORl port map (wire256. wirc419. ~irc264);
Dcvice418: ORl port map (wire3S2. wirc417. wire419);
Devicc416: ORl port map (wirc330. wire312. wirc417);
Device41 5: BUF port map (wire288, wirc268);
Device414: BUF port map (wirc292. wire281);
Device413: BUF port map (wire284. wire286);
Dcvice412: BUF port map (wire283. wire288);
Dcvice4ll: BUF port map (wire310. wire291);
Device410: BUF port map (wire370. wire30J);
Device409: BUF port map (wirc306. wireJ08);
Dcvice408: BUF port map (wire30S, wire310);
Device407: aUF port map (wire332. wire312);
Dcvice406: BUF port map (wire336, wireJ25);
Device405: aUF port map (wireJ28, wire330);
Device404: BUF port map (wire327, wire332);
Ocvice403: BUF port map (wireJS4, wireJJ5);
Device402: BUF port map (wire370, wireJ47);

130

Device401: BUF port map (wireJ50 ire352):
Device400: BUF pon map (wire349, irc354):
Device399: BUF pon map (wire372 ire357):
De\"ice398: BUF pon map (wire374 irc365):
Device397: BUF port map (wire368. wire370);
Device396: BUF port map (wire367. wire372):
DeviceJ95: BUF pon map (wire388. wire379);
Devicc394: BUF pon map (wire382. wirc384);
Device393: aUF pon map (wire381, wire386);
Device390: INVERTER port map (wire391. wire392);
Device389: DFUPFLQP pon map (clock. d_input. wire391);
Device387: ORl pon map (wire228. wire392. wire388):
Device378: AND2 pon map(wirc380. ",ire379.....ire382):
Device377: AND2 pon map (wire379. power. wire381);
Devicc376: INVERTER pon map (po.....er. wire380);
Device373: ORl port map (wire386. wire358. wire374);
Dcvicc364: AND2 port map (....irc366. wire365. 'Aire368);
Dcvice363: .A.ND2 pon map ('Aire365. 'Airc360. wire367);
Dcvicc362: INVERTER poet map (wire360. wirc366):
Devicc359: INVERTER poet map (.....irc43. wire360);
Dcvicc356: DFUPFLOP pon map (clock. 'Airc3S7. wire358):
Dcvicc346: AND2 pon map (wird48. wire347. wire350):
Dcvicc34S: AND2 pon map ('Aire347. wire340. wirc349);
Dcvicc344: INVERTER port map (wirc340. wirc348):
Devicc341: OR2 pan map (ground. ground. wirc342);
Device338: rNVERTER port map (wire339. wire340);
Device337: XORl pon map (wire4. wire21. wirc339);
Device334: DFUPFLOP port map (clock. wirc335. wire336):
Devicc324: AND2 pon map (wire326. wire32S. wirc328);
Dcvice323: AND2 pon map (wire325. wirc318. wire327):
Dcvice322: rNVERTER pon map (wirc318. wirc326):
Dcvice319: OR2 port map (ground. ground, wire320);
Dcvicc316: CNVERlER port map (wire317, wire318);
Devicc315: XORl port map (wire9. wirc26. wircJ 17);
Dcvice313: AND2 port map (wire312. power, wirc314):
Devicc302: AND2 pon map (wire304. wire303. wirc306):
Device301: AND2 pon map (wire303. wire296. wire30S);
Devicc300: INVERlER port map (wire296. wircJ04);
Dcvice297: ORl port map (ground, ground, wire298);
Dcvice294: (NVERTER port map (wire29S. wire296);
Device293: XORl pon map (wire9, wirc21, wire29S):
Devicc290: DFLIPFLOP port map (dock, wirc291. wire292);
Device280: AND2 port map (wire282. wirc281, wirc284);
Device279: AND2 pon map (wire281. wirc274. wire283);
Dcvice278: INVERTER port map (wire274. wirc282);

III

Device27S: OR2 pon map (ground. ground. v.ire276):
Device272: rNVERTER pon map (wire273. wire274):
Device271: XORl pon map (wire14. wire26.....ire27J):
Device269: A..'lfD2 port map (wire268. po.....er. v.ire270):
Device265: AND2 pon map (wire264. power.....irc266):
Device261: AND2 pon map (wire260. power, wirc262);
Device257: OR2 pon map (.....ire2Sl, wirc239. wirc258);
Device254: DFl!PFLOP pon map (clock.. wire255. \\irc256);
Device248: AND2 pon map (",ire250. wire249, ",irc252);
Device247: AND2 pon map (wire249. wireS6. ""ire251);
Device246: TNVERTER port map (wire56. ""ire250);
Device242: DFLIPFLOP pln map (clock. wire243. wire244):
Device236: AND2 pon map (wire238. ""irc217. wirc240);
Device235: AND2 port map (wirc237. wire58. wire239);
[)evice234: rNVERTER port map (wire58, ",ire238);
De~ice23 1: AND2 pon map (wirc230, power. wire2J2);
Device226: DFlIPFLOP pon map (clock. wire227. wire228);
Device223: OR2 pon map (wire392, wirc188. ""ire224);
Device22I : AND2 pon map (wirc214, ground, wire222);
Device219: AND2 pon map (wire214, power, wire220);
Device217: AND2 pon map (wire214, ground. wire2IB);
Device211: AND2 pon map (",ire206. power. wirc212);
Device209: AND2 pon map (wire206, power. wire210);
Device207: OR2 pon map (ground. around, wire20B);
Device203: AND2 pon map (wire202, power, wire204);
Device 192: AND2 pon map (wirel94, wire 193, wirel96);
Devicel91: AND2 pon map (wirel93, wire48,ireI95);
Device 190: rNVERTER pon map (wirc48. wirel94);
Devicel86: DFlIPFLOP port map (clock.. wirel87, wireI81);
Devicel82: DFLIPFLOP pon map (clock, wirel83, wireI84);
Device 179: OR2 pon map (wire 184, wire144, wire180);
Device 177: AND2 pon map (wire170, ground, wire 171);
Devicel75: AND2 pon map (wire170, po.....er. wireI76);
Devicel?3: AND2 pon map (wire170, ground, wireI74);
Oevicel67: AND2 port map (wire162, power, ",irel68);
Devicel6S: AND2 pon map (wire162, ground, wirel66);
Devicel63: OR2 pon map (ground, ground. wire I64);
Devicel59: AN02 pon map (wire151, power, wirel60);
Devicel48: AND2 port map (wirc150, wire149. wireI52);
Devicel47: AND2 port map (wirc149, wire41, wireI51);
Devicel46: INVERTER port nap (wirc4I, wire ISO);
Devicel42: DFLlPFLOP pon map (clock., wire143, wirel44);
Devicel38: DFLlPFLOPpon map (clock, wire 139, wirel40);
Devicel3S: OR2 port map (wire140, wire I00. wireI36);
Devicel)): AND2 port map (wireI26. ground. wireI34);

'"

Devicel31: AND2 poR map (wirel26. powC!'. wireI32);
Devicel29: AND2 poRmap (wireI26, ground. wirc 130);
De"'icel23: AND2 poR map (\\.ircI18. ground. \\.ircI24);
Devicel21: AND2 pon map (wire118. power. wireI22);
Device119: OR2 poR map (ground. ground. \\.tte120);
De"icelI5: AND2 pon map (wireI14. powC!'. wircI16);
Devicel04: AND2 pon map (\\.-irel06. wireIOS. wireI08):
Devicel03: AND2 port map (wircIOS. wire48. wireI07);
Devicel02: rNVERTERpoR map (wire48. \\.ttel06);
Device98: DFLIPFLOP port map (dock.. \\.ire99. wireIOO);
Device94: DFLIPFLOP port map (dock.. \\.ire9S. wire%);
Device9l: AND2 port map (wire90. power, wire92);
Device89: ORl port map (wireJ84. wirc82, wire9O);
Device87: AND2 port map (wirc86. powC!'. wire88);
Device8S: ORl port map (wire96, wire70. wirc86);
Device83: ORl port map (wire77, wirc6S. wire84);
Device80: DFLIPFLOP port map (dock, ",ire81. wire82);
Device74: AND2 port map (wire76. wire7S, wire78);
Device73: AND2 port map (wire7S. wireS2. wire77);
Device72: INVERTER port map (wireS2. wire76);
Device68: DFlIPFlOP port map (dock. wirc69. wire70);
Device62: AND2 port map (wire64, wire63, wire66);
Device61: AND2 port map (wire63. wireS4, wire6S);
Device60: INVERTER port map (wireS4. wire64);
Device50: BUF port map (wirc48. global_done);
Device46: OR2 port map (wire232. asseTtJlobal_done. wire48);
Device45: BUF port map (wire·n. gJobal....so);
Device40: BUF port map (wire38. gJobaIJound(I»;
Device36: ORl port map (wire270. asseTtJlobaIJound(I). wire38);
DeviceJS: BUF port: map (wire33. gIobalJound(O»;
Device3l: OR2 port: map (wireJ 14. assenJlobalJound(O). \\.ire3J);
Device28: BUF port map (wire26. global...,Pilttem(I»;
Device2J: BUF pon map (wire21. gIobal...,panem(O»;
Devicel6: BUF port map (wireI4. globaUmage(2»;
Devicell: BUFport map (wire9. globaUmage(I»;
Device6: BUF pan map (wire4. gJobaI_image(O»;

end Sttue:ture;

Figure E.I: The VHDL Description for the NetJisr. Circuit of Example 6

III

-File name: imagc_tcst_vhd
-Author: Ying Shen
--Data: Feb. 26.1999
-The following is a VHDl description of the test bench used in Example 6.

library IEEE;
usc IEEE.stdJogic_II64.aJl;

entity SMAll_TEST66 is
end SMAll_TEST66:

architecture TEST66 ofSMAll_TEST66 is

component SMALL_OlJT66
poO"l(

asscrt....alobal_done: in stdJogic;
asscn....alobalJo: in std_loeic;
asscrt.-&lobal_found ; in std_logic_vector(3 to I);
asscft.....ilobal...,Panem: in stdJogic_vector(O to I);
assenJlobal_image : in stdJogic_VCClor(O to 2);
d_input ; in std_logic;
clock: in std_logic:
power: in std_logic;
ground: in std_logic;
global_done: out sId_logic;
global-i0 : out std_logic;
gJobaljound: out std_logic_veclor(O 10 I):
global...panem: out sld_1oilic_vcctor(O 10 I);
global_image: out sld-,ogic_vector(O to 2»;

end component;

signal a.ssert....&.lobal_donc; std_logic := '0';
signal asscftJlobaIJo: sid_logic :- '0';
signal asscftJlobaUmage: stdJogic_vcclor(O to 2) :- "000":
signaiassctt.$lobaljoUDd: stdJogic_vcctor(O to 1):- ~OO~;

signal asscttJlobal...,Paltcm; std_logic_vcclor(O to 1):- ~OOM:

signal global_done. d_inpul. globalJo: std_logic;
signal globaljound. global...panem; std_logic_vcclor(O to I);
signal global_image: suUogic_vcclor(O 10 2);
signal ground: std_logic :- '0';
signal clock: stdJogic :- '0';
signal power: std_logic:- 'I';

'"

begin

AAI: SMALL_OlJT66 port map (assert..sJobaJ_done. 3Ssert..slobal..so.
assert..8lobaCfound, assert-elobaJJ>3uem. assen..slobaljmage.
d_inpul. clock. power. ground. global_done. global.-ao.
gJobaljound. globaJ....P'luem. global_image);

clock <- not clock after IOns;
djnput <- ·U'. power after 5 os:
end TEST66;

configuration conf_SMALL_66 ofSMALL_TEST66 is
forTEST66
end for:

end conCSMALL_66:

Figwe E.2: The VHDL Description for the Test Bench of Example 6

IJS

Appendix F

A Brief Introduction to Gofer

This seetion describes some Gofer features that are used in this thesis. More details

about Gofer can be found in (Cunningham, 1995; Jones. 1991. 1993. and 1994).

F.l What is Gofer?

Gofer is a functional proKBfM1ing environment (in other \1,"Ords. an inletpfettt) that

"'as implemented by Mark P. Jones for his research activities (Jones. 1991). The

language supported by Gofer is very similar 10 Haslccll (Bird. 1998). It has many

standard fcarures of modem functional progranuning languages such as lazy

evaluation. ploymorpruc functions. highcr-order functions, strong typing, pattern

matching, and userodcfincd algebraic rypes. It also has a language feature caUed a

class, that is used for inheritance and overloading.

F.2 Functions

1be functions in Gofer are divided into standard functions and user.defined

functions. All standard functions, for example. the division function named div or "r.

are included as part of a large collection of functions called the 'standard prelude'.

They are automatically loaded into the Gofer system while we start the Gofer

interpreter. We can also define our own functions in ~e fonn of a text file that can be

loaded and used by the Gofer system.

F.3 Data Types

Gofer suppons simple types. list and tuple types. function [)-pes. and user defined

Iypcs. It is noted that all function names muse begin with it lower-case lenet" and all

type names must begin with an upptt-c:asc lettCT.

The simple types include the following four types: Bool, Chn. Int. and fioac.

They support boolean literals. character Iilerals. integer literals. and floaling point

literals. respectively.

A function specified as having type,1 -> 11. where II and 11 are types. takes an

argument ofrype 11 and returns a result of type 12.

[II is the type: of a list whose elements arc lists of values ofrype t. The length of a

list is variable. Therefore. (Cbar] represents the type of lists of characters. We can

define the data type Srring as [0110...."$: type String - [Char) and use it to express string

lilerals. It is noted that the above defutition is a declaration for a type synonym. That

is. the type alias String can be used in place ofthc specified: type expression.

The tuple in Gofer is very similar to the struetuce in C. Ifll. :1....• tn arc types and

If ~ 2, then (rl. '1• ...• In) represents a type of rr-ruples. For example. a type of J.

tuples, (Nellisl, WireTab, ReqTob), is defined in this thesis.

The mostly used types in this thesis ace user defined types declared by the keyword

data, The: definition of the types is as follows:

d_ta Dataty/N a, 01 ., o. = COfIStrl I coMtr]l "j COIUtr.

In the above definition.

DotatyJN is the name of. DeW type coastruetoc" ofarity II (II ~O).

'"

a, a1 ... a. arc distinc:t type: variables representing the n argumenlS of the

data type.

COlUlr,. constrz, constr... (m ~ I) describe the way in which the

demenlS of the new data type are constructed.

For example. d.l. Colour • R~d I Gr~~n I BIUI defines a ncwdata type: Colour thai

is an enumerated type \l,ilh eleme:us R~d. Gr~en. and Blu~. The following recursive

definition represents a binary tree data type Tree:

d.l. Tru "" Empty I Nod~ 1.1 Siring Tr~e Trre

Gh'en the above definition. the constructor function Node takes fow argumenlS thai

have types: lal. String Tree. Tree. respectively and returns a fret.

F.4 The Use of Monads

The monad concept is from calegory theory (Wadlcr, 1995). This Ihcsis uses

monad to model prognms that make usc: of an internal state. For example. a new data

type is defined as follows:

d.tIi StateExTrans sa"" SET (s -> Ok_Err I a)

where s and a are type variables. and Okjn is defined as

data Ok_Errsa - Oks a Siring I Err String

The functor and monad structures for the above stale transformers arc described by

Norvell's program named stauExMonDd (Norvell. 1996). The foUowins function is

ill

one of functions that have used the type Srare&T,ans.

gerNer/isr :: StaleExTrans NLGState Nellist
grrNer/isr,,", SET{ \(n. w, ,).:> Ok (n. w. ,) n nn)

F.5 The 'do' Notation

The do notation is used to provide a more attractive synlaX for monadic

programming. This thesis has used a lot ofdo notations in the following forms:

do exp'ession

which can be translated to expression.

do expression
morelines

","hich can be ttan5lated to expression 'biad' (' _ .:> do morelines)

do patte'''' <. uprusion
morelines

which can be translated to expression "bied" ('patte",.:> do morelines)

do let declarationList
morelines

which can be uanslated to

let declarationList
i. do morelines

In the above expressions. the . biad" operatOf" is defined as

(a "bLad' k) s ,. let ("s' • as
ia trs'

13.

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Title Page
	0006_Dedication
	0007_Abstract
	0008_Acknowledgements
	0009_Table of Contents
	0010_Table of Contents iv
	0011_Table of Contents v
	0012_List of Figures
	0013_List of Figures vii
	0014_List of Figures viii
	0015_List of Abbriviations
	0016_Chapter 1 - Page 1
	0017_Page 2
	0018_Page 3
	0019_Page 4
	0020_Chapter 2 - Page 5
	0021_Page 6
	0022_Page 7
	0023_Page 8
	0024_Page 9
	0025_Page 10
	0026_Page 11
	0027_Page 12
	0028_Page 13
	0029_Page 14
	0030_Page 15
	0031_Page 16
	0032_Page 17
	0033_Page 18
	0034_Chapter 3 - Page 19
	0035_Page 20
	0036_Page 21
	0037_Page 22
	0038_Page 23
	0039_Page 24
	0040_Page 25
	0041_Page 26
	0042_Page 27
	0043_Page 28
	0044_Page 29
	0045_Page 30
	0046_Page 31
	0047_Page 32
	0048_Page 33
	0049_Page 34
	0050_Page 35
	0051_Page 36
	0052_Page 37
	0053_Page 38
	0054_Page 39
	0055_Page 40
	0056_Page 41
	0057_Page 42
	0058_Page 43
	0059_Page 44
	0060_Page 45
	0061_Page 46
	0062_Page 47
	0063_Page 48
	0064_Page 49
	0065_Page 50
	0066_Page 51
	0067_Page 52
	0068_Page 53
	0069_Page 54
	0070_Page 55
	0071_Page 56
	0072_Page 57
	0073_Page 58
	0074_Chapter 4 - Page 59
	0075_Page 60
	0076_Page 61
	0077_Page 62
	0078_Page 63
	0079_Page 64
	0080_Page 65
	0081_Page 66
	0082_Page 67
	0083_Page 68
	0084_Page 69
	0085_Page 70
	0086_Page 71
	0087_Page 72
	0088_Page 73
	0089_Page 74
	0090_Page 75
	0091_Page 76
	0092_Page 77
	0093_Page 78
	0094_Page 79
	0095_Page 80
	0096_Page 81
	0097_Page 82
	0098_Page 83
	0099_Page 84
	0100_Page 85
	0101_Page 86
	0102_Page 87
	0103_Page 88
	0104_Page 89
	0105_Page 90
	0106_Page 91
	0107_Page 92
	0108_Page 93
	0109_Page 94
	0110_Page 95
	0111_Chapter 5 - Page 96
	0112_Page 97
	0113_Page 98
	0114_Page 99
	0115_References
	0116_Page 101
	0117_Page 102
	0118_Appendix A
	0119_Page 104
	0120_Page 105
	0121_Page 106
	0122_Page 107
	0123_Page 108
	0124_Page 109
	0125_Page 110
	0126_Page 111
	0127_Page 112
	0128_Page 113
	0129_Page 114
	0130_Page 115
	0131_Appendix B
	0132_Page 117
	0133_Page 118
	0134_Page 119
	0135_Page 120
	0136_Appendix C
	0137_Page 122
	0138_Page 123
	0139_Appendix D
	0140_Page 125
	0141_Page 126
	0142_Appendix E
	0143_Page 128
	0144_Page 129
	0145_Page 130
	0146_Page 131
	0147_Page 132
	0148_Page 133
	0149_Page 134
	0150_Page 135
	0151_Appendix F
	0152_Page 137
	0153_Page 138
	0154_Page 139
	0155_Blank Page
	0156_Blank Page
	0157_Inside Back Cover
	0158_Back Cover

