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Abstract 

 
The Solid Oxide Fuel Cell (SOFC) is a class of fuel cells that is capable of generating very 

high levels of power at high temperatures. SOFCs are used for stationary power generation and as 

Combined Heat and Power (CHP) systems. In spite of all the beneficial features of the SOFC, the 

propagation of ripple currents, due to nonlinear loads, is a challenging problem, as it interferes 

with the physical operation of the fuel cell.  

The purpose of this thesis is to identify the cause of ripples and attempt to eliminate or 

reduce the ripple propagation through the use of Active Power Filters (APF). To this end, a 

systematic approach to modeling the fuel cell to account for its nonlinear behavior in the presence 

of current ripples is presented. A model of a small fuel cell power system which consists of a fuel 

cell, a DC-DC converter, a single-phase inverter and a nonlinear load is developed in 

MATLAB/Simulink environment. The extent of ripple propagation, due to variations in load 

magnitude and frequency, are identified using frequency spectrum analysis. In order to reduce the 

effects of ripple propagation, an APF is modeled to remove ripples from the DC fuel cell current. 

The emphasis of this thesis is based on the idea that small fuel cell systems cannot implement large 

passive filters to cancel the effects of ripple propagation and hence, the compact APF topology 

effectively protects the fuel cell from propagating ripples and improves its electrical performance. 
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Chapter 1 

 

Introduction 

In recent years, the demand for clean and sustainable energy has increased. Although 

renewable energy is an effective source of electricity, it still requires backup as the availability of 

natural energy sources varies frequently. Fuel cells are clean and sustainable energy sources that 

can not only be implemented as backup power sources for large renewable power supplies, but are 

also capable of being a major power source in micro grid systems. Fuel cells convert 

electrochemical energy into electrical and thermal energy. During this process, steam is the only 

residual component which, makes it an ideal choice when considering alternate and clean energy 

sources.  

Due to the varied application of fuel cells, which ranges from hybrid vehicles to grid 

backup, it is important to analyze their performance under various load conditions. A fuel cell, 

unlike other linear power sources, exhibits nonlinear behavior under nonlinear load conditions. 

Due to the nonlinear nature of the power produced, it is essential to understand the impact of AC 

and DC loads separately and also to devise a method to linearize the power supply. Researchers 
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have established the phenomenon of ripple propagation when the fuel cell is operated under 

nonlinear loads. The propagating ripple current causes physical damage to the fuel cell which, not 

only lowers cell lifespan but, also causes power degradation. In order to improve the performance 

of the fuel cell and also to ensure a long cell lifespan, it is important to eliminate or reduce ripple 

propagation. This is the main objective of this thesis and is outlined in section 1.1 

 

1.1 Thesis Objectives 

For the purpose of analysis, a fuel cell model is first developed. The fuel cell model is 

based on the material specifications of a Solid Oxide Fuel Cell (SOFC). As stated earlier, the main 

objective of this thesis is to analyze the effects of ripple propagation on a fuel cell and attempt to 

reduce or eliminate these ripples. To aid in the study of ripple propagation, a power system, using 

the modeled fuel cell as the power source, is constructed. Frequency spectrum analysis is used to 

estimate the extent to which the ripples affect the fuel cell voltage and current. It is assumed that 

the individual power stages of the system cannot be improved further and hence the propagating 

ripples need to be eliminated from the output of the fuel cell through other means. In this thesis, 

an Active Power Filter (APF) is used to remove the ripples from the fuel cell current. The goal is 

to allow the freedom to use any configuration for the DC-DC and DC-AC power stages of the 

system, while ensuring that the fuel cell is not affected by any harmonics present in the system. 

Though all the analysis will be carried out through simulations (MATLAB/Simulink), the fuel cell 

performance for both DC and AC load is verified against experimental results that have already 

been published in various journals.  

 



3 
 

1.2 Thesis Organization 

The thesis objectives are outlined in Chapter 1 while providing short introduction for the 

other chapters.  

The basic principles of a fuel cell are briefly introduced in Chapter 2, along with its 

classification. Chapter 2 also contains a discussion on research carried out in the field of fuel cell 

behaviour. A fuel cell model is developed in Chapter 3 and the effects of DC and AC load are 

briefly discussed. In Chapter 4, the process of ripple propagation and the effects of ripples on the 

modeled fuel cell under steady state conditions are analyzed. The effects of magnitude and 

frequency variations are also discussed in this chapter. A detailed discussion of APFs is carried 

out in Chapter 5. The type of control scheme that can be implemented for an APF used in a fuel 

cell powered system is discussed in this chapter. The chapter also includes the implementation and 

evaluation through simulation of an APF-based fuel cell system. Chapter 6 is the final chapter of 

this thesis in which the conclusions as well as recommendations for further work on this subject 

are presented. 

 

 

 

. 
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Chapter 2 

 

Introduction to Fuel Cells and Literature 

Review 

 
With increased demands for clean and reliable energy, fuel cells have found a unique niche 

for scientific exploration and commercial production. The use of fuel cells in the automotive 

industry has already been well established with the launch of the Toyota Mirai and has prompted 

other automobile companies to take note of the immense efficiency of these power devices [1]. 

The Ramea hybrid energy project in Newfoundland, which uses hydrogen fuel cells as backup 

power sources, is an attempt to provide clean energy for a small community [2].  

In general a fuel cell can operate up to 10 years with minimum maintenance. This makes 

the fuel cell a stable and reliable power source. Fuel cells operating at high temperatures have 

higher fuel flexibility and can operate on both carbon-based fuels as well as pure hydrogen, which 

increases commercialization and usability [3]. In this Chapter, various classifications and usage of 

fuel cell will be discussed. This Chapter will also discuss the potential problems facing the use of 
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fuel cells in commercial applications and the resolutions to these problems as adopted by other 

researchers. 

 

2.1 Types of Fuel Cells 

The type of electrolyte determines the temperature at which the fuel cell can be operated. 

Based on the type of electrolyte, fuel cells are primarily classified into six categories. Table 2.1 

provides a summary of the basic differences between fuel cells [4]. 
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Table 2.1: Classification of Fuel Cells 

Type of Fuel 

Cell 

Type of 

Cathode 

Type of 

Anode 

Type of 

Electrolyte 

Temperature 

of Operation 

Type of 

Catalyst 

Proton 

Exchange 

Membrane 

Pt on C Pt on C Perfluorosulfonic 

acid 

90°C Platinum 

Direct 

Methanol 

Pt - Ru Pt - Ru Polymer 50 – 120°C Platinum 

Alkaline Pt - Au Pt - Pd KOH 100°C Platinum 

Phosphoric 

Acid 

Pt on C Pt on C H3PO4 200°C Platinum 

Molten 

Carbonate 

Li doped NiO Ni Li2CO3, K2CO3 650°C Alloy of 

nonprecious 

metals 

Solid Oxide Sr doped 

LaMnO4 

Ni or 

Y2O3 

Y2O3 stabilized 

ZrO2 

800 -  1000°C Not 

Required 

 

Other than the specified categories, a new class of fuel cells has been recently introduced, 

the regenerative fuel cells [5]. Regenerative fuel cells have two stages of operation. The first stage 

acts like a normal fuel cell where electrical energy is produced from the chemical reactions due to 

the injected fuel. The second stage uses electrolysis to recombine the residual components to form 

the fuel that can be re-injected into the first stage of the regenerative fuel cell. Electrolysis is a 

highly energy consuming process and is also costly to develop. Ideally, the energy of the 

electrolytic stage is supplied by a separate energy source so as to not decrease the overall efficiency 
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of the first stage. This makes it ideal for use along with renewable energy sources such as solar, 

wind or hydro energy. Regenerative fuel cells can also act as energy storage devices in which the 

excess energy from renewable sources can be stored in the form of hydrogen or any readily 

available fuel [6]. 

The temperature of operation also determines the extent of usage for a given fuel cell. The 

Proton Exchange Membrane Fuel Cell (PEMFC) is the most commercially popular fuel cell. Its 

optimum temperature of operation and its compact stack structure increases its commercial usage. 

PEMFCs have been developed for both stationary and portable applications [7]. The Phosphoric 

Acid Fuel Cell (PAFC) was the first fuel cell to be commercialized and is ideal for stationary 

applications as it is highly stable and economically feasible [8]. The Direct Methanol Fuel Cell 

(DMFC) is a subcategory of the PEMFC, and though it does not produce a large amount of power, 

a small amount of power is produced over a long period of time [7]. Alkaline Fuel Cell (AFC) is 

the most developed fuel cell as it has 70% efficiency of operation. Due to this, it has been used by 

NASA for the Apollo space mission [9]. The Molten Carbonate Fuel Cell (MCFC) and the Solid 

Oxide Fuel Cell (SOFC) fuel cells operate at very high temperatures and are also capable of 

producing very high levels of power [10]. The higher temperature of operation reduces the cost of 

catalysts. Due to the high temperature, both MCFC and SOFC, though widely used in high power 

stationary applications, do not find much use for portable applications. However, recently SOFCs 

have been developed for portable chargers [11]. 
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2.2 Types of Fuel Cell Models 

In order to test the performance of a fuel cell as the main or the alternate source of power, 

it is neither economic nor safe to use an actual fuel cell. In the case of high temperature fuel cells, 

the use of an actual fuel cell, in order to investigate its performance, requires additional 

infrastructure and precautionary measurements. It is economic to develop fuel cell models or 

simulators for these investigations.  

Any fuel cell model is primarily based on its electrochemical reactions. Though all fuel 

cells convert hydrogen or hydrocarbon molecules to produce energy and water molecules, the 

amount of energy produced depends on the physical attributes of the specified fuel cell. The type 

of electrolyte, electrode, temperature of operation and pressure within the container are the primary 

parameters that influence the amount of voltage produced by a fuel cell. The basic equations for 

an electrochemical reaction follow the principles of thermodynamics, fluid dynamics and mass 

transfer. Mechanistic models are developed using real time computation of all the electrochemical 

equations attributed to the specified fuel cell [12], [13]. The mechanistic model can also be 

developed to include water, air and fuel management system. Although the mechanistic models 

have immense potential, only a few models have been developed that depict the dynamic 

characteristic of the fuel cell as this involves further computation which might slow down the 

simulation process. 

For empirical models, the complex electrochemical equations are either represented as a simple 

mathematical equation or as an equivalent circuit. These empirical models are simpler to 

implement and are also more useful in studying the dynamic electrical properties of a fuel cell. 

Due to its simplicity the empirical fuel cell model is extensively used [14], [15]. Since empirical 

models are simplified mathematical representations, they can be used to study both DC and AC 
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state of operation. During the DC steady state of operation all the physical parameters are kept 

constant so that various parametric dependencies, such as diffusion rate and pressure versus 

temperature performance, can be investigated. In order to study the AC characteristics of the fuel 

cell, dynamic models are preferred [16]. The simplest approach to develop a dynamic model is to 

create an equivalent AC circuit for the fuel cell [17], [18].  

Cheddie et al. [19] have reviewed the various fuel cell models and described the pros and 

cons of each method. Detailed discussion on the fuel cell model used in this thesis is given in 

Chapter 3. 

 

2.3 Literature Review 

Due to the increasing demand for alternate energy sources the frequency of fuel cell 

research has increased considerably in the last few decades. In February 2015, FCO Power Inc. 

announced plans to mass produce their new SOFC unit, called the Printed Fuel Cell, which is only 

3cm in thickness and can generate 700 W [20]. FCO Power aims to commercialize this new 

product in the 2020 Tokyo Olympics. Several SOFC prototypes have already been implemented 

in various European Countries, as part of the Ene-field program which implements fuel cells as 

part of Combined Heat and Power Systems (CHP) [21]. The Ene-field program is an echo of its 

Japanese counterpart, the Ene-farm program. SOFCs are ideal for CHP applications as they operate 

at high temperatures and the excess heat and water can be easily directed for residential use.  

The most relevant research revolves around the improvement of solid oxide materials so 

as to operate SOFCs at lower temperatures. Liu et al. [22], Leng et al. [23] and other researchers  



10 
 

have developed better solid oxides that enable the fuel cell to operate between 500°C to 700°C, 

which is lower than the normal assigned temperature for SOFCs of 800°C to 1000°C [24].  

While fuel cells have proven to be stable and reliable power sources, they perform poorly 

against nonlinear loads as opposed to DC loads. Schneck et al. [25] conducted a research on the 

impact of DC and AC loads on the physical and electrical parameters of a PEMFC. They concluded 

that though the fuel cell might exhibit slight decrease/increase of output voltage with respect to 

increasing/decreasing DC load current, the fuel cell output voltage and current retain their DC 

characteristics. DC loads also cause minimum variations in the fuel cell operating parameters. 

Hence, using a DC load allows the fuel cell to operate at the most optimum conditions. This 

however is not true for AC loads, where the propagation of ripples destabilizes the operating 

conditions of the fuel cell and also causes the fuel cell to behave as a nonlinear power source.  

An extensive study of system interactions along with ripple propagation carried out by 

Acharya et al. [26] concluded that the propagation of ripples also caused the system parameters, 

i.e. temperature, pressure, etc. to vary. A fuel cell’s stability is determined by the extent to which 

the system parameters are maintained at a constant value. Hence, such variations can not only 

decrease the fuel cell’s lifespan, but can also raise safety concerns for high temperature fuel cells, 

such as SOFC. Ripple propagation for stationary power systems can be smoothened using large 

capacitors; but, for automotive systems, ripple propagation is a major concern as constant power 

levels are essential for efficient operation. Chiu et al. [27] discuss the effects of ripple propagation 

for automotive applications for fuel cells. 

Kim et al. [28], [29] have studied the effects of constant load change for a PEMFC. The 

studies have revealed that fuel cell electrical efficiency is inversely related to the magnitude of 

load ripples. Similar studies have also been conducted by Ferrero et al. [30] and other researchers 
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[31], [32]. The presence of ripples causes physical damage to the fuel cell and also lowers its 

lifespan. The studies conducted by Gemmen [33] and several other researchers have detailed the 

exact process of cell degradation [34] - [36].  

In order to reduce the presence of current ripples in the fuel cell output current, many 

different approaches have been suggested. There are two possible solutions to reduce ripple 

propagation. The amount of propagating ripples can be reduced by improving the individual power 

stages. With lesser load harmonics, the magnitude of propagating ripples will also be greatly 

reduced. Zhu et al. [37] have suggested inverter control to lower the input current harmonics and 

hence reduce the ripple propagation. Similar research has been conducted by Kim et al. [38] to 

reduce the propagation of ripples. Auld et al. [39] have also proposed the use of active power filter 

at the load to minimize load ripples and hence minimize the propagation of ripples.  

The second method by which ripples can be reduced is by means of filters that are 

combined as part of the converter stage. This implies that the converter, either boost or buck, is 

modified to include an active power filter which switches the converter to not only remove the 

propagating harmonics from the fuel cell input, but also accomplishes boost or buck 

functionalities. One such example is the active power filter proposed by Mazumdar et al. [40]. A 

two-level active power filter, which removes both low and high frequency harmonics is included 

as the input stage of a boost converter. Itoh et al. [41] have suggested a DC center-tap converter 

topology to act as an active filter. Kwon et al. [42] have proposed an improved boost converter 

stage that removes the load ripples for a large grid connected fuel cell. Similar work has been 

conducted by several other researchers [43], [44]. Although the use of modified converter has 

resulted in novel circuit designs, the added filter makes the entire power system bulky, which is 
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not suitable for smaller power systems, where other than power stability, compact circuits are also 

equally important.  

For low temperature fuel cells, the effect of ripple propagation can be easily studied by 

using a single fuel cell. But for high temperature fuel cells, such as SOFC, experimental analysis 

is difficult, as even a single SOFC unit would require the same safety guidelines as would an entire 

stack of high temperature fuel cells. Hence the best solution, is to simulate and study the behaviour 

using fuel cell models. 

 

2.4 Summary 

The classification of various fuel cells has been presented. A short discussion on the 

importance of fuel cell modeling and the distinction between the previously established models 

has also been discussed. It has been established that fuel cells behave like nonlinear sources in the 

presence of nonlinear or AC loads. The presence of nonlinear loads can disrupt regular fuel cell 

operation and can also shorten the cell lifespan. Hence, it becomes important to analyse the cause 

of such nonlinearity and provide solutions that will allow the fuel cell to provide stable power 

levels for a longer period of time. Various methodologies, as proposed by other researchers, to 

remove or minimize nonlinearity of fuel cells have been introduced in this chapter. 
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Chapter 3 

Fuel Cell Modeling 

Fuel cells are electrochemical devices. The electrochemical process involves the oxidation 

of fuel to release energy and water if the fuel used is hydrogen, or humidified carbon dioxide if a 

carbon based fuel is used. In the previous Chapter, fuel cell classification and applications were 

briefly discussed along with various drawbacks and their proposed solutions. The focus of this 

Chapter is to identify the physical parameters of a Solid Oxide Fuel cell (SOFC) and describe a 

numerical modeling approach that can be later on used for further analysis. 

SOFC can use both carbon based fuels and hydrogen; however, maximum energy is 

produced by the oxidation of hydrogen [45]-[47]. In addition, oxidation of hydrogen is easier to 

model numerically. Hence, hydrogen is selected as the fuel for modeling the SOFC. The most 

important parameters concerning a fuel cell’s operation are fuel pressure, temperature, fuel 

volume, and air volume. The conductivity of the electrode and electrolyte are also important 

although, the conductivity is also partially dependent on temperature. A generalized structure of a 

SOFC is shown in Figure 3.1. 
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Figure 3.1: Generalized Solid Oxide Fuel Cell Structure 

The number of electrons that are transferred across the electrodes is dependent on the 

stoichiometric process within the cell. The stoichiometric process is described by two separate 

equations, on either electrode. For the SOFC, as given in Figure 3.1, using hydrogen as fuel, the 

equations at the anode and cathode are described below: 

Equation at the anode: 

𝐻2 → 2𝐻+ + 2𝑒−     (3.1) 

Equation at the cathode: 

1

2
𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂    (3.2) 

The fuel cell voltage is typically described by the Nernst equation as given in (3.3) 

𝐸𝑚𝑎𝑥 =
𝑅.𝑇

2.𝐹
ln 𝐾 −

𝑅.𝑇

2.𝐹
ln

𝑝𝐻2 .𝑝𝑂2

1/2

𝑝𝐻2𝑂.𝑝𝑟𝑒𝑓
1/2     (3.3) 
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where, R is Gas constant (8.315 * 10-5 m3BarK-1mol-1), T is temperature in Kelvin, F is Faraday’s 

constant (96485 Cmol-1), 𝑝𝐻2
 is partial pressure of fuel in Bar, 𝑝𝑂2

1/2
 is the partial pressure of oxygen 

in Bar;  𝑝𝐻2𝑂  is the partial pressure of residual water in Bar; and 𝑝𝑟𝑒𝑓
1/2

 is the referral partial pressure, 

assumed to be 1 Bar. K is the chemical equilibrium constant and can be calculated using equation 

(3.4) 

𝐾 = 𝐴. 𝑒
−𝐸0
𝑅.𝑇      (3.4) 

The constants A and E0 are obtained from thermodynamic tables depending on the type of 

reactants involved in the process. The Nernst voltage is the maximum voltage or ideal voltage that 

can be obtained from the fuel cell in the absence of any losses. 

 

3.1 Classical Approach to Fuel Cell Modeling 

Traditionally, fuel cell modeling is based on the approximation of the current-voltage 

curve, also called the polarization curve, obtained from experimental studies. The polarization 

curve is divided into three regions: activation loss (region a), ohmic loss (region b) and 

concentration loss (region c) as shown in Figure 3.2.  
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Figure 3.2: Fuel Cell Polarization Curve (a) Activation Loss (b) Ohmic Loss (c) Concentration 

Loss 

These losses, when subtracted from the Nernst voltage, provide the actual fuel cell voltage. 

Hence, the cell voltage is made up of four elements as given in equation (3.5) 

𝐸 =  𝐸𝑚𝑎𝑥 − 𝜂𝑎𝑐𝑡 −  𝜂𝑜ℎ𝑚 −  𝜂𝑐𝑜𝑛      (3.5) 

where,  Emax is the Nernst Voltage as given in equation (3.3), 𝜂𝑎𝑐𝑡 is activation loss voltage, 𝜂𝑜ℎ𝑚 

is ohmic loss voltage, and 𝜂𝑐𝑜𝑛 refers to concentration loss voltage.  
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The activation loss refers to the energy consumed by the fuel cell to necessitate the transfer 

of electrons from the electrode to the electrolyte. It is calculated by the Butler-Volmer equation 

[48] and is linearized to the form of Tafel equation as given in (3.6) 

𝜂𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = (
𝑅𝑇

𝛼𝑛𝐹
) 𝑙𝑛(𝑖𝑜) − (

𝑅𝑇

𝛼𝑛𝐹
) 𝑙𝑛 (𝑖)    (3.6) 

 

where, 𝛼 is the coefficient of charge transfer, n is the number of moles of electrons transferred, 𝑖𝑜 

is the exchange current and 𝑖 is the actual fuel cell current. 

The ohmic loss occurs due to the resistance offered by the electrolyte and electrode to the 

flow of ions and electrons, respectively. It is largely dependent on the temperature at which the 

fuel cell is operated and the material used for constructing the electrical components of the cell 

[49]. The ohmic loss is represented by the simplified equation 

𝜂𝑂ℎ𝑚𝑖𝑐 = 𝑐𝑒𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑓𝑢𝑒𝑙 𝑐𝑒𝑙𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡     (3.7) 

 

As noted before, the cell internal resistance is a function of temperature. 

Lastly, the resistance offered by the electrolyte to the movement of reactants through the 

electrolyte is termed as the concentration loss [50]. This loss is also a material dependent parameter 

and can be expressed as  

𝜂𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = (
𝑅𝑇

𝑛𝐹
) ln  

𝐶𝑏

𝐶∞
     (3.8) 

 

where, 𝐶𝑏 is the triple-phase boundary and 𝐶∞ is the bulk concentration of the reactants. 
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3.2 Fuel Cell Modeling Based on Equivalent Circuit 

The classical approach to fuel cell modeling involves complex calculations and is accurate 

for a particular parametric condition. The results cannot be extrapolated for other conditions.  

Santarelli et al. [51] suggested a method that takes into account the interactions between each 

changing parameter. The method produces a more definitive fuel cell model that can accurately 

predict the cell voltage at any parametric change. The SOFC generates electricity by releasing 

oxygen ions that move through the solid electrolyte. Hence, the fuel cell operation can be explained 

through an electric circuit as shown in Figure 3.3. 

 

Figure 3.3: SOFC Equivalent Electrical Circuit 
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Figure 3.3 shows two different resistive values which represent two different values of 

internal resistance, ionic (R1) and electronic (R2) resistance. R3 represents the external load. The 

voltages Emax and E represent the Nernst voltage and the load voltage due to the external load R3. 

Using Ohm’s and Kirchhoff’s laws, equations (3.9) – (3.11) are obtained. 

𝐼1 =  
𝐸𝑚𝑎𝑥−𝐸

𝑅1
     (3.9) 

𝐼2 =  
𝐸

𝑅2
     (3.10) 

𝐼1 =  𝐼2 + 𝐼3     (3.11) 

Electrical dependence can be correlated to gas flow using the fuel utilization factor denoted 

by  𝜂𝑓.  The fuel utilization factor is related to the current drawn from the cell using equation (3.12) 

𝐼3 =  (𝑖𝑚𝑎𝑥 −  𝐼2). 𝜂𝑓     (3.12) 

where, 𝑖𝑚𝑎𝑥 represents the maximum current density developed on the electrodes. Using 

equations (3.11) and (3.12) the equation for the cell voltage is obtained as 

𝐸 =  𝐸𝑆𝑂𝐹𝐶 =  
𝐸𝑚𝑎𝑥− 𝑖𝑚𝑎𝑥.𝑅1.𝜂𝑓

𝑅1
𝑅2

(1−𝜂𝑓)+1
     (3.13) 

The maximum current drawn is a function of the fuel flow rate and is given by (3.14) 

𝑖𝑚𝑎𝑥 =
2.𝐹.𝑛𝐻2,𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

𝐴𝑐𝑒𝑙𝑙
     (3.14) 

where, 𝑛𝐻2,𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 is the equivalent fuel molar flow rate and 𝐴𝑐𝑒𝑙𝑙 is the total cell surface area. 

From equation (3.13) it is clear that the SOFC voltage is dependent on five main 

parameters, which are described in the following sections. 
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3.2.1 Maximum Voltage (Emax) 

  This is the Nernst voltage and is calculated solely based on the physical parameters of 

temperature and pressures of both fuel and air in the container as given by equation (3.3). 

3.2.2 Maximum Current Density (imax) 

Maximum current density, as given by equation (3.14), correlates the current from the fuel 

cell to the fuel flow rate. 

3.2.3 Fuel Utilization Factor (𝜼𝒇) 

Fuel utilization factor is calculated based on the inlet and outlet fuel flow rates and is 

represented by equation (3.15) 

𝜂𝑓 = 1 − 
𝑛𝐻2,𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡,𝑜𝑢𝑡

𝑛𝐻2,𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡,𝑖𝑛
     (3.15) 

where, 𝑛𝐻2,𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡,𝑜𝑢𝑡 is the outet fuel flow rate and 𝑛𝐻2,𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡,𝑖𝑛 is the inlet fuel flow rate. 

3.2.4 Area Specific Ionic Resistance 

The area specific ionic resistance is the sum of the individual ionic resistances of the 

electrodes and the electrolyte and is expressed as: 

𝑅1 =  
𝛿𝑒

𝜎𝑒
+

𝛿𝑎

𝜎𝑎
+

𝛿𝑐

𝜎𝑐
     (3.16) 

where, δe, δa and δc represent the thickness of electrolyte, anode and cathode respectively. 

The ionic conductivity of electrolyte, anode and cathode are represented by σe, σa and σc 

respectively. For a solid-oxide electrolyte, the ionic conductivity is temperature dependent and is 

expressed as: 
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𝜎𝑒 = 𝜎0. 𝑒
−𝐸𝑎𝑐𝑡

𝑅.𝑇       (3.17) 

where, 𝜎0 and Eact are material dependent  factors. Extensive data for the same is available from 

various research publications [52]. 

3.2.5 Area Specific Electronic Resistance  

Solid oxides are not only ionic conductors but also electronic conductors which gives rise 

to electronic resistance. Electronic resistance does not have a significant impact on cell voltage or 

fuel utilization rate and it can be calculated as: 

𝑅2 =  
𝛿𝑒

𝜎2
      (3.18) 

where, 𝛿𝑒 is electrolyte thickness and 𝜎2 is electronic conductivity. Electronic conductivity can be 

further expressed as a function of the open circuit voltage (EOCV) and the Nernst voltage as given 

in (3.19) 

𝜎2 =  𝛿𝑒.
𝐸𝑚𝑎𝑥− 𝐸𝑂𝐶𝑉

𝑅1.𝐸𝑂𝐶𝑉
     (3.19) 

where, substituting 𝜂𝑓 = 0 in equation (3.13), EOCV can be defined as  

𝐸𝑂𝐶𝑉 =  
𝐸𝑚𝑎𝑥
𝑅1
𝑅2

+1
     (3.20) 

As is the case of ionic conductivity, electronic conductivity is also a material dependent 

property and can be obtained accurately from published results for solid oxides [52]. The 

conductivity properties of solid oxide materials is a field of intense research and has been used 

extensively in this thesis to calculate various parameters required to develop the SOFC model [53]-

[56]. 
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In order to complete the fuel cell model, it was necessary to gather relative data regarding 

the cell’s material properties. Using the material properties of an experimental SOFC, as used by 

Virkar et al. [57], the SOFC model was duly developed. The parameters are presented in detail in 

Appendix A.  

 

3.3 DC Properties of Fuel Cell 

The DC properties of a fuel cell are described by its polarization (voltage versus current 

density) and power density curves. Current density refers to the spread of electrons over the 

electrode surface. As opposed to the classical approach of fuel cell modeling, the method proposed 

by Santerelli et al. [51] has the advantage of concentrating solely on the material losses for solid 

oxides and hence increasing the accuracy of the model and eliminating the need to calculate losses 

separately. The adopted SOFC model also accounts for temperature, pressure and fuel/air flow 

variations with regards to material losses and hence, the same SOFC model can effectively 

estimate the DC behaviour of SOFCs of varying electrode/electrolytic mediums. In order to 

validate the SOFC model, the results from the developed model are compared against experimental 

results, as published by Virkar et al. [57]. The fuel cell is simulated at 800ºC under constant fuel 

pressure, fuel and air flow rates.  Figures 3.4 (a) and 3.4 (b) compares the obtained results against 

the results in [57]. The simulated result, as obtained from the fuel cell model is depicted by the 

blue line, while the experimental result, as published by Virkar et al. [57] is shown by the red dots. 
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Figure 3.4 (a): Polarization Curve of SOFC at 800°C 

 

Figure 3.4 (b): Power Density Curve of SOFC at 800°C 
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The polarization curve (Figure 3.4 (a)) shows that the simulated results closely follow the 

experimental results. This is true for the power density curve (Figure 3.4 (b)) as well. Hence, the 

developed SOFC model is proven valid. The validity of the fuel cell model is further tested at three 

different temperatures. At different temperatures, the area specific ionic and electronic resistances 

being temperature-dependent vary and hence, result in the polarization and power density curves 

shown in Figures 3.5 (a) and 3.5 (b). 
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Figure 3.5 (a): Polarization Curve of SOFC at Three Different Temperatures 

 

Figure 3.5 (b): Power Density Curve of SOFC at Three Different Temperatures 
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  From the polarization curve, shown in Figure 3.5 (a), it can be concluded that the fuel cell 

produces maximum voltage at high temperature and low current density. It can also be concluded 

that the fuel cell is capable of producing voltage for larger values of current density only at high 

temperatures. The power density curve (Figure 3.5 (b)), shows that at higher temperatures the fuel 

cell produces maximum power at high current density. Hence, the modeled SOFC is capable of 

reacting to temperature changes and reproducing the fuel cell’s actual behavior effectively.  

 

3.4 AC Properties of the Fuel Cell 

In order to examine the AC properties of the fuel cell a complete fuel cell model that 

describes the behavior of ripples on the fuel cell output current needs to be developed. Though a 

fuel cell is a DC device, it exhibits nonlinear behavior due to the presence of current ripples. The 

nonlinear behavior is a result of the interaction between the current ripples and a phenomenon that 

gives rise to charge double layer or a double-layer capacitance. The double-layer capacitance is 

described below. 

3.4.1 Double-layer Capacitance 

 In electrochemical systems, the charge double-layer is formed due to two phenomena [49]. 

The first is the diffusion of gaseous fuel across the electrolytic medium, which is similar to the 

diffusion effect in semiconductors. The second and the most predominant phenomenon is the 

presence of charge difference around the electrodes, due to the reaction of electrons with the 

electrodes and the ions in the electrolyte, in the presence of an applied voltage. The probability of 

the reaction depends on the density of the charges, which is determined by the fuel utilization ratio, 
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which in turn is directly proportional to the produced current. With high density of charges higher 

current can be produced. However, the accumulation of charges causes an abrupt change in the 

fuel cell output voltage, which is termed as “activation overvoltage” [58]. The activation 

overvoltage is a load sensitive parameter and explains the difference in behavior once the fuel cell 

is connected to a nonlinear load. 

The double-layer phenomenon is further explained by segregating the cause of the double-

layer into two electrochemical processes. The first electrochemical process is termed as the 

Helmholtz double-layer and is represented by a capacitance caused when the electrodes release 

ions which are repelled by the co-ions, while being attracted by the oppositely charged ions on the 

other electrode. This forms a charge double-layer while being separated by a solid electrolyte [59]. 

The capacitor value can be evaluated using equation (3.21): 

𝐶𝐻 =  𝜀
𝐴𝑒

𝑑𝑒
     (3.21) 

where, 𝜀 is the electrical permittivity of electrode (between 1 to 60 F/cm), Ae is the electrode 

surface area (cm2) and 𝑑𝑒 is the distance between the electrodes (cm). 

The second electrochemical process is called the diffuse double-layer in which, the change 

in concentration of the counter ions near a charged surface follows the Boltzmann distribution. 

The concentration of anions and cations decreases with distance from the surface of the electrolyte-

electrode contact. This phenomenon is called the Gouy-Chapman double-layer [35] and is given 

in equation (3.22): 

𝐶𝐺𝐶 = 4𝑒√
𝜋𝜀𝜌𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒

𝑘𝐵𝑇
 [𝑉0]𝐵𝑢𝑙𝑘(1 − [𝑉0]𝐵𝑢𝑙𝑘)    (3.22) 
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where, e is the elementary charge (1.60217657 × 10-19 coulombs), ρelectrode is the density of 

electrode (cm-6), [v0]Bulk is molar fraction  of oxygen vacancies (0.07835), kB is Boltzmann’s 

constant (1.3806488×10−23 J/K).  

The two charge layers are in series and the overall capacitance can be calculated as [60]: 

1

𝐶𝑂
=  

1

𝐶𝐻
+

1

𝐶𝐺𝐶
     (3.23) 

The double-layer capacitance is calculated as a constant value using equations (3.21)-

(3.23). The double-layer capacitance acts as a super capacitor and stores charge. The circuit 

diagram in Figure 3.3 depicts the losses in terms of ionic and electronic resistance. For a solid 

oxide fuel cell, the double-layer capacitance is a phenomenon attributed to the material properties 

of the electrode and the phenomenon of total charge transfer resistance. The total charge transfer 

is an electrochemical property of the electrolyte/electrode pair and can be defined by: 

𝑅𝑐𝑡 =
𝑅𝑇

𝑛𝐹𝑖𝑚𝑎𝑥
      (3.24) 

where, R is Gas Constant (8.315 * 10-5 m3BarK-1mol-1), F is Faraday’s Constant (96485 Cmol-1) 

and n is the number of electrons.  

 Condensing Figure 3.3 to a single voltage source, inclusive of all losses, the double-layer 

capacitance can be modeled in series with the voltage source. This has been given in Figure 3.6. 
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Figure 3.6: Equivalent Fuel Cell Circuit Inclusive of Double-layer Capacitance 

If 𝑖𝑟𝑖𝑝𝑝𝑙𝑒  is the ripple current, ESOFC is the SOFC voltage (as given by equation (3.13)), and 

Yo  is the total admittance due to the double-layer capacitance and the total charge transfer 

resistance, the capacitive voltage is given by: 

𝐸𝐶 =  
𝑖𝑟𝑖𝑝𝑝𝑙𝑒

𝑌𝑂
    (3.25) 

where,  

𝑌𝑂 =  
1

𝑅𝑐𝑡
+  𝑗𝜔𝑟𝐶𝑂     (3.26) 

and,  

𝜔𝑟 = 2𝜋𝑓𝑟𝑖𝑝𝑝𝑙𝑒     (3.27) 
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where, fripple is the ripple frequency. 

Thus, the final fuel cell voltage is given as: 

𝐸𝐹𝑖𝑛𝑎𝑙 =  𝐸𝑆𝑂𝐹𝐶 −  𝐸𝐶     (3.28) 

3.4.2 Behavior of Fuel Cell with Ripple Currents 

The presence of this capacitive element is more pronounced when the fuel cell is connected 

to a power stage that uses switching devices, as the ripples produced by these devices propagate 

to the fuel cell, as explained by equation (3.25). This causes the cell voltage to fluctuate. The 

presence of these ripples also causes a phase delay between the fuel cell voltage and current signal.  

Figure 3.7 shows the effect of ripple currents at three frequencies on the polarization curve 

of a unit fuel cell. Three ripple components have been superimposed on the DC fuel cell current 

of the modeled SOFC. Though the ripple components have different frequencies, they have the 

same magnitude, which is 25% of the maximum DC value.  
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Figure 3.7: Polarization Curve of SOFC under Three Different Ripple Frequencies 

In the presence of the ripple components, the voltage magnitude has decreased. The 

hysteresis trajectory denotes the presence of a phase difference between the current and voltage 

components. The total admittance, due to the double-layer capacitance and total charge transfer 

resistance is related to the frequency of the ripple superimposed on the fuel cell current. From 

equation (3.26) it is clear that the admittance increases at higher frequencies, which in turn 

decreases the impedance offered by the double-layer capacitance. This results in reduced phase 

difference between the voltage and current components. This is exhibited by the hysteresis 

trajectory in Figure 3.7 which shows that the phase angle has greatly reduced for the current signals 

containing ripple components of 240 and 360 Hz.  The decrease in phase difference reduces the 

trajectory slope and the amplitude of the hysteresis trajectory. The reduced slope angle allows for 

maximum power extraction, as the hysteresis trajectory then starts to resemble a straight line, 

which depicts ideal DC operation. It can be concluded that with increasing ripple frequency, the 
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impedance should greatly reduce and this should increase the magnitude of voltage that can be 

produced by the fuel cell. 

In terms of power, the amount of power that can be extracted from the fuel cell is affected 

by both magnitude and frequency of the propagating ripple. Figure 3.8 shows the effect of ripple 

currents on the extracted power from the fuel cell. The extracted power is expressed as a percentage 

of the maximum DC power, which for the fuel cell considered is 1.8 W/cm2. 

  

Figure 3.8: Effects of Current Ripple on Power Extraction 

The curves in Figure 3.8 indicate that along with the frequency of current ripples, the 

magnitude of the ripples can also have an impact on the fuel cell. The magnitude of ripple current 

has a more pronounced effect at lower frequencies as compared to higher frequency ripple current. 

This is turn confirms the analysis conducted on the Lissajou curve in Figure 3.7. 

The prolonged presence of low frequency ripples corrodes the electrolyte and lowers the 

lifespan of the fuel cell [32], [35], [61]. Low frequency ripples are more harmful for the fuel cell 
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as compared to high frequency ripples. Biesheuvel et al. [33] conducted a study on the physical 

degradation of fuel cells due to the presence of ripple current and concluded that lower frequency 

current ripples wear down the electrolytic medium and reduce the cell lifespan while interfering 

with the cells ability to operate at constant pressure and temperature. However, minimal or no 

signs of electrolytic degradation are observed if the frequency of the current ripples is high. 

 

3.5 Summary 

The fundamentals of fuel cell modeling are the same for various categories of fuel cells. 

The cell characteristics are distinct due to the materials used in its construction. Though the 

classical approach to fuel cell modeling is accurate in predicting the behavior of an actual fuel cell 

under constant cell parameters, it does not provide an insight into the behavior of the fuel cell if 

any of the cell parameters are varied. The fuel cell model used in this work overcomes this 

drawback and effectively predicts the cells behavior under constantly varying cell parameters. In 

order to achieve this accuracy the fuel cell model is based on the individual material losses.  The 

fuel cell model is further extended to include the effects of the double-layer capacitance that results 

in nonlinear behavior due to ripple propagation. The double-layer capacitance is described by two 

separate electrochemical processes which are largely material dependent. Once the capacitance is 

incorporated into the fuel cell model, it becomes possible to observe the effect of ripple current on 

the maximum power extraction of the fuel cell.  The model confirms that the propagating ripples 

produce a phase difference between the fuel cell voltage and current components and degrades the 

cell’s power rating. It is observed that the higher the ripple frequency, the less impact the ripples 

have on the maximum power extraction.   
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Chapter 4 

Ripple Analysis of Solid Oxide Fuel Cell 

As discussed in Chapter 3, the phenomenon of double-layer capacitance explains the 

propagation of current ripples in the fuel cell, while the literature review presented in Chapter 2 

confirms that the presence of ripples has detrimental effects on the fuel cell both electrically and 

from the perspective of the cell’s lifespan. In order to appreciate fully the electrical effects, it is 

important to concentrate on the behavior of the fuel cell waveforms, when it is connected to a 

nonlinear load through a DC-DC converter and inverter. In this chapter, a fuel cell power system 

is discussed with detailed analysis of each stage of the power circuit in the presence of a nonlinear 

load. The main focus of this chapter is to identify the presence of propagating ripples and the effect 

these ripples have on the fuel cell’s voltage and current waveforms. 
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4.1 Fuel Cell Power System 

4.1.1 Stacked SOFC  

A single unit SOFC can generate a maximum of 1 V at a current density of 0.1 A/cm2, 

which is a very low value to power any electrical circuit. The fuel cell power can be increased by 

connecting single units of fuel cell in series or parallel. This process is termed as stacking. Since 

the research carried out in this thesis is based on simulations, an electrical stacking model using 

series and parallel connections of single units of fuel cell is used. Using a series connection of 48 

single unit fuel cells, an SOFC fuel cell with an output voltage of 46.5 V is obtained. Nine units 

of the series connection are then connected in parallel to provide a fuel cell output current of 8.6 

A.  The SOFC fuel cell output voltage and current were arbitrarily chosen to represent a 400 W 

fuel cell. It is assumed that the physical parameters, such as temperature, fuel pressure, fuel volume 

and air volume are the same and kept constant in each single unit fuel cell so that the stacked fuel 

cell voltage and current remain constant. The physical parameters of the modeled SOFC stack are 

the same as the unit cell modeled in Chapter 3, as given in Appendix A. The stacked model was 

found to be an adequate numerical model for the purpose of investigating ripple current. However, 

it should be pointed out that stacking for an SOFC is a complex process, as the fuel cell’s container 

should also be capable of withstanding the high temperature required for the electrochemical 

process while being inert to the chemical activity within it [62].  

4.1.2 SOFC Power Circuit 

The stacked SOFC can be implemented for various applications such as standalone power 

systems, automotive power circuits and part of a hybrid power system along with other renewable 
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energy sources. As the focus of this chapter, is to identify the exact nature of ripple propagation, a 

standalone power system is considered for further analysis. In most practical standalone power 

system scenarios, the fuel cell is expected to power AC devices of voltage ratings higher than 46 

V. Though the fuel cell voltage can be increased by further increasing the stack size, it is more 

convenient to use a boost converter. Following the boost converter, a DC-AC converter (inverter), 

is required to convert the cell DC voltage to AC and supply it to the required linear or nonlinear 

load. Figure 4.1 shows the circuit of a typical standalone fuel cell power circuit. Each power stage 

is described in the following sections followed by a waveform analysis.  

 

Figure 4.1: Circuit for Ripple Analysis 

4.1.3 DC-DC Boost Converter 

The Boost Converter is a DC-DC power converter with an output voltage greater than its 

input voltage [63]. It belongs to the class of switched mode power supplies.  

The basic topology of the DC-DC boost converter is shown in Fig. 4.2. The inductor (LDC) 

stores energy when the switch (QDC) is “ON.” The diode (D), being reverse biased, isolates the 
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inductor from the output stage. When the switch is turned “OFF”, the energy stored in the inductor 

and of the source is transferred to the output capacitor, resulting in an output voltage higher than 

the input voltage. This operation is dependent on the duty ratio (d) of the switching signal, which 

is defined as the ratio of the ON duration of the switch to the time period of the switching cycle. 

 

Figure 4.2: DC-DC Boost Converter 

The converter operation is directly related to the “duty ratio” of the switching signal. 

Referring to Figure 4.3, the duty ratio can be numerically expressed as: 

𝑑 =  
𝑡𝑜𝑛

𝑇𝑠
     (4.1) 

 

Figure 4.3: Definition of Duty Ratio 

where, ton is the time period during which the switch QDC is “ON” while Ts is the time period for 

one switching cycle. 
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If V2 is the output voltage and V1 is the input voltage, then the input and output voltages are 

related to the duty ratio (d) as:  

𝑉2

𝑉1
=  

1

1−𝑑
     (4.2) 

In general, DC-DC converters are operated at higher frequencies. This allows the use of 

physically smaller values of inductor and filter capacitors. Hence, the frequency and parameter 

selection are both considered while implementing the boost converter. In this thesis, an IGBT boost 

converter was implemented.  

The inductor and capacitor values were calculated by using the required duty cycle and 

input/output voltage characteristics [63]. The input inductor can be calculated as: 

𝐿𝐷𝐶 =  
𝑉1∗(𝑉2−𝑉1)

∆𝐼2∗𝑓𝐷𝐶∗𝑉2
     (4.3) 

where, LDC is the input inductor, fDC is the switching frequency and ΔI2 is the estimated 

current ripple. 

Similarly, the output capacitor is calculated as: 

𝐶𝐷𝐶 =  
𝑖2∗𝑑

𝑓𝐷𝐶∗∆𝑉2
     (4.4) 

where, CDC is the output capacitor and ΔV2 is the desired output voltage ripple. 

The estimated passive parameters are recorded along with the voltage/current and 

switching parameters in Table 4.1.  

 



39 
 

      Table 4.1: DC-DC Boost Converter Parameters 

Parameter Value 

LDC 622 mH 

CDC 2.2 mF 

V1 46.5 V 

ii 8.6 A 

Duty Cycle (d) 0.535 

Switching Frequency 1000 Hz 

 

4.1.4 Inverter 

The inverter converts DC power to AC power. Inverters are classified based on the output 

waveform, which can be square, quasi-sine or sinusoidal [64]. Since a sine wave output is used by 

most electrical devices, the sine wave inverter is the most preferred design. A square wave inverter 

output can be converted to a sine output using suitable passive filters.  

Figure 4.4 shows a single-phase full bridge inverter. Using bipolar PWM switching 

scheme, the diagonally opposite switches are switched in pairs. The bipolar switching pattern 

produces an output voltage which ranges from zero to +V2 and zero to –V2. 
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Figure 4.4: Single Phase Full Bridge Inverter 

If V2 is the input voltage, 

Voltage output from A: 

𝑣𝑂𝐴 =
1

2
 𝑉2     (4.5) 

Voltage output from B: 

𝑣𝑂𝐵 =  −
1

2
𝑉2 =  −𝑣𝑂𝐴     (4.6) 

The sum total output voltage is given by: 

𝑣3 = 𝑣𝑂𝐴 −  𝑣𝑂𝐵 =  2𝑣𝑂𝐴     (4.7) 
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With the use of LC filter, the square wave output of the inverter is converted to a sinusoidal 

signal. If v4 is the sinusoidal output of the inverter, the fundamental component of the output 

voltage (𝑣41)is given by: 

𝑣41 =  𝑣4 = √2𝑉4𝑠𝑖𝑛𝜔1𝑡     (4.8) 

where,  ω1 is the fundamental frequency and V4 is the RMS voltage. 

In the presence of a nonresistive load, the output current would be out of phase with the 

output voltage. If 𝜙 is the phase angle by which the current is out of phase with respect to the 

output voltage, then the fundamental component of the output current (𝑖41)is given by: 

𝑖41 =  √2𝐼4sin (𝜔1𝑡 −  𝜙)     (4.9) 

where, I4 is the RMS inverter current. 

Assuming no power is lost or stored by the filter, the input power should be equal to the 

output power. Hence, 

𝑉2𝑖2
∗ =  𝑣41𝑖41     (4.10) 

where,  𝑖2
∗ is the DC side current that consists of the DC component and ripple frequencies. 

Using equations (4.8)-(4.10), the input current is given by: 

𝑖2
∗ =  𝐼2 −  √2𝐼22cos (2𝜔1𝑡 − 𝜙)     (4.11) 

where,  

𝐼2 =  
𝑉4𝐼4

𝑉2
𝑐𝑜𝑠𝜙     (4.12) 

and 
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𝐼22 =  
1

√2

𝑉4𝐼4

𝑉2
     (4.13) 

From equation (4.11) it is observed that, in the presence of a nonresistive load, the DC 

source current of the inverter, also referred to as the DC link current, is composed of a DC signal 

(I2) and the second harmonic component of the inverter output current. The second order 

component is referred to as the source ripple and is usually smoothed out by a source capacitor. 

The details of such nonlinearity in inverters have been extensively discussed in the literature for 

single phase inverter systems [65]-[68]. As concluded by Cross et al. [69], the DC link current is 

present for both nonlinear and unbalanced loads.  

 Other than passive filters, the DC link current can be minimized by using control schemes 

to control the output of the inverter so that minimal DC link current is produced [70]. Ripple 

propagation due to nonlinear or unbalanced load is not a phenomenon that is only confined to fuel 

cells. Most renewable energy sources exhibit similar ripple propagation [71]-[74]. 

As explained in the previous chapter, due to the double-layer capacitance, the propagating 

second harmonic component, from an inverter, can degrade the cell’s performance both physically 

and electrically. A full-bridge single-phase inverter has been implemented to enable the study of 

ripple propagation for the modeled SOFC. Table 4.2 records the inverter parameters as used in this 

thesis. 
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     Table 4.2: Inverter Parameters 

Parameter Value 

Lf 2 mH 

Cf 30 μF 

V2 100 V 

𝑖2 4 A 

SPWM 

Modulating = 60 Hz 

Carrier = 1000 Hz 

 

4.1.5 Full-bridge Diode Rectifier 

In this thesis, a full-bridge diode rectifier has been used as a nonlinear load. The rectifier 

is followed by a parallel connection of a capacitor and a resistor as the load of the rectifier. The 

RC parameters are given in Table 4.3. 

          Table 4.3: Nonlinear Load Parameters 

Load Magnitude RC Values 

160 Watts RLoad = 66 Ω; CLoad = 10µF 

240 Watts RLoad = 42 Ω; CLoad = 10µF 

400 Watts RLoad = 23 Ω; CLoad = 10µF 
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4.2 Performance of the Fuel Cell System 

The fuel cell system, as simulated in MATLAB/Simulink environment, is used to 

determine the extent of ripple propagation for a resistive load and a nonlinear load.  

4.2.1 Fuel Cell System under Resistive Load 

The fuel cell system with a resistive load is shown in Figure 4.5. A resistive load of 160 

Watts is selected. 

 

Figure 4.5: The Fuel Cell System with a Resistive Load 

Figure 4.6 (a) shows the steady state voltage waveforms while Figure 4.6 (b) shows the 

steady state current waveforms at various stages in the system. 
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Figure 4.6 (a): Voltage Waveforms under Resistive Load of 160 W  
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Figure 4.6 (b): Current Waveforms under Resistive Load of 160 W 
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Upon observing the voltage waveforms, the fuel cell voltage appears to be devoid of any 

harmonic ripples and shows an almost ideal DC waveform. The boost converter voltage appears 

to have a low frequency ripple superimposed on top of the actual waveform.  

As expected, the boost converter output current contains harmonics at twice the frequency 

of the inverter output current. This shows the presence of second harmonic components overlaid 

on top of the high frequency current. The boost converter output capacitor filters out high 

frequency currents but, some of the second order harmonic currents appear at the input of the boost 

converter, which propagates to the fuel cell source. Hence, the fuel cell current, which should 

ideally be a DC signal, contains ripples. Since the magnitude of the current ripples is low, they are 

not observed on the fuel cell voltage waveform. 

When analyzing the effects of ripple propagation, it is better to analyze the current 

waveforms as they would clearly reflect the presence of harmonics and would show deviation from 

ideal behavior. Figure 4.7 shows the frequency spectrum analysis of the fuel cell current with 

resistive load.  
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Figure 4.7: Harmonic Analysis of Fuel Cell Current under Resistive Load 

Other than the second harmonic, measured at 0.009 A, minor beat frequencies between the 

second harmonics and the switching frequency are also observed. Though the magnitude of the 

ripples on the fuel cell current is very low, it demonstrates the phenomenon of ripple propagation 

in a fuel cell system. 

4.2.2 The Fuel Cell System under Nonlinear Load 

The resistive load in Figure 4.5 is replaced with a nonlinear load, as shown in Figure 4.1. 

In this instance, a full-bridge rectifier, followed by an RC load of 160 W, is used to emulate a 

nonlinear load. The parameters of the nonlinear load are specified in Table 4.3. Unlike a resistive 

load, nonlinear loads draw current of adequate harmonic contents and reactive power, with a crest 

factor even lower than the sine wave output of the inverter or AC mains [75]. This causes 

magnitude variation as well as distorting the shape of the source current to the nonlinear load. As 
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the magnitude of the load increases, the amount of current drawn by the load increases while higher 

magnitudes of harmonic and reactive components are added to the AC source. Due to this, the AC 

source current appears as a pulsed waveform. 

The first nonlinear load simulation is for 160 W. Figure 4.8 (a) shows the voltage 

waveforms, while the current waveforms are shown in Figure 4.8 (b). 
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Figure 4.8 (a): Voltage Waveforms under Nonlinear Load of 160 W 
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Figure 4.8 (b): Current Waveforms under Nonlinear Load of 160 W 
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 The fuel cell voltage in Figure 4.8 (a) clearly shows the presence of a low frequency 

component superimposed on the DC waveform, causing the slightly sinusoidal appearance. This 

is once again observed in the boost converter output voltage.  

The inverter load current shows distortions that are caused by the presence of the nonlinear 

load. The harmonic distortions are also present in the boost converter current and the fuel cell 

current waveforms. The nonlinear load has greatly reduced the magnitude of the fuel cell current. 

This can be explained by the equations in section 4.1.4, which describe the overall DC source 

current as comprising a DC component and a ripple component. This is confirmed by the harmonic 

analysis of the fuel cell current, shown in Figure 4.9. 

 

Figure 4.9: Harmonic Analysis of Fuel Cell Current under Nonlinear Load of 160 W 

The harmonic analysis shows that the fuel cell current contains a 120 Hz harmonic current 

and other minor frequency harmonics, which are less than 0.3 A in magnitude. The overall fuel 
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cell current is reduced to 7.5 A and the second harmonic component is 20.18 % of the DC 

component.  

In order to determine the extent of ripple propagation, the load should be varied in terms 

of magnitude and frequency. This is discussed in the following section (Section 4.3). 

 

4.3 Effect of Varying Load 

4.3.1 Magnitude Variation 

The effect of magnitude variation is studied by increasing the nonlinear load to 240 Watts 

and 400 Watts. The simulation is carried out for each load condition using the circuit diagram as 

shown in Figure 4.1. The load parameters are given in Table 4.3. 

4.3.1.1 Load value of 240 Watts 

Figure 4.10 (a) shows the system voltage waveforms for steady state conditions. The current 

waveforms are shown in Figure 4.10 (b). 
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Figure 4.10 (a): Voltage Waveforms under Nonlinear Load of 240 W 
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Figure 4.10 (b): Current Waveforms under Nonlinear load of 240 W 
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Though the fuel cell voltage waveform does show the presence of ripples, the magnitude 

of ripples is quite small. Due to this, the magnitude of fuel cell voltage has not altered a lot. The 

boost converter voltage also exhibits a low frequency ripple superimposed over the DC signal, but 

once again the ripple magnitude is not very high. 

The nonsinusoidal shape of the waveform is explained by the increased nonlinear load 

magnitude. Since nonlinear loads draw currents in pulses, the increase in load magnitude increases 

the amount of current drawn by the load. The load is also responsible for adding harmonic current 

to the inverter. With higher harmonic content, the inverter current waveform appears only partially 

sinusoidal. Due to the increase of output harmonics there is a marked phase difference between 

the voltage and current waveforms. This causes an increase in DC side harmonics and their 

consequent propagation to the fuel cell.  

The magnitude of propagating ripples is evidently higher in the fuel cell current as 

compared with a nonlinear load of 160 W. This is confirmed by the reduced magnitude of fuel cell 

current and is better explained by means of harmonic analysis. 
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Figure 4.11: Harmonic Analysis of Fuel Cell Current under Nonlinear Load of 240 W 

Harmonic analysis, as shown in Figure 4.11 reveals a higher magnitude of second 

harmonic. At 240 W, the second harmonic is 33.27 % of the DC component. 

4.3.1.2 Load value of 400 Watts 

The nonlinear load is increased to 400 W. The voltage waveforms are given in Figure 4.12 

(a), while the current waveforms are given in Figure 4.12 (b). 
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Figure 4.12 (a): Voltage Waveforms under Nonlinear Load of 400 W 
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Figure 4.12 (b): Current Waveforms under Nonlinear Load of 400 W 
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The voltage waveforms differ marginally as compared to the previous case (Section 

4.3.1.2). The low frequency ripples are clearly visible on both the boost converter and fuel cell 

voltages, but are not significantly high. 

Based on the discussion on harmonic distortion caused by nonlinear loads, the shape of the 

inverter current waveform can be attributed to the presence of high magnitude harmonics, at 

frequencies other than the fundamental, causing evident phase difference between the current and 

voltage waveforms. This explains the reduced fuel cell current magnitude. The DC and other 

harmonic contents of fuel cell current are studied through harmonic analysis, as shown in Figure 

4.13. 

 

Figure 4.13: Harmonic Analysis of Fuel Cell Current under Nonlinear Load of 400 W 

 The harmonic analysis shows a second harmonic of 3.82 A, which is 44.37% of DC value. 

This is much higher than the harmonic measured for 160 and 240 W.  
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Table 4.4 records the DC, second harmonic component of the fuel cell current and the 

amount of power extracted from the fuel cell, under three nonlinear load conditions. 

Table 4.4: DC and Second Harmonic Magnitudes of Fuel Cell Current under Three Nonlinear 

Loads 

Load Value (Watts) Harmonic Order Mag. (A) %DC Fuel Cell Power (Watts) 

160 

DC 8.5 100 

338.78 

2nd 1.74 20.18 

240 

DC 8.46 100 

335.22 

2nd 2.86 33.27 

400 

DC 8.4 100 

310.21 

2nd 3.82 44.37 

 

 Analyzing Table 4.4, it can be concluded that an increase in load magnitude 

increases ripple propagation and lowers the overall fuel cell current. As indicated by the power 

levels, an increase in the second harmonic component reduces the overall power that can be 

extracted from the fuel cell. 

4.3.2 Frequency Variation 

In the previous sections, the inverter is operated at 60 Hz. As the effect of ripple 

propagation is also dependent on the operating frequency of the inverter (equation (4.11)), it is 

important to analyze the effects of frequency variation on ripple propagation.  

For this purpose, the inverter is operated at frequencies of 120 and 240 Hz and the ripple 

propagation is assessed in the following sections (Section 4.3.2.1 & 4.3.2.2). A load of 160 W is 

maintained for both frequency variations. 
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4.3.2.1 Frequency of 120 Hz 

 The voltage waveforms are shown in Figure 4.14 (a), while the current waveforms are 

shown in Figure 4.14 (b). 
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         Figure 4.14 (a): Voltage Waveforms at Inverter Operating at 120 Hz under Nonlinear Load of 

160 W 
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Figure 4.14 (b): Current Waveforms at Inverter Operating at 120 Hz under Nonlinear Load 

of 160 W 
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 The voltage waveforms, for fuel cell and boost converter, show the presence of a low 

frequency ripple, but as compared to waveforms observed in Section 4.2.2, the ripples are very 

low in magnitude. 

The inverter current displays slight distortions, and when compared with the voltage 

waveform, a small phase difference is observed. The fuel cell current shows minimum distortions 

and the current magnitude is higher than the one observed in Section 4.2.2. The percentage of 

harmonics and DC components is further analyzed using harmonic analysis, as shown in Figure 

4.15. 

 

Figure 4.15: Harmonic Analysis of Fuel Cell Current under Nonlinear Load of 160 W and 

Operated at 120 Hz 

 The frequency spectrum analysis shows a second harmonic component of 0.53 A, which is 

6.18 % of the DC value. The magnitude of the beat frequencies is lower than 0.02 A.  
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4.3.2.2 Frequency of 240 Hz 

 The voltage and current waveforms are shown in Figures 4.16 (a) and (b) respectively. 
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                 Figure 4.16 (a): Voltage Waveforms at Inverter Operating at 240 Hz under Nonlinear Load 

of 160 W 
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               Figure 4.16 (b): Voltage Waveforms at Inverter Operating at 240 Hz under Nonlinear 

Load of 160 W 
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           The fuel cell and boost converter voltage waveforms hardly show any ripples and appear 

almost like DC signals.  

The inverter current appears purely sinusoidal and seems in phase with the inverter voltage. 

Due to this, minimal harmonics are present in the fuel cell current. Other than reduced ripple 

components, the fuel cell current magnitude has also increased. Harmonic analysis is used to 

confirm this. 

 

Figure 4.17: Harmonic Analysis of Fuel Cell Current under Nonlinear Load of 160 W and 

Operated at 240 Hz 

 The harmonic analysis shown in Figure 4.17 shows a second harmonic component of 0.20 

A, which is 2.32% of the DC value. Other than the second harmonic, a single dominant beat 

frequency at a value lower than 0.02 A is also observed. 

 The harmonic contents of the fuel cell current under the three different frequencies are 

recorded in Table 4.5. Along with harmonic content, Table 4.5 also shows the effects of ripple 
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propagation on the amount of power that can be extracted from the fuel cell for the three inverter 

frequencies. 

Table 4.5: DC and Second Harmonic Magnitudes of Fuel Cell Current for Three Inverter 

Switching Frequencies 

Frequency of 

Inverter (Hz) 

Harmonic 

Order 

Magnitude 

(A) 

Percentage 

of DC (%) 

Fuel Cell Power 

(Watts) 

60 

DC 8.50 100 

338.78 

2nd 1.74 20.18 

120 

DC 8.55 100 

395.25 

2nd 0.53 6.18 

240 

DC 8.55 100 

399.44 

2nd 0.20 2.32 

 

 Analyzing Table 4.5 it can be concluded that an increase in switching frequency 

can effectively reduce ripple propagation by pushing the inverter load harmonics to higher 

frequencies. Consequently, higher inverter switching frequency effectively increases the amount 

of power that can be extracted from the fuel cell. 

However, high inverter switching frequency can result in higher switching losses. Hence, 

the choice of switching frequency should be decided based on the type of load that is being used. 

For the purpose of investigation, in this thesis, an inverter switching frequency of 60 Hz has been 

maintained.  
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4.7 Summary 

 

Waveform and harmonic analysis are used to investigate ripple propagation in terms of 

magnitude and frequency. Under nonlinear load conditions, the ripples are more pronounced. With 

increasing load values, the propagating ripples also increase in magnitude. However, if the load is 

operated at higher frequencies, the magnitude of the propagating ripples decreases. The biggest 

concern for fuel cells is the presence of lower order harmonics. For a single-phase system, the 

second order harmonic of the inverter operating frequency is the most evident DC source 

harmonic, which propagates to the fuel cell and causes both physical and electrical damage. It can 

be expected that a high power load will always be present and hence, the need to reduce or 

eliminate the propagating ripples from the fuel cell is important. This is the subject of the 

investigation presented in the next chapter.  
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Chapter 5 

Fuel Cell System with Active Power Filter 

In the previous chapter, the source of harmonic propagation in a fuel cell system was 

identified. The presence of harmonics is more pronounced under nonlinear loads and low 

frequency operation of the inverter. In order to reduce the propagating ripples, large passive filters 

can be installed at the fuel cell output.  A passive filter cannot respond to dynamic load changes 

and can also be the cause of harmonics due to resonance or improper filter design [76]. An active 

power filter is proposed as a solution to reduce the propagating ripples. In this chapter, the 

operation of active power filter and its implementation for the fuel cell system is described. The 

performance of the active power filter is evaluated in terms of its effectiveness in removing or 

reducing harmonic content from the fuel cell current. 
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5.1 Introduction to Active Power Filters 

Unlike passive power filters, active power filters (APF) do not negate the harmonics by 

preventing their flow using large passive elements. Rather, an active power filter adds 

compensating harmonics into the system to effectively reduce the presence of disturbances [77]. 

Though an APF is more complex in design, its structure is compact and it is easier to tune. Since 

an APF actively adds compensating harmonics, variation of harmonic magnitude due to load 

changes can also be actively compensated.  

APFs can be used as both DC and AC power systems. DC APFs are usually used only for 

high voltage DC applications. DC power filters can be considered as a special case of AC power 

filters. APFs are classified as series, shunt and hybrid filters based on their topology and function 

[78]. The various topologies are shown in Figure 5.1.  
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Figure 5.1: Various Active Power Filter Topologies (a) Series APF; (b) Shunt APF; (c) Hybrid APF 
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5.1.1 Series APF 

The series APF does not compensate or add current harmonics, but acts as a high 

impedance to current harmonics from the source side. The series topology is not commonly used 

because it would have to handle the full load current, which increases its current rating 

considerably. The main advantage of the series APF is its ability to eliminate harmonics from the 

voltage waveform. 

5.1.2 Shunt APF 

The shunt APF carries only the compensating current and a small active fundamental 

current to compensate for system losses and sustain constant voltage [79]. Nevertheless, shunt 

APF can be used for reactive power compensation as well. This is the most commonly used APF 

configuration and can also be used for current harmonic compensation of harmonic voltage 

sources. 

5.1.3 Hybrid APF 

Hybrid APFs combine shunt/series APF followed by a passive filter in order to improve 

the overall filter performance [80]. A series APF, which constitutes high impedance for high 

frequency harmonics can be combined with a parallel passive filter to provide a path for the 

harmonic currents of the load. Similarly, a shunt APF when combined with a parallel passive filter 

can effectively eliminate the bulk of lower order current harmonics [81]. Though the hybrid 

configuration improves the overall efficiency of the APF, it contains many power components, 

especially the passive filter. Since these filters are permanently connected to the system, this 

approach is only suitable for a single load with a predefined harmonic source. 
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In spite of all the advantages of the hybrid APF, the biggest disadvantage of the topology 

lies in its use of passive filters which makes the filter implementation stationary and would 

eventually require complex reconfiguration in case the system is upgraded or if a new element is 

added. Also, the added expenditure and maintenance of the passive filters would make the power 

system inappropriate for small scale applications. 

5.1.4 Modified Shunt Active Power Filter 

For the fuel cell system under investigation, the shunt topology is selected since it does not 

require a high current rating, carries only the compensating current, and is better suited for negating 

current harmonics. The main concern in this system is the presence of ripples in the fuel cell 

current, hence, the compensating current generated by the shunt active power filter should be 

effective in negating the ripple signal so that only the DC component remains. The main purpose 

of using a transformer for power filter applications is to provide a path for the compensating current 

to be safely added to the power system and also to remove high frequency ripples.  

In order to simplify the power filter, a transformerless APF configuration can be 

considered. For large power systems, a transformer can be avoided if a hybrid filter is used [65]. 

Transformerless hybrid filters have been used in the past by researchers for various applications 

[82]-[87]. The added passive filter stage allows high frequency ripple elimination and can be 

designed for a higher frequency band to ensure minimum harmonic propagation along with the 

dynamic APF current compensation. 

The APF current output can be directed by means of an LC filter and added in parallel to 

the power system [88]-[91]. Though this arrangement is similar to a hybrid power filter, it can be 
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considered as a shunt power filter since the passive elements are added to the converter stage as a 

replacement for the transformer.  Hence the modified shunt APF configuration has been selected.  

APF implementation involves three stages, beginning with the selection of converter 

topology, followed by the modulation technique and lastly the methodology used for harmonic 

extraction. All three stages will be discussed in detail in following sections. 

 

5.2 The APF Converter Topology 

The choice of converter is based on the power requirements of the various types of 

nonlinear loads. The power circuit of APFs consists of a DC energy storage unit and a DC-AC 

converter (inverter). The DC energy storage consists of a DC source such as a battery in parallel 

with a capacitor. The capacitor minimizes the DC link ripple and also maintains a small ripple in 

steady state. For lower power applications, single-phase inverters can be used. But for higher 

power applications, where the amount of harmonics in the system is higher, three-phase or multi-

level inverters are more suitable. The APF inverters can be further classified as “voltage source” 

or “current source” inverters. Since voltage source inverters are lighter, less complex and 

economically viable, they are commonly used as compared to current source inverters [92]. 

For the fuel cell system, the choice of converter differs as the converter would be required 

to remove harmonics from a DC signal as opposed to an AC signal. A DC-AC converter would 

generate a compensating signal that traverses on both positive and negative axes. This would be 

harmful for a DC system. Instead of using DC-AC converters, a DC-DC converter would be a 

better choice. A similar DC-DC converter was used by Glenting et al. [93] for removing harmonics 

from radar systems.  
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The DC-DC converter based APF uses a modified version of a DC-DC buck converter 

where the diode is replaced with another switching device. Figure 5.2 shows the modified shunt 

active power filter. 

 

Figure 5.2: Modified Shunt Active Power Filter Circuit 

 Switch Q1 is responsible for regulating the energy storage of the inductor while 

switch Q2 maintains a constant output voltage so as to obtain a constant output current. Using the 

right switching signal, the current, when channeled through the inductor, will contain the required 

harmonic compensation. The voltage source is modeled to continuously carry a voltage that is 

equivalent to the fuel cell voltage. The inductor output is connected in parallel to the fuel cell 

source, thus, completing the transformerless APF configuration. 
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5.3 Generation of Switching Signal 

The selection of an appropriate switching technique, that will switch the APF converter to 

produce an output current that is equal in magnitude and phase to the compensating current, is the 

next stage for realization of the modified shunt APF. With the correct control methodology, the 

APF converter can generate the compensating current and successfully negate the unwanted 

harmonics from the system. Of the many different processes, used for generating converter 

switching signals, the hysteresis current control is the least complex controller [94]. It has quick 

response, internal current limiting capacity and stability.  

The basic principle for hysteresis current control is to control the switches of the converter 

such that it can force the current to ramp up or ramp down with respect to the reference current 

[94]. For the modified shunt APF, the reference signal is the extracted harmonic signal. The 

hysteresis current controller compares the extracted harmonic signal with the output of the APF 

converter to generate the reference signal. 

If 𝑖𝑟 is the reference signal and 𝑖𝐴𝑃𝐹 is the output current of the APF, then the error signal 

ehcc is given by: 

𝑒ℎ𝑐𝑐 =  𝑖𝑟 − 𝑖𝐴𝑃𝐹     (5.1) 

The upper and lower limits are set based on the DC voltage that is supplied to the APF 

converter. If the error signal attains the upper limit of the hysteresis band, then the switching 

sequence is modified so as to lower the APF output current. Similarly, when the error signal is 

near the lower band the APF converter is switched to increase the output current. For the proposed 
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modified shunt APF, the hysteresis band is set between the minimum and maximum limits of the 

extracted harmonic current.  Figure 5.4 shows a typical hysteresis band.  

 

Figure 5.3: Principle of Hysteresis Current Control 

Figure 5.4 shows the realization of the hysteresis current controller for the modified shunt 

APF.  

 

Figure 5.4: Structure of Hysteresis Current Controller 

A comparator block has been used to set the hysteresis limit. The comparator block 

compares the output from the harmonic extractor and APF converter and decides on the switching 
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signal, needed to force the converter to follow the extracted harmonic waveform, as closely as 

possible. This ensures that the converter output and extracted harmonic waveforms are the same 

in magnitude and phase.  

 

5.4 Harmonic Extraction 

 

In order to compensate the harmonics present in the fuel cell current, the modified shunt 

APF generates a current waveform, which contains harmonics of the same magnitude and phase 

as the one that needs to be negated. Since the compensating current is generated by means of a 

converter, the switching signal responsible for operating the converter is determined from the 

system harmonics. Hence, the process of harmonic extraction is essential for the operation of the 

modified shunt APF. 

Most harmonic extraction methodologies are designed for three phase systems, of which 

the PQ [95] and dq [96] frame harmonic extractions are commonly used. Since the fuel cell current 

is a DC component, the aforementioned harmonic extraction methods will not be suitable. A 

proposed modified PQ reference harmonic extraction, for single phase systems, does not adapt to 

DC signals [97]. In order to extract the harmonics from the DC signal, a method that can use DC 

signals as reference has to be considered. Wagh et al [98] have used a DC estimation methodology 

to extract DC signals from power transformer inrush currents. The advantage of this method is that 

the signal is decomposed into two components, DC and other harmonic components, which makes 

the extraction process easier. Jou et al. [99] used a similar method to implement an active power 

filter for removing load harmonics in a single-phase AC power system. The method, referred to as 
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“sine wave multiplication,” uses a sine wave reference signal to aid in extracting the sinusoidal 

component. This method has been modified for DC signals and is used to extract the harmonics 

from the fuel cell current.  

The fuel cell current comprises both DC and other harmonic components, with the second 

order harmonic of single-phase inverter output frequency, being the dominant harmonic 

component.  Consequently, the fuel cell current can be expressed mathematically as: 

𝑖1 =  𝐼1 +  𝐼12 sin(2𝜔𝑡 + 𝜃2) +  ∑ 𝐼12𝑛sin (2𝑛𝜔𝑡 + 𝜃2𝑛)∞
𝑛=2     

 (5.2) 

where, 𝐼1 is the DC current and is already known, 𝐼12 is the second harmonic component and the 

remaining terms represent the summation of even harmonics that may have consequently 

propagated to the fuel cell. 

Ideally, the fundamental signal would be used as the reference signal, but since the fuel 

cell current is a DC signal, the harmonic signal that has to be extracted is selected as the reference 

signal as given by (5.3).  

𝑖𝑟 = sin (2𝜔𝑡)      (5.3) 

From the analysis carried out in the previous chapter, the ripples are caused by the second 

harmonic component, hence, the reference signal is selected at twice the frequency at which the 

inverter is operated. 

In order to identify the magnitude of the harmonic signal, Fourier transform is carried out 

on the product of the reference signal and the fuel cell current. This is given by: 

𝐼𝑥 =  
1

𝑡
∫ 𝑖1𝑖𝑟𝑑𝑡

𝑡

0
     (5.4) 
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Since the magnitude of the harmonic component is known, the harmonic signal is thus 

obtained by multiplying the magnitude with the reference signal. 

𝑖𝑠 =  𝐼𝑥𝑖𝑟     (5.5) 

The harmonic analysis in the previous chapter (Chapter 4) revealed that other than the DC 

component the second harmonic is the most prominent harmonic order. Hence, in order to increase 

the fuel cell’s power rating, it will be adequate to remove only the second harmonic from the fuel 

cell current. 

The entire process of harmonic extraction is shown in Figure 5.5.  

 

Figure 5.5: Algorithm for Harmonic Extraction 
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The extracted harmonic waveform, for a nonlinear load of 160 W, is shown in Figure 5.6. 

 

     Figure 5.6: Extracted Harmonic Waveform from Fuel Cell Current under Nonlinear load of 

160 W, 60 Hz 

 

5.5 Implementation of the Modified Shunt APF 

The APF parameters are given in Table 5.1. Figure 5.7 shows the implemented APF circuit. 

Table 5.1: Modified Shunt APF Parameters 

Parameter Value 

Switch IGBT 

Hysteresis Limit Upper Band = 2 

Lower Band = 1 

VDC 46.5 V 

LAPF 2.5mH 
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Figure 5.7: Fuel Cell System with Modified Shunt Active Filter 

The performance of the complete fuel cell system with the APF is evaluated for three 

different load magnitude conditions. Figure 5.8 compares the modified shunt APF output current 

with the extracted harmonic, under nonlinear load of 160 W. 
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Figure 5.8: Extracted Fuel Cell Harmonic Current and Modified Shunt APF Current Output 

under nonlinear load of 160 Watts, 60 Hz 

 In order to provide effective compensation, it is essential that the extracted harmonic signal 

and the APF current output be equal in magnitude and phase. The modified shunt APF current and 

the extracted harmonics, as shown in Figure 5.8, have the same magnitude and phase. This should 

be effective in compensating the harmonics from the fuel cell source. 

The modified shunt APF is now evaluated against three nonlinear loads. The APF 

parameters, as given in Table 5.1, are maintained constant for all the three loads. 
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5.5.1 Load Value of 160 Watts 

Figures 5.9 (a) & (b) show the system waveforms after APF implementation. 
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                     Figure 5.9 (a): Voltage Waveforms under Nonlinear Load of 160 W after APF 

Implementation 
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            Figure 5.9 (b): Current Waveforms under Nonlinear Load of 160 W after APF 

Implementation 
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In chapter 4, steady state ripple analysis at a load power of 160 W exhibited a fuel cell 

ripple of constant magnitude with an average fuel cell current of 7.5 A. After APF implementation, 

the average fuel cell current has increased to 8.59 A, while the voltage has stabilised at 46.4 V. 

The magnitude of the second harmonic is identified using harmonic analysis, as shown in Figure 

5.10, for before and after APF implementation. 
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  (a) 

     

      (b) 

Figure 5.10 Harmonic Analysis of Fuel Cell Current under Nonlinear Load of 160 W (a) Before 

APF implementation (b) After APF Implementation 
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It is observed from Figure 5.10 that the second harmonic component is only 0.93% of the 

DC component as compared to 20.18% of DC without filter implementation.  

5.5.2 Load Value of 240 Watts 

  The system waveforms, after APF implementation, are shown in Figures 5.11 (a) and (b). 
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                  Figure 5.11 (a): Voltage Waveforms under Nonlinear Load of 240 W after APF 

Implementation 
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              Figure 5.11 (b): Current Waveforms under Nonlinear Load of 240 W after APF 

Implementation 

 



95 
 

 From Figure 5.11 (a) and (b) it is clear that though the nonlinear load still produces DC 

link harmonics, these harmonics are no longer visible on the fuel cell voltage and current 

waveforms. The fuel cell voltage is a constant DC signal of 46.5 V, while the current is measured 

at 8.57 A. Although, both the voltage and current waveforms appear to be DC signals, it is 

necessary to measure the second harmonic to demonstrate the effectiveness of the APF. Figure 

5.12 shows the harmonic analysis of the fuel cell before and after the APF implementation. 
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(a) 

        

(b) 

Figure 5.12: Harmonic Analysis of Fuel Cell Current under Nonlinear Load of 240 W (a) Before 

APF implementation (b) After APF implementation 
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 After APF implementation, the second harmonic is reduced to only 1.39% of the DC fuel 

cell current. This is a great improvement as compared to the second harmonic content of the fuel 

cell current before APF implementation. 

5.5.3 Load Value of 400 Watts 

 Finally, the system waveforms under a nonlinear load of 400 W, after APF implementation 

are given in Figures 5.13 (a) and (b). 
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                 Figure 5.13 (a): Voltage Waveforms under Nonlinear Load of 400 W after APF 

Implementation 
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                 Figure 5.13 (b): Current Waveforms under Nonlinear Load of 400 W after APF 

Implementation 
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 Previously, the highest magnitude of fuel cell current ripples were observed under 

nonlinear load of 400 W. The use of an APF has reduced the presence of ripples on both fuel cell 

voltage and current waveforms. The fuel cell voltage is now 46.5 V with fuel cell current of 8.55 

A. The actual harmonic content is determined using harmonic analysis as shown in Figure 5.14. 
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(a) 

 

(b) 

Figure 5.14: Harmonic Analysis of Fuel Cell Current under Nonlinear Load of 400 (a) Before 

APF Implementation (b) After APF Implementation 
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 The harmonic analysis shows that the second harmonic has now reduced from 44.37% to 

1.74% and the other harmonic components are smaller than 0.5 mA. 

 The second harmonic content for each load condition before and after the APF has been 

implemented is summarized in Table 5.2.  

Table 5.2: Harmonic Comparison Before and After APF Implementation for Three 

Nonlinear Load Conditions 

  Before APF After APF 

Load Value 

(Watts) 

Harmonic 

Order 

Mag. 

(A) 
% DC 

Fuel Cell 

Power (Watts) 

Mag. 

(A) 
% DC 

Fuel Cell 

Power (Watts) 

160 
DC 8.5 100 

338.78 
8.55 100 

399.73 
2nd 1.74 20.18 0.08 0.93 

240 
DC 8.46 100 

335.22 
8.5 100 

398.56 
2nd 2.86 33.27 0.12 1.39 

400 
DC 8.4 100 

310.21 
8.48 100 

398.01 
2nd 3.82 44.37 0.15 1.74 

 

 The results for the three load conditions presented above show that the shunt active power 

filter successfully reduces the propagating harmonics and thus increases the amount of power that 

can be extracted from the fuel cell. By removing the propagating ripple, the magnitude of the fuel 

cell current becomes constant. The modified shunt APF minimizes the harmonic content to less 

than 1.2% of the DC value. Overall, the APF has been successful in reducing 98.26% of the ripple 

content from the fuel cell current. 

  The unique DC design makes the APF usable for most renewable energy sources that 

exhibit the phenomenon of ripple propagation, such as PV panels [74]. The transformerless APF 

makes implementation easy and less complicated. Hence, it can be used for small fuel cell systems. 
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In order to use the transformerless design for medium or large fuel cell systems, the passive filter 

design will have to be modified not only in terms of magnitude but also in terms of the passive 

components that can be included at the output of the modified shunt APF. 

 

5.6 Summary 

The process of removing harmonic disturbances from the fuel cell can be achieved using 

either passive or active power filters. Although passive power filters are easy to implement, their 

uses are limited due to the design limitations that do not account for adaptable ripple filtering. 

Unlike the passive filter, active power filters approach the problem of ripple mitigation solely from 

the perspective of ripple compensation. This feature makes the active power filter ideal for fuel 

cell systems, where the propagation of ripples is of primary concern. Weighing the pros and cons 

of various active filter topologies, a transformerless modified shunt active filter, suitable for DC 

use, has been proposed and implemented for the fuel cell system.  The fuel cell system with the 

modified shunt APF has been implemented for three steady state load conditions and evaluated 

against the results obtained in the previous chapter. The implemented filter successfully removes 

over 98.26% of ripple content from the fuel cell current.  
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Chapter 6 

 

Conclusion 

 
This thesis has discussed the features of a solid oxide fuel cell and has elaborated the 

process by which such a fuel cell can be modeled to predict both DC and AC behavior. Through 

the modeling process it is revealed that fuel cells, unlike other DC sources, reacts nonlinearly to 

AC loads which are capable of producing DC source harmonics. The nonlinearity is a function of 

the frequency at which the system harmonics are propagated to the fuel cell source and the load 

current. At low ripple frequencies, a marked phase difference is observed between the fuel cell 

voltage and fuel cell current waveforms. This phase difference causes the fuel cell voltage to lag 

with respect to the current. At high ripple frequencies the phase difference decreases and the fuel 

cell polarization curve starts to resemble the DC polarization curve. 

The nature of ripple propagation is further analyzed, in this thesis, using a fuel cell based 

power system. The fuel cell power system includes a DC-DC boost converter, a single-phase 

inverter and a rectifier with an RC load. The fuel cell voltage and current waveforms are observed 

under varying load magnitude and frequency conditions. The analysis reveals that with increasing 
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load magnitude, the magnitude of the propagating ripples also increases. However, with increasing 

switching frequency the DC source harmonics are less and hence, the magnitude of propagating 

ripples also decreases. Harmonic analysis was used to determine the magnitude of each harmonic 

frequency, with emphasis on lower order frequencies.  

The final section of this thesis introduced the concept of Active Power Filters (APF). 

Various topologies of APFs were discussed along with their relative usage. In order to implement 

an APF for fuel cell applications, a modified shunt APF was proposed, which included an approach 

to extract harmonics from a DC signal as opposed to harmonic extraction from sinusoidal signals. 

A simple hysteresis current controller was implemented to operate the APF. The APF was 

evaluated for three load magnitudes, under steady state condition. The simulation results 

demonstrated that the APF was successful in reducing 98.26% of ripples present in the fuel cell 

current.  

 

6.1 Original Contribution 

The research conducted in this thesis is unique in the sense that it investigates the use of an 

active power filter to reduce the propagated ripple currents in a fuel cell output current. The main 

contributions of this thesis can be summarized as follows: 

1. Fuel cell parameters and equations have been properly detailed so that similar fuel cell 

models can be developed for future research. Although the fuel cell model uses previously 

ascertained equations, the inclusion of double-layer capacitance can be considered an 

extension of the DC model as proposed by Santarelli et al. [51] and is unique because of 

its modeling details. 
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2. The extensive ripple analysis provides a deeper insight into the phenomenon of ripple 

propagation in fuel cells. Although, research has been conducted on the effects of ripple 

propagation, it has not been conducted for both magnitude and inverter frequency 

variations. The frequency variations validate the polarization curve which shows that at 

higher inverter frequencies, lesser ripples will propagate to the fuel cell source.  

3. The most important aspect of this thesis, is the implementation of an active power filter 

that can effectively reduce the presence of propagating ripples from the fuel cell current. 

For small power systems, the use of large filter capacitance and multilevel topologies are 

not feasible, hence, the use of a single APF, for the purpose of maintaining ripple-free fuel 

cell current, is a more feasible solution. The control of the APF is modified to support the 

extraction of ripple currents from a DC system. Also by implementing the APF at the 

output of the fuel cell, it is possible to modify the other power stages, while ensuring stable 

power extraction from the fuel cell. 

The work presented in this thesis provides a comprehensive analysis of ripple currents and 

their impact on the output power produced by the fuel cell in a small fuel cell power system. The 

improved power levels clearly indicate the advantages of using an APF for the sole purpose of 

removing ripples from fuel cell current. The approach provides a basis for the ripple current 

characterization of a medium or large fuel cell power system.  

 

6.2 Future work 

In this work, a simple hysteresis current controller is used to demonstrate the feasibility of 

the APF implementation. However, the hysteresis current controller leaves a broad margin for 
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comparison, which decreases its effectiveness in adjusting to the expected output value. Since the 

frequency of the propagating harmonics remains constant, the hysteresis current controller was 

successful in operating the APF. For variable inverter frequencies, the hysteresis controller may 

prove to be ineffective. Hence, as part of future development, a more advanced control 

methodology can be considered. 

The second aspect of improvement is the process of harmonic extraction. The harmonic 

extraction from the fuel cell current waveform is based on the assumption that frequency of 

operation of the single-phase inverter is known so that only the second harmonic current 

propagates to the fuel cell. For variable inverter frequencies the harmonic extraction method will 

be ineffective. Further research to address this issue is required. For example, a dynamically 

adaptable algorithm that can detect the inverter operating frequency and adjust the harmonic 

extraction procedure can be considered. 

Finally, all the discussion in this thesis pertains to steady state conditions, where the load 

magnitude or frequency is manually varied. In a more practical scenario, the load varies randomly 

causing the ripple content to fluctuate. This transient behavior has not been studied in this thesis. 

A detailed examination of the dynamic operation of the fuel cell system, under dynamic load 

conditions would complete the full characterization of the fuel cell.  
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Appendix A  

SOFC Model Parameters 

The fuel cell considered in this work consists of Ni–YSZ (Yttrium Stabilized Zirconium) 

electrodes and denser YSZ electrolyte. Table A.1 describes the YSZ parameters for both electrodes 

and electrolyte. 
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Table A.1: YSZ Parameters 

Parameter Value 

Area of electrode 1 cm2 

Area specific resistance (S/cm2) 

0.25 @ 600 °C 

0.15 @ 700°C 

0.085 @ 800°C 

Cell internal ionic resistance(S/cm2) 

4 @ 600 °C 

4.5 @ 700 °C 

5.5 @ 800 °C 

Electrode thickness 0.0008 cm 

Fuel flow 2.333 * 10-6 m3/s (140 ml/min) 

Air flow 9.167x10-6 m3/s (550 ml/min) 

Pressure 0.1 Bar 
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Appendix B 

 

MATLAB Code for Single Cell SOFC at 

800ºC 

%----------------------------------------- 
% name: SOFC modeling 
% created on: 02/01/2014 
%----------------------------------------- 
clear; 
clc; 
%-----State constants--------------------- 

  
R = 8.3144621; 
Na = 6.0221413 *10^23; 
F = 96485; 
e = 1.6021761 *10^(-19); 

  
%-----input variables--------------------- 

  
P = 1; 
P_atm = 1*10^5; 
T = (800+273.15); 
VH2 = 140; 
VH2_m =  0.000002333; 
VO2 = 550; 
VO2_m = 0.000009167; 
Electrolyte_thickness = 0.0008; 
ASR = 0.085; 
Area = 0.5; 
i = [0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 

2.5 2.6 2.7 2.8 2.9 3]; 
CIER = 5.5; 
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%------calculation of maximum current density ----- 
for current = 1:length(i); 
     curnt = i(current); 

  
nH2 = (P_atm*VH2_m)/(R*T); 
imax_f = (2*F*nH2)/Area; 
imax_o = 2*imax_f*(VO2/VH2)*0.21; 

  
%-----fuel utilisation factor ---------------------- 

  
Uf = curnt/imax_f; 
Uo = curnt/imax_o; 

  
%-------area specific internal ionic resistance---- 

  
Conductivity_actual = 390.95*exp((-87.806*10^3)/(R*T)); 
ASIR = (Electrolyte_thickness/Conductivity_actual)+ASR; 

  
%----partial pressures---------------------------- 

  
pH2_anode_out = (1-Uf); 
pH2O_anode_out = Uf; 
pO2_cathode_out = 0.21*(1-Uo); 

  
%------maximum voltage (Nernst Voltage)------------ 

  
Factor_A = 

log((pH2_anode_out*sqrt(pO2_cathode_out))/(pH2O_anode_out*sqrt(P))); 
Factor_B = Factor_A*R*T; 
Factor_C = Factor_B/(2*96485); 
E_max = ((246*10^3)/(2*F))+((R*T*log(1.44*10^(-3)))/(2*F))+Factor_C; 

  
%------fuel cell voltage -------------------- 

   
Factor_D = imax_f*ASIR*Uf; 
Factor_E = ASIR/CIER; 
Factor_F = Factor_E*(1-Uf); 
Factor_G = E_max - Factor_D; 
Factor_H = Factor_F+1; 
E_SOFC =  Factor_G/Factor_H; 
P = curnt*real(E_SOFC); 
x2(current,1) = real(E_SOFC); 
y(current,1) = P; 
end 
plot(i,x2); 
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Appendix C 

Simulink Screenshots 

C.1 Simulink Simulation Parameters 

 The solver parameters, used in this research are given in Table C.1. The same solver 

parameters are maintained throughout this research. The actual passive parameters for each power 

stage has been mentioned in the previous Chapters. 

Table C.1: Simulink Solver Parameters 

Parameter Value 

Simulation Type Discrete 

Solver Tustin 

Sample time (s) 50e-6 
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C.2 DC-DC Boost Converter 

 

Figure C.1: Simulink Schematic of DC-DC Boost Converter 
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C.3 Single-phase Full-bridge Inverter 

 

Figure C.2: Simulink Schematic of Single-phase Full-bridge Inverter 
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C.4 Full-bridge Diode Rectifier with RC Load 

 

Figure C.3: Simulink Schematic of Full-bridge Diode Rectifier 
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C.5 Modified Shunt APF Converter 

 

Figure C.4: Simulink Schematic of Modified Shunt APF Converter 
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C.6 Fuel Cell Power System with Implemented Modified 

Shunt APF 

 

 
Figure C.5: Simulink Schematic of Fuel Cell System with Implemented Modified Shunt APF 

 


