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ABSTRACT 

 

The study of disease in model organisms is a fundamental and important stepping-stone in 

understanding and uncovering the mechanisms behind disease pathology in humans. The 

purpose of this work was to identify potential targets for the treatment and prevention of 

Parkinson disease using Drosophila melanogaster. Commonly known as the fruit fly, D. 

melanogaster is one of the important model organisms used extensively in biological 

research. Moreover, it has conserved developmental processes and mechanisms shared 

with human neurodegenerative disorders. Parkinson disease (PD) is a progressive 

neurodegenerative disorder characterized by death of dopamine producing cells of the 

substantia nigra affects about 1% of people over 60 years old worldwide. In mammals, 

Fbxo9 is a substrate recognition component of the SCF (SKP1-cullin-Fbox)-type E3 

ubiquitin ligase complex. Some targets of Fbxo9, including an extensive array of proteins, 

are degraded via the ubiquitin-proteasome system. In this study, a potential D. 

melanogaster homologue of Fbxo9, CG5961, was identified. The Fbxo9 homologue in D. 

melanogaster has been conserved through evolution and retains many of the functional 

domains. The main goal of this project was to determine if Fbxo9 can be implicated in 

modeling PD in D. melanogaster.  To investigate its role in neuronal survival, I over-

expressed and down-regulated Fbxo9 in neuron-rich eye and dopaminergic neurons. 

Through assessments of eye morphology, climbing ability and ageing analysis, it was 

found that loss-of-function of Fbxo9 causes a PD like symptom. I expect that the 

knowledge obtained by determining the pathways involved in PD in D. melanogaster will 

help uncover potential new therapeutic approaches for research in human as well as other 

genes in both humans and flies.  
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INTRODUCTION 

 

 

Parkinson Disease 

 Parkinson disease (PD) is the second most common progressive neurodegenerative 

disorder: affecting about 1% of people over 60 years old worldwide (Lew, 2007). It is 

associated with a movement disorder, which is characterized by tremor, rigidity, postural 

instability and bradykinesia. Although most symptoms are associated with motor disorder, 

non-motor symptoms such as cognitive, psychiatric and emotional problems are also seen 

in this disease (Tadaiesky et al., 2008). The neuropathological distinctive characteristics 

showed by PD patients are Lewy Bodies (LB) and Lewy Neurites (LN) in surviving 

neurons. The ultimate dysfunction of these neurons is responsible for the symptoms and 

pathology of PD (Bekris et al., 2010). PD is associated with the progressive degeneration 

of dopaminergic neurons in the substantia nigra of the midbrain region and the subsequent 

loss of dopamine (Dauer and Przedborski, 2003). The study of this disease in well-known 

genetically versatile model organism such as Drosophila melanogaster is a fundamental 

and important stepping stone in understanding and uncovering the mechanisms behind 

disease pathology in a human host.   

Many genetic and environmental factors have been identified for the progression of 

PD. Most forms of PD are known to be sporadic with no known causes (Cauchi and 

Heuvel, 2006; Lu and Vogel, 2009). Several environmental factors have been well 

documented correlating with the onset of PD such as chemical exposure, brain trauma, 

obesity, age and diabetes (Vanitallie, 2008). Alternatively, some familial forms of PD have 

been found in association with different types of alteration in genes (Bereznai and Molnar, 

2009). The discovery of the familial forms of PD-associated genes inherently provides us 

the opportunity to study both sporadic and familial PD in model organisms. 
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PD Gene Loci 

There are 18 Parkinson-associated (PARK) gene loci identified to date through a 

combination of linkage, segregation and sequence analysis; though several of these gene 

loci require validation by independent studies (Table 1). The first of the genes found in 

association with the rare familial forms of PD (FPD) is α-synuclein (Polymeropoulos et al., 

1997; Kruger et al., 1998). Among these gene loci, several have been cloned and include α-

synuclein/PARK1 (Polymeropoulos et al., 1997), Parkin/PARK2 (Kitada et al., 1998), 

Ubiquitin C-terminal hydrolase1 (Uchl-1)/PARK5 (Leroy et al., 1998), Phosphatase and 

tensin homologue [PTEN] induced kinase (Pink1)/PARK6 (Valente et al., 2004), DJ-

1/PARK7 (Bonifati et al., 2003) and leucine rich repeat kinase 2 (LRRK2)/PARK8 

(Zimprich et al., 2004). Among the genes identified, α-synuclein/ PARK1 and Leucine-rich 

repeat kinase 2 or LRRK2 are known as autosomal dominant alleles whereas the rest are 

autosomal recessive alleles (Staveley, 2012). The identification of the genes has helped to 

better understand the underlying pathological mechanism of FPD. This pathological 

mechanism also supports us in understanding sporadic causes of PD. A considerable 

number of studies prior to modeling PD in animal have been done and thus these studies 

proposed some pathogenic mechanisms like protein mis-folding, protein abnormal 

accumulation oxidative stress, mitochondrial dysfunction and caspase activation. The 

endeavors to identify the central reasons for PD significantly led us to determine the 

necessary tools through the use of animals in the experiments.  The promising indications 

are found from the modeling of PD in animals including rats, monkeys, flies, mice and 

worms (Kuwahara et al., 2006). Among all model organism studies, the genetic studies in 

Drosophila melanogaster have advantages over other animal models.  

 

             

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155875/#B141
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Table 1: Gene loci implicated in Parkinson disease. 

  

 

Locus Gene Chromosome Inheritance Clinical phenotype 

PARK1/ 

PARK4 

SNCA 4q21 AD EOPD 

PARK2 Parkin 6q25.2-q27 AR Juvenile and EOPD 

PARK3 Unknown 2p13 AD LOPD 

PARK5 UCH-L1 4p14 AD LOPD 

PARK6 PINK1 1p35-p36 AR EOPD 

PARK7 DJ-1 1p36 AR EOPD 

PARK8 LRRK2 12q12 AD LOPD 

PARK9 ATPA13A2 1p36 AR Kufor-Rakeb 

syndrome 

PARK10 Unknown 1p32 AD Unclear 

PARK11 GIGYF2 2q36-q37 AD LOPD 

PARK12 Unknown Xq X-linked Unclear 

PARK13 HTRA2 2p13 AD Unclear 

PARK14 PLA2G6 22q13.1 AR Parkinsonian with 

additional features 

PARK15 FBXO7 22q12-q13 AR EOPD 

PARK16 Unknown 1q32 Susceptibility 

locus 

LOPD 

PARK17 GAK 4p16 Susceptibility 

locus 

LOPD 

PARK18 HLA-DRA 6p21.3 Susceptibility 

locus 

LOPD 

Gaucher's locus GBA 1q21 Information 

not available 

Information  

not available 

 

AD is autosomal dominant, AR is autosomal recessive, EOPD is early-onset Parkinson 

disease and LOPD is late-onset Parkinson disease (adapted from Kumar, 2012). 
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Identification of Fbxo7 as PARK15 

The Drosophila melanogaster homologue of the human Fbxo7 gene has been 

identified as PARK15 (Dolomount & Staveley, unpublished). The D. melanogaster 

homologue of Fbxo7 was named as nutcracker for its involvement in terminal 

differentiation of male germ cells in (Bader et al., 2010). Fbxo7 in human and D. 

melanogaster has the highest amino acid similarity in their F-box domains. 

Fbxo7 (nutcracker, PARK15) was originally studied for its involvement in the 

caspase activation during sperm differentiation, but later it was found that it is associated 

with the early onset of parkinsonian-pyramidal syndrome such as Babinski sign, hyper-

reflexia, and spasticity with equinovarus deformity (Di Fonzo et al., 2009). Mutation in 

Fbxo7/ PARK15 gene has been found in association with early-onset parkinsonian-

syndrome, which was described several decades ago, but the gene locus has been recently 

mapped (Davison, 1954; Di Fonzo et al., 2009). The nutcracker protein has been found to 

act as an E3-ligase through interaction with the SCF-ubiquitin ligase complex. The F-box 

domain found in nutcracker binds and activates caspases required for differentiation of 

sperm. Loss-of-function in nutcracker has been found to decrease proteosomal activity 

while the number and distribution of proteasomes remain the same (Dolomount 

unpublished). This suggests that when nutcracker is dysfunctional, the proteolysis process 

is disrupted at the protein ubiquitination stage. This also suggests that nutcracker's role as 

an E3-ligase in the ubiquitin proteolysis method that parallels to mutation process in 

Fbxo7. 

 

Drosophila melanogaster as a model organism 

In order to investigate the different functions of human disease genes over one 
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hundred year, a wealthy number of experimental approaches have been applied. One 

approach that has drawn much attention for modeling neurodegenerative diseases involves 

human disease gene expression in the “common fruit fly” Drosophila melanogaster. D. 

melanogaster has been widely used as a model organism due to its small size, rapid 

generation time, and development of many tool-boxes of genetic techniques (Merzetti et 

al., 2013). Meta-analysis of the genome of D. melanogaster showed that more than 75% of 

human disease genes are conserved between flies and mammals (Reiter et al., 2001; Lloyd 

and Taylor, 2010). D. melanogaster was the first complex organism whose genome was 

sequenced (Adams et al., 2000). The genome of D. melanogaster is simple compared to 

mammalian counterparts because it has lower genetic redundancies (Bier, 2005).  

Additionally, Drosophila is also used as a model organism for some other reasons (Celotto 

and Palladino, 2005). The high degree of amino acid conservation was discovered in 

Drosophila through different proteomic analyses.  Moreover, the presence of a complex 

nervous system and the short life-time (approximately fifty days) has made D. 

melanogaster an effective model organism for studying different neurological diseases. 

Drosophila is specifically advantageous in the area of neuroscience, where it has 

been used to study neural development, neural circuitry and neural disease (Venken et al., 

2011).  The developing D. melanogaster eye is a suitable system for studying cellular 

mechanisms including cell fate specification, cell-cell communication and signalling 

methods (Thomas and Wassarman, 1999). The D. melanogaster brain has more than 

300,000 neurons and is organized into different specialized areas that are used for learning, 

olfaction, vision and memory (Wolf and Herbelein, 2003; Cauchi and Heuvel, 2006; 

Hardaway, 2010). Flies like humans show complex behaviors including learning, memory 

and motor ability that decline with age (Mockett et al., 2003; Simon et al., 2006). The 

presence of homologous PD genes and a high degree of functional conservation contribute 
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to the use of D. melanogaster as a model organism for PD research. Previous work from 

different laboratories (Botella et al., 2009) including in our lab, has shown that D. 

melanogaster is a useful model organism for PD research. 

 

Drosophila in PD modeling 

To produce loss-of-function and gain-of-function phenotypes that may recapitulate 

symptoms of a given disease, reverse genetics can be applied. Gain-of-function is a 

condition that confers new or enhanced activity upon a gene and the RNA-i dependent 

loss-of-function phenotypes, result in reduced or abolished gene function. To produce gain-

of-function or the loss-of-function phenotypes, that results in reduced or abolished gene 

function, the bi-partite UAS/GAL4 (upstream activating sequence/ yeast transcriptional 

activator for galactose inducible genes) system has been extensively used for the ectopic 

expression of specific genes in Drosophila (Brand and Perrimon, 1993). This method 

allows the directed expression of target genes in different tissues including eyes, muscles, 

neurons or the whole body. To generate transgenic fly lines, Drosophila carrying the 

transgene under UAS control are crossed to flies expressing the yeast transcription factor 

GAL4 under the control of a specific cell- and tissue-specific promoter. The target gene is 

silent in the absence of GAL4. The UAS has binding sites for GAL4 proteins and is fused 

to the target genes. When these two lines are combined, GAL4 binds to the UAS and 

triggers the transcription of the gene of interest. This target gene expressed in the offspring 

of the controlled breeding experiments is subject to control of expression with regard to 

level, timing and tissue specificity. The GAL4 driver lines used in the PD disease models 

are dopaminergic neuron promoter Ddc (DOPA decarboxylase) and eye-specific promoters 

GMR (Glass Multiple Reporter) including many others (Gong and Golic, 2003).  
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Analyses of these progeny give the opportunity to approach an extensive range of 

basic biological investigations including the thorough modelling of human disease 

(Staveley, 2012). It should be noted that the use of the UAS/Gal4 system in Drosophila 

requires caution since there may be a Gal4 effect in some experiments including cell death 

in the neuron-rich compound eyes (Kramer and Staveley, 2003). This UAS/Gal4 system 

gives the study of PD in Drosophila an extensive and powerful method in identifying the 

mechanisms behind this disease in human subjects. 

Another genetic method (that) has been developed in Drosophila couples RNA 

interference (RNAi) with the UAS/GAL4 system, which allows the study of transcriptional 

''knock down'' effects (Dietzl et al., 2007) or loss-of function phenotypes. Furthermore, 

UAS/GAL4 system is another genetic method (Feany and Bender, 2000) and this method 

was used for overexpression of both wild type and mutant human α-synuclein in 

Drosophila neurons.  

 

Drosophila models of PD 

The α-synuclein model 

α-synuclein was the first gene in Drosophila that was found to have a link with the 

inheritable form of PD (Whitworth, 2011). The α-synuclein gene, the prime component of 

Lewy bodies (LB) in both sporadic and familial PD and its aggregation is believed to be 

the main cause of PD (Feany and Bender, 2000; Michno et al., 2005). It has been reported 

that mutations that result in amino acid substitution in human α-synuclein (PARK1/PARK4) 

protein, including A30P, A53T and E46K produce autosomally dominant versions of PD 

(Polymeropoulos et al., 1997; Kruger et al., 1998; Zarranz et al., 2004).  An early onset of 

familial versions of PD results when a triplication occurs in the α-synuclein gene locus 
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(Singleton et al., 2003). In the brains of PD patients, it has been found that phosphorylation 

occurs at Ser129 of α-synuclein (Fujiwara et al., 2002). These results indicate the 

importance of phosphorylation of α-synuclein in the pathogenesis of PD. 

 Since Drosophila has been found to lack orthologues of α-synuclein, including other 

members of the synuclein family, the GAL4/UAS system was used to drive directed 

expression of both wild and mutant forms of the protein (A30P and A53T) to model PD in 

Drosophila (Botella et al., 2009). It has been reported that when A30P, A53T and wild type 

α-synuclein are expressed, flies show the key features of PD such as dopaminergic (DA) 

neurons loss, retinal degeneration and locomotor dysfunction (Feany and Bender, 2000). 

These Drosophila phenotypes exhibiting PD provide the opportunity to study α-synuclein 

aggregation and toxicity and information about genetic interactions and pharmacological 

approaches. Using a Drosophila model of polyglutamine disease, it has been found that 

directed expression of the molecular chaperone HSP70 suppresses polyglutamine-induced 

neurodegeneration in vivo (Warrick et al., 1999). When the α-synuclein expressing flies 

were fed with geldanamycin, a chaperone inductor, DA neurons were protected (Auluck et 

al., 2005). This indicates that compounds that regulate the stress response are a promising 

approach to treating PD. 

It has been found that when α-synuclein and parkin are co-expressed in the 

Drosophila developing eye, this decreases the retinal degeneration and improves the 

climbing ability and when they are co-expressed in the DA neurons, this slightly increases 

their lifespan (Haywood and Staveley, 2006). When Rab1, a guanosine triphosphate is co-

expressed with α-synuclein, DA neuronal loss was rescued (Cooper et al., 2006). When 

PTEN induced putative kinase 1 (Pink1) is overexpressed, premature loss of climbing 

ability, ommatidial array degeneration and eye development defects, induced by α-
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synuclein, were found to be rescued (Todd and Staveley, 2008). When α-synuclein 

expressing flies are exposed to hyperoxia, neurotoxicity and DA degeneration result 

(Botella et al., 2008). Pharmacological agents such as L-DOPA have been found to restore 

the PD phenotype in α-synuclein flies (M'Angale unpublished). Keep with same 

perspective, there is another study (Pendleton et al., 2002) in which it has been found that 

atropine works to a lesser extent than other anti-Parkinson compounds.  

To manipulate gene expression in this Drosophila model of PD, the ectopic 

expression method has been widely used. In a cross between Ddc-Gal4 and UAS-α-

synuclein transgenic flies, α-synuclein was expressed in the dopaminergic neurons 

(Haywood and Staveley, 2004). The resulting offspring showed loss of climbing ability 

and, impaired mobility control, which is characteristic of PD. This result supports the use 

of Drosophila as suitable model for PD. To determine the effect of over-expression and 

reduced expression of Fbxo9 and α-synuclein in Drosophila, we have used dopaminergic 

neuron driver Ddc-Gal4 to direct the expression of these genes in dopaminergic neurons. 

We hypothesized that Fbxo9RNAi in α-synuclein flies would result in the decreased loss of 

climbing ability and lifespan. 

 

The LRRK2/Lrrk model 

Leucine rich repeat kinase 2 (LRRK2) encodes a complex 2567 amino acid and 

contains a leucine rich repeat (LRR), Ras of complexes (ROC), a protein kinase domain of 

the MAPKKK family, putative serine/threonine kinase, GTPase domains and many WD40 

protein–protein interactions domains (Zimprich et al., 2004; West et al., 2005; Botella et 

al., 2009). The physiological activity of this protein is unclear but its multiple domains 

indicate its involvement in different types of cellular processes (Paisan-Ruiz et al., 2004; 
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Zimprich et al., 2004; Banerjee et al., 2009). It has been found that the LRRK2/ MAPKKK 

domain is involved in PD, which indicates enzymatic phosphorylation alteration (Taylor et 

al., 2006; Liu et al., 2008). It has been found that there are 29 different mutations in the 

LRRK2 gene (Paisan-Ruiz et al., 2004; Zimprich et al., 2004) that is associated with the 

autosomal dominant or gain of function forms of PD. 

Drosophila has a single orthologue (dLRRK) that is highly expressed in heads (DA 

neurons) and it is essential for DA neuron protection in flies (Lee et al., 2007; Wang et al., 

2008; Imai et al., 2008). The pleomorphic structure of LRRK2-linked PD suggests that 

LRRK2 is involved in the pathway of synthesis of other proteins implicated not only in PD, 

but also in other neurodegenerative diseases (Ross et al., 2006; Taylor et al., 2006).  It has 

been found in one study that Lrrk mutant flies show locomotor dysfunction and a decrease 

in immune-staining of tyrosine hydroxylase/TH in DA neurons (Lee et al., 2007). While in 

another study, it has been found that Lrrk mutant flies were relatively normal indicating 

that Lrrk is not necessary for DA neuron survival (Wang et al., 2008). Co-expression of 

mutant forms of human (G2019S) and Drosophila (12020T) of LRRK2 resulted in DA 

neurons loss (Imai et al., 2008; Liu et al., 2008). The few studies of Lrrk/LRRK2 in flies 

have provided information that is more likely to significantly help our understanding of 

PD. 

 

The parkin/PINK1 model 

It has been found that the parkin gene acts as an E3 ubiquitin ligase that targets the 

mis-folded proteins for degradation via the ubiquitin proteasome pathway (Kitada et al., 

1998). The autosomal recessive form of early onset PD occurs due to loss of function of 

the parkin gene. This parkin protein has been found to be present in the mitochondria 

(Darios et al., 2003) indicating its role for maintaining of this organelle. 
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The usefulness of Drosophila as a PD model has been recently found by reduction 

of neuronal-specific staining (either GFP or TH staining) or the dopaminergic neurons 

degeneration or cell death in parkin mutants (Greene et al., 2003; Cha et al., 2005; 

Whitworth et al., 2005; Wang et al., 2007). The similar findings have been found when 

parkin mutants are overexpressed, suggesting a harmful effect in Drosophila DA neurons 

(Sang et al., 2007). Mutant parkin flies have been found to show reduced lifespan, 

developmental delay, male sterility, and mobility dysfunction due to muscle degeneration 

(Green et al., 2003). When the human parkin mutant (R375W) is overexpressed in flies, it 

results in age-dependent DA neuron degeneration, locomotor dysfunction that increases 

with age and mitochondrial dysfunction in flight muscles (Wang et al., 2007). These results 

indicate that parkin mutant (R375W) expression causes adverse outcomes. They also 

suggest the interesting possibility of selecting parkin mutations that may directly exert 

neurotoxicity. 

The Human Phosphatase and Tension homologue (PTEN) induced kinase (Pink1) is  

a 581 amino acid protein with a highly conserved serine or threonine kinase domain of 

Ca2+ and mitochondrial targeting signal sequences (Thomas and Beal, 2007).  Pink1, as 

observed for parkin, has been found to be expressed in heads and tastes of adult male flies 

and it also contains a targeting signal for mitochondria (Clark et al., 2006; Park et al., 

2006). It has been found that mutations in PTEN-induced putative kinase 1 (Pink1) are the 

main cause of autosomal recessive forms of PD (Kitada et al., 1998; Valente et al., 2004). 

In order to maintain the mitochondrial fission/fusion pathway, it has been identified that 

there is a genetic interaction between parkin and gene PTEN-induced putative kinase 

1(PINK1) (Botella et al., 2009). This involvement implicates Pink1 as an important 

regulator of fission/fusion, acting upstream of the E3 ubiquitin ligase, and parkin, to 

maintain proper mitochondrial integrity and function (Clark et al., 2006 and Park et al., 
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2006). This indicates that the Pink1 and parkin act to regulate the mitochondrial 

fission/fusion pathway. 

The human Pink1 is homologous to D. melanogaster Pink1 and they are 

functionally conserved (Clark et al., 2006; Park et al., 2006). Transgenic RNAi and 

transposon-mediated mutagenesis approaches were used to produce the Drosophila Pink1 

model. The resulting flies showed the same characteristics as  parkin mutant, flies such as 

reduced lifespan, developmental delay, abnormal position of wings, ommatidial and DA 

neuron degeneration, male sterility, mobility dysfunction, and mitochondrial dysfunction in 

their flight muscle (Petit et al., 2005; Clark et al., 2006; Park et al., 2006; Yang et al., 

2006; Wang et al., 2006). It has been found that when human Pink1, Drosophila Pink1 and 

parkin are expressed together, muscle integrity is restored (Clark et al., 2006; Park et al., 

2006; Yang et al., 2006). It can be concluded that suppression of Drosophila Pink1 may 

drive the age dependent muscle degeneration. 

 

Skp-Cullin-F-box containing complex (SCF) Ubiquitin Ligases 

Ubiquitin consists of 76 amino acids that were originally found to bind the 

chromosomal protein histone (Goldknopf and Busch, 1977). The ubiquitin-proteasome 

system (UPS) is a process by which intracellular proteins are degraded in a highly 

complex, temporally controlled and tightly regulated manner and plays an important role in 

different basic cellular processes (Ciechanover and Brundin, 2003). The UPS is essential 

for cell growth by controlling the mitotic cycle through degradation of cyclins, cyclin-

dependent kinases, and cyclin dependent kinase inhibitors (King et al., 1996; Hershko A, 

1997). The ubiquitin-proteasome pathway drives cell cycle progression not only by 

regulating cyclin-dependent kinase activity but by directly influencing chromosome and 

spindle dynamics. Protein degradation via the ubiquitin-proteasome pathway is described 
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by two general steps: 1) tagging of the substrate via covalent bond formation with ubiquitin 

molecules and 2) degradation of the tagged protein by the 26S proteasome and release of 

free, reusable ubiquitin (Glickman and Ciechanover, 2002). In spite of intensive research, 

there are still unknown in areas in intracellular protein degradation and major questions 

have remained unexplored. 

Ubiquitin ligases act as part of the UPS and consist of three major components. 

Initially, the ubiquitin-activating enzyme E1 activates ubiquitin in an ATP-dependent 

manner to form a high-energy thiol ester intermediate (Ciechanover and Brundin, 2003). 

The E2 ubiquitin-conjugating enzyme then forms a thioester linkage between ubiquitin and 

E2 (Scheffner, 1995). The ubiquitin protein ligase E3 acts to bind to the target protein and 

interacts with E2 to covalently bind to target protein (Adams, 2003). This process is 

repeated many times, creating a polyubiquitin chain, which gives a signal to the target 

protein for degradation by the 26S proteasome (Wilkinson, 1999; Pickart, 2001). There are 

two main classes of E3 enzymes. The first one is the Homologous to the E6-AP carboxyl 

terminus (HECT) domain E3s, which directly bind ubiquitin molecules via thio-ester 

linkages and function as intermediate proteins (Huibregtse et al., 1995). The second class 

is the Really Interesting New Gene (RING) domain E3s, which use a Zn binding motifs to 

drive E2 towards the protein for ubiquitination instead of directly binding to ubiquitin 

molecules (Lorick et al., 1999). F-box proteins are one essential component of RING 

domain E3 ubiquitin ligases and function as substrate specific targeting proteins for 

ubiquitination. The 26S proteasome recognizes lysine-48 linked polyubiquitin chains for 

destruction whereas lysine-63 linkages are involved in the modification of enzymatic 

activity (Li et al., 2007a). 

One of the common groups of E3 ligases is SCF (Skp-Cul; F- box) complex and 

consists of four proteins: SKP1, Cul1, ROC1 and an F-box protein (Cardozo and Pagano, 
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2004).  The cullin subunit Cul1 interacts with SKP1 that is bound to the F-box protein in 

the complex and ROC1 acts as a RING-finger protein that transfers the ubiquitin molecule 

from E2 to E3 via an interaction with Cul1 (Teixeira and Reed, 2013). The F-box proteins 

give the substrate specificity to the SCF complexes by binding to the target substrate 

through different domains when F-box binds to SKP-1 (Bai et al., 1996). The link between 

these proteins and a number of important biological processes has cemented F-box proteins 

as essential members of cellular machinery. 

In PD, loss-of-function mutations in enzymes essential for the ubiquitin proteasome 

system appear to play a major role in the build-up of proteinaceous inclusions and Lewy 

Bodies development (Layfield et al., 2003). Investigating the relationship between the 

ubiquitin system and PD may provide us the opportunity to study the mechanisms of PD at 

the molecular and cellular level. 

 

F-box proteins 

The F-box proteins are characterized by approximately 50 amino acids conserved 

domains which function in mediating protein-protein interactions (Kipreos and Pagano, 

2000). F-box proteins are named after Cyclin F, which has been characterized as the first 

member of the family and is involved in different processes in many organisms (Merzetti 

et al., 2013).  F-box proteins are divided into three classes: FBXW, FBXL and FBXO 

based on their protein interaction domains: WD40 repeat domain, leucine rich repeat 

(LRR) and 'other ', respectively (Jin et al., 2004). The WD40 domain has been found to 

function as a scaffold for protein complex assembly and is essential in several cellular 

processes such as proteasome function (Neer et al., 1994). LRRK2 consists of a series of 

amino acids and functions as a staging ground for other types of protein-protein 

interactions (Kobe and Deisenhofer, 1994). F-box proteins FBXO-, has other domains such 
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as PDZ (Post synaptic density protein, Drosophila disc large tumour suppressor, and 

Zonula occludens-1 protein), zinc-finger, CASH and proline-rich domains (Cardozo and 

Pagano, 2004). The diversity of these F-box proteins indicates that F-box proteins act as 

specific targeting adapters for SCF E3 ubiquitin ligases. 

F-box proteins have been found to interact with the adaptor protein SKP1 (SkpA) 

in Drosophila (Bai et al., 1996; Dui et al., 2012). F-boxes function as the substrate 

recognition component in Skp1-Cullin-F-box (SCF) E3 ubiquitin ligases, where they are 

essential to target proteins for ubiquitylation and degradation by the 26S proteasome (Durr 

et al., 2006). Substrate specificity of SCF complexes is the function of F-box proteins. F-

box proteins also connect the ubiquitination machinery and other cellular processes by 

exerting controls over the stability of different substrate proteins (Ho et al., 2006). The F-

box proteins of the SCF ubiquitin ligase complex are responsible for recognizing different 

target substrates for ubiquitination. F-box proteins have also been found in an association 

with cellular functions such as signal transduction and cell cycle regulation (Craig and 

Tyers, 1999). Some F-box proteins may also function independently of the SCF complex 

and the 26S proteasome. Many F-box proteins have been found in gene networks widely 

regulated by microRNA-mediated gene silencing via RNA interference in plants (Jones-

Rhoades et al., 2006) and in many flowering plants the s-locus F-box has been found to 

inhibit self-fertilization (Qiao et al., 2004). Two F-box proteins have been found to control 

mitochondrial fusion and tubule formation in Saccharomyces cerevisiae (Durr et al., 2006). 

In both mammals and flies, F-box proteins have been found to be an essential factor in 

circadian rhythm (Merzetti et al., 2013). They can also function in regulation of specific 

substrate such as cullins (Cope and Deshaies, 2003). Substrates for ubiquitination via F-

box E3 activity act in regulating organ formation and hormone response in plants (Gray et 

al., 1999), spermatogenesis in Caenorhabditis elegans (Clifford et al., 2000), and as 



 

16 
 

regulators of cell cycle and cell progression in mammals (Merzetti et al., 2013).  

  In flies and mammals, many conserved members of the F-box protein family have 

been identified that can be studied in flies to provide the potential relationship between 

various disorders and processes and their mammalian counterparts (Merzetti et al., 2013). 

In mammals, 75 F-box proteins have been found (Jin et al., 2004) compared with 45 in 

flies (Dui et al., 2012). Among these identified proteins, 21 have been found to be present 

in both lineages (Merzetti et al., 2013). In Drosophila, 12 F-box proteins have known 

substrates (Skaar et al., 2009a, 2009b). The functions of these proteins are varied but 

mutations in their genes have been shown to lead to phenotypes of disease or defects in cell 

growth regulation in hosts (Merzetti et al., 2013). 

 

F-box only protein 7 

F-box only protein 7 is a member of the F-box-containing protein (FBP) family 

containing 40 amino acid domains (F-boxes) and is encoded by the Fbxo7 gene (Ho et al., 

2008). The F-box motif (329-375 residues) directs its interaction with E2-ubiquitin 

conjugating enzyme that contains many ubiquitin-binding domains (Kirk et al., 2008). In 

the C-terminus region, Fbxo7 contains a proline rich region (PRR). Substrates of Fbxo7 

destined for SCF ubiquitin proteolysis bind to the PRR and are then ubiquitinated and 

targeted for degradation. Fbxo7 has been found to be expressed especially in cerebral 

cortex, globus pallidum and substantia nigra regions of the brain and less expressed in the 

hippocampus and cerebellum (Zhao et al., 2011). 

Fbxo7 has been found to function as the targeting component of the ubiquitin 

proteasome system and mutation of Fbxo7 could lead to aggregation of protein build up 

and failure of protein recycling and repair (Merzetti et al., 2013). Aberrant proteins can 
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cause impaired mitochondrial function as well as impede other important intracellular 

processes such as cell death. The Fbxo7 gene has been found associated with the early-

onset parkinsonian pyramidal syndrome, which was described a few decades ago but for 

which a gene locus only recently has been mapped (Davison, 1954; Di Fonzo et al., 2009). 

The distinguishing features of this disease include progressive degeneration of pyramidal, 

and extrapyramidal regions in combination with the substantia nigra pars compacta in the 

brain (Di Fonzo et al., 2009). Fibres expanding from the putamen to globus pallidus and 

ansa lenticularis are degenerated and motor neurons are reduced in the globus pallidus 

(Ross, 1955). This early-onset PD, which has been studied in European families, showed   

juvenile Parkinsonian traits with other symptoms such as increased tendon flexes spasticity 

and Babinski signs (Di Fonzo et al., 2009). In a Dutch family, two affected siblings were 

found with two novel Fbxo7 mutations: one is a splice-site mutation (IVS7 + IG/T) and 

another one is a single base substitution (p.Thr22Met).  Mutations in F-box only protein 7 

have been found to cause juvenile-onset Parkinsonism with many other characteristics, 

such as pyramidal signs, dementia and dystonia (Lai et al., 2012). This most severe 

phenotype has been found in association with a homozygous truncation mutation (p. 

Arg498Stop) of Fbxo7 in an Italian family. The severe phenotype was also associated with 

a homozygous similar mutation (p. Arg378Gly). The Fbxo7 gene has recently been 

identified in an Iranian kindred who has shown the characteristics of young-onset PD with 

pyramidal signs, such as spastic weakness and Babinski signs (Shojaee et al., 2008). So, 

loss-of-function mutation in may cause PD. The Fbxo7 gene was hence termed PARK15. 

Fbxo7 in both mammals and flies interacts with a 31 kDa proteasome inhibitor 

(PI31) to start the process of proteasome degradation of target substrates  (Bader et al., 

2010). This proteasome inhibitor was named as it inhibits the 20S proteasome macropain 

(Chu-Ping et al., 1992). The Fbxo7 protein binds with PI31 via a shared N-terminal 
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domain named Fbxo7/PI31 (FP) (Kirk et al., 2008). Evidently, PI31 acts as an essential 

mediator in the ubiquitin-proteasome system.  

 

F-box only protein 9 

F-box only protein 9 is, encoded in humans by the Fbxo9 gene (Cenciarelli et al., 

1999; Winston et al., 1999). The protein encoded by Fbxo9 gene belongs to the Fbxo class. 

Alternative splicing of this gene generates at least 3 transcript variants diverging at the 5' 

terminus. The substrate specificity of Fbxo9 is unknown. 

 

F-box only protein 32 

The Fbxo32/atrogin, a gene that is up-regulated in skeletal muscles during muscle 

wasting, is conserved between mammals and flies (Merzetti et al., 2013). The Fbxo32 has 

been found to be overexpressed in a significant amount of human diseases and through its 

ubiquitin ligase function as a part of the SCF ubiquitin complex it functions in muscle 

wasting (Russell, 2010). Fbxo32 is a member of the highly conserved F-box protein family 

consisting of a PDZ domain instead of WD40 and LRR domains (Colleen Furlong [nee 

Connors], unpublished).  It has been found that atrogin is overexpressed in amyotrophic 

lateral sclerosis (ALS) (Leger et al., 2006). Also, Fbxo32 has been found to be 

overexpressed in paraplegia, chronic obstructive pulmonary disease (COPD), injury of 

spinal cord and immobilization of limb (Doucet et al., 2007; Ju and Chen, 2007; Russell, 

2010; Urso et al., 2007). The D. melanogaster atrogin homologue, CG11658, has been 

found to be over-expressed by 30% in the muscle-wasting mutant (Bulchand et al., 2010). 

Conversely, when atrogin is under-expressed, it has been found that muscle loss decreases 

in Drosophila models (Colleen Furlong [nee Connors], unpublished). When atrogin is 

knocked out, there is a reduction in muscle wasting by 50 % in mice (Latres et al., 2005). It 
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has been found that in mammals, atrogin targets proteins required for muscle synthesis 

including MyoD and eukaryotic initiation factor 3- subunit 5 (eIF3-f), degrades them and 

initiates cell death of muscle (Tintignac et al., 2005; Lagirand-Cantaloube et al., 2008). It 

can be concluded that Fbxo32/atrogin is essential for muscle degradation. 

The forkhead box, subgroup "O" (Foxo) transcription factors were first discovered 

as proto-oncogenes, which were disrupted as a result of chromosomal translocations 

leading to acute myeloid leukemia and rabdomyosarcoma (Sublett and Shapiro, 1995 and 

Borkhardt et al., 1997). Studies in mammalian cell culture have shown that in the absence 

of Akt signaling, Foxo is able to activate gene transcription and cause cell death, cell cycle 

arrest, or cell senescence (Arden and Biggs, 2002 and Burgering and Kops, 2002). The 

atrogin/ Fbxo32 is the target for forkhead box, sub-group "O" (Foxo) transcription factors 

and can trigger skeletal muscle atrophy when insulin or insulin-like growth factor-1 (IGF-

1) is absent. In mammals, it has been found that when insulin receptor signalling pathway 

has decreased activity, muscle atrophy is increased (Bodine et al., 2001b) and atrogin 

expression is also increased (Sacheck et al., 2004). Conversely, it has been found that when 

the insulin signalling pathway is activated, muscle atrophy is suppressed (Rommel et al., 

2001). The expression of this gene in various human conditions makes it a potential 

candidate for further studies, in particular potential organismal modeling of this range of 

human conditions. 
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Thesis objectives 

In my study, I have performed a bioinformatics analysis of Fbxo9 and 

Fbxo7/PARK15. I have analyzed the speculated homologous relationship between these 

two F-box proteins to assess the possibility of using Drosophila as model for PD. Our 

research group has determined that Fbxo9 is very similar to Fbxo7/PARK15 (Colleen 

Furlong [nee Connors], unpublished). We hypothesized that Fbxo9 loss-of-function would 

also cause a PD-like phenotype in D. melanogaster. The objectives of this thesis are to 

determine the effects of loss-of-function and gain-of-function of Fbxo9 in Drosophila 

compound eye, climbing ability and lifespan. It will further determine the interaction 

between Fbxo9 and Foxo in Drosophila compound eye. The effects of Fbxo9 on the α-

synuclein model will be further examined. 
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MATERIALS AND METHODS 

 

Bioinformatics analysis 

Identification of Drosophila melanogaster homologue of human Fbxo9 

The amino acid sequence of human Fbxo9 (accession number NP_258441.1) was 

obtained from the National Center for Biotechnology Information (NCBI) database 

(http://www.ncbi.nlm.nih.gov/). A translated nucleotide data base using protein query 

search (tBLASTn) was performed using the Basic Local Alignment Search Tool (BLAST)  

(www.ncbi.blast.com) to find the D. melanogaster homologue (accession number 

NP_650206.1) of human Fbxo9. The D. melanogaster homologue was identified as gene 

CG5961.  

 

Identification of other homologues of Drosophila melanogaster CG5961 and conserved 

domains 

NCBI Homologene (www.ncbi.nlm.nih.com) and a nucleotide query search of the 

nucleotide database (BLASTn) were used to find homologues of D. melanogaster 

CG5961, by interrogating with the D. melanogaster CG5961 was used to search the 

BLAST database. To find the similarity between sequences, ClustalW2  

(http://www.ebi.ac.uk/Tools/msa/clustalw2) was used (Larkin et al., 2007). The NCBI 

Conserved Domain Search Tool (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)  

was used to find different conserved domains. To align (1) vertebrate and invertebrate 

versions of Fbxo9 (2) nutcracker and CG5961 and (3) atrogin and Fbxo9, ClustalW2 was 

used. The F-box domain, Tetracycline peptide repeat (TPR), HNH nuclease family 

(HNHc), (Jin et al., 2004) and Microtubule Interacting and Trafficking molecule Domain 

(MIT) were identified using Pfam (pfam.xpfam.org) (Finn et al., 2014). Nuclear 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.blast.com/
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localization Sequence (NLS) was identified using NLSmapper (http://nls-

mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) (Kosugi et al., 2009).  Cladograms 

were created using ClustalW2. The similarity scores correspond to the evolutionary 

relations between species.  

 

Drosophila melanogaster 

Media 

D. melanogaster stocks were maintained on a standard cornmeal-yeast-molasses-

agar medium (65 g/L cornmeal, 50 ml/L molasses, 10 g/L yeast, 5.5 g/L agar and 950 ml/L 

water) and those stocks were stored at room temperature. To prevent the growth of mold, 

the medium used was treated with 2.5 ml/L propionic acid and 5 mL of 10% methyl 

paraben in ethanol. Seven mL aliquots of the medium were poured into vials of plastic 

vials and allowed to solidify. The vials were then stored at 4° C to 6° C until they were 

used. Drosophila stocks were maintained on this medium for 2 to 3 weeks and were then 

transferred to new media. The medium was prepared by Dr. Brian E. Staveley 

approximately twice a month. 

 

Stocks 

Recombinant line GMR-Gal4; UAS-Foxo, prepared by Dr. Brian E. Staveley, was 

used in this study. UAS-lacZ, GMR-Gal4 and TH-Gal4 fly lines that were also used were 

obtained from Bloomington Drosophila Stock Centre at Indiana University. Moreover, 

Ddc-Gal4 fly lines were provided by Dr. J. Hirsh (University of Virginia) and UAS-α-

synuclein fly lines were provided by Dr. M Feany (Harvard Medical School) for this study.  

Fly lines of Fbox9 EP stock number 30076 and Fbox9RNAi stock number 31368 were 

obtained from Bloomington Drosophila Stock Centre. Additionally, UAS-PI31 provided by 

http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
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Dr. H. Steller of Rockefeller University was also used in this current study.  

 

Ageing assay 

To avoid crowding during development, crosses were made in several vials, each 

containing 2 to 4 females and 2 to 4 males of each genotype. Approximately 300 male flies 

were collected under gaseous carbon dioxide (CO2) every 24 h-ours upon eclosion. These 

flies were then transferred to plastic vials containing fresh standard medium with 20 flies 

maximum in a single vial so that overcrowding could be avoided. Flies were observed, 

media replenished and scored for the presence of dead flies every second day starting two 

days after collection. Flies were considered dead when there was no movement during 

agitation (Staveley et al., 1990). The ageing assay was continued until all of the flies were 

dead. Data were analyzed using GraphPad Prism 5.03 software (Slade and Staveley, 2015). 

Survival curves were compared using a log-rank tests where a p-value less than or equal to 

0.05 was considered significant. 
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Table 2. Genotypes of fly stocks used in this study. 

 

Genotype Abbreviation Expression Balancer Reference 

Control Lines 

 

w ; UAS-lacZ 4-1-2 

 

w; UAS-PI31 

 

 

UAS-lacZ 

 

UAS-PI31 

   

 

Brand et al., 

1994 

Bader et al., 

2010 

H. Steller 

Driver Lines 

 

w ; GMR-Gal412 

 

w ; Ddc-Gal4HL83D 

 

w ; Ddc-Gal4HL836 

 

w ; pale-Gal43 

 

 

GMR-Gal4 

 

Ddc-Gal4 3D 

  

Ddc-Gal4 36 

 

TH-Gal4 

 

 

Eye 

 

Dopaminergic 

neurons plus 

Dopaminergic 

neurons plus 

Dopaminergic 

neurons  

  

 

Freeman,1996 

 

Li et al., 2000 

 

Li et al., 2000 

Experimental Lines 

 

w; Fbxo9 RNAiJFO1332 

 

w; Fbxo9 EPCG5961 

 

 

Fbxo9 RNAi 

 

Fbxo9 EP 

 

 

  

Derivative Lines 

 

w; GMR-Gal4/CyO ; 

UAS-Foxo /TM3 

 

w; GMR-Gal4/CyO; 

UAS-PI31 /TM3 

 

w; UAS-a-synuclein/CyO; 

Ddc-Gal4 /TM3 

 

 

GMR-Gal4; 

UAS-Foxo 

 

GMR-Gal4; 

 UAS-PI31 

 

a-synuclein;Ddc-

Gal4 

 

 

 

 

 

 

 

 

 

 

 

 

Dopaminergic 

neurons 

 

 

 

 

 

 

 

 

CyO, Curly;  

TM3, Stubble 

 

 

 

Kramer et 

al.,2003 

 

 

Staveley 

construct 

 

Staveley 

construct 

 

 

Compound Lines 

 

Ddc-Gal4HL83D/CyO; 

Ddc-Gal4HL836/TM3 

 

 

Ddc-Gal4 3D;Ddc-

Gal4 36 

   

 

Staveley  

construct 
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Locomotion assay 

 Approximately 70 male flies were collected under gaseous CO2 upon eclosion and 

scored for climbing ability as described by Todd and Staveley (2004). Flies were 

maintained at 25°C on standard cornmeal-yeast-molasses-agar medium. Flies were 

maintained in vials of fresh medium with a maximum of 10 flies per vial and transferred to 

new food twice in a week throughout the experiment. Flies were assayed for first climbing 

ability when they were 2 days old.  Flies were then assayed every 7 days until all of the 

flies were dead. Climbing ability was determined using a climbing apparatus that of a 30 

cm long glass tube with a 1.5 cm diameter. The tube was divided into five 2 cm sections 

along with a buffer zone. Transferred without anesthesia, each vial was assayed ten times 

and flies were given 10 seconds to see which sections they had reached. Flies were scored 

10 times per trial. A climbing ability was determined using the climbing index Σ(nm)/N 

where n is the number of flies at a given level, m is the level (1-5) and N is the total 

number of flies scored for the given trial (Todd and Staveley, 2004). Locomotion data 

analysis was done using GraphPad Prism 6.0 software. To compare locomotion ability, the 

climbing index was subtracted from 5 and climbing curves were fitted using non-linear 

regressions. Slopes of the climbing curve were compared using a 95% confidence interval, 

and a p-value less than or equal to 0.05 was considered significant. 

 

Scanning electron microscopy of the compound eye 

Several male flies were collected upon eclosion and were aged for 3 to 5 days on 

standard cornmeal-yeast-molasses-agar medium at 25° C. Flies were then stored at -80°C 

before being mounted on aluminum studs with the left eye facing upwards and desiccated 

overnight. Prepared flies were gold coated before photographs were taken using Hitachi S-

570 Scanning Electron Microscope, located at Bruneau Centre for Innovation and Research 
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(IIC) at 150X magnification. At least 15 eye images per genotype were analyzed using 

NIH ImageJ software (Abromoff et al., 2004) in order to determine the total number of 

ommatidia, total number of bristles and ommatidium area. Data were analyzed using 

GraphPad 6.0 Prism software. To compare the measured parameters, unpaired t-tests were 

carried out and p values less than or equal to 0.05 were considered significant. 
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RESULTS 

 

Bioinformatics analysis 

Identification of Fbxo9 in Drosophila melanogaster 

The amino acid sequence of the Fbxo9 protein from Homo sapiens was obtained 

from Genbank (NP_258441.1). A tBLASTn search of the D. melanogaster genome was 

conducted and the D. melanogaster gene CG5961 product was identified as the most 

similar protein sequence. The proteins share 150 identical, 99 highly conserved and 49 less 

conserved amino acids, and the overall similarity and identity between the proteins is 34% 

and 67%, respectively. The alignment shows that these proteins share the Tetracycline 

peptide repeat (TPR), Microtubule interacting and trafficking molecule (MIT), F box-only 

protein (F-box), Nuclear localization sequence (NLS), and HNH nuclease family (HNHc) 

(Figure 1). 

 

Fbxo9 protein is conserved between vertebrates and invertebrates 

 

A BLASTn search identified potentially homologous versions of vertebrate and 

invertebrate Fbxo9, including Homo sapiens (NP_258441.1), Pan troglodytes 

(NP_001153767.1), Mus musculus (NP_076094.2), Drosophila melanogaster 

(NP_650206.1), Culex quinquefasciatus (XP_001863207.1) and Anopheles gambiae 

(XP_308962). The alignment of vertebrate and invertebrate Fbxo9 proteins show that the 

TPR domain, MIT domain, F-box domain, NLS domain, HNHc domain and Microtubule 

interacting and trafficking molecule domain are all highly conserved among the different 

proteins (Figure 2). The proteins share 112 identical, 91 highly conserved and 27 less 

conserved amino acids being 26% identical and 27% similar. The scores of similarity are 
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summarized in Table 3. This relative degree of similarity corresponds inversely to the 

evolutionary distances between vertebrate and invertebrate species of Fbxo9.  

 

Relationship between Fbxo9, Fbxo7 and Fbxo32 

  

               The Drosophila F-box protein nutcracker has been found to interact with 

Drosophila PI31 (Bader et al., 2010). Human Fbxo9 and Drosophila Fbxo7 show some 

similarity in the PI31 and F-box region. They share 78 highly conserved, 51 conserved and 

47 less conserved amino acids being 34% similar and 14% identical (Figure 3).  Human 

Fbxo9 and Drosophila Fbxo32 show some similarity at the amino terminus and within the 

potential LZ, LCD and PDZ domains. They share 65 conserved, 65 highly conserved and 

54 less conserved amino acids being 17% identical and 28 % similar (Figure 4). 

Bioinformatics analysis of the F-box proteins Fbxo9 (CG5961), Fbxo7 (nutcracker) and 

Fbxo32 (atrogin) reveals that they are evolutionarily conserved between vertebrates and 

invertebrates (Figure 5). Within the sub-group, Fbxo9 and Fbxo7 are most similar, with 

Fbxo32 more distant. GenBank accession numbers for vertebrate and invertebrate versions 

of Fbxo7/nutcracker, Fbxo9/CG5961 and Fbxo32/atrogin are shown in Table 4. 
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                                           TPR 

Homo            MAEAEEDCHSDTVRADDDEENESPAETDLQAQLQMFRAQWMFELAPGVSSSNLENRPCRA 60 

Drosophila      -------------MSDVDSDGEEPTRKTGTNALDEFRENWQRELQEHTTNTGSRSHSEAG 47 

                              :* *.:.*.*:..     *: ** :*  **   .:.:. ..:.  . 

                                               MIT 

Homo            ARGSLQKTSADTKGKQEQAKEEKARELFLKAVEEEQNGALYEAIKFYRRAMQLVPDIEFK 120 

Drosophila      DR----LTAANSNLSEADLLQAKAESLYRTAVQLEQRGKVYDALPFYRKATQIVPDIEFR 103 

                 *     *:*::: .: :  : **..*: .**: **.* :*:*: ***:* *:******: 

 

Homo            ITYTRSP-------------DGDGVGNSYIEDNDDDSKMADLLSYFQQQLTFQ-----ES 162 

Drosophila      FYEQQKQKLSNDVSKKYLNLANDLAKQLDLGQSDGEEVVDNLYEKFQHDLRQKNIYNGKM 163 

                :   :.               .* . :  : :.*.:. : :* . **::*  :     :  

                                               F-box 

Homo            VLKLCQPELESSQIHISVLPMEVLMYIFRWVVSSDLDLRSLEQLSLVCRGFYICARDPEI 222 

Drosophila      IASSRDANVLTTGLHFADLPPEIVMRILRWVVSAQLDMRSLEQCAAVCKGFYVYARDEEL 223 

                : .  :.:: :: :*:: ** *::* *:*****::**:***** : **:***: *** *: 

 

Homo            WRLACLKVWGRSCIKLVP--------YTSWREMFLERPRVRFDGVYISKTTYIRQGEQSL 274 

Drosophila      WRLACVKVWGHNVGTLEAQDSDVSNVFHSWRDMFIRRDRVLFNGCYISKTTYLRMGENSF 283 

                *****:****:.  .* .        : ***:**:.* ** *:* *******:* **:*: 

 

Homo            DG-FYRAWHQVEYYRYIRFFPDGHVMMLTTPEEPQSIVPRLRTRNTRTDAILLGHYRLSQ 333 

Drosophila      QDQFYRPVQLVEYYRYIRFLPDGKVLMMTTADEPAQGVSKLKHVNNVRAEMLRGRYRLFG 343 

                :. ***. : *********:***:*:*:**.:** . *.:*:  *.    :* *:***   

                                                                  NLS 

Homo            DTDNQTKVFAVITKKKEEKPLDYKYRYFRRVPVQEADQSFHVGLQLCSSGHQRFNKLIWI 393 

Drosophila      -----STVTLVLQKSQQRGPANVRQRRGSIMPVDEDSSQFLIELRIAGTTKRRCAQLVWS 398 

                     :.*  *: *.::. * : : *    :**:* ...* : *::..: ::*  :*:*  

                                              HNHc 

Homo            HHSCHITYKSTGETAVSAFEIDKMYTPLFFARVRSYTAFSERPL- 437 

Drosophila      HY-TLVQKRNKVDISSEFDLTEAKYPALRFSTVKSYHLDADAPLA 442 

                *:   :  :.. : : .    :  *..* *: *:**   :: **  

 

 

 

 

 

Figure 1: Alignment of human Fbxo9 (NP_258441.1) protein with Drosophila CG5961 

(NP_650206.1). The highlighted turquoise region is the TPR domain, the yellow region is 

the MIT domain, the red region is the F-box domain, the green region is the NLS domain 

and the pink region is the HNHc domain. TPR is the Tetracycline peptide repeat, MIT is 

the Microtubule interacting and trafficking molecule domain, NLS is the Nuclear 

localization sequence and HNHc is the HNH nuclease family. ‘‘*’’ indicates fully 

conserved amino acid, ‘‘:’’indicates conserved amino acid with less similar properties and 

‘‘.’’ indicates conserved amino acid with less similar properties. 
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Homo            MAEAEEDCHSDTVRADDDEENESPAETD-------LQAQLQMFRAQWMFELAPGVSSSNL 53 

Pan             MAEAEEDCHSDTVRADDDEENESPAETD-------LQAQLQMFRAQWMFELAPGVSSSNL 53 

Mus             MAEAEEDCHSDADRVGD-EGNESPAERD-------LQAQLQMFRAQWMFELTPGVGSSHG 52 

Culex           MDASAGGGGDSTGKGEDEDESSSSSVDGGVQTT------LDEFRERWQQELKKEPGTAQN 54 

Anopheles       MDSTSSDAGK-----EDDDESSSSSTTSGSEATSPKRSELDDFREQWQKELKKEQHVASA 55 

Drosophila      MSDVD----------SDGEEPTRKTGTN----------ALDEFRENWQRELQEHTTNTGS 40 

                *               * :     :  .           *: ** .*  **      :   

                              

                                                      MIT 

Homo            ENRPCRAARGSLQKTSADTKGKQEQAKEEKARELFLKAVEEEQNGALYEAIKFYRRAMQL 113 

Pan             ENRPCRAARGSLQKTSADTKGKQEQAKEEKARELFLKAVEEEQNGALYEAIKFYRRAMQL 113 

Mus             ETRPCRAGRSSMLKAAADTKGRQELAKEEKARELFLQAVEEEQNGALYEAIKFYRRAMQL 112 

Culex           VA----VAQQDQNQ---------NLSVEQRARALFLEGSEMERVGKVFEAMRLYRRAVQL 101 

Anopheles       AT----VAPAGGNVGDG------KDSIEQQARLLFQQGSELERSGKVFEAMRLYRRATQL 105 

Drosophila      RS----HSEAGDRLTAANSNLSEADLLQAKAESLYRTAVQLEQRGKVYDALPFYRKATQI 96 

                       .  .                : :*. *:  . : *: * :::*: :**:* *: 

 

Homo            VPDIEFKITYTRS------------PDGDGVGNSYIE----DNDDDSKMADLLSYFQQQL 157 

Pan             VPDIEFKITYTRS------------PDGDGVGNSYIE----DNDDDSKMADLLSYFQQQL 157 

Mus             VPDIEFKITYTRS------------PDGDGVGSGYIE----ENEDASKMADLLSYFQQQL 156 

Culex           VPDIEFRVYEKRTPAKQASGDVSASSEIDALSNELLEVTLDEDDENLENVDLVLRFQNLL 161 

Anopheles       VPDIEFRVYDKKH-AKATT----AAAEVDGLMERMLEANIDEDEENLEGVDLGLRFQTLM 160 

Drosophila      VPDIEFRFYEQQK-QKLSNDVSKKYLNLANDLAKQLDLGQSDGEEVVD--NLYEKFQHDL 153 

                ******:.   :              :        ::    :.::  .  :*   **  : 

                                                    

 

                                                     F-box 

Homo            TFQ-----ESVLKLCQPELESSQIHISVLPMEVLMYIFRWVVSSDLDLRSLEQLSLVCRG 212 

Pan             TFQ-----ESVLKLCQPELESSQTHISVLPMEVLMYIFRWVVSSDLDLRSLEQLSLVCRG 212 

Mus             TLQ-----ESVLKLCQPELETSQTHISVLPMEVLMYIFRWVVSSDLDLRSLEQLSLVCRG 211 

Culex           AKS---RKLFERASGDRGLIVTSAHFSDLPMEVILYILRWVVSSDLDLRSMERFGRVCRG 218 

Anopheles       ARS---GKLFERASGDRKLIVTSAHFSDLPMEVILYILRWVVSNDLDLKSLERFASVCRG 217 

Drosophila      RQKNIYNGKMIASSRDANVLTTGLHFADLPPEIVMRILRWVVSAQLDMRSLEQCAAVCKG 213 

                  .            :  :  :  *:: ** *::: *:***** :**::*:*: . **:* 

 

 

 

Homo            FYICARDPEIWRLACLKVWGRSCIKLVP--------YTSWREMFLERPRVRFDGVYISKT 264 

Pan             FYICARDPEIWRLACLKVWGRSCIKLVP--------YTSWREMFLERPRVRFDGVYISKT 264 

Mus             FYICARDPEIWRLACLKVWGRSCMKLVP--------YASWREMFLERPRVRFDGVYISKT 263 

Culex           FYLLARDPEIWRRACVRLWGVNVGNLKG------SPFASWREMYINRPRVHFHGCYISRT 272 

Anopheles       FYLLARDPEIWRHACMRIWGVNLGVLKG------TPFSSWREMYINRPRILFHGCYISRT 271 

Drosophila      FYVYARDEELWRLACVKVWGHNVGTLEAQDSDVSNVFHSWRDMFIRRDRVLFNGCYISKT 273 

                **: *** *:** **:::** .   *          : ***:*::.* *: *.* ***:* 

 

Homo            TYIRQGEQS-LDGFYRAWHQVEYYRYIRFFPDGHVMMLTTPEEPQSIVPRLRTRNTRTDA 323 

Pan             TYIRQGEQS-LDGFYRAWHQVEYYRYIRFFPDGHVMMLTTPEEPQSIVPRLRTRNTRTDA 323 

Mus             TYIRQGEQS-LDGFYRAWHQVEYYRYMRFFPDGHVMMLTTPEEPPSIVPRLRTRNTRTDA 322 

Culex           SYLRYGENSFQDQFYRPVQLVEYYRYFRFFADGSVLMLTSAEEPQSCVGKLKPRSPVQNE 332 

Anopheles       SYLRSGENSFQDQFYRPIQLVEYYRYFRFFADGKVLMMTTADEPQQCVVRLKQRVPTQNE 331 

Drosophila      TYLRMGENSFQDQFYRPVQLVEYYRYIRFLPDGKVLMMTTADEPAQGVSKLKHVNNVRAE 333 

                :*:* **:*  * ***. : ******:**:.** *:*:*:.:** . * :*:         

                                                                         NLS 

Homo            ILLGHYRLSQDTDNQTKVFAVITKKK--EEKPLDYKYRYFRRVPVQEADQSFHVGLQLCS 381 

Pan             ILLGHYRLSQDTDNQTKVFAVITKKK--EEKPLDYKYRYFRRVPVQEADQSFHVGLQLCS 381 

Mus             ILLGHYRLSQDADNQTKVFAVITKKK--EEKPLDHKYRYFRRVPVQEADHSFHVGLQLCS 380 

Culex           ILKGHYRLRNDE-----LIIAVQRKR--SNVQSQRPGRKK-EIEAEFGQQTLYLELGIVS 384 

Anopheles       ILRGHYRLHDDI-----VIVVIQRNRPSAAGQMQRPGRKARDIEPEYGQQTFLMELQIVS 386 

Drosophila      MLRGRYRLFGST-----VTLVLQKSQ--QRGPANVRQRRGSIMPVDEDSSQFLIELRIAG 386 

                :* *:***  .      :  .: :.:       :   *    :  :  .  : : * : . 
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                                                           HNHc   

Homo            SGHQRFNKLIWIHHSCHITYKSTGETAVSAFEIDK-MYTPLFFARVRSYTAFSERPL- 437 

Pan             SGHQRFNKLIWIHHSCHITYKSTGETAVSAFEIDK-MYTPLFFARVRSYTAFSERPL- 437 

Mus             SGHQRFNKLIWIHHSCHITYKATGETAVSAFEIDK-MYTPLLFARVRSYTAFSERPL- 436 

Culex           TAKRAFSQLHWRQYS--MVQLRNNQETTTTFELNSSKYPTLFFSRVKSYHQESEGPLK 440 

Anopheles       TGKRPFSQLHWKQYT--MVQQRNNQEKTTQFELTTTKYPPLYFSRVKSYHQESEGPLK 442 

Drosophila      TTKRRCAQLVWSHYT--LVQKRNKVDISSEFDLTEAKYPALRFSTVKSYHLDADAPLA 442 

                : ::   :* * :::  :.   .     : *::    *..* *: *:**   :: **  

                                                                                              

 

 

 

Figure 2: Fbxo9 is well conserved in vertebrates and invertebrates. The highlighted 

turquoise region is the TPR domain, the yellow region is the MIT domain, the red region is 

the F-box domain, the green is the NLS domain and the pink region is the HNHc domain. 

TPR is the Tetracycline peptide repeat, MIT is the Microtubule interacting and trafficking 

molecule domain, NLS is the Nuclear localization sequence and HNHc is the HNH 

nuclease family. ‘‘*’’ indicates fully conserved amino acid, ‘‘:’’indicates conserved amino 

acid with less similar properties and ‘‘.’’ indicates conserved amino acid with less similar 

properties. The Genbank accession number for Homo sapiens is NP_258441.1, Pan 

troglodytes NP_001153767.1, Mus musculus NP_076094.2, Drosophila melanogaster 

NP_650206.1, Culex quinquefasciatus XP_001863207.1 and Anopheles gambiae 

XP_308962. 

 
 

 

 

 

 

 

 

 

 

Table 3. Similarity scores of Fbxo9 protein homologues from vertebrate and 

invertebrate species. 

 

 

Species % Similarity to Fbxo9 

(Homo sapiens) 

% Similarity to CG5961 

(Drosophila melanogaster) 

Pan troglodytes 99.77 34.22 

Mus musculus 91.51 34.4 

Anopheles gambiae   36.61 40.95 

Culex quinquefasciatus 38.44 38.86 

Drosophila melanogaster 34.22 ……. 

Homo sapiens ……… 34.22 
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Fbxo9         MAEAEEDCHSDTVRADDDEENESPAETDLQAQLQMFRAQWMFELAPGVSSSNLENRPCRA 60 

Fbxo7         -------------MSDTKSEIEG------------------FIAIPTTSGEQQQQQPQQQ 29 

                            :* ..* *.                  *   * .*..: :::* :  

 

 

Fbxo9         ARGSLQKTSADTKGKQEQAKEEKARELFLKAVEEEQNGALYEAIKFYRRAMQLVPDIEFK 120 

Fbxo7         QNEQQVVGTKDIKAPDQVGKKQRPRLIQEKSTQETN------PLILEHATLEWVP----- 78 

               . .    : * *. :: .*:::.* :  *:.:* :      .: : : ::: **      

 

Fbxo9         ITYTRSPDGDGVGNSYIEDNDDDSKMADLLSYFQQQLTFQESVLKLCQPELESSQIHISV 180 

Fbxo7         -----------------------QHMDKLLNQYQECR----------------------K 93 

                                     .:* .**. :*:                          

 

Fbxo9         LPMEVLMYIFRWVVSSDLDLRSLEQLSLVCRGFYICARDPEIWRLACLKVWGRSCIKLVP 240 

Fbxo7         MPAAEWLHLLTYLVALECGFVEEETFAQKR---HLIQPVPSFSSFHAQNVR-----ILSE 145 

              :*    :::: ::*: : .: . * ::      ::    *.:  : . :*       *   

                                                            PI31 

Fbxo9         YTSWREMFLERPRVRFDGVYISKTTYIRQGEQSLDGFYRAWHQVEYYRYIRFFPDGHVMM 300 

Fbxo7         QPARYEVCFN------DTVYIMRLRTLLDKHAPEETSLVAALQCR----LMAVSLGDQLM 195 

               .:  *: ::      * *** :   : : . . :    *  * .    :  .. *. :* 

 

Fbxo9         LTTPEEPQSIVPRLRTRNTRTDAILLGHYRLSQDTDNQTKVFAVITKKKEEKPLDYKYRY 360 

Fbxo7         ITLSPAPPSKEPGYSVS------LSIGRYVLNIQAKNK----PIYHRFRKLDELSYQLKQ 245 

              :* .  * *  *   .       : :*:* *. ::.*:    .:  : :: . *.*: :  

                                                    F-box 

Fbxo9         FRRVPVQEADQSFHVGLQLCSSGHQRFNKLIWIHHSCHITYKSTGETAVSAFEIDKMYTP 420 

Fbxo7         HLFQPMRSQ-QLMQMEMKLQPS------LLGLPDELYFEIFRYLDKSQLNVVARVNRHLH 298 

              .   *::.  * ::: ::* .*       *   ..  .  ::  .:: :...   : :   

 

Fbxo9         LFFARVRSYTAFSERPL 437 

Fbxo7         FYSKEVERKRLKGGRS- 314 

              ::  .*.     . *.  

 

 

 
 

 

 

Figure 3: Human Fbxo9 and Drosophila Fbxo7 share some similarity. ClustalW2 

multiple alignment of Human Fbxo9 and Drosophila Fbxo7. The highlighted red region is 

the PI31 binding region and the turquoise region is the F-box domain. ‘‘*’’ indicates fully 

conserved amino acid, ‘‘:’’indicates conserved amino acid with less similar properties and 

‘‘.’’ indicates conserved amino acid with less similar properties.                
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                                      Amino terminus 
Fbxo9         MAEAEEDCHSDTVRADDDEENESPAETDLQAQLQMFRAQWMFELAPGVSSSNLENRPCRA 60 

Fbxo32        MAFISKDFR-----------------------------------SPGETWIKTDG----- 20 

              **  .:* :                                   :** :  : :.      

 

Fbxo9         ARGSLQKTSADTKGKQEQAKEEKARELFLKAVEEEQNGALYEAIKFYRRAMQLVPDIEFK 120 

Fbxo32        --GWERSKVLECGGKRKRHHSE--------------GSSSYQDSDSSEEEAVMPPHYHIT 64 

                *  :..  :  **::: :.*              ..: *:  .  ..   : *. .:. 

                                       Potential LZ 

Fbxo9         ITYTRSPDGDGVGNSYIEDNDDDSKMADLLSYFQQQLTFQESVLKLCQPELESSQIHISV 180 

Fbxo32        IRCTREIAG-------FNGLSEAVKRLDFRRSVRDRKRFHY----ICAFLLLVSNKGIAS 113 

              *  **.  *       ::. .:  *  *:   .:::  *:     :*   *  *:  *:  

                                                LCD 

Fbxo9         LPMEVLMYIFRWVVSSDLDLRSLEQLSLVCRGFYICARDPEIWRLACLKVWGRSCIKLVP 240 

Fbxo32        LPGSAQRQLLQMVEEVASHVNDSQQHPNVLRG--LALKLEHIVSQENQKCWGK---PLGS 168 

              ** ..   ::: * .   .:.. :* . * **  :. :  .*      * **:    * . 

 

Fbxo9         YTSWREMFLERPRVRFDGVYISKTTYIRQGEQSLDGFYRAWHQVEYYRYIRFFPDGHVMM 300 

Fbxo32        TYLWKEHMATIKRIQRVASQIEIREPDPEAKPKLHELP-----EECVREIILCIADHRDL 223 

                 *:* :    *::  .  *.      :.: .*. :       *  * * :   .*  : 

 

Fbxo9         LTTPEEPQSIVPRLRTRNTRTDAILLGHYRLSQDTDNQTKVFAVITKKKEEKPLDYKYRY 360 

Fbxo32        ESAAEAWETMAKLVSEQRIWR---ELTRFHFNQRQIHTILDLDKFKQMGEIKDWKQIYHQ 280 

               ::.*  :::.  :  :.       * ::::.*   :    :  :.:  * *  .  *:  

 

Fbxo9         FRRVPVQEADQSFHVGLQLCSSGHQRFNKLIWIHHSCHIT--YKSTGETAVSAFEIDKMY 418 

Fbxo32        LRRTYGVNDDYQFAEVLALCRSCCCLFWPSDGHPCIVDQSPDYKQRLEEAGGQLALAQPV 340 

              :**.   : * .*   * ** *    *          . :  **.  * * . : : :   

                 PDZ 

Fbxo9         TPLFFARVRSYTAFSERPL 437 

Fbxo32        PPAQFLKYFSL-------- 351 

              .*  * :  *          

         

 
 

 

Figure 4: Similarity between Human Fbxo9 and Drosophila Fbxo32. ClustalW2 

multiple alignment of Human Fbxo9 and Drosophila Fbxo32. The highlighted green region 

is the amino terminus, the yellow region is the potential LZ domain, the turquoise region is 

the LCD domain and the red region is the PDZ domain. ‘‘*’’ indicates fully conserved 

amino acid, ‘‘:’’ indicates conserved amino acid with less similar properties and ‘‘.’’ 

indicates conserved amino acid with less similar properties.                
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 
 

Table 4. Protein names and GenBank accession numbers of vertebrate and 

invertebrate versions of Fbxo7, Fbxo9 and Fbxo32. 

 

Species Accession number Protein name 

Homo sapiens NP_258441.1 F-box only protein 9 

isoform 2 

Drosophila melanogaster NP_650206.1 CG5961, isoform A 

Homo sapiens NP_036311.3 F-box only protein 7 

isoform 1 

Drosophila melanogaster AAF47792.2 AAF47792.2 

 

Homo sapiens NP_478136.1 F-box only protein 32 

isoform 1 

Drosophila melanogaster NP_648498.1 CG11658, isoform A 

 

  

 

Figure 5: Fbxo7, Fbxo9 and Fbxo32 are conserved between Drosophila and Human. 
The GenBank accession number for Homo sapiens Fbxo9 is NP_258441.1, Fbxo7 

NP_036311.3, Fbxo32 NP_478136.1; for Drosophila melanogaster Fbxo9 is 

NP_650206.1, Fbxo7 is AAF47792.2 and Fbxo32 NP_648498.1. 
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Eye analysis 

Effects of directed overexpression and RNA interference of Fbxo9 

The D. melanogaster compound eye development is very precise and regular. The 

development and organization of each ommatidium and its array is tightly controlled 

(Thomas and Wassarman, 1999). Each eye is composed of approximately 700-800 

ommatidia under normal conditions. If any disruption occurs it may result changes in 

ommatidia number, bristle number and/ or ommatidia size. The eye is a photoreceptor 

organ and has within it neurons and other neuronally derived tissues such as glia, bristles 

and sockets. Under this precept, we investigated using biometric analysis whether 

overexpression or RNA-i dependent under-expression of Fbxo9 has any effect on the 

development of specialized neurons in the eye. To determine the effects of gain-of-function 

and loss-of-function of Fbxo9 in the Drosophila eye, the eye specific transgenic driver 

GMR-Gal4 was used to express these transgenes. A summary of ommatidia number, bristle 

number and ommatidia area is shown in Table 5. Analysis of the scanning electron 

micrographs (Figure 6) showed that RNA-i of the Fbxo9 RNAi gene significantly 

decreased ommatidia number, bristle number and size of each ommatidia . With expression 

of  Fbxo9 RNAi under the control of GMR-Gal4 driver, the average number of ommatidia, 

bristle and ommatidium area per eye were 578.3 ± 1.745, 410.1 ± 3.952 and 166.3 ± 

0.8489 µm2, respectively. This is compared to the UAS-lacZ control where the average 

number of ommatidia, bristle and ommatidium area per eye were 678.3 ± 2.393, 575.4 ± 

3.144 and 186.5 ± 1.410 µm2, respectively (Table 5). Overexpression of Fbxo9 

significantly increased ommatidia number and bristle number but there was no significant 

difference in the ommatidium area. When Fbxo9 was overexpressed using GMR-Gal4 

driver, the average number of ommatidia per eye was 699.4 ± 1.756, bristle number was 

611.6 ± 1.693 compared to UAS-lacZ -expressing control where the average number of 
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ommatidia per eye was 678.3 ± 2.393 and bristle number was 575.4 ± 3.144. It can be 

concluded that loss-of-function of Fbxo9 in the fly eyes through eye-specific expression of 

Fbxo9RNAi leads to a significant reduction in the number of ommatidia, bristles as well as in 

ommatidia area, whereas overexpression of Fbxo9 leads to significantly increases.  
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Table 5. A summary of the biometric analysis of the directed overexpression and RNA 

interference of Fbxo9 in the Drosophila compound eye. 

 

 

A. Ommatidia number 

    

Genotype Number of eyes 

analyzed (N) 

Mean ± SEM p-value compared 

to control 

Significant 

GMR-Gal4/ UAS-lacZ 15 678.3 ± 2.393 N/A N/A 

GMR-Gal4/ Fbxo9RNAi  15 578.3 ± 1.745 < 0.0001 Yes 

GMR-Gal4/ Fbxo9EP 15 699.4 ± 1.756 < 0.0001 Yes 

 

 

B. Bristle number 

  

Genotype Number of eyes 

analyzed (N) 

Mean ± SEM p-value compared 

to control 

Significant 

GMR-Gal4/ UAS-lacZ 14 575.4 ± 3.144 N/A N/A 

GMR-Gal4/ Fbxo9RNAi  14 410.1 ± 3.952 < 0.0001 Yes 

GMR-Gal4/ Fbxo9EP 14 611.6 ± 1.693 < 0.0001 Yes 

 

 

C. Ommatidium area 

     

Genotype Number of eyes 

analyzed (N) 

Mean ± SEM p-value compared 

to control 

Significant 

GMR-Gal4/ UAS-lacZ 15 186.5 ± 1.410 

µm2 

N/A N/A 

GMR-Gal4/ Fbxo9RNAi  15 166.3 ± 0.8489 

µm2 

< 0.0001 Yes 

GMR-Gal4/ Fbxo9EP 15 187.3 ± 1.236 

µm2 

0.6988 No 
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Figure 6: Biometric analysis of gain-of-function and loss-of-function of Fbxo9 in the 

Drosophila compound eye. Genotypes are (A) GMR-GAL4/ UAS-lacZ, (B) GMR-GAL4/ 

Fbxo9RNAi and (C) GMR-GAL4/ Fbxo9EP. Loss-of-function of Fbxo9 significantly 

decreases ommatidia number (D), bristle number (E) and ommatidium area (F). 

Overexpression of Fbxo9 significantly increases ommatidia number (D) and bristle number 

(E) but there was no significant difference in the ommatidia area (F). Data was analyzed 

using one-way ANOVA and Dunnett’s multiple comparison tests and p < 0.05 was used to 

indicate significant differences. Error bars represent standard error of the mean.  
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Investigation of Fbxo9 and Foxo interactions in the compound eye       
 

 Next, the effects on the compound eye of co-overexpression of Fbxo9 and Foxo, as 

well as overexpression of Foxo together with RNAi-dependent reduced expression of 

Fbxo9, were determined. Fbxo9 was co-expressed with both a Drosophila and a mouse 

version (Foxo1) of Foxo, which was previously generated by another research group using 

GMR-Gal4; UAS-Foxo driver (Kramer et al., 2003).  The elevated expression of Foxo can 

create an eye phenotype where a greater number of ommatidia and bristles are decreased 

(Kramer et al., 2003). A summary of ommatidia number, bristle number and ommatidia 

area is shown in Table 6.  Analysis of scanning electron micrographs of eyes  (Figure 7) 

show that RNAi-dependent reduced expression of Fbxo9 together with Foxo 

overexpression significantly decreased the ommatidia number, bristle number and 

ommatidium area compared to the Foxo overexpressing control fly GMR-Gal4; UAS-

Foxo/UAS-lacZ. The average number of ommatidia decreased from 382.9 ± 3.344 to 183.1 

± 2, bristle number decreased from 7.467 ± 0.1333 to 3.600 ± 0.1309 and ommatidia area 

decreased from 197.9 ± 0.2794 µm2 to 123.8 ± 0.3114 µm2 (Table 6).  

Over-expression of Fbxo9 and Foxo together significantly increased the ommatidia 

number (Figure 7D) and, bristle number (Figure 7E) and ommatidium area (Figure 7F). 

The average number of ommatidia, bristles and ommatidium area in the GMR-Gal4; UAS-

Foxo/Fbxo9EP expressing flies was 432.7 ± 3.138, 11.60 ± 0.1309, and 205.9 ± 0.6252 µm2 

respectively, compared to the Foxo overexpressing control flies (GMR-Gal4; UAS-Foxo/ 

UAS-lacZ) where the average number of ommatidia, bristles and ommatidium area per eye 

was 382.9 ± 3.344, 7.467 ± 0.1333, 197.9 ± 0.2794 µm2, respectively. It can be concluded 

that co-overexpression of Fbxo9 and Foxo significantly increases ommatidia number and, 

bristle number and ommatidium area.  
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Table 6. A summary of the ommatidia number, bristle number and ommatidia area 

when Foxo is co-overexpressed with lacZ, Fbxo9RNAi and Fbxo9EP in the Drosophila 

compound eye.  

 

A. Ommatidia number 

       

Genotype Number of eyes 

analyzed (N) 

Mean ± SEM p-value compared 

to control 

Significant 

GMR-Gal4;UAS-

Foxo/ UAS-lacZ 

15 382.9 ± 3.344, 

n=15 

N/A N/A 

GMR-Gal4;UAS-

Foxo/ Fbxo9RNAi  

15 183.1 ± 2.918, 

n=15 

< 0.0001 Yes 

GMR-GAL4;UAS-

Foxo/ Fbxo9EP  

15 432.7 ± 3.138, 

n=15 

< 0.0001 Yes 

 

 

B. Bristle number 

 

Genotype Number of eyes 

analyzed (N) 

Mean±  SEM p-value compared 

to control 

Significant 

GMR-Gal4;UAS-

Foxo/ UAS-lacZ 

15 7.467 ± 0.1333 N/A N/A 

GMR-Gal4;UAS-

Foxo/ Fbxo9RNAi  

15 3.600 ± 0.1309 < 0.0001 Yes 

GMR-GAL4;UAS-

Foxo/ Fbxo9EP  

15 11.60 ± 0.1309 < 0.0001 Yes 

 

 

C. Ommatidium area 

      

Genotype Number of eyes 

analyzed (N) 

Mean±  SEM p-value compared 

to control 

Significant 

GMR-Gal4;UAS-

Foxo/ UAS-lacZ 

15 197.9 ± 0.2794 

µm2 

N/A N/A 

GMR-Gal4;UAS-

Foxo/ Fbxo9 RNAi  

15 123.8 ± 0.3114 

µm2 

< 0.0001 Yes 

GMR-GAL4;UAS-

Foxo/ Fbxo9 EP  

15 205.9 ± 0.6252 

µm2 

< 0.0001 Yes 
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Figure 7: Biometric analysis of the Drosophila compound eye in flies overexpressing 

Foxo together with overexpression or loss-of-function of Fbxo9. Genotypes are (A) 

GMR-Gal4; UAS-Foxo/UAS-lacZ, (B) GMR-Gal4; UAS-Foxo/Fbxo9RNAi and  (C) GMR-

Gal4; UAS-Foxo/Fbxo9EP. Loss-of-function of Fbxo9 together with overexpression of 

Foxo significantly decreases ommatidia number (D), bristle number (E) and ommatidium 

area (F). Overexpression of both Foxo and Fbxo9 significantly increases ommatidia 

number (D) and bristle number (E) and ommatidia area (F). Data were analyzed using one-

way ANOVA and Dunnett’s multiple comparison tests and p<0.05 was used to indicate 

significant differences.  Error bars represent the standard error of the mean. 
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Ageing analysis 

The effects of loss-of-function and gain-of-function of Fbxo9 

The main feature of PD is the age dependent degeneration of dopaminergic 

neurons. The selective death and degeneration of these dopaminergic neurons lead us to 

investigate the effects of Fbxo9 on these neurons. To determine whether Fbxo9 has any 

effects on the DA neurons, the gene was both overexpressed and silenced via RNA 

interference in the DA neurons. The ageing analysis was carried out in parallel with the 

climbing assay in order to determine the changes in the climbing ability as a result of 

premature senescence. 

To investigate the effects of gain-of-function and loss-of-function of Fbxo9 on 

ageing and lifespan, driver lines Ddc-Gal436 (II), Ddc-Gal43D (III), Ddc-Gal43D; DDC-

Gal436 and TH-Gal4 were used to express these transgenes in the fly dopaminergic 

neurons. Survival curves are illustrated in Figure 8. The results indicate that loss-of-

function of Fbxo9 using the Ddc-Gal436 (II), Ddc-Gal43D (III), Ddc-Gal43D; Ddc-Gal436 

and TH-Gal4 drivers significantly decreased longevity compared to lacZ-expressing 

controls (Figure 8 A-D). The median lifespan for Fbxo9RNAi flies using these four drivers 

was 74, 76, 72 and 70 days, respectively. This is compared to the control flies whose 

median lifespan was 80, 82, 78 and 75 days, respectively. The log-rank test showed that the 

Fbxo9RNAi longevity curves are significantly different (p<0.0001) from the control curves. 

Overexpression of Fbxo9 using the Ddc-Gal436 (II), Ddc-Gal43D (III), Ddc-Gal43D; 

DDC-Gal436 and TH-Gal4 drivers significantly increased longevity compared to lacZ-

expressing controls (Figure 8 A-D). The median lifespan for flies overexpressing Fbxo9 

using these four drivers was 84, 86, 84 and 82, respectively. This is compared to the 

control flies whose median lifespan was 80, 82, 78 and 75, respectively. The log-rank test 
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showed that the longevity curves for the Fbxo9 overexpression flies are significantly 

different (p<0.0001) from the control curves. Statistical analysis of longevity is 

summarized in Table 7. Loss-of-function of Fbxo9 in fly dopaminergic neurons leads to a 

reduction in lifespan, which is characteristic of PD-like phenotype, whereas overexpression 

of Fbxo9 significantly increases lifespan.  
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Table 7. The Log-Rank comparison of the survival curves for the directed 

overexpression and RNA interference of Fbxo9 in the dopaminergic neurons. Chi-

square values and p-values were calculated using UAS-lacZ controls. 

 

 

Genotype Number of 

Flies 

(Deaths) 

Median 

Survival 

(Days) 

Chi Square p-value Significant 

Ddc-Gal43D; 

Ddc-Gal436/  

UAS-lacZ 

300 78 125.6 N/A N/A 

Ddc-Gal43D; 

Ddc-Gal436/ 

 Fbxo9EP 

300 84 9.644 0.0019 Yes 

Ddc-Gal43D; 

Ddc-Gal436/  

Fbxo9RNAi 

263 72 76.11 <0.0001 Yes 

Ddc-Gal436/  

UAS-lacZ 

306 80 87.73 N/A N/A 

Ddc-Gal436 / 

 Fbxo9EP 

300 84 14.85 0.0001 Yes 

Ddc-Gal436 /  

Fbxo9RNAi 

277 74 59.55 <0.0001 Yes 

Ddc-Gal43D/  

UAS-lacZ 

334 82 62.30 N/A N/A 

Ddc-Gal43D/ 

 Fbxo9EP 

290 86 14.34 0.0002 Yes 

Ddc-Gal43D/  

Fbxo9RNAi 

300 76 47.59 <0.0001 Yes 

TH-Gal4/  

UAS-lacZ 

274 75 82.27 N/A N/A 

TH-Gal4/ 

 Fbxo9EP 

280 82 8.124 0.0042 Yes 

TH-Gal4/  

Fbxo9RNAi 

250 70 47.89 <0.0001 Yes 
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Figure 8: Effect of loss-of-function and overexpression of Fbxo9 on lifespan in 

Drosophila. Expression of Fbxo9RNAi using the Ddc-Gal436 (A), Ddc-Gal43D (B), Ddc-

Gal43D; Ddc-Gal436 (C), and TH-Gal4 (D) drivers significantly decreases longevity. 

Overexpression of Fbxo9 using the same four drivers significantly increases longevity. 

Longevity is shown as the percent survival as a function of time. A p-value less than 0.01 is 

considered as significant by the log-rank test. Error bars represent the standard error of the 

mean. 
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Investigating the effects of Fbxo9 on the α-synuclein model of PD 

To determine the effects on Drosophila lifespan of α-synuclein overexpression 

together with Fbxo9 overexpression or Fbxo9 reduced expression due to RNA interference, 

the experimental lines and control line were co-expressed with UAS-α-synuclein/CyO; 

Ddc-Gal4/TM3. The resulting survival curve is illustrated in Figure 9.  Loss-of-function of 

Fbxo9 together with overexpression of α-synuclein significantly decreased lifespan 

compared to the lacZ-expressing controls. The median lifespan of Fbxo9RNAi / UAS-a-

synuclein flies was 76 days as compared to 80 days for the control flies. Overexpression of 

both Fbxo9 and α-synuclein significantly increased the lifespan compared to the lacZ-

expressing controls. The median lifespan of the Fbxo9RNAi / UAS-a-synuclein flies was 82 

days as compared to 80 days for the control flies. The statistical analysis of the longevity 

assay is summarized in Table 8. 
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Table 8. The Log-Rank survival curve comparison for the directed co-overexpression 

of α-synuclein and Fbxo9 and or Fbxo9RNAi in the dopaminergic neurons. Chi-square 

values and p-values were calculated using UAS-lacZ controls. 

 

 

Genotype Number of 

Flies (Deaths) 

Median 

Survival 

(Days) 

Chi Square P value Significant 

UAS-αsyn/ 

UAS-lacZ 

367 80 68.65 N/A N/A 

UAS-asyn/ 

Fbxo9 EP 

347 82 45.52 <0.0001 Yes 

 UAS-asyn/ 

Fbxo9RNAi 

302 76 41.43 <0.0001 Yes 
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Figure 9: Effect of α-synuclein overexpression together with loss-of-function or 

overexpression of Fbxo9 in dopaminergic neurons on lifespan in Drosophila. Loss-of-

function of Fbxo9 together with α-synuclein overexpression significantly decreases 

longevity while overexpression of both Fbxo9 and α-synuclein significantly increases 

longevity. Ageing is shown as percent survival as a function of time. A p-value less than 

0.01 was considered significant by the log-rank test. Error bars represent the standard error 

of the mean. 
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Climbing analysis 

 

Effects of gain-of-function and loss-of-function of Fbxo9  

 

The climbing analysis was carried out to investigate whether or not the 

overexpression and/or interference of expression of Fbxo9 has any effect on mobility of 

Drosophila. The effects of gain-of-function and loss-of-function of Fbxo9 on climbing 

ability were investigated using the, driver lines Ddc-Gal436, Ddc-Gal43D, Ddc-Gal43D; 

Ddc-Gal436 and TH-Gal4 in order to express the transgenes in the fly dopaminergic 

neurons. Loss-of-function of Fbxo9 using Ddc-Gal436, Ddc-Gal43D, Ddc-Gal43D; Ddc-

Gal436 and TH-Gal4 driver significantly decreased climbing ability compared to the lacZ-

expressing control (Figure 10 A-D). The 95% confidence interval for Ddc-

Gal436/Fbxo9RNAi was 0.03111-0.03823, for Ddc-Gal43D/ Fbxo9RNAi it was 0.02620-

0.02977, for Ddc-Gal43D; Ddc-Gal436/ Fbxo9RNAi was 0.03127-0.04009, and for TH-Gal4/ 

Fbxo9RNAi it was 0.02921-0.03464 and thus these climbing curves are significantly 

different from the control curves with 95% confidence intervals at 0.0324310-0.04035, 

0.3102-0.03757, 0.04514-0.05483, and 0.03422-0.04296, respectively (Table 9). 

Overexpression of Fbxo9 using Ddc-Gal436, Ddc-Gal43D, Ddc-Gal43D; Ddc-Gal436 and 

TH-Gal4 driver significantly increased climbing ability compared to the lacZ-expressing 

control (Figure 10 A-D).The 95% confidence interval for Ddc-Gal436/Fbxo9 EP was 

0.0433210-0.05223, Ddc-Gal43D/ Fbxo9 EP was 0.03706-0.04485, Ddc-Gal43D; Ddc-

Gal436/ Fbxo9EP was between 0.06194-0.07308,  and TH-Gal4/Fbxo9EP was 0.04498-

0.05405 and thus these climbing curves are significantly different from the control curves 

with 95% confidence intervals at 0.0324310-0.04035, 0.3102-0.03757, 0.04514-0.05483, 

and 0.03422-0.04296, respectively. Loss-of-function of Fbxo9 in fly dopaminergic neurons 

leads to a reduction in climbing ability, which is characteristic of PD-like phenotype, 

whereas overexpression of Fbxo9 leads to an increase in climbing ability.  
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Table 9.  Statistical analysis of climbing index curves for the directed overexpression 

and RNA interference of Fbxo9 in dopaminergic neurons. The 95% confidence interval 

was compared to the UAS-lacZ control flies. 

 

 

Genotype Slope Standard 

Error 

95% 

Confidence 

Interval 

R 2  Significant 

Ddc-Gal43D; 

Ddc-Gal436/  

UAS-lacZ 

0.04999 0.002415 0.04514-

0.05483 

0.9503 N/A 

Ddc-Gal43D; 

Ddc-Gal436/ 

 Fbxo9EP 

0.06751 0.002777 0.06194-

0.07308 

0.9691 Yes 

Ddc-Gal43D; 

Ddc-Gal436/  

Fbxo9RNAi 

0.03568 0.002193 0.03127-

0.04009 

0.9032 Yes 

Ddc-Gal436/  

UAS-lacZ 

0.03639 0.001974 0.0324310-

0.04035 

0.9238 N/A 

Ddc-Gal436 / 

 Fbxo9EP 

0.04778 0.001771 0.0433210-

0.05223 

0.9509 Yes 

Ddc-Gal436 /  

Fbxo9RNAi 

0.03467 0.001771 0.03111-

0.03823 

0.9334 Yes 

Ddc-Gal43D/  

UAS-lacZ 

0.03430 0.001632 0.3102-

0.03757 

0.9389 N/A 

Ddc-Gal43D/ 

 Fbxo9EP 

0.04096 0.001943 0.03706-

0.04485 

0.9448 Yes 

Ddc-Gal43D/  

Fbxo9RNAi 

0.02799 0.0008877 0.02620-

0.02977 

0.9673 Yes 

TH-Gal4/  

UAS-lacZ 

0.03859 0.002174 0.03422-

0.04296 

0.9257 N/A 

TH-Gal4/ 

 Fbxo9EP 

0.04951 0.002255 0.04498-

0.05405 

0.9564 Yes 

TH-Gal4/  

Fbxo9RNAi 

0.03193 0.001344 0.02921-

0.03464 

0.9518 Yes 
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Figure 10: Effect of gain-of-function and loss-of-function of Fbxo9 on climbing ability 

in Drosophila. Expression of Fbxo9RNAi using Ddc-Gal436 (A), Ddc-Gal43D (B), Ddc-

Gal43D; Ddc-Gal436 (C) and TH-Gal4 (D) drivers significantly decreases climbing ability. 

Overexpression of Fbxo9 using the same four drivers significantly increases climbing 

ability. The data were analyzed by non-linear fitting of the climbing curves with 95% 

confidence intervals to determine significance. Error bars represent the standard error of 

the mean. 
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Investigating the influence of altering Fbxo9 expression upon the α-synuclein model  

The most striking characteristic shown by the α-synuclein model of PD is the loss 

of climbing ability over time (Feany and Bender, 2000). This demonstrated that D. 

melanogaster could be used to model Parkinson disease. 

The human α-synuclein gene was co-overexpressed with Fbxo9 or Fbxo9RNAi in the 

dopaminergic neurons to determine the effect of Fbxo9 on climbing ability. The resulting 

climbing index curves for co-expression of Fbxo9 and α-synuclein are shown in Figure 11 

and shows that co-overexpression of Fbxo9RNAi with α-synuclein resulted in a significant 

reduction in climbing ability over time, with flies losing climbing ability earlier than 

control flies UAS-αsynuclein/UAS-lacZ; Ddc-Gal4). The 95% confidence interval for UAS-

a-syn/ Fbxo9RNAi was 0.02182-0.02547 compared to the UAS-α-synuclein/UAS-lacZ 

control, which was 0.03823-0.04503. Overexpression of Fbxo9RNAi with α-synuclein 

resulted in in a significant reduction in climbing ability compared to controls. 

Figure 11 also shows that there was a significant increase in the climbing ability 

compared to controls when Fbxo9 was overexpressed with α-synuclein. The Fbxo9EP flies 

climbed over an extended period of time compared to the control flies, which lost their 

climbing ability at an early-onset. The 95% confidence interval for UAS- α-synuclein / 

Fbxo9EP was 0.05472-0.06225 compared to the UAS- synuclein/ UAS-lacZ control which 

was 0.03823-0.04503. Statistical analysis of the climbing index curves is summarized in 

Table 10. 
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Table 10. Statistical analysis of climbing index curves for the co-overexpression of α-

synuclein and Fbxo9 or Fbxo9RNAi in the dopaminergic neurons. The 95% confidence 

intervals were compared to the UAS-lacZ control flies. 

 

 

Genotype Slope Standard Error 95% Confidence 

Intervals 

R 2  Significant 

UAS-asyn/  

UAS-lacZ 

0.04163 0.001690 0.03823-0.04503 0.9600 N/A 

UAS-asyn/ 

 Fbxo9EP 

0.05848 0.001872 0.05472-0.06225 0.9798 Yes 

UAS-asyn/  

Fbxo9RNAi 

0.02364 0.0009094 0.02182-0.02547 0.9504 Yes 
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Figure 11: Analysis of climbing ability of Drosophila flies overexpressing α-synuclein 

together with Fbxo9 or Fbxo9RNAi in the dopaminergic neurons. RNAi dependent 

interference of Fbxo9 expression together with α-synuclein overexpression significantly 

decreases climbing ability. Overexpression of both Fbxo9 and α-synuclein significantly 

increases climbing ability. Data were analyzed by non-linear fitting of the climbing curves 

with 95% confidence intervals to determine significance. Error bars represent the standard 

error of the mean. 
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DISCUSSION 

 

Drosophila Fbxo9 is homologous to mammalian Fbxo9 

Bioinformatics analysis was first performed on the D. melanogaster homologue in 

order to identify the similarity between CG5961 and Fbxo9 ,along with several other 

homologues from vertebrates and invertebrates. Furthermore, bioinformatics analysis was 

carried out to find out the relationship of Fbxo9 with other FBXO proteins such as Fbxo7 

and Fbxo32. When a cladogram was created with these three FBXO proteins, CG5961 

clustered together with Fbxo9. This indicates that CG5961 is most closely related to 

Fbxo9. As all of the genes from the different species clustered together, it may be 

concluded that Fbxo genes may exist in the common ancestor of the species. Alignment of 

human Fbxo9 and Drosophila CG5961 shows that the evidence of the conservation of the 

F-box proteins is 33% identical and 67% similar.  The proteins are highly conserved in the 

F-box region that is essential for the SCF-ubiquitin ligase complexes. Alignment of human 

Fbxo9 and Drosophila CG5961 with other vertebrate and invertebrate species further 

indicates the conservation of the F-box proteins being 26% identical and 27% similar and 

they further share the conserved domains such as TPR domain, MIT domain, F-box 

domain, SNHc and NLS. Due to the high level of conservation, it can be inferred that there 

are tight evolutionary constraints placed among the genes. Within the sub-group, it has 

been found that Fbxo7 and Fbxo9 are more similar than Fbxo32. Alignment of the Human 

Fbxo9 and Drosophila Fbxo7 showed that they are analogous, being 34% similar and 14% 

identical and they share structural similarities such as the PI31-binding region and the F-

box region. Alignment of the human Fbxo9 and Drosophila Fbxo32 showed that they are 

analogous being 17% identical and 28 % similar and they additionally share structural 

similarities such as Foxo-binding region, amino terminus, LCD and PDZ domain. 
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In order to identify the similarity of Fbxo9 with Fbxo7 and Fbxo32, bioinformatics 

analysis was performed. Both the mammalian and fly form of Fbxo7 bind PI31 to initiate 

successful proteasome-mediated degradation of a target substrate (Bader et al., 2010). 

FBXO7 was originally studied as a gene involved in caspase activation in sperm 

differentiation. However, it has been linked to early-onset parkinsonian-pyramidal 

syndrome. Since alignment of the Human Fbxo9 and Drosophila Fbxo7 showed that they 

are analogous being 14% identical and 34% similar and they share structural similarities 

such as the PI31-binding region and the F-box region, so it can be speculated that Fbxo9 

may also lead to PD-like symptom. 

It has been found that when Fbxo32, also known as atrogin, is up-regulated in 

skeletal muscles, it results in muscle wasting. In mammals, atrogin targets proteins 

essential for muscle synthesis such as MyoD and eIF3-f (eukaryotic initiation factor 3 - 

subunit 5) and, consequently, it degrades them and induces muscle cell death (Tintignac et 

al., 2005 and Lagirand-Cantaloube et al., 2008). The atrogin/ Fbxo32 is the target for Foxo 

and can trigger skeletal muscle atrophy when insulin or insulin-like growth factor-1 (IGF-

1) is absent (Connors and Staveley, unpublished). Since alignment of the Human Fbxo9 

and Drosophila Fbxo32 showed that they are analogous, being 17% identical and 28 % 

similar and they share structural similarities such as Foxo-binding region, amino terminus, 

LCD and PDZ domain, it can be speculated that expression of Fbxo9 gene in various 

human conditions makes it a potential candidate for studies, in particular potential 

organismal modeling of human conditions. 

Effects of loss-of-function of Fbxo9 in the Drosophila melanogaster compound eye 

                Genetic expression studies using the Drosophila eye have been extensively used 

in the study of neurodegeneration because of the conservation of key signaling pathways 
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between humans and Drosophila and the ease of quantifying degeneration of photoreceptor 

neurons associated with each Drosophila ommatidium. In D. melanogaster, eye 

development is tightly controlled during the organization of the ommatidial array (Thomas 

and Wassarman, 1999). The eye also consists of specialized structures called sensory 

bristles that provide the opportunity for neurogenesis examination and for detection of 

even slight abnormalities (Baker, 2000). We expressed reduced levels of Fbxo9 in the 

Drosophila eye using the transgenic driver GMR-Gal4. The characteristics can be studied 

through bioinformetric analysis to show the effects of altered gene expression, such as 

loss-of-function of Fbxo9.  

In Drosophila, Fbxo9 and Fbxo7 are quite similar at the amino acid level. 

Therefore, Fbxo9 was examined to investigate the possible redundancy in the function 

between Fbxo9 and Fbxo7. Since Fbxo7 is closely related to Fbxo9, so we hypothesized 

that suppressing of Fbxo9 activity through RNA-interference would also lead to a PD-like 

phenotype in flies. We have shown that suppression of Fbxo9 activity has a deleterious 

effect on the Drosophila eye morphology. As expected, loss-of-function of Fbxo9 in the fly 

eyes through eye-specific expression of Fbxo9RNAi leads to a significant reduction in the 

number of ommatidia and, bristles as well as a reduction in ommatidia area, whereas 

overexpression of Fbxo9 leads to a significant increase in the number of ommatidia and, 

bristles as well as a reduction in ommatidia area. No previous has been conducted on the 

effects of  Fbxo9 in Drosophila eyes. Therefore, the reason for this reduction in the number 

of ommatidia, bristle and ommatidia area is unclear. However, reduction in the number of 

ommatidia, bristle and ommatidia area suggests a reduction in cell number during eye 

development. Reduction of cell number can occur through either increased cell death, or 

decreased cell proliferation (Kramer et al., 2003). This may be inferred that loss-of-

function of Fbxo9 causes inhibition of cell growth required for the normal eye 
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development. 

Overexpression of Foxo under the control of the GMR-Gal4 transgene results in a 

significant decrease in the number of ommatidia and bristles (Kramer et al., 2003).  

Previous work in our lab showed that overexpression of the forkhead box, subgroup "O" 

(Foxo) transcription factors and F-box only protein 32/ atrogin decreases ommatidia 

number, bristle number and ommatidia area, that reflect cell number and cell size, which 

indicates its role in the control of body size through alterations in cell size and cell number. 

(Colleen Furlong [nee Connors], unpublished). The atrogin/ Fbxo32 is the target for Foxo 

and can trigger skeletal muscle atrophy in the form of PD model when insulin or insulin-

like growth factor-1 (IGF-1) is absent. Overexprssion of Foxo has been linked to 

neurotoxicity (Kanao et al., 2010). In our study, we have performed a bioinformatic 

analysis of Fbxo9 and atrogin/Fbxo32. We have analyzed the speculated homologous 

relationship between these two F-box proteins to assess the possibility of using Drosophila 

as a disease model for PD. To determine the role of Foxo and Fbxo9 in PD etiology, we 

have used the eye specific driver GMR-Gal4 to drive the expression of these genes in the 

eyes. To determine the effect of loss-of-function of Fbxo9, we used RNA interference to 

decrease the expression of the genes to very low levels. In this study, we have found that 

the co-overexpression of Fbxo9RNAi and Foxo causes a reduction in the ommatidia number, 

bristle number and ommatidia area whereas the co-overexpression of Fbxo9 and Foxo is 

causes an increase in the ommatidia number, bristle number and ommatidia area. Since no 

previous studies have been conducted in flies eyes associated with Fbxo9 and Foxo, the 

reason for this reduction in the number of ommatidia, bristle and ommatidia area is unclear. 

However, reduction in the number of ommatidia, bristle and ommatidia area suggests a 

reduction in cell number during eye development. Reduction of cell number can occur 

through either increased cell death, or decreased of cell proliferation (Kramer et al., 2003). 
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This may be presumed that loss-of-function of Fbxo9 produces inhibition of cell growth 

that is necessary for the normal eye development. 

Effects of loss-of-function of Fbxo9 on climbing ability and lifespan 

We have shown that suppression of Fbxo9 activity has a deleterious effect on 

Drosophila dopaminergic neurons. As loss-of-function mutations in human Fbxo7 lead to 

parkinsonian-pyramidal syndrome, and Fbxo7 is closely related to Fbxo9, we hypothesized 

that suppression of Fbxo9 activity through RNA-interference would also lead to a PD-like 

phenotype in flies. A decrease in nutcracker/Fbxo7 expression causes a decrease in 

lifespan (Merzetti and Staveley, unpublished). As expected, loss-of-function of Fbxo9 in 

fly dopaminergic neurons leads to a reduction in climbing ability and lifespan, which is 

characteristic of PD-like phenotype, whereas overexpression of Fbxo9 is favorable, 

compared to control flies. No previous studies have been conducted in climbing ability and 

lifespan associated with Fbxo9, therefore the reason for this reduction in lifespan and 

climbing ability is unclear. This may be due to an increase in apoptosis or a decrease in cell 

growth during development. This may be also due to selective apoptotic death of these DA 

neurons and decreased cellular protection and survival. Dopaminergic neurons may die as a 

result of apoptosis in PD (Lev et al., 2003). This process occurs may be due to the 

accumulation of endogenous toxic proteins or environmental toxins. Exploration of the role 

of cell survival signaling in the selective loss of dopaminergic neurons in Drosophila may 

provide further insight into the basis of PD. However, the Fbxo7 gene has been found 

associated with the early-onset parkinsonian pyramidal syndrome and the distinguishing 

features of this disease include progressive degeneration of the pyramidal, and 

extrapyramidal regions in combination with the substantia nigra pars compacta in the 

brain (Davison, 1954; Di Fonzo et al., 2009). Since Fbxo9 and Fbxo7 are closely related 



 

61 
 

and since Fbxo7 leads to PD-like symptoms, it is not a surprise that Fbxo9 also leads to a 

PD like phenotype.  

The recapitulation of PD-like symptoms due to over-expression of a gene, 

especially the age-dependent loss of climbing ability in D. melanogaster, provides the 

potential model in the study of biological basis of the disease (Feany and Bender, 2000; 

Haywood and Staveley, 2004). Locomotion abnormality is one of the neurological 

characteristics of PD. In our study, loss-of-function of Fbxo9 through RNA-interference, in 

the fly dopaminergic neurons, leads to a reduction in climbing ability compared to control 

flies (Figure 10). It is possible that this occurs due to inhibition of cell growth. Similar 

results have been reported before where the α-synuclein model resulted in an age-

dependent loss of climbing ability where the mutant flies were unable to climb above the 

first section of the climbing apparatus during the last days of their lives (Feany and Bender, 

2000). Additionally, it also has been reported that mutations in the TH-encoding gene pale 

cause an age dependent loss of climbing ability (Tempel et al., 1984; Pendletont et al., 

2002). In another experiment it has been found that loss-of-function of dLRRK leads to a 

slight locomotor abnormality but has no effect on survival of DA neurons (Lee et al., 2007; 

Tain et al., 2009b). In one experiment it was found that when (Pink1) overexpression 

rescued the premature loss of climbing abilities induced by α-synuclein (Todd and 

Staveley, 2008). The similar result has been found in this experiment when Fbxo9 is 

overexpressed within dopaminergic neurons, the flies climb longer and lose their climbing 

ability later than the control flies.  

 No previous ageing or mobility studies have been performed associated with the 

directed alteration of Fbxo9 expression, so the reason for the observed results is not clear. 

This may be due to an increase in apoptosis or a decrease in cell growth during 
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development. This may be also due to selective apoptotic death of these DA neurons and 

decreased cellular protection and survival. It is possible that a reduction in Fbxo9 

expression increases the rate of apoptosis or inhibits cell growth. Similar results have been 

reported in a previous experiment where flies with loss-of-function of the parkin gene 

showed the characteristics of PD such as shortened lifespan, reduced climbing ability and 

degeneration of DA neurons (Greene et al., 2003; Whitworth et al., 2005). The mutant 

parkin flies were also found to have developmental delays and mobility dysfunction due to 

muscle degeneration. Additionally, the Drosophila Pink1 fly model involving the gene 

shows the same characteristics such as reduced lifespan, developmental delay and DA 

neuron degeneration as the parkin mutant flies (Petit et al., 2005; Clark et al., 2006). It has 

been found that a PINK1-RNAi knockdown in flies resulted in loss of DA neurons even at 

10 days (Wang et al., 2006). In our study, when Fbxo9 is overexpressed in the 

dopaminergic neurons, the flies live longer than the control flies, indicating that Fbxo9 

may play a protective role by decreasing the rate of apoptosis and thus possibly 

maintaining healthy neurons.  

Effect of RNA-interference of Fbxo9 in the α-synuclein model of PD 

The α-synuclein model of PD in Drosophila did not result in any difference in 

lifespan between the control and wild type, A13T and A30P α-synuclein flies (Feany and 

Bender, 2000). Co-expression of Fbxo7RNAi with α-synuclein results in increased lifespan 

compared to control (Merzetti and Staveley, unpublished). In this study, overexpression of 

Fbxo9 with α-synuclein also resulted in an increase in lifespan compared to controls. A 

similar result was found in an experiment where co-expression of α-synuclein and parkin 

slightly increased the lifespan of the flies (Haywood and Staveley, 2006). In our study, co-

overexpression of α-synuclein and Fbxo9RNAi resulted in a decreased lifespan compared to 



 

63 
 

the control flies, and this may be due to inhibition of cell survival in the dopaminergic 

neurons.  

Flies that express A30P, A53T and wild type versions of α-synuclein experience 

loss of DA neurons and age dependent loss of locomotor ability when GAL4 drivers, 

including Ddc-Gal4, are used (Feany and Bender, 2000). In our study, co-overexpression 

of α-synuclein with Fbxo9RNAi under the control of the Ddc-Gal4 driver, resulted in a 

significant difference in climbing ability compared to the control flies. Fbxo9RNAi/ UAS-α-

syn expressing flies lost their climbing ability earlier than the control flies (Figure 15). This 

may be because loss-of-function of Fbxo9 causes inhibition of the survival of the 

dopaminergic neurons. Additionally in another experiment, it has been reported that α-

synuclein flies show a less pronounced DA neuron degeneration as only a partial (50%) 

decrease was observed (Auluck et al., 2002; Bayersdorfer et al., 2010). In our study, an 

opposite effect was found when α-synuclein was co-overexpressed with Fbxo9. 

Overexpression of Fbxo9 with α-synuclein resulted in an increase in climbing ability 

compared to controls. A similar result was found when α-synuclein and parkin were co-

overexpressed in Drosophila DA neurons, and this resulted in a slight increase in climbing 

ability (Haywood and Staveley, 2006). So it can be concluded that when α-synuclein and 

parkin are co-overexpressed, they play a vital role in maintaining healthy dopaminergic 

neurons. 
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CONCLUSION 

In this study, we have confirmed that gene CG5961 of Drosophila melanogaster is 

the homologue of human Fbxo9. We have shown that Fbxo9, Fbxo7 and Fbxo32 are 

closely related but Fbxo9 and Fbxo7 are found more similar than Fbxo9 and Fbxo32. We 

have shown suppression of Fbxo9 through RNA interference in the dopaminergic neurons 

of Drosophila leading to parkinsonian-pyramidal syndrome. In this study, we have found 

that loss-of-function of Fbxo9 through the eye specific driver GMR-Gal4 leads to a 

significant reduction in the number of ommatidia, bristles as well as in ommatidia area, 

whereas overexpression of Fbxo9 results in a significant increase in the number of 

ommatidia, bristles as well as in ommatidia area. We also have found that RNAi-dependent 

reduced expression of Fbxo9 together with Foxo overexpression significantly decreased 

the ommatidia number, bristle number and ommatidium area compared to the Foxo 

overexpressing control fly GMR-Gal4; UAS-Foxo/UAS-lacZ whereas co-overexpression of 

Fbxo9 and Foxo significantly increases the ommatidia number, bristle number and 

ommatidium area.   We also found that, expression of Fbxo9RNAi using the Ddc-Gal43D 

(III), Ddc-Gal436 (II), Ddc-Gal43D; Ddc-Gal436, and TH-Gal4 drivers significantly 

decreases longevity and climbing ability whereas overexpression of Fbxo9 using the same 

four drivers remarkably increases longevity and climbing ability.   

In addition, co-overexpression of α-synuclein and Fbxo9RNAi results in a decreased 

longevity and climbing ability compared to control whereas overexpression of both Fbxo9 

and α-synuclein is favorable compared to control. This demonstrates that the directed 

inhibition of expression of Fbxo9 lead to the enhancement of PD-like symptoms in the α-

synuclein-induced Drosophila model of PD. Further studies looking at the effect of Fbxo9 

on Foxo activity and α-synuclein activity may uncover underlying mechanisms that 

mediate a shift towards apoptosis. We have developed a new model of human Parkinson 
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disease that will provide further information in the disease etiology. We expect that the 

knowledge obtained by determining the pathways involved in Parkinson disease in 

Drosophila will help uncover potential new therapeutic approaches for human subjects. 
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