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ABSTRACT 

  

Generalized assets represent a class of multi-scale adaptive state-transition systems 

with domain-oblivious performance criteria.  The governance of such assets must proceed 

without exact specifications, objectives, or constraints.  Decision making must rapidly scale 

in the presence of uncertainty, complexity, and intelligent adversaries.   

 This thesis formulates an architecture for generalized asset planning.  Assets are 

modelled as dynamical graph structures which admit topological performance indicators, 

such as dependability, resilience, and efficiency.  These metrics are used to construct robust 

model configurations.  A normalized compression distance (NCD) is computed between a 

given active/live asset model and a reference configuration to produce an integrity score.  

The utility derived from the asset is monotonically proportional to this integrity score, 

which represents the proximity to ideal conditions.  The present work considers the 

situation between an asset manager and an intelligent adversary, who act within a stochastic 

environment to control the integrity state of the asset.  A generalized asset integrity game 

engine (GAIGE) is developed, which implements anytime algorithms to solve a 

stochastically perturbed two-player zero-sum game.  The resulting planning strategies seek 

to stabilize deviations from minimax trajectories of the integrity score. 

 Results demonstrate the performance and scalability of the GAIGE.  This approach 

represents a first-step towards domain-oblivious architectures for complex asset 

governance and anytime planning. 
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1 INTRODUCTION 

1.1 Background  

 Modern engineering systems represent complex, high-utility interconnects of 

people, software, and hardware. Prototypical examples include cyber-physical networks, 

critical infrastructures, and socio-technical ensembles. These assets are considered highly 

integrated systems-of-systems with multiple, time-varying objectives and potentially 

conflicting constraints. 

 Life-cycle planning is often accomplished through hierarchical management 

frameworks which combine centralized, aggregated decision making with distributed, 

autonomous control policies. These frameworks are typically developed in conjunction 

with compliance standards, safety regulations, and design/operation guidelines. 

Fundamentally, they represent planning activities supported by expert knowledge, 

decision-support systems, and procedural consensus.  While these management 

frameworks are proven, they possess significant decision overhead and latency.  In real-

time online (RTO) scenarios, complex planning actions must be completed with near-

optimal performance guarantees in sub-second time intervals.  To address these challenges, 

computational modelling and simulation have become increasingly integrated into the 

planning process. 

 Across several industries, probabilistic risk analysis (PRA) and its variants are used 

to assess the asset condition. Several frameworks exist, such as the Risk-Based Asset 
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Integrity Management (RBAIM) proposed by Khan et al. (2010).  The current state-of-the-

art involves dynamically updating a set of probabilistic beliefs regarding the condition of 

an asset. This condition is typically based on the risks of unwanted component operations, 

process deviations, or subsystem failures. Architecturally, frameworks such as the RBAIM 

proceed in a logical manner similar to controllers with closed feedback-loops. This 

planning can be broken down into three well-defined steps:  monitoring, evaluation, and 

prescription. 

 During the monitoring phase, sensory data are cleaned, streamed, and aggregated 

into a presentation frame for input into the evaluation module. An evaluation module takes 

as input the pre-conditioned data and decides, almost exclusively through computational 

processing, a set of numerical values which describe the asset state. This typically involves 

some reduction mapping, filtration, or classification of the data into a labelled 

configuration, rating, or score. The evaluation module estimates the expected utility and/or 

reward derived from being in, or potentially reaching, a set of states. The state-transition 

likelihoods, costs, risk profiles, long-run gains/losses, and other quantities may also be 

evaluated. The final component of an asset management framework centers around 

(typically sequential) decision making. Prescription modules may provide interfaces for 

reporting and recommendation, but their primary task is action-selection. In the context of 

artificial intelligence, this phase represents a subset of automated reasoning. In control 

theory, this process can be viewed as solving for and implementing an optimal control 

policy. In operations research, it is often referred to simply as planning.  Numerically, 

prescription is effectively a dynamic performance optimization.  The objective is to take as 
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input an asset state or condition and specify a policy, strategy, trajectory, or sequence of 

state-transitions which satisfice, or optimize, some performance criteria. When the 

prescription phase completes, the chosen actions are presented as output for effectuation. 

 At a high level of abstraction, management frameworks for life-cycle asset planning 

almost exclusively follow this “three-phase” approach. The process of monitoring-

evaluation-prescription is akin to observe-decide-act and other reasoning cycles [Boyd 

1976, Stone 2007]. When the asset-environment system becomes more complex and 

uncertain, one often implements decision making behaviour through process architectures.  

Adaptive control systems, intelligent agents, and cognitive architectures are among the 

more modern examples.  In many cases, stochastic reinforcement learning is applied to 

recognize patterns, and identify features which lead to incremental performance gains.   

 In planning problems, one is often faced with an uncertain and indirect knowledge 

of the asset-environment state; this constitutes partial observability. Partial observability 

may arise from the statistical estimation of properties. For large-scale complex assets, a 

summary description of the system may be available but suffer from a reduction in 

representational power and information loss. Partial observability may also arise from raw 

measurement limitations, as well as through instrumental limits of error. This type of 

planning commonly adopts the Partially Observable Markov Decision Process (POMDP) 

model. The literature on POMDPs is vast and well-developed. By themselves, these models 

are often computationally challenging, and much research has addressed dimensionality 

reductions and approximate solutions. Typical solutions implement value or policy 

iteration through dynamic programming [Smallwood and Sondik, 1973]. A further 
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complication arises when noise, errors, and stochastic effects cause actions to be 

“imperfect”. This constitutes a tremble, or deviation from the desired response. For many 

assets, these imperfections represent mistakes in restorative actions or probabilistic 

outcomes of maintenance operations. This type of planning commonly adopts a 

perturbation analysis (PA) model, which may be coupled with the aforementioned POMDP 

approach. PA is essentially a sensitivity-based gradient-descent which reasons about the 

effects of unwanted and/or unplanned behaviours.  A final challenge in planning is dealing 

with asset-environment systems given poorly specified and/or unknown rewards; this is a 

model identification problem. In this setting, reinforcement learning (RL) techniques are 

used. Common RL models include: Q-learning (QL), temporal difference learning (TDL) 

and probably-approximately-correct (PAC) learning. These methods receive feedback 

regarding the cause-effect associations between actions (state-transitions) and rewards (or 

costs). RL models are able to “learn” solutions to POMDPs without explicit specification 

of the transition probabilities. POMDP, PA, and RL models have been applied to a variety 

of problems with varying degrees of success [Cao, 2007]. 

 For our purposes, asset management frameworks reduce to sequential decision 

making through monitoring, evaluation, and prescription. Planning activities are supported 

by advances in architectures (e.g. autonomous agents, control devices), models (e.g. 

POMDP, PA, RL), and algorithmic implementations (e.g. dynamic programming, Monte-

Carlo sampling). This process has traditionally harnessed domain-specific knowledge, 

exploiting problem structure and yielding specialized solutions. 
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 The most brittle, least transferrable aspects of governance and planning occur with 

respect to modelling constructs and performance evaluations.  Modelling activities capture 

the relevant information and logical features of an asset. These must be massaged into 

desirable, functional descriptions. High-fidelity models require adequate knowledge 

representations.  Working attributes may be mined from characteristic data, and integrated 

within some information management system. In many ways, this process is time-

consuming and partially duplicated across designs [Curran, 2014].  An extension of this 

process involves the evaluation of asset performance.  Models for state-transition systems 

exist and methods for their analysis are typically well-known.  However, the “correct” 

performance metrics, operational constraints, and degrees-of-freedom are in general not 

well-known.  In a POMDP, one seeks to maximize some sequence of “states” to achieve 

some “reward” through “actions”.  This model can be applied off-the-shelf if and only if 

acceptable, well-defined notions of states, rewards, and actions are known.  For the 

purposes of system identification, evaluation, and optimization, very few “universal 

criteria” exist.  The functional mappings from model attributes to states, rewards, actions, 

and goals/objectives are again difficult and expensive to construct.  These mappings are 

typically developed on a project-specific basis, rendering them difficult to migrate beyond 

very narrow conditions. 

 As engineered systems become increasingly complex and adaptive, the decision 

making process becomes increasingly convoluted.  Objectives, constraints, performance 

criteria, and control actions become non-stationary and outright obscure.  The goals of asset 



6 

 

 

management become uncertain.  In a general sense, the planning problem is ill-posed, and 

new techniques must be sought. 

1.2 Motivation 

 The governance of complex assets requires systematic procedures. Planning 

activities consolidate decision-making regarding the fate, utilization, and performance of 

assets. This form of governance is often accomplished through a spectrum of high-level 

management frameworks and low-level optimal control policies.  For complex assets, these 

processes require significant automation and intelligent decision support.  Despite broad 

industry acceptance, classical architectures for asset planning are relatively brittle. 

Solutions are often ad hoc, non-interoperable, task-driven, and project-specific.  Under 

certain conditions, models of the asset and its environment may be over-calibrated.  Under 

others, the analysis may be rendered intractable or invalid.  Classical architectures require 

major rework for new asset classes, models, and mission scopes.  There is an emerging 

need for domain-oblivious, platform-agnostic solutions. 

 This thesis establishes a planning architecture which is extremely general, yet 

requires only a basic level of mathematical sophistication.  Our methodology centers on the 

desirability to preserve what foundationally constitutes a form.  Almost all components, 

processes, systems, and assets admit symbolic descriptions from which integrity is often 

sought.  Integrity in this sense represents “correctness” – a proximity to homeostasis in the 

form of stable equilibria and ideal conditions.  Our approach grounds these abstract ideas 

within the context of finite discrete state-transition systems. The definition of an asset is 

generalized to the limits of dependability engineering.  Ideas from network science and 
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graph theory are used to construct metrics for robustness, resilience, and efficiency. 

Enforcing these model-centric signatures is germane for all assets. Through this 

interpretation we are able to construct “universal” performance evaluations and planning 

objectives.  This allows a single architecture to automate this process for all assets. 

 This research is motivated by two major challenges. The first challenge is 

representational.  Solutions must provision for inputs over a massive semantic range.  This 

challenge is tackled through information theory, utilizing similarity metrics such as the 

graph edit distance (GED) and normalized compression distance (NCD).  These metrics are 

parameter-free, feature-free, alignment-free comparisons of finite objects.  These similarity 

metrics are used in conjunction with fitness indicators for model robustness and equilibrium 

to yield an integrity score.  The second challenge is algorithmic.  One must devise a fast 

procedure for identifying strategies.  The prescribed actions must securely defend against 

adversarial attacks on the asset, while behaving safely albeit opportunistically in the face 

of naive stochastic environments.  This situation presents itself as a combinatorial game 

which can be efficiently searched using backwards induction and variations of minimax. 

 The impetus therefore corresponds to generalizing the evaluation and prescription 

modules of the aforementioned “three-phase” planning architecture.  Throughout this work, 

it is assumed that adequate monitoring is available.  High-performance, real-time online 

(RTO) algorithmic solutions are sought.  These solutions must be robust, and make few 

assumptions regarding the asset or its domain. An architecture which is adaptive yet non-

brittle is developed.  Performance objectives, evaluation criteria, and optimization 

procedures are kept domain-oblivious and platform-agnostic.  The remainder of this thesis 
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illustrates the concepts of generalized assets, universal integrity metrics, and game-

theoretic optimizations.  It develops these ideas from theoretical frameworks to working 

implementations.  The result is a Generalized Asset Integrity Game Engine (GAIGE), 

which is shown to be versatile and scalable. 

1.3 Contributions 

 This thesis brings to light several areas of research and unites them under a common 

theme.  The contributions to asset integrity planning are summarized here. 

1.3.1 Generalized Asset Performability Criteria 

 Advancements in general modelling are used to formulate an abstract definition for 

generalized assets.  Several fit-for-purpose concepts are explored using the language of 

graph theory and network science.  Dependability metrics, such as reliability, availability, 

and importance, are used as performance indicators for a variety of reference graphs. The 

best-known results from information theory are used to define similarity measures.  The 

edit distance and normalized compression distance are used to construct a payoff function 

for asset fitness.  This is defined by an integrity score, which represents the proximity to an 

ideal (dependable) topological configuration. 

1.3.2 Game-Theoretic Planning 

 Asset planning is formulated as a noisy sequential game.  The base game is a two-

player zero-sum stochastic game with incomplete information and imperfect actions. The 

base game is nonetheless mean-field symmetric in payoffs (zero-sum), actions, and 

information. This form admits a minimax solution.  Perturbations to the base game structure 
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induce deviations away from minimax trajectories.  This thesis examines strategies which 

are resilient to such noise. 

1.3.3 Generalized Asset Integrity Game Engine. 

 This thesis augments brittle and non-competitive planning architectures.  These are 

often based on partially-observable Markov decision processes (POMDP), with a state-

space calibrated for a particular asset or domain.  Classical, decision-theoretic planning is 

based on policy or value iteration that is optimized for harsh environments.  In harsh 

environments, risk sources are stochastic, albeit naive.  Loads and effects such as wind, 

waves, storms, earthquakes, freeze-thaw cycles, and solar damage - are by themselves 

applied passively to reduce the asset condition.  These risk sources have no direct 

knowledge of inspection and maintenance practices.  The harsh environment might act in 

an extreme manner, but possesses neither the intent, nor the intelligent look-ahead to disrupt 

asset persistence. Background aging processes, themselves mixtures of stochastic and 

deterministic mechanisms, include such things as corrosion, crack-propagation, fatigue, or 

other incidental damage.  These make up the standard antagonists in the so-called harsh 

environmental regime. 

Game-theoretic planning extends integrity reasoning to hostile environments.  In 

hostile environments, intelligent adversaries work in conjunction with natural risks to 

actively deny asset performance.  Game-theoretic asset integrity planning seeks to find 

action sequences which are robust against all possible outcomes.  Strategies must securely 

defend against worst-case attacks while ensuring safe, opportunistic utilization. This thesis 

combines several algorithms to deliver a fast, anytime-optimal response. 
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2 GENERALIZED ASSET PERFORMANCE 

2.1 The Generalized Asset 

 Abstractly, an as-set is a basic set equipped with a performance measure.  Basic sets 

are finite, discrete collections of distinct, countable objects.  A performance measure is a 

way of assigning value to any subset of elements in the set.  A complex asset is enriched 

with additional structure, such as a partially-ordered power-set.  Complex assets may 

feature recursively-nested subsets and interacting measures. Being composed of sets, 

measures, and their operations, these “abstract assets” are studied more formally in pure 

mathematics. 

 More concretely, the term asset often refers to a real-world system. Most engineered 

systems can be categorized as assets.  These systems incorporate many elements whose 

continued structural existence and correct operation generates some reward. Complex 

assets extend this concept further. They include large-scale structural ensembles of 

interacting components and subsystems. Complex assets are typically identified by 

massively modular interconnectivity.  Their utilization produces emergent, uncertain risks 

and rewards at multiple scales.  Payoffs are typically measured in terms of socio-economic 

utility.  The ownership of complex assets is distributed across many stakeholders, who 

share the costs, benefits, and risks associated with the asset. 

 Examples of modern (complex) assets include cyber-physical networks, socio-

technical systems, critical infrastructures, civionics platforms, and high-utility 
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interconnects.  While these objects have become increasingly complex, their modelling and 

simulation has become increasingly fit-for-purpose. All assets nonetheless admit a 

sequential evolution in time.  It is possible to witness the asset at discrete time-steps, and 

infer temporal difference relations between the set of previous and current observations.  

Of course, highly-variable conditions can significantly affect the belief in system 

configuration.  This belief is based on partially observable states, incomplete information 

feedback, and variable utilization profiles based on moving performance constraints.   

 Several modelling frameworks are capable of capturing the workings of complex 

assets.  A modern approach involves the use of a modelling language.  Modelling languages 

express information, semantics, and systems knowledge in a structure that is defined by a 

consistent set of rules [Jezequel et al., 2002].  The relevant system characteristics, including 

components, events, relations, and process behaviours, can be described in a modelling 

language. Several model description languages (MDL) also incorporate the ability to 

specify performance requirements and constraints which must be satisfied. In some cases, 

these boundary-like conditions are left out, or the MDL lacks a direct syntax for their 

specification. These “incomplete” descriptions are effectively domain-oblivious. Any 

information they convey regarding the performance state(s) of a real-world system must be 

extracted from the appropriateness of the model representation itself. This is in direct 

contrast to a domain-specific MDL, which possesses enough expressive power to also 

describe the fitness of the system at hand. Put another way, a domain-specific MDL 

encodes not only the structure and dynamic behaviour of the actual system, but also some 

implicit impression of its overall performance. This performance is gauged through pre-
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constructed indicators, measurable states, and/or a sense of fitness condition. The domain-

oblivious or general-purpose MDL encodes a dynamical system through a model, but does 

not embed any proper assessment of its own configuration. 

 The line between both types of model description (and their language) is not 

necessarily crisp. For example, some descriptions embed meta-data, error-checking and 

control, aggregated observations, and system-level scoring. In this work, the more general 

case is assumed; i.e. efforts to describe and embed the state of a system into its own 

description are agnostic. The setup for generalized assets is that they function like any 

MDL which coherently realizes, interprets, and encapsulates a complex real-world system. 

 In summary, a generalized asset is an umbrella term used to reference a finite 

discrete collection of information emitted and presented by a source. In this work, the 

source refers specifically to an abstract model of an actual, real-world system. The 

generalized asset captures the relevant workings through some MDL. We mainly consider 

domain-oblivious MDLs, where asset descriptions do not implicitly encode assertions 

regarding an overall fitness level or global score. This definition of generalized asset is 

broad and all encompassing. In motivating the development of a useful architecture, we 

follow with a review of the most common asset modelling frameworks. 

2.2 Modelling Institutions 

 The vast majority of generalized assets are given in terms of a model description 

language (MDL). An MDL expresses the relevant objects, states, relations, and transitions 
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of the system at hand. Paradigms for abstraction, reasoning and modelling assets vary 

greatly; Table 2.1 lists several common modelling institutions. 

Table 2.1.  Modelling Institutions. 

Institution Diagrammatic Mechanism Abstraction for 

Formal System 

 

Axiomatic Reasoning 

Rewriting 

Association Scheme Set Indexing / Design 

 

Algebraic Structures 

Combinatorial Designs 

Finite State Machine Language / Automata Models of Computation 

Process Calculus 

Process Algebra 

Message Passing Actors 

Simulations 

Block Diagram Process Flow Systems Modelling 

Vector Addition System 

(and variants) 

Traversal Space Distributed Systems 

Petri-Net 

(and variants) 

Stochastic Queue Queuing Networks 

Concurrent Processes 

Boolean Circuitry Logic Tableau AC0, NC0 Analogies 

Belief Networks 

 (Including Neural, Boltzmann, 

Markov, Bayes) 

 

Revision / Propagation 

Machine Learning Optimization 

Pattern Recognition 

Generation 

Classification 

 

 Each institution is a mathematically well-defined methodology for representing 

information, and ultimately modelling the behaviour of a logical system. Their ontological 

makeup can be categorized by their primary diagrammatic mechanisms and modelling 

abstractions. Diagrammatic mechanisms can be vaguely understood as the methods 

through which information is logically traversed, in the sense of being tagged, parsed, 

updated, and/or reasoned about. Each institution provides a modelling abstraction, which 

services a theoretical scope and range of practical applications. 
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 Many of these institutions are weakly interchangeable, as morphisms between them 

exist under appropriate conditions [Goguen and Burstall, 1992]. A common, unifying 

theme is that all of these systems involve the propagation of causality in the form of state-

transitions or other transactions.  Many logical operations in one institution are also 

available in another, or some equivalence of operations exist [Diaconescu, 2008]. 

 These institutions often admit a single, common ontological interpretation in graph-

theoretic form For example, graphs (and their labelling) generalize the diagrammatic 

mechanisms of finite state machines, block diagrams, vector addition systems, petri-nets, 

circuits, networks, and trees. Graphs can be used as abstractions for conceptual and 

semantic models. They provide structures for sub-symbolic, connectionist reasoning. 

Graphs are essentially a very general, frequently used institution for representing and 

processing information. They are encountered in computer science, systems engineering, 

and well-adopted by formal language theory. Graphs are at the heart of many programming 

paradigms. In engineering design, they serve as the basis for the Unified Modelling 

Language (UML). They also provide a standard way of formatting information in the 

Process Specification Language (PSL). The PSL is foundational to ISO 18629, which 

provides standards for industrial automation systems and integration [ISO 18629, 2006]. 
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2.3 Graphs and Their Relatives 

2.3.1 Preliminaries 

 A graph consists of two finite sets, V and E. Each element of V is called a vertex. 

The elements of E are called edges. The edges in E are pairs of vertices. Together, V and E 

form a graph, G. Graphs model pairwise relationships (edges) between objects (vertices).  

The basic notion of a graph can be extended in several ways: 

1. When the set E contains ordered pairs of vertices, we obtain a directed graph, 

or a digraph. Each edge in a digraph has a specific orientation. 

2. When the set E contains repeated elements, it becomes a multiset.  The 

resulting graph is then a multigraph. 

3. When an edge can be formed from a vertex to itself, we obtain a “loop”. 

Graphs containing loops or self-edges are known as pseudographs. 

4. Allowing edges to be arbitrary subsets of vertices gives rise to hypergraphs. 

5. Allowing V or E to be an infinite set, one obtains an infinite graph. 

6. By allowing vertices to reference or signify groups of vertices and edges 

together (subgraphs), one obtains a metagraph.  Metagraphs are “graphs of 

graphs”. 

 For notational convenience, an edge directed from vertex u to vertex v may be 

represented as {u,v}, or more concisely as uv when context allows. The order of a graph G 

is the cardinality of its vertex set. The size of a graph G is the cardinality of its edge set.  

Given two vertices, u and v, if 𝑢𝑣 ∈ 𝐸, then u and v are said to be adjacent.  If 𝑢𝑣 ∉ 𝐸, then 
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u and v are non-adjacent. Furthermore, if an edge e has vertex v as an endpoint, we say that 

v and e are incident.  The neighborhood of a vertex v, denoted N(v), is the set of vertices 

adjacent to v. For a set of vertices S, the neighborhood is the union of neighborhoods of the 

vertices in S. The degree of v, denoted by deg(v), is the number of edges incident with v, 

with self-loops counted twice. In simple graphs, this is the same as the cardinality of the 

vertex neighborhood, N(v). The maximum degree of a graph G, is defined as Δ(𝐺) =

𝑚𝑎𝑥(𝑑𝑒𝑔(𝑣) ∣ 𝑣 ∈ 𝑉(𝐺)). The minimum degree of a graph G, is defined as δ(𝐺) =

𝑚𝑖𝑛(𝑑𝑒𝑔(𝑣) ∣ 𝑣 ∈ 𝑉(𝐺)).  In normal graphs, the handshaking lemma applies, yielding a 

result that says the sum of the degrees of the vertices is equal to twice the number of edges. 

This result is also known as the first theorem of graph theory. 

 A path in a graph is a sequence of distinct vertices, 𝑣1,𝑣2,. . . , 𝑣𝑘, such that 𝑣𝑖𝑣(𝑖+1) 

is an element of E for 𝑖 = 1,2, . . . , 𝑘 − 1. The length of a path is the number of edges on the 

path. A cycle in a graph is a sequence of vertices 𝑤1,𝑤2,. . . , 𝑤(𝑟−1), 𝑤𝑟 , such that 

𝑤1,𝑤2,. . . , 𝑤(𝑟−1)is a path with 𝑤1 = 𝑤𝑟 , and 𝑤(𝑟−1)𝑤𝑟 ∈ 𝐸.  Essentially, a cycle is a closed 

path.  Self-loops can also be considered cycles in the degenerate case. The length of a cycle 

is defined as the number of edges on the cycle. An odd cycle has even length, and vice-

versa. A graph of order n is considered a tree graph, or simply a tree, if and only if it is 

acyclic and contains n-1 edges. 

 A degree distribution is a probability distribution of the in- and out- degrees of all 

the vertices in a graph. A path-length distribution is a probability distribution of the lengths 

of non-cycle paths between all vertex pairs in the graph. 



17 

 

 A graph is considered connected if every pair of vertices can be joined by a path. 

Each maximal connected piece of a graph is called a connected component. A graph is 

strongly connected if every vertex is reachable from every other vertex through some path. 

If the removal of a vertex v from G causes the number of components to increase, then v is 

called a cut vertex. If the removal of an edge e from G causes the number of components 

to increase, then e is called a bridge. The smallest connected graph contains two vertices 

sharing a single edge with unit degree and path distributions.  A graph is isomorphic to 

another graph if there is an edge (and label) preserving bijection between all vertices in one 

graph and all vertices in the other graph. A graph is homomorphic to another graph if there 

is an edge (and label) preserving surjection between all vertices in one graph and all vertices 

in the other graph. 

2.3.2 Special Graphs 

 There exist several types of graphs with special attributes. The most crucial to our 

discussion are the null, empty, and complete graphs. The null graph is simply the null set, 

and contains no vertices or edges. The empty graph on n vertices, denoted by En, is the 

graph of order n where E forms an empty set. The complete graph on n vertices, denoted 

Kn, is defined as the graph of order n where ∀u ∈ V, ∀v ∈ V, uv ∈ E. 

 A graph is called ⟨Kv,Ke⟩-complete if the number of edges is related to the number 

of vertices by the following equation: 

 |𝐸| = 𝐾𝑒(
|𝑉|(|𝑉| − 1)

2
) + 𝐾𝑣|𝑉| 2.1 
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Where: 

 |E| denotes the cardinality of the edge set, or graph size. 

 |V| denotes the cardinality of the vertex set, or graph order. 

 Ke is the number of edges connecting each pair of non-identical vertices. 

 Kv is the number of self-adjoint edges, or allowable self-loops per vertex. 

 This definition of ⟨Kv,Ke⟩-completeness is unique and not found in the standard 

literature.  By convention, with Kv > 1 we have the pseudograph property, and for Ke > 1 

we have the multigraph property. In a graph-theoretic sense, this construction would be 

termed a pseudo-multi-graph. For simplicity, we refer to it as the ⟨Kv,Ke⟩-complete graph 

of order n. This graph can be denoted by the triple ⟨Kv,Ke,Kn⟩ indexing a multiplicity over 

the complete graph Kn. It can be concisely read off as K(v,e,n).  Figure 2.1 illustrates a K(v,e,n) 

for <1,2,5> and <3,3,3>. 

 

Figure 2.1. K(1,2,5) and K(3,3,3). 

 

A weighted graph is a graph in which each edge has an associated weight, cost, or 

distance. The weights are typically metric, and can be made to represent functional 
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evaluations. In a weighted graph, the weight of an edge e is denoted by w(e).  If the edge e 

directs vertex u to v, we can write w(u,v).  If no explicit weight is given, the edge is assumed 

to have weight 1 if it exists. Non-edges are usually given the weight 0 or ∞ , depending on 

the context. A weighted graph G can be represented by a weighted adjacency matrix         

𝐴 = {𝑎𝑖𝑗}, where 𝑎𝑖𝑗 = 𝑤(𝑣𝑖, 𝑣𝑗). 

 In general, a weighted 𝐾(𝑣,𝑒,𝑛) forms a Cartesian product space that is represented 

by a multi-dimensional adjacency array.  This array can be indexed by (3+1)-tuples which 

take a source vertex, a destination vertex, a valid edge between them, and point to a 

corresponding weight or traversal cost.  For example, 𝐾(3,4,5)could be represented by an 

adjacency list.   

The length, or number of items in this list, is found by substitution into equation 2.1 giving: 

 |𝐸|=4(
|5|(|5| − 1)

2
) + 3|5|=55 2.2 

 Each of the |𝐸|=55 edge weights of the 𝐾(3,4,5) complete graph can be queried from 

the adjacency list.  If one assigns integer labels, this can be accomplished via some 

production of the form ⟨𝑎𝑖∈𝑛, 𝑎𝑗∈𝑛, 𝑎𝑖𝑗⟩, where 𝑖𝑗 ∈ {𝑒} if 𝑖 ≠ 𝑗, and 𝑖𝑗 ∈ {𝑣} if 𝑖 = 𝑗. 

 

2.3.3 The 𝑲(𝟏,𝟐,𝑵)Asset Representation 

 Many generalized assets epitomize complex, dependable systems. These systems 

can often be given in the form of K(v,e,n) = ⟨1,2,N⟩ weighted complete graphs.  The K(1,2,N) 

graph forms an 𝑁 × 𝑁 weighted adjacency matrix with all N2 elements filled.  Recall that 
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if adjacency does not exist between two model constituents, the edge element can take on 

a vanishingly small or large value, depending on the context. 

 This case has special significance, because many real-world assets are described, 

handled and processed using the equivalent of a 𝐾(1,2,𝑁)representation.  The 𝑁x𝑁 weighted 

adjacency matrix is commonly yet unknowingly encountered across several disciplines.  It 

is an efficient data structure for describing relations between dense, highly inter-dependent 

objects. Furthermore, transformations are often imposed so as to convert to and from this 

𝑁x𝑁 format.  The resulting adjacency matrices are nonetheless capable of capturing all the 

relevant state-transitions and process interactions between elements.   

Finally, because the 𝐾(1,2,𝑁) graph admits an 𝑁×𝑁 matrix, one can often extract and 

operate over certain matrix attributes, such as the characteristic polynomial or eigenvalue 

decomposition.  This makes certain assets more amenable to spectral analysis [Gertsbakh 

and Shpungin, 2011]. 
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2.3.4 Graph Dynamical Systems 

 Many generalized assets evolve as a graph dynamical system (GDS). Typically, the 

generalized asset is presented to a decision agent (or its architecture) chronologically, over 

a finite number of discrete time-steps. In the most common setup, a generalized asset is an 

encoding of what is essentially an active or live 𝐾(1,2,𝑁)graph. At each time-step, there is a 

noisy realization of an 𝑁×𝑁 weighted adjacency matrix which represents the current belief 

in the real-world asset configuration. The generalized asset performance can then be 

assessed by analyzing the sequence of graphs (or matrices), as they evolve over time. 

Formally, a graph dynamical system (GDS) consists of: 

 

 A graph 𝐺, with vertex set 𝑣(𝐺) = {1,2, . . . , 𝑛}. 

 For each vertex i, a state 𝑥𝑖 ∈ 𝑋, where 𝑋 is some finite set of states. The system 

state is given by the n-tuple, 𝑥 = (𝑥1,𝑥2,. . . , 𝑥𝑛). 

 A vertex function, 𝑓𝑣, for each vertex 𝑣, which maps the state of vertex 𝑣 at time 𝑡to 

the vertex state at time 𝑡 + 1 based on the states associated with 𝑥. Particular 

emphasis may be placed on the states of the vertices adjacent to 𝑣. 

 An update scheme that governs how the vertex functions are applied, so as to induce 

a discrete dynamical system with map 𝐹 : 𝑋𝑛 → 𝑋𝑛. 

 Characterizing the performance of a GDS is computationally difficult [Zelazo and 

Mesbahi, 2010].  Research in this area seeks local-to-global relationships, where from local 

graph properties (and update rules) one seeks to infer the emergence of global behaviour. 
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The GDS formalism is therefore applicable to a wide variety of complex systems, and is 

perhaps the most dominant subsumption within our notion of generalized assets. 

 

2.4 Performance Evaluations 

 Generalized assets must have their configurations analyzed and assessed. This 

process constitutes a performance evaluation, which determines the overall asset behaviour, 

and to what extent the asset is functioning. Whether qualitative or quantitative, highly-

detailed or of low resolution, a performance evaluation essentially maps local and global 

states to a more condensed encoding. This reduction may output a numerical score, tuple, 

or alpha-numeric string of relevant information. Mappings from states and configurations 

to their resulting scores can be constructed from two distinct evaluation paradigms. We 

categorize these as being either fitness-based or similarity-based. These evaluation types 

can also be relative or absolute. In most planning architectures, the purpose of a 

performance evaluation is to ultimately make informed decisions about the fate of the asset. 

 

2.4.1 Fitness-Based Evaluations 

 In fitness-based evaluations, several well-known and desirable properties are 

composed from the ground-up into an overall score.  This technique utilizes both indicators 

as well as metrics. Indicators identify the existence potential for factors which cannot be 

well-defined or well-measured. Indicators are typically more qualitative, and are often 
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derived from heuristics. Their development is predominantly driven by experience and a 

sense of best-practice. For our purposes, metrics are a more concrete, quantitatively 

stronger form of indicator. They may be applied to uncertain or partially-observable 

properties through estimation and/or approximation. 

 Both indicators and metrics are essentially measures of expectation based on 

experience, observations and information-gains. Combining these measures into a score 

identifies the fitness-level of the asset. This evaluation can be either absolute, relative or 

sometimes both, depending on how the scoring functions are used. An example of both 

types of fitness is captured by the Elo ratings system used in Chess, or the TrueSkill system 

used by other competitive ladders [Herbrich and Graepel, 2006]. These ratings systems 

specify strength of play which can be interpreted as a score or fitness level. The higher the 

rating, the more potent the player, and the more statistically likely to defeat any random 

opponent selected from the set of all players. This is an example of an absolute measure 

based on the ground state of the ladder. It corresponds to a difference between the 

probability distributions of a player's strength, and the distribution of strengths for all 

players. In addition, the higher the ratings difference between two randomly selected 

players, the more likely the higher rated player will defeat the lower rated player. This is 

again an assessment of the difference between two probability distributions. This scaling is 

often non-linear, with small differences in rating being more pronounced at high levels of 

play. In this way, the ratings system can also be used as a relative measure of performance. 

 Fitness evaluations often scale monotonically.  An increase (or decreases) in key-

performance measures will directly correspond to an increase (or decrease) in fitness level. 
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The main advantages and disadvantages of fitness-based evaluations are contained in Table 

2.2. 

 

2.4.2 Similarity-Based Evaluations 

 In similarity-based evaluations, asset configurations are compared and contrasted. 

The differences between asset configurations are then associated with a score. The 

similarity (or difference) may be relative or absolute depending on the chosen reference 

datum.  Similarity-based evaluations typically assign more or less importance to patterns 

of discrepancy based on their regularity, magnitude, frequency, and location.   

 An example of this type of evaluation is the edit distance between two strings.  The 

edit distance typically counts the number of operations required to transform one string into 

the other. In most contexts, one string represents the achievement of some goal, ideal, or 

reference configuration. The other string represents the current sample for comparison. In 

this way, the similarity between strings represents the performance of one with respect to 

the other. Similarity-based evaluations are able to capture the notions of “performance” and 

“integrity” in a general sense, as these are both manifestations of “deviations from 

correctness”. This has the advantage of being nearly domain-oblivious. Nonetheless, some 

notion of proximity to “correctness”, i.e. the reference design object, must be known or 

estimated in advance. Table 2.2 summarizes the key benefits and drawbacks of fitness-

based and similarity-based evaluations. 
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Table 2.2.  Fitness vs. Similarity-Based Performance Evaluations 

Performance 

Evaluation 

Advantages Disadvantages Examples and 

Applications 

 

Fitness-Based 

 

– Specialized, 

customizable. 

– Ascertains detailed, 

actionable knowledge 

about the asset. 

– Low computational 

complexity in the best 

case. 

– Requires domain-specific 

knowledge. 

– Difficult to construct and 

evaluate. 

– High computational 

complexity in the worst case. 

– Ratings systems. 

– Voting/Auctions. 

– Analytical 

Hierarchy/Network Process. 

– Evolutionary and/or 

Genetic fitness. 

– Classifiers. 

 

Similarity-

Based 

 

– Applicable almost 

everywhere. 

– Requires little 

domain knowledge. 

– Simple to construct 

and evaluate. 

– Computational costs 

are fixed/known. 

 

 

– Requires baseline reference 

object(s). 

– Provides vague, hard to 

interpret knowledge about the 

asset. 

– Operates at a higher level of 

abstraction. 

– Edit distances (Hamming, 

Levenshtein, etc.) 

– Sorensen-Dice Index. 

– Jaccard Coefficient. 

– Information-theoretic 

distances. 

– Kolmogorov Complexity. 

– Entropy estimation. 

– Discrepancy Analysis. 

– Anomaly detection. 
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2.5 Binary Monotone Fitness 

 The performance of real-world assets underscores dependable operation and utility 

production. These outcomes should be low-risk, safe, secure, reliable, available, and of 

high-quality.  Many of these systems are modelled as networks and graphs. The relevant 

information regarding components and state-transitions is captured by some model 

description language, which ultimately expresses a generalized asset.  Classical (non-

quantum) components and systems exist in only one discrete state at a time. In dependable 

systems engineering, the state function is almost always a fitness-based performance 

evaluation.  This implies a many-to-one composition of metrics with domain-specific 

parameters, optimizations, and tunings. 

 Because several fitness-based evaluations share similar mathematical properties, it 

is sometimes possible to abstract away from a particular asset, its domain, and specific 

analysis parameters.  This is particularly true when systems are composed of near-identical, 

tightly-coupled elements [Cox, 2009].  These elements are frequently queried together 

using similar access patterns and return similar states.  Under these conditions, it becomes 

efficient to replace the individual, potentially real-valued state evolution functions with a 

simple logical map.  This mapping is typically a truth table which determines whether or 

not components or systems exist above or below some threshold value.  This can be viewed 

kind of pass/fail test criteria, which flags the value 1 denoting existence above some 

threshold (e.g. activation potential), and 0 denoting the existence below said threshold.  A 
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structure function, Φ, can then be defined for the specified threshold which distinguishes 

between two states: a functioning or active state and a failed or inactive state. 

 Fitness-based performance evaluations, when based on threshold exceedance or 

binary compliance criteria, are often minimally sufficient for actionable decision-making 

and planning at a large-scale [Cox, 2009]. In many cases, this does not alleviate the need 

for a more intricate fitness-based analysis [Bier, 2005].  Nonetheless, this practice can be 

applied to many components and systems, as it rapidly imparts the most fundamental and 

crucial information.  A discussion is therefore necessary to appreciate the induced scope 

with respect to generalized assets. 

 

2.5.1 Binary Monotone and Coherent Systems 

 A system is considered monotone and coherent if and only if it satisfies both the 

monotonicity and coherence requirements for its structure function.  Monotonicity requires 

(i) that a structure function Φ be non-decreasing in each argument, and (ii) that the function 

maps to zero when all components are failed, Φ(0⃗ ) = 0, and maps to one when all 

components are functioning, Φ(1⃗ ) = 1.  Condition (i) implies that the system can not 

deteriorate (that is, change from the functioning state to the failed state) by improving the 

performance of a component.  Condition (ii) implies that if all the components are in the 

failure state, the system necessarily has to be in the failure state (although this is not 

necessarily sufficient).  Similarly, if all the components are in the functioning state, the 
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system is in the functioning state.  Coherence requires the system be (i) monotone, and (ii) 

each component is relevant and actually contributes to the overall structure function. 

 

 The combination of Boolean (or binary) threshold states, monotonicity and 

coherence yields a binary monotone system, which is a useful description for rapidly 

assessing the condition, state, or fitness of a sub-region within a model.  Many of the terms 

and definitions found in this section have been adapted from the work of Aven (1991), 

[Aven and Jensen, 1991]. 

 

2.5.2 Structure Functions 

2.5.2.1 Series-Parallel Systems 

 A system that is functioning if and only if each component is functioning is called 

a series system.  The structure function for a series system is given by: 

 𝛷(𝑥 ) = 𝑥1𝑥2...𝑥𝑛 =∏(𝑥𝑖)

𝑛

𝑖=1

 2.3 

A system that is functioning if at least one component is functioning is called a parallel 

system.  The structure function for a parallel system is given by: 

 𝛷(𝑥 ) = 1 − (1 − 𝑥1)(1 − 𝑥2)...(1 − 𝑥𝑛) = 1 −∏(1 − 𝑥𝑖)

𝑛

𝑖=1

 2.4 

The expression on the right-hand side can also be given in coproduct form: 
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 𝛷(𝑥 ) = 1 − (1 − 𝑥1)(1 − 𝑥2)...(1 − 𝑥𝑛) =∐(𝑥𝑖)

𝑛

𝑖=1

 2.5 

2.5.2.2 k-out-of-n Systems 

 A system that is functioning if and only if at least k out of n components are 

functioning is called a k-out-of-n: good system.  Series and parallel systems represent the 

boundary cases of k = 1, and k = N, respectively.  A series system is an n-out-of-n system, 

and a parallel system is a 1-out-of-n system.  The structure function for a k-out-of-n system 

is given by: 

 𝛷(𝑥 ) =

{
 
 

 
 1  𝑖𝑓  ∑𝑥𝑖

𝑛

𝑖=1

≥ 𝑘

0  𝑖𝑓  ∑𝑥𝑖

𝑛

𝑖=1

< 𝑘

 2.6 

2.5.2.3 Minimal Cut and Path Sets 

 A cut set K is a set of components that by failing causes the system to fail, i.e., 

Φ(0𝐾⃗⃗ ⃗⃗  , 1⃗ ) = 0.  A cut set is minimal if it can not be reduced without losing its status as a 

cut set. A path set S is a set of components that by functioning ensures that the system is 

functioning, i.e. 𝛷(→ 1𝑆 , → 0) = 1. A path set is minimal if it can not be reduced without 

losing its status as a path set. 
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2.5.3 Dependability Metrics 

2.5.3.1 Reliability 

 The reliability of a system represents the probability that it has not failed. For 

binary-monotone-coherent systems, the series-parallel and k-out-of-n structure functions 

help define the reliability. The reliability of a k-out-of-n structure of independent 

components, all of which share an identical probability of non-failure (reliability) p, is 

given by: 

 𝑅 =∑(
𝑛

𝑖
)

𝑛

𝑖=𝑘

𝑝𝑖(1 − 𝑝)(𝑛−𝑖) 2.7 

Where: 

 R is the reliability of the k-out-of-n system. 

 p is the probability of non-failure. 

 n is the total number of components. 

 k is the minimum number of functioning components for non-failure. 

 i is the index. 

 “n choose i”, or (𝑛
𝑖
) is the binomial coefficient, given by 

𝑛!

𝑖!(𝑛−𝑖)!
 with 𝑖 ≤ 𝑛, and 

𝑖, 𝑛 ∈ ℕ. 

 This system is sometimes referred to as “i.i.d. k-out-of-n:G”, where i.i.d. denotes 

independent and identically distributed, and G or F denote whether the combinatorial 

threshold k leads to a “good” or “failed” system.   
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 There exist a number of methods for reliability computation of a general structure 

such as a network or a graph. Many of these methods are based on the minimal cut (path) 

sets.  For smaller systems which are either very reliable (or unreliable), the so-called 

inclusion-exclusion principle may be applied. There also exist state enumeration methods, 

factoring (pivot-decomposition) methods, and many others. For a complete treatise of these 

methods, the reader is referred to [Aven and Jensen, 1991].  More generally, reliability 

analysis may concern itself with multi-state and non-monotone systems.  These systems 

may feature components with non-identical failure probabilities, time and age-dependent 

failure models, inter-related failures, and other effects.  A presentation of these more 

advanced reliability models is beyond the scope of this work. 

 

2.5.3.2 Availability 

 The steady-state availability (A), and failure frequency (w) are perhaps the two most 

important measures of repairable and self-healing systems [Mishra, 2008].  Several other 

steady-state availability measures can derived from these parameters. For example, there is 

the mean failure-repair cycle time (MCT), the mean up-time (MUT) and mean-downtime 

(MDT) during a failure-repair cycle, and the expected number of system failures/repairs 

during a specified time interval (T). Classically, the MCT, MUT, and MDT measures have 

been derived from the mean-time-to-failure (MTTF), mean-time-between-failures 

(MTBF), and mean-time-to/between-repairs (MTTR, MTBR).    
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These are given by: 

 𝑀𝑇𝑇𝐹 =
1

𝑤
 2.8 

 𝑀𝑇𝐵𝐹 =
𝐴

𝑤
 2.9 

 𝑀𝑇𝑇𝑅 =
(1 − 𝐴)

𝑤
 2.10 

 

Where w is given by failure expectations, according to the failure distributions of the 

components, or system.  For i.i.d. k-out-of-n:G systems, the point availability A (at time t) 

is given by the ratio of expectation in uptime over the total time: 

 𝐴 =
𝐸{uptime}

𝐸{uptime} + 𝐸{downtime}
=

𝐴(𝑘, 𝑛)

𝐴(𝑘 − 1, 𝑛)
 2.11 

 

 A powerful multi-dimensional Markov model developed by [Khatab et al., 2009], 

has been developed for analyzing state-transition systems subject to stochastic 

deteriorations and renewals.  They model the availability of non-i.i.d., k-out-of-n:G systems 

subject to repair via priority queues. Their formulation utilizes the formalism of a 

stochastic automata network (SAN), which through Kronecker algebra is able to represent 

very large scale finite capacity queueing networks. The stationary availability of each 

component and the system are evaluated. With several assumptions made, the 

corresponding numerical problem is solved using algorithms from Monte Carlo simulation. 
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This method is highly sophisticated, and the technical details can be found in [Khatab et 

al., 2009]. 

2.5.3.3 Improvement and Importance 

 The main dependability concern is to certify that real-world assets operate 

effectively in the presence of process deviations and component failures.  This analysis 

leads to network improvement and importance measures, where priority is given to 

elements (for graph-defined assets: vertices, edges) that contribute the most to the process 

or system. 

 Concepts from reliability importance can be generalized to include the 

contributions of a component towards other fitness-based performance metrics. These 

might include maintainability, serviceability, availability, risk, etc. Two importance 

measures in the literature are Improvement Potential and Birnhaum's measure. These are 

again treated in detail via [Aven and Jensen, 1991].  There are also techniques based on 

risk achievement or risk reduction, as well as the criticality importance, and Fusell-Vesly's 

measure [Cox, 2009].  Several of these measures also operate on graphs where the quality 

of edges and vertices can undergo variations.  Each measure of importance depends on 

slightly different interpretations.  However, they are all based on the contribution of a 

component's criticality to the overall system performance.  This often implies a parametric 

sensitivity analysis for the system [Mishra, 2008].  Importance measures can be useful tools 

in the system optimization process.  
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Qualitatively, this procedure can be described as follows: 

1. Identify the most important units by means of the chosen importance measure. 

2. Identify possible improvement actions for these units. 

3. Estimate the effect on reliability, availability, and performance by implementing the 

improvement. 

4. Perform cost evaluations. 

5. Make an overall evaluation and take a decision. 

This procedure can also be accomplished through simulation and importance sampling [Zio 

et al., 2006].  As an example, consider the reliability of an i.i.d., k-out-of-n:G system.  The 

value of this metric can be improved by increasing the number of components in the system.  

An increase in components from 𝑛 − 1 to 𝑛 gives the reliability improvement: 

 
Δ𝑅 = 𝑅(𝑘, 𝑛) − 𝑅(𝑘, 𝑛 − 1) = (

𝑛 − 1

𝑘 − 1
)𝑝𝑘(1 − 𝑝)(𝑛−𝑘) 

for 𝑛 ≥ 𝑘 

2.12 

As n increases, this improvement will become progressively smaller.  The problem of 

determining the optimal system size n, the reliability level R, and the threshold level k is an 

issue which arises in system design.  The sensitivity of a change in this system reliability, 

with respect to changes in component reliability, can be found using: 

 
𝑑𝑅(𝑘, 𝑛)

𝑑𝑝
= 𝑘 (

𝑛

𝑘
) 𝑝(𝑘−1)(1 − 𝑝)(𝑛−𝑘) 2.13 

 Generalized assets may include systems which have the potential for load-sharing 

and redistribution.  The lifetime distribution for component failures is arbitrary and not 
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necessarily exponential.  Repair or replacement of failed components is delayed until some 

local criterion is met.  Until restoration, the surviving components share (perhaps 

disproportionately) the load offered to the system.  Components under these loading cycles 

are assumed to undergo accelerated aging.  This results in a more contracted life model 

and representative changes in the failure distributions. 

 This more general situation represents a stand-in utilization model, as opposed to a 

stand-by model.  For stand-in systems, switching and maintainability concerns become far 

more complex.  These models have been investigated numerous times and are difficult to 

analyze directly.  Evaluating the importance and improvement potential for stand-in 

systems is an area of ongoing research.  The works of [Mishra, 2008], [Zio et al., 2006] can 

be referenced for details. 
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2.6 Graph Fitness 

 The properties of graphs serve as extremely useful performance metrics for 

generalized assets.  In a graph-defined asset, discrete elements undergo state-transitions 

which interact to produce distinct patterns.  Many of these patterns will be discernable at 

small scales, while manifesting behaviours which are statistically, topologically, or 

dynamically congruent at larger scales.  It therefore becomes necessary to monitor, 

evaluate, and act-upon the most relevant properties of a graph.  These properties are 

numerous, and their relevance varies by application. 

 Graph fitness is a performance concept based on well-defined measures.  These 

measures can be based on graph performance indicators (GPI) or well-defined metrics such 

as resilience, efficiency, robustness, and decomposability. 

 

2.6.1 Graph Performance Indicators (GPI) 

 The fitness of graph-defined assets is sometimes measured using graph performance 

indicators (GPI).  These are categorized based on the nature of the underlying graph 

topology, and overlying coverage processes as summarized in Table 2.3. 
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Table 2.3. Categorization of GPI Types. 

 

GPI Type 

 

Topology 

 

 

 

 

 

 

 

 

 

 

 

 

Coverage 

 

 

Activity 

 

Static 

 

Dynamic 

 

 

 

 

 

Static 

– No add/remove of 

vertices or edge. 

 

– Fixed vertex and edge 

states. 

 

– e.g. bitmap image, non-

mutable array. 

 

– Vertices and edges can be 

added or removed. 

 

– Vertex and edge states do not 

change. 

 

– e.g. reconfigurable Boolean 

circuits, fabric/lattice switching. 

 

 

 

 

 

Dynamic 

– Existence of vertices 

and edges is fixed. 

 

– Vertex/edge states can 

vary by process. 

 

– e.g.  Network flow, 

traffic/capacity, petri nets, 

timed automata. 

– Creation/destruction of 

vertices, edges. 

 

– Variable states based on 

coverage processes and 

rates/locales of element 

introduction/removal. 

 

– e.g. disease spreading,  

annealing, social games. 

 

 Topological dynamics are changes in graph structure over time.  GPIs for this 

situation center on the robustness of a graph to changes in its topology.  These metrics track 

the ability of a graph to maintain structural properties while undergoing permutations to its 

vertex or edge set.  Decomposability characteristics focus on the changes to graph structure 

in response to both random and targeted vertex/edge removals.  These removals may occur 

through discrete disconnection patterns or sweeping partition operations.  The surviving 

graph(s) may potentially have new strength and robustness characteristics.  For example, 

if the surviving components are more (or less) centralized and tightly clustered, the graph 
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is said to have hardened (or softened).  Decomposition operations can therefore lead to 

non-monotonic changes in graph properties.  The opposite is also true.  The recomposition, 

or addition of new vertices and edge patterns may increase topological performance while 

reducing coverage performance, through a phenomenon known as Braess' Paradox 

[Braess, 1968, 2005].   It is therefore important to understand the induced, coupled 

dynamics between topological and coverage processes. 

 Coverage dynamics represent changes in the quantities of interest which affect 

vertex or edge states over time.  When vertex/edge states are merely Boolean existence 

values we degenerate to a form of topological dynamics.  It can be shown that any coupled 

(coverage + topological) dynamics can be transformed into an equivalent static graph 

topology [Rozenberg, 1997].  Every possible realization of the graph then becomes a 

coordinate lookup in some large configuration-space.  However, there is some inherent 

difficulty in finding and applying this transformation [Fan and Mostafa, 2006].  For reasons 

of algorithmic tractability, this method is rarely considered.   

 GPIs for coverage may also involve gauging the utilization of the graph through the 

percolation and articulation of its activation.  Activation represents a distribution of volume 

or energy of coverage.  It is directly associated with the discrete packets of exchange such 

as network flow, traffic, utility, etc.  Percolation interfaces with topology to measure the 

potential for coverage.  It measures the capability of activation to hold or spread.  

Percolation GPIs deal with reachability and connectivity.  They may be based on routability 

and conductivity, which concern the quality of routes, lengths, durations, etc.  Percolation 

is affected by the congestion levels of paths, circuits, and random walks between sources 
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and sinks.  Articulation expresses the switching resolution of a coverage process.  Its 

performance relates to percolation through the saturation of pathways and the (in) ability 

to route and/or spread activation.  However, articulation is less concerned with re-routing, 

latency, and throughput capability. It is more concerned with specificity and responsiveness 

to sensitive coverage adjustments.  Articulation GPIs seek to characterize the ability to 

manipulate and redirect activation at small scales. 

 Generalized assets can possess both topological dynamics as well as coverage 

dynamics.  This conglomeration leads to graph dynamical systems (GDS) which are 

extremely difficult to analyze and possessing GPI which are hard to compute in general. 

 

2.6.2 Graph Resilience 

 For G with fixed P, the “resilience of G with respect to P”, is the minimum number 

r, such that by removing r edges from G, one almost surely obtains a graph H not having 

the property P.  The most commonly accepted definition of graph resilience was put forth 

by [Sudakov, 2008].  The local resilience of a graph G with respect to property P measures 

how much one has to change G locally so that P no longer holds.  The global resilience of 

a graph is defined analogously, where the changes and properties are global.  The resilience 

of many graph properties can be used to construct valid GPIs for complex assets. 

 



40 

 

2.6.3 Graph Efficiency 

 Efficiency is another commonly used metric to assess graph models and graph-

defined assets.  It is predominantly a measure of coverage potential, and expresses a 

resistance to failure from the perspective of coverage inadequacy.  It can be computed at 

both local and global scales [Latora and Massimo, 2001].  

The average efficiency of a graph G is given by: 

 𝜂𝑎𝑣𝑔(𝐺) =
2

𝑁(𝑁 − 1)
∑

1

𝑑(𝑖, 𝑗)

𝑛

𝑖<𝑗∈𝐺

 2.14 

The average local efficiency of a graph G is given by: 

 η𝑙𝑜𝑐𝑎𝑙(𝐺) =
1

𝑁
∑η𝑎𝑣𝑔(𝐺𝑖)

𝑛

𝑖∈𝐺

 2.15 

The average global efficiency of a graph G is given by: 

 η𝑔𝑙𝑜𝑏𝑎𝑙(𝐺) =
η𝑎𝑣𝑔(𝐺)

η𝑎𝑣𝑔(𝐺𝑖𝑑𝑒𝑎𝑙)
 2.16 

Where: 

 N is the total number of nodes in the graph G. 

 𝑑(𝑖, 𝑗) ≃ 𝑑𝑚𝑖𝑛(𝑖, 𝑗) approximates the shortest path between node i and j. 

 𝐺𝑖 is the local subgraph consisting only of a node i's immediate neighbours, but not 

node i itself, in a graph 𝐺 with 𝑁 total nodes. 

 𝐺𝑖𝑑𝑒𝑎𝑙 is a reference graph with idealized properties, such as the complete graph or 

random graph, depending on the context. 
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2.6.4 Decomposability Metrics 

 Measures of decomposability study the inter-connectedness of a graph as it survives 

partitions through vertex and/or edge removals.  The decomposition process can be 

systematic or essentially random.  A graph-defined asset suffering random component 

failures will exhibit fitness degradation.  Resistance to this process is effectively a form of 

graph reliability.  Similarly, an adversary seeking to inflict maximal damage to an asset 

may have his actions viewed as a dismantling of key structural features in a model.  

Resistance to this process can be measured by the Isoperimetric Number, which is also 

known as the Cheeger Constant. 

 Robustness to these and other effects can be captured by several topological and 

coverage-based GPIs.  Examples include the Hosoya or Wiener Index, the Estrada Index, 

or Tutte Polynomial.  These measures are outlined in detail in the work of [Bunke et al., 

2008].  As an example in graph robustness, let Ω(𝑣, 𝑒)be the set of all connected graphs G 

with v vertices and e edges.  Assume that the components fail independently of each other 

with probability 1 − 𝑝.  The familiar reliability equation gives the probability that a graph 

G is connected: 

 𝑅(𝐺) =∑𝑆𝑟(𝐺)𝑝
𝑟(1 − 𝑝)(𝑣−𝑟)

𝑣

𝑟=1

 2.17 

Where 𝑆𝑟(𝐺) is the number of connected induced subgraphs of G that contain exactly r 

vertices.  An r-cutset of G is defined to be a set of r vertices in G that when removed from 

G, leave it disconnected. The number of r-cutsets of G is denoted 𝐶𝑟(𝐺).   
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Since any set of r vertices in G must be either connected or disconnected, the following 

relation holds: 

 𝑆𝑟(𝐺) + 𝐶(𝑣−𝑟)(𝐺) = (
𝑣

𝑟
) 2.18 

Given p, there is always at least one locally best graph in 𝛺(𝑣, 𝑒), i.e., a graph that is the 

“most reliable” in the sense of connection probability. This interpretation of graph 

reliability can be seen as a probability of surviving successive cuts and removals while 

remaining connected. 

 The isoperimetric number, or Cheeger constant is a numerical measure of a graph’s 

disposition towards bottlenecks.  It is yet another measure used to assess the inter-

connectedness of a graph.  Let G be a finite undirected graph with vertex set V(G) and edge 

set E(G). 

For an allocation of vertices 𝐵 ⊆ 𝑉(𝐺), let 𝜕𝐵 = {(𝑥, 𝑦) ∈ 𝐸(𝐺): 𝑥 ∈ 𝐵, 𝑦 ∈ 𝑉 (𝐺) 𝐵⁄ } 

denote the collection of all edges from a vertex x in B to a vertex y outside of B.  Then the 

isoperimetric number, or Cheeger constant of G, denoted h(G), is given by: 

 ℎ(𝐺) = 𝑚𝑖𝑛{
∣ 𝜕𝐵 ∣

∣ 𝐵 ∣
: 𝐵 ⊆ 𝑉(𝐺),0 <∣ 𝐴 ∣≤

1

2
∣ 𝑉(𝐺) ∣} 2.19 

Note that ℎ(𝐺)is positive if, and only if, G is connected. The value of ℎ(𝐺)is large if 

partitions of the vertex set B lead to subsets with many edges between them. 
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2.7 Normalized Compression Distance 

 A reasonable notion of similarity is how difficult it would be to transform one object 

into another, using the most efficient transformation possible.  The normalized information 

distance (NID) is universal in this regard [Li et al., 2004].  Unfortunately, the NID is also 

incomputable in general [Vitanyi et al., 2008].   Admissible information-theoretic distances 

have been successfully applied to a variety of objects.  The most prolific of these is the 

normalized compression distance (NCD). 

2.7.1 Kolmogorov Complexity 

 Kolmogorov complexity is a notion of information content.  It is based on two 

principles: (a) all data can be represented as a bit string; (b) the shorter this string can be 

described, the less information is contained in it.  These principles are detailed in [Li et al., 

2004 ] and [Vitanyi et al., 2008].  The main idea is that with respect to some universal 

Turing machine 𝑈, there must be some minimal description for any given data given by: 

 𝐾𝑈(𝑥)=𝑚𝑖𝑛{|𝑦|:𝑈(𝑦)=𝑥} 2.20 

 The Kolmogorov complexity 𝐾𝑈(𝑥)of a string 𝑥 is uncomputable in general.  There 

can be no algorithm which computes the Komolgorov complexity of x for all x, so that 

∀𝑥, 𝐾𝑈(𝑥) ∉ 𝑇(𝑈).  This result can be bounded from above, and for every algorithm which 

bounds it, there is another algorithm which provides a better bound.  Fortunately, all 

computable compressors approximate 𝐾𝑈(𝑥). 
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 The Kolmogorov complexity of a file is a lower bound on the length of the ultimate 

compressed version of that file.  If one assumes that the natural data contain only effective 

regularities that a good compressor finds, then 𝐾𝑈(𝑥)is only slightly smaller (up to a 

constant factor) than the length of the compressed version 𝐶(𝑥); that is 𝐶(𝑥) + 𝑂(|𝑥|) ≈

𝐾𝑈(𝑥). 

2.7.2 Normalized Information Distance 

 The normalized (symmetric) information distance (NID) is given by: 

 𝑁𝐼𝐷(𝑥, 𝑦)=
𝑚𝑎𝑥[𝐾(𝑥 ∣ 𝑦), 𝐾(𝑦 ∣ 𝑥)]

𝑚𝑎𝑥[𝐾(𝑥), 𝐾(𝑦)]
 2.21 

When the incomputable functions 𝐾(*) are approximated by a good choice of compressor 

𝐶(*), one obtains the normalized compression distance. 

2.7.3 Normalized Compression Distance 

 The normalized compression distance (NCD) expresses the similarity between any 

pairs of finite objects.  The NCD is an information-theoretic measure of how difficult it is 

to convert one object into the other through computational means given by: 

 𝑁𝐶𝐷(𝑥, 𝑦)=
𝐶(𝑥||𝑦)-𝑚𝑖𝑛[𝐶(𝑥), 𝐶(𝑦)]

𝑚𝑎𝑥[𝐶(𝑥), 𝐶(𝑦)]
 2.22 

Where || is the familiar concatenation operator, and 𝐶(𝑥||𝑦)denotes a compression of the 

concatenated representation of objects 𝑥 and 𝑦.  This compression is assumed to be roughly 

symmetric, so that 𝐶(𝑥||𝑦) ≃ 𝐶(𝑦||𝑥).   
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When the data emanates from generalized assets, which can be represented by graphs or as 

models described in some language, the notion of concatenation is extended to these 

descriptions.  That is, two models (e.g. graphs) X and Y are combined (joined, concatenated) 

into a single equivalent model (or graph) XY. 

 The idea behind the NCD is that if X and Y share common information, they will 

compress together better than separately, as the compressor will be able to reuse the 

recurring patterns found in one of them to more efficiently compress the other.  In practice, 

the NCD is a non-negative number, 0 − ϵ ≤ 𝑟 ≤ 1 + ϵ, representing how different two 

objects are.  Similar numbers represent more similar objects.  The ϵ in these bounds is due 

to imperfections in compression techniques.  For most standard compression algorithms, 

one is unlikely to see an epsilon above 0.1 [Vitanyi et al., 2008]. 

 The NCD is intended to be universally applicable.  As a similarity metric, the NCD 

has been put through numerous stress tests, for instance in [Nykter et al., 2008].  Its main 

advantages include being parameter-free, feature-free, alignment-free, and resistant to 

noise [Cebrian et al., 2007].  It can be explicitly computed, and is useful in clustering, 

classification, and anomaly detection tasks.  This makes the NCD both theoretically and 

practically appealing, as access to a simple lossless compressor (such as GZIP or LZW) 

allows one to evaluate the similarity of generalized assets.  If a reference configuration of 

known fitness is available, then the NCD allows one to complete a “universal” performance 

evaluation. 
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3 INTEGRITY GAMES 

3.1 Background 

3.1.1 Context 

 The time-evolution of generalized assets can be examined through many lenses.  

The theory of (general) dynamical systems provides the broadest scope, investigating all 

matters of dynamical behaviour.  Dynamical systems come in many “flavours”, with 

specific sub-fields dedicated to symbolic or arithmetic sequences, topologies, graphs, and 

other structures.  Emphasis is placed on answering important structure and existence 

questions.  A formal study may determine the particularities of reachability, stability and 

approximation.  The potential for various events, behaviours, boundary effects, asymptotic 

limits, and attractor (or repellor) regions is often sought.  The applications of dynamical 

systems theory have spawned entire fields, including coding theory, (optimal) control 

theory, and game theory, to name but a few [Picci and Gilliam, 1999]. 

 A survey of governance, management, planning, and control activities reveals that 

they are reducible to complex decision making.  These processes may involve concurrent, 

distributed action-selection, which can nonetheless be transformed into a time-sequential 

dynamical system.  Using information feedback, update-rules, and resource constraints, the 

decision process manifests itself as strings of symbols in some alphabet, walks over a tree, 

traversals over a graph, transitions between points in a space, or coverages of a set. 
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3.1.2 Terminology 

 When certain conditions are met, one has a particular type of dynamical system 

called an integrity game.  This definition of integrity game shares some of the notions used 

by other fields.  The most general terminology can be found in the literature on algebraic 

and symbolic dynamical systems theory.  Its subset, optimal control theory, is used 

predominantly in the applied sciences.  This terminology is relatively ubiquitous in process 

control and systems engineering, although many different formulations, modelling 

approaches, and solution techniques are in use [Picci and Gilliam, 1999], [Smolensky, 

1986].  Game theory matured in conjunction with these and other fields, but has since 

adopted its own terminology.  The game formulation is well-suited to problems in the social 

sciences, operations research, economics, business analytics, and computer science.  Game 

theory is a mature platform for a highly-studied variation of the common theme:  optimizing 

performance. 

 Table 3.1 outlines several of the prevalent terminologies encountered in game 

theory, control theory, and their parent, dynamical systems theory. 
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Table 3.1. Outline of terminology encountered by field of study. 

Terminology Game Theory Control Theory Dynamical Systems 

Systems 

Context 

– Game 

– Auction 

– Tournament 

– Plant 

– Process 

– Signal 

– Generalized Systems 

 

 

Representation of 

States 

– Fitness Landscape 

– Payoff Matrix 

– Decision Tree 

– State Space 

– Configuration Plot 

– Time/Frequency Domain 

– Phase Space 

– Phase Portrait 

– Geometric Manifold 

State Variables – Payoffs/Rewards 

– Costs/Risks 

– Utility 

– State-Variables 

– Costs/Errors 

– Gains/Losses 

– State-Variables 

– Functions/Measures 

– Penalty Gradients 

Source of 

Governing 

Dynamics 

– Players 

– Actors 

– Agents 

– Controls 

– Controllers 

– Forcing Functions 

– Evolution Functions 

– Potential Forms 

– Drifts/Exchanges 

Uncertainty & 

Feedback 

Mechanisms 

– Imperfect 

Information 

– Incomplete 

Information 

– Error Terms 

– Reference Signals 

– Partial Observability 

– Noise/Filters 

– Flows 

– Diffeomorphisms 

– End/Boundary Effects 

 

Traversals 

– Moves 

– Decisions 

– Actions 

– State-transitions 

– Controls 

– Paths 

– Evolutions 

– Propagations 

Sequence of State 

Visits 

– Strategies 

– Action Profiles 

– Policies – Trajectories 

– Orbits (ergodic) 

 

Criterion 

for 

Optimality 

– Minimax Strategy 

– Nash Equilibrium 

– Solution Refinements 

– Learning Rate 

– Optimal Policy 

– Adaptability 

– Stability 

– Transient Response 

– Asymptotic Behaviour 

– Lyapunov Stability 

– Basins of Attraction 

– Bounds/Limits 

– Conjugacy 

– Invariants 

 

Performance 

Objectives 

– Find optimal 

strategies. 

– Provide conditions 

for a win/loss 

– Find optimal policies 

– Design optimal 

controllers. 

 

– Describe potential 

behaviour and confine 

transfer functionals. 

 

 

Canonical 

Types 

– Combinatorial 

– Differential 

– Evolutionary 

– Stochastic 

– Quantum 

– Robust 

– Adaptive 

– Intelligent 

– Statistical 

– H-infinite 

– Measure-Preserving 

– Topological 

– Graphical 

– Symbolic 

– Sequential 
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3.1.3 Ontogenesis 

 Game theory extends aspects of decision theory and overlaps much of control 

theory.  In terms of decision-making, game-theory replaces the single-decider situation with 

multiple-players or rational agents.  In terms of control, game theory urges multi-controller 

design in the presence of intelligent adversaries.  This is sometimes the equivalent of 

developing a robust controller which defends against the expectation of worst-case 

behaviour.  Classical game theory goes further, by requiring the potential for dynamical 

processes to be equipped with intelligent behaviour derived from inductive inference and/or 

analytical look-ahead.  If the equivalent behaviour were formulated using the language of 

control theory, the underlying processes and filters might be classified as acausal and/or 

anti-causal.  Thus, in game-theory one is concerned with dynamics which can affect the 

state of the system through their conscious motivation.  In control theory, the opposing 

dynamics are implicitly naive. 

 Models based on game theory allow one to address risks (and risk sources) which 

are not only naive and stochastic (so-called harsh environments), but also superimposed 

with adversarial dynamics (so-called hostile environments).  Thus, where control theory 

often seeks to optimize asset performance in the face of a harsh environment, game theory 

seeks to satisfice asset performance in the face of hostile environments.  In terms of 

planning, game theory deals with purposeful, active performance denials, which subsume 

any accidental performance degradations. 
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 The theory of games has become central to artificial intelligence, search algorithms, 

and architectures for autonomous reasoning.  Modern game theory developed primarily out 

of research into operations research and mathematical economics.  It has origins with 

Zermelo (1913), Borel (1921), Von Neumann and Morgenstern (1928, 1944) and of course 

with Nash (1950).  From there, it expanded through Kuhn and Tucker (1951), Shapley 

(1953), Selten (1965, 1975), Conway (1970) and Smith (1972).  Major contributions 

followed in Harsanyi (1973, 1992), Rubenstein (1982), Mertens (1985), and van Damme 

(1993) [Dimand and Dimand, 2002].  More recently, investigations into the computational 

complexity of games (and their solutions) have been put forward by [Condon, 1992], 

[Daskalakis, Goldberg, and Papadimitriou, 2008], and [Chen et al., 2010].  Interest into the 

design of game-playing agents, as well as the combinatorial and algorithmic aspects of 

game solution concepts, has given rise to the field of algorithmic game theory.  Significant 

progress in this area has been made by authors such as Koller, Nisan, Roughgarden, and 

Tardos, among others [Nisan et al., 2007]. 

 

3.1.4 Classification 

 An integrity game constitutes a deterministic base game which is perturbed in a 

nondeterministic manner.  In the present work, we consider only a restricted class of base 

games and perturbative effects.   

 The base game is taken to be a standard combinatorial game.  This represents a 

sequential game where players alternate turns.  On their respective turns, players choose to 



51 

 

transition the game into a new state, and receive an immediate fixed reward.  This is done 

by selecting amongst a static, finite set of discrete actions.  This process is repeated until 

termination criteria are met.  Such games can be solved using the minimax theorem and by 

adversarial search algorithms [Hauk, Buro, and Schaeffer, 2006]. 

 The perturbed game results when stochastic effects, such as noise, errors, trembles 

of hand (imperfect actions), and partial observability (incomplete information) come into 

play.  Insufficient assumptions regarding opponent beliefs, rules, or number of players can 

also play a role.  This alters the structure of the base game by essentially corrupting inputs 

and state evaluations, partially randomizing state-transitions, and modifying payoffs.  Such 

games can be approximately solved using generative model discovery, reinforcement 

learning, and sampling based algorithms [Bowling and Veloso, 2000]. 
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3.2 The Base Game 

3.2.1 Specifications 

 A base game can be specified in one of several forms. An extensive-form game 

organizes the sequence of player decisions or moves into a decision tree.  The extensive-

form efficiently captures the choices at every decision point, including chance events from 

nature. A normal-form or strategic-form game describes strategy spaces and rewards by 

way of a payoff matrix. This organization is useful for games where decisions are 

simultaneous or premeditated before play occurs. The normal-form can also represent a 

degenerate case of extensive-form. When information feedback between sequential choices 

is minimal, the situation is effectively simultaneous.  Furthermore, every extensive-form 

game can be transformed into a unique normal-form representation.  However, the converse 

is not necessarily true.  A normal-form game may admit multiple extensive forms.  

Converting an extensive-form game into a normal-form may require an exponential blow 

up in the size of the payoffs [Bowling and Veloso, 2000]. 

 Finally, there is the succinct-form, which is the specification we adopt for the 

current version of our planning architecture.  Succinct-form games lend themselves well to 

computational exploitation via symmetry and induction (e.g. transposition and refutation 

tables) [Schoenebeck and Vadhan, 2006], and [Fortnow et al., 2005]. 

 Definitions found in this sub-section have been adapted from the works of [Brown 

and Shoham, 2008].  These authors follow a standard notation which has been used 

elsewhere in the literature on games. 
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3.2.2 Extensive Form 

 Much of the game-theoretic terminology is defined for extensive-form games.  

Specifying a game in extensive form has many useful applications.  A brief discussion of 

their framework is therefore necessary.  Formally, a finite extensive-form game consists 

of: 

 A finite set of players 𝐼 = {1,2,..., 𝑖}; 

 A finite set of nodes 𝑋 that form a rooted tree, with a labelled root node 𝑥0 ∈ 𝑋, and a 

set of terminal nodes 𝑍 ⊂ 𝑋; 

 A set of transition functions that describe for each non-terminal node: 

 The player 𝑖(𝑥)who moves at 𝑥; 

 The set A(x) of possible actions at x. 

 The successor node n(x,a) resulting from action a. 

 Payoff functions for each player which assign payoffs to players as a function of the 

terminal node reached 𝑢𝑖:𝑍 → ℝ; 

 An information partition ℎ(𝑥) which defines for each node 𝑥, the set of nodes that are 

possible given what player 𝑖(𝑥) knows. Thus, if the node 𝑥′is known to be reachable 

from the current node 𝑥, or 𝑥′ ∈ ℎ(𝑥), then the player 𝑖moving at node 𝑥, or𝑖(𝑥), can 

be the same player moving at node 𝑥′.  It follows that if 𝑥′ ∈ ℎ(𝑥), then 

𝑖(𝑥′)=𝑖(𝑥),𝐴(𝑥′)=𝐴(𝑥), and ℎ(𝑥′)=ℎ(𝑥); 

 The set of information sets available when player i moves from position x: 𝐻𝑖={𝑆 ⊂

𝑋: 𝑆=ℎ(𝑥) ∣ ∃𝑥 ∈ 𝑋, 𝑖(𝑥)=𝑖}; 
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 The set Ai of actions available to i at any of his information sets ℎ ∈ 𝐻𝑖. 

3.2.3 Normal-Form 

A game in normal-form is a structure Γ=⟨𝑁, 𝑆, 𝐹⟩, where: 

 𝑁 = {1,2,..., 𝑛} is a finite set of players; 

 𝑆 = {𝑆1,𝑆2,..., 𝑆𝑛} is an n-tuple of pure strategy sets, one for each player; 

 𝐹 = {𝐹1,𝐹2,..., 𝐹𝑛} is a tuple of payoff functions, one for each player which maps 

strategies to rewards. 

This definition has been included for completion.  Normal-form games are conceptually 

useful for identifying certain equilibria, but require additional computational overhead for 

more refined solutions.  For efficiently solving integrity games, they rank below their more 

preferred succinct-form (most ideal) as well as their extensive-form counterparts.  Hence, 

further discussion regarding this type of game specification is omitted. 

3.2.4 Succinct-Form 

 Games in succinct-form often allow for smaller representations than normal-form. 

Describing a game of 𝑛 players, each facing 𝑠 strategies, requires a listing of 𝑛𝑠𝑛 utility 

values. In games where symmetry (of information, actions, strategies, payoffs, etc.) is 

exploited, a combinatorial reduction in the number of utility values is possible [Fortnow, 

2005]. 
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 For 2-player integrity games, the base game can be succinctly modelled by 𝑛2 utility 

values, where 𝑛 in this case is the maximum number of moves, actions, choices, or state-

transitions possible at any round.  The succinct-form directly coincides with the 

𝐾(𝑣,𝑒,𝑛)asset representation discussed in Sections  

Special Graphs and The 𝑲(𝟏,𝟐,𝑵)Asset Representation.  For 2-players, 𝐾(1,2,𝑁) forms a base 

integrity game in succinct-form.  This specification is defined by 𝑁2 utility values (one for 

each potential state-transition), usually given by some 𝑁 ×𝑁 weighted adjacency matrix. 

 

3.2.5 Strategies 

3.2.5.1 Pure Strategies 

 A pure strategy for player 𝑖 in an extensive-form game is a function 𝑠𝑖  : 𝐻𝑖 → 𝐴𝑖 

such that 𝑠𝑖(ℎ) ∈ 𝐴(ℎ) for each ℎ ∈ 𝐻𝑖. A strategy is a complete plan explaining what a 

player will do in every situation. It represents a sequence of action selections.  Let 𝑆𝑖 denote 

the set of pure strategies available to player 𝑖, and let 𝑆={𝑆1 × 𝑆2 × ... × 𝑆𝐼} denote the set 

of pure strategy profiles ∀𝑖 ∈ 𝐼. Similarly, let the set 𝑠=(𝑠1,..., 𝑠𝐼) denote a particular 

strategy profile, and let 𝑠−𝑖denote the strategies of 𝑖′𝑠opponents. 

3.2.5.2 Mixed Strategies 

 In an extensive-form game, a mixed strategy 𝜎𝑖 for player 𝑖 is a probability 

distribution 𝛥 over the set of 𝑖′𝑠 pure strategies 𝑆𝑖, or 𝜎𝑖 ∈ 𝛥(𝑆𝑖). 
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3.2.5.3 Behavioural Strategies 

 A behavioural strategy for player i in an extensive-form game is a function σ𝑖:𝐻𝑖 →

Δ(𝐴𝑖) such that 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(σ𝑖(ℎ)) ⊂ 𝐴(ℎ), ∀ℎ ∈ 𝐻𝑖. 

3.2.5.4 Kuhn's Theorem and Perfect Recall 

 A classic result in game theory, known as Kuhn's Theorem, states that in a game of 

perfect recall, i.e. where players may remember all their previous moves/states as well as 

their previously encountered information sets, then for any mixed strategy there is an 

equivalent behavioural strategy.  Thus, these terms are often used interchangeably. 

3.2.6 Solution Concepts 

 In game theory, a solution concept is a formal rule for predicting how a game will 

be played [Leyton-Brown and Shoham, 2008].  These predictions describe which strategies 

will be adopted by rational agents, and therefore constitute a “solution” for the result of the 

game. 

3.2.6.1 Nash Equilibrium (NE) 

 Recall that 𝑆={𝑆1 × 𝑆2 × ... × 𝑆𝐼} is the set of pure strategy profiles, with 𝑆𝑖∈𝐼 ∈ 𝑆 

the set of all profiles for player 𝑖. The resultant payoff function for some strategy profile𝑠 ∈

𝑆 is given by 𝑓=(𝑓1(𝑠),..., 𝑓𝐼(𝑠)). Also recall that 𝑠𝑖 and 𝑠−𝑖 denote the strategy profiles for 

player 𝑖and all of his opponents, respectively. The payoff function f depends entirely on the 

strategy profile𝑠, which represents the strategy chosen by player 𝑖 as well as all the other 

players −𝑖. 
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 A strategy profile 𝑠* ∈ 𝑆 is said to be a Nash Equilibrium (NE) if no unilateral 

deviation in strategy by any single player is profitable for that player.  Formally, NE → 

∀𝑖, 𝑠𝑖 ∈ 𝑆𝑖:𝑓𝑖(𝑠𝑖
*, 𝑠−𝑖

* ) ⩾ 𝑓𝑖(𝑠𝑖, 𝑠−𝑖
* ). When this inequality holds strict for all players, the 

Nash Equilibrium is said to be strict. When ∃𝑠𝑖
* ∈ 𝑆𝑖:𝑓𝑖(𝑠𝑖

*, 𝑠−𝑖
* ) = 𝑓𝑖(𝑠𝑖, 𝑠−𝑖

* ), the Nash 

Equilibrium is said to be weak.  NE can exist for either pure or mixed strategies.  In 1951, 

Nash showed that for every game with a finite number of players, in which every player 

can choose from finitely many pure strategies, there must exist at least one (possibly mixed) 

Nash Equilibrium [Nash, 1950].  As a solution concept, NE is more commonly found within 

the context of normal-form games. 

3.2.6.2 Subgame Perfect Equilibrium (SPE) 

 This solution concept is a refinement (or subset) of the classical Nash Equilibrium.  

Refinements enforce stricter conditions on the optimality of behaviour, and impose greater 

requirements on the rationality of players.  Subgame perfection posits that players will 

always seek a Nash Equilibrium going forward even if some off-equilibrium play was 

observed.  By definition, a subgame Γ′of some extensive-form game Γ, consists of: 

 A subset 𝑌of the set of nodes 𝑋, where 𝑌 is rooted by a single non-terminal 

node 𝑥, and contains all of 𝑥′𝑠 successors, and; 

 Y  has the property that if  𝑦 ∈ 𝑌 and 𝑦′ ∈ ℎ(𝑦) then 𝑦′ ∈ 𝑌; 

 Γ′ shares the same information sets, feasible moves, and payoffs at terminal 

nodes as Γ. 



58 

 

Subgame perfect equilibrium therefore prescribes a NE to be played at each subgame. As 

a solution concept, SPE is more commonly associated within the context of extensive-form 

games. 

3.2.6.3 Minimax Theorems 

 In their most general form, minimax theorems are fixed-point theorems from 

variational analysis [Ricceri and Simons, 1998].   Under broad conditions, a dynamical 

system, and hence most game structures, will admit an approximately stable saddle region.  

The saddle is effectively a fixed-point solution to the game (or dynamical system) which 

can be found using various techniques [Ricceri and Simons, 1998]. 

A particular example is known as the max-min inequality.  Given a real-valued 

function over some cross-product of compact vector spaces, 𝑓: 𝑋 × 𝑌 → 𝑅: 

 sup
𝑥
 inf 
𝑦
𝑓(𝑥, 𝑦) ≤ inf 

𝑦
sup
𝑥
 𝑓(𝑥, 𝑦) 3.1 

Which holds ∀𝑥, 𝑦, 𝑓(𝑥, 𝑦) ∈ ℝ. In 1928, Von Neumann studied the problem of solving 

“games of strategy” (gesellschaftsspiel), and produced the following result, known as the 

Von Neumann Minimax Theorem (VNMM): 

 𝑣 = min
𝑋
 max 
𝑌
𝑋𝑇𝐴𝑌 = max 

𝑌
min 
𝑋
𝑋𝑇𝐴𝑌 3.2 

Where v is called the value of the game, 𝑋, 𝑌are the mixed strategy solutions for players 

Min and Max, and A is the payoff matrix of the game in normal-form. 

 Along with NE, the VNMM is one of the most fundamental theorems of game 

theory.  It states that every finite, two-player, zero-sum game (2PZSG) must possess 
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optimal mixed strategies.  This optimality is achieved under minimax conditions and is 

known as the value of the game.  Proofs can be found in the original papers [Von Neumann, 

1928], [Von Neumann and Morgenstern, 1944]. 

3.2.7 Transformed Minimax Potential 

 Any finite N-player general-sum game (NPGSG) can be transformed into an 

equivalent (N+1)-player zero-sum game, or (N+1)ZSG.  This can be achieved by invoking 

an arbitrator or referee player [Cai and Daskalakis, 2012].  This process creates a global 

potential function out of the rewards or payoffs, summing them to zero.  Additionally, 

strictly competitive situations can be partitioned, where a single player is isolated from the 

remaining contingent of players.  This contingent forms an aggregate non-cooperative force 

[Cai and Daskalakis, 2012].  The combination of these transformations can reduce many 

situations into an equivalent set of problems which are more readily solved.  We summarize 

this process by the following implication diagram(s); NPGSG → (N+1)ZSG → 2PZSG*. 

The resulting game, 2PZSG*, is also called the transformed minimax potential of 

the game (or dynamical system).  Structurally, this is a finite, two-player zero-sum game 

where the payoffs follow a potential reward function that attenuates (or discounts) in long-

run expectation towards zero.  The two players are the net resultants of a binary partition, 

condensation, or mean-field approximation of the actors.  They represent a duality of 

forces, the Minimizer and the Maximizer, or MIN and MAX.  These players seek to strictly 

oppose one another in perfect competition.  Each player has the fundamental objective of 

minimizing (or maximizing) their respective payoffs. 
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 In 2PZSG*, payoffs are typically captured by a Von Neumann-Morgenstern Utility 

function (VNM-Utility).  These payoffs are complete, transitive, monotonic, and 

necessarily risk-averse [Bergstrom, 2014].  It is presumed that agents will seek to maximize 

(or minimize) their long run expected VNM-utility.  This is both an admissible criterion for 

decision making, as well as a notion of rationality between agents [Bergstrom, 2014].  Both 

VNM-utility and VNM-rationality are considered somewhat artificial, as humans are rarely 

capable of this behaviour [Kreps, 1988].  Furthermore, this so-called VNM-behaviour is 

seldom observed in practice [Kreps, 1988].  By default, we will assume that in 2PZSG and 

2PZSG* players attempt to adopt VNM-like behaviour.  

When the transformed minimax potential respects VNM-behaviour, several 

solution concepts become equivalent.  The problem of finding a minimax solution is called 

MINIMAX, and the problem of finding a maximin solution is called MAXIMIN.  These 

concepts also have dual representations in linear programming, where finding a solution is 

called LP.  The problem of finding a pure strategy NE is called NASH, although sometimes 

the mixed strategy NE are used interchangeably [Nihan, Roughgarden, et al., 2007].  It can 

be shown that for any symmetric 2PZSG, and by proxy any 2PZSG*, the following 

implication is true; MINIMAX = MAXIMIN = NASH = LP. 

Additionally, if more than one optimal mixed strategy exists, then there are 

infinitely many optimal mixed strategies [Leyton-Brown and Shoham, 2008].  At least one 

pure strategy solution (such as a NE) is guaranteed to exist, and there may exist several 

pure strategy solutions.  For a thorough discussion of these results equipped with proofs, 
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the reader may again be diverted to the works of [Leyton-Brown and Shoham, 2008] and 

[Nihan, Roughgarden, et al., 2007].    

 While not always valid or appropriate, the 2PZSG*, or transformed minimax 

potential, is a reduction which allows for simplified analysis.  It consequently assumes 

VNM-behaviour in utility and rationality.  As a zero-sum potential game, it maintains the 

notion that one player's gains are balanced by losses to the other players as a whole.  In the 

two-player sense, this yields values for the game which can be seen as saddle-point 

solutions.  These transcend the game specification; as Nash Equilibria in normal-form 

games, principal variations in extensive-form games, or minimax trajectories for succinct-

games. 
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3.3 The Perturbed Game 

3.3.1 Specifications 

 As with its base game counterpart, a perturbed game can be specified in one of 

several formats.  However, there is less interchangeability between specifications and 

solution concepts for perturbed games [Jackson et al., 2011].  Since we are dealing with 

sequential planning of generalized assets, only the extensive-form variation of perturbed 

games will be covered.  We will later adapt extensive-form solutions to a succinct-form as 

part of an overall model for solving integrity games. 

 

3.3.2 Perturbations of the Base Game 

 Let Γ be a standard extensive-form base game as defined in Section Extensive Form.  

A perturbed game ~Γ is a copy of the base game where every pure strategy is played with 

non-zero probability. Thus ∀𝑖 ∈ 𝐼, ∀𝑠𝑖 ∈ 𝑆𝑖 , 𝑃𝑟(𝑠𝑖) ≥ 0, and ~Γ can be interpreted as a 

restriction on playing only totally mixed strategies σ𝑖 ∈ Δ(𝑆𝑖). 

In their most basic form, perturbations to the base game structure result in all 

strategies (i.e. sequences of actions) being “on the table” without regard to how sub-optimal 

they may be.  A dominated strategy in the base game is technically feasible throughout the 

perturbed game.  There are several reasons for advocating that strategies be totally mixed 

[Leyton-Brown and Shoham, 2008].  The examination of perturbed gameplay (over some 

base game) is a common technique for assessing the stability and robustness of equilibrium 
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solutions to noise.  Perturbations also capture modelling errors, misjudgment of states and 

beliefs, as well as behavioural imperfections. A summary of these motivating factors is 

presented in Table 3.2. 

 

Table 3.2. Sources of Perturbation to the Base Game 

Nomenclature Source Class Effects(s) 

 

Incomplete 

Information 

 

– Partially-Observable 

States. 

– Unknown/Uncertain 

Player Motivations. 

– Misinterpretation of game state. 

– Errors in utility and payoff functions. 

– Uncertainty in opponent beliefs, motives, available 

actions. 

– Emergence of unexpected patterns. 

Imperfect 

Actions 

– Non-deterministic 

Actions and/or Selection 

Mechanisms. 

– Control Costs. 

– Incorrect moves and/or improper action-selection, 

despite perception of correctness. 

– Deviations from expected state-transitions and/or 

payoff results. 

Misc. 

Modelling 

Errors 

– Unknown Actors, Rules, 

Environments. 

– Approximating 

Assumptions. 

– Infeasible or unable to 

capture real-world 

complexity. 

– Misrepresentation of the situation through incorrect 

(imprecise, inaccurate) game structures. 

– Incorrect, contracted, or insufficient analysis. 

– Sub-optimal or even massively detrimental decision 

making. 

 

 The study of perturbed games leads to several refinements in the interpretation and 

prediction of rationally “correct” play.  These refinements are often motivated by 

arguments from admissibility.  Admissibility criteria require decision rules which are not 

dominated by alternatives in the sense of some estimator such as Bayesian expectation or 

some coherent risk/loss function [Kreps, 1988], [Leyton-Brown and Shoham, 2008].  For 

two-player games, admissibility implies that no strategy 𝑠𝐴 that is (weakly) dominated by 

another strategy 𝑠𝐵 is legally allowed to be played.   
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That is, for any player 𝑖, a strategy 𝑠* ∈ 𝑆𝑖: 

 Weakly dominates another strategy 𝑠′ ∈ 𝑆𝑖, if ∀𝑠−𝑖 ∈ 𝑆−𝑖{𝑢𝑖(𝑠
*, 𝑠−𝑖) ≥ 𝑢𝑖(𝑠′, 𝑠−𝑖)} ∧

{∃𝑠−𝑖:𝑢𝑖(𝑠
*, 𝑠−𝑖) = 𝑢𝑖(𝑠′, 𝑠−𝑖)}; 

 Strictly dominates another strategy 𝑠′ ∈ 𝑆𝑖, if ∀𝑠−𝑖 ∈ 𝑆−𝑖{𝑢𝑖(𝑠
*, 𝑠−𝑖) > 𝑢𝑖(𝑠′, 𝑠−𝑖)}. 

In perturbed games, the standard solution concepts seek to implement strategies which 

tolerate deviations from base game equilibrium behaviour (such as NASH or MINIMAX).  

The limits of this tolerance typically involve some notion of admissibility, or remaining 

undominated in the face of perturbations.  Refinements may also be defined from other 

desirable properties, such as the preservation of inherited inference, or by way of 

forward/backward induction.  This has led to increasingly stronger refinements over the 

subgame perfect equilibrium.  Examples include the sequential equilibrium proposed by 

[Kreps and Wilson, 1982], as well as the proper equilibrium of Myerson, the Markov 

perfect equilibrium, and the concept of Mertens Stability [Nisan, Roughgarden, et al., 

2007]. 

3.3.3 Extensive-Form Trembling Hand Perfection 

 One of the most significant refinements is the trembling hand perfect equilibrium, 

a solution concept first proposed by Selten (1975).  Trembling hand perfect equilibrium 

takes into account the possibility for deviations from equilibrium as a result of “trembling 

hands”.  Under this regime, players have perfect recall of their previous actions, but fumble 

certain individual moves, and may (with small probability) choose unintended strategies 
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for the remainder of the game.  There are differing, incomparable notions of normal-form 

and extensive-form trembling hand equilibria [Jackson et al., 2011]. 

 Formally, a (mixed or behavioural) strategy profile 𝜎 is an 𝜖 − 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 equilibrium 

iff it assigns strictly positive probability to all pure strategies, and only pure strategies that 

are best replies get probability greater than𝜖.  A (mixed or behavioural) strategy profile𝜎is 

then an extensive-form trembling-hand perfect equilibrium iff it is the limit point of a 

sequence of 𝜖 − 𝑝𝑒𝑟𝑓𝑒𝑐𝑡equilibria with 𝜖 → 0+. 

 The notion of 𝜖 − 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 equilibrium maintains that for mild perturbations of the 

information sets away from the complete information of the base game, one can expect 

correspondingly mild perturbations in best reply behaviour. Through trembling hand 

perfect equilibrium, one may recover any subgame perfect equilibria which vanished as a 

result of perturbations less than 𝜖. To do so, it merely assumes “perfection” (or optimality) 

in the sequential responses to successive perturbations of the game structure. 

 

3.3.4 Robustness, Stability, and Adaptability Concepts 

 It is worth noting that in perturbed games, players can be better off by ignoring 

some of the information potentially available to them [Jackson et al., 2007].  For real-world 

assets, players typically incur additional control costs to gain knowledge or refine their 

beliefs of the asset-environment system.  For example, paying (e.g. trading energy) to 

reduce the uncertainty and/or noise associated with an observation, shaping an inspection 

to be of higher fidelity, or forcing probabilistic guarantees on a maintenance action.  In 
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such cases, the relationship between the value of ϵ and the expected equilibrium payoffs 

can have profound effects.  There can exist correspondences between ϵ, σ, and 𝑢, where all 

players benefit from relaxing their knowledge of the game structure.  This can be 

understood as having players face the costs of discovering information vs. the costs of fully 

tailoring strategies to imperfect information, such as ϵ − 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 uncertainty 

tresholds.  This is in addition to the other justifications (c.f. Table 3.2) that are based on 

players (or the modeler) incorrectly perceiving states, actions or payoffs. 

 Approaches based on this model vary, but are broadly referred to as ϵ − 𝑟𝑜𝑏𝑢𝑠𝑡 or 

ϵ − 𝑠𝑡𝑎𝑏𝑙𝑒 methods.  These methods essentially seek large basins of attraction, which are 

considered to be of lower risk and more preferable then narrow yet higher-performing 

corridors of play.  They emphasize state-transition trajectories which remain stable 

(minimal variance) as the risk landscape is perturbed.  They also anticipate robust and 

securable payoffs in the face of uncertain information.  This is in contrast to the principles 

behind the so-called adaptive methods, which seek to continuously exploit discernable 

changes in the game structure.  Adaptive methods expropriate feedback, and the belief that 

other players possess fewer computational resources and/or will exhibit fewer information 

gains as the game evolves.  Roughly speaking, adaptive methods are appropriate when 

opponents will make many more “mistakes”, and these mistakes will be noticed and can be 

exploited.  A detailed, formal treatment of these ideas can be found in [Bowling and Veloso, 

2000]. 
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 To recapitulate, solution concepts which are adaptive work well in asymmetric 

games, where (i.) some players have an inherent structural advantage from which to launch 

adaptive strategies, and (ii.) perturbations preserve this asymmetry overall (and hence the 

advantage).  In these games, several opponents may be considered to have significantly 

greater (or fewer) resources.  There may also be more (or less) information available at 

each round, or some subset of players must pay more (or less) for it.  The disadvantaged 

players may also possess greater uncertainty in their knowledge of states and actions.  They 

may be restricted in their action sets and possibly subject to move penalties.  Disadvantaged 

players may also exhibit irrational behaviour through access to fewer computational 

resources or some natural disposition towards sub-optimality. 

 This asymmetry is sometimes indirectly captured parametrically by γ ∈ [0,1], 

which expresses the level of non-cooperation present in the game structures Γor ~Γ. When 

γ is small, the level of competition is small.  The parameter γ can also be interpreted as a 

hostility index for the environment. 

 Limiting the ruleset (i.e. the resources and actions available to players) may 

handicap even the most diligent and computationally rational opponents.  When the game 

structures Γ or ~Γ are sufficiently asymmetric, the opportunity for strategic potency is likely 

to be reduced. This corresponds to a significant shift in the location of saddle-point 

equilibria or even their complete degeneration (c.f. games with no value [Sion and Wolfe, 

1957]).  As γ → 0, the asymmetry and resulting discrepancy between player abilities is 
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maximized (in expectation). At this point it may make sense to relax the assumption of 

adversarial dynamics completely, reducing the game to that of a one-player optimal 

stochastic control problem [Filar and Vrieze, 1997].  In these circumstances, small or even 

time-dynamic values of γ appreciably close to zero will emphasize solutions which 

anticipate stochastic deviations, and attempt to classify environment types by their 

generating distribution(s).  These conditions are ripe for adaptive techniques, which will 

inevitably exploit discovered asymmetries and increase the overall game performance, as 

it represents planning under naive environments. 

 As 𝛾 → 1 we achieve symmetry and opponents are considered strictly competitive. 

This represents the situation of intelligent adversaries with full-scale resources, equivalent 

rulesets, and equal-and-opposite objectives.  In these circumstances, solution concepts 

based on stability and robustness are preferred.  Thus for large values of 𝛾, we seek 

trajectories which are designed to survive against, or in an evolutionary sense avoid 

disappointment, regret, or invasion by, any reasonable perturbations of the landscape.  For 

extensive-form games, this leads to the acceptance of trembling-hand perfect (or 𝜖 −

𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 equivalent) equilibrium solutions over their adaptive counterparts.  For 

sequentially perturbed base games, this approach remains valid insofar as inductive 

inference is preserved.  It can be shown that backwards induction is preserved for games of 

perfect recall, as well as for games with the Markov property [Filar and Vrieze, 1997]. 

 In perfect recall games, a complete history of state-transitions is available and in 

the worst-case ex ante responses to perturbations are admissible.  In Markov games, future 
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state-transitions are history independent and depend on the current state (i.e. memoryless).  

In both cases, induction can be applied, yielding a set of appropriately stable and/or robust 

equilibrium solutions.  This is often accomplished via a variant of minimax search over the 

fitness of outcomes; e.g. taking into account the probabilistic “quality” of expected 

outcomes by evaluating moments such as the mean and standard deviation [Cai and 

Daskalakis, 2012]. 
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3.4 A Succinct Integrity Game for Generalized Assets 

3.4.1 Problem Description 

 Consider the situation of an asset manager responsible for making decisions 

regarding the performance and utilization of a generalized asset.  The generalized asset can 

be of any type, but consider for the moment a graph-defined state-transition system.  

Several graph performance indicators have been used to construct a series of reference 

configurations for the asset.  These configurations have been ranked according to their 

overall fitness level and partitioned by equivalence class. The asset manager has determined 

the utility generated by maintaining the asset near a particular configuration for an entire 

time-step.  Using the normalized compression distance as a similarity metric, the costs of 

transforming configurations are deducted from the utility.  This forms an integrity score, 

which represents the net payoffs or rewards from transitioning between the asset reference 

configurations, labelled as integrity states. 

 The problem facing the asset manager is how to optimize the performance of the 

asset in the absence of any additional information.  No domain knowledge is available, and 

the coupled asset-environment system is considered sufficiently novel and complex so as 

to rule out the feasibility of using expert assessments.  Where possible, procedures which 

“learn” to filter unwanted noise have already been applied.  Any process of reducing 

uncertainty is bounded and converges long after the asset is expected to be operational.  

The design lifetime of the asset is unspecified but known to be finite.  The asset is expected 

to persist in an unknown but hostile environment throughout lifecycle.  Environmental 
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effects include bounded stochastic integrity disruptions as well adversarial dynamics.  The 

asset is deemed sufficiently important to warrant the attentions of intelligent opponents, 

about which very little is known in terms of resources and/or capabilities. 

 The asset manager is tasked with formulating state-transition plans which maximize 

the integrity score over some long-run sequence of time-steps.  This ultimately corresponds 

to navigating a dynamic integrity landscape with the objectives of maximizing utility while 

minimizing risks.  Translated, the asset manager must prescribe state-transition trajectories 

which pursue desirable configurations while avoiding unwanted ones.  Furthermore, these 

trajectories must be optimal in that over-time, they accumulate the greatest possible 

integrity score in the presence of perturbations owing to noise, modelling errors, and 

unforeseen deviations. 

 Before the asset is made operational, a series of expected long-run average integrity 

scores are given as payoffs to a base game in succinct-form.  The succinct-form integrity 

scores correspond to an array of length quadratic in the number of distinct integrity states.  

For simplicity, these scores are positive integers.  At each time-step, the asset is monitored 

and noisy data regarding its configuration are extracted.  The expected integrity scores for 

the remainder of the game are evaluated, with one score assigned to each potential one-

time-step state-transition.  The array is then updated and given to the asset manager for 

analysis, planning, and governance. 
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3.4.2 Formulation 

 This problem is correctly modelled as a sequentially perturbed two-player zero-sum 

game (~2PZSG).  In the worst-case, all actors (including the environment) conspire against 

the asset manager.  Since this scenario is not explicitly ruled out, we can generate a 

transformed minimax potential resulting in a 2PZSG* base game with perturbations 

arriving at each time-step.  This requires a certain amount of symmetry in the game 

structure and posits Von-Neumann behaviour (VNM-rationality, VNM-utility).  We must 

naively assume the capabilities of all agents are approximately equal (at least in long-run 

expectation), thereby massaging the game into ~2PZSG* form. 

 Because the asset evolves forward in time and partial information feedback is 

present, we presume an ordering of moves.  Therefore, any simultaneous play is 

“accidental” and a normal-form specification would be inappropriate.  While extensive-

form is applicable, the problem suggests the use of succinct representations which are 

updated at each time-step.  With no explicit move ordering given, we may assume two 

scenarios:  (i) the asset manager has at his disposal the “first-move” in which a starting state 

can be specified and decided, and (ii.) the adversary decides the initial state of the problem.  

Since the initial design of the asset is very likely to be stipulated in advance, the base game 

is assumed to commence with the asset manager having already made the “zeroth move”.  

Ideally, we would seek methods for a rapid analysis from any/all start state(s) to any/all 

end state(s). 
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 In the next chapter, we detail a working model and provide algorithms for this entire 

problem.  In the Appendices, we provide several engineering-related examples.  These 

examples illustrate the process of problem formulation and analysis using the 

aforementioned methods. 

3.4.3 Preliminary Analysis 

 The ~2PZSG* class efficiently models the generalized asset integrity problem.  

These “succinct integrity games” can be analyzed by taking the limits of the game structure.  

This can be done with respect to several properties including the robustness, stability, and 

adaptability concepts outlined in section 3.3.4.   

For this purpose, one may consider the adversarial index γ, which represents the 

degree of non-cooperation in the actions of the opponent and/or environment.  This 

parameter expresses the qualitative risk(s) of deviating from equilibrium play in lieu of 

incomplete beliefs, irrational behaviour, model deterioration, mistake probabilities, and/or 

errors incurred by computational and/or analytical limitations.  By deviation risk we mean 

the product of the frequency and intensity of deviations from nondeterministic best-

response behaviour (optimality conditions).  By itself, γ captures the environmental 

severity, look-ahead, and overall competitive intelligence.  For small values of γ, the 

environment is naive and harsh, while for large values it is adversarial or hostile.  

Alternatively, 1 γ⁄  can be thought of as a measure of random move generation on behalf of 

the environment. 
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The payoff perturbation threshold ϵ𝑝𝑎𝑦𝑜𝑓𝑓𝑠,𝑚𝑎𝑥, expresses an asymptotic upper 

bound in the magnitude of one-stage deviations to the payoff functions.  For simplicity we 

will write ϵ = ϵ𝑝𝑎𝑦𝑜𝑓𝑓𝑠,𝑚𝑎𝑥 and let 𝑢𝑘 be some payoff function which maps state-

transitions to utility values.  Let (𝑣𝑠, 𝑣𝑡)denote a transition as a source-destination pair of 

states.  Then the resulting map 𝑢𝑘:(𝑣𝑠, 𝑣𝑡) gives the integrity score awarded immediately 

after transitioning from integrity level 𝑣𝑠 to 𝑣𝑡 at the end of time step 𝑘. The perturbation 

threshold 𝜖 therefore sets the absolute minimum and maximum one-stage payoff deviation 

limits. So for 𝑢𝑘+1 :(𝑣𝑠, 𝑣𝑡), we have 𝑢𝑘 − 𝜖 ≤ 𝑢𝑘+1 ≤ 𝑢𝑘 + 𝜖. 

The average signal-to-noise ratio 𝐷𝑠𝑛 = 𝜇𝑢𝜇𝜖, expresses the degree of 

pronunciation and discernibility in the average payoffs 𝜇𝑢 with respect to the average 

perturbations in payoffs 𝜇𝜖.  When perturbation thresholds exceed payoffs, there is very 

little controllability over game outcomes and the effects of the adversarial index are 

reduced.  When perturbations vanish, the payoffs remain effectively fixed and the 

adversarial index dominates any decision making.  Thus 𝐷𝑠𝑛 affects the long-run sensitivity 

of the base game 𝛤to changes in 𝛾 and 𝜖.  We note that 𝐷𝑠𝑛 drives the interval limits of 

dynamic range for perturbed games: ~Γ𝑚𝑖𝑛(𝐷𝑠𝑛) ≤ ~Γ(𝑢, γ, ϵ) ≤ ~Γ𝑚𝑎𝑥(𝐷𝑠𝑛). 

Variability in these game parameters entices an examination of several limit cases.  For a 

brief analysis, we consider the succinct integrity game structure ~Γ(𝑢, γ, ϵ), and supply it 

with four boundary scenarios. 
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3.4.3.1 Scenario 1:  𝛄 → 𝟎,
𝛜

𝒖
→ 𝟎 

 In this scenario there is a total lack of competition.  Additionally, the effects of 

payoff changes are vanishingly small.  The only integrity antagonists are the naive effects 

of a stochastic environment.  This situation allows for a direct stochastic optimization.  

Depending on the context, the objective is to find the minimum or maximum of some 

function of the payoffs 𝑢, subject to interval constraints.  Without adversarial resistance or 

payoff perturbations, VNM-behaviour on the part of the asset manager is trivial to maintain.  

This VNM-behaviour as a criterion, is akin to recognizing that many versions of this 

problem are frequently treated (or posed) in a manner that are convex [Schoenebeck and 

Vadhan, 2006].   

At each time interval, the asset manager selects the action which offers the highest 

long-run (possibly discounted) expected payoff in the base game. This process continues 

indefinitely or until termination criteria are met. 

3.4.3.2 Scenario 2:  𝛄 → 𝟎,
𝛜

𝒖
→ ∞ 

 This scenario arises when the process of integrity degradations emanates from non-

competitive sources.  However, in this case the effects of noisy payoffs are made 

appreciably large.  The problem statement emphasizes that for large perturbations, any 

filtering or learning of the payoffs cannot be accomplished within a finite horizon setting.  

Under these conditions, the signal-to-noise ratio approaches zero, and there is no control 

over the payoff structure.  Any strategic consistency is based on random play (the ability 



76 

 

to conjunction form of true random play).  In this scenario, the net costs of integrity 

restorations will be essentially random.  The asset will generate a long-run utility as a 

function of the stochastically realized state-transition sequence. 

3.4.3.3 Scenario 3:  𝜸 → 𝟏,
𝝐

𝒖
→ 𝟎 

 In this limit case, the adversarial index tends towards one while simultaneously 

maintaining a maximal signal-to-noise ratio.  The asset integrity score is actively denied 

under perfect competition from an intelligent opponent.  With vanishingly small noise 

effects, the situation becomes one of deterministic 2PZSG dynamics.  A suitable Nash 

equilibrium, minimax trajectory, or principal variation will always exist.  If each player is 

guaranteed to: (i.) play perfectly (in a deterministic sense), (ii.) possesses equal and 

opposite beliefs, actions, and utility payoffs (i.e. complete game symmetry), then this 

solution concept forms what is essentially a “nemesis contract” between players. 

3.4.3.4 Scenario 4:  𝛄 → 𝟏,
𝛜

𝒖
→ ∞ 

 Here, the adversarial index approaches one while the magnitude of the perturbations 

greatly exceed the payoffs.  The environment again consists of intelligent adversaries.  

These antagonists compete with the asset manager to deny any long run expected utility 

generated by the asset.  This process is manifested by an opposition to any accumulation 

of the integrity score.  However, the presence of uncontrollably large noise effects ensure 

the state-transition sequences will be realized non-deterministically.  Since learning the 

generating distribution for the noise effects is strictly unreliable, both players are again 
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forced to play a kind of the sequential best-response equilibrium.  The resulting game 

dynamics involve piecewise strategy reformulations through ongoing replanning and 

adaptation at each round, or when applicable (e.g. viz change-detection).  This situation 

results in sequential re-evaluations of the expected minimax trajectory or principal 

variation.  When adaptive techniques and/or learning routines are available, convergence 

to some initially unknown generating function of the perturbations may be possible.  In this 

case, the asset manager may form a set of beliefs which affect trajectory assessments.  

These are based on estimates of the historical, current, and future integrity states.  Based 

on the proximity to termination criteria (such as failure risks or resource expenditures), the 

asset manager will prescribe an immediate action with concern for short-term survival and 

long-run security.  In this scenario, the net costs of integrity restorations will be essentially 

random.  The asset will generate a long-run utility as a function of the stochastically realized 

state-transition sequence. 
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3.5 Conspectus 

 This chapter presented a self-contained review of several game-theoretic concepts.  

A brief summary of the background, context, and terminology was provided in order to 

relate game-theory to the theory of control and general dynamical systems.  An ontogenesis 

and classification of various game studies was undertaken in order to demonstrate a 

thorough literature review of the subject matter.  This chapter emphasized two major game 

structures, namely a base game and a perturbed game.  For each game type, the overall 

structure and its representation were discussed.  An outline for the normal-form, extensive-

form, and succinct-form game specifications was coupled with definitions of pure, mixed, 

and behavioural strategies.   

 Several solution concepts and major theorems were also reviewed.  These were 

limited to the Nash Equilibrium, Subgame Perfect Equilibrium, Kuhn's Theorem, as well 

as the minimax theorem.  A methodology for approximating general game types through a 

conservative transformation to a two player game was also provided.  Emphasis was placed 

on Von Neumann rational behaviour and utility.  For the perturbed game, the extensive-

form trembling-hand equilibrium was defined.  The importance of robustness, stability, and 

adaptability concepts were also discussed.   

 Finally, the chapter concluded with a scenario formulated as a succinct integrity 

game.  In this more appropriate game description, an asset manager seeks to optimize the 

integrity score of a (generalized) asset.  Several modelling parameters were introduced, and 

a qualitative analysis of the limit cases was provided.  This chapter abridges much of the 



79 

 

theoretical foundations for the remaining work, which concentrates almost exclusively on 

implementation details and practical applications. 
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4 ARCHITECTURE AND IMPLEMENTATION 

  

Generalized asset governance can be developed into working architectures for 

autonomous planning.  Successful implementations should prescribe a sequence of actions 

which optimize the utility generated by the asset.  For generalized assets, domain-oblivious 

reward concepts advocate the need for payoff structures evaluated from graph fitness 

indicators and information similarity metrics.  This is a situation of dynamic performance 

optimization, which can be reformulated as a ~2PZSG* type game known as a succinct 

integrity game. 

 This chapter compiles the results from previous chapters into a Generalized Asset 

Integrity Game Engine (GAIGE).  At its core, the GAIGE executes a modified minimax 

search algorithm which exploits a generic problem structure.  Arguments from 

combinatorial symmetry, dynamic programming, sequential optimality, and backwards 

induction are used to establish a model transposition equivalence which returns minimax 

trajectories in linear time, 𝑂(𝑁).  This result constitutes an online, reactive planner which 

can be augmented in 𝑂(√𝑇) time through the use of nearline methods such as test drivers, 

sampling, and bandit algorithms.  The combination of online and nearline algorithms 

deliver a hybrid (heterogeneous), anytime evaluation procedure.  The GAIGE is shown to 

be capable of prescribing epsilon-approximate trembling-hand-perfect strategies.  A 

discussion on how to solve perturbed integrity games using the GAIGE is also presented.   
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 The GAIGE targets several objectives and requirements at both the architectural 

and algorithmic levels. The remainder of this chapter addresses the development, operation 

and performance of a GAIGE implementation.  Prototypical use-cases are also tested and 

benchmarked. 
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4.1 Objectives and Requirements 

 Autonomous planning can be engineered to meet design goals, objectives, 

requirements, specifications, and constraints.  These stipulations manifest themselves at 

multiple scales.  A separation of concerns establishes two primary layers of abstraction, (i.) 

the architecture, and (ii.) the algorithmic implementation.  The former specifies the overall 

framework and organization of the process, while the later details a particular realization 

or construction. 

 The literature on artificial intelligence, search, and planning systems provides a 

basis for the development of guidelines and expectations.  However, the vast majority of 

technological engagements draw from the theme of (optimal) policy and stochastic control 

[Kaelbling et al., 1998].  At the time of this writing, the notions of generalized assets, their 

(integrity) governance, and general game playing agents are still emerging [Genesereth et 

al., 2005], [Kiekintveld 2008], [Finnsson and Bjornsson, 2010].  Unfortunately, adoption 

levels within the physical and industrial asset integrity communities have so far remained 

low.  Nonetheless, many of these emerging research areas have active annual workshops 

and related journals.  For example, the General Intelligence in Game-Playing Agents 

(GIGA) proceedings, or the Ontology Modeling in Physical Asset Integrity Management 

publications of [Ebrahimipour and Yacout, 2015].  This section anticipates their eventual 

usage in the field of (physical or industrial) asset integrity management, and elucidates a 

set of desirable characteristics.  The proposed requirements emphasize solutions which 

offer the greatest range of application for the lowest overall complexity.  
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4.1.1 Architectural Requirements 

 Performing autonomous planning typically mandates high-performance 

architecture. The minimum capabilities vary according to the objectives.  With respect to 

generalized asset integrity games, the primary objectives are to prescribe strategies and 

support efficient gameplay. Architecturally, this requires at least some degree of 

modularity, along with the integration of numerous components (c.f. massively modular 

and parallel distributed processor architectures, which are both instances of reasoning over 

graphs). For succinct integrity games, it is enough to require a three-phase architecture 

consisting of monitoring, evaluation, and prescription stages. 

 In keeping with the impetus of this thesis, we tread through several architectural 

requirements and summarize their practical benefits. Table 4.1 presents a simple three-

phase planning architecture. Table 4.2 offers a high-level summary of the semantic and 

non-functional requirements for such architecture. 
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Table 4.1.  A three-phase architecture with sub-components for autonomous planning 

Phase Modular Components, Tasks and Responsibilities Stage 

 

 

 

Monitoring 

Sensory Activation and Acquisition. 1 

Signal Pre-processing, filtering, conditioning. 2 

Production of raw input stream. 3 

 

 

 

Evaluation 

Generate Live/Active Asset Configuration 4 

Query Reference Configurations 5 

Evaluate Integrity Scores 6 

Perform Minimax Transposition Search 7 

Produce Minimax Tableau 8 

Yield trajectories/strategies 9 

 

 

Prescription 

Query offline knowledge oracle (deliberation base) 10 

Estimate Deviation Risks and Stability Beliefs 11 

Formulate and Select Actions 12 

Output Prescription Results to Effectors/Actuators 13 

Repeat Return/Retrieve Monitoring Data 14 → 1 
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Table 4.2.  Semantic and Non-Functional Architectural Requirements 

 

Requirement 

 

Type 

 

Description 

 

Benefits 

 

Domain-

Oblivious 

 

Semantic 

Does not discriminate based on 

asset class, prior knowledge, or 

information context. 

Remains valid across multiple 

scopes and domains. 

 

 

Platform-

Agnostic 

 

Semantic 

Does not depend on any specific 

computational setting or 

hardware environment. 

Improves ease of deployment. 

Portable across machinery types. 

 

 

 

Model-Driven 

 

 

 

Semantic 

 

Driven by direct model contact, 

embedded descriptions, and 

structural configurations. 

Reduces dependence on big data 

aggregations. 

Avoids data-centric processes 

and large throughput operations. 

Simplifies analytics, reduces 

overhead and latency. 

 

Non-Brittle 

 

Non-

Functional 

Does not require retrofitting 

across projects.  Minimal 

parametric tuning. 

Reduces engineering rework and 

redevelopment. 

 

Graceful 

Degradation 

 

Non-

Functional 

Retains limited functionality, 

self-stabilizes, and is fault-

tolerant. 

Reduces external dependencies. 

Avoids or contains catastrophic 

failures. 

 

 

 

Scalable 

 

 

 

Non-

Functional 

Acceptable scaling laws.  

Latency, throughput, and 

robustness capabilities will not 

scale disproportionately with 

additional resources. 

Reduces the risks of scope drift. 

Predictable long-run 

management and life-cycle 

costs. 

Expands/contracts to suit future 

needs. 

 

 

Accessible 

 

 

Non-

Functional 

Interoperable and versatile use 

cases.   

Supports diverse user types and 

experience levels. 

Accommodates and empowers a 

range of potential users.  Lowers 

the barrier to entry.  Hastens 

learning curve. 

 

Transparent 

 

Non-

Functional 

Open to study, diagnose, test, 

modify, and customize. 

Accommodates variable skill 

levels, reverse engineering, and 

more advanced usage. 
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 Additionally, several functional requirements are prevalent for each of the major 

architectural components.  Assuming a three-phase approach to planning, these 

components can be monitoring, evaluation or prescription based.  Each architectural 

component is subject to several well-defined, technical capabilities.  The demands placed 

on automated planning architectures vary greatly [Ghallab et al., 2004].  We follow a set of 

functional demands from a predominantly non-parametric, non-Bayesian paradigm. We 

term this approach hypermodern.  The hypermodern requirements somewhat juxtapose the 

more classical demands found in the probabilistic setting, from which are associated the 

Markovian and Bayesian decision agents. 

 The inherent prevalence of Bayesian approaches (with respect to multi-agent 

decision making) have led to the consideration of cognitive, behavioural, and non-Bayesian 

revision or rule-update schemes.  In these non-Bayesian settings, agents may use simple 

rules such as linear or convex combinations of information.  Results derived directly from 

Bayesian and other probabilistic approaches are considered robust when the number of 

possible outcomes is finite, and the number of marginals of the data-generating 

distribution(s) are unknown [Owhadi et al., 2015a].  However, Bayesian approaches are 

also known to be generically brittle.   In particular, any given prior and model can be 

slightly perturbed to achieve any desired posterior conclusions [Owhadi et al., 2015b].  The 

mechanisms causing shattering, brittleness and robustness suggest that Bayesian learning 

and robustness are antagonistic requirements, with a missing definitive notion of stability 

[Owhadi et al., 2013].   
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These issues raise concerns about the general applicability of Bayesian inference in 

a continuous world under finite transformations of an information structure.  A close 

inspection of many practical probabilistic decision agents (who implement the theorems of 

Bayes and Cox), suggests that these are in fact held together by non-Bayesian feedback 

loops.  These non-Bayesian feedback loops are typically associated with a performance 

evaluation of what is essentially Bayesian Inference.  In lieu of these interpretations, we 

avoid further complications by seeking non-Bayesian architectures.  One such alternative 

is the aforementioned hypermodern approach. 

 A concise overview of a hypermodern decision agent is that it is predominantly 

non-parametric.  In the probabilistic setting, the higher an agent's expectation of utility from 

an action, the higher the probability of choosing that action [Cao 2007].  Probabilistic 

agents typically form parametric beliefs about the world through progressive information 

gains.  These agents presuppose a coherent set of rules for the asset-environment behaviour.  

In the hypermodern setting, this preference structure either does not hold, or is not required.  

Emphasis is therefore placed on more ad hoc measurements, high-frequency updates, 

unordered beliefs, and action-selection rules which in general cannot be composed into 

“smooth” probability distributions.  The hypermodern agent scales well with access to high-

frequency, low-latency (HFLL) monitoring and control.  This is in contrast with the typical 

probabilistic agent, which tends to prefer low-frequency, high-throughput (LFHT) 

transactions.  Hypermodern agents also perform better in the face of context-switching 

environments [Cao 2007]. 
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 Table 4.3 establishes the functional requirements for a typical monitoring 

component within a three-phase planning architecture.  For our purposes, this monitoring 

is required to be pre-conditioned.  We also require a real-time or near-real-time reporting 

protocol, but do not impose a particular timing constraint, deadline, or penalty scheme.  The 

monitoring component must also support interactive online input streams from multiple 

sources.  The combination of these functional requirements, as well as the overall semantic 

and non-functional requirements of Table 4.2, lend themselves to a high-frequency low-

latency (HFLL) approach. 

 Table 4.4 proposes several requirements for the evaluation modules or components.  

For hypermodern decision agents, the predominant stipulation is that an evaluation of 

monitoring inputs possesses the anytime property.  An evaluation component is said to be 

anytime scalable if it is guaranteed to improve its solution quality (i.e. monotonic-

increasing in expectation) with additional (temporal) resources.  This entails the use so-

called anytime algorithms, which are reviewed in Section 4.1.3.6.  Architecturally, the 

evaluation component is tasked with offering a trade-off between solution quality and 

computational resources. Algorithmically, this can be accomplished in several ways, 

including roll-out style algorithms, or sampling-based improvement techniques [Silver and 

Veness, 2010], [Kocsis and Szepesvari, 2013].  Our choice of implementation is in line 

with meeting the set of hypermodern demands, which prefer to avoid sampling and 

parametrization during runtime.  The proposed evaluation component hybridizes both 

online and nearline evaluations to remain stable and robust.  Other methods for delivering 

anytime guarantees may come at the cost of being numerically unstable or weakly 
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approximate [Browne et al., 2012].  In a hybrid setup, the online evaluation returns secure 

results to the prescription component for the time-critical deployment of strategies.  

Meanwhile, an ongoing nearline (or offline) evaluation can be queried for less time/safety-

critical and more opportunistic results.  This combination of online and nearline (or offline) 

analytics augments the action-selection process by offloading a minimal amount of work 

to the prescription phase. 

 Table 4.5 outlines the functional requirements of a hypermodern prescription phase.  

The prescription component collects the outputs from the evaluation and produces a 

shortlist of the best available strategies along with the chosen alternative(s).  Potential 

trajectories are generated and may be recorded so as to inform and improve the offline 

evaluation component.  The prescription component is primarily responsible for accepting 

the evaluation results and implementing the corresponding control actions.  The currently 

prescribed action-plans, as well as summary data, may be presented through an external 

interface.  This requirement supports a human-in-the-loop (e.g. expert user) or meta-level 

AI.  The presentation of strategies and prescribed actions affords cognitive-level pattern 

recognition, process supervention, quality auditing, and governance oversight if necessary.  

This may be accomplished by way of visual displays, data visualizations, info-metrics, or 

standardized reports.  The architectural requirements emphasize that prescription occurs in 

near-real-time when external interrupts are not present. 
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Table 4.3.  Functional requirements for a hypermodern monitoring component within 

three-phase planning (action-selection) architecture. 

Monitoring 

Requirement 

Functional 

Description 

Technical 

Considerations 

 

 

 

 

Conditioned 

Inputs 

Accept a pre-processed, pre-filtered 

input stream from sensory data or 

model description feeds. 

 

Example: Clean and convert input 

signals.  Only inputs expressed as 

strings of positive-semi definite 

integers on the interval [0, 1010] will 

be accepted. 

Offers a separation of architectural concerns; 

upstream filtering vs. downstream processing, 

etc. 

Complex planning and decision making 

processes are isolated from the nuances of data 

gathering and synthesis. 

Input stream need not be noise-free but should 

be reasonably well-defined and bounded in 

some acceptable language/type. 

 

 

 

Real-Time 

Reporting 

Inputs must be delivered at a rate 

considered to be real-time or near-

real-time; with hard or soft 

deadlines/penalties for violation of 

these timing and reporting 

requirements. 

Example:  Sensory information is 

queried/polled, cleaned, and made 

available as input data every second 

while the asset is active. 

Supports live/active asset monitoring. 

Improves change-detection-rate. 

Quality of service decays with respect to 

deadline exceedance. 

Can create “information overload” scenarios.  

Does not necessarily increase the resolution of 

actionable knowledge. 

 

 

 

 

Online 

Pass-through 

 

As monitoring data is streamed in, it 

must be immediately passed through 

to the evaluation module to be 

operated on in an online (or nearline) 

manner. 

Example:  Inputs are revealed and 

processed sequentially without 

pooling them for batch processing. 

Captures dynamic activity and anomalous 

events near the source. 

Relays this information to the evaluation 

module with minimal overhead. 

Allows operations to be conducted in an 

online, nearline, or streamline manner. 

Avoids an offline analysis which requires an 

aggregate, batch, or larger queue/store for 

datasets. 

 

 

Interactive 

Asset-

Environment 

Monitoring must support interactive 

inputs. 

Example:  An input sequence is 

periodically injected with data owing 

to some potentially interactive 

transactions, or commands as a 

result of some output process. 

 

Allows for slipstream activity. Captures out-

of-order causality. 

An interactive input stream may be related to 

any number of previous input streams, as well 

as to the relationship between them. 

Interactive sequences are difficult to predict 

and often require speculation-free monitoring, 

evaluation, and prescription. 
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Table 4.4.  Functional requirements consistent with a hypermodern evaluation 

component within a three-phase planning (action-selection) architecture. 

Evaluation 

Requirement 

Functional Description Technical 

Considerations 

 

Anytime Performance 

Scaling 

 

 

 

 

 

The evaluation 

component can be 

queried at anytime, 

returning the best-

known solutions or 

results. 

 

Evaluation module(s) progressively enhance 

solutions.  Algorithms do not require specifying 

the resources for completion (non-contract). 

 

RTO Analysis Performs evaluation in a 

real-time online sense. 

Produces a real-time online (RTO) analysis, and 

supplies the prescription component with 

immediately available online-calibre results.  

These results are reactive but safe/secure. 

DD Analysis Augments RTO 

evaluations through a 

deep nearline or offline 

deliberation.   

Conducts a deep-deliberation (DD), in a nearline 

or offline sense, and supplies the prescription 

component with delayed results.  These results are 

more adaptive, predictive and opportunistic. 

 

Competitive 

Evaluations 

 

 

The ratio of online to 

offline analysis 

(competitive ratio) is 

bounded. 

 

The evaluation procedure does not “know” the 

entire set of inputs (including future inputs), but 

can nonetheless implement an effective evaluation. 

 

 

 

 

  



92 

 

Table 4.5.  Functional requirements for a hypermodern prescription component 

within a three-phase planning (action-selection) architecture. 

Prescription 

Requirement 

Functional Description Technical 

Considerations 

 

Strategy Profiling and 

Decision Ranking 

 

 

Takes as input the 

results/solutions from 

the evaluation 

components and 

compiles a set of 

strategies (and strategy 

profiles). 

Yields a set of top-ranked candidate state-transition 

trajectories. 

 

Isolates the pre-requisite resources and action 

sequences to achieve optimal asset 

behaviour/operation. 

 

Plan Generation and 

Action-Selection 

Formulates an optimal* 

plan.  Prescribes the 

sequence of actions 

leading to desired 

goals/state(s). 

Selects the most appropriate state-transition 

trajectory. 

* = optimal w.r.t criteria/definitions. 

Outputs the single best-response move/actions as 

well as the expected trajectory for the asset. 

Control and 

Effectuation 

Sends a control signal or 

policy revision protocol 

to actuators and/or 

affectors. 

Cyber-physically implements a realization of the 

move, action, or desired state-transition. 

 

Ongoing/Active 

Reporting 

 

Produces as output a 

summary of the active 

decision-making 

process. 

Outputs should display an active summary of 

relevant information in a human-interpretable 

form.  E.g. Summary Reports, Tabular, Charts, 

Visual displays, etc. 

 

I/O Interfacing 

 

 

Provides users with 

access to input/output 

options and 

configurable parameters 

(if applicable). 

Allows expert supervision, advanced tuning, 

auditing and diagnostics. 
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4.1.2 Algorithmic Requirements 

 The implementation of an architecture for generalized asset integrity planning 

necessitates the use of computational resources.  In a three-phase architecture, each 

component may require the deployment of its own computational procedures.  The 

suitability of an algorithm will vary by task; whether it is for monitoring and pre-

conditioning the input streams, evaluating strategies and solving succinct integrity games, 

selecting and implementing control actions, or visually presenting the results to the user.  

Each of the monitoring, evaluation, and prescription components can be computationally 

intensive, challenging to implement and sensitive to design choices [Sleight and Durfee, 

2013].   

 In keeping with the impetus, we narrow our discussion to the key evaluation 

components within a three-phase planning architecture.  The conditioning of 

inputs/outputs, pre/post processing, and dataflow to/from the non-evaluation components 

are considered negligible.  These are relatively straightforward tasks representing the 

interface between the evaluation component(s) and the monitoring or prescription phases. 

For our purposes, we define an evaluation component to consist of three (3) major 

algorithmic tasks: 

 1.) Estimate the state-transition costs. 

 2.) Directly solve the base game. 

 3.) Attempt to improve solutions to the perturbed integrity game. 
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These tasks are listed by order of precedence.  They are ongoing in the sense that they must 

be performed at each iteration or when signaled that a change in the asset is detected.   

In (1), we seek algorithms which evaluate the integrity score of the asset relative to 

a pre-computed set of reference configurations (integrity states).  For each integrity state or 

idealized reference configuration, a complex function may need to be evaluated.  This 

function scores the fitness-level of the asset based on model dependability metrics and uses 

the normalized compression distance to ascertain the relative similarity to each of the states.  

Repeating this process for each integrity state will populate an array which expresses the 

estimated integrity score for each potential state-transition.  This array contains the integrity 

scores or state-transition costs, and constitutes the payoff structure for the base game. 

 In (2), we seek algorithms which are calibrated towards efficiently solving a class 

of succinct integrity games.  Hypermodern decision agents demand high-frequency, low-

latency information updates.  As such, this portion of the “game solver” should be 

compatible with real-time online constraints.  Algorithms which directly solve the base 

game are required to be deterministic.  They must report the principal variation as a pure 

or mixed strategy Nash Equilibria up to some fixed evaluation depth.  For a two-player 

succinct integrity game, this process corresponds to returning the set of all minimax state-

transition trajectories. 

 In (3), we invoke the anytime requirements, and seek algorithms which iteratively 

improve solutions to the perturbed integrity game. No additional algorithmic requirements 

are imposed, although it would seem that a deep, nearline or offline search of the state space 

is the most appropriate.  In the deliberation setting, it becomes more feasible to attempt a 
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proper learning of the generator functions for the stochastic noise and other perturbative 

effects.  Table 4.6 postulates a set of desirable characteristics and acceptable computational 

specifications.  Taken together, these circumstances influence the choice of deployed 

algorithms. 

 

Table 4.6. Algorithmic Modules for Integrity Game Solvers under Hypermodern 

Evaluation Demands. 

Algorithmic 

Configuration 

Working 

Description 

Functional 

Requirements 

Complexity 

Requirements 

Integrity Score Evaluation of a cost 

function. 

Estimates the integrity 

scores between state-

transitions. 

Yields a payoff matrix (input 

array) within 𝑂(𝑁 𝑙𝑜𝑔𝑁) using 

standard compression (NCD) 

techniques. 

Online 

Evaluation 

RTO solver for 

Baseline Integrity 

Games. 

Computes all minimax 

trajectories. 

Solves the base integrity game 

(2PZSG) in 𝑂(𝑁) time. 

Nearline 

or 

Offline 

Evaluation 

DDO solver for the 

Perturbed Integrity 

Games. 

Computes long-run 

stable strategies and/or 

learns complex noise 

generating functions. 

Yields an epsilon-approximate 

globally optimal principal 

variation in up to 𝑂(𝑁2)time, 

with 𝑂(𝑁 𝑙𝑜𝑔𝑁) being ideal. 
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4.1.3 Supplemental Notions 

4.1.3.1 Automated Planning 

 Automated planning is a branch of artificial intelligence which conducts the 

algorithmic search for strategies and actions.  The solutions to automated planning 

problems are often more complex than classical control and classification problems.  This 

is due to the multi-dimensional and highly dynamic problem structure.  Planning problems 

contend with multiple intelligent agents, each interacting competitively or cooperatively, 

reporting fuzzy beliefs, non-transitive preferences, and chaotic knowledge about the 

environment.  The automated search for plans, strategies, or action sequences is performed 

through algorithms which explore the state and/or configuration space of the system.  This 

is accomplished through either a direct traversal towards a goal, and/or indirect sampling 

to synthesize admissible and thereafter optimal solutions. 

4.1.3.2 Real-Time Online Algorithms 

 Real-Time Online (RTO) algorithms are subject to both real-time and online 

requirements.  Real-time conditions must guarantee a response within strict time 

constraints, often referred to as deadlines.  For “hard” real-time constraints, violation of 

deadlines leads to system failure.  For “soft” real-time constraints, violations are tolerated 

as progressively-critical faults which degrade the quality of service but may nonetheless 

allow for recovery.  For complex asset governance, deadline requirements may vary.  

Acceptable response times are typically in the order of several seconds.  In this context, 
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real-time planning algorithms will at any given time receive data, process them, and output 

results so as to affect the asset at near this time.  Online algorithms are restricted to a piece-

wise, subset handling of inputs.  This often implies a sequential realization of the problem.  

An online algorithm receives a sequence of requests and performs an immediate action in 

response to each request in kind.  Since they do not know all the given information at once, 

online algorithms are forced to make decisions that may turn out to be sub-optimal or even 

detrimental.  The study of real-time online (RTO) algorithms has focused on the quality of 

decision making that is possible under both real-time and online conditions.  In this setting, 

RTO planning is designed to work fast and abruptly, performing decision making after each 

input request, and producing well-formed responses within seconds. 

4.1.3.3 Offline Algorithms 

 Offline algorithms are given access to the entire range of inputs in advance.  An 

offline algorithm formulates a plan which by itself still represents taking an action in 

response to each request sequentially.  Unlike online algorithms, the choice of each action 

can be based on the entire sequence of requests.  An offline algorithm essentially knows 

the future and implements a zero-regret policy trajectory, navigating the state-space 

optimally. 

4.1.3.4 Performability of Online and Offline Algorithms 

 The most common approach to assessing the performability of RTO planning is to 

assume a specific stochastic model of the source of inputs, requests, event arrivals, state 
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realizations, etc.  Within such a model, an online algorithm may be considered optimal if it 

chooses its actions so as to minimize some cost functional.  Here, the cost depends on the 

sequence of requests generated by the stochastic source, and on the sequence of actions 

chosen by the online algorithm in response to those requests.  The choice of stochastic 

model hinges on data being readily available about the observed sequence history, and also 

requires faith that the future will resemble the past [Zilberstein, 1996].  For these reasons, 

stochastic input models may be rather limited for some forms of asset integrity planning.  

Rather inappropriately, much of the theory of stochastic control, risk-based scheduling, and 

performance analysis is based on this approach [Borodin and El-Yaniv, 2005].  One 

alternative to stochastic models is a worst-case approach inspired by minimax regret and 

stochastic game theory.  Here, the optimality of an online algorithm is evaluated by 

contrasting its cost with that of an optimal offline algorithm processing the same sequence 

of requests.  In literature, this is known as the competitive ratio. 

4.1.3.5 The Competitive Ratio 

 The competitive ratio is defined as the maximum, over all possible input sequences, 

of the ratio between the cost incurred by the online algorithm and the cost incurred by the 

optimal offline algorithm [Borodin and El-Yaniv, 2005].  In this model, an optimal online 

algorithm is one whose competitive ratio is a minimum.  The main virtue of the competitive 

ratio approach is that it avoids commitment to a particular stochastic input model.  

However, the approach is pessimistic and essentially assumes the request sequence is 

chosen by an all-knowing (offline) adversary.  In practice, one seeks RTO algorithms which 
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perform well on typical request sequences while maintaining a small competitive ratio.  

This balance can often be achieved through anytime algorithms, which hybridize both the 

online and offline settings. 

4.1.3.6 Anytime Algorithms 

 Anytime algorithms constitute a class of search techniques which provide 

automated planning suitable for stochastic learning and the performance optimization of 

complex assets.  These algorithms hybridize aspects of real-time online fast-response with 

offline deep-calculation and future-proof deliberation.  An anytime algorithm can return a 

valid, admissible solution to a problem even if it is interrupted prematurely.  Anytime 

planning algorithms find and report incrementally better solutions as additional 

computational resources are provided.  In general, one assumes monotonically increasing 

results [Zilberstein, 1996].  As the time to perform the algorithmic search increases, the 

quality of the plan is expected to approach optimality.  This is in contrast to contract 

algorithms, which take as input some fixed amount of computation, run to completion, and 

provide a single best answer.  Contract algorithms guarantee a correct output only after 

proper termination, with no guarantees on intermediate results.  When interrupted before 

finding a global optimum, anytime algorithms will return partial, best-known approximate 

solutions. Anytime algorithms therefore scale with any allocation of computational 

resource. 
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4.1.3.7 Anytime Performance 

 Anytime performance is typically evaluated through the use of competitive ratios 

and performance profiles [Borodin and El-Yaniv, 2005].  A performance profile estimates 

the quality of results based on the input and the amount of time that is allotted to the 

algorithm.  It is a mapping of time to the quality of expected results.  The probability of a 

result being correct (certainty), the error bounds (accuracy), and the amount of 

discrimination between other results (specificity), each contribute to the quality.  The 

competitive ratio, which measures the degree to which an online algorithm approaches the 

performance of an offline algorithm, is also used.  When both these techniques are 

combined, the performance of an anytime algorithm can be monitored and potentially 

controlled by solving some meta-level computational resource allocation problem.  For 

additional details on managing the stopping times of multiple anytime algorithms, see for 

example the works of [Zilberstein, 1996], and [Borodin and El-Yaniv, 2005]. 

4.1.3.8 Desirable Anytime Characteristics 

 In terms of asset integrity, the techniques for automated planning, performance 

optimization, and algorithmic search are inter-related.  Anytime conditions have been 

applied to several families of algorithms [Thayer and Wheeler, 2010].  These include: 

numerical optimization (e.g. gradient descent, hill-climbing), heuristic search (e.g. tabu 

search, particle swarm), nondeterministic algorithms (e.g. Monte Carlo and genetic 

perturbation methods), probabilistic inference (e.g. Deep Belief Networks inspired from 

Bayes, Markov, Boltzmann, ANN), combinatorial search (graph coloring), and discrete 
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symbolic processing (string matching).  Applying anytime constraints may alter the 

algorithmic implementation of the numerical method, particularly if it is inherently 

sequential, embarrassingly parallel, or fundamentally offline.  This can potentially lead to 

program code which is more ad-hoc, difficult to deploy, and/or harder to maintain. 

 Irrespective of the implementation, there exist several characteristics which are 

considered desirable, if not required, for a legitimate anytime planning algorithm 

[Zilberstein, 1996].  A summary of these characteristics includes: 

1. Interruptible:  The algorithm can be stopped at any-time and provide some answer. 

2. Pre-emptive:  The algorithm can be suspended and resumed with minimal overhead. 

3. Monotonic:  The quality of the best-known and returnable result is a non-decreasing 

function of the computation time. 

4. Measurable quality:  The quality of an approximate result can be determined 

approximately, often at runtime. 

5. Nondeterministic Consistency:  For a given input, the quality of the result with respect 

to computation time is approximately the same each time. 

6. Diminishing Returns:  The improvement in solution quality is the largest at the early 

stages of computation, and the improvement diminishes over time. 

7. Completeness:  Given infinite resources, for any inputs, the globally optimal solutions 

should be found, or reported that they do not exist. 

In addition, requirements usually specify a strong competitive ratio, hard or soft real-

time constraints, tailored performance profiles, and bounds on the overall computational 

complexity. 
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4.2 The Game Engine 

 The Generalized Asset Integrity Game Engine (GAIGE) is a game-playing agent 

for the rapid generation of decision sequences.  In its prototypical form, it aims to 

implement a basic anytime search over the state-space of possible move orderings, 

returning the most promising strategies and formulating integrity plans guided by game-

theoretic optimality criteria (i.e. equilibrium corridors). 

 

4.2.1 Scope 

 The GAIGE uses the architectural and algorithmic guidelines of Section 4.1 for 

autonomous planning and governance.  These are conservative by design, emphasizing 

several of the robustness and stability concepts of Chapter 3.  High performance decision-

making is sought in the face of adversarial dynamics, hostile environments, and anytime 

preemptive feedback.  This entails a time-sequential, dynamic optimization of a complex 

evaluation function (the integrity score) based on the principles of Chapter 2.  Hyper-

modern demands are imposed, signifying a requirement that solutions avoid over-fitting 

and scale well (low-latency, high-throughput) across domain types, sizes, and uncertainty 

regimes. 

 These requirements emphasize numerical solutions which are “easy to implement”, 

and in general, tolerant of forced modelling errors (i.e. when strong uncertainty reduction 

is infeasible).  This leads to the anticipation of low complexity anytime algorithms with 

(competitive) asymptotic performance guarantees.  The prototypical GAIGE utilizes an 
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anytime search procedure for plan generation.  This yields a prescription of reactive 

strategies which secure the immediate survival of the asset (in a deterministic and myopic 

sense).  Given additional resources, the GAIGE explores strategies which are increasingly 

adapted to the perturbations. 

 

4.2.2 Minimax Transposition Search (MTS) 

 In their basic form, minimax algorithms return principal variations and constitute 

a type of adversarial search procedure.  For many games, (principal) variations can be 

thought of as (the best and/or most likely) lines of play.  Principal variations represent the 

expected path(s) of traversal, such as move-orderings for decision-trees or vertex-cycles in 

graphs. 

 Seeking principal variations rapidly and robustly is crucial if one is trying to 

elaborate plans within adversarial environments.  The search routines for many high-

performance game engines typically involve some form of minimax search (e.g. Chess and 

Go).  Minimax is typically employed in 2-player finite discrete sequential games (i.e. 

combinatorial games).  Variants of the basic minimax process have been developed to 

exploit problem-specific features, taking advantage of special structure and providing 

accelerated results.  Standard enhancements include alpha-beta pruning (e.g. negascout), 

moving-window searches with test-drivers (e.g. MTD-f), iterative deepening and 

quiescence (i.e. intelligent fan-out), as well as number-theoretic exploits (e.g. magic and 

conspiracy numbers), [ChessProgramming.com Wiki pages, 2015].  In more complex 
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games, search procedures may include contributions from fictitious and/or randomized 

play, pattern matching, opening books, advanced rulesets, and endgame databases. 

 The primary goal of minimax enhancements is to reduce the amount of 

computational effort required to return principal variations.  Several of the aforementioned 

approaches can reduce the worst-case running time of 𝑂(𝑘𝑡), where k is the average 

branching factor, and t is the search depth.  In the GAIGE, the principal variations are 

equivalent to the minimax trajectories through the game dynamical system.  These paths 

also represent elements of a set of “stable” oscillations for an ergodic family of systems 

under 2PZSG dynamics.  Therefore, enumerating the elements of such a set is equivalent 

to returning all the minimax principal variations. 

 Minimax Transposition Search (MTS) is the search procedure used to solve the 

repeated base game component of the GAIGE.  MTS is a search procedure which proceeds 

via backward induction from a finite stopping horizon (fixed search depth).  It is inspired 

by dynamic programming and the principal of optimality first proposed by Bellman (c.f. 

optimal substructure, [Bellman, 1957]).  The MTS algorithm acknowledges the inherent 

symmetry and substructure present in the succinct-form base integrity game.  This 

manifests itself in several ways.  First, since all k actions are potentially available to either 

player at any time-step, the search admits a constant branching factor.  This branching is 

bounded by some fixed branching rate k, supporting a simplified decomposition and 

traversal.  Second, we note that every state-transition reward/cost is fixed throughout all 

time-steps.  Informally, this leads to a realization that after a finite number of state-
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transitions, one will be revisiting a particular reward state (as the same player to move and 

minimax).  This repetition of previously visited states through different permutations of a 

move ordering is known as a transposition.  The MTS algorithm works by exploiting the 

symmetry and invariance of information, actions, payoffs, and state-transitions.  By making 

use of a special substructure whereby “everything is eventually a transposition”, the MTS 

is able to return all principal variations in both linear time and space. 

 Figure 4.1 presents the MTS algorithm in its entirety, with comments and 

pseudocode adapted from a prototypical GAIGE implemented in the Python (version 2.79) 

programming language.  The program code was developed solely by the author as part of 

the thesis work, with references to the work of Bubek et Al. for the Bandit algorithms 

component. 
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Figure 4.1. The Minimax Transposition Search (MTS) algorithm as implemented in 

the GAIGE. 

Algorithm MTS (page 1). 

1 Initialization with inputs N, T. 
 
aPayoffs ← {𝑎11,𝑎12,. . . , 𝑎𝑖𝑗}; 

aCS ← {0}𝑁;  aMinCS ← {0}𝑁;  aMaxCS ← {0}𝑁; 

Initialize the set of 𝑁2 
actions (state transition 
payoffs).  Also initialize 
arrays for cumulative sums, 
and their min and max. 

2 for  t = 0, ..., T  do For each of the T rounds. 

3    x ← 0;   
   aMulti ← 0;   
   aLineOut ← {“Depth %s Min – Path [“ % (t+1)}; 
 

Initialize location index, 
transposition count, and 
set line outputs for the min 
player. 

4    for  j = 0, ..., N  do For each of the N sources 
(jth row). 

5       aMinX ← -1;  aMin ← ∞; Initialize location/bounds. 

6          for  i = 0, ..., N  do For each of the N 
destinations (ith col). 

7             if  aMin >= aCS[i] + aPayoffs[x]:            Check for a new minimum. 

8                if  aMin == aCS[i] + aPayoffs[x]: 
                     aMulti ← aMulti + 1; 
 

Check for multiple paths 
leading to same cumulative 
payoffs (transpositions). 

9                else 
                  aMulti ← 1;   
                  aMin ← aCS[i] + aPayoffs[x]; 
                  aMinX ← {i}; 

Update the location of the 
minimum cumulative sum 
and its value. 

10             x ← x + 1; 
          

Increment the location 
index. 

11          end for Exit the i loop. 

12          aLineOut ← aLineOut + {“%s” % aMinX}; 
         if aMulti > 1:  aLineOut ← aLineOut + {“*%s” % aMulti}; 
         aLineOut ← aLineOut + {“,  “}; 

Format and store the line 
outputs. 

13          aMinCS[j]  ←  aMin; Update the minimum 
cumulative sum. 

14    end for  Exit the j loop. 
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Algorithm MTS (page 2). 

15    aLineOut ← aLineOut + {“] Sum of Payoffs [”}; 
   for  q = 0, ..., size(aMinCS)  do 
      aLineOut ← aLineOut + {“%s, ” % aMinCS[q]}; 
   end for 

Format the line outputs to 
show the accumulated 
payoffs up to the current 
depth. 

16    output  flush(aLineOut, “print()”) Flush line outputs to the 
screen and/or store in logs. 

17    x ← 0;   
   aMulti ← 0;   
   aLineOut ← {“Depth %s Max – Path [“ % (t+1)}; 
 

Reset location index, 
transposition count, and 
set line outputs for the max 
player. 

18    for  j = 0, ..., N  do For each of the N sources 
(jth row). 

19       aMaxX ← 𝑁;  aMax ← 0; Initialize location/bounds. 

20          for  i = 0,...,N  do For each of the N 
destinations (ith col). 

21             if  aMax <= aMinCS[i] + aPayoffs[x]:            Check for a new maximum. 

22                if  aMax == aMinCS[i] + aPayoffs[x]: 
                     aMulti ← aMulti + 1; 
 

Check for multiple paths 
leading to same cumulative 
payoffs (transpositions). 

23                else 
                  aMulti ← 1;   
                  aMax ← aMinCS[i] + aPayoffs[x]; 
                  aMaxX ← {i}; 

Update the location of the 
maximum cumulative sum 
and its value. 

24              x ← x + 1; 
          

Increment the location 
index. 

25          end for Exit the i loop. 

26          aLineOut ← aLineOut + {“%s” % aMaxX}; 
         if aMulti > 1:  aLineOut ← aLineOut + {“*%s” % aMulti}; 
         aLineOut ← aLineOut + {“,  “}; 

Format and store the line 
outputs. 

27          aCS[j]  ←  aMax; Update the cumulative sum 
with the new maximum. 

28    end for  Exit the j loop. 
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Algorithm MTS (page 3). 

29    aLineOut ← aLineOut + {“] Sum of Payoffs [”}; 
   for  q = 0, ..., size(aCS)  do 
      aLineOut ← aLineOut + {“%s, ” % aCS[q]}; 
   end for 

Format the line outputs to 
show the accumulated 
payoffs up to the current 
depth. 

30    output  flush(aLineOut, “print()”) Flush line outputs to the 
screen and/or store in logs. 

31 end for Exit the main loop. 

32 return  0 End of algorithm MTS. 
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4.2.3 Stochastic and Adversarial Optimal (SAO) Bandits 

 Multi-armed bandits (MAB) are well-known in the literature on sequential decision 

analysis and statistical process control.  In the bandit setting, an agent must sequentially 

choose actions so as to maximize the cumulative, expected, or discounted long-run reward.  

Through sequential (possibly noisy) feedback, it becomes possible to build a model of the 

relationship between actions and rewards.  At each time-step, the agent may choose actions 

in order to improve its model (exploration), or select actions believed to yield high rewards 

according to the model (exploitation).  This results in an exploration-exploitation dilemma 

which is hard to solve in general.  The basic MAB problem has been extensively studied in 

[Agrawal and Goyal, 2012] with provisions for safety vs. risk dilemmas studied in [Galichet 

et al., 2013]. 

 Variations on the MAB theme have been cross-pollinated by research into planning 

algorithms and experimental design [Kocsis and Szepesvari, 2013].  The basic MAB 

formulation is similar to an MDP, with extensions showing correspondence to POMDP 

models [Silver and Veness, 2010].  These problems can be solved using dynamic 

programming techniques such as value or policy iteration [Filar and Vrieze, 1997].  

Unfortunately, these techniques typically require algorithms of exponential complexity in 

the number of independent arms.  More recent approaches utilize stochastic reinforcement 

learning (c.f. Q-learning, H-infinite control) with adaptive sampling.  Such methods 

typically recycle the ideas of Thompson (c.f. Thompson Sampling), Gittins (c.f. Gittins 
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Index), or Whittle (c.f. Whittle Index).  The complexity of these approaches typically 

ranges from linear to cubic in the number of actions [Agrawal and Goyal, 2012]. 

 MAB algorithms have also been developed under the probably-approximately-

correct (PAC) learning framework of Valiant [Valiant, 1984].  In the PAC framework, one 

seeks approximate solutions which are optimal in the sense of two-sided error (epsilon, 

delta) bounds on the notion of regret, which is typically a convex loss function.  Fast, 

scalable classes of bandit algorithms utilizing these ideas include the epsilon-greedy, UCB, 

Softmax (Boltzmann), and EXP bandits.  These algorithms work online and deliver fast, 

near-optimal solutions in potentially sub-linear time [Audibert and Bubeck, 2009].  These 

algorithms represent the current state-of-the-art, solving the exploration-exploitation 

dilemma across many problem classes, including several variations of MAB, MDP, and 

POMDP. 

 The GAIGE utilizes an algorithm known as the Stochastic and Adversarial Optimal 

(SAO) bandit.  The SAO was developed for the MAB framework by Bubeck and Slivkins 

[Bubeck and Slivkins, 2012].  This algorithm has been modified and implemented by the 

author as part of a near-line extension of the MTS component of the GAIGE.  The SAO 

works by minimizing the competitive regret, or alternatively maximizing the competitive 

ratio as outlined in Section 4.1.3.  Thus, one typically seeks to compare the online rewards 

received by a MAB algorithm up to some stopping-time with respect to some offline 

benchmark.  A standard offline benchmark is the best-possible action-sequence in hindsight 

[Audibert and Bubeck, 2009].  What makes the SAO algorithm exceptional is that it 

achieves the “best of both worlds” after a reasonable number of rounds, T.   
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In SAO, the worst-case regret is bounded by 𝑂(𝑙𝑜𝑔(𝑇)) when the reward 

environment is stochastic, and 𝑂(√(𝑇)) when it is adversarial.  This represents an attack-

defense balance which gracefully enhances the agnostic behaviour of the MTS.  A complete 

discussion of the SAO is available through the work of Bubeck and Slivkins (2012), 

[Bubeck and Slivkins, 2012].  These authors also provide the relevant theorems and proofs 

of convergence.  We have recruited their ideas and present them in Figures 4.2 and 4.3.  As 

mentioned, the SAO algorithm is anytime scalable and competitive.  It has been revised 

and implemented as part of the near-line component of the GAIGE in order to solve the 

perturbed integrity game. 
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Figure 4.2.  The Multi-Armed-Bandit (MAB) framework with both adversarial and 

stochastic reward feedback. 

 Known parameters:  N actions; T rounds; non-degenerate choice: (𝑇 ≥ 𝑁 ≥ 2). 

 Unknown parameters: 

 (i.) Adversarial setting:  non-parametric → none; 

 (ii.) Stochastic setting:   𝑁  i.i.d. probability distributions  𝑣1,..., 𝑣𝑁  on  [0,1]. 
                       Each  𝑣𝑖  parameterized by mixture of moments, θ𝑖: 
                       e.g. θ𝑖 = 𝑓(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛μ𝑖, 𝑠𝑐𝑎𝑙𝑒σ𝑖, 𝑒𝑡𝑐. ). 

 For  each  round  𝑡 = 1,2, . . . , 𝑇; 

   (1) A MAB algorithm chooses an action 𝐴𝑡 ∈ {1,..., 𝑁}  (possibly randomly). 

   (2) The environment selects rewards according to the exposed model: 
      – An adversary simultaneously selects rewards 𝑔𝑡 = (𝑔1,𝑡,..., 𝑔𝑁,𝑡) ∈ [0,1]

𝑁. 
      – Each reward 𝑔𝑡 ∼ 𝑣𝑖 is drawn stochastically and independently. 

   (3) The forecaster observes (and receives) the reward 𝑔𝐴𝑡,𝑡.   

      – In the MAB framework, the forecaster does not observe the rewards from other arms. 

 Goal:  Minimize the regret, defined for each respective environment: 

    – Adversarial model: 

𝑅�̂� = 𝑚𝑎𝑥
𝑖∈{1,...,𝑁}

∑𝑔𝑖,𝑡

𝑇

𝑡=1

−∑𝑔𝐴𝑡,𝑡

𝑇

𝑡=1

 

 
   – Stochastic model: 

𝑅�̃� =∑ 𝑚𝑎𝑥
𝑖∈{1,...,𝑁}

(𝜃𝑖) − 𝜃𝐴

𝑇

𝑡=1
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Figure 4.3.  The Stochastic and Adversarial Optimal (SAO) algorithm of Bubeck and 

Slivkins (2012). 

Algorithm SAO (page 1). 

1 Initialize the SAO Bandit with inputs N, T, 𝜷 > 𝟏. 
S ← {1, …, N}; 
K = N;  

Initialize the set S of active strategy 
profiles (perceived as arms or actions in 
the Bandit framework). 

 2  
for  i = 1, …, K  do  

For each of the K actions (where each 
action denotes an MTS minimax 
strategy to follow). 

3    𝜏𝑖  ← {𝑇};  
   𝑝𝑖,𝑡  ← {1 𝐾⁄ }; 

The time 𝜏𝑖 when action i is 
deactivated, and its probability 𝑝𝑖,𝑡 of 
selection at time t. 

4 end for  End of initialization. 

5 for  t = 1, …, T  do  Begin the main loop. 

6    play  𝐴𝑡 ∈ 𝑆 with 𝑝𝑖,𝑡 Select an active action with the 
appropriate probability. 

7    for  i = 1, …, K  do  For each action, test several properties 
(4 total under SAO). 

8       if  (𝑖 ∈ 𝑆) ∧ (max 
𝑗∈𝑆

�̃�𝑗,𝑡 − �̃�𝑖,𝑡) > α1(𝑖, 𝑡) Test function 1. 
Deactivation threshold. 

9       then  𝑆 ← 𝑆 \ {𝑖}; τ𝑖  ← 𝑡;  𝑞𝑖 ← 𝑝𝑖,𝑡;   Deactivation:  Remove action I from the 
active set.  Update the deactivation 
time 𝜏𝑖 and probability 𝑞𝑖 at time of 
deactivation. 

10       end if   

11       if  |�̃�𝑖,𝑡 − �̂�𝑖,𝑡| > α2(𝑖, 𝑡) Test function 2. 
Consistency condition. 

12       or  (𝑖 ∉ 𝑆) ∧ (max
𝑗∈𝑆

 �̃�𝑗,𝑡 − �̃�𝑖,𝑡) > α3(𝑖, 𝑡)   Test function 3. 
Sub-optimality threshold. 

13       or  (𝑖 ∉ 𝑆) ∧ (max
𝑗∈𝑆

�̃�𝑗,𝑡 − �̃�𝑖,𝑡) > α4(𝑖, 𝑡)   Test function 4. 
Significance threshold. 

14       then  call  algorithm  EXP3.P: 
         𝑝𝑖,𝑡+1  ←  EXP3.P(δ ∈ (0,1)) 

If one of tests 2-4 is true, then the 
environment satisfies the properties of 
being adversarial, and we update with 
EXP3.P. 

15       end if   
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Algorithm SAO (page 2). 

16     
   end for  

End of testing phase 
(exploration).   
Exit the 𝑖 ∈ 𝐾 loop. 

17    for  i = 1, …, K  do   
Update the action selection 
probabilities ∀𝑖 ∈ 𝑆. 18 

𝑝𝑖,𝑡+1 ← (
𝑞𝑖τ𝑖
𝑡 + 1

) {1}𝑖∉𝑆 +
1

|𝑆|
(1 −∑

𝑞𝑖τ𝑖
𝑡 + 1

𝑗∉𝑆

){1}𝑖∈𝑆 

19    end for   End of updating phase 
(exploitation). 
Exit the 𝑖 ∈ 𝐾 loop. 

20 end for   Exit of main loop. 

21 return 0   End of algorithm SAO. 
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The SAO algorithm of Figure 4.3 makes use of following notation, terminology, 

and statistical test functions: 

 The cumulative reward of a fixed strategy i up to time t, and its average: 

 𝐺𝑖,𝑡 = ∑ 𝑔𝑖,𝑚
𝑚=𝑡
𝑚=1 ,   𝐻𝑖,𝑡 =

1

𝑡
𝐺𝑖,𝑡 4.1, 4.2 

 The estimated cumulative reward from strategy i up to time t, and its average: 

 �̃�𝑖,𝑡 = ∑ (𝑔𝑖,𝑚𝐴𝑖,𝑚 / 𝑝𝑖.𝑚)
𝑚=𝑡
𝑚=1 ,   �̃�𝑖,𝑡 =

1

𝑡
�̃�𝑖,𝑡 4.3, 4.4 

 The algorithm's cumulative reward from strategy i up to time t, and its average: 

 �̂�𝑖,𝑡 = ∑ (𝑔𝑖,𝑚𝐴𝑖,𝑚)
𝑚=𝑡
𝑚=1 ,   �̂�𝑖,𝑡 = �̂�𝑖,𝑡 / ∑ 𝐴𝑖,𝑚

𝑚=𝑡
𝑚=1  4.4, 4.5 

 

Table 4.7.  Formulae used by the SAO bandit algorithm (ref. Figure 4.3). 

Function Derived Formula 

1 Deactivation threshold 

α1(𝑖, 𝑡) = 6√
4𝐾 log(β)

𝑡
+ 5 (

𝐾 log(β)

𝑡
)
2

 

2 Consistency condition 

with 𝑡𝑖
* = 𝑚𝑖𝑛(τ𝑖, 𝑡) α2(𝑖, 𝑡) = √

2 log(β)

∑ 𝐴𝑖,𝑚
𝑚=𝑡
𝑚=1

+√4(
𝐾𝑡𝑖

*

𝑡2
+
𝑡 − 𝑡𝑖

*

𝑞𝑖τ𝑖𝑡
) log(β) + 5(

𝐾 log(β)

𝑡𝑖
*

)

2

 

3 Differential sub-

optimality at 

deactivation time. 
α3(𝑖, 𝑡) = 10√

4𝐾 log(β)

τ𝑖 − 1
+ 5(

𝐾 log(β)

τ𝑖 − 1
)
2

 

4 Significance of rewards 

at deactivation time. α4(𝑖, 𝑡) = 2√
4𝐾 log(β)

τ𝑖
+ 5(

𝐾 log(β)

τ𝑖
)
2

 

 

 The functions in Table 4.7 represent bounds which provably hold with high 

probability (w.h.p.).  These are implemented as inequalities against some reward, loss, or 

regret criterion.   
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For example, line (11) of Figure 4.3 performs a statistical test, |�̃�𝑖,𝑡 − �̂�𝑖,𝑡| >

α2(𝑖, 𝑡), which evaluates to true if a consistency condition for adversarial environments is 

met.  In this case, line (11) implies that for any strategy or action, the absolute difference 

in �̃�𝑖,𝑡, the average of the cumulative reward estimates, and �̂�𝑖,𝑡, the average cummulative 

rewards experienced thus far, should not exceed a limit threshold in order to be consistent 

with the random play of a stochastic environment. 

 The lines (11, 12, and 13) in Figure 4.3, and the corresponding bounds α2,α3,α4 of 

Table 4.7, ensure that if any one of the three statistical tests evaluate to true, the disjunction 

will be true, and the SAO algorithm then utilizes the EXP3.P revision protocol to guard 

against adversarial dynamics.  This is in contrast to the UCB/INF-inspired bandit updating 

of lines (17, 18), which are calibrated for stochastic environments. 
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 Ultimately, the SAO component of a prototypical GAIGE implementation will 

compute the strategy selection probabilities using the following schemes: 

 

 If exploration/testing indicates an adversarial payoff structure, utilize a variant of 

EXP3.P-bandits for revision: 

EXP3.P: 𝑝𝑖,𝑡+1 ⇐ �̂�𝑖,𝑡+1 ← (1 − 𝛾)
𝑒𝑥𝑝(𝜂�̃�𝑖,𝑡)

∑ 𝑒𝑥𝑝(𝜂�̃�𝑘,𝑡)
𝑘=𝐾
𝑘=1

+
𝛾

𝐾
 4.6 

with 𝛽 =
√𝑙𝑛(𝐾𝛿−1)

𝑛𝐾
 𝛾 = 1.05

√𝐾 𝑙𝑛(𝐾)

𝑛
 𝜂 = 0.95

√𝑙𝑛(𝐾)

𝑛𝐾
 

4.7, 4.8, 

4.9 

 

 If exploration/testing indicates a stochastic payoff structure, utilize a variant of 

UCB/INF-bandits for revision: 

UCB/INF: 𝑝𝑖,𝑡+1 ⇐ 𝑝𝑖,𝑡+1 ← 
𝑞𝑖𝜏𝑖
𝑡 + 1

{1}𝑖∉𝑆 +
1

|𝑆|
(1 −∑

𝑞𝑖𝜏𝑖
𝑡 + 1

𝑗∉𝑆

){1}𝑖∈𝑆 4.10 

with 
{1}𝐶  denoting an indicator function returning 1 if the clause C is 

true and 0 otherwise. 
4.11 
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 The SAO bandit balances between attacking a weak adversary (stochastic reward 

environment), and defending itself from a more devious adversary that targets the 

algorithm's weaknesses.  This an example of defensive forecasting, which avoids being 

overly aggressive if the reward sequence is seemingly stochastic.  It can nonetheless find 

optimism in the face of uncertainty [Vovk et al, 2008].  The SAO bandit also has the 

advantage of avoiding the Bayesian pathology of greedy conditioning and myopic variance 

reduction [Owhadi et al., 2015].  This makes the algorithm indirectly useful for change-

point detection, as well as being less prone to overfitting, less brittle, and less readily 

shattered (c.f. VC-dimension) than many alternatives in the literature [Owhadi et al., 2013]. 
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4.3 Benchmarks 

Preliminary benchmarks for the GAIGE were conducted using an AMD Phenom II 

6-core processor operating at 4.017 GHz with 8 GB of DDR3 RAM at 1866 MHz.  The 

operating system was a 64-bit Lubuntu with Linux Kernel 4.2 and Python 2.77.  All tests 

with the GAIGE were run with multiprocessing modules enabled.  The test suite consisted 

of a varying a set of inputs randomly at each time-step so as to simulate a sequence 

adaptations to small but ever-present perturbations to the base game.  For each round, the 

array elements 𝑎𝑖𝑗 of the base game are perturbed by at most |휀| = ± 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝛾𝑎𝑖𝑗) 

according to a uniform normal distribution with parameters 휀𝜇 = 0 and 휀𝜎 = 1, and fixed 

values 𝛾, 𝑁, 𝑇 by test run.  For each iteration through the GAIGE, the MTS algorithm takes 

𝑂(𝑁) steps to produce pure strategies.  These strategies can be mixed by a nearline bloom 

out of the SAO bandit algorithm, requiring up to an additional T = N steps to achieve regret-

minimization within the bounds 𝐿𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 =  𝑂(𝑁𝑙𝑜𝑔𝑁) to 𝐿𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 =  𝑂(𝑁√𝑁) 

total time.  For these tests, the MTS + SAO anytime responses are forced after a random 

number of iterations between the bounds N and 𝑁√𝑁, which tends towards 𝑂(𝑁𝑙𝑜𝑔𝑁) in 

expectation.  The level of regret achieved by this amount of computation is not necessarily 

minimal but is competitive.  These tests are therefore setup to provide a crude analysis of a 

regret ratio (e.g. competitive or minimal) for a prototypical GAIGE implementing the MTS 

+ SAO algorithms on hard inputs.  The benchmarks also offer a glimpse into the expected 

compliance of the GAIGE as a hypermodern solver with soft RTO deadline constraints. 
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Figure 4.4 displays a small set of benchmarks which illustrate the convergence rates of 

GAIGE for a variety of conditions. 

Figure 4.4.  Benchmarked regret convergence for the GAIGE. 

 

 

Results show that for large 휀 = 𝑓(𝛾),𝑁 and large T, the perturbations do not dominate the 

base payoffs and sufficient runtime is present for a near-complete regret minimization.  As 

T becomes larger than approximately √𝑁, the GAIGE converges on the 휀 generating 

functions and fixates towards a single mixture of pure strategies which provide a regret in 

the vicinity of 휀.   
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The converged strategies chosen by the GAIGE are robust to perturbations of 

magnitudes less than or equal to |휀𝑚𝑎𝑥|.  The selected strategies offer competitive (and in 

some cases minimal) regret, and correspond to an 휀-approximate trembling-hand perfect 

equilibrium.  This is a highly sought after solution concept for general game-playing agents.  

Results show the GAIGE achieves these results on modest hardware and for relatively large 

datasets within sub-second execution times. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Recapitulation 

This thesis examines asset integrity governance under extremely general conditions.  

The problem is classically formulated as an instance of risk-based planning.  The integrity 

of a physical asset is then governed using the solutions prescribed by an MDP or POMDP 

model.  The first chapter of this thesis highlights several gaps in the existing approaches.  

It also serves to contrast the difference between specialized and generalized techniques.  

Many of the existing asset integrity frameworks are most suitable for/when: 

 Well-defined, project-based integrity assessments; where sufficient domain context, 

expert knowledge, and a priori information produce asset-specific performance 

measures. 

 Assets operating in harsh environments; where risk-sources are naïve (non-

adaptive), and risks represent stochastic background processes and/or accidental 

event arrivals. 

 Offline analysis; where integrity modelling is performed using large batches of real 

or simulated data, and action planning is accomplished over longer, predetermined 

time-scales. 

 Non-autonomous planning and governance; where human experts are required to 

be in the loop on a continuous basis, and direct supervision may be critical to the 

evaluation and assessment of integrity plans.   
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Extending these frameworks constitutes the bulk of this work.  Asset integrity 

governance is fundamentally revisited using a more abstract and general interpretation.  In 

Chapter 2, several performance measures are identified from the literature on dynamical 

models, graphs, complex networks, and dependable systems.  This material is crucial to the 

understanding of the generalized asset as an information structure.  Through this paradigm, 

generalized assets are typically expressed in one of several well-defined modelling forms: 

 Description Languages; such as the Model Description Language (MDL), the 

Process Specification Language (PSL), Architectural Component Language 

(ACL), Unified Modelling Language (UML), and their corresponding file-types:  

.uml, .xml, etc. 

 Schematic-Defined; Organizational flowcharts, process flow and logic control 

diagrams, with file-types: .cad, .fea, etc. 

 Graph-Defined; Block diagrams, state-transition diagrams, binary-monotone 

systems, complex networks, etc. 

Generalized asset performance is assessed using a combination of fitness-based and 

similarity-based measures.  Chapter 2 also advocates a two-part compilation of model 

information.  This reasoning is valid for all assets, and performed in the following manner: 

 First, construct several reference configurations using the appropriate description 

type.  For example, binary monotone fitness for MDL, GPI for graph-defined 

assets, reference files for schematics, etc. 
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 Second, compute the NCD or edit distance between all pairs of reference 

configurations. 

This procedure can be coupled with the expected utility of having the asset maintain a 

particular configuration.  This results in a set of integrity scores which represent universal 

performance criteria.  The integrity scores can be interpreted as state-transition costs, 

payoffs, derived utility, benefits or rewards, depending on the context. 

These values form an array which is representative of a succinct-form game.  Chapter 

3 elaborates these ideas further, and serves the dual purpose of emphasizing and recruiting 

game-theory as a basis for asset integrity planning.  Several key points can be concluded 

from this portion of the work: 

 Risks and their sources - are in general not simply naïve, but rather adaptive and in 

a broad sense optimal under symmetric information and actionable resources. 

 Hostile environments - expose an asset to harsh environments as well as the actions 

of intelligent adversaries. 

 Game-theoretic planning - extends decision-theoretic planning, and is essential for 

assets tasked with persisting in hostile environments. 

Games can be reasoned about using several different formats.  This work contrasts the 

normal-form, extensive-form, and succinct-form game representations.  The most 

important solution concepts are also examined.  These include but are not limited to; Nash 

Equilibrium, Trembling Hand Equilibrium, Von Neumann Minimax Potential. 
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Several trends in high-performance planning are outlined in Chapter 4.  This work 

proposed a set of guidelines for solving integrity games via autonomous game-playing 

agents.  Requirements were specified at both the architectural and algorithmic levels.  The 

overall theme was based on a set of demands and constraints called hypermodern.  

Hypermodern planning agents predominantly advocate: 

 Domain-oblivious;  Planning in the face of extreme uncertainty, including few, if 

any, assumptions regarding the nature of the problem. 

 Agnostic learning;  Unsupervised improvement of activities and results, in the 

presence of little or no reinforcement feedback, context, or dependencies. 

 Anytime scalable;  Solution quality improves with additional computational 

resources and exhibits a strong competitive ratio. 

 Defensive Forecasting;  The agent responds in a robust, non-brittle, interruptible 

real-time online manner (pessimistic reflex).  Whilst through anytime scaling, 

gracefully increases its optimism through a near-line expansion or offline 

component (proactive deliberation). 

 Non-standard analysis;  The agent is essentially non-bayesian, non-parametric, and 

mitigates the need for sampling. 
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Chapter 4 also presented the algorithms implemented by a prototypical GAIGE.  

Inspired by optimal substructure and dynamic programming, the MTS algorithm was 

developed to take advantage of the repeated symmetry of the base game.  The minimax 

trajectories produced by MTS are used to generate a preliminary action plan, while also 

being fed into the SAO bandit algorithm for additional deliberation.  The SAO bandit tests 

the performance of each pure minimax strategy against the game history to determine the 

nature of the payoff perturbations.  The probabilities of selecting a particular strategy are 

then updated according to the amount of regret experienced by the algorithm, and whether 

it is consistent with stochastic or adversarial lines of play.  This solves the perturbed game 

by devising mixed strategy equilibria which are approximately trembling hand perfect.  The 

best-known strategies are always available for output, to be leveraged for any appropriate 

policy control, management platform, or governance oversight. 

Finally, a prototypical GAIGE implementation is benchmarked on synthetic data sets.  

This serves as a first-step towards additional validation, which will stress-test the expected 

behaviour across several asset classes and operational domains.  Results from these 

rudimentary benchmarks show a GAIGE capable of delivering competitive regret 

minimization on arbitrary problem types and scaling into large problem sizes. 
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5.2 Recommendations for Future Work 

The themes surrounding this research are relatively broad and shallow, albeit their 

combination is novel.  Generalized asset integrity games are a theoretical, multi-

disciplinary construct with many potential applications.  Chapter 1 draws on risk-based 

asset integrity management, existing models and their functionality.  Chapter 2 draws its 

inspiration from results in model theory, information theory, graph theory, complex 

networks, and dependable systems engineering.  Chapter 3 is devoted to game theory, in 

particular the algorithmic expectations and complexity issues of game structures and their 

solutions.  Meanwhile, Chapter 4 sought lessons from requirements design, systems 

architecture, autonomous planning, and anytime algorithms.  The culmination point is the 

GAIGE which, as with many frameworks in their infancy, is currently more of a conceptual 

placeholder than a field-proven technology.  It is therefore recommended that future work 

expand these ideas in four major directions: 

(I.) Enhanced Representational Power.  Support the ever more general asset 

representations and universal evaluation measures as they become available.  Plans 

in the GAIGE represents a sequence of actions, which themselves represent 

prescribed state-transitions between model reference configurations.  What exactly 

such state-transitions may entail physically is of upstream or downstream concern.   

The current work examined several modelling institutions and settled on evaluation 

functions based on graph topology and description complexity.  Future work along 

this line would recruit additional ideas from model and information theory to 
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produce representations of ever more broader and general classes of assets, and their 

(integrity) performance. 

(II.) Architectural and Algorithmic Improvements.  Autonomous reasoning, planning, 

and decision-making techniques are continuously improving.  Future work along 

this line would see the GAIGE utilize a wider and more appropriate palette of 

solution concepts from game theory, optimal control, and dynamical systems 

theory.  It is recommended to recruit from the literature on general game-playing 

agents, sampling algorithms, agnostic machine learning, and anytime optimization.  

These endeavours would seek to devise even better regret and complexity bounds. 

(III.) Implementation Scale-Up.  The current GAIGE implementation is only 

prototypical.  It was developed as a simple software agent in the Python language.  

The program code runs as a script/daemon and makes use of multiprocessing 

capabilities, but is far from optimized.  A full-scale software implementation would 

likely be refactored into C to work in conjunction with other tools and interface 

with several management information systems.  In the limit, a full-scale solver 

based on the GAIGE could potentially recruit the power of a GPU cluster or custom 

hardware. 

(IV.) Additional validation.  General game-playing agents are somewhat novel, and 

there is no strongly agreed upon method of benchmarking.  As such, a more 

encompassing, standardized test suite would have to be developed.  Future work 

should assess the game-playing strengths and weaknesses across highly distinct 

asset types.  
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5.3 Closing Remarks 

This research was undertaken with respect to a single maxim:  abstraction and 

generalization over focus and specialization.  In a world of increasingly fit-for-purpose 

engineering, application-specific frameworks, and tailor-made solutions, is it at all possible 

to do more with less?  At the very least, this thesis explores this question.  In and of itself, 

the pursuit yields value-adding research and development which is often overlooked – 

particularly within the sphere of engineering.  More pragmatically, these efforts contribute 

by addressing a real-world, industrial impetus.  This work surveyed a large, multi-

disciplinary body of literature, and produced a working prototype which holds its own 

against the state-of-the-art.  In essence, the answer to our question appears to be affirmative. 
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Appendix I – Architectural Overview of the GAIGE 
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Appendix II –Potential Applications and Worked Examples 

 

This appendix revisits the concepts of generalized assets through examples.  Each scenario 

is representative of a broad class of assets, processes, systems, as well as their typical 

modelling paradigms.  The selected case studies illustrate how a distinct, real-world asset 

may be approached and refactored as a generalized asset.  This epitomizes much of the pre-

processing required before ongoing planning and analysis can be effectuated using the 

GAIGE.  It is hoped that these worked examples will further demonstrate the range of 

potential applications, shedding light on the inherent versatility of this formulation, 

architecture, and implementation.   

 

Example 1.  Cyber-Physical Asset given by its Design-Structure-Matrix (DSM).  Case 

study of a networked industrial supply facility for the KVN Company. 

  

Systems engineering of products, processes, and organizations require tools and 

techniques for decomposition and integration.  A design structure matrix (DSM) provides 

a simple, compact, and visual representation of a complex system that supports innovative 

solutions to decomposition and integration problems [Eppinger and Browning, 2012].  

Generalized Assets may be specified using a DSM, which offers an alternative 

representation for the analysis of critical system components and their interactions.  In this 

example, a physical asset is a localized industrial network within some warehouse, port, or 
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manufacturing and supply facility.  The physical asset components consist of heavy-duty 

materials handling equipment, transportation machinery, and storage modules.   This asset 

also has a number of cyber components including a wireless sensor network for 

surveillance, monitoring and tracking services, autonomous robots and devices for 

scanning and packaging, and an integrated information management system.  The objective 

is to operate these multi-domain subsystems and their critical components together in a 

parsimonious manner.  Here, the generalized asset is the active information structure which 

captures the relevant features of the entire cyber-physical system and unifies their 

indicators for evaluation.  The generalized asset integrity represents a global state of 

idealness or correctness between the many functional dependencies, interactions, and 

process influences.  This also includes the fitness levels of the various subsystems and 

components.   

Figure A2.1 depicts a DSM model which has already been developed for this 

particular cyber-physical asset.  The DSM maps naturally into a generalized asset 

representation.  The DSM model implicitly includes many of the graph performance 

indicators and fitness-based assessments of Section 2.1, such as vertex centrality and binary 

monotone importance.  Therefore, less work is required to compose integrity scores “from 

the ground up”.  As an added bonus, the nature of this particular asset is such that many of 

its components are locally intelligent and implement self-diagnostic protocols.  This allows 

a treatment of certain decision-making criteria, such as repair, maintenance, and servicing 

forecasts, to act as elements within the DSM itself.  
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Figure A2.1.  DSM for the KVN industrial supply facility as a generalized asset. 
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The “raw” generalized asset is therefore a 216 x 216 matrix formed directly from the 

DSM itself.   By amalgamating knowledge from KVN engineers, systems integrators, 

suppliers, and floor managers, the major dependencies were reduced to the following 

criticality levels:  3 (red) – very strong, 2 (pink) – medium, and 1 (yellow) – low.  Although 

these interactions revealed many dynamic relationships, a static and domain-oblivious 

analysis was performed to derive the baseline reference configurations for the generalized 

asset.  Many scenarios were considered, with most falling into one of the following 

categories: 

 The class of complete shutdown conditions, owing to multiple failures, unplanned 

downtime, catastrophic exposures, etc. 

 A class of planned shutdown or (near)-offline conditions. 

 Various “lights out” operating conditions, owing to major operations performed 

autonomously by cybernetic systems, and/or with humans-out-of-the-loop during 

off-hours. 

 A set of high-output and maximum performance conditions in terms of energy use, 

risk exposure, and utility return. 

 The class of low-energy, low-hazard, or low-risk conditions, again owing to times 

where business continuity can be maintained without heavy production and 

equipment aging.  This includes scenarios with no presence of hazardous materials, 

minimal storage, occupancy, personnel, as well as other dependencies which 

mitigate workplace entropy. 
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 Various cyclical and transient conditions, owing to various on-demand and just-in-

time production and off-equilibrium output to optimize value, chiefly resulting 

from the cycling of logistical processes such as resupply, rerouting, and 

housekeeping tasks. 

 A set of randomly generated “anomalous” conditions owing to the cyber-physical 

nature of the asset, as well as the potential exposure to intelligent threats, software 

risks, and other unforeseen operating regimes. 

These conditions were used to construct a set of representative reference configurations 

from the (unwieldly large) set of possible configurations. Figure A2.2 illustrates how a 

DSM-defined generalized asset would appear configured under a number of different 

scenarios. 
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Figure A2.2.  DSM for KVN industrial supply facility under different scenarios. 

 

 Constructing the set of reference configurations characterizes an offline pre-

processing step through fitness-based metrics which require significant computational 

resources.  Further evaluations involve the hashing of integrity scores based on similarity-

based measures such as the normalized compression distance (NCD).  This alleviates the 

need for additional fitness-based assessments, and is conducive towards hypermodern 

analysis.   In this example, the reference DSM are sufficiently compact, suppressing the 

need for sophisticated decomposition and encoding schemes, such as the joint spectral 

distance or algebraic matrix characterization methods.  The standard < 𝐾𝑣, 𝐾𝑒 , 𝐾𝑁 >

−𝑎𝑠𝑠𝑒𝑡 representation is applicable, with 𝐾𝑣 = 1,  𝐾𝑒 = 2,  𝐾𝑁 = 20 offering a complete 

state-transition-graph with 20 vertices, and 400 edges.  The state-transition-system formed 

by this asset is therefore a 20 x 20 weighted adjacency matrix, with each of the 400 elements 
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requiring an integrity score evaluation.  For simplicity of depiction, Figure A2.3 illustrates 

the state-transition-graph formed by a more simplified < 1,2,8 > asset. 

 

Figure A2.3.  A <1, 2, 8>-complete graph for the KVN facility. 
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The similarity between each pair of DSM configurations is computed using the 

NCD.  To perform the NCD computations, the DSM are first converted into bit arrays and 

saved as .dsm files without header metadata in a manner similar to the raw (uncompressed) 

.gif file format.  For this application the GZIP program was used as the compressor to 

compute NCD values.  The GZIP program implements a lossless compression algorithm of 

Lempel and Ziv (LZW), and is suitable for NCD comparisons between generic file objects. 

 Each of the reference configurations assumes an inverse monotonic relationship 

between the NCD and long-run expected Von-Neumann utility.  If the generalized asset is 

modelled coherently and consistently, then large differences between descriptions (e.g. two 

particularly different DSM configurations) correspond to large differences in derived 

utilities.  This is useful in developing the final integrity scores, which map and scale the 

NCD values into integer numbers for computational speedups.  The integrity scores are the 

assigned edge weights of the final state-transition graph which is used as input into the 

GAIGE and corresponds to a succinct-form integrity game.  The integrity scores always 

represent compound “move and hold” operations.  The magnitude of a score is derived from 

two contributions:  (i.) the NCD value of the “move”, and (ii.) the VNM-utility value of the 

“hold”.  The move is captured by the inverse NCD score, and signifies the degree of rework 

costs.  A large NCD parallels numerous component change-orders for the asset manager, 

such as maintenance and repair activities at the KVN facility.  A large NCD could also 

represent numerous disruptions and more focused destructive efforts on the part of an 

intelligent adversary or natural antagonist.  The hold simply provides for the vector sum of 

the relative utility derived from all productions, operations, costs and losses, revenues, 
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liabilities, and other socio-economic benefits for maintaining the asset in a particular global 

state (therein normalized for one time-step).  In the current work, the combined move and 

hold integrity score is collected and rewarded immediately and is not future or past 

discounted. 

Because of real-world limitations, some state transitions may be “nigh impossible” 

to achieve.  This might represent the cyber-physical constraints of delivering extreme 

repairs or damages in relatively short time steps.  In these extreme cases, a particular edge 

of the graph would be blocked and the respective integrity score(s) would simply be 

replaced with a null symbol, effectively reducing the number of state-transitions available 

to a player.  This particular example uses reference configurations which were chosen in 

such a way as to always be available within one time step, albeit with potentially 

strategically important magnitudes, reflected by very large or very small integrity scores. 

 Figure A2.4 tabulates the NCD, VNM, and overall integrity scores for one potential 

reconfiguration of the asset.  These scores represent the potential reward derived from a 

global state transition from the offline condition (source vertex labelled as the 0th vertex, 

vertex_i) to any of the 𝑁 = 20 other reference conditions (vertex_j destination vertices).  

Values in the VNM ($/minute) column are present-value forecasts derived from an 

expected annual operating income of $63M for the asset.  This corresponds to 

approximately $120/minute of uptime in the maximal state and $70/minute uptime in the 

“sweet spot” of ideal working state (in a static sense).  

Figure A2.5 plots the performance scaling of these reconfiguration metrics.  In these 

figures, the source vertex is vertex_0, i.e. the asset existing in an offline condition.  In kind, 
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vertex_20 denotes a fully working configuration at maximum levels of production.  This is 

evidenced by the higher VNM utility.  This transition however, does not correspond to the 

highest integrity score.  This is because a reconfiguration from vertex_0 to vertex_20 is 

dominated by the move component rather than the hold component in the compound move-

and-hold operation registered by the integrity scores.  In other words, minute for minute, it 

is far more expensive to restore the KVN facility from a totally offline to a completely 

working state then it is to capitalize on profits incurred immediately thereafter.  If the 

integrity game were played over a single time-step, the optimal transition would be 

vertex_0 to vertex_14, resulting in the best compromise between the NCD and VNM for a 

maximum integrity score yield.  Viz. generalized assets, the payoffs owing to a 

reconfiguration are realized by a combination of transition effects and their immediate 

returns, and these do not always correlate with higher performance levels using classical 

performance metrics such as network fitness or system availability. 
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Figure A2.4.  Asset reconfiguration potentials from the offline state to all other 

reference conditions.  

Source 
Destina-

tion 
NCD 

VNM 
($/mi-
nute) 

VNM (nor-
malized) 

Integrity 
Score 

Integrity Score 
(normalized) 

0 0 0 0 0 0 0 

0 1 0.1141 5 0.0044 1000 0.249 

0 2 0.2303 16 0.0141 1100 0.274 

0 3 0.1467 21 0.0185 1550 0.386 

0 4 0.1883 26 0.0229 1300 0.323 

0 5 0.1209 31 0.0274 1400 0.348 

0 6 0.2706 36 0.0318 1200 0.299 

0 7 0.2652 41 0.0362 1600 0.398 

0 8 0.3132 46 0.0406 1984 0.494 

0 9 0.2111 44 0.0388 1812 0.451 

0 10 0.3967 49 0.0432 1717 0.427 

0 11 0.4242 54 0.0477 2490 0.619 

0 12 0.5555 59 0.0521 2200 0.547 

0 13 0.5555 64 0.0565 2310 0.575 

0 14 0.6856 69 0.0609 2054 0.511 

0 15 0.7604 74 0.0653 2540 0.632 

0 16 0.7458 79 0.0697 2608 0.649 

0 17 0.8782 84 0.0741 2750 0.684 

0 18 0.9174 105 0.0927 2780 0.692 

0 19 0.9845 110 0.0971 2800 0.697 

0 20 0.9847 120 0.1059 3000 0.746 

- Vertices ordered by k-out-of-N:G criteria.    

- EdgeID = <vertex_source, vertex_sink>    
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Figure A2.5.  Plot of the performance scaling for a reconfiguration of the asset (offline 

to all other configurations). 

 

 

These figures provide some insight into the expected integrity levels and 

performance characteristics of the generalized asset.  Enumerated to exhaustion (every 

source to every destination), they also express a succinct form payoff matrix for the base 

integrity game.  The full 400 x 400 input array is used to initialize governance of the asset 

via the GAIGE.  As the asset evolves in real-time, the integrity scores are updated as 

component conditions are reported through an aggregation of various monitoring and 

sensory channels which integrate a supervisory control and data acquisition (SCADA) 

stream.  The GAIGE periodically performs a simple check to see if the array has sufficiently 

changed to warrant a re-computation of the optimal strategies.  If the integrity scores have 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20
Destination State (vertex ID number)

NCD VNM (normalized) Integrity Score (normalized)



150 

 

 

changed significantly, the GAIGE performs an MTS of the new array and attempts 

additional deliberation through the use of SAO-bandits.  The best-available strategies are 

always available for generation as an output to the user or to the information management 

system.  The planning horizon for the asset accounts both stochastic and adversarial 

disruptions.  Asset behaviour was simulated over 360,000 one-minute time-steps using 

historical data obtained from standard operations at the KVN facility.  This is equivalent in 

duration to 6000 hours of operation or a period of 24/7 uptime across 250 days.   At each 

time-step, a new payoff matrix was generated based on a perturbation of the previous 

integrity scores, with each value drawn from an unknown distribution amongst some family 

of distributions (e.g. Bernoulli and exponential).  For stopping-time simplicity, a random 

amount of additional deliberation (up to 10 seconds) was accorded every 100th time-step to 

visualize the effect of SAO-bandit “corrections”.  The strategies reported by the GAIGE 

were smoothed up to larger time-scales for illustration.  Figure A2.6 reports a sample 

sequence of prescribed state-transitions relative to five initial conditions (given by DSM 

configurations at vertices 0, 5, 10, 15, and 20) over 1 hour intervals.  For these time steps 

no SAO-bandit deliberation was performed.  A perturbation event was introduced at time-

step 20, causing many of the strategies to resettle under different minimax trajectories.  The 

event can be interpreted as an arbitrary disruption, tremble, or noisy realization of state 

which causes the integrity scores to change, inducing a correction to the optimal lines of 

play. 
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Figure A2.6.  An example set of state-transition trajectories provided by the GAIGE.

 

 

 Figure A2.7 showcases the level of regret experienced by the GAIGE relative to a 

correct line of play in hindsight.  The figure is developed for a single strategy profile based 

on the asset being initialized in configuration 12.  The GAIGE chooses actions using the 

MTS algorithm only, except every 10th round where it is allowed access to up to 10 seconds 

of additional deliberation using the SAO-bandit.  These anytime intervals are counted as a 

single update step, during which a history of regret is used to examine the most promising 

strategies and adjust future actions.   
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In these tests, regret was revealed as the difference between the total integrity score 

so far accumulated by the GAIGE (using MTS and every so often MTS+SAO), and the 

integrity score of a perfectly “omniscient” player using a fixed strategy that also accounts 

for all future perturbation events.  This corresponds to the probability of selecting the 

correct strategy or sequence of actions.  Figure A2.7 shows a convergence which is 

progressively more resilient to adversarial and stochastic perturbations.  This is a defensive 

yet opportunistic integrity plan which also corresponds to an approximate trembling-hand 

equilibrium. 

 

Figure A2.7.  Example of the (inverse, cumulative) regret from the actions prescribed 

by GAIGE using a combination of MTS and SAO algorithms. 
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The GAIGE would be regularly updated in a live setting, where it would interface 

and support other information systems and decision support tools.  A more robust, scaled-

up version could theoretically act as a force-multiplier for the asset integrity authorities at 

KVN.  Additional context, expert/domain knowledge, and specialized optimizations would 

likely be required for an actual production environment.  Nonetheless, by way of this 

generalized, agnostic methodology, one can effectively govern the high-level operational 

configuration of any DSM-defined asset.  The KVN facility is a networked industrial centre 

for supply and distribution operations.  It represents a cyber-physical asset.  Passing the 

DSM representation into generalized asset form and then planning via the GAIGE enables 

advanced budgeting for supply chain disruptions, equipment downtime, and machinery 

throttling. 
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Example 2.  Critical infrastructure assets given by a complex evolving network of 

interdependencies.  Case study:  Integrity governance for an Unmanned Aerial 

Traffic Management System (UTM).  

 

Unmanned Aerial Vehicles (UAVs) and Systems (UASs) are witnessing 

widespread deployment as force-multipliers for several industries and public-serving 

sectors.  A small subset of potential applications include agricultural, forestry, and natural 

resources data collection and condition monitoring, rail and road network surveillance, low-

altitude radar and speed enforcement, aerial telemetry and streaming, search and rescue, 

and cargo delivery. 

It is anticipated that the increasing ubiquity of UAVs and UASs will drive the 

development of Unmanned Aerial Traffic Management Systems (UTMs).  A notional UTM 

may be small or large scale, while publically or privately owned and operated.  Various 

UTM architectures have been put forth, with no particular consensus on the applicable 

topology (e.g. distributed or centralized), legal frameworks, regulations, or governance 

practices.   Nonetheless, the potential for low-altitude, short and long term air-space leasing 

has driven the need for integrated management systems which autonomously guide and 

direct fleets of UAS assets.  The near-term goals of UTM architectures are to enable low-

altitude UAV/UAS operations with demonstrated safety and security.  The long-term goals 

for a UTM typically seek to tighten requirements and strengthen capabilities.   These may 

include addressing emerging threats and vulnerabilities, improving efficiency, and 

increasing asset/fleet capacity, autonomy and endurance.   
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UTMs are typically classified as portable or persistent.  A persistent UTM is 

optimized for high-availability missions and implements centralized governance of a large 

territory, such as a provincial district.  In this sense it is very much akin to existing air-

traffic management (ATM) infrastructure.  The portable UTM is more embedded.  It is 

favored for ad hoc, high-utility missions and private projects.  It manages a smaller fleet of 

assets over a localized region, such as a city or county.  The portable UTM can often be 

field-deployed alongside several of the UAV/UAS whereas the persistent UTM operates 

out of a fixed facility.  Both classes of UTM support differing business models owing to 

different advocacy groups and use cases.   

Figure A2.8 illustrates a UTM based on novel proposals from NASA and 

commercial partners who are enabling the development of a Low Altitude Traffic and Air 

Safety (LATAS) Platform. 

    

Figure A2.8.  Notional UTM for UAV/UAS operations, courtesy of NASA. 
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Ongoing UTM and LATAS development efforts seek to connect and integrate 

leading airspace management technologies into an infrastructure-as-a-service (IaaS) 

package for commercial and recreational drone operators, as well as regulators and air 

traffic controllers.  

 In this example, we consider a private IaaS provider certified by a national 

regulating authority to operate a fixed entity (persistent) county-level UTM.  The UTM is 

modelled holistically as a system-of-systems (SoS).  This choice of modelling approach 

allows a rapid integration of critical asset features.  During preliminary design, a static 

dependability analysis of the components and subsystems was conducted.  This was a 

bottom-up offline analysis, beginning with reliability block diagrams (RBD) and fault-tree 

analyzes (FTA).  Results provided insight into the availability and disposition of several 

asset dependencies and their logical relationships.  This knowledge was used to perform a 

series of fitness evaluations of the systems within the overall SoS.  The SoS itself is a large 

collection of hierarchically clustered interacting manifests.  The SoS is also a graph, and 

when properly defined embodies yet another example of a generalized asset.   

The expected (dynamic) operating risks, importance levels, and criticality of 

various elements are found using several of the graph-performance indicators (GPI) 

discussed in Chapter 2.  Figure A2.9 presents a summary of the SoS which is used to form 

a reference configuration for the UTM as a generalized asset.  
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Figure A2.9.  The generalized asset information structure for an Unmanned Aerial 

Traffic Management System (UTM). 

 

 The proposed UTM is modelled as a generalized asset given by a SoS with critical 

modelling ensembles: 

 Intelligent Datalink Management.  Manages the communications, protocols, link 

and access control events, error correction and control, etc. 

 GIS-Based Maps and Missions.  Provides the collaboration between geomatics and 

GIS systems to enable GPS/satellite guided mapping and dynamic mission planning 

services. 

 Risk Sensing & Avoidance.  Encompasses the cognitive protocols, SCADA, and 

swarm optimization algorithms for the primary sensing, detection, and avoidance 

tasks. 
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 UAV/UAS Fleet Reporting and Definitions.  Primary SCADA for fleet operations 

including individual and coordinated mission logistics, airspace status, physical 

health, and condition monitoring for deployed and reserve UAV/UAS assets. 

 Geofencing and Failsafe.  Manages the failsafe behaviour for various flight modes, 

including operating range constraints, signal strength limitations, airspace 

coordinate safety limits, emergency procedures and lost-link return/evacuation 

policies. 

 Air Traffic Management (ATM) Interfacing.  Encapsulates the correspondence 

with proper ATM systems from other authorities for weather information, auxiliary 

traffic reports, or other commands and notifications. 

 Payload Tracking and Handling.  Manages the end-to-end processing of physical 

payloads for delivery or digital contingency services such as reconnaissance and 

remote data acquisition.  Handles the induction queuing, shipping confirmation, and 

de-queueing of parcels and packets through the UTM facilities and airspace 

infrastructure. 

 Physical (Ground) Structures and Facilities.  Management of the UTM supporting 

physical infrastructure, including operating grounds and facilities, warehousing, 

ground vehicles, and related monitoring, security and surveillance. 

 Cloud-Based Interfacing.  Includes components which regulate the cloud-based 

platforms and services such as physical hardware, remote storage and access, 

internet-driven protocols, processes and devices, and user-enabled functionality. 
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 Source Power and Energy Distribution.  The subsystems responsible for 

interfacing with power/utility infrastructure and supplying energy.  Includes 

regulation and distribution of electrical power and backups within the UTM. 

 

The UTM is expected to persist in a hostile environment.  The UTM is exposed to a 

variety of risks but is predominantly sensitive to adverse weather conditions, extended 

power grid outages, communications jamming and disruption, as well as unforeseen 

technical failures.  Adversarial threats include deliberate airspace congestion, landing zone 

obfuscation or harassment, malicious actions against drones, false orders/requests, and 

many others.  Multiple safety and security measures are in place to minimize the attack 

surface by design.  Despite these efforts, the UTM remains exposed to the continuous threat 

of cyber-attacks.  Several potential vectors exist, including actions which glitch the 

SCADA or GIS subsystems to provide incorrect mission commands, as well as disabling 

or hijacking aerial assets.  Attacks may also attempt to compromise the privacy and safety 

of sensitive data or payload information.   Other vectors include the distributed denial-of-

service (DDoS) attacks on the various external interfaces.  A weaker adversary might utilize 

these tactics in an attempt to disrupt the quality of service (QoS).  Finally, there are 

vulnerabilities to physical intrusion and damage to the facilities, owing to perimeter 

surveillance and security failures (or attacks). 
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 The performance of this generalized asset is calculated for several scenarios which 

manifest themselves as N = 100 significant reference configurations in a manner similar to 

the previous example.  A set of N2 =10,000 baseline integrity scores are derived from long-

run VNM-utility expectations and reconfiguration efforts computed using the NCD.  

Results are formulated into a succinct payoff array for input into the GAIGE.  The UTM 

gathers and processes data asynchronously.  Update frequencies range from sub one-second 

time intervals for dynamic positioning and sensing subsystems, to upwards of 7 days based 

on a lack of change-detection in certain physical components and ground facilities.  As 

such, the update priorities for elements within the generalized asset may be adjusted based 

on change criticality, plausibility, or detection.  This scheduling reduces the size and 

number of active array elements considered by the GAIGE at any one time-step.  State-

transition actions which recover the asset from immediate issues are evaluated before 

deliberating over less impending concerns.  A prudent allocation of anytime resources also 

serves the defensive forecasting requirements, where the initial best-available plans are also 

the most secure (MTS), and deprecated opportunistically as optimization times permit 

(SAO-bandits). 

 Generalized asset operations are simulated for a horizon of 10 hours, corresponding 

to a session of normal UTM missions/activities subject to naïve discrete event arrivals and 

their ideal response/recovery.  Naïve events are sampled using a variety of distributions, 

and model the ever-changing weather conditions, airspace traffic reports, sense and avoid 

trajectory deviations, signal strengths, ATM and cloud-based notifications. 
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To impress the need for game-playing agents in the face of adversarial dynamics, a 

series of deliberately planned remotely-executed minimax trajectory disruptions are 

introduced.  These represent intelligent attacks which can be recovered from relatively 

quickly, yet are useful for examining fleet and airspace resilience.   In this example, a GPS 

navigation glitch is considered, which triggers the failsafe and geofencing protocols.  An 

electrical power disruption is considered, engaging the backup supplies and initiating a 

return-to-home procedure on all UAV/UAS.  Finally, two cloud-based DDoS attacks are 

considered, resulting in temporary QoS adaptation.  For simplicity, the class of 

‘catastrophic’ and/or large-scale physical denial of the fleet or ground facilities is not 

considered.  Such events would inevitably result in a near one-shot transition to the 

completely failed endgame state.  In such a configuration the UTM activities are suspended 

indefinitely and no further analysis is required from an integrity planning perspective. 

The planning horizon for the GAIGE is therefore T = 36,000 one-second time-steps 

simulating 10 hours of hostile environment persistence.  During this time, the asset 

undergoes adaptive oscillations as changes to the UTM configuration are observed and 

innovated upon in the manner prescribed by the GAIGE.  At each time-step, the GAIGE 

re-plans a sequence of actions and transitions the asset accordingly.  This results in a series 

of planned vs. actual trajectories.  Figure A2.10 illustrates the time-evolution of the asset 

under GAIGE recommended governance from a particularly safe starting configuration 

until the end of simulation. 
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Figure A2.10.  Evolution of the UTM under governance from the GAIGE. 

 

 

In the above plot, the horizontal x-axis indexes a time-step which averages 20 

minutes of condition monitoring and integrity evaluations.   The vertical y-axis indexes a 

derived integer integrity score scaled between 0 and 100.  This represents the payoff level 

awarded at the end of a round of simulated gameplay.  In this regard, the reference 

configurations have been ranked and scaled in order to illustrate how the integrity of a UTM 

would be governed.  Correct UTM management seeks to continuously maximize the area 

under the curve(s) with respect to utility yields; the adversary attempting to do the opposite 

(minimize the area); and nature acting as a random noise signal (which can aid either party).  

This generalized asset evolves in accordance with the discrete events registered within the 

UTM.  At each round, the GAIGE updates its forecast of what it believes to be an optimal 

sequence of state-transitions.  This planning is conducted using a 200-ply lookahead for the 
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backwards induction of the MTS algorithm.  Random amounts of SAO bandit iterations 

(nearline bloom) are also included.  The faint dotted lines in Figure A2.10 illustrate the 

GAIGE-prescribed plans at the end of each round.  For clarity only the first 10 state 

transitions are plotted.  The bold red line indicates the time-history of noisy realizations of 

state-transitions, as prescribed by the GAIGE (updated at each round), but owing to 

incomplete state observations (noise), imperfect actions (trembles), and intelligent 

disruptions. 

The operational time frame simulated in this example was subject to several 

stochastic disruptions and adversarial attacks.  An interpretation of the results demonstrates 

that current versions of the GAIGE are overly conservative.  The GAIGE often hedges 

against hostilities at every time step.  This results in grim prognostics towards low-yield 

asset operations, a byproduct of minimax aspirations from continuously competing against 

the world.  In practice this extreme prudence would (hopefully) become unnecessary 

through a combination of protective measures and the influential deterrents of policing and 

honest citizenry (i.e. human integrity).  Realistically an adversary will only strike with 

bounded resources, placing an upper bound on the frequency, amplitude and phase of 

superimposed attack patterns.  In game theory even the slightest resource disparity between 

attacker and defender can introduce unwinnable conditions for the poorer player and 

autopilot strategies for the richer.  In this example, the offensive prowess of adversaries (in 

terms of their observational and degradation capabilities) were assumed to be in balance 

with the restorative capabilities of the UTM.   The development of better adversarial threat 

models would allow the integrity governance of cyber-physical infrastructure to be less 
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pessimistically challenged.  Unfortunately this process would be require expert input and 

result in a more domain-specific approach.  As adversarial due diligence becomes more 

common place, these additional modelling details will be required before production-scaled 

assets are authorized to operate within real-world hostile environments. 

The (actual) time-evolution of the asset given by its changing integrity scores can 

be seen as a series of reconfiguration expenditures.  Figure A2.10 shows the GAIGE 

buffering against the long-run losses from an impending set of adversarial and stochastic 

disruptions.  These are the expected trajectories in terms of reconfigurations, which are 

minimax worst case unless the bandits risk otherwise.   

Figure A2.10 can also be interpreted in purely UTM game-playing terms.  At the 

end of time-step 5, weather conditions force the asset into a lower integrity score.  The 

GAIGE then reassesses its integrity plan from this new (somewhat unforeseen and 

unavoidable) condition.  In time-step 6, the GAIGE actually considers a potential 

vulnerability to attack in round 11, and updates its integrity plan in defense of this credible 

future.  The adversary senses this innovation and strikes with an unannounced DDoS attack 

during time-steps 8 and 9 (instead of 11).  This forces the asset to drop into a hardened 

configuration with safer fleet posturing and higher alert levels.  This caution results in a 

lower integrity score for several rounds.  The DDoS releases after time-steps 12-13, at 

which point the GAIGE advises a cautionary relaxation out towards higher integrity scores.  

At time-step 23, the GAIGE finally decides it is time for a series of potent restoration and 

recalibration events, only to be immediately denied by the adversary who initiates GPS-

jamming activities.  The detection of these events forces a purposeful transition to a lower 
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integrity score – the UTM hardens in an attempt to pre-emptively buffer against further risk 

of airspace and IaaS integrity denial.  At the low points around time-step 25, the GAIGE 

anticipates an opportunity by around time-step 30 to recover a higher-orbit minimax 

trajectory.  This is in line with the long-run prescriptions made before the GPS-jamming.  

The asset eventually recovers to a reasonably maintainable integrity level by time-step 35 

onwards.  At this point the GAIGE is learning perturbation-robust strategies, and 

proactively fixing around an integrity level of 75 by the end of simulation. 

 The problem of sustaining safe and secure UTM operations within a low-altitude 

high-traffic airspace is a hypermodern challenge.  The combination of UAV/UAS assets, 

payloads and requests, fleet readiness, mission planning, physical facilities, and supporting 

infrastructures must collectively synergize to deliver a networked infrastructure as a service 

(IaaS).  The UTM paradigm is still in its infancy, but expected to mature within the next 

decade.  Whatever the particular architecture or design, a UTM can be modelled as a time-

evolving SoS, which can in turn be formulated as a generalized asset.  The usual domain-

oblivious fitness-based performance indicators from the theory of dependable networks, 

graph dynamics and topology continue to apply.  The agnostic, similarity-based evaluations 

from the theory of information and computability continue to serve a purpose, indicating 

how much an asset must reconfigure itself in terms of model description to achieve a 

desired outcome. 
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Potential applications of generalized asset integrity games to engineering problems. 

 

Formulating the problems of KVM facility management or UTM governance within 

the framework of generalized asset integrity games allows a compact representation of the 

information critical to imparting changes of global state.  Both DSM and SoS defined assets 

have been shown to be readily integrated into this framework. This process could be 

demonstrated for other modelling institutions, such as .XML or .UML drawings, DFA, 

state-transition tables, and extended to arbitrary connectionist diagrams.  This generality is 

extremely useful for rapidly (approximately) validating engineering proposals with 

minimal modelling and simulation overhead.  In this way, several reference configurations 

for a generalized asset can be pre-processed to yield a succinct-form payoff structure which 

can be passed into the GAIGE for minimal-regret planning and analysis.  As demonstrated 

by examples, the GAIGE is particularly adept at scoring the performance of complex cyber-

physical assets, critical infrastructures, and future service platforms such as the KVN 

facility or UTM concept.  This work establishes a framework for generalized asset 

performance, integrity games, and the GAIGE itself.  The overall process is expected to 

remain flexible and nearly identical across domains.  Many potential applications show 

promise in benefitting from this approach.  Among those actively being investigated:  

geospatial watershed integrity, water-distribution integrity, the integrity of sensitive 

ecosystems, aqua- and agri- culture logistics management, and high-speed rail transport 

systems. 


