

GENERALIZED ASSET INTEGRITY GAMES

by

© Karl A. Lambert

A Thesis submitted to the

Graduate Studies Office of the Faculty of Engineering and Applied Science

in partial fulfillment of the requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

May 2016

St. John’s Newfoundland

ABSTRACT

Generalized assets represent a class of multi-scale adaptive state-transition systems

with domain-oblivious performance criteria. The governance of such assets must proceed

without exact specifications, objectives, or constraints. Decision making must rapidly scale

in the presence of uncertainty, complexity, and intelligent adversaries.

 This thesis formulates an architecture for generalized asset planning. Assets are

modelled as dynamical graph structures which admit topological performance indicators,

such as dependability, resilience, and efficiency. These metrics are used to construct robust

model configurations. A normalized compression distance (NCD) is computed between a

given active/live asset model and a reference configuration to produce an integrity score.

The utility derived from the asset is monotonically proportional to this integrity score,

which represents the proximity to ideal conditions. The present work considers the

situation between an asset manager and an intelligent adversary, who act within a stochastic

environment to control the integrity state of the asset. A generalized asset integrity game

engine (GAIGE) is developed, which implements anytime algorithms to solve a

stochastically perturbed two-player zero-sum game. The resulting planning strategies seek

to stabilize deviations from minimax trajectories of the integrity score.

 Results demonstrate the performance and scalability of the GAIGE. This approach

represents a first-step towards domain-oblivious architectures for complex asset

governance and anytime planning.

ACKNOWLEDGEMENTS

I would like to thank my family and friends for their continued support throughout

my life. Of utmost importance has been my wife and personal saint, Inga, without whose

love and encouragement I would not have completed this great endeavour.

I would also like to acknowledge the efforts of my supervisor, Dr. Leonard Lye, as

well as the academic support staff at the Memorial University Engineering Graduate

Studies Office. I thank these individuals for their continued patience, sponsorship, and

belief in my completion of this programme.

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

List of Tables ... ix

List of Figures ... x

1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Motivation ... 6

1.3 Contributions ... 8

1.3.1 Generalized Asset Performability Criteria ... 8

1.3.2 Game-Theoretic Planning .. 8

1.3.3 Generalized Asset Integrity Game Engine. .. 9

2 GENERALIZED ASSET PERFORMANCE ... 10

2.1 The Generalized Asset .. 10

2.2 Modelling Institutions ... 12

2.3 Graphs and Their Relatives ... 15

2.3.1 Preliminaries .. 15

2.3.2 Special Graphs ... 17

2.3.3 The 𝑲(𝟏, 𝟐,𝑵)Asset Representation ... 19

2.3.4 Graph Dynamical Systems ... 21

2.4 Performance Evaluations ... 22

2.4.1 Fitness-Based Evaluations ... 22

2.4.2 Similarity-Based Evaluations ... 24

2.5 Binary Monotone Fitness .. 26

2.5.1 Binary Monotone and Coherent Systems... 27

2.5.2 Structure Functions .. 28

2.5.3 Dependability Metrics .. 30

2.6 Graph Fitness ... 36

2.6.1 Graph Performance Indicators (GPI) ... 36

2.6.2 Graph Resilience .. 39

2.6.3 Graph Efficiency .. 40

2.6.4 Decomposability Metrics ... 41

2.7 Normalized Compression Distance ... 43

2.7.1 Kolmogorov Complexity ... 43

2.7.2 Normalized Information Distance .. 44

2.7.3 Normalized Compression Distance .. 44

3 INTEGRITY GAMES .. 46

3.1 Background ... 46

3.1.1 Context ... 46

3.1.2 Terminology ... 47

3.1.3 Ontogenesis .. 49

3.1.4 Classification .. 50

3.2 The Base Game ... 52

3.2.1 Specifications ... 52

3.2.2 Extensive Form .. 53

3.2.3 Normal-Form ... 54

3.2.4 Succinct-Form .. 54

3.2.5 Strategies .. 55

3.2.6 Solution Concepts .. 56

3.2.7 Transformed Minimax Potential .. 59

3.3 The Perturbed Game .. 62

3.3.1 Specifications ... 62

3.3.2 Perturbations of the Base Game ... 62

3.3.3 Extensive-Form Trembling Hand Perfection ... 64

3.3.4 Robustness, Stability, and Adaptability Concepts 65

3.4 A Succinct Integrity Game for Generalized Assets .. 70

3.4.1 Problem Description .. 70

3.4.2 Formulation .. 72

3.4.3 Preliminary Analysis .. 73

3.5 Conspectus .. 78

4 ARCHITECTURE AND IMPLEMENTATION .. 80

4.1 Objectives and Requirements .. 82

4.1.1 Architectural Requirements ... 83

4.1.2 Algorithmic Requirements ... 93

4.1.3 Supplemental Notions .. 96

4.2 The Game Engine .. 103

4.2.1 Scope .. 103

4.2.2 Minimax Transposition Search (MTS) .. 104

4.2.3 Stochastic and Adversarial Optimal (SAO) Bandits 110

4.3 Benchmarks ... 120

5 CONCLUSIONS AND RECOMMENDATIONS ... 123

5.1 Recapitulation .. 123

5.2 Recommendations for Future Work .. 128

5.3 Closing Remarks ... 130

Bibliography ... 131

Appendix I – Architectural Overview of the GAIGE ... 137

Appendix II –Potential Applications and Worked Examples ... 138

List of Tables

Table 2.1. Modelling Institutions ... 2-13

Table 2.2. Fitness vs. Similarity-Based Performance Evaluations 2-24

Table 2.3. Categorization of GPI Types .. 2-34

Table 3.1. Outline of terminology encountered by field of study 3-44

Table 3.2. Sources of Perturbation to the Base Game ... 3-58

Table 4.1. Three-phase architecture with sub-components for autonomous planning .. 4-75

Table 4.2. Semantic and Non-Functional Architectural Requirements 4-76

Table 4.3. Functional requirements for a hypermodern monitoring component within three-

phase planning (action-selection) architecture ... 4-81

Table 4.4. Functional requirements consistent with a hypermodern evaluation component

within a three-phase planning (action-selection) architecture 4-82

Table 4.5. Functional requirements for a hypermodern prescription component within a

three-phase planning (action-selection) architecture ... 4-83

Table 4.6. Algorithmic Modules for Integrity Game Solvers Under Hypermodern

Evaluation Demands .. 4-86

Table 4.7. Formulae used by the SAO bandit algorithm (ref. Figure 4.3) 4-104

List of Figures

Figure 2.1. K(1,2,5) and K(3,3,3) .. 2-18

Figure 4.1. The Minimax Transposition Search (MTS) algorithm as implemented in the

GAIGE ... 4-95

Figure 4.2. The Multi-Armed-Bandit (MAB) framework with both adversarial and

stochastic reward feedback .. 4-100

Figure 4.3. The Stochastic and Adversarial Optimal (SAO) algorithm of Bubeck and

Slivkins (2012). .. 4-102

Figure 4.4. Benchmarked regret convergence for the GAIGE……………………….4-121

1

1 INTRODUCTION

1.1 Background

 Modern engineering systems represent complex, high-utility interconnects of

people, software, and hardware. Prototypical examples include cyber-physical networks,

critical infrastructures, and socio-technical ensembles. These assets are considered highly

integrated systems-of-systems with multiple, time-varying objectives and potentially

conflicting constraints.

 Life-cycle planning is often accomplished through hierarchical management

frameworks which combine centralized, aggregated decision making with distributed,

autonomous control policies. These frameworks are typically developed in conjunction

with compliance standards, safety regulations, and design/operation guidelines.

Fundamentally, they represent planning activities supported by expert knowledge,

decision-support systems, and procedural consensus. While these management

frameworks are proven, they possess significant decision overhead and latency. In real-

time online (RTO) scenarios, complex planning actions must be completed with near-

optimal performance guarantees in sub-second time intervals. To address these challenges,

computational modelling and simulation have become increasingly integrated into the

planning process.

 Across several industries, probabilistic risk analysis (PRA) and its variants are used

to assess the asset condition. Several frameworks exist, such as the Risk-Based Asset

2

Integrity Management (RBAIM) proposed by Khan et al. (2010). The current state-of-the-

art involves dynamically updating a set of probabilistic beliefs regarding the condition of

an asset. This condition is typically based on the risks of unwanted component operations,

process deviations, or subsystem failures. Architecturally, frameworks such as the RBAIM

proceed in a logical manner similar to controllers with closed feedback-loops. This

planning can be broken down into three well-defined steps: monitoring, evaluation, and

prescription.

 During the monitoring phase, sensory data are cleaned, streamed, and aggregated

into a presentation frame for input into the evaluation module. An evaluation module takes

as input the pre-conditioned data and decides, almost exclusively through computational

processing, a set of numerical values which describe the asset state. This typically involves

some reduction mapping, filtration, or classification of the data into a labelled

configuration, rating, or score. The evaluation module estimates the expected utility and/or

reward derived from being in, or potentially reaching, a set of states. The state-transition

likelihoods, costs, risk profiles, long-run gains/losses, and other quantities may also be

evaluated. The final component of an asset management framework centers around

(typically sequential) decision making. Prescription modules may provide interfaces for

reporting and recommendation, but their primary task is action-selection. In the context of

artificial intelligence, this phase represents a subset of automated reasoning. In control

theory, this process can be viewed as solving for and implementing an optimal control

policy. In operations research, it is often referred to simply as planning. Numerically,

prescription is effectively a dynamic performance optimization. The objective is to take as

3

input an asset state or condition and specify a policy, strategy, trajectory, or sequence of

state-transitions which satisfice, or optimize, some performance criteria. When the

prescription phase completes, the chosen actions are presented as output for effectuation.

 At a high level of abstraction, management frameworks for life-cycle asset planning

almost exclusively follow this “three-phase” approach. The process of monitoring-

evaluation-prescription is akin to observe-decide-act and other reasoning cycles [Boyd

1976, Stone 2007]. When the asset-environment system becomes more complex and

uncertain, one often implements decision making behaviour through process architectures.

Adaptive control systems, intelligent agents, and cognitive architectures are among the

more modern examples. In many cases, stochastic reinforcement learning is applied to

recognize patterns, and identify features which lead to incremental performance gains.

 In planning problems, one is often faced with an uncertain and indirect knowledge

of the asset-environment state; this constitutes partial observability. Partial observability

may arise from the statistical estimation of properties. For large-scale complex assets, a

summary description of the system may be available but suffer from a reduction in

representational power and information loss. Partial observability may also arise from raw

measurement limitations, as well as through instrumental limits of error. This type of

planning commonly adopts the Partially Observable Markov Decision Process (POMDP)

model. The literature on POMDPs is vast and well-developed. By themselves, these models

are often computationally challenging, and much research has addressed dimensionality

reductions and approximate solutions. Typical solutions implement value or policy

iteration through dynamic programming [Smallwood and Sondik, 1973]. A further

4

complication arises when noise, errors, and stochastic effects cause actions to be

“imperfect”. This constitutes a tremble, or deviation from the desired response. For many

assets, these imperfections represent mistakes in restorative actions or probabilistic

outcomes of maintenance operations. This type of planning commonly adopts a

perturbation analysis (PA) model, which may be coupled with the aforementioned POMDP

approach. PA is essentially a sensitivity-based gradient-descent which reasons about the

effects of unwanted and/or unplanned behaviours. A final challenge in planning is dealing

with asset-environment systems given poorly specified and/or unknown rewards; this is a

model identification problem. In this setting, reinforcement learning (RL) techniques are

used. Common RL models include: Q-learning (QL), temporal difference learning (TDL)

and probably-approximately-correct (PAC) learning. These methods receive feedback

regarding the cause-effect associations between actions (state-transitions) and rewards (or

costs). RL models are able to “learn” solutions to POMDPs without explicit specification

of the transition probabilities. POMDP, PA, and RL models have been applied to a variety

of problems with varying degrees of success [Cao, 2007].

 For our purposes, asset management frameworks reduce to sequential decision

making through monitoring, evaluation, and prescription. Planning activities are supported

by advances in architectures (e.g. autonomous agents, control devices), models (e.g.

POMDP, PA, RL), and algorithmic implementations (e.g. dynamic programming, Monte-

Carlo sampling). This process has traditionally harnessed domain-specific knowledge,

exploiting problem structure and yielding specialized solutions.

5

 The most brittle, least transferrable aspects of governance and planning occur with

respect to modelling constructs and performance evaluations. Modelling activities capture

the relevant information and logical features of an asset. These must be massaged into

desirable, functional descriptions. High-fidelity models require adequate knowledge

representations. Working attributes may be mined from characteristic data, and integrated

within some information management system. In many ways, this process is time-

consuming and partially duplicated across designs [Curran, 2014]. An extension of this

process involves the evaluation of asset performance. Models for state-transition systems

exist and methods for their analysis are typically well-known. However, the “correct”

performance metrics, operational constraints, and degrees-of-freedom are in general not

well-known. In a POMDP, one seeks to maximize some sequence of “states” to achieve

some “reward” through “actions”. This model can be applied off-the-shelf if and only if

acceptable, well-defined notions of states, rewards, and actions are known. For the

purposes of system identification, evaluation, and optimization, very few “universal

criteria” exist. The functional mappings from model attributes to states, rewards, actions,

and goals/objectives are again difficult and expensive to construct. These mappings are

typically developed on a project-specific basis, rendering them difficult to migrate beyond

very narrow conditions.

 As engineered systems become increasingly complex and adaptive, the decision

making process becomes increasingly convoluted. Objectives, constraints, performance

criteria, and control actions become non-stationary and outright obscure. The goals of asset

6

management become uncertain. In a general sense, the planning problem is ill-posed, and

new techniques must be sought.

1.2 Motivation

 The governance of complex assets requires systematic procedures. Planning

activities consolidate decision-making regarding the fate, utilization, and performance of

assets. This form of governance is often accomplished through a spectrum of high-level

management frameworks and low-level optimal control policies. For complex assets, these

processes require significant automation and intelligent decision support. Despite broad

industry acceptance, classical architectures for asset planning are relatively brittle.

Solutions are often ad hoc, non-interoperable, task-driven, and project-specific. Under

certain conditions, models of the asset and its environment may be over-calibrated. Under

others, the analysis may be rendered intractable or invalid. Classical architectures require

major rework for new asset classes, models, and mission scopes. There is an emerging

need for domain-oblivious, platform-agnostic solutions.

 This thesis establishes a planning architecture which is extremely general, yet

requires only a basic level of mathematical sophistication. Our methodology centers on the

desirability to preserve what foundationally constitutes a form. Almost all components,

processes, systems, and assets admit symbolic descriptions from which integrity is often

sought. Integrity in this sense represents “correctness” – a proximity to homeostasis in the

form of stable equilibria and ideal conditions. Our approach grounds these abstract ideas

within the context of finite discrete state-transition systems. The definition of an asset is

generalized to the limits of dependability engineering. Ideas from network science and

7

graph theory are used to construct metrics for robustness, resilience, and efficiency.

Enforcing these model-centric signatures is germane for all assets. Through this

interpretation we are able to construct “universal” performance evaluations and planning

objectives. This allows a single architecture to automate this process for all assets.

 This research is motivated by two major challenges. The first challenge is

representational. Solutions must provision for inputs over a massive semantic range. This

challenge is tackled through information theory, utilizing similarity metrics such as the

graph edit distance (GED) and normalized compression distance (NCD). These metrics are

parameter-free, feature-free, alignment-free comparisons of finite objects. These similarity

metrics are used in conjunction with fitness indicators for model robustness and equilibrium

to yield an integrity score. The second challenge is algorithmic. One must devise a fast

procedure for identifying strategies. The prescribed actions must securely defend against

adversarial attacks on the asset, while behaving safely albeit opportunistically in the face

of naive stochastic environments. This situation presents itself as a combinatorial game

which can be efficiently searched using backwards induction and variations of minimax.

 The impetus therefore corresponds to generalizing the evaluation and prescription

modules of the aforementioned “three-phase” planning architecture. Throughout this work,

it is assumed that adequate monitoring is available. High-performance, real-time online

(RTO) algorithmic solutions are sought. These solutions must be robust, and make few

assumptions regarding the asset or its domain. An architecture which is adaptive yet non-

brittle is developed. Performance objectives, evaluation criteria, and optimization

procedures are kept domain-oblivious and platform-agnostic. The remainder of this thesis

8

illustrates the concepts of generalized assets, universal integrity metrics, and game-

theoretic optimizations. It develops these ideas from theoretical frameworks to working

implementations. The result is a Generalized Asset Integrity Game Engine (GAIGE),

which is shown to be versatile and scalable.

1.3 Contributions

 This thesis brings to light several areas of research and unites them under a common

theme. The contributions to asset integrity planning are summarized here.

1.3.1 Generalized Asset Performability Criteria

 Advancements in general modelling are used to formulate an abstract definition for

generalized assets. Several fit-for-purpose concepts are explored using the language of

graph theory and network science. Dependability metrics, such as reliability, availability,

and importance, are used as performance indicators for a variety of reference graphs. The

best-known results from information theory are used to define similarity measures. The

edit distance and normalized compression distance are used to construct a payoff function

for asset fitness. This is defined by an integrity score, which represents the proximity to an

ideal (dependable) topological configuration.

1.3.2 Game-Theoretic Planning

 Asset planning is formulated as a noisy sequential game. The base game is a two-

player zero-sum stochastic game with incomplete information and imperfect actions. The

base game is nonetheless mean-field symmetric in payoffs (zero-sum), actions, and

information. This form admits a minimax solution. Perturbations to the base game structure

9

induce deviations away from minimax trajectories. This thesis examines strategies which

are resilient to such noise.

1.3.3 Generalized Asset Integrity Game Engine.

 This thesis augments brittle and non-competitive planning architectures. These are

often based on partially-observable Markov decision processes (POMDP), with a state-

space calibrated for a particular asset or domain. Classical, decision-theoretic planning is

based on policy or value iteration that is optimized for harsh environments. In harsh

environments, risk sources are stochastic, albeit naive. Loads and effects such as wind,

waves, storms, earthquakes, freeze-thaw cycles, and solar damage - are by themselves

applied passively to reduce the asset condition. These risk sources have no direct

knowledge of inspection and maintenance practices. The harsh environment might act in

an extreme manner, but possesses neither the intent, nor the intelligent look-ahead to disrupt

asset persistence. Background aging processes, themselves mixtures of stochastic and

deterministic mechanisms, include such things as corrosion, crack-propagation, fatigue, or

other incidental damage. These make up the standard antagonists in the so-called harsh

environmental regime.

Game-theoretic planning extends integrity reasoning to hostile environments. In

hostile environments, intelligent adversaries work in conjunction with natural risks to

actively deny asset performance. Game-theoretic asset integrity planning seeks to find

action sequences which are robust against all possible outcomes. Strategies must securely

defend against worst-case attacks while ensuring safe, opportunistic utilization. This thesis

combines several algorithms to deliver a fast, anytime-optimal response.

10

2 GENERALIZED ASSET PERFORMANCE

2.1 The Generalized Asset

 Abstractly, an as-set is a basic set equipped with a performance measure. Basic sets

are finite, discrete collections of distinct, countable objects. A performance measure is a

way of assigning value to any subset of elements in the set. A complex asset is enriched

with additional structure, such as a partially-ordered power-set. Complex assets may

feature recursively-nested subsets and interacting measures. Being composed of sets,

measures, and their operations, these “abstract assets” are studied more formally in pure

mathematics.

 More concretely, the term asset often refers to a real-world system. Most engineered

systems can be categorized as assets. These systems incorporate many elements whose

continued structural existence and correct operation generates some reward. Complex

assets extend this concept further. They include large-scale structural ensembles of

interacting components and subsystems. Complex assets are typically identified by

massively modular interconnectivity. Their utilization produces emergent, uncertain risks

and rewards at multiple scales. Payoffs are typically measured in terms of socio-economic

utility. The ownership of complex assets is distributed across many stakeholders, who

share the costs, benefits, and risks associated with the asset.

 Examples of modern (complex) assets include cyber-physical networks, socio-

technical systems, critical infrastructures, civionics platforms, and high-utility

11

interconnects. While these objects have become increasingly complex, their modelling and

simulation has become increasingly fit-for-purpose. All assets nonetheless admit a

sequential evolution in time. It is possible to witness the asset at discrete time-steps, and

infer temporal difference relations between the set of previous and current observations.

Of course, highly-variable conditions can significantly affect the belief in system

configuration. This belief is based on partially observable states, incomplete information

feedback, and variable utilization profiles based on moving performance constraints.

 Several modelling frameworks are capable of capturing the workings of complex

assets. A modern approach involves the use of a modelling language. Modelling languages

express information, semantics, and systems knowledge in a structure that is defined by a

consistent set of rules [Jezequel et al., 2002]. The relevant system characteristics, including

components, events, relations, and process behaviours, can be described in a modelling

language. Several model description languages (MDL) also incorporate the ability to

specify performance requirements and constraints which must be satisfied. In some cases,

these boundary-like conditions are left out, or the MDL lacks a direct syntax for their

specification. These “incomplete” descriptions are effectively domain-oblivious. Any

information they convey regarding the performance state(s) of a real-world system must be

extracted from the appropriateness of the model representation itself. This is in direct

contrast to a domain-specific MDL, which possesses enough expressive power to also

describe the fitness of the system at hand. Put another way, a domain-specific MDL

encodes not only the structure and dynamic behaviour of the actual system, but also some

implicit impression of its overall performance. This performance is gauged through pre-

12

constructed indicators, measurable states, and/or a sense of fitness condition. The domain-

oblivious or general-purpose MDL encodes a dynamical system through a model, but does

not embed any proper assessment of its own configuration.

 The line between both types of model description (and their language) is not

necessarily crisp. For example, some descriptions embed meta-data, error-checking and

control, aggregated observations, and system-level scoring. In this work, the more general

case is assumed; i.e. efforts to describe and embed the state of a system into its own

description are agnostic. The setup for generalized assets is that they function like any

MDL which coherently realizes, interprets, and encapsulates a complex real-world system.

 In summary, a generalized asset is an umbrella term used to reference a finite

discrete collection of information emitted and presented by a source. In this work, the

source refers specifically to an abstract model of an actual, real-world system. The

generalized asset captures the relevant workings through some MDL. We mainly consider

domain-oblivious MDLs, where asset descriptions do not implicitly encode assertions

regarding an overall fitness level or global score. This definition of generalized asset is

broad and all encompassing. In motivating the development of a useful architecture, we

follow with a review of the most common asset modelling frameworks.

2.2 Modelling Institutions

 The vast majority of generalized assets are given in terms of a model description

language (MDL). An MDL expresses the relevant objects, states, relations, and transitions

13

of the system at hand. Paradigms for abstraction, reasoning and modelling assets vary

greatly; Table 2.1 lists several common modelling institutions.

Table 2.1. Modelling Institutions.

Institution Diagrammatic Mechanism Abstraction for

Formal System

Axiomatic Reasoning

Rewriting

Association Scheme Set Indexing / Design

Algebraic Structures

Combinatorial Designs

Finite State Machine Language / Automata Models of Computation

Process Calculus

Process Algebra

Message Passing Actors

Simulations

Block Diagram Process Flow Systems Modelling

Vector Addition System

(and variants)

Traversal Space Distributed Systems

Petri-Net

(and variants)

Stochastic Queue Queuing Networks

Concurrent Processes

Boolean Circuitry Logic Tableau AC0, NC0 Analogies

Belief Networks

 (Including Neural, Boltzmann,

Markov, Bayes)

Revision / Propagation

Machine Learning Optimization

Pattern Recognition

Generation

Classification

 Each institution is a mathematically well-defined methodology for representing

information, and ultimately modelling the behaviour of a logical system. Their ontological

makeup can be categorized by their primary diagrammatic mechanisms and modelling

abstractions. Diagrammatic mechanisms can be vaguely understood as the methods

through which information is logically traversed, in the sense of being tagged, parsed,

updated, and/or reasoned about. Each institution provides a modelling abstraction, which

services a theoretical scope and range of practical applications.

14

 Many of these institutions are weakly interchangeable, as morphisms between them

exist under appropriate conditions [Goguen and Burstall, 1992]. A common, unifying

theme is that all of these systems involve the propagation of causality in the form of state-

transitions or other transactions. Many logical operations in one institution are also

available in another, or some equivalence of operations exist [Diaconescu, 2008].

 These institutions often admit a single, common ontological interpretation in graph-

theoretic form For example, graphs (and their labelling) generalize the diagrammatic

mechanisms of finite state machines, block diagrams, vector addition systems, petri-nets,

circuits, networks, and trees. Graphs can be used as abstractions for conceptual and

semantic models. They provide structures for sub-symbolic, connectionist reasoning.

Graphs are essentially a very general, frequently used institution for representing and

processing information. They are encountered in computer science, systems engineering,

and well-adopted by formal language theory. Graphs are at the heart of many programming

paradigms. In engineering design, they serve as the basis for the Unified Modelling

Language (UML). They also provide a standard way of formatting information in the

Process Specification Language (PSL). The PSL is foundational to ISO 18629, which

provides standards for industrial automation systems and integration [ISO 18629, 2006].

15

2.3 Graphs and Their Relatives

2.3.1 Preliminaries

 A graph consists of two finite sets, V and E. Each element of V is called a vertex.

The elements of E are called edges. The edges in E are pairs of vertices. Together, V and E

form a graph, G. Graphs model pairwise relationships (edges) between objects (vertices).

The basic notion of a graph can be extended in several ways:

1. When the set E contains ordered pairs of vertices, we obtain a directed graph,

or a digraph. Each edge in a digraph has a specific orientation.

2. When the set E contains repeated elements, it becomes a multiset. The

resulting graph is then a multigraph.

3. When an edge can be formed from a vertex to itself, we obtain a “loop”.

Graphs containing loops or self-edges are known as pseudographs.

4. Allowing edges to be arbitrary subsets of vertices gives rise to hypergraphs.

5. Allowing V or E to be an infinite set, one obtains an infinite graph.

6. By allowing vertices to reference or signify groups of vertices and edges

together (subgraphs), one obtains a metagraph. Metagraphs are “graphs of

graphs”.

 For notational convenience, an edge directed from vertex u to vertex v may be

represented as {u,v}, or more concisely as uv when context allows. The order of a graph G

is the cardinality of its vertex set. The size of a graph G is the cardinality of its edge set.

Given two vertices, u and v, if 𝑢𝑣 ∈ 𝐸, then u and v are said to be adjacent. If 𝑢𝑣 ∉ 𝐸, then

16

u and v are non-adjacent. Furthermore, if an edge e has vertex v as an endpoint, we say that

v and e are incident. The neighborhood of a vertex v, denoted N(v), is the set of vertices

adjacent to v. For a set of vertices S, the neighborhood is the union of neighborhoods of the

vertices in S. The degree of v, denoted by deg(v), is the number of edges incident with v,

with self-loops counted twice. In simple graphs, this is the same as the cardinality of the

vertex neighborhood, N(v). The maximum degree of a graph G, is defined as Δ(𝐺) =

𝑚𝑎𝑥(𝑑𝑒𝑔(𝑣) ∣ 𝑣 ∈ 𝑉(𝐺)). The minimum degree of a graph G, is defined as δ(𝐺) =

𝑚𝑖𝑛(𝑑𝑒𝑔(𝑣) ∣ 𝑣 ∈ 𝑉(𝐺)). In normal graphs, the handshaking lemma applies, yielding a

result that says the sum of the degrees of the vertices is equal to twice the number of edges.

This result is also known as the first theorem of graph theory.

 A path in a graph is a sequence of distinct vertices, 𝑣1,𝑣2,. . . , 𝑣𝑘, such that 𝑣𝑖𝑣(𝑖+1)

is an element of E for 𝑖 = 1,2, . . . , 𝑘 − 1. The length of a path is the number of edges on the

path. A cycle in a graph is a sequence of vertices 𝑤1,𝑤2,. . . , 𝑤(𝑟−1), 𝑤𝑟 , such that

𝑤1,𝑤2,. . . , 𝑤(𝑟−1)is a path with 𝑤1 = 𝑤𝑟 , and 𝑤(𝑟−1)𝑤𝑟 ∈ 𝐸. Essentially, a cycle is a closed

path. Self-loops can also be considered cycles in the degenerate case. The length of a cycle

is defined as the number of edges on the cycle. An odd cycle has even length, and vice-

versa. A graph of order n is considered a tree graph, or simply a tree, if and only if it is

acyclic and contains n-1 edges.

 A degree distribution is a probability distribution of the in- and out- degrees of all

the vertices in a graph. A path-length distribution is a probability distribution of the lengths

of non-cycle paths between all vertex pairs in the graph.

17

 A graph is considered connected if every pair of vertices can be joined by a path.

Each maximal connected piece of a graph is called a connected component. A graph is

strongly connected if every vertex is reachable from every other vertex through some path.

If the removal of a vertex v from G causes the number of components to increase, then v is

called a cut vertex. If the removal of an edge e from G causes the number of components

to increase, then e is called a bridge. The smallest connected graph contains two vertices

sharing a single edge with unit degree and path distributions. A graph is isomorphic to

another graph if there is an edge (and label) preserving bijection between all vertices in one

graph and all vertices in the other graph. A graph is homomorphic to another graph if there

is an edge (and label) preserving surjection between all vertices in one graph and all vertices

in the other graph.

2.3.2 Special Graphs

 There exist several types of graphs with special attributes. The most crucial to our

discussion are the null, empty, and complete graphs. The null graph is simply the null set,

and contains no vertices or edges. The empty graph on n vertices, denoted by En, is the

graph of order n where E forms an empty set. The complete graph on n vertices, denoted

Kn, is defined as the graph of order n where ∀u ∈ V, ∀v ∈ V, uv ∈ E.

 A graph is called ⟨Kv,Ke⟩-complete if the number of edges is related to the number

of vertices by the following equation:

 |𝐸| = 𝐾𝑒(
|𝑉|(|𝑉| − 1)

2
) + 𝐾𝑣|𝑉| 2.1

18

Where:

 |E| denotes the cardinality of the edge set, or graph size.

 |V| denotes the cardinality of the vertex set, or graph order.

 Ke is the number of edges connecting each pair of non-identical vertices.

 Kv is the number of self-adjoint edges, or allowable self-loops per vertex.

 This definition of ⟨Kv,Ke⟩-completeness is unique and not found in the standard

literature. By convention, with Kv > 1 we have the pseudograph property, and for Ke > 1

we have the multigraph property. In a graph-theoretic sense, this construction would be

termed a pseudo-multi-graph. For simplicity, we refer to it as the ⟨Kv,Ke⟩-complete graph

of order n. This graph can be denoted by the triple ⟨Kv,Ke,Kn⟩ indexing a multiplicity over

the complete graph Kn. It can be concisely read off as K(v,e,n). Figure 2.1 illustrates a K(v,e,n)

for <1,2,5> and <3,3,3>.

Figure 2.1. K(1,2,5) and K(3,3,3).

A weighted graph is a graph in which each edge has an associated weight, cost, or

distance. The weights are typically metric, and can be made to represent functional

19

evaluations. In a weighted graph, the weight of an edge e is denoted by w(e). If the edge e

directs vertex u to v, we can write w(u,v). If no explicit weight is given, the edge is assumed

to have weight 1 if it exists. Non-edges are usually given the weight 0 or ∞ , depending on

the context. A weighted graph G can be represented by a weighted adjacency matrix

𝐴 = {𝑎𝑖𝑗}, where 𝑎𝑖𝑗 = 𝑤(𝑣𝑖, 𝑣𝑗).

 In general, a weighted 𝐾(𝑣,𝑒,𝑛) forms a Cartesian product space that is represented

by a multi-dimensional adjacency array. This array can be indexed by (3+1)-tuples which

take a source vertex, a destination vertex, a valid edge between them, and point to a

corresponding weight or traversal cost. For example, 𝐾(3,4,5)could be represented by an

adjacency list.

The length, or number of items in this list, is found by substitution into equation 2.1 giving:

 |𝐸|=4(
|5|(|5| − 1)

2
) + 3|5|=55 2.2

 Each of the |𝐸|=55 edge weights of the 𝐾(3,4,5) complete graph can be queried from

the adjacency list. If one assigns integer labels, this can be accomplished via some

production of the form ⟨𝑎𝑖∈𝑛, 𝑎𝑗∈𝑛, 𝑎𝑖𝑗⟩, where 𝑖𝑗 ∈ {𝑒} if 𝑖 ≠ 𝑗, and 𝑖𝑗 ∈ {𝑣} if 𝑖 = 𝑗.

2.3.3 The 𝑲(𝟏,𝟐,𝑵)Asset Representation

 Many generalized assets epitomize complex, dependable systems. These systems

can often be given in the form of K(v,e,n) = ⟨1,2,N⟩ weighted complete graphs. The K(1,2,N)

graph forms an 𝑁 × 𝑁 weighted adjacency matrix with all N2 elements filled. Recall that

20

if adjacency does not exist between two model constituents, the edge element can take on

a vanishingly small or large value, depending on the context.

 This case has special significance, because many real-world assets are described,

handled and processed using the equivalent of a 𝐾(1,2,𝑁)representation. The 𝑁x𝑁 weighted

adjacency matrix is commonly yet unknowingly encountered across several disciplines. It

is an efficient data structure for describing relations between dense, highly inter-dependent

objects. Furthermore, transformations are often imposed so as to convert to and from this

𝑁x𝑁 format. The resulting adjacency matrices are nonetheless capable of capturing all the

relevant state-transitions and process interactions between elements.

Finally, because the 𝐾(1,2,𝑁) graph admits an 𝑁×𝑁 matrix, one can often extract and

operate over certain matrix attributes, such as the characteristic polynomial or eigenvalue

decomposition. This makes certain assets more amenable to spectral analysis [Gertsbakh

and Shpungin, 2011].

21

2.3.4 Graph Dynamical Systems

 Many generalized assets evolve as a graph dynamical system (GDS). Typically, the

generalized asset is presented to a decision agent (or its architecture) chronologically, over

a finite number of discrete time-steps. In the most common setup, a generalized asset is an

encoding of what is essentially an active or live 𝐾(1,2,𝑁)graph. At each time-step, there is a

noisy realization of an 𝑁×𝑁 weighted adjacency matrix which represents the current belief

in the real-world asset configuration. The generalized asset performance can then be

assessed by analyzing the sequence of graphs (or matrices), as they evolve over time.

Formally, a graph dynamical system (GDS) consists of:

 A graph 𝐺, with vertex set 𝑣(𝐺) = {1,2, . . . , 𝑛}.

 For each vertex i, a state 𝑥𝑖 ∈ 𝑋, where 𝑋 is some finite set of states. The system

state is given by the n-tuple, 𝑥 = (𝑥1,𝑥2,. . . , 𝑥𝑛).

 A vertex function, 𝑓𝑣, for each vertex 𝑣, which maps the state of vertex 𝑣 at time 𝑡to

the vertex state at time 𝑡 + 1 based on the states associated with 𝑥. Particular

emphasis may be placed on the states of the vertices adjacent to 𝑣.

 An update scheme that governs how the vertex functions are applied, so as to induce

a discrete dynamical system with map 𝐹 : 𝑋𝑛 → 𝑋𝑛.

 Characterizing the performance of a GDS is computationally difficult [Zelazo and

Mesbahi, 2010]. Research in this area seeks local-to-global relationships, where from local

graph properties (and update rules) one seeks to infer the emergence of global behaviour.

22

The GDS formalism is therefore applicable to a wide variety of complex systems, and is

perhaps the most dominant subsumption within our notion of generalized assets.

2.4 Performance Evaluations

 Generalized assets must have their configurations analyzed and assessed. This

process constitutes a performance evaluation, which determines the overall asset behaviour,

and to what extent the asset is functioning. Whether qualitative or quantitative, highly-

detailed or of low resolution, a performance evaluation essentially maps local and global

states to a more condensed encoding. This reduction may output a numerical score, tuple,

or alpha-numeric string of relevant information. Mappings from states and configurations

to their resulting scores can be constructed from two distinct evaluation paradigms. We

categorize these as being either fitness-based or similarity-based. These evaluation types

can also be relative or absolute. In most planning architectures, the purpose of a

performance evaluation is to ultimately make informed decisions about the fate of the asset.

2.4.1 Fitness-Based Evaluations

 In fitness-based evaluations, several well-known and desirable properties are

composed from the ground-up into an overall score. This technique utilizes both indicators

as well as metrics. Indicators identify the existence potential for factors which cannot be

well-defined or well-measured. Indicators are typically more qualitative, and are often

23

derived from heuristics. Their development is predominantly driven by experience and a

sense of best-practice. For our purposes, metrics are a more concrete, quantitatively

stronger form of indicator. They may be applied to uncertain or partially-observable

properties through estimation and/or approximation.

 Both indicators and metrics are essentially measures of expectation based on

experience, observations and information-gains. Combining these measures into a score

identifies the fitness-level of the asset. This evaluation can be either absolute, relative or

sometimes both, depending on how the scoring functions are used. An example of both

types of fitness is captured by the Elo ratings system used in Chess, or the TrueSkill system

used by other competitive ladders [Herbrich and Graepel, 2006]. These ratings systems

specify strength of play which can be interpreted as a score or fitness level. The higher the

rating, the more potent the player, and the more statistically likely to defeat any random

opponent selected from the set of all players. This is an example of an absolute measure

based on the ground state of the ladder. It corresponds to a difference between the

probability distributions of a player's strength, and the distribution of strengths for all

players. In addition, the higher the ratings difference between two randomly selected

players, the more likely the higher rated player will defeat the lower rated player. This is

again an assessment of the difference between two probability distributions. This scaling is

often non-linear, with small differences in rating being more pronounced at high levels of

play. In this way, the ratings system can also be used as a relative measure of performance.

 Fitness evaluations often scale monotonically. An increase (or decreases) in key-

performance measures will directly correspond to an increase (or decrease) in fitness level.

24

The main advantages and disadvantages of fitness-based evaluations are contained in Table

2.2.

2.4.2 Similarity-Based Evaluations

 In similarity-based evaluations, asset configurations are compared and contrasted.

The differences between asset configurations are then associated with a score. The

similarity (or difference) may be relative or absolute depending on the chosen reference

datum. Similarity-based evaluations typically assign more or less importance to patterns

of discrepancy based on their regularity, magnitude, frequency, and location.

 An example of this type of evaluation is the edit distance between two strings. The

edit distance typically counts the number of operations required to transform one string into

the other. In most contexts, one string represents the achievement of some goal, ideal, or

reference configuration. The other string represents the current sample for comparison. In

this way, the similarity between strings represents the performance of one with respect to

the other. Similarity-based evaluations are able to capture the notions of “performance” and

“integrity” in a general sense, as these are both manifestations of “deviations from

correctness”. This has the advantage of being nearly domain-oblivious. Nonetheless, some

notion of proximity to “correctness”, i.e. the reference design object, must be known or

estimated in advance. Table 2.2 summarizes the key benefits and drawbacks of fitness-

based and similarity-based evaluations.

25

Table 2.2. Fitness vs. Similarity-Based Performance Evaluations

Performance

Evaluation

Advantages Disadvantages Examples and

Applications

Fitness-Based

– Specialized,

customizable.

– Ascertains detailed,

actionable knowledge

about the asset.

– Low computational

complexity in the best

case.

– Requires domain-specific

knowledge.

– Difficult to construct and

evaluate.

– High computational

complexity in the worst case.

– Ratings systems.

– Voting/Auctions.

– Analytical

Hierarchy/Network Process.

– Evolutionary and/or

Genetic fitness.

– Classifiers.

Similarity-

Based

– Applicable almost

everywhere.

– Requires little

domain knowledge.

– Simple to construct

and evaluate.

– Computational costs

are fixed/known.

– Requires baseline reference

object(s).

– Provides vague, hard to

interpret knowledge about the

asset.

– Operates at a higher level of

abstraction.

– Edit distances (Hamming,

Levenshtein, etc.)

– Sorensen-Dice Index.

– Jaccard Coefficient.

– Information-theoretic

distances.

– Kolmogorov Complexity.

– Entropy estimation.

– Discrepancy Analysis.

– Anomaly detection.

26

2.5 Binary Monotone Fitness

 The performance of real-world assets underscores dependable operation and utility

production. These outcomes should be low-risk, safe, secure, reliable, available, and of

high-quality. Many of these systems are modelled as networks and graphs. The relevant

information regarding components and state-transitions is captured by some model

description language, which ultimately expresses a generalized asset. Classical (non-

quantum) components and systems exist in only one discrete state at a time. In dependable

systems engineering, the state function is almost always a fitness-based performance

evaluation. This implies a many-to-one composition of metrics with domain-specific

parameters, optimizations, and tunings.

 Because several fitness-based evaluations share similar mathematical properties, it

is sometimes possible to abstract away from a particular asset, its domain, and specific

analysis parameters. This is particularly true when systems are composed of near-identical,

tightly-coupled elements [Cox, 2009]. These elements are frequently queried together

using similar access patterns and return similar states. Under these conditions, it becomes

efficient to replace the individual, potentially real-valued state evolution functions with a

simple logical map. This mapping is typically a truth table which determines whether or

not components or systems exist above or below some threshold value. This can be viewed

kind of pass/fail test criteria, which flags the value 1 denoting existence above some

threshold (e.g. activation potential), and 0 denoting the existence below said threshold. A

27

structure function, Φ, can then be defined for the specified threshold which distinguishes

between two states: a functioning or active state and a failed or inactive state.

 Fitness-based performance evaluations, when based on threshold exceedance or

binary compliance criteria, are often minimally sufficient for actionable decision-making

and planning at a large-scale [Cox, 2009]. In many cases, this does not alleviate the need

for a more intricate fitness-based analysis [Bier, 2005]. Nonetheless, this practice can be

applied to many components and systems, as it rapidly imparts the most fundamental and

crucial information. A discussion is therefore necessary to appreciate the induced scope

with respect to generalized assets.

2.5.1 Binary Monotone and Coherent Systems

 A system is considered monotone and coherent if and only if it satisfies both the

monotonicity and coherence requirements for its structure function. Monotonicity requires

(i) that a structure function Φ be non-decreasing in each argument, and (ii) that the function

maps to zero when all components are failed, Φ(0⃗) = 0, and maps to one when all

components are functioning, Φ(1⃗) = 1. Condition (i) implies that the system can not

deteriorate (that is, change from the functioning state to the failed state) by improving the

performance of a component. Condition (ii) implies that if all the components are in the

failure state, the system necessarily has to be in the failure state (although this is not

necessarily sufficient). Similarly, if all the components are in the functioning state, the

28

system is in the functioning state. Coherence requires the system be (i) monotone, and (ii)

each component is relevant and actually contributes to the overall structure function.

 The combination of Boolean (or binary) threshold states, monotonicity and

coherence yields a binary monotone system, which is a useful description for rapidly

assessing the condition, state, or fitness of a sub-region within a model. Many of the terms

and definitions found in this section have been adapted from the work of Aven (1991),

[Aven and Jensen, 1991].

2.5.2 Structure Functions

2.5.2.1 Series-Parallel Systems

 A system that is functioning if and only if each component is functioning is called

a series system. The structure function for a series system is given by:

 𝛷(𝑥) = 𝑥1𝑥2...𝑥𝑛 =∏(𝑥𝑖)

𝑛

𝑖=1

 2.3

A system that is functioning if at least one component is functioning is called a parallel

system. The structure function for a parallel system is given by:

 𝛷(𝑥) = 1 − (1 − 𝑥1)(1 − 𝑥2)...(1 − 𝑥𝑛) = 1 −∏(1 − 𝑥𝑖)

𝑛

𝑖=1

 2.4

The expression on the right-hand side can also be given in coproduct form:

29

 𝛷(𝑥) = 1 − (1 − 𝑥1)(1 − 𝑥2)...(1 − 𝑥𝑛) =∐(𝑥𝑖)

𝑛

𝑖=1

 2.5

2.5.2.2 k-out-of-n Systems

 A system that is functioning if and only if at least k out of n components are

functioning is called a k-out-of-n: good system. Series and parallel systems represent the

boundary cases of k = 1, and k = N, respectively. A series system is an n-out-of-n system,

and a parallel system is a 1-out-of-n system. The structure function for a k-out-of-n system

is given by:

 𝛷(𝑥) =

{

 1 𝑖𝑓 ∑𝑥𝑖

𝑛

𝑖=1

≥ 𝑘

0 𝑖𝑓 ∑𝑥𝑖

𝑛

𝑖=1

< 𝑘

 2.6

2.5.2.3 Minimal Cut and Path Sets

 A cut set K is a set of components that by failing causes the system to fail, i.e.,

Φ(0𝐾⃗⃗ ⃗⃗ , 1⃗) = 0. A cut set is minimal if it can not be reduced without losing its status as a

cut set. A path set S is a set of components that by functioning ensures that the system is

functioning, i.e. 𝛷(→ 1𝑆 , → 0) = 1. A path set is minimal if it can not be reduced without

losing its status as a path set.

30

2.5.3 Dependability Metrics

2.5.3.1 Reliability

 The reliability of a system represents the probability that it has not failed. For

binary-monotone-coherent systems, the series-parallel and k-out-of-n structure functions

help define the reliability. The reliability of a k-out-of-n structure of independent

components, all of which share an identical probability of non-failure (reliability) p, is

given by:

 𝑅 =∑(
𝑛

𝑖
)

𝑛

𝑖=𝑘

𝑝𝑖(1 − 𝑝)(𝑛−𝑖) 2.7

Where:

 R is the reliability of the k-out-of-n system.

 p is the probability of non-failure.

 n is the total number of components.

 k is the minimum number of functioning components for non-failure.

 i is the index.

 “n choose i”, or (𝑛
𝑖
) is the binomial coefficient, given by

𝑛!

𝑖!(𝑛−𝑖)!
 with 𝑖 ≤ 𝑛, and

𝑖, 𝑛 ∈ ℕ.

 This system is sometimes referred to as “i.i.d. k-out-of-n:G”, where i.i.d. denotes

independent and identically distributed, and G or F denote whether the combinatorial

threshold k leads to a “good” or “failed” system.

31

 There exist a number of methods for reliability computation of a general structure

such as a network or a graph. Many of these methods are based on the minimal cut (path)

sets. For smaller systems which are either very reliable (or unreliable), the so-called

inclusion-exclusion principle may be applied. There also exist state enumeration methods,

factoring (pivot-decomposition) methods, and many others. For a complete treatise of these

methods, the reader is referred to [Aven and Jensen, 1991]. More generally, reliability

analysis may concern itself with multi-state and non-monotone systems. These systems

may feature components with non-identical failure probabilities, time and age-dependent

failure models, inter-related failures, and other effects. A presentation of these more

advanced reliability models is beyond the scope of this work.

2.5.3.2 Availability

 The steady-state availability (A), and failure frequency (w) are perhaps the two most

important measures of repairable and self-healing systems [Mishra, 2008]. Several other

steady-state availability measures can derived from these parameters. For example, there is

the mean failure-repair cycle time (MCT), the mean up-time (MUT) and mean-downtime

(MDT) during a failure-repair cycle, and the expected number of system failures/repairs

during a specified time interval (T). Classically, the MCT, MUT, and MDT measures have

been derived from the mean-time-to-failure (MTTF), mean-time-between-failures

(MTBF), and mean-time-to/between-repairs (MTTR, MTBR).

32

These are given by:

 𝑀𝑇𝑇𝐹 =
1

𝑤
 2.8

 𝑀𝑇𝐵𝐹 =
𝐴

𝑤
 2.9

 𝑀𝑇𝑇𝑅 =
(1 − 𝐴)

𝑤
 2.10

Where w is given by failure expectations, according to the failure distributions of the

components, or system. For i.i.d. k-out-of-n:G systems, the point availability A (at time t)

is given by the ratio of expectation in uptime over the total time:

 𝐴 =
𝐸{uptime}

𝐸{uptime} + 𝐸{downtime}
=

𝐴(𝑘, 𝑛)

𝐴(𝑘 − 1, 𝑛)
 2.11

 A powerful multi-dimensional Markov model developed by [Khatab et al., 2009],

has been developed for analyzing state-transition systems subject to stochastic

deteriorations and renewals. They model the availability of non-i.i.d., k-out-of-n:G systems

subject to repair via priority queues. Their formulation utilizes the formalism of a

stochastic automata network (SAN), which through Kronecker algebra is able to represent

very large scale finite capacity queueing networks. The stationary availability of each

component and the system are evaluated. With several assumptions made, the

corresponding numerical problem is solved using algorithms from Monte Carlo simulation.

33

This method is highly sophisticated, and the technical details can be found in [Khatab et

al., 2009].

2.5.3.3 Improvement and Importance

 The main dependability concern is to certify that real-world assets operate

effectively in the presence of process deviations and component failures. This analysis

leads to network improvement and importance measures, where priority is given to

elements (for graph-defined assets: vertices, edges) that contribute the most to the process

or system.

 Concepts from reliability importance can be generalized to include the

contributions of a component towards other fitness-based performance metrics. These

might include maintainability, serviceability, availability, risk, etc. Two importance

measures in the literature are Improvement Potential and Birnhaum's measure. These are

again treated in detail via [Aven and Jensen, 1991]. There are also techniques based on

risk achievement or risk reduction, as well as the criticality importance, and Fusell-Vesly's

measure [Cox, 2009]. Several of these measures also operate on graphs where the quality

of edges and vertices can undergo variations. Each measure of importance depends on

slightly different interpretations. However, they are all based on the contribution of a

component's criticality to the overall system performance. This often implies a parametric

sensitivity analysis for the system [Mishra, 2008]. Importance measures can be useful tools

in the system optimization process.

34

Qualitatively, this procedure can be described as follows:

1. Identify the most important units by means of the chosen importance measure.

2. Identify possible improvement actions for these units.

3. Estimate the effect on reliability, availability, and performance by implementing the

improvement.

4. Perform cost evaluations.

5. Make an overall evaluation and take a decision.

This procedure can also be accomplished through simulation and importance sampling [Zio

et al., 2006]. As an example, consider the reliability of an i.i.d., k-out-of-n:G system. The

value of this metric can be improved by increasing the number of components in the system.

An increase in components from 𝑛 − 1 to 𝑛 gives the reliability improvement:

Δ𝑅 = 𝑅(𝑘, 𝑛) − 𝑅(𝑘, 𝑛 − 1) = (

𝑛 − 1

𝑘 − 1
)𝑝𝑘(1 − 𝑝)(𝑛−𝑘)

for 𝑛 ≥ 𝑘

2.12

As n increases, this improvement will become progressively smaller. The problem of

determining the optimal system size n, the reliability level R, and the threshold level k is an

issue which arises in system design. The sensitivity of a change in this system reliability,

with respect to changes in component reliability, can be found using:

𝑑𝑅(𝑘, 𝑛)

𝑑𝑝
= 𝑘 (

𝑛

𝑘
) 𝑝(𝑘−1)(1 − 𝑝)(𝑛−𝑘) 2.13

 Generalized assets may include systems which have the potential for load-sharing

and redistribution. The lifetime distribution for component failures is arbitrary and not

35

necessarily exponential. Repair or replacement of failed components is delayed until some

local criterion is met. Until restoration, the surviving components share (perhaps

disproportionately) the load offered to the system. Components under these loading cycles

are assumed to undergo accelerated aging. This results in a more contracted life model

and representative changes in the failure distributions.

 This more general situation represents a stand-in utilization model, as opposed to a

stand-by model. For stand-in systems, switching and maintainability concerns become far

more complex. These models have been investigated numerous times and are difficult to

analyze directly. Evaluating the importance and improvement potential for stand-in

systems is an area of ongoing research. The works of [Mishra, 2008], [Zio et al., 2006] can

be referenced for details.

36

2.6 Graph Fitness

 The properties of graphs serve as extremely useful performance metrics for

generalized assets. In a graph-defined asset, discrete elements undergo state-transitions

which interact to produce distinct patterns. Many of these patterns will be discernable at

small scales, while manifesting behaviours which are statistically, topologically, or

dynamically congruent at larger scales. It therefore becomes necessary to monitor,

evaluate, and act-upon the most relevant properties of a graph. These properties are

numerous, and their relevance varies by application.

 Graph fitness is a performance concept based on well-defined measures. These

measures can be based on graph performance indicators (GPI) or well-defined metrics such

as resilience, efficiency, robustness, and decomposability.

2.6.1 Graph Performance Indicators (GPI)

 The fitness of graph-defined assets is sometimes measured using graph performance

indicators (GPI). These are categorized based on the nature of the underlying graph

topology, and overlying coverage processes as summarized in Table 2.3.

37

Table 2.3. Categorization of GPI Types.

GPI Type

Topology

Coverage

Activity

Static

Dynamic

Static

– No add/remove of

vertices or edge.

– Fixed vertex and edge

states.

– e.g. bitmap image, non-

mutable array.

– Vertices and edges can be

added or removed.

– Vertex and edge states do not

change.

– e.g. reconfigurable Boolean

circuits, fabric/lattice switching.

Dynamic

– Existence of vertices

and edges is fixed.

– Vertex/edge states can

vary by process.

– e.g. Network flow,

traffic/capacity, petri nets,

timed automata.

– Creation/destruction of

vertices, edges.

– Variable states based on

coverage processes and

rates/locales of element

introduction/removal.

– e.g. disease spreading,

annealing, social games.

 Topological dynamics are changes in graph structure over time. GPIs for this

situation center on the robustness of a graph to changes in its topology. These metrics track

the ability of a graph to maintain structural properties while undergoing permutations to its

vertex or edge set. Decomposability characteristics focus on the changes to graph structure

in response to both random and targeted vertex/edge removals. These removals may occur

through discrete disconnection patterns or sweeping partition operations. The surviving

graph(s) may potentially have new strength and robustness characteristics. For example,

if the surviving components are more (or less) centralized and tightly clustered, the graph

38

is said to have hardened (or softened). Decomposition operations can therefore lead to

non-monotonic changes in graph properties. The opposite is also true. The recomposition,

or addition of new vertices and edge patterns may increase topological performance while

reducing coverage performance, through a phenomenon known as Braess' Paradox

[Braess, 1968, 2005]. It is therefore important to understand the induced, coupled

dynamics between topological and coverage processes.

 Coverage dynamics represent changes in the quantities of interest which affect

vertex or edge states over time. When vertex/edge states are merely Boolean existence

values we degenerate to a form of topological dynamics. It can be shown that any coupled

(coverage + topological) dynamics can be transformed into an equivalent static graph

topology [Rozenberg, 1997]. Every possible realization of the graph then becomes a

coordinate lookup in some large configuration-space. However, there is some inherent

difficulty in finding and applying this transformation [Fan and Mostafa, 2006]. For reasons

of algorithmic tractability, this method is rarely considered.

 GPIs for coverage may also involve gauging the utilization of the graph through the

percolation and articulation of its activation. Activation represents a distribution of volume

or energy of coverage. It is directly associated with the discrete packets of exchange such

as network flow, traffic, utility, etc. Percolation interfaces with topology to measure the

potential for coverage. It measures the capability of activation to hold or spread.

Percolation GPIs deal with reachability and connectivity. They may be based on routability

and conductivity, which concern the quality of routes, lengths, durations, etc. Percolation

is affected by the congestion levels of paths, circuits, and random walks between sources

39

and sinks. Articulation expresses the switching resolution of a coverage process. Its

performance relates to percolation through the saturation of pathways and the (in) ability

to route and/or spread activation. However, articulation is less concerned with re-routing,

latency, and throughput capability. It is more concerned with specificity and responsiveness

to sensitive coverage adjustments. Articulation GPIs seek to characterize the ability to

manipulate and redirect activation at small scales.

 Generalized assets can possess both topological dynamics as well as coverage

dynamics. This conglomeration leads to graph dynamical systems (GDS) which are

extremely difficult to analyze and possessing GPI which are hard to compute in general.

2.6.2 Graph Resilience

 For G with fixed P, the “resilience of G with respect to P”, is the minimum number

r, such that by removing r edges from G, one almost surely obtains a graph H not having

the property P. The most commonly accepted definition of graph resilience was put forth

by [Sudakov, 2008]. The local resilience of a graph G with respect to property P measures

how much one has to change G locally so that P no longer holds. The global resilience of

a graph is defined analogously, where the changes and properties are global. The resilience

of many graph properties can be used to construct valid GPIs for complex assets.

40

2.6.3 Graph Efficiency

 Efficiency is another commonly used metric to assess graph models and graph-

defined assets. It is predominantly a measure of coverage potential, and expresses a

resistance to failure from the perspective of coverage inadequacy. It can be computed at

both local and global scales [Latora and Massimo, 2001].

The average efficiency of a graph G is given by:

 𝜂𝑎𝑣𝑔(𝐺) =
2

𝑁(𝑁 − 1)
∑

1

𝑑(𝑖, 𝑗)

𝑛

𝑖<𝑗∈𝐺

 2.14

The average local efficiency of a graph G is given by:

 η𝑙𝑜𝑐𝑎𝑙(𝐺) =
1

𝑁
∑η𝑎𝑣𝑔(𝐺𝑖)

𝑛

𝑖∈𝐺

 2.15

The average global efficiency of a graph G is given by:

 η𝑔𝑙𝑜𝑏𝑎𝑙(𝐺) =
η𝑎𝑣𝑔(𝐺)

η𝑎𝑣𝑔(𝐺𝑖𝑑𝑒𝑎𝑙)
 2.16

Where:

 N is the total number of nodes in the graph G.

 𝑑(𝑖, 𝑗) ≃ 𝑑𝑚𝑖𝑛(𝑖, 𝑗) approximates the shortest path between node i and j.

 𝐺𝑖 is the local subgraph consisting only of a node i's immediate neighbours, but not

node i itself, in a graph 𝐺 with 𝑁 total nodes.

 𝐺𝑖𝑑𝑒𝑎𝑙 is a reference graph with idealized properties, such as the complete graph or

random graph, depending on the context.

41

2.6.4 Decomposability Metrics

 Measures of decomposability study the inter-connectedness of a graph as it survives

partitions through vertex and/or edge removals. The decomposition process can be

systematic or essentially random. A graph-defined asset suffering random component

failures will exhibit fitness degradation. Resistance to this process is effectively a form of

graph reliability. Similarly, an adversary seeking to inflict maximal damage to an asset

may have his actions viewed as a dismantling of key structural features in a model.

Resistance to this process can be measured by the Isoperimetric Number, which is also

known as the Cheeger Constant.

 Robustness to these and other effects can be captured by several topological and

coverage-based GPIs. Examples include the Hosoya or Wiener Index, the Estrada Index,

or Tutte Polynomial. These measures are outlined in detail in the work of [Bunke et al.,

2008]. As an example in graph robustness, let Ω(𝑣, 𝑒)be the set of all connected graphs G

with v vertices and e edges. Assume that the components fail independently of each other

with probability 1 − 𝑝. The familiar reliability equation gives the probability that a graph

G is connected:

 𝑅(𝐺) =∑𝑆𝑟(𝐺)𝑝
𝑟(1 − 𝑝)(𝑣−𝑟)

𝑣

𝑟=1

 2.17

Where 𝑆𝑟(𝐺) is the number of connected induced subgraphs of G that contain exactly r

vertices. An r-cutset of G is defined to be a set of r vertices in G that when removed from

G, leave it disconnected. The number of r-cutsets of G is denoted 𝐶𝑟(𝐺).

42

Since any set of r vertices in G must be either connected or disconnected, the following

relation holds:

 𝑆𝑟(𝐺) + 𝐶(𝑣−𝑟)(𝐺) = (
𝑣

𝑟
) 2.18

Given p, there is always at least one locally best graph in 𝛺(𝑣, 𝑒), i.e., a graph that is the

“most reliable” in the sense of connection probability. This interpretation of graph

reliability can be seen as a probability of surviving successive cuts and removals while

remaining connected.

 The isoperimetric number, or Cheeger constant is a numerical measure of a graph’s

disposition towards bottlenecks. It is yet another measure used to assess the inter-

connectedness of a graph. Let G be a finite undirected graph with vertex set V(G) and edge

set E(G).

For an allocation of vertices 𝐵 ⊆ 𝑉(𝐺), let 𝜕𝐵 = {(𝑥, 𝑦) ∈ 𝐸(𝐺): 𝑥 ∈ 𝐵, 𝑦 ∈ 𝑉 (𝐺) 𝐵⁄ }

denote the collection of all edges from a vertex x in B to a vertex y outside of B. Then the

isoperimetric number, or Cheeger constant of G, denoted h(G), is given by:

 ℎ(𝐺) = 𝑚𝑖𝑛{
∣ 𝜕𝐵 ∣

∣ 𝐵 ∣
: 𝐵 ⊆ 𝑉(𝐺),0 <∣ 𝐴 ∣≤

1

2
∣ 𝑉(𝐺) ∣} 2.19

Note that ℎ(𝐺)is positive if, and only if, G is connected. The value of ℎ(𝐺)is large if

partitions of the vertex set B lead to subsets with many edges between them.

43

2.7 Normalized Compression Distance

 A reasonable notion of similarity is how difficult it would be to transform one object

into another, using the most efficient transformation possible. The normalized information

distance (NID) is universal in this regard [Li et al., 2004]. Unfortunately, the NID is also

incomputable in general [Vitanyi et al., 2008]. Admissible information-theoretic distances

have been successfully applied to a variety of objects. The most prolific of these is the

normalized compression distance (NCD).

2.7.1 Kolmogorov Complexity

 Kolmogorov complexity is a notion of information content. It is based on two

principles: (a) all data can be represented as a bit string; (b) the shorter this string can be

described, the less information is contained in it. These principles are detailed in [Li et al.,

2004] and [Vitanyi et al., 2008]. The main idea is that with respect to some universal

Turing machine 𝑈, there must be some minimal description for any given data given by:

 𝐾𝑈(𝑥)=𝑚𝑖𝑛{|𝑦|:𝑈(𝑦)=𝑥} 2.20

 The Kolmogorov complexity 𝐾𝑈(𝑥)of a string 𝑥 is uncomputable in general. There

can be no algorithm which computes the Komolgorov complexity of x for all x, so that

∀𝑥, 𝐾𝑈(𝑥) ∉ 𝑇(𝑈). This result can be bounded from above, and for every algorithm which

bounds it, there is another algorithm which provides a better bound. Fortunately, all

computable compressors approximate 𝐾𝑈(𝑥).

44

 The Kolmogorov complexity of a file is a lower bound on the length of the ultimate

compressed version of that file. If one assumes that the natural data contain only effective

regularities that a good compressor finds, then 𝐾𝑈(𝑥)is only slightly smaller (up to a

constant factor) than the length of the compressed version 𝐶(𝑥); that is 𝐶(𝑥) + 𝑂(|𝑥|) ≈

𝐾𝑈(𝑥).

2.7.2 Normalized Information Distance

 The normalized (symmetric) information distance (NID) is given by:

 𝑁𝐼𝐷(𝑥, 𝑦)=
𝑚𝑎𝑥[𝐾(𝑥 ∣ 𝑦), 𝐾(𝑦 ∣ 𝑥)]

𝑚𝑎𝑥[𝐾(𝑥), 𝐾(𝑦)]
 2.21

When the incomputable functions 𝐾(*) are approximated by a good choice of compressor

𝐶(*), one obtains the normalized compression distance.

2.7.3 Normalized Compression Distance

 The normalized compression distance (NCD) expresses the similarity between any

pairs of finite objects. The NCD is an information-theoretic measure of how difficult it is

to convert one object into the other through computational means given by:

 𝑁𝐶𝐷(𝑥, 𝑦)=
𝐶(𝑥||𝑦)-𝑚𝑖𝑛[𝐶(𝑥), 𝐶(𝑦)]

𝑚𝑎𝑥[𝐶(𝑥), 𝐶(𝑦)]
 2.22

Where || is the familiar concatenation operator, and 𝐶(𝑥||𝑦)denotes a compression of the

concatenated representation of objects 𝑥 and 𝑦. This compression is assumed to be roughly

symmetric, so that 𝐶(𝑥||𝑦) ≃ 𝐶(𝑦||𝑥).

45

When the data emanates from generalized assets, which can be represented by graphs or as

models described in some language, the notion of concatenation is extended to these

descriptions. That is, two models (e.g. graphs) X and Y are combined (joined, concatenated)

into a single equivalent model (or graph) XY.

 The idea behind the NCD is that if X and Y share common information, they will

compress together better than separately, as the compressor will be able to reuse the

recurring patterns found in one of them to more efficiently compress the other. In practice,

the NCD is a non-negative number, 0 − ϵ ≤ 𝑟 ≤ 1 + ϵ, representing how different two

objects are. Similar numbers represent more similar objects. The ϵ in these bounds is due

to imperfections in compression techniques. For most standard compression algorithms,

one is unlikely to see an epsilon above 0.1 [Vitanyi et al., 2008].

 The NCD is intended to be universally applicable. As a similarity metric, the NCD

has been put through numerous stress tests, for instance in [Nykter et al., 2008]. Its main

advantages include being parameter-free, feature-free, alignment-free, and resistant to

noise [Cebrian et al., 2007]. It can be explicitly computed, and is useful in clustering,

classification, and anomaly detection tasks. This makes the NCD both theoretically and

practically appealing, as access to a simple lossless compressor (such as GZIP or LZW)

allows one to evaluate the similarity of generalized assets. If a reference configuration of

known fitness is available, then the NCD allows one to complete a “universal” performance

evaluation.

46

3 INTEGRITY GAMES

3.1 Background

3.1.1 Context

 The time-evolution of generalized assets can be examined through many lenses.

The theory of (general) dynamical systems provides the broadest scope, investigating all

matters of dynamical behaviour. Dynamical systems come in many “flavours”, with

specific sub-fields dedicated to symbolic or arithmetic sequences, topologies, graphs, and

other structures. Emphasis is placed on answering important structure and existence

questions. A formal study may determine the particularities of reachability, stability and

approximation. The potential for various events, behaviours, boundary effects, asymptotic

limits, and attractor (or repellor) regions is often sought. The applications of dynamical

systems theory have spawned entire fields, including coding theory, (optimal) control

theory, and game theory, to name but a few [Picci and Gilliam, 1999].

 A survey of governance, management, planning, and control activities reveals that

they are reducible to complex decision making. These processes may involve concurrent,

distributed action-selection, which can nonetheless be transformed into a time-sequential

dynamical system. Using information feedback, update-rules, and resource constraints, the

decision process manifests itself as strings of symbols in some alphabet, walks over a tree,

traversals over a graph, transitions between points in a space, or coverages of a set.

47

3.1.2 Terminology

 When certain conditions are met, one has a particular type of dynamical system

called an integrity game. This definition of integrity game shares some of the notions used

by other fields. The most general terminology can be found in the literature on algebraic

and symbolic dynamical systems theory. Its subset, optimal control theory, is used

predominantly in the applied sciences. This terminology is relatively ubiquitous in process

control and systems engineering, although many different formulations, modelling

approaches, and solution techniques are in use [Picci and Gilliam, 1999], [Smolensky,

1986]. Game theory matured in conjunction with these and other fields, but has since

adopted its own terminology. The game formulation is well-suited to problems in the social

sciences, operations research, economics, business analytics, and computer science. Game

theory is a mature platform for a highly-studied variation of the common theme: optimizing

performance.

 Table 3.1 outlines several of the prevalent terminologies encountered in game

theory, control theory, and their parent, dynamical systems theory.

48

Table 3.1. Outline of terminology encountered by field of study.

Terminology Game Theory Control Theory Dynamical Systems

Systems

Context

– Game

– Auction

– Tournament

– Plant

– Process

– Signal

– Generalized Systems

Representation of

States

– Fitness Landscape

– Payoff Matrix

– Decision Tree

– State Space

– Configuration Plot

– Time/Frequency Domain

– Phase Space

– Phase Portrait

– Geometric Manifold

State Variables – Payoffs/Rewards

– Costs/Risks

– Utility

– State-Variables

– Costs/Errors

– Gains/Losses

– State-Variables

– Functions/Measures

– Penalty Gradients

Source of

Governing

Dynamics

– Players

– Actors

– Agents

– Controls

– Controllers

– Forcing Functions

– Evolution Functions

– Potential Forms

– Drifts/Exchanges

Uncertainty &

Feedback

Mechanisms

– Imperfect

Information

– Incomplete

Information

– Error Terms

– Reference Signals

– Partial Observability

– Noise/Filters

– Flows

– Diffeomorphisms

– End/Boundary Effects

Traversals

– Moves

– Decisions

– Actions

– State-transitions

– Controls

– Paths

– Evolutions

– Propagations

Sequence of State

Visits

– Strategies

– Action Profiles

– Policies – Trajectories

– Orbits (ergodic)

Criterion

for

Optimality

– Minimax Strategy

– Nash Equilibrium

– Solution Refinements

– Learning Rate

– Optimal Policy

– Adaptability

– Stability

– Transient Response

– Asymptotic Behaviour

– Lyapunov Stability

– Basins of Attraction

– Bounds/Limits

– Conjugacy

– Invariants

Performance

Objectives

– Find optimal

strategies.

– Provide conditions

for a win/loss

– Find optimal policies

– Design optimal

controllers.

– Describe potential

behaviour and confine

transfer functionals.

Canonical

Types

– Combinatorial

– Differential

– Evolutionary

– Stochastic

– Quantum

– Robust

– Adaptive

– Intelligent

– Statistical

– H-infinite

– Measure-Preserving

– Topological

– Graphical

– Symbolic

– Sequential

49

3.1.3 Ontogenesis

 Game theory extends aspects of decision theory and overlaps much of control

theory. In terms of decision-making, game-theory replaces the single-decider situation with

multiple-players or rational agents. In terms of control, game theory urges multi-controller

design in the presence of intelligent adversaries. This is sometimes the equivalent of

developing a robust controller which defends against the expectation of worst-case

behaviour. Classical game theory goes further, by requiring the potential for dynamical

processes to be equipped with intelligent behaviour derived from inductive inference and/or

analytical look-ahead. If the equivalent behaviour were formulated using the language of

control theory, the underlying processes and filters might be classified as acausal and/or

anti-causal. Thus, in game-theory one is concerned with dynamics which can affect the

state of the system through their conscious motivation. In control theory, the opposing

dynamics are implicitly naive.

 Models based on game theory allow one to address risks (and risk sources) which

are not only naive and stochastic (so-called harsh environments), but also superimposed

with adversarial dynamics (so-called hostile environments). Thus, where control theory

often seeks to optimize asset performance in the face of a harsh environment, game theory

seeks to satisfice asset performance in the face of hostile environments. In terms of

planning, game theory deals with purposeful, active performance denials, which subsume

any accidental performance degradations.

50

 The theory of games has become central to artificial intelligence, search algorithms,

and architectures for autonomous reasoning. Modern game theory developed primarily out

of research into operations research and mathematical economics. It has origins with

Zermelo (1913), Borel (1921), Von Neumann and Morgenstern (1928, 1944) and of course

with Nash (1950). From there, it expanded through Kuhn and Tucker (1951), Shapley

(1953), Selten (1965, 1975), Conway (1970) and Smith (1972). Major contributions

followed in Harsanyi (1973, 1992), Rubenstein (1982), Mertens (1985), and van Damme

(1993) [Dimand and Dimand, 2002]. More recently, investigations into the computational

complexity of games (and their solutions) have been put forward by [Condon, 1992],

[Daskalakis, Goldberg, and Papadimitriou, 2008], and [Chen et al., 2010]. Interest into the

design of game-playing agents, as well as the combinatorial and algorithmic aspects of

game solution concepts, has given rise to the field of algorithmic game theory. Significant

progress in this area has been made by authors such as Koller, Nisan, Roughgarden, and

Tardos, among others [Nisan et al., 2007].

3.1.4 Classification

 An integrity game constitutes a deterministic base game which is perturbed in a

nondeterministic manner. In the present work, we consider only a restricted class of base

games and perturbative effects.

 The base game is taken to be a standard combinatorial game. This represents a

sequential game where players alternate turns. On their respective turns, players choose to

51

transition the game into a new state, and receive an immediate fixed reward. This is done

by selecting amongst a static, finite set of discrete actions. This process is repeated until

termination criteria are met. Such games can be solved using the minimax theorem and by

adversarial search algorithms [Hauk, Buro, and Schaeffer, 2006].

 The perturbed game results when stochastic effects, such as noise, errors, trembles

of hand (imperfect actions), and partial observability (incomplete information) come into

play. Insufficient assumptions regarding opponent beliefs, rules, or number of players can

also play a role. This alters the structure of the base game by essentially corrupting inputs

and state evaluations, partially randomizing state-transitions, and modifying payoffs. Such

games can be approximately solved using generative model discovery, reinforcement

learning, and sampling based algorithms [Bowling and Veloso, 2000].

52

3.2 The Base Game

3.2.1 Specifications

 A base game can be specified in one of several forms. An extensive-form game

organizes the sequence of player decisions or moves into a decision tree. The extensive-

form efficiently captures the choices at every decision point, including chance events from

nature. A normal-form or strategic-form game describes strategy spaces and rewards by

way of a payoff matrix. This organization is useful for games where decisions are

simultaneous or premeditated before play occurs. The normal-form can also represent a

degenerate case of extensive-form. When information feedback between sequential choices

is minimal, the situation is effectively simultaneous. Furthermore, every extensive-form

game can be transformed into a unique normal-form representation. However, the converse

is not necessarily true. A normal-form game may admit multiple extensive forms.

Converting an extensive-form game into a normal-form may require an exponential blow

up in the size of the payoffs [Bowling and Veloso, 2000].

 Finally, there is the succinct-form, which is the specification we adopt for the

current version of our planning architecture. Succinct-form games lend themselves well to

computational exploitation via symmetry and induction (e.g. transposition and refutation

tables) [Schoenebeck and Vadhan, 2006], and [Fortnow et al., 2005].

 Definitions found in this sub-section have been adapted from the works of [Brown

and Shoham, 2008]. These authors follow a standard notation which has been used

elsewhere in the literature on games.

53

3.2.2 Extensive Form

 Much of the game-theoretic terminology is defined for extensive-form games.

Specifying a game in extensive form has many useful applications. A brief discussion of

their framework is therefore necessary. Formally, a finite extensive-form game consists

of:

 A finite set of players 𝐼 = {1,2,..., 𝑖};

 A finite set of nodes 𝑋 that form a rooted tree, with a labelled root node 𝑥0 ∈ 𝑋, and a

set of terminal nodes 𝑍 ⊂ 𝑋;

 A set of transition functions that describe for each non-terminal node:

 The player 𝑖(𝑥)who moves at 𝑥;

 The set A(x) of possible actions at x.

 The successor node n(x,a) resulting from action a.

 Payoff functions for each player which assign payoffs to players as a function of the

terminal node reached 𝑢𝑖:𝑍 → ℝ;

 An information partition ℎ(𝑥) which defines for each node 𝑥, the set of nodes that are

possible given what player 𝑖(𝑥) knows. Thus, if the node 𝑥′is known to be reachable

from the current node 𝑥, or 𝑥′ ∈ ℎ(𝑥), then the player 𝑖moving at node 𝑥, or𝑖(𝑥), can

be the same player moving at node 𝑥′. It follows that if 𝑥′ ∈ ℎ(𝑥), then

𝑖(𝑥′)=𝑖(𝑥),𝐴(𝑥′)=𝐴(𝑥), and ℎ(𝑥′)=ℎ(𝑥);

 The set of information sets available when player i moves from position x: 𝐻𝑖={𝑆 ⊂

𝑋: 𝑆=ℎ(𝑥) ∣ ∃𝑥 ∈ 𝑋, 𝑖(𝑥)=𝑖};

54

 The set Ai of actions available to i at any of his information sets ℎ ∈ 𝐻𝑖.

3.2.3 Normal-Form

A game in normal-form is a structure Γ=⟨𝑁, 𝑆, 𝐹⟩, where:

 𝑁 = {1,2,..., 𝑛} is a finite set of players;

 𝑆 = {𝑆1,𝑆2,..., 𝑆𝑛} is an n-tuple of pure strategy sets, one for each player;

 𝐹 = {𝐹1,𝐹2,..., 𝐹𝑛} is a tuple of payoff functions, one for each player which maps

strategies to rewards.

This definition has been included for completion. Normal-form games are conceptually

useful for identifying certain equilibria, but require additional computational overhead for

more refined solutions. For efficiently solving integrity games, they rank below their more

preferred succinct-form (most ideal) as well as their extensive-form counterparts. Hence,

further discussion regarding this type of game specification is omitted.

3.2.4 Succinct-Form

 Games in succinct-form often allow for smaller representations than normal-form.

Describing a game of 𝑛 players, each facing 𝑠 strategies, requires a listing of 𝑛𝑠𝑛 utility

values. In games where symmetry (of information, actions, strategies, payoffs, etc.) is

exploited, a combinatorial reduction in the number of utility values is possible [Fortnow,

2005].

55

 For 2-player integrity games, the base game can be succinctly modelled by 𝑛2 utility

values, where 𝑛 in this case is the maximum number of moves, actions, choices, or state-

transitions possible at any round. The succinct-form directly coincides with the

𝐾(𝑣,𝑒,𝑛)asset representation discussed in Sections

Special Graphs and The 𝑲(𝟏,𝟐,𝑵)Asset Representation. For 2-players, 𝐾(1,2,𝑁) forms a base

integrity game in succinct-form. This specification is defined by 𝑁2 utility values (one for

each potential state-transition), usually given by some 𝑁 ×𝑁 weighted adjacency matrix.

3.2.5 Strategies

3.2.5.1 Pure Strategies

 A pure strategy for player 𝑖 in an extensive-form game is a function 𝑠𝑖 : 𝐻𝑖 → 𝐴𝑖

such that 𝑠𝑖(ℎ) ∈ 𝐴(ℎ) for each ℎ ∈ 𝐻𝑖. A strategy is a complete plan explaining what a

player will do in every situation. It represents a sequence of action selections. Let 𝑆𝑖 denote

the set of pure strategies available to player 𝑖, and let 𝑆={𝑆1 × 𝑆2 × ... × 𝑆𝐼} denote the set

of pure strategy profiles ∀𝑖 ∈ 𝐼. Similarly, let the set 𝑠=(𝑠1,..., 𝑠𝐼) denote a particular

strategy profile, and let 𝑠−𝑖denote the strategies of 𝑖′𝑠opponents.

3.2.5.2 Mixed Strategies

 In an extensive-form game, a mixed strategy 𝜎𝑖 for player 𝑖 is a probability

distribution 𝛥 over the set of 𝑖′𝑠 pure strategies 𝑆𝑖, or 𝜎𝑖 ∈ 𝛥(𝑆𝑖).

56

3.2.5.3 Behavioural Strategies

 A behavioural strategy for player i in an extensive-form game is a function σ𝑖:𝐻𝑖 →

Δ(𝐴𝑖) such that 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(σ𝑖(ℎ)) ⊂ 𝐴(ℎ), ∀ℎ ∈ 𝐻𝑖.

3.2.5.4 Kuhn's Theorem and Perfect Recall

 A classic result in game theory, known as Kuhn's Theorem, states that in a game of

perfect recall, i.e. where players may remember all their previous moves/states as well as

their previously encountered information sets, then for any mixed strategy there is an

equivalent behavioural strategy. Thus, these terms are often used interchangeably.

3.2.6 Solution Concepts

 In game theory, a solution concept is a formal rule for predicting how a game will

be played [Leyton-Brown and Shoham, 2008]. These predictions describe which strategies

will be adopted by rational agents, and therefore constitute a “solution” for the result of the

game.

3.2.6.1 Nash Equilibrium (NE)

 Recall that 𝑆={𝑆1 × 𝑆2 × ... × 𝑆𝐼} is the set of pure strategy profiles, with 𝑆𝑖∈𝐼 ∈ 𝑆

the set of all profiles for player 𝑖. The resultant payoff function for some strategy profile𝑠 ∈

𝑆 is given by 𝑓=(𝑓1(𝑠),..., 𝑓𝐼(𝑠)). Also recall that 𝑠𝑖 and 𝑠−𝑖 denote the strategy profiles for

player 𝑖and all of his opponents, respectively. The payoff function f depends entirely on the

strategy profile𝑠, which represents the strategy chosen by player 𝑖 as well as all the other

players −𝑖.

57

 A strategy profile 𝑠* ∈ 𝑆 is said to be a Nash Equilibrium (NE) if no unilateral

deviation in strategy by any single player is profitable for that player. Formally, NE →

∀𝑖, 𝑠𝑖 ∈ 𝑆𝑖:𝑓𝑖(𝑠𝑖
*, 𝑠−𝑖

*) ⩾ 𝑓𝑖(𝑠𝑖, 𝑠−𝑖
*). When this inequality holds strict for all players, the

Nash Equilibrium is said to be strict. When ∃𝑠𝑖
* ∈ 𝑆𝑖:𝑓𝑖(𝑠𝑖

*, 𝑠−𝑖
*) = 𝑓𝑖(𝑠𝑖, 𝑠−𝑖

*), the Nash

Equilibrium is said to be weak. NE can exist for either pure or mixed strategies. In 1951,

Nash showed that for every game with a finite number of players, in which every player

can choose from finitely many pure strategies, there must exist at least one (possibly mixed)

Nash Equilibrium [Nash, 1950]. As a solution concept, NE is more commonly found within

the context of normal-form games.

3.2.6.2 Subgame Perfect Equilibrium (SPE)

 This solution concept is a refinement (or subset) of the classical Nash Equilibrium.

Refinements enforce stricter conditions on the optimality of behaviour, and impose greater

requirements on the rationality of players. Subgame perfection posits that players will

always seek a Nash Equilibrium going forward even if some off-equilibrium play was

observed. By definition, a subgame Γ′of some extensive-form game Γ, consists of:

 A subset 𝑌of the set of nodes 𝑋, where 𝑌 is rooted by a single non-terminal

node 𝑥, and contains all of 𝑥′𝑠 successors, and;

 Y has the property that if 𝑦 ∈ 𝑌 and 𝑦′ ∈ ℎ(𝑦) then 𝑦′ ∈ 𝑌;

 Γ′ shares the same information sets, feasible moves, and payoffs at terminal

nodes as Γ.

58

Subgame perfect equilibrium therefore prescribes a NE to be played at each subgame. As

a solution concept, SPE is more commonly associated within the context of extensive-form

games.

3.2.6.3 Minimax Theorems

 In their most general form, minimax theorems are fixed-point theorems from

variational analysis [Ricceri and Simons, 1998]. Under broad conditions, a dynamical

system, and hence most game structures, will admit an approximately stable saddle region.

The saddle is effectively a fixed-point solution to the game (or dynamical system) which

can be found using various techniques [Ricceri and Simons, 1998].

A particular example is known as the max-min inequality. Given a real-valued

function over some cross-product of compact vector spaces, 𝑓: 𝑋 × 𝑌 → 𝑅:

 sup
𝑥
 inf
𝑦
𝑓(𝑥, 𝑦) ≤ inf

𝑦
sup
𝑥
 𝑓(𝑥, 𝑦) 3.1

Which holds ∀𝑥, 𝑦, 𝑓(𝑥, 𝑦) ∈ ℝ. In 1928, Von Neumann studied the problem of solving

“games of strategy” (gesellschaftsspiel), and produced the following result, known as the

Von Neumann Minimax Theorem (VNMM):

 𝑣 = min
𝑋
 max
𝑌
𝑋𝑇𝐴𝑌 = max

𝑌
min
𝑋
𝑋𝑇𝐴𝑌 3.2

Where v is called the value of the game, 𝑋, 𝑌are the mixed strategy solutions for players

Min and Max, and A is the payoff matrix of the game in normal-form.

 Along with NE, the VNMM is one of the most fundamental theorems of game

theory. It states that every finite, two-player, zero-sum game (2PZSG) must possess

59

optimal mixed strategies. This optimality is achieved under minimax conditions and is

known as the value of the game. Proofs can be found in the original papers [Von Neumann,

1928], [Von Neumann and Morgenstern, 1944].

3.2.7 Transformed Minimax Potential

 Any finite N-player general-sum game (NPGSG) can be transformed into an

equivalent (N+1)-player zero-sum game, or (N+1)ZSG. This can be achieved by invoking

an arbitrator or referee player [Cai and Daskalakis, 2012]. This process creates a global

potential function out of the rewards or payoffs, summing them to zero. Additionally,

strictly competitive situations can be partitioned, where a single player is isolated from the

remaining contingent of players. This contingent forms an aggregate non-cooperative force

[Cai and Daskalakis, 2012]. The combination of these transformations can reduce many

situations into an equivalent set of problems which are more readily solved. We summarize

this process by the following implication diagram(s); NPGSG → (N+1)ZSG → 2PZSG*.

The resulting game, 2PZSG*, is also called the transformed minimax potential of

the game (or dynamical system). Structurally, this is a finite, two-player zero-sum game

where the payoffs follow a potential reward function that attenuates (or discounts) in long-

run expectation towards zero. The two players are the net resultants of a binary partition,

condensation, or mean-field approximation of the actors. They represent a duality of

forces, the Minimizer and the Maximizer, or MIN and MAX. These players seek to strictly

oppose one another in perfect competition. Each player has the fundamental objective of

minimizing (or maximizing) their respective payoffs.

60

 In 2PZSG*, payoffs are typically captured by a Von Neumann-Morgenstern Utility

function (VNM-Utility). These payoffs are complete, transitive, monotonic, and

necessarily risk-averse [Bergstrom, 2014]. It is presumed that agents will seek to maximize

(or minimize) their long run expected VNM-utility. This is both an admissible criterion for

decision making, as well as a notion of rationality between agents [Bergstrom, 2014]. Both

VNM-utility and VNM-rationality are considered somewhat artificial, as humans are rarely

capable of this behaviour [Kreps, 1988]. Furthermore, this so-called VNM-behaviour is

seldom observed in practice [Kreps, 1988]. By default, we will assume that in 2PZSG and

2PZSG* players attempt to adopt VNM-like behaviour.

When the transformed minimax potential respects VNM-behaviour, several

solution concepts become equivalent. The problem of finding a minimax solution is called

MINIMAX, and the problem of finding a maximin solution is called MAXIMIN. These

concepts also have dual representations in linear programming, where finding a solution is

called LP. The problem of finding a pure strategy NE is called NASH, although sometimes

the mixed strategy NE are used interchangeably [Nihan, Roughgarden, et al., 2007]. It can

be shown that for any symmetric 2PZSG, and by proxy any 2PZSG*, the following

implication is true; MINIMAX = MAXIMIN = NASH = LP.

Additionally, if more than one optimal mixed strategy exists, then there are

infinitely many optimal mixed strategies [Leyton-Brown and Shoham, 2008]. At least one

pure strategy solution (such as a NE) is guaranteed to exist, and there may exist several

pure strategy solutions. For a thorough discussion of these results equipped with proofs,

61

the reader may again be diverted to the works of [Leyton-Brown and Shoham, 2008] and

[Nihan, Roughgarden, et al., 2007].

 While not always valid or appropriate, the 2PZSG*, or transformed minimax

potential, is a reduction which allows for simplified analysis. It consequently assumes

VNM-behaviour in utility and rationality. As a zero-sum potential game, it maintains the

notion that one player's gains are balanced by losses to the other players as a whole. In the

two-player sense, this yields values for the game which can be seen as saddle-point

solutions. These transcend the game specification; as Nash Equilibria in normal-form

games, principal variations in extensive-form games, or minimax trajectories for succinct-

games.

62

3.3 The Perturbed Game

3.3.1 Specifications

 As with its base game counterpart, a perturbed game can be specified in one of

several formats. However, there is less interchangeability between specifications and

solution concepts for perturbed games [Jackson et al., 2011]. Since we are dealing with

sequential planning of generalized assets, only the extensive-form variation of perturbed

games will be covered. We will later adapt extensive-form solutions to a succinct-form as

part of an overall model for solving integrity games.

3.3.2 Perturbations of the Base Game

 Let Γ be a standard extensive-form base game as defined in Section Extensive Form.

A perturbed game ~Γ is a copy of the base game where every pure strategy is played with

non-zero probability. Thus ∀𝑖 ∈ 𝐼, ∀𝑠𝑖 ∈ 𝑆𝑖 , 𝑃𝑟(𝑠𝑖) ≥ 0, and ~Γ can be interpreted as a

restriction on playing only totally mixed strategies σ𝑖 ∈ Δ(𝑆𝑖).

In their most basic form, perturbations to the base game structure result in all

strategies (i.e. sequences of actions) being “on the table” without regard to how sub-optimal

they may be. A dominated strategy in the base game is technically feasible throughout the

perturbed game. There are several reasons for advocating that strategies be totally mixed

[Leyton-Brown and Shoham, 2008]. The examination of perturbed gameplay (over some

base game) is a common technique for assessing the stability and robustness of equilibrium

63

solutions to noise. Perturbations also capture modelling errors, misjudgment of states and

beliefs, as well as behavioural imperfections. A summary of these motivating factors is

presented in Table 3.2.

Table 3.2. Sources of Perturbation to the Base Game

Nomenclature Source Class Effects(s)

Incomplete

Information

– Partially-Observable

States.

– Unknown/Uncertain

Player Motivations.

– Misinterpretation of game state.

– Errors in utility and payoff functions.

– Uncertainty in opponent beliefs, motives, available

actions.

– Emergence of unexpected patterns.

Imperfect

Actions

– Non-deterministic

Actions and/or Selection

Mechanisms.

– Control Costs.

– Incorrect moves and/or improper action-selection,

despite perception of correctness.

– Deviations from expected state-transitions and/or

payoff results.

Misc.

Modelling

Errors

– Unknown Actors, Rules,

Environments.

– Approximating

Assumptions.

– Infeasible or unable to

capture real-world

complexity.

– Misrepresentation of the situation through incorrect

(imprecise, inaccurate) game structures.

– Incorrect, contracted, or insufficient analysis.

– Sub-optimal or even massively detrimental decision

making.

 The study of perturbed games leads to several refinements in the interpretation and

prediction of rationally “correct” play. These refinements are often motivated by

arguments from admissibility. Admissibility criteria require decision rules which are not

dominated by alternatives in the sense of some estimator such as Bayesian expectation or

some coherent risk/loss function [Kreps, 1988], [Leyton-Brown and Shoham, 2008]. For

two-player games, admissibility implies that no strategy 𝑠𝐴 that is (weakly) dominated by

another strategy 𝑠𝐵 is legally allowed to be played.

64

That is, for any player 𝑖, a strategy 𝑠* ∈ 𝑆𝑖:

 Weakly dominates another strategy 𝑠′ ∈ 𝑆𝑖, if ∀𝑠−𝑖 ∈ 𝑆−𝑖{𝑢𝑖(𝑠
*, 𝑠−𝑖) ≥ 𝑢𝑖(𝑠′, 𝑠−𝑖)} ∧

{∃𝑠−𝑖:𝑢𝑖(𝑠
*, 𝑠−𝑖) = 𝑢𝑖(𝑠′, 𝑠−𝑖)};

 Strictly dominates another strategy 𝑠′ ∈ 𝑆𝑖, if ∀𝑠−𝑖 ∈ 𝑆−𝑖{𝑢𝑖(𝑠
*, 𝑠−𝑖) > 𝑢𝑖(𝑠′, 𝑠−𝑖)}.

In perturbed games, the standard solution concepts seek to implement strategies which

tolerate deviations from base game equilibrium behaviour (such as NASH or MINIMAX).

The limits of this tolerance typically involve some notion of admissibility, or remaining

undominated in the face of perturbations. Refinements may also be defined from other

desirable properties, such as the preservation of inherited inference, or by way of

forward/backward induction. This has led to increasingly stronger refinements over the

subgame perfect equilibrium. Examples include the sequential equilibrium proposed by

[Kreps and Wilson, 1982], as well as the proper equilibrium of Myerson, the Markov

perfect equilibrium, and the concept of Mertens Stability [Nisan, Roughgarden, et al.,

2007].

3.3.3 Extensive-Form Trembling Hand Perfection

 One of the most significant refinements is the trembling hand perfect equilibrium,

a solution concept first proposed by Selten (1975). Trembling hand perfect equilibrium

takes into account the possibility for deviations from equilibrium as a result of “trembling

hands”. Under this regime, players have perfect recall of their previous actions, but fumble

certain individual moves, and may (with small probability) choose unintended strategies

65

for the remainder of the game. There are differing, incomparable notions of normal-form

and extensive-form trembling hand equilibria [Jackson et al., 2011].

 Formally, a (mixed or behavioural) strategy profile 𝜎 is an 𝜖 − 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 equilibrium

iff it assigns strictly positive probability to all pure strategies, and only pure strategies that

are best replies get probability greater than𝜖. A (mixed or behavioural) strategy profile𝜎is

then an extensive-form trembling-hand perfect equilibrium iff it is the limit point of a

sequence of 𝜖 − 𝑝𝑒𝑟𝑓𝑒𝑐𝑡equilibria with 𝜖 → 0+.

 The notion of 𝜖 − 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 equilibrium maintains that for mild perturbations of the

information sets away from the complete information of the base game, one can expect

correspondingly mild perturbations in best reply behaviour. Through trembling hand

perfect equilibrium, one may recover any subgame perfect equilibria which vanished as a

result of perturbations less than 𝜖. To do so, it merely assumes “perfection” (or optimality)

in the sequential responses to successive perturbations of the game structure.

3.3.4 Robustness, Stability, and Adaptability Concepts

 It is worth noting that in perturbed games, players can be better off by ignoring

some of the information potentially available to them [Jackson et al., 2007]. For real-world

assets, players typically incur additional control costs to gain knowledge or refine their

beliefs of the asset-environment system. For example, paying (e.g. trading energy) to

reduce the uncertainty and/or noise associated with an observation, shaping an inspection

to be of higher fidelity, or forcing probabilistic guarantees on a maintenance action. In

66

such cases, the relationship between the value of ϵ and the expected equilibrium payoffs

can have profound effects. There can exist correspondences between ϵ, σ, and 𝑢, where all

players benefit from relaxing their knowledge of the game structure. This can be

understood as having players face the costs of discovering information vs. the costs of fully

tailoring strategies to imperfect information, such as ϵ − 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 uncertainty

tresholds. This is in addition to the other justifications (c.f. Table 3.2) that are based on

players (or the modeler) incorrectly perceiving states, actions or payoffs.

 Approaches based on this model vary, but are broadly referred to as ϵ − 𝑟𝑜𝑏𝑢𝑠𝑡 or

ϵ − 𝑠𝑡𝑎𝑏𝑙𝑒 methods. These methods essentially seek large basins of attraction, which are

considered to be of lower risk and more preferable then narrow yet higher-performing

corridors of play. They emphasize state-transition trajectories which remain stable

(minimal variance) as the risk landscape is perturbed. They also anticipate robust and

securable payoffs in the face of uncertain information. This is in contrast to the principles

behind the so-called adaptive methods, which seek to continuously exploit discernable

changes in the game structure. Adaptive methods expropriate feedback, and the belief that

other players possess fewer computational resources and/or will exhibit fewer information

gains as the game evolves. Roughly speaking, adaptive methods are appropriate when

opponents will make many more “mistakes”, and these mistakes will be noticed and can be

exploited. A detailed, formal treatment of these ideas can be found in [Bowling and Veloso,

2000].

67

 To recapitulate, solution concepts which are adaptive work well in asymmetric

games, where (i.) some players have an inherent structural advantage from which to launch

adaptive strategies, and (ii.) perturbations preserve this asymmetry overall (and hence the

advantage). In these games, several opponents may be considered to have significantly

greater (or fewer) resources. There may also be more (or less) information available at

each round, or some subset of players must pay more (or less) for it. The disadvantaged

players may also possess greater uncertainty in their knowledge of states and actions. They

may be restricted in their action sets and possibly subject to move penalties. Disadvantaged

players may also exhibit irrational behaviour through access to fewer computational

resources or some natural disposition towards sub-optimality.

 This asymmetry is sometimes indirectly captured parametrically by γ ∈ [0,1],

which expresses the level of non-cooperation present in the game structures Γor ~Γ. When

γ is small, the level of competition is small. The parameter γ can also be interpreted as a

hostility index for the environment.

 Limiting the ruleset (i.e. the resources and actions available to players) may

handicap even the most diligent and computationally rational opponents. When the game

structures Γ or ~Γ are sufficiently asymmetric, the opportunity for strategic potency is likely

to be reduced. This corresponds to a significant shift in the location of saddle-point

equilibria or even their complete degeneration (c.f. games with no value [Sion and Wolfe,

1957]). As γ → 0, the asymmetry and resulting discrepancy between player abilities is

68

maximized (in expectation). At this point it may make sense to relax the assumption of

adversarial dynamics completely, reducing the game to that of a one-player optimal

stochastic control problem [Filar and Vrieze, 1997]. In these circumstances, small or even

time-dynamic values of γ appreciably close to zero will emphasize solutions which

anticipate stochastic deviations, and attempt to classify environment types by their

generating distribution(s). These conditions are ripe for adaptive techniques, which will

inevitably exploit discovered asymmetries and increase the overall game performance, as

it represents planning under naive environments.

 As 𝛾 → 1 we achieve symmetry and opponents are considered strictly competitive.

This represents the situation of intelligent adversaries with full-scale resources, equivalent

rulesets, and equal-and-opposite objectives. In these circumstances, solution concepts

based on stability and robustness are preferred. Thus for large values of 𝛾, we seek

trajectories which are designed to survive against, or in an evolutionary sense avoid

disappointment, regret, or invasion by, any reasonable perturbations of the landscape. For

extensive-form games, this leads to the acceptance of trembling-hand perfect (or 𝜖 −

𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 equivalent) equilibrium solutions over their adaptive counterparts. For

sequentially perturbed base games, this approach remains valid insofar as inductive

inference is preserved. It can be shown that backwards induction is preserved for games of

perfect recall, as well as for games with the Markov property [Filar and Vrieze, 1997].

 In perfect recall games, a complete history of state-transitions is available and in

the worst-case ex ante responses to perturbations are admissible. In Markov games, future

69

state-transitions are history independent and depend on the current state (i.e. memoryless).

In both cases, induction can be applied, yielding a set of appropriately stable and/or robust

equilibrium solutions. This is often accomplished via a variant of minimax search over the

fitness of outcomes; e.g. taking into account the probabilistic “quality” of expected

outcomes by evaluating moments such as the mean and standard deviation [Cai and

Daskalakis, 2012].

70

3.4 A Succinct Integrity Game for Generalized Assets

3.4.1 Problem Description

 Consider the situation of an asset manager responsible for making decisions

regarding the performance and utilization of a generalized asset. The generalized asset can

be of any type, but consider for the moment a graph-defined state-transition system.

Several graph performance indicators have been used to construct a series of reference

configurations for the asset. These configurations have been ranked according to their

overall fitness level and partitioned by equivalence class. The asset manager has determined

the utility generated by maintaining the asset near a particular configuration for an entire

time-step. Using the normalized compression distance as a similarity metric, the costs of

transforming configurations are deducted from the utility. This forms an integrity score,

which represents the net payoffs or rewards from transitioning between the asset reference

configurations, labelled as integrity states.

 The problem facing the asset manager is how to optimize the performance of the

asset in the absence of any additional information. No domain knowledge is available, and

the coupled asset-environment system is considered sufficiently novel and complex so as

to rule out the feasibility of using expert assessments. Where possible, procedures which

“learn” to filter unwanted noise have already been applied. Any process of reducing

uncertainty is bounded and converges long after the asset is expected to be operational.

The design lifetime of the asset is unspecified but known to be finite. The asset is expected

to persist in an unknown but hostile environment throughout lifecycle. Environmental

71

effects include bounded stochastic integrity disruptions as well adversarial dynamics. The

asset is deemed sufficiently important to warrant the attentions of intelligent opponents,

about which very little is known in terms of resources and/or capabilities.

 The asset manager is tasked with formulating state-transition plans which maximize

the integrity score over some long-run sequence of time-steps. This ultimately corresponds

to navigating a dynamic integrity landscape with the objectives of maximizing utility while

minimizing risks. Translated, the asset manager must prescribe state-transition trajectories

which pursue desirable configurations while avoiding unwanted ones. Furthermore, these

trajectories must be optimal in that over-time, they accumulate the greatest possible

integrity score in the presence of perturbations owing to noise, modelling errors, and

unforeseen deviations.

 Before the asset is made operational, a series of expected long-run average integrity

scores are given as payoffs to a base game in succinct-form. The succinct-form integrity

scores correspond to an array of length quadratic in the number of distinct integrity states.

For simplicity, these scores are positive integers. At each time-step, the asset is monitored

and noisy data regarding its configuration are extracted. The expected integrity scores for

the remainder of the game are evaluated, with one score assigned to each potential one-

time-step state-transition. The array is then updated and given to the asset manager for

analysis, planning, and governance.

72

3.4.2 Formulation

 This problem is correctly modelled as a sequentially perturbed two-player zero-sum

game (~2PZSG). In the worst-case, all actors (including the environment) conspire against

the asset manager. Since this scenario is not explicitly ruled out, we can generate a

transformed minimax potential resulting in a 2PZSG* base game with perturbations

arriving at each time-step. This requires a certain amount of symmetry in the game

structure and posits Von-Neumann behaviour (VNM-rationality, VNM-utility). We must

naively assume the capabilities of all agents are approximately equal (at least in long-run

expectation), thereby massaging the game into ~2PZSG* form.

 Because the asset evolves forward in time and partial information feedback is

present, we presume an ordering of moves. Therefore, any simultaneous play is

“accidental” and a normal-form specification would be inappropriate. While extensive-

form is applicable, the problem suggests the use of succinct representations which are

updated at each time-step. With no explicit move ordering given, we may assume two

scenarios: (i) the asset manager has at his disposal the “first-move” in which a starting state

can be specified and decided, and (ii.) the adversary decides the initial state of the problem.

Since the initial design of the asset is very likely to be stipulated in advance, the base game

is assumed to commence with the asset manager having already made the “zeroth move”.

Ideally, we would seek methods for a rapid analysis from any/all start state(s) to any/all

end state(s).

73

 In the next chapter, we detail a working model and provide algorithms for this entire

problem. In the Appendices, we provide several engineering-related examples. These

examples illustrate the process of problem formulation and analysis using the

aforementioned methods.

3.4.3 Preliminary Analysis

 The ~2PZSG* class efficiently models the generalized asset integrity problem.

These “succinct integrity games” can be analyzed by taking the limits of the game structure.

This can be done with respect to several properties including the robustness, stability, and

adaptability concepts outlined in section 3.3.4.

For this purpose, one may consider the adversarial index γ, which represents the

degree of non-cooperation in the actions of the opponent and/or environment. This

parameter expresses the qualitative risk(s) of deviating from equilibrium play in lieu of

incomplete beliefs, irrational behaviour, model deterioration, mistake probabilities, and/or

errors incurred by computational and/or analytical limitations. By deviation risk we mean

the product of the frequency and intensity of deviations from nondeterministic best-

response behaviour (optimality conditions). By itself, γ captures the environmental

severity, look-ahead, and overall competitive intelligence. For small values of γ, the

environment is naive and harsh, while for large values it is adversarial or hostile.

Alternatively, 1 γ⁄ can be thought of as a measure of random move generation on behalf of

the environment.

74

The payoff perturbation threshold ϵ𝑝𝑎𝑦𝑜𝑓𝑓𝑠,𝑚𝑎𝑥, expresses an asymptotic upper

bound in the magnitude of one-stage deviations to the payoff functions. For simplicity we

will write ϵ = ϵ𝑝𝑎𝑦𝑜𝑓𝑓𝑠,𝑚𝑎𝑥 and let 𝑢𝑘 be some payoff function which maps state-

transitions to utility values. Let (𝑣𝑠, 𝑣𝑡)denote a transition as a source-destination pair of

states. Then the resulting map 𝑢𝑘:(𝑣𝑠, 𝑣𝑡) gives the integrity score awarded immediately

after transitioning from integrity level 𝑣𝑠 to 𝑣𝑡 at the end of time step 𝑘. The perturbation

threshold 𝜖 therefore sets the absolute minimum and maximum one-stage payoff deviation

limits. So for 𝑢𝑘+1 :(𝑣𝑠, 𝑣𝑡), we have 𝑢𝑘 − 𝜖 ≤ 𝑢𝑘+1 ≤ 𝑢𝑘 + 𝜖.

The average signal-to-noise ratio 𝐷𝑠𝑛 = 𝜇𝑢𝜇𝜖, expresses the degree of

pronunciation and discernibility in the average payoffs 𝜇𝑢 with respect to the average

perturbations in payoffs 𝜇𝜖. When perturbation thresholds exceed payoffs, there is very

little controllability over game outcomes and the effects of the adversarial index are

reduced. When perturbations vanish, the payoffs remain effectively fixed and the

adversarial index dominates any decision making. Thus 𝐷𝑠𝑛 affects the long-run sensitivity

of the base game 𝛤to changes in 𝛾 and 𝜖. We note that 𝐷𝑠𝑛 drives the interval limits of

dynamic range for perturbed games: ~Γ𝑚𝑖𝑛(𝐷𝑠𝑛) ≤ ~Γ(𝑢, γ, ϵ) ≤ ~Γ𝑚𝑎𝑥(𝐷𝑠𝑛).

Variability in these game parameters entices an examination of several limit cases. For a

brief analysis, we consider the succinct integrity game structure ~Γ(𝑢, γ, ϵ), and supply it

with four boundary scenarios.

75

3.4.3.1 Scenario 1: 𝛄 → 𝟎,
𝛜

𝒖
→ 𝟎

 In this scenario there is a total lack of competition. Additionally, the effects of

payoff changes are vanishingly small. The only integrity antagonists are the naive effects

of a stochastic environment. This situation allows for a direct stochastic optimization.

Depending on the context, the objective is to find the minimum or maximum of some

function of the payoffs 𝑢, subject to interval constraints. Without adversarial resistance or

payoff perturbations, VNM-behaviour on the part of the asset manager is trivial to maintain.

This VNM-behaviour as a criterion, is akin to recognizing that many versions of this

problem are frequently treated (or posed) in a manner that are convex [Schoenebeck and

Vadhan, 2006].

At each time interval, the asset manager selects the action which offers the highest

long-run (possibly discounted) expected payoff in the base game. This process continues

indefinitely or until termination criteria are met.

3.4.3.2 Scenario 2: 𝛄 → 𝟎,
𝛜

𝒖
→ ∞

 This scenario arises when the process of integrity degradations emanates from non-

competitive sources. However, in this case the effects of noisy payoffs are made

appreciably large. The problem statement emphasizes that for large perturbations, any

filtering or learning of the payoffs cannot be accomplished within a finite horizon setting.

Under these conditions, the signal-to-noise ratio approaches zero, and there is no control

over the payoff structure. Any strategic consistency is based on random play (the ability

76

to conjunction form of true random play). In this scenario, the net costs of integrity

restorations will be essentially random. The asset will generate a long-run utility as a

function of the stochastically realized state-transition sequence.

3.4.3.3 Scenario 3: 𝜸 → 𝟏,
𝝐

𝒖
→ 𝟎

 In this limit case, the adversarial index tends towards one while simultaneously

maintaining a maximal signal-to-noise ratio. The asset integrity score is actively denied

under perfect competition from an intelligent opponent. With vanishingly small noise

effects, the situation becomes one of deterministic 2PZSG dynamics. A suitable Nash

equilibrium, minimax trajectory, or principal variation will always exist. If each player is

guaranteed to: (i.) play perfectly (in a deterministic sense), (ii.) possesses equal and

opposite beliefs, actions, and utility payoffs (i.e. complete game symmetry), then this

solution concept forms what is essentially a “nemesis contract” between players.

3.4.3.4 Scenario 4: 𝛄 → 𝟏,
𝛜

𝒖
→ ∞

 Here, the adversarial index approaches one while the magnitude of the perturbations

greatly exceed the payoffs. The environment again consists of intelligent adversaries.

These antagonists compete with the asset manager to deny any long run expected utility

generated by the asset. This process is manifested by an opposition to any accumulation

of the integrity score. However, the presence of uncontrollably large noise effects ensure

the state-transition sequences will be realized non-deterministically. Since learning the

generating distribution for the noise effects is strictly unreliable, both players are again

77

forced to play a kind of the sequential best-response equilibrium. The resulting game

dynamics involve piecewise strategy reformulations through ongoing replanning and

adaptation at each round, or when applicable (e.g. viz change-detection). This situation

results in sequential re-evaluations of the expected minimax trajectory or principal

variation. When adaptive techniques and/or learning routines are available, convergence

to some initially unknown generating function of the perturbations may be possible. In this

case, the asset manager may form a set of beliefs which affect trajectory assessments.

These are based on estimates of the historical, current, and future integrity states. Based

on the proximity to termination criteria (such as failure risks or resource expenditures), the

asset manager will prescribe an immediate action with concern for short-term survival and

long-run security. In this scenario, the net costs of integrity restorations will be essentially

random. The asset will generate a long-run utility as a function of the stochastically realized

state-transition sequence.

78

3.5 Conspectus

 This chapter presented a self-contained review of several game-theoretic concepts.

A brief summary of the background, context, and terminology was provided in order to

relate game-theory to the theory of control and general dynamical systems. An ontogenesis

and classification of various game studies was undertaken in order to demonstrate a

thorough literature review of the subject matter. This chapter emphasized two major game

structures, namely a base game and a perturbed game. For each game type, the overall

structure and its representation were discussed. An outline for the normal-form, extensive-

form, and succinct-form game specifications was coupled with definitions of pure, mixed,

and behavioural strategies.

 Several solution concepts and major theorems were also reviewed. These were

limited to the Nash Equilibrium, Subgame Perfect Equilibrium, Kuhn's Theorem, as well

as the minimax theorem. A methodology for approximating general game types through a

conservative transformation to a two player game was also provided. Emphasis was placed

on Von Neumann rational behaviour and utility. For the perturbed game, the extensive-

form trembling-hand equilibrium was defined. The importance of robustness, stability, and

adaptability concepts were also discussed.

 Finally, the chapter concluded with a scenario formulated as a succinct integrity

game. In this more appropriate game description, an asset manager seeks to optimize the

integrity score of a (generalized) asset. Several modelling parameters were introduced, and

a qualitative analysis of the limit cases was provided. This chapter abridges much of the

79

theoretical foundations for the remaining work, which concentrates almost exclusively on

implementation details and practical applications.

80

4 ARCHITECTURE AND IMPLEMENTATION

Generalized asset governance can be developed into working architectures for

autonomous planning. Successful implementations should prescribe a sequence of actions

which optimize the utility generated by the asset. For generalized assets, domain-oblivious

reward concepts advocate the need for payoff structures evaluated from graph fitness

indicators and information similarity metrics. This is a situation of dynamic performance

optimization, which can be reformulated as a ~2PZSG* type game known as a succinct

integrity game.

 This chapter compiles the results from previous chapters into a Generalized Asset

Integrity Game Engine (GAIGE). At its core, the GAIGE executes a modified minimax

search algorithm which exploits a generic problem structure. Arguments from

combinatorial symmetry, dynamic programming, sequential optimality, and backwards

induction are used to establish a model transposition equivalence which returns minimax

trajectories in linear time, 𝑂(𝑁). This result constitutes an online, reactive planner which

can be augmented in 𝑂(√𝑇) time through the use of nearline methods such as test drivers,

sampling, and bandit algorithms. The combination of online and nearline algorithms

deliver a hybrid (heterogeneous), anytime evaluation procedure. The GAIGE is shown to

be capable of prescribing epsilon-approximate trembling-hand-perfect strategies. A

discussion on how to solve perturbed integrity games using the GAIGE is also presented.

81

 The GAIGE targets several objectives and requirements at both the architectural

and algorithmic levels. The remainder of this chapter addresses the development, operation

and performance of a GAIGE implementation. Prototypical use-cases are also tested and

benchmarked.

82

4.1 Objectives and Requirements

 Autonomous planning can be engineered to meet design goals, objectives,

requirements, specifications, and constraints. These stipulations manifest themselves at

multiple scales. A separation of concerns establishes two primary layers of abstraction, (i.)

the architecture, and (ii.) the algorithmic implementation. The former specifies the overall

framework and organization of the process, while the later details a particular realization

or construction.

 The literature on artificial intelligence, search, and planning systems provides a

basis for the development of guidelines and expectations. However, the vast majority of

technological engagements draw from the theme of (optimal) policy and stochastic control

[Kaelbling et al., 1998]. At the time of this writing, the notions of generalized assets, their

(integrity) governance, and general game playing agents are still emerging [Genesereth et

al., 2005], [Kiekintveld 2008], [Finnsson and Bjornsson, 2010]. Unfortunately, adoption

levels within the physical and industrial asset integrity communities have so far remained

low. Nonetheless, many of these emerging research areas have active annual workshops

and related journals. For example, the General Intelligence in Game-Playing Agents

(GIGA) proceedings, or the Ontology Modeling in Physical Asset Integrity Management

publications of [Ebrahimipour and Yacout, 2015]. This section anticipates their eventual

usage in the field of (physical or industrial) asset integrity management, and elucidates a

set of desirable characteristics. The proposed requirements emphasize solutions which

offer the greatest range of application for the lowest overall complexity.

83

4.1.1 Architectural Requirements

 Performing autonomous planning typically mandates high-performance

architecture. The minimum capabilities vary according to the objectives. With respect to

generalized asset integrity games, the primary objectives are to prescribe strategies and

support efficient gameplay. Architecturally, this requires at least some degree of

modularity, along with the integration of numerous components (c.f. massively modular

and parallel distributed processor architectures, which are both instances of reasoning over

graphs). For succinct integrity games, it is enough to require a three-phase architecture

consisting of monitoring, evaluation, and prescription stages.

 In keeping with the impetus of this thesis, we tread through several architectural

requirements and summarize their practical benefits. Table 4.1 presents a simple three-

phase planning architecture. Table 4.2 offers a high-level summary of the semantic and

non-functional requirements for such architecture.

84

Table 4.1. A three-phase architecture with sub-components for autonomous planning

Phase Modular Components, Tasks and Responsibilities Stage

Monitoring

Sensory Activation and Acquisition. 1

Signal Pre-processing, filtering, conditioning. 2

Production of raw input stream. 3

Evaluation

Generate Live/Active Asset Configuration 4

Query Reference Configurations 5

Evaluate Integrity Scores 6

Perform Minimax Transposition Search 7

Produce Minimax Tableau 8

Yield trajectories/strategies 9

Prescription

Query offline knowledge oracle (deliberation base) 10

Estimate Deviation Risks and Stability Beliefs 11

Formulate and Select Actions 12

Output Prescription Results to Effectors/Actuators 13

Repeat Return/Retrieve Monitoring Data 14 → 1

85

Table 4.2. Semantic and Non-Functional Architectural Requirements

Requirement

Type

Description

Benefits

Domain-

Oblivious

Semantic

Does not discriminate based on

asset class, prior knowledge, or

information context.

Remains valid across multiple

scopes and domains.

Platform-

Agnostic

Semantic

Does not depend on any specific

computational setting or

hardware environment.

Improves ease of deployment.

Portable across machinery types.

Model-Driven

Semantic

Driven by direct model contact,

embedded descriptions, and

structural configurations.

Reduces dependence on big data

aggregations.

Avoids data-centric processes

and large throughput operations.

Simplifies analytics, reduces

overhead and latency.

Non-Brittle

Non-

Functional

Does not require retrofitting

across projects. Minimal

parametric tuning.

Reduces engineering rework and

redevelopment.

Graceful

Degradation

Non-

Functional

Retains limited functionality,

self-stabilizes, and is fault-

tolerant.

Reduces external dependencies.

Avoids or contains catastrophic

failures.

Scalable

Non-

Functional

Acceptable scaling laws.

Latency, throughput, and

robustness capabilities will not

scale disproportionately with

additional resources.

Reduces the risks of scope drift.

Predictable long-run

management and life-cycle

costs.

Expands/contracts to suit future

needs.

Accessible

Non-

Functional

Interoperable and versatile use

cases.

Supports diverse user types and

experience levels.

Accommodates and empowers a

range of potential users. Lowers

the barrier to entry. Hastens

learning curve.

Transparent

Non-

Functional

Open to study, diagnose, test,

modify, and customize.

Accommodates variable skill

levels, reverse engineering, and

more advanced usage.

86

 Additionally, several functional requirements are prevalent for each of the major

architectural components. Assuming a three-phase approach to planning, these

components can be monitoring, evaluation or prescription based. Each architectural

component is subject to several well-defined, technical capabilities. The demands placed

on automated planning architectures vary greatly [Ghallab et al., 2004]. We follow a set of

functional demands from a predominantly non-parametric, non-Bayesian paradigm. We

term this approach hypermodern. The hypermodern requirements somewhat juxtapose the

more classical demands found in the probabilistic setting, from which are associated the

Markovian and Bayesian decision agents.

 The inherent prevalence of Bayesian approaches (with respect to multi-agent

decision making) have led to the consideration of cognitive, behavioural, and non-Bayesian

revision or rule-update schemes. In these non-Bayesian settings, agents may use simple

rules such as linear or convex combinations of information. Results derived directly from

Bayesian and other probabilistic approaches are considered robust when the number of

possible outcomes is finite, and the number of marginals of the data-generating

distribution(s) are unknown [Owhadi et al., 2015a]. However, Bayesian approaches are

also known to be generically brittle. In particular, any given prior and model can be

slightly perturbed to achieve any desired posterior conclusions [Owhadi et al., 2015b]. The

mechanisms causing shattering, brittleness and robustness suggest that Bayesian learning

and robustness are antagonistic requirements, with a missing definitive notion of stability

[Owhadi et al., 2013].

87

These issues raise concerns about the general applicability of Bayesian inference in

a continuous world under finite transformations of an information structure. A close

inspection of many practical probabilistic decision agents (who implement the theorems of

Bayes and Cox), suggests that these are in fact held together by non-Bayesian feedback

loops. These non-Bayesian feedback loops are typically associated with a performance

evaluation of what is essentially Bayesian Inference. In lieu of these interpretations, we

avoid further complications by seeking non-Bayesian architectures. One such alternative

is the aforementioned hypermodern approach.

 A concise overview of a hypermodern decision agent is that it is predominantly

non-parametric. In the probabilistic setting, the higher an agent's expectation of utility from

an action, the higher the probability of choosing that action [Cao 2007]. Probabilistic

agents typically form parametric beliefs about the world through progressive information

gains. These agents presuppose a coherent set of rules for the asset-environment behaviour.

In the hypermodern setting, this preference structure either does not hold, or is not required.

Emphasis is therefore placed on more ad hoc measurements, high-frequency updates,

unordered beliefs, and action-selection rules which in general cannot be composed into

“smooth” probability distributions. The hypermodern agent scales well with access to high-

frequency, low-latency (HFLL) monitoring and control. This is in contrast with the typical

probabilistic agent, which tends to prefer low-frequency, high-throughput (LFHT)

transactions. Hypermodern agents also perform better in the face of context-switching

environments [Cao 2007].

88

 Table 4.3 establishes the functional requirements for a typical monitoring

component within a three-phase planning architecture. For our purposes, this monitoring

is required to be pre-conditioned. We also require a real-time or near-real-time reporting

protocol, but do not impose a particular timing constraint, deadline, or penalty scheme. The

monitoring component must also support interactive online input streams from multiple

sources. The combination of these functional requirements, as well as the overall semantic

and non-functional requirements of Table 4.2, lend themselves to a high-frequency low-

latency (HFLL) approach.

 Table 4.4 proposes several requirements for the evaluation modules or components.

For hypermodern decision agents, the predominant stipulation is that an evaluation of

monitoring inputs possesses the anytime property. An evaluation component is said to be

anytime scalable if it is guaranteed to improve its solution quality (i.e. monotonic-

increasing in expectation) with additional (temporal) resources. This entails the use so-

called anytime algorithms, which are reviewed in Section 4.1.3.6. Architecturally, the

evaluation component is tasked with offering a trade-off between solution quality and

computational resources. Algorithmically, this can be accomplished in several ways,

including roll-out style algorithms, or sampling-based improvement techniques [Silver and

Veness, 2010], [Kocsis and Szepesvari, 2013]. Our choice of implementation is in line

with meeting the set of hypermodern demands, which prefer to avoid sampling and

parametrization during runtime. The proposed evaluation component hybridizes both

online and nearline evaluations to remain stable and robust. Other methods for delivering

anytime guarantees may come at the cost of being numerically unstable or weakly

89

approximate [Browne et al., 2012]. In a hybrid setup, the online evaluation returns secure

results to the prescription component for the time-critical deployment of strategies.

Meanwhile, an ongoing nearline (or offline) evaluation can be queried for less time/safety-

critical and more opportunistic results. This combination of online and nearline (or offline)

analytics augments the action-selection process by offloading a minimal amount of work

to the prescription phase.

 Table 4.5 outlines the functional requirements of a hypermodern prescription phase.

The prescription component collects the outputs from the evaluation and produces a

shortlist of the best available strategies along with the chosen alternative(s). Potential

trajectories are generated and may be recorded so as to inform and improve the offline

evaluation component. The prescription component is primarily responsible for accepting

the evaluation results and implementing the corresponding control actions. The currently

prescribed action-plans, as well as summary data, may be presented through an external

interface. This requirement supports a human-in-the-loop (e.g. expert user) or meta-level

AI. The presentation of strategies and prescribed actions affords cognitive-level pattern

recognition, process supervention, quality auditing, and governance oversight if necessary.

This may be accomplished by way of visual displays, data visualizations, info-metrics, or

standardized reports. The architectural requirements emphasize that prescription occurs in

near-real-time when external interrupts are not present.

90

Table 4.3. Functional requirements for a hypermodern monitoring component within

three-phase planning (action-selection) architecture.

Monitoring

Requirement

Functional

Description

Technical

Considerations

Conditioned

Inputs

Accept a pre-processed, pre-filtered

input stream from sensory data or

model description feeds.

Example: Clean and convert input

signals. Only inputs expressed as

strings of positive-semi definite

integers on the interval [0, 1010] will

be accepted.

Offers a separation of architectural concerns;

upstream filtering vs. downstream processing,

etc.

Complex planning and decision making

processes are isolated from the nuances of data

gathering and synthesis.

Input stream need not be noise-free but should

be reasonably well-defined and bounded in

some acceptable language/type.

Real-Time

Reporting

Inputs must be delivered at a rate

considered to be real-time or near-

real-time; with hard or soft

deadlines/penalties for violation of

these timing and reporting

requirements.

Example: Sensory information is

queried/polled, cleaned, and made

available as input data every second

while the asset is active.

Supports live/active asset monitoring.

Improves change-detection-rate.

Quality of service decays with respect to

deadline exceedance.

Can create “information overload” scenarios.

Does not necessarily increase the resolution of

actionable knowledge.

Online

Pass-through

As monitoring data is streamed in, it

must be immediately passed through

to the evaluation module to be

operated on in an online (or nearline)

manner.

Example: Inputs are revealed and

processed sequentially without

pooling them for batch processing.

Captures dynamic activity and anomalous

events near the source.

Relays this information to the evaluation

module with minimal overhead.

Allows operations to be conducted in an

online, nearline, or streamline manner.

Avoids an offline analysis which requires an

aggregate, batch, or larger queue/store for

datasets.

Interactive

Asset-

Environment

Monitoring must support interactive

inputs.

Example: An input sequence is

periodically injected with data owing

to some potentially interactive

transactions, or commands as a

result of some output process.

Allows for slipstream activity. Captures out-

of-order causality.

An interactive input stream may be related to

any number of previous input streams, as well

as to the relationship between them.

Interactive sequences are difficult to predict

and often require speculation-free monitoring,

evaluation, and prescription.

91

Table 4.4. Functional requirements consistent with a hypermodern evaluation

component within a three-phase planning (action-selection) architecture.

Evaluation

Requirement

Functional Description Technical

Considerations

Anytime Performance

Scaling

The evaluation

component can be

queried at anytime,

returning the best-

known solutions or

results.

Evaluation module(s) progressively enhance

solutions. Algorithms do not require specifying

the resources for completion (non-contract).

RTO Analysis Performs evaluation in a

real-time online sense.

Produces a real-time online (RTO) analysis, and

supplies the prescription component with

immediately available online-calibre results.

These results are reactive but safe/secure.

DD Analysis Augments RTO

evaluations through a

deep nearline or offline

deliberation.

Conducts a deep-deliberation (DD), in a nearline

or offline sense, and supplies the prescription

component with delayed results. These results are

more adaptive, predictive and opportunistic.

Competitive

Evaluations

The ratio of online to

offline analysis

(competitive ratio) is

bounded.

The evaluation procedure does not “know” the

entire set of inputs (including future inputs), but

can nonetheless implement an effective evaluation.

92

Table 4.5. Functional requirements for a hypermodern prescription component

within a three-phase planning (action-selection) architecture.

Prescription

Requirement

Functional Description Technical

Considerations

Strategy Profiling and

Decision Ranking

Takes as input the

results/solutions from

the evaluation

components and

compiles a set of

strategies (and strategy

profiles).

Yields a set of top-ranked candidate state-transition

trajectories.

Isolates the pre-requisite resources and action

sequences to achieve optimal asset

behaviour/operation.

Plan Generation and

Action-Selection

Formulates an optimal*

plan. Prescribes the

sequence of actions

leading to desired

goals/state(s).

Selects the most appropriate state-transition

trajectory.

* = optimal w.r.t criteria/definitions.

Outputs the single best-response move/actions as

well as the expected trajectory for the asset.

Control and

Effectuation

Sends a control signal or

policy revision protocol

to actuators and/or

affectors.

Cyber-physically implements a realization of the

move, action, or desired state-transition.

Ongoing/Active

Reporting

Produces as output a

summary of the active

decision-making

process.

Outputs should display an active summary of

relevant information in a human-interpretable

form. E.g. Summary Reports, Tabular, Charts,

Visual displays, etc.

I/O Interfacing

Provides users with

access to input/output

options and

configurable parameters

(if applicable).

Allows expert supervision, advanced tuning,

auditing and diagnostics.

93

4.1.2 Algorithmic Requirements

 The implementation of an architecture for generalized asset integrity planning

necessitates the use of computational resources. In a three-phase architecture, each

component may require the deployment of its own computational procedures. The

suitability of an algorithm will vary by task; whether it is for monitoring and pre-

conditioning the input streams, evaluating strategies and solving succinct integrity games,

selecting and implementing control actions, or visually presenting the results to the user.

Each of the monitoring, evaluation, and prescription components can be computationally

intensive, challenging to implement and sensitive to design choices [Sleight and Durfee,

2013].

 In keeping with the impetus, we narrow our discussion to the key evaluation

components within a three-phase planning architecture. The conditioning of

inputs/outputs, pre/post processing, and dataflow to/from the non-evaluation components

are considered negligible. These are relatively straightforward tasks representing the

interface between the evaluation component(s) and the monitoring or prescription phases.

For our purposes, we define an evaluation component to consist of three (3) major

algorithmic tasks:

 1.) Estimate the state-transition costs.

 2.) Directly solve the base game.

 3.) Attempt to improve solutions to the perturbed integrity game.

94

These tasks are listed by order of precedence. They are ongoing in the sense that they must

be performed at each iteration or when signaled that a change in the asset is detected.

In (1), we seek algorithms which evaluate the integrity score of the asset relative to

a pre-computed set of reference configurations (integrity states). For each integrity state or

idealized reference configuration, a complex function may need to be evaluated. This

function scores the fitness-level of the asset based on model dependability metrics and uses

the normalized compression distance to ascertain the relative similarity to each of the states.

Repeating this process for each integrity state will populate an array which expresses the

estimated integrity score for each potential state-transition. This array contains the integrity

scores or state-transition costs, and constitutes the payoff structure for the base game.

 In (2), we seek algorithms which are calibrated towards efficiently solving a class

of succinct integrity games. Hypermodern decision agents demand high-frequency, low-

latency information updates. As such, this portion of the “game solver” should be

compatible with real-time online constraints. Algorithms which directly solve the base

game are required to be deterministic. They must report the principal variation as a pure

or mixed strategy Nash Equilibria up to some fixed evaluation depth. For a two-player

succinct integrity game, this process corresponds to returning the set of all minimax state-

transition trajectories.

 In (3), we invoke the anytime requirements, and seek algorithms which iteratively

improve solutions to the perturbed integrity game. No additional algorithmic requirements

are imposed, although it would seem that a deep, nearline or offline search of the state space

is the most appropriate. In the deliberation setting, it becomes more feasible to attempt a

95

proper learning of the generator functions for the stochastic noise and other perturbative

effects. Table 4.6 postulates a set of desirable characteristics and acceptable computational

specifications. Taken together, these circumstances influence the choice of deployed

algorithms.

Table 4.6. Algorithmic Modules for Integrity Game Solvers under Hypermodern

Evaluation Demands.

Algorithmic

Configuration

Working

Description

Functional

Requirements

Complexity

Requirements

Integrity Score Evaluation of a cost

function.

Estimates the integrity

scores between state-

transitions.

Yields a payoff matrix (input

array) within 𝑂(𝑁 𝑙𝑜𝑔𝑁) using

standard compression (NCD)

techniques.

Online

Evaluation

RTO solver for

Baseline Integrity

Games.

Computes all minimax

trajectories.

Solves the base integrity game

(2PZSG) in 𝑂(𝑁) time.

Nearline

or

Offline

Evaluation

DDO solver for the

Perturbed Integrity

Games.

Computes long-run

stable strategies and/or

learns complex noise

generating functions.

Yields an epsilon-approximate

globally optimal principal

variation in up to 𝑂(𝑁2)time,

with 𝑂(𝑁 𝑙𝑜𝑔𝑁) being ideal.

96

4.1.3 Supplemental Notions

4.1.3.1 Automated Planning

 Automated planning is a branch of artificial intelligence which conducts the

algorithmic search for strategies and actions. The solutions to automated planning

problems are often more complex than classical control and classification problems. This

is due to the multi-dimensional and highly dynamic problem structure. Planning problems

contend with multiple intelligent agents, each interacting competitively or cooperatively,

reporting fuzzy beliefs, non-transitive preferences, and chaotic knowledge about the

environment. The automated search for plans, strategies, or action sequences is performed

through algorithms which explore the state and/or configuration space of the system. This

is accomplished through either a direct traversal towards a goal, and/or indirect sampling

to synthesize admissible and thereafter optimal solutions.

4.1.3.2 Real-Time Online Algorithms

 Real-Time Online (RTO) algorithms are subject to both real-time and online

requirements. Real-time conditions must guarantee a response within strict time

constraints, often referred to as deadlines. For “hard” real-time constraints, violation of

deadlines leads to system failure. For “soft” real-time constraints, violations are tolerated

as progressively-critical faults which degrade the quality of service but may nonetheless

allow for recovery. For complex asset governance, deadline requirements may vary.

Acceptable response times are typically in the order of several seconds. In this context,

97

real-time planning algorithms will at any given time receive data, process them, and output

results so as to affect the asset at near this time. Online algorithms are restricted to a piece-

wise, subset handling of inputs. This often implies a sequential realization of the problem.

An online algorithm receives a sequence of requests and performs an immediate action in

response to each request in kind. Since they do not know all the given information at once,

online algorithms are forced to make decisions that may turn out to be sub-optimal or even

detrimental. The study of real-time online (RTO) algorithms has focused on the quality of

decision making that is possible under both real-time and online conditions. In this setting,

RTO planning is designed to work fast and abruptly, performing decision making after each

input request, and producing well-formed responses within seconds.

4.1.3.3 Offline Algorithms

 Offline algorithms are given access to the entire range of inputs in advance. An

offline algorithm formulates a plan which by itself still represents taking an action in

response to each request sequentially. Unlike online algorithms, the choice of each action

can be based on the entire sequence of requests. An offline algorithm essentially knows

the future and implements a zero-regret policy trajectory, navigating the state-space

optimally.

4.1.3.4 Performability of Online and Offline Algorithms

 The most common approach to assessing the performability of RTO planning is to

assume a specific stochastic model of the source of inputs, requests, event arrivals, state

98

realizations, etc. Within such a model, an online algorithm may be considered optimal if it

chooses its actions so as to minimize some cost functional. Here, the cost depends on the

sequence of requests generated by the stochastic source, and on the sequence of actions

chosen by the online algorithm in response to those requests. The choice of stochastic

model hinges on data being readily available about the observed sequence history, and also

requires faith that the future will resemble the past [Zilberstein, 1996]. For these reasons,

stochastic input models may be rather limited for some forms of asset integrity planning.

Rather inappropriately, much of the theory of stochastic control, risk-based scheduling, and

performance analysis is based on this approach [Borodin and El-Yaniv, 2005]. One

alternative to stochastic models is a worst-case approach inspired by minimax regret and

stochastic game theory. Here, the optimality of an online algorithm is evaluated by

contrasting its cost with that of an optimal offline algorithm processing the same sequence

of requests. In literature, this is known as the competitive ratio.

4.1.3.5 The Competitive Ratio

 The competitive ratio is defined as the maximum, over all possible input sequences,

of the ratio between the cost incurred by the online algorithm and the cost incurred by the

optimal offline algorithm [Borodin and El-Yaniv, 2005]. In this model, an optimal online

algorithm is one whose competitive ratio is a minimum. The main virtue of the competitive

ratio approach is that it avoids commitment to a particular stochastic input model.

However, the approach is pessimistic and essentially assumes the request sequence is

chosen by an all-knowing (offline) adversary. In practice, one seeks RTO algorithms which

99

perform well on typical request sequences while maintaining a small competitive ratio.

This balance can often be achieved through anytime algorithms, which hybridize both the

online and offline settings.

4.1.3.6 Anytime Algorithms

 Anytime algorithms constitute a class of search techniques which provide

automated planning suitable for stochastic learning and the performance optimization of

complex assets. These algorithms hybridize aspects of real-time online fast-response with

offline deep-calculation and future-proof deliberation. An anytime algorithm can return a

valid, admissible solution to a problem even if it is interrupted prematurely. Anytime

planning algorithms find and report incrementally better solutions as additional

computational resources are provided. In general, one assumes monotonically increasing

results [Zilberstein, 1996]. As the time to perform the algorithmic search increases, the

quality of the plan is expected to approach optimality. This is in contrast to contract

algorithms, which take as input some fixed amount of computation, run to completion, and

provide a single best answer. Contract algorithms guarantee a correct output only after

proper termination, with no guarantees on intermediate results. When interrupted before

finding a global optimum, anytime algorithms will return partial, best-known approximate

solutions. Anytime algorithms therefore scale with any allocation of computational

resource.

100

4.1.3.7 Anytime Performance

 Anytime performance is typically evaluated through the use of competitive ratios

and performance profiles [Borodin and El-Yaniv, 2005]. A performance profile estimates

the quality of results based on the input and the amount of time that is allotted to the

algorithm. It is a mapping of time to the quality of expected results. The probability of a

result being correct (certainty), the error bounds (accuracy), and the amount of

discrimination between other results (specificity), each contribute to the quality. The

competitive ratio, which measures the degree to which an online algorithm approaches the

performance of an offline algorithm, is also used. When both these techniques are

combined, the performance of an anytime algorithm can be monitored and potentially

controlled by solving some meta-level computational resource allocation problem. For

additional details on managing the stopping times of multiple anytime algorithms, see for

example the works of [Zilberstein, 1996], and [Borodin and El-Yaniv, 2005].

4.1.3.8 Desirable Anytime Characteristics

 In terms of asset integrity, the techniques for automated planning, performance

optimization, and algorithmic search are inter-related. Anytime conditions have been

applied to several families of algorithms [Thayer and Wheeler, 2010]. These include:

numerical optimization (e.g. gradient descent, hill-climbing), heuristic search (e.g. tabu

search, particle swarm), nondeterministic algorithms (e.g. Monte Carlo and genetic

perturbation methods), probabilistic inference (e.g. Deep Belief Networks inspired from

Bayes, Markov, Boltzmann, ANN), combinatorial search (graph coloring), and discrete

101

symbolic processing (string matching). Applying anytime constraints may alter the

algorithmic implementation of the numerical method, particularly if it is inherently

sequential, embarrassingly parallel, or fundamentally offline. This can potentially lead to

program code which is more ad-hoc, difficult to deploy, and/or harder to maintain.

 Irrespective of the implementation, there exist several characteristics which are

considered desirable, if not required, for a legitimate anytime planning algorithm

[Zilberstein, 1996]. A summary of these characteristics includes:

1. Interruptible: The algorithm can be stopped at any-time and provide some answer.

2. Pre-emptive: The algorithm can be suspended and resumed with minimal overhead.

3. Monotonic: The quality of the best-known and returnable result is a non-decreasing

function of the computation time.

4. Measurable quality: The quality of an approximate result can be determined

approximately, often at runtime.

5. Nondeterministic Consistency: For a given input, the quality of the result with respect

to computation time is approximately the same each time.

6. Diminishing Returns: The improvement in solution quality is the largest at the early

stages of computation, and the improvement diminishes over time.

7. Completeness: Given infinite resources, for any inputs, the globally optimal solutions

should be found, or reported that they do not exist.

In addition, requirements usually specify a strong competitive ratio, hard or soft real-

time constraints, tailored performance profiles, and bounds on the overall computational

complexity.

102

103

4.2 The Game Engine

 The Generalized Asset Integrity Game Engine (GAIGE) is a game-playing agent

for the rapid generation of decision sequences. In its prototypical form, it aims to

implement a basic anytime search over the state-space of possible move orderings,

returning the most promising strategies and formulating integrity plans guided by game-

theoretic optimality criteria (i.e. equilibrium corridors).

4.2.1 Scope

 The GAIGE uses the architectural and algorithmic guidelines of Section 4.1 for

autonomous planning and governance. These are conservative by design, emphasizing

several of the robustness and stability concepts of Chapter 3. High performance decision-

making is sought in the face of adversarial dynamics, hostile environments, and anytime

preemptive feedback. This entails a time-sequential, dynamic optimization of a complex

evaluation function (the integrity score) based on the principles of Chapter 2. Hyper-

modern demands are imposed, signifying a requirement that solutions avoid over-fitting

and scale well (low-latency, high-throughput) across domain types, sizes, and uncertainty

regimes.

 These requirements emphasize numerical solutions which are “easy to implement”,

and in general, tolerant of forced modelling errors (i.e. when strong uncertainty reduction

is infeasible). This leads to the anticipation of low complexity anytime algorithms with

(competitive) asymptotic performance guarantees. The prototypical GAIGE utilizes an

104

anytime search procedure for plan generation. This yields a prescription of reactive

strategies which secure the immediate survival of the asset (in a deterministic and myopic

sense). Given additional resources, the GAIGE explores strategies which are increasingly

adapted to the perturbations.

4.2.2 Minimax Transposition Search (MTS)

 In their basic form, minimax algorithms return principal variations and constitute

a type of adversarial search procedure. For many games, (principal) variations can be

thought of as (the best and/or most likely) lines of play. Principal variations represent the

expected path(s) of traversal, such as move-orderings for decision-trees or vertex-cycles in

graphs.

 Seeking principal variations rapidly and robustly is crucial if one is trying to

elaborate plans within adversarial environments. The search routines for many high-

performance game engines typically involve some form of minimax search (e.g. Chess and

Go). Minimax is typically employed in 2-player finite discrete sequential games (i.e.

combinatorial games). Variants of the basic minimax process have been developed to

exploit problem-specific features, taking advantage of special structure and providing

accelerated results. Standard enhancements include alpha-beta pruning (e.g. negascout),

moving-window searches with test-drivers (e.g. MTD-f), iterative deepening and

quiescence (i.e. intelligent fan-out), as well as number-theoretic exploits (e.g. magic and

conspiracy numbers), [ChessProgramming.com Wiki pages, 2015]. In more complex

105

games, search procedures may include contributions from fictitious and/or randomized

play, pattern matching, opening books, advanced rulesets, and endgame databases.

 The primary goal of minimax enhancements is to reduce the amount of

computational effort required to return principal variations. Several of the aforementioned

approaches can reduce the worst-case running time of 𝑂(𝑘𝑡), where k is the average

branching factor, and t is the search depth. In the GAIGE, the principal variations are

equivalent to the minimax trajectories through the game dynamical system. These paths

also represent elements of a set of “stable” oscillations for an ergodic family of systems

under 2PZSG dynamics. Therefore, enumerating the elements of such a set is equivalent

to returning all the minimax principal variations.

 Minimax Transposition Search (MTS) is the search procedure used to solve the

repeated base game component of the GAIGE. MTS is a search procedure which proceeds

via backward induction from a finite stopping horizon (fixed search depth). It is inspired

by dynamic programming and the principal of optimality first proposed by Bellman (c.f.

optimal substructure, [Bellman, 1957]). The MTS algorithm acknowledges the inherent

symmetry and substructure present in the succinct-form base integrity game. This

manifests itself in several ways. First, since all k actions are potentially available to either

player at any time-step, the search admits a constant branching factor. This branching is

bounded by some fixed branching rate k, supporting a simplified decomposition and

traversal. Second, we note that every state-transition reward/cost is fixed throughout all

time-steps. Informally, this leads to a realization that after a finite number of state-

106

transitions, one will be revisiting a particular reward state (as the same player to move and

minimax). This repetition of previously visited states through different permutations of a

move ordering is known as a transposition. The MTS algorithm works by exploiting the

symmetry and invariance of information, actions, payoffs, and state-transitions. By making

use of a special substructure whereby “everything is eventually a transposition”, the MTS

is able to return all principal variations in both linear time and space.

 Figure 4.1 presents the MTS algorithm in its entirety, with comments and

pseudocode adapted from a prototypical GAIGE implemented in the Python (version 2.79)

programming language. The program code was developed solely by the author as part of

the thesis work, with references to the work of Bubek et Al. for the Bandit algorithms

component.

107

Figure 4.1. The Minimax Transposition Search (MTS) algorithm as implemented in

the GAIGE.

Algorithm MTS (page 1).

1 Initialization with inputs N, T.

aPayoffs ← {𝑎11,𝑎12,. . . , 𝑎𝑖𝑗};

aCS ← {0}𝑁; aMinCS ← {0}𝑁; aMaxCS ← {0}𝑁;

Initialize the set of 𝑁2
actions (state transition
payoffs). Also initialize
arrays for cumulative sums,
and their min and max.

2 for t = 0, ..., T do For each of the T rounds.

3 x ← 0;
 aMulti ← 0;
 aLineOut ← {“Depth %s Min – Path [“ % (t+1)};

Initialize location index,
transposition count, and
set line outputs for the min
player.

4 for j = 0, ..., N do For each of the N sources
(jth row).

5 aMinX ← -1; aMin ← ∞; Initialize location/bounds.

6 for i = 0, ..., N do For each of the N
destinations (ith col).

7 if aMin >= aCS[i] + aPayoffs[x]: Check for a new minimum.

8 if aMin == aCS[i] + aPayoffs[x]:
 aMulti ← aMulti + 1;

Check for multiple paths
leading to same cumulative
payoffs (transpositions).

9 else
 aMulti ← 1;
 aMin ← aCS[i] + aPayoffs[x];
 aMinX ← {i};

Update the location of the
minimum cumulative sum
and its value.

10 x ← x + 1;

Increment the location
index.

11 end for Exit the i loop.

12 aLineOut ← aLineOut + {“%s” % aMinX};
 if aMulti > 1: aLineOut ← aLineOut + {“*%s” % aMulti};
 aLineOut ← aLineOut + {“, “};

Format and store the line
outputs.

13 aMinCS[j] ← aMin; Update the minimum
cumulative sum.

14 end for Exit the j loop.

108

Algorithm MTS (page 2).

15 aLineOut ← aLineOut + {“] Sum of Payoffs [”};
 for q = 0, ..., size(aMinCS) do
 aLineOut ← aLineOut + {“%s, ” % aMinCS[q]};
 end for

Format the line outputs to
show the accumulated
payoffs up to the current
depth.

16 output flush(aLineOut, “print()”) Flush line outputs to the
screen and/or store in logs.

17 x ← 0;
 aMulti ← 0;
 aLineOut ← {“Depth %s Max – Path [“ % (t+1)};

Reset location index,
transposition count, and
set line outputs for the max
player.

18 for j = 0, ..., N do For each of the N sources
(jth row).

19 aMaxX ← 𝑁; aMax ← 0; Initialize location/bounds.

20 for i = 0,...,N do For each of the N
destinations (ith col).

21 if aMax <= aMinCS[i] + aPayoffs[x]: Check for a new maximum.

22 if aMax == aMinCS[i] + aPayoffs[x]:
 aMulti ← aMulti + 1;

Check for multiple paths
leading to same cumulative
payoffs (transpositions).

23 else
 aMulti ← 1;
 aMax ← aMinCS[i] + aPayoffs[x];
 aMaxX ← {i};

Update the location of the
maximum cumulative sum
and its value.

24 x ← x + 1;

Increment the location
index.

25 end for Exit the i loop.

26 aLineOut ← aLineOut + {“%s” % aMaxX};
 if aMulti > 1: aLineOut ← aLineOut + {“*%s” % aMulti};
 aLineOut ← aLineOut + {“, “};

Format and store the line
outputs.

27 aCS[j] ← aMax; Update the cumulative sum
with the new maximum.

28 end for Exit the j loop.

109

Algorithm MTS (page 3).

29 aLineOut ← aLineOut + {“] Sum of Payoffs [”};
 for q = 0, ..., size(aCS) do
 aLineOut ← aLineOut + {“%s, ” % aCS[q]};
 end for

Format the line outputs to
show the accumulated
payoffs up to the current
depth.

30 output flush(aLineOut, “print()”) Flush line outputs to the
screen and/or store in logs.

31 end for Exit the main loop.

32 return 0 End of algorithm MTS.

110

4.2.3 Stochastic and Adversarial Optimal (SAO) Bandits

 Multi-armed bandits (MAB) are well-known in the literature on sequential decision

analysis and statistical process control. In the bandit setting, an agent must sequentially

choose actions so as to maximize the cumulative, expected, or discounted long-run reward.

Through sequential (possibly noisy) feedback, it becomes possible to build a model of the

relationship between actions and rewards. At each time-step, the agent may choose actions

in order to improve its model (exploration), or select actions believed to yield high rewards

according to the model (exploitation). This results in an exploration-exploitation dilemma

which is hard to solve in general. The basic MAB problem has been extensively studied in

[Agrawal and Goyal, 2012] with provisions for safety vs. risk dilemmas studied in [Galichet

et al., 2013].

 Variations on the MAB theme have been cross-pollinated by research into planning

algorithms and experimental design [Kocsis and Szepesvari, 2013]. The basic MAB

formulation is similar to an MDP, with extensions showing correspondence to POMDP

models [Silver and Veness, 2010]. These problems can be solved using dynamic

programming techniques such as value or policy iteration [Filar and Vrieze, 1997].

Unfortunately, these techniques typically require algorithms of exponential complexity in

the number of independent arms. More recent approaches utilize stochastic reinforcement

learning (c.f. Q-learning, H-infinite control) with adaptive sampling. Such methods

typically recycle the ideas of Thompson (c.f. Thompson Sampling), Gittins (c.f. Gittins

111

Index), or Whittle (c.f. Whittle Index). The complexity of these approaches typically

ranges from linear to cubic in the number of actions [Agrawal and Goyal, 2012].

 MAB algorithms have also been developed under the probably-approximately-

correct (PAC) learning framework of Valiant [Valiant, 1984]. In the PAC framework, one

seeks approximate solutions which are optimal in the sense of two-sided error (epsilon,

delta) bounds on the notion of regret, which is typically a convex loss function. Fast,

scalable classes of bandit algorithms utilizing these ideas include the epsilon-greedy, UCB,

Softmax (Boltzmann), and EXP bandits. These algorithms work online and deliver fast,

near-optimal solutions in potentially sub-linear time [Audibert and Bubeck, 2009]. These

algorithms represent the current state-of-the-art, solving the exploration-exploitation

dilemma across many problem classes, including several variations of MAB, MDP, and

POMDP.

 The GAIGE utilizes an algorithm known as the Stochastic and Adversarial Optimal

(SAO) bandit. The SAO was developed for the MAB framework by Bubeck and Slivkins

[Bubeck and Slivkins, 2012]. This algorithm has been modified and implemented by the

author as part of a near-line extension of the MTS component of the GAIGE. The SAO

works by minimizing the competitive regret, or alternatively maximizing the competitive

ratio as outlined in Section 4.1.3. Thus, one typically seeks to compare the online rewards

received by a MAB algorithm up to some stopping-time with respect to some offline

benchmark. A standard offline benchmark is the best-possible action-sequence in hindsight

[Audibert and Bubeck, 2009]. What makes the SAO algorithm exceptional is that it

achieves the “best of both worlds” after a reasonable number of rounds, T.

112

In SAO, the worst-case regret is bounded by 𝑂(𝑙𝑜𝑔(𝑇)) when the reward

environment is stochastic, and 𝑂(√(𝑇)) when it is adversarial. This represents an attack-

defense balance which gracefully enhances the agnostic behaviour of the MTS. A complete

discussion of the SAO is available through the work of Bubeck and Slivkins (2012),

[Bubeck and Slivkins, 2012]. These authors also provide the relevant theorems and proofs

of convergence. We have recruited their ideas and present them in Figures 4.2 and 4.3. As

mentioned, the SAO algorithm is anytime scalable and competitive. It has been revised

and implemented as part of the near-line component of the GAIGE in order to solve the

perturbed integrity game.

113

Figure 4.2. The Multi-Armed-Bandit (MAB) framework with both adversarial and

stochastic reward feedback.

 Known parameters: N actions; T rounds; non-degenerate choice: (𝑇 ≥ 𝑁 ≥ 2).

 Unknown parameters:

 (i.) Adversarial setting: non-parametric → none;

 (ii.) Stochastic setting: 𝑁 i.i.d. probability distributions 𝑣1,..., 𝑣𝑁 on [0,1].
 Each 𝑣𝑖 parameterized by mixture of moments, θ𝑖:
 e.g. θ𝑖 = 𝑓(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛μ𝑖, 𝑠𝑐𝑎𝑙𝑒σ𝑖, 𝑒𝑡𝑐.).

 For each round 𝑡 = 1,2, . . . , 𝑇;

 (1) A MAB algorithm chooses an action 𝐴𝑡 ∈ {1,..., 𝑁} (possibly randomly).

 (2) The environment selects rewards according to the exposed model:
 – An adversary simultaneously selects rewards 𝑔𝑡 = (𝑔1,𝑡,..., 𝑔𝑁,𝑡) ∈ [0,1]

𝑁.
 – Each reward 𝑔𝑡 ∼ 𝑣𝑖 is drawn stochastically and independently.

 (3) The forecaster observes (and receives) the reward 𝑔𝐴𝑡,𝑡.

 – In the MAB framework, the forecaster does not observe the rewards from other arms.

 Goal: Minimize the regret, defined for each respective environment:

 – Adversarial model:

𝑅�̂� = 𝑚𝑎𝑥
𝑖∈{1,...,𝑁}

∑𝑔𝑖,𝑡

𝑇

𝑡=1

−∑𝑔𝐴𝑡,𝑡

𝑇

𝑡=1

 – Stochastic model:

𝑅�̃� =∑ 𝑚𝑎𝑥
𝑖∈{1,...,𝑁}

(𝜃𝑖) − 𝜃𝐴

𝑇

𝑡=1

114

Figure 4.3. The Stochastic and Adversarial Optimal (SAO) algorithm of Bubeck and

Slivkins (2012).

Algorithm SAO (page 1).

1 Initialize the SAO Bandit with inputs N, T, 𝜷 > 𝟏.
S ← {1, …, N};
K = N;

Initialize the set S of active strategy
profiles (perceived as arms or actions in
the Bandit framework).

 2
for i = 1, …, K do

For each of the K actions (where each
action denotes an MTS minimax
strategy to follow).

3 𝜏𝑖 ← {𝑇};
 𝑝𝑖,𝑡 ← {1 𝐾⁄ };

The time 𝜏𝑖 when action i is
deactivated, and its probability 𝑝𝑖,𝑡 of
selection at time t.

4 end for End of initialization.

5 for t = 1, …, T do Begin the main loop.

6 play 𝐴𝑡 ∈ 𝑆 with 𝑝𝑖,𝑡 Select an active action with the
appropriate probability.

7 for i = 1, …, K do For each action, test several properties
(4 total under SAO).

8 if (𝑖 ∈ 𝑆) ∧ (max
𝑗∈𝑆

�̃�𝑗,𝑡 − �̃�𝑖,𝑡) > α1(𝑖, 𝑡) Test function 1.
Deactivation threshold.

9 then 𝑆 ← 𝑆 \ {𝑖}; τ𝑖 ← 𝑡; 𝑞𝑖 ← 𝑝𝑖,𝑡; Deactivation: Remove action I from the
active set. Update the deactivation
time 𝜏𝑖 and probability 𝑞𝑖 at time of
deactivation.

10 end if

11 if |�̃�𝑖,𝑡 − �̂�𝑖,𝑡| > α2(𝑖, 𝑡) Test function 2.
Consistency condition.

12 or (𝑖 ∉ 𝑆) ∧ (max
𝑗∈𝑆

 �̃�𝑗,𝑡 − �̃�𝑖,𝑡) > α3(𝑖, 𝑡) Test function 3.
Sub-optimality threshold.

13 or (𝑖 ∉ 𝑆) ∧ (max
𝑗∈𝑆

�̃�𝑗,𝑡 − �̃�𝑖,𝑡) > α4(𝑖, 𝑡) Test function 4.
Significance threshold.

14 then call algorithm EXP3.P:
 𝑝𝑖,𝑡+1 ← EXP3.P(δ ∈ (0,1))

If one of tests 2-4 is true, then the
environment satisfies the properties of
being adversarial, and we update with
EXP3.P.

15 end if

115

Algorithm SAO (page 2).

16
 end for

End of testing phase
(exploration).
Exit the 𝑖 ∈ 𝐾 loop.

17 for i = 1, …, K do
Update the action selection
probabilities ∀𝑖 ∈ 𝑆. 18

𝑝𝑖,𝑡+1 ← (
𝑞𝑖τ𝑖
𝑡 + 1

) {1}𝑖∉𝑆 +
1

|𝑆|
(1 −∑

𝑞𝑖τ𝑖
𝑡 + 1

𝑗∉𝑆

){1}𝑖∈𝑆

19 end for End of updating phase
(exploitation).
Exit the 𝑖 ∈ 𝐾 loop.

20 end for Exit of main loop.

21 return 0 End of algorithm SAO.

116

The SAO algorithm of Figure 4.3 makes use of following notation, terminology,

and statistical test functions:

 The cumulative reward of a fixed strategy i up to time t, and its average:

 𝐺𝑖,𝑡 = ∑ 𝑔𝑖,𝑚
𝑚=𝑡
𝑚=1 , 𝐻𝑖,𝑡 =

1

𝑡
𝐺𝑖,𝑡 4.1, 4.2

 The estimated cumulative reward from strategy i up to time t, and its average:

 �̃�𝑖,𝑡 = ∑ (𝑔𝑖,𝑚𝐴𝑖,𝑚 / 𝑝𝑖.𝑚)
𝑚=𝑡
𝑚=1 , �̃�𝑖,𝑡 =

1

𝑡
�̃�𝑖,𝑡 4.3, 4.4

 The algorithm's cumulative reward from strategy i up to time t, and its average:

 �̂�𝑖,𝑡 = ∑ (𝑔𝑖,𝑚𝐴𝑖,𝑚)
𝑚=𝑡
𝑚=1 , �̂�𝑖,𝑡 = �̂�𝑖,𝑡 / ∑ 𝐴𝑖,𝑚

𝑚=𝑡
𝑚=1 4.4, 4.5

Table 4.7. Formulae used by the SAO bandit algorithm (ref. Figure 4.3).

Function Derived Formula

1 Deactivation threshold

α1(𝑖, 𝑡) = 6√
4𝐾 log(β)

𝑡
+ 5 (

𝐾 log(β)

𝑡
)
2

2 Consistency condition

with 𝑡𝑖
* = 𝑚𝑖𝑛(τ𝑖, 𝑡) α2(𝑖, 𝑡) = √

2 log(β)

∑ 𝐴𝑖,𝑚
𝑚=𝑡
𝑚=1

+√4(
𝐾𝑡𝑖

*

𝑡2
+
𝑡 − 𝑡𝑖

*

𝑞𝑖τ𝑖𝑡
) log(β) + 5(

𝐾 log(β)

𝑡𝑖
*

)

2

3 Differential sub-

optimality at

deactivation time.
α3(𝑖, 𝑡) = 10√

4𝐾 log(β)

τ𝑖 − 1
+ 5(

𝐾 log(β)

τ𝑖 − 1
)
2

4 Significance of rewards

at deactivation time. α4(𝑖, 𝑡) = 2√
4𝐾 log(β)

τ𝑖
+ 5(

𝐾 log(β)

τ𝑖
)
2

 The functions in Table 4.7 represent bounds which provably hold with high

probability (w.h.p.). These are implemented as inequalities against some reward, loss, or

regret criterion.

117

For example, line (11) of Figure 4.3 performs a statistical test, |�̃�𝑖,𝑡 − �̂�𝑖,𝑡| >

α2(𝑖, 𝑡), which evaluates to true if a consistency condition for adversarial environments is

met. In this case, line (11) implies that for any strategy or action, the absolute difference

in �̃�𝑖,𝑡, the average of the cumulative reward estimates, and �̂�𝑖,𝑡, the average cummulative

rewards experienced thus far, should not exceed a limit threshold in order to be consistent

with the random play of a stochastic environment.

 The lines (11, 12, and 13) in Figure 4.3, and the corresponding bounds α2,α3,α4 of

Table 4.7, ensure that if any one of the three statistical tests evaluate to true, the disjunction

will be true, and the SAO algorithm then utilizes the EXP3.P revision protocol to guard

against adversarial dynamics. This is in contrast to the UCB/INF-inspired bandit updating

of lines (17, 18), which are calibrated for stochastic environments.

118

 Ultimately, the SAO component of a prototypical GAIGE implementation will

compute the strategy selection probabilities using the following schemes:

 If exploration/testing indicates an adversarial payoff structure, utilize a variant of

EXP3.P-bandits for revision:

EXP3.P: 𝑝𝑖,𝑡+1 ⇐ �̂�𝑖,𝑡+1 ← (1 − 𝛾)
𝑒𝑥𝑝(𝜂�̃�𝑖,𝑡)

∑ 𝑒𝑥𝑝(𝜂�̃�𝑘,𝑡)
𝑘=𝐾
𝑘=1

+
𝛾

𝐾
 4.6

with 𝛽 =
√𝑙𝑛(𝐾𝛿−1)

𝑛𝐾
 𝛾 = 1.05

√𝐾 𝑙𝑛(𝐾)

𝑛
 𝜂 = 0.95

√𝑙𝑛(𝐾)

𝑛𝐾

4.7, 4.8,

4.9

 If exploration/testing indicates a stochastic payoff structure, utilize a variant of

UCB/INF-bandits for revision:

UCB/INF: 𝑝𝑖,𝑡+1 ⇐ 𝑝𝑖,𝑡+1 ←
𝑞𝑖𝜏𝑖
𝑡 + 1

{1}𝑖∉𝑆 +
1

|𝑆|
(1 −∑

𝑞𝑖𝜏𝑖
𝑡 + 1

𝑗∉𝑆

){1}𝑖∈𝑆 4.10

with
{1}𝐶 denoting an indicator function returning 1 if the clause C is

true and 0 otherwise.
4.11

119

 The SAO bandit balances between attacking a weak adversary (stochastic reward

environment), and defending itself from a more devious adversary that targets the

algorithm's weaknesses. This an example of defensive forecasting, which avoids being

overly aggressive if the reward sequence is seemingly stochastic. It can nonetheless find

optimism in the face of uncertainty [Vovk et al, 2008]. The SAO bandit also has the

advantage of avoiding the Bayesian pathology of greedy conditioning and myopic variance

reduction [Owhadi et al., 2015]. This makes the algorithm indirectly useful for change-

point detection, as well as being less prone to overfitting, less brittle, and less readily

shattered (c.f. VC-dimension) than many alternatives in the literature [Owhadi et al., 2013].

120

4.3 Benchmarks

Preliminary benchmarks for the GAIGE were conducted using an AMD Phenom II

6-core processor operating at 4.017 GHz with 8 GB of DDR3 RAM at 1866 MHz. The

operating system was a 64-bit Lubuntu with Linux Kernel 4.2 and Python 2.77. All tests

with the GAIGE were run with multiprocessing modules enabled. The test suite consisted

of a varying a set of inputs randomly at each time-step so as to simulate a sequence

adaptations to small but ever-present perturbations to the base game. For each round, the

array elements 𝑎𝑖𝑗 of the base game are perturbed by at most |휀| = ± 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝛾𝑎𝑖𝑗)

according to a uniform normal distribution with parameters 휀𝜇 = 0 and 휀𝜎 = 1, and fixed

values 𝛾, 𝑁, 𝑇 by test run. For each iteration through the GAIGE, the MTS algorithm takes

𝑂(𝑁) steps to produce pure strategies. These strategies can be mixed by a nearline bloom

out of the SAO bandit algorithm, requiring up to an additional T = N steps to achieve regret-

minimization within the bounds 𝐿𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 = 𝑂(𝑁𝑙𝑜𝑔𝑁) to 𝐿𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 = 𝑂(𝑁√𝑁)

total time. For these tests, the MTS + SAO anytime responses are forced after a random

number of iterations between the bounds N and 𝑁√𝑁, which tends towards 𝑂(𝑁𝑙𝑜𝑔𝑁) in

expectation. The level of regret achieved by this amount of computation is not necessarily

minimal but is competitive. These tests are therefore setup to provide a crude analysis of a

regret ratio (e.g. competitive or minimal) for a prototypical GAIGE implementing the MTS

+ SAO algorithms on hard inputs. The benchmarks also offer a glimpse into the expected

compliance of the GAIGE as a hypermodern solver with soft RTO deadline constraints.

121

Figure 4.4 displays a small set of benchmarks which illustrate the convergence rates of

GAIGE for a variety of conditions.

Figure 4.4. Benchmarked regret convergence for the GAIGE.

Results show that for large 휀 = 𝑓(𝛾),𝑁 and large T, the perturbations do not dominate the

base payoffs and sufficient runtime is present for a near-complete regret minimization. As

T becomes larger than approximately √𝑁, the GAIGE converges on the 휀 generating

functions and fixates towards a single mixture of pure strategies which provide a regret in

the vicinity of 휀.

122

The converged strategies chosen by the GAIGE are robust to perturbations of

magnitudes less than or equal to |휀𝑚𝑎𝑥|. The selected strategies offer competitive (and in

some cases minimal) regret, and correspond to an 휀-approximate trembling-hand perfect

equilibrium. This is a highly sought after solution concept for general game-playing agents.

Results show the GAIGE achieves these results on modest hardware and for relatively large

datasets within sub-second execution times.

123

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Recapitulation

This thesis examines asset integrity governance under extremely general conditions.

The problem is classically formulated as an instance of risk-based planning. The integrity

of a physical asset is then governed using the solutions prescribed by an MDP or POMDP

model. The first chapter of this thesis highlights several gaps in the existing approaches.

It also serves to contrast the difference between specialized and generalized techniques.

Many of the existing asset integrity frameworks are most suitable for/when:

 Well-defined, project-based integrity assessments; where sufficient domain context,

expert knowledge, and a priori information produce asset-specific performance

measures.

 Assets operating in harsh environments; where risk-sources are naïve (non-

adaptive), and risks represent stochastic background processes and/or accidental

event arrivals.

 Offline analysis; where integrity modelling is performed using large batches of real

or simulated data, and action planning is accomplished over longer, predetermined

time-scales.

 Non-autonomous planning and governance; where human experts are required to

be in the loop on a continuous basis, and direct supervision may be critical to the

evaluation and assessment of integrity plans.

124

Extending these frameworks constitutes the bulk of this work. Asset integrity

governance is fundamentally revisited using a more abstract and general interpretation. In

Chapter 2, several performance measures are identified from the literature on dynamical

models, graphs, complex networks, and dependable systems. This material is crucial to the

understanding of the generalized asset as an information structure. Through this paradigm,

generalized assets are typically expressed in one of several well-defined modelling forms:

 Description Languages; such as the Model Description Language (MDL), the

Process Specification Language (PSL), Architectural Component Language

(ACL), Unified Modelling Language (UML), and their corresponding file-types:

.uml, .xml, etc.

 Schematic-Defined; Organizational flowcharts, process flow and logic control

diagrams, with file-types: .cad, .fea, etc.

 Graph-Defined; Block diagrams, state-transition diagrams, binary-monotone

systems, complex networks, etc.

Generalized asset performance is assessed using a combination of fitness-based and

similarity-based measures. Chapter 2 also advocates a two-part compilation of model

information. This reasoning is valid for all assets, and performed in the following manner:

 First, construct several reference configurations using the appropriate description

type. For example, binary monotone fitness for MDL, GPI for graph-defined

assets, reference files for schematics, etc.

125

 Second, compute the NCD or edit distance between all pairs of reference

configurations.

This procedure can be coupled with the expected utility of having the asset maintain a

particular configuration. This results in a set of integrity scores which represent universal

performance criteria. The integrity scores can be interpreted as state-transition costs,

payoffs, derived utility, benefits or rewards, depending on the context.

These values form an array which is representative of a succinct-form game. Chapter

3 elaborates these ideas further, and serves the dual purpose of emphasizing and recruiting

game-theory as a basis for asset integrity planning. Several key points can be concluded

from this portion of the work:

 Risks and their sources - are in general not simply naïve, but rather adaptive and in

a broad sense optimal under symmetric information and actionable resources.

 Hostile environments - expose an asset to harsh environments as well as the actions

of intelligent adversaries.

 Game-theoretic planning - extends decision-theoretic planning, and is essential for

assets tasked with persisting in hostile environments.

Games can be reasoned about using several different formats. This work contrasts the

normal-form, extensive-form, and succinct-form game representations. The most

important solution concepts are also examined. These include but are not limited to; Nash

Equilibrium, Trembling Hand Equilibrium, Von Neumann Minimax Potential.

126

Several trends in high-performance planning are outlined in Chapter 4. This work

proposed a set of guidelines for solving integrity games via autonomous game-playing

agents. Requirements were specified at both the architectural and algorithmic levels. The

overall theme was based on a set of demands and constraints called hypermodern.

Hypermodern planning agents predominantly advocate:

 Domain-oblivious; Planning in the face of extreme uncertainty, including few, if

any, assumptions regarding the nature of the problem.

 Agnostic learning; Unsupervised improvement of activities and results, in the

presence of little or no reinforcement feedback, context, or dependencies.

 Anytime scalable; Solution quality improves with additional computational

resources and exhibits a strong competitive ratio.

 Defensive Forecasting; The agent responds in a robust, non-brittle, interruptible

real-time online manner (pessimistic reflex). Whilst through anytime scaling,

gracefully increases its optimism through a near-line expansion or offline

component (proactive deliberation).

 Non-standard analysis; The agent is essentially non-bayesian, non-parametric, and

mitigates the need for sampling.

127

Chapter 4 also presented the algorithms implemented by a prototypical GAIGE.

Inspired by optimal substructure and dynamic programming, the MTS algorithm was

developed to take advantage of the repeated symmetry of the base game. The minimax

trajectories produced by MTS are used to generate a preliminary action plan, while also

being fed into the SAO bandit algorithm for additional deliberation. The SAO bandit tests

the performance of each pure minimax strategy against the game history to determine the

nature of the payoff perturbations. The probabilities of selecting a particular strategy are

then updated according to the amount of regret experienced by the algorithm, and whether

it is consistent with stochastic or adversarial lines of play. This solves the perturbed game

by devising mixed strategy equilibria which are approximately trembling hand perfect. The

best-known strategies are always available for output, to be leveraged for any appropriate

policy control, management platform, or governance oversight.

Finally, a prototypical GAIGE implementation is benchmarked on synthetic data sets.

This serves as a first-step towards additional validation, which will stress-test the expected

behaviour across several asset classes and operational domains. Results from these

rudimentary benchmarks show a GAIGE capable of delivering competitive regret

minimization on arbitrary problem types and scaling into large problem sizes.

128

5.2 Recommendations for Future Work

The themes surrounding this research are relatively broad and shallow, albeit their

combination is novel. Generalized asset integrity games are a theoretical, multi-

disciplinary construct with many potential applications. Chapter 1 draws on risk-based

asset integrity management, existing models and their functionality. Chapter 2 draws its

inspiration from results in model theory, information theory, graph theory, complex

networks, and dependable systems engineering. Chapter 3 is devoted to game theory, in

particular the algorithmic expectations and complexity issues of game structures and their

solutions. Meanwhile, Chapter 4 sought lessons from requirements design, systems

architecture, autonomous planning, and anytime algorithms. The culmination point is the

GAIGE which, as with many frameworks in their infancy, is currently more of a conceptual

placeholder than a field-proven technology. It is therefore recommended that future work

expand these ideas in four major directions:

(I.) Enhanced Representational Power. Support the ever more general asset

representations and universal evaluation measures as they become available. Plans

in the GAIGE represents a sequence of actions, which themselves represent

prescribed state-transitions between model reference configurations. What exactly

such state-transitions may entail physically is of upstream or downstream concern.

The current work examined several modelling institutions and settled on evaluation

functions based on graph topology and description complexity. Future work along

this line would recruit additional ideas from model and information theory to

129

produce representations of ever more broader and general classes of assets, and their

(integrity) performance.

(II.) Architectural and Algorithmic Improvements. Autonomous reasoning, planning,

and decision-making techniques are continuously improving. Future work along

this line would see the GAIGE utilize a wider and more appropriate palette of

solution concepts from game theory, optimal control, and dynamical systems

theory. It is recommended to recruit from the literature on general game-playing

agents, sampling algorithms, agnostic machine learning, and anytime optimization.

These endeavours would seek to devise even better regret and complexity bounds.

(III.) Implementation Scale-Up. The current GAIGE implementation is only

prototypical. It was developed as a simple software agent in the Python language.

The program code runs as a script/daemon and makes use of multiprocessing

capabilities, but is far from optimized. A full-scale software implementation would

likely be refactored into C to work in conjunction with other tools and interface

with several management information systems. In the limit, a full-scale solver

based on the GAIGE could potentially recruit the power of a GPU cluster or custom

hardware.

(IV.) Additional validation. General game-playing agents are somewhat novel, and

there is no strongly agreed upon method of benchmarking. As such, a more

encompassing, standardized test suite would have to be developed. Future work

should assess the game-playing strengths and weaknesses across highly distinct

asset types.

130

5.3 Closing Remarks

This research was undertaken with respect to a single maxim: abstraction and

generalization over focus and specialization. In a world of increasingly fit-for-purpose

engineering, application-specific frameworks, and tailor-made solutions, is it at all possible

to do more with less? At the very least, this thesis explores this question. In and of itself,

the pursuit yields value-adding research and development which is often overlooked –

particularly within the sphere of engineering. More pragmatically, these efforts contribute

by addressing a real-world, industrial impetus. This work surveyed a large, multi-

disciplinary body of literature, and produced a working prototype which holds its own

against the state-of-the-art. In essence, the answer to our question appears to be affirmative.

131

Bibliography

Agrawal, S., & Goyal, N. (2012). Analysis of Thompson Sampling for the Multi-Armed

Bandit Problem. Workshop and Conference Proceedings, Issue 23, Journal of Machine

Learning Research. Microsoft Research, India. pp. 2-26.

Audibert, J.-Y., & Bubeck, S. (2009). Minimax Policies for Adversarial and Stochastic

Bandits. Institute for Research in Computer Science and Automation. INRIA, Paris,

France. pp. 1-10.

Aven, T., & Jensen, U. (1999). Stochastic Models in Reliability. Applications of

Mathematics: Stochastic Modelling and Applied Probability. Springer-Verlag. New

York, NY, U.S.A. pp. 1-284.

Bellman, R. (1957). Dynamic Programming. Princeton University Press. Princeton, NJ,

U.S.A. pp. 3-18.

Bergstrom, T. (2014). Notes on Uncertainty and Expected Utility. UCSB Lecture Notes

on Economics, University of California, Santa Barbara. Santa Barbara, CA, U.S.A. pp.

5-7.

Bier, V. (2005). Game-Theoretic and Reliability Methods in Counterterrorism and

Security. University of Wisconsin-Madison. Madison, WI, U.S.A. pp. 1-13.

Borodin, A., & El-Yaniv, R. (2005). Online Computation and Competitive Analysis.

Cambridge University Press. Cambridge, United Kingdom. pp. 1-414.

Bowling, M., & Veloso, M. (2000). An Analysis of Stochastic Game Theory for Multi-

agent Reinforcement Learning. School of Computer Science, Carnegie Mellon

University. Pittsburgh, PA, U.S.A. pp. 3-10.

Boyd, J.R. (1976). Destruction and Creation. Technical Paper, Doctrines on Military

Strategy. Washington D.C., U.S.A., pp. 1-13.

Braess, D. et al. (1968, 2005). On a Paradox of Traffic Planning. Journal on

Transportation Science, translated from the original German version, 1968.

INFORMS, Vol.39, No.4. pp. 1-5.

Browne, C.B., et al. (2012). A Survey of Monte Carlo Tree Search Methods.

Computational Intelligence and AI in Games, IEEE Transactions. pp. 1-43.

Bubeck, S., & Slivkins, A. (2012). The Best of Both Worlds: Stochastic and Adversarial

Optimal Bandits. Workshop and Conference Proceedings, Issue 23, Journal of

Machine Learning Research. Princeton University. Princeton, NJ, U.S.A. pp. 1-23.

Bunke, H., et al. (2007). A Graph-Theoretic Approach to Enterprise Network Dynamics.

Defense Science and Technology, Birkhauser Publishing. Bern, Switzerland. pp. 1-

237.

132

Cai, Y., & Daskalakis, C. (2012). On Minimax Theorems for Multiplayer Games.

Lectures on Advanced Game Theory, Massachusetts Institute of Technology, MIT.

Cambridge, MA, U.S.A. pp. 1-16.

Cao, X. (2007). Stochastic Learning and Optimization: A Sensitivity Based Approach.

Springer Science Publications, Hong Kong University, Hong Kong. pp. 7-42, 53-142.

Cebrian, M., et al. (2007). The Normalized Compression Distance is Resistant to Noise.

IEEE Transactions on Information Theory, Volume 53, Issue 5. pp. 1895-1900.

Chen, X., et al. (2010). Settling the Complexity of Two-Player Nash Equilibria. Journal

of the ACM 56 (3). pp. 1-6, 16.

Cox, L.A. (2009). Risk Analysis of Complex and Uncertain Systems. International Series

in Operations Research and Management Science. Springer. Denver, CO, U.S.A. pp.

1-97.

Condon, A. (1992). The Complexity of Stochastic Games. Journal of Information and

Computation. CiteSeer Publishing. pp. 1-17.

Curran, R., et al. (2014). Transdisciplinary Lifecycle Analysis of Systems. Proceedings

of the 22nd ISPE Inc. International Conference on Concurrent Engineering, July 2014.

pp. 3-40.

Daskalakis, C., Goldberg, P., & Papadimitiou, C. (2008). The Complexity of Computing

a Nash Equilibrium. Computer Sciences Division, University of California at Berkeley.

Berkeley, CA, U.S.A. pp. 1-8, 54, 62-65.

Diaconescu, R. (2008). Institution-Independent Model Theory. Institutions, Madhyamaka,

and Universal Model Theory, Birkhauser Publications. pp. 1-4.

Dimand, M.A., & Dimand, R.W. (2002). The History Of Game Theory, Vol 1-2-3: From

the Beginnings to 1945, and from 1945 to the Modern Era. Business and Economics

Series, Routledge Publishing. pp. 142-148, pp. 531-587.

Ebrahimipour, V., and Yacout, S. (2015). Ontology Modeling in Physical Asset Integrity

Management. Springer Publications – Production & Process Engineering. pp. 33-88.

Eppinger, S., & Browning, R. (2012). Design Structure Matrix Methods and Applications.

The MIT Press, Cambridge, Massachusetts, U.S.A., and London, England. pp. 317-

324.

Fan, J., & Mostafa A. (2006). Dynamic Topology Configuration in Service Overlay

Networks: A Study of Reconfiguration Policies. College of Computing, Georgia

Institute of Technology, Atlanta, GA, U.S.A. pp. 1-11.

Filar, J., & Vrieze, K. (1997). Competitive Markov Decision Processes. Springer Series

on Operations Research & Decision Theory. pp. 1-73, 153-156, 161.

133

Finnsson, H., & Bjornsson, Y. (2010). Learning Simulation Control in General Game-

Playing Agents. AAAI Publications, 24th Conference on Artificial Intelligence. pp. 1-2.

Fortnow, L., et al. (2005). On the Complexity of Succinct Zero-Sum Games. Proceedings

of the 20th Annual IEEE Conference on Computational Complexity. pp. 301-333.

Galichet, N., Sebag, M., & Teytaud, O. (2013). Exploration vs. Exploitation vs. Safety:

Risk-Aware Multi-Armed Bandits. Workshop and Conference Proceedings, Issue 29,

Journal of Machine Learning Research. INRIA, Paris, France. pp. 245-260.

Genesereth, M., Love, N., & Pell, B. (2005). General Game Playing: Overview of the

AAAI Competition. AI Magazine Volume 26, Number 2. AAAI Society. pp. 63-72.

Gertsbakh, I., & Shpungin, Y. (2011). Network Reliability and Resilience. Section 1.3.5:

Using D-Spectrum and Signatures. Springer Briefs in Electrical and Computer

Engineering. pp. 21-24.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice.

Morgan Kaufmann Publishers. pp. 23-33.

Goguen, J.A., & Burstall, R.M. (1992). Institutions: Abstract Model Theory for

Specification and Programming. Journal of the Association for Computing Machinery

39, pp. 95–146.

Hauk, T., Buro M., & Schaeffer, J. (2006). Rediscovering *-Minimax Search. In

Computers & Games, Springer Verlag. Department of Computing Science, University

of Alberta. Edmonton, Alberta, Canada. pp. 1-5.

Herbrich, R., & Graepel, T. (2006). TrueSkill (TM): A Bayesian Skill Rating System.

Technical Report, MSR-TR-2006-80. Microsoft Research Laboratories. Cambridge,

United Kingdom. pp. 1-5.

ISO 18629-14:2006 (2006). Industrial Automation Systems and Integration: Process

Specification Languages and Ontologies. Parts 11-14. Logic Flow and Resource

Theories. International Standards Organization.

Jackson, M.O., et al. (2011). Epsilon-Equilibria of Perturbed Games. Department of

Mathematical Economics, Stanford University. Stanford, CA, U.S.A. pp. 1-35.

Jezequel, J.M., et al. (2002). The Unified Modeling Language. Model Engineering,

Concepts, and Tools. 5th International Conference. Springer Publishing. pp. 120-188.

Kaelbling, L.P., et al. (1998). Planning and Acting in Partially Observable Stochastic

Domains. Journal of Artificial Intelligence, 101, 99-134. U.S.A. pp. 1-36.

Kiekintveld, C. D. (2008). Empirical Game-Theoretic Methods for Strategy Design and

Analysis in Complex Games. PhD Dissertation, Computer Science and Engineering.

University of Michigan, 2008. pp. 1-3.

134

Khan, F. (2012). Development of a Tool for Risk Based Integrity Assessment of Process

Components. Final Report, Process Engineering, Memorial University of

Newfoundland, St. John's, NL, Canada. pp. 1-89.

Khatab, A., et al. (2009). Availability of K-out-of-N:G Systems with Non-Identical

Components Subject to Repair Priorities. Journal of Reliability Engineering and

System Safety, Volume 94, Issue 2. pp. 1-8.

Kocsis, L., & Szepesvari, C. (2013). Bandit Based Monte-Carlo Planning. Computer and

Automation Research Institute of the Hungarian Academy of Sciences, Kende.

Budapest, Hungary. pp.1-13.

Kreps, D.M. (1988). Notes on the Theory of Choice. Underground Classics In Theoretical

Economics, Westview Press. pp. 9-56.

Kreps, D.M., & Wilson, R. (1982). Sequential Equilibria. Econometrica, Vol. 50, No.4,

Published by the Econometric Society. U.S.A. pp. 866-876.

Latora, V., & Massimo, M. (2001). Efficient Behaviour of Small World Networks.

Physical Review Letters, Volume 87, Edition Number 19-8701. pp. 1-2.

Leyton-Brown, K., & Shoham, Y. (2008). Essentials of Game Theory: A Concise,

Multidisciplinary Introduction. Thesis Lectures on Artificial Intelligence and Learning,

Second Edition, Morgan & Claypool Publishers. pp. 1-88.

Li, M., et al. (2004). The Similarity Metric. IEEE Transactions on Information Theory,

Volume 50. pp. 1-14.

Misra, B.M. (2008). Handbook of Performability Engineering. Springer Publishing.

London, UK. pp. 1-211, 308-314.

Nash, J.F. (1950). Equilibrium Points in N-Player Games. Proceedings of the National

Academy of Sciences. U.S.A. pp. 48-49.

National Aeronautics and Space Administration (NASA). (2015). Proceedings from the

UTM 2015 conference on Unmanned Traffic Management Systems. Weblink:

http://utm.arc.nasa.gov/index.shtml.

Nisan, N., Roughgarden T., et al. (2007). Algorithmic Game Theory. First Edition.

Cambridge University Press. New York, NY, U.S.A. pp. 1-726.

Nykter, M., et al. (2008). Critical Networks Exhibit Maximal Information Structure-

Dynamics Relationships. Physical Review Letters, 100, 058709. pp. 1-10.

Owhadi, H., Scovel, C., & Sullivan, T. (2013). When Bayesian Inference Shatters.

Mathematics and Statistics Theory, Cornell University Library. ArXiv.org. pp. 1-7.

Owhadi, H., Scovel, C., & Sullivan, T. (2015)a. On the Brittleness of Bayesian Inference.

Department of Computing and Mathematical Sciences, California Institute of

Technology. Pasadena, CA, U.S.A. pp. 1-16.

135

Owhadi, H., Scovel, C., & Sullivan, T. (2015)b. Brittleness of Bayesian Inference under

Finite Model Information in a Continuous World. Electronic Journal of Statistics,

Volume 9. pp. 1-7.

Picci, G., & Gilliam, D.S. (1999). Dynamical Systems, Control, Coding, Computer

Vision: New Trends, Interfaces, and Gameplay. Progress in Systems and Control

Theory, Vol.25, Birkhauser Publishing. pp. 324-333.

Ricceri, B., & Simons, S. (1998). Minimax Theory and Applications. Nonconvex

Optimization and Its Applications, Volume 26, C.I.P. Issue. pp. 1-271.

Rozenberg, G. (1997). Handbook of Graph Grammars and Computing by Graph

Transformations, Volume 1: Foundations. Scientific Publications. pp. 401-442.

Schoenebeck, G., & Vadhan, S. (2006). The Computational Complexity of Nash

Equilibria in Concisely Represented Games. Proceedings of the 7th IEEE Conference

on Electronic Commerce. pp. 270-279.

Silver, D., & Veness, J. (2010). Monte-Carlo Planning in Large POMDPs. University

College of London. London, United Kingdom. pp. 4-9.

Sion, M., & Wolfe, P. (1957). On a Game Without a Value. Contributions to the Theory

of Games III, Annals of Mathematics Studies 39, Princeton University Press. U.S.A.

pp. 229-306.

Sleight, J., & Durfee, E.H. (2013). Organizational Design Principles and Techniques for

Decision-Theoretic Agents. Proceedings of the 2013 International Conference on

Autonomous Agents and Multi-Agent Systems. International Foundation for

Autonomous Agents and Multi-agent Systems. pp. 463-470.

Smallwood, R., & Sondik, J. (1974). The Optimal Control of Partially Observable Markov

Processes Over a Finite Horizon. Journal of Operations Research, Vol.21, INFORMS.

pp. 1071-1088.

Smolensky, P. (1986). Information Processing in Dynamical Systems: Foundations of

Harmony Theory. Parallel Distributed Processing: Explorations in the Microstructure

of Cognition, Vol. 1. MIT Press, Cambridge, MA, U.S.A. pp. 194-281.

Stone, P. (2007). Learning and Multi-agent Reasoning for Autonomous Agents. Technical

Slides, Department of Computer Sciences, University of Texas at Austin, Austin, TX,

USA. pp. 1-45.

Sudakov, B., & Vu, V.H. (2008). The Local Resilience of Graphs. Wiley Inter-Science

Series. Department of Mathematics, UCLA. Los Angeles, CA, U.S.A. pp. 1-23.

Thayer, J., & Wheeler, R. (2010). Anytime Heuristic Search: Frameworks and

Algorithms. Department of Computer Science, University of New Hampshire. Durham,

NH, U.S.A. pp. 1-8.

136

Valiant, L. (1984). A Theory of the Learnable: Probably Approximately Correct.

Research Contributions in Artificial Intelligence and Language Processing. ACM. pp.

1-9.

Vitanyi, P.M. Et al. (2008). Normalized Information Distance. Lecture Notes, CWI.

Amsterdam, Netherlands. pp. 1-33.

Von Neumann, J. (1928). On the Theory of Games. Proceedings Rendered to the

Academie of Sciences, 18th of June, 1928. pp. 1689-1691.

Von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behavior.

Princeton University Press. Princeton, NJ, U.S.A. pp. 1-2.

Vovk, V., Takemura, A., & Shafer, G. (2008). Defensive Forecasting. International

Statistical Review. pp. 1-15.

Wikispaces on Chess Programming. (2015). Proceedings retrieved from the wikispaces

on chess-programming, chessprogramming.wikispaces.com, Search in Chess and

Chess Engines. pp. n.

Zelazo, D., & Mesbahi, M. (2010). Graph-Theoretic Methods for Networked Dynamic

Systems: Heterogeneity and H-norm Performance. Department of Aeronautics and

Astronautics, University of Washington, Washington, OR, U.S.A. pp. 1-33.

Zilberstein, S. (1996). Using Anytime Algorithms in Intelligent Systems. AI Magazine,

Volume 17, Number 3. AAAI, U.S.A. pp. 73-83.

Zio, E., et al. (2006). Determining the Minimal Cutsets and Fussell-Vesely Importance

Measures in Network Systems by Simulation. Department of Nuclear Engineering,

Polytechnic of Milan. Milan, Italy. pp. 1-7.

137

Appendix I – Architectural Overview of the GAIGE

138

Appendix II –Potential Applications and Worked Examples

This appendix revisits the concepts of generalized assets through examples. Each scenario

is representative of a broad class of assets, processes, systems, as well as their typical

modelling paradigms. The selected case studies illustrate how a distinct, real-world asset

may be approached and refactored as a generalized asset. This epitomizes much of the pre-

processing required before ongoing planning and analysis can be effectuated using the

GAIGE. It is hoped that these worked examples will further demonstrate the range of

potential applications, shedding light on the inherent versatility of this formulation,

architecture, and implementation.

Example 1. Cyber-Physical Asset given by its Design-Structure-Matrix (DSM). Case

study of a networked industrial supply facility for the KVN Company.

Systems engineering of products, processes, and organizations require tools and

techniques for decomposition and integration. A design structure matrix (DSM) provides

a simple, compact, and visual representation of a complex system that supports innovative

solutions to decomposition and integration problems [Eppinger and Browning, 2012].

Generalized Assets may be specified using a DSM, which offers an alternative

representation for the analysis of critical system components and their interactions. In this

example, a physical asset is a localized industrial network within some warehouse, port, or

139

manufacturing and supply facility. The physical asset components consist of heavy-duty

materials handling equipment, transportation machinery, and storage modules. This asset

also has a number of cyber components including a wireless sensor network for

surveillance, monitoring and tracking services, autonomous robots and devices for

scanning and packaging, and an integrated information management system. The objective

is to operate these multi-domain subsystems and their critical components together in a

parsimonious manner. Here, the generalized asset is the active information structure which

captures the relevant features of the entire cyber-physical system and unifies their

indicators for evaluation. The generalized asset integrity represents a global state of

idealness or correctness between the many functional dependencies, interactions, and

process influences. This also includes the fitness levels of the various subsystems and

components.

Figure A2.1 depicts a DSM model which has already been developed for this

particular cyber-physical asset. The DSM maps naturally into a generalized asset

representation. The DSM model implicitly includes many of the graph performance

indicators and fitness-based assessments of Section 2.1, such as vertex centrality and binary

monotone importance. Therefore, less work is required to compose integrity scores “from

the ground up”. As an added bonus, the nature of this particular asset is such that many of

its components are locally intelligent and implement self-diagnostic protocols. This allows

a treatment of certain decision-making criteria, such as repair, maintenance, and servicing

forecasts, to act as elements within the DSM itself.

140

Figure A2.1. DSM for the KVN industrial supply facility as a generalized asset.

141

The “raw” generalized asset is therefore a 216 x 216 matrix formed directly from the

DSM itself. By amalgamating knowledge from KVN engineers, systems integrators,

suppliers, and floor managers, the major dependencies were reduced to the following

criticality levels: 3 (red) – very strong, 2 (pink) – medium, and 1 (yellow) – low. Although

these interactions revealed many dynamic relationships, a static and domain-oblivious

analysis was performed to derive the baseline reference configurations for the generalized

asset. Many scenarios were considered, with most falling into one of the following

categories:

 The class of complete shutdown conditions, owing to multiple failures, unplanned

downtime, catastrophic exposures, etc.

 A class of planned shutdown or (near)-offline conditions.

 Various “lights out” operating conditions, owing to major operations performed

autonomously by cybernetic systems, and/or with humans-out-of-the-loop during

off-hours.

 A set of high-output and maximum performance conditions in terms of energy use,

risk exposure, and utility return.

 The class of low-energy, low-hazard, or low-risk conditions, again owing to times

where business continuity can be maintained without heavy production and

equipment aging. This includes scenarios with no presence of hazardous materials,

minimal storage, occupancy, personnel, as well as other dependencies which

mitigate workplace entropy.

142

 Various cyclical and transient conditions, owing to various on-demand and just-in-

time production and off-equilibrium output to optimize value, chiefly resulting

from the cycling of logistical processes such as resupply, rerouting, and

housekeeping tasks.

 A set of randomly generated “anomalous” conditions owing to the cyber-physical

nature of the asset, as well as the potential exposure to intelligent threats, software

risks, and other unforeseen operating regimes.

These conditions were used to construct a set of representative reference configurations

from the (unwieldly large) set of possible configurations. Figure A2.2 illustrates how a

DSM-defined generalized asset would appear configured under a number of different

scenarios.

143

Figure A2.2. DSM for KVN industrial supply facility under different scenarios.

 Constructing the set of reference configurations characterizes an offline pre-

processing step through fitness-based metrics which require significant computational

resources. Further evaluations involve the hashing of integrity scores based on similarity-

based measures such as the normalized compression distance (NCD). This alleviates the

need for additional fitness-based assessments, and is conducive towards hypermodern

analysis. In this example, the reference DSM are sufficiently compact, suppressing the

need for sophisticated decomposition and encoding schemes, such as the joint spectral

distance or algebraic matrix characterization methods. The standard < 𝐾𝑣, 𝐾𝑒 , 𝐾𝑁 >

−𝑎𝑠𝑠𝑒𝑡 representation is applicable, with 𝐾𝑣 = 1, 𝐾𝑒 = 2, 𝐾𝑁 = 20 offering a complete

state-transition-graph with 20 vertices, and 400 edges. The state-transition-system formed

by this asset is therefore a 20 x 20 weighted adjacency matrix, with each of the 400 elements

144

requiring an integrity score evaluation. For simplicity of depiction, Figure A2.3 illustrates

the state-transition-graph formed by a more simplified < 1,2,8 > asset.

Figure A2.3. A <1, 2, 8>-complete graph for the KVN facility.

145

The similarity between each pair of DSM configurations is computed using the

NCD. To perform the NCD computations, the DSM are first converted into bit arrays and

saved as .dsm files without header metadata in a manner similar to the raw (uncompressed)

.gif file format. For this application the GZIP program was used as the compressor to

compute NCD values. The GZIP program implements a lossless compression algorithm of

Lempel and Ziv (LZW), and is suitable for NCD comparisons between generic file objects.

 Each of the reference configurations assumes an inverse monotonic relationship

between the NCD and long-run expected Von-Neumann utility. If the generalized asset is

modelled coherently and consistently, then large differences between descriptions (e.g. two

particularly different DSM configurations) correspond to large differences in derived

utilities. This is useful in developing the final integrity scores, which map and scale the

NCD values into integer numbers for computational speedups. The integrity scores are the

assigned edge weights of the final state-transition graph which is used as input into the

GAIGE and corresponds to a succinct-form integrity game. The integrity scores always

represent compound “move and hold” operations. The magnitude of a score is derived from

two contributions: (i.) the NCD value of the “move”, and (ii.) the VNM-utility value of the

“hold”. The move is captured by the inverse NCD score, and signifies the degree of rework

costs. A large NCD parallels numerous component change-orders for the asset manager,

such as maintenance and repair activities at the KVN facility. A large NCD could also

represent numerous disruptions and more focused destructive efforts on the part of an

intelligent adversary or natural antagonist. The hold simply provides for the vector sum of

the relative utility derived from all productions, operations, costs and losses, revenues,

146

liabilities, and other socio-economic benefits for maintaining the asset in a particular global

state (therein normalized for one time-step). In the current work, the combined move and

hold integrity score is collected and rewarded immediately and is not future or past

discounted.

Because of real-world limitations, some state transitions may be “nigh impossible”

to achieve. This might represent the cyber-physical constraints of delivering extreme

repairs or damages in relatively short time steps. In these extreme cases, a particular edge

of the graph would be blocked and the respective integrity score(s) would simply be

replaced with a null symbol, effectively reducing the number of state-transitions available

to a player. This particular example uses reference configurations which were chosen in

such a way as to always be available within one time step, albeit with potentially

strategically important magnitudes, reflected by very large or very small integrity scores.

 Figure A2.4 tabulates the NCD, VNM, and overall integrity scores for one potential

reconfiguration of the asset. These scores represent the potential reward derived from a

global state transition from the offline condition (source vertex labelled as the 0th vertex,

vertex_i) to any of the 𝑁 = 20 other reference conditions (vertex_j destination vertices).

Values in the VNM ($/minute) column are present-value forecasts derived from an

expected annual operating income of $63M for the asset. This corresponds to

approximately $120/minute of uptime in the maximal state and $70/minute uptime in the

“sweet spot” of ideal working state (in a static sense).

Figure A2.5 plots the performance scaling of these reconfiguration metrics. In these

figures, the source vertex is vertex_0, i.e. the asset existing in an offline condition. In kind,

147

vertex_20 denotes a fully working configuration at maximum levels of production. This is

evidenced by the higher VNM utility. This transition however, does not correspond to the

highest integrity score. This is because a reconfiguration from vertex_0 to vertex_20 is

dominated by the move component rather than the hold component in the compound move-

and-hold operation registered by the integrity scores. In other words, minute for minute, it

is far more expensive to restore the KVN facility from a totally offline to a completely

working state then it is to capitalize on profits incurred immediately thereafter. If the

integrity game were played over a single time-step, the optimal transition would be

vertex_0 to vertex_14, resulting in the best compromise between the NCD and VNM for a

maximum integrity score yield. Viz. generalized assets, the payoffs owing to a

reconfiguration are realized by a combination of transition effects and their immediate

returns, and these do not always correlate with higher performance levels using classical

performance metrics such as network fitness or system availability.

148

Figure A2.4. Asset reconfiguration potentials from the offline state to all other

reference conditions.

Source
Destina-

tion
NCD

VNM
($/mi-
nute)

VNM (nor-
malized)

Integrity
Score

Integrity Score
(normalized)

0 0 0 0 0 0 0

0 1 0.1141 5 0.0044 1000 0.249

0 2 0.2303 16 0.0141 1100 0.274

0 3 0.1467 21 0.0185 1550 0.386

0 4 0.1883 26 0.0229 1300 0.323

0 5 0.1209 31 0.0274 1400 0.348

0 6 0.2706 36 0.0318 1200 0.299

0 7 0.2652 41 0.0362 1600 0.398

0 8 0.3132 46 0.0406 1984 0.494

0 9 0.2111 44 0.0388 1812 0.451

0 10 0.3967 49 0.0432 1717 0.427

0 11 0.4242 54 0.0477 2490 0.619

0 12 0.5555 59 0.0521 2200 0.547

0 13 0.5555 64 0.0565 2310 0.575

0 14 0.6856 69 0.0609 2054 0.511

0 15 0.7604 74 0.0653 2540 0.632

0 16 0.7458 79 0.0697 2608 0.649

0 17 0.8782 84 0.0741 2750 0.684

0 18 0.9174 105 0.0927 2780 0.692

0 19 0.9845 110 0.0971 2800 0.697

0 20 0.9847 120 0.1059 3000 0.746

- Vertices ordered by k-out-of-N:G criteria.

- EdgeID = <vertex_source, vertex_sink>

149

Figure A2.5. Plot of the performance scaling for a reconfiguration of the asset (offline

to all other configurations).

These figures provide some insight into the expected integrity levels and

performance characteristics of the generalized asset. Enumerated to exhaustion (every

source to every destination), they also express a succinct form payoff matrix for the base

integrity game. The full 400 x 400 input array is used to initialize governance of the asset

via the GAIGE. As the asset evolves in real-time, the integrity scores are updated as

component conditions are reported through an aggregation of various monitoring and

sensory channels which integrate a supervisory control and data acquisition (SCADA)

stream. The GAIGE periodically performs a simple check to see if the array has sufficiently

changed to warrant a re-computation of the optimal strategies. If the integrity scores have

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20
Destination State (vertex ID number)

NCD VNM (normalized) Integrity Score (normalized)

150

changed significantly, the GAIGE performs an MTS of the new array and attempts

additional deliberation through the use of SAO-bandits. The best-available strategies are

always available for generation as an output to the user or to the information management

system. The planning horizon for the asset accounts both stochastic and adversarial

disruptions. Asset behaviour was simulated over 360,000 one-minute time-steps using

historical data obtained from standard operations at the KVN facility. This is equivalent in

duration to 6000 hours of operation or a period of 24/7 uptime across 250 days. At each

time-step, a new payoff matrix was generated based on a perturbation of the previous

integrity scores, with each value drawn from an unknown distribution amongst some family

of distributions (e.g. Bernoulli and exponential). For stopping-time simplicity, a random

amount of additional deliberation (up to 10 seconds) was accorded every 100th time-step to

visualize the effect of SAO-bandit “corrections”. The strategies reported by the GAIGE

were smoothed up to larger time-scales for illustration. Figure A2.6 reports a sample

sequence of prescribed state-transitions relative to five initial conditions (given by DSM

configurations at vertices 0, 5, 10, 15, and 20) over 1 hour intervals. For these time steps

no SAO-bandit deliberation was performed. A perturbation event was introduced at time-

step 20, causing many of the strategies to resettle under different minimax trajectories. The

event can be interpreted as an arbitrary disruption, tremble, or noisy realization of state

which causes the integrity scores to change, inducing a correction to the optimal lines of

play.

151

Figure A2.6. An example set of state-transition trajectories provided by the GAIGE.

 Figure A2.7 showcases the level of regret experienced by the GAIGE relative to a

correct line of play in hindsight. The figure is developed for a single strategy profile based

on the asset being initialized in configuration 12. The GAIGE chooses actions using the

MTS algorithm only, except every 10th round where it is allowed access to up to 10 seconds

of additional deliberation using the SAO-bandit. These anytime intervals are counted as a

single update step, during which a history of regret is used to examine the most promising

strategies and adjust future actions.

152

In these tests, regret was revealed as the difference between the total integrity score

so far accumulated by the GAIGE (using MTS and every so often MTS+SAO), and the

integrity score of a perfectly “omniscient” player using a fixed strategy that also accounts

for all future perturbation events. This corresponds to the probability of selecting the

correct strategy or sequence of actions. Figure A2.7 shows a convergence which is

progressively more resilient to adversarial and stochastic perturbations. This is a defensive

yet opportunistic integrity plan which also corresponds to an approximate trembling-hand

equilibrium.

Figure A2.7. Example of the (inverse, cumulative) regret from the actions prescribed

by GAIGE using a combination of MTS and SAO algorithms.

153

The GAIGE would be regularly updated in a live setting, where it would interface

and support other information systems and decision support tools. A more robust, scaled-

up version could theoretically act as a force-multiplier for the asset integrity authorities at

KVN. Additional context, expert/domain knowledge, and specialized optimizations would

likely be required for an actual production environment. Nonetheless, by way of this

generalized, agnostic methodology, one can effectively govern the high-level operational

configuration of any DSM-defined asset. The KVN facility is a networked industrial centre

for supply and distribution operations. It represents a cyber-physical asset. Passing the

DSM representation into generalized asset form and then planning via the GAIGE enables

advanced budgeting for supply chain disruptions, equipment downtime, and machinery

throttling.

154

Example 2. Critical infrastructure assets given by a complex evolving network of

interdependencies. Case study: Integrity governance for an Unmanned Aerial

Traffic Management System (UTM).

Unmanned Aerial Vehicles (UAVs) and Systems (UASs) are witnessing

widespread deployment as force-multipliers for several industries and public-serving

sectors. A small subset of potential applications include agricultural, forestry, and natural

resources data collection and condition monitoring, rail and road network surveillance, low-

altitude radar and speed enforcement, aerial telemetry and streaming, search and rescue,

and cargo delivery.

It is anticipated that the increasing ubiquity of UAVs and UASs will drive the

development of Unmanned Aerial Traffic Management Systems (UTMs). A notional UTM

may be small or large scale, while publically or privately owned and operated. Various

UTM architectures have been put forth, with no particular consensus on the applicable

topology (e.g. distributed or centralized), legal frameworks, regulations, or governance

practices. Nonetheless, the potential for low-altitude, short and long term air-space leasing

has driven the need for integrated management systems which autonomously guide and

direct fleets of UAS assets. The near-term goals of UTM architectures are to enable low-

altitude UAV/UAS operations with demonstrated safety and security. The long-term goals

for a UTM typically seek to tighten requirements and strengthen capabilities. These may

include addressing emerging threats and vulnerabilities, improving efficiency, and

increasing asset/fleet capacity, autonomy and endurance.

155

UTMs are typically classified as portable or persistent. A persistent UTM is

optimized for high-availability missions and implements centralized governance of a large

territory, such as a provincial district. In this sense it is very much akin to existing air-

traffic management (ATM) infrastructure. The portable UTM is more embedded. It is

favored for ad hoc, high-utility missions and private projects. It manages a smaller fleet of

assets over a localized region, such as a city or county. The portable UTM can often be

field-deployed alongside several of the UAV/UAS whereas the persistent UTM operates

out of a fixed facility. Both classes of UTM support differing business models owing to

different advocacy groups and use cases.

Figure A2.8 illustrates a UTM based on novel proposals from NASA and

commercial partners who are enabling the development of a Low Altitude Traffic and Air

Safety (LATAS) Platform.

Figure A2.8. Notional UTM for UAV/UAS operations, courtesy of NASA.

156

Ongoing UTM and LATAS development efforts seek to connect and integrate

leading airspace management technologies into an infrastructure-as-a-service (IaaS)

package for commercial and recreational drone operators, as well as regulators and air

traffic controllers.

 In this example, we consider a private IaaS provider certified by a national

regulating authority to operate a fixed entity (persistent) county-level UTM. The UTM is

modelled holistically as a system-of-systems (SoS). This choice of modelling approach

allows a rapid integration of critical asset features. During preliminary design, a static

dependability analysis of the components and subsystems was conducted. This was a

bottom-up offline analysis, beginning with reliability block diagrams (RBD) and fault-tree

analyzes (FTA). Results provided insight into the availability and disposition of several

asset dependencies and their logical relationships. This knowledge was used to perform a

series of fitness evaluations of the systems within the overall SoS. The SoS itself is a large

collection of hierarchically clustered interacting manifests. The SoS is also a graph, and

when properly defined embodies yet another example of a generalized asset.

The expected (dynamic) operating risks, importance levels, and criticality of

various elements are found using several of the graph-performance indicators (GPI)

discussed in Chapter 2. Figure A2.9 presents a summary of the SoS which is used to form

a reference configuration for the UTM as a generalized asset.

157

Figure A2.9. The generalized asset information structure for an Unmanned Aerial

Traffic Management System (UTM).

 The proposed UTM is modelled as a generalized asset given by a SoS with critical

modelling ensembles:

 Intelligent Datalink Management. Manages the communications, protocols, link

and access control events, error correction and control, etc.

 GIS-Based Maps and Missions. Provides the collaboration between geomatics and

GIS systems to enable GPS/satellite guided mapping and dynamic mission planning

services.

 Risk Sensing & Avoidance. Encompasses the cognitive protocols, SCADA, and

swarm optimization algorithms for the primary sensing, detection, and avoidance

tasks.

158

 UAV/UAS Fleet Reporting and Definitions. Primary SCADA for fleet operations

including individual and coordinated mission logistics, airspace status, physical

health, and condition monitoring for deployed and reserve UAV/UAS assets.

 Geofencing and Failsafe. Manages the failsafe behaviour for various flight modes,

including operating range constraints, signal strength limitations, airspace

coordinate safety limits, emergency procedures and lost-link return/evacuation

policies.

 Air Traffic Management (ATM) Interfacing. Encapsulates the correspondence

with proper ATM systems from other authorities for weather information, auxiliary

traffic reports, or other commands and notifications.

 Payload Tracking and Handling. Manages the end-to-end processing of physical

payloads for delivery or digital contingency services such as reconnaissance and

remote data acquisition. Handles the induction queuing, shipping confirmation, and

de-queueing of parcels and packets through the UTM facilities and airspace

infrastructure.

 Physical (Ground) Structures and Facilities. Management of the UTM supporting

physical infrastructure, including operating grounds and facilities, warehousing,

ground vehicles, and related monitoring, security and surveillance.

 Cloud-Based Interfacing. Includes components which regulate the cloud-based

platforms and services such as physical hardware, remote storage and access,

internet-driven protocols, processes and devices, and user-enabled functionality.

159

 Source Power and Energy Distribution. The subsystems responsible for

interfacing with power/utility infrastructure and supplying energy. Includes

regulation and distribution of electrical power and backups within the UTM.

The UTM is expected to persist in a hostile environment. The UTM is exposed to a

variety of risks but is predominantly sensitive to adverse weather conditions, extended

power grid outages, communications jamming and disruption, as well as unforeseen

technical failures. Adversarial threats include deliberate airspace congestion, landing zone

obfuscation or harassment, malicious actions against drones, false orders/requests, and

many others. Multiple safety and security measures are in place to minimize the attack

surface by design. Despite these efforts, the UTM remains exposed to the continuous threat

of cyber-attacks. Several potential vectors exist, including actions which glitch the

SCADA or GIS subsystems to provide incorrect mission commands, as well as disabling

or hijacking aerial assets. Attacks may also attempt to compromise the privacy and safety

of sensitive data or payload information. Other vectors include the distributed denial-of-

service (DDoS) attacks on the various external interfaces. A weaker adversary might utilize

these tactics in an attempt to disrupt the quality of service (QoS). Finally, there are

vulnerabilities to physical intrusion and damage to the facilities, owing to perimeter

surveillance and security failures (or attacks).

160

 The performance of this generalized asset is calculated for several scenarios which

manifest themselves as N = 100 significant reference configurations in a manner similar to

the previous example. A set of N2 =10,000 baseline integrity scores are derived from long-

run VNM-utility expectations and reconfiguration efforts computed using the NCD.

Results are formulated into a succinct payoff array for input into the GAIGE. The UTM

gathers and processes data asynchronously. Update frequencies range from sub one-second

time intervals for dynamic positioning and sensing subsystems, to upwards of 7 days based

on a lack of change-detection in certain physical components and ground facilities. As

such, the update priorities for elements within the generalized asset may be adjusted based

on change criticality, plausibility, or detection. This scheduling reduces the size and

number of active array elements considered by the GAIGE at any one time-step. State-

transition actions which recover the asset from immediate issues are evaluated before

deliberating over less impending concerns. A prudent allocation of anytime resources also

serves the defensive forecasting requirements, where the initial best-available plans are also

the most secure (MTS), and deprecated opportunistically as optimization times permit

(SAO-bandits).

 Generalized asset operations are simulated for a horizon of 10 hours, corresponding

to a session of normal UTM missions/activities subject to naïve discrete event arrivals and

their ideal response/recovery. Naïve events are sampled using a variety of distributions,

and model the ever-changing weather conditions, airspace traffic reports, sense and avoid

trajectory deviations, signal strengths, ATM and cloud-based notifications.

161

To impress the need for game-playing agents in the face of adversarial dynamics, a

series of deliberately planned remotely-executed minimax trajectory disruptions are

introduced. These represent intelligent attacks which can be recovered from relatively

quickly, yet are useful for examining fleet and airspace resilience. In this example, a GPS

navigation glitch is considered, which triggers the failsafe and geofencing protocols. An

electrical power disruption is considered, engaging the backup supplies and initiating a

return-to-home procedure on all UAV/UAS. Finally, two cloud-based DDoS attacks are

considered, resulting in temporary QoS adaptation. For simplicity, the class of

‘catastrophic’ and/or large-scale physical denial of the fleet or ground facilities is not

considered. Such events would inevitably result in a near one-shot transition to the

completely failed endgame state. In such a configuration the UTM activities are suspended

indefinitely and no further analysis is required from an integrity planning perspective.

The planning horizon for the GAIGE is therefore T = 36,000 one-second time-steps

simulating 10 hours of hostile environment persistence. During this time, the asset

undergoes adaptive oscillations as changes to the UTM configuration are observed and

innovated upon in the manner prescribed by the GAIGE. At each time-step, the GAIGE

re-plans a sequence of actions and transitions the asset accordingly. This results in a series

of planned vs. actual trajectories. Figure A2.10 illustrates the time-evolution of the asset

under GAIGE recommended governance from a particularly safe starting configuration

until the end of simulation.

162

Figure A2.10. Evolution of the UTM under governance from the GAIGE.

In the above plot, the horizontal x-axis indexes a time-step which averages 20

minutes of condition monitoring and integrity evaluations. The vertical y-axis indexes a

derived integer integrity score scaled between 0 and 100. This represents the payoff level

awarded at the end of a round of simulated gameplay. In this regard, the reference

configurations have been ranked and scaled in order to illustrate how the integrity of a UTM

would be governed. Correct UTM management seeks to continuously maximize the area

under the curve(s) with respect to utility yields; the adversary attempting to do the opposite

(minimize the area); and nature acting as a random noise signal (which can aid either party).

This generalized asset evolves in accordance with the discrete events registered within the

UTM. At each round, the GAIGE updates its forecast of what it believes to be an optimal

sequence of state-transitions. This planning is conducted using a 200-ply lookahead for the

163

backwards induction of the MTS algorithm. Random amounts of SAO bandit iterations

(nearline bloom) are also included. The faint dotted lines in Figure A2.10 illustrate the

GAIGE-prescribed plans at the end of each round. For clarity only the first 10 state

transitions are plotted. The bold red line indicates the time-history of noisy realizations of

state-transitions, as prescribed by the GAIGE (updated at each round), but owing to

incomplete state observations (noise), imperfect actions (trembles), and intelligent

disruptions.

The operational time frame simulated in this example was subject to several

stochastic disruptions and adversarial attacks. An interpretation of the results demonstrates

that current versions of the GAIGE are overly conservative. The GAIGE often hedges

against hostilities at every time step. This results in grim prognostics towards low-yield

asset operations, a byproduct of minimax aspirations from continuously competing against

the world. In practice this extreme prudence would (hopefully) become unnecessary

through a combination of protective measures and the influential deterrents of policing and

honest citizenry (i.e. human integrity). Realistically an adversary will only strike with

bounded resources, placing an upper bound on the frequency, amplitude and phase of

superimposed attack patterns. In game theory even the slightest resource disparity between

attacker and defender can introduce unwinnable conditions for the poorer player and

autopilot strategies for the richer. In this example, the offensive prowess of adversaries (in

terms of their observational and degradation capabilities) were assumed to be in balance

with the restorative capabilities of the UTM. The development of better adversarial threat

models would allow the integrity governance of cyber-physical infrastructure to be less

164

pessimistically challenged. Unfortunately this process would be require expert input and

result in a more domain-specific approach. As adversarial due diligence becomes more

common place, these additional modelling details will be required before production-scaled

assets are authorized to operate within real-world hostile environments.

The (actual) time-evolution of the asset given by its changing integrity scores can

be seen as a series of reconfiguration expenditures. Figure A2.10 shows the GAIGE

buffering against the long-run losses from an impending set of adversarial and stochastic

disruptions. These are the expected trajectories in terms of reconfigurations, which are

minimax worst case unless the bandits risk otherwise.

Figure A2.10 can also be interpreted in purely UTM game-playing terms. At the

end of time-step 5, weather conditions force the asset into a lower integrity score. The

GAIGE then reassesses its integrity plan from this new (somewhat unforeseen and

unavoidable) condition. In time-step 6, the GAIGE actually considers a potential

vulnerability to attack in round 11, and updates its integrity plan in defense of this credible

future. The adversary senses this innovation and strikes with an unannounced DDoS attack

during time-steps 8 and 9 (instead of 11). This forces the asset to drop into a hardened

configuration with safer fleet posturing and higher alert levels. This caution results in a

lower integrity score for several rounds. The DDoS releases after time-steps 12-13, at

which point the GAIGE advises a cautionary relaxation out towards higher integrity scores.

At time-step 23, the GAIGE finally decides it is time for a series of potent restoration and

recalibration events, only to be immediately denied by the adversary who initiates GPS-

jamming activities. The detection of these events forces a purposeful transition to a lower

165

integrity score – the UTM hardens in an attempt to pre-emptively buffer against further risk

of airspace and IaaS integrity denial. At the low points around time-step 25, the GAIGE

anticipates an opportunity by around time-step 30 to recover a higher-orbit minimax

trajectory. This is in line with the long-run prescriptions made before the GPS-jamming.

The asset eventually recovers to a reasonably maintainable integrity level by time-step 35

onwards. At this point the GAIGE is learning perturbation-robust strategies, and

proactively fixing around an integrity level of 75 by the end of simulation.

 The problem of sustaining safe and secure UTM operations within a low-altitude

high-traffic airspace is a hypermodern challenge. The combination of UAV/UAS assets,

payloads and requests, fleet readiness, mission planning, physical facilities, and supporting

infrastructures must collectively synergize to deliver a networked infrastructure as a service

(IaaS). The UTM paradigm is still in its infancy, but expected to mature within the next

decade. Whatever the particular architecture or design, a UTM can be modelled as a time-

evolving SoS, which can in turn be formulated as a generalized asset. The usual domain-

oblivious fitness-based performance indicators from the theory of dependable networks,

graph dynamics and topology continue to apply. The agnostic, similarity-based evaluations

from the theory of information and computability continue to serve a purpose, indicating

how much an asset must reconfigure itself in terms of model description to achieve a

desired outcome.

166

Potential applications of generalized asset integrity games to engineering problems.

Formulating the problems of KVM facility management or UTM governance within

the framework of generalized asset integrity games allows a compact representation of the

information critical to imparting changes of global state. Both DSM and SoS defined assets

have been shown to be readily integrated into this framework. This process could be

demonstrated for other modelling institutions, such as .XML or .UML drawings, DFA,

state-transition tables, and extended to arbitrary connectionist diagrams. This generality is

extremely useful for rapidly (approximately) validating engineering proposals with

minimal modelling and simulation overhead. In this way, several reference configurations

for a generalized asset can be pre-processed to yield a succinct-form payoff structure which

can be passed into the GAIGE for minimal-regret planning and analysis. As demonstrated

by examples, the GAIGE is particularly adept at scoring the performance of complex cyber-

physical assets, critical infrastructures, and future service platforms such as the KVN

facility or UTM concept. This work establishes a framework for generalized asset

performance, integrity games, and the GAIGE itself. The overall process is expected to

remain flexible and nearly identical across domains. Many potential applications show

promise in benefitting from this approach. Among those actively being investigated:

geospatial watershed integrity, water-distribution integrity, the integrity of sensitive

ecosystems, aqua- and agri- culture logistics management, and high-speed rail transport

systems.

