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Abstract

In this thesis, the first-order radar cross section (RCS) of an iceberg is derived and

simulated. This analysis takes place in the context of a monostatic high frequency

surface wave radar with a vertical dipole source that is driven by a pulsed waveform.

The starting point of this work is a general electric field equation derived previ-

ously for an arbitrarily shaped iceberg region surrounded by an ocean surface. The

condition of monostatic backscatter is applied to this general field equation and the

resulting expression is inverse Fourier transformed. In the time domain the excitation

current of the transmit antenna is specified to be a pulsed sinusoid signal. The result-

ing electric field equation is simplified and its physical significance is assessed. The

field equation is then further simplified by restricting the iceberg’s size to fit within

a single radar patch width. The power received by the radar is calculated using this

electric field equation. Comparing the received power with the radar range equation

gives a general expression for the iceberg RCS.

The iceberg RCS equation is found to depend on several parameters including the

geometry of the iceberg, the radar frequency, and the electrical parameters of both the

iceberg and the ocean surface. The RCS is rewritten in a form suitable for simulations

and simulations are carried out for rectangularly shaped icebergs. Simulation results

are discussed and are found to be consistent with existing research.
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Chapter 1

Introduction

1.1 Research Rationale

Oceans cover approximately seventy-one percent of the Earth’s surface [1]. It is

not surprising then that the human race relies heavily on the oceans for its survival

and continual growth as a species. Traditionally humans have used the oceans as

a source of food and for transportation, a behaviour which has continued into the

present. Now, massive amounts of goods are transported across the ocean, enabling

international trade to flourish, and seafood is still a staple in people’s diets in most

parts of the world. In addition to food and transportation, the oceans are a major

source of hydrocarbons including oil and natural gas.

Despite the benefits the oceans have provided, they pose a serious safety threat

to all those operating on or beneath their surfaces. In more northern (and southern)

latitudes there is the additional hazard of sea ice. Icebergs, in particular, can cause

massive damage to marine vessels and offshore structures in the event of a collision.

The sinking of the “RMS Titanic” is perhaps the most famous example of this. Al-
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though the Titanic’s crew managed to spot the iceberg, there was not enough time to

redirect the ship and avoid collision [2]. This tragedy demonstrated the importance

of the early detection of icebergs while navigating ice-infested waters.

Today, the number of ships and offshore structures operating in the vicinity of

icebergs is greater than ever before. As such, knowledge of the location, size, and

paths of nearby icebergs is critical for ensuring safe operation of marine vessels. Ob-

taining this information early, while the icebergs are still far away, is not only useful

for collision avoidance, but also from a planning and efficiency perspective. For ex-

ample, drilling schedules for offshore oil and gas developments can be modified based

on the path of icebergs in order to maximize the up-time of expensive drilling plat-

forms. Hydrocarbon developments which make use of floating production storage

and offloading (FPSO) vessels can assess the sizes of approaching icebergs and make

decisions to either redirect icebergs, if possible, or disconnect the FPSO from subsea

equipment and move to a safe location. In both cases, having an early warning as

well as accurate details regarding the iceberg’s size and path is crucial from both a

safety and operational efficiency standpoint.

Given the importance of detecting and classifying icebergs, a variety of techniques

is used to track them. One common method is the use of microwave radar. These

radar systems can be installed directly on a ship or offshore structure and offer good

range resolution for nearby objects. Although these radars are excellent at “seeing”

icebergs which are close, their detection range is usually limited to the visible horizon.

As a result, these systems have a maximum detection range on the order of tens of

kilometers [3]. Furthermore, microwave radars can experience decreased accuracy in

the presence of adverse weather conditions such as heavy rain.

Another common iceberg monitoring technique uses airplanes to perform ice re-
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connaissance flights over high traffic areas. In North America, the North American

Ice Service (NAIS) compiles data on the location of icebergs. This method provides

surveillance over a wide area, but is an inherently expensive endeavor. As a result

continuous data for an area is not available. Satellite technologies such as synthetic

aperture radar (SAR) can also be used to monitor icebergs. However, satellites also

lack continuous coverage and their range resolution may not be sufficient depending

on the iceberg size [3].

Another tool which may be used for the remote sensing of icebergs is high fre-

quency surface wave radar (HFSWR). This type of radar operates in the high fre-

quency (HF) band of 3 to 30 MHz. Unlike a microwave radar system, radiated signals

from HFSWR systems are able to travel over the horizon. This characteristic dras-

tically increases the detection range for HFSWR systems to upwards of 300 km [4],

depending on radar operating parameters and ocean conditions. Furthermore, HF-

SWR is not as sensitive to weather conditions like heavy rainfall and can continuously

collect data over a wide area in near real-time. These advantages over the previously

mentioned iceberg monitoring techniques make HFSWR an attractive candidate for

iceberg remote sensing.

For many years HFSWR has been used as a remote sensor of the ocean surface

itself. A natural extension of this application is the detection of hard targets such as

icebergs which reside on the ocean surface. Over the past sixty years, a significant

amount of research on HFSWR has focused on modeling its interactions with the

ocean surface and using these models to infer ocean related information such as surface

currents. In contrast, efforts exploring its use as an iceberg remote sensor have been

relatively limited. Beginning in the 1980’s, Dr. John Walsh of Memorial University

and his colleagues began to develop models for the radar cross section (RCS) of an
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iceberg [5]. An iceberg RCS is essentially a mathematical description of what an

iceberg “looks” like to an HFSWR system. Once a RCS is obtained, simulations

of the RCS may be performed to understand how parameters such as iceberg size,

shape, and radar operating frequency affect the received signal backscattered from

the iceberg.

Walsh’s work was a fundamental effort in analytically modelling iceberg RCSs.

However, his approach effectively assumed a plane wave source for the transmit an-

tenna of the HFSWR system, which cannot be realized in physical HFSWR systems.

In practice, an HFSWR transmitter is typically excited by either a pulsed sinusoid or

a frequency modulated continuous wave (FMCW) current waveform. Since the RCS

is dependent on the type of excitation waveform used, Walsh’s model cannot be ac-

curately compared against experimental data from HFSWR systems which use these

excitation waveforms. As such, Walsh’s early efforts into iceberg RCS modelling must

be further developed to allow for any transmitter excitation waveform to be used.

This thesis aims to expand Walsh’s approach for deriving an iceberg RCS to allow

a transmitter excitation waveform to be explicitly specified. This technique will then

be applied to obtain an iceberg RCS for an HFSWR system driven by a pulsed

sinusoid excitation waveform. It is hoped that this research will provide an approach

which can be used for future iceberg HFSWR research and will facilitate comparison

between field data and analytical RCS models.

1.2 Literature Review

The starting point of the research presented in this thesis is the electric field equations

derived by Walsh [5]. Under the assumption of a vertical dipole source antenna, Walsh

4



derives the vertical component of the electric field backscattered from a finite region.

This region is depicted in Figure 1.1. The finite region is indicated by R and is

surrounded by a second medium which has differing electrical characteristics. With

respect to the application of iceberg detection, the finite region represents the iceberg

while the medium surrounding the iceberg is the ocean surface. There is also a third

medium representing air which exists above the ocean and iceberg media.

Transmitter 
Source

(𝜇0, 𝜎2, 𝜖2)

(𝜇0, 𝜎2, 𝜖2)

(𝜇0, 𝜎1, 𝜖1)

𝑦

𝑥o

𝑅

Figure 1.1: Finite (iceberg) region case

Before Walsh analyzes the finite (iceberg) region case of Figure 1.1, he first derives

the electric field equations describing backscatter from a boundary separating two

homogeneous media. This is referred to as the “simple discontinuity case” (Figure

1.2). The techniques used in deriving the simple discontinuity case are then adapted

and applied to the finite region case to obtain a solution for the field backscattered

off the region.

Walsh’s work on the simple discontinuity case finds its roots in a category of
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Region 1 Region 2

o

𝑦

𝑥

Figure 1.2: Simple discontinuity case

electromagnetic research referred to as “mixed path propagation”. Mixed path prop-

agation problems involve the derivation of equations which describe electric fields as

they propagate between regions with different electrical characteristics. A brief review

of relevant research on the topic of mixed path propagation is given in Section 1.2.1.

Literature covering the derivation of iceberg RCSs for HFSWRs is then detailed in

Section 1.2.2.

1.2.1 Mixed Path Propagation Research

In the simple discontinuity case shown in Figure 1.2, the electromagnetic field gener-

ated by a source travels through region 1 and is incident on the discontinuity/boundary

between the two regions. A portion of the incident field is transmitted past the

boundary into region 2. This transmitted field, which exists only in region 2, is the

so-called forward propagated field. The remainder of the incident field is reflected at

the boundary and stays in region 1. This reflected field is called the backscattered
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field.

Research into mixed path propagation initially focused solely on the forward prop-

agated field. In 1949, Millington [6] was the first to develop a method for calculating

the field past a boundary. His work discusses ground wave propagation over an

inhomogeneous smooth earth using an existing solution for propagation over a ho-

mogeneous smooth earth. This work predicted that as the field passed the boundary

between a medium with lower conductivity to a medium with higher conductivity it

would experience a recovery in field strength. As the field passed the boundary in the

other direction a sharp decrease in strength was predicted. This phenomenon would

later become known as the Millington recovery effect.

During the 1950’s, Clemmow [7] and Bremmer [8] took two new approaches to the

mixed path problem. Despite their differing techniques, in both works they obtained

results consistent with those of Millington. Clemmow assumed there was a semi-

infinite homogeneous flat medium with an infinitely thin perfectly conducting plane

lying on top of one half of this homogeneous medium. Here the half-plane that had

the conducting plane on top represents the second medium. Under the assumption

of plane wave incidence, Clemmow then expresses the scattered field due to induced

surface currents in the conducting sheet as a spectrum of plane waves which leads

to dual integral equations. These integral equations are then solved using contour

integration. Later Clemmow removes the perfectly conducting restriction on the

second medium. Instead it is assumed that the modulus of the complex permittivity

of each half-plane is large. Under this condition his work is shown to be consistent

with that of Millington. Bremmer [8] uses a different approach to the same problem.

His investigation of the propagation of radio waves over an inhomogeneous surface

uses an integral equation based on Green’s theorem. He finds solutions for the field
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close to the boundary and for the field far away from the boundary through the use

of two-sided operational calculus. His solution to the integral equation is shown to

be identical with Clemmow’s work.

James Wait also carried out extensive work and publications on the topic of mixed

path propagation and, in particular, the simple discontinuity case (see [9], [10], [11],

and [12]). These works also agree about the forward propagated field, but like previous

research they did not derive a description of the electric field backscattered from a

simple discontinuity. In [13], Ryan analyzed the same model as Bremmer [8] and Wait

[9], but in addition to deriving the field propagated past the boundary Ryan also

derives an expression for the backscattered electric field. Ryan’s analysis is based on

a method of space/field decomposition which was originally demonstrated by Walsh

in [14] and [15]. After showing that the forward propagated field derived is consistent

with Bremmer’s and Wait’s work, Ryan finds the backscattered electric field equation

and uses this equation to find the RCS expression of the simple discontinuity. Ryan’s

work in obtaining the backscattered electric field and RCS is especially useful from

a practical perspective since a typical radar system will only receive signals which

reflect off the region of interest and return to the radar.

In [13] Ryan also explores the concept of using HFSWR for ice-edge detection.

The RCS derived by Ryan is general in the sense that no assumptions have been

made regarding what the two media actually are. By substituting the values of the

electrical characteristics (permittivity, permeability, and conductivity) for physically

real media the effect on the RCS can be analyzed. In particular Ryan is interested

in assessing the feasibility of HFSWR for ice edge detection so it is assumed that

the first medium is sea water while the second medium is sea ice. Using his derived

RCS expression he is able to determine the strength of the signal received by the
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radar and compare this against receiver noise. Ice edge detection is possible when

the received signal from the ice edge is greater than the receiver’s noise. Ryan carries

out this analysis for different types of sea ice and even also considers sea ice to sea ice

transitions. As such, this work, along with its associated papers [16], [17], and also

[15] are some of the first modeling efforts for HFSWR ice detection.

1.2.2 Research on Iceberg RCS for HFSWR

The first significant modeling efforts of an iceberg RCS for HFSWR were carried out

by Walsh [5] and by Walsh and Srivastava [18]. As previously discussed, Walsh first

focuses on the simple discontinuity case shown in Figure 1.2. This analysis draws

heavily on earlier work carried out by Walsh and Ryan [13], [15], [16]. As such,

the same space/field decomposition technique used in these works is again employed

for the electric field derivation. One benefit of this technique is that the boundary

conditions arise naturally as part of the analysis. This is in contrast to the approaches

Wait and Bremmer used where the boundary conditions had to be externally applied.

Despite this, the boundary conditions derived by Walsh are the same as those assumed

by Wait and Bremmer. Moreover, the forward propagated field derived by Walsh is

also consistent with Wait [9], Bremmer [8], and Ryan [13]. The backscattered field is

the same field equation found by Ryan.

After verifying the forward and backscattered field equations for the simple dis-

continuity case, Walsh next analyzes the finite region case depicted in Figure 1.1. His

analysis for this case uses an adapted version of the methods used in the simple dis-

continuity case. In Walsh’s derivation the excitation current waveform for the radar’s

transmit antenna is not explicitly specified. The derivation is carried out completely

in the Fourier transform, or frequency, domain where the excitation current is as-
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sumed to be constant with respect to frequency. Although the current waveform is

not explicitly assumed, Walsh later evaluates the electric field at the radian frequency

ω = ω0. It is possible to show that evaluating the field at ω0 in the frequency domain

is equivalent to assuming a time domain current with the form i(t) = I0e
jω0t, which

is the expression for a plane wave excitation current with amplitude I0 and radian

frequency ω = ω0. As a result, Walsh effectively assumes the current source to be a

plane wave source. As noted previously, a plane wave current excitation is an ideal

radiation source which cannot be realized in physical HFSWR systems.

In 1984, Walsh and Srivastava [18] produced a subsequent report to Walsh’s work

in [5]. Here the derivation continues from [5] to find the backscattered electric field

for the finite region. This equation is then used to obtain a RCS for this region. Using

the RCS equation, simulations are performed under the assumption that the finite

region has the electrical properties of an iceberg with the surrounding medium being

that of sea water. Two different iceberg shapes are considered: 1) a square iceberg

and 2) an elliptical iceberg. The effect of shape and size on the RCS is investigated

and detectable range is also discussed.

The iceberg RCS model developed by Walsh and Srivastava was compared against

measurements from an actual radar system in 1986 [19]. Field measurements were

carried out at Byron Bay, Labrador using an HFSWR system operating at 25.40

MHz. Using ground truth information for icebergs in the radar’s detectable range,

simulated RCSs were developed and compared against received data. While a small

sample size of four icebergs was used, good agreement was demonstrated between

the received and predicted signal-to-noise power density ratio. This paper helped to

establish the feasibility of using HFSWR to remotely detect icebergs.

In the early 1990s, additional field data were collected at two HFSWR facilities
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located in Newfoundland and Labrador. The results of these field experiments are

summarized in [3]. The first of these field tests took place at a facility in Cape Bonav-

ista. Good results were demonstrated between actual field data and simulated results

which were generated using software based on the iceberg RCS developed by Walsh

and Srivastava. This was the case even though a different excitation waveform was

used to drive the transmit antenna than the continuous sinusoid waveform assumed

in the RCS derivation. However, a small but constant difference in the absolute level

between the received and simulated signal peaks was noticed. The second set of field

measurements were taken in Cape Race, Newfoundland. In this experiment, a com-

parison between the RCS model and field data was not carried out. However, several

icebergs were detected and their radar determined locations were shown to agree with

ship sightings.

Although the above-mentioned sets of field experiments helped to demonstrate the

feasibility of HFSWR for iceberg detection and tracking, there has been little in the

way of new analytical modelling of iceberg RCSs since that appearing in [19]. There

was, however, a large effort put forth by Walsh and his colleagues to develop and

interpret RCS models of the ocean surface itself. The methods developed for deriving

ocean surface RCSs (see, for example, [20], [21], and [22]) allow for the substitution

of any time domain excitation current waveform. Once an excitation waveform is

explicitly specified, a RCS unique to the chosen excitation waveform can be obtained.

These works provide a blueprint for generalizing Walsh’s iceberg RCS research to

account for any excitation waveform.
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1.3 Scope of Thesis

As was discussed in Section 1.1, the primary goal of this thesis is to expand on

existing iceberg RCS models to allow any type of excitation current waveform to be

used as a transmitter source. In this thesis, the derivation carried out by Walsh

in [5] is modified to allow a time domain excitation current to be explicitly chosen.

Although any current waveform may be used as a transmit antenna source, a pulsed

sinusoid waveform is assumed and the resulting backscattered first-order field equation

is found. This equation is then simplified and used to obtain the RCS of an iceberg.

Simulations regarding the effect of the iceberg’s shape, size, and system operating

frequency on the RCS are carried out and discussed.

The following chapter contains an overview of the general electric field equation

developed by Walsh in [5] for a finite (iceberg) region. The chapter begins with the

formulation of the finite region problem and then briefly discusses some of the major

assumptions of Walsh’s derivation. The electric field expression found by Walsh is

separated into first-order and second-order components which are shown to represent

physically different scattering mechanisms.

In Chapter 3 the first-order component is analyzed at length under the assump-

tion of a monostatic radar configuration. In particular an inverse Fourier transform

is performed on the backscattered field bringing the equation to the time domain.

There it is converted to a form which allows any time domain excitation current

waveform to be assumed. A pulsed sinusoid waveform is chosen for the RCS deriva-

tion and analysis. After inserting this current waveform, the backscattered electric

field is simplified and coordinate transformed. A physical interpretation of the result-

ing equation demonstrates that the derived expression is consistent with the result
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expected for first-order scattering of a pulsed signal. By assuming that the iceberg’s

size fits within the patch width associated with the signal pulse, the backscattered

field equation is further simplified and used to calculate the power received by the

radar. The received power is then compared against the standard monostatic radar

range equation resulting in a general expression for the iceberg RCS.

In Chapter 4, the iceberg RCS expression is first modified into a form suitable for

simulation. Next, RCS simulation results are presented in order to gain an under-

standing of the effect that parameters such as iceberg shape, iceberg size, and system

operating frequency have on the magnitude of the iceberg RCS. These results are

discussed and are compared with previous iceberg RCS research.

In Chapter 5, the main conclusions found in the previous three chapters are sum-

marized. This chapter also offers suggestions for future research in the area of HFSWR

iceberg detection.
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Chapter 2

Problem Formulation

The starting point of the research presented in this thesis is a general electric field

expression obtained by Walsh in [5] for the finite region (iceberg) case. In order to

provide a context for the origin of this expression, an overview of Walsh’s derivation

is first presented in this chapter. Sections 2.1 and 2.2, in particular, contain a descrip-

tion of the formulation of Walsh’s analysis, highlighting the finite region model and

also the first steps of his derivation. Section 2.3 then contains details of the electric

field equation found by Walsh. That equation is separated into three different field

components. In Section 2.4, these field components are interpreted in terms of phys-

ical scattering. Here it is shown that the total backscattered electric field is made up

of both a first-order and second-order component, with the former being the focus of

this thesis.
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2.1 Space Decomposition

The three-dimensional space shown in Figure 2.1 is the starting point of this deriva-

tion. The figure shows a view of an iceberg as if looking down from above (the

positive z axis is coming out of the page). The iceberg is the region denoted R, which

has permeability, conductivity, and permittivity of µ0, σ1, ε1, respectively. The region

above the iceberg (z > 0) is assumed to be free space and has corresponding electrical

parameters µ0, σ = 0, ε0. Surrounding the iceberg region is a medium representing

the ocean surface which has electrical characteristics given by, µ0, σ2, ε2. To simplify

the analysis, both the ocean and the iceberg media are assumed to extend to infinity

in the negative z direction. Also shown in Figure 2.1 is the transmitting antenna

which is represented by an electrical source located at point (x, y) = (−x0, 0) and

slightly above the ocean surface at z = 0+. At this stage of the analysis the source is

completely arbitrary and has not been specified. In Section 2.3.1 this source will be

assumed to be a vertical dipole antenna.

For convenience the electrical parameters ε, σ, and µ for the entire space may be

written in terms of the following Heaviside functions:

hR(x, y) =

 1, x, y in R

0, otherwise
(2.1)

hz(z) =

 1, z > 0

0, z ≤ 0 .
(2.2)
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Source at

(𝜇0, 𝜎2, 𝜖2)

(𝜇0, 𝜎2, 𝜖2)

(𝜇0, 𝜎1, 𝜖1)

𝑦

𝑥o

𝑅

(−𝑥0, 0, 0
+)

Figure 2.1: Space under analysis (top view)

Then,

ε = ε0hz + (1− hz) · {ε1hR + ε2(1− hR)} (2.3)

σ = (1− hz) · {σ1hR + σ2(1− hR)} (2.4)

µ = µ0 (2.5)

where

ε = electrical permittivity

σ = electrical conductivity

µ = magnetic permeability

ε0 = electrical permittivity of free space

µ0 = magnetic permeability of free space.
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2.2 Application of Maxwell’s Equations

With an aim of obtaining an expression for the electric field, Maxwell’s equations are

now applied to the entire space in Figure 2.1. Maxwell’s equations for the space may

be written as:

∇× ~E = −jω ~B (2.6)

∇× ~H = jω ~D + ~J (2.7)

∇ · ~B = 0 (2.8)

∇ · ~D = ρf (2.9)

where

~E = Electric field vector

~B = Magnetic flux density

~H = Magnetic field vector

~D = Electric flux density

~J = Electric current density

ρf = Free electric charge density

ω = Radian frequency

j =
√
−1 .

Here, Maxwell’s equations are given in their time harmonic or Fourier transform

with-respect-to-time form. As such equations (2.6) - (2.9) are a function of radian

frequency ω. The electric current density, ~J , is the sum of the conduction current
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density, ~Jc, and the source electric current density, ~Js, i.e.

~J = ~Jc + ~Js . (2.10)

Under the assumption of point isotropy, the constitutive relationships take the fol-

lowing form:

~B = µ ~H (2.11)

~D = ε ~E (2.12)

~Jc = σ ~E (2.13)

where ε, σ, and µ are given by equations (2.3), (2.4), and (2.5), respectively.

2.3 Vertical Component of the Electric Field for

an Iceberg

After applying Maxwell’s equations to the space in Figure 2.1, Walsh begins to sim-

plify the equations through the use of vector calculus and vector identities. Since

the goal of this analysis is an expression for the backscattered electric field from an

iceberg, Walsh solves for the electric field vector ~E (or, equivalently, ~D since ~D = ε ~E)

in equations (2.6) through (2.9). This is not a trivial task as the resulting mathemat-

ics are quite complex. However, the problem may be simplified because a complete

description of ~E is not necessary. With reference to Figure 2.1 it may be noted that

the source, which is the transmitting antenna, is located in the upper half space where

z > 0. The location of the receiving antenna has not yet been specified but it must be
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in the upper half space since the lower half space represents the ocean. Since the field

backscattered from the iceberg will be observed at the receiving antenna, a descrip-

tion of the electric field for only z > 0 is necessary. The problem is further simplified

by noting that the field at the receiving antenna does not need to be determined for

all z > 0 but only at the height of the antenna, i.e. at z = z+ as z+ approaches

0. Thus, the problem of finding ~E(x, y, z) for all x, y, z has been reduced to finding

~E(x, y, z+).

2.3.1 Assumption of a Vertical Dipole Source

Obtaining an expression for the electric field ~E(x, y, z+) requires a description of the

field for each of its vector components x̂, ŷ, ẑ. However, in practice, HFSWR systems

make use of vertically polarized radiation. This is because surface wave propagation

over the ocean severely attenuates the horizontal component of the electric field [23],

[24]. As a result, the arbitrary source shown in Figure 2.1 is modelled as a vertical

dipole antenna. Initially, Walsh keeps the electric field equations as general as possible

by not explicitly specifying the form of the source. It is only later in the analysis that

the source is assumed to be a vertical dipole.

Referring to (2.10), the source current density, ~Js, for a vertical dipole antenna is

specified by Walsh as,

~Js = I∆` δ(x+ x0)δ(y)δ(z − a)ẑ (2.14)

where I is the source current which is a function of radian frequency ω, and ∆`

is the dipole antenna’s physical length. It is clear that the delta (δ) functions in

(2.14) indicate the physical location of the source antenna since ~Js is non-zero only
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for (x, y, z) = (−x0, 0, a). The a term implies that the source is located at some finite

height above the z = 0 boundary. However, this would be inconsistent with Figure

2.1 which shows the source is at a height z = 0+ just above the boundary. After

specifying the source current density to be that of (2.14) Walsh then assumes that a

approaches 0 along the positive z-axis, which yields a result consistent with Figure

2.1.

2.3.2 Electric Field Equations

With the source being specified as a vertical dipole antenna, the analysis may now be

restricted to a determination of the vertical component of the electric field. Instead

of deriving an expression for the vector quantity ~E(x, y, z+), only the z-component,

Ez(x, y, z
+), is required. In the ensuing analysis, this will be written as Ez+

z (x, y).

The mathematical analysis for finding Ez+
z is still quite involved, but restricting the

scope to only the vertical component of the field at the height of the receive antenna

greatly simplifies the process. In [5] Walsh finds the field equations for Ez+
z to be

given by,

hRE
z+
z = hR ·

I∆`k2

jωε0(2π)

[
F2(ρ0)

e−jkρ0

ρ0

+
jk(∆2 −∆1)

2π
·
(
F1(ρ)

e−jkρ

ρ

)
xy
∗
(
hR · F2(ρ0)

e−jkρ0

ρ0

)]
(2.15)
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and

(1− hR)Ez+
z = (1− hR)

I∆`k2

jωε0(2π)

[
F2(ρ0)

e−jkρ0

ρ0

+
jk(∆2 −∆1)

2π
·
(
F2(ρ)

e−jkρ

ρ

)
xy
∗ hR

{
F2(ρ0)

e−jkρ0

ρ0

+
jk(∆2 −∆1)

2π
·
(
F1(ρ)

e−jkρ

ρ

)
xy
∗
(
hR · F2(ρ0)

e−jkρ0

ρ0

)}]
(2.16)

with

ρ =
√
x2 + y2

ρ0 =
√

(x+ x0)2 + y2 .

Here, k is the wavenumber of the radiation,
xy
∗ represents a two-dimensional spatial

convolution in x and y, and ∆1, ∆2 are the normalized surface impedances of the

iceberg and the ocean surface media, respectively. These surface impedances have

the following form,

∆1 =

√
η2

01 − 1

η2
01

(2.17)

∆2 =

√
η2

02 − 1

η2
02

(2.18)

where η2
01, η2

02 are the squares of the refractive index for their respective media and

are given by,

η2
01 =

ε1
ε0
− j σ1

ωε0
(2.19)

η2
02 =

ε2
ε0
− j σ2

ωε0
. (2.20)
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The F1(·) and F2(·) functions are the Sommerfeld attenuation functions [25] for prop-

agation over the iceberg and ocean surface media, respectively. The attenuation

function for the iceberg medium is shown below in (2.21). The same form applies for

F2(·), except the “1” subscripts are replaced by “2” subscripts.

F1(ρ) = 1− j√πp1 e
−p1 erfc(j

√
p1) (2.21)

where p1 is the numerical distance given by

p1 = −jk∆2
1

2
ρ . (2.22)

In (2.21), the function, erfc(·), is the complementary error function (see, for example,

[26]).

Recalling the definition of the Heaviside function hR from (2.1), it is clear that

hRE
z+
z in (2.15) represents the electric field within the iceberg region R (see Figure

2.1) while (1 − hR)Ez+
z in (2.16) is the electric field outside of the iceberg region.

The electric field will be observed by the receive antenna at a location outside of the

iceberg. As a result, the (1−hR)Ez+
z term is the quantity of interest for this analysis

and the hRE
z+
z need not be considered.

Comparing the functional form of (2.16) with Equations (51)-(54) of Walsh and

Gill [21], Equation (2.16) may be grouped as follows,

Ez+
z =

(
Ez+
z

)
0

+
(
Ez+
z

)
1

+
(
Ez+
z

)
2

(2.23)

where (
Ez+
z

)
0

=
I∆`k2

jωε0(2π)
· F2(ρ0)

e−jkρ0

ρ0

(2.24)
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(
Ez+
z

)
1

=
I∆`k2

jωε0(2π)

jk(∆2 −∆1)

2π

[
F2(ρ)

e−jkρ

ρ

xy
∗ hR · F2(ρ0)

e−jkρ0

ρ0

]
(2.25)

(
Ez+
z

)
2

=
I∆`k2

jωε0(2π)

jk(∆2 −∆1)

2π
· F2(ρ)

e−jkρ

ρ

xy
∗ hR

{
jk(∆2 −∆1)

2π

[
F1(ρ)

e−jkρ

ρ

xy
∗ hR · F2(ρ0)

e−jkρ0

ρ0

]}
. (2.26)

In the above equations the (1 − hR) term has been suppressed with understanding

that the equations hold only for (x, y) outside of the iceberg region. It should first

be noted that the (Ez+
z )0 term is simply the equation for propagation over a smooth

plane surface, i.e. the field due to the source. This term does not contribute to

the field backscattered from the iceberg. Since an expression for the backscattered

electric field is required, only the (Ez+
z )1 and (Ez+

z )2 terms are analyzed here. In the

following section the physical significance of these two terms is investigated. It is

found that the (Ez+
z )1 term represents single scattering off the iceberg region while

(Ez+
z )2 accounts for double scattering within the iceberg region.

2.4 Physical Interpretation of (Ez+
z )1 and (Ez+

z )2

The two electric field terms, (Ez+
z )1 and (Ez+

z )2, given by equations (2.25) and (2.26),

are referred to as the “first-order” and “second-order” field equations, respectively.

For convenience, let the common terms in front of the convolutions in (2.25) and

(2.26) be represented by a placeholder variable, D,

D =
I∆`k2

jωε0(2π)

jk(∆2 −∆1)

2π
. (2.27)
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Using (2.27) in (2.25) and (2.26) results in the following expressions for the first and

second-order fields,

(
Ez+
z

)
1

= D

[
F2(ρ)

e−jkρ

ρ

xy
∗ hR · F2(ρ0)

e−jkρ0

ρ0

]
(2.28)

(
Ez+
z

)
2

= D · F2(ρ)
e−jkρ

ρ

xy
∗ hR

{
jk(∆2 −∆1)

2π

·
[
F1(ρ)

e−jkρ

ρ

xy
∗ hR · F2(ρ0)

e−jkρ0

ρ0

]}
(2.29)

where the two-dimensional spatial convolution,
xy
∗ , has its typical definition of

f(x, y)
xy
∗ g(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f(x− x′, y − y′) g(x′, y′) dx′ dy′ . (2.30)

2.4.1 First-order Field Equation

The physical significance of the first-order field equation will be assessed first. Re-

ferring to the convolution definition given by (2.30) let f(x, y) = F2(ρ) e
−jkρ

ρ
and

g(x, y) = hR · F2(ρ0) e
−jkρ0
ρ0

. Now, the convolution in (2.28) may be explicitly written

as

(
Ez+
z

)
1

= D

∫ ∞
−∞

∫ ∞
−∞

F2(ρc)
e−jkρc

ρc
· hR(x′, y′)F2(ρ′0)

e−jkρ
′
0

ρ′0
dx′ dy′

= D

∫∫
R

F2(ρc)F2(ρ′0)
e−jk(ρc+ρ′0)

ρcρ′0
dx′ dy′ (2.31)

24



where

ρc =
√

(x− x′)2 + (y − y′)2

ρ′0 =
√

(x0 + x′)2 + (y′)2

and the double integral in (2.31) is over all points (x′, y′) in R.

In order to interpret the physical meaning of the first-order field, the geometry

of (2.31) must be determined. To this end, the distance variables ρc and ρ′0 can be

plotted, resulting in the scattering geometry depicted in Figure 2.2.

Source

Observation Point

Scattering Point

(𝜇0, 𝜎1, 𝜖1)
(𝜇0, 𝜎2, 𝜖2)

(𝑥, 𝑦)

𝜌0
′

𝜌𝑐

(−𝑥0, 0)

(𝑥′, 𝑦′)

𝑦

𝑥

𝑅

o

Figure 2.2: First-order scattering geometry

From the figure it is clear that ρ′0 represents the distance from the transmit antenna

to a point in the iceberg region. This point is labeled as the scattering point and

has coordinates (x′, y′). The variable ρc is the distance from the scattering point to

some observation point located at (x, y). This observation point corresponds to the

physical location of the receive antenna. Observing the field at this point is equivalent
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to evaluating the expression given by (2.31) at coordinates (x, y).

Recall that F2(·) is the Sommerfeld attenuation function for the ocean medium.

As indicated in (2.21), F2(·) is a function of distance. For a distance variable ρ, F2(ρ)

gives the total attenuation of the electric field as it traverses a distance ρ over the

ocean surface [27]. The first-order field equation, (2.31), contains two of these attenu-

ation functions. One is a function of the distance variable ρc and the other a function

of ρ′0. F2(ρ′0) represents the attenuation of the transmitted radiation as it travels from

the transmit antenna to the scattering point (x′, y′), in the iceberg region. Similarly

F2(ρc) represents the attenuation of the radiation as it travels from the scattering

point to the observation point at (x, y). Since the field expression only accounts for

attenuation over the distances ρ′0 and ρc, this suggests that (2.31) represents a single

scatter of the transmitted signal off the iceberg. The transmitted radiation reflects

off a point in the iceberg region and a portion of this then travels to the observation

point. This type of scattering is referred to as “first-order” electromagnetic scattering

[21].

Figure 2.2 shows only the contribution to the electric field at the observation point

resulting from one point, (x′, y′). As mentioned earlier, the double integral in (2.31)

is over all points (x′, y′) in R. This implies that the total field observed at (x, y) is

due to first-order scatters off every point in the iceberg region.

It is worth noting that equation (2.31) appears to only account for attenuation

over the ocean surface, since the Sommerfeld attenuation terms F2(ρc), F2(ρ′0) have

subscripts “2” and therefore are for attenuation over the ocean surface. However,

in Figure 2.2, it is clear that a small portion of the path for both distances ρ′0, ρc

is contained in the iceberg region. One would expected that a F1(·) term should be

present to account for this medium change. This issue is addressed in Section 2.4.3.
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2.4.2 Second-order Field Equation

The second-order electric field equation, (2.29), can be interpreted in a similar man-

ner to the first-order field equation. Applying the definition of the two-dimensional

convolution
xy
∗ given by equation (2.30) to the outer convolution of the second-order

equation results in

(
Ez+
z

)
2

= D ·
∫ ∞
−∞

∫ ∞
−∞

F2(ρc)
e−jkρc

ρc
· hR(x′, y′)

{
jk(∆2 −∆1)

2π

·
[
F1(ρ′)

e−jkρ
′

ρ′
xy
∗ hR(x′, y′) · F2(ρ′0)

e−jkρ
′
0

ρ′0

]}
dx′ dy′ (2.32)

where

ρc =
√

(x− x′)2 + (y − y′)2

ρ′ =
√

(x′)2 + (y′)2

ρ′0 =
√

(x′ + x0)2 + (y′)2 .

Now, carrying out the inner convolution and noting that the Heaviside function

hR(x′, y′) is non-zero only for x′, y′ in R, equation (2.32) becomes

(
Ez+
z

)
2

= D ·
∫∫
R

F2(ρc)
e−jkρc

ρc

{
jk(∆2 −∆1)

2π

·
[∫ ∞
−∞

∫ ∞
−∞

F1(ρa)
e−jkρa

ρa
· hR(x′′, y′′)F2(ρ′′0)

e−jkρ
′′
0

ρ′′0
dx′′ dy′′

]}
dx′ dy′ (2.33)
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where

ρa =
√

(x′ − x′′)2 + (y′ − y′′)2

ρ′′0 =
√

(x′′ + x0)2 + (y′′)2 .

Rearranging terms and applying the Heaviside function hR(x′′, y′′) gives the desired

form of the second-order field equation as

(
Ez+
z

)
2

= D ·
∫∫
R

F2(ρc)
e−jkρc

ρc

{
jk(∆2 −∆1)

2π

·
∫∫
R

F1(ρa)F2(ρ′′0)
e−jk(ρa+ρ′′0 )

ρaρ′′0
dx′′ dy′′

 dx′ dy′ . (2.34)

The distance variables ρ′′0, ρa, and ρc in (2.34) provide insight into the scattering ge-

ometry of the second-order field. This geometry is shown in Figure 2.3. As suggested

by the figure, the second-order field equation represents a double scatter within the

iceberg region. This is reflected in the mathematics of (2.34). The outer double in-

tegral is over all (x′, y′) in the iceberg region. Furthermore, for each (x′, y′) the inner

integral is over all (x′′, y′′) in the iceberg region.

Consider the contribution to the total second-order field observed at (x, y) due to

scattering at a particular (x′, y′) and (x′′, y′′). As indicated in Figure 2.3, the trans-

mitted radiation travels a distance ρ′′0 from the source to the first scattering point,

(x′′, y′′). The attenuation over this distance is accounted for in (2.34) through the

F2(ρ′′0) term. At (x′′, y′′) the transmitted signal scatters and the radiation travels

another ρa to the point (x′, y′). Recalling that F1(·) represents the attenuation of a

signal propagating over the iceberg medium, F1(ρa) in (2.34) accounts for the atten-
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First Scatter

(𝑥, 𝑦) 𝜌𝑐
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𝜌0
′′
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(𝑥′′, 𝑦′′)
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o 𝑥

𝑦

𝑅

Figure 2.3: Second-order scattering geometry

uation over this distance. It is important to note that the presence of the iceberg

medium attenuation function makes good sense from a physical perspective since ρa

is completely contained in the iceberg region. Finally, the radiation is scattered at

(x′, y′) and travels a distance ρc back to the observation point. This attenuation is

accounted for in the outer integral of (2.34) by F2(ρc). As expected this is the func-

tion for attenuation over water. However, as was the case for the first-order field, a

portion of the path for distances ρ′′0 and ρc is in the iceberg region. Yet there are no

F1(·) terms to account for these portions.

Thus for a fixed (x′, y′) and (x′′, y′′) equation (2.34) describes a double scatter

within the iceberg region. This is referred to as second-order electromagnetic scat-

tering [21]. Of course, the total second-order field at the observation point is due to

double scattering off every point of the iceberg. For a fixed (x′, y′) the inner integral

implies that the contribution to the total field at (x, y) is due to a double scatter

involving every (x′′, y′′) in R with the fixed second scatter point of (x′, y′). The outer
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integral of (2.34) repeats this process for every (x′, y′) in R. Equation (2.34) therefore

describes the total field at the observation point due to a multitude of second-order

scatters within the iceberg region.

2.4.3 Discussion of Sommerfeld Attenuation Functions in Elec-

tric Field Equations

It was noted in Section 2.4.1 and 2.4.2 that there are portions of the radar signal

which traverse the iceberg region, yet there is no iceberg attenuation function F1(·)

in (2.31) and (2.34) to account for this. For the first-order field, both distances ρ′0,

ρc have a portion of their path in the iceberg region (see Figure 2.2). Similarly for

the second-order field, the distances ρ′′0, ρc have a portion of their path in the iceberg

region (see Figure 2.3).

From a practical standpoint, the lack of the iceberg attenuation function is a rea-

sonable approximation since the iceberg itself will be much smaller than the distance

from the iceberg to both the source and observation points. As such, almost all the

path of ρ′0, ρc, and ρ′′0 will be over the ocean surface. This, coupled with the fact

that simulated results using these electric field equations were found to be in good

agreement with field data in [19], supports the idea that both (2.31) and (2.34) are

good approximations to the actual electric field.
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Chapter 3

Backscattered Electric Field and

Iceberg Radar Cross Section

Derivation

The derivation of the backscattered electric field and iceberg RCS is presented in this

chapter.

Starting in Section 3.1 the derivation deviates from Walsh’s approach and the

electric field equation is modified to account for a pulsed sinusoid excitation (Section

3.2). After obtaining the backscattered electric field at the receiver, a physical in-

terpretation of this field equation is provided in Section 3.3 and compared with the

physical interpretation offered previously in Section 2.4. In Section 3.4, the backscat-

tered electric field is further simplified by assuming the iceberg under observation

fits within a single radar patch width. Finally, the RCS equation for an iceberg is

obtained and discussed in Section 3.5.

31



3.1 Time Domain Analysis of the Backscattered

Electric Field

In Section 2.4 it was shown that the total electric field observed was due to contri-

butions from both the first-order and second-order field expressions. It was further

demonstrated that these expressions describe two different types of physical scattering

phenomenon. In order to limit the scope of this thesis, the remainder of the derivation

will assess only the first-order field equation. The second-order field expression will

be the subject of future work.

3.1.1 Monostatic Radar Configuration

The equations for the first and second-order fields given by (2.31) and (2.34), respec-

tively, involve minimal assumptions about the characteristics of the physical HFSWR

system. For example, neither expression has assumed a specific location for the re-

ceive antenna nor the form of the waveform which will excite the transmit antenna.

The general nature of (2.31) and (2.34) enables them to be applied to a variety of

real world HFSWR systems.

In order to further simplify these general expressions, and obtain a practical ex-

pression for the backscattered electric field from an iceberg, some assumptions about

the physical HFSWR system must be made. The first major assumption for this

derivation is that the transmit and receive antennas are co-located. This is a very

common setup for HFSWR systems and is known as a monostatic radar configuration.

Focusing now on the first-order electric field, equation (2.31) may be rewritten
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using (2.27) to give,

(
Ez+
z

)
1

(x, y) =
I∆`k2

jωε0(2π)

jk(∆2 −∆1)

2π

·
∫∫
R

F2(ρc)F2(ρ′0)
e−jk(ρc+ρ′0)

ρcρ′0
dx′ dy′ (3.1)

where it is recalled that,

ρc =
√

(x− x′)2 + (y − y′)2

ρ′0 =
√

(x0 + x′)2 + (y′)2 .

For a monostatic system the receive antenna will be located at the same coordinates

as the transmit antenna. Here, these coordinates are (x, y) = (−x0, 0). It may be

recalled from Section 2.4.1 that observing the field at a point (x, y) is equivalent to

evaluating the field at that point. Since the field will be observed at the receive an-

tenna, equation (3.1) may be evaluated at (x, y) = (−x0, 0) to give the backscattered

field. Noting that this substitution implies ρc = ρ′0 the backscattered electric field is

now given by

[(
Ez+
z

)
1

]
b

=
I∆`k2

jωε0(2π)

jk(∆2 −∆1)

2π
·
∫∫
R

F 2
2 (ρ′0)

(ρ′0)2
e−2jkρ′0 dx′ dy′ . (3.2)

The subscript b has been added to indicate that (3.2) refers to the backscattered

electric field.
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3.1.2 Time Domain Expression

The derivation of Equation (3.2) has been carried out completely in the Fourier trans-

form domain and is therefore a function of radian frequency ω. Before specifying an

excitation current waveform, Equation (3.2) is first brought to the time domain. In

order to do this, an inverse Fourier transform F−1
t ( ) is performed. Noting that

multiplication in the frequency domain becomes a convolution in the time domain,

Equation (3.2) may be written as

[(
Ez+
z

)
1

]
b
(t) =

1

(2π)2
F−1
t

{
I∆`k2 · jk
jωε0

}
t∗ F−1

t

(∆2 −∆1)

∫∫
R

F 2
2 (ρ′0)

(ρ′0)2
e−2jkρ′0 dx′ dy′

 . (3.3)

Clearly, equation (3.3) contains two inverse Fourier transforms. The inverse transform

involving the dipole current I will be considered first. Up to this point no assumptions

have been made regarding the form of the current I and it is in general a function of

ω. Recalling that k = ω/c, where c is the speed of light, it is easily found that

F−1
t

{
I∆`k2 · jk
jωε0

}
= F−1

t

{
η0∆`

c2
ω2I(ω)

}
= −η0∆`

c2
F−1
t

{
(jω)2I(ω)

}
(3.4)

where η0 =
√
µ0/ε0 is the intrinsic impedance of free space and c =

√
1/(µ0ε0).

Recognizing that the inverse Fourier transform of a function multiplied by (jω)2

gives the second derivative of the function (3.4) becomes

F−1
t

{
I∆`k2 · jk
jωε0

}
= −η0∆`

c2

∂2i(t)

∂t2
(3.5)
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where i(t) is the time domain current expression.

Next, the second inverse transform of (3.3) is considered, i.e.

F−1
t

(∆2 −∆1)

∫∫
R

F 2
2 (ρ′0)

(ρ′0)2
e−2jkρ′0 dx′ dy′

 . (3.6)

It should be noted that both F2(·) and (∆2 − ∆1) are functions of the transform

variable ω, and hence enter the inverse transform process. However, these two terms

can be shown to be approximately constant over the frequency band of interest.

Following the approach in [21] and [22] the Sommerfeld attenuation term F2(ω, ρ′0)

may approximated by F2(ω0, ρ
′
0) where ω0 is the dominant frequency of the source

excitation current. Similarly the (∆2 − ∆1) term may also be evaluated at ω = ω0

since it varies very slowly over the frequency band of interest. Simulations of this

term for a typical HFSWR operating frequency of f0 = 13.5 MHz and bandwidth of

100 kHz show its magnitude varies between 0.272515 to 0.273174 over the frequency

band. This also holds for other frequencies in the high-frequency band. For example

at operating frequency f0 = 25.4 MHz and bandwidth 100 kHz, (∆2 − ∆1) varies

between 0.318076 and 0.318275. As a result, this term is also considered constant

with respect to frequency and (3.6) becomes

F−1
t

(∆2 −∆1)

∫∫
R

F 2
2 (ρ′0)

(ρ′0)2
e−2jkρ′0 dx′ dy′


≈ (∆2 −∆1)

∫∫
R

F 2
2 (ρ′0)

(ρ′0)2
F−1
t

{
e−2jkρ′0

}
dx′ dy′

= (∆2 −∆1)

∫∫
R

F 2
2 (ρ′0)

(ρ′0)2
δ

(
t− 2ρ′0

c

)
dx′ dy′ . (3.7)

35



Now, using equations (3.5) and (3.7) in (3.3) the backscattered electric field may be

written as

[(
Ez+
z

)
1

]
b
(t) =− η0∆`

c2(2π)2
(∆2 −∆1)

· ∂
2i(t)

∂t2
t∗
∫∫
R

F 2
2 (ρ′0)

(ρ′0)2
δ

(
t− 2ρ′0

c

)
dx′ dy′ . (3.8)

3.2 Incorporating a Pulsed Source

The expression given by (3.8) represents the first-order backscattered electric field

from an iceberg for a vertical dipole source with general current excitation i(t). This

excitation current could take any form depending on the required application. In this

analysis, a pulsed current excitation is assumed. This could easily be replaced with

an FMCW or FMICW (frequency modulated interrupted continuous wave) waveform

if desired.

Referring to [21] the expression for the current waveform for the pulsed case is

given by

i(t) = I0e
jω0t ·

{
h

[
t+

Tr
2

]
− h

[
t− Tr

2

]}
(3.9)

where ω0 is the radian operating frequency, Tr is the transmitted pulse width, and

I0 is the peak current amplitude. Here, h(·) again represents the Heaviside function.

An example of a pulsed waveform is shown in Figure 3.1. If the leading and trailing

edge terms are ignored as they are in [21] the second time derivative of (3.9) may be

approximated as

∂2i(t)

∂t2
≈ −ω2

0I0e
jω0t ·

{
h

[
t+

Tr
2

]
− h

[
t− Tr

2

]}
. (3.10)
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Substituting (3.10) into (3.8) gives

[(
Ez+
z

)
1

]
b
(t) =

I0η0∆`k2
0

(2π)2
(∆2 −∆1) ·

[
e jω0t

{
h

[
t+

Tr
2

]
− h

[
t− Tr

2

]}]
t∗

∫∫
R

F 2
2 (ρ′0)

(ρ′0)2
δ

(
t− 2ρ′0

c

)
dx′ dy′

 (3.11)

where k0 = ω0/c.

Figure 3.1: Example of pulsed sinusoidal waveform

The double integral in (3.11) is over the spatial coordinates x′, y′. As noted in

Section 2.4.1 and depicted again in the Figure 3.2, ρ′0 is the radial distance from

the radar antenna to a point in the iceberg region. A coordinate transform may

be performed on the double integral to express it in terms of radial distance and

angle relative to the antenna. This transformation first involves a linear shift of the

origin from (0, 0) to (−x0, 0). Next the coordinate system is converted to the polar
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coordinates (ρ′0, φ). The result of this transform is

∫∫
R

F 2
2 (ρ′0)

(ρ′0)2
δ

(
t− 2ρ′0

c

)
dx′ dy′ =

∫
φ

∫ ρ2(φ)

ρ1(φ)

F 2
2 (ρ′0)

ρ′0
δ

(
t− 2ρ′0

c

)
dρ′0 dφ (3.12)

(−𝑥0, 0)

𝑅(𝑥′, 𝑦′)

𝑥

𝑦

o

(𝜇0, 𝜎2, 𝜖2)

(𝜇0, 𝜎1, 𝜖1)

𝜌0
′

𝜌2(∅)

𝜌1(∅)

∅

Figure 3.2: Scatter geometry (top view)

where ρ2(φ) and ρ1(φ) are, respectively, the upper and lower limits on the distance

variable ρ′0 for a given φ. This is shown in Figure 3.2. The dφ integral in (3.12) is

over all angular rays which intersect the region R.

Equation (3.12) may now be substituted into (3.11) to give,

[(
Ez+
z

)
1

]
b
(t) =

I0η0∆`k2
0

(2π)2
(∆2 −∆1) ·

[
e jω0t

{
h

[
t+

Tr
2

]
− h

[
t− Tr

2

]}]
t∗

[∫
φ

∫ ρ2(φ)

ρ1(φ)

F 2
2 (ρ′0)

ρ′0
δ

(
t− 2ρ′0

c

)
dρ′0 dφ

]
. (3.13)

This equation can be further simplified by evaluating the time convolution. The
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convolution involves a delta function which produces a shift of 2ρ′0/c in the time

variable. Carrying out this convolution, (3.13) becomes,

[(
Ez+
z

)
1

]
b
(t) =

I0η0∆`k2
0

(2π)2
(∆2 −∆1) · e jω0t

∫
φ

∫ ρ2(φ)

ρ1(φ)

F 2
2 (ρ′0)

ρ′0
e−2jk0ρ′0

·
{
h

[
t− 2ρ′0

c
+
Tr
2

]
− h

[
t− 2ρ′0

c
− Tr

2

]}
dρ′0 dφ . (3.14)

This is the first-order equation for the field backscattered from an iceberg.

3.3 Physical Interpretation of the Backscattered

Electric Field

In Section 2.4.1, the physical significance of Walsh’s general first-order electric field

expression was analyzed. It was found that the field observed at a location (x, y)

is the result of first-order scattering off every point in the iceberg region. With

the assumptions that the HFSWR system under investigation is a monostatic radar

system driven by a pulsed sinusoid current waveform, Walsh’s original frequency

domain expression in (2.31) has since been reduced to the time-domain equation of

(3.14). A brief interpretation of (3.14) shows that the conclusions drawn in Section

2.4.1 are still valid for this simplified field equation.

The field in Section 2.4.1 was shown to propagate a distance ρ′0 to the iceberg,

scatter, then travel another ρc to the observation point. This was represented by the

F2(ρc)·F2(ρ′0) attenuation term in equation (2.31). With the observation point now at

the same location as the transmit antenna, ρc becomes equal to ρ′0. This is reflected

in (3.14) by the replacement of F2(ρc) ·F2(ρ′0) with the attenuation term F 2
2 (ρ′0) which

represents attenuation over a distance of 2ρ′0. Furthermore, as in equation (2.31), the
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double integral in (3.14) is also over all points in the iceberg region. Thus, the total

received field described by (3.14) is also due to single scatters off each point in the

iceberg region.

The above arguments use the attenuation function F2(·) to reason the physical

scattering mechanisms described by the field equations. Now that the backscattered

field is in the time domain, the idea that (3.14) only describes single scattering can

be verified from another perspective. This may be completed by assessing the times,

t, for which the backscattered field exists. The Heaviside functions in the double

integral of (3.14) restrict the field to be non-zero only during the time interval

(
2ρ′0
c
− Tr

2

)
< t <

(
2ρ′0
c

+
Tr
2

)
.

Of course ρ′0 will take on a range of values which is determined by the iceberg’s shape.

There will however, exist some minimum distance ρmin corresponding to the closest

part of the iceberg and some maximum distance ρmax corresponding to the most

distant part of the iceberg. The double integral will include all ρ′0 between these

values so the backscattered field of (3.14) will be non-zero for the time interval

(
2ρmin
c
− Tr

2

)
< t <

(
2ρmax
c

+
Tr
2

)
. (3.15)

Referring to the excitation current expression given by (3.9) it may be seen that the

transmitted signal begins at time t = −Tr/2. After traveling a distance ρmin to the

closest point on the iceberg the signal scatters once and travels another ρmin to the

receiver. Given that the radiated signal moves with speed c the time taken to travel
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this distance is 2ρmin/c and the backscattered field first is observed at

tmin =
2ρmin
c
− Tr

2
. (3.16)

The transmitted pulse ends at time t = +Tr/2, so the scatter from this portion of the

transmitted signal off the farthest point of the iceberg is not received till 2ρmax/c

seconds later. Therefore, the backscattered field ends at time

tmax =
2ρmax
c

+
Tr
2
. (3.17)

If Equation (3.14) were to represent any higher scattering orders, the received field

would have to exist at times greater than tmax. This is because if multiple scatters

within the iceberg region occurred it would be possible for the total distance travelled

by the signal to be greater than 2ρmax leading to (3.14) being non-zero for t > tmax.

However, as shown in (3.15), this is not the case and thus further supports the fact

that (3.14) describes the electric field which is due to first-order scattering only.

3.4 Backscattered Field Simplification

Equation (3.14) describes the first-order backscattered field for an iceberg of arbitrary

shape and size. With an aim of reducing (3.14) to a more tractable form, consider

the distance ρ′0 = x0. Referring to Figure 3.2 this distance is the distance to the

center of the iceberg region. The time t0 = 2x0/c is then the amount of time for the

transmitted signal to travel to the iceberg center and return. If the electric field is
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observed at time t0, (3.14) becomes

[(
Ez+
z

)
1

]
b
(t0) =

I0η0∆`k2
0

(2π)2
(∆2 −∆1) · e jω0t0

∫
φ

∫ ρ2(φ)

ρ1(φ)

F 2
2 (ρ′0)

ρ′0
e−2jk0ρ′0

·
{
h

[
2

c

(
x0 +

cTr
4
− ρ′0

)]
− h

[
2

c

(
x0 −

cTr
4
− ρ′0

)]}
dρ′0 dφ .

(3.18)

The Heaviside functions in (3.18) then restrict the range of values ρ′0 may take on to

(
x0 −

cTr
4

)
< ρ′0 <

(
x0 +

cTr
4

)
. (3.19)

For any value of ρ′0 outside of this range the integral in (3.18) is zero. Hence, only

distances in the above range contribute to the received field at time t0. Thus, at any

given time the radar can only “see” a depth of cTr/2. This is commonly referred to

as the “patch width” of the pulsed radar signal.

It is now assumed that the closest and furthest points of the iceberg (ρmin and

ρmax) satisfy the following relationship,

(
ρmax − ρmin

)
< cTr/2 .

This means that the entire iceberg is contained within one radar patch width. For

a typical pulse width of 10 µs, cTr/2 = 1500 m, so icebergs with radial widths up

to 1500 m may be observed. This assumption implies that ρmin < ρ′0 < ρmax is

contained within the range given by (3.19), i.e.

(
x0 −

cTr
4

)
< ρmin < ρ′0 < ρmax <

(
x0 +

cTr
4

)
.

42



As a result, the Heaviside functions in (3.18) equate to unity over the integration

range resulting in,

[(
Ez+
z

)
1

]
b
(t0) =

I0η0∆`k2
0

(2π)2
(∆2 −∆1) · e jω0t0

∫
φ

∫ ρ2(φ)

ρ1(φ)

F 2
2 (ρ′0)

ρ′0
e−2jk0ρ′0 dρ′0 dφ (3.20)

The F 2
2 (ρ′0)/ρ′0 term may be considered approximately constant over the integration

range by applying the same assumption used in [21], since for normal operation x0 �

cTr/2. After evaluating this term at ρ′0 = x0, (3.18) may be written as

[(
Ez+
z

)
1

]
b
(t0) ≈ I0η0∆`k2

0

(2π)2
(∆2 −∆1) · e jω0t0

F 2
2 (x0)

x0

∫
φ

∫ ρ2(φ)

ρ1(φ)

e−2jk0ρ′0 dρ′0 dφ . (3.21)

Carrying out the ρ′0 integral in (3.21) the final form of the backscattered field is

obtained as

[(
Ez+
z

)
1

]
b
(t0) ≈ I0η0∆`k0

(2π)2
(∆2 −∆1) · e jω0t0

F 2
2 (x0)

x0

·
∫
φ

e−jk0[ρ2+ρ1] sin [k0(ρ2 − ρ1)] dφ (3.22)

where the function notation has been dropped for the ρ1, ρ2 terms with understanding

that they are both functions of φ.

3.5 Iceberg Radar Cross Section Derivation

With the final backscattered electric field in place, it is now possible to obtain an

expression for the iceberg RCS. As briefly discussed in Chapter 1, the RCS is a

representation of what the iceberg region looks like to a HFSWR. More specifically,

the RCS is a measure of the iceberg’s ability to reflect radar signals towards the radar
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receiver. The iceberg RCS will depend on several iceberg parameters including it’s

size and shape, as well as the electrical parameters (µ, σ, ε) of both the ice and the

surrounding sea water. Once the RCS has been obtained, the expected received signal

strength can be investigated as a function of these parameters.

3.5.1 Radar Range Equation

Obtaining the RCS for the iceberg region first involves finding the power, Pr, received

by the radar. In general, the received power for a radar system is described by the

radar range equation. This equation is dependent on the type of radar transmitter

used, the distance to the target, the target’s RCS, as well as several other parameters.

For the radar system considered here the monostatic radar range equation is given

by (see, for example, Barton [28]),

Pr =

(
λ2

0GrPtGt|F2(x0)|4

(4π)3x4
0

)
σ (3.23)

where σ is the RCS for the target under consideration, which in this case is the iceberg

region. λ0 is the wavelength of the transmitted signal and is given by λ0 = c2π/ω0, Pt

is the transmit power, and Gt, Gr are the transmitter and receiver gain, respectively.

For an elementary vertical dipole antenna the product of the transmit power and

gain, PtGt, may be expressed as (see [21]),

PtGt =
η0k

2
0

8π
|I0∆`|2 . (3.24)

It should also be noted that (3.23) has been evaluated at the distance x0 which

corresponds to the iceberg region’s center.
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With the radar range equation for this system in place, attention is now focused on

finding the received power using the expression derived for the backscattered electric

field, (3.22). By comparing the received power calculated using (3.22) against the

standard radar range equation of (3.23) an expression for the RCS, σ, may be found.

3.5.2 Radar Cross Section

The power, Pr, received by an antenna located at (x, y) = (−x0, 0) may be estimated

as in [18] and [21] using,

Pr =
Ar| [(Ez+

z )1]b (t0)|2

(2η0)
(3.25)

where Ar is the effective aperture of the receive antenna and is defined as

Ar =
λ2

0Gr

4π
. (3.26)

Equation (3.22) is now rewritten for convenience as

[(
Ez+
z

)
1

]
b
(t0) ≈ I0η0∆`k0

(2π)2
(∆2 −∆1) · e jω0t0

F 2
2 (x0)

x0

· g(φ) (3.27)

where g(φ) is

g(φ) =

∫
φ

e−jk0[ρ2+ρ1] sin [k0(ρ2 − ρ1)] dφ . (3.28)

Using (3.27) in (3.25) gives

Pr =
Ar
2η0

|I0η0∆`k0|2

(2π)4

|F 2
2 (x0)|2

x2
0

· |(∆2 −∆1) · g(φ)|2 . (3.29)
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Substituting Ar in (3.29) with equation (3.26) results in

Pr =
λ2

0Gr

8π

η0k
2
0|I0∆`|2

(2π)4

|F2(x0)|4

x2
0

· |(∆2 −∆1) · g(φ)|2 . (3.30)

Recalling the expression for PtGt from (3.24) and substituting this into (3.30) gives

the received power expression as

Pr =
λ2

0GrPtGt|F2(x0)|4

(2π)4x2
0

· |(∆2 −∆1) · g(φ)|2 . (3.31)

This expression can now be placed into the same form as the radar range equation;

i.e.,

Pr =

(
λ2

0GrPtGt|F2(x0)|4

(4π)3x4
0

)
·
(

4x2
0

π
|(∆2 −∆1) · g(φ)|2

)
. (3.32)

Comparing (3.32) against the radar range equation of (3.23) and substituting g(φ)

back in results in the RCS for the iceberg region:

σ =
4x2

0

π

∣∣∣∣(∆2 −∆1)

∫
φ

e−jk0[ρ2+ρ1] sin [k0(ρ2 − ρ1)] dφ

∣∣∣∣2 . (3.33)

3.5.2.1 Analysis of the Iceberg RCS Equation

As discussed in Section 3.5, the RCS for an iceberg is a measure of an iceberg’s ability

to reflect signals back towards the radar receiver. After finding the final backscattered

electric field equation for a pulsed sinusoid HFSWR system, the RCS for an arbitrarily

shaped iceberg has been obtained and is described by equation (3.33). As expected

and discussed below, (3.33) depends almost exclusively on the the iceberg’s geometry,

the electrical parameters of both the iceberg and the surrounding ocean, and the

46



operating parameters of the HFSWR system.

Most notably, the iceberg’s geometry is accounted for in (3.33) by the integral

over φ. This integral is over the entire iceberg region and accounts for the shape of

the iceberg through the distance variables ρ1, ρ2 which, respectively, correspond to

the closest and farthest points of the iceberg for a given φ. Furthermore, the integral

in (3.33) does not include any points within the iceberg. This is in contrast to the

initial first-order electric field expression (2.31) which was discussed in Section 2.4.1.

That expression involved a double integral over every point contained in the iceberg

region. Here, the RCS depends only on the edges of the iceberg which are described

by ρ1, ρ2. This is an important distinction as the final RCS expression only involves

scattering off the iceberg’s edges. This makes good physical sense as long as the

iceberg has homogenous electrical properties.

The dependence of the RCS magnitude on the electrical parameters of the iceberg

as well as the ocean surface are accounted for by the surface impedance terms (∆2 −

∆1) in (3.33).

Finally, (3.33) also involves two of the HFSWR’s operating parameters. These

parameters are the radar’s operating frequency and the pulse width of the radar’s

transmit waveform. The operating frequency dependency arises primarily through the

k0 term which appears multiple times in (3.33), since k0 = ω0/c and ω0 is the radian

operating frequency. There is also a dependence on operating frequency through the

surface impedance term (∆2 − ∆1). The pulse width, Tr, of the transmit waveform

does not explicitly appear in the iceberg RCS equation. However, it was assumed in

Section 3.4 that the observed iceberg is contained within one radar patch width. The

patch width, which is given by cTr/2, is in turn dependent on the radar’s pulse width.

As such, (3.33) implicitly accounts for the radar’s pulse width in that the pulse width
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limits the size of the icebergs which the RCS describes.

In addition to the above dependencies, this form of the iceberg RCS also appears

to show a dependence on the distance between the iceberg and the radar. This arises

from the presence of the x2
0 term as well as the ρ2 + ρ1 term in (3.33). The x2

0 term

may be removed by a simple conversion from polar to Cartesian coordinates. The

distance dependency through the ρ2 + ρ1 term can also be shown to disappear under

typical HFSWR operating conditions. Section 4.1 addresses this at length.
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Chapter 4

Iceberg Radar Cross Section

Simulation and Analysis

In Chapter 3, a RCS model for an iceberg region was derived. This RCS describes

icebergs of any shape or size as long as the difference between the closest and fur-

thest points of the iceberg, ρmin and ρmin, respectively, satisfy the condition ρmin−

ρmin < cTr
2

. In this chapter, the effects of iceberg shape and size, as well as other

parameters including radar operating frequency, on the RCS are studied via simula-

tion.

In Section 4.1, the RCS equation given by (3.33) is converted to a form suitable

for simulation. In Section 4.2, the simulation form of the RCS is modified for the case

of rectangular icebergs. RCS simulation and analysis are then carried out in Sections

4.3 and 4.4 for square and rectangular icebergs, respectively. Section 4.5 contains a

summary of the results of these simulations along with their implications.
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4.1 Simulation Form of the Iceberg RCS Equation

The RCS of Equation (3.33) is currently in a form which is easily interpreted in terms

of range and angle relative to the radar transmitter. For the purpose of simulation,

it is favourable to express (3.33) in terms of Cartesian coordinates x, y. Figure 4.1

shows the iceberg region geometry once more, this time with Cartesian coordinates

added.

(𝜇0, 𝜎2, 𝜖2)
(𝜇0, 𝜎1, 𝜖1)

(−𝑥0, 0)

∅

𝜌0
′

𝜌1(∅)

𝜌2(∅)

𝑅

𝑥

𝑦

o 𝑥2𝑥1

𝑦1

𝑦2

𝑦

Figure 4.1: Iceberg geometry for simulation

In order to express (3.33) in terms of Cartesian coordinates, an assumption about

the iceberg’s dimensions relative to its distance from the radar must be made. In

Section 3.4, it was assumed that the iceberg’s maximum radial width was less than

the patch width of the radar. As noted in that section, for a radar pulse width of 10

µs, the corresponding patch width is cTr/2 = 1500 m. Consequently, icebergs with a

maximum radial width of 1500 m could be observed. Here, it is now assumed that the

distance x0 to the iceberg from the radar is at least an order of magnitude larger than
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the observed iceberg’s width. This assumption means the distance to the iceberg is

on the order of tens of kilometers or larger, a reasonable assumption for a HFSWR

system. With this assumption in place, consider the integral in (3.33) which is over

the angle φ. The relationship between φ and y is, in general, given by y = r sinφ,

where r is the distance from the transmitter to the point (0, y). This relationship

can be simplified if the angle, φ, is small over the integration range. Given that the

iceberg distance from the radar is assumed to be an order of magnitude larger than

the side length of the iceberg which faces the radar (the difference between y2 and y1)

the small-angle approximation may be invoked giving sinφ ≈ φ. Furthermore, since

φ is small, the distance from the transmitter to (0, y) will be approximately constant

and equal to x0. Combining these observations results in

y ≈ x0φ . (4.1)

Noting that φ ≈ y
x0

and dφ ≈ dy
x0

, (3.33) may be written as a function of y,

σ ≈ 4

π

∣∣∣∣(∆2 −∆1)

∫ y2

y1

e−jk0[ρ2+ρ1] sin [k0(ρ2 − ρ1)] dy

∣∣∣∣2 . (4.2)

Referring to Figure 4.1 and again noting that the distance to the iceberg region

is much greater than the size of the region, the difference between the closest and

furthest points of the iceberg may be approximated as,

(ρ2 − ρ1) ≈ (x2 − x1) , (4.3)

where x2 and x1 are functions of y.

Next, consider the phase term, e−jk0[ρ2+ρ1], in (4.2). The addition, ρ2 + ρ1, may
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be rewritten as,

ρ2 + ρ1 = 2ρ1 + (ρ2 − ρ1) ≈ 2ρ1 + (x2 − x1) . (4.4)

With the exception of the ρ1 term, equation (4.4) is written in terms of Cartesian

coordinates. It is also possible to write ρ1 in terms of x and y. With reference to

Figure 4.1, it is clear that ρ1 is given by

ρ1 =
x0 − |x1|

cosφ
= [x0 − |x1|] · secφ .

Recalling that sec2 φ = 1 + tan2 φ and here tanφ = y
x0−|x1| , secφ may be written as,

secφ =

[
1 +

(
y

x0 − |x1|

)2
] 1

2

.

Therefore,

ρ1 = [x0 − |x1|] ·

[
1 +

(
y

x0 − |x1|

)2
] 1

2

. (4.5)

Using (4.3) and (4.4) in (4.2) a RCS equation expressed solely in terms of x, y is

obtained as,

σ ≈ 4

π

∣∣∣∣(∆2 −∆1)

∫ y2

y1

e−jk0[2ρ1+(x2−x1)] sin [k0(x2 − x1)] dy

∣∣∣∣2 (4.6)

where ρ1 is given by (4.5).

Equation (4.6) may be furthered simplified by assessing the ρ1 term in more detail.
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Consider the

[
1 +

(
y

x0−|x1|

)2
] 1

2

portion of (4.5). This term may be rewritten as

[
1 +

(
y

x0 − |x1|

)2
] 1

2

=

1 +

(
y
x0

1− |x1|
x0

)2
 1

2

. (4.7)

With reference to Figure 4.1 and equation (4.6), it is recalled that y is the variable of

integration and ranges from y1 to y2. Furthermore, for a given y, |x1| is the distance

from the origin to the iceberg edge which faces the radar. Since it is assumed that x0

is at least an order of magnitude larger than the iceberg’s extent in both the x and

y directions, the ratios y
x0

, |x1|
x0

will be at maximum equal to 0.1. In this case, (4.7)

will equate to 1.00615. For y
x0

and |x1|
x0

decreasing in magnitude, (4.7) will further

approach unity. As such, (4.7) may be approximated as unity and (4.5) can therefore

be approximated as

ρ1 ≈ x0 − |x1| . (4.8)

Equation (4.6) then becomes

σ ≈ 4

π

∣∣∣∣(∆2 −∆1)

∫ y2

y1

e−jk0[2(x0−|x1|)+(x2−x1)] sin [k0(x2 − x1)] dy

∣∣∣∣2
=

4

π

∣∣∣∣(∆2 −∆1)e−j2k0x0
∫ y2

y1

e j2k0|x1|e−jk0(x2−x1) sin [k0(x2 − x1)] dy

∣∣∣∣2 (4.9)

where the exponential term involving x0 has been removed from the integral as it

does not depend on y. Noting that the magnitude of an exponential is equal to unity,

the final form of the RCS is obtained as

σ ≈ 4

π

∣∣∣∣(∆2 −∆1)

∫ y2

y1

e j2k0|x1|e−jk0(x2−x1) sin [k0(x2 − x1)] dy

∣∣∣∣2 . (4.10)
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As alluded to in Section 3.5.2.1, the dependence on the distance x0, which was seen

in equation (3.33), has now been removed from the RCS expression. Additionally,

the RCS has been converted from polar coordinates (ρ, φ) to Cartesian coordinates

(x, y). Despite these changes, the new RCS expression of (4.10) still depends on the

same physical parameters outlined in Section 3.5.2.1. These include:

� The geometry of the iceberg region,

� The electrical parameters of both the iceberg and the ocean surface,

� The operating frequency of the HFSWR system.

The effect of these parameters will be investigated throughout the rest of this chapter

for the case of a rectangular shaped iceberg. Equation (4.10) will be used as the basis

for all RCS simulations.

4.2 Iceberg RCS Equation for Rectangular Icebergs

In an effort to validate the RCS model derived in this thesis a rectangular model of

the iceberg region is studied throughout the remainder of this chapter. Figure 4.2

shows a rectangular iceberg region. As in previous diagrams the figure depicts a top

down view of the iceberg. In order to study how the proportions of an iceberg affect

the RCS an aspect ratio has been defined in the figure that describes the relative

side lengths of the rectangular iceberg. In particular, the aspect ratio is given as a/b

where b is half the length of the side of the iceberg which is facing the radar and a is

half the width of the iceberg.

Equation (4.10) may now be rewritten for the case of the rectangular iceberg.

From Figure 4.2 it is clear that the limits on the integration variable y will be from
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Figure 4.2: Rectangular iceberg geometry

−b to b. Furthermore, for all y the difference (x2 − x1) is constant and equal to 2a.

The |x1| term is also constant and is equal to a. Making these substitutions to (4.10)

results in

σ ≈ 4

π

∣∣∣∣(∆2 −∆1)

∫ b

−b
e j2k0ae−j2k0a sin [2k0a] dy

∣∣∣∣2
=

4

π

∣∣∣∣(∆2 −∆1)

∫ b

−b
sin [2k0a] dy

∣∣∣∣2 . (4.11)

Noting that the sinusoid function in (4.11) is no longer a function of y it may be

removed from the integral to simplify the expression. Doing this and carrying out the

remaining integral gives

σ ≈ 4

π

∣∣∣∣(∆2 −∆1) · sin [2k0a]

∫ b

−b
dy

∣∣∣∣2
=

16b2

π
|(∆2 −∆1) · sin [2k0a]|2 . (4.12)
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Several different parameters affect the value of the RCS. Referencing (4.12) it may

be seen that, as expected, the values of a and b will have a large impact on the RCS

value. The ratio of a to b is accounted for by the iceberg’s aspect ratio. However, the

actual values of a and b depend on the plan view area of the iceberg. The iceberg’s

plan view area is the area of the iceberg as shown in Figure 4.2. It is the area of

the iceberg at height z = 0, i.e. the area of the iceberg which is in contact with the

waterline. This area, A, can be written trivially in terms of a and b as A = 4ab.

The effects of both the iceberg’s shape (aspect ratio) and size (area) are detailed in

Sections 4.3.1, 4.4.1, and 4.4.2.

The rectangular RCS is also dependent on the operating frequency of the radar

as well as the electrical parameters of the iceberg and surrounding sea water. The

operating dependency arises through the k0 term in (4.12), since k0 = ω0/c and ω0

is the radian operating frequency, and through the (∆2 − ∆1) term which is also

a function of frequency (see Equations (2.17) - (2.20)). The effects of operating

frequency on the RCS are covered in Section 4.3.2 and throughout Section 4.4. The

RCS dependency on the electrical parameters, ε, σ, and µ, of both the iceberg and

sea water is due to the (∆2 −∆1) term in (4.12). Table 4.1 below shows the values

used for these electrical parameters in all simulations which follow. These values are

the same as those used in Walsh’s simulation work [18].

Relative Permittivity Conductivity (S/m)

Iceberg εr1 = 5 σ1 = 10−5

Sea Water εr2 = 80 σ2 = 4

Table 4.1: Electrical parameters used for simulations
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4.3 Simulation and Analysis of the RCS for Square

Icebergs

Before assessing the effects of differing aspect ratios, the special case of a square

shaped iceberg is considered. A square iceberg has equal length sides implying a = b

and an aspect ratio of 1. Equation (4.12) can therefore be further simplified for the

square iceberg case. If L is defined to be the length of one side of the square iceberg

then L = 2a = 2b and (4.12) can be written as

σ ≈ 4L2

π
|(∆2 −∆1) · sin [k0L]|2 . (4.13)

Simulations of the iceberg RCS for square shaped icebergs may now be carried out

using (4.13). Section 4.3.1 contains an investigation of the effect that iceberg area has

on the RCS magnitude and in Section 4.3.2 the impact of radar operating frequency

is assessed. The electrical characteristics of the iceberg and sea water are given in

Table 4.1.

4.3.1 Effect of Iceberg Area on Square RCS

Figure 4.3 shows a plot of the RCS of a square iceberg for iceberg areas ranging

from 1 m2 to 10 000 m2. Equation (4.13) was used to calculate the RCS for these

different iceberg areas in order to understand how iceberg size affects the magnitude

of the RCS. The RCS values in this figure have been normalized by dividing the RCS

by the iceberg’s plan view area L2. The radar operating frequency for this plot is

f0 = 25.4 MHz.

The most striking features of this plot are the peaks and nulls that occur as the area
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Figure 4.3: Backscattered RCS at 25.4 MHz for a square iceberg

of the iceberg changes. The most obvious explanation for their presence is constructive

and destructive interference of the radar waves reflected off the leading and trailing

edges of the iceberg. This would imply a relationship between the geometry of the

iceberg and the wavelength of radar signal. Referring to (4.13), and noting that

Figure 4.3 is a plot of the RCS normalized by the iceberg’s area L2, it obvious that

the source of these peaks and nulls is the sin [k0L] term. In order to obtain the

relationship between the radar’s operating wavelength λ0 and the iceberg’s side length,

this sinusoidal term may be rewritten as,

sin [k0L] = sin

[
2πf0L

c

]
= sin

[
2πL

λ0

]
. (4.14)

The peaks in the RCS will occur whenever (4.14) is at a maximum. Since this is

a sinusoidal function, it will have a maximum magnitude of 1 which occurs when
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2πL
λ0

= nπ
2

, where n is a positive odd integer. Solving this maximum condition for the

iceberg’s side length gives the criteria for RCS peaks as

L =
nλ0

4
, where n is a positive odd integer. (4.15)

This peak criteria can be verified by investigating the side lengths corresponding to

the RCS peaks in Figure 4.3. The first two RCS peaks correspond with iceberg areas

of 8.868 m2 and 78.35 m2, respectively. The icebergs’ side lengths, L, associated with

these areas are 2.978 m and 8.852 m, respectively. Noting that the operating frequency

of 25.4 MHz used to generate Figure 4.3 implies a radar wavelength of λ0 = 11.811 m,

the ratio of the side length to operating wavelength (L/λ0) gives approximately 1
4

for

the first peak and approximately 3
4

for the second peak. These values clearly satisfy

the peak criteria indicated in (4.15). Checking this with the 6th peak verifies this

relationship. The iceberg at this peak has an area of 1057 m2 and a side length of

32.512 m. The ratio of side length to wavelength here is equal to approximately 11
4

.

A similar criteria exists for the nulls. When the sin [k0L] term is at a minimum

magnitude of 0, RCS nulls exist. The condition for this is 2πL
λ0

= nπ, where n is a

positive integer. Again solving this minimum condition for the iceberg’s side length

gives the criteria for RCS peaks as

L =
nλ0

2
, where n is a positive integer. (4.16)

From the above mathematics this relationship between peaks/nulls and the operating

wavelength should hold for all frequencies; only the value of the side lengths, or

equivalently area, which satisfy the peak/null criteria, should change. Figure 4.4

shows another plot of normalized RCS against iceberg area. This time the radar
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operating frequency has been changed to f0 = 10.0 MHz.
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Figure 4.4: Backscattered RCS at 10.0 MHz for a square iceberg

As expected the same peak/null relationship to wavelength exists for this operating

frequency. The wavelength for a 10.0 MHz signal is ~30 m. Considering the third

peak, the iceberg corresponding to this peak has an area of 1417 m2 and a side length

of 37.643 m which implies a side length to wavelength ratio of 5
4
. The third null

corresponds to an iceberg with an area of 2025 m2 with a side length of 45.000 m,

giving a side length to wavelength ratio of 3
2
. Note that because the wavelength is

longer in this simulation there are fewer peaks and nulls for the same range of iceberg

sizes.

Similar simulations to those in Figures 4.3 and 4.4 were undertaken in [19]. In [19]

both the second-order and first-order components of a square RCS were simulated.

This is in contrast to the results presented here, which consider only the first-order

component of the RCS. Another difference between the simulations in [19] and those

presented here is that no transmit waveform is explicitly specified in [19]. In this
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thesis a pulsed sinusoid waveform is assumed. Despite these differences the plots

of normalized RCS against iceberg area have a very similar trend and magnitude.

Moreover, the same peak/null relationship between iceberg side length and wavelength

exists in both works. In [19] the authors make the observation that RCS peaks

occur when the perimeter of the iceberg is an odd integer multiple of wavelength

(= λ0, 3λ0, 5λ0, . . .). Similarly the authors state that RCS nulls occur when the

perimeter of the iceberg is an even integer multiple of wavelength (= 2λ0, 4λ0, 6λ0, . . .).

Since the perimeter, P , of a square iceberg is equal to four times the side length

(P = 4L), their statement is equivalent to the criteria of (4.15) and (4.16).

Another notable feature of Figures 4.3 and 4.4 is that, for a particular operating

frequency, the RCS magnitude at the peaks are identical. This is only the case for

the normalized RCS. This normalization allows the RCS to be plotted on a similar

magnitude scale for different iceberg areas, but it is important to note that the RCS

magnitude at a peak increases as iceberg area increases. This result is expected since,

for all other iceberg properties being identical, a larger iceberg should backscatter

more of the incident radiation to the receiver.

4.3.2 Effect of Operating Frequency on Square RCS

As noted in Section 4.2 the iceberg RCS has a dependence on the radar operating

frequency through the k0 and (∆2 − ∆1) terms in (4.13). The plots in Section 4.2,

Figures 4.3 and 4.4, provide some insight to the frequency dependence of the RCS.

Figure 4.3 shows the RCS for an operating frequency of 25.4 MHz while Figure 4.4

is for an operating frequency of 10.0 MHz. The RCS peaks have almost the same

magnitude. For f0 = 25.4 MHz the RCS peak magnitude is −7.203 dB, while the

f0 = 10.0 MHz case has a RCS peak magnitude of −7.096 dB. A difference of about
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0.107 dB in magnitude. This would suggest that the RCS has only a slight dependence

on radar operating frequency.

To isolate the effect which operating frequency has on the square iceberg RCS,

simulations have been carried out for a fixed iceberg size (area) while the operating

frequency is varied from 3 MHz to 30 MHz.
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Figure 4.5: Backscattered RCS as function of operating frequency for a square iceberg
with area of 1000 m2

Figure 4.5 is for a square iceberg with area 1000 m2 while Figure 4.6 is for an

iceberg with an area of 10 000 m2. From the figures it is observed that as the radar

operating frequency increases, the RCS peak magnitude decreases slightly. Referring

to (4.13), it is evident that the source of the RCS magnitude change is due to the

surface impedance term (∆2−∆1) and not the k0 term. Although k0 is also frequency

dependent, it is contained within a sine function which will have the same maximum

value of unity at a RCS peak. Therefore the frequency dependence must arise from

the (∆2 − ∆1) term. This surface impedance term does not modify the RCS mag-

nitude substantially. In Figure 4.6, for example, the RCS peak magnitude changes
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Figure 4.6: Backscattered RCS as function of operating frequency for a square iceberg
with area of 10 000 m2

from −7.021 dB at 3.747 MHz to −7.225 dB at 29.24 MHz. This small change is to

be expected since in Section 3.1.2 it was noted that (∆2 − ∆1) varies slowly with

frequency. The simulations carried out for Figures 4.5 and 4.6 confirm this.

Although the k0 term does not affect the RCS peak magnitude, it does play a role

in the location of the peaks/nulls. This is reflected in Figures 4.5 and 4.6. These

figures demonstrate the same peak/null pattern as the figures in Section 4.3.1. For

nulls to occur, the side length has to satisfy the relationship L = nλ0
2

where n is a

positive integer. Here, the side length is now fixed and nulls will occur whenever the

wavelength λ0 = 2L
n

. A similar relationship can be found for the peaks as well. This

relationship, explains why there are more peaks/nulls in Figure 4.6 than in Figure

4.5. Rewriting the null criteria in terms of frequency gives, f0 = nc
2L

. Thus, for a

larger iceberg there will be more frequencies which satisfy the null (or peak) criteria

for a given range of frequencies.
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4.4 Simulation and Analysis of the RCS for Rect-

angular Icebergs

The case of equal-side-length icebergs was analyzed in Section 4.3. Here, the effect

of changing iceberg shape is investigated. This is carried out by varying the aspect

ratio of the iceberg, while keeping the iceberg area constant. Figure 4.2 indicates that

icebergs which have aspects ratios of less than unity have larger b than a, meaning that

the side length facing the radar is larger than the width of the iceberg. Conversely,

aspect ratios greater than unity correspond to icebergs which have larger a than b

and hence a longer width than length.

In Section 4.4.1, the RCS is simulated for several different aspect ratio and oper-

ating frequency combinations against iceberg area. In Section 4.4.2, the effect of the

aspect ratio on the RCS is isolated by varying it while keeping both the operating

frequency and iceberg area constant. The electrical characteristics of the iceberg and

sea water are again given in Table 4.1.

4.4.1 Effect of Iceberg Area on Rectangular RCS

In this section, the RCS is plotted as a function of area as was done in Section 4.3.1.

The same operating frequencies of 25.4 MHz and 10 MHz are used here. However, this

time the aspect ratios of the icebergs are 4 and 0.25. This means that one side of the

iceberg is four times the length of the other. For an aspect ratio of 4, the width of

the iceberg is four times the side length which faces the radar (a = 4b). For an aspect

ratio of 0.25, the side facing the radar is four times the iceberg’s width (b = 4a).

Simulations for rectangular icebergs use the rectangular RCS equation (4.12),

which was derived in Section 4.2. In Section 4.3.1 it was shown that the sine term in
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the square iceberg RCS equation (4.13) leads to peaks/nulls in the RCS. A similar

sine term exists in the more generalized rectangular RCS equation. Comparing this

to the sine term for the square case in (4.13), the locations of the peaks and nulls

for rectangular icebergs may be predicted. Substituting 2a for L in (4.15) and (4.16)

gives the criteria for RCS peaks and nulls for rectangular icebergs. For peaks to occur,

the iceberg width must satisfy the following condition,

2a =
nλ0

4
, where n is a positive odd integer. (4.17)

Similarly for nulls,

2a =
nλ0

2
, where n is a positive integer. (4.18)

Figure 4.7 show a plot of normalized RCS against area for an iceberg aspect ratio of

4 and an operating frequency of 25.4 MHz.
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Figure 4.7: Backscattered RCS at 25.4 MHz for a rectangular iceberg with aspect
ratio of 4
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To test the predictions of (4.17) and (4.18) consider the third, fourth, and fifth RCS

peaks. These correspond to iceberg areas of 54.26 m2, 106.9 m2, and 176.7 m2. The

width of the iceberg, 2a, has values of 14.732 m, 20.679 m, and 26.586 m for these

areas. From (4.17) it is expected that the iceberg width to wavelength ratios, 2a/λ0,

for the third, fourth, and fifth peaks are 5
4
, 7

4
, and 9

4
. Recalling that the wavelength

for a 25.4 MHz signal is 11.811 m, the ratios calculated from the plot are 1.247, 1.751,

and 2.251 as expected. The criteria for RCS nulls can be verified in a similar manner.

Consider the sixth null in Figure 4.7. The iceberg area and width corresponding to

this null are 313.9 m2 and 35.434 m, respectively. The width to wavelength ratio is

thus 3.00 as (4.18) predicts.

Figure 4.8 shows simulation results for icebergs with an aspect ratio of 0.25. The

operating frequency has been maintained at 25.4 MHz. It possible to show that the

same peak/null criteria given by (4.17) and (4.18) still hold for this different aspect

ratio, as expected from equation (4.12).

100 101 102 103 104

Rectangle Iceberg Area (m2)

-102

-101

-100

N
or

m
al

iz
ed

 R
ad

ar
 C

ro
ss

 S
ec

tio
n 

(d
B

/m
2
) X: 313.7

Y: -1.182

Figure 4.8: Backscattered RCS at 25.4 MHz for a rectangular iceberg with aspect
ratio of 0.25
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Comparing Figures 4.8 and 4.7 there are several notable differences. The first

is the number of peaks/nulls. There are fewer peaks/nulls for the 0.25 aspect ratio

rectangular icebergs. This is a direct consequence of the fact that for smaller aspect

ratios the 2a dimension or width of the iceberg will have a smaller range of values

for the same set of iceberg areas as compared to a larger aspect ratio. Since 2a

in equations (4.17) and (4.18) takes on a smaller range there are fewer multiples of

the wavelength which satisfy the null/peak criteria. The second major difference

between the 0.25 and 4 aspect ratio plots is that the magnitude of the peaks is

substantially larger for the smaller aspect ratio. The peaks in Figure 4.8 have a

magnitude of approximately −1.182 dB. In Figure 4.7 the peaks have a magnitude of

approximately −13.220 dB. For the square iceberg case shown in Figure 4.3 the peaks

have a magnitude of approximately −7.203 dB. For the square case the aspect ratio

is 1. It can therefore be concluded that as the aspect ratio decreases the magnitude

of the signal returned to the radar increases. This makes good physical sense since as

the aspect ratio decreases the b dimension increases meaning more of the iceberg is

facing the radar and able to reflect the transmitted signal for the same iceberg area.

Figures 4.9 and 4.10 show two more plots of the RCS against iceberg area. The

aspect ratios for these figures are again 4 and 0.25, respectively. However, the oper-

ating frequency has been changed to 10.0 MHz. For the same aspect ratio the peaks

have a slightly larger magnitude for the 10.0 MHz case. This slight dependence on

operating frequency was also noted for the square iceberg case in Section 4.3.2 and is

due to the surface impedance term (∆2 −∆1) in (4.12).
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Figure 4.9: Backscattered RCS at 10.0 MHz for a rectangular iceberg with aspect
ratio of 4
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Figure 4.10: Backscattered RCS at 10.0 MHz for a rectangular iceberg with aspect
ratio of 0.25

4.4.2 Effect of Aspect Ratio on Rectangular RCS

It was found in Section 4.4.1 that as the iceberg’s side length which faces the radar

increases so does the magnitude of the RCS. This side length is given by 2b as depicted
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in Figure 4.2. This relationship is not surprising since the rectangular RCS equation

(4.12) is proportional to b2 and hence is proportional to the iceberg’s side length

which faces the radar. To study this relationship further the RCS is now simulated

as a function of aspect ratio while the operating frequency and iceberg area are fixed.

Figure 4.11 plots normalized RCS against aspect ratios ranging from 0.25 to 4. The

iceberg area for this simulation is 1000 m2 and the operating frequency is 25.4 MHz.
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Figure 4.11: Backscattered RCS at 25.4 MHz for a rectangular iceberg with area
1000 m2

Firstly, it may be noticed that the same peak and null features seen in previous

simulations are still present here. This is because varying the aspect ratio while the

area is fixed will result in the iceberg width changing in size and there will be several

widths which satisfy the peak/null criteria of (4.17) and (4.18). Secondly, Figure

4.11 shows the expected trend between the RCS magnitude and the iceberg’s side

length 2b. If only the RCS magnitude at the peaks is considered the RCS magnitude

increases as the aspect ratio decreases. Of course as the aspect ratio decreases b is

increasing and thus more of the iceberg is facing the radar. Since Figure 4.11 shows
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a plot of the RCS on a logarithmic scale the change in RCS magnitude with aspect

ratio is quite substantial. To verify this trend for a different iceberg area Figure 4.12

shows the same plot as above but this time for a iceberg area of 10 000 m2. Here, as

expected, the trend is again evident.
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Figure 4.12: Backscattered RCS at 25.4 MHz for a rectangular iceberg with area
10 000 m2

The fact that rectangular RCS is proportional to the square of the iceberg side

length which faces the radar is an important conclusion. It it shown in [29] that the

RCS of a rectangular plate for a vertically polarized radar is proportional to this side

length squared, i.e to b2. The result obtained in this thesis is consistent with this

research even though the RCS derived here is for an arbitrary shaped iceberg region.

This helps to support and validate the RCS equation given by (3.33). Applying this

equation to the specific case of a rectangular iceberg region has led to the same result

found in research focusing on the rectangular RCS specifically.
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4.5 Conclusions Based on Rectangular Simulations

Sections 4.2 - 4.4 contained an analysis of the RCS for rectangular icebergs. Here,

the main findings of this analysis are summarized and interpreted.

The most significant findings relate to the geometry of the rectangular iceberg.

With reference to Figure 4.2, it is recalled that a is a measure of the iceberg’s width,

i.e. the side length which is in-line, or parallel, with the radar’s look direction. The

other side length which is facing, and perpendicular to, the radar’s look direction

is given by b. It was found that as b increased in size, the magnitude of the RCS

peaks also increased. It was noted that this is not surprising since the RCS equation

for a rectangular iceberg, given by (4.12), is proportional to b2. However, this is

an important conclusion since intuitively it makes sense that as b increases the RCS

magnitude also increases as there is more of the iceberg facing the radar and able

to reflect the incident electromagnetic energy back to the radar. In contrast, the

side length a was found to have no effect on the magnitude of the RCS peaks, but

instead affected the condition under which the peaks/nulls would occur. This also

makes good physical sense. As the width of the iceberg changes, there will be differing

amounts of constructive and destructive interference due to reflections off the leading

and trailing edges of the iceberg for a particular operating frequency.

As noted above, the largest impact on the RCS for a rectangular iceberg comes

from the iceberg’s geometry. However, the operating frequency of the radar also plays

a role on the RCS. For a fixed side length a, the operating frequency will determine

when RCS peaks/nulls occur. This is because a particular operating frequency cor-

responds to a particular signal wavelength which again leads to varying amounts of

constructive and destructive interference. The operating frequency also had a small
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impact on the magnitude of the RCS. This was determined to be due to the surface

impedance term (∆2 − ∆1) which also depends on frequency. It was found that as

operating frequency increases the surface impedance decreased, and this led to a lower

magnitude RCS. However, the change in magnitude due to this was fairly small over

the simulated frequency range of 3.0 MHz to 30.0 MHz. This is a direct consequence

of the fact that the surface impedance term varies slowly with frequency.
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Chapter 5

Conclusions

5.1 General Synopsis and Significant Results

The development of a new analytical iceberg RCS model for a pulsed HFSWR system

has been accomplished in this thesis. Using this RCS model, simulations have been

performed on rectangular-shaped icebergs in order to test the validity of the RCS

expression. The starting point for this thesis can be found in early HFSWR iceberg

work by Walsh [5], where general electric field equations for an iceberg region were

established.

In order to provide a background for the RCS derivation carried out in this thesis,

the analysis started with an overview of Walsh’s work [5]. Maxwell’s equations were

applied to a space representing an iceberg region surrounded by water with free space

above these media. Under the assumption of a vertical dipole source, the vertical

component of the general electric equations for the space as found by Walsh were

stated. The analysis then deviated from Walsh’s work and the appropriate general

field equation was separated into first and second-order field components. The two-
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dimensional spatial convolutions in both the first and second-order equations were

then written explicitly. This facilitated an analysis and discussion of the physical

scattering mechanisms involved in each expression. It was found that the first-order

electric field equation involves a single scatter of the transmitted signal off the iceberg

region before the signal travels to the observation point (receiver). Meanwhile, the

second-order electric field equation involves two scatters off the iceberg region before

propagating to the observation point.

The RCS derivation then focused solely on the first-order electric field equation.

It was assumed that the radar system under consideration was a monostatic radar

system. As such, the first-order electric field equation was evaluated at the coordinates

of the transmit antenna to give an initial form of the backscattered field equation. This

equation was then inverse Fourier transformed, resulting in a time domain expression

for the backscattered electric field. In order to complete this inverse transform, it was

assumed that both the Sommerfeld attenuation function and the surface impedance

terms varied slowly over the frequency band of interest. The resulting time domain

expression allows for any time domain current excitation waveform to be specified.

As indicated above, the analysis in this thesis focused on a pulsed sinusoid wave-

form for the excitation current. After inserting this excitation current waveform, and

simplifying the resulting backscattered field equation, a two-dimensional coordinate

transform was performed which converted the equation from Cartesian coordinates

to the more radar-appropriate polar coordinates. By assessing the times for which

the backscattered electric field was non-zero it was demonstrated from a time domain

perspective that the first-order backscattered field equation indeed describes single

scattering off the iceberg region. Finally, by assuming that the iceberg observed by

the HFSWR fits within a single radar pulse width the backscattered field equation
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was simplified to its final form.

Before the iceberg RCS equation could be obtained, the power received by the

HFSWR was calculated using the final form of the backscattered electric field. A

comparison between the power received and the standard monostatic radar range

equation then gave the desired iceberg RCS equation. The iceberg RCS equation

was found to depend on a number of iceberg and radar parameters. As expected,

the largest dependence was on the geometry of the iceberg itself. Additionally, the

iceberg RCS also takes into account the electrical parameters of the iceberg and the

surrounding ocean surface, as well as the operating frequency of the HFSWR system.

Initially, the RCS appeared to be dependent on the distance between the iceberg and

the radar. However, this dependence was shown to disappear as long as the distance

to the iceberg from the radar was an order of magnitude larger than the dimensions

of the iceberg itself. Given that it was earlier assumed that the iceberg is contained

within a single radar patch width, this is a reasonable assumption for a HFSWR

system.

In order to validate the iceberg RCS expression, simulations of the RCS were car-

ried out for the case of rectangularly shaped icebergs. Several important conclusions

were found. The first of these was the occurrence of peaks and nulls in the normalized

RCS when plotted against iceberg area. The criteria for the peak/nulls was deter-

mined and found to be the result of constructive and destructive interference between

reflections off the leading and trailing edges of the iceberg. As such, only the width

of the iceberg and the operating frequency, or equivalently wavelength, affected the

occurrence of peaks/nulls. Previous research by Walsh et al [19] for square icebergs

found the same relationship for peaks/nulls as was obtained in this thesis even though

a plane wave excitation was assumed for the simulations in [19]. Another important
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observation was the fact that the rectangular iceberg RCS was proportional to the

square of the side length which faces the radar (i.e. side which is perpendicular to the

radar’s look direction). Not only does this make intuitive sense in that as more iceberg

is available to reflect the incident fields the RCS magnitude increases, it also agrees

with previous research which focuses on the RCS of a rectangular plate [29]. Finally,

it was also noted that the RCS has a slight dependency on radar operating frequency.

However, this dependence is small since it arises from the surface impedance terms

which vary slowly with frequency.

5.2 Overview of Iceberg RCS Model Assumptions

In obtaining the iceberg RCS model derived in this thesis, several assumptions have

been made regarding the iceberg under observation. This section briefly highlights

these assumptions and any potential limitations of the derived iceberg RCS model as

a result of these assumptions.

The starting point of the iceberg RCS derivation is the application of Maxwell’s

equations to the space shown in Figure 2.1. This model makes two assumptions about

the iceberg region. The first is that the iceberg is infinite in depth below the ocean

surface. The second is that the iceberg region has no height above the ocean surface.

In reality, an iceberg will of course have both a finite depth and also a non-zero

height above the ocean surface. Consequently, it is natural to question the real-world

applicability of the RCS model derived here. However, these assumptions can be

justified for a HFSWR system. A HF radar signal operating in surface-wave mode

over the ocean surface has an electric field intensity that is essentially confined to the

conducting ocean surface. Underneath the ocean surface the electric field intensity
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drops off drastically due to the skin depth effect. As such, a HFSWR does not “see”

the portion of the iceberg located underneath the ocean surface and the backscattered

field is largely independent of the iceberg’s depth below the ocean surface. Similarly,

the electric field intensity above the waterline is also quite small. As a result, the

largest portion of the backscattered field is due to the change in electrical properties

between the ocean and the iceberg at the height of the ocean’s surface. Despite

this, quantifying the effect of having non-zero iceberg height would be an interesting

subject of future work.

Another major assumption used in the derivation of the iceberg RCS model is

that the distance x0 between the iceberg and the radar is much larger than the

maximum radial width of the iceberg. This assumption is very common in analytical

HFSWR research (see, for example, [21]) because the observable patch width of a

pulsed HFSWR system is on the order of a few kilometers, at maximum, while the

radar has an operating range on the order of hundreds of kilometers. However, it

should be mentioned that as a result of this assumption the iceberg RCS model

derived here will begin to lose accuracy as the distance to the iceberg approaches the

size of the iceberg, i.e. a large iceberg located near the transmit antenna. However,

in such a situation the iceberg would be close enough to detect using other methods,

such as marine radar.

5.3 Suggestions for Future Work

There are several obvious extensions to the work presented in this thesis. Most

significantly, this thesis focuses only on the first-order component of the backscattered

electric field. Future work could focus on obtaining a backscattered electric field
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equation, and corresponding RCS, for the second-order field component given by

(2.34). The combined effects of both the first-order and second-order RCS could then

be simulated and compared against the RCS obtained in this thesis.

Another obvious extension of this thesis is the exploration of different excitation

waveforms. Equation (3.8) is general in the sense that any time domain current

excitation waveform may be specified. Modern HFSWR systems often use a FMCW

as their excitation waveform. By simply replacing the pulsed sinusoid current used

here with the time domain FMCW current waveform, a new backscattered electric

field and RCS could be derived.

This thesis makes use of simulation to assess how the derived iceberg RCS behaves

and also to help validate the RCS expression. Ultimately, the derived iceberg RCS

can only truly be validated by comparison to field data. By using ground truth data

for icebergs, simulations could be carried out and compared against actual HFSWR

returns. This would provide insight into the accuracy of the derived RCS model.

Additionally, inversion techniques, based on the iceberg RCS equation derived in this

thesis, could be developed and used to extract information about an iceberg under

observation including its location, size, and direction of travel. This could also be

compared against field data.

The iceberg RCS derivation presented in this thesis was based on Walsh’s initial

work in [5]. As detailed in the problem formulation section of this thesis, Walsh

assumed that the iceberg region was flat and has no height above the water line.

The basis of this assumption was that the majority of the backscattered signal is due

to the change in electrical parameters between the iceberg and ocean media. Since

Walsh’s general electric field equations are used as a starting point for this thesis’

derivation, this assumption is present in this analysis as well. In reality, all icebergs
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have a finite height above the ocean surface. As such, an area of future research could

be to derive from first principles the electric field expressions for an iceberg with a

non-zero height.
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