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Abstract

In the present study a nonlinear boundary value problem for ship waves
is obtained by transforming, through a Taylor's series expansion, the free
sutface condition of the exact ship wave prcblem from being satisfied on
the actual free surface to being satisfied on the undisturbed fluid free sur-
face. An iterative mehod based on the direct boundary integral theory
and linear clement techniques is developed to solve the transformed nonlin-
ear boundary value problem. A numerical towing tank is developed using
the iterative method. A visualization and animation system is also im-
plemented in the numerical towing tank to produce the visual simulation
effect.

In order to compare the present method with the existing ones and
to study the linear models found in literature, a new linearized ship wave
problem, as a special case of the present nonlinear ship wave problem, is
also derived and solved in this investigation. Algorithms based on both the
direct and the indirect boundary integral theories are developed to solve
the present linearized ship wave problem.

The theoretical developments in *h. present study are mainly: the
transformation of the free surface condition, the derivation of a new lin-
earized ship wave problem, and the development of an iterative scheme
for mlvm; nonhnm- boundary value problems. B:sxde these theoretical

the in numerical tech and software de-
sign is also an important part of the present study, which includes the
development of the algorithm for applying the direct boundary integral
theory, the development of the Linear element techniques, and the imple-
mentation of a visualization and animation system.
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1 INTRODUCTION

1.1 Background

The investigation of free surface waves gencrated by a moving object, floating

or sub d, and the ding wave resi to the object, i.e. the ship

wave problem, is a classical problem in fluid mechanics and ship hydrodynam-
ics. The subject has caught the interests of hydrodynamists, naval architects
and mathematicians for a long time. Although the wave pattern with its distinct

structure seems to be well suited to a h ical a h ical

solution of the problem is almost impossible to find without introducing simpli-
fications to the problem.

One of the main simplified mathematical models of the ship wave problem is
the so-called Neumann-Kelvin problem which is a linear boundary value problem.
Except for the fundamental assumption of potential fluid flow, an important as-
sumption of the Neumann-Kelvin ship wave problem is that the ship has to be
“thin”. Although the Neumann-Kelvin problem is a linear boundary value prob-
lem, analytical solutions to the problem are still difficult to find for a real ship
which usually involves a complicated curved wetted surface. Further simplifi-
cations are, therefore, also introduced with respect to the geometry of the ship
surface so that a mathematical solution could be obtained, such as: the thin ship
theory which substitutes the real ship surface by a single vertical plane located
at the center of the ship, the flat ship theory which simplifies the ship surface
into a horizontal plane. A similar idea is also used in the slender ship theory.
For the submerged body cases of spheres and ellipsoids analytical solutions could



be obtained by directly satisfying the body surface condition on the real body
surface.

Because of the introd of the above d si

the appli-

cations of theoretical solutions are ly limited. Th ical calculations of

the wave-making resistance of ships cannot yet be done with sufficient accuracy
to replace model testing. So far, ship designers have to rely on experiment, and
the theoretical solutions are valuable to help engineers to analyse and understand
the experimental results (Manen and Oossanen, 1988).

With the general availability of the of ship wave prob-

lems has been shifting towards methods with large numerical contents that permit
lesser simplifications in forming the mathematical model in comparison with the
theoretical analyses. Two major mathematical models have been widely used
in the numerical modelling of the ship wave problem. They are the Neumann-
Kelvin and Dawson’s linearized ship wave models. Both of these two models are
in the form of linear boundary value problems. The numerical techniques used
for solving these two boundary value problems are mainly the boundary element
method, the finite difference method and the finite element method, of which the
boundary element method also referred to as the boundary integral method or
panel method seems to be the most popular and the most successful one (Raven
1988, 1992).

In the i of the N Kelvin problem, the imperme-
ability condition on the ship wetted surface is applied exactly on the ship surface
location without any simplification. The fluid free surface condition is the same as

the one used in the thin ship theory which requires the ship to be thin. Therefore



the applications of numerical modelling of ship wave problems based on solv-
ing the Neumann-Kelvin problem are still limited to thin ships. It is not clear
how much the results can be improved in comparison with the thin ship theory
by using the exact ship surface condition and keeping the thin ship free surface
condition.

A main | procedure devel

d to solve the Kelvin linear
ship wave problem is the so-called Kelvin source method which could be classi-
fied as an indirect boundary integral method (Brebbia 1984, Wardle 1981). Being
one of the early numerical modelling methods in ship wave pattern analysis and

wave-making resi: ion, the i hes based on solv-

ing the Neumann-Kelvin problem have been investigated, developed and applied
by many researchers. This resulted in an extensive literature on the subject.
These results have provided a huge amount of information contributing to a bet-
ter understanding of the wave pattern and the wave-making resistance of ships.
However problems are also found in the application of this method. One problem
is the lack of agreement among the results produced by different formulations of
the Green's function used in this method. Large differences were also found in the
computations when using the same Green’s function to solve the same Neumann-
Kelvin problem (see, Baar 1986). The other problem is that the “thin” ship
requirement makes the method usually not applicable to practical ship forms.
In order to overcome the thin ship restriction resulting from the fluid free sur-
face condition in the Neumann-Kelvin problem, Dawson (1977) developed a lin-
earized free surface condition based on the double-body flow. This idea had been
developed and used in fluid mechanics, and also applied to solve the ship wave



problem by Gadd (1975). By introducing the double-body streamlines, Dawson
simplified a three dimensional free surface condition into a two dimensional one

which provided ities and ad for the devel of

approaches to solve the problem. A one-sided four-point finite difference formula
was also applied by Dawson to impose the wave radiation condition. These two
aspects are considered to be the most important contributions by Dawson.

Since Dawson'’s free surface condition is more complicated than the one found
in the Neumann-Kelvin problem, it is difficult to find 2 Green's function to sat-
isfy this free surface condition if the Kelvin source method is used to solve the
boundary value problem. The Rankine source method, which is also considered
as an indirect boundary integral approach, was used by Dawson and many others
to solve Dawson’s linear ship wave problem.

When the double-body flow perturbation is applied to linearize the free surface
condition, two steps are usually involved. Firstly, the free surface condition sat-
isfied on the actual wavy fluid free surface has to be transformed to a condition
satisfied on the undisturbed fluid free surface. And secondly, the transformed
nonlinear free surface condition satisfied on the undisturbed fluid free surface
must be linearized by a perturbation based on the double-body velocity poten-
tial. In Dawson’s linearization procedure, the fluid free surface condition satisfied
on the actual wavy free surface is applied directly on the undisturbed fluid free
surface without any before the linearizati This is equival as
has been shown by Nakos (1990) and will also be shown in the present study,

to keeping only the first term, namely the zero order term in 7, in a Taylor's
series expansion of the free surface condition about the undisturbed fluid surface



and then performing the linearization. Because of this approximation in Daw-
son’s linear free surface condition, the application of Dawson's linear ship wave
problem is still limited to solutions for relatively thin ships. Discussion on Daw-
son’s linearized free surface condition have been presented by Nakos (1990) and
Pawlowski (1992a). Comparisons of Dawson’s lincarized ship wave problem with
the linearized ship wave problem developed in the present work and experimental
data will be presented in this thesis.

To increase the accuracy of the linearization and fully take advantage of the

double-body bation, Nakos and Scl (1991) developed a linearized

free surface condition by transforming the fluid free surface condition satisfied on

the actual fluid fr rface to the undisturbed fluid fr rface condition through

a Taylor’s series expansion. Computations have been carried out by Nakos and
Sclavounos (1991) and good results have been reported for a modified Wigley
hull.

Attempts have been made in the literature to solve the nonlinear ship wave
problem by an iteration scheme, such as by Ogiwara (1985), Ni (1987), Jensen,
Mi and Soding (1986), Kim (1989), Kim and Lucas (1990), and most receatly
by Raven (1992). The full theoretical foundation of this approach is not clear
and has never been discussed in these studies. The convergence of the iteration
has been reported to be a major problem in applications of this method. A so-
called relaxation factor had to be used in most of these computations to force the
convergence of the iterations.

A new theory for solving the nonlinear ship wave problem by using a one-

to-one fluid domain f i hnique has been d by Pawlowski




(1992a). The transformed nonlinear boundary value problem is solved by a non-
linear bation method developed by Pawl i (1992b). In this theory not

only the nonlinearity of the waves has been considered but also the slope of the
ship hull, which provides a better modelling of the physical problem. The de-
velopment of the theory and some of the applications have been reported by
Pawlowski (1992a, 1992b). Some applications of this theory are also preseated in
Chapter 6 of the present thesis.

1.2 The Present Investigation

In the present study, the fluid free surface condition of the exact ship wave
problem is transformed from being satisfied at the actual wavy fluid free surface
to being satisfied at the undisturbed fluid free surface z = 0 by means of a

Taylor’s series i The d nonlinear boundary value problem
is then solved by an iterative method developed in the present study. All the
cases computed in the present study are convergent and, as will be shown in the
following chapters, the computed results are in good agreement with experimental
data.

In order to compare the present method with the existing methods and to
study the linear models found in the literature, a linear ship wave problem ob-
tained by linearizing the present transformed nonlinear problem is also derived
and solved in the present study. Since the present linearized free surface condition
is based on the transformed free surface condition which keeps higher order (in
7n ) terms in the Taylor’s series expansion, the present linear model gives better
results in comparison with Dawson's and other linear models.



To accurately model the ship wave pattern and compute the wave-making re-
sistance, one needs not only a good mathematical model, but also an efficient, ro-
bust and accurate numerical approach to solve the mathematical problem. In the
present study two numerical approaches are developed. One is based on the direct
boundary integral formulation and the other is based on the indirect boundary

integral formulation. In both of these approaches the linear element techniques

are used. The linear element techni distrib k ( densities in
the indirect formulation; velocity potentials and their normal derivatives in the
direct formulation) at the nodes and linearly vary the unknowns over each panel
on the surface mesh. Triangular panels are used in both of these approaches,
which give an easy and accurate panelization of surfaces and allow the linear
variation of unknowns over each panel.

Because the unknowns are defined at the nodes of the triangular mesh in-
stead of at the centroids of panels, both the fluid free surface condition and the
impermeability body surface condition are satisfied on the design load waterline
of the considered ship. In the present study these two conditions are satisfied
simultaneously at the exact location of the waterline. This has not been studied
and applied in the literature.

The idea of linear elements has been discussed in boundary integral theories
dealing with the subject of boundary value problems, (see Wardle 1981, for in-
stance). However, the technique has not been applied in the numerical algorithm
to solve surface ship wave boundary value problems. Baddour (1989) developed a
system of algorithms using three-node triangular linear elements to solve poten-
tial problems. Theories and techniques for three-node triangular linear elements



were developed in that work, such as the conectivity system for three-node trian-
gular clements and analytical integrations of linear unknown distributions. The
present study is based on Baddour's three-node triangular linear element algo-
rithm. The complexity of the linear element algorithm is much higher than that
of the constant element algorithm found in the literature. However, the draw-
backs inherent in the constant element algorithm, such as the collocation points
being away from the actual boundary, the variables between panels being discon-

tinuous, 3ad the panelization being i are Therefore, more

accurate computational results can be obtained by applying the linear element
techniques.

The direct boundary integral method relates the velocity potential and its
normal derivative on the boundary of the domain under consideration. Since the
velocity potential and its normal derivative are the values directly related to the
solution of the problem, the method is called the direct method or direct formu-
lation to distinguish it from the indirect formulation which seeks the solution to
the problem through an i diate source density distributed on the boundary.
Even though the direct boundary integral formulation has signifi d
for solving the free surface ship wave problem, the method has never been used in
the literature. In the present study a numerical towing tank is developed based
on the direct boundary integral jon. In a sense it simul the process

of ship mode] testing in a towing tank. In particular the wave pattern and the
wave-making resistance are computed by including the effects of the existence of
the side walls and the bottom of the tank. Therefore the numerical results are
directly ble with lat




In order to enhance the interpretation of the results obtained from the com-

putation, techni of i

and animation of ship motion and related
physical parameters, such as pressure distribution on the surface of ship hull and
velocity field in the fluid, are also developed in the present study based on a
software package called Advanced Visual System (AVS). Through the visualiza-
tion and animation numerically simulated towing tanks give the same or even a
better representation of physical effect in comparison with a real towing tank in

a laboratory.

1.3 Outline of the Thesis

This thesis is organized into eight chapters. Following this introduction, in
Chapter 2, a review is presented on the topics of the linearized ship wave boundary
value problems, namely the Neumann-Kelvin problem, Dawson’s linear problem
and the linear ship wave problem developed by Nakos and Sclavounos (1991). The
corresponding numerical methods for solving these lincar problems (the Kelvin
source and the Rankine source methods) are also presented. A review of the one-

to-one domain ion and nonlinear b

theories developed by
Pawlowski (1992a, 1992b) is detailed in this chapter. The iterative panel method
based on the Rankine source theory developed by several authors is also reviewed
in this chapter.

In Chapter 3, the formulations of the problems solved in the present study are
presented. These include: the transformation of the free surface condition from
being satisfied at the actual fluid free surface to being satisfied at the undisturbed

fluid surface by means of a Taylor’s series expansion, the derivation of a new



linearized free surface condition based on the present transformed nonlinear free
surface condition, and the formulation of an iterative scheme for solving the
transformed nonlinear ship wave problem.

A general discussion of the direct and indirect boundary integral formulations
and a comparison between these two formulations are presented in Chapter 4 of
this thesis.

In Chapter 5, the development of the present indirect and direct boundary
integral algorithms for solving the linearized ship wave problem developed in
4 1

Chapter 3 are p and i are also in this

chapter.

In Chapter 6, an iterative scheme for solving the nonlinear ship wave problem
(2 nonlinear numerical towing tank) is developed. Comparisons with the linear
results obtained in the present study, the nonlinear results found in the literature,

and i I data are also d.

In Chapter 7, the comp: isualization and animation of the d
results are presented.

Finally, in Chapter 8, conclusions and dations are d as the
results of the present investigation.

Four appendices are also provided in this thesis to detail some of the contents
involved in the devel of the present algorith
A list of references is attached, which is organized in alphabetical order.




2 LITERATURE REVIEW

2.1 The Exact Ship Wave Problem

Although the generation of ship waves and the corresponding wave resistance
depend on both the presence of the gravitational force field and the viscosity of the
fuid, investigations of this problem so far are mainly based on potential theory,
ie. the fluid under consideration is regarded as homogencous, incompressible
and inviscid. In other words, it is supposed that the effects of viscosity on the
formation of ship waves are negligible and the wave resistance is a function of

the Froude number alone. Irrotational flow is also assumed in formulating the

problem. The Iness of the investigation of this simplified problem may be
seen as follows. For most ships advancing at a sufficiently low velocity the viscous
resistance cannot be significantly reduced by changing the hull form and this
leaves the ship designers more or less free to choose a suitable hull form (from
2 resistance point of view). Optimal ship forms are those which generate the
smallest waves and it is therefore highly desirable to develop a theoretical tool to
analyse the relationship between wave resistance and the geometry of the ship's
hull, (see Baar, 1986). The wave generation problem is also an important part of
more advanced problems of ship motions in waves. Therefore it is relevant to a
broad range of seakeeping and structural response problems.

It is convenient to describe the steady ship motion by fixing the system of
coordinates (z,y, z) with the ship which has a velocity of advance U in space. The
coordinate system is located such that axis z is in the ship velocity direction and
axis z directs upwards from the design load waterline. The exact or almost exact,
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(see Wehausen 1973, Baar 1986), boundary value problem of steady ship waves
established by the potential theory is then described by the following equations.

The governing field equation is
V=0, (21)

where ¢ = ¢(z,3, ) is the velocity potential within the fluid domain.

The impermeability body surface condition is given as:
#-V$=0, (22)

on the wetted body surface, and 7 represents the unit normal vector directed out
of the fluid domain.

The boundary conditions to be satisfied on the free surface of the water z = 7,
are of the form (Newman 1977, Pawlowski, 1992a) :

gg +396.9(V4-V4) =0, (23)

1
am+ 51V - U7 =0. (24)
where U represents the velocity of the ship.
The velocity potential ¢ must also satisfy the condition at infinity. This

condition requires that

[Vé| = ~U when z<0, yJz2+y?+21 — 0. (25)

Finally, to ensure a unique solution, we must also impose the physically ac-
ceptable (radiation) condition that no waves are propagated upstream from the
body.



To summarize the above equations the exact ship wave problem is written as:

V=0, in the fluid domain;
7 Ve=0, on the body surface;
9% +1V4- (V4. Vg) =0, on z=m; (26)

V4l - -0, 2<0 and VEFFET = oo;

The radiation condition.
From (2.4) the wave clevation 7 is given by
= L 2 2 =
= -glvar -0, == @1

System of equations (2.6) defines a nonlinear boundary value problem with an
unknown boundary (free surface) location. It is not easy to find an analytical so-
lution to the problem without introducing simplifications. Those methods which
have been applied to solve the problem usually entail some kind of simplifying as-
sumptions, such as thin ship and low speed assumptions. Many mathematicians

and naval i have ded iderable efforts in developing an ade-

quate solution to the problem by applying different methods and simplifications,
such as theories developed by Michell, Kelvin, Havelock, Hogner, Peters, Ursell,
Kochin, Bessho, Farell, Guttmann, and Guilloton to mention but a few. All their
contributions, and many others, form an extensive literature on the analytical
treatment of the problem, which has been reviewed comprehensively by Wigley
(1949), Lunde (1951), Inui (1962), Sabuncu (1962), Weinblum (1963), Guilloton
(1964), Kostyukov (1968), Gadd (1968), Wehausen (1973), Newman (1976), and
Baar (1986).



It is the objective of the present review to present a general survey of the

formulations of the linear mathematical models of the ship wave problem and

of i i as well as the theories and numerical

methods for solving nonlinear ship wave problems.

2.2 Neumann-Kelvin Linearized Problem

The procedure for linearization of the exact ship wave problem to obtain the

Neumann-Kelvin linearized problem can be explained as follows:

1. Expanding the combined free surface condition (2.3) in a Taylor’s series
expansion about the undisturbed fluid free surface and keeping only the
zero order terms in 7, we have

? + -v¢-V(v¢~v¢) =0, onz=0 (28)

2. Assuming the velocity potential ¢ to be composed of a uniform flow (~U)
and a perturbation ¢/, that is ¢ = —Uz + ¢', and substituting for ¢ into
equation (2.8) gives

19Uz +8)-VV(~Uz +4)- V(-Uz +4)]
a
+ga—‘(-l/z +¢) = 0, onz=0(29)
3. Dropping the nonlinear terms in ¢/, equation (2.9) becomes:

‘;:f +g;" o, R (2.10)

The exact problem is then represented by a linear boundary value problem
which is called the Neumann-Kelvin problem, (see Brard 1971, 1974ab, Baar
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and Price 1988). Expressing the variables in the coordinate system fixed with
the moving ship, the Neumann-Kelvin linear problem is then described in terms
of ¢’ as:

Vg =0, in the fluid domain;
7. V¢ = Un,, on the body surface;
%% + 9% =0, on z=0 (2.11)
V'] =0, 2<0 and VEFFFF S - o0y

The radiation condition.
In boundary value problem (2.11), n represents the  component of 7.

The wave elevation is given by
1 .
1= Uv4,  z=0. (212)

The body surface condition in boundary value problem (2.11) is of Neumann
type. The linear free surface condition in this problem was first investigated by
Lord Kelvin in the context of the thin ship theory, (see Thomson 1887). The
radiation condition of the exact ship wave problem should also be imposed to
ensure a unique solution for this linear boundary value problem.

2.3 Dawson’s Linearized Problem

Dawson's linearized free surface condition is obtained by directly applying the
kinematic and dynamic free surface conditions on the undisturbed free surface
z = 0 before the linearization. The combined free surface condition satisfied on
2 =0 s obtained by eliminating 7 from the kinematic and dynamic free surface
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conditions. And then the combined free surface condition satisfied on z = 0 is
linearized based on the double-body flow. Although the elimination procedure
used by Dawson is inappropriate mathematically (see Newman 1977), the result
is correct for the accuracy of zero order in 7. This is because of 38/9z = 0 on
z = 0 in this particular case. In this section, the simple steps given by Dawson
(1977) to obtain his linearized free surface condition are repeated without any
change. The derivation of Dawson’s linearized free surface condition through a
mathematically consistent approach will be shown in Chapter 3, where a new
linearized free surface condition is derived.

We follow the procedure described by Dawson (1977). For a three-dimensional
problem, the free surface conditions are linearized in terms of the double-body
velocity potential &, that is, ¢ = & + ¢’ and nonlinear terms in ¢’ are dropped.
Also the free surface conditions are applied at z = 0, not at the free surface.
When 7 is eliminated, the kinematic and dynamic free surface conditions reduce
to:

1,060 09¢ 2] % 3% 8 86,
;(;;[(5;)'”@)'4'(5)’]'*gal(g) +( +(a')’])+!— =0.

(2.13)
Now for any function F
3% oF N OF _3%0F
matHun - aa @
where £ represents the double-body streamline on z = 0.
Thus the free surface condition becomes
o, k00, 9 0
3G alF 25 a‘1+ %= )’+( )']
8" a _
[( )Y+ (g)’l) ”'a? =0, (215

1€
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Now replace ¢ with ¢ — & to get

336,06 96,8
a5 5 ]*‘93;"(3:)’3&'
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(2.16)

(2.17)

(2.18)

Rewriting equation (2.18) and combining the rest of the equations in the exact

ship wave boundary value problem, Dawson’s linearized ship wave problem is then

obtained as:
Vi$=0, in the fluid domain;
7-Vé=0, on the body surface;
ApSE + Bp3 +9% = Cp, m z=0;

V¢| —-U, 2<0, and VT Ty + 22 = o0;
The radiation condition;

(219)

(2.20)



3% %

Bp = 25,55 (221)
8%.,0°%

Co = Az V'm (2:22)

In the above ions £ the di along the line of the

corresponding double-body flow on z = 0; and & is the double-body potential
which is obtained by solving the double-body problem, (see Fig. 5.1 for the
geometry of the double-body model). The double-body flow problem is defined

by }
V¢ =0, in the fluid domain;
7-Vé=0, on the body surface;
(2.23)
-, on z=0;
Vé| - -U, as Tty +z2 s o0, 250,

Dawson'’s linearized problem is originally written in terms of total velocity
potential ¢, (see boundary value problem (2.19) ). However it can also be writ-
ten in terms of the perturbation potential ¢’ in the same way as expressed in
the Neumann-Kelvin linear problem (2.11), (see Ogiwara 1983). In terms of ¢/
problem (2.19) becomes:

Vi =0, in the fluid domain;
7V =Un,, on the body surface;
4054 +Bo% + 9% = Co, on z=0; (2.2¢4)
V¢ =0, 220, VFIFFZ oo

The radiation condition;



where the total velocity potential ¢ is defined as:

$=%+¢, (2.25)
and
i aé 2,
Ao = () (2.26)
% %
Bo = 25, 5a} (2.27)
_,08,5%
Co = ~(3)'5a (2.28)

The radiation condition in Dawson’s linearized problem is the same as that for
the exact ship wave problem.

As has been discussed above, Dawson’s linearized free surface condition is
equivalent, as shown by Nakos (1990) and as will be shown in Chapter 3 of this
thesis, to the result of keeping only the first term (zero order term in 7) in the
Taylor’s series expansion of the free surface condition about z = 0 and then
performing the linearization.

The error in the results of solving Dawson’s linearized ship wave problem,
induced by keeping only one term in the Taylor’s series expansion, depends on
the block ratio of the ship hull and the curvature of the bow and stern. For
thin ships the errors are relatively small. However, for ships with larger block
ratios or rounded surfaces at the bow and stern the error could be significantly
large. For instance, in the case of a moving floating sphere with its center plane
on the undisturbed fluid free surface, it is known, from the theoretical solution,
that the fluid velocity & /0L at the stagnation poiats of the double-body solution
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are zero. Therefore it can be seen that the three coefficients Ap, Bp, and Cp
in Dawson's free surface condition given by cquations (2.20), (2.21), and (2.22)
are all equal to zero. Hence, at the stagnation points the solution of Dawson’s
linearized boundary value problem (2.19) can easily be found to be
9¢/dL =0, (2.29)
and
9¢/8z = 0. (2:30)
The above equation implies that the vertical fluid velocity at the front edge of
the sphere is zero. This is obviously wrong. The first order approximation of the
vertical fluid velocity at the stagnation points of the sphere can be obtained in
terms of the velocity potential ¢ from the linear ship wave problem developed in
the present study, (see Chapter 3 for the present linearized free surface condition),
which is
LI Eﬁ (2.31)
As will be shown in Chapter 3, the reason why Dawson's linear problem, as
given by (2.19) or (2.24), gives wrong predictions at the stagnation points is that
the terms produced by the second term (first order term in ) in the Taylor’s
series expansion are important for rounded surfaces at the stagnation points or
large block ratio bodies. These terms are relatively small when |&'/U] is small,
where @' is the perturbation component of the fluid velocity due to the double-
body, and U is the forward speed, ie. 88/8z = U + &. The effect of these
terms will increase when the value of |&'/U]| increases. For the sphere case at the
stagnation points |&'/U| = 1, which is the maximum value of |ii'/U|, and these

terms have the maximum effect, resulting in the obviously wrong solution.
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As reported by Raven (1992) the vertical component of fluid velocity, obtained
by solving Dawson’s linearized ship wave problem, at the bow of a Series 60 hull,
Cy = 0.60, could have 35% error and at the stern could reach up to 65%. The
reason that the error at the stern is larger than the error at the bow is that the
waterline entrance angle at the stern of Series 60, Cy = 0.60, is larger than at the
bow, (see Fig. 5.10).

2.4 Nakos and Sclavounos Linearized Problem

A Dawson-like linearized free surface condition has been derived and used
by Nakos and Sclavounos (Nakos 1990, Nakos and Sclavounos 1991). In this
linearized free surface condition terms up to the first order in 7 in the Taylor's
series expansion are kept. The original linearized free surface condition published
by Nakos and Sclavounos is in the form of a vector expression, given by

Vé-V(VE- V) + lv(vi~ -V$)-V¢' + gal' - %(vi -v¢)

= _-V(vo vé). VQ—-(U‘ vé- VQ)T’—,, onz=0, (232)

where & is the double-body potential; ¢’ is the potential perturbation for the free
surface problem.
Rewriting equation (2.32) in terms of the double-body streamline, we have

St n s -cn, (@33)
where
- Gn )
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YR
B = S5 )
08,88 1., 08 8%
Cy = -(_al)_al‘ +§(U '—a¢>_az=' (2.36)

Comparing the linearized free surface condition given by equation (2.33), to-
gether with equations (2.34), (2.35) and (2.36), with Dawson’s linearized free sur-
face condition given in boundary value problem (2.24), together with equations
(2.26), (2.27) and (2.28), it can be seen that there are two differences. Firstly Bp
in equation (2.27) has a coefficient of 2 and By in equation (2.35) has a coefficient
of 3 instead of 2. Secondly, on the right-hand side of equation (2.33) there is one
extra term, in comparison with Dawson’s linearized free surface condition, which
appears in the coefficient Cly, given by equation (2.36).

1t should be mentioned that an assumption that (V& V& — U?) is of the
order of magnitude of ¢’ was used in obtaining equation (2.32) or (2.33), (Nakos
1990). This resulted in some terms in the Taylor’s series expansion of the free
surface condition not appearing in (2.32).

The above linearized free surface condition and the rest of the equations de-
scribed in the exact ship wave problem form a linearized problem which was

solved by Nakos (1990), Nakos and Sclavounos (1991) for a modified Wigley hull.

2.5 Pawlowski’s Nonlinear Theory

Pawlowski (19922, 1992b) introduced a new approach of one-to-one domain
as a basis of i lations of nonlinear b dary value
problems. The theory transforms the real fluid domain with an unknown actual
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{ree surface into a computational domain with a flat free surface in the sense

of an imation series. The d boundary value problem in the
computational domain is then solved by a nonlinear perturbation approach. The
theory considers both the steady case of a ship moving in still water and the
unsteady (time dependant) case of a ship moving in waves.

The development of the domain transformation theory has been detailed by
Pawlowski (1992a). A perturbation approach for solving the transformed ship
wave problem wes introduced in that paper and further extended by Pawlowski

(1992b). Some ions about hypothesised order of itude used in the

first paper for the perturbation purposes have been relaxed in the second paper,
and this resulted in the zonlinear perturbation formulation.

The transformation is given as:
1
ezp(i-V)=1+47-V+ §(ﬁ-v)'+." N (2.37)

where V denotes the gradient operator and dot indicates the scalar multiplication,
and 7 represents the vector field of domain transformation which is a function of
z,y,zand t.

The ion (2.37) is applicable to all ditions in the ship wave

problem (Pawlowski 1992a), such as Laplace’s equation, the free surface condition,
the ship impermeability surface condition, the pressure and velocity fields in the
fluid domain. Under this transformation, the fluid domain with a wavy free
surface is transformed into a computational domain with a flat surface, where

the computations are performed.

The ing equation in the ional domain is obtaned by applying



transformation (2.37) to Laplace’s equation wkich is given as:
ezp(ii- V)V?@ =0, (2.38)

where & represents the velocity potential.

Sirmilacly, the free surface conditions in the computational domain (ie. on
L0 g

exp(n- VN2 + Livep 405 =0, (239)
R
and
L #e . 0 P) 1
cxpli- Ve + 950 +2V8 - £(V8)+ 1VE-V(VE-V8)|=0. (240)

The impermeability condition on the surface of the body becomes

) fezp(ii - V)V — %ﬁ] S(F+ven

(241)

where T denotes the unit tensor, and @ signifies the tensor multiplication; 7
represents the normal vector to the body surface.

Also, the radiation conditions are obtained by transforming appropriate re-
striction conditions on a whole boundary depending on the fluid domain under
consideration.

The above described transformed boundary Value problem is a nonlinear one,
but the location of the free surface is known as z = 0. In order to solve this
nonlinear boundary value problem, the total velocity potential $ is decomposed
into a perturbation series of order n, where n denotes the order of the perturbation

under consideration. It gives

2=00 +39 180 + 30 4+ 30 + 30, (242)
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where {7 represents the nth order steady part of the perturbation velocity
potential, whereas $(") represents the nth order unsteady (time dependent) part
of the perturbation velocity potential.

For the steady ship wave problem equation (2.42) can be rewritten as:
& =21 oW 4o, (2.43)

where &(™) denotes the nth order steady fluid velocity potential.

As has been i above, the 1. domain ion theory
considers not only the nonlinearity of the free surface condition but also of the

impermeability condition on the ship hull. Therefore not only the free surface

dition is transformed but also the bility condition on the hull surface,
see equation (2.41). However, if the theory is applied to a ship with a sufficiently
small curvature on the wetted surface, especially at the designed waterline, the
impermeability condition (2.41) reduces to the same form as the condition used
in the exact ship wave problem (2.6), (Pawlowski 1992a).

Depending on the orders of magnitude assigned to the spatial and temporal
derivatives of the velocity potentials in (2.42), or spatial derivatives in (2.43),
the perturbation formulations may lead to a series of inear or nonlinear bound-

ary value problems which ially determine the velocity ials, In

(Pawlowski 1992b) the concept of a nonlinear perturbation procedure was in-
troduced as the name for a perturbation solution in which nonlinear boundary
value problems must be solved.

In the nonlinear perturbation procedure, the free surface condition of the zero

order ship wave problem, for the wall-sided ship, is given as (Pawlowski 1992b):



500, 580, 5230
eV -~ ”—aa
260 2200 500
5 e T

=0, onz=0. (2.44)

where $(°) represents the fluid velocity potential of the zero order nonlinear ship
wave problem; £ represeats the streamline coordinate on the flat surface z = 0 of
the computational domain.

From equation (2.38) the governing equation in the computational domain for

the zero order problem is obtained as:

V3 = 0. (2.45)
The zero order nonlinear ship wave problem is then written as:
V2§ =, in the fluid domain;
7-V$© =0, on the body surface;
0 0
O A a T
V&©)| — -U, 250 and VZFFY +22 - oo

The radiation condition.

It is important to note that the above zero order ship wave problem is a
nonlinear boundary value problem. An exact solution of this nonlinear boundary
value problem was obtained by using an iterative procedure.

To produce a more accurate solution, a first order perturbation is considered.
The governing equation for the first order problem is also obtained from equation
(2.38). 1t is given as:

v = 0. (247)
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Using equations (2.40) and (2.43), the nonlinear free surface condition of the

first order nonlinear ship wave problem is given as:

[i(q,m & q,u))]zﬁ_'(q,zo) +80)
*—(W +9W){g+ 25 (¢(°> + c.m)a—(w +¢M)
__(q.(ﬂ) . q,u)) ((,(“l +amy)
+,,(x>{_gﬁ(¢(o) +a)
12289 4 sy T (50 4 g
EA 3252

+Z (50 4 sy

_%(Q(‘?) & ;.u))%(@w) +ay)
+%@m i ¢(1))[(%(¢(0) +am)e
- @+ ey = o,

onz=0. (2.48)

In equation (2.48), ®(*) is the first order perturbation based on the zero order

solution (). The wave elevation n{!) is given as:

(5804 S0P + (8 + 80 -

@ =
2 2{g + Z@O) + 20) 2 (30 + 30) - Z5(3C) + q»n)) Z(30 + W))}
(24

The first order nonlinear ship wave problem is accordingly written as:
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V2 = 0, in the fluid domain;
-Vl = —7. V@O, on the body surface;

(2(2©9 + q.(l)))a%(q»(ﬂ) L eM)4
"(Q“’) + (M)
{9+ 22 2 (q;(ﬂ) + @(l))_(q.(ﬂ) + Q(l)]-
-(cb(") + t}(‘));;;(@("’ +3W)}+
v(l)(-_,.t(gs(‘?) + )4

22(2( + dM)]| (L(@(o) + eyt
(@0 + g
—(ém + W)?(w + 30+

525 (20 + BW)[(2(30) 4 302

(2:50)

(’5' (2 + 207} =0, on z=0;
Ve®)| =0, 2<0 and V7 +22 = o0

The radiation condition.

System of equations (2.50) describes a nonlinear boundary value problem.
The same iterative procedure as the one used to solve the zero order nonlinear
problem was applied to solve this nonlinear problem.

The total velocity potential up to the first order perturbation is then written

as:
— 30 4 g0, (2.51)
Through the above described bati dure (P ki, 1992a, 1992b)
not only a perturbed nonlinear solution of the ship wave problem can be obtained
but also the of the bation can be i which will be

further discussed in Chapter 6 of this thesis where the nonlinear perturbation
theory is used to analyse the convergence of the iterative method presented in
this thesis.
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2.6 Kelvin Source Method

The Kelvin source method, which is considered as an indirect boundary inte-
gral method, was recommended by Brard (1971, 1974a, b). In this method the
disturbance potential ¢' is obtained by solving the Neumann-Kelvin linearized
problem (2.11). In solving the problem the Kelvin wave source potentials are
usually applied. The potentials are defined by a Green's function which is con-
structed to satisfy the Neumann-Kelvin linear free surface condition and the
radiation condition.

Noblesse (1981) demonstrated that the Kelvin wave source potential can be

expressed in the form:

arG(§, 5 F2) = +{N(X) + W(X)}/ F2, (2.52)

1€-3

where |§ - £| represents the distance between the field and the source points and

the dimensionless vector quantity X(§,%; F?) is defined by

X=(X%,220)=(z =&y = mlz+()/F. (2.53)
The vector F2X joins the field point £ with the free surface mirror image of
the source point Z (notice that X < 0 upstream from the source and X > 0
downstream from the source). F, is the Froude number which is defined by
" F,=U/3L and L is the length of the object.
Equation (2.52) implies that the Kelvin wave source potential is decomposed
into three characteristic components:

1. the potential —:—,If- — £| of a fundamental Rankine source in infinite fluid
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(in the absence of the free surface);

»

the potential N(X)/(4nF2) of a localized nonoscillatory nearfield distur-

bance, symmetric upstream and downstream from the source; and

o

the potential W(X)/(47F2) of a wave like disturbance which accounts for

the waves produced by the source.

Physically the Kelvin wave source potential G(,; F?) given by equation
(2.52) represents the linearized velocity potential at the field point £(¢,7,¢ < 0)
of the flow produced by a unit source at the source point Z(z,y,z) in steady
rectilinear motion with unit speed at depth —z below the free surface of an
otherwise unbounded fluid. In the limiting case when z = 0 the source is evidently
no longer fully submerged and it may be shown that the unit outflow produced
at (z,y,z = 0) now stems from a flux across the free surface, (see Ursell 1960,
Noblesse 1981, and Euvrard 1983).

Since the Kelvin wave source potential satisfies only some of the conditions
of the boundary value problem, the expression is not unique. It can take many
different forms. Baar and Price(1989) classified these expressions found in the

literature into the following five alternative representations:
1. an expression implicitly contained in Michell’s (1898) paper, rediscovered
by Eggers et al.(1967) and modified by Noblesse (1981);
2. an expression originally due to Havelock (1932) and subsequently modified

by among others Lunde (1951), Kostyukov (1968), Standing (1975) and
Shen and Farell (1977);



3. an expression due to Peters (1949) and modified by Noblesse (1977), see
also Eggers et al (1967) and Andersson (1975);

4. an expression obtained by Bessho (1964), re-derived by Ursell (1984) and
modified by Simmgen (1986); and

5. an expression proposed by Demanche (1981) and re-derived by Baar (1984).

All these expressions of the Kelvin wave source potential were chosen so that
the Neumann-Kelvin linearized free surface condition in boundary value prob-
lem (2.11) is satisfied. The source densities distributed on the wetted surface of
the object are calculated by forcing the Kelvin wave source potentials to satisfy
the body impermeability condition given in boundary value problem (2.11). Un-
fortunately, large differences were found between the results calculated by these
expressions, (see Baar (1986) for a comparison). The reason for the differences is
not clear. It is also not clear if the solutions based on these different expressions
are the same.

A fall ison and discussion of these ions is beyond the scope of
the present review. But as discussed by Baar and Price (1988) the second ex-
pression due to Havelock (1932), which is also quoted in Wehausen and Laitone
(1960), has been the most popular. In recent years, however, the third expres-

sion due to Peters(1949) has been recognized as the most convenient one from
both physical, mathematical and numerical points of views, see for example No-
blesse (1981), Euvrard (1983) and Newman (1987). This expression has also been
adopted by Baar and Price (1988).
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2.7 Rankine Source Method

Since the free surface conditions of Dawson's and Dawson-like linearized prob-
lems ace more complicated than the one in Neumann-Kelvin problem, it is diff-
cult to find Green’s function solutions to satisfy these free surface conditions. The
method for solving Dawson’s linear problem developed by Dawson and modified
by many others is based on the Rankine source theory, which is also considered
as an indirect boundary integral method. The solution to the problem in terms

of a Rankine source density o is assumed in the form

$=-lot [ o q)o(q)ds(q) +

where ¢ is the velocity potential of the fluid; BS represents the solid boundary

v 7o q)a(q)ds(ql- (2:54)

of the body and F'S represents the fluid free surface; o(g) is the Rankine source
density at source point ¢ with ¢ € BS or g € F'S; r(p, q) is the distance between
the field point p and the source point g, which is given by

r(p,q) = V/[z(p) = =(q)}* + [4(p) — (P + [2(p) - ()™ (2:55)

Equation (2.54) satisfies the governing equation and the condition at infinity
in Dawson’s linear problem (2.19). By forcing equation (2.54) to satisfy the
boundary conditions on the fluid free surface, the body surface condition, and
the radiation condition in problem (2.19), the source density o(q) in equation
(2.54) can be obtained. Henes the velocity potential of the problem is found.
The radiation condition is imposed by applying a down-stream finite difference
formula in the free surface condition.

Dawson'’s free surface condition and the Rankine source scheme have been
applied by many authors such as: Van Beek, Piers and Slooff (1985), Ogiwara
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and Masuko (1986), Aanesland (1986), Xi and Larsson (1986), Delhommeau and
Maisonneuve (1986), Raven (1988, 1991), Kim, Kim and Lucas (1989) and many
others. The numerical procedures in these studies may have some differences,
but the fundamental strategy is the same, namely applying the Rankine source
method to solve Dawson’s linearized ship wave problem. All of these studies

were based on the constant element tec.niques, in which the source density is

d over each quadrilateral element on the surface mesh.

In the Rankine source method, normally, the source densities and the collo-
cation points are on the same mesh. However, it is also possible to distribute the
source densities on a separate mesh away from the collocation mesh which is on
the surface of the computational domain. This method is called the desingular-
ized method (Cao, 1991), The advantage of this method is to avoid the difficult
special treatments needed for the cases when the source density and collocation
points are at the same location. The disadvantage of this method is that the
source mesh has to be designed carefully with no physical support, or otherwise
an ill conditioned matrix system could be generated. This method has been
studied by Cao (1991) and also applied by Raven (1992).

To solve Dawson's linearized problem, the radiation condition is usually im-
plemented through numerical schemes. A one-sided finite difference method was
introduced by Dawson (1977) and used by many other studies to eaforce the radi-
ation condition. A bi-quadratic spline scheme with a proper upstream radiation

dition was introduced by Scl and Nakos (1988), Nakos and Sclavounos
(1990, 1992), which enjoys distinct numerical advantages relative to the one-sided

finite difference scheme, however for practical reasons it was not implemented in
the present work.



2.8 Iterative Panel Method

An iterative panel method has been developed to solve the non-linear ship
wave problem, see Ogiwara (1985), Ni (1987), Jensen et al (1986, 1989), Kim and
Lucas (1990), and most recently Raven (1992). In these studies the fundamental
Rankine source method described in Section (2.7) was applied at each iterative
step. The iteration schemes used in these studies are basically the same. The
iteration starts with solving Dawson’s linearized ship wave problem and the free
surface condition is re-linearized on the free surface calculated in the previous
step. In each step Dawson’s linearized ship wave problem is solved. Convergence
is the major problem of this method. In most of these studies so-called relaxation

factors were used to force the f the solution. These ion factors
were chosen differently in different studies.

One major problem of this iterative method occurs in the first iteration i
which Dawson'’s linearized ship wave problem is solved. The solution gives large

errors when solving cases i to be fund. i The errors

generated in the first iteration are likely to be carried into the next iteration since
the second iteration is based on the incorrect free surface elevation produced in
the first iteration. There is no proof that the errors produced in the first iteration
can be corrected in future iterations.

In the most recent study by Raven, a convergence of solution was claimed
without using the relaxation factors, even though the same scheme as described
above was applied. The desingularized approach (see Cao (1991) for discussions
of the desingularized method) was employed at each step of the iteration.



3 FORMULATION OF THE PROBLEM

3.1 A Nonlinear Ship Wave Problem

As has already been discussed in the introduction of this thesis, the procedure

of using numerical methods to simulate ship wave patterns and to compute the

di ki

g resi: requires, firstly, a mathematical model
to represent the physical problem, and secondly, a numerical solver to solve the
mathematical problem. The mathematical models which have been developed
and used in the ship wave simulation have been reviewed and discussed in the
proceeding chapter. In this chapter a nonlinear ship wave boundary value prob-
lem is obtained by transforming the free surface condition of the exact ship wave
problem from being satisfied at the actual fluid free surface to being satisfied
at the undisturbed fluid surface, by means of a Taylor's series expansion. The
mathematical formulation of an iterative scheme for solving the transformed non-
linear ship wave problem developed in the present study is also presented in this
chapter. In order to compare the present method with the existing ones and to
discuss the drawbacks found in the Neumann-Kelvin and Dawson’s linear ship
wave models, a new linearized ship wave boundary value problem based on the
transformed nonlinear ship wave problem developed in the present study i: also
obtained in this chapter.

The exact ship wave problem has been discussed in the previous chapter. In
order to simplify the free surface condition in the exact ship wave boundary value
problem (2.6), a name of streamline on the actual free surface is introduced. The
streamline on the actual free surface is defined as a spatial curve which lies on
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the actual free surface with the velocity of fluid particles on the curve being
tangential to this curve. If £ is used to represents the the projection of the free

surface streamline onto the plane z = 0, we write
-8 -8
V=it ke = 3.1
fg+ks,  onz=m, (3.1)
where £ represents a unit vector in the tangential direction to £ and & represents
a unit vector in the vertical direction z.

Using equation (3.1), the exact combined and dynamic free surface conditions

~an then be written respectively as:

26,26 060856 | 06,0 08 _ )
Ge'oe taasat 5 e t 95 =0 s (D)
and
108y 0y ya _ -
n+2[(a‘) "’(az) - =0, onz=q. (3.3)

Now expanding the combined free surface condition (3.2) in a Taylor’s series

expansion about z = 0 and keeping the terms up to the first order in 7 gives

(a2 Tl + B2 20, 2y

Lia &é
3t 36 * %51 5: o102

9
az,+ga—f] =0, onz=0.

(34)
In the same way, expanding the dynamic free surface condition (3.3) to the

first order in 7 in the Taylor’s series expansion, the wave elevation can be obtained

- B 9

b %2 _ -
n—z(g+§%_¥$)[(a‘)’+(az)’ v}, z=0. (35
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Substituting n from equation (3.5) into equation (3.4) and working out the

indicated derivatives gives

86,8 . d
(22yT8 , ,0806 B¢ (a¢),a’o 2

495228

3’ 36~ "5t 3: ata:z 95

sz 2

A ots: 09:908

(e S Jha DA L da

3 asazy %52 o) oo 30

276, 7

g Ghr- & )’aﬂa; il
(@ @r-v) = 0, mz=0 @)

Equation (3.6) is the free surface condition satisfied at the undisturbed fuid
free surface z = 0 with an accuracy of order 7 in the Taylor's series expansion
sense. It is noted that the relation 52 = —Z# was used in obtaining equation
(36).

For the hull forms with a sloped shape at the design waterline, the imper-
meability condition on the surface of the ship hull has to be transformed, see
Pawlowski (1992a) for a complete derivation and discussion of the domain trans-
formation which includes the governing equation and all boundary conditions in
the ship wave boundary value problem. In the present study wall-sided hull forms
at the design waterline are discussed.

The exact ship wave boundary value problem for wall-sided hull surface is

then d by the following il nonlinear boundary value problem
with the free surface condition being satisfied at the undisturbed fluid free surface

z=0.
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v =0, in the fluid domain;
7n-Vé=0, on the body surface;

-y ()

G+ @y =0, on

V¢l - -U, 2<0 and VE+2 —o0;
The radiation condition.

In the nonlinear boundary value problem (3.7), the free surface condition is
more complicated than the one found in the exact ship wave boundary value
problem (2.6). However, the location of the boundary is known, which makes it
easier 1o solve the problem. An iterative approach based on the direct boundary
integral method and linear element techniques is developed in the present study
to solve this nonlinear boundary value problem. The mathematical formulation
of the iterative method will be discussed in the next section and the numerical
details of the iterative approach will be presented in Chapter 6.

In obtaining the transformed fuid free surface condition (3.6), terms up to
the first order in 7 are kept in the Taylor’s series expansion, which is shown to
give good accuracy when applied to predict ship waves. There is no theoretical
limitation in keeping higher order terms in the Taylor’s series expansion of the free
surface condition, however the complexity will increase dramatically by keeping
more terms. A discussion of the convergence of this Taylor's series expansion
by applying Pawlowski's nonlinear perturbation approach will be presented in
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Chapter 6, where an iterative scheme to solve boundary value problem (3.7) is

developed and implemented.

3.2 Formulation of an Iterative Method

System of equations (3.7) defines a nonlinear boundary value problem, which
can not be solved directly by a boundary integral method. An iterative scheme is,
therefore, developed in the present study to solve this nonlinear boundary value
problem “exactly”. So that only one approximation is involved in the formulation
of the present method, which is the transformation of the free surface condition
from z = 7 to z = 0, for wall-sided hull forms.

The basic idea of the present iterative scheme is to seck the solution of a
nonlinear boundary value problem by solving iteratively a series of linear bourd-
ary value problems. In each iteration the boundary condition is linearized based
on the solution of the previous step plus an incremental part. If the iteration
is convergent the increment will become smaller with the iteration steps, and
the iterative solutions of the linearized boundary value problems will converge to
the solution of the nonlinear boundary value problem. To start the iteration, an
initial value of the solution is needed which can be chosen arbitrarily.

In this section the linearized boundary value problem solved ia each iteration
is derived. The details of the iterative scheme will be presented in Chapter 6.

Applying the iterative procedure to solve nonlinear ship wave problem (3.7),
only the free surface condition is needed to be linearized since the boundary con-

dition on the surface of the ship is linear. To linearize the free surface condition,
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the total velocity potential of the fluid flow ¢ is written as:
$=0+¢, (3.8)

where & represents the sum of the velocity potentials obtained from the previous
steps, ¢' represents an incremental potential, and ¢ is the total velocity potential
for the present iteration.
Substituting equation (3.8) into «quation (3.6) and dropping the high order
terms in ¢/, a linearized free surface condition can be obtained as:
i ) ) "
Aa—ﬂ(§+¢]+5&(§+¢)+05(§+¢,
&
039z

The coefficients 4, B, C, D, E, F, and H are coeficients which are functions of

@ om )
+D3p-(3+ )+ Bgpo-(3+4) + Fap(2+4) = H, onz=0(39)

. They are given as:
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Now the boundary value problem to be solved at each iteration is written as:

Vi =0, in the fluid domain;

7V = -7 V8, on the body surface;
AZ(2+¢)+BA(® +¢)+

CL(e+¢)+ Daggy(® + ¢)+ (3.17)
+E585(8+ ¢)FE(@+¢) = H, on z=0;

V(@ +¢) = -U, 2<0 and VZTF Y + 2% — oo;
The radiation condition.

It is easy to prove that if the iteration is convergent then the converged ¢ =
& + ¢' is the solution to the nonlinear boundary value problem (3.7). When the
iteration converges, the incremental potential ¢’ becomes zero, i.e, wehave @ = ¢
(see Chapter 6 for details of the iteration scheme). Replacing ¢ by ¢ in equations
(3.10) to (3.16) and substituting these coefficients into equation (3.9) it can be
found that equation (3.9) becomes the original nonlinear free surface condition
(3.6), which means that equation (3.6) is satisfied by ¢, or in other words ¢
obtained through the iteration satisfies the nonlinear free surface condition (3.6).
Since ¢ also satisfies the remaining equations in problem (3.7), ¢ is therefore the
solution of nonlinear boundary problem (3.7).

When linearized boundary value problem (3.17) is used to form the iteration,
the high order derivatives of the total velocity potential ¢ = & + ¢', namely
5:(8+4), 355(2+4), and Zx(&+4'), have to be computed. In the boundary
integral method these high order derivatives are d by finite diffe
formulas, and are difficult to handle in the computation. However, it can be
proved that by dropping the incremental parts of these high order derivatives,
namely 25;(#), 525(¢), 3nd $5(¢), and keeping only the major parts, namely
5:(9), 555:(#), and £5(2) in the linearized free surface condition, the iteration
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still converges to the solution of nonlinear boundary value problem (3.7). By

dropping the terms in 325-(¢"), 595:(#'), and 25(#"), the free surface condition

in problem (3.17) becomes:
& N, pd gl .
Aa—p(¢+¢a)z+ By (® +;)+caz(¢a:¢)
+D5=(8) + Egpa-(®) + Fan(®) = H, onz=0. (318)

Equation (3.18) can also be written in terms of ¢ as:

3¢ 06 0 _ »
Azp +Bz+C3 =R onz=0, (3.19)

where coefficients 4, B, C are given by equations (3.10), (3.11), and (3.12) re-
spectively; R is given as:

& = oo 2o
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The boundary value problem to be solved at each iteration is then written as:



Vi$=0, in the fluid domain;

7-Vg=0, on the body surface;
AZ$+BE+C%E =R, on z=0; (321)
V4| = -U, z<0 and VF+y +2 —o0;

The radiation condition.

When the linearized boundary value problem given by (3.21) is used to form
the iteration (see Chapter 6 for details of the iteration scheme), once the iteration
converges, the incremental potential becomes zero, i.e. we have & = ¢. Replacing
& by ¢ in equations (3.10), (3.11), (3.12), (3.20) and substituting these coefficients
into equation (3.19) it can be found that equation (3.19) becomes the nonlinear
free surface condition (3.6). Thus ¢ obtained through the iteration based on
(3.21) is also the solution to nonlinear boundary value problem (3.7).

Both linearized boundary value problems (3.17) and (3.21) can be used to form
the iteration to solve noalinear boundary value problem (3.7). Theoretically, the
convergence speed of using (3.17) is faster than the convergence speed of using
(3.21). However, the algorithm for using (3.21) is simpler. Therefore it will
be used in Chapter 6 of this thesis to form the iterative algorithm to solve the
nonlinear ship wave problem (3.7).

3.3 A Linearized Ship Wave Problem

In order to compare the present computation with the numerical results found
in the literature and to disc  the drawbacks found in the N Kelvin and
Dawson’s linearized ship wave models, a new linearized ship wave problem based
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on the transformed nonlinear ship wave problem obtained in Section (3.1) is also
derived and solved in the present study as a special case of the present iterative
approach.

As has been mentioned in Section (3.2), an initial value for & is needed in the
first step of the iteration, which can be chosen arbitrarily. However, if this initial
value & is chosen to be the double-body solution, i.e. if we set & = &, the result
of the first iteration becomes a perturbation solution based on the double-body
potential ¢ = & + ¢'. In other words, the first iteration gives a linear solution to
the nonlinear boundary value problem (3.7).

Using & = 0, 2(3) = 0, 2(&2}) = 0 for double-body flow in equations
(3.10) to (3.16) and dividing these equations by 2g, a linearized free surface
condition of the ship wave problem in terms of the double-body potential & is
obtained as:

4F8 po o0 &¢ Pé _ .
M+BE+C—+Dﬁ+EW-H onz=0. (3.22)

The coefficients 4, B, C, D, E, and H become

A= 2(—)'—-11' (3.23)
B = y%ﬂg (3:24)
¢ = o- 2@y -+ LRG0 )
b = }ByZE @29)
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9% ,5%%

i = G e

(3.27)

(3.28)

Equation (3.22) is a linear free surface condition which is satisfied at the

undisturbed fluid free surface z = 0. The projection of free surface streamline £

in this case becomes the double-body streamline. The exact ship wave boundary

value problem is, therefore, i d by the following li
value problem based on the double-body flow.
Vi =0, in the fluid domain;
V=0, on the body surface;
AZ$+BR+CR+DEE+ESL =H, on z=0;
|V¢| = =U, 2<0 and /T2 + 22 = o0;

The radiation condition.

d boundary

(3.29)

Dawson’s free surface condition (2.17) can be easily obtained, if only the terms

of zero order in 7 are kept in the Taylor’s series expansion (3.4). Two steps can

be explained as follows:
1. Keeping only the zero terms in 7, equation (3.4) becomes
):3’¢ 2698 8

254
( 3[ 0z 9oz (ﬂx) 0z

¢4 —4’ =0, omz=0.
2. Substituting ¢ = & + ¢' into equation (3.30) and dropping all
non-linear terms in ¢’ gives

& .04  0bFboy ___ %.,2%
G E e ot = ) l" mz=

(3.30)

(3.31)



Equation (3.31) is exactly Dawson’s linearized free surface condition given by
equation (2.17). It can also be written in terms of the total velocity potential ¢,
as it was originally given by Dawson, in the form:

” 3 a2 _
%),yd 023®99 = 3¢ ae 6wbl onz=0 (332)
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Equation (3.32) is Dawson’s linearized free surface condition given by equation
(2.18) which is in terms of the total velocity potential ¢.

Comparing the present linearized free surface condition (3.22) with Dawson's
linearized free surface condition (2.18) or (3.32), (sce Table 3.1), it can be seen
that in Dawson’s linearized free surface condition some zero and first order terms
in ¢’ are missing, because of the neglecting of the terms of order 5 in the Taylor's
series expansion.

When the thin ship condition is satisfied, the present linearized free surface
can be reduced to the Neumann-Kelvin linearized free surface condition (while
Dawson’s linearized free surface condition can not). For a thin ship case, the
velocity potential is expressed by a uniform flow plus a perturbation, i.e. we write

= —Uz + ¢'. Replacing & by ~Uz and £ by z in equations (3.23) to (3.28)
and writing equation (3.22) in terms of perturbation potential ¢', the Neumann-
Kelvin linearized free surface condition (2.10) can be obtained. A comparison
between the present linearized free surface and the Neumann-Kelvin free surface

is also shown in Table 3.1.
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Present Dawson | Neumann-Kelvin |

Alygr-e (5 v
B|agat A 0
C | o= HER(GY - U

+5 a5 -0 9 g
D|y5re 0 0
E | -5 - vGy 0 0
H|aGrg A5 0

Table 3.1.  Comparison of linearized free surface conditions

48



4 BOUNDARY INTEGRAL METHOD

4.1 Indirect Formulation

The discussions on the b y integral ions in this section are
focused on a potential boundary value problem in which Laplace’s equation is
satisfied in the considered domain Q and a boundary condition is satisfied on its

boundary S. The problem under consideration can be expressed as:

Vi4(z,y,2) =0, in @
{ o)

fl¢(=,9,2),¢n(2,9,2)) =0,  on 5.

The boundary condition in boundary value problem (4.1) is of a mixed type,
and is a function of the potential function ¢ and its normal derivative ¢o. When
the boundary condition in (4.1) is a function of ¢ only the condition is called of
Dirichlet type, while of ¢, only it is called of the Neumann type.

In principle, the solution to Laplace’s equation can be represented by a com-
bination of single-layer and double-layer source potentials (Wardle, 1981)

#0) = [sanipaisio + [ wardesw, @)

where p represents a field point; g represents the source point; ¢(p) denotes the

velocity potential at the field poict p; o(q) and u(g) are the single-layer and
double-layer source densities respectively; and ¥(p,q) is a function of p and ¢
which will be explained later in this section. Here ﬁ is used to denote the
normal derivative with respect to the normal to S.

The first integral in equation (4.2) is called single-layer potential which is
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formed by distributing simple sources with density o(g) over the surface S. The

second integral in equation (4.2) is called double-layer potential which can be

d by two single-layer sources. Considering two surfaces by a
small distance €, assume each surface has a distribution of attraction of equal
magnitude but of opposite sign for neighbouring points and take the magnitude
of the ion to be inversely ional to e. The potential associated with

the point g(z,y,z) and the point g(z + dz,y + dy, z + dz) is given by the limit
s ol ;
lim{Z(p.a+ ) - v(p )} (4.3)

which can be seen to be the derivative of the function ¥(p,q) in the direction
normal to the surface S. Integrating over surface S gives the second integral in
equation (4.2) which is the double-layer potential.

For cquation (4.2) to be the solution of boundary value problem (4.1), ¥(p,q)
has to satisfy Laplace's equation in Q. This fanction ¥(p, q) is called the funda-
mental solution of Laplace’s equation. It is easily verified by direct substitution
that the functions

1 % = 3
m, in three dimensions, (44)

1 2 " "
lﬂsl'—(,q)]. in two dimensions, (4.5)

satisfy the respective Laplace’s equation in Q for (p,g) # 0 and are called the
fundamental solutions of the corresponding Laplace’s equations, where r(p, ) is
the scalar distance between points p and g.

Since there is only one boundary condition and there are two functions (¥
and dy/8n) in equation (4.2), there is a “degree of freedom” in using it to solve
potential boundary value problems. This leads to the fact that only one of the
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soutce potentials is needed in solving a given problem. For example, to solve a
boundary value problem with Dirichlet type boundary condition (# prescribed on
S), the unknown function ¢(p) with p(z,y, 2) € (R + 5) may be cxpressed solely

as a double-layer potential of unknown density u(q)

40 = [0 Zpztas) @9)

To solve a boundary value problem with Neumann type boundary condition
($n prescribed on S), which is the type of boundary value problem solved in
fluid flow passing an object (a double-body problem for instance), the unknown
function ¢(p) can be expressed solely as a single-layer potential with unknown
density o(q)

#(p) = [, olah¥(p. a)dS(a), )
for point p(z,3,2) € (2 +5).

To solve a Neumann boundary value problem by using equation (4.7), the
normal derivative of ¢ at p is substituted into the boundary condition so that the
source density o(g) can be computed. The normal derivative of ¢ at p can be
obtained by directly differentiating equation (4.7), which gives

9¢(p) Y(p.9)
i) = "

dS(q), (4.8)
where n is the unit normal to S.

Usually in the literature equation (4.8) is written, for three dimensional cases,
by using the limiting bebaviour of the integral of equation (4.8) when point p is
located at the same point g, in the following form:

e _ _ 2
RO JROP . q,xdsm (49)
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It is important to note that, firstly, equation (4.9) is true only for the case
when S is a smooth surface, and secondly, the integral in the equation does not
include the point p. It should also b= noted that for the linear element boundary
integral algorithm in which the collocation points are on the nodes of the mesh
instead of on its panels, equation (4.9) can not be used, although the unpaneled
surface could be a smooth one, because the limit of 4/3n for p approaching ¢
is not 270(p) in this case. To accurately define the normal derivative ¢, a new

expression is introduced as

3#0) _ g, <0 4 1Ly
) = P+ Qoo sles(a), (410)

where f is the solid angle at point p subtended by the surface S - p. The
calculation of § will be further discussed in Chapter 5, where the algorithm of
the present study is presented. The new notation introduced here @s is defined as
the surface integration over S with point p excluded.

It should be mentioned that the two integral equations (4.6) and (4.7) are not
the only possible ones that can be formulated using the single-layer and double-
layer potentials. For example, instead of using the doublelayer potential for the
Dirichlet boundary conditions one could use a single-layer potential.

For mixed boundary value problems, for example the ship wave problem,

either the single-layer or the double-layer can be used to solve the problem. In
this case a relation between ¢ and its normal derivative ¢, is provided by the
boundary condition. So far almost without exception, authors of research papers
on solving the ship wave problem have only used the single-layer source potential

in formulating their algorithms.
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4.2 Direct Formulation

A | disadvantage of single-layer and double-lay ials is the

introduction of formal source densities which usually bear no physical relation to
the solution of the problem. This can be overcome by using the direct formulation
of the boundary integral method, where values of the potential function ¢ and
its normal derivative ¢,, over S play the role of the source densities in generating
the solution ¢ in Q. This formulation can be deduced through Green's third
identity, Betti’s or similar theorems or principles such as virtual wezle (Brebbia
1984). According to Green's theorem, if ¢ and ¥ are two continuous functions

with continuous first order derivatives, the following identity exists
Levy-wwigun= (62 -s2us. (@)

The normal direction to § is taken outwards from Q.

If ¢ is taken to be the unknown harmonic function (satisfies V3¢ = 0) and %
as the fundamental solution to Laplace’s equation, which satisfies the condition
of Green's theorem, the integral on the left hand side of equation (4.11) becomes
2zero, through a limit procedure (Wardle 1981). Equation (4.11) can then be
written as:

_/ s = j ¢—ds (4.12)

Equation (4.12) is an important formulation of the direct boundary integral
mcthod for potential problems. It represents a constraint equation between the
solution of the problem ¢ and its normal derivative ¢, on the boundaries. For
Dirichlet boundary condition the left hand side of (4.12) is known and 4, is

to be found. For the Neumann boundary conditions the right hand side of the
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equation is known. For a mixed boundary condition, a relation between ¢ and
#n is provided by the boundary condition, which allows equation (4.12) to be
arranged to compute cither ¢ or g.

For three dimensional domains, by substituting the fundamental solution to

Laplace’s equation into equation (4.12), we have

0 11 = [ L ¥@)e
[0 a40 = [ mgse ()

By isolating the singulasiiy arising when p approaches g in the integrals, equa-

tion (£.13) can also be written as follows

botp) + Gl gs st = [ = as),  (wae)

where 8 is the solid angle at point p subtended by § — p; and the notation @ is

defined to be the integration through $ with point p excluded.

4.3 Direct VS Indirect Formulation

As the unknowns in the integral equation are physical boundary quantities
(either ¢ or @y ), equation (4.14) is called the direct boundary integral equation
to distinguish it from integral equations that involve an intermediate source den-
sity, for example equations (4.6) and (4.7). Formulations based on the source
distribution approach are called indirect because the solution can only be ob-
tained through an intermediate source density. It is difficult to explicitly display
the relation between the direct and the indirect formulations since both of them
are in integral equation forms. However these two approaches have the same

1, : ion and beh




By isolating the singularity 1t p = q from the integral over S, and using

the mum@. equation (4.2) ¢ e rewritten as:

-0 -Guio % Dasta = [ otpavmast@. (@)

For three dimensional domains, replacing ¥(g,p) by 1/r(F,q) allows equation
(4.15) to be rewritten as:

(1=BY() - @ a5 o olaS@) = [ o(pa)-—dS(e).  (4.16)
s on(g) )

r(p q r(? )
Comparing equation (4.16) and the direct integral equation (4.14) it can be

seen that if both single- and double-layers are distributed to solve a potential

boundary value problem, then th densities of single-layer and double-1.
have to be related, since the number of unknowns are more than the constraint.
The relation between these sources can be established, as explained before, by
the Green’s third identity. In other words, the direct formulation distributes
both single-layer and double-layer sources with the double-layer source to be
the velocity potential ¢ and the single-layer source the normal derivatives of the
potential ¢,.



5 NUMERICAL PROCEDURES FOR
SOLVING THE LINEAR PROBLEM

5.1 Indirect Boundary Integral Algorithm

5.1.1 The structure of the algorithm

A numerical algorithm based on the indirect boundary integral theory is de-
veloped in this section to solve the linearized ship wave problem derived in Section
(3.3) of this thesis. The linearized ship wave boundary value problem given by

system of equations (3.29) is written here again for convenience:

Vi =0, in the fluid domain;
#-V$=0, on the body surface;
AZ$+BR+CR+DSE+ESL =H, on z=0;  (51)
V¢ - -U, 2<0 and VFFP F 2 — o0

The radiation condition.
The coefficients in the fluid free surface condition are given as:

_ 388 1.
4 = 35 20’, (52)
3% 8%
B = Saaw s}
e, 08 1388°% 0%
c = s—%(y)’[ﬂ(a)’—mh'53‘-55[(5)’-”’]: (5.4)



1,08 ,0%%
D = (G’ (55)
) %,
E = —2g[(at)’—ll’](al). (5.6)
H = 3(‘2—‘:)":—:. (5.7

The present numerical algorithm for solving the above linearized boundary
value problem is developed by applying the linear element technique. The linear
element technique distributes the unknowns on the nodes of the surface mesh and
linearly varies the unknowns over each element (or panel). To accurately panelize
the body surface, triangular panels are used on the surface mesh.

In the algorithm, applying the indirect boundary integral theory, the wave
elevation and the wave resistance are computed through the following steps:

1. Solving the double-body problem for &;

2. Generating the streamlines on z = 0 by using the potential &;

3. Computing the coefficients 4, B, C, D, E and H;

4. Solving boundary value problem (5.1) for ¢;

5. Calculating the wave resistance by using ¢;

6. Evaluating the free surface wave elevation by using ¢.

Six computer program modules have been developed to perform the tasks of
the above mentioned si:. steps. The program modules are controlled by a control
module. Input is read in by the control module. The output is sent to output

files for post processing.
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5.1.2  Solution of double-body problem

The algorithm begins with solving the double-body problem. The geometry of
the double-body problem is shown in Fig. 5.1. The purpose of using the double-
body shape is to generate a constant flow around the real body with zero velocity
in z direction on z = 0 by using the Rankine source method. In other words, the
flow generated by the double-body moving steadily in a fluid of infinite extent, is
equivalent to the flow generated by a single body moving in a semi-infinite fluid
when the free surface disturbance is neglected or & = 0 on z =0.

The double-body problem in the coordinate system fixed with the double-body

is written here again as:

V2% =0, in the fluid domain;
7-Vé=0, on the body surface;

(5.8)
2y, om z=0;

&
V8] = -U,  as VATF@+F—e0, 250
In boundary value problem (5.8), U is the velocity of the double-body.

The double-body velocity potential & at any point in the fluid domain (in-
cluding the boundaries) is then expressed in terms of sources distributed linearly
over each triangular element of the mesh generated on the body surface. This
poteniial is written as:

#(p) = ~Us(r) + § foipa* pl@se. 69
where p is any point in the fluid field including the body surface, which is called
the field point; g refers to the element label; ne is the total number of elements

on the body surface (the object body only); S(q) represents the area of element
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g; and r(p,q) is the distance from p to the integration point [z(q),¥(q), 2(g)} on

clement g, which is defined as:

7(p,) = /[z(p) — (@) + [v(p) - ¥(Q) + [=(p) - ()P, (5.10)

and r(p,g) is the distance from field point p to the image point [z(g),3(3), 2(3)]
of point [z(g), ¥(q), 2()] with respect to the plane z = 0, which is given by

(0, 8) = V/[z(p) - (@) + b(p) — v(@ + [=(p) - (D). (8.11)

Equation (5.9) expresses the velocity potential as a resultant of the source
density distribution o(g) over all elements. In this equation o(qg) is the linear
function based on a1(g), 02(q), oa(q), where a1(q), o2(q), 7a(q) are the source
density magnitudes at the three vertices which define panel g. These locally
numbered source density values can also be converted to the globally numbered
source density values (i), i=1,2,3, ..., nn, through a connectivity matrix, where
nn is the total number of nodes on the body surface mesh.

In order to explain how the linear system of equations is formed to solve for
the nn unknowns o(i) i = 1,2,3,...,nn, the velocity potential is written in terms
of these unknowns o(i). By introducing a tent function T(j) the double-body

velocity potential is written as:

8(3) = ~Uz(3) + Z a(4) )lT(i)ds(q). (5.12)

st3) r(t DR
where $(i) represents the velocity potential at a field point numbered #; o(j)
represents the source density at node point j; T(j) is a tent function centered at
node j, such that T(j) = 1 at node j and T(j) = 0 at the nodes surrounding

37 i S(7) represents the area of the continuous compact support of T(j), i.e. the
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surface area of the clements having a common vertex at node j, (see Fig. A.l in

Appendix A); 7(i,q) and r(i,q) are given as:

(i, ) = y/[z6) - =) + W) — W + 26) - ()P, (5.13)

and

7(5,8) = V/Iz(i) - 2(@F + ) — WD) + :6) - (P (5.14)

By letting equation (5.12) satisfy at each node (i = 1,2,3,...,nn) the imper-
meability condition in boundary value problem (5.8), a linear system of nn linear
equations can be obtained for the nn unknowns (i), i = 1,2,3,...,nn. The linear

system could be written as:

[Al{e} = Unz}, (.15)
where
oL,1) a(1,2) . . . a(l,n)
a(2,1) a(2,2) . . . a(2,nn) 1
(4=
a(nn,1) o(nn,2) . . . a(nn,nn)

[A] is called the influence coefficients matrix. The entry a(%, j) of this matrix
represents the influence at node i produced by a unit source demsity at node
7. The unit source density at point j is linearly distributed on all the elements
surrounding point j, i.e. the source density at node j is equal to one and is equal
to zero at cach of the surrounding nodes. The matrix is generated by using the

following equation:
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ali,j) = #ﬂln,(-)

mlﬂy(‘)

.9 1 . )
taR e T e O ()4S@, (5.16)

where n, (i), n,(i), and n,(i) ate the unit normal components of the paneled body
surface at node i in the directions of z, y,  respectively.
The partial derivatives with respect to z, y, and = in the integrand of equation

(5.16) are given here as follows:

811 a)-ste) )= s)

Fra L e i = e e )
(i) —y(a) | y(i) - u(q).
Togg *reag ¢ 69

4 1 1o _#i)-=g) , 2() - 2(9),

=G T T Trge g ¢ )

The integration in equation (5.16) is performed by one of two methods de-
pending whether the field point i is on the source point j or not. When the field
point i is not on the source point j, i.c. i # j, a numerical integration routine
is used to calculate the integral in equation (5.16), (see Appendix A for details
of the numerical integration procedure). When the field point i is on the source
point j, i.e. i = j, the value of the integral in equation (5.16) is equal to the
solid angle at j subtended by the paneled surface, (see also Appendix A for the
procedure for computing the solid angle).

The linear system is solved by using the Gaussian elimination method. A

standard linear system solver is adopted in the software.
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5.1.3 Generation of streamlines

In the present lincarized problem, boundary value problem (3.29) or (5.1), the
free surface condition is written in terms of the streamlines located on the plane
2z = 0. Therefore these streamlines must be generated and a surface mesh based
on these streamlines must be produced. In the present study the streamlines of
the double-body flow, on z = 0, are generated by solving the ordinary differential

equation that describes a streamline on z = 0, that is

&
@&

(5.20)

where z, y are the coordinates of a point on the streamline; % and ¥ are velocity
components of the double-body flow in z and y directions respectively. These
velocity components can be expressed in terms of the source densities o(i), i =
1,2,3,...,nn, obtained from solving the double-body problem.

In equation (5.20) dz is specified by the element size of the surface mesh which,
in turn, is determined according to the Froude number. See Appendix C for
details of the relation between the surface mesh size, element size and the Froude
number. Therefore dy could be computed by solving the ordinary differential
equation (5.20). In the present study a modified Euler-Heun’s technique is used.

Applying this procedure to equation (5.20) gives

2(i+1) = z(i)+dz(i), (5:21)

LIPS 2)

yEi+1) = ~—.—+m

where (i), §(i) are the fluid velocity components of the double-body flow at point

i, and (c), #(c) are the corresponding velocity components of the double-body
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flow at point ¢. The coordinates of point ¢, namely z(c), y(c) are determined by

2(e) = z(i) +dz(i), (5.23)
Wo) = %dz(x). (529)

The velocity components i(3), §(i), &(c), and #(c) are computed by using the

double-body velocity potential through the following formulations:

- ~[x() - =(a)7)
W = S 0) | T B0 - f + B~ T
(5.25)
SR = SVasti ~ly(3) - ¥(ITG) ;
0 = B 20) o T =+ b0 - salF + e~ S
(5.26)
P e =lz(c) - 2(a)ITG) .
I = 02200 | e s O
(s.27)
o Roni {50 = SUTG) :
) = 220 [ T b0 s+ H PR
(5.28)

where nn is the number of nodes on the real body surface mesh.

It is noted that the integration is performed only on the real body surface,
since the symmetric condition is used. A factor of 2 is used in equations (5.25)
to (5.28) to account for the effect of the image body. In the submerged case
the collocation point i could never be located on the integration element j, in
calculating the integrals in equations (5.25) to (5.28), since i is on the free surface

mesh and g is on the body surface mesh. Therefore only the numerical integration

63



is used to compute the values of the integrals. See Appendix A for the details of
the numerical integration.

The first node on each streamline and the increments dz(i) in the z direction
are predefined by the size of the free surface mesh and the size of the elements,
which are Froude Number dependent. See Appendix C for the details. The
location of the second node [z(i = 2),y(i = 2)] is calculated by using equations
(5.21) and (5.22) knowing the location of the first node [a(i = 1),y(i = 1)].
Repeatedly using equations (5.21) and (5.22) for i = 1,2,3,...,nf, a streamline
can be obtained, where nf is the number of nodes on each streamline. The
coordinates of the nodes of the surface mesh are obtained by repeating the same

procedure for all streamlines needed to generate the free surface mesh.

5.1.4 Computation of coefficients

In order to compute the coefficients A, B, C, D, E and H in the free surface
condition in boundary value problem (5.1) directly from the source densities, the
partial derivatives with respect to £, in the expressions of these coefficients have to
be converted into partial derivatives with respect to z and y. From the definition
of ¢ we can write:

3% %9z 9%y
% " matama

= V@1 (5.29)



% at point i is then expressed as:
L T e
F7 ) = V) + 7).

where %(i) and (i) are the velocity components of the double-body flow in z and

(5.30)

y directions respectively, which have been already given by cquations (5.25) and

(5.26).

The second order derivatives of & with respect to ¢ are obtained by applying a

five-point centered finite difference operator on the first order derivatives 9&/9¢,

which is expressed as:

Fsm(i)g—‘f(emz)
+F502(;)Z;‘[’(im1)

+Fsos(i)"a—‘l’(i)

NP
+F5D5(i E(’ﬂ)’

(5.31)

where F5D1(i), F5D2(i), F5D3(i), F5DA(i), F5D5(i) are the five coeficients

of the five-point centered finite difference operator, (see Appendix D for details).

im2, iml, ipl, ip2 are the point numbers, which are given as:

im2
iml
ipl

ip2

= i-2nb;
= i—nb
= i+nb

= i+2nb.
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The variable nb represents the number of streamlines on the fluid free surface

mesh.

The coefficients in the free surface condition of the present linzar ship wave

problem given by equations (5.2) to (5.7) are finally obtained as:

Al)

B(3)

cl)

D(3)

EG)

H()

GG)

S - 3%

w.(i)%(i);

)

I

+ 5 {Ui)? -

Sz OGN - U}

79170 ) (‘),

U,

-[”t(‘)]’ 7 (@

- 0GP - UHOG)

ST

Udl3)/a();

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(541)

(5.42)

where Uy(i) represents the fluid velocity along £ on = = 0 at node poiat i, which

is defined as:

v =B

(5.43)



The fluid veloaity of doubie-body flow &(1) in equation (5.42) is given az
b
(1) ‘;;m (5.44)
The second order derivative of Uy(1), namely ‘gt (1), in equation (5 28) is also
computed by the five-point centered finite different formula.

Coefficient G(1) is a new one which will be used in solving the free surface

ship wave prcblem in the next subsection.

5.1.5 Solution of surface problem

Having solved the double-body problem, generated the streamline-bounded
free surface mesh, and computed the cocfficients A, B, C, D, E, H, and G, the
total velority potential ¢ could now be obtained by solving the linearized bound-
ary valuc problem developed in the present study which was obtained in Section

(3.3). By using the coefficient G the present linearized free surface condition can

e written in terms of fluid velocity components u and w, with u = 8¢/dz and
w = 34/9:. The lincanzed ship wave problem given by bourdary value problem

(5.1) can then be rewntten as:

T =0, n the flud doman;
A Vo0 on the body surface;
AL(Gu)~BGu-Cw-D4w~EZw - H, on - 0, (545
Toi = -U, @ VPR w140,

The radiation condition
By satisfning the impermeability condition 1n the above boundary value prob-
lem a all the nodes o the body surface mesh, nn number -7 linear equations
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can be obtained as:

o

Lo=0  i=12..mm (5.46)
Variable nn is the total number of nodes on the surface mesh of the moving
object.

In order to use the fluid free surface condition in bcundary value problem
(5.45) to obtain the remaining (nnt — nn) number of iinear equations to form a
system of linear equations, the second order derivatives of w along £ in the free
surface condition in (5.45) are expressed as:

Zu_2, (547)
and the first order derivative of w along £ which is represented by w, = dw/d¢ is

given as:

wi) = F5DI(iyw(im2)

+F5D2(i)w(iml)

+F5D3(i)w(i)

+F5D4(ijw(ipl)

+F5D5(i)w(ip2), (5.48)
where F5D1(i), F5D2(3), F5D3(i), F5D4(i), F5D5(1) are the five coefficients of
the five-point centered finite difference operator; im2, iml, ipl, and ip2 are the
node labels which are calculated by using equations (5.32) to (5.35).

Replacing the partial derivatives £ in the fluid free surface condition in bound-

ary value problem (5.45) by a four-point d finite diff operator,
the fluid free surface condition in the present lincarized ship wave problem given



by boundary value problem (5.45) can be written as:

A(#)[F4D1(1)G(2)u(i)
+F4D2(:)G(im1)u(iml)
+F4D3(:)G(im2)u(im2)

+F4D4(i)G(im3)u(im3)]

+B(#)G(3)u(i) + C(1)w(s)

+D(i)[F4D1(3)w(i)

+F4D2(2)w(iml)

+F4D3(i)w(im2)

+F4D4(i)w(im3)]

+E(i)[F4D1(i)w(i)

+F4D2(1)w(iml)

+F4D3(i)w(im2)

+F4D4(i)w(im3)] = H(3),

i=(nn+3nb+1),(nn +3nb+2),..,nnt. (5.49)
In equation (5.49) F4D1(:), F4D2(i), FAD3(i) and F4D4(i) are the four coeffi-

cients in the four-point ds t finite diff operator, (see A dix D

for details); nnt is the total number of nodes on the body surface and the fluid
free surface meshes; im3, im2, and iml are the labels of the nodes on the fres
surface mesh, which are given as:
im3 = i-3nb; (5.50)
im2 = i-2nb; (5.51)



iml = i-nb. (5.52)

The variable nb represents the number of streamlines on the free surface mesh.
It is noted that the above discretized fluid free surface condition is satisfied at
all of the nodes on the free surface mesh except the first 3nb nodes on the upstream

side of the mesh because of the application of the finite diffe 1

Tle free surface condition which is satisfied on the first 3nb number of nodes on
the upstream side of the mesh is a special case of equation (5.49), with du/a¢ = 0
and Bw/dt = 0, which is given as:

B()G(E)u(i) + Cli)w

=H(i), i=(nn+1),(nn+2),...,(nn+3nb). (5.53)

In order to express ¢ by the Rankine sources distributed on the body surface
and the fluid free surface, and also to satisfy the condition at infinity in boundary
value problem (5.45), the total velocity potential ¢ is written as a constant veloc-
ity U which is the velocity of the body plus a potential ¢’ which can be generated
directly by the source density o. We have

#(i) = ~Uz(3) + $(5). (5.54)

The particle velocity components of the fluid can, accordingly, be written as:

u(i) = -U +u'(3), (5.55)
and
w(i) = w'(i). (5.56)

The variables ; (i), w/(i), and w/(3) can be expressed in terms of all the sources

distributed on the body surface and on the fluid free surface meshes. They are
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given by

¢ = Z o) [l TS e)

s6) r(t o r(- il

+,,§,."m _/smlmli'(z)ds(q): (5.57)

w6 = -$ot) [ FEEED LKy

- B ot [ S Eirgasten ()
o

W) = -$et) [ FOEH L irpas(q)

T OET () g
2,0 o g TONS(e): (5.59)
Equations (5.46), (5.49) and (5.53) are rewritten, by moving the known terms
to their corresponding right hand sides, as:

%"(i) =Un(), i=1,2.,nn (5.60)

B()G()W() + Cliyw'(s) = H() + Bi)GG)Y,
i=(an+1),(nn +2),...,(nn + 3nb); (5.61)
and
A(i)[FaD1()G (i (3)
+F4D2(i)G(im1)u'(im1)
+F4D3(i)G(im2)u'(im2)
+F4D4(i)G(im3)u'(im3)]

n



+B()G( () + CEw'()
+D(3)[F4D1(i)w'(3)
+F4D2(i)w/(im1)
+F4D3(iyw(im2)
+F4Da(iyw/(im3)]
+E(3)[F4D1(i)ul(i)
+F4D2(iYwy(im1)
+F4D3(iYw)(im?2)
+FADA(i)uy(im3)] = H(i)
+A()U[F4D1()G()
+F4D2(3)G(im1)
+F4D3(i)G(im2)
+F4D4(i)G(im3)]
+BG)UG(),

i=(nn+3nb+1),(nn +3nb+2),..,nnt. (5.62)

Finally by putting equations (5.60), (5.61) and (5.62) together and writing

the result in matrix format a linear system can be obtained as:

SEHE



where

o(1)
o(2)
o(3)

[l =

o(nnt)

Uny(1)
Uns(2)
Uny(3)
[RB] =

Un,(nn)
rs(nn+1)
rs(nn +2)
rs(nn +3)

(RS]=|.

rs(nnt)
and rs(i) is defined by the right hand side of equations (5.61) and (5.62), which
is
rs(i) = H()+BH)GHE,

i=(nn+ 1), (0 +2), .., (nn + 3nb); (5.64)

rs(i) = H()+BEHGEHU
+UA()[F4D1(i)G(i) + F4D2(:)G(im1)
+F4D3(i)G(im2) + F4D4(i)G(im3'

i=(nn+3nb+1),(nn+3nb+2),.. nnt. (5.65)
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The upper part of the influence coefficients matrix [4B] in system of equations
(5.63) represents the influence coefficients on the surface of the body produced

by the sources distributed on the body surface and the free surface meshes. It is

given as:
ab(1,1)  ab(1,2) . . . ab(l,nnt)
ab(2,1)  ab(2,2) . . . ab(2,nnt)

(4B = . (5.66)
ainn,1) ab(nm,2) . . . ab(nn,nnt)

The entries to this part of the matrix are computed by the following equation,
which is obtained from the body surface impermeability condition (5.60):
ab(i, 5) = eu(i, j)n=(i) + au(i, )y () + au(i F)ma(d), (5.67)

where n.(i), ny(i), and n,(i) are the components of #i(i) in z, y, and z direc-
tion respectively; au(,7), ay(3,7), and ay(3,7) are the elements of the velocity

coefficient matrices, which are defined as:

wid) = - [ O s

(1,q) (i,
forj=1,2,..nn; (5.68)
co o @) -z
a(i,j) = S(:)[ Gq) 17(5)dS(q),
forj=(nn+1),(nn+2),..,nnt; (5.69)

athi) = - [ PEAD Aty pasi,

forj=1,2,..,nn; (5.70)
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P 1 ()
i) = - [ RITGs(),

Jorj =(nn+1),(nn+2),..,nnt; (5.71)

atig) = - f 0,

o)

forj=1,2,..,nm; (512)
athi) = - [ (=),

forj = (nn + 1), (an +2), .., nnt. (5.13)

See Appendix A for the computation of the integrals involved in the velocity
coefficients ay(3,7), au(3,7), and ay(i, ).

The lower part of the influence coefficients matrix in linear system (5.63)
represents the influence coefficients at the nodes on the free surface mesh produced
by the sources on the body surface and on the free surface meshes. It is in the

form:
as(nn+1,1) as(nn+1,2) . . . as(nn+1,nnt)
as(nn+2,1) as(nn+2,2) . . . as(nn+2,nnt)
{as] = . (514)
as(nnt,1) as(nnt,2) . . . as(nnt,nnt)

The entries to this part of the matrix are computed by using the free surface

boundary condition equations (5.61) and (5.62), such that:

as(i, ) = Bi)G(i)auli, j)+C(i)au(iy), i =(nn+1) nn+2),..,3nb; (5.75)

as(i,j) = A)[FaD1(E)GG)eu(i, )

(el



+F4D2(3)G(im1)ay(im1, §)
+F4D3(3)C(im2)a,(im2, 7)
+F4D4(:)G(im3)a (im3, )]
+B(1)C(i)au(i,j) + Cli)au(i,7)
+D(i)[F4D1(i)auli,5)
+FaD2(i)ay(im1, 5)
+F4D3(i)ay(im2, §)
+P4D4(i)ay(im3, )]
+E()FAD(E)awdi, )
+F4D2(i)aue(iml, 5)
+P4D3(i)aue(im2, )
+F4D4(i)aye(im3, 7)),

In equation (5.76) au(i, ) is calculated by applying the five-point centered finite

difference operator on ay(i, j).

The routine for solving the linear system of the double-body problem is also

used here to solve the system of linear equations (5.63).

5.1.6 Free surface wave evaluation

The free surface elevation can be evaluated by using the velocity components
u(i), v(2), w(3) on the plane z = 0. The free surface elevation at each node of the

%6

(nn +3nb + 1), (nn + 3nb + 2), .., nnt.



free surface mesh 7(i), i = (nn + 1), (nn +2), ., nnt, is given as:

U ) + W)
2+ u%E - w0

()

i=(nn+1),(nn +2),. 00t (577)

where i refers to a node on the free surface mesh; ug(i) = [u3(i) + v3(:)]'/? rep-
resents the fluid velocity along the streamline & The velocity components u(i),
(i), (%) could be calculated directly from the source densities obtained by solv-

ing the linear system (5.63) and the velocity coefficient matrices a,(i, ), a.(i,7),

aulisd)
u(i) = —U+:Z:au(i,1)ﬂ(]); (5.78)
w) = ga.(i,j)au); 79)
(i) = :Z:aw(-xj)om (550)

The velocity coefficient matrices a,(i, j), au(i,7), and au(i,j) have already been

defined by equations (5.68) to (5.73), respectively.

5.1.7 Wave resistance calculation

The wave resi can be calculated by i ing the pressure over the

wetted area of the solid body surface. It is expressed as:

R=-3 /. o PONL0)45(0), (s81)

whers N, (g) represents the unit normal component in z direction to element g;
P(q) is the pressure distribution on element g, it is the linear function of the

pressure interpolated by the values P(g), P(g;) and P(gs) of P at the three
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vertices of clement g. These locally numbered pressure values P(q,), P(q:) and
P(gs) ean be converted into the globally numbered pressure values P(i) in the
same way as are the source densities 0. The pressure at each node is calculated
by

Pli) = %p{U’ — 6 + 90 + @k i=1,2,3,.,mm,  (582)
where u(i), u(i), and w(i) are calculated by using equations (5.78), (5.79), and
(5.80), while here i = 1,2,3,...,nn.

The wave resi ficient C, is by
Co= nw/%prﬂs, (5.83)
where S is the total surface area of the body and p is the fluid density. For a
prolate spheroid, S is given by
§= JeLid(sin"t5)/6 + 4, (5:89)

where € = D/L , 6 =1~ ¢, D and L are the minor and major axes of the

ellipsoid, respectively.

5.2 Direct Boundary Integral Algorithm

5.2.1 Direct integral method and numerical towing tank

As has already been discussed in Section (4.2), the fundamental integral equa-
tion of the direct boundary integral method, i the three dimensional case, is given

as:
1 94(9)

[} 1
[ 0n e 0 [angse 65
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where g is a point on S; S is the boundary or boundaries of the considered fluid
domain; ¢(q) represents the velocity potential at point g; p is a ficld point; and

7(p, ) is the distance between p and g, which is defined as:

7(7,9) = Vlz(p) - 2(0)F + B(2) ~ 3(@F + [=(p) - (@) (5.86)

Equation (5.85) represents a constraint relation between the Dirichlet bound-
ary conditions (¢ defined) and the Neumann boundary conditions (¢, defined,
$n used here denotes the normal derivative of ¢, that is ¢, = 8¢/dn,with n the
normal to § directed out of the fluid). For Neumann boundary conditions the
right hand side of equation (5.85) is known, giving a Fredholm equation of the
second kind for the unknown boundary values of function ¢(q). For the Dirichlet
problem equation (5.85) becomes a Fredholm equation of the first kind for the
unknown boundary values ¢,. For the mixed boundary condition, which is the
case of the fluid free surface condition of the ship wave problem, both ¢ and
$n are unknowns but a relation bet.;esn ¢ and ¢, is provided by the boundary
condition which allows that an arrangement can be made to solve for either ¢ or
[

Except for very simple geometries, analytical solutions to the boundary inte-

gral ions are i and ical methods must be used. By assuming
that the boundary is divided into surface elements over which the data has a pre-
scribed polynomial variation we can reduce the problem to salving a linear system
of equations for some unknown coefficients.

In solving the ship wave problem, boundaries have to be defined before the

1 dure is started. Th i the fluid domain considered in the

ship wave problem is of infinite extent. However in the case of model testing in a
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towing tank, the boundaries of the tank and the surface of the ship plus the fluid
free surface form a closed surface covering the fluid domain, which just satisfies
the condition of integral equation (5.85). By paneling the boundaries of the
tank, the surface of the ship and the fluid free surface, numerical integration for
equation (5.85) can be obtained which allows to solve for either @ or ¢, according
to the given conditions. This forms exactly a numerical simuiation of a potential
fow towing tank experiment. Once a ship model and the dimensions of a towing
tank are given, numerical results in terms of potential function ¢ can be obtained

by solving the integral equation (5.85) numerically. The wave profile and the

king resi can then be d from ¢.

Unlike a towing tank model testing, in which the size of the model is limited
because of the size of the tank, a numerical towing tank can perform full scale
testing by simply using a prototype ship, instead of a ship model, and enlarge
the tank proportionally. Further more, by extending the dimension cf the tank
such that the side walls of the tank do not effect the waves, the case of a ship in
open sea can also be simulated.

In this section, the algorithm of a numerical towing tank based on solving
the linearized ship wave problem derived in Section (3.3) , i.e. a linear numerical

towing tank, is developed. The algorithm developed in this section will also be

used in Chapter 6 in the iteration procedure developed to solve the nonlinear
problem. As has been used in the indirect boundary integral algorithm in the
previous section, the linear element technique is also used in the present numerical

towing tank algorithm.



5.2.2 Panelization and boundary conditions

As for a real towing tank in a laboratory, a numerical towing tank is formed
by four impermeable walls and a bottom. One wall is located on the upstream
side, and one wall is on the downstream side of the tank. And two walls are on

the lateral sides of the tank.

In the ical ithm of the present ical towing tank the symmet-
rical condition of the tank is used advantageously to save computer memory and
to reduce the amount of computations. Also, in order to save more computer
memory an image tank is introduced to avoid the panelization oa the bottom of
the tank, by paying the price of increasing a certain amount of computations.
Because of the implementation of the image tark the amount of computations is
increased by about 20%. In return, the size of memory is reduced by about 200%
in the present algorithm.

In order to identify the boundaries, a label is given to each of them. The
wall on the upstream (in front of the ship) is labelled 1; one half of the ship hull
surface (since the symmetrical condition is used) is labelled 2; the wall on the
downstream side of the tank (behind the ship) is labelled 3; the side wall of the
tank (only one side since the application of the symmetrical condition) is labelled
4. Finally, the free surface of the fluid is labelled 5. All these boundaries are
paneled by triangular panels. Fig. 5.11 shows the panelization of the tank with
a Wigley hull intersecting the fluid free surface. Fig. 5.12 shows the panelization
of the tank and the ship hull of a Series 60, block C = 0.60.

Tt is noted that the panels on the fluid free surface, boundary 5, are bounded

by i These lines are through the indirect boundary
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integral method which has been discussed in the previous section. Streamlines
can also be generated by using the direct boundary integral method which is
being discussed in the present section. But it is not as convenient as applying
the Rankine source method discussed in Section (5.1). It is also expensive to use
the direct boundary integral method to generate these streamlines.

To simulate a towing tank, the boundary conditions on the side walls of the
tank have to be specified to replace the boundary condition at infinity in boundary
value problem (3.29). This defines a towing tank boundary value problem. If the
size of the tank is big enough, the boundary condition on the walls of the tank
will be equivalent to the condition at infinity. The boundary value problem in
this case then defines a problem of a ship moving in open sea. The boundary
conditions on fixed walls of a tank can easily be expressed by ¢, = 0, based
on the impermeability property of these boundaries. However, this will make
the boundary value problem to be solved a Neumann problem (¢, given on all

of the boundaries), since the boundary conditions on the ship surface and on
the fluid free surface are also specified through @a . As it is known that the
solution to a Neumann boundary value problem is not unique (there is a constant
difference between solutions). This could lead to situations that involve very big
or very small values in the numerical solution of the problem. The accuracy of the
solution could, consequently, be affected. In order to avoid the above mentioned
situations, the boundary condition on boundary 1 of the present numerical towing
tank is prescribed by specifying the velocity potential function ¢ which is known
when the Froude number of the test is preassigned.

In order to use limited computer resources to produce the best simulation



results. only the section of the tank which contains the ship model is simulated
in the present study. This can easily be achieved by specifying the conditions
on boundaries #1 and #3 by a radiation condition and replacing the length of
the tank by the length of the section to be simulated. The radiation condition
is defined here as the waves going through the boundary without reflections. As
has been discussed, to avoid the boundary value problem becoming a Neumann
type, the radiation condition on boundary #1 is defined by ¢ and the radiation
condition on boundary #3 is given by ¢n. Finally, by fixing the coordinate on
the ship, the boundary value problem for a linear numerical towing tank is given
as:

in the fluid domain;
on boundary #
on boundary #
on boundary #
5 on boundary #
% +C%+ D+ ESL = H, on loundary #

(5.87)

L

N e q

The coefficients 4, B, C, D, E and H have been defined by equations (5.2) to
(5.6), respectively. The Cartesi dinate system is placed such that zoz is

in the center plane of the ship with the origin o in the plage of the designed
waterline. Axis z is in the direction of the ship velocity U and axis z is directed
vertically upwards.

It has been discussed in Section (3.3) that coefficients 4, B, C, D, E, and H
in the fluid free surface condition of boundary value problem (5.87) are functions
of the double-body potential &. In the numerical towing tank case & can be
obtained by simply imposing the fluid free surface condition to be 8&/8n = 0.
The boundary value problem to be solved for & is then given as:
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0, in the fluid domain;
on boundary # I
on boundary #
on boundary #
on boundary #
Vé=o, on boundary # 5.

System of equations (5.88) defines a towing tank with the fluid free surface

(5.88)

W

being restricted so that the vertical fluid velocity at the surface z = 0 is forced to
be zero. Since there is no image body considered here, & is called the zero order
solution for the numerical towing tank.

1t is clear now that to obtain the solution of the towing tank boundary value
problem (5.87), the zero order tank problem (5.88) has first to be solved so that
the coefficients 4, B, C, D, E, H can be computed and then the free surface
towing tank problem can be solved following the same procedure with a more

complicated free surface condition.

5.2.3 Zero order numerical towing tank

System of equations (5.88) defines a zero order numerical tank problem, in

which the fluid free surface is icted to generate a fund 1 fluid flow in
the tank to be used in the perturbation procedure to solve the linear or first order
free surface towing tank problem.

To solve the boundary value problem (5.88), by applying the direct boundary
integral method, the fundamental equation (5.85) is written in terms of & in a
discretized form as:

)
):/s(c) g 0 = ?_}fsmr(p,q)an(q)

dSg),  (589)

84



where S(g) represents the area of element ¢ and net represents the total number
of elements on the boundary surface mesh.

The integrals in equation (5.89) are over each element on the surface mesh.
Since (g) and 39(g)/8n are linear functions of their vaies at the three vertices

of element g, equation (5.89) could be writtsn in terms of aodes in the form:

z{oo) o ~—T(3)S()},
(5.90)

where p represents the field point; j represents a node number; g denotes the

1 y e
Ty TUMS(a) = 3480) /.

() r(r 9

location of the integration slement area dS(g); #() is the velocity potential at
node j; n(j) represents the unit normal to the paneled surface at point j directed
out of the fluid; nnt represeats the total number of nodes on the surface mesh
of the tank. The variable r(p, j) represents the distance between point p and the
integration element area dS(g), which is defined as:

(p,9) = l=(p) = (@) + v(p) - (O + [=(p) - (o)™ (5.91)

By satisfying equation (5.90) at all the nodes of the surface mesh, a linear
system of equations can be obtained, and written in matrix form as:

[41{8} = (B]{3.}, (5.92)

where A and B are nnt x nnt matrices which are called the matrices of influence
coefiicients. They are defined by

a(1,1)  a(1,2) . . . o(l,nnt)

a(2,1)  a(2,2) . . . a(2,nnt)
(4= ;

a(nnt,1) a(nnt,2) . . . a(nnt,nnt)

85



and

b(1,1)  §1,2) . . . ¥1,nnt)
K21 §22) ... K2ew)
(81 = ;
Ynnt,1) ¥nnt,2) . . . b(nnt,nnt)
where
)= [ ,.,,L(])[,(x TGSty (s3)
W)= [ q)m)dsh) (5.94)

To calculate the integrals in equations (5.93) and (5.94), two cases have to be
considered. They are

1). The field point i is not on the collocation point j;

2). The field point 1 is on the collocation poiat j.

The integrations for these two cases are detailed in Appendices A and B. In
the algorithm of the present numerical towing tank, an image wave tank is used to
eliminate the panelization on the bottom of the tank. Therefore the integrations
in equations (5.93) and (5.94) are not only going through the tank boundary
surface itself but also going through the image tank. The influence coefficient
matrices A and B are, therefore, further written as:

ai,j) = (5.95)

2.1 .1
sts) On(3) (3, q)
s 1 1
Wid) = [l + gy TSt (596)
By rearranging the influence coefficient matrices A and B into sub-matrices

according to the five boundaries of the tank, #1, #2, #3, #4, #5, the matrix



system given by equation (5.92) becomes

Au An
An An
An An
Ao Aa
Ast Am

A
Az
An
Au
Asq

én

$ 'n2

inﬂ

&

$as
(597)

In system (5.97), A;; and B;; represent the sub-influence coefficient matrices

of boundary number j to boundary number i. For example, Az represent the

influence of boundary #3 to boundary #2.

According to the boundary conditions described in boundary value problem

(5.88), on boundary #1 the values of & are given and the values of &, are to be
calculated, on boundaries #2, #3, #4 and #5 values of &, are given and values

of & need to be calculated. By moving the unknown variables to the left hand

side and the koown values to the right hand side, a linear system of equations
to be solved for nnt unknowns is obtained. On boundary #1, solve for &,, on

boundaries #2 to #5 solve for §. Matrix system (5.97) becomes

By An
Bn An
Bn An
Ba Ag
B As

An
An
Axn
Ag
Ass

A
Az
An
Au
Asq

A
Az
Ass
Ass
Ass

L
ES
&
L2
i!

By solving the above matrix system the unknowns on all of the boundaries

are obtained.
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5.2.4 First order numerical towing tank

Having solved the zero order towing tank problem, values of & on the fluid free
surface z = 0 are obtained at all the nodes on the surface mesh. The coefficients A,
B, C, D, E and H in the free surface condition of boundary value problem (5.87)
can then be computed through &. The derivatives of & along £ are calculated by

a three-point finite diffe (see A dix D for the details about

the finite difference formulations).

From the experience gained from the jons of the indirect
itis found that the last two terms in the left hand side of the free surface condition
in the ship wave problem (3.29) or the towing tank problem (5.87) are small
relative to the other terms. They are, therefore, neglected in the algorithm of
the present linear numerical towing tank. The third term in the expression of
coefficient C, equation (3.25), is also dropped since it is also small. The boundary
value problem defining the linear or first order numerical towing tank is then

written in the form

Vig =0, in the fluid domain;
#=0, on boundary # 1;
7V on boundary # 2;
7V on boundary # 3; (5.99)
7-V$=0 on boundary # 4

A%e+3%§+cg§=y, on boundary # 5
The radiation condition;

where
_ 3ok 1
4 = (5P -3Uh (5.100)
3% 2%
B = 3558 (5.101)
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SR V- NN S

C = 9= (Ga)V 5V - U (5.102)
L 22t

H o= Y5 g (5.102)

In the condition imposed on boundary #5, both ¢ aud @, are unknown.
However this condition defines a relation between ¢ and ¢,.. It is noted that since

the normal to boundary #5 is in the direction of z, we have ¢, = ¢,. @, can

then be dintermsof gon b #5 as:
Car 02 (%) 00,0
$a=Cx +045-‘(5) + c'az' (5.104)
where
Ch = -A/C; (5.105)
Cs = -B/C; (5.106)
Cy = H/C. (5.107)

Expressing 9¢/8¢ by a three-point centered finite difference, and express-
ing the second order derivative 3(36/3¢)/B¢ in equation (5.104) by a four-point
downstream finite difference in terms of 3¢/3, equation (5.104) becomes

éa(i) = Crl3)
+Cua(7)9(im4)
+Cua(7)4(im3)
+Caa(7)8(jm2)
+Can(7)¢(im1)
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where

+Curo(7)907)

+Cri(7)é0PL),

Ca(4)F4D1(3)F3D1(jm3);

Cal§)[F4D1()F3D2(jm3)
+F4D2(3)F3D1(jm2)];

Ca(3)[F4D1(5)F3D3(jm3)
+F4D2(j)F3D2(jm?2)
+F4D3(j)F3D1(jm1)];

Cal4)[F4D2(5)F3D3(jm2)
+F4D3(j)F3D2(jm1)
+F4D4(j)F3D1(5)]
+CB(j)F3D1(j);

Ca3)[F4D3(j)F3D3(jm1)
+F4D4(j)F3D2(3))
+C(j)F3D2();

(5.108)

(5.109)

(5.110)

(s.111)

(5.112)

(5.113;



Cri = Calj)F4D4(j)F3D3(5)
+Cs(j)F3D3(j). (5.114)

And F4D1(5), F4D2(5), F4D3(5), F4D4(j) are the four coefficients of the four-
point duwnstream finite difference formula. F3D1(j), F3D2(j), F3D3(j) are
the theee coefficients in the three-point centered finite difference formula, (see
Appendix T for details). Also

jma = j—4nb; (5.115)
jm3 = j—3nb; (5.116)
jm2 = j-2nb; (5.117)
jml = j-nb; (5.118)
jpl = j+mb. (5.119)

Again, nb is the number of streamlines on boundary #5. j is the label of the
nodes on boundary #5, which varies from (»:nt — nn5) to nnt, nn5 is the total
number of nodes on the fluid free surface mesh #5.

The only difference between the zero and first order numerical towing tack
proble.ns given by (5.88) and (5.99) is in the conditicns on boundary #5. In
the zero order numerical towing tank problem (5.88) the condition on boundary
#5 is prescribed by ¢, = 0 at all the nodes on the mesh. In the first order
numerical towing tank problem (5.99) the condition on boundary #5 is given by
a linear relation betwzen the velocity potential ¢ and its normal derivative ¢,.
This relation is given in a discretized form by equation (5.108). Therefore, the
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linear system for solving the first order towing tank problem (5.99), similar to

linear system (5.98), is given as:

By

A
Azn
Asn
Aq
Asz

Aiz
Az
Ass
Aa
Asa

A
Axg
An
Au
Asq

Ars Pm
Az 2
Ass @3
Ass e
Ass @s

B
By
B
By
Bsy

Bys
Bas
Bas
Bas
Bss

Sy substituting ga(j) on boundary #5 expressed by (5.108) into matrix sys-

tem (5.120) and working out the numbering relations, a linear system to be solved

for {¢n} on boundary #1, and for {¢} on boundaries #2 to #35 is obtained as:

=

nnt=Snb
=, 2
=nnatop+1

E
nnt=dnb

%
nnstopdsnbi1
nnt=3nb

3

j=nnstopt+anb+1

nnt=dnb
b3
y=nnstopd-

L

+3nb41

ansept
> b))
=
s
+ 3

nnstopd
+ X alii)e)
j=nmatarts

" ts40)
+j:§“a(i,j)¢(j)
+’_=n:‘f__6a(e,j>¢(j>
Culipt)iir 3p4)60)
Cusl i3, 373)60)
Curli2)86,792)60)
Cann(7p1)bi, ip1)$(5)
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ntop+nb
+ X ¥iL5)CxG) - Ca(i)U]
J=nnstopd+1

nnt=nb . .
+ Y Kii)Cw()
jEnnatoph+anb+1
nnt
+ 3 Ki7)ICu(i) - Ca(i)]
jEnnt=nb+1
i=1,2,..,nnt N
where
nnstertl = 1;
nnstart2 = nnl+1;
nnstart3 = nnl+nn2+1;
nnstart4 = nnl+nn2+nn3+1;
nnstart5 = nnl+nn2+nn3+nnd+1;
nnstopl = nnl;
nnstop2 = nnl +nn2;
nnstop3 = nnl+nn2+nn3;
nnstopd = nnl+nn2+nn3+nnd;
nnstop5 = nnl+nn2+nn3 +nnd +nn5 .

(5.121)

(5.122)
(5.128)
(5.12¢)
(5.125)
(5.126)
(5.127)
(5.128)
(5.129)
(5.130)
(5.131)

The above linear system of equations contains nnt numbers of unknowns.

93



There are nnl values of ¢a and (nnt — nnl) values of velocity potential ¢. The
linear system is solved by using a Gaussian elimination linear system solver, which
has been used in the indirect method of the present study.

The wave elevation is calculated from the vertical velocity and the horizontal
velocity components along the stream line £ on the fluid free surface mesh. It is
given by
U? - () + w0

) = B0 — OS]’

i = (nnstart5+1), (nnstart5+2), .., nnt,

(5.132)
where u(i) represents the horizontal fluid velocity component along £ at node i;
w(3) represents the vertical component of fluid velocity at i.

The vertical component of the fluid velocity w(i) is calculated by using the
relation between ., 36/8¢, and &6/E which is given by equation (5.104). We
have

()= Gl + Ca1 3260 + o130 (5.133)

The first order derivative of ¢ along £ is calculated by applying the five-point

centered finite difference operator, giving:

)= 26) = FsDIG4GEm2)
+F5D2(i)é(im1)
+F5D3(5)é(3)
+F5D4(i)4(ipl)
+F5D5(i)é(in2), (5.134)

where im2, iml, ipl, and ip2 are given by equations (5.32) to (5.35).
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The second order derivatives in equation (5.133) is generated by using u

through the three-point centered finite difference operator, which is
& . S 7 e "
35 (0) = FaDIG)uim1) + F3D2i)ucli) + FID3(iJulipl). (5.135)

See dix D for the coefficients of the finite diff

The king resi: is d by i ing the pressure over the

wetted area of the hull surface. It is given as:

R=-3 [ PONLS(Q), (5136)

where N(q) represents the unit normal component in z direction to element
g; P(q) is the pressure on element g, expressed as the linear function of the
pressures at node P(i), (see Section (5.1.7) ). The pressure P(i) is calculated
from two orth 1 ial velocity at node i, since the normal

wvelocity components on the hull are zero. P() is given as:
PG) = 3607 - (6) + 2, (s.137)

where u,(i) and v(i) denote two orthogonal velocity components. Both u(i) and
(i) are calculated by applying the three-point centered finite difference formula
for the points off the edge, and a two-point finite difference formula is used to
compute these two velocity components for the points on the edge of the ship
surface mesh.

The wave resistance coefficient C,, is calculated by using equation (5.83) which
has been used in the indirect algorithm of the present study. The surface area 5§
in equation (5.83) is calculated by adding up the areas of all panels on the wetted
ship hull surface.



5.3 Applications and Comparisons

5.3.1 Submerged ellipsoid: Indirect method

The method based on the indirect boundary integral theory developed in the
foregoing sections is presently applied to analyse the wave pattern and to compute
the wave-making resistance for a submerged prolate ellipsoid advancing with a
constant speed in water. The reason for choosing an ellipsoid is that theoretical
and numerical results are available for comparison purposes. A steady flow pass-
ing an ellipsoid has been studied through theoretical analyses by Havelock (1931a,
1931b), and Farell (1973). The same problem has also been solved by Doctors and
Beck (1987) through a numerical procedure based on the Kelvin source method.
Both the theoretical analyses, by Havelock and Farell, and the numerical analysis,
by Doctors and Beck (1987), are based on solving the Neumann-Kelvin problem.
Therefore, these results can not be directly used for comparison with the present

computation, since the present ion solves a new linearized ship wave
problem in which the free surface condition is different from the one found in the
Neumann-Kelvin linear ship wave problem. In order to compare with the existing
results, the present algorithm is also applied to solve the Neumann-Kelvin prob-
lem, since the Neumann-Kelvin linear ship wave problem is a special case of the
present linearized ship wave problem. When the thin ship condition is satisfied,
the double-body flow 8%/8¢ becomes the constant flow on which the Neumann-
Kelvin linear free surface condition is based. By substituting 88/0¢ = ~U into

the expressions of the coefficients in the present linearized free surface condition



given by cquations (5.2) to (5.7), we have

A= U (5.138)
B =0 (5.139)
C =g (5.140)
D = (5.141)
E =0 (5.142)
H =0 (5.143)

The present free surface condition then reduces to the Neumann-Kelvin free
surface condition. By simply using the above six lines, equations (5.138) to
(5.143), in the computer program of the present algorithm instead of computing
them by using equations (5.2) to (5.7), the solution to the Neumann-Kelvin prob-
lem by using the present algorithm is obtained. If the results obtained by solving
the Neumann-Kelvin problem through the present method match the theoretical
solution and the numerical results by Havelock (1931a, 1932b), Farell (1973), Doc-
tors and Beck (1987), the conclusion can be drawn that the present algorithm and
the corresponding numerical techniques are accurate and the computer program
is robust. Furthermore, if the present method solving the present linearized prob-
lem gives different results from those obtained by solving the Neumann-Kelvin

problem, a conclusion can also be drawn that the extra terms in the present con-

dition (in ison with the N Kelvin free surface condition, see Table
3.1 ) do contribute to the solution of the problem. To prove that the present
free surface condition is more accurate in modelling the physical problem than

the N Kelvin problem, 2t with i 1 data have to be




made. This will be shown in the next section where the surface ship cases are
discussed, since many reliable experimental measurements are available on wave
pattern and wave-making resistance for surface ships.

In order to give a general idea of how much diflerence between the results given
by Dawson's linearized problem from the present linearized problem, Dawson’s
linearized problem is also solved by using the present method. It is very easy to
convert the present computer program to solve Dawson’s linear problem, which
is simply to change the six lines for calculating the coefficients given by (5.2) to
(5.7) into

&= (? (5.144)
Xad
5 = 2%, (5.145)
g = g3 (5.146)
D=0 (5147)
E =0 (5.148)
L L
# = 25722 (5149)

where  is the double-body potential, and £ is the double-body streamline.

The numerical procedure of the preseat indirect method has been discussed
in Section (5.1). Applying the method to solve the submerged prolate ellipsoid
advancing with constant speed follows exactly the six steps explained in that
section. The dimensions of the prolate ellipsoid considered in this example are
a=5.0m,b=10m, wherea the

jor axis and b the
semi-minor axis of the ellipsoid. The streamline bounded triangular panels on
the fluid free surface mesh and the triangular panels on the body surface mesh
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are shown in Fig. 5.3. Since the application of the symmetrical condition is
considered, only Ealf of the body and half of the free surface are paneled. Fig.
(5.3.2) shows the free surface mesh with the body underneath it, which gives
the dimensional relation between the ellipsoid and the free surface mesh. The
size of the free surface mesh and the size of the panels are determined by the
Froude number, (see Appendix C for details). Fig. (5.3.b) shows the free surface
mesh only, from which the streamlines can be clearly seen. The total number
of panels on the free surface is 2880. The total node number, which represents
the number of unknowns distributed on the free surface, is 1573. Fig. (5.3.c)
shows the panelization on the surface of the ellipsoid. There are 228 nanels and
138 nodes on the mesh of the body surface. The total number of panels on the
body surface and the free surface is 3108. The total number of nodes, which is
the number of unknowns, is 1711. From these numbers it can be seen that the
present ithm using tri lization and linear unknown distribution
over elements (linear element techniques) reduces the number of unknowns in

comparison with methods using quadrilateral panelization and constant source

(constant element techni under the condition of the same size

of panels.

The wave resistance coefficient C,, for high Froude number and low Froude
number cases computed by the present method solving the present linear problem,
Dawson’s problem and the Neumann-Kelvin problem along with the theoretical
results by Farell (1973) and the numerical results by Doctors and Beck (1987) are
presented in Fig. 5.4 to Fig. 5.7. Two cases of submerged depth d/c = 0.3266 and
d/c =0.5 are involved in these computations, where ¢ = (a? — )/, The results



are presented by different type of curves which are explained in the figures, where
“Present” means the present method for solving the present linearized problem,
“Present-DS” means the present method for solving Dawson’s linear problem,
and “Present-NK” means the present method for solving the Neumann-Kelvin
problem. From these figures it can be seen that the results of using the present
method for solving the Neumann-Kelvin problem match very well the numerical
results by Doctors and Beck (1987), which match the theoretical solution by
Farell (1973) for most cases except one case. Fig. 5.6 shows the case in which
the results by Doctors and Beck (1987) do not match the ones by Farell (1973).
But the present computation and the computation by Doctors and Beck (1987)
are in good agreement.

The results produced by the present method (present algorithm solves the
present linearized free surface problem) are close to the solution of Neumann-
Kelvin problem for high Froude number cases, but they are different for the low
Froude number cases. These differences are believed to be due to the contributions
of the double-body streamline effect and the extra terms (in comparison with the
Neumann-Kelvin free surface condition, see Table 3.1) in the present free surface
condition.

One example of a surface wave pattern generated by the motion of the ellipsoid
is presented in Fig. 5.8.

The results obtained by solving Dawson’s linear problem are close to those
obtained by solving the present linearized problem. This is because the terms
missed in Dawson’s free surface condition are relatively small in these submerged
cases. Differences will appear in the surface ship cases.



5.3.2 The numerical towing tank: Direct method

A. Hull and taok data

The linear numerical towing tank developed in the present study by using the
direct boundary integral theory and the linear element techniques is presently
used to analyse the flow parameters for two ship hulls, one mathematically defined
ship hull — the Wigley hull, and one realistic ship hull — Series 60 ship hull with
block ratio Cy = 0.60.

Wigley's parabolic hull form has been the subject of extensive experimental,
theoretical and numerical studies, (see Chen and Noblesse (1983) and McCarthy
(1985) for reviews). The offsets of the Wigley hull are given by the equation

v=30-CEri- G, (s150)

where b, L and d represent the beam, the length, and the draft respectively, which

are chosen, in the present computations, as:

L = 40m;
b = 0.4m;
d = 0.25m.

The triangular panelization of the Wigley hull is shown in Fig. 5.9, viewing
from top, side, and 3-D respectively. A rendered surface of the Wigley hull is
shown in Fig. 7.1.

The Series 60 ship hull, Cy = 0.6, has been the most popular realistic ship
bull in wave resistance studies, (see Todd (1953) for the details of the ship forms
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and offset tables). The model dimensions used in the present computations are

given as:
L = 40m;
b = 0.5332m;
d = 0.2133m.

The panelization of Series 60 hull is shown in Fig. 5.10 with top, side, and 3-D
views. In this figure only the hull surface below the design load waterline (the ship
wetted surface), which is the part of the ship surface used in the computation, is
plotted. A rendered surface of the Series 60 ship hull is also shown in Fig. 7.2.

As has been discussed in Section (5.2.1), the size of a numerical towing tank
is flexible. It can be chosen to model any specific real towing tank found in
a laboratory. Since several i are used for ison purposes, an

approximately averaged size of these real towing tanks is selected to be the size
of the numerical towing tank in the present numerical experiments. However,
because of the limitation of the computer memory only the section of the tank
close to the model is simulated. The length of the section was chosen 4 times the
length of the ship to be tested, both for Wigley hull and Series 60 ship hull.
The dimensions of the present numerical towing tank for the Wigley hull are

given as:
Lyr = 16.0m,
Byr = 144m,
Dyr = 2.0m,

where Lyr represents the length of the tank section to be simulated, Byr and
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Dir represent the width, and the depth of the tank respectively. In the compu-
tation only half of the tank is paneled and the width of the half tank is 1Byr.
The panelization of the present numerical towing tank along with the Wigley hull
are shown in Fig. 5.11. The panel numbers on the tank and on the Wigley hull
are 2432 and 288 respectively, which make 2720 the total number of panels used.

The dimensions of the numerical towing tank for the Series 60 ship hull are

given as:
Lyr = 16.0m,
Byr = 128m,
Dyr = 3.2m.

The panelization of the numerical towing tank along with the Series 60 ship
hull are shown in Fig. 5.12. The panel numbers on the tank and on the ship hull
are 2048 and 320 respectively, which make 2368 the total number of panels used.

B. Computations and comparisons for Wigley hull

Experimental testing for the wave clevation and wave resistance for Wigley

bull has a long history. Chen and Noblesse (1983) investigated the experimen-

tal data and luded that iderable variations generally existed among the
experiments. Recently new experiments have been carried out at the University
of Towa (Ju 1983), the University of Tokyo (Kajitani,1983), Ship Research Insti-
tute (Tanaka, 1983), and Bulgarian Ship Hydrodynamics Center (Kostov 1983).
Good agreement has been obtained by these experimental measurements. These
experimental data are used in the present comparisons.
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The models used in the above mentioned experiments are listed as:

SRI| UT | [OWA [ BSHC
I (m) | 40 | 25 | 3.048 | 6.086
b(m) [ 04 | 0.25 | 0.3048 | 0.610
d (m) | 0.25 | 0.156 | 0.1905 | 0.381

Table 5.1 Dimensions of the Wigley hull models used in the experiments

In Table 5.1, SRI represents Ship Research Institute(Japan), UT University
of Tokyo, IOWA University of Iowa and BSHC Bulgarian Ship Hydrodynamics
Ceater.

The dimensions of the tanks used in the above mentioned experiments are

listed as:

SRI| UT | IOWA | BSHC |
Iz (m) 91.44 | 200.0
Br (m) | 180 | 3.5 | 3.048 | 160
Dr (m) | 10.0 | 2.35 | 314 | 65

Table 5.2  Dimensions of the tanks used for Wigley hull experiments

In Table 5.2 L7, Br and Dr are respectively the length, width and depth of
the tank. Some data were not specified in the source references. They are kept
empty in the table.

C i between the d and the wave profiles for four

Froude numbers, Fy = 0.250, F, = 0.267, F = 0.289, and F, = 0316, are shown
in Fig. 5.13 to Fig. 5.16, where z; is a nondimensional coordinate along the
ship length with the bow at —1.0 and stern at +1.0, H is a nondimensional wave
elevation which is defined as H = 27g/U?, 7 represents the wave elevation, and
U represents the model speed. The Froude number is defined as F, = U?/v/gL,
again L is the length of the ship. In these figures, the solid line represents the
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present computational results, the dash-dotted line represents the experimental
results obtained at the University of Tokyo, the dashed line represents the exper-
imental results of Ship Research Institute(Japan).

From Fig. 5.13 to Fig. 5.16 it can be seen that the wave elevations obtained
by the present numerical towing tank match the experimental results fairly well
and for all the Froude numbers which have been tested. Some differences are
found at the bow, with the numerical waves lower than the ones obtained by the
experimental measurements. This is mainly due to the linear property of the
present algorithm as will be shown in the next chapter.

Fig. 5.17 gives a 3-D view of the wave pattern generated by the Wigley hull
at Froude number F, = 0.267, in which the pattern of diverging and transverse
waves are shown clearly.

Fig. 5.18 shows the wave resistance coefficient C,, obtained by the present nu-
merical computation and the experimental results by UT(Kajitani, 1983) SRI(Kajitani,
1983), IOWA (Ju, 1983), and BSHC(Kostov 1983). From this figure it can be seen
that the experimental results are in good agreement and the numerical results by
the present computation match them well too.

In order to compare Dawson’s free surface condition with the present free
surface condition, Dawson’s free surface condition is also implemented in the
present linear numerical towing tank. As has been discussed in Section (5.3.1)
the implementation of Dawson’s free surface condition is very simple. It only
necessary to change the coefficients in the computer program, which is just a
matter of six lines. The results of solving Dawson’s linear problem by the present

direct algorithm are plotted in Fig. 5.19 along with the results of the present



method and the experimental data. Comparisons show that Dawson's free surface
condition give almost the same results as the ones obtained by the present method
and all of them match the experimental data for the Wigley huil case.

Many numerical computations can be found in the literature for calculating
the wave-making resistance for Wigley hull. These mainly fall into two groups.
Oxe group is based on solving the Neumann-Kelvin linear problem to compute
the wave-making resistance, and the other is based on solving Dawson’s linear
problem to compute the wave-making resistance. In order to compare these
two linear ship wave problems and also compare their results with the present
computations, the Neumann-Kelvin free surface condition is also implemented in
the present computation. The wave resistances obtained by solving the Neumann-
Kelvin problem are plotted in Fig. 5.20 along with the results of solving Dawson’s
linear problem, the results solving the present linear problem, the experimental
results as well as the thin ship theory solution. The comparison shows that the
results solving the Neumann-Kelvin linear problem matches the results solving
Dawson's linear problem, the results solving the present linear problem and the
results experiments as well. Fig. 5.20 also shows that the thin ship theory gives
a reasonable prediction of the wave-making resistance for Wigley hull.

It should be mentioned that the Neumann-Kelvin free surface condition used
in the present numerical towing tank is satisfied along .he streamlines and is
expressed as:

‘?g’ +gT - (5.151)

In the original Neumann-Kelvin free surface condition, the streamlines for the

main flow are parallel to the x-axis, and are penetrating the hull surface, (see
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Aanesland 1986). It is the simplest kind of flow and easy to use in the Kelvin
source method. But at the same time it is obviously in conflict with the physics
of the flow going around the ship hull. Although equation (5.151) has some
small differences with the original N Kelvin free surface condition, the

difference should bring the results closer to the real physical problem. Equation
£.151) has been used by Raven (1991).

Fig. 5.21 gives a comparison between the results obtained by solving Dawson’s
linear problem using the present method with five computational results found in
the literature which were published by Dawson (1979), Mori and Murata (1983),
Ogiwara (1983), Aanesland (1986), and Xia (1986) respectively. These four com-
putations all solved Dawson’s linear problem and all applied the Rankine source
method. Good agreements are found in the comparisons.

Fig. 5.22 shows a comparison between C,, obtained by solving the Neumann-
Kelvin linear problem using the present method and the C,, computed by solving
the same Neumann-Kelvin linear problem by Chang (1979), Hong (1979), Tsai
et al (1983), and Baar (1986) respectively. Good agreements are also ivand in
these comparisons.

Finally, results for C, by solving the Neumann-Kelvin linear problem, by solv-
ing Dawson's linear problem, and by solving the present linear ship wave problem
obtained in the present computation and the computational results found in the
literature of solving Dawson’s linear problem and the Neumann-Kelvin problem
are plotted in Fig. 5.23. This comparison sh.ws that fairly good agreements are
obtained by the computations and they match the experimental results.

In the above i i all the data, i or exper-
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imental, are for model fixed, since in the present computation the sinkage and
trim of the ship are not considered.

One more remark should be mentioned. Some computations found in the lit-
erature, such as the ones by Tsutsumi (1979, solving the Neumann-Kelvin linear
problem), by Suzuki(1979, solving the Neumann-Kelvin linear problem), and by
Nakatake(see Baba 1979, solving Dawson’s linear problem), do not match any of
the other computations and do not match any experimental results. These com-

putations were not included in the present ison. Baar (1986) i

these ions and luded that the di must be mainly ascribed

to the errors occurring in these evaluations.

C. Computations and comparisons for Series 60 ship hull

Series 60, block 0.60, hull has been one of the most important hull form
for evaluating computational methods and also the model testing procedures.
Many efforts have been made to produce reliable measurements. In 1983, the
ITTC resi Commi ized a co-operative effort between its member

organizations to produce a comprehensive data base of hull flow and resistance
components. Results have been collected in the report “ Collected Experimental
Resistance Component and Flow Data For Three Surface Ship Model Hulls” by
the David W. Taylor Naval Ship Research and Development Center (McCarthy
1985). These results are believed to be the most recent and reliable experimental
data. All (except only one by Huang 1972) the experimental data for Series
60 used in the present study are from this report. Since the sinkage and trim
of the ship are not modeled in the present study, the experimental data used
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for comparison are all those data obtained under the condition of model fixed
(without sinkage and trim).

A list of the names of the institutions whose experimental data are used in
the present study is given as:

Bulgarian Ship Hydrodynamics Center (BSHC), (Kostov, 1983);

China Ship Scientific Research Center (CSSRC), (Zbang, 1983);

David Taylor Naval Ship Research and Development Center (DTNSRDC),

(Kim, 1981);

Marine Design and Research Institute of China (MARIC), (Du, 1983);

Shanghai Chiso Tong University (CTU), (Liu, 1983);

Ship Research Station (SRS, Korea), (Lee, 1983);

Shanghai Ship and Shipping Research Institute (SSSRI), (Chen, 1083).

The experimeatal equipment used in these experiments are summarized as

follows:
Model size:
BSHC CTU | MARIC
Lot (m) | 7117 25 25
Top (m) | 7.000
b(m) | 0933 0.3333 | 0.3333
d(m) | 0373 0.1333 | 0.1333

Table 5.3  Dimensions of the Series 60 hull models used in the experiments

In Table 5.3, L, represents the designed load waterline length, L, represents
the length between perpendiculars, b represents the beam at midship of the model,
and d is the draft of the ship model.

Tank size:
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BSHC | CSSRC | CTU | MARIC | DTNSRDC | SRS | SSSRL
Iz (m) | 2000 | 4740 [ 1100] 700 2000 | 500
Br (m) | 160 | 140 | 60 | 50 1551 | 160 | 60
Dr(m)| 65 | 70 | 30 | 25 67 70 | 20

Table 5.4  Dimensions of the tanks used for Series 60 hull experiments

Comparisons between the and d wave profiles are shown

in Fig. 5.24 to Fig. 5.29. From these figures it can be seen that the measured
wave profiles are quite close to each other, and the computed wave profiles match
the experimental measurements fairly well. Some small discrepancies are found
between the computational and the experimental results at the bow waves. This
is mainly due to the nonlinearity of the bow wave. Improvement will be seen
in the next chapter where the nonlinear computations of the present study are
presented. For high Froude number cases, see Fig. 5.27 to 5.29, discrepancies are
also noticed at the stern waves. This can be explained as the effect on the waves
by the hull surface at the designed load water line. In experiments the waves are
affected by the ship hull at the designed load water line, because the hull is not
vertically walled. In the algorithm of the present study the slope of the ship hull
below the designed load water line is taken care, but the slope effect of the ship
bull at the water line is not taken into account. In other words, the ship bull at
the designed load water line is considered to be vertical.

A 3-D view of the surface waves generated by the constant motion of a Series
60 ship hull is presented in Fig. 5.30. Two frames of rendered surface waves
generated by Series 60 ship hull taken from the animation series are also shown
in Fig. 7.13. Thereis no 3-D available for i but the wave

patterns shown in these figures appear very much like the Kelvin wave pattern.
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A ison between the and d wave resi coeffi-

cieats is shown in Fig. 5.31. The solid line in this figure represents the present

1 wave resi: fhici

C., and the seven different marks repre-
sent the i I results d, respectively, by Chen (1983), Du (1983),
Kim (1981), Kostov (1983), Lee (1983), Liu (1983), and Zhang (1983). The com-
parison shows that the present linear model gives good prediction for the wave

resistance.

In order to compare Dawson’s linear free surface condition with the present
linear free surface condition, Dawson’s linear ship wave problem is also solved for
the Series 60 hull. The results are plotted in Fig. 5.32. In this figure the solid
line represents the results of solving the present linear ship wave problem and
the dash-dotted line represents the results of solving Dawson’s linear ship wave
problem by using the present algorithm. Unlike the Wigley hull case, Dawson’s
linear problem gives different predictions from those results obtained by solving
the present linear ship wave problem and the experimental measurements.

In Fig. 5.33 the wave resistance coefficients C,, predicted by solving the
Neumann-Kelvin problem along with the results of solving the present linear
problem and Dawson's linear problem are presented. The thin ship theory pre-
diction and the experimental data are also plotted in this figure. From this figure
it can be seen that the Neumann-Kelvin linear ship wave model predicts much
higher resistance than the i 1 The N Kelvin lin-

ear ship wave model does not give good predictions in wave resistance, but it is
better than the thin ship theory, because the ship surface condition of Neumann-
Kelvin linear ship wave model is improved while the fluid free surface condition
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is the same as in the thin ship theory.

Fig. 5.34 presents a comparison between the results of solving Dawson'’s linear
ship wave problem by the present algorithm for a Series 60 hull and the results
found in the literature for solving the same problem. Two computations of solv-
ing Dawson’s linear ship wave problem for Series 60 ship bull were found in the
literature, by Dawson (1979) and by Xia (1986). Both Dawson (1979) and Xia
(1986) solved the same Dawson’s linear ship wave problem, and different solu-
tions were obtained. However, the present computational results and the results
published by Xia (1986) are in good agreement.

In Fig. 5.35 the wave resistance coefficients of the present computation
by solving the Neumann-Kelvin problem and the results of solving the same
Neumaan-Kelvin problem by Adee(1979), Chang (1979), and Tsai et al (1983)
are plotted. A fairly good agreement is found in this comparison. All the results
of solving the Neumann-Kelvin problem, by the present method, by Adee (1979),
Chang (1979), and Tsai et al (1983) are out of the envelope of the experimental
data. This can be seen in Fig. 5.36.

In this chapter two algorithms for solving the linearized ship wave problem ob-
tained in Section (3.3) are developed. The algorithms are based on the direct and
the indirect boundary integral theories respectively. Linear clement techniques
are used in both algorithms. The indirect algorithm has been applied to a sub-
merged prolate ellipsoid. The direct algorithm has been applied to the Wigley
hull and the Series 60, Cy = 0.6, ship hull. The direct algorithm will also be
used in the next chapter to form an iterative method for solving the transformed
nonlinear ship wave problem obtained in Section (3.1).
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5.3.2 Free surface mesh with the ellipsoid underneath it
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5.10.2 Top view

5.10.b Side view

Fig. 510 Panelization of Series 60 ship hull
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6 ITERATIVE METHOD FOR SOLVING
THE NONLINEAR PROBLEM

6.1 A Nonlinear Numerical Towing Tank

of a linear

In the previous chapter the ithm and
towing tank have been discussed. Although the present linear model gives better
predictions in wave resistance and wave elevation in comparison with the linear
models found in the literature, the nonlinearity of ship waves still can not be
simulated by the linear model. The computed bow waves are still lower and
the wave resistance is still slightly higher in comparison with the corresponding
experimental data. It is the purpose of this chapter to develop an algorithm of 2
nonlinear numerical towing tank based on the nonlinear ship wave problem given
by system of equations (3.7) obtained by transforming the free surface condition
of the exact ship wave problem from being satisfied at the actual free surface
to the undisturbed fluid free surface. As has been discussed in Section (5.2),
to simulate a towing tank the boundary condition at infinity in boundary value
problem (3.7) has to be replaced by the boundary conditions on the side walls and
on the bottom of the tank. The nonlinear towing tank boundary value problem

is, therefore, written as:



in the fluid domain;
on boundary # 1
on boundary # 2;
on boundary # 3;
. on boundary # 4
((”) romeze
(”)"#ﬂ*) (6.1)
-85~
an g S
aetage +z§;(%g)=
(52 30%; — 938}
(e v =0, on boundary # 5;
The radiation cmdman.

In the above boundary value problem ¢, as usual, represents the total velocity
potential of fluid motion, U represents the speed of the ship, 7 denotes the unit
normal to the boundaries directed out of the fiuid, and the coordinate system and
the numbering system for the boundaries of the tank are the same as explained
in Section (5.2.2).

The fundamental idea of the itesative method for solving the above nonlinear
boundary value problem, and the linearized free surface condition to be solved at
each iteration have been discussed and derived in Section (3.2). In this chapter the
iterative mechanism and the algorithm are detailed together with applications.
Both the direct and the indirect boundary integral methods discussed in Chapter
5 can be used to solve the linearized boundary value problem which needs to be
solved in eact iteration. However only the direct boundary integral algorithm
developed in Section (5.2) is applied in the present study to develop a nonlinear
towing tank which will be used to model surface ship toving tank experiments.

Replacing the boundary condition at infinity in boundary value problem (3.21)
by the conditions on the boundaries of the tank, the linear towing tank boundary
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value problem which needs to be solved in the iterations is written as:

in the fluid doma.m

$838383
§§'§~§§

Ty #

#

#

#
AZ$+B¥+C2 =R, #
The radiation condition.

(62)

The coefficients A, B, C, and the right hand side R in the free surface condi-

tion are given agair. as:

A
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(65)

(6.6)

Comparing the above linear boundary value problem with the linear boundary
value problem (5.99) solved in Section (5.2) it can be seen that the differences
between them are in the expressions of the coefficients A, B, C, and the right
band sic= R. Therefore the algorithm of the linear towing tank developed in
Section (5.2) can directly be used in each iteration to solve the linear boundary
value problem (6.2). The changes needed in the iterations are the computations
of A4, B, C and R. In the linear towing tank algorithm these coefficients were
computed by using equations (5.100), (5.101), (5.102) respectively, and the right
hand side (H was used to represents the right side in the linear towing tank



problem) was computed by (5.103). In the iteration discussed in the present
section the coefficients A, B, C, and the right hand side R are calculated by
using equations (6.3), (6.4), (6.5) and (6.6) respectively.

In each iteration the same boundary value problem is solved with 4, B, C,
and R upgraded by using the results of the previous iteration. The procedure
can be explained as follows:

Step 1:

In the first iteration (step 1), the total velocity potential ¢ is set to be

$=br=4do+ ¢, (6.7)

where ¢, represents the total velocity potential to be solved in the present step,
¢o is the initial value which can be chosen arbitrarily, and ¢} denotes the potential
increment of the present iteration.

Then the boundary value problem to be solved in this step is written as:

in the fluid domain;

on 5
on boundary # 3; (6.8)
on boundary # 4;
o %

R,
The coefficients 4, B, C, md the nght hand side R are computed by replacing

@ by ¢ in equations (63), (6.4), (6.5), and (6.6), which gives:

4= sg[( )’-( )’l ou?
YL ).Wu ),8@«9'4.

-s"““(a“')’— + 4“" """U‘ (69)
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*3( By - )’(aza;)’
-( )’0’5?8?4—0( LY (6.12)

Having calculated the coefficients A, B, C, and the right hand side R, the
boundary value problem can then be solved by applying the direct boundary
integral algorithm (the linear towing tank) developed in Section (5.2). It is noted
that in this process the total velocity potential ¢ is directly solved for instead
of the potential increment ¢{, which makes the iteration and the computation
simpler and easier.

Step 2:

In the second iteration (step 2), the total velocity potential is set to be

b=ba=h+éh (613)

where ¢; is the total velocity potential to be solved in the present step, ¢ is the
velocity potential obtained in the previous step, (step 1), and ¢ is the increment
to the velocity potextial in the present iteration.

Then the linear boundary value problem to be solved in this step is written

Vg, =0, in the fluid domain;

$=0, on boundary # 1

7V =0, on boundary #

-V =-U, on boundary # 3; (6.14)
7-Véy=0, on boundary # 4

AZE + B 0% = on boundary # 5;

The radiation condition.
Th- =cefficients A, B, C, and the right hand side R in the free surface (bound-
ary #5) condition are defined by the following equations:

141



sai %y - (G- v

3 3 B
Bt
3‘1 5¢x); 3‘:5"1
8{ 8z’ otz z 68

5,5
el ”faf -
3 A 38, 3%,
5t gpas * 3(_)' Bz 0B
361,80 Oy 06108 a’m

=1 e, 2
*’(a a) 5 3t aza,a. )
%06, Py, 06 P
230 5 (6[6:) N  566:0

9% );?h

«% PO _ 0686

~yGhpZhlh S Thyy

o6 oz oz ar

2+ By Z,w,
+(—)'"’ 2(—)'('—)
5 2050
G )’(azaz):”’ 3t 30z
aﬁ 3’& (3¢x):y 6
3t
08T 2
%o o oz * o -
BTG - 3 e+ (GO

Sy(—)’yh 31 94 P

a= +69 ﬁ’a?gfaz
3
e - AR

142

(6.15)

(6.16)

(617)
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Step 3:
In the third iteration (third step), the total veiocity potential is set to be
$=d1=¢1+ ¢}, (6.19)

where ¢ is the total velocity potential to be solved in the present step, ¢, is
the velocity potential obtained in the previous step (it is the sum of first and

second iterations), and ¢} is the increment to the velocity potential in the present

iteration.

R ing the same dure as explained in step 2 until the differences be-
tween the velocity ials of two ive iterations becomes small enough,
ie

(¢ — dina) < A3, (6-20)
where ¢; and ;41 denote the velocity potentials of ith and (i + 1)th iterations
respectively, and A is the error tolerance which is determined by the accuracy
requirement of the computation.

Once equation (6.20) is satisfied, ¢;4, is the solution of the nonlinear boundary
value problem (6.1).



6.2 A Discussion on the Convergence of the Method

There are two convergence problems that need to be discussed in the present
iterative approach. They are the convergence of the iterations and the conver-
gence of the Taylor’s series expansion of the free surface condition. As has been
discussed in Section (3.2), there is no theoretical foundation for the present itera-
tive scheme to be convergent for any kind of nonlinear boundary value problems,
but it has been proved that if the iteration is convergent, the converged solution
will be the solution of the original nonlinear boundary value problem. Numerical
experiments show that the present iterative scheme is stable and efficient in solv-
ing the nonlinear ship wave problem. All the computations in the present study
have converged without any difficulty.

It is the major purpose of this section to discuss the convergence of the Taylor’s
series expansion of the free surface condition which has been presented in Section
(8.1). As it is noted only the terms up to the first order in 7 in the Taylor’ series
are kept in the free surface condition of the nonlinear ship wave problem solved
in the present study. Theoretically there is no limitation for the number of orders
to be kept in the Taylor’s series expansion of the free surface condition. However,
practically it is very difficult to keep higher order terms, because of not only the
complexity of the problem, but also because of the higher order derivatives in the
Taylor’s series which usually create difficulties in their ical It

is difficult directly to analyse the convergence speed of Taylor's series expansion
of the free surface condition in the nonlinear ship wave problem. The nonlinear
perturbation theory developed by Pawlowski (1992b) is, therefore, used here to
discuss the convergence of the Taylor's series of the free surface condition.
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As has been reviewed in Section (2.5), the one-to-one domain transformation
theory developed by Pawlowski (1992a) considers not only the nonlinearity of
the free surface condition but also the slope of the ship hull. Therefore not only
the free surface condition is but also the i bility condition

on the hull surface. However, if the theory is applied to the cases considered
in the present study, i.e. the ship hull at the design load waterline is assumed
to be wall-sided, the impermeability condition in Pawlowski’s theory reduces
to the same condition used in the present study. Therefore, the free surface
in the computational domain obtained through the domain transformation can
be directly used to compare with the present nonlinear free surface condition
obtained through the Taylor's series expansion.

Through the domain transformation (Pawlowski 1992a), the nonlinear ship
wave problem with an unknown free surface is transformed into the computa-
tional domain with a known flat surface. The nonlinear boundary value problem
in the computational domain is solved by a nonlinear perturbation approach
(Pawlowski 1992b). The details of the domain transformation theory and the
nonlinear perturbation approach have presented in Section (2.5) of this thesis.
Up to the first order nonlinear perturbation, the total velocity potential is the
sum of zero order solution and the first order solution, which is given by equation
(2.51).

Through the nonlinear i dure developed by Pawlowski (1992a,

1992b) not only a perturbed nonlinear solution of a ship wave problem can be

obtained but also the g of the bati dure can be deter-

mined. The purpose of the present section is to apply this theory to discuss the



convergence of the Taylor’s series expansion of the free surface condition used in
the present study.

By substituting equations (2.49) and (2.51) into the first order nonlinear free
surface condition (2.48) and comparing with the nonlinear free surface condition
in the nonlinear ship wave problem solved in the present study given by system
of equations (6.1), it can be found that they are the same. This means that
the present study solves the same problem as the nonlinear perturbation theory
developed by Pawlowski(1992a, 1992b) up to the first order perturbation for the
wall-sided ships. Therefore the convergence of Taylor's series of the free surface
condition used in the present study can be determined through the nonlinear
perturbation theory.

The convergence of the nonlinear perturbation can be approximately deter-
mined by studying the relation between $(%) and $(*). If () is the major contri-
bution to the total velocity potential & and $(!) represents only a small portion of
@, then it can be concluded that the perturbation up to the first order is accurate
enough for solving the problem, otherwise higher order terms have to be consid-
ered in the perturbation. For this purpose the relation between ) and #(*) can
be expressed by the wave resistances to the ship produced by these two poten-
tials which represent the overall effect, and by the velocity components along the
waterline also produced by these two velocity potentials which represent the local
effect.

The wave resistance coefficient C,, computed by the zero order solution $(°)
and the total velocity potential up to the first order & = &%) + (") are plotted in
Fig. 6.1. The C, computed through solving Dawson’s linear ship wave problem
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and the experimental data are also plotted in this figure. It can be seen that the
zero order C, of the nonlinear perturbation theory predicts the major part of the
wave resistance. It is higher than the experimental data, but it is still slightly
better than the one predicted by Dawson’s linear model. The total wave resistance
coefficient predicted by including the contribution of the first order perturbation
matches very well with the experimental data. The difference between the total
wave resistance computed by & = & + () and zero order wave resistance
computed by (% is the contribution of $(*). From this figure it can be seen that
the contribution of #(*) is much smaller than the contribution of $(°).

In Fig. 6.2 the nondimensional vertical fluid velocity components w(®)/U and
w(")/U produced respectively by $(%) and $(*) along the waterline are plotted. In
this figure the solid line represents the vertical velocity corresponding to () and
the dashed line represents the vertical velocity corresponding to (*). From this
figure it can be seen that the first order perturbation contributes only a small
portion in terms of vertical fluid velocity.

In Fig. 6.3 and Fig. 6.4 the nondimensional horizontal fiuid velocity compo-
nents u(®/U and u®/U produced respectively by () and $(*) along the water-
line are plotted for two Froude numbers. In these figures the solid lines represent
the hori velocity ponding to #(%) and the dashed lines
represent the hori: 1 velocity ding to $(*). From these

Sgures it can also be seen that the first order perturbation contributes only a
small portion in terms of horizontal fluid velocity.

From the above analyses and the comparisons with the experimental results,
a conclusion can be made that by considering up to the first order nonlinear per-
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turbation in the nonlinear perturbation theory developed by Pawlowski (1992b),
good computational results can be obtained and it is accurate enough for practi-
cal applications. Since the Taylor's series used in the present study is equivalent
to considering up to the first order nonlinear perturbation, the present approach
based on the free surface condition obtained by keeping the terms up to the
first order in 7 in the Taylor's series expansion should be accurate enough in the

applications.

6.3 Applicati and C isons

PP P

The present nonlinear numerical towing tank based on the iterative method
bas been used to compute the wave elevation and the wave resistance for the
Wigley hull and Series 60, block 0.6, ship hull which have been used in the
applications of the linear numerical towing tank in Section (5.3.2). The same
range of Froude numbers have been computed. All the considered cases converge
without any difficulty. In these computations the initial values of ¢ are chosen
to be the corresponding double-body potential & on the undisturbed fluid free
surface which makes the first iteration exactly the linear solution presented in
Section (5.2). In Table 6.1. the wave resistance coefficients of Wigley hull for
6 iterations are listed. The differences between the linear and the nonlinear
solutions are also listed in this table which show that the differences are relatively
small for the Wigley hull. In Table 6.2 the results of 10 iterations for Series 60
ship hull are listed, which shows the difference are large for some Froude numbers.

From Table 6.1 and Table 6.2 it can be seen that the convergence of the
iteration is stable and fast for both ship bulls and all of the Froude numbers. The

148



wave resistance coefficients versus Froude numbers for the Wigley hull and Series
60 ship hull listed in Table 6.1 and Table 6.2 are plotted in Fig. 6.3 and Fig. 6.6
respectively. In these figures the solid lines represent the nonlinear results and
the dashed lines represent the linear results. Experimental data are also plotted
in these two figures which are represented by different marks. Fig. 6.5 shows
for Wigley hull the linear predictions are accuraie enough since the hull is thin.
However, for Series 60 ship hull the nonlinear results are improved in comparison
with the linear ones which are shown in Fig. 6.6.

It should be mentioned that the wave resistance in the nonlinear algorithm is
calculated by integrating the pressure over the ship surface under the actual fluid

free surface, which is written as:

Ru=- /ws PN,dS

where WS is the actual wetted ship surface.

In Fig. 6.7 to Fig. 6.12 the wave profiles along the waterline of Series 60
ship hull for Froude number 0.22, 0.25, 0.28, 0.30, 0.32, and 0.35 are presented.
In these figures the solid lines represent the computational results of the present
nonlinear model, the dashed lines represent the experimentai data which have
been used in the comparisons presented ¢ Section (5.3.2) . From these figures it
can be seen that the computed bow waves are closer to the experimental measure-
ments than those linear predictions. Fig. 6.13 and Fig. 6.14 are the comparison
of wave profiles between linear and nonlinear computations.

A comparison between the present iterative method and the nonlinear theory
developed by Pawlowski (1992b) was also carried out in the present study. Fig.
6.15 shows the comparison of the wave resistance coefficionts. In this figure
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the solid line represents the present nonlinear results of C, for Series 60 ship
hull and the dashed line represents the nonlinear results obtained by applying
Pawlowski's nonlinear theory. This comparison shows good agreement between
the two nonlinear predictions. Small differences of order 4% are found in high
Froude number cases.

In Fig. 6.17 and Fig. 6.18 the comparisons of wave profiles along the ship
waterline are presented. Again the solid lines represent the wave profile obtained
by the present nonlinear numerical towing tank =nd the dashed lines represent
the wave profile predicted by Pawlowski’s nonlinear theory (Pawlowski 1992b).
Good agreements are found in these cases with Froude number Fn = 0.25, and
Fn =0.35. As it happens, for the wave resistance, small differences are found in
nigh Froude number cases, which is also of order 4%.

In Fig. 6.16 a comparison of the present nonlinear computations with other
nonlinear predictions found in the literature is presented. In this figure, the
solid line represents the present nonlinear results, the dash-dotted line represznts
the nonlinear results obtained by Pawlowski’s nonlinear perturbation theory, the
dashed line represents the results by Y.H. Kim (1990) through the iterative panel
method, the dash-two-dotted and dash-three-dotted lines represent the ncnlinear
results by K.J. Kim (1989), the short-long-dsshed line represents the nonlinear
results by Jensen (1989). The results obtained by Jensen, Y.H. Kim and K.J.
Kim were based on the same iterative approach, but as it can be seen from
this figure they are diverse. Jensen’s predictions on the wave resistances are
too high. They are even higher than the solutions based on Dawson's linear

model. The two computations given by K.J. Kim do not follow the trend of the



experimental data. The results by Y.H. Kim match the experimental data. The
present nonlinear predictions and the ones using Pawlowski’s nonlinear theory
are in good agreement and they agree with the experimental measurements very
well.

One more remark should be ioned. The lization in the

is one of the essential factors for the accuracy of the results. Numerical exper-
iments have shown that a2 minimum of 16 panels per wave-length are required
in applying the linear element algorithm in o:der to achieve reasonable accurate
computations. In the present study about 20 panels per wave length are used
in the computations. Also the panels on the free surface are arranged such that
their dimensions in the transverse direction are smaller in the area closed to the

ship.

Iteration Fn=0.230 | Fn=0.250
number

Fn=0.267 | Fn=0.289

Iteration Fn=0.316

number Cw 102
1 (inear) | 1.809747
2 760773 | 1647841 | 1469928

762377 | 1645854 | 1.467664
760332 | 1.643083 | 1.461152 |
-760590 | 1.643203 | 1.460916 |
nonlinear) | 1.760593 | 1.643273 | 1.460969

Diff.(%) 28 38 42
Table 6.1 Cw for Wigley hull of 6 iterations

151



Teeration Fn=0.22 | Fa=023 | Fa=0.24 | Fa=0.25 | Fn=0.26
number Cw 10-2 | Cw 10-3 | Cw 10~ | Cw 10-3 | Cw 103
[1 (Einear) 264291 | 0.226254 | 0.212484 | 0.232415 | 0.374085
258048 | 0.214740 | 0.189040 | 0.185487 | 0.267175
250831 | 0.206806 | 0.182218 | 0.182202 | 0.275875 | 0.528240
250375 | 0.205810 | 0.180369 | 0.179070 | 0.270882 | 0.521501
250268 | 0.205674 | 0.180190 | 0.178802 | 0.270494 | 0.520910
250261 | 0.205660 | 0.180166 | 0.178760 | 0.270422 | 0.521076
250259 | 0.205657 | 0.180163 | 0.178758 | 0.270422
250259 | 0.205657 | 0.180162 | 0.178756 | 0.270421

9 250259 | 0.205657 | 0.180162 0270421
T0(nonlinear) | 0.250259 | 0.205657 | 0.180162 | 0.178756 | 0270421
Diff. (%) 56 10.0 199 300 384
Teration Fn=028 | Fa=030 | Fa=031 | Fa=033 | Fa=034

Cw 10~ | Cw 10~ | Cw 10~ | Cw 10~3 | Cw 10-3
1.626606 | 1.621662 | 1.471720 | 1563397
1.790382 | 1.781375 | 1.811362
1.542183 | 1.334934 | 1.378793
1.582203 | 1.465533 | 1.536093
1631392 | 1527786 | 1579928
1507957 | 1.452146 | 1506726
1.602484 | 1.4 6632 | 1.532691
1607080 | 1.485688 | 1.543801
1.604875
10(mozlinear] 1.604363
Diff. (%) 11
Table 62  Cw for Series 60 hull of 10 iterations

number Cw 1073

[T (Gnear) | 1109442

8
9




Cw 10~(-3)

2,00

ul/u
0.00

4.00

3.00

1.00

0.20

0.10

-0.10

r~0.20

X Experiment Chen
% Experiment D
+  ExperimentKim
[ A4 Experiment Kostov %
®  Experimentlee
2 E perim
xpenmenzzx:mg
= Bawiowsici Zero Order . 2
| —— Pawlowski First Order
020 025 030 035 040
Fn
Fig. 6.1  Zero and first order nonlinear C,, for Series 60 ship hull
100 -080 -020 020 080 100

xL
Fig. 6.2 Vertical fluid velocity along Series 60 ship bull (Fa=0.25)

153




ul/U

ul/u

H
S
..... WU
2 POYiig
s
° \,/\\
S . B J
S
s
S
7
°
S
s
Lioo -060 =020 020 080 100

xL
Fig. 63 Horizontal fluid velocity along Series 60 ship hull (Fn=0.25)

°
B
S
..... ut /U
e «OU
s
< \-\
2 et el 1Y
S == === =
°
S
7 \
°
=
S
Lioo -060 -020 020 080 100

xL
Fig. 6.4  Horizontal fluid velocity along Series 60 ship hull (Fn=0.35)

154




4.00

Cw 10~(~3)

2,00

3.00

100

Experiment BSHC
Experiment IOWA
Experiment SRI

ep+0

P
resent linear
resent nonlinear

/’.?-“c?r-f/

030 035 040 045

Fn
Fig. 6.5 Comparison of nonlinear C,, for Wigley 60 hull

°
5
¥ [X  Experiment Che

I pbHmearfu™
o| e
S L&
Fe 1.9 x
<
=
H .
&

:\_‘.“) i
° 74 R
Ll /o 8 XO
5 - -
o Q

° %
e AT~
=
020 025 030 035 040

Fn
Fig. 6.6 Comparison of nonlinear C,, for Series 60 ship hull

155




0.40

0.20

i
0.00

-0.20

~0.40

100

Fig. 6.7

&

0.40

-080 -020 020 080 100

xL
Comparison of nonlinear wave profiles for Seties 60 hull (Fn=0.22)

0.20

H
L
D
L

i Kim
mp. Nonlinear

i}
0.00

-0.20

0.40

Fig. 6.8

-060 -020 020 080 100

xL
Comparison of nonlinear wave profiles for Series 60 hull (Fn=0.25)




040

Huad
~ L
5 AR .
i W Kim ¥4
g omp. Nonlinear 7
e B
=S b
S
°
o
4
°
-
>
Lioo -080 -020 020 080 100

xL
Fig. 69 Comparison of zonlinear wave profiles for Series 60 hull (F=0.28)

040

020

H
0.00

~0.20

s 1

tl-!)ﬂ -080 -020 020 080 100

xL
Fig. 6.10 Comparison of nonlinear wave profiles for Series 60 hull (Fa=0.30)

157




0.40

Experiment Huan

S Experiment Du -

= Experiment Kim
Comp. Nonlinear

s

=2

3 —

3 /|

o B

3

7

s

=

3

Li00 -080 -020 020 080 100

xL
Fig. 6.11 Comparison of nonlinear wave profiles for Series 60 hull (Fn=0.32)

°
=
S
- Experiment Huang
o |/ periment Du
Sk v
7/ 3 Experiment Kim 4
1/ 3, omp. Nonlinear
> \\
=2
- =
eSS
24
s P
$
=
°
=
S
Lioo -080 -020 020 0s0 100

xL
Fig. 6.12 Comparison of nonlinear wave profiles for Series 60 hull (Fn=0.35)




0.40

°
~ 4
e /N | |- Comp. Linear
Comp. Nonlinear
=z
o /
o
¢ ==
°
-
S
Lioo -080 -020 020 080 100

xL
Fig. 6.13 Linear and nonlinear wave profiles of Series 60 hull (Fa=0.30)

-
-
3
<
] o\
c 7 | 0 |e==== Comp. Linear Z
Comp. Nonlinear
g N
=3 v
" /
N
o Pl
g N
s
=
3
L100 -080 -020 020 080 100

xL
Fig. 6.14 Linear and nonlinear wave profiles of Series 60 hull (Fn=0.35)

159




4.00

¥ ExperimentChen
4 menl D
+  Emerm
s & sxpenmm Kultov
® Experim
52 |2 Experime nlh
77 [LO... Exberiment Zhang
- Pawlowsks Ronlinear X
X 2B Errsent Nonfiaans
8
52 A
o
X
°
2
.
+
°
S AT
s
020 025 030 035 040
. Fn
Fig. 6.15 Comparison of nonlinear C,, for Series 60 hull
°
e
< Experiment Chen
riment Du
°
52
P
<
=
°
&
&
°
s
°
3
S
020 025 030 035 040

Fn
Fig. 6.16 Comparison of nenlinear C,, for Series 60 hull

160




040

°
o
Y\ | |---- Pawlowski Nonlinear
—p t Nonlinear
°
=2
S
) /-\/
o
S
T

100 -080 =020 020 080 100

xL
Fig. 6.17 Comparison of nonlinear wave profiles for Series 60 hull (Fn=0.25)

0.40

020

/ \ Pawlowski Nonlinear
Present Non
o N
=3
S
°
S
s
7
°
s
S
Lioo -080 -020 020 080 100

xL
Fig. 6.18 Comparison of nonlinear wave profiles for Series 60 hull (Fn=0.35)

161




7 VISUALIZATION AND ANIMATION

In order to enhance the interpretation of the results obtained from the compu-
tations, a visualization and animation system is also implemented in the present
numerical towing tank. Through this system not only the physical motions of a
towing tank experiment, such as the ship motion and wave propagation, can be
produced but also some properties which can not be easily seen in a towing tank
experiment, such as the velocity field in the fluid and the pressure distribution
on the ship hull could be visualized.

The principle of computer visualization or animation is simple. Techni

of applying the hardware, software and the development of application software
based on existing software to produce the best effect are the major tasks of this
kind of work. Today, there is no need to develop the basic visualization and
animation tools, such as a render or a color mapper, since software is available
for this purpose. However, application interfaces or programs are usually need
to be developed to use the existing software to produce a specific visualization

or animation. In the present ical towing tank visualization and

system, a software package called Advanced Visual System (AVS) is used and

Tun on a mini at the C ional Hydrod Lab

of NRC. AVS is an application visualization software which was built based on

the software called Dynamic Object Rendering Environment (DORE). Some ap-

plication modules were developed in the present study to meet the needs of the
3 sank Vieiataaiion sl .

Fig. 7.1 and Fig. 7.2 show the rendering surface of Wigley hull and Series 60
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ship hull respectively.

In Fig. 7.3 to Fig. 7.8 the pressure distribution on the Wigley hull and Series
60 ship hull viewing from 3-D and front are presented. In these figures the pressure
is represented by colors. The red color represents the high pressure and the blue
color represents the low pressure on the surface of the hull. A color legend is
placed in each figure which can be used to determine the pressure for a particular
point on the hull surface. Two Froude numbers, F, = 0.25 and F, = 0.35, are
presented in these figures which show different pressure distributions on the hull.

In Fig. 7.9 to Fig. 7.12 the velocity fields on the mean water surface are
presented. Fig. 7.9 and Fig. 7.10 show the fluid velocity pattern generated by
the motion of the Series 60 ship hull at Froude numbers F, = 0.25 and F, = 0.35.
Fig. 7.11 and Fig. 7.12 show the fluid velocity pattern generated by the Wigley
hull for the same two Froude numbers as show in Fig. 7.9 and Fig. 7.10.

An animation of the surface waves generation by the constant motion of a
Series 60 ship is also developed in the present work. Fig. 7.13 shows two frames
taken from the animation Series viewed from top and 3-D. The surface wave

pattern and the wake are shown clearly in this figure.
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Fig. 7.1 The Wigley hull

hip Hull

Fig. 7.2 Series 60 ship hull (C3=0.60)
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Fig. 74 Pressure distribution on Series 60 ship hull (Fn=0.35)
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re Field Wigley hull Fn=

Fig. 7.5 Pressure distribution on Wigley hull (Fn=0.25)

ire Field Wigley hull Fn=0 35

Fig. 7.6 Pressure distribution on Wigley hull (Fn=0.35)
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Fig. 7.7  Pressure distribution on Series 60 ship hull (Fn=0.35)

Fig. 7.8  Pressure distribution on Wigley hull (Fn=0 35)
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Fluid velocity field of Series 60 ship (Fn=0.25)

Fig. 7.9

Min=182 m/s

Fig. 7.10 Fluid velocity field of Series 60 ship (Fn=0.35)



Min=135 m

Fig. 7.11 Fluid velocity field of Wigley hull (Fn=0.25)

Fig. 7.12 Fluid velocity field of Wigley hull (Fn=0.35)
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Fig. 7.13 Surface waves generated by Series 60 ship (Fn=0.35)
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8 CONCLUSIONS AND
RECOMMENDATIONS

In the present study a nonlinear boundary value problem for ship waves was
obtained by transforming, through a Taylor’s series expansion, the free surface
condition of the exact ship wave problem from being satisfied on the actual free
surface to being satisfied on the undisturbed fuid free surface. An iterative
method based on the direct boundary integral theory and the linear element tech-
niques was developed to solve the transformed nonlinear boundary value problem.
A numerical towing tank has been developed using the nonlinear ship wave prob-
lem and the iterative scheme developed in the present study. Good agreement has
been obtained between the present computational results and the results based
on Pawlowski’s nonlinear theory and they all match the experimental data of
wave resistance measured in towing tanks.

The free surface condition in the present transformed nonlinear ship wave
problem is satisfied at the undisturbed fluid free surface. Therefore, the flat free

surface mesh stays in the plane of z = 0 in the iteration. This brings many

d for the ical ing and also benefits the computations in
terms of accuracy in comparison with the iterative panel method found in the
literature, in which the surface mesh is renewed on the computed wave surface in
each iteration.

In order to compare the present method with the existing ones and to study
the linear models found in the literature, a new linearized ship wave problem,

as a special case of the present nonlinear ship wave problem, was also derived
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and solved in the present investigation. Algorithms based on both the indirect
and the direct boundary integral theories (linear numerical towing tank) were
developed to solve the present linearized ship wave problem.

The theoretical developments in the present study are mainly: the transfor-
mation of the free surface condition, the derivation of a new linearized ship wave
problem, and the development of an iterative scheme for solving nonlinear bound-

ary value problems. Beside these i hil the devel of

numerical techniques and software design is also an important part of the present
study. This includes the development of the algorithm for applying the direct
boundary integral theory, the development of the linear element techniques, and

the impl of visual and animation systems. Vectori and
parallelization were also considered in the computer programing for the algo-
rithms developed in this study.

As a result of this investigation the following conclusions are drawn:

1. The Neumann-Kelvin linear ship wave problem can only be used as an
approximation for significantly thin ships, for example 2 Wigley hull. The
results obtained by the Neumann-Kelvin linear model are better than those
obtained by the thin ship theory but they are still too much different from
the experimental data. It is, therefore, not recommended to apply the
Neumann-Kelvin linear model to realistic ships.

8

Dawson'’s free surface condition c -tains only the linearized terms of zero
order in 7 in the Taylor’s series expansion of the exact free surface con-
dition. Therefors it is still applicable to relatively thin ships. Although

Dawson’s linear model is better than the Neumann-Kelvin linear model,
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errors produced by applying Dawson’s linear model for realistic ships are

still too high.

o

The present linear free surface condition is obtained by a Taylor's series
expansion. It is more accurate than the free surface condition found in
Dawson’s linear model. The results obtained by solving the present linear

ship wave problem are close to experimental data.

L

The free surface condition of the present nonlinear ship wave problem is

satisfied at the undisturbed free serface, which brings many advantages for

cal pecially for iterative algorithms. Numerical exper-

iments show that the present nonlinear ship wave boundary value prob-
lem accurately models the physical problem. The use of the condition can
also be justified by a perturbation formulation of the problem (Pawlowski
1992b).

"

The iterative scheme developed in the present study is based on the direct
integral theory and linear element techniques. It is stable, accurate, and
efficient in solving the nonlinear ship wave problem. It can also be used to

solve nonlinear boundary value problems other than the ship wave problem.

6. The ical towing tank developed in the present i igation gives ac-

curate results for simulating towing tank experiments. With the visualiza-
tion and animation systems, the present numerical towing tank can produce

the effects analogous to the physical effects observed in a laboratory.

From the i of this i igation the following dations are




also presented:

1. Both the direct and the indirect boundary integra! formulations can be
used to solve the ship wave problem. Although they are used to solve the

same problem, the i i of the ions are different.

Different numerical considerations are needed in the development of the

two algorithms.

»

The numerical algorithm applying the linear element techniques are more
complicated than the one using the constant element techniques. Special
treatments have to be applied at the nodes of the surface mesh in the linear
clement algorithm, since they are all singularity points. The linear clement

techniques give better accuracy than the constant element techniques.

@

. It is convenient to use the direct boundary integral formulation to simulate
a towing tank. Since the unknowns distributed on the boundary of the
computational domain are the velocity potentials and their normal deriva-

tives, which are the direct values of the solution to the problem, the direct

is easier in the of the computer programs than

working with source distribution concept.

-

In many studies of solving the ship wave problem, a radiation condition
that no waves are propagated upstream from the body is imposed by using
a downstream one-sided finite difference formulation, which is also used in
the present study. This is because the radiation condition is not entirely
mathematically defined. Further studies on a mathematical definition of
the radiation condition are needed in future research.
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5.

]

The sinkage and the trim were not idered in the

in the present study. Further developments are needed to include the effect

of the sinkage and trim.

The ship hull was assumed to be wall-sided at the design waterline in the
present method. Further studies are needed to consider the slope of this

part of the ship hull.
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APPENDICES

A. Integration of [z(i) — z(q)]T(j)/m(i.q)

In the application of linear element techniques in the boundary integral method,

the following integrals have to be computed.

atii) = [ =) (A1)

wti) = [, BG=3lryasq); a2
and

aii) = [, FI=Hresiey (a3)

where a,(i,7), au(i, ), and au(i, ) are the elements of the velocity coefficient
matrices used in both the direct and indirect boundary integral formulations. In
the above equations i is a field point on the mesh; j represents the collocation
point; S(j) represent the area of all the panels surrounding j (they all have one
vertex at j, see Fig. A.l ); and r is the distance between i and the integral

clement area dS(g), which is

7(6,) = Vieli) - 2(Q)F + (@) — ¥ + () - () - (+.4)

It is noted that [z(g),3(q), 2(q)) represents the integration poirt on the ele-

ments surrounding j. z(g), ¥(q), and 2(g) are variables of integration.

The i jon is performed by considering two cases, which are the case of
field point i being not on the collocation point j, i.e. i # j, and the case of i
being on 7, i.e. i = j. It is the object of the present appendix to discuss both the

numerical integration algorithm for case 1 and the analytical formula for case 2.
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Case 1. inotonj

Since all the integrals given by equations (A.1), (A.2) and (A.3) are computed

in the same way, (A.1) is used as an example for the discussion in this appendix.

The integratior. of equation (A.1) goes through all the pancls surrounding

node point j. Let ne(j) represents the number of panels surrounding j, equation
(A.1) can be rewritter as:

nels)

wii)=-3 [ B

Pt

(A3)

where S(g) represents the area of element g; T(j, ) represents part of the tent
T(j), which covers only panel g, (see Fig. A.1). By introducing a local numbering
system T{, g) can be explained more clearly. Giving three numbers q(1), (2),and
q(3) to the three vertices of panel g with numbering g(1) at j, and q(2), g(3) anti-

clockwise numbering the rest of the two vertices of g, T(j, ) takes the values

The()] = L (A8)
T(,q(2)] = 0; (A7)
Thi,q(3) = 0. (A8)

Now, the computation of the integral (A.1) becomes the computations of ne(j)
number of integral given in equation (A.5). We have

1) = [ B2 qjasta. *9)

In the present procedure a mapping technique is used instead of using the

global coordinate system. Through the mapping, a triangular element g defined

by s verties at (1) = (1), 3(0), (1), o(2) = (o(2),4(2), (2}, aad o(8) =
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[(3),(3),2(3)] is mapped into a right-angle triangle in the plane (¢,¢) with its
three vertices at (&,61) = (1,0), (é2,G2) = (0,1), (€5,Gs) - (0.0). The linear

mapping is in the form:

z(q) = [2(1) = 2(3)¢ +{=(2) - 2(3)C + =(3); (A.10)
¥(9) = [y(1) - y(3)j¢ + [¥(2) - ¥(3)I¢ + ¥(3); (A1
() = [2(1) = 2(3))¢ +[=(2) - (3¢ + =(3). (A12)

The linear mapping maps q(1), the number 1 vertex of g, on to [€(1),((1)] =
(1,0); q(2), the number 2 vertex of g, on to [¢(2),¢(2)] = (0,1); and g(3), the
number 3 vertex of g, on to (£(3),{(3)] = (0,0). The lincar mapping also maps
the tent function T(j,q) into

T =¢. (A.13)

Applying the linear mapping to expression (A.9) gives

L= ne=ay = [ [ A o) e~ ) (O ),

(A14)
whete, r(i; €, () is given as:
r(56¢) = {l=() - (2(1) — 2(3))¢ - (2(2) — =(3))¢ - z3)
+y(3) = (¥(1) — ¥(3))¢ - (¥(2) — ¥(3)) -~ y(3)P
+{z(3) - (2(1) - 2(3))€ - (2(2) - 2(3))¢ - =(3) /D).
(A.15)
The i on in ion (A.14) is performed ically by using the

Gauss-Kronrod integration formula.
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Then 1,(4,5) is obtained by remapping /,(i;€, () back to the original coordi-

nate system, which is
LG,3) = ILE (€ =1, = 0)]. (a16)
where [J] is the Jacobian transformation, which is given as:
V=yR+ R+ 3, (a1m)
with
=151 - y@e2) - ) - b2) -y - 2@ (A1)
I = 12(2) = ()[=(1) - 2(3)] - =) - (D) - 2@ (A19)
5 = [=0) - 2)y(2) - y(3)] - =(2) - 2D - 53] (A20)
It is note that in the mapping procedure from equation (A.9) to equation

(A.14), 2(3), y(5) and (i) were not changed. This is because they are treated as
constants in the integrals.

Case2. ionj

When the field poiat i is on the collocation point j, the i ion of

(A1), (A2), (A.3) becomes special cases, since (i,j) = 0. The integrands in
these integrals are infinity at node poiat j. The numerical integration scheme for
Case 1 can not be sued to computed the integrals.

It is known that the total velocity induced by a unit source at j is
V=lim [ LiaG)-a(s)ds (a21)
=T !
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where S is the unwetted part of the surface area of a sphere of diameter 2r and
centered at j. Consider a sphere with its diameter of 2r centered at j, which is
called here the covering sphere, this sphere is cut into two parts by the paneled
surface. S is the area of one of these two parts which is inside the body or the
unwetted part. The reason of define S to be the area of the unwetted part of the

sphere is because of the definition of (i, 7). When r(i, ;) is defined as:

7(6,5) = /le@) - 2P + W) = v + 26) - 2GR , (A22)

S should be chosen the unwetted part, while (i, ) is defined as:

(i,7) = /[20) = 2@ + G - () + [20) — =()F (A.23)
S should then be chosen the wetted part. Physically, S is determined by the
direction of the source. When the source goes into the body S should be defined
by the unwetted part, otherwise the wetted part. And the definition of r(i, )
determines the direction of the source.
Also in Equation (A.21), fi(j) is the inside unit normal vector to the paneled
body surface at j, and 7(S) represents the outside unit surface normal vector
to the covering sphere; The velocity component in z direction induced by a unit

source at poiat j which is equal to a(j, 7) can then be given as:
i) Vg nali) B [ S48 (A28)
ay(5,5) = Vns —m(])rg/", » .
where n(j) is the component of 7(7) in the z direction.

Now the problem of calculating a,(7, ) becomes calculating the limit integra-
tion which is the solid angle

B=1lim [ Las, (A.25)

r=0Jsr?
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au(5,3) = na(i)B- (A.26)

B represent the solid angle at node point j subtended by the panels surround-
ing j which is the surface area of the unwetted part of a unit covering sphere.

To compute the solid angle, a local coordinate system (z”,y", 2) is adopted

with 2" in the direction of 7i(5), where fi(5) represents the inside normal at point

5 of the paneled surface. The relation between the local coordinate system and

the global coordinate system is found to be

2" = nuz' -n2; (A.27)
¥ o= (A.28)
2= nm; (A.29)
where
2 = z-2(j); (A.30)
= Lty - 3(6) - e = 2 :
R R LN R O)E (a31)
¥ = ol =300 - e = ). )
And

Jni+nd. (A33)
7z, 7y and 1, are the components of 7i(j) in the directions of z, y, and z, respec-
tively.

By i di of all the panels ing j in the local coordi-

nate system, the intersecting points of the panels and the unit covering sphere
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can be found in terms of local coordinate system. Each panel has two intersect-
ing points with the unite covering sphere. These two points plus the intersecting
point g, of the normal i with the unit sphere, three points on the unit covering
sphere are determined for each panel. The sphere area between these three points

is calculated from spherical trigonometry we have

B(q) = 4arctan m(%)m(

) (A3Y)

where & = (o + a7 + @3)/2, and o is the plane angle at g, subtended by side i
of the triangular panel ¢,i = 1,2,3.
The unwetted solid angle is then calculated by

nets)
B=73 Bla) (A.35)
=1

where ne(q) is the total number of panels surrounding the collocation point j.

Fig. A1 The tent function and it supporting clements
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B. Integration of T(j)/r(i,q)

In applying the direct boundary integral theory by using the lincar element
techniques, the follcing integral is one the most important integrals need to be
computed.

1 g

i,j) = ——T(5)dS( B.1

)= Jo ) (7)dS(a), (B.1)

where b(i,j) are the elements of the influence coefficient matrix B. Equation

(B.1) is further written as the summary of panels surrounding j as:

v oD 1 s
W)= 3 [, gy PO 4STa) ®2)

Now the problem becomes calculating the integral of

163)= [ T q)T(J.v)ds(q) (B3)

The computation of this integral for the case of i # j is the same as the
computation of equation (A.1) discussed in Appendix A. The same routines of
computing integral (A.1) were used to compute this integral by simply changing
the integrand. In this appendix the theoretical integration for the case of i = j
is detailed.

By introducing a local polar coordinate system with its original at j, (see Fig.
B.1), the tent function T(j,g) can be written as:

. rcosf cosa i
TG,9)=T(r,6) =1~ el [m - m}rm& (B4)

Equation (B.3) can then be written as:

r(.,_‘)_j'j"'"){x-‘l‘:‘-[——- 2 prsng)las, (BS)

Susina Snuna
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dS =rdrdf, (BS)
e
() = G heme (B7)
and
a = Sysina, (B8)
b = Sua-Sacosa, (B.9)
¢ = SpSusina, (B.10)

and S1z, Sz and Sy are the length of the three sides of panel g, (see Fig. B.1),
which can be calculated directly through the coordinate of the three vertices of
panel .
Substituting equation (B.6) into equation (B.5) gives
IG,j=i)= /'/"’("[1 = % = (m - s“n“)mna]b.u (B.11)
Performing the integration with respect to dr gives

a2 &, 1
IGj=1d)= -EII - ;(m ~ ’ma)lu +clur, (B.12)

where Iy, Ity and Iy are three integrals with respect to db, they are

= |, e bomap® @1

br = ju‘(umu€+hin0)’ {B:14)
1

= [ errian® (15)

Performing the integration for the above three integrals gives

—bsina —abcosa

I = F@sa-a) F@ora-b) " Fa +zTr!V"' (B.16)
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alcosa . absina 1 b .
= F a7 B@smad) & aae (BN
1
It = ﬂV,,.. (B.18)

In the above equations

decosa—bd+be+dsina
dcosa+bd—ba—dsma’

Ven = In(

(B.19)

Fig. B.1 Local polar coordinate system



C. Free Surface Panelization

In applying the iualrect algorithm developed in the present study to solve a
submerged body generated wave problem, the fluid free surface is discretized into
triangular panels which are bounded by the streamlines. Prior to the generation
of the streamlines, the size of the surface mesh and the size of the panels have to be
determined. The size of the surface mesh and the size of the panels are determined
as the function of the size and the velocity of the body under consideration. The
length of the surface mesh is determined by the wave length gencrated by the
moving body. The wave length is a function of the Froude number F, which
is defined as: F, = U/V/gL, with L the characteristic length of the body. The
length of the surface mesh is calculated by the following equation:

Ln=alL,, (c.1)

where L,, is the length of the surface mesh; a is a coefficient representing the
number of waves modelled by the mesh on the free surface; and L, is the length
of the wave which is determined by the Froude F,, in the form :

L,=2xF,L. (C2)

The element size S, in the z direction, is considered uniformly through the
mesh. The size of an element in this direction is proportional to the wave length.
From the numerical tests it is found that S; between L,/20 to L,,/12 would be
suitable for submerged object cases.

The element size in the y direction determines the location of the streamlines.
The element size in that direction, at the leftmost edge of the surface mesh must
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be ined before ing the |

In the present computations,
to save computational resources and increase the accuracy, the element size in y
direction is arranged in a way so that closer to the body the size of clements is
relatively smaller than the size of those elements away from the body. On the

leftmost edge of the surface mesh the element size in y direction is calculated by

v =(i-1)[dy +BAyiEi - 1)), (C3)

where Ay = 1.5L,/(n, — 1) and n, is the number of streamlines; 3 is a constant
controlling the size increment along y.

The location of the surface mesh relative to the body, which is defined by the
distance between the leftmost edge of the mesh and the front of the body Dy,
is also needed to be determired. Numerical tests show that Dy > L,, would be
suitable for the submerged object cases. In the present computations the relation
Dy = L, is used. Numerical experiments also show that the location of the front
of the wave generated by the body does not depend on the location of the mesh

as long as Dy is chosen large enough, (see Baddour, Pawlowski and Song 1991).
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D. Finite Difference Operators

D.1 Three-point finite diffe operator

The finite difference operators used in the present study are obtained through

2 general finite diffe imati lation which is =xp: d in terms

of Lagrange coefficient polynomial. The formula is given as:

, ntl X (1) (¢ n¥l
fi=) = g f(z5) L) + f—(n% FE#(:. -z), (D)

where L{(z4) denotes the first order derivative of the (k — 1)th Lagrange inter-
polating polynomial for function f(z) at 2,2, -2ns1. The (k — 1)th Lagrange

interpolating polynomial is given as:

Ll (@ = 2)(=z = ). (2 = Zu=1)(@ = Tusn). (2 = Tnt)
? (2 = 21)(2x — Z2)-..(2x — Za-1)(2k — Za1)- (T2 = Zag1)
foreach k=1,2,..(n+1). (02)

Equation (D.1) is called an (n +1)-point formula to approximate f/(zs), since
a linear combination of the (n + 1) values f/(z;) is used for j = 1,2,...,(n +1).

In general, using more evaluation points in equation (D.1) produces greater
accuracy, although the number of functional evaluations and growth of rounding
error discourages this somewhat. The most common formulas are those involving
three and five evaluation points. In the present study, both the three and five
points formulas are used in the algorithm.

To obtain a three-point formula the three-point Lagrange coefficient polyno-
mial and its first order derivatives at the three points are need to be derived,
which is given as:

wo- g e
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_ eale-a) |

b = e °)
_ omfe—z)

I ey e=rn (03

ey = Ezmil-=) )

(z1 = za)(z1 —73) ’
) = Emm)t(z-2)
Liz) = EoEiE o) (D.7)
La) = Eomlilz=m) 08)

(za=z)(za - 22)
Hence, from equation (D.1)
By (25— 2a) + (z; — 73)
fiz) = fla)l i _;:)(21 _h; ]
(25 = 71) + (2 = 73)
e e - =)

(z5 = 21) + (=5 — za)
+!(=:)[——(za o) ]. (D.9)

To obtain a centered three-point operator j is set to be equal to 2 and write

f(z) in a general form with respect to the center point i
£(2:) = F3D1(3)f(%:-1) + F3D2()f(%:) + F3D3()f(%in1),  (D.10)

where ; = (z;, %, %), and

F3DI(i) = Sisn)/[Se-1)iSe-nqisnli (D11)

P3D2i) = 1/Sifieny+1/Sigisn); (D.12)

F3D3(3) = SiGon)/[Ses1)6-nSe+)als (D13)
S = -\/(=i-l =z + (i1 — %) + (51— 2)%;

200



Sty = =@t = 2o + (Bomt = Boe1)? + (5ot - 2 )s

Sipen = VE =z + (= ) + (2 - 2a)

Sy = =Vl@ =zl + (= v (5 - 2

Seengion = V= 2+ @i = 3V + (e — 20)?

Sgens = V(zw =2 + (o = 0 + (5o - )

In the above equations (2i-1,¥i-1,%i-1), (i, %, 2) and (Zisr, Yarr, 541) are the

coordinates of the threc points.

D.2 Five-point d finite diffe

Following the way as explained in the three-point operator, the five-point

centered finite difference operator is obtained as:
f(&) = FSDI(i)f(Zi-2) + F5D2(3)f(%i-1) + F5D3(:)f(2:)
+FSDA(0)f(Zin) + FSDS()f (), (D.14)

where

F5D1(3) = Si(i-1)Si(i+1)Si(i+2)/[St-2.6-56-2sSG-2)641)Se-2)ti40)] 3

F5D2()) = SiGi-2)Si4n)Sigi+n)/[Sa-1.6-056-04S6-1.64S6- 1054 )]

F5D3(3) = 1/Si(i-2) +1/Sigi-1) + 1/ Siiery + 1/Siiva);

F5D4(i) = SiGi-2)SiG-nSiti+a)/ [Sern-0Seens-nSeniSunali

F5D5(3) = Si(i-2)Si(i-1)Si(is1)/[Sti2),6-2) Se42)i-1) S+ 21 Sti+artian)] -

And

Sieapimt) = —\(@im1 =zl + (Vica = i) + (o2 — 5 )
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S-a = —\/(z..z =22+ (2 = %)+ (7ea = )

2,

(

Seearorty = ~V(®ima = T + (Yom2 = %in) + (212 = 2000

Sp-2)042) = —\/[z.-: = Zia)? + (%i-2 = Yisa)? + (2im2 — ziea)?;

Se-np-2) = \/(:|—l = Tiea)? + (e = ¥im2)? + (21 = 5ma)?;

Spetpi = =V@ic = 2P + (Wi — 5 + (52 — 25

Seenist) = =V(@ior =z} + Himt = Y F (351 = 2000)

Spenpeeny = ~V(@ict = Ziga) + (Bt = iwa)? + (5o — 2025

Sy = V(@ =zl + (= weeaP + (5 = 7l

Sieny = V(@ —za P+ @ = GV + (5 = 5a)

Sigrny = —V(@ =z + (5= e + (30— 2 )

Sii+n) = —\/(=: = i) + (% — i) + (2 - zaa)?;

Srngen = V(@i = zia) + (Wiar = Biea)? + (20 = 5-2);

Sy = V@i = 2ia2) + (i = i)+ (5 = 5 )

Seens = V(@i =z + (i1 = 3 + (5 — 2%

Seenien) = —V(@ir = a2l + inr = ir2)? + (a1 = zia2)s

Sesapicn) = V(@isa = zical + (Wisz — vic2f + (242 ~ 22l

Sy = V(Zina =z + (is2 = %) + (202 — 21

S = V(@iva =) + (ira — %) + (zie2 — z)35

S+apen) = -\/ (Zira = Tipa P + (Visz = Yisr)? + (22 =z )2

In the above equation (%i-2, Yi-2, Zi-2), (Ti=1, Yim1, Zi=1)s (Zis ¥i ), (Tivns Vi1, Zin1),

and (Z;42, Yi+2, Zi+2) are the coordinates of the five points.
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D.3  Four-point centered finite difference operator

The coeffici

F4D4(3)
FaD3(i)
F4D2(i)
F4DI(i)

D;

where

Sti-1)i
Sg-2)6-1)
Sti-a)i-2)

St-ayi

S(i-3)i

Si-3)6-1)

of the four-point finite diff formula are given as:

[Sta-0a"[St-20.1* Sta- 261823 + Ste-11al/ Dy
[Sti-0)* 12041 St-210-1)(St0-300 + Sie-13al/ Dii
[Ste-20al*[St-23al* Sti-3-2)[St-3)a + Se-21)/ D
—(F4D2(i) + F4D3(i) + F4D3(i))/D,;

=[St-1)4S(5-2)58(-3456-316-1)S6-2)6-1) S

(Sg-3)a + Sti-2)s + Sti-1)a)l»

V@ics, =z + (gict = v + (201 — 2)%;

\/(3-'-1,—2.—1)‘ + (yic2 = i) + (zica = v s

V(@ica, =zica)? + (yics = vica) + (213 — zia)?;
Sti-1)i + Se-a -1
S-3)(i-2) F S-a).-1) + Si-1)45

St-a)6-2) + Sti-2,6-1) -

(D.15)
(D.16)
(D.17)
(D.18)

(D.19)

And (2(-3,%-3,2-3)s (Ti-2,¥i-2, Zi-2)s (Tim1,¥im1, Zim1), and (2,3, ) are the

coordinates of the four points.
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