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Abstract 

Background: Patients with autoimmune disease have increased incidence of stroke. Hemorrhagic 

stroke (HS) is associated with loss of cerebrovascular function, leading to micro-vessel burst, 

and hemorrhage. We believe chronic inflammation is involved in loss of cerebrovascular 

function and HS. We established a hypertensive-arthritis model in spontaneously hypertensive 

rats (SHR) fed either standard rodent diet (0.59% NaCl) (RD) or high salt diet (4% NaCl) (HSD) 

and compared them to non-inflamed SHR. Methods: Complete Freund’s adjuvant (CFA) was 

injected into the left paw to induce mono-arthritis. Blood pressure and inflammation was 

monitored. At endpoint, animals were sacrificed and evaluated for HS while middle cerebral 

artery (MCA) was isolated for functional studies. Results: HS was observed in 90% of CFA-

treated groups. The MCA of arthritic RD-SHR exhibited decreased ability to undergo pressure 

dependent constriction (PDC). All HSD-SHR showed a decreased response to PDC. However, 

arthritic HSD-SHR also demonstrated a diminished response to vasoactive peptides. Conclusion: 

HS occurring with CFA injection corresponds with loss of MCA function. Chronic HSD appears 

to further exacerbate vascular dysfunction in the MCA. 
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1.0: Introduction and Statement of Problem 

Arthritis is a long term, physically debilitating disease that is the second most common 

chronic condition in Canada, with an annual cost of $33 billion in related health care costs (1). 

Rheumatoid arthritis (RA) is one of the more severe forms of arthritis. As a chronically 

progressive inflammatory disease, it can attack one or more joints, leading to joint degradation 

and loss of mobility. In addition to the destruction of joints and cartilage, the pathology of 

arthritic disease takes a progressive toll on many other tissues in the body as it produces diffuse 

inflammation in the lungs, pleura, pericardium, and sclera (2). The leading cause of death in RA 

patients is not due to the arthritis itself however, but due to cardiovascular (CV) complications, 

leading to a 3-fold increase in associated mortality compared to the general population (3-5). 

The risk of ischemic heart disease and myocardial infarction has been extensively studied 

in RA, but more recent and fundamental studies indicate significant risk of stroke in autoimmune 

arthritis, with patients with RA having a 30% increase in stroke over age-matched controls (6, 7).  

Of all stroke subtypes, hemorrhagic stroke (HS) has the highest mortality rate, approaching 50% 

within the first month (8, 9). The risk of death from the first incidence of stroke has also been 

shown to be significantly higher for RA patients compared to non-arthritic subjects (3, 10, 11). 

Evidence suggests that traditional risk factors of cardiovascular disease (CVD), (hypertension , 

smoking, dyslipidemia,  and insulin resistance) are more prevalent in the RA population (12). 

There is also an increased risk of myocardial infarction, CV morbidity, and CV mortality in RA 

patients (13).  The evidence in the literature suggests that approximately two-thirds of patients 

with primary cerebral hemorrhage have pre-existing or newly diagnosed hypertension (8, 14). 

The presence of hypertension, either salt-sensitive or not, is in itself a key risk factor for HS and 

may therefore be a key component in the likelihood of RA patients developing fatal HS.  
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Animal models have been used for decades to study the pathogenesis of arthritis akin to 

RA (the adjuvant induced arthritis rats; AIA rats) (15-17). Similarly, the stroke-prone 

spontaneously hypertensive rat (SHRsp) is widely used to study HS (18). However, there is 

currently no model that exemplifies the chronic development of HS subsequent to chronic 

systemic inflammation induced by mono-arthritis and longstanding hypertension. Although, 

chronic hypertension and chronic inflammation have both been independently linked to various 

degrees of vascular dysfunction (19-21), the impact of both of these factors together on vascular 

function has not yet been investigated. In particular, functional studies of the MCA in a 

chronically inflamed spontaneously hypertensive rat (SHR), has not yet been studied.   

Autoregulation of cerebral blood flow is governed by a variety of physical cues 

(including sheer stress and pressure) and endogenous chemical stimuli (such as peptides, 

nucleotides and cytokines)(22, 23). Pressure dependent constriction (PDC) is one such 

mechanism by which the cerebral vasculature ensures adequate and controlled perfusion of the 

small arteries feeding the brain (24). As perfusion pressures increase, the blood vessel reflexively 

constricts to prevent over-perfusion of the downstream vasculature and maintains a constant 

flow. Studies in pre- and post-stroke SHRsp have revealed that after hemorrhagic stroke has 

occurred, the PDC mechanism is lost in the middle cerebral artery (MCA) along with signs of 

renal failure (18).  

Cytokines and growth factors are able to genetically alter the functioning of the vascular 

endothelium, directly affecting the expression of various activators of endothelial function over a 

sustained period. This can potentially lead to the modulation of local second messengers such as 

changes in intracellular Ca2+ concentrations and cyclic nucleotides (23). As a result, vascular 

functioning becomes altered. Kessler et al showed that proinflammatory cytokines (interleukin-
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1β, and tumor necrosis factor-a (TNF-α)) and lipopolysaccharide decreased endothelial-mediated 

vascular relaxation through decreased production of endothelial derived hyperpolarizing factor 

(EDHF). Interestingly, this coincided with increased expression of nitric oxide synthase (NOS), 

resulting in increased nitric oxide (NO) production (25). In this way, the surge of circulating pro-

inflammatory cytokines can possibly have a profound impact on the cerebral vascular 

functioning, leading to vasoconstriction or vasodilation. 

Our objective was to address this gap in knowledge by creating a hypertensive-arthritic 

animal model with the induction of adjuvant mono-arthritis in the stroke-resistant SHR, a strain 

unique in that it normally develops spontaneous hypertension but does not spontaneously 

develop stroke. We planned to determine whether induction of monoarthritis increases the 

propensity for HS in the SHR strain. We also chose to investigate the impact of high salt diet 

(4% NaCl) on the severity of systemic inflammation and HS. We further examined the impact of 

chronic inflammation and concurrent hypertension on the ability of the MCA to perform PDC 

and its responsiveness to vasoactive peptides (bradykinin, vasopressin), NOS inhibition (Nω-

nitro-L-arginine methyl-ester; L-NAME) and protein kinase C (PKC) activation (phorbol 

dibutyrate) in order to elucidate underlying mechanisms of vascular dysfunction in the 

hypertensive arthritic rat model.  
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2.0: Review of Literature 

2.1: Inflammatory Arthritis 

In Canada, more than 4.6 million people have reported that they suffer from one or more 

of the various types of arthritis. Although two-thirds of the people who are affected are women, 

it is the third most common cause of disability in the country among men (26). Inflammatory 

arthritis is recognized by the surge in migration of immune cells including 

monocytes/macrophages, lymphocytes and granulocytes to the synovial lining of the affected 

joint (27). Enhanced proliferation of synovial fibroblasts at the affected joint(s) also sustains the 

inflammatory process and helps to initiate and perpetuate joint degeneration (27, 28). This 

process translates to pain, redness and swelling of the joint(s) which then eventually results in 

decreased mobility and joint degradation (29). In spite of the fact that the joint inflammation is 

often fully reversible, the resulting damage and degeneration of the joint is not, making 

inflammatory arthritis a chronically progressive degenerative disease (29-31). While 115-271 in 

every 100,000 people are diagnosed with inflammatory arthritis each year, 70% of these go on to 

receive a diagnosis of Rheumatoid Arthritis (32).  

2.1.1: Rheumatoid Arthritis: Clinical Definition and Prevalence 

Rheumatoid Arthritis (RA) affects approximately 300,000 Canadians with a frequency of 

about 1 in 100 people (26). Women are more than twice as likely as men to develop RA, and 

around 30% of patients will stop working within two years after the onset of disease, mainly due 

to the physically debilitating and rapidly progressing effects of this condition (33). This leads to 

a large economic impact due to costs to the healthcare system as well as lost productivity. RA 

can present at any age, but the majority of patients will present between the ages of 40-60 (26). 
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RA is most commonly recognized as being a chronic, symmetrical inflammatory 

condition of the joints that can also affect various other organ systems over time (2). It is 

characterized by three main changes within the affected joints; inflammation and proliferation of 

the synovial tissue (ie; pannus formation), thinning of the articular cartilage, and subsequent 

focal erosion of the subchondral bone (34). It is the pannus, a highly proliferative cellular 

membrane of granulation-reactive fibrovascular tissue, that extends into the articular cartilage of 

the joint and proceeds to break down the bone. Subsequent structural damage to the joint itself is 

carried out by osteoclasts, multinucleated giant cells that are specially designed to degrade the 

mineralized components of the cartilage and underlying bone, where they localize to the pannus-

bone interface (34). The inflammatory infiltrate of the pannus is comprised of six main types of 

immune cells; namely T cells, B cells, plasma cells, dendritic cells, mast cells and granulocytes 

(34). Precipitating factors that trigger this dysfunctional burst of inflammatory activity 

synchronized with diminished self-tolerance are widely unknown. However, genetics, 

environmental factors such as cigarette smoking and immunologic factors are assumed to play a 

role (26). 

As such, RA still presents as a highly heterogenous disease with largely unknown 

etiology. Diagnosis is made based on a number of criteria evaluating the number of joints 

affected (with at least one joint showing signs of clinical synovitis which can not be explained by 

other causes), and the presence or absence of certain serological markers such as Rheumatoid 

Factor (RF) and Anti-Citrullinated Protein Antibody (ACPA) (35). The duration of symptoms 

(being greater than six weeks) and elevations in circulating acute phase reactants such as C-

reactive Protein (CRP) and Erythrocyte Sedimentation Rate (ESR) (35) are also used as 

indicators of severity of the disease. It is classified as an autoimmune disease due to the presence 
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of RF, which serves as an autoantibody to the Fc fragment of immunoglobulin G (IgG). 

However, research shows that increased ACPA activity is more relevant to the autoimmune 

disease process than RF (36). Citrullination, the enzymatic conversion of the amino acid arginine 

to citrulline, is a critical step in development of autoimmunity as this leads to the recognition of 

several highly expressed proteins of the synovium (fibronectin, collagen type II, vimentin, fibrin) 

by ACPA during the inflammatory process (37). Therefore the disease development can be 

characterized in three separate phases starting with immune sensitization, proceeding to an 

inflammatory response which ends in bone and joint erosion (37). In some cases, the initial phase 

(lymphoid/pre-articular phase) of disease development may present 10-15 years before clinical 

signs and symptoms of RA become apparent (36, 38). 

2.1.2: Pathophysiology of Rheumatoid Arthritis 

Predisposition to the development of RA has been linked to several genetic susceptibility 

loci (such as HLADRB1 (Human Leukocyte Antigen class II antigen DRβ1), PTPN22 (protein 

tyrosine phosphatase, non-receptor type 22) and CTLA4 (cytotoxic T lymphocyte antigen 4), 

some of which are immune-regulated (39). Environmental factors that have been correlated to 

increased risk of RA development are cigarette smoking (40), caffeine consumption, and obesity 

(41) while a Mediterranean Diet and diets rich in antioxidants seem to have protective effects 

(42). Circulating levels of RF and/or ACPA have been shown to be increased for several years 

prior to the development of symptoms, leading to increased levels of acute phase reactants and 

inflammatory mediators such as cytokines and chemokines. While the final culmination of 

events that leads to arthritic symptoms are largely unknown, retrospective studies have identified 

infection, trauma and stress to be triggers prior to clinical manifestation (38).  
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Following immune activation, the innate and acquired immune systems work 

concurrently to perpetuate the inflammatory process. Dendritic cells in the joint become 

activated by exogenous and autologous antigens while antigen presenting cells (APC’s) 

(including dendritic cells, macrophages and activated B cells) start binding to arthritis-associated 

antigens (43, 44). Meanwhile, CD+ T cells located in the synovium begin secreting IL-2 and 

IFN-γ locally. Once activation of B-cells and T-cells has occurred, a large amount of 

inflammatory cytokines (such as IL-12, 15, 18 and 23) (37) and CC and CXC chemokines are 

produced which further feeds back into the cycle to increase T-cell, B-cell and macrophage 

activation. The increased activation further drives the inflammatory response by production of 

IFN-γ, IL-2, 12, 18 and granulocyte macrophage-colony stimulating factor (43, 44). Another 

important function of activated macrophages and dendritic cells is to provide the necessary 

inflammatory setting to trigger activation of the Th17 pathway. This is initiated by a surge in 

production of TGF-β, IL-1β, 6, 21 and 23 which together cause a shift in T-cell homeostasis to 

diminish production of regulatory T-cells (Tregs) and increase differentiation of the Th17 

subtype, shifting the balance towards an inflammatory milieu (37). 
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Figure 2.1: Pathogenesis of Bone Destruction in Rheumatoid Arthritis. In RA, the synovium of 

the joint becomes inflamed and begins to destroy the underlying bone. Bone destruction is 

mediated by osteoclasts. Increased levels of RANKL in the synovium causes the induction of 

osteoclasts. Th17-cell infiltration into the joint produces IL-17 which activates synovial 

macrophages to produce several other pro-inflammatory cytokines such as TNF-α, IL-1 and IL-

6, which also increase proliferation of osteoclasts. IL-17 also triggers the activation of synovial 

fibroblasts which further increases expression of RANKL, further perpetuating bone 

degeneration. 

Adapted from Takayanagi, 2007. 
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Figure 2.1: Pathogenesis of Bone Destruction in Rheumatoid Arthritis 
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In RA, the Th17 pathway is responsible for the production of IL-17A, -17F, -21 and -22 

as well as TNF-α to perpetuate the inflammatory process and exacerbate bone erosion and joint 

degeneration (45, 46). The IL-17 receptor (IL-17R) is widely expressed on many of the immune 

cells involved in RA pathology including fibroblasts, endothelial cells, epithelial cells and 

neutrophils, lending evidence to the ubiquitous role of this cytokine in the inflammatory disease 

process (47). IL-17A acts synergistically with TNF-α to further activate synovial fibroblasts, 

chondrocytes and osteoblasts and suppress differentiation of Tregs (46, 48). Aside from the 

diffuse production of pro-inflammatory mediators, the Th17 pathway is critical in joint 

degeneration. IL-17 produced in the synovium serves to activate receptor activator of nuclear 

factor kappa B ligand (RANKL) signaling in multiple ways. RANKL activity is important 

because it is the main mechanism by which osteoclast progenitor cells become activated to 

produce osteoclasts, which actively mediate bone destruction (37, 48). Although Th17 cells 

express RANKL on their cellular membrane, the main mechanism by which signaling through 

this ligand is initiated is through the actions of activated synovial fibroblasts. IL-1, -6 and -17, as 

well as the actions of TNF-α (among other pro-inflammatory cytokines) are able to directly 

induce RANKL signaling to cause joint damage although IL-1, -6 and TNF-α are also able to 

activate osteoclast progenitor cells independent of RANKL signaling (37). These pro-

inflammatory cytokines also promote the continuing differentiation of B-cells and cause release 

of several different matrix metalloproteases (primarily MMP-1, -3, -8, -13, -14 and -16) (37) 

which can also activate osteoclasts but serve to degrade the cartilage in the inflamed joints (49). 

As Th-17 cells do not synthesize IFN-γ, a suppressor of RANKL signaling, bone metabolism and 

osteoclastogenesis is further enhanced (50) (Figure 2.1). 
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2.1.3: Animal Models of Rheumatoid Arthritis 

Animal models are widely used in the investigation of multiple types of arthritis. They 

are an invaluable tool in the study of the pathogenesis of various aspects of arthritic disease but 

are also commonly used to test treatments for these same conditions. Rodent models of arthritis 

have two main limitations; 1) rodent arthritic process progresses more rapidly than human 

arthritic disease necessitating caution when interpreting results of acute pathological changes as 

opposed to chronic changes and 2) joint inflammation in rodents is often characterized by bone 

resorption and formation, which is not consistent with human inflammatory arthritic disease, as it 

is characterized by bone erosion only (51). The most common types of RA animal models 

include adjuvant arthritis (AA), rat type II collagen arthritis and antigen arthritis (51). 

Adjuvant arthritis is one of the most common experimental modalities for studying RA 

disease progression and experimental treatments. Adjuvant injection results in a reproducibly 

rapid and robust, polyarthritic immune response with mild cartilage erosion and significant bone 

resorption (51-53). Although the exact mechanism of pathological response has not been fully 

elucidated, data suggests that the immune response may involve reactivity to proteoglycans 

produced in cartilage, heatshock proteins or even the rodent’s intestinal bacterial flora (54-56). 

The most commonly used rat strain in adjuvant arthritis is the male Lewis rat. Female Lewis rats 

are also commonly used, however they produce a more variable disease progression (57). Male 

Sprague Dawley and Wistar rats are also frequently used in this model (58). Arthritis induction is 

initiated by either tail-base or footpad injection of Complete Freunds Adjuvant (CFA) containing 

mycobacterium suspended in an oily vehicle or a synthetic compound, N,N-dioctadecyl-N',N'-

bis(2-hydroxyethyl) propanediamine, suspended in mineral oil or olive oil (59). Adjuvant 

activity is a result of sustained release of antigen from the oily deposit and stimulation of a local 
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innate immune response resulting in enhanced adaptive immunity. Footpad injection may be 

preferred to tail-base injection as it represents a moderate arthritic response, compared to the 

more severe inflammatory response produced by tail-base injection (60). Additionally, it allows 

monitoring of the initial acute local inflammatory response as well as the tracking of arthritic 

changes as the inflammation transitions to a chronic, systemic inflammatory response (51). 

Monitoring of inflammatory changes to the hind paw are typically conducted every second day 

starting at baseline by caliper measurements at the ankle joint, and/or water volume displacement 

measurement of the entire paw. Signs of clinical, systemic disease are usually apparent by Day 9 

of the experimental protocol (51). 

Rat collagen-induced arthritis (CIA) is commonly induced by footpad or tail-base 

injection with homologous or heterologous type II collagen emulsified in incomplete Freunds 

adjuvant (IFA), producing an inflammatory process that mimics the joint degradation present in 

human RA more closely than adjuvant arthritis. Polyarthritis progression is characterized by 

diffuse cartilage degeneration, localization and deposition of immune complexes at the joint 

surface, moderate to severe synovitis and osteodegeneration (51, 61, 62). In this model, females 

tend to be more susceptible to arthritis development (as in human RA) with a severe-erosive 

poly-arthritic syndrome developing 14-21 days post-injection due to the self-sensitization to 

articular collagen (61, 63). As such, articular cartilage degeneration is the primary target of the 

disease process, with significant bone damage but minimal loss in paw volume (64).  

CIA differs from AA in that the immunogenic response is primarily mediated by B-cell 

activation to a greater extent than adjuvant arthritis (61). Also, the more extensive pannus 

formation at the articular sites correlates better to human RA as well. In spite of this, the AA 

method has been favored in the past due to the wealth of data that already exists with this model 
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(51). Regarding arthritis induction protocols, the AA model frequently only involves a single 

injection while CIA requires a booster injection on the seventh day of the experimental timeline 

(64). In spite of this, AA exhibits an earlier onset and more rapid plateau of inflammation than 

CIA, which may take up to 21 days to see a maximal inflammatory response (64). Although 

polyarthritis is evident in both models, only the inflammation in the injected paw is relevant in 

the AA model whereas inflammation of both ankles and knees of CIA rats are considered 

significant (64). This may cause undue discomfort and stress to the rats, from an animal welfare 

point of view, especially since both models produce similar pathology scores (64). Both CIA and 

AA rats have shown to have similar levels of circulating (serum) pro-inflammatory mediators 

(such as IL-1β, TNF-α, IL-6, iNOS and MMP-13) however mRNA for cytokine levels in the 

joint are significantly elevated in the AA model compared to CIA (64). Additionally, total 

neutrophil counts are 5-7-fold higher in AA rats (compared to control) whereas the CIA model 

produces a more modest increase in neutrophils at 3-4 times that of control (64). Therefore, both 

methods are commonly used, but there are several distinct differences between the AA and CIA 

models.      

Antigen arthritis is a mechanism of arthritis induction that is amenable to virtually any 

animal model. It involves the subcutaneous or intradermal injection of a positively charged 

antigen that binds to negatively charged cartilage and remains present in the joint. Most 

commonly the cationic antigen used is methylated-bovine serum albumin (m-BSA), which after 

binding to the cartilage, elicits binding of antibody complexes which then causes compliment 

activation and local cartilage degeneration (51, 57). This model is commonly used in various 

mouse strains (65) but also in rats (66),  guinea pigs (67) and rabbits (68). Some protocols 

require habitual injection at weekly or twice-weekly intervals as well as combination of m-BSA 
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with CFA for injection directly into the selected joint. By the end of two weeks, severe cartilage 

destruction has already occurred due to pannus formation (51). 

2.2: Rheumatoid Arthritis and Cardiovascular Disease 

One of the leading causes of death among individuals with RA is due to cardiovascular 

disease (69). RA patients have an increased risk of myocardial infarction (MI), heart failure, 

stroke and peripheral vascular disease (69-72). Although non-steroidal anti-inflammatory drug 

(NSAID) use in the RA population has been associated with significant cardiovascular toxicity 

and associated MI risk (73), it is becoming more commonly accepted that increased CV 

morbidity and mortality rates in this population are likely not completely attributable to RA 

treatments (73, 74). After controlling for other modifiable and non-modifiable traditional risk 

factors such as increased body mass index, diabetes, smoking, diet and gender, multiple large-

scale trials still showed an increased risk for CV events in the RA population that was not 

otherwise explained (75-78). This suggests that there is an increased risk of CV disease 

conferred by the presence of RA itself. It has been proposed that the actions of high levels of 

circulating pro-inflammatory cytokines linked to RA pathogenesis (IL-6 and TNF-α) may be 

partially responsible for this increased risk. IL-6 is involved in increasing levels of acute phase 

reactants and is blamed, along with TNF-α, for altering the composition of circulating lipid 

particles contributing to dyslipidemia and atherosclerotic plaque destabilization (37, 79).   

2.2.1: Rheumatoid Arthritis and Hypertension 

A recent study examined CV risk factors present in a group of 73 RA patients and found 

that hypertension was present in more than 50% of these individuals (80). Another observational 

study from the United Kingdom, showed hypertension (defined as systolic blood pressure of ≥ 
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140 mmHg and/or diastolic blood pressure of ≥ 90 mmHg) was identified in 70.5% of the 400 

RA participants. Of those identified as being hypertensive, only 60.6% were treated with anti-

hypertensive medications and only 21.8% of those treated were meeting their blood pressure 

target (81). Lack of appropriate blood pressure control was attributed to both poor medication 

adherence and a lack of anti-hypertensive therapy optimization (such as, sub-therapeutic dosing 

or inappropriate drug selection). This demonstrates the high level of prevalence of hypertension 

among the RA population. Although many other investigators have confirmed that hypertension 

is highly prevalent in RA (82-84), the incidence of hypertension compared to the general 

population is also greater in RA (84). Proposed mechanisms of this increased risk include 

increased arterial stiffness (85), anti-rheumatic drug therapy (including NSAIDs, corticosteroids 

and some disease-modifying anti-rheumatic drugs) and abnormal vascular function characterized 

by decreased elasticity in small and large arteries associated with increased vascular resistance 

(86). 

2.2.2: Rheumatoid Arthritis and Stroke 

Multiple epidemiological studies have shown that risks for cerebrovascular accidents 

(CVA) are also increased in RA patients (77, 87). This data can be partially explained by the 

high prevalence of hypertension in RA populations, which is the most important modifiable 

cerebrovascular risk factor for stroke development (88). RA has also recently been identified as 

an independent risk factor for accelerated atherosclerosis, which is a major risk factor for 

ischemic stroke (77, 89, 90). Along with increased risk of stroke, there is a 50% greater chance 

of case fatality associated with stroke development in the RA cohort (89). Although 

approximately 80% of stroke are of the ischemic subtype and strongly linked to atherosclerotic 

pathology, around 20% of stroke are hemorrhagic which are characterized by cerebral vessel 
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burst and high mortality (91). The etiology of hemorrhagic stroke is largely unknown, especially 

in the setting of RA.  

2.2.3: Interleukin-17 and Cardiovascular Disease 

   While the link between cardiovascular disease and endothelial dysfunction and 

inflammation has already been well established, the exact role of individual circulating cytokines 

in CV disease remains largely unknown (92, 93). Reports have indicated that high circulating 

levels of TNF-α and IL-6, as seen in RA, are associated with the progression in cardiovascular 

damage after controlling for traditional cardiovascular risk factors (19, 94). However, it is 

unclear whether these cytokines play a role in the development of primary vascular dysfunction. 

Recently, the role of IL-17 in RA progression as well as CV disorders has received much 

attention (95-97). In non-RA animal models, IL-17 has been associated with accelerated 

myocardial fibrosis, atherosclerosis, endothelial dysfunction and increased superoxide formation 

(97-99). It has been observed that IL-17 may induce the phosphorylation of Thr495 of eNOS at 

its inhibitory site, causing a conformational change in the enzyme which interferes with 

calmodulin binding and diminishes enzyme activity (100, 101). This is one proposed mechanism 

by which IL-17 may play a role in endothelial dysfunction. However, more information is 

needed regarding the direct vascular effects of IL-17.  

2.3: Dietary Sodium and Cardiovascular Disease  

The deleterious effect of high dietary sodium intake on the cardiovascular system has 

been widely accepted (102, 103). In salt-sensitive individuals, it plays a role in hypertension 

development (102, 104) through several mechanisms including extracellular volume increase, 

increased cardiac output (105), activation of the sympathetic nervous system (104) and impaired 
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hormonal responses through the renin-angiotensin-aldosterone system (106, 107). However, in 

normotensive individuals high salt diets can also cause target organ damage to the heart, kidneys, 

arteries and the rostral ventral lateral medulla (RVLM - the area of the brain that mediates 

sympathetic outflow to regulate blood pressure) (108). High salt intake is correlated to increased 

left ventricular wall thickness and mass, regardless of whether the patient is hypertensive or 

normotensive (109) and reduced renal function (110). Studies using rodents have shown that 

high salt diet can increase the sensitivity of excitatory neurons in the RVLM, increasing 

sympathetic response to various stimuli (111), including exercise (112). This leads to greater 

variability in blood pressure, which is also a risk factor for target organ damage and CV events 

(113, 114).  

Increased vascular and arterial stiffness is another predictor of CV events which has been 

correlated to a high sodium diet (115). Vascular stiffening is the result of vascular remodeling 

that becomes augmented in the presence of various external stimuli, including a high sodium 

diet, certain comorbidities such as hypertension and dyslipidemia, and the normal aging process 

(115, 116). This remodeling is characterized by vascular hypertrophy (inward remodeling) and 

altered composition of the VECM leading to more collagen deposition and decreased presence of 

elastin (117, 118). This results in decreased vascular compliance and vascular dysfunction.     

There are several mechanisms by which increased sodium intake is proposed to cause 

generalized vascular dysfunction. Numerous studies using rodents, possibly including our own, 

have linked endothelial dysfunction to elevated dietary sodium (119-122), irrespective of blood 

pressure. Increased generation of ROS (including superoxide) leading to diminished NO 

bioavailability are the most commonly proposed mechanisms (119-122). In addition, studies 

using cell culture techniques have also demonstrated that small increases in intracellular sodium 
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concentrations can alter the fundamental mechanics of the endothelial cell, causing stiffening of 

the endothelial cortex, by changing the cell’s transcriptome (123-125). This leads to decreased 

NO production, and altered barrier functions, resulting in increased flux of plasma across the 

microvascular endothelial barrier (126). This process is thought to be fed by the endothelial 

sodium channel (EnNaC) which is involved in a “feed-forward” loop with extracellular Na+ 

concentration. In the setting of high extracellular Na+ concentrations, the EnNaC becomes more 

abundantly expressed on the cell surface, thus allowing increased Na+ influx into the cell (127). 

This in turn increases intracellular Na+ levels which stabilizes the interaction between certain 

cortical cytoskeletal proteins (actins) leading to the stiffening of the cell (128). In this way, 

increased plasma Na+ concentrations are able to have damaging effects on the vasculature of 

individuals, regardless of their level of salt sensitivity or salt resistance.    

2.4: Cerebral Vascular Function 

Due to the critical functions of the brain and fragility of cerebral blood vessels, blood 

flow must be tightly regulated. In humans, the brain requires 15% of cardiac output and 25% of 

total body glucose in order to maintain day-to-day functions. In addition, the brain receives 

nearly one fifth of total body oxygen, extracting about 50% of the oxygen carried in arterial 

blood (129). This large blood flow requirement is proportional to the constant amount of oxygen 

and glucose required for brain mitochondrial cells to carry out oxidative phosphorylation to 

produce adenosine triphosphate (ATP), generating the energy required to maintain normal brain 

function (130). There are a number of factors that directly affect cerebral circulation including 

metabolic and chemical (CO2 and O2) needs of the brain as well as pressure mediated 

autoregulatory functions (131). In the setting of high neuronal activity, the brain’s metabolic 

needs increase, leading to increased blood flow to the higher activity regions of the brain in a 
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process called functional hyperemia (132). Chemical influences such as hypocapnia (low CO2, 

leading to tissue alkalosis) caused by hyperventilation or hypoxia (low O2, leading to tissue 

acidosis) caused by respiratory depression can also lead to a decrease or increase in cerebral 

blood flow respectively, in order to maintain homeostasis (131). Finally, pressure-mediated 

autoregulation refers to the ability of the certain vascular beds (including the cerebral 

vasculature) to maintain constant blood flow to downstream arterioles in the setting of pressure 

variations. In the setting of low perfusion pressures, cerebral arteries will reflexively dilate and 

alternatively constrict in times of pressure surges (133). The evidence in the literature suggests 

that a combination of neuronal, astrocytic and vascular signaling patterns allow the brain to 

maintain hemodynamic stability and respond to the brain’s changing needs for nutrients and 

oxygen (134). However, the remainder of this section will focus solely on the cerebral vascular 

function as it pertains to pressure mediated blood flow autoregulation. 

2.4.1: Endothelial Function 

The vascular endothelium is a dynamic layer of cells that is crucial in the control of 

vascular tone. Originally, the critical significance of the vascular endothelium was somewhat 

serendipitously discovered by Furchgott and Zawadski, who noted that helical strips of rabbit 

thoracic aorta produced a graded contractile response to increasing concentrations of 

acetylcholine (ACh) (135). However, when using a ring preparation of the same thoracic aorta, 

they observed a rapid and potent vasodilatory response, realizing that when producing their 

helical strip of aorta, they had been accidentally rubbing off the endothelial layer. This led them 

to acknowledge the importance of the endothelium in vascular relaxation responses (135). The 

study also concluded that activation of muscarinic receptors on the endothelium by ACh 

triggered the release of a diffusible substance which caused smooth muscle relaxation. Later 
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work by Furchgott, Ignarro and Murad identified this diffusible substance as nitric oxide (NO), 

later earning them a Nobel Prize (136). Over time, the identification of several other endothelial-

derived mediators of vascular tone have been described, including various 

prostaglandins/prostanoids (prostacyclin and thromboxane A2 being the most commonly 

recognized), endothelial derived hyperpolarizing factor (EDHF), endothelin (a powerful 

vasoconstrictor) and reactive oxygen species (ROS) (137-141). However, to date, NO is the most 

well studied and prominent endothelial modulator of vascular tone (136). 

Nitric oxide is synthesized in the vascular endothelium as a derivative of L-arginine by 

the enzyme, Nitric Oxide Synthase (NOS). It is primarily responsible for maintaining 

vasodilation within blood vessels. However, it also prevents platelet and leukocyte adhesion, and 

may even play a role in the prevention of hyper-proliferation of smooth muscle cells (142). 

Within the body, there exists three main types of NOS; neuronal NOS (nNOS), inducible NOS 

(iNOS) and endothelial NOS (eNOS). Within the vasculature, eNOS is the most diffusely 

expressed NOS isoform and is constantly producing a baseline amount of NO. Enzymatic 

activity is positively regulated in a Ca2+-calmodulin-dependent manner by shear stress and by 

various receptor-bound agonists (143). Activation of protein kinase C (PKC) inhibits this Ca2+-

calmodulin-mediated activation of eNOS (144). In addition, certain cytokines are also able to 

diminish mRNA expression and enzymatic activity of eNOS as well modulate the production of 

various endothelial agonists (142).  

Stimuli including sheer stress, hypoxia, pressure, and numerous chemical mediators such 

as catecholamines, nucleotides (eg. adenosine, adenosine triphosphate), peptides (eg. bradykinin, 

vasopressin, endothelin), fatty acids, proteases (eg. thrombin, trypsin) growth factors and 

cytokines can directly activate the vascular endothelium to produce endothelial modulators that 
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may increase or decrease endothelial-mediated relaxation (23). Alternatively, cytokines and 

growth factors are also able to modulate the expression of some of the above mentioned 

chemical mediators. To activate NO release, some of these chemical agonists bind to their 

respective G-protein-linked receptors on the vascular endothelium. The downstream signaling 

pathway includes G-protein coupling to phospholipase C (PLC) which activates inositol 

trisphosphate (IP3) and diacylglycerol (DAG) leading to intracellular and extracellular Ca2+ 

mobilization and Ca2+ influx through nonselective cationic channels. This intracellular Ca2+ 

increase allows Ca2+-calmodulin binding, which is a critical step in the activation of eNOS and 

thus the production of NO (23).  

Production of NO by NOS enzymes requires nicotinamide adenine dinucleotide 

phosphate (NADPH) as an electron donor to convert L-arginine to Nω-hydroxyl-L-arginine. 

Further oxidation yields NO and L-citrulline. Cofactors required for this enzymatic conversion 

include tetrahydrobiopterin, flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), 

and heme (142). Due to the highly soluble nature of NO, it readily diffuses across the cell 

membranes and binds to soluble guanylate cyclase to catalyze the conversion of cyclic glutamyl-

monophosphate (cGMP) to glutamyl-5'-triphosphate (GTP), activating protein kinase G (PKG). 

PKG initiates the phosphorylation of a series of cellular targets which causes a decrease in 

[Ca2+]i which produces vasodilation (145). Alternatively, NO has also been shown to cause 

hyperpolarization of vascular smooth muscle through the direct activation of Ca2+-dependent K+-

channels (K+
Ca), independent of cGMP (146).  

Another pathway of endothelial-dependent relaxation that does not lead to the release of 

intermediate factors such as EDHF, NO or PGI2 is through various cation channels expressed on 

the vascular endothelium, but can be found on the vascular smooth muscle as well (147). 
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Transient receptor potential (TRP) channels are a family of Ca2+ permeable ion channels that 

regulate [Ca2+]i and cell membrane potential (148). As such, activation of these channels leads to 

an increase in [Ca2+]i which can then trigger changes in vascular tone, permeability, and even 

remodeling (148). Activation of these channels occurs through both capacitative (decrease in 

[Ca2+]i stores) and non-capacitative (signaling mediators including DAG, and  5,6-

epoxyeicosatrienoic acid, independent of intracellular Ca2+ stores) mechanisms in endothelial 

cells increasing vasodilation (148). Alternatively, in certain TRP channels (TRPV4), 

mechanotransduction of activation signals can lead to vascular smooth muscle hyperpolarization 

and consequently vasodilation. This response is thought to be attributed to the stimulation of 

Ca2+-sensitive K+ channels in vascular smooth muscle, while the same signaling mechanism is 

thought to occur in the vascular endothelium as well (149) (Figure 2.2).   
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Figure 2.2: Schematic Diagram of Endothelial-Mediated Vasodilation: Endothelial receptor 

activation and/or sheer stress can cause the endothelium to generate several vasodilatory 

mediators including EDHF, NO and PGI2. Release of these mediators causes vascular smooth 

muscle relaxation. In addition, activation of TRP channels located on the vascular endothelium 

increases intracellular calcium which triggers the opening of various ion channels, causing 

vascular smooth muscle hyperpolarization, also resulting in a relaxation response.    

TRPV4 – Transient Receptor Potential Vallinoid 4 Channel, EDHF – Endothelial Derived 

Hyperpolarizing Factor, eNOS – endothelial nitric oxide synthase, NO – nitric oxide, PGI2 – 

Prostaglandin I2, GTP – Guanine triphosphate, cGMP – cyclic guanine monophosphate, cAMP – 

cyclic adenosine monophosphate, ATP – adenosine triphosphate 

Adapted from Félétou & Vanhoutte (2009) 
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2.4.2: Vascular Smooth Muscle Control 

Vascular tone within the vasculature is maintained through the cooperation between the 

vascular endothelium and the smooth muscle. Therefore within the brain, the primary purpose of 

vascular smooth muscle is to generate and maintain vasoconstriction or facilitate vasorelaxation 

with the end goal of controlling blood flow. The processes of vasoconstriction and vasodilation 

are primarily (although not entirely) controlled by the respective increases and decreases in 

intracellular Ca2+ concentrations (150). When [Ca2+]i increases, it binds to calmodulin. This 

complex then activates myosin light-chain kinase (MLCK) which then leads to the 

phosphorylation of Ser19 on myosin at the regulatory site. Actin can then activate myosin 

ATPase leading to muscle contraction (150). In the case of endothelial-mediated vasodilation, 

activated endothelial cells become hyperpolarized (according to the mechanism previously 

described in section 2.4.1), spreading the wave of hyperpolarization along the length of the 

vessel and into the vascular smooth muscle cells through myoendothelial gap junctions. The 

resulting current then causes a decrease in the number of open L-type Ca2+ channels which leads 

to a fall in intracellular Ca2+ concentrations (151).  This drop in [Ca2+]i deactivates MLCK, 

leading to dephosphorylation of myosin light-chain Ser19 by MLC phosphatase and deactivation 

of actin-myosin ATPase ending in smooth muscle relaxation (150). 

The stimulus for smooth muscle constriction is generally incited by receptor activation 

through G-protein linked pathways or mechanotrasduction of signals received based on vessel 

stretch and stress (ie: stretch-activated cation channels) (152). Receptor agonists include 

endogenously produced chemicals such as norepinephrine, epinephrine, angiotensin II, 

vasopressin and endothelin, among others (152). Therefore, ligand binding to cell-surface 

receptors causes the activation of phospholipase C (PLC) through Gq/11 which then catalyzes the 
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cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) into IP3 and DAG, who serve as second 

messengers. Subsequent binding of IP3 to the IP3-receptor (IP3R) on the sarcoplasmic reticulum 

(SR) causes expulsion of Ca2+ from the SR, increasing [Ca2+]i causing vascular constriction as 

described above. In addition, the DAG formed from this receptor-ligand interaction also plays a 

role in vasoconstriction. PKC, which requires Ca2+ and DAG for activation, has several 

downstream effects. It is known to interact with MLCK, ERK1/2, Rho kinase and calmodulin-

dependent protein kinase II in addition to membrane channels to elicit vascular smooth muscle 

contraction (152, 153).  

When vascular smooth muscle receptor agonists (vasoconstrictors) bind to receptors, the 

final result is intracellular calcium release leading to muscle contraction, as described above. 

This rise in [Ca2+]i is facilitated by voltage operated calcium (VOC) channels as well as  non-

specific cation channels, most of which are known as transient receptor potential canonical 

(TRPC) channels (154). TRPC channels can either be activated by ligand binding to the cell-

receptor (as described previously) or by the depletion of internal Ca2+ stores, referred to as 

capacitative Ca2+ entry (155). VOC’s commonly found in the cerebral arteries are L-type 

(Cav1.2) and T-type (Cav3.1 and Cav3.2) Ca2+ channels (156). Of particular importance, VOC 

and TRPC channels do not remain static within the plasma membrane. Rather, expression at the 

cell surface is highly dependent on other intracellular molecules that they associate with, which 

influences their trafficking and activity in signal transduction processes (154) (Figure 2.3). 
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Figure 2.3: Schematic Diagram of Vascular Smooth Muscle Contraction. Activation of G-protein 

coupled receptor on the cell surface occurs when agonist binds to the receptor. This leads to the 

activation of PLC which catalyzes the cleavage of PIP2 into IP3 and DAG. IP3 triggers 

intracellular calcium release from the SR. DAG activates PKC which also increases intracellular 

calcium release through the opening of VOC’s and TRPC channels. An increase in intracellular 

Ca2+ concentrations allows Ca2+-CaM binding which activates MLCK, leading to the 

phosphorylation of MLC and subsequent muscle contraction.  

VOC – Voltage-gated Ca2+ Channel, TRPC – Transient Receptor Potential Canonical Channel, 

SR – Sarcoplasmic Reticulum, PLC – Phospolipase C, PIP2 - phosphatidylinositol 4,5-

bisphosphate, IP3 - inositol trisphosphate, DAG – diacyl glycerol, PKC – protein kinase C, CaM 

– Calmodulin, MLC – myosin light chain  

Adapted from Webb (2003) 
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2.4.3: Cerebral Blood Flow Autoregulation 

The concept of autoregulation was first described by Bayliss in 1902, by demonstrating 

that vascular tone could in part be modulated by intravascular pressure, through his experiments 

measuring blood flow in a canine hind limb (157). Currently, the four main regulators of cerebral 

blood flow have been determined to be 1) partial pressure of CO2 (PaCO2),  2) mean arterial 

pressure, 3) metabolic needs of the brain and 4) the autonomic nervous system (158). In 1959, 

Lassen modeled the data from seven separate studies recording the relationship between arterial 

blood pressures and corresponding cerebral blood flow using a curve, showing that cerebral 

blood flow was largely unchanged over a blood pressure range of approximately 60 mmHg-150 

mmHg. He termed this static autoregulation (159). As of late, this concept has been criticized 

and revised based on studies using the Windkessel model.  The Windkessel model is a 

mathematical model that describes hemodynamics in terms of vascular resistance, compliance 

and impedance (160). Evidence in the literature suggests that due to the compliance of cerebral 

arteries, it is possible that they are buffering against changes in blood pressure by “storing” blood 

throughout a cardiac cycle. This process would be dependent on how quickly blood pressure was 

changing (161, 162).  Conversely, in times of hypotension, cerebral blood flow was less 

effectively maintained than during acute hypertensive episodes (163, 164). At present, the 

concept of dynamic cerebral autoregulation and the active modulation of cerebral blood flow 

during perpetual changes in blood pressure (165, 166) is widely accepted. Although many 

believe that dynamic cerebral autoregulation is achieved primarily by a constant adjustment of 

arterial resistance within the cerebrovasculature (based on myogenic responses to stretch/stress 

as described previously) to arterial blood pressure, the precise mechanism by which this occurs 
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remains not fully defined (166). However, one important component of dynamic cerebral blood 

flow autoregulation is pressure dependent constriction (PDC).    

2.4.4: Pressure Dependent Constriction 

PDC describes the reflexive decrease in lumen diameter of an autoregulatory vessel (such 

as certain cerebral arteries) in response to an abrupt increase in blood pressure that would 

otherwise increase blood flow to the brain. This mechanism is believed to be protective during 

acute hypertensive episodes because when the perfusion pressure rises excessively, the blood 

vessel constricts, increasing vascular resistance and maintaining constant blood flow to the rest 

of the brain (24, 167). Studies of the pathogenesis of hemorrhagic stroke in the stroke prone 

spontaneously hypertensive rat revealed that before cerebral hemorrhage occurs, PDC is lost in 

the MCA (167) which corresponds to a loss in cerebral blood flow autoregulation to the areas 

downstream (168). Therefore, in times of acute hypertension, this alteration in vascular function 

is thought to lead to over-perfusion of vasculature downstream from the MCA, facilitating 

disruption of the blood-brain barrier and eventually ending in cerebral hemorrhage. Likewise, in 

chronic hypertensive vascular disease, weakened vessels would be much more prone to rupture 

in the presence of an acute spike in blood pressure from baseline (169). 

Just as the process of dynamic autoregulation of cerebral blood flow is not fully 

understood, neither is the process by which the MCA loses its ability to perform PDC. However, 

PDC is known to be dependent on endothelial function (170) as well as vascular smooth muscle 

function (171, 172). In SHRsp’s who are unable to perform PDC (post-stroke), the vasodilatory 

response to bradykinin is lost as well as the vasoconstrictor response to NOS inhibition (L-

NAME), indicating endothelial dysfunction (168). Additionally, various vascular smooth muscle 
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agonists (that increase [Ca2+]i by initiating Ca2+ release from the sarcoplasmic reticulum (173) 

and opening of receptor-operated Ca2+ channels in the sarcolemma (174)) including serotonin 

and vasopressin had reduced vasoconstrictor activity in post-stroke SHRsp but were rendered 

completely ineffective in the presence of L-type Ca2+ channel blockade. This suggested a defect 

in the ability of the vessel to use intracellular Ca2+ stores (172). Finally, a significant correlation 

between PDC and vascular response to PKC activation by phorbol dibutyrate (which directly 

activates PKC and also increases the sensitivity of the contractile pathway to available Ca2+ 

(175)) in the MCA of pre/post-stroke SHRsp was observed. After stroke development, SHRsp 

MCA’s had lost the ability to respond to PKC-mediated vasoconstriction, indicating a possible 

role for PKC activity in PDC (171). Therefore, deficits are apparent in various steps of the 

contractile pathway of the MCA, all of which are correlated to a concurrent loss in PDC and an 

increased risk of HS.       

2.5: Hemorrhagic Stroke 

Stroke remains a significant cause of death worldwide, causing approximately 5.5 million 

deaths annually (176). According to a recent report from the Heart and Stroke Foundation, the 

death rate arising from stroke in Canada is 17.9 per 100,000 people (29.9 in Newfoundland and 

Labrador) with one stroke occurring every 10 minutes (177). Although the most common stroke 

subtype is ischemic stroke (87%), between 10% and 15% of all strokes are of the intracerebral 

hemorrhage (ICH) subtype (178, 179), which is caused by the bursting of small cerebral 

arterioles. In the majority of cases, the trigger for vascular wall rupture is longstanding 

hypertension (180). Depending on the underlying cause, cerebral hemorrhage is further sub-

classified as primary ICH or secondary ICH. Primary ICH (78%-88% of cases) occurs when 

chronic vascular damage from longstanding hypertension and/or amyloid angiopathy weakens 
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the small arteries and arterioles in the brain making them susceptible to rupture leading to 

hemorrhage (181, 182). Alternatively, secondary ICH occurs in patients with underlying vascular 

anomalies (such as aneurysms), neoplasm or coagulopathies which make them prone to cerebral 

hemorrhage development (183, 184).   

2.5.1: Clinical Definition and Prevalence 

Hemorrhagic stroke (HS) is defined as an abrupt disruption in brain function caused by 

small cerebral vessel burst followed by bleeding into the cerebral parenchyma (178). Worldwide 

incidence ranges from 10-20 cases per 100,000 people, and increased risk with advancing age 

(185). Men are more commonly affected than women, especially after 55 years of age. 

Individuals of African and Japanese descent (50-55 cases per 100,000) have more than twice the 

risk of developing ICH than Caucasians (186-188). A higher fatality rate is observed in HS 

compared to the other subtypes of stroke, with 62% of patients dying within the first year post-

stroke and high risk of recurrence (189, 190).  HS can also be precipitated iatrogenically by 

treatment with first-line thrombolytic treatments used to dissolve clots in the treatment of 

myocardial infarction and ischemic stroke (191).  

2.5.2: Pathophysiology and Risk Factors 

As previously mentioned, chronic hypertension is the most significant risk factor for ICH 

development (192). A randomized, double-blind, placebo-controlled trial in elderly patients with 

systolic blood pressures ≥ 160 mmHg using anti-hypertensive medication had a five-year 

incidence rate of ICH of 5.2% compared to the placebo group who had a rate of 8.2% (193). 

Therefore, appropriate anti-hypertensive treatment in affected individuals is an important 

intervention in risk management (194, 195). Other modifiable risk factors include high salt 
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intake (196), excessive alcohol consumption and dyslipidemia (especially in the presence of 

hypertension) (197). Other non-modifiable risk factors for primary ICH include certain 

coagulopathies due to genetic mutations (198) and cerebral amyloid angiopathy, characterized by 

deposition of β-amyloid protein into the walls of cerebral vessels, compromising structure and 

function (182, 199).  

The changes in vascular structure and reactivity immediately prior to stroke in humans 

are not well elucidated at this time. However, HS development is thought to be precipitated by 

chronic hypertensive vascular remodeling, reflected by a decrease in the arterial elastic 

component and the partial replacement of vascular smooth muscle in the tunica media with 

collagen deposition (200). Because the elastic component of the vessel provides strength, 

increased collagen ratio renders the wall much more brittle and prone to burst under conditions 

of stress (200). In addition, Charcot and Bouchard identified isolated areas of cerebral arterioles 

that were dilated and identified these highly collagenized sites as the most likely points of 

rupture within the vascular wall. They are now termed Charchot-Bouchard aneurysms and are 

thought to play a role in cerebral micro-hemorrhage development that precedes gros cerebral 

hemorrhage resulting in clinical symptoms (178, 200-203). Therefore, due to these structural 

changes, the cerebrovasculature becomes prone to distension and vulnerable to over-perfusion. 

As previously described, amyloid angiopathy is also an important contributor to HS, particularly 

in the elderly. However, these areas of hemorrhage are usually characterized as being located 

more superficially on the surface of the brain as opposed to hypertensive-induced hemorrhages 

which tend to appear close to the Circle of Willis. Hypothetically, this is where the greatest 

amount of hypertension-induced vascular damage would occur due to the high pressures and 

frequent arterial bifurcations, contributing to turbulent blood flow (200).  
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Finally, the development of satellite lesions further worsens the disease progression. 

After the initial cerebral hemorrhage, the body increases production of catacholamines which 

further increases the blood pressure. Because vascular damage caused by chronic hypertension as 

well as amyloid angiopathy (when applicable) is widespread and not isolated to a single area, 

blood flow autoregulatory function is already presumably compromised globally. In the setting 

of autoregulatory dysfunction and leaking vessels, it has been shown that blood pressures of 150-

160 mmHg are key for the promotion of hematoma expansion. Therefore at high pressures, 

cerebral blood flow is more likely to increase, leaving the patient vulnerable to primary 

hematoma expansion but also the development of satellite hemorrhages (lesions), further 

exacerbating bleeding (200, 204, 205). This helps to explain the high case fatality rate in ICH 

patients. However, more information is needed regarding the molecular mechanisms of 

autoregulatory failure that plays a role in HS pathology. 

2.5.3: Animal Models of Hypertension and Stroke 

To date, no effective pharmacological agents have been developed to treat spontaneous 

ICH. This means stroke prevention is paramount, as supportive care is the only treatment 

modality initiated post-stroke. As a result, animal models to study ICH are crucial in increasing 

our understanding of the underlying pathology leading to stroke development as well as the 

exploration/development of experimental treatment options to improve survival outcomes in this 

population. The most commonly used genetically hypertensive animal model used in the study of 

essential hypertension is the stroke-resistant Spontaneously Hypertensive Rat (SHR). 

Alternatively, an appropriate animal model to study the pathogenesis of HS is the stroke-prone 

Spontaneously Hypertensive Rat (SHRsp). 



43 
 

2.5.3.1: SHR 

The most widely used genetically hypertensive rat model, the SHR, was developed by 

Okamoto and Aoki from selective breeding of a spontaneously hypertensive outbred male Wistar 

Kyoto (WKY) Rat with a slightly hypertensive female. Subsequent inbreeding of sibling pairs 

lead to the development of the SHR strain (206). Possibly attributable to the increased activity 

through the renin-angiotensin-aldosterone system, spontaneous hypertension develops at around 

five weeks of age, yielding systolic blood pressures as high as 200 mmHg by seven to ten weeks 

of age (207). Compared to normotensive WKY controls, SHR show signs of alterations in 

cerebral autoregulation linked to increased stiffness in large arteries and increased distensibility 

of small arterioles (208-210); however regardless of hypertension-related changes to the 

vasculature, SHR are highly stroke resistant. Due to this and the common genetic lineage, the 

SHR is commonly used as a stroke-resistant control for the SHRsp.  

2.5.3.2: SHRsp 

Originally developed by Okamoto et al, the inbred SHRsp model is an appropriate animal 

model to study HS-associated pathology as well as novel treatment strategies post-stroke (211). 

There are a number of strengths to using this model to study hemorrhagic stroke which include 

the similarity in mechanism and pathology of stroke development to humans and role of genetics 

in stroke occurrence. The SHRsp strain reliably produce hemorrhagic stroke at a rate of 88-100% 

by 10-13 weeks of age subsequent to longstanding hypertension when placed on a Japanese style 

high salt diet (HSD) from five weeks of age (212, 213). This relates well to human disease as 

chronic hypertension and associated vascular pathology is one of the key contributors to ICH. In 

our model, we used a 4% NaCl, 0.75% K+ HSD which typically produces 100% mortality by 
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around 15 weeks of age (213, 214). In addition, common areas of ICH due to hypertensive 

vascular disease in humans tends to be near areas of arterial bifurcations (202) which is also 

consistent in the SHRsp model. Yamori et al described the most common areas of cerebral lesion 

formation in the SHRsp to be the anteromedial cortex, the occipital cortex, and the basal ganglia 

(215) which share the common physiologic feature of frequent arterial branching. In addition, the 

frequency of “boundary zone” lesions, located at the areas of the brain supplied by both the 

posterior and middle cerebral arteries is also consistent with human disease (215).  Finally, the 

genetic predisposition to stroke development in the SHRsp compared to the SHRsr further 

reinforces the importance of genetics in HS development, a phenomenon also observed in 

humans. Although both strains exhibit similar levels of hypertension while consuming HSD, 

only the SHRsp develops predictable HS (207).  

The physiological mechanisms leading to HS development in the SHRsp to HS are multi-

factorial and include severe hypertension, vascular dysfunction leading to loss of autoregulation 

of cerebral blood flow, and weakening of the blood brain barrier (BBB) leading to cerebral 

hemorrhage formation (216). Due to the abnormally heightened activation of the renin-

angiotensin-aldosterone system in SHRsp, blood pressures in these rats often rise well over 200 

mmHg (216) along with cerebral lesion formation in downstream arterioles. A progressive 

increase in blood pressure leads to dysfunction of the BBB causing leakiness and subsequent 

extravasation of plasma proteins. Hypertensive vascular remodeling, as described previously 

damages the endothelial and vascular smooth muscle cell layers. This leaves behind the basal 

membrane and causes collagen deposition into the vascular walls, producing arteriolar necrosis 

(217). Subsequent cerebrovascular dysfunction accompanied by functional deficit in cerebral 
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blood flow autoregulation render the vessel vulnerable to ectasia and eventual rupture (18, 168, 

171, 218).   

2.6: Hypothesis 

 Currently, the main source of data that correlates increased HS risk and RA is population-

based epidemiological studies. As such, there is a large knowledge gap surrounding the 

pathogenesis and mechanism of this relationship. Based on the evidence available with the 

various autoimmune arthritis, hypertension and hemorrhagic stroke animal models, theories can 

be generated in an attempt to explain how chronic inflammation leads to cerebral hemorrhage. 

However, currently there is no multi-disease animal model that allows for the concurrent study of 

chronic hypertensive disease and chronic systemic inflammation to test these theories. As a 

result, there is also a lack in appropriate vascular studies in the setting of chronic hypertension 

and systemic inflammation to test functional aspects of the cerebral vessels.       

Our hypothesis is that chronic inflammation in the setting of longstanding hypertension in an 

ageing, stroke-resistant spontaneously hypertensive rat (SHR) predisposes the middle cerebral 

artery (MCA) to lose the ability to respond properly to pressure, leading to increased incidence 

of HS. In addition, we hypothesize that high salt diet in conjunction with chronic inflammation 

will further exacerbate dysfunction  in the MCA of inflamed, hypertensive SHR.  

 To address our research question, we developed the following study objectives: 

1) Create and define the relevant animal model to study the effect of arthritic inflammatory 

injury and hypertension on cerebral vessel function 

2) Investigate whether intracerebral hemorrhage occurs in this mono-arthritic, hypertensive 

animal model 
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3) Investigate the role of HSD on cerebral vascular function in this mono-arthritic, 

hypertensive animal model. 
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3.0: Materials and Methods 

3.1: Animals 

All experimental procedures and animal breeding was carried out at Memorial University of 

Newfoundland Health Sciences CentreAnimal Care Facility and were in compliance with 

guidelines and recommendations set forth by the Institutional Animal Care ethics committee and 

the Canadian Council on Animal Care (Guide to Care and Use of Experimental Animals, vol.1, 

2nd ed.). In total, 45 male stroke resistant Spontaneously Hypertensive Rats (SHR; Original stock 

from Charles River Laboratories, Quebec, Canada) were included in the study. The animals were 

bred in-house and were housed two per cage in ventilated cages under standard light cycle (12 

hour light/dark), controlled temperature, and humidity conditions. Experimental design for 

inducing inflammation was implemented at 20-28 weeks of age. Ad libitum access to food and 

water was permitted.  

3.2: Experimental Design 

Rats were divided into four experimental groups based on diet and treatment, and followed the 

experimental timeline outlined in Figure 3.1. Briefly, SHR-high salt diet (HSD) groups were fed 

a Japanese-style high salt diet containing 4% NaCl (Zeigler Bros, Gardners, PA, USA) from 

weaning. SHR-regular diet (RD) groups were maintained on standard rat chow (Laboratory 

Rodent Diet 500I, Lab Diet, St. Louis, MO, USA; 0.58% NaCl). At 20-28 weeks of age, they 

were randomly divided into 4 groups based on treatment (Complete Freund’s Adjuvant (CFA) 

model of mono-arthritis or Saline (SAL) injected control) and diet (high salt (HSD), or standard 

rat chow(RD)), and labelled HSD-SAL (n=10), HSD-CFA (n=14); RD-SAL (n=11), RD-CFA 

(n=10) (Figure 3.1). 

http://www.ccac.ca/Documents/Standards/Guidelines/Experimental_Animals_Vol1.pdf
http://www.ccac.ca/Documents/Standards/Guidelines/Experimental_Animals_Vol1.pdf
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Figure 3.1: Animal experimental timeline. Four experimental groups were followed over the 

course of 21-23 days, SHR-HSD-SAL, SHR-HSD-CFA; SHR-RD-SAL, SHR-RD-CFA. SHR-

HSD groups were weaned and started on Japanese Style High Salt Diet (4% NaCl) while SHR-

RD groups were weaned and started on regular purina (0.58% NaCl equivalent) diet at 5 weeks 

of age. At 20 weeks of age (Experimental Day 0), all groups received an intradermal injection in 

the left hind paw. Inflamed groups (CFA) received 0.07mL of CFA for the induction of adjuvant 

arthritis (AA) while control groups (SAL) received the same quantity of sterile saline (0.9%) 

solution.  All groups were monitored for signs of inflammation and hypertension. Broken yellow 

line represents experimental timeline in days (Day 0-Day 21).   
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Figure 3.1: Animal Experimental Timeline 
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3.3: Preparation of Complete Freund’s Adjuvant 

A suspension of Mycobacterium butyricum ([10 mg/mL]) in Incomplete Freund’s Adjuvant 

(Sigma, USA; IFA) was prepared according to modified methods for induction of adjuvant 

induced arthritis (AIA), as commercial sources of CFA have not been found suitable for arthritis 

induction. In order to insure success of disease induction, heat-killed M.butyricum H37RA 

(Sigma, USA) were ground into smaller particles until fine, using an autoclaved, marble mortar 

and pestle in a sterile fume hood. IFA was added gradually and grinding continued until 

thoroughly mixed to make CFA.    

3.4: Induction of Adjuvant Induced Mono-arthritis (AIA) 

Experimental arthritis was induced by intradermal injection of CFA (0.07 mL of 700 µg 

M.butyricum) into the plantar surface of the left hind paw of SHRs at day 0 of the experimental 

procedure while the animals were under anesthesia (isofluorane 4% inhalation for induction and 

2-2.5% for maintenance). Controls were injected with an equi-volume of sterile 0.9% saline 

solution under anesthesia.  

3.5: Monitoring of Development and Progression of AIA 

Animals were assessed for signs of inflammation for 21 days until the end of the experimental 

period from injection day (day 0). Wellness monitoring of rats was conducted twice daily, in 

conjunction with staff from the animal care facility according to a standard checklist provided. 

Animals were inspected for signs of dehydration, facial grimace, self-grooming, presence or 

absence of vocalizations while handling and mobility and also monitored for ulceration 

development. When significant vocalization and/or poor mobility were observed, inflamed rats 

were given 0.03 mg/kg buprenorphine every 12 hours as required for pain management. The 

dose and the frequency of buprenorphine injections were determined from previous studies 
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which deemed that the dose would not interfere with the inflammatory process or vascular 

function (219-221). Caliper measurements were taken every second day to measure hock and 

paw widths of both hind paws. Water displacement of each hind paw was determined by dipping 

the ipsilateral paw of the experimental animal up to the ankle in a standard scintillation vial with 

water (at a consistent weight) in order to gauge swelling of the paw as a whole. The amount of 

water displaced by the paw was calculated. In addition, animal weights and arthritic index scores 

were assigned to each rat during monitoring to separately evaluate redness and erythema of the 

toes, paw, hock and knuckles of the hind paws and forepaws, when applicable. Each area was 

assigned a score from 0-4, 0 being normal and 4 being severely inflamed. Scores were also 

assigned for lesion development and rated similarly on a scale of 0-4.  

3.6: Blood Pressure Measurement 

Blood pressure was recorded by tail-cuff plethysmography (Model 59, IITC Inc., Woodland 

Hills, CA, USA) at baseline before CFA/Saline injection and weekly thereafter for the 21-24 day 

experimental period. Experimental time points for measurement of blood pressures were at 0 , 7, 

14, and 21 days following hind paw injection. Four sequential readings were taken at 4 seconds 

apart per rat at each time point and the mean (of the systolic blood pressure) was recorded. The 

percentage change from baseline of systolic blood pressure was calculated. 

3.7: Identification of Cerebral Hemorrhage 

Upon the day of sacrifice at day 21-24, a random sample from the experimental rats (n=5/group) 

were anaesthetized with intraperitoneal injection of 50/10 mg/kg of ketamine:xylazine. The hair 

around the abdomen and hind limbs were shaved and cleaned with alcohol and iodine and the rat 

placed on a warm board for surgical preparation. The femoral vein at the contralateral side was 

isolated, and a modified sylastic tube catheter inserted and tied with a 4.0 suture. A 30 mg/kg 
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bolus dose of Evans-blue dye (Sigma, USA) (15 mg/mL 0.9% saline) was then slowly injected 

over a 20 second period and allowed to circulate approximately 25-30 minutes. The rats then 

underwent exsanguination for isolation of their brain and kidneys for further analysis. Because 

Evans-blue dye binds to plasma albumin, areas of extravasation of Evans-blue dye were deemed 

indicative of intracerebral hemorrhage based on previously reported data (18, 222). This is 

because extravasation of dye indicates sufficient disruption of the blood-brain barrier to allow 

passage of plasma proteins such as albumin. Brains of experimental rats that did not receive 

Evans-blue dye injection were also investigated to determine level of perfusion, cerebral edema, 

hemisphere size/symmetry and septal deviation, all indications of brain damage and associated 

with hemorrhage. 

3.8: Sample Isolation, Tissue Processing and Histological Staining 

Necropsy was performed on experimental days 21-24 after deeply anesthetizing the animals with 

intraperitoneal injection of 50/10 mg/kg of ketamine:xylazine. The animals were subsequently 

exsanguinated by cardiac puncture, using an 18G needle and heparinized 10 mL syringe. Plasma 

was isolated as described below (See TNF-α Analysis). The tibiotarsal joint of the contralateral 

ankle was removed at the medial and lateral malleolus using a small pair of pruning shears. The 

digits were then removed, allowing for better penetration of fixative and subsequent decalcifying 

solution. The ankles were fixed in 10% neutral buffered formalin (Fisher) for 48-92 hours, and 

further placed into Ca Ex II solution (Fisher), a Fixative/Decalcifier solution of 10% 

formalin/formic acid solution for decalcification. Completely decalcified samples were 

embedded in paraffin, and 4 µm sections were cut and stained using hemotoxylin and eosin 

(H&E) by standard procedures for assessment of joint degradation, synovium hyperplasia, 

angiogenesis, and inflammatory infiltrates. 
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 The brain was removed and placed in oxygenated (95% O2, 5% CO2) ice-cooled (≈3°C) HEPES 

Bicarbonate Buffer (130 mM NaCl, 4.02 mM KCl, 1.22 mM MgSO4, 4.05 mM NaHCO3, 1.84 

mM CaCl2, 9.99 mM HEPES, 1.18 mM KH2PO4, 0.02 mM EDTA, 5.99 mM glucose) which was 

prepared in-house, adjusted to pH 7.4 and filtered. The right and left MCAs were isolated, 

starting at the point distal to where it crosses the rhinalis fissure and mounted on a pressure 

myograph, as described later. The rest of the brain and a kidney were stored in fixative (4% 

neutral buffered formalin) for later histological examination 

3.9: TNF-α Analysis 

Tail vein blood samples (0.3-0.5 mL/sampling) were collected using a 253/8 G needle and 

heparinized (1000 IU/mL) syringes under anesthesia (isofluorane 4% inhalation for induction 

and 2-2.5% for maintenance) at baseline and weekly thereafter (n=5/experimental group). The 

samples were kept on ice and centrifuged at 45,000 rpm for 10 minutes within 2 hrs of sampling 

using a cooling centrifuge (Thermo-Fisher, ON, Canada). The supernatant was collected and 

stored in a -80 °C deep freezer until analysis. Plasma samples were analyzed for TNF-α 

(standard range 15.6 pg/mL – 1000 pg/mL; sensitivity 2 pg/mL) within the experimental period 

to determine induction of systemic inflammation using a TNF-α ELISA kit purchased from 

Biolegend (San Diego, CA, USA) as per manufacturer instructions.   

 

3.10: Pressure Myograph Experiments 

Isolated MCAs were mounted onto the Single Vessel Chamber component of the Pressure Servo 

System (Living Systems Instrumentation, VT, USA) for pressure myograph studies. Vascular 

response was imaged using an inverted microscope and measured using a Video Dimension 

Analyzer (Living Systems Instrumentation, VT, USA). Mounted vessels were tied off creating a 
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blind sack and pressurized to 100 mmHg and equilibrated for 30-45 min in an oxygenated 

(95:5% O2:CO2), temperature controlled (37 °C) environment. Baumbach et al previously 

described a decrease in blood pressure (BP) of >50% between that measured in the femoral or 

carotid artery compared to that measured in the distal portions of the middle cerebral vessels 

(210, 223, 224). As a result, all of the pressure myograph experiments were conducted at a 

resting pressure of 100 mmHg. We also conducted our myograph experiments in the MCA at 

resting pressure of 100 mmHg, as we believe the setting accurately models physiological mean 

BP in vivo in the MCA of the SHR, as arterial systolic BP ranges from 200 mmHg to 230 mmHg 

(225).  Pressure Dependent Constriction (PDC) was evaluated first. Following equilibration, the 

pressure was decreased to 0 mmHg for 6 minutes to disengage PDC (167). After this resting 

period, the pressure was immediately increased to 100 mmHg and lumen diameter was recorded 

(at the instant when the vessel experienced maximal pressure-mediated dilation; t=0) and then 

once more after 6 minutes. Previous work has shown that by 4-6 minutes PDC is re-engaged to 

control perfusion and maintain a constant lumen diameter in a healthy MCA (18). The effect of 

Bradykinin (1.6 μM) on the vessel was then tested by measuring the maximal vasodilatory 

response between 15 seconds and 1 minute. After the preparation was flushed with a sufficient 

amount of fresh HEPES bicarbonate buffer, the effect of NOS inhibition was then tested (L-

NAME (100 μM)). Lumen diameter was recorded at (immediately after the addition to L-

NAME) and then again at 5 minutes. A functioning endothelium should elicit a vasoconstrictory 

response. The contractile response of the vessel to intracellular Ca2+ release from the SR 

(vasopressin (1.23x10-7M)) and PKC activation (phorbol-dibutyrate (1 μM)) was then 

investigated from a maximally dilated state by blocking L-type Ca2+ channels with nifedipine (3 

μM). Prior to the addition of vasopressin, the percent reduction in lumen diameter from maximal 
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vasodilation with nifedipine was first determined (and up to 2 minutes). After washing the 

preparation, the vessel was maximally dilated with nifedipine as before and then incubated with 

phorbol-dibutyrate for 5 minutes.  

3.11: Evaluation of acute IL-17a exposure on MCA function (preliminary) 

One MCA was isolated from a sample (n=4-7/group) of each of the experimental animal groups 

and incubated with 100 ng/mL of rat IL-17A (Biolegend; San Diego, CA, USA) during the 

primary equilibration period for 45 minutes. Pressure myograph experiments were then 

conducted to measure PDC and the effects of vasoactive peptides as described in section 3.10.  

3.12: Statistical Analysis 

Statistical analysis was performed using SigmaPlot 12.5 (Systat Software Inc., San Jose, CA) 

and Excel 2010 (Microsoft Corporation, Redmond, WA). Data were analyzed using Analysis of 

variance (one-way and two-way ANOVA), with either Bonferroni, Tukey, Mann-Whitney Rank 

or Holm-Sidak post hoc analysis. Values of p<0.05 were considered statistically significant. 

Except where indicated otherwise, all data are expressed as mean± SEM. 
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4.0: Results 

4.1: Effect of diet and treatment on body weight 

Over the course of the experimental period, there was a statistically significant reduction in the 

weight from baseline (expressed as percent change in weight from baseline) in CFA compared to 

SAL treated animals regardless of the diet (Figure 4.1). Baseline weights of all animals were as 

follows; HSD-CFA: 339 ± 23.9 g, HSD-SAL: 342 ± 18.2 g, RD-CFA: 337± 22.0 g, RD-SAL: 

342± 18.2 g. There was no statistical difference between baseline weight measurements. The 

difference observed after the start of the treatment protocol is attributed to both the loss of weight 

in the CFA rats, particularly during the first week of treatment, and a steady increase in weight of 

the SAL rats over the 21 day period (Figure 4.1). 

4.2: Visual Determination of Mono-arthritis development 

CFA-injected animals developed mono-arthritis restricted to the joints of the injected ipsilateral 

paw within 2 days post-injection, and remained inflamed for the 21 days post-CFA injection 

(Figure 4.2 A-C). The degree of inflammation did not significantly differ between the HSD-CFA 

and the RD-CFA groups, and there were no signs of joint inflammation in the SAL-injected rats. 

Visual inspection of the CFA-injected animals revealed diffuse soft tissue swelling that included 

the digits. There was also visual evidence of joint damage with joint space narrowing of the 

intertarsal joints, and joint deformity by 21 days of CFA injection. In spite of the diffuse swelling 

covering the area from the toes up to the hock, many CFA-injected rats were still walking on the 

inflamed paw, with minimal evidence of pain. Some CFA animals showed minor inflammation 

at other sites including the contralateral, non-injected paw and/or one or both forepaws or the 
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tail, however this observation was not reliably seen at Day 21 and was commonly isolated to the 

early stages of inflammation (Days 1-7- Figure 4.3 ).  

Figure 4.1: Change in weight of the groups expressed as change in weight from baseline. Shown 

above is the averaged change from baseline in weight change with respect to time. Data was 

analysed by two-way ANOVA with Tukey’s post-hoc test . *p<0.05     
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Figure 4.1: Change in Weight of Regular and  

High Salt Diet Fed CFA and SAL Groups 
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Figure 4.2: Representative images from all the experimental hind paws of Saline and CFA-

treated animals. From experimental day 2 to day 21, there was a statistically significant increase 

in ipsilateral paw circumference and volume in HSD-CFA (B) and RD-CFA (C) compared to 

SAL controls (A), as reflected in caliper and water displacement values. Representative images 

of the histological analysis of the paws upon H&E stains are also shown, at 4x and 20 x 

magnification. Both histological images are representations from the HSD experimental group. 

Histological analysis of the SAL-injected paws showed normal tissue, synovium, adipocytes, and 

collagen fibrils populating the joint area (D), with sharp transition between the intima and sub-

intima and characteristic morphological details associated with the layer, as seen in higher 

magnification (E).The sagittal section of CFA-injected paws demonstrates a denuded intimal 

layer and adipocytes (F), thickened and edemic sub-intima which have been largely replaced by 

inflammatory cell infiltrates, lymphocytes, and capillaries are congested and wall are thickened, 

evident in the 20x magnification (G).    
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Figure 4.3: Arthritic index scores for saline vs CFA throughout experimental timeline. Data was 

analyzed by two-way ANOVA using Holm-Sidak method with p<0.001 for CFA vs SAL in both 

groups only. 
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4.3 Histological Determination of Mono-arthritis 

H&E stains were performed on the sagittal sections of the ankles and qualitatively analyzed for 

cellular infiltration, joint degradation, and changes to the synovial lining (Figure 4.2 D-G). 

Sections obtained from saline-treated rats showed normal joint histology with a smooth articular 

surface and a regular tide mark separating the articular cartilage from the underlying subchondral 

bone (Figure 4.2 D, E). There was intact morphology of synovium and synovial lining, with no 

inflammatory cell infiltration, while CFA-injected rats showed a disrupted articular surface with 

total absence of cartilage in some areas. Both HSD (Figure 4.2 B) and RD (Figure 4.2 C) fed 

groups exhibited similar degree of inflammation, lesion formation, and the occasional lesions 

formation at the injection site upon visual inspection of the pad of the inflamed paw. Lesions 

also appeared at the hock as well, although never progressed to gross ulceration. There was 

minimal inflammation observed at the contralateral paws. There was no difference in the analysis 

of the HSD vs. the RD SAL-injected groups with regards to histological comparison. The sagittal 

section of CFA-injected paws demonstrates a denuded intimal layer and adipocytes (Figure 4.2 

F), thickened and edemic sub-intima which have been largely replaced by inflammatory cell 

infiltrates, lymphocytes, and capillaries are congested and walls are thickened, evident in the 20x 

magnification (Figure 4.2 G). There was also no difference in the qualitative analysis of the paw 

joint histology of the HSD vs. RD CFA-injected groups. 

4.4 Quantitative progression of mono-arthritis and inflammation 

The progression of inflammation from baseline to endpoint is shown in Figure 4.3. All rats were 

subjectively scored every second day based on level of redness/erythema as well as lesion 

formation in the toes, foot pad, knuckles and hock on both hind paws. An additional score was 
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given for redness/erythema or lesion formation in either of the forepaws. Each affected region 

was scored on a scale of 0-4, 0 being normal and 4 being the maximal severity. The maximum 

overall score was 20. Caliper measurements (Figure 4.4 A) of the cross-sectional width of the 

ipsilateral, injected hind paw and hock of the CFA treated animals remained significantly larger 

throughout the experimental timeline (p < 0.05) while no significant change was observed in the 

size of the left hind paw/hock of SAL-treated controls or in the contralateral hind paw/hock. 

Water displacement (Figure 4.4 B) of the paws was used to represent overall swelling of the 

affected foot, including the toes, knuckles, paw, and hock. Although there was no difference in 

paw volume of the contralateral hind paw for any group (p > 0.05), the volume of the ipsilateral 

hind paw remained significantly elevated in the CFA –treated cohorts (p <0 .05) while no change 

was observed in the SAL-treated animals. 
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Figure 4.4: Quantitative measurement of mono-arthritis using caliper measurements (A) and 

water displacement (B). Measurements are expressed as the average change in width of the left 

hock (A) or change in hind paw volume (B) compared to baseline with respect to time, measured 

every second day of the experiment. The mean of three measurements of each paw and hock 

were taken, while the volume displacement was measured only once.  Shown above is the 

change in width of the left hock compared to baseline measurements with respect to time. Data 

was analyzed using two-way ANOVA using Tukey’s post-hoc test.  *p<0.05    
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4.5 Systolic blood pressure 

Weekly blood pressure measurements were recorded from baseline (Day 0) to endpoint at day 

21, and the percent change from baseline was calculated and analyzed (Figure 4.5). The SHRs all 

remained hypertensive throughout the experimental period. The mean and standard deviation of 

the blood pressures at baseline within the groups was as follows; HSD CFA: 227.6 ±31.3 mmHg, 

HSD SAL: 246 ±23.3 mmHg, RD-CFA: 214±31.1 mmHg, RD-SAL: 224 ±15.4 mmHg. CFA-

treated animals had significantly higher blood pressure readings than SAL groups (p <0.05) at 

day 7. Day 21 readings also indicated significant differences in both diet and treatment induced 

percent change from baseline systolic blood pressures (HSD vs. RD p<0.05; CFA vs. SAL 

p<0.001). These results suggest that HSD and CFA effectively induce an increase in systolic 

blood pressure. 

4.6 Plasma TNF alpha levels 

Plasma samples from all treatment groups for Days 0, 7, 14 and 21 were analyzed for levels of 

TNF-α using a commercially available ELISA kit. The levels of TNF-α remained low at baseline 

(Day 0) for all treatment groups. Day 7 and 14 yielded statistically significant increase in TNF-α 

levels in HSD-CFA vs. HSD-SAL and RD-SAL groups. There was no significant difference in 

the HSD-CFA group compared to the saline controls at day 21 despite an evident numerical 

increase in TNF-α levels, due to the great variability in samples.  TNF-α levels of RD-CFA 

groups were statistically different only from HSD-SAL group in day 7 and 14. There was no 

statistical difference in TNF-α levels between the CFA treatment groups, suggesting that HSD 

does not affect the progression of arthritis development.  
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Figure 4.5: Percent change from baseline of systolic blood pressures of SHR-SAL vs. SHR-

CFAs on either HSD or RD. Four sequential readings were taken at four seconds apart per rat. 

The SAL and CFA groups were severely hypertensive throughout the experimental timeline at 

blood pressures above 180 mmHg. The percent change from baseline of the mean values of the 

systolic blood pressures are depicted (n=8-16/group). Data was analyzed using two-way 

ANOVA using Holm-Sidak post-hoc test.  * p<0.05, **p<0.001  
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Figure 4.6: Plasma concentration of TNF-α (pg/mL) per experimental group during the 

experimental period. Plasma samples were taken on day 0, 7, 14 and 21 of experimental period. 

ELISA analysis of samples was completed for n=5 from each experimental group. The average 

of the peak TNF-α plasma concentration for all rats in each group was calculated. Data was 

analyzed using one-way ANOVA using Tukey’s t-test for differences in mean values among 

groups (n=5-8/group). *p<0.05 
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Figure 4.6: Average Plasma Concentrations of TNF-α
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4.7 Determination of Cerebral Hemorrhage 

Experimental animals (n=3-8/group) were randomly selected for Evans-blue dye (EBD) injection 

at the time of sacrifice in order to identify areas of potential hemorrhage as evidenced by EBD 

extravasation. Figure 4.7 shows representative images of brains from SHR-SAL (Figure 4.7A) 

groups compared to CFA-treated animals on HSD (Figure 4.7B) and RD (Figure 4.7C) infused 

with EBD. Diet had no discriminable effect on SAL treated groups with regards to gross brain 

morphology. The brains appeared well perfused, with equi-sized hemispheres, a straight and 

healthy septum, with no evidence of EBD extravasation. EBD extravasation was more evident in 

all of the HSD-CFA brains (n=8), in forms diffuse and pin point, likely due to larger areas of 

hemorrhage. Most of the brains from RD-CFA groups (5 out of the 6 experimental animals 

infused with EBD) exhibited extravasation, as the presence of pin-point hemorrhages (PP). Signs 

of edema, and decreased cerebral perfusion, and distorted septum were especially apparent in the 

brains from CFA treated rats, with particularly higher incidence in the HSD-CFA treatment 

groups. Their brain morphology is akin to the stroke prone spontaneously hypertensive rats 

(SHRsp) who had developed hemorrhagic stroke, whose brains are characterized by a 

dysmorphic brain structure and deviated septum due to severe cerebral edema and fluid-filled 

lesions (169). There was also obvious asymmetry of both left and right hemispheres of the CFA 

rats compared to controls. 

 

 

 

 



73 
 

Figure 4.7: Evans-blue dye Infusion. Animals were anaesthetized and Evans Blue Dye was 

infused over a period of 25-30 minutes at the time of sacrifice. No signs of hemorrhage were 

apparent in controls (A), while CFA injected animals (HSD: B; RD: C) showed obvious signs of 

cerebral hemorrhage (circled). Pinpoint hemorrhage (PP); Cerebral hemorrhage (CH) 
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Figure 4.7: Evans-blue dye Infusion. 
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4.8 Effects of Diet and Inflammation on Vascular Function in the MCA 

4.8.1 Pressure Dependent Constriction 

All animals, regardless of diet or treatment, were able to constrict to a degree in response to 

increased intraluminal pressure, although there were significant variations between the groups 

with regards to the extent of the PDC response (Figure 4.8). We observed that both diet and CFA 

treatment affected PDC response. CFA treatment significantly diminished the ability of MCAs to 

undergo PDC in the RD group compared to SAL controls. However, there was no significant 

difference in the PDC response of the MCAs in HSD CFA compared to HSD SAL, which was 

attributable to the effect of the high salt diet on PDC. HSD alone had greatly diminished the PDC 

response in the vessel, as further evidenced by a significant decrease in PDC response in the 

HSD SAL group compared to the RD SAL group (p=0.01). 

4.8.2 Endothelium-Mediated Vasodilation: Bradykinin Response  

Figure 4.9 depicts the endothelial vasodilatory response of MCA’s to addition of bradykinin (1.6 

μM) (170, 218). The effect of inflammation (induced via CFA; treatment effect) was not evident 

within MCAs of RD groups (RD CFA vs. RD SAL). However, a significantly diminished 

response was observed in the MCA’s from HSD-fed CFA rats compared to HSD SAL rats 

(p=0.015). There was no difference in vessel response to bradykinin due to the effect of high salt 

diet (ie. RD SAL vs. HSD SAL). However, comparison between inflamed groups of the different 

diets indicated a significant decrease in relaxation in the HSD CFA cohort compared to the RD 

CFA (p=0.006), demonstrating the effect of both high salt diet and inflammation on bradykinin 

response in the MCAs. 
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4.8.3 NOS Inhibition: L-NAME Response 

Endothelial-mediated relaxation by nitric oxide (NO) was tested by the addition of a non-specific 

nitric oxide synthase (NOS) inhibitor L-NAME (100 μM), eliminating NO-mediated 

vasodilation. Induction of inflammation via CFA treatment did not significantly decrease 

response to L-NAME in the RD groups despite a trend in depressed response (RD CFA vs. RD 

SAL). However, there was a statistically significant decrease observed with CFA treatment in the 

HSD groups (HSD CFA vs HSD SAL; p=0.018) (Figure 4.10). No statistically significant 

difference was noted in MCA response to L-NAME between diets. As such, the combination of 

HSD and CFA treatments appears to be detrimental to the NOS system.  

4.8.4 Intracellular Ca2+ Release: Vasopressin Response 

The contractile response of the MCA to intracellular Ca2+ release by vasopressin (1.23x10-7M) 

was evaluated in the presence of nifedipine (L-type calcium channel blocker; 3 μM). There was 

no significant difference in the treatments in the RD group in their response to sarcoplasmic 

calcium release (RD CFA vs. RD SAL). However, a statistically significant difference was 

observed in the HSD rats between inflamed and non-inflamed rats, as the MCAs of  HSD CFA 

group had a significant diminished response to vasopressin compared to the HSD SAL group 

(p=0.03) (Figure 4.11). There was no difference in vessel contraction in response to vasopressin 

between diets (RD SAL vs. HSD SAL). This indicates that in the presence of a HSD, CFA 

treatment may interfere with intracellular Ca2+ release. 

4.8.5 PKC Activation – Phorbol Dibutyrate 

Phorbol Dibutyrate (1μM) was added to the MCAs to evaluate vascular smooth muscle response 

to PKC activation in the presence of nifedipine (3 μM) (Figure 4.12). A significant difference 
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was observed in the inflammation (CFA) groups compared to SAL of both RD and HSD groups. 

(p=0.047, RD CFA vs RD SAL;  p=0.018, HSD CFA vs. HSD SAL). There was no statistical 

difference in PKC activation between the diets (RD SAL vs. HSD SAL). This suggests that CFA 

treatment may interfere with PKC activation within the MCA, regardless of diet. 
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Figure 4.8: Pressure dependent constriction in regular and high salt diet fed CFA and SAL 

groups. Comparisons are made in the MCAs isolated from SHR HSD CFA (n=16), HSD SAL 

(n=13), RD CFA (n=12) and RD SAL (n=11) groups. Ability of the MCA to respond to a 100 

mmHg pressure step was evaluated as intraluminal pressure was raised from ~0 mmHg to 100 

mmHg. All values represent mean ± SEM. Data was analyzed using two-way ANOVA using the 

Holm-Sidak Method. * p<0.05 
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Figure 4.9: Bradykinin-induced relaxation in regular and high salt diet fed CFA and SAL-treated 

rats. Comparisons are made in the MCAs isolated from SHR HSD CDA (n=9), HSD SAL 

(n=11), RD CFA (n=10), and RD SAL (n=11) groups. Endothelial response was evaluated by 

adding 1.6 μM bradykinin to the buffer bath and measuring the % maximal dilation of the MCA 

(compared to dilatory response to 3 μM  nifedipine). All values represent mean ± SEM. Data was 

analyzed using two-way ANOVA using the Holm-Sidak Method. * p<0.05 
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Figure 4.10: L-NAME-mediated vasoconstriction in regular and high salt diet fed CFA and SAL-

treated rats. Comparisons are made in the MCAs isolated from SHR HSD CFA (n=16), HSD 

SAL (n=13), RD CFA (n=11), and RD SAL (n=11) groups. Endothelial response was evaluated 

by exposing the MCAs to 100 μM L-NAME and measuring the % decrease in luminal diameter. 

All values represent mean ± SEM. Data was analyzed using two-way ANOVA using the Holm-

Sidak Method. * p<0.05 
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Figure 4.11: Vasopressin-induced vasoconstriction in regular and high salt diet fed CFA and 

SAL-treated rats. Comparisons are made in the MCAs isolated from SHR HSD CFA (n=16), 

HSD SAL (n=13), RD CFA (n=12), and RD SAL (n=9) groups. Vascular smooth muscle 

response to intracellular calcium release was evaluated by exposing the MCA to 1.23x10-7M 

vasopressin and measuring the % decrease in luminal diameter from maximal dilation with 

nifedipine. All values represent mean ± SEM. Data was analyzed using two-way ANOVA using 

the Holm-Sidak Method. * p<0.05 
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Figure 4.12: Vasoconstriction to PKC activation in regular and high salt diet fed CFA and SAL-

treated rats. Comparisons are made in the MCAs isolated from SHR HSD CFA (n=16), HSD 

SAL (n=13), RD CFA (n=12), and RD SAL (n=9) groups. PKC activation in the vascular 

smooth muscle was evaluated by exposing the MCA to Phorbol-dibutyrate (1 μM) and 

measuring the % decrease in luminal diameter from maximal dilation with nifedipine. All values 

represent mean ± SEM. Data was analyzed using two-way ANOVA using the Holm-Sidak 

Method. * p<0.05. 
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4.9 The Effect of Diet and Acute IL-17a Incubation on Vascular Function in the MCA 

(preliminary study) 

To determine whether IL-17a is directly involved in vascular dysfunction induced by 

CFA treatment and/or HSD regimen, we incubated a sample of MCA’s with IL-17a prior to our 

pressure myograph experiements. IL-17a preincubation significantly decreased PDC (Figure 

4.13) and bradykinin-mediated vasodilation (Figure 4.14) in the RD fed animals, while no 

difference was observed with respect to responses to L-NAME (Figure 4.15), vasopressin 

(Figure 4.16) and phorbol-dibutyrate (Figure 4.18). In the HSD group, preincubation with IL-17a 

only affected the L-NAME response (with a significant decrease in constriction) while the 

MCA’s ability to undergo PDC, dilate to bradykinin and constrict in response to vasopressin and 

phorbol-dibutyrate were unaffected. This suggests that IL-17a may have direct effects on 

vascular function in the MCA. However, this effect differs based on the diet consumed by the 

animal. 

4.10 The Effect of Chronic Inflammation and Diet on MCA Response in the Presence of IL-17a 

A sample of MCA’s from RD CFA and HSD CFA groups were also incubated with IL-

17a and evaluated for changes in vascular function (data not shown). Incubation with IL-17a 

appeared not to alter any parameters of vascular endothelial or smooth muscle function in our 

MCA’s regardless of diet. However, our experiments were insufficiently powered to detect 

statistical differences due to small sample sizes (n=1-4 per group). Therefore the results are not 

yet interpretable. 
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Figure 4.13: Acute effects of IL-17a on pressure dependent constriction. PDC was measured in 

saline-treated SHR as described previously. Comparisons between RD Reg (n=11) vs RD +IL-

17a (n=4) and HSD Reg (n=13) vs HSD +IL-17a (n=7) were made. All values represent mean ± 

SEM. Data was analyzed using one-way ANOVA using Mann-Whitney Rank T-test. *p<0.05 
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Figure 4.14: Acute effects of IL-17a on bradykinin-mediated vasodilation. Bradykinin-mediated 

vasodilatory response was measured in saline-treated SHR as described previously. Comparisons 

between RD Reg (n=11) vs RD +IL-17a (n=4) and HSD Reg (n=11) vs HSD +IL-17a (n=6) were 

made. All values represent mean ± SEM. Data were analyzed using one-way ANOVA using 

Tukey’s T-test. *p<0.05 
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Figure 4.15: Acute effects of Il-17a on L-NAME-mediated vasoconstriction. MCA 

vasoconstriction to L-NAME was measured in saline-treated SHR as described previously. 

Comparisons between RD Reg (n=11) vs RD +IL-17a (n=4) and HSD Reg (n=13) vs HSD +IL-

17a (n=7) were made. All values represent mean ± SEM. Data was analyzed using one-way 

ANOVA using Tukey’s T-test. *p<0.05. 
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Figure 4.16: Acute effects of IL-17a on vasopressin-induced vasoconstriction. MCA 

vasoconstrictor response to intracellular calcium release (vasopressin) was measured in saline-

treated SHR as described previously. Comparisons between RD Reg (n=11) vs RD +IL-17a 

(n=4) and HSD Reg (n=13) vs HSD +IL-17a (n=7) are presented here. All values represent mean 

± SEM. Data was analyzed using one-way ANOVA using Tukey’s T-test. 
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Figure 4.17: Acute effects of IL-17a on vasoconstrictory response to PKC activation. MCA 

vasoconstriction to activation of PKC (phorbol dibutyrate) was measured in saline-treated SHR 

as described previously. Comparisons between RD Reg (n=11) vs RD +IL-17a (n=4) and HSD 

Reg (n=13) vs HSD +IL-17a (n=7) are presented here. All values represent mean ± SEM. Data 

were analyzed using one-way ANOVA using Tukey’s T-test. 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

 

 

 

 

 

 

 

 



99 
 

5.0 Discussion: 

Our model is unique in that it is the first animal model in which the induction of mono-

arthritis in a stroke-resistant hypertensive rat model potentiates the development of hemorrhagic 

stroke. This model incorporates the two important aspects in RA conditions which appear to 

predispose the patient to develop stroke: chronic high blood pressure and chronic inflammatory 

insult. This study also addresses the impact of high dietary salt content on increasing the 

systemic inflammatory response, and exacerbating the severity of the hemorrhage in our model.   

The CFA-induced mono-arthritis model exemplifies a moderate arthritic response while 

still inducing systemic inflammation compared to the tail-base, CFA-injected AIA model, which 

induces severe systemic inflammation, debilitating poly-arthritis, and chronic pain (64). While 

the latter model often raises concerns for animal welfare and comfort, the former model 

minimizes animal discomfort and allows for an arthritic injury to develop into polyarthritis as 

well as systemic inflammation. In our mono-arthritic hypertensive groups, the arthritic index of 

the forepaws and the contralateral paws rarely exceeded 0, indicating that although systemic 

inflammation was induced (as observed by increased plasma TNF-α levels), arthritis and joint 

degradation was likely isolated to the injected paw. Therefore, animals maintained full mobility 

of most of their limbs, and were able to reach the full 21 day period with minimal buprenorphine 

administration. The reduced severity of inflammatory response in the SHR strain is not 

associated with the site of the adjuvant injection (60). The SHR strain itself is deemed to be less 

prone to inflammation (226). The severity of the AIA model often prevents the experimental 

protocol from continuing to the full 21 day period and likely increases the need for higher doses 

(or frequency) of buprenorphine administration, a drug suggested to have variable effects on the 

vasculature in both chronic and acute administration settings (227, 228). 
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 The joint damage with our mono-arthritis model is reminiscent of the changes that occur 

with RA (17). There is defined degeneration of the joints and breakdown of cartilage, 

angiogenesis and vascularizations, and increased levels of cellular infiltrates in the synovium in 

the CFA-injected paw. The lack of distinction between the intimal and sub-intimal layers may be 

due to intimal thickening and/or a heavy immune cell infiltration in the subintima, both of which 

are characteristic of the structural changes to the synovium during progression of arthritis, in 

addition to synovial villus projections into the joint space (229, 230). These are all changes that 

are in part attributed to the action of TNF-α (231, 232). However, the systemic response is not as 

severe in the hypertensive SHR model, possibly due to this strain’s immunological resistance to 

the robust Th1 inflammatory response associated with the injection of CFA. This is due to the 

general suppression of cell-mediated immunity rendering them “immunologically depressed” 

compared to commonly used rat strains (226). Classic rat strains including Lewis rats, the Dark 

Agouti, and the Sprague Dawley rats (SDR) are genetically predisposed to mount a robust 

systemic inflammatory response to the mycobacterial component of CFA (233-235). Baseline 

TNF-α levels in the SDR model are approximately 3-fold higher than the SHR strain (data from 

BioLegend ELISA kit tests, unpublished) and induction of inflammation by CFA injection in the 

hind paw of the SDR along a similar timeline results in systemic TNF-α of 130-600 pg/ml in 

comparison to our mean peak levels of 66-200 pg/mL in SHR (236), (unpublished data from 

Fotso-Soh & Daneshtalab, 2015). While the increase in plasma TNF-α level in our hypertensive 

mono-arthritic rats are not as high as the SDR models, there is still an increase in the TNF-α in 

the CFA treated animals compared to the SAL counterparts. The increase in TNF-α level is slight 

in the RD CFA model, but it is still significantly higher (~3 fold) in the hypertensive-mono-

arthritic (HSD CFA) rats on the high salt (4% NaCl) diet (Figure 4.6).  
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In our model, gros cerebral hemorrhage was not present in the SAL groups, as the SHR 

strain is deemed to be stroke-resistant (207). It was only in conjunction with the mono-arthritic 

injury that evidence of gross hemorrhage and altered brain morphology occurred, regardless of 

the diet. Evidence shows that the loss of MCA’s ability to undergo PDC is linked to spontaneous 

hemorrhagic stroke development in the SHRsp model (169). The loss of MCA function is 

attributed to changes in endothelial or smooth muscle function in the SHRsp. If the MCA’s 

endothelial and vascular smooth muscle function were damaged, it would prevent the MCAs 

from undergoing PDC and properly auto-regulating the blood flow. It is possible that 

inflammatory mediators produced by our current mono-arthritic model, in conjunction with the 

underlying hypertensive physiology, played a role in the loss of MCA function by affecting 

various aspects of vessel function. Studies indicate that intracranial aneurysms are associated 

with physiological vascular remodeling that occurs in conjunction with inflammatory reactions, 

NOS dysfunction, and extracellular matrix remodeling (237-240). Moreover, there is a shift in 

the commonly accepted role of salt in potentiating cardiovascular diseases through traditional 

mechanisms such as hypertension and kidney dysfunction. More studies highlight salt’s integral 

role in impairing endothelial function, increasing arterial stiffness independent of blood pressure 

(241-243), and changes to the vascular endothelial glycocalyx layer and epithelial sodium 

channel to alter non-osmotic storage of salt (244). The increase in severity of HS and MCA 

dysfunction in the HSD CFA groups also suggests salt and inflammatory injury play a 

cooperative role in increasing cerebral vessel damage, in the presence of hypertension.  

The significant increase in TNF-α in our HSD CFA model (Figure 4.6) is reflective of the 

possible effect of salt in the diet potentiating the initial inflammatory injury by exponentially 

increasing the inflammatory response. Our results are consistent with ideas originally presented 
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by Kleinewietfeld et al and others in which sodium chloride drives autoimmune diseases (245-

248). Similarly, the activation of the Th17 pathway via sodium chloride was proposed to be 

involved in increasing the severity of the experimental autoimmune encephalomyelitis (EAE) in 

mice due to an increase in other pro-inflammatory cytokines such as TNF-α and IL-2. Our HSD 

CFA model shows similarities to the salt-EAE model previously proposed, as there is 

exacerbation of the inflammatory response and evidence of severe hemorrhagic stroke 

development as indicated by intracerebral extravasation of Evans-blue dye and visually apparent 

altered brain morphology with increasing cerebral edema, regional ischemia, decreased perfusion 

and deviation in hemisphere size. However, hemorrhagic stroke was also induced, albeit less 

severely as pin-point hemorrhages, in the RD CFA group who were fed a regular salt diet. 

Indeed, extravasation of Evans-blue dye was present in 100% of HSD-CFA and 84% of RD-

CFA groups investigated. Interestingly, the morphological appearance of the brains of the RD-

CFA animals appeared healthy, even with the pinpoint hemorrhages, particularly in comparison 

to what we have observed in post-stroke SHRsp models and our current HSD-CFA model. Also, 

as intracerebral hemorrhages do not always appear on the brain surface, the results of the RD-

CFA’s are not indicative of internal brain damage which requires further investigation. Although 

the TNF-α level was not statistically higher in the RD CFA compared to the SAL-treated 

animals, it was approximately 10-fold higher. Therefore, as an adjuvant arthritic model, this is 

reflective of the immune-complexity and heterogeneity that exists within the pathogenesis of 

RA, with high interpatient variability (249).  

A vast network of immune cells and cytokines are likely involved in the disease 

progression from the initial inflammatory injury, involving local recruitment and activation of 

immune cells as well as effector functions (250). The main pro-inflammatory cytokine directly 
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correlated with joint destruction in RA is TNF-α (251). In addition to its direct effects on joint 

degeneration, TNF-α induces several other pro-inflammatory cytokines such as interleukin-1 (IL-

1), interleukin-8 (IL-8), and granulocyte macrophage-colony stimulating factor (GM-CSF) (252). 

It mediates the expression, and in some cases amplifies the effects of, inflammatory mediators 

including IL-1β, PGE2, NO (253) and interleukin-6 (IL-6) in peripheral organs (254). 

Additionally, there is evidence of the involvement of TNF-α in increasing angiotensin II (AGII) 

levels and activity, and inducing nephron-glomerular damage, increasing urea and uric acid 

accumulation in plasma, inducing hypertension, and worsening endothelial dysfunction (255-

261). Periodic Acid-Schiff (PAS) staining of kidney samples from our animals (performed by 

Dr. Dickhout’s lab (unpublished)) revealed signs of inflammatory infiltrates and glomerular 

sclerosis in both inflamed groups (RD CFA and HSD CFA), although renal damage was more 

severe in the HSD  CFA rats with the appearance of obsolete (non-functional) glomeruli. 

Although saline-treated controls receiving HSD showed evidence of renal damage and immune 

cell infiltrates as well, the frequency of obsolete glomeruli and protein casts increased 

significantly after CFA treatment, as did the occurrence of inflammatory infiltrates. In contrast, 

the RD SAL cohort showed no signs of renal damage indicating that nephron-glomerular insult 

was attributed to high dietary salt content and/or inflammatory injury from CFA injection. As 

such, conditions associated with kidney damage precede the development of hemorrhagic stroke 

(262), and appears to be occurring in our hypertensive mono-arthritic model, although further 

investigation into the effect of kidney disease in our model is warranted. It is also likely that 

increases in various pro-inflammatory cytokines systemically induce central inflammation (in the 

brain) and cytokine production, promoting intracerebral damage directly and increasing 
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incidence of hemorrhagic damage in our hypertensive mono-arthritic models, and requires 

additional scrutiny.  

Intracerebral hemorrhages are also characterized by the middle cerebral artery (MCA)’s 

inability to undergo autoregulation and maintain constant cerebral perfusion, particularly during 

chronic hypertension. Our animal groups all remained hypertensive (at ~230mmHg compared to 

the normal blood pressure of less than 140 mmHg for a SDR strain) throughout the experimental 

period regardless of their treatment. Although there were no significant differences in blood 

pressure among the groups from baseline, there were variations throughout the experimental 

timeline associated with the diet or CFA-treatment (Figure 4.5). Regardless of this, the ability of 

the MCA to undergo PDC was significantly diminished in all groups relative to the RD SAL 

control (Figure 4.8). The maintenance of high systolic blood pressure is independent of diet 

among our experimental groups, which allows us to isolate the diet effect on MCA function as 

well, rather than blood pressure differences. Although Yamori et al found that with sustained 

levels of stress, spontaneous stroke can occur in up to 30% of SHRs (225), no signs of cerebral 

hemorrhage was observed in any of the SAL-treated SHR. 

Evidence in the literature indicates that MCA’s isolated from SHRsp prior to signs of 

stroke showed healthy responses to various vasoactive drugs which affect both endothelial and 

vascular smooth muscle function. Response to certain vasogenic peptides were all lost in the 

SHRsp after evidence of stroke, although response to phorbol dibutyrate was maintained to a 

lesser extent in some. Moreover, PDC was also lost, which indicates dysfunction in various 

aspects of vascular function as well (18, 168, 171, 218). Due to signs of gros cerebral 

hemorrhage found in both CFA groups in our study, comparisons between the various indicators 

of vascular function in our animal models and the pre-stroke and post-stroke SHRsp was 
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necessary. Our study showed the type of diet (HSD vs RD) and treatment (CFA vs SAL) affected 

different aspects of the MCA’s vascular function. When we compared treatment differences in 

our RD-fed rats’, vascular response to phorbol dibutyrate (Figure 4.12) and PDC (Figure 4.8) 

were significantly diminished with CFA compared to SAL but responses to bradykinin (Figure 

4.9), L-NAME (Figure 4.10) and vasopressin (Figure 4.11) were not affected. In our HSD-fed 

CFA rats, responses to all indicators of vascular function (bradykinin, L-NAME, vasopressin and 

phorbol dibutyrate) were significantly diminished with CFA treatment compared to SAL 

controls. However, there was no significant loss of PDC in the HSD rats between CFA and SAL 

treatment, which was unexpected. A comparison of the effect of diet (HSD or RD) on PDC 

showed a significant loss of PDC in the MCA with HSD compared to RD SAL animals, 

indicating that the diet alone may be causing vascular damage. Interestingly, although the HSD 

SAL rats had diminished response to PDC compared to their RD SAL controls, there were no 

signs of gross cerebral hemorrhage in the HSD-SAL group. This suggests that a diminished PDC 

response may not be sufficient to elicit vessel rupture or signs of gross hemorrhage on its own. 

However, chronic inflammation may be triggering a sequence of events within the MCA leading 

to changes in the autoregulatory capacity of the vessel, regardless of diet.   

The lack of appropriate autoregulatory function in the MCA of the HSD SAL rats is 

likely attributed to the effects of chronic high salt diet on the endothelium and its homeostatic 

functions. Endothelial dysfunction secondary to chronic salt intake has been linked to increased 

endothelial production of Transforming Growth Factor (TGF)-β which in turn increases the 

production of reactive oxygen species (ROS) through NADPH oxidase-4 (NOX4), leading to 

decreased NO bioavailability (263, 264). In male SDRs, aortic vascular endothelial 

[Ca2+]i signaling in response to histamine and methacholine was impaired after a short term 8% 
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NaCl diet (243). Although there was no significant decrease in the ability of the HSD SAL group 

to respond to bradykinin (Figure 4.9), endothelial dysfunction involving changes in ROS and 

endothelial Ca2+ regulation may occur as possible mechanisms of PDC failure. The lack of 

difference in PDC response between HSD-fed animals may therefore be accounted for by the 

significantly detrimental effects of the HSD to various aspects of MCA’s endothelial function 

involved in regulating PDC to a point where additional damage caused by inflammatory injury 

were likely negligible in the HSD CFA group. We can, however, observe the direct effect of 

inflammatory treatment on MCA function in our RD-fed groups, as evidenced by 

cerebrovascular function in the RD CFA group. 

The RD CFA group had significantly diminished PDC response, indicating that 

inflammatory pathology may be involved directly in autoregulatory dysfunction. One possible 

mechanism by which this altered vascular response may have occurred is by the increased 

expression of specific transient receptor potential (TRP) channels. Recent data is now showing 

an association between chronic inflammatory conditions such as RA and increased expression of 

TRP channels at the cell surface (265-267). TRP channel upregulation can be triggered by 

increased and persistent local production of ROS and pro-inflammatory cytokines, increased 

kinase activity such as NF-кB (268), and other physical and chemical cell-stress signals (267). 

Two types of channels that are known to be present in cerebral arteries are TRPV1 and TRPV4. 

When activated by increased [Ca2+]i in the endothelium, they cause vasodilation (148). It may be 

that over-expression of TRPV1 occurs in RD CFA due to the increased inflammatory milieu, 

which could explain why the pressure-induced contractile response was impaired while the 

bradykinin vasodilatory response remained intact.     
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The effect of inflammatory mediators on the endothelium has also been studied with the 

interaction between TNF-α and eNOS. Evidence shows that TNF-α interferes with endothelial 

nitric oxide (eNOS) production at the mRNA level by inhibiting the eNOS promoter and 

destabilizing the mRNA. This leads to endothelial dysfunction and vasoconstriction due to a 

shortage of eNOS (269). In our study, evaluation of the MCA’s response to bradykinin (which 

causes NO release in the vascular endothelium leading to vasodilation) and L-NAME (an 

inhibitor of NOS, which decreases NO release and leads to vasoconstriction) was performed. The 

HSD CFA exhibited a significant decrease in response to both bradykinin and L-NAME 

compared to HSD SAL, whereas no difference was observed between treatments in the RD-fed 

animals. It appears that endothelial dysfunction is exacerbated by chronic high salt diet and 

inflammatory insult, leading to the diminished response to bradykinin. Alternatively, bradykinin 

activates other vasodilatory effectors including endothelial derived hyperpolarizing factor 

(EDHF) (147). Kessler et al. showed that chronic elevation of pro-inflammatory cytokines such 

as IL-1β and TNF-α are known to decrease the production of EDHF, leading to diminished 

EDHF-initiated relaxation of the vascular smooth muscle (25). The degree of systemic 

inflammation, as observed by the plasma levels of TNF-α were approximately 8-fold higher in 

the HSD CFA group compared to HSD SAL and 3-fold higher than the RD CFA cohort (Figure 

4.6). It is possible that the magnitude of the TNF-α-incited EDHF and eNOS inhibitory effects 

may be occurring more prominently among HSD-fed, CFA-treated rats, lending evidence to 

possible interactions between HSD and inflammation to promote further endothelial damage. 

TNF-α levels were not statistically higher in the RD CFA rats compared to RD SAL rats, which 

may potentially explain why there was no significant difference in L-NAME or bradykinin 

response between inflamed and non-inflamed RD-fed SHR.   
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The evidence of the direct effects of HSD on endothelial response is well-established, as 

a wealth of literature exists to link dietary sodium chloride to endothelial dysfunction. Chronic 

high salt intake is correlated to decrease in NO bioavailability, and increased endothelial and 

arterial stiffness, diminishing vascular integrity and compliance (127, 241, 244, 270). Direct 

effects of the HSD on cerebral vessels may explain why our RD SAL group had a significantly 

better vasodilatory response to bradykinin than the HSD SAL group and why observed 

cerebrovascular damage (particularly on the endothelium) was exponentially increased when 

HSD was combined with inflammatory injury in the HSD CFA group (as seen in the diminished 

response to bradykinin).  

Our results indicate that there is also a significant degree of vascular smooth muscle 

dysfunction, which is associated primarily with CFA treatment rather than diet effect. However, 

there were differences in the degree of vascular smooth muscle damage associated with both diet 

and inflammation. While the HSD CFA group had a significantly diminished response to both 

vasopressin and phorbol ester (compared to HSD SAL), the RD-fed CFA group only showed a 

diminished response to PKC activation (compared to RD SAL). MCA remodeling due to an 

increase in inflammatory mediators may be accountable for the dysfunctional response to 

sarcoplasmic calcium release (vasopressin) as well as PKC activation (phorbol dibutyrate) (144, 

152, 171). TNF-α is a potent stimulator of vascular remodeling for the smooth muscle cell layer 

of the vascular wall, increasing matrix metalloproteinase activity and increasing proliferation of 

vascular smooth muscle cells (271, 272). The impaired response to PKC activation in both 

inflamed groups is akin to the decrease in PKC observed in the post-stroke SHRsp (171). 

However, the MCA’s of these post-stroke SHRsp were also unable to constrict in response to 

vasopressin as well, which was only apparent in our HSD-fed CFA group. Binding of 
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vasopressin to its receptor (V1) activates the vascular contractile response through activation of 

phospholipase C (PLC) which triggers a series of downstream events leading to release of Ca2+ 

from the sarcoplasmic reticulum, secondary to the cleavage of phosphatidylinositol 4,5-

bisphosphate (PIP2) and release of inositol trisphosphate (IP3) (273). However, this mechanism 

also releases diacylglycerol (DAG) which additionally translocates and activates PKC (273). In 

our model, inflammation and HSD may impair both the PLC/ IP3 along with the PKC system. 

The RD-fed CFA group on the other hand, only exhibited dysfunction in PKC activation while 

maintaining PLC/ IP3 signaling, which appears to occur in spite of the necessary cooperation of 

the pathways after V1 receptor activation. Interestingly, the RD-fed CFA groups still showed 

signs of pinpoint hemorrhages despite a functioning MCA. This indicates that although there are 

absolute signs of vascular dysfunction and stroke-related changes to cerebral vascular function, it 

is still possible to have hemorrhagic stroke without exhibiting all levels of dysfunction 

exemplified by the post-stroke SHRsp (ie: lack of response to bradykinin, L-NAME, 

vasopressin, phorbol dibutyrate and PDC).  

In conjunction with the effect of salt and inflammatory injury in promoting intracerebral 

hemorrhage, the age of the SHRs themselves is also important.  Preliminary studies in the SHR 

to induce HS with CFA injection failed if the animals were younger than 3 months of age. The 

optimal age for creating the hypertensive mono-arthritic model was 20-28 weeks of age (~5-7 

months), equivalent to approximately 20-40 human years (274). We believe the model at this age 

better reflects the onset and progression of RA; although RA can start at any age, it often peaks 

between ages of 30-50 years, regardless of genetic predisposition.  

Our results indicate that inflammatory injury in the setting of high dietary sodium intake 

and chronic hypertension leads to a more severe course of inflammatory autoimmune disease and 
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predisposes the patient to developing an apparently more severe form of hemorrhagic stroke. 

Based on the presence of inflammatory infiltrates in the kidneys of our HSD-fed, saline controls, 

it is likely that elevated dietary sodium alone is initiating a type of inflammatory process. In vitro 

and in vivo data shows that in the presence of a modest sodium increase, pathogenic Th17 

induction occurs, leading to tissue inflammation (275). Subsequent inflammatory insult by way 

of CFA injection inarguably exacerbates this process, leading to diffuse renal damage and also 

cerebral hemorrhage. The varying levels of hemorrhage observed in our model, being less severe 

than what is usually observed in the SHRsp model, allowed us to correlate the subsequent tiers of 

cerebrovascular dysfunction compared to the SHRsp model.  

5.1: Limitations and Future Directions 

Although our goal was to study the mechanism of hemorrhagic stroke in an animal model 

of RA and chronic hypertension, there are several limitations to our data. We did find signs of 

cerebral hemorrhage in our inflamed animals on Day 21 however, we do not currently know 

when stroke occurred, as we did not observe obvious acute signs of stroke (ie: hemi-paralysis, 

twitching, “slug” behavior associated with stroke occurrence in the SHRsp model), making it 

difficult to correlate the observed vascular dysfunction with our cytokine assay data. Although 

TNFα levels seemed to peak at Days 7 and 14 as well, we cannot correlate this to the timing of 

cerebral hemorrhage or link the acute peak to our vascular function analysis, as cytokine levels 

had dropped by Day 21 in the RD-fed animals. Although there may be acute vascular effects of 

these pro-inflammatory cytokines, our study was not appropriately designed to detect these 

effects. Sacrifice and sampling of our animals at multiple time points (Day 7, 14 and 21) would 

provide more information to correlate the vascular implications of acute spikes in inflammatory 

mediators, allowing us to more appropriately narrow down the time frame at which cerebral 
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hemorrhage is occurring. Additionally, extrapolation of our stroke pathogenesis results to the 

human RA population is not completely applicable at this time. While it is widely accepted that 

atherosclerosis is positively correlated to human stroke development, this factor is absent as our 

rat model does not develop atherosclerosis (276). Therefore, comparison made between our 

model of hemorrhagic stroke and human disease must be made with caution. Another potential 

limitation is the apparent decrease in blood pressure in all groups on Day 7 of our experimental 

timeline. Because animals were not previously acclimatized to being frequently handled or 

having their blood pressure measured, it is very likely that they were stressed on the day of their 

baseline reading. This possibly gave a false trend of blood pressure decreasing one week after 

injection. Therefore, acclimatization of rodents to the blood pressure monitoring protocol as well 

as regular handling for two weeks prior to the start of experiments would help to avoid 

misinterpretation of results. Conversely, the use of implantable telemeters would likely yield 

much more consistent blood pressure monitoring throughout the experimental period, 

eliminating handling bias.   

Evaluation of endothelial function only included analysis of vascular response to 

bradykinin and NOS inhibition, which does not provide a complete picture of endothelial 

function as a whole since mediators such as EDHF and PGI2 also play a role in endothelial-

mediated vasodilation. In addition, alterations to vascular response to NOS inhibition only 

generates partial insight into inflammation-related changes to the MCA. Data suggests that IL-17 

may have direct effects on the activity of eNOS (100), requiring appropriate characterization of 

active versus inactive eNOS expression in the MCA. We also believe that modulation in 

expression of certain TRP channels may be involved in changes to MCA function. Therefore, 

characterization of TRP channel expression (especially TRPV4) on the vascular endothelium 
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would test this hypothesis. It would also be interesting to test expression patterns of the various 

VOC and TRPC channels in the smooth muscle of the MCA as well.   

Of particular importance is the fact that our preliminary data evaluating vascular function 

in the presence of acute IL-17a exposure is insufficiently powered at this time to detect 

statistically significant differences in many of our groups. Therefore, these data are not 

interpretable at this time but rather represent an area for future work. This future work should 

also include characterization of TRPV4 channel expression pre-and post-incubation with IL-17a 

to further test our hypothesis that TRP channel expression is playing a role in functional 

alterations to the MCA. 

Conclusion 

Essentially, our results demonstrate that the combination of chronic inflammation and 

high dietary salt intake is detrimental to the mechanical functioning of the cerebrovasculature in 

the setting of chronic hypertension. This failure is evidenced by not only cerebral vascular 

dysfunction but ultimately the inability to effectively autoregulate lumen diameter of the MCA 

leading to over-perfusion and cerebral hemorrhage. 

 

 

 

 

 



113 
 

References: 

1. Canada AAo. The Impact of Arthritis in Canada: Today and Over the Next 30 Years. 
2011;32(40). 

2. Cutolo M, Kitas GD, van Riel PL. Burden of disease in treated rheumatoid arthritis 
patients: going beyond the joint. Seminars in arthritis and rheumatism. 2014;43(4):479-
88. 

3. Solomon DH, Karlson EW, Rimm EB, Cannuscio CC, Mandl LA, Manson JE, et al. 
Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. 
Circulation. 2003;107(9):1303-7. 

4. Gonzalez A, Maradit Kremers H, Crowson CS, Ballman KV, Roger VL, Jacobsen SJ, et 
al. Do cardiovascular risk factors confer the same risk for cardiovascular outcomes in 
rheumatoid arthritis patients as in non-rheumatoid arthritis patients? Ann Rheum Dis. 
2008;67(1):64-9. 

5. England BR, Sayles H, Michaud K, Caplan L, Davis LA, Cannon GW, et al. Cause-
Specific Mortality in Male US Veterans With Rheumatoid Arthritis. Arthritis care & 
research. 2016;68(1):36-45. 

6. Lindhardsen J, Ahlehoff O, Gislason GH, Madsen OR, Olesen JB, Svendsen JH, et al. 
Risk of atrial fibrillation and stroke in rheumatoid arthritis: Danish nationwide cohort 
study. Bmj. 2012;344:e1257. 

7. Zoller B, Li X, Sundquist J, Sundquist K. Risk of subsequent ischemic and hemorrhagic 
stroke in patients hospitalized for immune-mediated diseases: a nationwide follow-up 
study from Sweden. BMC Neurol. 2012;12:41. 

8. Thrift AG, McNeil JJ, Forbes A, Donnan GA. Risk factors for cerebral hemorrhage in the 
era of well-controlled hypertension. Melbourne Risk Factor Study (MERFS) Group. 
Stroke. 1996;27(11):2020-5. 

9. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612-23. 
10. Book C, Saxne T, Jacobsson LT. Prediction of mortality in rheumatoid arthritis based on 

disease activity markers. The Journal of rheumatology. 2005;32(3):430-4. 
11. Sokka T, Abelson B, Pincus T. Mortality in rheumatoid arthritis: 2008 update. Clinical 

and experimental rheumatology. 2008;26(5 Suppl 51):S35-61. 
12. Boyer JF, Gourraud PA, Cantagrel A, Davignon JL, Constantin A. Traditional 

cardiovascular risk factors in rheumatoid arthritis: a meta-analysis. Joint, bone, spine : 
revue du rhumatisme. 2011;78(2):179-83. 

13. Baghdadi LR, Woodman RJ, Shanahan EM, Mangoni AA. The impact of traditional 
cardiovascular risk factors on cardiovascular outcomes in patients with rheumatoid 
arthritis: a systematic review and meta-analysis. PloS one. 2015;10(2):e0117952. 

14. Thrift AG, Donnan GA, McNeil JJ. Epidemiology of intracerebral hemorrhage. 
Epidemiol Rev. 1995;17(2):361-81. 

15. Williams RO. Rodent models of arthritis: relevance for human disease. Clin Exp 
Immunol. 1998;114(3):330-2. 

16. Brahn E. Animal models of rheumatoid arthritis. Clues to etiology and treatment. Clin 
Orthop Relat Res. 1991(265):42-53. 

17. Kannan K, Ortmann RA, Kimpel D. Animal models of rheumatoid arthritis and their 
relevance to human disease. Pathophysiology. 2005;12(3):167-81. 



114 
 

18. Smeda JS. Cerebral vascular changes associated with hemorrhagic stroke in hypertension. 
Canadian journal of physiology and pharmacology. 1992;70(4):552-64. 

19. Sattar N, McCarey DW, Capell H, McInnes IB. Explaining how "high-grade" systemic 
inflammation accelerates vascular risk in rheumatoid arthritis. Circulation. 
2003;108(24):2957-63. 

20. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular 
disease. Biochemical pharmacology. 2009;78(6):539-52. 

21. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial Dysfunction and 
Vascular Disease - A Thirthieth Anniversary Update. Acta physiologica (Oxford, 
England). 2015. 

22. Bassenge E, Heusch G. Endothelial and neuro-humoral control of coronary blood flow in 
health and disease. Reviews of physiology, biochemistry and pharmacology. 
1990;116:77-165. 

23. Vanhoutte PM, Mombouli JV. Vascular endothelium: vasoactive mediators. Progress in 
cardiovascular diseases. 1996;39(3):229-38. 

24. Johnson PC. Autoregulation of blood flow. Circ Res. 1986;59(5):483-95. 
25. Kessler P, Popp R, Busse R, Schini-Kerth VB. Proinflammatory mediators chronically 

downregulate the formation of the endothelium-derived hyperpolarizing factor in arteries 
via a nitric oxide/cyclic GMP-dependent mechanism. Circulation. 1999;99(14):1878-84. 

26. (ACREU) ACRaEU. Arthritis in Canada: The Arthritis Society; 2013 [cited 2015 
11/27/2015]. Available from: http://arthritis.ca/understand-arthritis/arthritis-facts-figures. 

27. Undifferentiated early inflammatory arthritis in adults [Internet]. UpToDate. 2015 [cited 
Oct 2015]. 

28. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nature 
reviews Immunology. 2007;7(6):429-42. 

29. Aletaha D, Smolen J, Ward MM. Measuring function in rheumatoid arthritis: Identifying 
reversible and irreversible components. Arthritis and rheumatism. 2006;54(9):2784-92. 

30. Drossaers-Bakker KW, de Buck M, van Zeben D, Zwinderman AH, Breedveld FC, 
Hazes JM. Long-term course and outcome of functional capacity in rheumatoid arthritis: 
the effect of disease activity and radiologic damage over time. Arthritis and rheumatism. 
1999;42(9):1854-60. 

31. Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic 
intervention. Nature reviews Drug discovery. 2012;11(3):234-50. 

32. Hazes JM, Luime JJ. The epidemiology of early inflammatory arthritis. Nature reviews 
Rheumatology. 2011;7(7):381-90. 

33. Rheumatoid Arthritis [Internet]. 2009. 
34. Shah A SCE. Rheumatoid Arthritis. In: Kasper D FA, Hauser S, Longo D, Jameson J, 

Loscalzo J., editor. Harrison's Principles of Internal Medicine. 19 ed. New York, NY: 
McGraw-Hill; 2015. 

35. Mjaavatten MD, Bykerk VP. Early rheumatoid arthritis: the performance of the 2010 
ACR/EULAR criteria for diagnosing RA. Best practice & research Clinical 
rheumatology. 2013;27(4):451-66. 

36. Chimenti MS, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone R. The 
interplay between inflammation and metabolism in rheumatoid arthritis. Cell death & 
disease. 2015;6:e1887. 

http://arthritis.ca/understand-arthritis/arthritis-facts-figures


115 
 

37. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. The New England 
journal of medicine. 2011;365(23):2205-19. 

38. Isaacs JD. The changing face of rheumatoid arthritis: sustained remission for all? Nature 
reviews Immunology. 2010;10(8):605-11. 

39. Barton A, Worthington J. Genetic susceptibility to rheumatoid arthritis: an emerging 
picture. Arthritis and rheumatism. 2009;61(10):1441-6. 

40. Kallberg H, Padyukov L, Plenge RM, Ronnelid J, Gregersen PK, van der Helm-van Mil 
AH, et al. Gene-gene and gene-environment interactions involving HLA-DRB1, 
PTPN22, and smoking in two subsets of rheumatoid arthritis. American journal of human 
genetics. 2007;80(5):867-75. 

41. Oliver JE, Silman AJ. What epidemiology has told us about risk factors and 
aetiopathogenesis in rheumatic diseases. Arthritis research & therapy. 2009;11(3):223. 

42. Kallberg H, Jacobsen S, Bengtsson C, Pedersen M, Padyukov L, Garred P, et al. Alcohol 
consumption is associated with decreased risk of rheumatoid arthritis: results from two 
Scandinavian case-control studies. Ann Rheum Dis. 2009;68(2):222-7. 

43. Smolen JS, Steiner G. Therapeutic strategies for rheumatoid arthritis. Nature reviews 
Drug discovery. 2003;2(6):473-88. 

44. Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. New therapies for treatment 
of rheumatoid arthritis. Lancet (London, England). 2007;370(9602):1861-74. 

45. Chabaud M, Fossiez F, Taupin JL, Miossec P. Enhancing effect of IL-17 on IL-1-induced  
IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and 
its regulation by Th2 cytokines. Journal of immunology (Baltimore, Md : 1950). 
1998;161(1):409-14. 

46. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. The New 
England journal of medicine. 2009;361(9):888-98. 

47. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 
2004;21(4):467-76. 

48. Nadkarni S, Mauri C, Ehrenstein MR. Anti-TNF-alpha therapy induces a distinct 
regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J Exp 
Med. 2007;204(1):33-9. 

49. Steiner G, Tohidast-Akrad M, Witzmann G, Vesely M, Studnicka-Benke A, Gal A, et al. 
Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatology (Oxford, 
England). 1999;38(3):202-13. 

50. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-cell-mediated 
regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-
gamma. Nature. 2000;408(6812):600-5. 

51. Bendele A. Animal models of rheumatoid arthritis. Journal of musculoskeletal & 
neuronal interactions. 2001;1(4):377-85. 

52. Pearson CM. Development of arthritis, periarthritis and periostitis in rats given adjuvants. 
Proc Soc Exp Biol Med. 1956;91(1):95-101. 

53. Carlson RP, Datko LJ, O'Neill-Davis L, Blazek EM, DeLustro F, Beideman R, et al. 
Comparison of inflammatory changes in established type II collagen- and adjuvant-
induced arthritis using outbred Wistar rats. International journal of 
immunopharmacology. 1985;7(6):811-26. 

54. Van Vollenhoven RF, Soriano A, McCarthy PE, Schwartz RL, Garbrecht FC, Thorbecke 
GJ, et al. The role of immunity to cartilage proteoglycan in adjuvant arthritis. Intravenous 



116 
 

injection of bovine proteoglycan enhances adjuvant arthritis. Journal of immunology 
(Baltimore, Md : 1950). 1988;141(4):1168-73. 

55. Feige U, Schulmeister A, Mollenhauer J, Brune K, Bang H. A constitutive 65 kDa 
chondrocyte protein as a target antigen in adjuvant arthritis in Lewis rats. Autoimmunity. 
1994;17(3):233-9. 

56. van de Langerijt AG, van Lent PL, Hermus AR, Sweep CG, Cools AR, van den Berg 
WB. Susceptibility to adjuvant arthritis: relative importance of adrenal activity and 
bacterial flora. Clin Exp Immunol. 1994;97(1):33-8. 

57. Bendele A, McComb J, Gould T, McAbee T, Sennello G, Chlipala E, et al. Animal 
models of arthritis: relevance to human disease. Toxicologic pathology. 1999;27(1):134-
42. 

58. Currey HL. Adjuvant arthritis in the rat. Effect of intraperitoneal injections of either 
whole dead mycobacteria or tuberculin. Ann Rheum Dis. 1970;29(3):314-20. 

59. Chang YH, Pearson CM, Abe C. Adjuvant polyarthritis. IV. Induction by a synthetic 
adjuvant: immunologic, histopathologic, and other studies. Arthritis and rheumatism. 
1980;23(1):62-71. 

60. Torres MG, Kwasniewski FH, Scaliante LG, Ishii-Iwamoto EL, Caparroz-Assef SM, 
Cuman RK, et al. Arthritis induced by adjuvant in spontaneously hypertensive and 
normotensive rats: endogenous glucocorticoid effects on inflammatory response. 
Inflammation. 2009;32(1):20-6. 

61. Holmdahl R, Lorentzen JC, Lu S, Olofsson P, Wester L, Holmberg J, et al. Arthritis 
induced in rats with nonimmunogenic adjuvants as models for rheumatoid arthritis. 
Immunol Rev. 2001;184:184-202. 

62. Trentham DE, Townes AS, Kang AH. Autoimmunity to type II collagen an experimental 
model of arthritis. J Exp Med. 1977;146(3):857-68. 

63. Larsson P, Kleinau S, Holmdahl R, Klareskog L. Homologous type II collagen-induced 
arthritis in rats. Characterization of the disease and demonstration of clinically distinct 
forms of arthritis in two strains of rats after immunization with the same collagen 
preparation. Arthritis and rheumatism. 1990;33(5):693-701. 

64. Schopf LR AK, Jaffee BD. Rat models of arthritis: Similarities, differences, advantages, 
and disadvantages in the identification of novel therapeutics. In: Stevenson CS ML, 
Morgan DW, editor. In Vivo Models of Inflammation. Progress in Inflammation 
Research. 1. 2 ed. Basel, Switzerland: Springer Science+Business Media; 2006. p. 1-34. 

65. Brackertz D, Mitchell GF, Mackay IR. Antigen-induced arthritis in mice. I. Induction of 
arthritis in various strains of mice. Arthritis and rheumatism. 1977;20(3):841-50. 

66. Tiggelman AM, Van Noorden CJ. Mast cells in early stages of antigen-induced arthritis 
in rat knee joints. International journal of experimental pathology. 1990;71(4):455-64. 

67. Brauer R, Kittlick PD, Thoss K, Henzgen S. Different immunological mechanisms 
contribute to cartilage destruction in antigen-induced arthritis. Experimental and 
toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie. 
1994;46(4-5):383-8. 

68. Henderson B, Thompson RC, Hardingham T, Lewthwaite J. Inhibition of interleukin-1-
induced synovitis and articular cartilage proteoglycan loss in the rabbit knee by 
recombinant human interleukin-1 receptor antagonist. Cytokine. 1991;3(3):246-9. 

69. Michaud K, Wolfe F. Comorbidities in rheumatoid arthritis. Best practice & research 
Clinical rheumatology. 2007;21(5):885-906. 



117 
 

70. Nicola PJ, Crowson CS, Maradit-Kremers H, Ballman KV, Roger VL, Jacobsen SJ, et al. 
Contribution of congestive heart failure and ischemic heart disease to excess mortality in 
rheumatoid arthritis. Arthritis and rheumatism. 2006;54(1):60-7. 

71. Gabriel SE. Cardiovascular morbidity and mortality in rheumatoid arthritis. The 
American journal of medicine. 2008;121(10 Suppl 1):S9-14. 

72. Goodson N, Marks J, Lunt M, Symmons D. Cardiovascular admissions and mortality in 
an inception cohort of patients with rheumatoid arthritis with onset in the 1980s and 
1990s. Ann Rheum Dis. 2005;64(11):1595-601. 

73. Atzeni F, Turiel M, Caporali R, Cavagna L, Tomasoni L, Sitia S, et al. The effect of 
pharmacological therapy on the cardiovascular system of patients with systemic 
rheumatic diseases. Autoimmunity reviews. 2010;9(12):835-9. 

74. Sodergren A, Stegmayr B, Lundberg V, Ohman ML, Wallberg-Jonsson S. Increased 
incidence of and impaired prognosis after acute myocardial infarction among patients 
with seropositive rheumatoid arthritis. Ann Rheum Dis. 2007;66(2):263-6. 

75. Crowson CS, Nicola PJ, Kremers HM, O'Fallon WM, Therneau TM, Jacobsen SJ, et al. 
How much of the increased incidence of heart failure in rheumatoid arthritis is 
attributable to traditional cardiovascular risk factors and ischemic heart disease? Arthritis 
and rheumatism. 2005;52(10):3039-44. 

76. Maradit-Kremers H, Crowson CS, Nicola PJ, Ballman KV, Roger VL, Jacobsen SJ, et al. 
Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis: 
a population-based cohort study. Arthritis and rheumatism. 2005;52(2):402-11. 

77. Solomon DH, Goodson NJ, Katz JN, Weinblatt ME, Avorn J, Setoguchi S, et al. Patterns 
of cardiovascular risk in rheumatoid arthritis. Ann Rheum Dis. 2006;65(12):1608-12. 

78. Solomon DH, Curhan GC, Rimm EB, Cannuscio CC, Karlson EW. Cardiovascular risk 
factors in women with and without rheumatoid arthritis. Arthritis and rheumatism. 
2004;50(11):3444-9. 

79. Sattar N, McInnes IB. Vascular comorbidity in rheumatoid arthritis: potential 
mechanisms and solutions. Current opinion in rheumatology. 2005;17(3):286-92. 

80. Deus Junior RS, Ferraz AL, Oesterreich SA, Schmitz WO, Shinzato MM. Risk factors for 
cardiovascular disease in rheumatoid arthritis patients from Mato Grosso do Sul. Revista 
brasileira de reumatologia. 2015;55(6):493-500. 

81. Panoulas VF, Douglas KM, Milionis HJ, Stavropoulos-Kalinglou A, Nightingale P, Kita 
MD, et al. Prevalence and associations of hypertension and its control in patients with 
rheumatoid arthritis. Rheumatology (Oxford, England). 2007;46(9):1477-82. 

82. Gerli R, Sherer Y, Vaudo G, Schillaci G, Gilburd B, Giordano A, et al. Early 
atherosclerosis in rheumatoid arthritis: effects of smoking on thickness of the carotid 
artery intima media. Annals of the New York Academy of Sciences. 2005;1051:281-90. 

83. McEntegart A, Capell HA, Creran D, Rumley A, Woodward M, Lowe GD. 
Cardiovascular risk factors, including thrombotic variables, in a population with 
rheumatoid arthritis. Rheumatology (Oxford, England). 2001;40(6):640-4. 

84. Han C, Robinson DW, Jr., Hackett MV, Paramore LC, Fraeman KH, Bala MV. 
Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic 
arthritis, and ankylosing spondylitis. J Rheumatol. 2006;33(11):2167-72. 

85. Roman MJ, Devereux RB, Schwartz JE, Lockshin MD, Paget SA, Davis A, et al. Arterial 
stiffness in chronic inflammatory diseases. Hypertension. 2005;46(1):194-9. 



118 
 

86. Wong M, Toh L, Wilson A, Rowley K, Karschimkus C, Prior D, et al. Reduced arterial 
elasticity in rheumatoid arthritis and the relationship to vascular disease risk factors and 
inflammation. Arthritis and rheumatism. 2003;48(1):81-9. 

87. Watson DJ, Rhodes T, Guess HA. All-cause mortality and vascular events among 
patients with rheumatoid arthritis, osteoarthritis, or no arthritis in the UK General 
Practice Research Database. J Rheumatol. 2003;30(6):1196-202. 

88. Pinto A, Tuttolomondo A, Di Raimondo D, Fernandez P, Licata G. Cerebrovascular risk 
factors and clinical classification of strokes. Seminars in vascular medicine. 
2004;4(3):287-303. 

89. Sodergren A, Stegmayr B, Ohman ML, Wallberg-Jonsson S. Increased incidence of 
stroke and impaired prognosis after stroke among patients with seropositive rheumatoid 
arthritis. Clinical and experimental rheumatology. 2009;27(4):641-4. 

90. Bacani AK, Gabriel SE, Crowson CS, Heit JA, Matteson EL. Noncardiac vascular 
disease in rheumatoid arthritis: increase in venous thromboembolic events? Arthritis and 
rheumatism. 2012;64(1):53-61. 

91. Hill MD, Silver FL, Austin PC, Tu JV. Rate of stroke recurrence in patients with primary 
intracerebral hemorrhage. Stroke; a journal of cerebral circulation. 2000;31(1):123-7. 

92. Kaplan MJ. Management of cardiovascular disease risk in chronic inflammatory 
disorders. Nature reviews Rheumatology. 2009;5(4):208-17. 

93. Warrington KJ, Kent PD, Frye RL, Lymp JF, Kopecky SL, Goronzy JJ, et al. 
Rheumatoid arthritis is an independent risk factor for multi-vessel coronary artery 
disease: a case control study. Arthritis research & therapy. 2005;7(5):R984-91. 

94. Maradit-Kremers H, Nicola PJ, Crowson CS, Ballman KV, Gabriel SE. Cardiovascular 
death in rheumatoid arthritis: a population-based study. Arthritis and rheumatism. 
2005;52(3):722-32. 

95. Leipe J, Grunke M, Dechant C, Reindl C, Kerzendorf U, Schulze-Koops H, et al. Role of 
Th17 cells in human autoimmune arthritis. Arthritis and rheumatism. 2010;62(10):2876-
85. 

96. Marder W, Khalatbari S, Myles JD, Hench R, Yalavarthi S, Lustig S, et al. Interleukin 17 
as a novel predictor of vascular function in rheumatoid arthritis. Ann Rheum Dis. 
2011;70(9):1550-5. 

97. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 
promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 
2010;55(2):500-7. 

98. Feng W, Li W, Liu W, Wang F, Li Y, Yan W. IL-17 induces myocardial fibrosis and 
enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. 
Experimental and molecular pathology. 2009;87(3):212-8. 

99. van Es T, van Puijvelde GH, Ramos OH, Segers FM, Joosten LA, van den Berg WB, et 
al. Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. 
Biochemical and biophysical research communications. 2009;388(2):261-5. 

100. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) 
regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ 
Res. 2001;88(11):E68-75. 

101. Piazza M, Taiakina V, Guillemette SR, Guillemette JG, Dieckmann T. Solution structure 
of calmodulin bound to the target peptide of endothelial nitric oxide synthase 
phosphorylated at Thr495. Biochemistry. 2014;53(8):1241-9. 



119 
 

102. Kawasaki T, Delea CS, Bartter FC, Smith H. The effect of high-sodium and low-sodium 
intakes on blood pressure and other related variables in human subjects with idiopathic 
hypertension. The American journal of medicine. 1978;64(2):193-8. 

103. Boegehold MA. The effect of high salt intake on endothelial function: reduced vascular 
nitric oxide in the absence of hypertension. Journal of vascular research. 2013;50(6):458-
67. 

104. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS. Definitions and 
characteristics of sodium sensitivity and blood pressure resistance. Hypertension. 
1986;8(6 Pt 2):Ii127-34. 

105. Schmidlin O, Sebastian AF, Morris RC, Jr. What initiates the pressor effect of salt in salt-
sensitive humans? Observations in normotensive blacks. Hypertension. 2007;49(5):1032-
9. 

106. He FJ, Markandu ND, Sagnella GA, MacGregor GA. Importance of the renin system in 
determining blood pressure fall with salt restriction in black and white hypertensives. 
Hypertension. 1998;32(5):820-4. 

107. Crowley SD, Gurley SB, Oliverio MI, Pazmino AK, Griffiths R, Flannery PJ, et al. 
Distinct roles for the kidney and systemic tissues in blood pressure regulation by the 
renin-angiotensin system. The Journal of clinical investigation. 2005;115(4):1092-9. 

108. Kotchen TA, Cowley AW, Jr., Frohlich ED. Salt in health and disease--a delicate 
balance. The New England journal of medicine. 2013;368(26):2531-2. 

109. Jin Y, Kuznetsova T, Maillard M, Richart T, Thijs L, Bochud M, et al. Independent 
relations of left ventricular structure with the 24-hour urinary excretion of sodium and 
aldosterone. Hypertension. 2009;54(3):489-95. 

110. Smyth A, O'Donnell MJ, Yusuf S, Clase CM, Teo KK, Canavan M, et al. Sodium intake 
and renal outcomes: a systematic review. American journal of hypertension. 
2014;27(10):1277-84. 

111. Ito S, Gordon FJ, Sved AF. Dietary salt intake alters cardiovascular responses evoked 
from the rostral ventrolateral medulla. The American journal of physiology. 1999;276(6 
Pt 2):R1600-7. 

112. Yamauchi K, Tsuchimochi H, Stone AJ, Stocker SD, Kaufman MP. Increased dietary salt 
intake enhances the exercise pressor reflex. American journal of physiology Heart and 
circulatory physiology. 2014;306(3):H450-4. 

113. Chenniappan M. Blood Pressure Variability: Assessment, Prognostic Significance and 
Management. The Journal of the Association of Physicians of India. 2015;63(5):47-53. 

114. Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure 
variability. Nature reviews Cardiology. 2013;10(3):143-55. 

115. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of 
arterial stiffness. Arteriosclerosis, thrombosis, and vascular biology. 2005;25(5):932-43. 

116. Steppan J, Barodka V, Berkowitz DE, Nyhan D. Vascular stiffness and increased pulse 
pressure in the aging cardiovascular system. Cardiology research and practice. 
2011;2011:263585. 

117. Et-Taouil K, Schiavi P, Levy BI, Plante GE. Sodium intake, large artery stiffness, and 
proteoglycans in the spontaneously hypertensive rat. Hypertension. 2001;38(5):1172-6. 

118. Partovian C, Benetos A, Pommies JP, Mischler W, Safar ME. Effects of a chronic high-
salt diet on large artery structure: role of endogenous bradykinin. The American journal 
of physiology. 1998;274(5 Pt 2):H1423-8. 



120 
 

119. Lenda DM, Boegehold MA. Effect of a high-salt diet on oxidant enzyme activity in 
skeletal muscle microcirculation. American journal of physiology Heart and circulatory 
physiology. 2002;282(2):H395-402. 

120. Lenda DM, Sauls BA, Boegehold MA. Reactive oxygen species may contribute to 
reduced endothelium-dependent dilation in rats fed high salt. American journal of 
physiology Heart and circulatory physiology. 2000;279(1):H7-h14. 

121. Nurkiewicz TR, Boegehold MA. High salt intake reduces endothelium-dependent 
dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. 
American journal of physiology Regulatory, integrative and comparative physiology. 
2007;292(4):R1550-6. 

122. Zhu J, Huang T, Lombard JH. Effect of high-salt diet on vascular relaxation and 
oxidative stress in mesenteric resistance arteries. Journal of vascular research. 
2007;44(5):382-90. 

123. Pesen D, Hoh JH. Micromechanical architecture of the endothelial cell cortex. 
Biophysical journal. 2005;88(1):670-9. 

124. Oda T, Makino K, Yamashita I, Namba K, Maeda Y. Distinct structural changes detected 
by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic 
strength. Biophysical journal. 2001;80(2):841-51. 

125. Koltsova SV, Trushina Y, Haloui M, Akimova OA, Tremblay J, Hamet P, et al. 
Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for 
Ca(2+)i-independent excitation-transcription coupling. PloS one. 2012;7(5):e38032. 

126. Yuan SY, Rigor RR. Integrated Systems Physiology: From Molecule to Function to 
Disease.  Regulation of Endothelial Barrier Function. San Rafael (CA): Morgan & 
Claypool Life Sciences Copyright (c) 2011 by Morgan & Claypool Life Sciences.; 2010. 

127. Kusche-Vihrog K, Schmitz B, Brand E. Salt controls endothelial and vascular phenotype. 
Pflugers Archiv : European journal of physiology. 2015;467(3):499-512. 

128. Fels J, Jeggle P, Liashkovich I, Peters W, Oberleithner H. Nanomechanics of vascular 
endothelium. Cell and tissue research. 2014;355(3):727-37. 

129. Kety SS, Schmidt CF. THE NITROUS OXIDE METHOD FOR THE QUANTITATIVE 
DETERMINATION OF CEREBRAL BLOOD FLOW IN MAN: THEORY, 
PROCEDURE AND NORMAL VALUES. The Journal of clinical investigation. 
1948;27(4):476-83. 

130. Zhu XH, Zhang N, Zhang Y, Ugurbil K, Chen W. New insights into central roles of 
cerebral oxygen metabolism in the resting and stimulus-evoked brain. J Cereb Blood 
Flow Metab. 2009;29(1):10-8. 

131. Strandgaard S, Paulson OB. Regulation of cerebral blood flow in health and disease. 
Journal of cardiovascular pharmacology. 1992;19 Suppl 6:S89-93. 

132. Howarth C. The contribution of astrocytes to the regulation of cerebral blood flow. 
Frontiers in neuroscience. 2014;8:103. 

133. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovascular and 
brain metabolism reviews. 1990;2(2):161-92. 

134. Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review. Acta 
physiologica (Oxford, England). 2014;210(4):790-8. 

135. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of 
arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373-6. 



121 
 

136. Vanhoutte PM. How We Learned to Say NO. Arteriosclerosis, thrombosis, and vascular 
biology. 2009;29(8):1156-60. 

137. Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries 
transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet 
aggregation. Nature. 1976;263(5579):663-5. 

138. Luscher TF, Vanhoutte PM. Endothelium-dependent contractions to acetylcholine in the 
aorta of the spontaneously hypertensive rat. Hypertension. 1986;8(4):344-8. 

139. Feletou M, Vanhoutte PM. Endothelium-dependent hyperpolarization of canine coronary 
smooth muscle. British journal of pharmacology. 1988;93(3):515-24. 

140. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A 
novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 
1988;332(6163):411-5. 

141. Katusic ZS, Vanhoutte PM. Superoxide anion is an endothelium-derived contracting 
factor. The American journal of physiology. 1989;257(1 Pt 2):H33-7. 

142. Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, et al. Nitric oxide 
synthase isozymes. Characterization, purification, molecular cloning, and functions. 
Hypertension. 1994;23(6 Pt 2):1121-31. 

143. Forstermann U, Pollock JS, Schmidt HH, Heller M, Murad F. Calmodulin-dependent 
endothelium-derived relaxing factor/nitric oxide synthase activity is present in the 
particulate and cytosolic fractions of bovine aortic endothelial cells. Proceedings of the 
National Academy of Sciences of the United States of America. 1991;88(5):1788-92. 

144. Tsukahara H, Gordienko DV, Goligorsky MS. Continuous monitoring of nitric oxide 
release from human umbilical vein endothelial cells. Biochemical and biophysical 
research communications. 1993;193(2):722-9. 

145. Walter U. Physiological role of cGMP and cGMP-dependent protein kinase in the 
cardiovascular system. Reviews of physiology, biochemistry and pharmacology. 
1989;113:41-88. 

146. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates 
calcium-dependent potassium channels in vascular smooth muscle. Nature. 
1994;368(6474):850-3. 

147. Feletou M, Vanhoutte PM. EDHF: an update. Clinical science (London, England : 1979). 
2009;117(4):139-55. 

148. Kwan HY, Huang Y, Yao X. TRP channels in endothelial function and dysfunction. 
Biochimica et biophysica acta. 2007;1772(8):907-14. 

149. Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. 
Physiological reviews. 2001;81(4):1415-59. 

150. Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 
1994;372(6503):231-6. 

151. Jensen LJ, Holstein-Rathlou NH. The vascular conducted response in cerebral blood flow 
regulation. J Cereb Blood Flow Metab. 2013;33(5):649-56. 

152. Bastin G, Heximer SP. Intracellular regulation of heterotrimeric G-protein signaling 
modulates vascular smooth muscle cell contraction. Archives of biochemistry and 
biophysics. 2011;510(2):182-9. 

153. Babwah AV, Dale LB, Ferguson SS. Protein kinase C isoform-specific differences in the 
spatial-temporal regulation and decoding of metabotropic glutamate receptor1a-



122 
 

stimulated second messenger responses. The Journal of biological chemistry. 
2003;278(7):5419-26. 

154. Martinsen A, Dessy C, Morel N. Regulation of calcium channels in smooth muscle: new 
insights into the role of myosin light chain kinase. Channels (Austin, Tex). 
2014;8(5):402-13. 

155. Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in 
Ca2+ signaling. Cold Spring Harbor perspectives in biology. 2010;2(10):a003962. 

156. Abd El-Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, et al. 
Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic 
tone development. American journal of physiology Heart and circulatory physiology. 
2013;304(1):H58-71. 

157. Bayliss WM. On the local reactions of the arterial wall to changes of internal pressure. 
The Journal of physiology. 1902;28(3):220-31. 

158. Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain 
blood flow. The Journal of physiology. 2014;592(Pt 5):841-59. 

159. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiological reviews. 
1959;39(2):183-238. 

160. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Medical & 
biological engineering & computing. 2009;47(2):131-41. 

161. Zhang R, Behbehani K, Levine BD. Dynamic pressure-flow relationship of the cerebral 
circulation during acute increase in arterial pressure. The Journal of physiology. 
2009;587(Pt 11):2567-77. 

162. Chan GS, Ainslie PN, Willie CK, Taylor CE, Atkinson G, Jones H, et al. Contribution of 
arterial Windkessel in low-frequency cerebral hemodynamics during transient changes in 
blood pressure. Journal of applied physiology (Bethesda, Md : 1985). 2011;110(4):917-
25. 

163. Aaslid R, Blaha M, Sviri G, Douville CM, Newell DW. Asymmetric dynamic cerebral 
autoregulatory response to cyclic stimuli. Stroke; a journal of cerebral circulation. 
2007;38(5):1465-9. 

164. Schmidt B, Klingelhofer J, Perkes I, Czosnyka M. Cerebral autoregulatory response 
depends on the direction of change in perfusion pressure. Journal of neurotrauma. 
2009;26(5):651-6. 

165. Sorond FA, Serrador JM, Jones RN, Shaffer ML, Lipsitz LA. The sit-to-stand technique 
for the measurement of dynamic cerebral autoregulation. Ultrasound in medicine & 
biology. 2009;35(1):21-9. 

166. Tzeng YC CG, Willie CK, Ainslie PN. Determinants of human cerebral pressure-flow 
velocity relationships: new insights from vascular modelling and Ca2+ channel blockade. 
The Journal of physiology. 2011;Aug 15(589 (Pt 16)). 

167. Smeda JS, King S. Electromechanical alterations in the cerebrovasculature of stroke-
prone rats. Stroke; a journal of cerebral circulation. 2000;31(3):751-8; discussion 8-9. 

168. Daneshtalab N, Smeda JS. Alterations in the modulation of cerebrovascular tone and 
blood flow by nitric oxide synthases in SHRsp with stroke. Cardiovascular research. 
2010;86(1):160-8. 

169. Smeda JS, Daneshtalab N. The effects of poststroke captopril and losartan treatment on 
cerebral blood flow autoregulation in SHRsp with hemorrhagic stroke. J Cereb Blood 
Flow Metab. 2011;31(2):476-85. 



123 
 

170. Smeda JS, McGuire JJ. Effects of poststroke losartan versus captopril treatment on 
myogenic and endothelial function in the cerebrovasculature of SHRsp. Stroke; a journal 
of cerebral circulation. 2007;38(5):1590-6. 

171. Smeda JS, King S, Harder DR. Cerebrovascular alterations in protein kinase C-mediated 
constriction in stroke-prone rats. Stroke. 1999;30(3):656-61. 

172. Smeda JS. Stroke development in stroke-prone spontaneously hypertensive rats alters the 
ability of cerebrovascular muscle to utilize internal Ca2+ to elicit constriction. Stroke; a 
journal of cerebral circulation. 2003;34(6):1491-6. 

173. Somlyo AV, Somlyo AP. Intracellular signaling in vascular smooth muscle. Advances in 
experimental medicine and biology. 1993;346:31-8. 

174. Benham CD, Tsien RW. A novel receptor-operated Ca2+-permeable channel activated by 
ATP in smooth muscle. Nature. 1987;328(6127):275-8. 

175. Shima H, Blaustein MP. Contrasting effects of phorbol esters on serotonin- and 
vasopressin-evoked contractions in rat aorta and small mesenteric artery. Circ Res. 
1992;70(5):978-90. 

176. World Health Report 2004: Changing History. Geneva, Switzerland: World Health 
Organization, 2004. 

177. Together Against A Rising Tide: Advancing Stroke Systems of Care. Online: 2014. 
178. Elijovich L, Patel PV, Hemphill JC, 3rd. Intracerebral hemorrhage. Seminars in 

neurology. 2008;28(5):657-67. 
179. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. 

Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report From 
the American Heart Association. Circulation. 2016;133(4):447-54. 

180. McCormick WF, Rosenfield DB. Massive brain hemorrhage: a review of 144 cases and 
an examination of their causes. Stroke; a journal of cerebral circulation. 1973;4(6):946-
54. 

181. Foulkes MA, Wolf PA, Price TR, Mohr JP, Hier DB. The Stroke Data Bank: design, 
methods, and baseline characteristics. Stroke; a journal of cerebral circulation. 
1988;19(5):547-54. 

182. O'Donnell HC, Rosand J, Knudsen KA, Furie KL, Segal AZ, Chiu RI, et al. 
Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. The 
New England journal of medicine. 2000;342(4):240-5. 

183. Choi JH, Mohr JP. Brain arteriovenous malformations in adults. The Lancet Neurology. 
2005;4(5):299-308. 

184. Barrow DL. Classification and natural history of cerebral vascular malformations: 
arteriovenous, cavernous, and venous. J Stroke Cerebrovasc Dis. 1997;6(4):264-7. 

185. Broderick JP, Brott T, Tomsick T, Huster G, Miller R. The risk of subarachnoid and 
intracerebral hemorrhages in blacks as compared with whites. The New England journal 
of medicine. 1992;326(11):733-6. 

186. Suzuki K, Kutsuzawa T, Takita K, Ito M, Sakamoto T, Hirayama A, et al. Clinico-
epidemiologic study of stroke in Akita, Japan. Stroke; a journal of cerebral circulation. 
1987;18(2):402-6. 

187. Qureshi AI, Giles WH, Croft JB. Racial differences in the incidence of intracerebral 
hemorrhage: effects of blood pressure and education. Neurology. 1999;52(8):1617-21. 



124 
 

188. Giroud M, Gras P, Chadan N, Beuriat P, Milan C, Arveux P, et al. Cerebral haemorrhage 
in a French prospective population study. Journal of neurology, neurosurgery, and 
psychiatry. 1991;54(7):595-8. 

189. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous 
intracerebral hemorrhage. The New England journal of medicine. 2001;344(19):1450-60. 

190. Dennis MS, Burn JP, Sandercock PA, Bamford JM, Wade DT, Warlow CP. Long-term 
survival after first-ever stroke: the Oxfordshire Community Stroke Project. Stroke; a 
journal of cerebral circulation. 1993;24(6):796-800. 

191. Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral 
hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke; a journal 
of cerebral circulation. 1993;24(7):987-93. 

192. Brott T, Thalinger K, Hertzberg V. Hypertension as a risk factor for spontaneous 
intracerebral hemorrhage. Stroke; a journal of cerebral circulation. 1986;17(6):1078-83. 

193. Prevention of stroke by antihypertensive drug treatment in older persons with isolated 
systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program 
(SHEP). SHEP Cooperative Research Group. Jama. 1991;265(24):3255-64. 

194. Furlan AJ, Whisnant JP, Elveback LR. The decreasing incidence of primary intracerebral 
hemorrhage: a population study. Annals of neurology. 1979;5(4):367-73. 

195. Five-year findings of the hypertension detection and follow-up program. III. Reduction in 
stroke incidence among persons with high blood pressure. Hypertension Detection and 
Follow-up Program Cooperative Group. Jama. 1982;247(5):633-8. 

196. Choi-Kwon S, Kim JS. Lifestyle factors and risk of stroke in Seoul, south Korea. J Stroke 
Cerebrovasc Dis. 1998;7(6):414-20. 

197. Gorelick PB. Stroke prevention. Archives of neurology. 1995;52(4):347-55. 
198. Catto AJ, Kohler HP, Bannan S, Stickland M, Carter A, Grant PJ. Factor XIII Val 34 

Leu: a novel association with primary intracerebral hemorrhage. Stroke; a journal of 
cerebral circulation. 1998;29(4):813-6. 

199. Iso H, Jacobs DR, Jr., Wentworth D, Neaton JD, Cohen JD. Serum cholesterol levels and 
six-year mortality from stroke in 350,977 men screened for the multiple risk factor 
intervention trial. The New England journal of medicine. 1989;320(14):904-10. 

200. Sutherland GR, Auer RN. Primary intracerebral hemorrhage. Journal of clinical 
neuroscience : official journal of the Neurosurgical Society of Australasia. 
2006;13(5):511-7. 

201. Kim BJ, Lee SH. Cerebral microbleeds: their associated factors, radiologic findings, and 
clinical implications. Journal of stroke. 2013;15(3):153-63. 

202. Takebayashi S, Kaneko M. Electron microscopic studies of ruptured arteries in 
hypertensive intracerebral hemorrhage. Stroke; a journal of cerebral circulation. 
1983;14(1):28-36. 

203. Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. Journal of 
neuropathology and experimental neurology. 1971;30(3):536-50. 

204. Ohwaki K, Yano E, Nagashima H, Hirata M, Nakagomi T, Tamura A. Blood pressure 
management in acute intracerebral hemorrhage: relationship between elevated blood 
pressure and hematoma enlargement. Stroke; a journal of cerebral circulation. 
2004;35(6):1364-7. 



125 
 

205. Brott T, Broderick J, Kothari R, Barsan W, Tomsick T, Sauerbeck L, et al. Early 
hemorrhage growth in patients with intracerebral hemorrhage. Stroke; a journal of 
cerebral circulation. 1997;28(1):1-5. 

206. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. 
Japanese circulation journal. 1963;27:282-93. 

207. Yamori Y. Importance of genetic factors in stroke: an evidence obtained by selective 
breeding of stroke-prone and -resistant SHR. Japanese circulation journal. 
1974;38(12):1095-100. 

208. Harper SL, Bohlen HG. Microvascular adaptation in the cerebral cortex of adult 
spontaneously hypertensive rats. Hypertension. 1984;6(3):408-19. 

209. Baumbach GL, Heistad DD. Cerebral circulation in chronic arterial hypertension. 
Hypertension. 1988;12(2):89-95. 

210. Baumbach GL, Hajdu MA. Mechanics and composition of cerebral arterioles in renal and 
spontaneously hypertensive rats. Hypertension. 1993;21(6 Pt 1):816-26. 

211. Okamoto K YY, Nagaoka A. Establishment of a stroke-prone spontaneously hypertensive 
rat (SHR). Circ Res. 1974;34/35:I143-I53. 

212. Yamori Y, Horie R, Tanase H, Fujiwara K, Nara Y, Lovenberg W. Possible role of 
nutritional factors in the incidence of cerebral lesions in stroke-prone spontaneously 
hypertensive rats. Hypertension. 1984;6(1):49-53. 

213. Smeda JS. Hemorrhagic stroke development in spontaneously hypertensive rats fed a 
North American, Japanese-style diet. Stroke; a journal of cerebral circulation. 
1989;20(9):1212-8. 

214. Slemmer JE, Shaughnessy KS, Scanlan AP, Sweeney MI, Gottschall-Pass KT. Choice of 
diet impacts the incidence of stroke-related symptoms in the spontaneously hypertensive 
stroke-prone rat model. Can J Physiol Pharmacol. 2012;90(2):243-8. 

215. Yamori Y, Horie R, Handa H, Sato M, Fukase M. Pathogenetic similarity of strokes in 
stroke-prone spontaneously hypertensive rats and humans. Stroke; a journal of cerebral 
circulation. 1976;7(1):46-53. 

216. Yamori Y, Horie R. Developmental course of hypertension and regional cerebral blood 
flow in stroke-prone spontaneously hypertensive rats. Stroke; a journal of cerebral 
circulation. 1977;8(4):456-61. 

217. Ogata J, Fujishima M, Tamaki K, Nakatomi Y, Ishitsuka T, Omae T. Vascular changes 
underlying cerebral lesions in stroke-prone spontaneously hypertensive rats. A serial 
section study. Acta neuropathologica. 1981;54(3):183-8. 

218. Smeda JS, McGuire JJ, Daneshtalab N. Protease-activated receptor 2 and bradykinin-
mediated vasodilation in the cerebral arteries of stroke-prone rats. Peptides. 
2010;31(2):227-37. 

219. Goldkuhl R, Jacobsen KR, Kalliokoski O, Hau J, Abelson KS. Plasma concentrations of 
corticosterone and buprenorphine in rats subjected to jugular vein catheterization. Lab 
Anim. 2010;44(4):337-43. 

220. Hall TJ, Jagher B, Schaeublin M, Wiesenberg I. The analgesic drug buprenorphine 
inhibits osteoclastic bone resorption in vitro, but is proinflammatory in rat adjuvant 
arthritis. Inflamm Res. 1996;45(6):299-302. 

221. Ilback NG, Siller M, Stalhandske T. Effects of buprenorphine on body temperature, 
locomotor activity and cardiovascular function when assessed by telemetric monitoring in 
rats. Lab Anim. 2008;42(2):149-60. 



126 
 

222. Udaka K, Takeuchi Y, Movat HZ. Simple method for quantitation of enhanced vascular 
permeability. Proc Soc Exp Biol Med. 1970;133(4):1384-7. 

223. Baumbach GL, Faraci FM, Heistad DD. Effects of local reduction in pressure on 
endothelium-dependent responses of cerebral arterioles. Stroke; a journal of cerebral 
circulation. 1994;25(7):1456-61; discussion 61-2. 

224. Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension. 
Hypertension. 1989;13(6 Pt 2):968-72. 

225. Yamori Y. The development of Spontaneously Hypertensive Rat (SHR) and of various 
spontaneous rat models, and their implications.  Handbook of Hypertension Vol 4 
Experimental and genetic models of hypertension. 4. Amsterdam, New York, Oxford: 
Elsevier; 1984. p. 224-39. 

226. Takeichi N, Suzuki K, Okayasu T, Kobayashi H. Immunological depression in 
spontaneously hypertensive rats. Clin Exp Immunol. 1980;40(1):120-6. 

227. Reece AS, Hulse GK. Lifetime opiate exposure as an independent and interactive 
cardiovascular risk factor in males: a cross-sectional clinical study. Vascular health and 
risk management. 2013;9:551-61. 

228. Martinez EA, Hartsfield SM, Melendez LD, Matthews NS, Slater MR. Cardiovascular 
effects of buprenorphine in anesthetized dogs. American journal of veterinary research. 
1997;58(11):1280-4. 

229. Stanescu R, Lider O, van Eden W, Holoshitz J, Cohen IR. Histopathology of arthritis 
induced in rats by active immunization to mycobacterial antigens or by systemic transfer 
of T lymphocyte lines. A light and electron microscopic study of the articular surface 
using cationized ferritin. Arthritis and rheumatism. 1987;30(7):779-92. 

230. Bugatti S, Manzo A, Bombardieri M, Vitolo B, Humby F, Kelly S, et al. Synovial tissue 
heterogeneity and peripheral blood biomarkers. Current rheumatology reports. 
2011;13(5):440-8. 

231. Chu CQ, Field M, Feldmann M, Maini RN. Localization of tumor necrosis factor alpha in 
synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. 
Arthritis and rheumatism. 1991;34(9):1125-32. 

232. Matsuno H, Yudoh K, Katayama R, Nakazawa F, Uzuki M, Sawai T, et al. The role of 
TNF-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid 
arthritis (RA): a study using a human RA/SCID mouse chimera. Rheumatology (Oxford, 
England). 2002;41(3):329-37. 

233. Cannon GW, Woods ML, Clayton F, Griffiths MM. Induction of arthritis in DA rats by 
incomplete Freund's adjuvant. J Rheumatol. 1993;20(1):7-11. 

234. Cremer MA, Townes AS, Kang AH. Adjuvant-induced arthritis in rats. Evidence that 
autoimmunity to homologous collagens types I, II, IX and XI is not involved in the 
pathogenesis of arthritis. Clin Exp Immunol. 1990;82(2):307-12. 

235. Kohashi O, Pearson M, Beck FJ, Alexander M. Effect of oil composition on both 
adjuvant-induced arthritis and delayed hypersensitivity to purified protein derivative and 
peptidoglycans in various rat strains. Infect Immun. 1977;17(2):244-9. 

236. Pan K, Xia X, Guo WH, Kong LY. Suppressive effects of total alkaloids of 
Lycopodiastrum casuarinoides on adjuvant-induced arthritis in rats. Journal of 
ethnopharmacology. 2015;159:17-22. 



127 
 

237. Fukuda S, Hashimoto N, Naritomi H, Nagata I, Nozaki K, Kondo S, et al. Prevention of 
rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation. 
2000;101(21):2532-8. 

238. Hosaka K, Hoh BL. Inflammation and cerebral aneurysms. Transl Stroke Res. 
2014;5(2):190-8. 

239. Kataoka H. Molecular mechanisms of the formation and progression of intracranial 
aneurysms. Neurol Med Chir (Tokyo). 2015;55(3):214-29. 

240. Penn DL, Witte SR, Komotar RJ, Sander Connolly E, Jr. The role of vascular remodeling 
and inflammation in the pathogenesis of intracranial aneurysms. Journal of clinical 
neuroscience : official journal of the Neurosurgical Society of Australasia. 
2014;21(1):28-32. 

241. Edwards DG, Farquhar WB. Vascular effects of dietary salt. Current opinion in 
nephrology and hypertension. 2015;24(1):8-13. 

242. Drenjancevic-Peric I, Frisbee JC, Lombard JH. Skeletal muscle arteriolar reactivity in 
SS.BN13 consomic rats and Dahl salt-sensitive rats. Hypertension. 2003;41(5):1012-5. 

243. Zhu J, Drenjancevic-Peric I, McEwen S, Friesema J, Schulta D, Yu M, et al. Role of 
superoxide and angiotensin II suppression in salt-induced changes in endothelial Ca2+ 
signaling and NO production in rat aorta. American journal of physiology Heart and 
circulatory physiology. 2006;291(2):H929-38. 

244. Choi HY, Park HC, Ha SK. Salt Sensitivity and Hypertension: A Paradigm Shift from 
Kidney Malfunction to Vascular Endothelial Dysfunction. Electrolyte & blood pressure : 
E & BP. 2015;13(1):7-16. 

245. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium 
chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 
2013;496(7446):518-22. 

246. Arora P. Salt, immune function, and the risk of autoimmune diseases. Circ Cardiovasc 
Genet. 2013;6(6):642-3. 

247. Binger KJ, Linker RA, Muller DN, Kleinewietfeld M. Sodium chloride, SGK1, and Th17 
activation. Pflugers Arch. 2015;467(3):543-50. 

248. Croxford AL, Waisman A, Becher B. Does dietary salt induce autoimmunity? Cell Res. 
2013;23(7):872-3. 

249. Zampeli E, Vlachoyiannopoulos PG, Tzioufas AG. Treatment of rheumatoid arthritis: 
Unraveling the conundrum. Journal of autoimmunity. 2015. 

250. Siebert S, Tsoukas A, Robertson J, McInnes I. Cytokines as therapeutic targets in 
rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev. 2015;67(2):280-
309. 

251. Saklatvala J. Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of 
proteoglycan in cartilage. Nature. 1986;322(6079):547-9. 

252. Brennan FM, Feldmann M. Cytokines in autoimmunity. Curr Opin Immunol. 
1992;4(6):754-9. 

253. Feldmann M, Maini SR. Role of cytokines in rheumatoid arthritis: an education in 
pathophysiology and therapeutics. Immunol Rev. 2008;223:7-19. 

254. Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett. 2008;582(1):117-
31. 



128 
 

255. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T 
cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp 
Med. 2007;204(10):2449-60. 

256. Elmarakby AA, Quigley JE, Pollock DM, Imig JD. Tumor necrosis factor alpha blockade 
increases renal Cyp2c23 expression and slows the progression of renal damage in salt-
sensitive hypertension. Hypertension. 2006;47(3):557-62. 

257. Fahmy Wahba MG, Shehata Messiha BA, Abo-Saif AA. Ramipril and haloperidol as 
promising approaches in managing rheumatoid arthritis in rats. Eur J Pharmacol. 2015. 

258. Ferreri NR, Zhao Y, Takizawa H, McGiff JC. Tumor necrosis factor-alpha-angiotensin 
interactions and regulation of blood pressure. Journal of hypertension. 1997;15(12 Pt 
1):1481-4. 

259. Henke N, Schmidt-Ullrich R, Dechend R, Park JK, Qadri F, Wellner M, et al. Vascular 
endothelial cell-specific NF-kappaB suppression attenuates hypertension-induced renal 
damage. Circ Res. 2007;101(3):268-76. 

260. Izawa-Ishizawa Y, Ishizawa K, Sakurada T, Imanishi M, Miyamoto L, Fujii S, et al. 
Angiotensin II receptor blocker improves tumor necrosis factor-alpha-induced 
cytotoxicity via antioxidative effect in human glomerular endothelial cells. 
Pharmacology. 2012;90(5-6):324-31. 

261. Zhang J, Patel MB, Griffiths R, Mao A, Song YS, Karlovich NS, et al. Tumor necrosis 
factor-alpha produced in the kidney contributes to angiotensin II-dependent hypertension. 
Hypertension. 2014;64(6):1275-81. 

262. Schreiber S, Bueche CZ, Garz C, Kropf S, Kuester D, Amann K, et al. Kidney pathology 
precedes and predicts the pathological cascade of cerebrovascular lesions in stroke prone 
rats. PloS one. 2011;6(10):e26287. 

263. Feng W, Ying WZ, Aaron KJ, Sanders PW. Transforming Growth Factor-beta Mediates 
Endothelial Dysfunction in Rats During High Salt Intake. American journal of 
physiology Renal physiology. 2015:ajprenal.00328.2015. 

264. Durand MJ, Raffai G, Weinberg BD, Lombard JH. Angiotensin-(1-7) and low-dose 
angiotensin II infusion reverse salt-induced endothelial dysfunction via different 
mechanisms in rat middle cerebral arteries. American journal of physiology Heart and 
circulatory physiology. 2010;299(4):H1024-33. 

265. Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C. Danger- and 
pathogen-associated molecular patterns recognition by pattern-recognition receptors and 
ion channels of the transient receptor potential family triggers the inflammasome 
activation in immune cells and sensory neurons. Journal of neuroinflammation. 
2015;12:21. 

266. Kastbom A, Arlestig L, Rantapaa-Dahlqvist S. Genetic Variants of the NLRP3 
Inflammasome Are Associated with Stroke in Patients with Rheumatoid Arthritis. J 
Rheumatol. 2015;42(10):1740-5. 

267. Numata T, Takahashi K, Inoue R. "TRP inflammation" relationship in cardiovascular 
system. Seminars in immunopathology. 2015. 

268. Chauhan A, Sun Y, Pani B, Quenumzangbe F, Sharma J, Singh BB, et al. Helminth 
induced suppression of macrophage activation is correlated with inhibition of calcium 
channel activity. PloS one. 2014;9(7):e101023. 

269. Neumann P, Gertzberg N, Johnson A. TNF-alpha induces a decrease in eNOS promoter 
activity. Am J Physiol Lung Cell Mol Physiol. 2004;286(2):L452-9. 



129 
 

270. DuPont JJ, Greaney JL, Wenner MM, Lennon-Edwards SL, Sanders PW, Farquhar WB, 
et al. High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-
resistant humans. Journal of hypertension. 2013;31(3):530-6. 

271. Lee SJ, Kim WJ, Moon SK. TNF-alpha regulates vascular smooth muscle cell responses 
in genetic hypertension. International immunopharmacology. 2009;9(7-8):837-43. 

272. Pires PW, Girgla SS, Moreno G, McClain JL, Dorrance AM. Tumor necrosis factor-alpha 
inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic 
damage in hypertensive rats. American journal of physiology Heart and circulatory 
physiology. 2014;307(5):H658-69. 

273. Thibonnier M. Signal transduction of V1-vascular vasopressin receptors. Regulatory 
peptides. 1992;38(1):1-11. 

274. Sengupta P. The Laboratory Rat: Relating Its Age With Human's. Int J Prev Med. 
2013;4(6):624-30. 

275. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic 
TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496(7446):513-7. 

276. Mrhova O, Albrecht I, Urbanova D. Vessel wall metabolism in SHR rats in relation to 
atherosclerosis. Annals of the New York Academy of Sciences. 1976;275:302-10. 

 

 

 

 


