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ABSTRACT

Two mussel species (Mytilll5 edlllis 1.. and MytilllS trossulus Gould) weu found

sympatrica.lly in two &ocations (BdIevue and Chance Cove) in eastern Newfoundland. There

was genetic evidence for nanaralJy occurring hybrids between M edJIlis and M trossJIlM$.

Mussels were classified as pure forms or hybrids(Fl. F2 and from baclccrosses) based on four

diagnostic markers, two aUozyme loci (Mpi and Est-D) and two nuclear PCR-based DNA

marker5 (ITS and G/u·S). In additton, a PCR-based mIDNA marker (COlli) was used to

characterize the distribution of mIDNA mitOl)'peS among pure and hybrid individuals. All

females and males from pure species were found to be homoplasmic and heteroplasmic,

respectively. for the mtONA genomic combination. Two indivKtuals showed heterospecific

combination of the F eduUs genome and the M IrCJSSll/lIs genome (both classified as FI

hybrids using four nucleu diagnostic marl::ers). There were differences in the proponions of

pureM. edulis and M. trossulus and hybrids between sites within each location. M edulisand

hybrids were associated with protected sites, M Irossullls with exposed sites. Life hiSlor)'

variation between species was also found. whereby M. ITCJSSIl/IIS was the predominant form

among small individuais(luvae. spat andjuveniles) andM. edu/isarr0rt8 thclar"geindividuals,

suggesting a strong viability selection against pure M. trossulus and its hybrid backcrosses.

The overa.lliow frequency of hybrids at the adult stage (7.28 %) and the results ofani6cial

hybridization in the Iabor.atory, which showed an increased proponion ofabnonnallarvae

among interspecific crosses, indteale strong seJectKm against hybrids., and clearly showed

them to be at selective disadvantage, supponing the tension-zone model for the early stages

of the mussellife-history. M. trosSJI/1l5 and hybrids spawned over a prolonged period oftime

(from late spring to early autumn), while mostM edIIUs individuals spawned simultaneously

in late July. Hybrid mussels exhibited spawning activity intermediate between that of the

parental species. M. rrossulus showed a higher reproductive output than M. edu/is ofsimilar

shell length., while hybrids showed intennediate fecundity values between M edulis and M.

Iross"/Ils. Post·spawning mortality in M trossulus seems to be associated with reproductive

stress, but funher studies should be carried out to establish the cause ofthe summer morta1ity

which affects mainly M trossu/us.
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l. LURODUCfION

1.1. GENERAL

1.1.1. GENUS Mytil,u Linne 1751

The genus MYlilus belongs 10 Ihe family Mytilidae. which according to Soot.Ryen

(1969) originated in the Devonian era (about 400 mya). Mussels bdonging to the genus

Mylilus are sern.i·scssile epibenthic bivalves which are attached to a hard substrate, or

anchored 10 othef- mussels. with byssa1 weads secreted by Ihe pedal glands in the fOOl (Seed

and Suchanek. 1992). The!e byssa.l threads allow the mussel to accomplish some degree of

movement in order 10 migrate towards the out~ edge of the clump (Harger, 1968). Mussels

present separale sexes, though rare instances of hermaphroditism have been reponed (Seed,

1976. Beaumont and Abdul·Malin., 1994; see Chapler 3). The reproductive cycle of any

mussel population is the result ofa complex balance between exogenous factors such as food

availability, lemperature, salinity, and position in Ihe inlenidal zone, and endogenous faClors

such as nutrient reserves and genotype (Seed. 1976; Sastry, 1979; Rodhouse et at, 1986;

Hilbish and Zimmennan, 1988; Seed and Suchanek. 1992). Inleraction between these factors

requires Ihe synchrony of gamete development within the population. Such synchrony is

impoRant for an oviparous species and ensures that larvae are in the waler at lhe oplimum

time for their growth and sun-ivai (Sastry. 1979). For environments in which variations in

physical factors are not large (especially in those factors that influence: patterns of

ph)"toplanJ..'ton production), lhe reproductive cycle oftke mussel is less vmable (Newell et

al.. 1982). In estuaries and open bays where annual variations in environmenlal factors

(salinity. lemperature, inorgank; nutrients, etc.) are large, the reproductive cycle of mussels

can be expected to vary (Thompson, 1979, 1984b; Lowe et al_, 1982). Spawning occurs

when Ihe eggs and sperm are released directly inlO Ihe waler column, where fertilization

occurs. In MytilllS edlllis, males usually spawn firsl, and the presence or sperm in the water



stimulates the females to stop filtering (Newell and Thompson, 1984) and stan spawning.

llUs Sl'nchrooous spawning ensures that the sperm and eggs are in the water column at the

same time. Spawning may take the fonn of mass spawning. in which an individual mussel

liberates most of its gametes over a short period (Thompson, 1984a), but another type of

spa",ning has been described in which gameres are continually ripening and are liberated in

a "dribble" spawn (Seed and Suchanek. 1992)

The meroplanktonic larval stage in mussels may last from 2 to 10 weeks, depending

on the en..ironmcntal conditions in the water column (Seed and Suchanek. 1992). During this

stage mussel larvae are passi"'dy carried by water cumnts, sometimes over large distances

(Schc:lrema. 1978)_ 'The large~ (7-40;11; 10" ) (Thompson, 1979) and small size (60-90

~m) of ew (Seed and Suchanek., 1992) produced by mussels are typical of the

pJanJ..'oc.rophic reproducti....e strategy in which output is maximized but nutrient investment

per egg is small (Bayne. 1976b; Strathmann. 1985). This strategy may enhance dispenaJ,

although it produces an egg with very low nutrient reserves, which may reduce the survival

of the mussel larvae undereen.ajn conditions (e.g.• high temperature. insufficient food or lack

ofasuitilblesubstrilte) (Bayne. 1965. 1976a; Bayne et a1., 1982)

Once the larva reaches the pediveliger stage it uses its foot to make contact with the

substrate and stans searching for a filamentous material (Bayne. 1976b). If the substrate is

suitable. the larva metamorphoses and becomes a juvenile fonn (plantigrade), which attaches

with byssal rbreads (=primary settlemenl). It has been suggested that this primary settlement

enables the juvenile mussd to grow in an environment free from the competition for food and

space \....ttich can occur in large mussd beds (Thorson. 1957). After the plantigrade reaches

around I 5 mm shell length on the filamentous substrate, it detaches itself and becomes

planktonic (Bayne, 1916b). When this drifting plantiglade meets a mussel bed. it is

stimulated to generate new byssai threads and attach itself to the substrate or directly onto

the shell of another mussel (-secondary settlement) (Bayne. 1976b).

Growth rate in Mytilus is highly variable and is influenced by exogenous

(temperature, salinity, food supply and tidal exposure) and endogenous (genotype,



reproduction) factors. LodividuaJ mussels of similar me from il single cohon may show

widely differerll growth rates under apparently identical condittons, indicating that genotype

may also play a role (Inoes and HaJey, 1977; Singh and Zooms, 1978; Koehn and Gaffney,

1984; Gentili and Beaumont, 1988; Beaumont. 1991; Hawkins et al .• 1994; Hawkins and

Day, 1996: Toro and Paredes. 1996a., b). In some subtidal environmentsM. eduliscan. reach

lengths of60-80 nun within (wo yeaTs (Winter et aI., 1984), whereas in the high intenidal

zone growth is substantially reduced, and mussels may attain lengths of only 20-30 mm after

15·30 years (Seed, 1976). In studies involving populations of M. ed/dis from different

latitudes in the northern hemisphtre. it has been found that the southern population has a

much faster growth rate for the first two years and the maximum length attained is 55 mm

after 4·5 years (Rodhouseet aI., 1986). while mussels from the northern population reach

an asymptotic length ofo....er 95 mm after 11.12)'eat"S (Thompson, 1984a).This differentiaJ

gro\\-,h rate with latitude may be a consequence of the shoner feeding season for the

nonhern population. and the inaused longevity in high latitude populations may be a result

of reduced metabolism (Seed. 1976).

Mussels in temperate waters of the northern and southem hemispheres, growing

continuously submerged in areas of high food availability such as those in raft--based

mariculture operations, can grow as much as 50 mrn per year (Incze and Lutz., 1980: Winter

et aI., 1984). Therefore, several environmental factors influence growth rate in My/Hus in

temperate Wilters. SheD growth is usually rapid between the spring and autumn, and slow or

absent in winter months (Seed and Suchanek. 1992). Flesh weight, by contrast, has more

....ariable seasonal peaks associated with the annual reproductive cycle and food availability

events such as the spring bloom (Kautsky. 1982; Hilbish, 1986). Thompson (1984a,b)

reponed Ihat mussels in Newfoundland initially invest most of the available energy in shell

and somatic growth., but as the animal grows older, more energy is diverted 10 reproductive

tissue. Higher fecundity values in mussels have also been associated with

heterozygous individuals within a population (Rodhouse et a1., 1986)



1.1.2. WORLDWID£ DISTRIBUTION OF M)'tiI1lS

~'lussels in the genus "")"Ii/us are abundant and w;dely distributed marine bivalves

which occur in temperate and boreal waters of all oceans and major seas of both northern

and southern hemispheres (Soot.Ryen, 1955). They represent an imponant component of

the intenidal and sublidal communities and estuaries, in terms of the number of individuals

and of biomass and production, and are also of considerable economic imponance to

aquaculture in many regions ofthe world ( Hickman. 1992; Seed, 1992; Seed and Suchanek,

1992: Aiken, 1993). Gosling (1992a) and Seed (1992) give a detailed description of the

world distribution of the most studied. species w;thin die genus Myti/us, based on

electrophoretic and morphological evidence. Since then. more evidence on the macro-and

micro-dislribution of these species has become available, most of which is based 00

electrophorelic surveys and the use of new mo'ecular 1001$ such as mtDNA and nuclear·

DNA markers, combined in some ca.ses wiIh analysis of shell morpbology(S~and Foltz,

1993: Sanjuan et aI., 1994, 1996, 1997: Bales and Innes, 1995; Heath et aI., 1995, 1996;

Inoue et aI., 1995, 1997; Mallet and Carver, 1995; Suchanek et aI., 1997; Hunt and

Scheibling. 1998; Toro, 1998). These studies have confirmed, extended or reduced the

pre\'iously reponed geographic ranges of some of Ihe species w;dlin the genus Mytil14s

(Gosling, 1992a). For instance. the presence ofM. Jrossrtlus in southeastern Nova Scotia

(Mallet and Carver, 1995: Hunt and Scheibling. 1998) and eastern Newfoundland (Bates and

Innes, 1995) confirms the study of Koehn et aI. (1984), which describes mussel populations

as belonging to what they called "genetically distinct Group III" (Koehn et aI., 1984).

Funhermore, M trossulus las DOW been described from nonhern Japan (Suclwlek et aI.,

1997; Inoue el aI., 1997), extending its range south from that previously reponed

(McDonald et. aI., 1991). However, so far no occurrences orM trossllius have been reponed

below latitude J5° N or in the southern hemisphere. M. edulis occurs at similar latitudes as

M. frtJS3l1lwi, although M. edulis is also found in the southern hemisphere (McDonald et al.,



1991; Toro. 1998). M goilop-ovi'lCio!is, on the other hand, is restricted 10 warmeT waters

and the species has not~ reponed aOOve 510 latitude in either hemisphere.

I.I.J ECONOMIC IMPORTANCE or MJ-n/-.s

t.,'lussels have a number of characteristics that make them ideal for inlensive

commercial mariculture. The high fecundity and recruitment of natural mussel populations

allow small mussels to be coUected from natural seed beds (Incze and Lutz, 1980; Hickman,

1992). The plantigrades can Il1so be collected directly on fibrous spat collectoo which

pro"ide the filamentous substrate needed for primary settlement (Mason. 1976). The ability

of mussels to anach to surfaces such as filamentous ropes makes it possible 10 cultivate them

easily in off-bottom systems such as rafts or long-lines (lutz, 1980; Winter et aI., 1984). This

trait is very imponant to commercial mariculture because it reduces the amount offouling

from feces and pseudofeces., lowers the incidence of pearls and, more imponantly, enhances

growth and reduces mortality from benthic predators (Winter et al., 1984; Hickman., 1992).

According to Lutz (1980) mussels grow faster Ihan most traditional sheUfish species,

generate a higher ratio of meat 10 total weight, and are nutritionally superior

Unlike thai ofmoSl other aquatic species, wild mussel production is much lower than

cultured mussel production. In 1995, total mussel production -both capture and culture- was

1.2 million MT, up from 950,000 MT in 1985 (New, 1997). The increase came almost

entirely from enhanced culture production. The mussel capture fisheries have declined to

21 "I. ofthe IOtai mussel twvest in recenl years. Mussel capture fisherics peaked in 1992 and

1994 al277,ooo MT and then declined by 13% in 1995, as a result of lower production in

Denmark and Thailand. the tWO major producing countries. Mylilus edulis (blue mussel) is

the main mussel taken in the wild. In the North Sca, it accounts for over onc halfofthe lotal

mussel capture fishery. MytiJlIJ: galloprovi"cia!i:; (MeditcrrllOcan mussel) is second in

importance, with llO annual average catch of40,000 MT between 1985 and 1995.



Amoog the leading countries in cuhured mussel. production, China produced about

500,000 MT (incJuding various unidentified species) from 1991·1993, decreasing to 415,000

MT in 1995. Italy replaced Spain as the second major producer of cultured mussels in 1995

with 95,000 MT. Other imponant producing counlries are The Netherlands, Korea, France,

New Zealand and Thailand. In Canada, Mytillls ttdulis is the predominant mussel species

cultivated. Productiorl ofmussds is concentrated in the Atlantic Provinces (Newfoundland,

Prince Edward Island. Nova Scotia ilfld New Brunswick). Mussel production first became

established in Prince Edward Island in the 1970's, and this province has become the leader

in Nonh America (approximatdy 8,000 MT in 1996. estimated to be 10,000 MT in 1997 and

projected to be over 12.000 MT in 1998).

Mussel culture in Newfoundland, Nova Scotia and New Brunswick did not begin

until the mid 1980's. After a developmental period. Newfoundland appears poised for rapid

growth. In 1996 the eastern provinces produced 8,700 MT of mussels with value of

S20.000,OOOCanadian (PEl &6%. NS 5.8%, NF SOl•• NB rl'., PQ 1.2%) (Kielley. 1997).

While the physical geography varies in the Atlantic provinces., the environment of

Newfoundland is particularly well suited for mussel culture. The shoreline topography

presents many large, well protected, sheltered coves and inlets which pmvide ideal growing

conditions. Most sites are located in sparsely populated areas and are therefore little affected

by industrial. municipal or domestic pollutants (Thompson. 1984b; Brown). However, a

major concern for growers in Newfoundland is 10 avoid collection of M. trossll/lls seed

which may have inferior gro\Oo'th characteristics (Mallet and Carver. 1995). Funhef"

information on the distribution of the two species and their ecology is required.

1.104. TAXONOMV OF MJtil,.s

Despite the worldwide distribution of the genus MytilliS, as well as its scientific and

commercial imponance, the taxonomy and systematics of this genus are still uncenain

(l\1cOonald and Koehn, 1988; Yarvio et aI.• 1988; Johannessen el al.• 1990; Yiinola, 1990;



Koehn. 1991; McDonald et aI., 1991; Gardner, 1992; Gosling. 1992a: Seed, 1992; Toro,

1998). Early c1assi6catiort5 based on external shell morphology tended to be complex and

confusing (Soot-Rycn. 1955: Seed, 1976). Shell shape is highly influenced by kx:a.I

environment, making identification very difficult when based only on shell morphology

(Seed, 1%9, [978, 1980, 1992; Innes and Bates, 1999). Moreover, the hybridization which

occurs in areas where two species ofMytilus are found sympatrically (Skibinski et aI .. 1978;

McDonald and Koehn, 1988: Coustau et aI., 199 [; Vlin011l and Hvi1som. 1991; Sarver and

Foltz.I993;Batcsandlnncs, 1995: Mallet and Carver, 1995;Comcsai\aandSanjuan, 1997:

Inoue et aI., 1997) further confuses the taJC:onomy. Although M califomianus and M.

trvs.vIIIIIS on the west coast of Nonh America can be easily identified by shell morphology

when larger tlw1 20 nun shdllength, they are indistinguishable when smallCf" than 10 nun

(Suchanek. 1978).

Mussel populations !Y.ve been defined using allozyme characters instead of

morphological characters (Koehn et aI., 1984; McDonald and Koehn, 1988; Varvio et aI.,

1988: Coustau et aI., 1991; McDonald el aI., 1991: Sanjuan et aI., 1994; Viard et aI.. 1994;

Bates and Innes, 1995; Sanjuan et aI .• 1997), or, more recently, by using mitochondrial or

nuclear DNA sequences (Edwards and Skibinski. 1987; Blot et aI., 1990; Cone-Real et aI.,

[994a. 1994b: Heath et a1., 1995: Gelleret aI., 1994; Heath et aI., 1996; Inoue et aI., 1997:

Comesaria et aI., 1998; Taro, 1998). These studies have shown that the genus Mytilus is

composed ofat least three morphologically similar but genetically distinct species which arc

distributed world-wide (McDonaJd et: aI.• 1991; GardnCf", 1992; Seed, 1992; Beynon and

Skibiski. 1996), M. edulis LiMacus, 1758 (in eastern USA and Canada, northern Europe,

Argentina.. Chile, me Falkland Islands, and Kcrgudcn Island), M gaJloprovi"cialis Lamarck"

1819 (in the Mediterranean. weslem Australia, Tasmania, New Zealand. sympatrically with

M. ed"li.v in parts of Great Brilain. Ireland and France, and introduced into Japan. Hong

Kong. South Africa. and southern California). and M. troSSIIJUS Gould, 1850 (in the nonhem

Pacific from Siberia to central Califomia, the Canadian Atlantic provinces, and the Baltic

Sea). M. caJifomiwlfIs Conrad (1837), another species wilhin the genus Mytilus. is found



only on the Pacific coast ofNonh America (Seed. 1976). M ca/ijorniQllUs has long been

recognized as a distinct species (SooI.Rycn.. 1955), ahhough its range overtaps those ofM

Iross"/IIS and M gaI/oprovincia/is.

Other methodologies such as cytology, inmuno-clcetrophoresis and gamete

ullrastrueturc have also been applied 10 inter- and inlrupecilic studies ofMyti/us taxa. The

genus Mytillis is a complex of closely-relaled species which share the same basic karyotype

in tenns of chromosome morphology (diploid number 2n-28) (Ahmed and Sparks. 1970;

Thiriot-Quievreux and Ayraud. 1982; Moynihan and Mahon, 1983; Thiriot-Quievreux, 1984

Dixon and Flavel.l, 1986; Insua et at, 1994), and the taxa cannot be differentiated by a single

karyological character (lnsua et al., 1994). The presence of five metaeentric chromosome

pairs in M guilOfJ'Vl'illcia/is can be used to differentiate this species from M frO$SIl/"S and

from /Ill eJ,,/is. \Or-hich both have six metacentrics. The location of Ag-NORs (silver stained

chromosomal nucleolar organizer regions) is similar in M. edu/is and M galloprovi"cia/is,

but not in ,\;f. 1TOSSl1/us, which also presents NORs on metacentric pair 4 (Martinez-Lage et

al.. 1995). although this character seems not to be fully diagnostic because it depends on

NOR activity (Insua et al., 1994). The immuno·eleclrophoretic study of Brock (1985)

indicated that M. edl/lis and M galloprovif/c:ia/is were conspecific, although the author

included M. Ir(JS.)lIl/ts from the Baltic Sea as M. edllli.' in her analysis. Gamete ultrastructure

has also been used for solving ...-arious systematic and phylogenetic problems in the Metazoa.

However. Hodgson and Bernard (1986) concluded that within the genus My/i/u$,

spennatozOQn morpboIogy alone is insufficient to designate M. edu/is and M.

gallopro\'i"dalis as separate species. Other studies have shown great intra-specific variation

that precludes differentiation between species in the genus M)1i/IIS (Healy, 1996; Kafanov

and Drozdov, 1998).

The taxonomic status of these genetically and/or mO'l'hologica1ly distinguishable

fonns ofMyri/lls has been the subject of considerable debate for a number of years. Some

authors, such as Gosling (1984) and Johannesen et aJ. (1990), have suggested that the

members ofme "M edit/is complex" (M edu/is. M. gaJloprovillcia/is and M. /rossul/ls) are



ecotypes or varieties, while Other ~uthors. such as McDonald and Koehn (1988), Koehn

(1991), MacDonald et: aJ. (1991) and Seed (1992) recognize them as separate species. M.

.:dl.//is and M. trmsulus coexist in the Baltic Sea. where hybridization and introgression are

COrTVnOn, leading VlirKili and Hvilson (1991) to suggest that these two taxa. be considered

as semispecies (defined as taxa intermediate between subspecies and species (Mayr and

Ashlock, 1991». The systematic position of M. gallopra.·i"cialis has been conlrovenial

(Bayne. 1976a: Beaumont: et: al. 1989; Gardner, 1992). In 50me stUdies M. galloprovi"cialis

is described as a species distinct from M. eduli$ based on ~ set oflraits (Koehn et aI.. 1984;

McDonald and Koehn. 1988; Koehn, 1991; McDonald el aI., 1991), while in other studies

it is regarded as a subspecies (a replacement of the term "variety" in its meaning of

"geographic race" (Mayr and Ash.lock, 1991» based on the same set oflraits (Gosling, 1984;

Vliinolii and Hvilson, 1991; Gardner, 1992).

Any debate about species·leve! tou:onomy is largely dependent on the species

definition which is used. However. most studies on the taxonomical status of mussels within

the genus Myrilus have not mentioned 01'" defined which species concept they have employed.

Seed (1978. 1992) pointed OUI, in the context of the taxonomic status of M.

galloproo.illcia/is, that ~the systematir;s of these mytilids emphasizes the problems inherent

in obtaining a satisfactory and practical species definition. especially when the concept is

e.~lended geographically". Most of the work has been done on the systematic statuS ofM.

edlilis L. and the Mediternnean mussel. M galluprovincialis Lmk.. (review in Gardner,

1994). II is thought that M. ecIulis is the ancestn.l form which may have evolved from the

~"odiomorphidae..and that M. galJoprovi,.cialis evolved in the Mediterranean Sea during the

Pleistocene (Barsotti and Meluzzi, 1968; Skibinski et 31.• 1980; Fisher and Skibinski. 1990;

Seed, 1992: Gosling, 1994). Recently a genetically distinct mussel type from the Baltic Sea.

the Pacific coast ofNonh America and the Atlantic provinces of Canada has been described.

Koehn et a!. (1984) believed that this mussel may constitute a separate species (as no

evidence for hybridization was detected at that time) and they suggested the name M.

IrusslIlw; Gould. 1850 for this laxon (McDonald and Koehn, 1988). According to Koehn
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(199') M. lrossulus. which inhabits colder watCfS in the nonhen hemisphere. may have

evolved from some cold tolerant genotype during the Pleistocene glacial period. Howe~,

there is some evidence that its presence in the Baltic Sea is recent (Varvio et ai., 1988;

Viiooli and H1<ilson. 1991). M. IroS,!iUlus is widely accepted as a distinct species. based on

both genetic and biogeographic criteria (McDonald et at. 1991; Geller eI aI., 1994), wlUle

the status ofM gaJ/~nciaJ;s as a species separate from M. edulis is debatable (Gosling,

1984: Koehn, 1991; McDonald etal.. 1991; Gaf"dner. 1992).

In areas where tWO members of the "Mylilus edulis compler' are found

sympatricaUy, there is always hybridization between them. This fact, and the results of

artificial hybridization studies between M. galJoprov;/lcialis and M edulis (Beaumont et aI ..

1993) and betweenM. ed/dis and M ITOS.<>1Ihu" (Zouros et aJ., 1992), indicate that there is

little evidence ofgenetic incompatibility. Unfonunalely, it is difficult 10 agree on how much

hybridization two taxa are allowed 10 exhibit and still be considered separated species, or

conversely, how much hybridization is permissible between taxa before they are considered

conspecific. This is again a problem when Ihe biological or isolation species concepl is

applied to hybridization between allopalric taJl;a in a contaCt zone, U occurs in My'i!u.s.

Gardner (1992) has evaluated various species conceptS with respect to the taxonomic

status of.A".l galloprovil1Cia!i.s. According to the definition of the biological species concept

(SSC), species are MgTOUpS of actually or potenlially interbr«ding populations, which are

reproductively isolated nom other such groups" (Mayr. 1970). For this species concept

reproduaive isolation (Ihe IWO species do not inlerbreed in nature) is more imponant than

any morphological differ-enccs thai they may have. Therefore under the SSC hybridizing

species such. as Ihose in the "M)"tillls edll!is complex" are nOI true species. Although this

concept is one of Ihe mOSI widely used, there are others which are perhaps more useful 10

describe the "Myti!lIs eduli.s complex". The evolulionary species concept (ESC), for

example, defines species as "a single lineage of anceslor-descendent populations which

maintains its identity from other such lineages and which has its own evolutionary and

historical fate" (Wiley, 1978. 1981). The imponant point for the ESC is that hybridization
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is pe:nnitted. but at the same time both species must maintain their separate identities. A

number of authors (Woodruffct aI., 1988; Liu ct aI .• 1991; Sarveret aI.• 1992), tlowever,

have used the ESC when two species are found sympatricaJly al a site (such as M. edllfis and

M. tro.....\'JIIIIS). lUId it is very difficull to separate them based on mo."bological traits alone.

Moreover. until recently thefe was no single genetic marker (a11ozyme or DNA) that allowed

differentiation between these "species"

In the phylogenetic species concept (PSC). a species is considered as "the smallest

diagnosable cluster of individual organisms within which there is a parental pattern of

ancesr.ry and descent" (Cracraft. 1989). The same author notes that -even if two sister-taxa

hybridize. both can still be considered 10 be species if each is diagnosable as a discrete

taxon- Under this concept "reproduaive isolation~ is not important. but the presence of

"diagnostic characters" is required. Recently, numerous new powerful genetic markers have

become available which allow us 10 distinguish among tlXa within the genus Mylilus (Heath

et al .. 1995: 1996: Rawson et aI., 1996a; Inoue et aJ., 1997; Comes.atla et aI., 1998).

However, a difficully with this concept is thai it is based mainly on Ihe resolving power of

the molecular tools available today or in Ihe future.

Finally, Ihe cohesion species concepl (esC) concentrates on processes that cause

groups oforganisms to be similar 10 one another (Templeton, 1989). Ttlis concept considers

that "the species is the most inclusive population of individuals having the potential for

phenolypic cohesion through intrinsic cohesion mechanisms" (sharing a common

de ..;elopmental genetic system, physiology and ecology). The focus of this concept is on

cohesion mechanisms such as gene flow, stabilizing selection. and common ecological factors

that keep species homogeneous. There is little evidence that taxa wittlin the genus Myrilus

are cohesive, so according to Ihe CSC criteria these are not good species.

In conclusion. it can be Slafed that the different forms ofMytilus may not at this stage

merit full species status. Aa:ording 10 the present evidence, these tlXa could be in the

process of early sympatric specialion or experiencing intergradation atler a period of

allopatry. According to Gardner (1992), we may treat each of these taxa as a semispecies
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(using the trinomial nomenclature), as component members of the My/i/us edulis

superspecics (note that we do not even agree on a species definition), or we IN.y retain the

binomial nomenclature and eventually ar;upt the phylogenetic species concept.

1.2. HYBRID ZONIES

1.2.1. EVOLUTIONARV IMPORTANCE

Hybrid zones are regions in which species that are genetically distinct meet and

interbreed, producing offspring of mixed ancestry (Hamson, 1993). RleCefltly. Harrison

(1990) pointed out that hybrid zones serve as "windows on evolutionary process", providing

opportunities for studying the elfeas of gene flow, linkage, and the strength and forms of

sdec:tion on genetic systems. The study of hybrid zones has been invigolllted by new theory

(Harrison. 1993) and new techniques, especially the use of molecular markers, so thai hybrid

zones arc now seen 10 be much more complex Ihan was previously believed.

Hybrid zones may be Siable or unstable with respect to position and genetic

dynamics. In recent de<:ades. several authors have focused on the development of models to

explain the stability and mainlenance of hybrid zones. The literalure ciles IWO kinds of

models. one which proposes that the fitness differences between hybrid and pure species

genotypeS are environrnenta1ly mediated (exogenous selection) (Slatkin. 1973, 1975; Endler.

1977) and the other which proposes that they are genetically mediated (endogenous

selection) (Key, 1968, Banon and Hewin. 1985). In the uenvironmental gndient modds"

the hybrids could be more or less fit as a consequence of their interactions with their

environmenl. In Ihe utension zone models" selection occurs against hybrids, which are

intrinsically less fit than "pure" individuals owning; 10 genelic incompatibilities, without an

ecological component to seleclion (~ndogenous selection (Moore and Price, 1993».

However, Wilhelm and Hilbish (1998) pointed out Ihal "in practice it is very difficult to
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distinguish between environmenLal gr.tdient and tension zone modds for the maintenance of

any given hybrid zone. sin.::c they yield similar predictions".

In recent years, most cffons to explain the apPMent stability of hybrid zones have

focused on models based on endogenous hybrid inferiority (Banon and Hewin. 1985, 1989;

Barton and Gale, 1993; Hamson, 1993; Shaw et a1., 1993). Exogenous selection may be

more difficull 10 demonstrate, but has been convincingly shown by Harrison and Rand

(1989), Cnaan and Arnold (199]), Moore and Price (1993) and more recently by Wilhelm

and Hilbish (1998)

1.2.2. MytillU HYBRID ZONES

When two species aflhe MMytilus edulis complcx" are found sympatricaJly, there is

always hybridization betv.'een them (Gosling. 1992a). The size of a hybrid zone depends on

its location. In Europe the width of the hybrid zone between M. edulis and M

guJlupru,'illcialis is about 1400 km, while that between North Sea M. edufis and Baltic M.

rru:i.\1/lu.'i is about ISO Ion (Viiniolli and Hvilson. 1991). In Atlantic Canada, there is limited

information for the size and geographic location of the hybrid zone between M. edulis and

M. frosJJ1fIIlS. although recent studies (Bates and Innes, 1995; Saavedra et al., 1996;

Comesai\a et al., 1998) have made some progress in Characterizing it. The size of the hybrid

zone of M. Irossulus and M. gallopro,·iucialis on the Pacific COUI of North America has

been the subject ofsever.U studies (McDonald and Koehn., 1988; Sarvef" and Foltz, 1993;

Geller et aI., 1994; Rawson and Hilbish, 1995), and its ;ange appears to extend from

VanCOlWef Island (Heath et aL, 1995) to San Diego Bay (Suchanek et aI., 1997). The recent

discovery of a hybrid zone in northern Japan (lrmoue et aI., 1997) is nOI well documenled,

but the data available suggest Ihat il is a very narrow zone in south·west Hok.k:aido.

Most studies on mussel hybrid zones have focused on the exogenous and endogenous

factors thai mainlain Ihe genetic integrity of the species, despite the potential for

hybridization and long-range larval dispersaL Resul!s from electrophoretic, nuclear and



14

mitochondrial DNA analyses have indica1ed thai such zones are spatially complex. containing

a mixture of pure, hybrid and inuogressed individuals.

Europe is the most extensively studied region ofmussd hybridization (Gosling. 1984;

Gosling. 1992a; Seed, 1992; Comc:sail.a and Sanjuan., 1997; Comesana et a1., 1998).''-'fyrilus

gullupru~·illcialis and M. eduJis coexist and hybridize in different proponions in large areas

of the British and Atlantic French coasts (Skibinski and Beardmore, 1979; Gosling and

Willcins.1981;SkJbinski.l9Sl;Skibinskier.aCI978,1980, 1983;CoustlUetal.• I99I). The

patchy distribution pattern observed for the two mu~ species and their hybrids in these

regions of contact and hybridization suggestS that there are ecological differences between

Ihe species (Skibinski and Beardmore. 1979; McDonald and Koelm. 1988; Hilbish et al..

1994). There is some evidence from laboratory crosses ofM. eduJis IlId M. galloprolJirK:ialis

that hybrid larvae have higM monality rates than those of pure crosses (Seed. 1992;

Beaumont et a1., 1993). Funhennore, there is evidence that fecundity and timing of spavming

of M. edllli.\· and M, gallopru\'illcialis populations can differ at certain localities (Gardner

and Skibinski, 1990a: Gardner, 1992: Seed, 1992), which can result in panial reproductive

isolation.

The distnbution ofthc twO species in most studied sites within the hybrid zone seems

to be correlated with some environmental factors, whereby M. ea'lIlis-like mussels occur at

highest frequency in sheltered, less saline waters, and M. gaJlopro\';ncialis.like musscls

occur at highest frequenqr in more exposed waters ofhigh salinity (Comcsai\a and Sanjuan,

1997). There is a strong gcootype-depcndent viability within the hybrid zone, in which M.

gaJlupruvillcialis has a significantly higher sunival rate than M edulis, while hybrids are

intermediate in fitness (Skibinski, 198]: Gardner and Skibinski, 1988; Skibinski and

Roderick, 1991; Wilhelm and Hilbish, 1998). Severa! hypotheses have been advanced to

explain the strong viability selection which occurs in this hybrid zone. Physiological
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differences like differential susceptibility to lhemw stress (Hilbish et aI.• 1994) and

differential resistance to parasitism (CouSl~ et aI.. 1991) have been found between the two

species (Hilbish et aI., 1994). It also seems that the heterogeneity ofthc marioe environment

could be playing a role in me maintenance ofthe genetic integrity aCme species. Studies on

this hybrid zone have shown that in M. gaJJoprovillcialis-like genotypes a greater byssal

attachment strength seems to be responsible for a relatively higher frequency of this species

in more exposed environments (Gardner and Skibinski. 1991; Willis and Skibinski, 1992).

A recent study by Wilhelm and Hitbish (1998) indicated that the genetic structure of the

hybrid population in south-west England is maintained by a balance between selection against

M. e-d"lis·likc genotypes and dleir replacement wough larval immigration.

1.2.2.2. racif"te caUl of Nortb America

Recent studies have shown thai mussels on the Pacific coast of NOM America are

nOI M edulis, as previously reponed (Seed. 1976). McDonald and Koehn (1988) identified

M. galfoprovillcialis in southern California, M. lroSSIIJUS in northern California, and the

presence of hybrids around San Francisco Bay. This finding was later confirmed by Rawson

et aI. (1996a) and Suchanek et al (1997). The region of contact and hybridization betWeen

!vI. tro....ntJlIs and M. gaJloprovillciulis in California is not as well documented as the

European hybridization zone. although hybridization has been reported along the Pacific

coast of the U.S.A (McDonald and Koehn. 1988; Koehn, 1991; Suvu and Foltz., 1993;

Geller. 1994; Gellu et al., 1994; Rawson and Hilbish, 1995) and Canada (Heath et aI.,

1995). Acc..>rding to Sarva- and Foltz (1993), only 71 out of 1250 individuals (5."/') from

their collections of mussels along the Pacific coast of the U.S.A could be classified as

possible hybrids on the basis of IS enzyme loci. Heath et at (1995) used PCR-based nuclear

markers 10 study mussels on the west coast of Canada and reported only 5.4% hybrids.

Rawson and Hilbish (1995), using an mtDNA (PCRlRFLP) assay, concluded that

hybridization ofM. frossuJus and M. gaJloprulJincialis was raTe in southern California. In
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general. these are low perccnt.1ges of hybrids compared with those reponed for the hybrid

zone in Europe, which are higher and may vary from sile to site., for instance 25·50-'"

reponed by Sanjuan et aI. (1994), 80-.4 by Hilbish et a1. (1994) and 27-4l}'t/e by Comesana

and Sanjuan (1997). Rawson et: aI. (l996a) reported 20.1".4 hybrids in San Fancisco Bay,

of which 66"1. were putative FI genotypes. However, in a morc recent study along the

Pacific coast of Nonh America. Suchanek et aI. (1997) reponed SSo/. hybrids. )4"1. M.

galJoprm'illCiaJisarwJ 11% M. fTOS.l,'fl/w,.in rraweI samples taken in San Fr.lI1Cisco Bay, nur

the Golden Gate Bridge. These studies may imply thai the distribution of the two species and

their hybrids is patchy. It also seems that the relationship between M. lrrJssulus and M.

gal/oprovillcialis in California is different from that between M edu/is and M.

gallopro~'illciali$ in the contact zone in Europe, where M. I!dulis predominates in sheltered

bays and estuaries and M. galloprovi1/cialis is more common on wave-exposed shores

(Comesaiia and Sanjuan, 1997). In California the degrtt of exposure does not appear to be

a significant factor influencing the distributions of M Iro.ssul/lS and M. gal/opro'llillcialis

(Sarver and Foltz. 1993), a situation which could be related to the presence of M

calijornkBlIIs• ....iVch out-competes odler mytilids on exposed rocky shores (Harger, 1970a,

b).

1.2.2..3. Atlantic coast of Nonh America

The micro- and macrogeosraphic distribution ofthe genus Myli/us on the Atlantic

coast of Nonh America has been studied by examining genetic variation at several

polymorphic enzyme loci (Ganner-Kepkay et aI., 1980; Koehn et aI., 1984; Varvio et aI.,

1988; McDonald et aI., 1991; Bates and Innes. 1995). Early genetic studies of Mytilus

populations on the east coast of North America suggested that Myti/lls ed/lUs was the only

species presenl (Koehn et aI., 1976; Gartner.Kepkay et aI., 1980), but later Koehn et aI.

(1984) showed that populations ofMytilliS spp. in Atlantic Canada were composed of two

genetically distinct forms found sympalrically al some locations. These two genetically
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distinCt fonns ofMy/i/us (groups 11 and III ofKochn et aI., 1984) WffC lat~ confinned to

belong 10 the species M. rdulis and M. froSSIIllIs. respectively (Varv10 et aI., 1988;

McDonald cl at, 1991; Bales and Innes, 1995; Mallet and Carver, 1995; Saavedra et aI.,

1996; Comesaila et aI., 1998; Hunt and Scheibling, 1998). In Atlantic Canada. there is

limited evidence for interbreeding behvecn M. I!dulis and M. lros:ruJus in nature (Koehn et

aL 1984; Varvia et aI., 1988), despite the sympatric occurrence of both species and the

successful production of viable hybrids in laboratory crosscs (Zouros et aI., 1992: 1994a,

Saavedra et aI., 1996). The lack of hybrids detected may in pan be due to [he failure 10 use

highly diagnostic; alIozyme markers andfor an insufficient sample size. A recent study on the

genetic varialton of these two species of mussels in Newfoundland showed thai the

distribulion of a hybrid index hued on three partially diagnostic loci (Est·D, Pgm. Lap)

provided no evidence for hybridization (Bales and LMC:S. 1995). Two studies in Lunenburg

Bay, Nova Scotia., estimaled the degree of natural hybridization 10 be < 5Y. (Mallet and

Carver. 1995) using !heMpilocus and 22.8 % (Suvedra et al., 1996) usingMpi and Est-D

loci.

1.2.2.4. Japan

Inoue et aI. (1997) used a PCR-based DNA marker (tnoue et aI., 1995) to show that

a hybrid zone ofM. gaJlopt'O\."itlcialisand M. trossI/lusmay be located in the region ofHiura

and Hakodatc. nonhcm Japan. These authors also confirmed the study carried out by

Wilkins et aI. (1983) reponing the presence ofM. gallopro~'i'JCiQlisalong the entire coast

ofJapan (rathe!" than M edulis populations as previously reponed (Seed, 1976». including

Hokkaido and the northern part of Honshu. indicating a more cold water distribution for this

species. According to Wilkins et aI. (1983) M gaJloprovincialis was accidentally introduced

to Japan from Europe before 1935. The other species. M. (rossulus. is pr~nt in Hokkaido

(although it was originally identified asM r:dulis (Wilkins et al., 1983», although Inoue et

at. (1997) observed Ihat "pure" M. Iros5ulu5was nOI found at the northern lip or Honshu
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(,·"roch is only 20 kin south ofHokk.aido). despite the enormous marine traffic bcN.'een the

two islands. and suggested that HoIckaido may be the $OUthern limit aCme North Pacific M.

IrQ!»lt1/1s. AI Hiur.l and Hakodate. mussels having both M galJoprovinciaJis and M.

{ms.-mIlls type sequences were found, which were presumed by the authors to be caused by

hybridiulion and introgrcssion between the two species (lnoue et aI., 1997). Because this

is a recent finding, more siudies are required 10 cSlablish a detailed distribution for Ihe two

species and their hybrids in northern Japan.

I.J. OBJECTIVES

The main hypothesis tested in this study is that there is no differences in the life

history ofMy/Hus eduJis-M. Iros.!Jlllus.

The following are the specific objectives 10 be addressed:

• Determine whether there is micro-geographic genetic differentiation of Mytilus

':UI//ls and M. frossulu.f and detect the presence of naturally o<.:curring hybrids.

• Estimation oflhe degree of natural hybridization at two different locations and, at

each location. fortwo different environments (one exposed and other more shelte«:<!

and protected from wave action).

- Determine if both Mylilus species and their hybrids Me distributed differentially

according 10 size.

- EllOamine Ihe possible intrinsic incompatibilities between edulis and tr()ssu{us

nuclear and mitochondrial genomes in mussels of different size from different

environmenlS
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• Estimation of the frequency distribution of both My/Hils species and their hybrids

at the larval and spat stages orlhe life.history.

- Oel:ermine the timing of spawning ofM. edulis and M trossulus and their hybrids

in their natural environment,

• oetennine spawning frequency and fecundity under natura! conditions for Mytil/ls

edlflis, M. tT0s.31,IIIS and their hybrids. using ganado-somatic iode/(" qualitative

histological staging, and quantitative stcrcology.

- Evaluation of fertilization., viability ilf1d gro'4th success of pure lines and hybrids

ofM. edulis and M t~'''U!j" during the crucial early stages oftheir development,

based on laboratory crosses using a factorial design.

• Evaluation of shell morphometries as an approach 10 distinguish among M. edulis.

M. /rossl/fus and their hybrids using sympatric populations and a combination of

individuals from three different sites.
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lI.CRAPTER I.

Applications of PeR-based ...dlP:ar .._",en to discrimi.ale AmOlll MytilflS ~./is.

jw. troSSM/MS .Dd their ••tural hybrids. and tblt •••Iysis of their rl'alu~cy

dinributiou ."0"1 leocrapllie Ioaotioas aod sgln of tbeir life cydes

11.1. LNTRODUCTION

Natural hybrid zones provide an opponunity 10 study the genetics of speciation and

Ihc ori~oin aflhe ecological and genomic interactions which maintain the integrity of species

(Arnold. 1992; Harrison, 1993). The ttybrid zones are spatially complex. and in some areas

their location is detennined by specific environmental factors (Skibinski and Roderick., 1991).

In areas where species of the "Mytillls complex" are found sympatricaJly, there is always

hybridization between lhcm (Gosling, 1994). Some ofthese contact zones acc located on the

Pacific coast ofNonh America, bcnvccn M galloprovillcialis and M trossulu$ (McDonald

and Kohen. 1988; Heath et aI., 1995), in southwest England. between M. edulis and M.

galloprm'illcia/is (Skibinski et: aI., 1978: Edwards and Skibinski. 1987; GardnCl'" et aI.. 1993;

Gardner. 1994), and in the Baltic Sea.,~ M. ecIuliJ andM t,assulus (Viinoli and

H..i1som. 1991). In Atlantic Canada, there is limited evidence for interbreeding between M.

edith.•' and M (,o~lllus in nature (Koehn et ai., 1984; Varvio et aI., 1988), despite their

sympatric occurrence and the successful production of viable hybrids in IaboratOf)' cros.ses

(Zouros et aI., 1992; 1994a; Saavedra et aI., 1996). Undetected hybrids may in pan be due

10 the failure to use highly diagnostic allozyme markers and/or an insufficient sample size.

Several studies have suggested a potential hybrid zone between two species of mussels in

Atlantic Canada (McDonald er aI., 1991; Freeman et aI., 1994; Mallet and Carver, 1995). A

recent study based on allozyme analysis has established Ihe presence of two species ofblue

mussels. M>1i1l1S edt/lis and M. tro.'3111I1S, in easlern Newfoundland, although the distribution
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of hybrid Index SCOfes. based on three panially diagnostic loci (Est. Pgm. Lap), provided no

clear evidence for hybridization (Bates and lnnes. 1995).

Most marine benthic invcnebrates show spatial genetic heterogeneity. despite the

long.!iv«! planktonic stage which enhances dispetYI and lend to homogenize the genetic

Structure of popul!ttio~. Selection or inunigralion of genetically differmtluvae (Koehn et

al .. 1980; Gartncr.Kcpkay et aI .• 1983: Hilbish.. 1985; Wilhelm and Hilbish, 1998) may

counteract the dispersal capabilities of the larvae, resulting in spatial or temporal genetic

heterogeneity. SC\'era! studies repon that selection seems 10 be most intense al larval and

spat stages (Hilbish. 1985; Hilbish and Koehn., 1985; Goding and McGrath, 1990), because

predation during the pelagic stage and larval metamorphosis may increase the monality rate

(Wendell and Oanon. 1995).

For organisms with complex life histories such as mussels (a prolonged. mobile,

planktonic larval stage, two distinct phases of larval settlement and a semi-sessile adult

stage). it is panicuJarly imponant that early life stages (such as the planktonic larval stage

and spall em be investigated, especially within hybrid mnn. Until recenlly, studies carried

out on the relationship between benthic mussel communities and the planktonic distribution

of mussel larvae have been based on detailed morphological analysis of plankton samples

(Ramorino and Campos. 1983: Pulfiish., 1997). When these investigations ace carried out in

areas where more than one mussd species is sympalrically or parapatrically present. some

difficulties in identifYing larvae are often encountered (otson et aI., 1991; Cagg. 1996).

especiafiy in tempen1e waters., where reprodUClton is highly seasonal (Bayne. 1976a, b) and

most invenebr.tte species have overlapping spawning times (Olive, 1992; Minchin. 1993).

Moreover. !.he size and shape of prodissoconch II shells oflarva.l bivalves vary considerably

(Loosanoff and Davis. 1963: Bayne. 1965; Pulfiish, 1997), making identification more

difficult. A110zyme electrophoresis techniques. in general, have been difficuh to apply to

larvae or spat of bivalves (Skibinski et aI .• 1983:Gosling and McGrath., 1990) (but see Hu

et aI .• 1992: Wendell andGanon, 1995). The polymerase chain reaction (PeR) (Mullis and

FaJoona, 1987: Buffery, 1993) is potentially a sufficiently sensitive method for characterizing



invenebrale liU'Vae al very early stages (Olson et aI., 1991). e.g.. those ofMyrilllS ecbifis

(Corte-Real et aI., 1994b; Sutherland et aI_. 1998). This technique, using specitk genetic

markers. could be very useful in planktonic surveys ofbivalve larvae. In lhe present

study. a staLic cohort analysis ofMylilflS spp. and two diagnostic PeR-based nuclear-DNA

markers were used 10 investigate the micro-geograph.ic distribution paltem ofM. ed/llis and

M. frOS.',lt/Us. and 10 detect Ihe presence and frequencies of their nalural hybrids. Different

stages of the life cycles ofttle species and hybrids, including planktonic larvae, neWly settled

post larvae and spat were also examined. in order 10 investigale the existence and timing of

any change in Iheir frequencies that may suggest that selection affects one or more of lhe

species.

II. 2. MATERIAL. AND METHODS

11.2.1. STUDY SITES AND SAMPL.mG

Adult mussels (M. edrdis Linnaeus, 1758; M. trossllius Gould, 1850) were collecled

sublidally by SCUBA at a deplh of approximately 1.5 m below mean low tide at two

locations, Chance Cove and Bellevue. located in Trinity Bay, easl coast of Newfoundland,

in October 1995. June 1996, October 1996 and October 1997. At each location, two sites

were sampled. one exposed to wave action, (Cl\ance Cove exposed. CE; Bellevue exposed,

BE) and another prolected and shellered (Chance Cove protected, CP; Bellevue protected.

BP) (Figure I). RepresentaLive samples (Hap hazzard) of approximatdy 200-300 mussels

were laken from each mussel bed at eac:h site, including a range of sizes from IS mm to 98.6

mm shell length. During June 1996 three random samples, each composed of 200-300

mussels. were taken along the longesl axis of the mussel bed al each of the four sampling

sites. This allowed for the collection ofa representative sample from each mussel bed, which

can contain several thousands of mussels. The mussels were brought alive 10 the laboratory,

shell length was measured with an electronic caliper (0.01 mm), and Ihe animals dissected.
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A small piece of ITWIUc edge tissue (approximately 200 mg) was removed. placed in a I.S

mI Ep~dorf lube. fixed with 95% ethanol and stored at _20°C to await analysis.

Mussel. spat were coUccted from brown filamentous algae in three consecutive years

(0.6-1.9 mm. primary settlement) and from within mussel clumps (2.0-14 nun. secondary

settlement) at each of the sites described in the above paragraph during the months of

October and December 1995, September. October. and December 1996, and September and

December 1991. The samples wue placed in 95% ethanol and refrigerated until they could

be analysed. Approximately 250 mussels from eath site were collected on each sampling

date

Planktonic larvae were qualitatively sampled in standard 10 minutes plankton tows

(20 IJffi mesh) at the same sites sampled for adult musscls at Bellevue and Chance Cove.

Newfoundland, during June., July, August, September, October 1996, June and September

1997, and August, 1998. Also, D-shape larvae obtained from pure crosses of M. I!dulis. M.

tros.'>llhlS and their reciprocal hybrid crosses (see Chapter 4) were obtained by rearing larvae

from laboratory crosses ofthc two species (Scarpa et aI., 1994; Toro and Sastre, 1995; Toro

and Paredes I996b).

11.2.2. DNA EXTRACTION

0.2.2.1 Juvcnilc .nd adult AlUUN

Approximately 50-100 mg mantle-edge tissue wu removed from each mussel,

coarsely chopped and digCSlcd in SOO III lysis buffer (50-mM Tris-HCI , pH 8.0, 1.0 % SDS;

25 mM EDTA) with 200 11& proteinase K (Sigma) at 37 "C overnight. The solution was then

extracted twice with 500 III of an equal volume of phenol-chloroform-isoamyl alcohol

(24:24: I) followed by 95% ethanol precipitation at ·20°C. The extracted DNA was

resuspended in 200 III ultra-pure sterile distilled water.
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0.1.1.2 Spat

For smalJer mussds« 5 mm in length}, the whole flesh was dissected out aCthe shdI

and used. In recently settled spat and very small individuals « 2 mm in length), the whole

animal was used. Total DNA cnraetion followed as described above.

11.2.2.3 Larne

Total DNA was extracted from around 200 individual larvae nom each location at

every sampling date. Fulthermore. 60 D-shape larvae from each pure and hybrid larval

culture (see Chapler4), were anaI)-osm in order to see ifther'e was any variation in I.hc RFLPs

among individual larvae aCthe same species. No variation among larvae from "pure" crosses

was detected with either DNA-marker. The DNA extraction procedure was similar to mat

described for the mantle tissue, except that each larva was first measured with a graduated

eyepiece fined to a Wild stcreomicroscope at 40X magnification., and isolated using a

Pasteur pipette. Each individual larva was then placed in a separate I.S ml Eppendorftubc

and washed (Wice in 0.5 m1 distilled water before DNA extraction. Individual larvae were

scored for genotype at each marker locus on the basis of diagnostic RFLPs.

11.2.3 SPECIES MARKERS

Two polymerase dwn reaction (PeR) based nuclear-DNA species markers were

used in the present study. Glu-5 and ITS are co-<lominant DNA markers producing two

specific M. f!d/llis and M tross/I'/ls paltems and distinct panems foe hybrids.
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1J.1.3.1"5

This marker, developed by Heath et aI. (1995), is based on the internal transcribed

spacer (ITS) regions between the 185 and 285 nuclear rONA coding region. The primers

ITS S'-GTTTCCGTAGGTGAACCTG·]' and ITS2 S'·

CTCGTCTGATCTGAGGTCG·)'. with an expected PeR gene fragment size of 1250 bp.

Primers were synther:ised at the Core facility for ProteinfDNA chcmisuy at Queen's

University and shipped as tbe ammonium salt.. dry, in a sterile lube. Dissolution was carried

out in ultra-pure distilled water, according; 10 the manufacturer's insuuctions and the

concentration needed. Working solutions of primers were kepi at -20 O( (-70"( for long

term storage).

11.2.3.1.1. PeR cycling

Standard PeR amplliications~ carried out in 2S.~[ reaction mixtures (500 III thin

walled peR microtubes, Gordon Technologies) containing 2 III DNA template (1:10

dilution). 0.2 mM each ofthe four deoxyribonucleotide triphosphates (dNTPs) (Sigma), 2.0

mM MgCl~ primers al 0.4 mM. I unit ofTaq (1ht!rmusaquQtlcusstrain YTI) DNA

polymerase (Promegal. the manufacturer-supplied PeR buffer and sterile distilled water. The

reaction mixtures were overlaid with a drop of mineral oil (Sigma) to prevent evaporation,

and were then placed in a programmable thennacycler (M' Research Inc.). The thermal

cycler protocol consisted ofan initial denatunltion at 94°C for] min, followed by 35 cycles

of94°C for 20 s. SO"C for 20 s and 72°C for 2 min. Rigorous precautions wefe taken to

prevent template contaminatton during the PeR procedure: positive displacement pipettes

(Eppendorf) and aulnclaved, sterile tips, tubes and reagents were used, and • negative

control without the DNA template was run with every batch of samples.
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n.l.J.t.I. Restrictioa •••lysis

Five loll ofeach amplified PeR-product was digested for 12 h at 37"C with 0.5 unit

oflhe restriction enzyme Hha I from HlH!mophilus haemolyticus in a totaJ volume of 15 j.ll,

including 3 JlI of buffer supplied by the manufacturer (pharmacia) and 6.S J.I\ of ullra-pure

distilled water. Enzyme inactivation 'ol.'U accomplished at 65 °C for 20 min in a water bath

;lnd the sample cooled for 20 min at room temperature. The digested products were

e1eclrophorer.ically fnetionated in ] % agarosc gels (ZO/. Sigma and 1% NuSieve GTG

agarose) with O.5X Tris-bor.Ile-EDTA (THE) buffer fOl" 30 min al 112 V. A negative control

with no PeR-product was run with every batch of samples. A IKb DNA J.ldder (GibcoBRL)

was run on each KC[ for sizing the DNA fragmenlS. The random fragment length

polymorphisms (RFLPs) were visualized by placing the gels in a solution of ethidium

bromide (05 "'8 mI>l) and photographing them unde.- ultraviolet illumination. Individual

mussels were scored flK genotype It each marlcer locus on the basis of diagnostic RFLPs.

1I.1.3.1.GI.-5

A second nuclear-DNA marker, Glu·j. developed by Rawson et al. (1996a), targets

the gene encoding the polyphenolic adhesive protein produced by the pedal gland. The

primer used was ill-55' -GTAQGAACAAAGCATGAACCA-]' and the reverse primer

ill54 S' -GGGGGGATAAGTTTTCTIAQG- ]'.

n.1.3.1.1 PeR cyc:linl

Standard PeR amplifications were carried out in 25-}l1 reaction mixtures containing

approximately 50 ng of DNA template, 2.5 nmol dNTPs, 2.0 mM MgCll • SO pmol of each

primer, I U ofTfl DNA polymerase (Promega), the manufacturer-supplied PCR buffer. and

sterile distilled water. The reaction mixtures were overlaid with a drop of mineral oil (Sigma)
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10 prevent evaporation, and were then placed in the thennocyc;:lel". The thermal cycler

prolocol consisted of an initial denaturation at 94°C for 3 min, followed by 30 cycles of

94°C for 20 5, 53 DC for 20 s and 12°C for 45 s. peR products were then directly resolved

on J % agarose gels stained with clhidium bromide and scored for species using Polaroid

photos taken under UV light. A negative control without DNA template was run with every

balch of samples.

n.2..4 SIZE FREQUENCY ANALVSIS

Shell lengths of all sampled mussels were measured 10 lhe nearest 0.0\ mm with

digital calipers, and each mussel assigned to the appropriate size class (S mm intervals)

(Comesaila CI aI., 1998).

11.2.5 STATISTICAL ANALYSES

Comparisons ofgenotype frequency distributions were made with R X C G·tests of

independence (Sakal and Rohlf. 1981) using the Syilat 5.1 (Wilkinson. 1991) and Zaykin

and Pudovkin (1993) computer programs. The probability estimates of null hypothesis

(homogeneity) were perfonned using Monte Carlo simulations as suggested by Roff and

Bentzen (1989). Bonferroni.adjusted probabilities for multiple comparisons were applied

(i.e., divide the cririca/level, F'Q.05, by the numbel"orcomparisoos) (Sokal and Rohlr: 1987;

Wilkinson. 1991). Two way analysis of variance and nested analysis of variance (ANOVA)

were performed on log transfonned values roc shdIlength (Mallet and Carver, 1995), to test

for differences among sites, among species within sites and roc the genol)'pe x site interaction

tenn. using the Systat 5.1 (Wilkinson. 1991) statistical package.
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11.3. RESULTS

11.3.1 SPECrES MARKERS

D.J.I .• ITS dudear-DNA marker

The restriction digestion of the 125O-bp ITS PeR amplified product with Hha.l

produced three specific RFLPs. LnM. willis. the 125O-bp fragment \\,"1$ cut into two 4so.bp

fragments and two 18O-bp fragments. In M trossnlus the ITS-PeR product was cut into two

280-bp fragments. two 180-bp fragments and several <IQO.bp fragments (Figure 2). This

a.<say. using a co-dominanl marker, was also able 10 separate the hybrids, in which patterns

from both species were present on the gel (Figure 2).

This PeR assay also productd species-specific patterns. In M edulis, two different

banding patterns were found. 92 per cent ofM edulis mussels producing a single 350-bp

band and 8 per cent producing one lSO-bp band and one J8O-bp band. In M lrOSS/llus this

peR assay produced only a single primary band of240-bp. Hybrid mussels presented RFLPs

patterns from both species (Figure 3).

11.3.2 MICRO-DISTRIBUTION PAlTERNS

The dala show that PeR is a sufficiently sensitive Icchnique to pcnnit genotyping of

individual mussel larvae. Figure 4 (A to D) shows that every site sampled contained

individuals from each orthe three mussel types (M. f!dulis. M. IrO!>"$Jtlus. hybrids). A higher



Fig. 2. Photo negative of ethidium bromide stained 3% agarose gel
rransilluminated with ultraviolet light showing the RFLPs
patterns produced by the ITS nuclear marker for MytiJus edulis
(lines C and F). Mytilus trossulus (lines D and E) and the
hybrid (line B). Molecular weight marker (Gibeo BRL IKb
ladder (line A).
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Fig. 3. Photo-negativeofcthidium bromide stained 3% agarosc gel
transilluminatcd with ultraviolet light showing the RFLPs
patterns produced by the G/u-5 nuclear marker for Mylilus
eduli!>J (lines F and H), Mytilils trossu/us (lines C. D. E and
G) and the hybrid (line B). Molecular weight marker
(Gibeo BRL I Kb ladder) (line A).
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frequency ofM. troSSIJlus. lower frequency ofM edulis and intermediate frequencies of

hybrids were found in ;ill samples (Figure 5). There was no difference in genotype frequeocy

among sites or between locations (pooling sites al each location) for the August 9 and

September J. 1996 samples (Table I). Also, no significant differences in genotype

frequencies for larvae were found between sites (protected vs exposed) within locations

(Table I). The size range of the larvae analysed by this method ranged between 113 (s,d

8.57) IJm and 298 (s.d. - 6.54) 11m (Figure 4. E-H). However, no attempt was made to

analyse size differences amonG species. due to the mixture of cohons in each sample.

No significant differences (P>O.OI) in the species frequencies (M. edJdis. M. trossu/us

and hybrids) for larvae were found among years at Bellevue proltetcd, Chance Cove

protected and Chance Cove exposed sites (Table 2). At BeIlC"IUC exposed a significant G

value was obtained (P<O,OI. G-16.3I, dP4). However, after excluding the hybrids from the

analysis. there was no difference among years (P>O.OI. G=5.70. df=o2). indicating that the

difference among years at this site was the result of small fluctuations in the frequency of

hybrids.

11.3.2.1 Sp.1

1be mussel spat collected during the auwmn of 1995, 1996 and 1997 were arbitrarily

divided into three size groups. one group including the spat collected from filamentous algae

(0.6-1.9 rTV11). the othef"no.'O groups including spat with size ranges between 2.Q..9.9 mm and

IO.Q..14 9 nun respectively. Figures 6. 7. 8 and 9 show the species frequencies of the spat for

each size range in three consecutive years. A higher frequency of M. IrOSSJIlus. lower

frequencies of hybrids and intermediate frequencies for M. edulis are evident, especially at

the elCposed sites at both locations, while at the more protected sites the frequency ofM.

1rtJ....'1"1I.~ is lower than at the exposed sites and the frequency ofM. edulis and hybrids shows

no clear panem (Table 3. Figures 6 to 9). There were no significant differences in the species

frequencies for the smallest size range of spat among sites, between sites within locations
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Fig. 4. Frequency distribution of Myttlus edll/is, MytUlIs frOSSlllt1S and hybrids
larvae (A to D) and mean (±S.E.) shell length (E to H) for each location (BP,
BE, CP and eE) from planklOn laws taken regularly during the summer.
autumn 1996. ND=no data. Number of larvae in parentheses
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Fig. 5. Frequency distribution ofMytillls edulis, My/i/us lrosSIIJlIs and hybrids larvae
for each location (BP, BE, CP and BE) for samples taken during August
9/Septern"'" 3, (pooled) 1996 (A), Septern"'" 2, 1997 (B), and July 3 I, 1998
(C) Number of individuals in parentheses.
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Table I: Results ofR X C G-tesu ofindependence among genotype frequencies (M ~/U.

,\t. tross,.INS and hybrids) at the larval stage. comparing I) locations and 2) sites within each
location for samples taken on August 09 and September 03 1996. The critical values afme
type I error were adjusted using Bonfemxti method. Significance level is indicated (ns = DOn
significant.• - significant)

Among sites (DP,BE.ep and eE)
X:'.I- 12.59

Between sites BP vs BE
X~'!l- 5.99

CPvsCE

BP+CP vs BE+CE

Between locations BP+BE vs CP+CE
X:~lll- 5.99

August 09

G=6.S9

G-3.79

0-0.65

G'o 6.90

G"'2.2S

September 03 P

Qal1.J4

~ 4.21

G- 4.21

CF- 4.37

0=-5.47



3.
Table 2; Results of R X C G.u:su of independence 3mOng genolype fn:quencies (M. nJMlis. M.
tlVSSlllllJ 3J1d hybrids) at the Ian;li st:agc: c;:ornpuing among lhme ~-.::lI"S I) at the four locations aBd.
l)sit..:swilhin Ioc:dions forSlRlpkstaken in August 09. SeptanbcT03 1996(p:Jo1c:d).~02

1997 and luly 31 1991. 1be critical \'3fucs ofdle type I etTOl'. \'lo'nC adjusted w;ing the: Bonferroni
method. Significance leu:1 is indicaud Ins = tlOll significan!: • - significant).

G P

Among years for BP
X~"I· 9.488 4,40

Among; years for BE
X~l'I'"" 9,488 16.31

Among years for CP
X~I')- 9.488 1.31

Among years for CE
X:(.)-9,488 1.83

Among years for: BP+CP 4.64
X:I&)-9.488

BE+CE 15.48

BP+BE 13.81

CP+CE 1.94
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Fig. 6. Frequency distribution ofMyli/lis edt/lis, Myllllls IroSSll/us and hybrids at
the spat stage, divided into three shell length ranges in Bellevue protected
(BP) for samples taken during three consecutive years (1995, 1996 and
1997). Number of individuals in each length class in parentheses.
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Fig. 7. Frequency distribution of My/ilus edlilis, My/illis /rosslI/IIS and hybrids at
the spat stage, divided into three shell length ranges in Bellevue exposed
(BE) for samples taken during three consecutive years (1995, 1996 and
1997) Number of individuals in each length class in parentheses.
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Fig. 8. Frequency distribution of My/ilus edulis, Mytilus trossulus and hybrids at
the spat stage, divided into three shell length ranges in Chance Cove
protected (CP) for samples taken during three consecutive years (1995, 1996
and 1997). Number of individuals in each length class in parentheses
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fig. 9. Frequency distribution of My/illls edlllis, Myllllls lrossllius and hybrids at
the spat stage, divided into three shell length ranges in Chance Cove exposed
(CE) for samples taken during 1995, 1996 and 1997. Number of individuals
in each length class in parentheses.
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and between locations (Table J). However. genotype frequencies showed significant sile:

differences in most G-tCSlS for spat in the 2.0-9.9 and 10.0-14.9 nun size ranges (Table 3).

with the exception ofthc comparison between locations (BP+BE V$ CP+CE), in which no

significant differences in genotype frequencies were found.

There were no significant overall differences in species frequencies among years for

any of the sites studied, with the exception of Bellevue exposed in the smallest size range

(P<O.O I) (Table 4). In general. the genotype frequencies (M. edu/is, M. trossulus and

hybrids) showed no differences among the years studied, indicating thaI the genetic

composition of the mussels that recruit each yeal'" at each of these sites does not Val)'

significantly.

0.J.1:.1 Adults

The relationships between the frequencies ofM. l'dulis. M trossulus, and hybrids and

shell length are shown in figure 10 for a sample laken in October 1995, figure 11 for a

sample taken in June 1996, figures 12. I), 14 and 15 for a sample laken in OClober 19% and

in fi~'Ure 16 for a sample taken in October 1997. Mussels were considered to be adullS when

gonad development and gamete storage in Ihe mantle lissue were first observed (age at first

reproduction), which generally occurs at about 15·20 mrn shell length in M 'rossulus

(Suchandc.. 1981) and 20..25 nun shell length in M. ~dulis (Seed. 1969; see also Chapter 3).

The rdative frequency ofeach genotype was strongly dependent upon size class. M

tro.'Qlllu.)· was the predominant species in the smallest size classes for all samples (figures 10

to 16). An inaease in the frequency ofM edulis individuals and a decrusc in frequency of

M. If"OS.)lllllS individuals with sheil length was observed at all sites and locations (Figures 10

to 16). The change in frequency of both species with increasing size was gradual, and the

hybrid frequencies tended to decrease in the larger size classes, although no clear panem was

observed.



42

Tabl~ J: Results of R X C G-te:slS of indepaldmcc ;unoog genotype frequencies (M. edllJis, M.
If'OS$Ulusand hybrids) at the spat Sl:l&c. cxxnp;uing I) locations and 2) sites "'ithin cacb.locoWon for
lhn:e siu- ranges (0.6 - 1.9.2.0-9.9 and IO.Q.14.91TWJl). for samples Ween during 1995. 1996 and
1997. The critical \'3Iucsoflhc~llelcm:Jl"ll,\l;ft:adjusudusinglheBonferronimethod.. Si~
level is indic;ued ( • - significam).

1995 1996 1997

Among sites (BP,BE.CP and CE)
Xl ,.,= 12.59

0.6· 1.9mm 0-11.59 G= 6.31
2.0· 9.9mm G"IJ.JS 0-35.04 • CP<18.6S·

10.0·14.9 mm G""19.44· G-16.32 a"20.44·

Between sites BP vs BE
X:':I= 5.99

0.6 - L9mm G- 2.59 G= 2.65
2.0- 9.9mm G= 4.66 0-20.00 • G=- 5.68

10.0· 14.9 mm G'" 6.55 G- 6.35 G= 8.43

CPvsCE

0.6- 1.9mm G- 2.14 G- 2.14
2.0· 9.9mm G= 5.77 G-14.99 G= 9.4S

10.0·14.9 mm 0=12.64 G- 8.92 G- 8.76

BP+CP vs BE+CE

0.6- 1.9mm G- 6.35 G- 4.08
2.0- 9.9mm 0=10.53 G-3J.2S· G-l3.JI

10.0 - 14.9 mm G=19.01· G-1J.3S G-IJ.70

Between locations BP....BE \IS CP+CE
X!m- 5.99

0.6 - 1.9mm G- 2.04 G- U9
2.0- 9.9mm G= 2.89 G- o.:n G= 3.56

10.0 - 14.9 mm G= 0.24 G- 0.68 G=- 2.31
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Table 4: Rcsu.hs of R X C G..ccsts of indcpeodcna: :lll'IOng genotype fnlquencies (M. nil"", M.

rrossufuJ and hybrids) at die s;palsagc for lhn:cdiffi:fml size r.mgcs (0.6-1.9.2.0-9.9;and 10.0-14.9

nun) ;unong three diffcraIl years (1995. 1996;and 1997). aI the four Iocatioos and sites within

Ioc;ujons. rl'"l '" 9.4111. The eritic:aI vaJucs ofthc type I emw _ 'A'efe adjUSlCd using the: Bonfcnoni

method. Signific:anc:c Ievd is indieate:d (ns '" DOD significanc).

Sizl:~&e(mm) G

0.6- I., 2.57
Amon~y~ fl)l" SP 2.0- 9.9 6.51

10.0...(4.9 6.19

0.6- I., 6.54
Among years for BE 2.0· 9.9 J.49

10.0-14.9 3.87

0.6- I.' 0.73 "'Among years for CP 2.0·9.9 5.22 "'10.0-14.9 2.79

0.6- I., 0.21
Among years for CE 2.0- 9.9 2.26

10.0-14.9 3.69

0.6.1.9 2AJ
Among years for. BP+CP 2.0.9.9 9.44

IO.0-14.? US

0.6- I.' 2.13
AmoI\g yC3rS far. BE+CE 2.0. 9.9 4.87

10.0-14.9 5.19

0.6- I.' 7.49

Among years for: BP+BE 2.0- 9.9 6.18
10.0-14.9 6.13

0.6- 1., 0.12
Among years for: CP+CE 2.0- 9.9 5.33

10.0-14.9 lAS
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Fig. 10. Frequencies of M edlth's (black circles), M trossl/lus (open circles) and
hybrids (inverted black diamonds) ploued against shell length classes for
four populations, from a sample taken in October 1995, in eastern
Newfoundland. Number of individuals in each length class in parentheses.
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Fig. II. Frequencies of M eduhs (black circles), M. frOEf/III:.. (open circles) and
hybrids (inverted black diamonds) ploued against shell length classes for
four populations. from a sample taken in June 1996, in easlem
Newfoundland. Number of individuals in each length class in parentheses.
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Fig. 12. Frequencies of Myliflls edulis (black circles), Mytillfs I'Q5Sl11115 (open
circles) and hybrids (invened black diamonds) ploned against shell length
classes for random samples laken along three: sites of the mussel bed at
8eUevue protected location (BP) in October 1996. Number of individuals in
each length class in parentheses.
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Fig. 13. Frequencies of MytilllS cdulis (black circles), Myrilils trosSI//liS (open
circles) and hybrids (invened black diamonds) plotted against shell length
classes for random samples laken along three sites of the mussel bed at
Bellevue exposed location (BE) in Cktober 1996. Number of individuaJs in
each length class in parentheses.
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Fig. 14. Frequencies of Myt;l/ls edulis (black circles), Mytilw; rrossullls (open
circles) and hybrids (invened black diamonds) ploued againsl shell length
classes for random samples laken along three sites of the mussel bed at
Chance Cove protected location (CP) in October 1996. Number of
individuals in each length class in parentheses.
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Fig. 15. Frequencies of Mytilus edlliis (black circles), Mylillls IrOSSlIllIs (open
circles) and hybrids (inverted black diamonds) plotted against shell length
classes for random samples laken along three sites of the mussel bed al
Chance Cove exposed location (CE) in October 1996. Number of individuals
in each length class in parentheses.
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Fig. 16. Frequencies ofMytillls edlllis(black circles), M trossulus (open circles) and
hybrids (inverted black diamonds) ploned against shell length classes for
four populations, from a sample taken in October 1997, in eastern
Newfoundland. Number of individuals in each length class in parentheses.
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Extensive sampling at both locations at each site was carried OUI in October" 1996,

in order 10 evaluate the possibility of a patchy distribution of genotype frequencies (M.

edllUs, M. frossulus and hybrids) within each sile. Three representative (hap hazzatd)

samples along each of the mussel beds at these siles showed that there were no significant

differences in genotype frequencies among samples taken near the edge of the mussel bed

and at the centre aCme same mussel bed (p>O.05: G- 4.72 for SP, G-1.48 for BE, GzO.37

for CP and G-4.29 for CEo df-4). Significant differences were found among all four sites

(P<O.OS. G-l07, dF6). The significant difference in species frequencies between morc

exposed sices and more sheltered and protected sites is panicularly interesting (Table 5). M.

wulisshowcd a higher" frequency at the: more protected sites (65.4% and sl.r.... for BP and

CPo respKtively). 1A.1tiIeM troSSUluswas predominant 111 the rJ'IOf'e exposed sites (50.2"-. and

54.9"'1. for 8E and CEo respectivdy). The same signifiant difference in genotype frequency

was obtained by pooling data from both exposed sites (BE and CE) and both protected sites

(BP and CP) (P<O.OI, G'" 78.1 S. df-2). A significant difference was found in the genotype

frequencies between the locations (Bellevue and Chance Cove), pooling both sites at each

location (P<O.OI. G=22.J8, df--2). Mylilus rdulis was predominant (55%) at Bellevue, while

.~/. fm....,'IIIlS was more frequent at Chance Cove (47%). However, after pooling data (1995

+ 1997) from both sites at each location (BP+BE 'IS CP+CE), there were no significant

differences in genotype frequencies between locations. There was a significant difference in

genotype frequencies among years (1995, 1996 and 1991) for the Bellevue protected site

only (Table 6).

A two way ANOVA of shell length (log transformed) of mussels at the spat (>2.0

mm) and adult stages showed significant effects of Site (FlJ.,!)=91.21. P<O.OI), Species (F

c.:.~J»l· 1012.24. P<O.OOI) and Site I( Species interaction (F l"iJ~)= 26.12, P < 0.01). This

significant inleraetion indicated that the differences in shell length among the three groups

of mussels varied among siles. However, the mean shell length ofM. Irossulus was lower

than thaI of M. rd/llis at every site. while the mean shell length of hybrids showed

intermediate values between the twO "pure"' Mytilus species (Figure 17).
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Tlbl~!i; Resulu of R X C G~ or indcpc:ncknce among spec:a fu:quc:ncic:s (M. ~1I1u, M.
trosslllll~;1nd hybrids) at the adult 5Uge (>15 1Ml).~ s=JP1cs within sites,~ sites,
bl."t\\cm Ioc:ttion5 3nd sites"lthin COICh Ioation f«sampks takm in October 1995. Oaober 1996;uJd
October 1997. The critical v.l1ucs orthc~"J'C I error Cl wen: :uljusted using the Bonfcrroni mnhod.
Sisnific3.Ilccievel isindic;ucd( ··signific;ant)

199' 1996 1997

Among sites (BP,BE,CP and eE)
X:I•• = 12.59

G-40.)6 .. G-I07,SI .. 0=32.64 ..

Belweensites SP VI BE 0"23.55 .. G- 68.41· G-12.60 ..
X~l~l = 5.99

CPvsCE G- 8.24 G- 18.36 .. G=- 19.95"

BP+CP vs BE+CE G-28.69*- G- 18.15" ~31.89·

Between locations BP+BE vs CP+CE G- 5.81 G- 22.86" G- 0,11
X=m=S.99
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Tabk 6, Results of R X C G.(CStS of indcpa1dmcc (Of geoot>JlCS lTcqucncies (M. dlliis. M.
uossulus:md hybrids) at the adu.lt SQgt (>15 mm) among three different years (1995. 1996 and
1997).;u the !i:-.u-sites. betwccn locations and Ix::twcc:n sites"ithin kIcations.l:("l-9.~IlI.1be critical
\-:Uucs oflhc type I crTOfU wetc adjll$lCdusing the Bonrermni method. Significance level is indieucd
(ns - non significant: • ,. significant).

G P

Among years for BP 36.25

Among years for BE 6.88

Among years for CP 2.87

Among years for CE J.55

Among years for: BP+CP 18.59

Among years for: BE+CE 4.94

Among years for: BP+BE JUS

Among years for: CP+CE 3.04
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A nested ANOVA showed thai the differences among mean lengths aCme three species at

each site were statistically significant ( F'''4JSolI - 286.89, P <0.01).

11.3.3 LIFE HISTORY VARIATION

There were signilkant differences in genotype frequencies 1m000g all life-history

stages at all four sites sampled during 1996 and 1997 (Table 7). In order 10 identitY the life

NSlOI')' stage(s) responsible for this high G value, genotypes for the eight life-history stages

were pairwise tesled on ontogenetic seqUetKe (Table 8). Larvae were significantly different

from the adult IV (over 6\ mm) stage (P < 0.01) and tbe genotype frequencies from adulls

1 (15.0·309 rom) 10 adults II (JI,0-45.9 mm) were also statistically different (P <; 0.01)

(Table 8). The difference between adults and larvae was the result of fluctuations in the

frequency of trOSSlllus and hybrid genotypes. these two genotypes being more frequent at

the lalVai stage. The increasing frequency of M. 4!dulis and decreasing frequency of M.

trwisliitu' and hybrids among adult I. adult II and adult III Rages (Table 8) can clearly be

seen in figures 10 to 16.

Surprisingly, only two ofcight G--tC:StS comparing larvae with spat I (0.6-1.9 mm)

resulted in a significant difference in the genotype frequencies (Table 8), which indicates that

in general there is no strong selection against any particular genotype (M edulis, M.

IrosSl/llIS or hybrids) at this very delicate stage oflarval metamorphosis. However, when M

l!rJllli~· and M. Iross"llIs genotypes were pooled and tested against hybrids, there was a

significant difference between the frequenciesoflarvae versus.spat I (0.6-1.9 mm) (P<O.OOI)

for samples taken in 1996 (<F16.08) and 1997 (G-20.25). The overall frequency of hybrids

forbolh locations at the larval stage was 29.14 Y. for 1996, 41.11 Y. for 1997 and 31.65 %

for 1998. There wu no significant difference in the frequency of M. edliJis, M. lrossu/IIS

(pooled) and hybrid larvae among all four sites (P>O.OI) for any of the three years analysed.



Bellevueprotecled
_M.eduls

1O~~su/us

55

8e1levueexposed

(758) (195) (731)

Genotype

Chance Cove protecled

(540) (91) (955)

Genotype

CharlCl!Coveexposed

(635) (210) (786)
Genotype

(387) (82) (996)

Genotype

Fig. 17. Mean shell length (±SE) of Mylilus ed/dis, hybrids and M. trm:'iull/S
individuals (size range 2.0· 109.5 mm), scored using one or two PCR-based
nuclear markers (ITS. GIII-S). Pooled ITom samples taken during 1995, 1996
and 1997 for each site (Bellevue protected, Bellevue exposed, Chance Cove
protected, Chance Cove exposed). Number in parentheses show the number
of individuals scored.
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Table 7: Results of R X C G-tcsts of independence amoog species frequencies (M u-lis.
M. ITOSSM/IU and hybrids) among all (8) size (life-hisl;ory) stageS during two consecutive ye&rS

(1996, 1997). Each comparison tw 14 degTeeS of freedom.. Estimates of probability of Dull
hypothesis (homogeneity) were CMried out using I Monte Carlo simulation. Significance
level is indicated.

1996 1997

G P G P

BP 445.42 <0.01 200.21 <0.01

BE 270.93 < 0.01 189.73 <0.01

CP 250.14 <0.01 166.89 < 0.01

CE 225.25 <0.01 136.00 < 0.01
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TableS: ResuksofR X C G lc:sts ofiDdcpendc:ncc:among gcncJ()-pc frcquencics (MytiJlI$ NllliI., M.
IrOlllllu!J and hybrid5) for scqueari:Ll si..u-stages (Iif~-hisIory stagcs) during two coosccutive ,-e;us
(1996. (997). Spat I·O.~1.9rmc spas: D'" 2.~.9 111m: spat 01- IO.Q..)4.9 mm; adult I'"' 15.0-30.9
mm:3dultU:JI.Q.45.9 nvn: adult 1II"46.~.9 nvn:andadult IV-0\-er61mm.Ea.eh~
~ 1 degrees of&mdom. 1be criti<:aJ \'aJues ofthc type I enor I& ....nc adjusted Il$ing the Bonfi:mJrU
method. Significance Ic\'d i5 indic:ucd (ns - non signifiQnc • - sip.ificant). E.stiuwcs of probability
of null hypothesis (homclscncity) ....=e couricd out using Monte Carlo simubtions.,- BP BE

G G

/\,JuluIV""I:arnc m.ss 101.27

L...v"",.,."P:1I[ 3.56 ~ 15_~

Spat! ''''''PU1 1I 0.77 ~ 0.33 ~

Spalll'''''I'ulllI 1.2\ ~ 0.77 ~

Spat 1Il ,"<udu[t [ 6.~S 0' ~.72 ~

A<luh[\"SadultlJ 33.97 23.47

AJuhl['-:;:odultlll 17.60 6.69 ~

Adull III '''' adult IV '.06 ~ 111.010

'99' BP BE
G G P

56.97

L",...:o.:''S>t>''ll 2.62 19.29

Spoil I '''':opal II

~11l''''''Pallll 1.21 ~

S~(Ill\.,.aJuJ(1 0.62 ~

!\dull I!J ,.,.adull IV 2,59 1.22 ~

CP CE
G G P

2.68 ~

36.07

,.. ~ 8.37 ~

'-'0 W ~

CP CE
G G

19.26 9.2\

1.17 ~ 6.7S

2.02 ~ ~.S7

1.48 ~ ".72

2.99 ~ 2.49

17.56

14.86

US ~
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The spat stage showed a decrease in the frequency of hybrids, especially at the

exposed sites. The avenLll frequency of hybrids for the protected sites (SP.CP) was 18.28

"/0 in 1995, 20.26% in 1996 and 18.8 % in 1997, while rOl" the exposed sites (BE.CE) it was

8.2 % in 1995,6.34 % in 1996 and 7.8 % in 1997.

In the present study a total ofJOO hybrids (including all adult mussel samples) (7.28

%) was identified using the two PeR·based nuclear markers. A higher frequency of hybrids

seems to be associated with protected sites (Figures 10 to 16), since 8.9\ % hybrids were

found in the samples from the protected sites (SP and CP) while only S.48 "1'. hybrids were

found at the samples from ex.poscd sites (BE and eEl.

There was an overa1I decrease in the rdative frequency ofM trossulllS between June

and October 1996 with significant (P<O.05) G-tesuat SP (G-22.22. d.r:-I); CP(G=S.61.

d.(=I) and CE (G=5.82. d.C-I), while at BE the G·value was almost significant (G-3.S I,

P=Q.062). This signifK:ant change in the frequency of M. rroSSlllus, especially at the

protected sites. indicates that there was a high monalily during summer which affected

mainly M. frusJ,lllus.

11.4 DISCUSSION

Planktonic mussel larvae were observed from late June to mid· October 1996, which

is in accordance with previous observations for the time of s~wning in Newfoundland.

""ithin the Strait ofBdle lsIe(GiUcinson., 1983) and at Bdlevue (Thompson., 1984b) (see also

Chapter). Most of the larvae from which DNA was sucecssfuUy amplified and identi6ed

wereM rrossulU5, which dominated throughout the entire sampling period (Fig. 4), and was

meanly larva present during October and. at some sites. during September. M. edulis was

the least common larva present during the sampling period, and at some sites was present

for only a short time. Hybrid larvae (F I and backcrosses) were present at intennediate

frequencies and. like M. edulis, were present for a short period only. especially at the

exposed sites. The most extended presence ofM Iro»ulus planktonic larvae could be due
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to a "dribble" spawning throughout the reproductive period (Seed and Suchanek, 1992) or

to a delay ofmewnorpbosis (Bayne. 1965, 1976b). Given the size orthe larvae (Figures 4,

E.H), the fonner explanation seems to be the more plausible, because there was variation in

lhe mean size orlhe larvae present (see also Chapter 3)

Gene flow from the dispersal of long.lived planktotrophic larvae is genc:ra.lly

predicted to homogenize marine populations over long distanceS (Schdtema, 1971, 1978;

Edmonds et al .. 1996). There is evidence supporting this prediction (palumbi. 1992). but

SOIT1C exceptions have been reported (Bunon. 1983: Palumbi, 1994). Larval dispersal could

sometimes be restricted by behavioural mechanisms that may favour local recruitment

(Bunon and Feldman, 1981) or controlled by physical variables that affect water current

patterns (Incze et aJ.. (990). Also, genetic differentiation may occur despite extensive

dispersal due both to differential post-scnlement mortality (Koehn et a1., 1980) and 10

temporal variation in Ihe genelic composilion of larvae (Kordos and Burton, 1993). The

panem ofrelative frequencies ofA-l 1r00slIl/ls, M. edulis;md hybrid larvae observed in !his

study indicated thal there was linle spatial (Table I) or temponaJ (Table 2) variation in the

composition ofthe planktonic larvae.

There was also a high frequency ofM. trOSSltlus in mussel SpOIl at all sites sampled

in the present study, a pal1em that has also been reponed in Nova Scotia (80 %; size range

4.44 mm. Hunt and Scheibling, 1996; 71%; size range <5·9.9 mm, Hunt and Scheibling,

1998; 77·91% ; size <1.0 mm, Pedersen, 1991). Primary settlement on filamentous

macroalgae has been reponed by several authors, including Bayne (1965), Seed (1969,

1976). Eyster and Pechenik (1987), Seed and Suchanek (1992) and Ciceres-Martinez et aI.

(1994). This phenomenon has also been observed in Newfoundland by Gillcinson (1983) and

in the presenl sludy, in which spat willUn a size range of 0.6--1.9 mm (some of the post·

larvae still had the eye spot) were collected from filamenlous macroalgae at each site. These

small spat (also ca11cd "post.Iarvae" by authors such as Seed and Suchanek., 1992; Hunl and

Scheibling. 1996, 1998; Caceres·Martinez and Figueras, 1998) of the two species and lhe

hybrids showed no spatial varialion in their frequencies (Table J), while OIl secondary



60

senlement (shdllength > 2.0 mm) thcf"c was 5ignificant spatial variation in the frequency of

/vI. trossu[,u, M edulis and hybrids. with a highu frequency of M trossufu.J at the most

exposed sites (Table 3). This panern was similar during the three consecutive years sampled

(Table 4). Thus., according to lhis data, there is little evidence for temporal variation in

recruitment in these areas.

The frequency of tile three species showM no variation among the three different size

ranges ""i!ftin the spaI Slagc (T~e 8). Post-seulemenllranspon of juveniles can be attained

by the production of long byssal threads which improve the passive hydrodynamic drag

(Sigurdsson ct aI., 1976: Lane el aI., 1985). These juveniles may use threads to drift in the

waler column, at least until they reach -2.0 rom shell length (Sigurdsson et aI., 1976; De

Block & Tan-Maas, 1977; Lane ct aI., 1985). Bayne (1964) demonstrated that M. edu/is

enters a secondary pelagic phase al a size of about 2 mm by moving from subtnues such as

filamentous algae to a more permanent attachment on adult mussel beds. This secondary

selliement may produce a redistribution of the spat in the intenidal and subtidal zones.

However. since no variation in their frequencies was detected while most of these spat « II

mm) were still able to move (Sigurdsson et aI.• 1976; Beukema and Vias, 1989; Caceres

Maninez et 31., 1994; Caceres-Maninez and Figueras. 1997), it can be assumed that there

is little movement ofpost-iarvae after secondary settlement. because spat >5mm shell length

may disperse by crawling but are probably too heavy to drift on byssal threads (Hunt and

Scheibling. 1996).

The frequency analysis showed little variation in the proponion ofM frossulllS. M.

~d/lli.\- and hybrids between the larval stage and primasy settlement (Table 8), although a

significant decrease in frtquenc:y of hybrids was found at all sites sampled after pooling the

data for number of both species. indicating that there is greater monality in hybrids at this

transitional stage from pelagic larva to spat. As Hilbish (1996) pointed out, "where larval

dispersal is high there is vinually no capacity for populations to diverge by random

processes, so significant genetic divergence among populations must be driven by selection".

Hybrid zones are expected to create strong selection pressures because the production of
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individuals of mixed ancestry increases vWability in individual 6tness (Banon and Hewitt,

1989: Mallet and Omen, 1989). Selection may therefore be only acting against some

specific genorypc:s (Ben and AmoId, 1995). and selection against hybrids has been reponed

in the Merc;maria merctmaria and M. campechifmsis hybrid zone (Bert et at. 1993; Ben and

Arnold. 1995; Arnold et aI., 1996) and also in the stone crab (Mellnipe mercenar;a andM.

adilla) hybrid zone (Combs et a1.. 1997). Two types of selection against hybrids have been

proposed for hybrid zones. rtrSt, selection ope!1ltes intrinsically against hybrids (endogenous

selection) in the tension-zone modd (Danon, 1979, 1983; Bancn and Hewitt, 1989), which

predicts lIlat the hybrid zone is maintained by a balance between production of and selection

against hybrids resulting from the interspecifu:; mixture. In this model selection \\0;11 be

homogeneous over the geographic space. Second. selection mediated by the environment

(~ogenous selection), proposed by the: ecological selection.gradient model (SlatJcin, 1973,

1975; Endler. 1977: Moore and Price, 199]), predicts that the environment determines

fitness relationships between hybrids and parental genotypes

In eastern Canada. there is an apparent scarcity of hybrids in adult mussels. Mallet

and Carver (1995) reponed <5% of hybrids identified electrophoreticaily using Mpi in Nova

Scotia (but see Chapter 2). In the present study, the hybrids showed reduced viability at the

spat stage al all sites sampled, in contrast to the larval stage, supporting the tension-zone

model. However, the reduction in the frequency of hybrids also varies between siles among

locations. showing lower viability at expo5ed sites (Figures 6-16), supporting the

environrnenlal gradient model. The overall low frequency of hybrids at the adult stage « 8

0/,) and the results ofani6cial hybridization in the laboratory, which showed an increased

proponion ofabnonnaIlatvac among interspecific crosses., indicate strong selection againsl:

hybrids, and show that these specific genotypeS seem 10 be at a selective disadvantage.

supporting the lension-zone model for Ihe early stages of the mussel life-history.

The sympatric populations of M. edulis and M. 1f'Q.n-ulus studied exhibit a strong

posilive correlation between shell length of M. /!dlllis and its abundance, and a negative

correlation between shell length ofM. frosst/Ius and its abundance. The data jndicale that the
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compcring hypothesis lhal there is year to year variation in the relative frequency of the

species re<;ruitcd can be ruled out. Strong intra-population length-depeodeot genetic

van/uion has aJso been reported for most sympatric: populations of M. f!dulis and M.

gQlJopru~'illciQlis in England (Skibinski. 1983: Skibinski and Roderick. 1991). Alleles

characteristically at high frequency in pure a1lopalric populations of M go/foprovitICialis

occur at highest frequency among larger mussels of sympalric populations. No clear

evidence of gro\Nth differences between M. edillis and M goltoprovi"cialis has been

reponed (Skibinski. 1983; Skibinski and Roderick., 1991). Skibinski and Roderick (1991)

concluded that differential mortality was largely responsible for this length-dependent

variation observed in S.W. England. Factors that have been reported as probable causes of

this differential viability in theM. edlllis-M. gaJloprovillcialis hybrid zone in western Europe

include allozyme thermosensitiviry differences between these specics (Gardner and Skibinski,

I990b), predation mediated selection against M edulis (Gardner and Skibinski, 1991),

strength of attachment to the substrate (Gardner and Skibinski, 1991; Willis and Skibinski,

1992). genotype-dcpcndent differences in parasitism (Coustau et aI .• 1991) and physiologi~

differentiation (Hilbish et al., 1994). In the present study•• strong shelliength-depeodent

species variation was also found. Differential growth between species may explain. in part,

the increase in the frequencyofM wlufiswith increasing shdllength observed in this study.

However. in a Nova Scotia m.JSSd population Mallet and Carver (1995) recorded only small

diffo-ences in growth nne between M. trOS!>llilu' and M. edulis. which may suggest that the

observed changes in species frequency with shell length could be due to differ-entiaJ. survival,

Funhermore, the data available from the present study indicate that there is no year to year

variation in the species settlement pattern. at least over a three year period. Thus selection

seems to operate differentially on the two parental species within the zone. A similar trend

was found at every site studied, but was more pronounced at the protected sites at both

locations, suggesting that there may be differential monality favouring M. edulis which could

be enhanced by an environmental factor affecting M. trossuills, mostly at protected sites.
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Several factors may contribute to monality in mussels, including biological factors

such as senescence, predation. parasitism. poor nutrition, reproduction, and/or physical

factors sud!. as wa...e action. ice scouring, overcrowrling, sift, tidal currents., high tempcn.rure

and low salinity. However, because viability is only reduced in M 1TOssfI/us found

sympatrically with M. ~cJulis. each of these factors could be acting differentially.

Shell UUckness is an imponanl: component of fitness in bivah..c molluscs, because the

bivalve shell provides a defence against many potential predatorJ (BluDdeD and Kennedy,

1982; Arnold, 1984). Other components of fitness, including age at first maturation and

fecundity, are also directly or indirectly sizc-dependcnl. M. rrossulus snells are ljghter in

weighl and more fragile than M. edll!is shells nfthe same length (Freeman et aI., 1994;

Mallet and Carver, 1995), which may be significant where predation by crabs and sea stars

In MYli/IIS. seasonal variation in mortality rate is common (Seed and Suchanek,

1(92). High mortalities in SWY1mCf" have been recorded in mussels from Maine (Lutz, 1980).

Nova Scotia (Freeman and Dickie., 1979; Mallet and Carver, 1995) and the Magdalen Islands

(l\'lyrand. 1990). High monalities often occur after spawning in southwest England (Worn.ll

and Widdows, 1984), and soon after sexual malurity and spawning in native mussels (M.

trtJSSlIJux) rrom British Columbia (Emmen et aI.. 1987; Bower. 1989). High monality has

also been observed in mussels from Newfoundland after .qnwning takes place in June.July

(Thompson. 1991). In Ihe presenl Sludya high 5ll11Ul'Jef mortality can be inferred from a

draslic reduction in the relative frequency or M. trossu/us from June [0 October 1996

(Figures 1010 16), espe<:ially at lhe: prolected sites. This occurs ~edominant1yin mussels

over 15 mm in shell length, which aTe reproductively active (Suchanelc.. 1981; sec also

Chapter 3), and may indicate that post-spawned M. IroDli/UX ue under considerable stress,

considering the increased waler temperatures during summer. Mallei and Carver (1995)

reponed that during summer (after spawning) the dry tissue weight or the two spe<:ies

differed. In a 30 mm mussel, the dry weighl orM. edu/is was 0.28 g and the dry weight of

M. tros.'iltlll.\·was only 0.1 So while in a 55 mm mussel dry weight wasO.7S g and 0.46 g in



64

M. tldulis and M. trossulus. respectively. Spring and autumn tissue weight values were

similar for the two mussel species (Mallet and Carver, 1995). A similar trend in dry tissue

weight was found in the present study (see Chapter 3), and the mean gonadosomatic index

(GSI) and gametic vtHume &action (GVF) also differed between the (wo species at the pre

spa~-rung stage. being hi~ in M trossulus for munds of similar shdllength (Chapter J).

Funhermorc. there is some evidence lhat M. trvs.>ulus is reproductively active (spawning)

at a shoner shdl length than M eduJis (Chapter- 3). However, sexual maturity in MjitiJlIS

seems to be a function of age n.ther!.han size (Seed. 1969; Seed and Brown, 1977). (fthere

is some differ-ential growth in favourofM ed/llis(MaJlcl and Carver, 1995), it may be that

mussels of the same size are from different cohons and that both species enter the

reproduction stage at the same shell size but different age (Seed and Brown, 1977).

The physiology of the mussel is closely related 10 the reproductive cycle. which

usually exhibits a discrete annual form, at least in eastern Canada (Thompson, 1984a). like

most bivalves, Mylihl£ stores energy largely in the fonn of carbohydrate. particularly

glycogen, which is synthesised during the spring phytoplankton bloom in tempenlle areas

(Seed and Suchanek, 1m). This stoud~ is then used in gametogenesis and to support

maintenance metabolism during winter. when less food is available (Hawkins and Bayne,

1992). The variation in the content of this stored energy may explain in pan some of the

monality observed in natural populations. After spawning takes place, the mussel usually has

little Of no c:arbohydJ1ue resetVe., since the supply of glycogen has been depleted by the very

high metabolic demands ofgametogenesis (Bayne et aI., 1982; Lowe et a1., 1982). Bayne et

al. (1983) wet"e also able to demonstrate that high reproductive costs are associated with

high monality. More detailed studies on the physiology and biochemical composition of

these two mussel species and their hybrids are necessary to determine if a "post-spawning

stress" is the main cause of the very sharp fall in the frequency ofM lrossulus aftet" they

reach sexual maturity in these sympatric populations.

The processes that maintain hybrid zones have been reviewed by Harrison (1990,

1993). In theM edulis· M galloprovil1cialis hybrid zone in Europe, Skibinski (1983) and
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Gardner and Skibinski (1988) have suggested that the zone is maintained by iii balance

between inunigrarion ofM. cduli.r spat and selection against M. cdulis. Some evidence of

differential M edulis mona1ity and iii posstble mechanism of selection has been obtained from

populations in S.W. Englaod (Gar-dncund Skibinski. 1991; Skibinski and Roderick., 1991).

Ac:cording!O Barton and Hewitt (1989) and Hewiu (1989) the me<:hanism that maintains

most hybrid wnes is iii delicate equilibrium between dispersal and selection against hybrids.

From the present study, there is evidence for the presence of "maladapted hybrid

recombinants" within this hybrid zone between M. edulis and M. IrossuJus (see also Chapter

4). Hybrids produced by species which are genetically more divergent. such as M ed/lJis-M.

IrO~lllll.'; (Koehn, 1991; McDonald et aJ .• 1991; Toro, 1998), are more likdy 10 have

reduced fitneSS than hybrids produced by species which are genetically very similar. such as

.11.1. eduf;s-,l,,(. gal1tJfJlYfti,rialis (Gardner, 1992). This may explain in pan the klwer level of

hybridization found between M edulis-M.trOSSllll,s in the present study and between M

trtJs:-mJ"s-M. goJJopro"i'lC;olis on the Pacific coast of Nonh America (Sarver and Foltz.,

1993: Suchanek et aI., 1997) compared with the M. edlllis·M. galfoprovil/ciolis hybrid :zone

in Europe. where levels of hybridization range from 25·80 % (Hilbish et aI., 1994;Sanjuan

et at. 1994: Comesaila and Sanjuan, 1997; Wilhelm and Hilbish, 1998).

in the present study, M. edlllij' is at a selective advantage, and one may expect that

the structure ofthis hybrid wne is shifting towards this species, but the data indicate that this

is not me case (although more evidence from long term data obtained from a dynamic cohon

analysis are needed). The fact that M. ed"lis is favoured in large si:z:e classes, but does not

predominate in the population at large., may be because the effed of selection favouring M.

edlilis in large individuals is counteracted by higher recruitment of M. IrossulllS. In the

prescnt study M. Irossufus individuals as small as 10 mm were reproductively mature.

Although these small mussels have a loWe!" fecundity than luger individuals (Thompson,

1984a, b), they are found in larger numbers than M. edlliis at the study locations (Figures 10

- 16). Therefore., it is probable that the reproductive output of the population is driven by the

smaller si:ze classes, whereM. Iros!mlus is more abundant (see also Chapter 3). This effect



66

could be magnified by me "dnbble" spawning: observed in M. trossulus. which may produce

large amounts of-pure" M. IrOSJlllus larvae. in contrut to M. edulis. which has a more

resuiaed spawning period (ChapICT 3). The other possibility is that the recruits observed at

these sites are derived from other populations formed by "pure" M. tTossulus individuals.

ahhough this is very unlikdy, because most mussel populations around Newfoundland

contain individuals of both species (Bales and Innes, 1995; Innes pen. comm.). A similar

situation has been reponed in the south-west England mussel hybrid zone (M. edulis • M.

gaJlopru~'illciQlis). in which a strong viability selection against M edlllis·like genotypeS in

Whinand Bay is balanced by immigration oflarvae from "pure" populations ofM. edulis

(Gardneret aI., 1993; Wilhelm and Hilbish.. 1998). TheM. edlllis-M. trosSllfus hybrid zonc

in eastern Newfoundland is also very complicated. It appears that the tension zone model for

the maintenance of this hybrid zone is operating at very early stages of the life.history of

these mussels and that strong selection favouring; M edulis at later life-history stages is

counteracted by massive recruitment ofM. (rossI/Ius.

Finally. the present study applies molecular genetic techniques to early larval stages

of marine bivalves. which may have implications for population genetic analysis of natural

JXlpulalions. because in exploiting PCR-tedvUques such studies can be extended to all stages

and age-classes. RflPs analysis of PeR-amplified DNA was used to identify individual

ethanol-preserved mussel planktonic larvae, and the peR primers used were highly specific

10 the target species. The DNA from around 87 % of the larvae was successfully amplified

and identified. Some technical problems thai may have played a role in those cases where

DNA failed to amplify may include DNA degradation before preservation (larval death).

technical errors. chemtca.l impurities. and the possible inclusion of otiJer types of bivalve

larvae that may have been present in the area at the time of collection (e.g.. Modiolus

modiolus. Placopeete" magellaniCIIs). but which cannot be identified with the primers used.
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10. CHAPTER 1

A combined mokc_lar approach to ltCoiOCicai altd Ie-die iatenctioas withi••

..ussd (MytilltS niMlis - M. trossIIllU) Itybrid zoae

ro. I. INTRODUcrlON

The siwation in which rwo species of mussels (/vi. edfl/iS and M. trossulus) are found

sympatrically in Atlantic Canada appears 10 be similar to thai found in southwest England

and the Atlantic 00iJSt of France, where two genetically distinct species ofMytilus (M. edulis

and M. galloprovinciaJis) have overlapping IllfIges and al some locations occur sympatrica.lly

(Skibinski et aI., 1978; Coustau et aI., 1991: Gardner, 1994). A recenl study on the genetic

variation of these twO species of mussels in Newfoundland showed that the distribution of

a hybrid index based on three panially diagnostic loci (Est-D. Pgm, Lop) provided no

evidence for hybridization (Bates and Innes, 1995). Two studies in lunenburg Bay, Nova

Scotia. estimated the degree of naruraJ hybridization to be < 5% using the Mpi locus (Mallct

and Carver. 1995)aod 22.8 % usingMpiand Est-D loci (Saavedraet aI.• 1996). in lhe lan~

study Mpi and E;sl-D WCf"e used to classify the mussds as "pure" M. edulis. ~pure" M.

frossulllS. or hybrids. and mtDNA variation was used to characterize the gender-associated

mtDNA present in each individual. No "pure" M. edlilis mtDNA type was found in ~pure"

M. IrUQ7t1f1s individuals and v;ce-VCfY, suggesting that no rntDNA introgression betWeen

the (v,u species occurs in narurc. Funhermore. me study provides evidence that introgression

is blocked early in the hybridization process. although the mechanism remains unknown.

Saavedra et aI. (1996) did not provide iIlty infonnation about the environmental

characteristics ofthe sites sampled or the size ofthe mussels sampled. It is posSIble that lhese

two factors play an imponant role in determining the proponions ofthe pure forms and lhcir

hybrids present in the sample.

The objective of the present study was to increase: the chances of detecting F I, F2

and backcrosses between M. edulis and M IrQssulllS by using four molecular markers (two
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peR·based nuclear DNA markers and two aJlozyme markers) and to test for

microgeographic differentiation. Mussds within a lWlgC of sheU lengths wet'"c sampled to

derermine ifbolh Myrilus species and their hybrids are distributed differentially according to

size. A final objective was to examine futther the possible intrinsic incompatibilities between

ed/llis and trossfllus nuclear and mitochondrial genomes in mussels of different sizes from

different environments.

111.2. MATERIALS AND METHODS

111.2.1. STUDY SITES AND SAl\1PLlNG

Mussd populations (M edlliis unnaeus. 1758; M trossu(us Gould. 18S0) were

sampled subtidally (approximaJ:dy I.S m below mean low tide) by SCUBA at two locations

(Bellevue and Chance Cove) on the ease coast of Newfoundland, Canada (Fig. I) during

July. 1997. AI each location, mussels were representalively sampled (hap hazzard) from a

wavc-e.'<poscd environment and from a protccted. shellered one. Mussels with shell lengths

from 15 to 92 mm were used in the genetic analysis. The mussels were brought alive [Q the

laboratory. dissected. and the sex of each individual detennined by microscopic examination

of the gonad. Gonad and digestive gland were stored separately at ·80·C for PeR and

a1lo;cyme analysis. A small piece of the mantle border tiuue was Slored in ethanol (95%) at

_20°C for PCR analysis.

lU.2.2. ALWZVME ANALYSIS

Horizontal starch-gel electrophoresis was carried out on 11% gels (Sigma Slarch) at

4·C The digestive gland was I1omogenized in an equal volume of0.01 M dithiothreitol and

centrifuged at 8000 x g for 7 min. The supernatant was used as the source for five enzyme

loci that show different levels of diagnostic power for the twO MyrHus taxa: esterase-D (EsI.

D: E.C 3.1.1.). marmose-6-phosph.ate isomense (Mp;; E.C. 5.3.1.8), leucine aminopeptidase
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(Lap:E.c. 3.4.11.1). oc:topine dehydrogenase (Odh:E.C. 1.5.1.11) and phoSphoglucomulaSC

(Pgm; E.C. 5.4.2.2). EIectropboretic procedures were conducted following Bates and lnncs

(I99S)forEst-D,lDp and Pgm. and Vamoli and Hvilsom (1991) for OdhandMpi. Allele

temUnology was llw used by McDonald and Koehn (1988) and McDooald et aI. (1991). The

Mpi locus appears to be completdy diagnostic bctw~M. edulis and M. lrossulus, and &'1

D is also a highly diagnostic locus for these two taxa (see McDonald and Koehn. 1988;

VaNia et aI.• 1988; McDonald et aI,. 1991: Vainal! and Hvilson, 1991). Nevenheless, Odh

does no! appear to be diagnostic as in Saavedra et al. (1996), perhaps because a different

buffer system was used in the present study.

UI.1.3. DNA ANALYSIS

Mantle border tissue from each mussel was used for total DNA extraction as

described in Ihe Material and Methods section of Chapter I. Two nuclear marken (Glu-5

and In) and one mitochondrial DNA marker (COllf) were employed after peR

amplification. Similar DNA amplification conditions for both Glu-5 (Rawson et aI., 1996a)

and ITS (Heath et a1., 1995) markers were used (see Chapter I), excepl that the initial

denaturation period was J min (modified from Heath et a.I .. 1995; Rawson et a1., I996a).

The mtDNA marker (COIIl) is based on an 860·bp fragment of the cytochrome c

oxidase subunit III gene, and the amplification protocol used was modified from Zouros et

a1. (l994a). Approximately 0.2 ~g total DNA was incubaJed foc 30 cycles at 94-C for I min,

54-Cfor lOsee, and n-c for I min. Theini~ denaturation period wu2 min and a final

extension period was not used. The primet'".set used (FORI and REVI) amplifies the

corresponding mtDNA fragment from the F and 11.1 typeS of both species. Aliquois of the

amplification product were digested with £coRJ restriction enzyme to identify the various

mtDNA genomes in males and females (Zouros et a1., 1994a; Saavedra el 31., 1996). For

those males in which it was not possible to identify the M genome in mantle tissue, the

previously frozen gonad was used for total DNA extraction.
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(11.2.4. CLASSlFICATION OF MUSSELS

The two a1lozyme loci (Mpi and EsJ.D) and the two nudear DNA maners (G/u-S

and ITS) wen used co dassifythe mussds as ~pure~ edulis. "pure" tTOSSlilus or hybrids (FI

like.. F2-Uke. backcross-like). The aIIozyme alleles 90 and 100 1J.1hcMpi locus and allele 100

at the EsI-D locus (typical alleles for M edlllis) and 84, 94 and 104 at the Mpi locus and

allele 90 at the EsI-D locus (typical alleles ofM lrossulus) were used to classifY individuals

follo\\ing Saavedra et al (1996). The rcsuiction analysis oflbe ITS peR product with HhaJ

and the Glu-S PeR assay produced species-specific banding patterns (see Chapt~ I).

Individuals with alleles at four loci belonging to the same taxon were classified as pure

species. Hybrids were classified as follows: when an individual was found to be heterozygous

for one etl,,/is and one ITOSJ,ll1l1S allele at all four diagnostic markers, it was considered to be

an FI' When alleles for two of the four loci were from one s~ies, but alleles for the

remaining two loci were from the other, the individual was considered an Fl' When alleles

at one. two. or Ihree loci belonged 10 one species, but the founh locus contained an allele

from each species, the individual was classified as a backcross biased towards one or the

other species. This classification, based on the four markers. pt"ovides reliable information

about the identity of any panicular pure or hybrid mussel (see Saavedra et aI.. 1996;

Boecklen and Howard. 1991).

111.2.5. SIZE FREQUENCY ANALYSIS

Shell lengths of all sampled mussels were measured to the nearest 0.01 mm using

electronic digital calipers. Size classes consisted of S mm .shell length intervals. A species

specific hybrid index was used to study the relationship between genotype and size. The

index was calculated according to Sanjuan et aI. (1994) using the four markers for the

Myrilus species. For all markers. each typical trossulus allele was given the value -I. each

~J/lIi.\' allele the value + I and all other alleles, i.e. those found in those species. the value O.

The hybrid index value for each individual consists of the sum of the eight values (two alleles
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for each of four diagnostic markers). The index ranges between -8 (pure lTossu/us) and +8

(pure edlllis). Individuals with value 0 (but only those tetra-hct~ozygotes)were considered

as F,. Those individuals with values between -8 and 0 were classified as tn:u:ntfus-biued

backcrosses. and those between 0 and +8 were classified as t'dulis-biued backcrosses. All

genetic analyses WCf'C performed with BIOSYS-1 (Swofford and Selander, 1981) and

Zaykin and Pudovkin (\993) computer programs.

III. J. RESULTS

The allele frequencies of the most diagnostic loci (~'I-D and Mpf) varied among the

four populations. Tl1e typical M. froS!Jlflwi alleles (Mp; 94 and Cs/-O 90) reached the highest

frequencies in the Chance Cove exposed sample (eE) (Table 9). For example. the frequency

afthe Mp; 94 allele was 0.390 for Bellevue protected and 0.765 for Chance Cove exposed.

For ~·I-D. Mpi and Pgm loci, all samples showed a significant deficit of hcterozygotes

(signifkant positive F \faJues) (Table 9), wlUch suggesu a Wah!und·like effect because it

occurs in the enzyme loci where the differences in allele frequencies between pure MY'iJus

I!UllJiS and pure M. lrossuJII$ are larger.

The allele frequencies for all enzyme loci in each genotypic group for each sample

are shown in Table 10. In all populations. the hybrid class had intermediate allele frequencies

for Bt-D. Upi. and Pgm loci for those alleles which had larger differences in frequency

between pure edfl/is and pure tTossulus. even when two allozyme and two non-allozyme

markers were used. For example, in Bellevue protected, the allele Mpi 94 had a frequency

of0.960 and 0.000 in pure trossItlllS and pure edliJi~ respectively, while its frequency in the

hybrid class was 0.636. At Bellevue there was no significant difference (G= 2.38, dfl- 2,

p>O_OS) in the occurrence ofthe two species and hybrids between the protected and exposed

sites
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T.blc ,: Allelef~ at Esf·D. lAp. Jlpi. Odh and Pp klci in four Myfi/6a populaUarlo in caslC:m
N""'10undlLnd.BP.BclJe,.'UC~:CP.Ch.ono:cCm.~proICdc¢BE.Bril,","UC~CE.Cb:m<:eCm.~

~N.......plesiu.f:codIicicntfof~-peddic,~·Of"ac:ess.

"",........
Loo~ BP C.
Esl-D

"" 0.005 0.010 0.005 0.010

" '.000 '.000 0.010 '.000

" 0.369 0.59\ 0.505 0.737

'" 0.035 oms 0.015 0.0)0
,,~ 0.581 O.JH 0.460 0.21:!.

'" 0.00$ 0.005 '.000 0.010,W 0.005 0.005 0.005 0.000
,N) "9) "') tloo) (99)
F 0.65··' 0.5)'" 0.6-1··· 0.-46···

';:; 0.000 0.000 0000 0.015

" oms ,... 0.010 0.070.. 0.220 0.265 O.2jQ 0.lOS
96 o.)}O ,..... 0.395 0..U5

" '"" 0.250 0.3<40 0.170

'00 O.olO 0.010 0.005 0.005
,N)

~~~l.. ('~ (100) (IOO)
F O.I! O.U" a.'"
_I~

O.olO 0.020 0.010 0.025

'" 0.090 o_~s 0.080 0.030.. 0.390 0.635 O.~9S 0.765

'00 O.50S 0300 o.~os 0.165

'" 0.005 '.000 0.010 0.01S
,N) 0(0) (100) (100) (100)
F 0.64'" 0.76'" 0.69 0

" 0.5'0 ••
OJ>,

90 oms 0.050 O.QJS 0.040

" 0.000 0.005 0.005 0.010

'00 0.935 0.870 0.885 0.195

'" 0.005 0.005 0.025 0.010

"" "'" 0.070 0.050 0.,",

'''' 0.000 '.000 '.000 0.005
(N) (100) (100) (HIO) (100)
F 0.27·· Q.H· 0.0. 4.02

r~
0.000 '.000 0.005 0.000

" 0.Q.l5 O.OlS 0.050 0.005

'00 0.-115 0.350 0.430 0.190

'''' 0.195 0.135 0.170 o.no

'" om5 0.010 0.005 0.010

'" 0.2-15 0.-125 0.320 0.415

'" om5 0.000 0.020 0.065

'" '.000 0.005 0.000 0.015,N' (100) (100) (IDO) (100)
F 0.-17··' 0.-1-1··· 0.35 0

" 0.26 0

• P<O.OS.·· P<O.OI: ••• P<O.OOI (.ipifieatl<:e ~~l$ for z' leSt)
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At Chance Cove, however, there was a significant difference (G-7.22. df-2. p<O.OS)

between the frequencies of the two species and hybrids. wirh M lTOSSIllus most frequent

(610/.) at the exposed site ~dM. edzdis most frequent (44V.) at the protected sitc_ 1bef"e

was also I significam: diJfcrence (0=30.53, df-z2. p<O.OOI) in the frequencies ofboth species

and hybrids between Chance Cove and Bellevue. pooling samples from exposed and

protected sites.M. ~l,luswasmost frequent (53"10) al Chance Cove, M. eduUswas most

frequent (46%) al Bellevue and the frequency of hybrids was similar (26%.24%) at both

locations.

The distribution of mtDNA mitol)'peS among pure M. eduJis and M trossulus

individuals from all sitesoombined is shown in Table II. Mussels were first classified as pure

forms or hybrids based on Mpi and EsI-D. in order 10 penni! comparisons with the resulu

reponed by Saavedra e:t: aI. (1996), and then classified using both a1lozyme 'oci plus !.he IT.S

and GIII-S DNA marken; (numbers in parentheses). The mus.scls were then characterized by

one or 1"'0 mitOlype symbols (F-ed. F-tr. M.-cd. M.tr) (Stewart et aI.• 1995) irthey were

found to be homoplasmic or heteroplasmic. respectivdy (Figure 18). The sex ratios

(males:females) were I: 1.23 (M edlllis) and I: 1.26 (M. rrossulu:'i) when c1usification was

based on the four markers (ITS. GLU-5. Mpi and b·t-D). All M. edulis and M. trossulus

females were found 10 be homoplasmic (F·ed or F·tr. respectively) (Table II). AlIM. edulis

males were hetCfoplasmic for F and M edulis genome combinations (F-ed/JI;I·ed). although

two indi\iduals (classified using the two a1lozymc loci) showed a heterospecific combination

of F edulis genome and M "~lilus genome (F--cdIM-tr) (Figure 18. line F). One of these

heterospecific males was hybrid for both ITS and G/II-$ nuclear·DNA markers. while the

other was hybrid only for the ITS mukCf (Table 11). Both individtWs were then reclassified

as hybrids instead of pure fonns when c1assifiation was based on four diagnostic markers.

All 84 pure M. trossulus females classified ac:cording to two a1lozymc loci were homoplasmic

for the F·tr milotype. However, based on the ITS and GI,,·5 nuclear·DNA markers. three

individuals were hybrid for ITS, II were hybrid for GI/I·$, one wu hybrid for both ITS and

GI/I-5. and two wereM.edulis for theGlu-j marker. Therefore, from the four markers. 15
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T...... Ill::.AlIdoo~.tut-D.Lap..\'pi.()d,,.,.j1'ptlocir""m.-l.I:from.JJoc.t,tioNclusifiod .. -~-MJIIiI
dMJis(~1).-J'UR'-M........ (_),oth!''tlri<k ...lnt< fo..-cWr.gnosucmarl=s{Est-D.•\fpi~G"·.J).N:samplcsi>;e..

Bdk:\UI:~

edu~ CrOS hybr

Est-D
800.0100.0000.000
8S 0.0000.0000.000
SO 0.000 0.9600.586
~s a .019 0.040 0.068

100 0.9510.0000.264
1050.0100.0000.000
11.:10.0100.0000.000
(tIl 52 2S 22

wp
'1100.0000.0000.000
92 0.000 0.060 0.068
'34 a.oUJ 0.3100.432:
9';0.2500.52.00.318
98 0.692 0.020 0.182

1000.0090.0200.000
till 52 25 22

lob:\.
8~ 0.000 a .ozo 0.023
900.144 0.0000.068
':4 0.000 O.~60 0.636

100 0.850 0.000 0.273
1040.0000.0200.000
WI 52 2S n

000
900.0000.0600.000
<;s 0.0000.0000.000

loa 0.962 0.920 0.816
1050.0100.0000.000
110 G.GH 0.020 0.114
120 0.000 0.000 0.000
tNI 52 2S 22

p~~ 0.000 0.000 0.000
930.0" 0.020 0.000

laD 0.808 0.020 0.273
106 0.115 0.300 0.227
1080.0000.0600.000
1110.0000.5800.455
1140.0000.0200.045
1180.0000.0000.000
IN) 52 25 22

BelJe,.ucCJCPO"l"'!
edul totes hybt

0.0000.0160.000
0.012 0.0160.000
0.0000.938 0.759
0.0000.0310.015
0.976 0.000 0.222
0.0000.0000.000
0.012 0.0000.000

41 32 27

0.0000.0000.000
0.000 0.0160.019
0.0120.4690.352
0.2680.4690.500
0.707 0.047 0.130
0.012 0.000 0.000

41 32 27

0.000 0.01;; 0.019
0.183 0.000 O.OH
0.0000.9530.704
0.8n 0.000 0.259
0.000 0.031 0.000

41 :i2 27

0.0370.0630.000
0.0120.0000.000
0.8780.8910.&89
0.000 0.031 0.056
0.073 0.016 0.056
0.0000.0000.000

41 32 27

0.012 0.000 0.000
0.0980.031 0.000
0.780 0.094 0.296
0.0980.2340.203
0.0000.0000.019
0.012 0.6250.426
0.0000.0160.056
0.0000.0000.000

41 32 27

aw-CO\~prot<>:ted

..dul ttes hybr

0.0000.0230.000
0.0000.0000.000
0.0000.9650.607
0.0180.012 0.018
0.946 0.000 0.375
0.018 0.000 0.000
0.0180.0000.000

28 43 28

0.000 0.000 0.000
0.000 0.119 0.054
0.056 0.381 0.216
0.278 0.429 0.518
0.6410.0600.143
0.0190.0120.000

27 42 21

0.0000.0470.000
0.1250.0000.036
0.0000.9530.7';8
0.115 0.000 0.196
0.0000.0000.000

28 43 28

0.0890.0470.018
0.018 0.000 0.000
0.150 O.UO 0.893
0.000 0.000 0.018
0.1430.023 0.011
0.000 0.000 0.000

28 42 28

0.000 0.000 0.000
0.0360.0000.018
0.9290.058 0.214
0.036 0.128 0.232
0.000 0.012 0.018
0.0000.6860.464
0.0000.1050.054
0.0000.0120.000

28 43 28

0.000 0.008 0.019
0.0000.0000.000
0.0000.9580.635
0.0000.0250.058
0.9640.0000.288
0.0360.0080.000
0.0000.0000.000

14 59 26

0.000 0.011 0.019
0.000 0.016 0.011
0.107 0.381 0.250
0.2500.432 0.538
0.601 0.093 0.115
0.036 0.000 0.000

14 59 26

0.0000.0340.019
0.1190.0000.019
0.0000.958 0.750
0.8210.0000.192
0.0000.008 0.019

14 59 26

0.000 0.068 0.000
0.0360.000 0.019
0.8510.8810.942
0.000 0.008 0.019
0.011 0.042 O.OU
0.0360.000 0.000

14 59 26

0.0000.000 0.000
0.000 0.000 0.019
0.851 0.042 0.173
0.1430.2630.212
0.000 0.008 0.000
0.000 0.576 0.538
0.0000.0930.038
0.000 0.011 0.019

14 59 26
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Tabl~ II: Distribution by sex. oflhe mtONAgenolypcs among ~pure" MytillU u.lis and M.
tf'O.'fSMllU as estabIisbed by two a1loz:yme loci (Mp;. ESf) or as established by the two allozyme
loci and the two nuc1eaT DNA markers (in parentheses), pooling four populations.

1\Ititorype Pure Mytil,.s nlMlis Pure Myrilfls trosslllllS

female mal, female mal,

F·ed S8 (56)

F-tr 84(69)

F-edIM-ed 71 (69) (b(O)

F·ed/M-tr 2' (0) 1«0)

F-trfM-tr 64(52)

M-lrOlF-tr 42(35)

58 (56) 7J (69) 84(69) lOB (S?)

• From the IWO -pun:- MJ"tiw~IUmah:s that sho\o-ed the hel:cros:peciIie combination. one_

h~bnd for ITS and !he Olbcr wu h~'brid (or both nuclear-DNA rnarku$

• This individual "'<IS na/is!"of both nucleat·DNA marltcn.

C This individual "<15 h~'brid for the ITS nuclear-DNA marker



Fig. 18. Photo-negative of ethidium bromide stained 3% agarose gel
transil1uminated with ultraviolet light showing the mlDNA
RFLPs profiles of the 860-bp COlli gene segment after
digestion by the EcoRl restriction enzyme. B and I, Mytilus
frossulus male scored as F-trIlM-trl; C. D. and E Mytilus
trossu/us male scored as M-trO; F, hybrid male (backcross
10M. edulis) scored as F-ed I/M-Ifl; G and H.Mytilus edulis
male scored as F-ed 11M-cd I. Molecular weight marker
(Gibeo BRL 1Kb ladder) (line A).

76
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individuals were reclassified as hybrids. Of the 108 pure trossulus males (hued on two

aJlozymc loci), 64 were heteroplumic for the F·trlM·tr combination. and the remaining 42

showed a mitotypc of only one 86O-bp band (Of" £COR! and were classified as M·110

aCGOrding to Saavedra et aI. (1996). One individual showed the heteroplasmic combination

of F and M edulis gcnomes (F-cd/M·ed), and WItS also found to be edulis for both ITS and

Gll/-j nuclear-DNA markers, and th..is individual was reclassified as an f 1 hybrid using the

four diagnostic markers (!vi. (,os-sulus for Mp; and Est-D and M edulis for ITS and Glu<S).

Another individual showed the heterospeci6c combination F<dIM-tr and was found 10 be one

of the three individuals classified as hybrids by the ITS marker. With the use of four

diagnostic nwkers, no pureM ed,,/~or M. IrOSSII/,,$ contained For M mitochondrial DNA

from the othet" species_ Nevertheless, if the classification were based only on two allozyme

loci. four male individuals would be identified as "pure" species having a hetcrospccific

nuclear and mlDNA combination.

The distribution of mtDNA mitotyPeS among the hybrid individuals from all the

samples is shown in Table 12. Of the three Fl -Iike female individuals (based on two diagnostic

allozyme loci). one had a pattern that could be an M--edIF-ed homospecific combination or

a heterospecific combination (type F-edIM-uO) (see Saavedra et a1 .• 1996). This female had

the ed,l!is pattern for both I7S and G/,,-j markers. Another two (one with F-ed and one with

F-u mitochondrial mitotypes) were edlilis and trQss"/lIs for ITS and Glu-5 nuclear markers,

respectively. Thus according to the four markers these females were backaosses. AU five

males classified as F I hybrids using Mpi and b·t-D were also hybrids for ITS and Glu-5

markers. Two of them had a dear hel:erospecific combination off and M genomes (F-edIM

Ir, see Saavedra et a1_. 1996). whereas the other had only one 860-bp and for &oRi. This

pattern could be considered u hetel"ospecific. combining tbe lrOSSIIIlIs F genome and the

edulis M genome, a pattern with only one 860 bp band (Saavedra et aJ., 1996).



7.
Table 12: M,.tibu spp. hybrids. Distribution ofmtDNA gcrxKypeS by sa, bued on Mp; and

Est-D oc using four diagnostic markers (in parentheses) for four populations pooled. 8c-lr,

trosslf/us-biascd backcross; Bc-ed. au/if-biased backcross.

F2-1ikc Bw

mtDNAgcnotypc ~ f~c r~ ~lc

F-ed 1(0) 12(14)

F-Ir 1(0) 2(0) 16(36)

f-ed/M-ed 0(1) 2'(1) 7(8)

F-edfM-tr 2(2) 1 (2) 0(2)

F-edIM-lrO '«0) 0(1) J"(I)

F-trlM-ed 3(3)

F·lrlM·tf 3(IS)

M-IrO 1(0) 6 (14)

](0) 5(5) 2(0) 1(1) 16(36)12(32) 12(15) 8(11)

• This individl.l.:1l c:ouJd be Mo(J() and not M-<d bcc.IUK il is Il~'brid (01" the ITS and Glu·j auc:1cu.£>NA

""""'"• O!'K' indi"duaJ is a male.. b~1Jrid rOl" ITS. lnustlfws b GLU·j and M<dIF-ed.. backcrosI: tr'OUJilllS

bia$cd: the Olhc:r is a male.. uillJis for bolh nudcar-DNA~ M<dIF<d and backcross

lro.'Ullfwsbtascd..

c This indi\idua1 is uNlis for boO! nuctc::u-DNA markers
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Thus ofall mussds sampled (400 indi~) only five could be considered as true F, hybrids

based on four diagnostic loci and one mtDNA mariecr-. Amoog male individuals considered

F~.like and backaosses 10 edufis and trosSII//lS. only five had a heterospecific M and F

mlDNA genome combination. There was one backcross 10 'rOSSI/Ius that had the

homospecific F and M edulis mtDNA genome combination. The remaining f: and backcross

individuals had the same species combination of mitochondrial and nuclear DNA

Nevertheless. it is worth noting the significant increase in the number of tro,uul"...·-biased

bad.crosses when classification of individuals was based on four diagnostic markers rather

Ihan twO (Tilble 12). Most of Ihese came from individuals classified as pure tFOSSU/US

according to the two alloz:yme loci.

Among male individuals identified as backcrosses or Fb an equal nu~ of

heterospecific and homospecific M and F mtDNA types is expected (Saavedra et aI., 1996).

or the 44 backcross and F: nale5 identified. only five were hetemspccific for F and M

mtONA (X~26.J, df=ol. p<O.OOI). Backcross females have a 0.25 chance of having a

mitOt}'Pe different from the majority of their nuclear genes (Saavedra. et aI., 1996). Ofthe 50

backcross females identified, 12.5 were expected to have a discordance between mtDNA and

the majority of their nuclear genes, but none were observed (X~8.JJ. df'20l, p-<O.OOS). A

similar analysis for 24 backcross males carrying homospecific F and M mito!ypes found one

discordance where six were expected (X::'2.78, df'20l, p>O.OS).

The relationship between frequency of the M edliJis. M. tro~"U/w. and hybrid

individuals (based on 4 markers) and sheU length from the four popu.Iations is shown in Figure

19. M. lfOSSlJ.Ius was again the predominant species in the smallest size classes for all samples.

At the Bellevue site M trOS$lllus wu most frequent only in the smallest size categories

(between IS and 26 mm), whereas it was tlte predominant species in almost all size classes

at Chance Cove. An increase in frequency of M. eduJis individuals and a decrease in

frequency ofM. trossuills individuals with shell length was observed in both environments

at both Bellevue and Chance Cove.
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1be change in frequency of both species was also gndual with increasing size (see ChaPlet"

J), but at the Bellevue exposed site there was an abrupt change in the frequencies between

the 26·]0 mm and J 1-35 mm size classes (Figure 19). The frequency of hybrids tended 10

decrease in the larger size classes (see also Chapter I), although no clear pattem was

observed

The relationship between lhe hybrid index values and shell length for all individuals

in four samples pooled is shown in Figure 20. Pure M. trossulus individuals (hybrid index

value -8) were repn::scntcd in small size classes, as were all the tros:nllus-biascd backcrosses

(values between -7 and 0). Pure M. edlliis individuals (value of +8) and edufis-bia.scd

backcrosses (values between 0 and 7) were distributed throughout the entire size. range, and

pure AI. edlliis dominated the largest size classes. When this size range was divided into twO

parts (from [S to 35 mm and from 36 10 80 mm), there was a signific:antly different

(G-41.51. dr-I. p<O.OOI) distribution of the number of edulis-biased backcrosses (values

between 0 and8) and trossulus-biascd bad:crosses (values between -8 and 0). Most ohhc

backcross individuals (80-/0. orthe toLa.! backcross individuals) w~e c1ust~cd in the smallest

size c1asses« 3S mrn). and orthcsc. 88 % w~e lros.rnlus-biased bac:kcrosses. In the largest

size classes (> 3S mm), 8lJO/o ofthc backaosscs were t!dllfis biased. The six dots with a value

of zero in the hybrid index correspond to S FI and I F2 individuals.

111.4. DISCUSSION

Hybrid zones provide unique opponunitics to study evolutionary processes that

maintain reproductive: isolation between species (Sanon and Hewitt, 1985; Harrison, 1990).

Hybrid zones bctwccn pairs ofspecies within the Mytilus edulis species complex (M. edulis,

M. IrOS~l"/lS. and M. gaJJoprO\'illcialis) have received an increasing amount of attention,
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panicularly after the recent discovery of double uniparental iDherUnce (OUl) of the

mitochondrial genome and the occum:nce ofseparate matema.l and patemaJ mtDNA lineages

(Zouros e! al.• 1992;Skibinski ec aJ.. 1994; Zooms et a1.. 1994a, 1994b; Siewan et aI., 1995;

Saavedn\ et aI., 1996). DUI adds an additional layer ofcompl~ty10 assessing the fitness of

hybrid individuals in which fitness may be reduced due to incompatible mixtures of genetic

material from two species in the nudear genome, between F and M mitotypes from different

species in males, and incompatibility between mitochondrial and nuclear genomes derived

from different species in both sexes. A critical requirement for such studies is the ability 10

identify individual species and their hybrids. 80cclden and Howard (1991) examined the

relationship between the number of genetic marken and the error in discriminating among

pure species, Flo and backcross individuals within a hybrid zone. They ccncluded that as few

as four marl.:ers were useful for most applications. with about 5% ofbKkcross individuals

being misclassified as either Fl or pure species. In the present study, the addition of the two

DNA markers to the two enzyme markers resulted in about 13 "I. of those indiv;duals initially

assigned to pure species being reclassified as hybrids. The largtst change was a

reclassification of pure M trosSII/U~ individuals to trosSli/us·biased backcrosscd individuals.

Based on the four diagnostic markers, the Bellevue/Chance Cove area had a greater

frequency ofM. froSSlfllls (41 "I.) than ofM. edulis(33 OJ.). with about 26 % ofindiv;duals

of hybrid origin. This compares with a value of 23 % hybrids between M. edulis and M

Ira.Ollhu·detceted by Saavedra et al. (1996) for a site in Nova Scotia., which may, however.

be an underestimate since only twO diagnostic markers we«; used. In these areas of Atlantic

Canada.. hybridization and introgression appear to be much lower than berwecn M. edulis and

M. gollopro\""cialis at various locations in Europe. For instance. S...juan et al. (1994)

reponed 25·50 % hybrids, Hilbish et al. (1994) about 80 % and COrnesaM and Sanjuan

(1997) be1wecn 27 and 49% (see also Coustau et al.(I99I) and Gardner (I 994). Low levels

of hybridization have also been reponed for M. IrOSSIl/us and M. golloprov"1Ciali.f on the

Pacific coast of North America (about S.7% in Sarver and Foltz. (1993); between 4·29% in

Suchanek et 31. (1997). However, in general it is difficult 10 make comparisons among studies
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which use different numben of markef"$ which vary in their power- 10 discriminate between

pure species and hybrids

Bates and Innes (1995) sampled mussels from the intertidal zone and found the

highest frequency ofM. lrossul/ls at IWO wave-exposed sites and a higher frequency ofM.

l!dulis al several sheltered sites. In the present study, there was no COflSistent pattern in the

distribution ofM. trnssuJILf orM. Willis according to wa..·c exposure. Although M trossulus

was more common at the exposed Chance Cove sitc, no difference in the rdative frequency

of the two species was found between eltposcd and sheltered sites at BeUevue (but see

Chapter I). All samples were collected sublidally, which may decrease the likelihood of

detecting any differences due 10 wave exposure. Furthermore, the observed differences

between the two environments at Chance Cove may simply reflect the high degree of

microgeographic variation in the occurrence ofthesc species observed in a previous study

(Bates and Innes. 1995)

None of the 281 indi"iduals classified as pure species. based on four markers.

COnlaincd mtDNA from the opposite species. This observation is consistent with the data of

Saavedra ct aI. (1996) for a hybrid population ofM. edulis and M. trossuJus in Nova Scotia.

The early block to the introgression of mlONA between these species was also detected when

only two markers were used, since only four males that were misclassified as members of a

pure species contained mixtures of nuclear and mitochondrial genomes from each species.

Furthermore, no F. hybrid females were detected and only five males were identified as F1

hybrids. having heterozygous genotypes for the four nuclear markers and heterospecific

mitotypes. Two of the F, hybrids had an M. eciuJis mother and an M. trossulus father, and

three came from reciproca.l matings. Only one F: hybrid wu detected, probably due to the

low frequency of malings expected among the very rare F1 hybrids. Mos! of the hybrid

individuals (94/100) were classified as backcrosses. This would be expected if only a few F)

hybrids survive to reproduce and suggests that backcrossed individuals have a greater survival

than F, individuals. M trossulus biased backcrosses were more than twice as common as M
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edufis biased bad:ctOS5CS. which probably rctlects the grealer frequency of pure M. 11"O$SUius

in Ihis area. Among the backcross individuals. males with hetefospecific mitotypeS and

sp~ies.specific discordances between mitotypc and the nuclear genome of both sexes

occurred less frequently than would be expected if there were equal fenility and survival

among all classes. These observations are consistent with those of Saavedra et at. (19%),

who found approllimately equal frequencies efbath M. edulis·biased and M. Irossulus-biased

backcrosses in a sample, again probably a function of the approximately equal frequencies of

the tWO species in their sample.

Samples from coexisting populations ofM. galJoprovif,cialis and M edulis show a

consistent pattern in which M. galloprol:i"cialis is more frequent among larger individuals

and .~'f. edllJis more frequent among smaller individuals (Gardner and Skibinski. 1988;

Gardner-CI a1., 1993). Higher growth and survival orM. eduliscompared with M trossulus

may e:<plain the increase in the frequency ofM. edulis with increasing shell lengthob~

in me Newfoundland populations. Mallet and Carver (1995) recorded only small differences

in growth rate between M. trossllius and M. edillis. suggesting that the observed changes in

species frequency with shell length may reflect differential survival. The various size classes

include different cohorts of larvae settling in the area over several years. The observed

increase in frequency of M. edlliis with increasing shell length may simply reflect a much

higher frequency of M. edulis in the oldest cohort at the time of settlement. Although the

frequency ofeach species in the newly settled spat may vary from yeu to year and from site

to site. the consistency ofthe pattern in each ofthe four samples. the distribution ofM. edulis

and edl/lis-biased backcros.sc:s in the whoJe size range (Figure 20) and the regular occurrence

of both species in this area (Koehn et al.• 1984; Bates and Innes, 1995) do not support this

e.>:planation. Bales (1992) also found a higher frequency ofM. edl/lis in the larger size classes

and a higher frequency ofM. rrossul/ls in the smaller size classes at a different site in eastern

Nev.foundland. Interestingly, the presence of backcross individuals with a nuclear gene



s.
composition biased towards one species or the other suppons the trends observed in the pure

species.

Factors responsible for blocking; the introgression of mtONA between M. edulis and

M. IIoo.'ij,7"'15 in Atlantic Canada do not appear (0 be operating as strongly in the European

My/illls species hybrid zones. Populations of both M. lrossu/IIS and M. ga/loprov;ncialis

contain individuals with M. edliJis mtDNA (Rawson and Hilbish, 1998). The asymmetric

imrogression ofmtDNA between M. edulis and M. goJJopro\1itlcialis has been explained by

previous observations of directional selection in the hybrid zone favouring alleles of M.

ga!foprovillciolis (Gardner and Skibinski, 1988: Skibinski and Roderick. 1991; Gardner et

at, 1993). Thus hybrid individuals with M. edt/lis mtDNA &Dd a predominance of M.

gallopravincialis nuclear alleles would be favoured over hybrid individuals with M

galloprov;/lciaJis mtDNA and a predominance ofM. I!dulis nuclcM alldes. This mechanism

might predict that any introgression of mtDNA in Atlantic Canada mussel populations would

be in the direction ofM. troSSIJlus into M edulis. Moreover, in small individuals we would

expect a greater number of backcrosses with a tro:»lllus nuclear genome and an edulis

mtDNA genome (introgression in the direction ofM edulis inlo M froSSlllus). Thus it seems

that the incompatibility between mitochondrial and nuclear genomes is greater between M

frus:mlll.S and M. edlilis than betwecnM. edulis and M gol/oprOl1iltcialis. The greater degree

ofmtDNA introgression observed in Europe than in North America may be due to a longer

period ofcontact bctv."cen these M)'tilus species compared with the Atlantic Canada M. eduli.f

and Nt ~I!us, or simply to a different degree to which natural selection is acting against

each species on each continent. In addition., the different degree ofdivttgente between the

Myt;fll.f species results in I. different relationship between mitochondrial DNA and nuclear

genomes for each Mytil/IS taxon (sec also Discussion in Chapter I). Funber long-term studies

are required of the different life history stages of both M. lrossufus and M. edulis in relation

to the environment, in order to identify the factors responsible for maintaining the integrity

oreach species
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IV. CHAPTER J

.-\nalysis of tlu~ rrproductive cydn of M,n/"s eJM'is, M. tross"t"s and ".eir lIaturaJ

hybrids in eastern Newfoundbnd

IV. I. INTRODUCTION

Most Mytilus populations. like those of many tcrnperate waler bivalves, have a

seasonal pattern ofrcproduction. The seasonal reproductive period statts with a gametogenic

phase. followed by the release of gametes (spawning) in which the reproductive follicles

become panially or complClcly emptied. Apart from a few hermaphrodites the sexes in

A.{ytilti.~are separate and mosI populations conWn approximaJely equal numbers of males and

females (Seed, 1976; Kautsky. 1982; Sprung, 198]). In Mytilus the gametogenic process

occurs mainly in the mantle tissue, but reproductive tissue can also be found in the visceral

mass and mesosoma (Bayne et aI., 1978; Lowe et aI., 1982; Newell et aI., 1982;).

Several studies have been carried OUI on the reproductive cycle of MYlilus edulis

(Thompson. 1979. 1984a. 1984b; Newell et aI., 1982; Gilkinson, 1983; Hilbish and

ZiIT'UTlefTTW\, 1988) andM Iro.1.1II/II.1 (Suchanek, 1981; Emmert et aI., 1981; Blanchard and

Fed~, 1991) on the east and west coasts of North America. Previous studies of mussels on

the northern Pacific coast \l,oere presumed to investigate the life history ofM. edu/is, but

recent literature indicates that it is M Ir()S.)ll/u.f rather than M. edu/i.f that ranges along the

Pacific coast from California to Alaska (Heath et aI., 1995; Suchanek et al., 1991).

Several authOR have mentioned the importance of detecting the spawning events

between twO species of bivalves in a hybrid zone (Ahmad and Beardmore, 1976; Skibinski

et aI., 1980; Seed and Suchanek, 1992; Gardner, 1994; Eversole, 1991; Grant et aI., 1998).

It is knO'.'-ll that any shift in the spawning events within a species or between two species will
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significanlly affect the fertilization success (Babcock et a1., 1992; Levitan and Petersen.

1995). Gametogenic cycles in marine im,cnebrates arc gcocrally believed to be SU"ongly

influenced by seasonal variation in temperature (Seed, 1976). Therefore, mussel populations

along a latitudinal (temperature) gradient arc cxpected to show diffet"ences in lhcir

reproductive cycles (Sasuy, 1979). Mussel populations inhabiting high latitudes arc cJ(pected

to have more synchronous spawning!. because of the less extended period of high water

temperalure. However, variation in nutrient supply (Newell et a1., 1982; Arsenauh and

Himmelman, 1998) and the genotype of the individual (Rodhouse C1 a1., 1986; Hilbish and

Zimmennan, 1988) may also have a significant influence upon gametogenic cycles in many

species of marine invertebrates. Moreover, extcmal fenilization (such as in Mylilus) may

create fUnhet" problems in hybridization because higher gamete dispersal can reduce the

chances of fenilization (Hodgson. 1988).

S~ studies in which spawning events from several species are synchronous have

been reported (McEuan. 1988; Gardner and Skibinski. 199Oa; Babcock et aI., 1992; Van

VegheL 1993). Among the main factors thall:all reduce the amount of hybridization in closely

related species are habitat separation and the timing of spawning (Strathmann, 1981; Gardner

and Skibinski, 1990a;Uehara et aI., 1990; Gardner, 1992). Also. gametic barriers to

hybridization are panicularly important as reproductive isolating mechanisms (Lessios and

Cunningham. 1990; Palumbi and Metz. 1991; Gr.mt et at, 1998; sec also Chapter 4). Despite

all these possible isolating mechanisms. invertebrate hybrids are abundant at some locations.

e.g.. the quahogs Mercellaria merullariu and M. campccnie"sis (Dillon and Manzi. 1989;

Bert et aI .. 1993) and the sea urchins £enilUlS £scu/emus and £. OCUluS (Hagstrom and

LOnning. 1961). composing 31·88% and 10-20"'/0 of the populations, respectively. Coustau

et a1. (1991) and Viard et aI. (1994) also described the genetic structure of the M. edillis-M.

gallUIJrQlJillcialis hybrid zone on the coast of France, and found that the degree of

hybridization varied tremendously, depending on the site studied. More stable genotypic
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suuctures have been determined f« M}'lilus hybrid zones in southwest England (Gardner and

Skibinski. 1988; sec also Chapter I and 2).

Studies carried out in S.W. England repon the presence of asynchrony in the

spawning C'IIenlS betwcenM echllis and M. gaJloproriuciaJis at eenain sites within the hybrid

zone (Skibinski et aI., 1980; Skibinski. 1983; Gardner and Skibinski, 1990a). This asynchrony

in the spawning activity ofthesc species is more drastic in sympa!rlc populations localized in

the northern extremity of the hybrid zone (Gardner and Skibinski. 199Oa). This observation

may therefore explain why some studies within the S.W. England hybrid zone found a

significant asynchrony in the spawning activity between the [wo mussel species, while others

found very linle diffCf'eOCC in the timing of spawning (see review by Gardner, 1994). Lobel:

(1957) and Hrs-Brenko (1971) noted that the spawning activities of the two mussel typeS in

France occurred simultaneously, which together with a high frequency of morphologically

intermediate forms along the Atlantic coast of France (Seed, 1972) suggests that

hybridization is common between these two species.

SevenU studies on Ute east COasl of North America have described the presence ofM

IroS.\lllll.~ (Koehn et aI., 1984; Bales and Innes. 1995; Mallet and Carver, 1995; Saavedra et

al .. 1996: Comesalla et aI., 1998), rather than M. cdllli~' alone, as previously thought (Seed,

1976). M. ~dllli.r and M. Iross"llI$ are found living sympatrically in Nova Scotia and

Newfoundland, although infonnation on lhe reproductive timing for M. ~dulis. M. trossulu$

and their hybrids on the east coast ofNOfth America is limited.

The objectives of the present study were to analyze and comp;ue the reproductive

cycles ofM. edulis. M rrOSSJllus and their hybrids at four sites in eastern Newfoundland. The

gonadosomatic index was determined and. using stereological techniques, histological

sections from Ihe females and male gonads were studied by means of image analysis.
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IV.2. MATERIAL AND METHODS

IV.1.'. STUDY SITES AND SAMPLING

AI approximately IS day intervals from May - October 1996, a representative sample

of about 400-500 mussels was collected subtidally by SCUBA divers from each site at

Bellevue (BP, BE) and Chance Cove (CP. eE) (Fig. I). Mussels were immediately

transported (0 the labomtory, where they ...."ere maintained in running fihered sea water within

O.soC of the ambient temperature al Bdlevue (Thompson. 1984b). During the three days

following each fidd sampling, 40 mussels (38-42 mm shell length) from each site (BE, CP

and eE) were then dissected carefully to separate the mantle (and in some cases the

mesosome) (male and female) from~ soft tissues. This size range was chosen 10 increase

the chance of including both species and some of the hybrids (see Chapter 2). Mantles from

100 mussels from BP (shclllength4.22 [0101 mm) were carefully separated from the rest

of the body tissues. This size range was chosen in order to relate gamete production 10 body

size. In order 10 eSlablish the genotype of the mussels (M. edll/i.)·. M. (rossl/lu.)· or hybrid), a

very small piece of mantle border (approximately 20·30 mg) from each individual was stored

in 95% ethanol at _20°C for later DNA analysis (see ChaPlet" I).

IV.2.2. LABORATORY ANALYSIS

IV.2.2.1. Hislol0licala.alysis

One of Ihe mantle lobes from each dissecled mussel was subsampled by cutting a

transverse section midway along the anleroposterior .,os. This piece of the manlle was

weighed and preserved in Oouin's fixative according 10 Lowe el a1. (1982). The sample was
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deh.ydrated in an ascending alcohol series, cleared in xylene and embedded in paraffin wax.

Serial sections (7-j.lrn) were CUt. stained with hematoxylin and counterstained with eosin.

Only one section of the mantle tissue from each individual was used, since prev;ous studies

have shown that the mantle in Myfilus is relatively homogeneous (Lowe et aI., 1982; Newell

et al.. 1982; Bayne et al., 1985).

Terminology for stages of gametogenesis was adapted from King et aI. (1989) and

Kiyomoto ct aI. (1996) after partial modification. Gonadal cells were classified into Ihe

following four stages: Developing (follicles occupy a large pan of the mantle; individuals

restoring their gonads after a partial spawn are included in this category). ripe (follicles full

ofoocytes in female and packed lamellae of ripe spermatozoa in male), spent (follides begin

10 collapse and degenerate). and resorbing.resting animals.

Following the removal afthe tissue section for histological analysis, the remainder of

the mantle was weighed, re-weighed after drying at 80" C to constant weight for 48 hand

cooled in a desiccator. The ratio of wet to dry weight for this portion of the mantle was used

to correct for the weight of the tissue se<:tion which had been removed for histological

purposes. This adjustment allowed the tota! mantle dry weight to be estimated. The portion

of the body excluding the mantle was also dried and weighed. The: sum of body and mantle

weights was used to calculate whole-mussel dry weight. Tbe GSI of an individual was then

calculated by di..'iding the gonad dry weight by the whole·mussel dry weight and multiplying

by 100. A male GSI (MGSI) and a female GSI (FGSI) were also calculated.

IV.2.2.3. SleftOlogiullhelhods

In My/fillS the mantle tissue is composed of connective tissue (storage cells), blood

spaces and gemUna.l cel.Is during the reproductive season (Lowe et aI., 1982). All these cells
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infil!ratc the mantle tissue homogeneously (Bayne el aI., 198.5). In order to apply

Slercological techniques it is imponant dat the tissue sections analyzed arc representative of

the whole tissue ma.u (Lowe el aI., 1982). Therefore,. the spatial homogeneity of the cell

types within the mantic signifies thaI a section from any pan of the ltW1t1e lobe is equally

representative afthe overall cellular composition.

The fractional area of the tissue that is~ ofgameres (gamete volume fraction,

GVF) was measured quantitatively using Optimas 6.2 image analysis software and a Nilan

stereomicroscope. following standard stereological methods (Lowe et aI., 1982). The colour

image acquired was atlalyud after adjusting the threshold by sampling area screen objeeu SCI

by the operator (Heffernan and Walker, 1989). A threshold is a set of intensity values thaI

separates pixels of interest from the rest of the image. The percentage of mantle volume

occupied by the oocyte~$ was calculated from the relation between the number of pixels

occupied by the ocx;ytes and the total pixels in the field. Five sections of I ,295.000 ~m2 taken

randomly from each individual (histological slide) were measured. This procedure provided

an estimate ofthe volume ofthe mantle that is composed ofgamctes. GVF can vary between

zero. for a reproductively inactive individual. to values approaching 100 % for maximal

reproductive condition, and provides a measure of the relative maturity of the gonad.

However. it docs not provide a quantitative estimate of reproductive output (i.e.• an

individual \vith very few gamcles may have a high GVF if the gonad is small). To correct this

problem. the proponion oflhc total weight devoted to gametes was also calwlated. Total

mantle dry weight was multiplied by the GVF to provide an estimate of the dry weight of

gametes for each individual.

For each individual. SO to 60 individual oocytes with nucleolus (10 from each

histological section) were also analyzed using tile image analyzei'. For each oocyte. the area

and longest axis were recorded. For direct measurements of eggs. mussels were induced to

spawn. The mussels were washed in cold sea water (SW), placed in a shallow tray of fillered

SW and subsequently exposed to rising temperatures (up to 22°C). Once spawning was

initiated, the individuals were placed in separate containers with sterile SW for completion
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of spawning (see also Chapc:~4). Any eggs rdeased were collected, put into IO-ml rubes and

fixed ....ith 95"/. Clhanol. The mussels from which eggs were collected were then genotyped

and then the eggs fromM eduli$. M. n-ossulwand h)1xids me:asurcd using the image analysis

system. These measurements produced an egg size..frequcncy distribution for each individual.

These results may be affected by two typeS of err~. systematic and statistical.

Systematic errors occur during fixation, tissue processing, or measurement of areas. 1lJe

Bouin's fixative, xylene and ethanol do not cause significant diange in oocyte profiles. but

small sections oftissue (with oc without oocytes) are generally lost in the dewaxing process.

II is difficult to quantify this loss, but it should be constant because aU samples were treated

similarly_ Statistical errors are normally minimized when sufficient measurements are taken.

In this case 50 to 60 individual oocytes provided minimal errors, depending on the state of

ripeness ofthe gonad and the degree of synchronization between individuals

IV.2.3. STATISTICAL ANALYSIS

Observed 5e)( ratios were tested against a I: 1 ratio with the Chi-Square statistic.

Nonnality of variables was determined using the Lillifors K·S (Wilkinson, 1991). Analysis

of gonadosomalic index (GSI) values was perfonned by ANOVA (a: =0.05) and Tukcy's

Siudentized Range Test (SRT; CI - 0.05). GVF and proponional gamete weigh.t values were

arcsine-lransfonned and anaIyzcd by two-way analysis of variance (ANOVA). The twO main

effects ",-ere dale ofcollection and genotype(M. Willis. M lrossvlus). If there is a difference

in the timing ofreproductive events among the two species. the interaction between the two

main effects in this analysis will be signi6canL Ooc)1.e and egg size differences among species

were tested using two way ANOVA (main effects: dale of collection and genorypc). All

statistical analyses were carried out with Systat 5.1 (Willcinson, 1991).
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IV.J. R£SULTS

IV.l.•. REPRODUCTrvI: CYCLE

The hiSlologjQI sedions orlhe male and female gonads for M edllHs. M. troSSIJlus

and their hybrids showed advanced gametogenesis at the first sampling (May 20). From latc:

May to late: June very few mussels were observed in the active: spawning stage:. Histological

seclions of femaJe and male hybrids ofM ed"lis and M. trossulus showed normal gonadal

development. ripening and spawning (Figures 21, 22). Ripe animals for bam sexes were:

dominant in June for M. edulis and hybrids. while M. trosslIllI!>" showed a morc extended

period of spawning (Figure 23). A large peak of spawning mussels was registered in latc July

at all sites sampled. Indeterminate M edu/is and hybrid mussels with no gametogenic activity

predominated in latc September and October. These gonad sections showed no follicles at

all or only a few very contracted follicles between cOMectivc cells, and resorption of the

undischarged eggs in follicles of the: females_ Some gonad sections from M. troMulus and

some hybrids during August and September showed panially spawned female and male

follicles. By the time ofthe final sampling in October. more than 50"'/0 of mussels ~e in the

resorbing-resting stage.

IV.J.I. SEX RATIO

IV.J.I.I. Mylilused/llis

Females outnumbered males. A total of698 M. edulis mussels was sampled, ofwlUch

342 (49.O"/o) were females. 299 (42.8%) were males. six were hennaphroditic (0.86%)

(Figure 24). and S 1 (7.3%) wer-e undifferentiated. The selC ratio (1.14F: IM. n =641) did not

differ significantly (P>O.OI) from the expected ratio of I :1.
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Fig. 21. PhOiomicrographs of gonadal stages of the hybrid female between M. edufis and
M. trmsuJus. (A) Stage I; development ofova to maturity. (B) Stage 2; ripe stage.
(C) Stage 3; active spawning where reproductive follicles are partially empty ofova.
(D) Stage 4: spawned out condition where follicles arc empty of ova and resorption

of unspawned gametes is occurring. Scale bar CH) = 100 IJrn.
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Fig. 22. Photomicrographs of gonadal stages of the hybrid male between Mytilus eduJis and
M. /rossulus. (A) Siage 1; spennurogenesis in the follicles. (8) Stage 2; mature
spermatozoa in the follicles. (C) Stage 3; panially spent. (D) Slage 4; spawned oul
condilion where follicles are empty and resorption of unspawned gametes is
occurring.
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Ittytilustrossu/us

Fig. 23. Frequency distribution of gonadal maturation stages in Myll/IIS edlllt~.

hybrid and M. frOSS'll/lis mussels including both sexes during the 1996
reproductive season For details of each stage see Material and Methods
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rv.3.1.2. Mj,-tiJIIS lrossulus

Females again oullJUlnbered males. A total of782 M. trO$SUlus mussels was sampled.

of which 412 (52.7"/0) werc females. 341 (43.6%) were males. five were hermaphroditic

(0.6%), and 24 (3.1%) were undifferentiated. The sex ratio (1.2F:IM. n • 753) did nOI differ

significantly (P>O.OI) from the expected ratio of I: I.

IV.J.l.J. Hybrids

In the hybrids males outnumbered females. A lOlal of280 M. trossuJus rruJssds was

sampled, ofwhich 109 (38.93) were females.. 143 (5 \ ,O,-/.) ....'Cf"t; males. and 28 (10.0-1.) were

undifferentiated. The sex ratio (1.3IF: 1M, n" 252) did not differ significanLly (p>O.OI) from

the exp«ted ratio of I: I.

IV.J.2. GONADOSOMATIC lNDEX

This index is primarily affected by the accumulation and release of gonadal material

as well as the utilization of stored energy products during the winter mondu. Both lhe male

(MGSI) and female (FGSl) in M. ed"Jis. M. "Q~lliusand hybrids showed a steady decline

in this index after the spawning in July (Figure 25). a1thoughM. edulis showed an increase

during early aurunvt, after a more abrupt spawning occurred in lale July. which may indicate

storage of nutrients in the gonad (Blanchard and Fedcr-, 1997)

IV.3.3. GAMETE VOLUME FRACfION

The reproductive condition (GVF) of male and female mussels from each genotype

was analyzed separately to determine Ihe synchrony of their cycles. Comparison of tlte



Fig. 24. Photomicrograph of gonad section from a hermaphrodite mussel.

(Mytilus edulis from Chance Cove protected).
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Fig. 25. Gametosomatic index (female = FGSI; male"" MGSI) in Mylill/s (M. I!duJis,
hybrids. M tros.51/lus) during the 1996 reproductive season at three different
sites in eastern Newfoundland
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relative volume fraction for each species indicated that gonadal development in M. willis

..\--as different from M rrossuJI4S and the hybrids (Figun: 26). In mature female nussds (June

27). ripe sex cells made up comprised about 85% oflhe gonad inM. lrossulus. which was

significantly different from M edulis and hybrids, in which GVF was generally less than 7Q-/e

(Figure. 26). Subsequent reductions in mean GVF in August and September supponed the

observation of spawned individuals of these species. The GVF in OClober was nearly zero,

indicating that the resorption of gametes was nearly complete.

Two way ANOVA (Table 13) indicate that there are significant diffCl"cnces (P <

0.001) among species (M. ed"Ji~·. M. 1rQS.fJII"s and hybrids) in the proponion of gonad

occupied by gametes.GVF was higher in M IrQSSlIlus than in the hybrids or M edulis (Fig.

26). There was also a significant date x species intCfllction (P < 0.(01). indica1ing that the

reproductive (;)'clc. as indicated by GVF, differed among the species (Table 13, Figs. 23, 25,

26). owing to a more gradual spawning over seven.! weeks by M trossuJus and some of the

hybrids at all sites. while M. edJ(/is showed an abrupt spawning during late July (Fig. 23). The

difference in mean GVF between female M. rrO~l(J/lS and M eduJis (and their hybrids) was

considerable (Fig. 26). On June 27. the mean GVF of 86.2% for M. tronl/Jlls was

significantly greater (t-test, P < 0.001) than that of67.9"/a for M. l:du/is.

A comparison among species between the dry weight ofgametes just before spawning

(June 27) (Fig. 27), revealed that M. JroSSJilus had a significantly higher garnete weight per

yonad than M. edllJis (t-test., P<O.OS) and hybrids (P<O.05), with the exception of the Chance

Cove e.'I[po5ed site, in which no significant differences (P>O.OS) were found among the

species. The significant differences found during: July 19 are due to the fact that AI. trossuJus

and some hybrids spawned gradually over several weeks in comparison with M ~du/is.

IV.lA. OOCYTE DIMENSIONS

The longest axis ofthe mature oocyte (lune 27) in histological sections ofM. ecluJis
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Fig. 26. Mean reproductive condition (GYF) ± S.E. for female and male Myri/us (lvf.
edit/is, hybrids. M tross"It'!Ji) at three different sites in eastern
Newfoundland during the 1996 reproductive season..
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Fig. 27. Comparison of the dry weight ofgametes amongM. ed/dis, hybrids andM.
IrOSSllllls at three sampling dates during the pre-spawning and spawning
stage al three sites in Newfoundland. Number in parentheses indicates the
number of mussels analyzed.
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varied between 52.0 and 82.9 11m. with a mean of 62.1 pm. On the same sampling date M.

Iro:>"sulus malUrc: oocytes ranged between 43.7 and S8 flm with a mean of 55.3 }.1m. The

nested ANOYA carried out on values for egg areas measured from histological sections

during the t\l.'O sampling dates before spawning occurred showed in most cases a significant

variation among mussels within species. The variation among species. however, is still

significant. notwithstanding differences among mussels (Table 14. Figure 28).

~c were significant differences (P<O.OO I) among spedc5 in the lengths and areas

of eggs obtained by inducing spawning in the laboratory (Figures 28 C.D). M. edu/is

presented the largest eggs (Figure 28, Table 14).

IV.J.S. SIZE AT FlRST MATURATION

The age al first potenti&! reproduction was determined by direct observation and

measurement ofgonad weights for mussels ofvanous sizes from the Bellewc protected site.

The smallest mussels with differentiated sell: were M. IroSSIIIIIS, a male of 6.9 mm and a

female of 8.9 mm shell length. together ""th several other mussels less than 10 mm long

which were observed during June at the Bellevue protected sile. For hybrids and M. edllli!J,

earliest gonad development and gamete storage in the mantle tissue occurred at about 12-15

nun shell length. The shell size at first maturation seems to be lower in M. trossulus than in

hybrids and M. edulis at these locations.

IV.l.ti. FECUNDITY AND DRY WEIGHT OF THE SOFT TISSUES

Figure 29 shows that there was a significanl relationship (P < 0.01) bdween the dry

weight of the gonad and the total dry weight of the animal at four sampling dates from

mussels (all species pooled) from the Bellevue protected site.
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Table 13. Results ofrwo way ANOVA for testing variation in the~e volume fraction
(GVF) in females and males among M)'fi/IU species (M. t!dUJ. hybrids and M. tros.wllU) during
me 1996 reproductive season at three sites (Bdlevue exposed: BE; Chance Cove prot:ected: CP;
Chance Cove exposed: eE) in eastern Newfoundland..

Site Sex Source df 55 F·ratio p

BE females Date 106849.94 135.2]7 <0.001
Species 4670,06 20.688 <0.001
Date x species

"
10225.42 6.47\ <0.001

Error 326 36795.68

BE mal" Date 7 74941.77 178.566 <0.001
Species 2 6614.39 55.161 <0.001
Datcx spec:ies I' 14577.07 17.637 <0.001
E=, 211 12650.54

CE females Dale 7 111086.03 135.21\ <0.001
Species 2 3657.23 15.580 <0'<>01
Datcx spe<:ies I. 9220.34 5.611 <0.001
Error 267 31337.16

CE males Date 7 94502.32 93.389 <0.001
Species 2 3847.43 13.307 <0.001
Datc x species

"
10051.80 4.967 <0.001

Error 251 36284.67

CP females Date 65220.06 59.119 <0.001
Species 5808.56 18.615 <0.001
Date x species

"
9075.22 4.155 <0.001

Error 281 43840.69

CP mal" Date 100775.64 99.833 <0.001
Spc<:ies 5166.66 17.914 <0.001
Date x spc<:ics

"
5211.71 2.581 <0.005

Error 266 38358.83
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Table 14. Results of nested ANOVAs for testing variation in egg area and egg length among
Mytiflls species (IV ~/is. hybrids and M. tTosSIfl"s).

Date Factors Source dJ 55 F-ratio p

1unc07 Egg area Species 11.110 99.818 <0.001
Mussd {species} 6 2.659 7.962 <0.<)01
Error 1341 74.632

Egg length Species 3.258 64.605 <0.001
Mussel {species} 6 0.767 5.070 <0.001
Error 1341 33.816

June 27 Egg area Species 22.859 ]\ 1.254 <0.001
Mu.ssel{speciesl 6 0.581 2.638 0.015
Error 134\ 49.244

Egs length Species 2 4_774 134.827 <0.001
Mussel {species} 6 0.196 1.849 0.086
Error 1341 23.743

Spawning Egg area Srecies 2 22.430 297.113 <0.001
Mussel {species} 12 0.]80 1.514 0.113
Error 735 15.375

Egg length Species 2.182 117.222 <0.001
Mussel {species} 12 0.240 2.152 0.012
Err'" 735 6.839
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Fig. 28. Comparison of mean ± I S.D. of egg area ).lm2 (A) and egg length ).tm (B)
among M. edlllis, M. frossuills and hybrids determined at two dates during
the pre-spawning stage from histological slides and the determination of egg
area (C) and egg length (D) from laboratory spawned eggs. Number in
parentheses indicates the number of mussel used (50 eggs from each mussel
were measured).
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Fig. 29. Relationship between fecundity (estimated as the dry weight of the gonad)
and the dry weight of the soft tissues in pooled Myflllls sp From Bellevue
protected, during the 1996 reproductive season Lines show 95% C 1



108

IV.4. DISCUSSION

The sex ratio ofM edulis, M froj,'sulllS and their hybrids in eastern Newfoundland

docs not significantly deviate from 1: I, as staled by Lube! (1959). The low f'r"equcncy of

hermaphroditism also agrees with Sunila (1981) and Lubct: (1959).

Mussels from all three sites sampled showed a similar reproductive cycle. with

gametogenesis progressing ~dly thTough spring and eMIy summer and spawning laking

place in latc July. Similar observations were INde on Bellevue mussels by Thompson

(1984b), who also found that these mussels do 001 undergo gametogenesis throughout the

winter and that reserves accumulated in the prcv;ous year do not appear to playa role in

gamete development, Other populations of M f1"OSS/lJus also present the same pattern in

which gonad is synthesized in late winter and early spring in the Baltic (Kautslcy, 1982) and

in British Columbia (Emmett et: at, 1987). Thus subtidal Baltic Sea mussels (Kauuky, 1982)

and Newfoundland mussels (Thompson. 1984b) demonstrate an opponunistic reproductive

strategy, as also observed for mussels from British Columbia (Emmett et aI.• 1987), where

gametogenesis does not proceed during the winter months. However, Blanchard and Feder

(1991) found that mussels (M. IrOSSJlJus) from populations in Pon Valdez. Alaska. follow a

more conservative strategy, with gametogenic development throughout winter, while the

spawning period is similar to that found in the present study

No study of reproductive cycles of M. edllJis and M. Iro.UIIJus in terms of their

imponance in hybridization has been undenaken on the nonheast coast ofNonh America.

The results ofthe present Rudy indicate that M. frOSSJlJus was spawningo~ a prolonged

period oftime wtWeM. ftlulismussds pcesentcd a major spawning event in late July. Similar

studies carried out few years earlier showed also that M. eduJis is a synchronous spawner

in Newfoundland (Thompson, 1984b). Hybrid mussels in this study exhibited spawning

activity which was more similar to M. ,ross"J"s. Lubel et aI. (1984) studied reproduet.ive

cycles of hybrids obtained from intra- and inter-specific crosses of M edulis and M.

~,'''''oprol·itlCialisand found asynchrony in spawning. M. edulis spawning was morc: restricted
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in time. while M. gaiJoprcwincia/is showed a moce prolonged spawning ov~ scven.l months

and hybrids an intcnnediatc pattern

Results from Chapter I indicate that most hybrids ace backcrosses, which is in

accordance with the timing oflhe spawning events, where there is a small overlap in which

some FI hybrids could be produced. As alreadydi.scussed in Chapter I, only a few FI hybrids

are needed to spawn (0 form a large number of backcrosses with thctr parental species.

espKiaJly when hybrids have an intermediate 5pI\\o-rung \\oM rc:spcct 10 the pure species.

The present study provides evidence that M. lrossulus has a greater reproductive

output thanM edulis in mussels between 38-42 mm shdllength. (Figures 26, 27), which is

consistent with the observations of Mallet and Carver (1995) for two musse{ populations in

Nova Scotia. However. the present study also suggests that the mean oocyte size is larger in

Nt. f!duli:.' than in M IroS.Vlllus, with intcnnediate values in hybrids. Mussels produce a large

number (up to 8 X 1010 eggs per individual M. ~dulis: (Bayne et al.• 1978) of small eggs

(around 70 11m diameter». This may imply that M. lrossu/US, which produces a grealer dry

weight of gametes (Figure 27). releases lalger numbers of eggs. The implications of this

finding. besides a larger egg output by M. Ir~ll/usduring spawning, are oot clear. Mussel

eggs have a rdatively small amount ofyollc (ca. 0.08 J.lgdty mass per egg; Bayne et a1.• 1918)

representing a minimum investment per egg.. in contrast to eggs which undergo direct or

lecithollophic development.

In the present study, M. Iro$.m/u:J; was reproductively active at a relatively smaller

shell length than M. edulis. the former devoting energy 10 reproduction cartier in the life

cycle. although maturation size depends on rate ofgrowth (Seed. 1969) and therefore may

differ among species and locations. Nevertheless. this smaller size at first maturation in M.

lr()S~·ll/Il:J; relative to M. edulis and hybrids may have some implications for growth and

perhaps higher mortalities caused by predation (Theisen. 1968; Seed, 1969; Dare. 1976; Seed

and Brown, 1978).

Previous studies have shown that the balance between reproductive output and

gro",,'th in an indivXlual animal changes with increasing age. The youngest mussels divert most
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of their mugy to growth, while most of the energy in older mussels is used for

gametogenesis (Thompson, 1979). The resuhs from Chapteno I and 2. which show that

mussd populations are composed mostly ofM. trossulus in small size classes and M edulis

in large size classes. with a shift. at approximately 30 to 40 mm. seems to be difficult 10

explain considering that JargeM. edulis arc more fecund than small ones (Thompson, 1979).

Furthermore, the significant relationship found in the present study between fecundity

(estimated as a dry weight orthe gonad) and the dry weight ortbe soft tissues represents

more evidence ofthis general relationship between size and fecuodity (Figure 29). Howeve-r.

there is a large number of sm.a.ll M. frossuJ/lS compared to a reduced number of large M.

eduli." (FigureslO 10 16).

Gardner and Skibinski (199Oa) found that mean genocypic fecundity of M.

gallupro~'illcialis was 2.8 times thaI of M edt/lis at Croyde and 2.2 times greater al at

Whitsand. because M gallopro\'j"cialis has both gruter mean length and greater mean

fecundity per unit length than M. edulis. However, the study also estimated that the tOlal

population fecundity ofM edulis was 5 and 17 times that ofM gallopro\'illcialis at Croyde

and Whitsand, respectively; owing to the presence of larger numbers of small M. edlllis

compared \vith fewer large M. galloprovillcialis. A similar mussel population structure in the

present study, in which large numbers of M. lros:mllls are found in small size classes and

lower numbers ofM edulis found in large size classes (Figures 10 to 16), is in accordance

with the higher proponion ofM. Iros$lIlus in the larval, spat and juvenile $lages (Figures 4

to 9).

Summer monaJities in populations of sexually mature mussels on the west coast of

Nonh America have been obscn-ed by sevmtI authors (Heritage, 1983; SJUdlDOfe and Chew,

1985: Emenet aI., 1987). A high monality ofM lrossulJlswas observed in the present study

at all sites during late summer and early autumn (Chapter I). Intense iUmmer spawning

activity in these populations coincides with the time of high monality. Some of these

monalities may be caused by predation. although some $ludies have shown that metabolic

stress. especially after spawning, could be paniaUy responsible. Worrall and Widdows (1984)
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studied the relationship between spawning and monality in a population of mussds in the

Lynher estuary. southwest England. which showed reduced "scope f~ growth" following

spring spawning. The aulhors reponed that monaJity was detected after one month of

spawning and that the mortality rate was greater in those mussels that showed higher

reproductive effort. It is therefore possible that the late summer monalities ofM. Irossulus

observed in the present study. by Heritage (1983) and by Emmett et al. (1987) in British

Columbia. and by Skidmore and Chew (1985) in Washington, arc caused by reproductive

stress. Further research is required on the effects of predation, disease and puasites on

rcproduaive dfon., reproductive value and reproductiveCOSl (Bayne et aI., 1983; Thompson,

1984b). combined with the detennination of physiological variables such as u scope for

growth" in these mixed populations of M. ecJlili.~, M. ITOSSIIIIIS and hybrids, in order to

understand the possible causes for these late summer monalities in M. IrossuJIIS.
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v. CRAPTER 4.

Fc.nilization saccltSJi and early suO'ival in pure ••d hybrid larvae. or Myti/ils nbllis

and M. trosUf/"s

V.1. INTRODUCTION

There is no evidence in the literature for the presence of unfit hybrid recombinants

wilhinMyfHu~'hybrid zones (Zooros ct aI., 1992: Beaumont CI aI.• 1993). As discussed in

Chapler I, the degree of natura] hybridization is generally higher in the M. edulis - M.

gaJlopro\';,cio/is hybrid zone in Europe than in the M edulis - M lrossullls hybrid zone on

the east COasI ofNonh America. According 10 Harrison (1993) and Banks et aI. (1994) the

more genetically divergem the parcntallypes. the lower will be the fitness of the hybrids

produced. This difference in natural hybridization in these two mussel hybrid zones implies

thaI Ivt. I!cJlI/iS and M galiopro\-illciaJis are more closely related (Gardner, 1994) than arc

,H edllli:; and M ~llhu' (Rawson et aI., 1996b). This has been corroborated by successful

interbreeding between M eduJis and M gaJloprovillcialis. the production of viable offspring

in back-eros.ses ofF I hybrids (lubet et a1., 1984; Beaumont et aI., 1993) and the suggestion

made by Gardner (1996) that M. gaJloprovinciaJis may be a subspecies of M. eduJis,

proposing the use of the trinomial fonn M edlflis ga/loprovincia/is.

Zouros et aI. (1992) were the first to hybridize Mylilus eduJis and M. Irossuills

successfully, although no dala were provided on lhe pcn:enlage ofeggs which developed

imo larvae. the percem.agc ofabnonnallU'\'ac and/or survival among the reciprocal crosses.

Infonnation on such variables in artificial hybridization between M. eduJis and M. trossulus

is therefore limited

The objcaivc of the present study was 10 compare in preliminary laboratory IrialS the

success of pure lines and hybrids ofM. edlllis and M Irossulw; during the crucial early stages

of their development.
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V.I. MATERIAL AND METHODS

V.l.l. MUSSELS AND EXPERIMENTAL DESIGN

Ripe mussels (Mytifw sp) (29.54 mm snellle:ngth) Wef"C collected from the Bellevue

exposed site (Fig. I) during the Iasl: week of May 1997 and held in armieot runnirlg sea water

until required for spawning. Four spawning trials (June 9, JWle 16, June 30 and July 17) were

carried out. using a factorial design to permit full reciprocal crosses.

Twenty mussels were exposed to air for about I h, then placed in filtered seawater

al ambient temperature. one mu.sseI pel" beaker, for induction of spawning by thenna! shock.

[n some cases, eggs and sperm were held for about 4S minutes al ISGC before use to allow

as many mussels as possible to spavm, thereby helping to synchronize the egg stage (Scarpa

and Allen. 1992). Eggs from each female were rinsed with filtered (I lim) UV irradiated sea

water (fSW) and then resuspended in 1000 ml FSW at 18°C for fertilization. Sperm

concentration was determined with a hcmoc:ytometet'". The spenn to egg ratio used for

fertilization was approximately 100:1 in all trials (Sprung and Bayne. 1984). Eggs from each

cross and each pure line wer-e rinsed after- 10 min 10 remove excess sperm and resuspended

in two 1-1 glass nasks (pseudo-replicates) containing 1500 mlal a density 70-120 eggslml

(Toro and Sastre. 1995), The larval cultures were then maintained at 16°C and after 72 hours

a IS mI sample was taken from each cullure and fixed with 95% ethanol. The fixed sample

was later examined in order 10 delermine (a) the percentage of eggs which had developed

inlO larvae and (b) lhe percentage of these larvae which exhibited any abnormality. Both

assessments were derived from ) samples from each replicate nask, countiog the numbers

ofdeveloped larvae and the number of morphologically normal and abnormal lMvae within

one field of v;ew (IOOX magnification).

Veliger larvae were reared ilt 16"<: (18-]] ppt salinity) in duplicate 2-1 glass beakers

at a concentration of [Q.20 larvaelml for a minimum of8 days (in one trial on July 17 up to

18 days), using standard techniques, except that beaker-s wer-e nol aerated (Bayne, 1965;
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Beaumont and Budd, 1983; Mallet et aI., 1985; Toro and Sutre. 1995). Sea water~

filtered, sterilized with UV light and changed every other day. At each seawater change, the

comenlS of eloch beaker were passed separately through a 44 JIm Nitex SCTeen (empry

beakers were treated with " dilute bleach solution and then rinsed with FSW). Luvae

retained on the screen were rinsed with treate<! seawater and back·wasbed into the cleaned

beakers. which were then re-filled with filtered seawater. At each water change, larvae were

fed /sochr)'sisgalbana at 25000-30000 cdIs1m1 (Pechenik et aI., 1990). The number of living

larvae in the cultures was monitored before addition offood. and the volume ofthe water

used in each culwre was adjusted in exder to maintain a density close to 10-15 larvae/mi. On

the 6" day after fenilization (the 14" day in lrial 4), the percentage of live veligen in each

culture (the mean of4 counts) was estimated within one field of view under lhe microscope

at lOOX magnification. 11Je mean shdllength ofveliger larvae on the 16'" day in trial 4 was

estimated by measuring 30 rudomly chosen larvae from each culture: with image analyzer

software (Oplimu 6.2) (see Chaplu ]).

Spawnings (20 mussds) and crosses were perfonned on June 9 (M. edu/is: 1 female

and 2 males: M. trossuius: [female and 1 male). June 16 (M. eduJis: 2 females and 2 males;

M ,rOS-JIllllu': I female and 2 males), June]O (M f!duJis: 2 females and I male; M. lrossulus:

2 females and 2 males) and July [7 (M f!dIlJis: 1 female and 2 males; M. rrossulus: 2 females

and 4 males). The: spawned mussels wue: typed using two PCR-ba.sed nuclear markers

(Chapter I) and two allozyme: loci, Mpi and £~I (Chapter 2), which are diagnostic forM.

edllJis. M. lrossullU and the hybrids.

V.2.2. STATISTICAL ANALYSIS

Before analysis, percentage abnormality and survival data wue arcsine transfonned

and pooled between beakers and within pure and cross-fertilized groups, because these were

pseudo-replicales (not true replicales). The non-parametric Kruskal-Wallis test was used to

analyze the percentage abnonnality at day] and the percentage survival at day 6 (day 14"
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in trail 4). because these: dala showed significant heterogeneity of variance (Coclnn's test).

Larval shell length data al day 16 were tested by nested analysis of variance, which

confinned that there were no significant differences in larval shell length between pscudo

replicates within groups (P:>O.OS).

V.J. R£SULTS

Fcnilization OCCUrTed in all crosses and cleavage was observed within 3D to 40

minutes following mixing of eggs and sperm. No significant differences between pure lines

and hybrids were detected in the percentage ofegs which developed into larvae (Table 15).

However. the percentage of larvae which were abnonnal by day J and the proponion of

normal veligers which subsequently died during the early stages ofgrowth were significantly

greater in the hybrid crosses (Table 15)

Figure JO shows photomicrographs of normal larvae at D-Slage and also me presence

ofabnormal larvae (which were more common in h)'brid crosses) at lhe third day of culture.

Most larvae of pure lines in all trials were healthy al day 6 (figure 3D). but most larval

cultures from the first three lriaIs only survived until day 9. In trial 4, all cultures were reared

in good condition until day 18, but owing to contamination of the algal culture by ciliates,

13JVae from most crosses then died (Figure 30). The few 13JVae that survived in the different

crosses were combined, cultured until day 2S (Fig. 30) and then discarded.

In trial 4, after an initialJy higher rnonality. Itybtid larvae from both reciprocal crosses

grew significantly CUler than those from pure lines (Table 16). There was, however, a

siynificant difference in growth between hybrid larvae of the two reciprocal crosses, the M

edlilis (female) crossed with M. frOSS'll/liS (male) h.ybrids being the faster growing lluvae

(Table 16).
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Table IS. Reciprocal crosses between M. nlMlis and M. trosnIl.s. Percentage of eggs which
developed into larvae at day 3, the perceotage of abnormal larvae at day 3 and the percentage of
vcliger larvae which survived 10 day 6 (day 14 in trial 4). E = pure M _lis, T'" pure M.
IrO$SMlus. ExT - M. ftbIlis female crossed with M. IrO$SMIIU male, T x E .. M. trossIIllU female
crossed with M. ftbIlis male. H - Kruskal Wallis test statistic between the mean performance of
pure lines and that of hybrids. ns - non significant, .... P<O.O I.

Trial Pcrccnl3gede\-.:klpmml(ctl)·) Pen::enloigeabnonnality(cbyJI Peto:ntageSUJ'\-n61(day6)

E.T hE E.T hE E.T TxE

17.3 59.6 SO., 61.7 7l.9 39.'- 21.1

7.1.6 ".1 29.6 37.6 62.' IlA 29.6 IO.:S 12.9

71.2 79.3 31.7 33.8 n.1 ".0 U.7 2<U

\I~.6 117.1 15,S U.7 76.9 69.S

7'J,73:12.8 7~.81 ot: 13.6 3U8±9.8 6~.92:to 12.' -l6.J6± 18.3 16.92:1.1

U.s.-Ons



M)'tilus larvae: I)-siage day 3

M)'rillls larvae: day 6

M)'tilus: surviving larvae at day 24
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Presence of abnonnallarvae at day 3

Dead larvae: ciliate contamination

Mytilus: survh'ing larvae at day 24

Fig. 30. Mytilus larvae: different stages showing nonnal, abnonnal and dead
larvae during the rearing of thc larvae of pure and intcrspecific crosses in
the laboratory trials.
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Tabl~ 16. Mean shell length (j.lm % SE) of puce and hybrid vdiger-s ofMJ"tiIIU after- a period
of growth in the labor'atory(l6 days). and resullsofnestcd ANOVA and Tukey's HSD tesE.
For abbreviations, see Table IS. ns - non significant.... P<O.OOI. Underline indicate
homogeneity of means.

137.51::l: 2.38

Factor

Shell length

T

133.79% 1.51

Source

Cross

Replicale (cross)

Ed

173.75 ± 1.88

df 55

12.502

0.019

TxE

152.61:t: 1.94

f·ratio

99.856···

0.116 ns

Error 1072
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v.... DISCUSSION

Repons of naturally occurring hybrids between M edulis and M. trossulus (Mallet

and Carver. 1995; Saavedra et aI., 1996; Comcsana et aI., \998), the results of previous

e.xperimental crosses (Zouros et aI., 1992) and the data reponed here all. confirm that the

species are interfertile. In fact. there was 00 signifkant difference between pure lines and

hybrids in the percentage of eggs ",ilich de'o~Joped into larvae. However, hybrid crosses

showed a higher mon.ality than jMe tines crosses. This lower survivorship may reflect subtle

differences in the time of sexual maturity or gamete quality in the two species, and ODC

explanation. according to the results obtained in Chapter 3, may be that they have different

optimum spawning limes. However, the lower survivorShip in FI hybrid individuals could

also be due to the incompatibility between mitochondrial and nuclear genomes. which seems

10 be greater between M. trossu/IIS and M edulis than between M. edulis and M.

golloprQ\';lIc:iolis (Comesai\a et al., 1998). The results from Chaptet 2 clearly show that

naturally occurring hybrids consist mostly of backaosses. which arc M. tro.mllllS-biascd

among small mussels and M. ed/lli.r-biascd among large ones.

The progressively higher survival values in successive trials suggests that poor

parental condition can adVCfiCIy affect larval success, and emphasizing the need for choosing

broodstock which is in good condition in order to carry out laboratory crosses. If most

mussels of one species spawn even a few days before those of the other, species identity will

be maintained into the next generation. A slight overlap of spawning times, or a few

individuals of either species Of just very few FI hybrids spawning with the other, would

explain the existence of naturally ocallling hybrids and the presence of backcrosses. The

results of Mallet and Carver (1995) and lhose from Chaplet I and 2 suggCSl that

hybridization between M. edulis and M. troS31ilus is not very common in the Atlantic

Provinces compared with that between M. edlllis and M gaJloprovincialis in Europe.

The cumulative mortality of larvae after day 10 in trials I, 2 and] may indicate

inferior gametes (immature), particularly since none of the larval cultures were contaminated
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with bacteria or ciliates. The production of large numbers of immature gametes by these

mussels is also corroborated by the number of individuals which spawned malUrC gametes

in each uiaI (S, 1. 7 and 9 out of20, for trials 1. 2. 3 ;and 4 respectively). Some variation was

evident among trials \oVith respect to the per-ceotagc of developing eggs, larval abDOnnalitics

and survivaJ in both pure and reciprocal crosses, although the patterns observed within trials

were generally consistent.

HybridI~ from both reciprocal aOS5eS grew significantly faster than larvae from

pure lines, although the shdllength values are within the range of those reponed for pure

M. l:dl//is in trials earned out by Mallet et aI. (1985) and trials under different feeding

regimes undenaken by Bayne (1965). Because of the significantly higher size reached by

hybrid larvae compared with pure lincs of M. edulis and M. Irossulus, hybrid vigour is

suggested, although it is not clear what advantages this may impan. Similar results have been

reported by Beaumont et aI. (1993) for crosses between M. edlilis and M. galloprovincialis

and by Freeman et aL (1994) for crosses between M. eduUs and M. trossulus. Growth of

bivalves seems to be related 10 the genetic tonfonnalion of the individual (Newkirk, 1980,

1983). High levels of homozygosity due to inbrc:cding can significantly reduce growth rate

(Beaumont and Abdul-Matin. 1994) and, conversely, high degrees of heterozygosity in

anificia.l induced triploids (Beaumont and Budd. 198]: Beaumont and Kelly, 1989;

Beaumont and Fairbrolher, 1991) may enhance: growth rale. Hybridization should increase

the helerozygosity of individuals. which may in part explain lhe higher groWlh observed in

hybrid larval cultures in Ihe present siudy. Nevertheless, this faster growth ofh)'brid larvae

has to be balanced against survivorship, which in moS! of me hybrid crosses was very low.

The results of this study provide evidence that there ate no differences in the

percentage offenilized eggs bclWecn pure line crosses and hybrid crosses. However, the

frequency of abnonnallarvae significanlly higher in Ihe hybrid crosses. These observations

suggest that there is little or no evidence of physiological barriers to fertilization, bUI lhaC

intompalibilities belween milochondrial and nuclear genomes may be causing a higher

frequency of abnormalities and lower survival among Fl hybrid larvae (Rawson et ai" 199&;
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Quesada el aI.• 1998). The data also suggest that FI hybrid vdigen may metamorphose

earlie..- than pure line crosses.

Further research is required. including the study o(pure line and reciprocal crosses.

to assess the relative fitness of larval and juvenile hybrid mussels under ditTerent

environmental collditions.
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VI. CHAPTER 5

MorpholOlical nrialio. in Ib~ shU .MOd' Mytil," fthIlis,."f. D'OS$#fIIU ••d their

.arural lIybrids

VI.I. INTRODUCTION

Early systematic taxonomical studies in mussels of the genus Myti/tfs have been

largely based on shell morphological and morphometric characters (Gosling. 1992.1.; Seed,

1992). However, several studies on mussels have shown the enormous environmental

plasticity of shell morphology (Seed, 1968, 1973) which may preclude the use of these

characters in systematic studies. Recently, the availability of new molecular techniques has

permined the use of a combination of morphological attributes of the shell and a1lozyme

genetic markers C Beaumont et aI., 1989; Coustau et aI., [991; Koehn. 1991; McDonald et

aI .. 1991; Sarver and Foltz., 1993: Sanjuan et aI., 1994, 1997;Bales and Innes, 1995;

Gardner. 1996), nuclear andfor mlDNA markers (Inoue et a1.. 1995, 1997; Steward et aI.,

1995: Saa\·edra et at., 1996; Sanjuan et aI.• 1996; Suchanek: et aI.• 1997; Toro, 1998) or a

combination of aIlozyme and DNA markers (Beynon and Skibinski, 1996: Rawson et aI.,

1996a)

The main objective of the present study was to examine shells sampled from three

different sitcs (Bellevue exposed, Chance Cove exposed and Chance Cove protected) in

eastern Newfoundland (Fig. I), in order to determine the degree of morphological

differentiation between M. eduli$, M lTO$$ulus and their hybrids. coexisting (exposed 10 a

common environment) at these habitats.

Canonical discriminant analysis of morphometric variation and two PeR-based

nuclear DNA markers were used to test ifM. edElIi.f, M. Iro..uullls and their hybrids have a

similar shell morphology when ellposcd to a common environment.
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YI.2.l\IATERIALAND METHODS

V1.2.1. STUDY SIT£S AND SAMPUNG

Mussd sheUs from adult~ (M. edulis. M trossulus and hybrids) that had been

genotyped for two PCR-based nuclear rnaril:en from individuals collected and analysed in

Chapter- J ....~c labeled for morphometric analysis. The mussels (38-42 mm shell length)

were collected from June - Oaobcl" 1996 from the Bellevue exposed (n-280), Chance Cove

protected (0=280) and Chance Cove exposed siles (n-280).

Vl.2.2. MORPHOMETRIC ANALYSIS

The 8 morphometric shell characters used to distinguish among three different forms

ofMylill/s (M. t:dulis, M (roSSI/IllS and hybrids) were as follows: (i) shell height; (ii) shell

width; (iii) length of anterior adductor muscle scar: (iv) dist.ane:e between the anterior edge

of the posterior adductor muscle scar and the posterior margin of the shell; (v) distance

between the venU1il edge ofthe posterior adductor muscle scar and ventral shell margin; (VI)

diSl:ance between the pa11ial1ine and the ventral shell margin midway along the shcU; and (vii)

distance between the umbo and posterior end afme ligament (Figure) I) (McDona.Id et: aI.

1991; Mallet and Carver. 1995). Each character was further standardized (shell length range

ofsampled individuals: 38·42 mm) by uansfonning the: value to 108100 and divided by 10810

shell length (McDonald et al., 199I:Mallet and Clrver, 1995). A canonical discriminant

analysis was used to derive a canonical function that separated the: three mussel types, using

Systat V5.1 (Wilkinson, 1991).



fig. JI.

---- Shell length

itl
-II --

The 7 morphomebic mussel shell characters used in the
canonical discriminant analysis: (i) shell height; (ii) shell width;
(iii) length of anterior muscle scar; (iv) distance between the
anterior edge of the posterior adductor muscle scar and the
posterior margin of the shell; (\.) distance between the ventral
edge of the posterior adductor muscle scar and the ventral shell
margin; (vI) distance between the pallial line and the ventral
shell margin midway along the shell; and (vii) distance between
umbo and posterior end of the ligament. (Modified from
McDonaldetal .• I99I).
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VI.IJ. DNA ANALYSIS

DNA extraction and use of both DNA nuclear markers (ITS and Glu-S) to identify

M. edulis. M IrwsuJII$ and their hybrids foUowed procedures described in Chapler I.

VI.l. RESULTS

The seven shell characl:ers used in the discriminant function were able to distinguish

between me two species of mussels (M edulis. M. lrossulus) previously identified using the

peR-based markers (Wilk's lambda: P < 0.001) (Figure 32, Table 17). The hybrids were

scattered on the canonical pIOlS, although a few of them were clustered between lhe two

species (Figures 32. JJ). The morphological differences were consistent between Ihe two

species over the three different siles (Figure 32), and maintained in most cases separate

clusters despite a common environment within each sitc. In order to test if any micro

enviromnenla! differences were affecting shell morphology. canonical discriminant analyses

which included M. edulis. M. ITOssuius and hybrid individuals from different sites were

carried out (Figure 33, Table 18). The results showed similar morphological differences

among the two mussd species and their hybrids. despite the fact that in these analyses each

species was colleaed from a diffuent micro-cnvironment (site) (Figure 33, Table 18).

Conversely. a canonical discriminant analyses was carried out for each species (M. f!dlllis,

1\-1. ~l""S and hybrids) at all sites. There was no significant diffuence in the morphology

of each species from the different sites (Figure 34).

The standardized canonical coefficients showed that the characters shell height,

distance between pallial line and the ventral shell margin, and shell width contributed most

to discriminating among the three Myrillls forms (Tables 17, 18). Standardized canonical

coefficients (Tables 17, 18) represem the amount by which canonical variates change for

each change of one standard deviation in the individual character, and the character with
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Fig. 32. First and second canonical variates of morphometric data from mussel
populations sampled in Bellevue exposed, Chance Cove exposed and
Chance Cove protected in eastern Newfoundland.
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Table 17. Standardized caDOIliQi coefficients ofthc se-.-en morphoc:netric chanlr;ters used in the
discriminant analysis. St3ndaniud coefficicm fiJr!he lim (St can I) and second (St can 2) canooi:caI.
v.uiare and die probability from the F statistic (P) for the three groups analyzed (M)'fillu blMJis. M.
tros~1l1Ms and hybrids) at Bellevue exposed.. Chance Cove eJqK)Sed and Chance Cove protected. • P
< 0.05: •• P < 0.01; ... P < 0.001.

Bcll","UC,,~

ShcJlh<:'~1

Shcllwillth
L..~lh 1>1' '''U''''or mwcle scar
Di'UlnCCbct"-ccnlLl1la'ior~Drlhepof'lerioraddu<;to,-mus<:le

s='..ndpooltclior~oflbeshell

o.~bct"~"'f\'''''tnl.lcd@"orlb::pofterior..dductormusclc

ocar"nd ,""tralsbdlmorgiD
Distane<:bctw""npallialliDcandlhc'>:nlR1shcllrnaJ'lin
~bc!.",..,.,.,thcumbaandlhcpolleriorcndot'lb::li~t

Shcllhcight
SiIo:llwidlh
L....."'1hofWl'L'l'iorrnuscl"scar
Distance bc,wL'..,n wu.:rior cdl!c of tile po.Ilmor .dductor musdc

scar arnJ J'lO>'Ic:rior mar@.in oftbe ~hcll

Di'Uinccbc,w,,,,nwnltalcdl!coflhepo.lI:1ior.ddU<;tormuscl,,
""".llI>Il """lnIl.heH rnariin

U..tanc"bclw ..,piIlh;allincandthc''''''tral.hcllmll.r~

Di.Ia"""bct", lhcwnboan<llhcpos~cndDfthclii"U"""'1

S"'lIh..~t

Shdl ..,dlh
Lmtl:!h.,(;anlenormldclcscar
Di'"""""'bo:t..·...,.,lllItmorqc(l(lhcpos\el1or.dduetormUKIc

'""'fo.odJlOliteriormarg.inoflhclllM:ll
Di.1I"1oCCbo:t"'~"""''''''InIIccl@.corthepostcrior.dductOfmus<:le

"""rllnd''''''InII.h"llmargin
Di.tanecbo:t...~=plllli~llineandthe,'l'llInlI.hcJlmall!in
Di.la1IC" bct",~--..., Ihc wnbo lind Ihcposleriorend ofthc: li~t

~.627 0.610
0.561 0,265
0.013 -0.059

0.498

0.200 0.139
-o.SSS -o.lS7
0.J66 O.J91

0.8OS .{I. 109
0.074 .(l.UI
0.224 0.164 ...

-0.024

0.251 O.S25
0.276 0.466
-0.5111 0.612

0.726 0.067
.(l.51! 0.029
0.17\ I.OH

0.07S

·~U!l o.on
0,497 .0.376
.().270 .(l.O7\
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Canonical variate 1

First and second canonical variates of shell morphometric data from (A), M.
edulis from Chance Cove exposed (CE), M. trossulus from Bellevue
exposed (BE), hybrids from Chance Cove protected (CP); (B), M. edulis
from CP, M. frossulus from CE and hybrids from BE, and (C), M. edulis
from BE, M. lros!mfm. from CP, and hybrids from CEo
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Table IS. Standardized canonical coefficients oflhe seven~ c:haracufS used in the
disaiminanl analysis.S~ ooefficiern fur !he first (St. can I) 3nd secood (St. all 2) canonit;al
variate and !he probability from die F statistic: (P) from the analysis of mill:ed indivWais (MJ'fibu
~.M. tronuJtu and hybrids) from different populations (Bellevue exposed (BE), Chance~
exposed (eE) and Chanu Cove protected (CP»_ .. p < O.OS: •• P < 0.01: ••• P < 0.001.

M. dMlis fromCP: M. ~&ornCEand hybnds from. BE.

Shdlh~'lJhl

Shcllwidih
L~-nl!1.hofanMiOl'mlW:l"scar

Distane"bt:lw........ >onterior0:4coflhepoilcrior...Jd..:lormlaC:l"
:tM:atand po>O'teriormarginotu.shdl

Dtltan<:cbdw"'-.... \=tnl edfrolltto! ~IddUCIormUllCI"
sc;u:and ''mlnl••bdl mmPa

~ bo.'\w...m p.Ui..llino: and dlc \'mnl ~II moqin
Dtstana: beI,•.-,:" .. Ihc umbo and lhc poncrior end ofdw lipmml

M. "tI..1is from CE: M. ...---.. &um BE and h~'bri<;b frcmCP

Shcllhe'I.t111
Shdl,,,,dlh

1-"fll!thof;onI~ ormUllCI"s<:u
Di.l.:lnccbct" nllRt...noredf-eofthepostc:rioradduclormWICI"

.carl&ndpo,nrnorlJlafl;inoflh.:.hl:1I
Dt<lan""b<;lw~""n\""InIIIXl@"ofthepooteriorldJlICtormWICle

:s<;;<ran<l'\.'lltnolshcllmargin
Di."'nccbo."t"-........ pIIl1i.ll..... andlhc."CnlnoI.h:lln\;lrgin
n ..uncc bo.."\w""n Ihc umbo and !he posterior end ofw lig;am.:nt

Shdlh..,lJhl
ShcUw-.d1h
l..",llUlofanl"OOfmusclc .....
Dista"""bctw(>,:n a.,lo:l"ior qe of the IlO'lCrioraclduclormuscl"

"""randpoo:terior~inoflhc:.hdl

Distane<:b..'1w~"'''''''''''lnIlcdl!.. oflhc:posll:lior.dductormllSCk
sc;Irllno.lwlllTalshellmal'l!;1l

Di."""""'bclw~"'''''plIl1ill.llinc:~thc:'=lnolshc:lImarg.ill

Di.\anl;;cbcIW....'llthc:umbolllldthcposll:lioren<!ofth.. 1il!"fll"lll

0.&79 .Q.16S
0.127 0.64~

0.209 .Q.lll

.0.162 .Q.on
0.152 0-276
.0.623 0.161

"-~I

O.HO 0.20S
-1.017 0.1~1

..(1.015 .Q.70S

0.177

0.079 -o.IH
0.326 0612
0."" 0.061

St.QYI2P

O.2#> O.J87
~.... 0.J17
0.001 0.•22

0.216 0.16J

.Q.418 0.H2
0.875 .Q.lI7

~."" -o.OI~
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Chance Cove exposed
Chance Cove protected
Belevueexposed
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Hybrids
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Fig. 34.
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Canonical variate 1

First and second canonical variates of shell morphometric data from (A), M.
edulis from Chance Cove exposed (CE), Chance Cove protected (CP),
Bellevue exposed (BE), (B), M. trossulus from CE, CP, BE and (C) hybrids
from CE, CP and BE
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the highest standardized oocfficicms contributes the mosI to the canonial function. For most

individuals there is in general great overlap in canonical variates (Figure 32. n. 34), but in

sites such as Chance Cove protected and Bdlevuc: exposed some individuals do provide 000

overlapping clusters for each species.

Figure 35 shows the sheil morphology and the coIOW" orthe innet" surface ofthe shell

for selected mussels with the most extreme canonical variate values for M. eduJis and M.

trussuluj' (sample collected at Bellevue protC(;ted in October 1995). The more elongated

shell shape and the darkest colour of the inner surface of the shell in M. trossulus ate the

most obvious characteristics in this non representative (biased) sample of mussels.

VIA. DISCUSSION

Despite a common environment the three fonns ofMytilus (M. edulis. M. trossuills

and hybrids), differ in their shell morphology when described by a muhivariate anal)'5is of

several shell characteristics, confinning previous claims that M. edulis and M. trosslI!us are

morphologically different (McDonald eI: aI., 1991; Mallei: and Carver, 1995), However, these

previous studies found a greater degree of morphological separation between M edlllis and

,'Yt traS,'lI/IIS than was apparent in the present study. Two main factors may account for the

[ower discriminatory power of the present study: the number of shell characters used, 7

rather than the 18 used by McDonald et: aI_ (1991) and, perhaps more importantly, the

sympatric origin of the populations in contrast to the allopatric single·species populations

analyzed by McDonald et al (1991). The enormous sheil plasttcity in mussels is well known

(Seed. 1973, 1992). which in a1lopatric populations can be enhanced (Gardner. 1996) to

produce larger differences in shell morphology due to specific local environmental

conditions. All the sites sampled in the present study contained a mixture of both species,

thus the exposure to conunon environmental conditions and hybridization (Chapter 1) may

have resulted in an increase in molllhologicaJ similarity. However, Mallet and Carver (1995)



Fig. 35.

",

Sample of the shell morphology from selected most extreme
canonical variale values for Mytillls edulis and M. trossulus for
a sample taken at Bellevue prOleeted in October 1995, also
showing the colour of the inner surface of the shell. First row: M.
edulis, second row: hybrids. third row: M. trossulus.
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reponed a hip degree ofdiscrimination between the rwo species (Mf!duJis - M tTossulus)

using almost the same shell trailS as those used in the present study, and their sample

populations. which contained both species and hybrids. were reared in a common locaJ

environment (from a commcrciaJ mussel farm). According to FaJco~ (1989) the growth of

individuals in a similar- environment reduces the variability in quantitative trailS.

In the present study, the incidence ofM. t!dlliis-M. troSSl/lus hybrids is lower than

that ofM. t!dlliis-M. gaJlopro~'i"cialishybrids in southwest England (Sanjuan et aI., 1994:

Hilbish CI aI., (994). Nevcrtheless, the identified hybrids in most samples in the present study

show the importance of these individuals (most of them having intermediate values between

the twO mussel species) in morphological. studies.. based exclusively on variation in shdl

trailS. because they may produce a canonical. variates plot showing a single cluster for a

Mytif/l~' hybrid zone. Furthermore, morphological studies, based exclusively on sheil tnlit

variation. may occasionaUy be used to identify mussel species on a local basis. when the

mussels arc sharing the same env;ronment. bUI such studies are less reliable over larger

geographical scales (Gosling. 1992a. 1992b).

Recenl studies ofgeographic variation in shell morphology in mussels. M. edldis and

A4. IrIJ.';'.'>1IIIIS (Innes and Bates, 1999), and in Ihe bay scallop, ArgopeCl1!II irradians (Wilbur

and Gaffuey. 1997), recognized me effect which any difference in size among indiv;duals may

have where the aim is determining variation in morphology. Innes and Bates (1999) pointed

out Ihat if the shells analyzed differ in length between the species, this may acuntuace

differences among species, even after standardization of length by log transformation. The

morphological separation among the three forms ofM)"Iilus found in the present study is not

confounded by differCOl:eS in shell size of the mussels., because lhe .size range of the

individuals sampled f~ the srudy was restricted 10 38-42 mm, and any further differences in

size were COlTected by the log·transfolmed length standardization (Mallet and Carver, 1995).

The mullivariale analysis was able, to a certain degree, 10 distinguish between M.

edlflis and M IrQnlllu.~. Similar resulls were oblained when M. edulis, M lrossulus and

hybrids were sampled from different sites, indicating lhal local environmenlal conditions
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bt'twecn die locations sampled were not large enough to influence shell mo'l'hoIogy among

the species.
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YO. GENERAL DISCUSSION

Previous studies on the M. edulis -M. /roSSI/Ills hybrid zone on the Atlantic coast of

Nonh America (McDonald et al.. 1991; Bates and Innes. 1995; Mallet and Carver, 1995;

Saavedra et al.. 1996) have confirmed the presence oflhe two species of mussels detected

initially by Koehn et &.I. (1984). Some ofthesc studies ~iallet and Carvel", 1995; Saavedra

e'l al.• 1996) found that lbedcgrec ofh)'bridizmon. within Lunenburg Bay, Nova Scotia. was

much less than the extent of hybridization lXCUning in the S.W. England hybrid zone

belween M edlliis and M. galloprovinc:ialis. Bates and Innes (1995) showed that most

populations of mussels on the east coast of Newfourw;lland consisted ofa mixture orM

eUII/is and M ~UIIlS, although. the distribution of a hybrid index based on three partially

diagnostic loci (Est-D. Pgm. Lap) provided no evidence for hybridization.

The present study, using four diagnostic markers (two allozyme loci and two PCR·

based DNA marleen). provided additional evidence for a mixture of the two species in

populations from four sites in eastern Newfoundland. funhcrmou.. n.J.ruraI hybrids (F I, f2

and bad:crosses) were detected at frequencies similar to !hose reponed for Nova Scotia by

Saavedra et aI. (1996), and much lower !han the values described for theM. eduUsandM.

gafluprrA';/lciaJis hybrid zone in Europe (Hilbish et aI.. 1994;Sanjuan et aI., 1994; Comesaila

and Sanjuan, 1997). This lower incidence of hybrids in Newfoundland could be partially

relaled 10 differences found in the timing of spawning belWeen the two species. M. edulis

had a major spawning event in late July while M. trossulus showed a "dribble" type of

spawning. resu.i1.ing in a sma1leI" chance for hybrid offspring to be produced than if spawning

between the IWO species were synchronized.However, more imponantly. interspecific

crosses ofM. Willis and M /rossUJ"s carried out in the laboratory showed that although the

percemage ofaetivated eggs after fertilization did not show significant differences between

any hybrid trosses and within species crosses, the percentage of abnonnallarvae was higher

in the former, suggesting also that hybrids are less fit than any of the pure species larvae.

There have also been studies (Rawson et aI., 1996b; Quesada et aI., 1998) claiming that
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some incompatibilities between mitochondrial and nuclear genomes in mus.sels could be

causing a higher frequency ofabnornulities and lower survival among FI hybrid larvae. This

suggestion is in accordance with results from the present study, in which mOSI natural

hybrids were backcrosses, M. /7Q..)3111Ils-biased in small mussels and M. edulis·biased in large

mussels. All these observations suggest that this (M. edulis-M. trossulus) hybrid zone is

maintained by a baJarw;e between dispersaJ and sdcction against hybrids at early stages afme

mussellife.qclt. which suppons the tension zone mood (Barton and Hewitt, 1985).

Anolhef interesting finding of the present study. similar to the S_W England hybrid

zone between M. edu/is and M. galloprm'illcialis, is that the rdative frequency of each

species is slrongly dependent upon size class. An increase in the frequency ofM, edufis

individuals and a decrease in the frequency ofM. Irossl/lus individuals with shell length was

observed at all silcs and locations sampled. This pattern could be attributable in part to a

differential growth rate. but this aspect was not studied in the present investigation.

However. Mallet and Carver (1995) reponed only small differences in gro....1h between M.

otd,,/is and M. lroSSlllus in Nova Scotia. which may suggest thai the observed changes in

species frequency with sheU length are due 10 differenlial sdection. Differential survival was

observed between June and Oaober thai affected mostly M. tromtlJlS, which may be related

to Ihe post-spawning monality often reponed in mussels (Heritage, 1983; Worrall and

Widdows. 1984; Skidmore and Chew. 1985; Emmett et ai" 1987). The dominance orM.

IroS.I'II/Wi in the smallest size classes for all samples suggests that Ihe larger number of

recruits orlhis species may be indicalive of a greater reproductive output. Indeed, a larger

CiVF was found in M. trossu/us indi\"iduals than in M. ed/l/is (hybrids being at intermediate

values). Nevenhe:less., funhu studies should be carried out in order to establish any

relalionship between differential monality between the species and reproductive and/or

physiological~s oftheir life-c:ydes.

The lire.hislory variation study showed that at the larval and early juvenile stages or

these mussels (M. cd"lis, M. Iro5311/II,\' and hybrids) there were no signiticant differences in

micro-distribution (between locations or between sites within location). However, at the
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adull Slage significant differences in the frequency of these species were found, which may

indicate differential survival ofM. ItduJis. M. (f"OSj,lIJ"s and bybrids related [0 environmental

factors al these sites. These observations are in accordance with the environmental gradient

model for the stability and maintenance of hybrid zones (Endler. 1977; Harrison and Rand,

1989: Cruzan and Arnold. 199); Wilhelm and Hilbish, 1998). Therefore, it seems that both

the tension zone modd and me environmenta.l gradient model are acting towards the stability

and maintenance on this hybrid zone. but operating at different times within the Iifc·hiSlOry

oflhese mussels. Ftnall'l. it is clear from m.iliivat'iate analysis ofshe:11 morphometries and twO

PCR-bascd marlccrs that M edulis and M trossulw are two genetically and morphologically

different fonns. As discussed by other authon. this distinctness warrants taxonomic

recognition at the species level based in the phylogenetic species concept (Koehn, 1991;

McDonald et aL 1991)

In comparison with the European hybrid zone between M. eduli5 and M.

galllJpro~';lIc;alis the information available on the Atlantic coast of Worth America hybrid

zone beno,'een M. edtlli5 and M. lTOssuftlS is very limited. Furtm studies on this hybrid zone

should include an analysis of growth in the two species and their hybrids to support or

disprove the hypothesis that the change in relative frequency of each species with size is due

to differential mortality. Also, physiological evaluation., especially the "scope for growth" and

biochemical examination ofthe soft tissues at different stages oftile life cycle orthese species

should be analyzed to find evKIence for any ecological differences, including nutrient storage

cycles. reproductive effort. and differential tolerance to environmental variables. Carefully

designed artificial crosses with larval. spat and juvenile rearing under controlled conditions

will also be important to detect any differential survival and/or growth pilnems at different

stages orthe lire-eycle orM. eduli5. M. tros.n,I,1S and their hybrids.
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lX. CONCLUSIONS

1.- The presence of two pure mussel speciesM. edulis L. and M. IrossufusGould

and their hybrids (FI, F2 and backcrosses) was detected using genetic markers at all

sampling sites. Hybrids consisted mostly of backcrosses that were M. trossulus

biased among small mussels and M edlllis·biased among large ones.

2.· A significant decrease in the frequency of hybrids wu found from larvae to

juveniles at all sites sampled (after pooling the number" of bolh species against

hybrids) indicating that there was §elective mortality againsc hybrids at this

transitional stage from pdagic larva to spat. supporting the temiion-zone mood.

However, hybrids also showed a lower viability at exposed sites. suPpol1ing the

environmental gradient modd. The overaJllow frequency of hybrids at the adult

stage « 8%) and the results of artificial hybridization in the laboratory, wruch

showed an increased proponion of abnormal larvae among interspecific crosses,

indicate strong selection against hybrids. and clearly show that these specific

genotypeS seem to be at a selective disadvantage. supporting the tension-zone model

for the early stages of the mussel Life-history.

J.- Significant spatial variation in the frequency of M. edulis. M. lroswlus and

hybrids was found, with a higher" frequency ofM tro.uulus at the most exposed sites.

This pattern was similar during the three consecutive years sampled, thus theTe was

little evidence for intennnual variation in recruitment in these aceas.

4._ Five ind,iyjduals were identified as FI hybrids, having heler-ozygous genotypes for

the four nuclear markers and heterospecific mitolypes. and only one F2 hybrid was

detected. due to the low frequency of mating expected among the very race FI

hybrids
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5.· None ofthe 281 indiv\dua!s(scored ",;mthe PCR-ba.sed mtDNA marker (COJII)

classified as pure sp«ies. based on four markers, contained mtDNA from the other

species. Thus it seems that the incompatibility between milochondrial and nuclear

genomes is greater among ",f. fro...sul/ls and M. edu/is than M. edu/is and M.

gulloprm'j'lCialis. This greater degree of rntDNA introgression observed in Europe

than in Nonh America may be due to a more extended period ofcontaCl between

lhese ,\-(yo/us species compared with Atlantic CUlada M. edulis and M. tr~ulus. a

greater divergence between these Mytillis species or perhaps that selection is

operating differently against each species on each continent.

6._ The use of four diagnostic markers reduced the number of individuals

misclassified. The addition or the two DNA markers to Ihe two enzyme markers

resulted in about IJ % of those individuals initially assigned to pure species being

reclassified as hybrids. The largest change wu a reclassification of pure M. trossulus

individuals to lronulus-biased backcrossed individwJs.

7._ In Atlanlic Canada, hybridization belwecnM edulisand M. lr~"Ulusis much

lower (8-26%) !han between M eduhs and M galloprovi"cialis at various locations

in Europe (2S-800,/e).

8.- The pre-spawning values of Ihe gamele volume fraction and fecundity were

significantly higher in M. Irossulus than in M. edulis and hybrids. The spawning

aClivity differed between species. M frossullls spawned ove- a prolonged period

(from eany summer to early autumn) while mosl M. edulis individuals s~wned

simullaneously in late July. Hybrid muSSC'ls exhibited spawning activity which was

more similar to M. (rQSSIIIIIS than to M. cdulis
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9.• Histological sections offemale and male hybrids ofM. edlllis and M. rroJSUlus

showed normal gonadal development. ripening and spawning, and in interspecific

crosses. the percentage of activated eggs after fenilization did not show significant

differences with pure line crosses.

10.- The relative frequency of each species was sr.rongly dependent upon size. M

rfflSSIll/lS was the predominant species in the smallest size classes for all samples. An

increase in the frequency ofM . .:dll/i" individuals and a decrease in the frequency of

M. IrussltlllS individuals with shell length was observed at all siles and locations

sampled. The change in frequency of both species with increasing size was gradual.

and the hybrid frequencies tended to de<:rease in large size classes. Oth~ studies

show only small differences in growth nte between M trassuilis and M. ed"lis.

which may suggest thai the observed changes in species frequency with shell length

could be due 10 differential survival

11.- High summer monality can be inferred from a drastic reduction in lhe frequency

orA-I. lTOSSUlu5 from June to October. especially at the protected sites. This occurs

predominantly in tI"IJSSds over 15 mm in sheU IengI.b which are reproductively active.

and may indicale lhal post-spawned M. trossulus are under considerable stress.

12.· This study demonstrales the reasibilily or applying molecular genetic techniques

10 early larval stages or marine bivalves. which has implications for popuillion

genetic analysis or natural populations. because using PeR-techniques such studies

can be extended 10 all stages and age classes.
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13.· Both intrinsic genetic factors at early stages of the mussel life.history and

extrinsic environmental factors at later su.ges influence the relative frequency ofM.

edulbi, M frosslI/uS and their hybrids at these locations in eastern Newfoundland.

14.• The null hypothesis that there is T10 differences between M. lroSSlllus and M.

ed,,/is life.history is refuted.
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