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ABSTRA Cf

Chromoso mal loci that are spec ifically act ive in the mouse embryonal

carcino ma stem cells were cloned by using a functional selectio n proced ure. The

pluripotent P19 embryonal carcinoma cells were transfected with an enhancer- trap

plasmid conta ining an enhancerless, inactive neomycin resistance gene and NEO ·

transformant cell lineswere isolated. When the cellswere inducedto differentiate,

most of the cell lines continued to expressthe neomycin resistance gene, however,

in some cell lines, the neomycin resistance gene became repressed. From the late r

group of cell lines, eight in total, the integrated transgene plus the flanking cellular

DNA seq uences were cloned. Three of the cloned fragments from the above

eight cell lines possessed a high NEO+.transforming enhance r activity in the

undifferentiated P19 cells. Among these three, two were inactive in differen tiated

P19 cells and NIH 3T3 cells, while the remain ing one was active in both these

differentia ted cell types. Further analysis of these stem cell specific enhancers

revealed that they were der ived from the stem-cel l specific Et-rly Trans poson-like

genes.

In order to search for the presence of genes in the above s.em cell specific

loci, a P19 genomic library was constructed and the prelnsertlo n regions at the

neomycin resista nce gene-integration sites were cloned from these cell lines. The

cloned DNA was analyzed for the presence of genes by Norther n blotting analysis.



Messages were detected in the Northern blots agai nst some of the loci, however.

their ide ntity as functional genes is ye t to be esta blished.

During the course of this investigation, I obse rved the presence of Ea rly

Tra nsposc n-like genes in three of the above loci. Restriction mapp ing of the

pre lnsertcn loci and the Southern hlot a nalysis of the DNA from mouse: testis,

parent P I9 ce lls, anti the three NEO' cell lines with the loc us-specific probe s,

provid ed direc t evide nce that the tmnsposon was inserted into these loci during

the expe riment al time-frame and therefore was movable in the mouse geno me.

Analysis of the cell ext racts from the three embry ona l carcinoma cell lines, Pl 9,

F9, lind PCC3 with II transposon-speclflc probe de tected extrach romosomal copies

of this tmnsposon only in the PI9 cells. Sout he rn hlot analysts of the DNA from

mouse germ cell and varjnus somatic cell lineages with the ends-specific tra nsposcn

probes indicated that there were no appare nt d ifferences in the tran sposon

integration sites betwee n the germ line and the soma, suggesting that transposition

of these Ern-like genes is strictly litem cell specinc and ceases to occur before

alloca tion of founder cells to the germ cell linea ge a nd somat ic lineages during

mouse embryogenesis. These results demonstrate that the early transposon-like genes

can act as a powe rful insertion mutagen in the founder cells of the mouse embryo.
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CHAPTER I

GENERAL INfRODUcnON

In this thesis. data are presented for the existence of chromosomal domains

thai are specifically active in the mouse embryonal carcinoma stem cells but nOI

in their differe ntiated derivatives. A functional selection procedure has been used

to clone such ste -n cell specific loci. I also present evidence that the stem cell

spe cific ea rly transposon-hke genes are movable in the mouse genome .

A fascina ting problem attracting considerable attention from biologists is that

of the program ming of development of an ani mal from a single cell to an adult.

One of the basic concepts of embryology is that ordered and precise changes in

the patterns of expression of genes, directly or indirectly, control the process of

development (see Davidson. 1976). Coenomabditis c: ~r1S. sea urchin, Xnl opus and

Drosophila have been utilised extensively in such developmental studies. In the past

five years, considerable attention has also been giver. to understand the molecular

aspects of development, such as the pattern s of expression of genes durin g

deve lopment, in mouse, a more complex mamm alian organism. The experiments

described in this thesis are relevent to this basic question of gene expression du ring

early mouse emb ryogenesis. In view of this, the events and some of the lmpon an t

aspects of emb ryogenesis of the mouse are briefly outlined here.



1.1) Early mouse development

Early development of the mouse begins with the fusion of a sperm with the

sperm receptor of an egg (see Wasserman, 1987) and the internalization of the

sperm. Twenty hours after fertilization, pronuclea r fusion takes place, and the

zygote, surrounde d by a transparent coal called the zona pellucida, begins its first

mitosis (see Sa lter, 1987).

Figure J-1 depicts the simplified cetl lineage relationships in ear ly mouse

development compiled from Gardne r (1978) and Soriano and Jaenisch (1986). The

zygote undergoes the first cell division within 24 h of fertilization to give rise to

the two-cell embryo. As development proceeds, the interval between the successive

cetl divisions gets shorter (unlike in Xenopus and Dro,mpl,ifa, where the cell cycle

slows down) and about 55 h after fertilization, the embryo, which now has 8 celts

or "blastomeres'', takes the form of a mulberry-shaped cluster. This 8 to 50 cell

stage is called the morula. Between the 8 and 16 celt stages, the blastome res

change their cohesiveness and become compacted together with tight junctions

forming betwee n the outer cells. This in effect sea ls off the interior of the moru la

from the external medium. The surface of the mor ula becomes smoother and more

nearly spherical. Soon afterwards, the internal intercellular spaces enlarge to create

a fluid-filled centra l cavity - the blastocoel-, and the embryo becomes what is called

the blastocyst (the 64 to 128 cell stage). This take s place 3.5 days post-coitum.



Figure I-I. Simplified cell lineage relations in early mouse development.

This fig'Jre is compiled from Gardner (1978) and Sor iano and Jaenisch (1986).

For simplicity, the contribution of cells from the primitive ectoderm lineage 10

extraembryonic structures namely yolk sac, placenta and allantois is nOI shown in

the figure.
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The format ion of the blastocyst represents the first overt differentiation of

an embryo and results in the fonnation of an oute r cell layer called the

trop hectoderm and the inner cell mass (ICM ). which is a n accumulat ion of cells

at one pole on the inside of tbe trophectoderm. Ar. devel opment proceeds, the

trophectoderm contributes to the placenta and the co mpone nts of the extra­

embryonic struc tures. Th ese are required for implanta tion of the blastocyst and

in the establishment of .he fetal re lationship with the mothe r in utero. The

pluripo tent cells o f the ICM, on the other hand. contribut e to the entire emb ryo

proper.

At about 4.5 days post feniflzaticn, the blastocyst h ready for implanta tion

in the uterus. Before implantation can proceed, the prot ective zona pell ucida of

the blastocyst must be shed. By this time. the trophectode rm has different iated

into two cell lineages: a ) the cyto-trophoblast, which goes on to encircle the cells

of the ICM, and b) the syncytio-trophoblast, a grou p of large multinuclea ted cells

which subseque ntly invade the lining of the uterus, in effe ct implant ing the blastocyst

into the uterine wa ll. A round this time, the ICM grows a nd gives rise to two

further cell types ; the primary endoderm, which is a differenti ated and

extraembryonic ce ll lineage that contributes to the extrae mbryonic structures, and

the plur ipotent pr imary ectode rm. which develops to form the entire fetus (this

description of the preimplnntauon stages of mouse e mbryogenes is was compiled



from Gardner and Papaioanno u, 1975;Johnson et al. 1977; Gardner, 1978;Martin,

1980; Soriano and Jaenisch,1986; and Darnell et fi/. 1986).

Ll.i) The allocation of the germ line

The next importa nt aspect of embryogenesis is the allocation of cells to the

germ cell lineage. The germ cell lineage is known to be der ived from the primitive

ectoderm (Gardner and Rossant, 1979). There is some confusion however, as to

when the determinatio n of cells of the primitive ectoder m to germ cell lineage

occurs. Snow and Monk (1983) suggested that, up to the time of gastrulation, the

cells of the primitive ectoderm are hipotential and may become either somatic or

germ cells depending upon what position they occupy in the egg cylinder. Soriano

and Jaenisch (1986), however, concluded that primordial ge rm cells are determined

early, before determination of somatic cell lineages has occu red. T hey infected 4­

16 cell preimplantatlon stage mouse embryos with M-MuLV (a retrovirus), and

analysed the correlat ion between the genetic transmission ot copies of the provirus

by the founder animal to the offspring and their presence in the somatic cells. A

positive correlation should be observed if cells are the alloca ted to germ line late

in tbe early-development (Soriano and Jaenisch, 1986). The results indicated

however that there was no correlation between the genetic transmission of the

proviruses and their presence in the somatic tissues in 17/38 proviruses. Ten



proviruses present in the soma of founder animals were not transmitted to the

offspring, and seven proviruses which were not dete cted in the somat ic tissues of

the founder were transmitted to offspring. The failure of embryonal carcinoma

ste m cells to colonize the germ cells in chirnaerlc mice, discussed in section 1.3.u

of this thesis, also supports the conclusion that primordial ge rm cells are determined

early in embryogenesis, befo re the soma.

The final body plan of the fetus is established at gast rulation, when a few

embryo founder cells proliferate to form the eggcylinder. T hese cells rapidly divide

during the next 24 h of pr imitive streak development (Snow, 1977) followed by

cell movements to generate the three primordial germ layers : the ectoderm, the

mesoderm, and the endoderm . Between the ",h and the lOth day after fertilization

the basic body plan of the mouse is established from the three germ layers and

the interactions between the m (see Gardner and Papaioannou, 1975; Darnell et al.

1986, for further details on the mouse postimplantatkm developme nt). Depe nding

upon the strain, the mouse is born after 19-20 days of gestation (Hogan et aL

1986).

The work described in this thesis is relevent 10 the diffe rentiatio n of the ICM

and/or embryonic ectoder ma l cells in mouse early develop ment, since the EC cell

line used in this study close ly resembles the cells of these stages, as described in

section 1.3.



1.2) Some molecular aspec ts of early embryogenesis in the mouse

Embryonic developme nt is generally viewed as a two step process;

determination of precursor cells to specific cell lineages followed by their

differentiation. "A cell is said to be determined once it has been instructed to ­

or once it has somehow de cided for itself - to become a specific cell type at some

future point" (Darne ll et al. 1986). The work by Gro udine and Weintraub (1982)

provides some insight into the process of determination. These researchers repor ted

that once induced, globin gene DNAase l-bypersensltive sites can be propagated

to daughter cells in the absence of the original inducing factors. The process of

determination was aptly summed up by Groudineand Weintra ub (1982), who wrote,

"certain specific dete rmina tive events arc Induced in precursor cells at ope time

in development and indepe ndent of the concurrent action of original inducing

influence, the effects of the se events are expressed in proge ny cells that begin overt

differentiation some lime later".

There arc many una nswered questions concern ing the molecular mechanisms

which underly the process of determination. Theoretically at least, one of the

following phenomen a could mediate the event of determinat ion:

i) Gene specific DNA rearr angements. Examples include the intensively studied

immunoglobulin a nd 'f -cel l receptor gene rear rangements (H ozumi and Tonegawa,



1976}, although similar ge ne specific rearrangements that might regulate

developme nt have not been demo nstra ted in eukaryotes .

ii) Chem ical mod ilications such as DNA methyla tion. For example, the embryonic

mouse fibroblas t cell line O HJ OTl/2 gives rise to myogenic, ad ipogen ic, and

chondrogenic clones following brief treat ment with the hypomethylating agent S­

azaeyt idine (Taylor and Jones, 1979); DNA fro m S-a:mcytidine-derived myogenic

101'1/2 clones convert normal lOTl/2 cells to myoblasts, while the DNA from

normal IOTI/2 cells do not {Koniecznyel al. 1986; Lasser et ai. 1986}. Th is would

imply tha t upo n hypome thylation, genes involved in the det e rmination pat hway are

activat ed and this state is propagated to da ughter cells, or to those ce lls transfecred

with the hypomet hylateu DNA. In fact, genes involved in myogenic lineage

determination and different iation have bee n isolated (MyoD l gene, Davis t l at.

1987; myd gene, Pinney tl at 1988) by functiona l selection proced ures.

iii} G ene amplification, as seen in the case of the bidirectiona l gen e amplitl caro n

of the chorion gene locus in Drosophila (Spradli ng and Mah owald, 1980) resulted

in the prod uction of large amounts of eggshell protein ....h ich are required.

iv) Gene deleti on. In the nematode Ascaris megatocephala, certain early

de ter minative e vents discr imina te be tween putative germ cell a nd soma tic cell
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progenito rs and a port ion of the genome is lost only in the somat ic cell progenitors

(see Browder, 1984).

v) Specific changes in chroma tin conformation, such as the locus activa tion domains

of the J3-globin gene locus (Grosve ld et al. 1987). This could thereby activa te or

suppress sels of genes involved in the determination pathway.

vi) Other determinative mechan isms, such as (a) maternal enccrs, (b) pro tein

modification, and (e) translationa l control:

a) Maternal effect genes are those for which absence from the materna l parent

of an embryo causes dramatic effects on the final body pattern of the fly Drosophila.

The activity of this class of genes offers perhaps one of the most stra ightforward

and simple ways of cell dete rminatio n during embryogenesis. A mat ernal effect

gene is transcribed during oogenesis and eithe r the mRNA or the tra nslated pro tein

product of the message is deposit ed in the egg. In Drosophila, the establishment

of the dorsal -ventra l and the posterior-anterior body axes of the embryo are

already dete rmined in the egg by the expression of sets of materna l effect genes

(Ingham, 1988; A nderson, 1987). Materna l determ ination of embryogenesis is also

seen in amphibians, sea urchin and in a variety of other organisms (Davidson, 1976).

A similar type of extensive spati al and tempora l organization of deve lopment of
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an embryo by materna l determinants, however, does not app ear to ta ke place in

mammals. A maternal inheritance of one or a few regulatory proteins, however,

which might be involved in the initial activatio n of the embryonic genome, cannot

be ruled out. For instance, circumstantia l evidence 10 support this view comes from

the work of Levey et al. (1978). They detected a significant amount of mRNA from

the maternal source (see section I.2 i of Ihis thesis) and it is possible that the

products of these messages could be activators of the embryonic genome . Th e need

for an early activation of the embryon ic genome for development to proceed in

mamm als (see section I.2.i), suggests that most embryonic det ermin ation and

differentiation in mammals is under the control of the embryonic genome itself.

Self reliance in the development of mammals has per haps been selecte d during

evolution to avoid the greate r risk of error which exists in (he maternal effect

pathwa y.

b) Protein modification could also have an importa nt role in the process of cell

det erminat ion. In the process of cell de termination, at least two types of protein

mod ifications could take place:

( 1) Pro tein phosphorylation. For instance, the yeas t heat shock gene promoter

binding factor, HSF, is present in ce lls irrespective of whether the ce lls a re heat

shocked or not. However, the HSF protei n is believed to be in an inactive form
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when the cells ar e not heat shocked (Sorger er ol. 1987; Sorger and Pelham , 1988).

Sorger and Peham (1988) repor ted that HSF prot ein becomes phosphorylate d at

elevated temperatures, As. a result, the protein appears to be converted to an

active form with the consequence of enhanced heat shock gene transcription

(Sorger and Pelham, 1988).

(2) Prot eolytic processing of proteins. Conversion of proteins from the inactive

to the active form by proteolytic cleavage is an important regulatory mechanism

in the activation of some enzymes. It has been suggested that proteolytic

modification of certain developmenta lly importa nt prot eins occurs in Drosop1lila

(DeLotto and Spieler, 1986; Chason and Anderson, 1989). For instance. dorsal­

vent ral pattern formation in Drosophila appears to require a cascade of prote olytic

cleavages (DeLo tto and Spierer, 1986). This is exemplified by the mate rna l effect

genes, Eo.ttcr, and Toll. Easter protein is a serine protease (Chasen and Anderson ,

1989) involved in dorsal-ventra ! formatio n during Drosophila embryogenesis. Th e

Toll protein on the other hand, specifies the polarity of the embryonic dorsal­

ventral pattern. It has been suggested that the Easter pro tein may proteolytically

activate the Toll prote in and affect the distribution of Toll protein in the embryo

during dorsa l-ventra l pattern formation (Chasan and Anderson, 1989).
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c) Translational control. The control of determ ination and differentiation during

embryogenesis can also occur at the translational level. For example, it has been

reported that in the sea clam, oocyte mRNAsare translated onlyafter fertilization

(Darnell et aJ. 1986).

The next prominent step in Ihe developmental history of a cell after

determination is the decision to enter a differentiation pathway, committment, as

it is called. For instance, when P19S18, an embryonal carcinoma cell line

(McBurney et al. 1982), is treated with DMSO for a period of 40 h, the cells

become committed to differentiate into muscle cells regardlessof the presence or

absence of the inducingagent(Edwards et al. 1983). While committment isa non­

visible event, differentiation is an overt phenomenon, where a determine d cell

acquires its specialised phenotype (Darnell et af. 1986). Sets of cell type specific

genes are activated and the phenotype and functional properties are maintained

thereafter and propagated to the progeny cells. In principle, determination,

cornmittme nt, and differentiation may simply represent the overlapp ing activities

of a series of different genes in time ami space, to produce a continuous set of

events (Darnell et af. 1986).

These terms and explanations are important because they are central to our

understanding of the molecular aspects of embryogenesis, some of which are

discussed below.
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I.2i ) Loss of totipotency and early determinative events during mammalian

embryogenesis

Embryogenesis is an unique process. In Xenopus (an amphibian) for

instance, the celebrated nuclear transpla ntatio n experiments performed by John

Gurdon (Gurdon, 1976) demonstrated that even nuclei from adult cells support

complete and normal development, although the ability 10 promote normal

development of an enucleated zygote decreases as the age of the donor nuclei

increases. In the mouse, however, the nuclear transplantation experiments

performed by McGrath and Soller ( 1984a), Surani el al. (1986) and Robl et 01.

(1986) showed that even nuclei from the four-cell singe, when transplanted into

an enucleated zygote, fail to support development. The ea rly determinative eve nts

in the nucleus therefore seem to have already taken place at this stage, with the

consequence of loss of totipotency (ability to form an entire organism, both

embryonic and extraembryonic; while pluripotcncy refers to the ability of cells to

form a limited number of lineages) and committment of embryonic cells to go

forward in the developmental pathway.

Atte mpts to explain this loss of totipotency have included important

experiments performed by McGrath and Solte r (1986). They introduced nuclei

from Bcell mouse embryos into oocytes which bad been activated (l.e., initiated

development by artificial stimuli such as pricking with a n. edle) 3 h earlier. The
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female. pronucleus was removed a few hours later. Control experimentswere also

done in which the oocytes rece ived pron uclei fro m the zygote. In the contro l group,

over 70 % deve loped to the b lastocyst stage while in the experimenta l embryo, 3%

reached morula-blastula stage. Although the success rate was low, this result

suggests that given sufficient time, the dete rminative events of early stages can be

reinitiated by an latet stage nucleus. In other words, the loss of totipotency in

mammals is not permanent. It should be noted however that this reversibility in

mouse is different fro m that of Xenopus. In the mouse, the rei nitiation of

development by a later stage nuclei or the reversib ility of ear ly det erminat ive eve nts

is a n artificia l situatio n, whereas, in Xenopus, ther e is in fact no loss of tot ipotency

of the nucle i. The above res ults also rule out the possibil ity that irreversible,

permanent modifications of the genome such as rea rrangement, deletio ns etc .

form the basis for the early dete rmina tive events and the loss of totipotency.

Further work done on mouse deve lopment by Ro bl el al. (1986) and Solt er

(1986) gives some explanation as to why the nuclei fro m the later stages fail to

reinitiate developmental progra ms. T hey enucleated 2-cell bla stomeres and fused

them with Bcell stage or reM nuclei. In the Rob l et al. (1986) study, where 2­

cell e nuclea ted embryos were fused with 8-cell nuclei, 51% formed blastocys ts, 42%

implanted nor ma lly, and out of II exam ined, 2 contained nor mally dev eloping

embryos. In So lter's exper iment, over 50% developed to the blastocyst stage ill

vitro.
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Th e above results of McGrath and Solre r (1986), Solter (1986), and Robt

et al.. ( 1986) indicat e tha i the loss of tot ipo tency in mammals reflects a requi rem en t

for a very precise temporal interactions between the embryonic genome and the

cytoplasm. Funh ermore, the faults of Robl et al.. ( 1986)and Solter (1986) indicat e

that in the mouse. there exists a mechanismsuchas the expression of genes specific

to the 2-cell stag e (Solter, 1987) or z-ceu stage specific mod ifications of cru cial

proteins (such as transacting regulatory proteins), which are essential to support

furt her embryonic development.

Of refevence here is the ques tion of whe n the embryonic genome begins its

activity. Several attempts have been made 10 answer this question. Most of the

experiments were performed by measurin g the incorpora tion of [JH)-Urid ine, by

cell free tran slat ion or R NA, by mo nitori ng the expression o r patern al isozyme

variants, or by using transcriptional inhib itors such as elpha-amanltln. By ana lysing

the incorporation of [JH1· Uridine, Mintz (1964) showed tha t R NA synthesis occ urs

in mouse embryos at the 2-cell stage. Th is obse rvation issupported by stud ies using

c -ama nitin, which blocks the cleavage o r 2-ce ll embryos (Braude et al. 1979).

Furthermore , Levey el al. (1978), using affinity chm matog raphy of [JHIUridine ­

labelled embryoni c R NA o n oligo(dT) -cellulose , detected newly synthe sized

pciya de nylatcd RNA in 2-cell mouse embryos , although a significant amoun t o r

mate rnal mR NA was also present. Also, Wud l and Chapman's ( i976) study

indicat es that the pater nal allele for p-g lucoron idase is synthesized in the a-cell
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stage. These studies therefore strongly suggest that zygotic transcription in the

mouse begins at the ea rly phase of the z-cet l stage . In addit ion 10 mRNA synthesis,

there is an indication that rRNA synthesis occurs in z-cell mouse embryos

(Knowland and Graham. 1972; Hilmanand Tasca, 1969).

From the above observations. it is possible to discern that there is a

correlat ion between the loss of totipo tency or the failure to reprogram development

Ly later stage nuclei , and the onset of transcrip tiona l act ivity of the embryo nic

genome. This indicates that in the mouse the embryonic genome most likely

intervenes in development as ear ly as the z-cell stage. This is consistent with the

idea that the transc riptiona l activity of the embryonic genome is part of z-cel l stage

specific determinative events that are req uired for further deve lopment of the

embryo.

Further support for the relationship between the onset of transcri ptional activity

of the embryonic genome and th e loss of totipotency is provide d by the wor k of

Calarco and Mclaren (1976), Crosby el al. (1988) and Willadsen (1987) with sheep

embryos. In sheep, embryonic transcriptional activity begins only at the 16-cell stage

(Crosby et al. 1988). Ultrastruc tural changes in nucleo li, a measure of active rRNA

synthesis, a re observed in 16-cell sheep embryos (Ca larco an d Mclaren, 1976) (as

opposed to 2-cell mouse embryos) . Consisten t with this observat ion, Willadse n

(1987) obtained results which show that in sheep, nuclei from eight or 16 cell stage

embryos , when transpla nted to enuclea ted eggs, were capab le of complete
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development. It is reasonable therefore to speculate that, in sheep, since the loss

of totipotency occurs later than in the mouse, the initial dete rminative events also

occur later.

In terms of transcriptional activity of the embryonic genome, the ea rly

determinative even ts and the loss of totipotency in mammals can be explained 85

follows; in the later stage donor nuclei transplanted 10 an enucleated zygote,

transcriptional factors are bound 10 their responder genes in stable transcript ional

complexes and an active g~ne expression program of a later stage is going on. In

contrast, those genes that are required for the earlier stages of development are

in an inact ive conforma tion in the later stages of development, and are thus

unavailable for the effector transcriptional factors from the acceptor cytoplasm when

the genome is transplanted to an enucleated zygote. This would result in the failure

of the reprogramming of the donor nuclei required for the reinitiation of

development.

In general, therefore, the loss of totipotency in mammals, which accompa nies

the onset of embryonic transcriptional activity, cell determination, commitment, and

different iation, indicates that compatibility in interactions bet ween the nucleus and

cytoplasm and among the cells of the embryo is absolutely required for normal

embryogenesis to occur. These are stage specific interactions, and they form the

basis for ea rly de terminative e..ents during embryogenesis. Th e experiments
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described in this thesis were dl'::gned to identi fy and isolate the gene(s) involved

in these intera ctions.

J.2ii) Oncogenes in Development

The idea that oncogenes, which cause or contribute to cancer,are genes that

regulate norma l growth, embryogenesis and cell differentiation is of recent origin

(Verma and co-workers, 1982, 1983; see the review by Adamson, 1987). Th ere

are several lines of evidence, both circumstantia l and direct, to suppo rt this view,

as discussed below.

A) The first line of evidence comes fro m the prop erties of protocncogene products:

( I) some prctooncogene products are nuclear in localization and have DNA

binding prop ertie s; examples include Myc, Myb, and Fos, (Adamson, 1987).

Furthermore, the Fos protein has been shown to be a transcriptional regulat or

(Diste l et al. 1987).

(2) some prot ooncoproteins are protein kineses (examples include c-Fms, c-Src, c­

Abl, c-Mos). Prot ein kinases a re genera llybelieved to play a role in developmental

decisions beca use they can either directly regulate genes (e.g., the catalytic region

of cAMP-depen dent pro tein kinase rransactivates genes containing cAMP-responsive

enhancers, R iahowol et al. 1988), or modify existing pro teins.
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(3) a few of the prot ooncogenes code for growth factors and growth factor

receptors (such as c-erb-b, corms, see the review by Adamson, 1987).

Proteins possessing the above properties are generally thought to be

important components of the circuitry of developmental processes.

B) The second line of evidence relating oncogenes to embryogenesis comes from

the well defined spati al and tempora l patterns of expression of protoon cogenes

during embryogenesis and cell differentiation. Mouse embryos showed persistant

expression of c-Ha-ras, c-Kl-ras, c-Ims, c-myc, c-fos, and c-sis (Muller et al. 1983;

Siama n and Cline. 1984). N-Myc and p53 are expressed in the embryo proper a t

high levels from impla ntation to the mid-gestation per iod (Jacobovlts et al. 1985;

Rogel et 01. 1985), COCosand c-fms are highly expressed in the extra-embryonic

membranes (M uller et al. 1983; Muller et 01. 1982), into] during mid-gestat ion period

and int-2 in the preimplantatl cn stages (Jacobovits a al. 1986). The above results

suggest that these protooncogenes play an important role dur ing embryogenesis.

C) The third line of evidence comes from the fact that abnormal express ion of the

protooncogenes during embryogenesis leads to malformation of tissues or organs.

For example, the pro tooncogene fos is normally expressed in adult bon e tissues,

however, deregulated c-fos expression (qualitatively norm al, but high level

expression) dur ing mouse embryogenesis leads to malformation of bone tissue

(Ulrich et al. ]986). There is some criticism however that interference of normal
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embryogenesis by deregulated expression of prolooncogenes maynot indicate that

they are principal embryogenesis genes, as this type of experiment often fails 10

distinguish direct from indirect ef fects.

D) The fourth line of evidence comes from similarity studies. That is, some of the

protooncogenes and developmental genes have similarityat the nucleic acid as well

as amino acid seque nce levels. For insta nce, Int-I, a mouse mammary oncogene

pr oduct (Nusse and Varmus, 1982) is similar to tt .c Drosophila develop me ntal gene,

Wingless (Rijsewijk et aL 1987). Anothe r oncogene product, e-Re! is 50% similar

to dorsal protein. D orsal gene is a n embryonic pola rity gene of Drosophila (Steward,

1987).

E) Ther e is furt her direct evidence to suppor t the oncogene-embryogenesis

connection. In Drosophila for example, "lethal giant larvae" gene mutat ion has been

isolated. The norma l allele contro ls growth and differentiation of ce lls of the optic

centres. Hetero zygous flies are normal but homozygous mutants develop invasive,

leth al neuroblastic tumors in the putative opt ic centr es (Ga rdner et al. 1982).

Ano ther vel)' interes ting examp le i; a heritable renal carcinoma of rats (Knudson,

1986). Her e the herer ozygotes show oncogenesis, but the homozygotes die at the

embryonic stage (Eker et at. 1981). In mouse, mutat ion at the white locus leads

to developmental abnormalities such as ste rility, macrocytic anemia, and lack of hair
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pigmentation. Chabot et al (1988) showed that the white locus gene is the

protooncogene, c-Kit, which encodes a transmembrane tyrosine kinase receptor.

In light of the eviden...• .v- scrlbed above, it is reasonable to assume that

developmental genes include at least some of the oncogenes and that their correct

expression (quantitative, temporal and spatial) is necessary for normal development.

In fact, the chance is very high that the type of regulatory genes we hoped 10 clone

i.e., active only in undifferen tiated, malignant embryonal carcinoma (EC) stern cells

but not in their differentiated derivatives (which are r.onmalignant}, would be

protooncogenes (see Introduction to Chapter III).

I.2iii) Homcobox-containing genes in development

Homeobox-containing genes are control genes which are active in the

establishment of the segmentation patte rn and in the specification of segment

identity (Gehring, 1985; Ouweneel, 1986). These were originallyisolated and studied

in Drosophila (McGinnis et al. 1 9S~; Scott and Weiner, 1984). The homeobox of

all homeobcx-ccnte lning genes has the same open reading frame and codes for a

highly basic domain of a protein, the homeodomain (Gehring, 1985). There is

convincing evidence based on mutational analysis (La ughon and Scott, 1984) and

NMR studies, that the homeodorrmincontains a DNA-binding helix-turn-hel ixmotif.

Th is suggests that proteins having a homeodomain would be good candidates for
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transcript ional regulators (reviewed recently by Levine and Hoey, 1988). For

instance, the fuslli tarazu (ftz) gene product is a site-de pendent tr anscriptional

activato r and in addition, regulat es it own transcription (auto regulat ion; Hiromi and

Gehring, 1987). Recently, Jaynes and O'Farell (1988) rep orted that the engra tled

gene pro duct, another homeodomain protein, counteracts the activa tion of f llSlti

larazu by compet ing for homeodomain hinding sites. They concluded that

homeodomain-containing proteins can bind to a common site and either activate

or repress transcript ion. Their results therefore provide experiment al support for

the generally accepted notion tha t 11 homeodomain allows a protein to bind to

DNA; however the specific effect exerted by the prot ein (activation or repression

of other genes) is a function of the remaining part of the pro tein, possibly mediat ed

by prote in-protein interaction. With variat ions in binding affinities to the target

DNA sequences being du e to vari ability in the amino acids of the homeodomains

among the proteins (Jaynes and O'Farell, lQ88;Levine and Hoey, 1988), the parent

proteins may control the activities of a range of overlapping genes in a fine-tuned

circuitry and effectively organize embryogenesis.

Information on the developmen tal role of home obox genes in rn! e (as well

as in amph ibians) has lagged behin d. It is generally speculat ed that they regulate

developme nt and differentiation by mechanisms similar to that of the homeotic

genes in Drosophila (Ge hring, 1987; Ingham. 1988). So far a number of mouse

homeob ox genes tha t share striking similarities with the homeo tic genes of
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Drosophila have been cloned and their expression patterns have been monitored

(Ha rt Cf al. 1985; Gaunt et al. 1986; Joyner and Martin, 1987; Holla nd and Hogan

1988). Not surprisingly, these homeobox genes exhibit spatia lly a nd temp orally

specificpatterns of expressionin the mouse embryoand adult structures. Recently,

Wolge muth et al. (1989) showe d for the first time that expression of a mamma lian

homeobcx gene, Hox-l .4, affects a developmental process. This gene is expressed

during the mid-gestation period of mouse development, but interestingly, its highest

leve l of expression is res tricted 10 developing male germ cells in the adu lt

(Wo lgemuth et al. 1987; Rub in et al. 1986; Wolgemuth et of. 1986). When the Hox­

1.4 gent' was overexpresse d in the embryonic gut of transge nic animals, this resu lted

in the abnormal gut development known as megacolon, which was inh eritable

(Wo lgemuth ct al. 1989).

An importan t advance in the study of mammalian homecbox-conrain lng

genes comes from the recent finding that the lympho id specific, octamer motif­

bind ing nuclear factor NF2 contains a homeodomein (Ko et al., 19R8). Th is finding

reinforces the notion that in mammalia ns also the homeo do matn-contalnfng proteins

are gene regulators. Thus the current emphasis on these genes, may soo n lead

to a better understa nding of their ro le in mammalian embryogenesis.



I.2.iv) Parental imprinting and Embryogenesis

This particular topic has no direct relevence to the work described in this

thesis. I include it, however, because of its contribution to o ur understanding of

gene expression programs during embryogenesis.

Parthenogenesis, i.e., development of an eggwithout fer tilization by a spe rm,

is not uncommon ar- ong releosts or birds. It was originally tho ught that

parthenogenesi s could also occur in mammalians, However, by using nuclear

transfer methods, McGrath and Salter (1984) and subsequently others (Barton 4?(

al. 1984; Surani, 1985; Surani et 01. 1986) demonstrated that embryos containing

two male or l NO female pronuclei always fail to develop normally beyond the

blastocyst stage. Embryos containing two female pronucld can implant a nd develop

into small embryos, but will not fully develop extraembryonic structures a nd

ultimately abort (Surani el 0/. 1986). Those embryos containing two male pronuclei

have normal extraembryonic structures bUI poorly developed embryonic parts

(Suran i, 1985). These results lead to the conclusion that the maternal genome is

impor tant in the development of the embryo proper and the paternal genome is

involved in the development of the extra embryonic membranes. This phen omenon

has come to be known as gametic or pare ntal imprinting.

Results obtained with genetic experiments (Sear le and Beechy, 1978:

Cuttanach and Kirk,198S; Cuuanach, 1986) indicate that portions o f several
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chromosomes are either active or inactive during development depend ing upon

the parental or igin. This means that firstly only one of the two parental alleles

is active, and secondly that the level of expression of a given gene is dependent

on parental origin (see also Solte r, 1987). One compelling evidence to support the

first poss ibility comes from the behaviour of the T-hp mutation of mouse (H airpin

tail, see Mcl.aren , 19·j~~) . The effects o f this nuclear defect (M cGrath and Solter,

1984b) are det ermined by the sex of the parent from which it is inherited. When

inherited from the female parent, it is letha l at the embryonic stage, whereas

embryos which inherit the muta tion from the male parent survive (Johnson, 1974).

The seco nd possibility is suppor ted, as Salte r (1987) pointed out, by the reciprocal

influence of chromoso me 11 on the growth of the embryo, in that , paterna l disomy

and ma ternal nullisomy (for chromoso me 11) offspring are bigger and paternal

nullisom y and maternal disomy newborns are smaller (Cutta nach and Kirk, 1985).

Furthe rmore, in nuclear transplan tation st udies, those embryos containing two female

pronuclei, and therefore having maternal disomy for chromosome 11, develop into

small em bryos (these ge,les can thus be called maternal genes).

Th ese findings lead to the question of what mechanism could accou nt for

parenta l imprint ing. There is an indication that different ial me thylation of specific

regions of chromosomes may be the mech anism of parental imprintin g (methylation

is believed to play a role in gene transcript ion). The restriction enzymes Hpall

or HIICII are sensitive to methylation inte rference. Provided a particular gene or
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a transgene has one of these enzyme sires, and there is a probe available for its

detection by Southern blot analysis, one can evaluate the methylation status of the

gene. A correlation can thus be established between the methylat ion state of a

gene and its parental derivation. Using this strategy, several laboratories have

re ported tha t certa in transgenes are hypometh ylated when inher ited from the father

and hypermet hylated when inher ited from the mother (Reik et of. 1987; Sapienza

el al. 1987; Swain et 01. 1987). This can be called a type I locus. Sapienza et al.

(1987) also found thai in one of the transgenic lines, the reverse is observed, i.e.,

sequences become more methylated after transmissionthrough the male germ line,

a type II locus. Based on the frequency of integration of transgenes into these two

types of loci in several experimen ts, it is likely that there are many fewer type II

loci than type I loci in the mouse genome. Interestingly, Swain et 01. ( t987) found

tha t their trnnsgene (Mye) was expressed only when it was pate rnally inherited and

only in the heart , although the gene was in the hypomethylated form in all tissues.

T hus there appear to be several levels of regulation of these genes, one of which

appears to be methylation.
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1.3) Emb ryonal Carcinoma cells and embryogenesis

The study described in this thesis employed an embryonal carcinoma cell

line. In view of this, I have described in the following some of the important

aspects of EC cells and why these cellsare useful in embryogenesis studies.

When an early mouse embryo is tran splanted to extrauterine sites such as

the kidney or testis of an adult, these embryos become disorganised and fo-m a

tumor (Damjanov et al. 1987; Martin, 1980) (this result possibly supports the

contention that oncogenesis and embryogenesi s are linked). The prol iferati ng,

malignant, undifferentiated stem cells of these tumors (teratocarcinomas) are known

as embryonal carcinoma cells. Be cell-tumors can arise naturally either when

oocytes undergo partheno genet ic development in situ or when the primordia l germ

cells abnormally proliferate in the test is (Steven s, 1975). In rece nt yea rs, increasing

numbers of investigators are using EC cells to study embryonic development. T here

are several reasons for this, some of which are described below:

a) Pluripotency: an EC tumor consists of a wide spectrum of cell types such as

tee th, fingers and hair (Martin, 1980) which have differentiated from the

proliferating EC cells. In other words, EC cells are pluripotent and can different iate

into many tissue types.
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b) Culture in vitro: EC cells can be cultu red in vitro without loss of their

pluripotency, or their normal chromosome constitution (see Martin, 1980).

c) Ditferentiati m invitro: EC cells can be made to differentiate in vurointo a wide

variety of tissue types,such as muscle cells, neurons, endoderm-like cells, parietal

endoderm , visceral endcd e rm, ere. using va rious drugs such as DMSO . RA. or RA

plus cAMP (see McBurney et al. 1982; Edwar ds et al. 1983; Martin, 1980; Strick land

and Mahdavi, 1978; Strickland et al. 1980). This ability 10 respond to chemi cal

agents and differentiate Into a particular lineage ill vitro can be used to study

cellular determin ation and differe ntiation and 10 clone genes which are import ant

in development.

d) Formation of chimaeras: in addit ion to th e above embryonic propert ies, Brinster

( 1974) demonst ated for the first time that Ee cells microinjected into blastocysts

contributed to the formation of chimner ic mice. In fact, EC cells ca n contr ibute

10 every tissue except germ cells in the chimeric mouse (see Martin, 1980). Of

relevence to explain the lack of germ cell colonization by Ee cells is the recent

finding by Soriano and Jaenisch ( 1986). Th ey concluded that the germ cells are

set aside before the soma. II is likely that Ee cells are equivalent to those

embryonic cells which are committed to somatic lineages and therefore represent

later cells in the developmental heirar chy (see Figure I-I). While the lack of germ

line colonization is a limita tion prevent ing the use of EC cells to create germ line

mutations, their pluripotential cap acity to differenti ate ;/1 vi /TO has been widely
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utilised to understand the molecular mecha nisms of e mbryogenesis and ce ll

differentiation.

I.3.i) Bqufvalen- e of EC ste m ce lls to embryo nic cell types

When EC stem cells are used 10 study the events of development, an

importa nt question that needs to be add .essed is the equivalence of EC cells to

various embryo nic cell types. Th is questi on can be answe red in the following way.

EC cell lines such as F9 monolayer cells, when treated with RA and dibutyryl

cAMP, different iate into parietal endoderm (Strickland and Mahdavi, 1978). Whe n

small aggregat es of cells are trea ted with RA alone, they differentiat e into visce ral

endoderm (H ogan et al. 1981). It is believed that both parietal and visceral

endoderm a re derived from the commo n bipct en tial precursor, primary endoderm

(see Figure 1-1) (see Gardne r, 1978). Strickland and Mahdavi (1978) howeve r,

showed that addi tion of a low ccnce ntratkm of RA 10 P9 monolayers induce s the m

10 d ifferentia te 1:110 primary endoderm-like cells. If we take these thr ee sets of

results, it is likely that F9 cells re semble the cells of the ICM. This contention is

supported by the ill vitro developmen t pattern of anothe r Eecell line, PSA~1,

which closely resemb le cultured ICM cells in that both form embryoid bodies (an

embryoid body consists of an ou ter diffe rentiated endoder m cell layer and inner
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pluripotential embryonal carcinoma cells, in the form of an aggregate with

resemblance to the fetal portion of a 5-day old embryo)(Martin et al. 1977).

On the other hand, three lines of evidence argue that EC cells represent

a late phase of primitive ectoderm, after the allocation of cells to the germ line

(see Figure I-I). First, a comparison of proteins synthesized by early embryonic

cells and EC cells indicate that Ee cells arc most similar 10 primary ectoderm

(Martin et al. 1978). Second, Diwan and Stevens (1976) reported that isolated

primary ectoderm grafted to an extrauterine site will give rise to a teratomato us

tumor. Th ird, Ee cells lack the ability to colonize the germ line. Furthermore,

Stevens (1982; and references therein) concluded that Ee cells are morphologically,

antigenically,biochemically, and in developmental potentia l equivalent to embryonic

ectoderm. If one is to conclude that EC cells are indeed equivalent to embryonic

cells of the pr imary ectoderm, it is difficult to explain the results with F9 cells

discussed above. Since there is a great heterogeneity among the various EC cell

lines (see Chapter II), it is possible that F9 represents cells of the ICM.

Alternatively, it is possible that chromosomal rearrangements or other types of

events have occurred in such a way that F9 cells are able to respond to chemical

inducers under different culture conditions (see above) and mimic the behaviour

of ICM cells. In Ihis view, the failure of Eecells to colonize the germ line would

not be surprising as cells carrying chromosomal aberra tions are generally selected

against during the formation of the germ line.
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I.3.ii) Kinetics of differentiation of EC cells

At, stated above, EC cells are called pluripotent because they can be

differen tiate d tn vitro into a spectrum of ce ll types, eit her spontaneo usely (cell lines

such as PSA·l ) or with chemical inducers (cell lines such as F9, PI9). However,

not all EC cell lines differentiate into a wide varie ty of cell types. Some can

differentia te into only one or two cell types (F9 cells for instance). There are cell

lines which are ca Jled nullipotent, i.e. incapable of diffe rentiation I'll vivoor ill vitro

(Martin, 1975), and cell lines which form embryoid bod ies first and then differentiate

into several lineages (Marlin and Evans, 1975). Anoth er pluripotent celtline, PI9

(McBurney and Rogers, 1982), the cellline used in this study, can differentiate into

(mainly) neurons and astroglte in the presence of retinoie acid (Jones-Vuteneoe

et al. 1982) and into fibroblasts and cardiac and skeletal muscle cells in the presence

of DMSO (McBurney et al. 1982). Furthermor e, when Pt 9 cells are treated with

very high doses of DMSO, the cells differentiate into neurons (Ed wards et ol.

1983) and low doses of RA cause differentiation to muscle cells (Edwards and

McBurney, 1983). It thus appears there is a fine balance of interactions among

proteins encoded by genes which are responsive to these inducers. It is also

interesting to note that PI 9 cell aggregate s trea ted ....ith both RA and DMSO

differentiate into neurons (McBurney e/ al. 1982). This indicates that neurogenic

genes are probably dominant. It is generally thought that PI9 cells are less
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determined and represent earlier stages of embryogenesis compared to other Ee

cell lines. However, I would like to point out that one could also view P19 cells

as having greater plasticity in terms of developmental potential, akin to embryonic

cells of the organogenesis stage.

I! appears that cell aggrejat lon is an important factor in the differentiation

of Ee stem cells. The cells have to be cultured at high local density either as

dense rncnclayers or as aggregates in order to differentiate. For example, Martin

and Evans (lS75) described some Ee clonal cell lines which formed embryoid

bodies (see Martin and Evans, 1975). If these embryoid bodies are allowed to

attach to tissue culture plates, they differentiate into car tilage, muscle, and

pigmented epi thelium.

When P19 cells are cultured as mcnclayers in the presence of DMSQ

(which induces aggregates of P19 cells to differentiate into fibroblasts and muscle

cells), no different iation is observed even after 20 days in culture. If these 20 day

old cells are then aggregated, however, they form fibroblasts and muscle cells

(McBurney et al. 1982). These findings seem to reflect some kind of position effect

or cell-to-cell interaction while the cells are in three dimensional multicellular

aggregates. This may have a fundamental role in the processes of cell

determina tion and committme nt. Also, this situation is perhaps similar to the

requirement for cell-to-cell interaction and commmicetton through gap junctions,

which occurs during normal embryogenesis and without which embryonic
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development could not take place (see for example, Lee et af. 19R7, and reference s

therein ).

104) Transposable genetic elements and DNA transposition

In simple terms, tran sposons can be defined as mobile genet ic elements, which

move from one location to another in the genome. Barbar a McClintock was the

first person to formu late II hypothesis to explain the transposition event and lest

it in maize plants. She was able to conclude that there are genetic units, controlling

elements, as she called th em, which are mobile within the cell (Mcclin tock, 1952).

She observed that they are associated with controlled chromosomal breakages,

regulation of gene expr ession, insertional mutagen icity, et c. Since then, much work

has been done in this field and transpcsons have been discovered in almost in

every class of organisms (see Cold Spring Harbour symposium on the movable

genetic elements, part I and 11), including humans (Paulson et al. 1985).

In recent years, transposons have been classified in-c two categories, which

applies to both eukaryotic and prokaryotic elements, based on the mechanism of

transposition (Kuff et al. 1983; Finnegan, 1989). Type I elements are those for

which the transposition mechan ism involves cycles of reverse transcription and

insert ion of the wpy DNA. Generally, linear extrachromosomal DNA copies of

the reverse-transcribed RNA will be pre sent in this type of transposition. The Type
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II transposition events do not involve an RNA intermed iate . Instead, they involve

a direct transposition fro m DNA to DNA. The extrachromosomal copies here

include linear, circular, a nd supercolled forms. There are two recognised sub­

mechanisms for the Type II event. In one mechanism, the tra nsposon is exised

from one location in the genome and the same DNA is integrated elsewhere in

thegenomeina conservativeprocess(examplesincludethe Pcelement ofDrosophila,

and Tel in Caenomabduis etegans, see Finnegan, 1989; Shapiro, 1979; Cales and

Miller, 1980). In the se cond type, which is ca lled a rep licative or duplicative

transposition event, the trans poson is replicated and the rep licated copy is inserted

somewhere else in the genome (see Federoff, 1983) (exam ples include the IS, Tn,

fold-back and T V eleme nts, see Finnegan, 1989). Because of this mobility within

the genome, transposons cause chromosomal rea rrange men ts such as insertion

rearrangement, deletio ns, inversions, translocatlcns, duplicat ions, etc.

Below is a brief description of transposable genetic units that have been well

characte rized.

1.4.i) Th e Type I eleme nts

T he transposition of the e lements listed below is via a n RNA intermediate :

(a ) Retrovirus-like eleme-ts. Akin to retroviral LTRs, the e lements of this category

have direct repeats at the ends and a putative primer bindi ng site at the left LTR.
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The DNA between the LTRs has open reading frames which encode genes for

group specific antigen (gag), reverse transcriptase, and another prote in (see

Finnegan, 1989). The members of this family aTC genep:ly about 6-kb long, and

the sequences of different copies of the same clement are found to be variable

(see Lueders and Kuff, 1980; 000 et at 1980; Brulet et al 1983). This

heterogeneitymaybedue to an error-pronereverse transcriptase enzyme. Members

of this class include the ETn and lAP in mouse, the copia family in Drosophila,

the Ty elemen t of yeast, and THE elements in humans (see Flavell and Ish­

Horowlcz, 1981; Temln, 1980; Paulson et al. 1985).

(b) Non-viral typeI elements. The leon non-viral refers to the absence of terminal

direct repeals, unlike u-e retrovirus-likeelements. These are also about6-kb long.

but varying lengths of DNA f. om the S' end is often fou nd to be dek.ted in these

elements (Finnegan, 1989). Th ese elements have an open read ing frame for the

gag protein and another for reverse transcriptase. Th e members of th is class

include the jockey. l, F, and G elements in Drosophila, t he Cin4 element in maize,

and the Lt ele ments in mammals (see Finnegan, 1989) .

IA.ii) The Type II e lements

The transpo sit ion of members of this class doe s not involve an RNA

intermediate; instead these transpose directly from D NA 10 DNA. The exact
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mechanism of transposition is not known. This Type of element is subdivided as

follows:

(a) Elements with short terminal repeats. The type II elements of this class have

characteristically short inverted repeats at their ends. The internal DNA codes for

at leas t one protein, the transposase. Members of this class include the hobo and

P. elements of Drosophila, the Tel element in Caenorabduis elegans, AcIDs and

SpmlEn elements in maize (see Finnegan, 1989).

(b) Elements with long terminal repeats. Members of this class have long inverted

repea ts at their ends. For example, the Mu element in maize has 215 bp terminal

repeats, the DIRS element of Dictyonelium discaideum has 330 bp repeats.

Members of this class are of varying lengths. Some encode a putative reverse

transcriprase in the terminal repeat (e.g. Mu element) and therefore do not fit

exactly into any of the above classes. Examples of this type include the TV element

of sea urchin, and the Fold Back element of Drosophila.

1.4.iii) Transposo ns and gene regulation

The transposons were discovered because of their effects on the expression

patterns of genes. Over the past years, datu have been obtained to shed light on

the mechanisn by which these mobile genetic units influence gene regulation.

In gene ral, a transposon can affect a gene by a) insertion into the gene itself,
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usually destroying the preexisting gene func tion, or by b) insert ion next to a gene

in to a place from where it ca n alte r transcription, bUI not the function of the gene

prod uct.

In the lite rature, several genet ically ~II characterised exam ples have been

reported for insertion mutagenesis of a gene by a transposon. Two examples are

the dilute locus insertion mutation (Copela nd cI al. 1983) and the hairless muta tion

{Stcye et at. 1988) in the mouse. These mutations have bee n shown to be caused

by the insertion of an endoge nous proviru s into th e genes (en dogenous prov iruses

a re also groupe d with transposable ge netic units, see Varm us, 1983). Both destroy

the gene function by insert ing into the prot ein coding sequence.

Another example is Ihe insertion of the intracisterna l A-particle gene (lAP).

a mobile genetic unit (Kuff el aL 1983). into the mouse immunoglohin k-light chain

ge ne at the intervening sequ ence s (Hawley et al. 1982). Th is resulted in a defect

in k· light chain prod uction .

Moditicatlon of gene regulation by inserti on next to the gene, without

de stroying the function of the gene product. entails complica ted molecular

mechan isms. An example is the insertion mutage nesis in Drosophila caused by a

mobile gen etic unit called gypsy (a copla fa mily member) in yellow a nd hairy wing

suppressor mutati ons. Th e gypsy eleme nt was found to be inse rted upstream of

the promoter of the yellow gene (Parkhurst and Cor ces, 19R6). Th is results in the

dec rease d expre ssion of the yellow gene with the consequence of alte red cuticle
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colouration. One is tempted to speculate that the gypsy transcriptional activity in

the vicinity of the yellow promoter interferes with the yellow gene transcription by

co.npeting for transcriptional factors, particularly if the gypsy element contains a

"short -distance" transcriptional enhancer.

Parkhurst e t al. (1988) provided another explanation for the original

mutat ion. The yellow mutat ion can be suppressed by gypsy element insertion

mutagenesis at another locus, called suppressor of hairy wing, su(Hw). Parkhurst

et al. (1988) showed that the su(Hw) protein is a gypsy enhancer binding protei n.

The insertion of gypsy at su( Hw) interferes with the gypsy transcription. This

effectively reduces the yellow gene transcription and restores the original mutation.

Park hurst et al. ( 1988) suggested that yellow gene enhancer -sutl-lw) protein

interact ion changes the chromat in organization and reduces transcription from the

yellow promoter.

One importan t point that shou ld be mentioned here is the conseque nce .,f

transposons having tra nscriptional enha ncers within their genetic units (see Chapters

II an d IV of this thesis). In particular , enhancers can activate a heterologous gene

from a distance, in an orientation-inde pendent manner, from a position either 3'

or 5' of the gene. Insertion of a memher of the class of transposons which have

enha ncers, next to a gene can have a profound effect on the expression of that

gene . For example, the insertion of an lAP genome next to the Ren-2 gene in

mouse resulted in the enhanced expression of the Ren-z gene (Burt et al. 1984).
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It is likely that these lAPs have an e nhancer within their genetic un it, although th is

has yet to be uncovered. Another example is the provirus-conferred androgen

regulation of the sex-limited protein (Sip) gene in mouse (Stavenhage n and Robins,

1988). An ancient proviral 5' LTR whichcontains an androgen-responsive enhancer

was found to be inserted 2·kb upstream of the sip gene, and in effect regulated

Sip expression (Stavenhagen and Robins, 1988).

1.'1.w) Tran sposons in evolution and de velopmen t

There are three aspects of transposc ns which a re of particula r significance

to evolution and development. The first is the ability of transposable clements to

a ffect genes without destroying the coding seque nces and there fore the preexisting

function of the prote in. The second is the transposition from a nd into a gene (see

for example Schwara-Sommer e 01. ( 1985). The third is the DNA rearrangements

such as dele tions, duplicat ions, a nd translocarlons, which are caused by the

tra nsposition itself. However , a ny DNA changes caused by tran sposons are

subjected to natural selection. That is, those which have deleterio us effects on the

organism , would be subjected 10 negat ive selection. On the other hand, any changes

that are adva ntageous to the o rganism would be positively selected. Transpositions

which affected gene expression in a less drastic way, so that the chang es were not

subjected to strong selective forces, would create diversity within the species.
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I will discuss the example of P· M hybrid dysgene sis her e. This phe nomenon ,

which is under genetic control (see below ), is impo rtant fro m both the evo lutionary

and develop mental point of view. P-M hybrid dysgen esis in Drosophilamelanogasicr

is brought about by a family of transposo ns called P elements (Ellgt" !~. 1979; O'Hare

and Rubin, 1983). Strains of Flieswhich do not have Pcetements are referred to

as the M strains. When P elements are introduced into an M strain by crossing

Pcstrain males to M-strain females, Pceleme nt transposition is stimulated and hybrid

dysgenesis occurs in the germ line of the offspring (see Pubfn et al. 1985). T hese

dysgenic offspring have a high incidence of sterility and show chromosomal

rearrangem ents only in their germ line.

The most important point here is that mutagenesis of the germline occurs.

Th is can introduce favorable as well as harmful mutations that might influence

development in the offspring. At the same time, it is reasonable to hypothesize

that mutations that have minor effects can also occur during dysgenesis. In fact,

lines of Drosophila subjected to P-M hybrid dysgenesis showing more variability in

abdo minal bristle numbers compared to normal flies have been reported (Mackay,

1985). This type of mutation, which may not be subjected to strong selective

pressure, may have a role in species diversity and genetic variability. The direct

participation of transposcns or DNA transpositions in eukaryotic embryonic

development however, does not appe ar to take place, as judged from nuclear

transfe r stud ies.



42

An important aspect of transposons that has been utilised in developmental

studies is that they can be used as gene transfer vectors. Spradling and Rubin

(1982a, b), using the P-element transposon of Drosophila as a vector , were able

to introduce cloned genes into the germ line at a high frequency. The cloned gene

was inserted between the short inverted repeats of the Pvelement and the n

rnicro injected into the posterior pole of an early embryo. This procedure has been

wide ly used in studying Drosophila embryogenesis (see for example, Kuziora and

McGinnis, 1988). It can also be used to transfer genes in higher eukaryotes using

othe r transposons, except that the introduced gene will not be specific 10 the

germ line as in the case of P-element mediated gene introduction. An att ractive

syste m in the mouse would be to use the ET n to introduce genes to embryos.

Since the expression of the ETn is specific to early embryonic cells (see Chapt er

IV of this thes is), the expression of a gene introduced under ETn regulation would

also be stem cell specific. T his would allow one to manipula te gene expression

programs specifically in the founder cells of the embryo.

15) Statement on the research problem

EC cells, as described above, closely resemble stem cells of the early mouse

embryo , and can differen tiate into cells similar 10 definitive embryonic cells.

Therefore, EC cells have provided a useful system for studying embryogenes is



43

(Martin, 1980). Understanding the first stages of embryogenesis at a molecular

level and the mechanism that regulates gene expression during early development

requires (a) the isolation of genes that are differentially expressed when the earliest

decisions for the differentiation are made, and (b) the cis acting and trans acting

proteins that control their expression. In recent years, several genes have been

isolate d that are differentially expressed, such as laminin and type IV collagen for

parieta l endode rm and c -fetoprotetn for visceral endoderm. These genes are

expressed during later stages of development (Coope r et at. 1983; Dziadek and

Adamson, 1978) and are unlikely 10 be involved in the initial process of

determ ination. Thus it is of interest to isolat e and study genes whose expression

is regulated in the ea rliest stages of developme nt. Except for one unknown gene

(Stace y and Evans, 1984), which was not characterized in detail, no genes or

regulatory e lements which are specifically active in the pluripotent embryonic stem

cells of an earlier stage have been isola ted.

Stem cell specificity of gene expression would mean that the genes are

expressed only in undifferenti ated stem cells (due to their regulatory systems) but

would be shut off at the onset of differentia tion. This type of gene may include

regula tory genes which are involved in the expression of other genes and might be

required to maintain the undifferentiated pluripotent state of ste m cells. Inactivation

of such genes may be necessary for the cells to undergo differe ntiation. In the past,

Levine et al. (1984) and others (lkuma et al. 1986 and references therein) have
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attemp ted to isolate such stem-cell specific genes. Their approac h was to isolate

specificeDNA clonesfrom EC eDNAlibrariesby a differential plaque hybridization

procedure. However, these attem pts have not been successful and candidates for

regulatory genes were nor identified.

Another approach adopted by Walter Gehring and co-workers in Drosop hila

(O'Ka ne and Gehring, 1987) and Surani and colleagues in mouse (Allen et 01. 1988)

to identify diffe rentially expressed genes was to mark the chromosomal loci with

the ucZ gene and follow the expression pattern of this transgene during

embryogenesis. Those ct.romosomal loci which support the transgene in a

tempora lly andlor spa tially interesting manner can be cloned using the transgene

as probe and a full molecular analysis at the integratio n sites can he made. Again,

neither of these studies identified any chromosoma l loci or genes that are specifically

active in embryonic stem cells.

1.5.i) Specific object ives

The specific objectives of this work were:

l } to obta in evidence for the existence (If regions of the mouse genome that

are active in undifferentiated stem cells hut not in their differ entia ted

derivat ives.
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2) to clone such loci using recombinant DNA technology and to:

characterise them by searching for the presence of transcriptional

enhancers,

b. characterize the enhancers in terms of stem cell stage specificity, and

search for the presence at these loci of stem cell specific genes.
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CHAPTER II

CLONING OF MOU SE CfIROMOSOMAL LOCI SPECIFICALLY ACTIVE

IN EMBRYONAL CARCINOMA STEM CELIS

11.1) INTRODUcnON

Dete rmination and differentiation dur ing embryogenesis is be lieved to be

directed by a well defined programme of gene expression. There are reasons to

believe tha i this may he influenced by active chromosoma l domains. For instance,

using a tra nsgene (an exogenous gene) as a probe, O'Ka ne and Gehring (1987)

in Dro.mpl,ila and Surani and co-workers in mouse (Allen et aJ. 1988) showed that

expression of an exogenous ly introduced transgene during developme nt is mrluenced

by active chromosomal do mains. In addition , Jaenfsch and co-workers (Jaenisc h

et al. 1981; Barklts et at. 1986) had reported the prese nce of chromosomal loci in

pre-implantat ion mouse embryos and in und ifferentiated EC cells; these loci were

special in that they allowed the expression of exogenous ly introduced Moloney

leukaemia virus, despite the fact that bo th preirnplantutio n embryos and

undifferen tiated EC cells m e refractive 10 viral genome expression {Iaenisc h an d

Berns, 1977; Stewa rt et 01. 191'12). The concep t of an active (o r an inact ive)

chromosomal do main as a dornirmnt force in regulati ng gene express ion may be
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open to criticism, (effect as opposed to cause) but the finding by Grosveld and co­

workers that ,a-globin gene expression is regula ted by ' locus activation domains '

(Gro sveld e/ 01. 1987; Talbot et al., 1989) dem onstra ted such a possibility.

Whether it is the state of a chromosomal domain that det ermines the gene

activity or conve rsely, the activity of a gene which determines the state of the

chromosomal domain, it is likely that in such domains or in the vicinity of such

domains, gene s exist. These chromosomal loci can be dete cted using transgenes

which integra te randomly throughout the genome, since their chromosoma l position

can influence the ir expression pattern (Palmiter and Brinster, 1986; Jaenisch et al.

1981; Lacyet al. 1983; O'Ken e and G ehring. 1987; Allen et af. 1988; Grosveld et

al. 1987 and the references therein). When such domains <Ire identified, the

tra nsgene can be used as a genetic ma rker from which a full molecular analysis

of the integra tion sites could he made. This would then lead to the identification

of endogenous genes or regulatory sequences that were responsible for the transgene

position-effects observed.

In this work, we sought \0 explore the above phenomenon and to isolate

genes whose expression is specific to stem cells. Stem cell specific genes would

be active in undifferentia ted stem cells but would be inactivated at the onset of

differentiation. Such genes may be important for maintaining the pluripotency of

embryonic ce lls. Inactivat ion of the se genes might be necessary in the cell

dete rmination and differentiat ion into lineages. The chromosomal regions that
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contain such genes will therefore be inactivefollowingdifferentiation, and it would

be possible to isolate such regions using a selectab le ma rker tra nsgene as a probe.

As a first step, I wished to isolate mouse chromosoma l domains that are specifica lly

active in the stem cells with a functional selection procedure using the cis-activation

dependent Neomycin resistance gene (Nea-R) constructas the dominant selectable

transgene marker. Associated genes can subsequentlybe identified. The selection

procedure is based on the observation that an "inactive"enhancerlessgene can be

activated if it integrates near a n endogenous e nhancer or , by other cis activation

mechanisms (H amada, 1986a) . Previously, this method was applied to HeLa ce lls

and two enha ncer ele ments were isola ted (Hamada, 1986b; Swift et al. 1987). In

the present study, by applying the same procedu re to a murine e mbryonal carcinoma

cell line, chro moso mal loci specifically active in the EC ste m cells have been

successfully isolated.

11.2) MATERIALS AND METHODS

In the following paragra phs, the help received from H . Hamad a has bee n

acknowledged wherever applicable.



49

n.2.i) Cells, Plasmids and Phage Vectors

The cell line P l9S 18 (McBurney and Rogers, 1982), a pluripo tent EC cell

line used in this study to isolate stem cell specific loci, was provided by Dr.

McBurney of the University of Ottawa, Canada. The undifferentiated PI9 cells

were ma intained in a -Minimum Eagle's Medium (M EM) containing 10% fetal calf

serum as described previously (Rudnik! and McBurney, 1987).

The plasmid pAlOneo used in this study as a trap to select stem cell specific

loci was constructed by ligating the Hindlll ·BamHI 2.2 kilobase (k b) fragmen t from

pSV2neo (Southern and Berg., 1982) to the HilldllI- BamH I 4kb-fragment from

pAlOcat (Laimins et 01. 1984). T he promoterless plasmid pOneo was constructed

by deleting the SV 40 early prom oter from pAlOneo, by subcloning BamHI -Hilld lll

4kb-frngment from pA lOneo into puC 12 vector.

The phage vectors used in this study were kEMBL-3A and kEMBL-12.

EMBL-3A has cloning:sites for Sail, BamHI and EcoRI and EMBL-12 has cloning

sites for Sal!, BamHI , SSfI, Xba27I and EcoRI (Nan and Schere r, 1986). Both

vectors accommodat e DNA fragments of sizes between 8 kb and 23 kb. Phage

were propagated either in NM 538 or yes 257 strains of E. Coli.

The plasmid vectors used in subcloning were pUC 12 and pUC 18. Plasmids

were propa gated in E. coli C600.
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JL2.il)Isolation of NEO· transformants

PI9 cells (5 x 10' ) were plated in a dish and 10 ug of pAIOneo was

precipitated with calcium phosphate and tran sfected to cells as descrlb-J previously

(Gorma n t'aL 1982). AI 36 h afte r the transfcetion, nonselect ive medium was

replaced by medium containing 200 ~g of the Neomycin analogue Genetecin 418

(G 418, Genetech). PI9 cells appea red to be very sensitive to G418, therefore,

the transtecred cells were not reptated. After 10 10 12 days,NEO+colonies were

isolated and maintained in the selective medium. Those established as stable cell

lines were used for further study.

1I.2.iii) Induction of Differe ntiation

PI9 cell lineswere induced to differentiate as follows. Undifferentiated cells

were trypsinized and seeded in a petri dish and incubated for four days in the

presence of chemical inducers, i.e. ret inoic acid (RA) (Sigma) or Dimethyl Sulfoxide

(D MSO). To induce cells to neurons, 300 nM RA was used and for muscle cell

induction 1% DMSO was used. The med ium was cha nged once after two days.

During the four-day incubation, the cells formed aggregates. These

aggregates were subsequently plated on a tissue culture dish and incubated for an

additional four days in the absence of the chemical inducer. Differentia ted cell
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types such as neuronsand muscle cellsbecomeobviousat day seven or eight after

the induction. Phase contr ast pictures were taken at day eight. When the cells

were induced to differentiate in the presence of G4 J8, 200 ..g of G418 per ml was

present throughout .

lI.2 iv)Gen omic DNA extraction

H igh molecular weight genomic DNA (100-200 kb) was prepared fro m cells

as follows: The cells were washed with ice cold PBS and scraped into a 50 ml

tube, and centrifuged for 10 min at 3000 rpm and the supern atant was discard ed.

Cells were resuspended in ice cold PBS and spun again for 10 min at 3000 rpm

and supernatant was discarded. This Wl15 repeated once more. The cells were

resuspended i,l : volume lysis buffe r ( 1 mlll ()& cells) (Lysis huffer: 0.1 M Nne],

10 mM Tris HCI, pH 8. 25 mM EDTA, pH 8, 0.5% SDS, 0.1 mg/ml pro teinase

K added fresh with each use) end incubated with shaking at 50 °C for 12-18 h.

Afte r incubation, the samples wer e gent ly extracted twice with an equal volume

of pbenokchloroform. The DNA was dilllysed overnight against 50 mM T ris, pH

8, 10 mM EDTA and 10 mM Nne!. The samples we re the n treated with 100 ~wml

DNase· free RNase at 37 °C for 3 h. After 3 h, t hey were extracted gently with

phenol.chlorofor m and dia lysed extensively against TE (10 mM Tris, I mM EDTA,

pH 8).
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I1.2v) RNA extract ion

Cells were washed several t imes with ice co ld PBS to remo ve all media,

w hich conta insRnase, al1rJ scrapped off the plates with a rub b...· police man. Cells

wer e transferred to 50 ml tubes an d washed again wit h cold PBS two times (5 min

ce ntrifugat ion at 30CK) rpm ). Th e cells were then suspended in hypotonic

ret iculocyte standa rd buffe r (Ill roM Tris·HCI, pH 7.4. IOmM KCI, 1.5 roM M gO a)

a t a conce ntration of 2.5 x ]0 1 ce lls/ml and transfer red In a dounce homogeni zer.

T he cells were kepi on icc for 15 mi n and 0.3% final (v/v) NP 40 was added. The

ce lls were homoge nized o n ice using a motor driven pestle with 12-15 strokes. The

hom ogen ized cells were cen trifuged at 3000 rpm for 5 min at 4"<: to remove cell

debris and extracted with a final co ncentru uon of I volum e of phenol:chloroform.

10 roM T r is·HO . pH 9.6, 0.5% 5 DS, 0.5 M NaO . After centrifuga tion at 3000

r pm for 10 minat 4C, the lIqueou!i phase co ntaining RNA was ethanol precipitated

a t ·70 'C,

Most of the above work. list ed in 1I.2.i to 1I.2.v was done by H. Ha mada.

1l.2 vi) r'olyadenylat cd (po ly A+) R NA se lection

Poly A+ R NA selection fro m the to tal RNA prepared from u ndifferen tiated

(0 -) and differentiated (0 + ) PI9 cells W"dS done hy chromatog raphy on oligo (dT)­

cellulose (M aniatis r:I at. 1982).
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n.2.vii ) Restriction map ping of the chromosoma l loci

For cloning the cellula r sequences flanking the Neo-R gene from the Neo­

R-transformed cell lines, restriction mapping of the Neo-R integra tion site was

performed by genomic Southern blotting. T he BamHI·flilld lll 2.2 kb fragment

conta ining the Neo-R coding sequences of pAlOneo was used as a probe. The

probe was labelled with a-32P clcrP by Nick translation (Rigby CI at. 1978) or by

the Random primer method (Feinberg and Vogelstein. 1983) (A mcrsha m/BRL kit).

A detai led restriction mapping of these loci was de termined by: 1) a

com bination of enzyme digestions (eg. BamH I, BamHI+Eco RI, and EcoRI) and

ana lysis by agar ose gel electrophoresis, 2) by subclontng smaller fragme nts in pU C

and a nalyzing them by enzyme digestions and gel electroph ores is, 3) by SOuthe rn

blott ing ana lysis usingsingle-copy pro bes from the various loci (see Mat erials and

Meth ods, Ch apter III for the mapping and the isolation of single-copy probe s).

1I.2.viii) Southern blot analysis

Southern blott ing ana lysis of D NA was done essent ially as d escribed in

Mania tis et al. (1982) with minor mod ificutions. For the ana lysis of clon ed D NA,

I f>g of the DNA was used. The D NA was digested with appropria te enzymes

followed by Phenol:Chlorofo rm (1:1) extraction, nod concern 'ion by etha nol
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precipitat ion. (For clo ned DNA. the d igestion mixture was direct ly load ed on 10

a gel) . The DNA was loaded ooto a 0.7% agamse gel and electro phorese d

overn ight Th e gel W'd S stained with elhidium brom ide (10 mg/m l). and

photographe d , The DNA was p.1rlially hydrolysed by soa king the gel in 0.5 M HO

for 20 min, an d then denatured by soak ing th e Cd in several volumes of 1.5 M

Nae l and 0.5 M NaOH for 90 min followed by neutralising the gel by soaking in

0.5 M Tris (pH 8.0) and \.5 M NaClfor 2 h. The Southern transfer of DNA from

gels to niuocellulcse Illters (5 & S) was don e in 10 x standard sodiu m citra te

(SSe ) buffer (Maniatis el al. 1982) for mort: than 16 h. Following tr ans fer, the

filter was soaked brier: in S x SSe. d ried at room temperature and ba ked for 3

h a t 80 OCund er vacu um.

Pre-hybridization and hybridization were done accoromg to Man iatis et al.

(1982) with minor mod ification . The pre-hybr idization solu tion incl uded 50%

deionised form amitle, 5 It SSe, 50 mM sodium phosphat e (pH 7.5), 5 x Denhardt's

solutio n (Maniatis N al. 1(82), 0.5% 5DS and 200 pg/ml sonicated, hea t-denatu red

salmo n sperm DNA (Sigma) . Pre-hybridiza tion W"d S done overnight at 42 "C.

Hybrid ization conditions were exactly the same except thai the solutio n contained

heat-de nature d labelled probe and hyb r idization was done for two days. Th e:filter s

were washed in 1 x SSe -O.1% SOSfor 1.5 h at 60 °C and 0.1 x SSC·O.1% SDS

Ior a n addit io nal 1.5 h lit 55 'C. The fitters were dried and exposed for

autor a diogra phy at -70 "C.
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n.2.ix) Northern blot ana lysis

About 10 ~g of poly A+ RNA was electrophoresed on a formaldehyde.

agarose gel (the procedures used were from BRl.., published in their Focus, Vol.

8, No. 2, 1986). Arter electro phoresis, the gel was soaked for 15 min in distilled

water (the gel was not stained) and proceeded directly for blotting onto a

nitrocellu lose filter in 20 x sse overnight. Pre-hybridization, hybridization and

washing conditions were exactly the same as used for the Southe rn filter s.

1I.2.x) Molecu lar C loning procedures

For clon ing the ce llular DNA flan king the Neo-R gene from the NEO'

cell lines, the following molecular cloning procedures were adap ted.

1I.2.x.a) Construction of restri cted genomic library

In order to enrich the sequences of interest, restricted genom ic libraries were

constructed as follows: Genomic DNA (a bout 400 pg) from each cell line was

digested with an appro priate restr iction enzyme and fractionate d on a 0.55% agarose

gel (elec trophoresis was done for two days). Gel slices were excised from the

appr opriate size-region of the gel (appropriate size-region: region of the gel where
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the DNA fragment to be cloned is present , determined by geno mic Southern blot)

and the DNA from the gel slices were ele ctroeluted to Blo-Gel hydroxylapatite.

The DNA was pur ified from hydroxylapati te (Bin-Rad) by eluting with 1 M

potassium phosphate buffer (pH 6.8). T he potassium phospha te buffer was

removed from the DNA by DEAE Sephnrose chromatography (the DNA was eluted

with 0.6 M NaCI in TE). The fra gments were extracted once with

Phcnol:Chlorofor rn followed by extraction with chloroform and precipi tation twice

with et hanol. The DNA Wl1S washed twice with RO% ethanol, Iyophilised and

suspe nded in 5 mM Tris (pH 7.5). Ahou t IOO·20U os: of this DNA was analyzed

by Southe rn hybridization for the presence of the seque nce of interest before

ligating them to phage arms (see Figure 11·1, A and B).

1I.2.x.b) Preparation of the phage arms

Phage DNA (abou t 20 ~g), either ~EMBL 12 or .l.EMBL 3A, was digested

with the appropriate restr iction enzymes (e.g. for cloning BamHI fragment s, the

phage DNA was digested with BamHI and EcoRI; the digestion of phage arm s with

EcoR I will inactivate the phage middle fragme nt and it will not compete with the

insert DNA for ligation into the arms) and the resulting small linker fragme nt was

removed by a quick precipitation with 0.6 volume of isopropanol (Fr lschau f el al.

1983), followed by quick precipitation with etha nol (quick precipitation: as SOOIl

as isopropa nol/ethanol was added in the presence of 0.3 M sodium aceta te , the



Figure 11·1. Construction of restricted genomic library.

High molecular weight genomic DNA (400 ~g) digested to completion with an

appropriate enzyme (1500 Units) was size fractionated on a 0.55 % agarose gel.

(A): fragments of appropriate size-range (which includes the sequence of interest)

were exlsed in three fractions from the gel. purified. and an aliquot from each

fraction was electrophoresed on a mlnlget, together with the vector phage arms.

T, top fraction; M. middle fraction; B. boncm fraction. See text fur the preparation

of phage arms.

(B): ( "' ~ minigeJ in (A) is Southern blotted lind probed with pA tnneo. The blot

was exposed for one week. The sequence of interest [Neo-R gene plus the flanking

cellular sequences) was preseOi in the middle Iracuon (the sharp band). Th e cross

hybridization seen with the marker lane and the vector phage arms was due to

some homology of pUC sequences of pA1Oneo to these phages. The middle

fraction was ligated to phage arms in a molar ratio of 1:1 and subjected to ill vitro

packaging (Stratagene). The recombinant phages were screened with the Neo-R

specific probe (BamHI-Hhufill 2.2-kb fragment of pAIOnco) a nd the clone of

Interest was isolated by the plaque hybridiza tion method (see text for more details).
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phage arms precipitate; they were immediately microfuged for 10 min and the

solution was discard ed along with the unp recipilated linker seque nces). The pellet

was washed with 80% ethano l twice, Iyophilised and suspend ed in 5 mM T ris (pH

7.5) (see Figure 11·1 for gel pauem of the phage arms).

1I.2.Lc) Ugation and in vitro packaging

The insert DNA was ligated to the phage ar ms in a molar rati o of 1:1. The

total DNA conce ntratio n in the ligatio n reaction was usually> 500 $Ig1ml. The

ligation reaction was carried out for about 20 h at 4"C ( I x ligation buffer: 20.S

roM Tris·HC~ pH 7.5, 10 mM MgCll' 2 mM OTI, 0.4 mM ATP). The ligated

DNA W'dS then subjected to in 1';('0 packaging using Giga-pack gold packaging

extract from Strategene. according 10 the protocol supplied by them. The resulting

reco mbinant phages were screened with the Neo-specfic probe by the plaque

hybridization procedure (Maniatis el 01. 1982).

1I.2.x.d) Storage of phage

Phage were always stored in SM buffe r (Maniatis et 01. 1982) a t 4"C.

Dilution of phages were also L10ne in SM buffer .
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JI.2.x.e) Host bacteria

Host bacteria (NM 538or ves 257)were grown at 37°C in Luria-Bertani

(LB) medium (recipe is from Ma niatis el al. 1982) containi ng 10 roM MgSO.

(LBM) and 0.2% maltose (LBMM) until the OD MO was about 1.0. The bacte ria

were pellcted by ce ntr ifugation at 3000rpm for 20 min and suspended in 10 roM

MgSO~ at a co ncentration of 1.5 x 109 cells/ml.

II.2.x.f) Screening Recombinant plaques by Plaqu e hybridi7.ation

All the procedures for plaque hybridiza tion were adop ted from Maniatis et

al. (1982). Briefly, a bout 5 x ](J 4 phages were used to infect 4.5 x 108 freshly grown

host bacteria and incubated III37°C for 30 min. After incubation, 7.5 mL of soft

agorase (0.7% agarose in LBM med ium, top agnrose) maintaine d at 48°C were

added to the above infection tubes and plated on a 150 mm LBM plate conta ining

1 2% Agar. The plates were incubated for abo ut 12 h for .l.EMBL 3A and abou t

9*10 h for .l.EMBL 12. The plates wer e chilled for 2-3 h at 4°C and rep lica filter s

(nylon filters (NEN) that were mar ked asymme trically a t four positions) were mad e

from the plates. While making the replica filte rs, the mar ks from the filters were

copied on to the plates. The filters were then dried at room temp erat ure fo r 2

h and treated seq uent ially with 0.2 N NaOH • 1.5 M Nael solution for 1 min, 0.5
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M Tris (pH 7.5) • 1.5 M Naa solution for J min. and 5 x sse for IS sec. The

filters were the n dr ied for abo ut 2 h before proceeding to the pre -hybridizatkm

step.

For pre-h ybr idization. the fillers were welte d in 6 x sseand incubated in

a solution conta ining 5 x sse and 1% 50S at 65 · C ove rnight in a sealed bag.

Hybridization was done in a solution containing 5 x SSe. 1% 50S, 5 x Denhardt's

solution. 200 pglm! sonicated salmon sperm DNA, 200 flg/ml sonicated E. coli DNA,

and nicktranslated Neo-specfflc probe. The carrier DNAs and the probe were

heat denaturated before adding 10 the hyhridization bag. The hybridization was

do ne for 24 h a t 65 · C and washed as described for the Sou thern filters and

exposed for autorad iography at

-7O"Covernight.

In order to isolat e the positive plaques the marks from the filters were first

copied onto the aut oradiogram. The plate was the n aligned to these marks on the

X-ray and using a ster ile toot h-pick, a small circle of 5 mm diameter was cut

around the positive signal and this piece of top agarose was transferred to 1 ml

of SM buffer . Th e plaques were extracted from th e top agamse by rotating the

lub e for 3-4 h. A drop of chloroform was added a nd the solution stored at 4°C.

The purity of the positive plaque at this stage was usually abo ut 1%.

For further purifi cat ion of the positive plaque , about 1 x 1O~ phages were

plated on a ISO mm plate and the positive plaque was selected by plaque
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hybridization as above 10 yield a purity of about 10%. To obtain 100% purity of

the positive plaque, one more round of plating was done. Abo ut 100·200 phages

were plated on a 90 mm LBM plate and a single positive plaque, which is well

separated in the plate, was picked. This plaque was a mpl ified and used for large

scale phage DNA preparation.

1I.2.x.g) Phage a mplification

Phages were amplified by the plate lysate meth od (M aniatis et aI. 1982) 10

use in the large scale phage culture (it is necessary to obtain a phll~e solution of

high titre, > \OID/ml , for this purpose). Two rounds of am plifications were do ne

to achieve this. First , about 1.5 x 101 phages were plated on a 90 mm LMB plate

and the phages were recovered from the plate in ahou t 4mL SM buffer. In the

second round. abou t 3 x 105 phages were plated on a 150 mm plate and phages

were recovered as before in abo ut 20mL SM buffer. The titre of this solution was

usually> 1O,o/m1.

1I.2.x.h) Phage culture

For large scale phage culture, the multiplicity of infection (HOI) used was

1.0. The bacte ria wer e infected when the OD 600 was be tween 0.2 and 0.3. The
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remainingsteps of the phage culture and phage DNApre paration were as described

in Man iatis et at ( 1982).

Small scale phage culture was done by the plate lysate method as described

in Maniatis et at (19B2).

1I.2..xi)Suhcloning procedures

DNA which was cloned in phage was subclnned into plasmids. pUC 12

and pUC 18 were used as vectors for this purpose. For suhcloning fragment s

that cont ained the Neo- R gene (such :I=: the entire fragments cloned from the ste m

cell spe cific NEO· cell Jines, or deletion fragments that re tained the Neo-R gene) ,

the re combinan t plasmids were selected on ka namycin plates (15 pg/ml). In the

remaining cases, a mpicillin plates (40 ug/ml) were used for selection. All the

procedures for subclonin g, plasmid culture and plasmid DNA preparations were

from Maniaus a 01. (1982). While prepari ng plasmid DNA. the 50S lysis method

was used . To pre pare form I plasmid DNA. first t he DNA prepar ati on was

chtcmatographed on a Seph acryl 4B column (60 II 1.5 cm) equilibrated with TE.

to sepa rate prote ins a nd RNA from the plasmid DNA. The plasmid D NA was

etha nol precipitated once lind then subjected to cesium chloride-ethidium bromide

centrifugation as descr ibed in Maniatis et 01. ( 1982).

Rapid, small sca le plasmid preparation was done as described in Maniatis

et ai: (1982).
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lI.2J:ii) Assays

The following assayswere done by H.Hamada.

II.2.xii.a) Transie nt expression assay

T he ch loramp he nicol a cetyl transferase assay (Gorman et aI. 1985) was used

to demonstra te the e nhancer dependence of the SV40 ear ly promoter in PI9 cells.

Briefly, to ,..g of pUC-cat (a CAT gene linked to the enhance rless SV40 early

promoter) or ps v-ca r (an enhancer -plus counte rpart) was transfecte d to P19ce lls.

At 48 h afte r transfection , the cells were harvested, and the cell extracts were

prepared by repeate d freezing and thawing. Cell extracts containing 200 pg of

prote in were incubated with 1 ,..Ci of p 'q·chloramphenicol (NEN) at 37°Cfor 30

min. Aceiylated and non-acetylated for ms of chloramphenicol were separated by

thin-layer chro matography. After the chromat ography, the chromatograms were

exposed to X-ray film at ·700C overnight.

1l.2.xii.b) Stable t ransformation assay

A stab le transformation aSli<1y was done to: a) demonstra te the enhancer

dependence of the SV40 early promoter in P19 cells, b) to assay the enhancer
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activity of the cloned DNA. and c) 10 demonstra te the stem cen specificity of cloned

DNA.

About 5 x 10~ ce lls (P19 Of NIH 3T3 cells) plated on a dish were tra nsfected

with 2.5 pmol of plasmid (10 ~g for pA l0neo) by the c alcium phosphate method .

The cel ls were incubated in nonselective medium {OJ 3/l h. The medium W<IS then

replaced with the select ive mediu m (200 #g of G41 R1ml for Pl9 ('1:115and 400 ~gfml

I'm NIH 3T3 cells). In the case of P I9 cells, the cells were nor repuucd. However

the transfected NIH 3T3 cells we re trypsinizcd 36 h afte r the rransrectlonand lfl )

cells we re replnte d. Ce lls we re incubated It t an uddition ul 12 days and sluined

with G lernsa slain. Colonies cons isting of more than IIMI 'ells were counted,

11.3) RESULTS

1I.J.i) Strategy fur selec tion uf embryonic stem cell specifIC luei

The present strategy is based nn the previous ohservntion that an

cnhnncerlcss ge ne, which is transcriptionally inactive hyitself, can he uctivnted upon

unnsfection if the gene is stably integrated near un endogenous enhancer (Hamada

19R6a. h). The enhancer ca n he rescued hy molecular cloning using the integrated

marker gene as II probe . Th is pro cedur e was previously ap plied to Hel.a cells lind

two distinct enhancers were succcs..,fully isolated from the 11d..a genome (Hamada
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19860; Swilt ('I (I f, 1987). In this study, the same proced ure was applied to PI9

cells, a murine pluriputential EC cell line (McBurney and Rogers, 1982) . This

cellline CHn be induced to differentiate into IIvarietyof cell types, such as neurons,

ast roglia, fibrob lasts, and mcscle cells (Edwards et al. 1983; Jones-Villeneuve 1:1 al.

1983). When the cells a re injected into a blastocyst, they contr ibute 10 somatic

tissues of the result ing chimaeric mouse. Therefo re, PI9 cells uppeur to repr esen t

the ea rly embryonic cells (inner cell mass or primitive ectoderm) of the mouse

developme nt.

Th e strategy used for selecting chromosoma l loci specifically active in the

EC stem cells is summarised in Figure 11-2. First, PI9 cells were trans fected with

pAIOncn, un enhancer- trap plasmid containing the Neo- R t;ene linked to the

cnhancerless SV4f1early promote r. NEO· cells were selected and a number of

transforman ts were established. Each ee ll line was assayed to determine I) the

copy number of the irucgruted Neo-R plasmid, 2) the ability to differentiate in the

prese nce lITabsence of the neomycin nnalogne G4IH, and 3) the level of Nco-R

gene expression before and lifter differen tiation. Only those ce ll lines that a)

conta ined a single copy of the Neo-R gene, h) could differentiate intn a wide variety

of tissue types similar to the parenta l ce ll line, and c) showed a greatly reduced

Nen-R gene expression following dltferc uuation (as judged from the fa ilure to

differ entiate norma lly in the prese nce of G 41Hlind greatly reduced Nec-R mRNA

after differentiation indicated by the Nm thern blot ana lysis) were select ed for

further study. In such ce ll lines, the Nco -R gene is presumably activa ted through



Figu re 11·2. The ;;lralegy fur cl oning of the EC stem cell sredne chromosoma l

k"ICi.

The funct ional map and restr iction sites of the enha ncer- tra p plasmid pAlOn~o

is shown nt the top. S, BmIlHI; H. Hi",JlII ; E. £CoRI: Ps. PsII; S. SstI; X.

Xbal . The SV40 ear ly promoter (including II TATA box and DC hnxcs) is pre sent

within a 200 hp region upstream of the mlldlll site (see text fur dC: lails).
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a stem cell stage specific regula tory pathway such as cis acting DNA seque nces

(enhancer or promote r). Cellular sequences flanking the integrated Nen-R gene

were c101 .ad from those cell tines and assayed for their stem cell specific ity and

searched for regulatory elements.

1I.3.ii) The SV40 car ly promoter is e nhancer dependent in PI 9 cells

To apply this selection procedure to a given cell line. om: critical requ irement

is thut expression of the marker gc m~ must be e nhancer depe ndent in the cells.

It was imp ortant to determine whe ther 1'19 cells satisfy this criterion, beca use the

SV40 ear ly pro moter has been repor ted to he e nhancer independ ent in F9 cells,

anot he r EC cellline (Gorman (" at. IlJR5). This was tested by two assays. When

the activity of the enhancerless constructs (pUC-cat and pAlllneo) and the enhancer

plus counterpar ts (pSV-cat lind pSV2ncll) were examined hy transfecrion, buth the

tra nsient (cat) expression assay (Figure 11-3, panel A) and the stable transformation

assay (pane l B) showed that the enhancerless promoter (pUC-cat and pAW neo)

was much less act ive than the enhancer -linked promo te r (psv-cat and pSV2nen ).

These results demonstrated to us that the SV40 ear ly promoter is enh ancer

dependen t in PI 9 cells and that it can he used in the functional selectio n procedu re.



Figure 11*3. The SY40 ea rly promoter is e nhance r-depe ndent in P I9 cells.

(A) T ransie nt assay resu lts. pUC -Cat ( 10 Jig) containing a cat gene linked to the

enhnn ce.tess S\'40 early promoter, or pSV·Cat, an enha ncer plus co unte rpart. was

transfectcd 10 undifferentiated P l9 cells. At 4H h after the trunsfection, the cells

were harvested, and the expression of the cat ge ne was monitored hy enzymatic

conver sion or chloramphe nicol In its ucetyltucd for ms.

[B] Stahle transformauon assay results. Th e e nhancc rlcss construct, pAWn eo (10

fig), or the enhancer plus counte rpart , pSV2neo was transfccteu to P19 cells, and

NE O+ colonies were selected in the prese nce of G4l H as described in Mater ials

a nd Methods.
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1I.3.iii)Charactcrization of NEO· cell lines

When PlYcells wert: tmnsfccred with the enlumcertess construct pAlOneo,

NEO· colonies appea red with II low frequency (see Figure 11-3B). A tota l of 80

NEO ' colonies were recovered, and 40 of the m were established as stable cell lines.

The results of do t blot hybridization ana lysis (Hamada 19&'1<1) with the Neo- R.

spcciricprobe showed that 30 of the cell lines contain ed a single copy of the Nco­

R gene (da ta not shown). These 30 cell lines were selected for further study.

When each of the 30 celllines were induced to differentlnte hy retinoic acid

in the absence {II' G4IR, all were ahle In diffe rentiate intn neurons and glial cells

like the parent al ce ll line (data nOI shown). indicat ing that a ll of the cell lines have

reta ined their pluripotency. Next, we wished to sele ct those cell lines (out of 30)

in which the Nen-R gene had integra ted into a stem cell specific locus. He nce,

eac h of the 30 ce ll lines was subjected to selection assays.

First, each cell line was induced to d ifferen tiate in the prese nce of 0 418.

If the Neo -R gene has integrated into a stem cell specific locus, such a ce ll line

would he unahie to complete nor mal differe ntiation, since it wou ld then not he

resista nt to the antibio tic, 04 18. In this assay, II to tal of 11 cell lines tra nsfor med

with pSV2nen were used as positive controls (the SV40 enhan cer is active

thro ughou t differentiation), and the par ent al PI 9 ce ll line was used as a negative

con tro l. As expected, nil of the pSV2ncn -transforme d cell lines were able to
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complete normal d ifferentiation, while the P l9 ce lls died before forming

differ entiated colonies (data not shown).

When each of the 30 NEO· cell lines se lected above were induced to

differentiate in the presence of G4 IR. they fell into two groups (F igure 11-4), The

first group of cell lines (group I ) dilfere ntiated normally in the presence [or in the

absence) of G4 IR; the rerinoic acid-induced aggregates formed large colonies

containing numerous neurons und glial cells (Figure 11.4, II and h). Among the

30 cell lines, 22 showed this characte ristic indica ting tha t in these 22 loci, the Nco­

R gene was integrated into non-stem cell specific Ind . However. the second group

(group II, 8.;:11 lines) showell an abnormal diffe ren tiation patte rn in the presence

of G418 (Figure 1I·4d ). Th e aggregat es did not grow well after heing plated on

tissue culture dishes, replicated glial cells were much less frequent than normal.

and neurons were rare ly detect ed (compare c and d in Figure 11-4). This suggests

that the Neo-R gene may have integrated into stem cell specific loci ill these cell

lines.

T o confirm the above results, the expression of the Nea-R gene before

andafte r differentia tion was exam ined. Poly A+ RNAwas prepared from undiffer­

entiated ami differentia ted cells, lind the Neo-R mRNA levels were determin ed by

Northern blotting analysis (Ftgvre 11-5). The Neo-R messuse was examined in two

pSV2neo-transformed PI9 cell lines {cell lines II I and 121, positive cont rol), one

cell line from the group I and all the eight cell lines from group II (which showed

abnor mal differen tiation pattern in the presence of 0418). In the pSV2neo



Figure 11-4. Re tinoic acid induced differentiation in the absence (-G4t8) or

presence (+G418) ofG418.

Each NEO' cell line was t-nluced In differentiate by ret inoic acid in the absence

(a and c) or presence (b lind d) of G418. A tota l of 22 cell lines were classified

as Group I, where the cell lines could differentiate normally in the absence (a) or

presence (b) of G41S (compare a and h). Eight cellHnes were classified as Group

II, where the cell lines could not differentiate normally in the presence of G418

(d)(compare c and d ).
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Figure 11-5. NC(}-R mRNA levels before and after diffe rentiation of P19 cells.

Poly A+ RN A wa s prep ared from und ifferentiate d (0-) cells grow n in the medium

wi-hout 0 418 for three to four days. Poly A+ RNA was also prep ared from

differentiated (0+ ) cells. Differentia tion was induced hy retinoic acid (RA) or in

one cell line with dime thyl sulfoxide (DMSO ). No G4Ul was present d uring

differe ntiatio n. Abo ut 10 iLg of poly A+ RNA was IO:Hkd on a formald ehyde­

agawse gd, bloue d. an d hybridized to the Nco- R specific prob e. The name s or

the ce ll lines are ind icated at the top. PlY in the untrnnsfectcd parental cell line.

Cell lines 111 and 121 lire tran sformed with psvz neo. Cell line 044 belongs to

group I, lind cell lines 015, ::17. 1123, 024, 1142, 052, lind Ol'JO belo ng to group II.
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transformed cell lines and the group I cell line (044, the levels of Neo- R mRNA

were similar befor e (0-) or after (0+) differentiat ion. On the other hand, in most

of the Group II cell lines (015, 017, 023, 042, 052) , the Neo-R message was greatly

reduced following cell differentiation. In the cell line 060, the decrease was only

modest.

These result, indicated that in 1110s1 of the group II cell lines, the Neo-R

gene is active when the cells are undifferentiated , hut it is repressed following

differentiation. T herefore, the Neo-R gene appears to be integrated into stem cell

specific loci in these cell lines. The group II cell lines were hence subje cted to

molecular cloning.

1I.3.w) Cloning of mouse DNA seque nces nanking the Neo-R gene

In order to clone the mouse DNA sequences nanking the Neo-R gene, the

restriction maps of the Neo-R integration sites of group II eel! lines were

dete rmined by genomic Southern blotting (Figure ll-S). As pre dicted by the dot

hybridization analysis, all the group II ce\l lines contained a single copy of the Neo­

R gene . However, 052 had one intact Neo-R gene and a par tial (he nce a non­

functional) Neo-R gene.

The portion of the enhancer trup plasmid sequence remaining in the cell

lines varied, but the HilldlIl-BamHI 2.2 kh region thai Includes the Nec-R coding

sequence and poly (A) addition signal sequence remained intact in five cell lines



Figure 11-6. Cloning of mouse DNA sequences flanking the integrated Neo-R gene

from group II cell lines.

Restriction maps were obtained with genomic DNA by Southern blotting and

probing with the Neo-R specific prob , and with the cloned DNA by restriction

and gel analysis. The names of cell lines are shown on the left. Symbols used

are: wavy line, the nine cloned DNA fragments; stra ight line flanking the box,

mouse DNA; open box, pAWneo sequences; closed box, Neo-R coding sequences;

open circle, SV40 early promoter of pAWneo; arrow, direction of transcription.

B, BamHI; E. EcoRI; H, Hilldlll ; G,88111; S Sstl; X, Xbal.
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(017,023,024,04 2 and (60) . However, in two cell lines, 015 and 052, the Hjndlll

site was deleted, This would mean that the SV40 early promoter must have been

deleted in these two cell lines since it is located approximately 100 base pairs (bp)

upstream of the HiI,dlll site. Therefore. Neo-R gene transcription in these two

cell lines must be initiated by an endogenous promoter or similar element. This

notion is supponed by the observation that in these two cell lines, the Neo-R

mRNA appears to be smaller (see Figure 11-5) compared to the Neo-R message

transcribed from the SV40 curly promoter.

Mouse DNA sequences nanking the Neo-R gene were cloned using the

standard cloning procedures (see Material lind Methcx.ls) from each of the eight

group II cell lines (the wavy lines in figure 11-6). Only nne sid:: of the intcgrarion

site was cloned from seven cell lines (0 15, 0 17, 023, 024, 034, 042, 060) and bot h

sides of the Neo-R gene were cloned from 052. The cloned phages were

accordingly designated as '\'015, '\'017. '\'023, '\'024, 1042, '\'051·1 (left side of the Neo­

R gene), ,\,05().2 (right side), and '\'060. The restriction sites of the cloned Df' A

were consistent with those previously dete rmined by genomic Southern blotting,

indicating that the nucleo tide structure of the DNA sequences was not alte red

during the cloning procedctes. Also. as predicted, the SV40 ea rly promoter was

deleted in ,\,015 lind ,\,052 and was preserved in '\'017, ,\,023. '\'024, '\'034, ,\,042 and

,060.
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Each of the nine cloned fragments showed a distinct restr iction map

indicating that the integration of the Neo-R gene had taken place at independent

sites, although it is still possible that some of the cloned fragments were derived

from the same chromosomal locus.

I1.3.v) Cloned DNA fragments arc transcripti onally active in the stem cells

Once the DNA wascloned from the group II cell lines, these DNA fragments

were tested to deter mine whether or not they life transcriptionnlly active in ste m

cells. If the integrated Neo-R gene is activated by a regulatory element such 85

an enhancer, and if such an ele ment is presen t in the cloned DNA, then the cloned

fragments should possess R high transcriptional activity in the stem cells. Since the

DNA fragments cloned in 1015, .\017, ~023• .\024, 1034, 1042, 1052-1, and 1060

contained the Nec-R gene; these fragments were convenien tly subcloned in pUC

(recombinant clones were selected on Kanamycin plate s) for transfecti on. Th e

plasmids were trensfecred to P19 cells and the activity was moni tored by the stable

transformation assay (Figure 1J·7A and Table I, column 1). The enhancerless

construct, pAlOneo and the enb ancer less-promoterle.s construct, pn-neo served as

the negative controls and pSV2neo as the positive control. Both the negative

controls showed very low transformation efficiencies. A few NEO~ colonies were

also observed with pUC 12 DNA, however they failed to grow afte r replati ng



Figure I1~7. Activating enhancer clements are present in three of the cloned DNA

sequences.

(A) The entire lengths of the inserts cloned in phage (the wavy line in Figure II­

6) were subcloned at the corresponding sites of pUC J2 and the plasmids were

transfectcd to P19 cells. Their NEO+ transforming efficiencies were determined

(Materials and Methods). Repre sentat ive Glemsa stained plates are shown here.

pAlOneo and pSV2neo are negat ive and positive controls, respectively. Three of

the cloned DNA:;,015pBam12,034pBam14 and 052·1pB(lm9.5(left of the enha ncer­

trap, see Figure 11-6) showed a high NEO+-transformiog activity.

(B) Various deletion fragments of the 015, 034, and 052 cloned fragments were

subctoned in pUC (shown as solid lines beneat h the restriction maps), and the

resulting deletion mutants were tested for NEO· transforming activity. The

transformat ion activity is expressed as the number of NEO· colonies per 5 x lOs

P19 cells. Symbols used are: closed circle, approximate locat ions of activating

elements; open circle, SV40 early promoter or putative cellular promote r (in 015

and 052). For restriction site abbreviations, sec legend to Figure 6.
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Table 1: NEO~-trallsrormation activity in P19 cells and NIH 31'3 cells

DNA Tran sformat io n Frequ ency

Pl9 NI H 3T3

pOneo 4 ,
pAIOne o 6 18

OlSpBDm12 480 12

052 - 1pBam9.5 240 15

034pBamlt. 620 320

023pSs t 13 , N.D.

024 pXbaIl6 15 N.D

042pSst14 20 N.D.

060pSst13 8 N,D.

017pBglIlO N.D N.D

pSV2neo 250 580

The various plasmids were transfected 10 P19 cells or NIH 3T3 cells and their

NEO+.lransforming activities were determ ined as described in Materials and

Methods. NEOt ·transformation frequency is expressed as the number of G418­

resistant colonies I 5 x 10' cells. N.D., not de termined.
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(Hamada, personal communication); the pSV2neo, as expected, showed a high

transforma tion frequency . Among the seven cloned DNA fragments tes ted, three,

OISpBamJ2, 034pBam14, and 052·JpBam9..5. showed very high transformation

frequencie s, implying thai they co ntained regulatory clements that can activate the

Neo-R gene expression. The remaining four fragments, 023pSfl13 (i.e.. a 13-kb

Ss,1 fragment from 023 NEO' cell line scbcloned in II plasmid), 024pXha16,

042pS.ft14. and O6OpSstl3 showed efficiencies similar 10 that of pA tOneo.

To locate the regulatory element responsible for Neo-R gene nctivauon,

various deletion mutan ts were co nstructed from Ol5pBam l2, 034pBaml5, and 052·

IpBam9 .5. The ir act ivities wer e determin ed hy the stable trans formation assay

(Figure U-78 ). In the case of 0 15 delet ion constr ucts, the activity W'dS 105t in

pEB9.0, pHB3.O, and pXB2.5, ind icating that the element is locat ed in the left 3

kb regio n. As described above, the original SV40 ea rly promoter was delete d in

015. Th erefore. the Neo-R transcrip tion must have bee n initiated by a n endogenous

promoter seque nce located very close to the integration sire. However, the results

of the deletion -construct trenstorma tlon experiments suggest tha t the high level

Neo-R expression is due to an enhanc er element loca ted in the left 3 kb region.

Th e results or 052-1 deletion mutants suggest a similar conclusion. pHB6 .0

retaine d full act ivity, however, pEB3.0 lost its activity. This suggests tha t the

enha ncer element in this locus is located in the HilldIlI-EC'oRI 3 kb region. Also

in this ce ll line, the SV40 ear ly promoter is initiated by an endogenous promot er

sequence.
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In the 034 locus, the $V40 early promoter was retained. It is of interest

that, in the deletion analysis, the pXhal l had retained 40% of the activity of

034pBl/m14, while pStt7.5 had completely lost the activity. These results suggest

tha t one or multiple enhancers are present in the Sst-BamHI 6.5 kb region.

1I.3.vi)01 5 and 052 cloned DNA Fragments arc inactive in differe ntiated ce ll types

Whethe r the activities of the 0 15, 034 and 052-1 clones are specific 10 the

stem cells, was determ ined next. This was tested by two sets of expe riments. The

first Willi a differentiatio n assay. Pl 9 cells were first transformed with DISpBaml l,

034pBam14,llnd 052·) pBam9.5 lndtvktually, The tnmstorrnants were then induced

t('t differentiate in the absence or presence of G418 (Figu re 11-8). Differen tiation

was induced by either RA or DM SO. In the absence or G4 18, 0I5pBam12­

transf ormed, 034pBnml4-transformed, and 052· lpBtlm9.5-tmnsformed cells could

differentia te norma lly. T hey differentiated to neurons and glial cells with RA

(Fig ure 1I-8, a and b), end 10 beating cardiac muscle ce lls with DMSO (d and e).

However, in the presence ofG418 , 015 and 052-1 tmnsfor mants could not complete

di fferentiation. The aggregates did not grow large. and no obvious neurons (Figure

11-8, c) or muscle cells (I) were observed. This observat ion suggests that the Nee­

R gene is inactivated following differentiation. In contrast, the 034pBam14·

transformants differentiated norma lly in the presence of 0418 (data not shown).



Figure 11-8. The 015 and 052 enhancer clements are inactivated during

differentiation.

NEO+ colonies (200 to 500) transformed with 015pBaml 2, 034pBam14 or 052­

lpBam9 .5 were pooled and maintained in the selective medium for four days.

Each pool was then induced to differentiate by RA (<1, b, ami c) and by DMSO

(d, e, and f) in the absence (a, h, d, and e) or presence (c and f) of 0 418. Phase­

contrast photographs were taken eight days after induction. Th e photograph s shown

here are of 015pBam 12-transformed cells. The cells transformed with 052·1pBam9 .5

also showed a similar pattern . The cells transformed with 034p8am) 4, however,

differentiated normally in the absence as well as in the presence of G<·18 (data

not shown, see Discussion).
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In the seco nd assay, the activities of the three:cloned DNAs were determined

in NIH 3'0 ce lls. a mouse fibroblast cell line (Table I, column 2). The positive:

control pSV2neo showed a high NEO· transforming activity and pAIOneo and pa­

nee (negative controls) showedonlybackgroundactivities. Supporting the previous

different iation assay result, 015 and 052-1 were inactive in NIH 3T3 cells, while

034 was active.

These two lines of evidence indicate that the cloned DNA from the 015 lind

052 loci were active only in EC stem cells and inactive in the differentiated cell

types. Despit e the Inct thai 034 locus was ste m cell specific in suppo rting the Neo­

R gene ac tivity, the clone d DNA from this locus was act ive in both the stem cells

as well as in the differentiated cell types (see Discussion).

IL3.vii) 015. 052 and 034 loci contain an ea rly Trans poson-nke eleme nt

In 015 and 052. the SV40 early promoter was replaced by an endoge nous

promoter near the integration site. This observation was pleasing because, this

would mean that there must be cellular genes associated with these promoters in

the normal cells. Therefore, the nucleotide sequence of these promoters from 015

and 052 were determined (Hamada, personal communication). In both loci, the

promoter seq uence at the integra tion sites were the same. These sequences were

next analysed by the Micro Ge nie compute r program. The analysis showed that
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these sequences belong 10 the ea rly transposo n-like elements (ET n). The ETn is

a gene family of moderate ly re peated DNA sequences dispersed in the mouse

genome (Brulet ct al. 1983), the transcription of which is develop mentally regulated

(Brulet et 01. 1983; lkuma cl al. 1986).

Whether the ETn genes in these loci were transposed DNA sequences, or

endogenous to these loci, was the n determined. This was done by cloning the pre­

Insertion region of the chromosome corresponding 10 these loci and determining

the restriction map of the region. The results of these analysesshowedthat, in

addition to 015 and 052 loci, 034 locus also contained a part ial copy of the

trensposon extending up 10 the XbaI site (see 034 restriction map in Figure II­

78) indicat ing that the enha ncer sequence found in this locus is only partly de rived

from the ETn and part ly from the mouse sequence. The de tails of these

experiments and results are given in Cha pte r IV of Ihis thesis. In the rema ining

five loci (017, 023, 024, 042, and 060), however , trans position had not occured (see

Results sectio n, Chapter III).

11.4) DISCUSSION

The aim of this work was to isolate chromoso mal loci that are specifically

active in the Eestem cells, and to search th ose loci for the presence of genes and

regulatory elements. The foregoing results demonstrate tha t several mouse
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chromsomal loci and transcriptional regulatory elements (see below) that arc

specifically active in the EC stem cells have been cloned.

The most critical requirement in this procedure is that the linked promoter

of the transgene should be enhancer dependen t in a given ce ll line. Fortunately,

the SV40 ear ly promo ter used in this study was enhancer depe ndent in P19 cells.

Th is was unexpected because others have shown tha t the same promoter is enhancer

independent in other EC cell lines such as F9 and PCC4 (Go rman et al. 1985).

Th is difference could very well be due to the cell llnes used. Heter ogenei ty

be tween Ee cell lines has been well documented and is thou ght to be reflected

in the range of ability for differentiat ion both in culture (Rudnic ki and McBurney,

1987) and in chimaeric assoc iation with a host embryo. Furth ermore, some Ee

cel l lines including F9, are re ported to have adenovirus Ela-like transacting activity

{H en a at: 1986; Imperiale el aL 1984). As suggested by Gorman et al: (1985),

it may be the same factor that ren ders the early promoter of SV40 enhancer

ind ependent in such cell lines and which may be absent in PI9 cells. Another

possib ility co uld be the diffe rence in the construction of enha ncerless promoter,

i.e ., in this case (pAI Oneo), the deletion of the promote r is more extensive

compared to Gorman's construct.

A summary of the re sults is given in Figure 11-9. Among the 30 NEO'

transformed cell lines, eight celllines showed an ab normal differentiation pattern

in the presence of G418 (Figures 11-4 and 11-5). Th e cloned DNA from three of

these cell lines contained regulatory elements. The results also showed that the



Figure 11-9. Summary of isolation and analysis of stem a: 1I specifIC loci

The number of cell lines obtained is shown in the parenthesis (see text for details).
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stem cell specific enha nce r seq uences fou nd in two loci ( see be low for explanat ion

on !he third one) were pari of the ET n eleme nt and it was th ese enha ncers tha t

conferred stem cellspecificityto the Neo-R expressionin these loci. Alt houghthe

biologicalrole of the ETn gene product during early development remains 10 be

determ ined, the uncoveringof the stem cell specificenhancer in the ETn in th is

study will help to elucidate the mechanism of its developmenta l regula tion.

Following the Northern blotting analysis of neo mRNA from th e various

NEOt cell lines, the blot was not reprobed with a probe for some constitutively

expressing gene; this to serve as an internal control for the quantity o f polyAt

RNA loaded in D· and D+ lan es. While it would have been better if we had this

data, it wasnot absolutely necessary.Th e reasons for th is are as follows: first, the

selection procedure used was stringent, l.e., if there is residual Neo-R gene

expressionin the cells 0418 re sistance is conferred. Therefore. inability ofcells to

complete differentiation in the presence of the drug in the di fferentiation assay

acuratelyreflects the inactivatio n of the Neo-R genefollowingdifferentiation. T he

results of the differentiationassay was entirely supported bythe Northern analysis

and no conflictingdata in the twoassays were observed, Second, the difference

in the Neo-R message levels before a nd after differentiation was very significant

and this difference could not be explained by a difference in the amount of poly

A+ R NA loaded.
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The case of 034was clear ly differe n t That is, the o r iginal cell line se lected

wasstem cell specirlCin su pporting the Neo-R gene activity. However, the cloned

D NA fr om the 034 locus was no t stem cell specifiC; it was active in differe ntiated

P 19 cells as well as in NIH m ce lls (Tab le 1). This locus containe d a part ial copy

of the ETn with its enhancer seq uences (u p to Xb al site. see Figure 11-78 ). The

enhancer activity in this l ocus is contributed partly by the ETn enhancer and partly

by enha ncer se quences o f cellula r origin . Assuming tha t this E T n enha ncer is

r esponsibl e for the stem cell spe ci ficity o f this locus (IlS in 015 an d 052 loci), the

qu estion arises as 10 why the cloned DNA thai incl uded bo th enhancers is not stem

cellspecific. One obvious explanation is that the other half of the e nhancer activity

contributed by mouseseq uence in this loc us isnot specific to stem cells o nly,but

is also act ivein differentiated tissue types . Again, the question a risesas to why

then it d id not support the activity of the Neo-R gene in th e original locus. One

possibility to reconcile these results is tha t, in additionto the activatingelements

(one cellular and the other Efn derived). there is a repressor element near the

integration site which is no t includ ed in (he cloned DNA. This repressor e lement

would be inactive in stem cells, allowing the two enhancer elements to function.

When the cellsare dllfere ntlated, the ETn enhancer being stemcell specific is now

inactive, but the nowactive repressor element interfereswith the cell ular enh ancer.

The transforma tion efficie ncieso f 034pBaml4 in P I9 stem cells and fa NIH m

cel ls,and the 034pBam14 deletio n analysis indicates that the cellular enhancer is
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activethroughoutdifferentiation (co mparelines1and 2 inTable I) a nd it augments

the ETn en hancer in stem cells by 50%to 60%, (compare lines 1 a nd 2 in Table

1; see034 deletio n analysis results in Figure 11-7B ). Ir the cloned DNA d id not

co ntain this repressor element, then the lite m cell specificity of the enhance r would

a u tomatica lly be losl.

In the re maining five loci , 017. 023, 024, 042, and 060, ET n gene

tr a nsposition had not cccured, T his conclusion is based mainly o n the basis of

restriction maps of the above': five loci, whichare different fromthat of ETn. That

is, the res triction sites . the closely spaced HilldllI ·BgJII-BgllI -&lIsites which were

conserved in E'Fn-like genes were absent in other loci (see Fig . lJ-6). The

re striction maps o f the abo ve loci were a lso diffe rent Irc m that of intrac isternal

A -particle genes (Dna CI 01. 1980), a group o f endogenous pro reuovi rus- like

e lements (Chaseand Pika, 1973). Secondly. theanalysisof the pre-insertion regions

of the chr omosome correspondi ng to these fIVe loci byrest riction mapping re vealed

n o transposit ion (see Cha pter III ) .

Th ere have been a few atte mpts by others to isolate stem cell specific loci

or enhancers fro m EC cells (Bark lis ef al . 1986; T akerc and Tana k a, 1987). The

approach was to use the Ne o-R as a mark er gene linked to the murine leukaemia

virus LTR. Since the murine le ukaemi a virus LTR is represse d in EC cells

(G orman et al. 1985). such a gene can be used as a trap ( like the pAlOneo used

in this study) for selecting elemen ts thai can rea ctivate the Ln<.. However, this
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m ethod cannot select s tem-cell specific elemen ts as the LTR is active in

di fferen t iated cell s. In bo th the stud ies, the enha ncer-like elements selecte d were

able to reactivat e transcri ption fr om the viral LTR in E C stem cells, but their

s pecificity was no t determ ined (se e BarkJis et al: 1986; Te kec and T anaka, 1987).

In Ihis conr ert, it should be noted t hat the lociselecte d in Ih is study were different.

F urthermore, the restrict ion maps of the loci isolat ed by Barklis e t al (1987) and

T aken and Tanaka (1987) and th ose isol a ted in this study arc d iffere nt.

T he cloned DNA from 023, 024, 042, and 060 did nor possess high NEO+

t ransfor mi ng activi ty. One obvio us exp la nation for this observat ion is th ai the

a ctivating eleme nt is loca ted dow nstream (only the upstrea m regio ns were cloned

fr om these cell lines) or further upstream from th e cloned DNA. Alternatively,

th e Neo- R activation could be due to othe r mecha nisms. A llen n at. (1988) noted

th at an integrate d transge ne (in this case. the Neo- R gene ) is$ubje c led to at least

t hree kinds of e ffect in the cell. Firstly. the exp ression can be regulated by els­

aClingDNA sequences such as enh ancers, exemplified bythe DIS, 034 and 052 loci.

Secondly. the tra nsgene co uld be integrated direc tly into a cellula r gene, with the

consequence of tr anscripti onal read-through into th e lrnnsgen e. A not her s ituation

would be simila r to the case of l3-globin gene ex pression where th e entire locus

is flanke d by the so ca lled loc us activat ion dom ains (Grosveld e/ 01. 1987).

Wh ateve r mechan ismit may be.it should b e noted that the mechanism(s) regul ating

th e Neo-R gene expressio n in the above five loci cloned in this stu dy are spe cifIC

10 the ste m cells .
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CHAPTER III

GENFS IN TIlB STEM·CElL SPECIFIC LOCI
"-' ,

I1I.I) INTRODUcnON

In a n interestingpaper, Rosc nsrreus and Levine (1979) report ed that when

nulli potent F9EC cells are culture d in mixed aggrega tes with pluripotent PS A·l

ce lls, the n ullipote n t cells in hibited th e ability ofthe pl uripotent cells to differe ntiate

beyond the endode rm stage . This o bservatio n was lat er exten ded by Littlefield and

Fel ix (1982) who showed th a t somatic cell hybrids between E C stem cellsand their

retin oic acid induced deriva t ives have thestem cell phenotyp e . Similar results were

a lso found with EC stem cell x rat hepato ma hybr id cells (Wray and Jae ckle,

19 83) suggesting th at certa in factor (s) in the undiffe rentiated EC cells suppress the

d ifferentiat ion phenotype of the hybrids. Based o n these studies, Levine et al

(1984) proposed a n interest ing hypothesis,th at the different ia tionof ste mcells may

be a reduc tive process, namely certain gene(s) are exp ressed s pecifically in the stem

ce ll stage of the EC cells, and the ir products are re sponsibl e for ma intaining the

un differen tiated state of the stem cells. W hen the se genes are switched off, the

ce lls are a llowed to cffferenuate into lineages. F urtherm ore, all Eecel l lines

without exception, are malign ant and manyo f them are plurip otent. H owever, their
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differe ntiated d erivatives are neither pluri potent nor mali gnant. Therefo re, Levine

ao l: (1984) furtherproposed th at the expression of that class of genes which might

contro l the properties of both pluripotencyand malignancy is suppressed during

differentiation.

Previous work by others indicate d that there are se veral different genes wh ose

expression is limited to stem cells an d not in their differe ntiated d erivat ives.

Examples include heat shock genes (Bensaude and Morenge, 1983; Levine et af.

1984). antige nic determinants (Solter et al. 1979). and growth factors (Gudas et al.

1983). None of the genes in the abo ve categories, however, appear to be the

candidates for genes in thereductive pathway. Interestingly, there has beensome

work on the kinetics of myc gene expression and cell differentiation . Down

regulationof myc expression also accompanies RA·induced differentiation (Westin

et al. ]982), and DMSO·induced murine MEL cell differentiation (Lachman and

Skoultchi,1984). For instance, in MEL cells,constitutive expressionof mycby the

useof surrogate promotersinhibits the ahili ty of DMSO to inducedifferentiation

(Coppola and Cole, 1986; Prochownik and Kukowska, 1986). Furthermore, in F9

cells, expression of antisense myc sequences induced differentiation (Griep and

Westphal, 1988). These results suggest thai down regulation of myc is necessary

for differentiation. This, in fact, brings credence to the idea of a reductive

mecha nism in celldifferentiation. The mycge ne is possibly one of th e genes of

the reductive pathway.
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Although the observa tion that RA induces di fferentiat ion of Ee stem cells

has stimula ted research aimed at understanding the molecular mechanisms

und erlying differentiati on, a t present very little is known about the early events

associ ated with RA induction. There is evidence that a co mplex of RA and its

receptor proteinis translocated 10 the nucleuswhere it indirectlyor directly in duces

new gene activity (Jetren and Jetten , 1979). There is also evidence that DNA

bind ing domains o f the RA and thyro id hor mone receptors are 62% ident ical in

thei r amino acid sequences (Giguere et al. 1987) and thm RA and thyroid ho r mone

ind uce gene expression through a common responsive element (Umesono et 01.

1988) .

With regard to the role of RA in stem cell differentiation, however. tnere

is also the question of com petence. That is, F9 cells differentiate into parie tal

endode rm with RA and dibutyryl cAMP (Strickland el aJ. 1980) while PI 9 cells

differentia te into neurons (McBurn ey el at. 1982). It app ears that in these two

cases, a different set of ge nes arc compete nt to res pond to RA, reflected in their

diffe rences in developmenta l poten tial o r plasticity. However, one co mmon

phenomenon which may be happening in thes e cell lines is that a se t of ge nes are

switched off, allowing the cells to go th rough a determination pathway and

diffe rentia t ing into lineages. The refnre, isolation of this class of genes would

rep resent a major advance in unders tanding the phe nomeno n of cell determi nation

and differen tiation.
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Previously, there have been a fewunsuccessful attempts to isolate genes from

EC cells wh ose exp ression is entirely restric ted to stem cell stage (Levine et af.

1984; lkum a eral. 1986). Here an attempt was mad e to clone such genes. Us ing

a pAlOneo transgen e as a selectable genet ic marker, chromosomal loci that are

specifically active in the undif tcrer utated EC st em cells were first isolat ed (Chapter

II). The preinsertion chromosomal regionscorrespondingto thesestem cellspecific

loci were cloned a nd the DNAs were searched for the presence of genes by the

Northern b lot analysis. The results of these experiments are given below.

m.2) MATERIAlS AND METIIODS

The following procedures were used for the mapping and cloning of single

copy seque nces from preinser tion regions co rrespond ing 10 the stem cell spe cific

loci.

I1I.2 i)Single Copy Mapping and Isolation

For s ingle copy mapping,the Neo-R ge ne plus the flankingcellular seque nces

cloned previously in phage (Chapte r JI). we re digested with a combination of

enzymes. so that the cellula r DNA was restricted into smaller fragments. These

digests were electropho resed on a 0.7% agarose gel followed by Southern blotting
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as described in Chapte r II. The blots were hybridized with nick translated P19

genomicDNA (the genomic ONAwa:.digested withHill dltl before nick translat ion).

After washing , the blots were exposed for one week. Those restriction fragments

which fail to light up in the eutoradlogram are presumably present in one 10 a few

copies in the genome. Such fragments are identified and they were gel pur i fied

and subcloned into plasmtds. These were next confirmed with respe ct to th eir

single copy nature by genomic Southerns as follows. P19 genomic DNA was

restriction d igested with an appropriat e enzyme, blott ed onto nlrrccellulose a nd

probed with the labelled "10 be confirmed" single copy subclone. Only those which

are present as a single copy per haploid geno me were used in isolating the pre­

insertion loci and in chromosomal walking.

III.2.ii)Construclion of Sau 3A partical1ydigested Genomic library

In ord er to isolate pre-Insertion loci and for use in genome walking, a Sou

3A partially digested P19 genomic library was constru cted in the phage vector

l.EMBL 3A.

Initially, conditions for partial digestion of high molecular weight P19 DN A

were established in pilot reactions as described by Maniatis et al. ( 1982). From

this digestion pattern , the amount of enzyme needed to prod uce the maximum

number of fragments in the 16-20 kb range was ascertained (ns judged from the
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intensity of fluorescence in the gel of the pilot rea ctions). In large scale preparative

digestions, 150 ,.g of PI9 genomic DN A was digested with SOll3A using the

optimised cond itions (see Figure m·I A). After stopping the rea ction by addition

of EDTA to a final concentration of 20 mM, an aliquot {rom each reaction was

electrophoresed (Figure m-IA). In the meantime , the ONA was phenobchloroform

extracted and ethanol p recipitat ed. Those reactio ns. which produced fragments in

the 16·20 kb range (see Figure 1II·1A. Rx 1 to 6), were po oled and electroph oresed

on a 0.5% prep arative egnrose gel. T he DNA from the J6-20 kb region was

purified from the gel (Figure 11I·18) and prepared for ligation into BamH I-EcoRI

digested .\EMBL 3A ph age arms as descr ibed in Chapte r II (sec tion 1I.2.x). For

ligation, DNA fragments from MI , M2, a nd M3 in Figure 111- 1B were pooled and

used. The ligation and ;/1 ."Uro pa ckaging (Stratagene ) were done same as described

for the restricted library in Cha pter II, section II. :Lc.

m.2.iii) Iso lation of pre-insertion genomic loti

Genomic clones from the library were isolated by plaqu e hybridizution

(Chap ter 11). S ingle-cop y probes from each of the lociwere nick t ranslated , pooled

and abo ut 1.5 million phages from the genomic library were screened with the

pooled probes. T he po sitiveclones were purified individually and the clones were

assigned to diffe rent loci byhybridizing them individually to probes from each loci.



Figure Ill-I, Co nstruction of Sau 3A·partially digested genomic library.

High molecular weight PI9 genomic DNA (150Pg per reaction) was digestedwith

various amounts ofSou 3A restriction enzyme(In-times scaled-upof pilot reactions

which produced maximum overlapping intensities from 16 kb to 22 kb) for 1 he

at 37 "C. The reactions were stopped by addit ion of EDTA to final 20 mM

concentration. An aliquot from each reaction (Rx 1 to Rx 6 in A) was run on a

gel. In the mea ntime, the remaining DNA was phenol:chlomform extracted and

ethanol precipitated, Those reactions whichproduced maximumfragments between

16 kb and 22 kb were pooled (in this case, Rx 1 to Rx 6), and electrophoresed

on a 0.5% prepar ative agarose gel. The amount of enzyme used was: Rx 1, 3.5

Vj Rx 2, 5,24 U; Rx 3, 7 U; Rx 4, 8.74 U; Rx 5, 10.5 Uj Rx 6, 12.23 V, per

150ug of DNA in 10 mL of reaction volume.

(B) Fragments from the above preparative gel were exised in four fractions

rangingfrom 16 kb to 23 kb. They were purified, ethanol precipitated twiceand

an aliquot (l/lOth of the total) fromeach fraction was run ona gel along sidewith

the BamHI + EcoRI digested phage vector EM BL 3A. T, top fraction; MI, M2

and M3 are successive middle fractions; B, bottom fraction. For ligation, MI, M2.,

and M3 were pooled and l/3rd of the pooled DNA (about 7 ,ug) was ligated to

EMBL3A phage arms in d 1:1 molar ratio. The remaining procedures were the

same as given for the construction of the restricted genomic library (Chapter II,

section I1.2.x).
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Amplification, large sca le phage culture, phage D NA prep aration and restriction

mapping was done as described in Chapter 11,section Jl.z,x.

II1.2.iv) Northern blot analysis

The 10la1 RNA extractions from the P19 D· and D + cells were done by

H. Hamada. Poly A+ selection was done us desc ribed in Maniat is et al. (1982).

In order to examine the presence of protein codi ng sequences (genes) in

the stem cell specific loci (Neo-R pre-insertion loci), single-copy sequences were

isolated from the cloned pre-insertion loci DNA as described in m .2.i. Next,poly

A+ RNA from the undi fferentiated PI9 cells was prepared, electropho resed on

a formaldehyde contain ing 1% aga rose gel and transferred 10 a nitro cellulose filler.

All the single-copy sequenc es from one locus were combined and labelled by the

random primer method and were hybridized to the above RNA biot. Hybridization

and washing cond itions were the same as described in Chap ter II (section 1I.2 vii).

The blots were exposed for three to four weeks.
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1ll.3) RESULTS

IJI.3.i) Isola tion of the pre lnsertion chrom osoma l regions corresponding to the stem

cell specific loci

Single-copy DNA probes subcloned from the previously cloned DNA (in

phage) from the NEO+·celllines (Chapt er II) were used to iso late the preinsertion

regions corresponding to the NEO+ stem cell specific loci. No preinsertion

chromosomal region was cloned from the 024 locus due to th e lack of a single­

copy probe that could be used to screen a genomic library. From each of the

seven loci, between 20 10 30 kb of DNA were cloned and subjected to restriction

analysis. This revealed that in three of the loci, namely 015, 034, and 052. there

was chromosomal rearrangement fll the Neo-R integration site. This was due to

the insertion of an ETa genome during the NEO· cell line selection (details of these

loci and the ETn insertion are described in Chapter IV of this thesis) . However,

there were no chromosomal rearrangements in the remaining four loci.

From the 017 locus, about 21 kb of DNA was cloned (see Figure Ill-z).

Single-copy mapping of this locus revealed two stretches of single-copy sequc:nces

(see Figure III·2, the two lines below the restriction map), a Sall ·BamHI 1.3 kb

fragment (this sequence was used as a probe to isolate the preln senlon region) and

a &11 1.6 kb fragment. These two sequences from this locus were subsequently

used in Northern blott ing



Figure 1Il-2 Coning, restriction mapping and single-copy mapping of the

preinsertion locus corresponding to the 017 locus.

Preinsertion regions corresponding to the 017 NEO~-Iocus were cloned as

overlapping genomic clones from a Sou 3A-digested P19 genomic library (see

Figure III-I, Materials and Methods). The upper drawing is the NEO~ (Neo-R

gene integrated)-Iocus described in Chapter It ; the botto m drawing is of the

prelnsertlon region of the chromosome at the Neo-R integration site, isolated using

a single-copy DNA probe from the NEO~·locus (the straight line shown above the

NEO+.locus restriction map, see text for details of single-copy mapping). The

straight lines below the preinsentcn-locus restriction map are single-copy DNA

sequences used in the Northern blotting analysts of poly A+ RNA from

undifferentiated P19 cells. Symbols used: open box, pAlOneo; closed box, Nee­

R coding sequence; open circle, SV40 ear ly promoter; arrow, direction of Nee­

R gene transcription; B, BamHI; E, EcoRI; H, Hind lll; S, SSfl; G, Rgill; K,

KlJpllI: X, Xbo!.
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analysis of poly A+ RNA from undifferentiated P19 cells to examine whether

there are any mRNA coding sequences in this locus.

From the 023 locus, about 21 kb of DNA was cloned (Figure 1It-3). This

locus had more single-copy sequences (the lines at the bottom of the restriction

map in Figure IIl-3). The single-copy sequence BamHI-HilldlIl 1.3 kb was used

in the isola tion of the preinse rtion locus. In the Northern blotting anal ysis of this

locus, all the single-copy sequences shown in the figure, B.S well as a probe

containing repeated sequences (EcoRI-SamHI 2,8 kb, dotted line ill Figure III·3)

were used.

Th e 034 locus is one of the th ree loci that con tained the ETn genome (the

thick line in Figure 111-4). About 30 kb of DNA, corresponding 10 this locus, was

cloned. Although this locus contained an en hancer element of the ET n origin, the

presence of a cellular negative regulatory element which becomes functional upon

differentiation of cells, has been speculated (see Discussion in Chapter 11).

Therefore, all the single-copy seque nces, a total of 12.5 kh, were subcloned from

this locus (shown as straight lines at the bottom of the restriction map, Figure 111­

4; the sequence used in isolating the preinser tlcn chromosome is the SsfJ-BamHI

1 kb fragment present in the middle region of the cloned DNA) and used in the

Northern blot ana lysis.

From the 042 locus, about 27-kb of DNA was cloned using the single copy

Ssrl-HilldllI 1.2-kb (Figure H1-5) fragment as a probe . A tota l of 3-kb of single-



Figure 111-3. Ooni ng. restriction mapping and single-copy mapping of the

preinsertion locus rorrcspo nding to the 023 locus.

See legend to Figure 111-2 for details.
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Figure 111-4. Cloning, restriction mapp ing and single-copy mapping DC the

premseruon region corresponding to the 034 locus,

The thick line in the upper NEO +·locus restriction map indicates an incomplete

Ern genome, inserted into this locus along with the pA lOneo (see Chapter IV for

details). For symbols, restriction site abbr eviations and other details, see legend

to Figure 111·2.
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Figure HI-5. Cloning, restriction mapping and single...:opy mapping of the

prelnsertlon region correspo nding to the 042 locus.

Sec: legend to Figure 111·2 for details.
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copy sequences, and 3.5-kb of DNA which contained repeated sequences in a few

copies (dotted line in Figure 111-5) from this locus were subcloned and used in the

Northern blotting analysis.

The 052 locus was one of the three loci which contained the BTn genome.

Also, it was known that the stem cellspecificityof this locuswas conferred by the

enhancer elements of the ETn. Integration of exogenous DNA sequences into the

host chromosomes is believed to he favoured at an actively transcribing locus.

Therefore , the available single-copy sequences (a total of 14.5·kb, see Figure I1I­

6) in the cloned 30·kb from this locus was used in the Northern analysis. This locus

is described in detail in Chapter IV.

A total of 26·kb of DNA was cloned correspond ing to the 060 locus (F igure

III-7) using the 0.7·kb single-copy probe , exten ding from the BamHI·to the

enhance r-trap plasmid, This locus contained only a tota l of 1.5-kb of single-copy

sequenc es (see Figure 1lI-7), which was used in the Northern analysts together with

a probe containing some repea ted seque nces (Hilld llI-XbaI l.6-kb, the dotted line

in Figure JII·6)

Since the 015 locus conta ined the ETn genome and the stem cell specificity

of this locus was due to this ETn enhance r elements, single-copy mapp ing of this

locus was not done . Th is locus is discussed in deta il in Chapter IV. Also, it sho uld

be noted that except for the 052 locus, cellular seq uences 3' of Neo-R integra tion

site In ce ll lines 017,023,042, and 060 and 5' of Neo-R integration site in cell



Figure 1II-6. Cloning restriction mapping and single-co py mapping of the

prein scrtlon region correspo nding to the 052 locus.

The analysis of this locus shows that an entir e copy of the ET n ge nome (thick line

in the upper map) was integrated at the NEO+-locus. This locus, along with the

015 and 034, loci is discussed in deta il in Chapter IV. For symbols and other

details, see legend to Figure 1II·2
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Figure 111-7. Cloning, restriction mapping and single-copy mapping of the

preinscrtion region corresponding 10 the Of>O locus.

See legend to Figure 111-2 for details.
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line 034 were not included in the cloned DNA (compare the restricti on maps of

NEO" loci and the respective preinse rtion loci in the ahove figures).

tIl.3.ii)Northcm blot analysis

Allof thesingle-copysequences available from the seven lociwer e subcJoned

in pUC 12 or pUC 1'1, and subclcned fragments were excised from the plasmid

with appropriate enzymes, ge l purified and used in the Nor thern a nalysis. In

addition, considering the poss ibility th at there might be genes in these loci which

might belong 10families of similargene s,sequenceswhich are repealed a fewtimes

in the genome from some of the clon ed loci ( the dotte d lines in the figures) were

also used in the Nort hern ana lysis. T he results of these Nor the rn blot s life shown

in Fig ure IlI -8. T here were no detectable messages against cloned DNAs fro m

017 locus ( lsI lane) and 052 locus (da ta not shown).

From the 023 locus, two types of probes were used: i) poole d single-copy

sequences, Ii) the EcoRI·Bam HI 2.8 kb fragment containing repeate d sequences

(the dolled line in Figure III -3). Agai nst the single-copy probes, a band (a rrow

in Figure II1·B) which corresponds to 28S ribosomal RNA (about ; 5 kb) was

detected, a long with a smear in the 7.5 kb region. Against the repeated sequences

probe, several band s were det ected (3rd lane), however, no bands appare ntly

common to probes (i) and (ii ) were detected in the blot (co mpare 2nd and 3rd

lane ).



Figure 11I-8. Northern bioi analysis or the 0 17, 023, 034,041,. and 060 loci

Approximately 10 ~g of po ly A+ RNA fr om undi fferentiated P19 cells was

electrophoresed on a fo rmamlde -egaros e gel, blotted to nit mcellu! ose, and hybridized

against either pooled single-copy DNA probes or moderately repeated sequence

probes from thevariou s loci, as indicatedin the figure. The mimes of the loci are

shown at the bottom of each lane. The arrow indicate s the approximate position

of th e 28S ribosomal RNA.
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Against the 034 locus, tile pooled single-copy probes detec ted a band which

corresponded to the size of 28S r ibosom al RNA (arrow). There was ano ther, very

faint b and of about 7 kb size (above the m ajor band in the 4th la ne, no t

reproducedvery wellin the photograph) (a eDNA screeningwas done against this

locus. data not shown, see Discussion).

T o analyse the 042 locus, all the probes, including the repeated-sequences

probes , were po oled and used in the Northern a nalysis. Lane 5 shows th at there

are several hybr idizing messages . This locus wa s further analyzed by per forming

individ ual North ern ana lysis aga inst each of the probes. However, this ti me only

the probe conta ining repealed se quences hybridized to a weak sm ea r and none of

the single-copy probesdetected any discrete messages (da ta not shown).

The 060 locus probe, which ecnta tns repeated sequences.det ected a strong

discrete band of about 6.5 kb ( above the band shown by the a rrowin lane 6).

The less intense bandshownbyan arrow corresponded10 the size of 28Sribosomal

RNA (see Discussion below).

111.4) D1sruSSION

In the No rthern blotting a nalysis, about 10 jigof poly A+ RNA was used;

the poly A+ selection was done only once and, therefore. some poly A· and

ribosomal RNA cootaminationcan beexpected. Furthermore.depending upon the
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p robe, c ross-hyb r idization of even single-copy probes 10 ribosom a l RNA can ae

observed. Therefore, it is likely that the bandsshown by arrowsin the figures are

cr oss-hybridizatio n to 28S ribosomal RNA; especially since the same 5.5 kb band

was detected in several lo ci (023, 034, 04 2, and 060, see Figure IlI ·8, arrows ).

A eDNA library prepared from the undifferentiated P19 stem cells was

sc reened separa te ly with the sing le-copy probes fro m the 034 lo cu s and a probe

containing some repeated sequences, from the 060 locu s. Four cDNAs were

isolated (d atilnot shown) with the 060 pro be, however, subse quent analysis showed

th ai none of the four clon es repr esente d the 060 locus. T herefore , it is lik ely that

the strongly hybr idizing 6 kb messa ge was coming from some other locus but cross­

hybridiz ing to repeated seque nces in the 060 probe . In th e case o f 034, no cDNAs

were iso lated against eith e r the st rong or the weak messages. This result and the

size of the message suggests tha t the stro ng band detecte d agains t this locus may

possibly be the r ibosoma l RNA. Howeve r, the failure to isolate cDNAs can also

b e expla ined by a) poo r quality of the eDNA library, b) the fac t that when a

eDNA libra ry is made from cDNAs, the regions correspo nding to the most distal

(3 ') exon s of a gene are better represented in t he popula tion, particular ly if the

mRNAs are long. If the probes are from the 5 ' region o f that ge ne, one would

miss the gene unl ess full length cDNAs of that gene were present. In an y case,

further chromosomal walking,isolation of single-co py prob es, and Northe rn analysis

in the pr esence of ribosomal DNA as competito r, is necessary to elucida te the

identity of these messages.
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A gainst the 023 lo cus, it is necessary 10 perform Nort hern an alysis for each

of the single-copy probes separat e ly with 28S ribosomal D NA as co mpetito r during

the hybridization .

Th e selectionprocedureused inour approach involved activation of a NeOM

R gene by an e ndogenou s enhanc er. Sinc e an e nhancer can act iva te either from

5' or from 3' of a gene, in an o r ientatio n indepe ndent m anner, half of the stem

cell specific loci were expec ted to conta in an activating ele ment 5 ' of th e Neo-R

gene. Although it is ide al to clone both the 5' and the 3' flanking cellular

sequences of the transgene , the availabilityof fragmentsof appropriate lengths and

having appropriate cohesiveends, cloning was restricted to the5' sequences in the

m ajority of the cases (se e Figure 11·6, C hapter II). This reduced the prob ability

o f cloning genes from th ese loc i.

In addition, the clon ed enha ncers (0 15, and 052,see Chapte r 11, Resu lts and

Discussion on th e 034 locus) bel onged to a stem cell stage specific transposon.

The 5' sequences from the remaining loci, 017,023, 042,a nd 060. had no enhancer

activity (Ch apter II). This lessene d the probability of the pr esence of genes in these

loci, unless the enh ancer was prese nt in th ese loci further up stream from the cloned

D NA, o r acuva t ion of th e Neo-R gene was bro ught about by some unknown

mechanism similar to the locus activat io n doma ins of the p-glo bin gen e locus

(Grosveld el 01. 1987).
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Alte rnatively, if we assume that these loci have enhancers and associated

ge nes at the other side of the Neo -R gene, it is less likely that one will be easily

abl e to clone such enhancers and genes by genome walking usi ll ~ cellular sequence

pro bes from only the 5' or the 3' of the Neo-R gene insertion, as I did here. This

is because the integration of the enhancer-trapplasmidis a type II integration event

which usually accompanies large chromosomal deletions at the integration sites

(G heysen et al. 1987). Therefore , to connect the two sides, it may be necessary

to walk hundreds of kilobnses along the chromsome. In fact, it is more !'tr~ i5h l

fo rward and perhaps more worthwhil e to clone the other side of Neo- R gene from

th e NEO + cell lines and search for the genes, since this would allow one to walk

along the chromosome in all directions from either side of the integration site.

In any case, the quest ion arises as to what is the possibility of having genes

in differentially activated chromat in regions. An important clue comes from the

work of Frank Grosveld and coworkers (1987). They identified two seque nces,

lo cated 50 kb upstream and 20 kb downstream of the (3-glohin gene. These

se quences, when together witha minimal (3-globin conta ining DNA segment, brings

the p·globin gene expression to quan titatively normal levels in transgenic mice having

a single copy of the gene. Further more, these sequences conferred auto nomy 10

,B-globin expression, i.e. high express ion occured independen t of chromoso me! site

of insertion when these flanking sequences were present, These results, therefore.

p rovide the strongest evidence yet for not only the presence of dominant ,
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differential ly active chromosomal regions, but also the association o f such active

domains with a spatially regulated genetic loci

Alth ough not quite the same, it is tempting to suggest an association of gene

transcription with chromosomal activity, for the chrcreosomal puffingobserved in

the polyte ne cbro moscmes of Drosopllila salivary glands (see Serfling, 1982 and

references therein) or the heat shock-induced puffs at the H sp loci (Ashbumer and

Bonner, 1979). Both accompany the expression of the resident genes.

In addition, there have been several reports indicating that chromosomal

position can affect the expression of a newly introduced transgene(see Introdu ction

to Chapter II of this thesis). AlSO, whe n genes are introduced into mice by

transgenics, correct expression (quantitative) of those genes is never observed. This

indicates thai transgenes were subjected to position effects (see Grosvejdet aL 1987.

and referen cestherein). However, since we lack information regarding the number

of attempts made where a thorough molecular analysis of the regions W'dS

performed, and regarding the number of successes in those attempts. it is di fflCtllt

to predict the chances of cloning genes from differentially activated chromosomal

domains.

Finally, I should ulso point out that the mouse and most other euke ryctes

(as well as bacteria) presents a largely overlooked yet potential problem insearches

of this kind. That is, the mouse genome contains several families of repe aled

sequences and retroviral or similar gene families with copy numbers each varying
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-etween . l lXX>-Sooo. Furthermore, ma ny of these are transcribed in a

developmentally regulated manner (temporally and/or spatially, examp les include

the ETn gene fam ily; intracisternal particl e genes; see Brulet t l al: J98J; Levine

e: aL 1984; Ikuma t l al: 1986;Callarcc and Szcllosi, 1973;Lueders and Knurr, 1980;

Murphy el aL 1983). This large number of lcc l, the refore, would effectively co mpete

with the small number of differ entiallyactive doma ins that might harbour impo rtant

regulatory genes. The probability of insertion of an exogenously introd uced

transgene into a functional regulatorygeneticloci, therefore, is extremelylow unless

ways are designed 10 exclude: or to identify the above mentioned and simila r non­

specific genetic loci.
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CHAP1ER IV

STEM CEL L SPECIFI C EARLY TRANSPOSON-L1KE GENES ARE MOVABLE

IN rna MOUSE GENOME

IV.I) INTRODUCTION

It was Barbara McClintock (1951: 1956), who observed that mobile genetic

el ements "controllin g elements" as she called the m, alte r the temporal gene

expr ession p rograms during developm ent. In rece nt years, several examples have

been descr ibed in which tr an sposon insertion influe nced the expression of adjace nt

ge nes. T he best studied examples include inactiv ation of genes involved in

Drosophila eye colour (R ubin et al. 1982 ), devel opment al mutan ts of mouse

(Jaenisch et al. 1983), act ivation of c-myc in bur sal lymphomas by insertio n of

pr oviral co pies afte r infection byavian leukosis virus (Jenkins ef al. 1981; West away

et 01.1984) , and provirus im posed androgen regula tion of th e sex-limited protein

(sip ) gene in mouse (Stavenhagen and Robins, 1988).

Mo st strains of mice conta in copies of severa l types of retrovir al sequences

in their genomes, capable of replicating in murine cells (Chan el 01. 1980; Jenkins

et ai. 1982) . In ad dition, the mouse genome contain s several families of mode rately

re peated retrovirus-like stru ctures which are non-infectiou s and are generally
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expressed in early mouse embryos,mouse tum ors or EC stem cells but very rarely

in normal tissues. The intracisternal A-partic le genes (lAP), for instance, is one

such group found transcribed and translated in ear ly mouse embryos and mo use

tumors (Ca llarco an d Szollosi, 1973; Chase and P ika, 1973; Kuff a at. 1972).

This lAP genome is known to be mobile in th e mouse genome (Kuff et al; 1983)

and is respon sible for the enhanced expression of th e Ren~2 gene in mice (Burl

et af. 1984) and th e inactivation of immunoglobin Ck genes in a hybr idoma cell

line (Hawley ci al. 1982; Kuff et al. 1983).

Akin to lAPs, Brule! et of. ( 1983) described another family of transposon­

like or integrated retrovirus-like elements which are expressed as 6 kb mRNA in

und ifferentia ted EC cellsbut not in the differen tiated cell types. Thei r expressio n

was also fou nd 10 be restricted to early mouse embryos (Ikuma ct al. 1986). Wh ile

cloning chro mosomal loci specifically active in the stem cells, I isolated stem cell

specific enha ncer ele ments (Chapte r II). T hese enhancers were found to be part

of the early transposo n-Hkeelement described by Brulet el at. (1983). Comparison

of the loci co ntaining the ET n to wild type pr e-insertion loci revealed Ihat the ETn

sequ ences were inserted du ring the experimen tal time Iramc. These observat ions

are of interest beca use, having a stem cell specific -nhance r in their genomes, ETn

insertion next to a gene can confer stem cell specificity 10 its expression. Alth ough

a systematic search to demonstrate cohabita tion of ETn and a gene in the m ouse

genome is not very practical, it is important from this viewpoint to demonst rate
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that El'r. genes are in fact movable in the mouse genome. In this chapter, I

describe experiments that provide evidence to show that these ETn genes are

transposable in a murine embryonal carcinoma cell line.

IV.2) MATE RIAL AND METIlODS

Materials and Methods specific to this chapter are described here.

Remaining molecular/cell biology procedures (such as cells, plasmid and phage

vectors, Southern blotting, molecular cloning procedures etc.) are described in

Chapters II and III.

lV.2i) Cells

In addi tion to P19 cells, two othe r EC cell lines, pee3 and F9, were used

for preparing the cell ("HiTt") extract. The cells were mainta ined as previously

described.

The tissue culture work was done by H.Hamada.
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IV.2.ii) Preparation ol lhe EC cell extract (Hirt extract)

Cell extracts were prepared from three EC cell lines. PI9, F9 and PCeJ.

from undifferentiated cells. as described by HiM (J967).

IV2iii) Description of probes and Southern blots

IV.2 iii.a) The O1S locus probe

In order to demonstrate rearrangement at the 015 locus, a single-copy

sequence, 015Hi"dlll~Xbal 0.5 kb (see Figure IV·2) was used as probe in genomic

Southern blot analysis of PI9 and 015 DNAs.

lV.2.iii.b) The 034 klcus probe

The 034 locus rearrangement was demonstrat ed using the probe , 034 Ssl l·

BamH I 1.0 kb fragment (see Figure IV-I), in the genomic Southern blots of PI9

and 034 DNAs.



136

IV.2.iiLc) The 052 locus probe

Rearrangement at the 052 locuswas detected with the single-copy probe 052

Ssll·HilldIlI 1.0kb fragment (see Figure IV-3). The genomic DNAs from P19, 052,

testis and various somatic tissues from C3H strain mice were used for the Southern

blot analysis.

IV.2.iii.d) A transposon-specffic probe

Th e early transpos on-spccirlc probe (Tn-specific) comprising the entire

transpos on (Xbal 5.5 kb fragment from the 052 locus, see Figure IV-3) was

subcloned in pUC 12 from the 052 locus. This Xbal 5.S kb fragment was excised,

gel purified and used in the Southe rn hlot analysis of the HiT! extra cts to examine

the presence of extrachro mosomal copies of the tmnsposon.

IV .2.iv) Southern blot analysis of the Hirt extract

About 10 ~g of DNA from the Hirt exctruct from PI9 cells, pee3 and F9

cellswere electrophoresed on a 0.7% agnrnse gel and the Southern blot was probed

with the above Tn-speciflc probe. tmnsposon were used as probes. Probe I was

the EcoRI ·Psf 0.1 kb fragme nt (right end) and Probe 2 was the Hilldlll-Ssl 0,1 kb

fragment (left end). Both were obta ined from the 052 locus, see Figure IV-3,



Figure IV-I. The inse rtion of 8 cnpy of the IITn genome has rearra nged the 034

locus.

Using a single-copy DNA probe rprohe", shown above the NEO· ·locus in the

upper drawing), overlappi ng genomic clones were: isolate d from a P19 genomic

library (see Chapter III ). The se clones were analyzed by restriction map ping (lower

drawing) and compared to the restr iction map of the 034·NEO· lccus isolated

previously (Chapt er II). The thick line in the upper drawing of the NEO·.!OCU5

is -he insert ed ETn genome. Confirmation of this transposed DNAelement as being

the ETn genome is based on the sequence analysis of the ETn promoter and also

by comparison to the restriction map of the ETn genome reported by Brulet et

at. 1983. The open box is the pAlOneo sequence ; closed box. Neo-R coding

seque nce; open circle, the SV40 ea rly promoter . The locatio n of integratio n of

the ETn genome together with the pAtoneo is known by the lines. B, BamHI ;

Eo £CaRl; G, BgnJ; S, &/ 1; K, KfN,I; Sa, Soli; X. Xbol (see text],

IV.2 v)"End" specific probes of the transposon

To analyse whether there are differences in the ETn insertion sites between

the germ line and the somatic cell lineages, fragments from the two ends of the:
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Figure 1V-2. Rearrangement at the 015 NEO··locus is due to the BTn genome

insertion.

A comparison of the restriction maps of the abnormal 015 NEO+·locus (upper

drawing) and the normal preinser tion locus (lower drawir:g) shows that a copy of

the BTl: genome along with the pAIOneo has integrated into this locus (location

of the insertion is shown by the lines). See legend to Figure IV- l for symbols and

abbreviations of the rest riction sites.
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Figure 1V-3. The rearrangement at the 052NEO+-Iocusis due to the ETn insertion.

A comparison of the restriction maps of the 052 NEO+·loeus (upper drawing)

and the corresponding normal preinsertion region (lower drawing) shown in this

figure indicates that a copy of the ETn genome has integrated into this locus. The

locations of insertion of the ETn and the pA10neo are shown by the lines. Note

the small streach of (about 200 bp) mouse sequence between the Ern and the

pAWneo (see text). Sec legend to Figure IV·1 for symhols and abbreviations of

the restriction sites.
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lV.2 V11 Southe rn blot of the Genn line and S:Jmatic DN A

DNAs (IS 10'8 each) from O H mouse strain testis. various somatic tissues,

and P19 cells (0- and 0 + ). were digested with £CoR I and ano ther hatch was

digested with HiI,dlll and both were elect rophoresed in a long gel for two days.

The EcoRl digested set was hybridized with probe 1 (EcoRt·Pst 0.1 kb, right end)

and the HlndllI digested set was hybridized with probe 2 (HilldIIl..ssl 0.1 kb, lett

end). Hybridization and washing condi tions we ft as described in Materials and

Methods, Chapter II.

lV.3) RESUI.TS

IV.3.i)Rea rrangeme nt in the 034, 015 and 052 loci is the resu lt of ETn insert ion

Previously, I isolated several stem cell stage speciCIC loci from PI9 Eecells.

Further analysis of these loci showed thai three of the loci. namely 015, 052 and

034, contained a complete or a partial sequence of the early retrovirus or

trnnsposon-like element described hy Brulet el 01. ( J9R3). It was interes ting to find

out whether these ETn are endogenous to these loci or inserted into them during

the experimental time-frame. Theref ore . using single-copy probe s from these loci,

the corresponding pre-lnsenl on regions were cloned from a P19 genom ic library
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and restriction maps of the 015, 052 and 034 loci were compared with those of

corresponding regions in the genome. The results showed that, the ETn insert ion

was not end ogenous to these loci (015, 052, and 034), and thus tha t the insertion

must have occured while isolating the NEO· cell lines.

In the 034 locus, an incomplete copy of the ETn genome was inserted 3'

to the direction of Neo-R gene transcription (Figure IV-I). The ETn sequence

exte nded from near the Xbal site to the pAIOneo plasmid (thick bar in the upper

drawing in Figure IV-I). The ETn genome was not present in this region of the

normal genome.

In the 015 locus as well a comparison of the restriction maps of the 015

locus to the corresponding normal locus revealed tha t a com plete copy of the ETn

genome was inserted in the 015 NEO~ cell line at this locus (Figure tV-2). The

ETn extended upstream from the Neo-R gene, repla cing the SV40 ear ly promo ter

of the enhan cer-tr ap plasmid, pAlO neo (Figure IV-2, thick bar in the upper

drawing).

Similarly, the restriction ma ps of the 052 locus and the corres po nding region

in the geno me showed that ETn was inserted, extending from near the HilldIII site

to very close to the Neo-R gene (thick bar in the upper line drawing , Figure IV-

3).

The 052 cell line contained one full copy and also a parti al copy of Neo­

R gene (solid box in Figure IV-3) (see Chapter II). From this locus, about 32 kb
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of the normal genom e was cloned . When the restriction map of the normal region

was compa red with that of 052 locus, the 32 kb reg ion contained both the right

side and the left side of the ETn + Neo-R integrat ion site. Thi s me ans th at the

integration in this locus had cccured without chromosomal deletion (see Figure IV·

3). In the other two cell lines, the ETn side of the integration sites also had no

chromosomal deletions. However, the left side of the integration site in the 034

locus (the plasmid side) was differe nt from that of cloned normal regions indicating

that integration had bee n accompa nied by a chromosomal deletion (Fig ures IV·I

and IV-2) . Also, in all three loci, the ETn a nd the pAlOne o plasmid were

togeth er, a nd in 015 and 034, the ETn seque nces wer e immed iately adjacent to the

plasmid seque nce. In the 052 locus, however, about 200-bp of single copy mouse

sequence was prese nt betwee n the ETn and the plasmid pAlOne o (see Figure IV·

3). However, it is difficult to decide whe ther: i) the integrat ion has occurred

indep end en tly, one followed by the ot her, ii ) at the sa me time, or iii) the ETn was

initially integrat ed into the plasmid. extrachromoso malfy, and the combined

sequences then inserted into the genome. In the 052 locus, it appears that the ET n

integr ation a nd the pAlOneo plasmid integ ration occurred inde pendently ("iii"a bove

can be ruled out) since there is a n interruption betwe en the ETn and the plasmid

by a single copy mouse sequence.

The transposition of the ETn genom e was also analysed by genom ic Southern

blo tting. To detect the rearrangemen t in the 052 locus, high molecular weight DNA
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from C3H strain mouse testis, P19 cells, and 052 NEO· cells, were digested with

EcoRI. The Southern blot wasprobedwith a single-copyDNA probe, the HifldIII·

BamH I 1 kb fragment from the 052 locus (see Figure IV.3). In the germ line, a

single fragment of about 2O-kb corresponding to the normal allele was detected

(Figure IV-4A, lane 5). This 20-kb fragment was also detected in Pt9 cells (lanes

1 and 2). In the 052 cells, in addition to the normal 2Q-kbfragment, the probe

also detected another lQ-kb fragment (lanes 3 and 4: the second EcoR I site is in

the ETn, see Figure IV-3 for the restriction map). Th is abnormal 10-kb fragment

was due to the rearranged allele of this locus.

To detect the rearrangement in the 034 1ocus, high molecular weight geno mic

DNA from P19 cells and the 034 cell line were digested with HilldlII and the

Southern blot was probed with the 034 locus-specific probe, the $st l-BamH I 1 kb

fragment. In the P19 cells, the prohe detected a single In-kb band (Figure IV·

48 , lane 1). However, in the 034 cell line, in addition to the lO·kb fragment, the

probe detected a 13·kb fragment (lane 2). In this locus, the ETn insertion had

disrupted the HilldllI site in the genome and as a result, the rearranged allele is

detected as a 13·kb fragment (see the restriction map in Figure IV-2).

Southern blotting analysis of the 015 locus was done by digesting the high

molecular weight DNA from P19 cells and 015 cells with HindUI. When the blot

was probed with the HilldlII-Xbal 0.5 kb fragment, a single-copy DNA probe



Figure IV-4. Southern blot analysis of the three rearranged loci.

(A) High molecular weight DNAs from undifferentiated (D-) and differentiated

(D+ ) PI 9 cells, and 052 NEO· cell line, and C3H testis DNA were analyzed with

a single-copy DNA probe specific to the 052 locus. The lll-kb abnormal band in

the 052 lanes comes from the rearranged allele (note the EcoRI site in the upper

restriction map, Figure IV-3).

(B) DNAs from PI9 (0 -) and 034 NEO· cell line were analyzed with a 034

locus-specific probe. The upper band of 13-kb size in 034 D- lane ar ises from the

rearranged allele (see restriction mar in Figure IV-I, note the HilldlII site).

(C) DNAs from PI 9 (D·) and 015 NEO··ce ll line were ana lyzed with a single­

copy DNA probe specific to the OIS locus. T he 5.5-kb hand in the 015 D-lane

arises from the rearranged allele. The normal allele is represented by the l-kb

band in the P I9 D- lane. This normal allele was not de tected in the 015 NEO'

cell line (see Discussion). T he enzymes used for analysis of each locus are shown

at the top.
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specific to the 0 15 locus, a t .z-kb fragment was de tected in PI9 cells (figure IV­

4c. lane 1). However . in the 015 cell line a single fragment of 5.S-kb size

representi ng the rearrang ed allele was dete cted (lane 2) (see Discussion).

IV3.ii) The ETn genome can be detected extrachmmosomally in the P19

stem cells

H igh freque ncy tran sposition of 11 DNA sequence is genera lly characterised

by 11 high extrachromosomal copy number with in the ce ll (Krowleskl and Rush,

1984). To lest whether the ETn genome exists extrachromo somally in the EC stem

cells, ext rachromosomal DNAs w-ire isola ted from the undiffe rent iated E C cells

(PI9, pee 3 lind F9 cell lines) according to Hil, (1967). Th e DNAs were re solved

by agarose gel e lectrophoresis a nd analyzed hy Sout hern blotting using an entire

copy of th e ET n genome (Xbtl! 5.5 kh from the 052 locus) as the probe. Th e ETn

probe in the blot detect ed a 6 kb fragment in the P19 ce ll extr act (Figure IV-5,

lane 1) but not in the F9 or the PCC3 extracts ( lanes 2 a nd 3). Th is 6 kh hand

detecte d in P19 cells pro bably re presents the linea r ET n genome, no othe r forms

(such as circula r or supercotled t were detec ted in the blot (sec Discussion ).



Figure IV-5. Extrachromosomal DNA copies of the ern genom e arc present in

P19 cells.

H irt extrac ts from P I9, F9 and PCC3 EC cell lines were e lectro phoresed on an

agarose gel, bloued and hybridized against an entire copy of the ETn genome (Xbal

5.5-kb from the 052 locus, see rest riction map in Figure IV. 3). A 6-kb band is

seen only in the PI9 cell extract. Tn, ear ly transposcn-Hkc clement (Eln).
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IV .3.iii) The Ern ua ns pcsino n event is possibly restricted tovery early sta ges

or mo use embryogenesis

Duri ng mouse eebry ogeresis, Soriano and Jaensch ( 1986) showed tha t the

ge rm line is allocate d prior to the somatic lineages. Jr the t ransposi tion is active

duri ng and/or afte r the allocat ion of cells t o different lineages, this would result

in th e uniq ue integ ra tion s ites in t he germ line lind soma, a n d among the various

so m atic tissues. Alt ernat ive ly. if th e transposi tion ceases to occu r before the

a llocation of founde r cells to somat ic lineages then there wo uld be no direerence

in t he ETn integrat io n sites between the ger m line a nd the so ma. The refore, D NA

fro m testis, various somatic tissues , and P I9 cells were a nalysed by Sou thern

hybrideation , Two differen t probes fromth e two en ds or th e ETn gen ome were

used (see Materia ls and M e thods for the de scr iption or the probes). For probe

I , EcoRI·PslI 100 bp, the DNAs were digest ed with EcoRI. w hich wo uld allow the

de te ction o f differe nce in th e right side of the ETn integra tion sit e. For probe

2, H illlflll -S,fl 100 bp, the D NAs we re digested with Hilldlll . allcrNing the a nalysis

of t he nanking cellu lar sequences a t the left side. T he results shown in Figur e IV·

6, A and B, however, indica te tha t th ere a re no apparent differences in the ETn

int e gration sites be tw een the germ lin e and t he soma tic cells, o r amo ng the vari ous

so m atic tiss ues exa m ined, a nd PI9 ce lls as well.



Figu re IV-6. Analysis of the int egration sites o f tbe ETn geno mcs in th e germ cells

and various so ma tic tissues .

(A) Analysis of th e DNA a t the left side of the ETn int egratio n site. High

mo tecuar we ight DNA (10 p.g) from teslis, vamus somatic lineages of the: C3H

stra in 1II0use, and [). and D+ P I9 ce lls were digeste d wilh &o RI and

elect rophoresed on a 10Ile:gel. The DNAs welt blo tted and hybrid ized 10 a left

side Ern e nd-specific probe (£CoR I-PstI IIXl bp, Irom the 052 loc us, see the

restri cti on m ap in F igure IV.3 , uppe r drawing~
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Figure rv-6:

(8 ) Ana lysis of DNA at the right side of tbe ETn lntegnulon site . The sam e set

of DNAs used in (A) were digested with Himlll i and the blot W'dS hyb ridized ogoinst

a right sid e ETn end-specific pro be (Hi" d IIISil 100 bp, also from 052 locus, see

th e map in Figure IV.3, upper drawing). Hilld1l1 digest ion was p artial in some

cases for unknown reaso ns.
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IVA) DISCUSSION

The findings in this repor t provide direct evidence that EF n-Iike elemen ts

cnn act as a movable genetic unit in the mouse genome. Of importance is the

previous finding that the ETn geno me contains strong transcriptional enhancers

which are stem cell specific (Cha pter II), and which had rendered the adjacent

Neo-R transgene stem cell specificin the OIS, 034 and 052 loci. This demonstrates

the possibility that these genetic units can act as powerful stem cell insertion

mutagens and regulate and/or alter gene expression in the founder cells of an

embryo .

Restr iction maps of the norma l and the transposed chromosomal regions

and the Southern blot an alyses of the three loci clear ly show that the ETn genornes

were inserted into these loci and were not endogenous to them. T he restric tion

maps from these loci indicate a c1e~1O transition from the cellular seque nces to the

ETn sequences with no deletions of cellular sequences at the transposon side (see

f igures IV·I , (V·2 and IV·3). T here are two general types of DNA insertion into

the genome of an euknryctic cell (see Gbeysen 1:1al. 1987). In the first mechanism,

referred to us a type I event, delet ion of target DNA is not common (exemplified

by transposons lind retroviruses). In the second mechanism, referred to as a type

II even t, such chromosomal deletions lit the integration sites are common

(exemplified by introduction of DNA through transfection, electroporntlon, infection
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with viruses such as polyoma, SV40. or aden ovirus). The refore, it is not su rprising

that the re was no delet ions 81 the ETn Integration sites in these cases. Alt hough

in the 034 locus the ETn is partial. it is unlikely that this partial copy is a result

of a deletion du ring transposon integrati on (see below).

In the Sout hern bioi analysis of th e rearr angement at the 034 locus , lanes

J and 2) , the inte nsity of the two bands re present ing the normal and the rea rra nged

fragmen ts was not the same (see f igure IV.4B. lanes 1 and 2). It is possib le that

the normallO-kb fragment detected hy the probe is repea led in the haploid genome

and the t ransposon insertion had occure d only in nne location. This would give

the different densities for the rearranged and the normal fragments.

In the 0 1.5Southern blot, the normal 1.2-kb fragment was not detected in

the 015 ce ll tine (Figure IV4 C, compare lanes 1 and 2). At least two pos sibilities

can be fo rwarde d to explain why the nor mal allele was not dete cted in this ce ll

line. Fi rs t, two copies of the tra nsposon may have integrated into both of the

chromosomes by homologous recombinaro n, Second, the HilldlIl·Xba I 05 kb

fragment may have been deleted (or a part of the chromosome or the entire

chromosome which harbors this sequence) . Judging from the intensities of the two

ba nds (compar e lanes 1 and 2), the latt er possibility is more likely.

Ni far as the mechanism of transposi tion into these three loci is conc erned ,

it may be difficult to distinguish betwee n the t ransposition of ETn gene copies

already present in the genome and the insertio n of new proviral forms reverse-
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transcnbe d from an ETn transcript. It is widely believed thai circular DNAs are

intermediate s in D NA·(o-.DNAtransposition (F\:Ive= 11 and Ish-Horowitz, 1981; T emin,

1980; Va r rnus, 1982). Analysis of the cell culture extract from P I9 cells revealed

a single fragment of e-kb (Figure IV-S. lane I). which is same as the size of the

ETn transcript. No other forms were observed. Therefore, cycles of re verse

transcript io n and proviral insertion arc more likely than the direct DNA-tn ·DNA

transposition. Th e presence of a pallial copy of the transposon in the 034 locus

therefore mayhe d ue 10the Integration of an incompletely reverse t ranscribed DNA

copy of the ETn rather dum a deletion du ring int egration . Also, the alte rnative

mechanism of the precise transposltton of an lntegruted re troviral gene co py has

not yet bee n demonstrated

Alth ough the ETn genome is tmnscnptona tly active in F9 (lkuma er at. 1986)

and pceJ cells (see Brulct tl oL 1983). ext rnchro mosomal ETn copies we re not

detected in these EC cell lines (lanes 2 and 3 in Figure IV·S); however, a small

but funct ionally significant number could well have escaped detec tion.

No appare nt diffe rences in the integ ration site5 of the transposo n between

the:germ line and soma, nor among the va r tous so mutic tissues was observed. One

explanat io n is that if the transposition event is restric ted to early stages befor e the

allocation of embryonic cells ttl germ cell line age, the ETn integration sites will not

be diffe re nt in the germ cell and somatic ce ll lneages. One might wonde r, then,

why there was no difference between Pl 9 and germ line/somatic tissues, since Ern
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t ranspositi on was occuring in the P19 cel ls. Several posslbi'uies shou ld be

considere d here. Firstly, s ince the integrat ion occurs cenerallyat random !loites in

the chromosome, the contri bution of individ ual cells in which the transposi tion might

havecrea ted new integration sites to the total cells used for DNA extraction would

be too little to be detected by the Southe rn blott ing. Seco ndly, the transposition

frequencie s for mobile elements are genera llyvery low, in the order of 1O-t, to

10-6 per copy per generation (F innegan, 1989). Thus the failure to detect any

difference between the P19 cells and the germ line or the somatic t issuesmay also

be due to II very low E Tn tra nspositio n frequ ency. It is possible tha t the

transposit ion of t he ETn is activa ted in th e P19 cells for unknown reasons.

IIhas been proposed that mobileelement s,as a pan ('Ifa regulatoryprocesses,

may exise from specific loci anti integrate into some other specific loci d uring

development lnf luencingcel ldifferentiationinto linea ges.The absence ofdifference

for the ETn sites amongthe variouslineages, however, rules out such a possibility,

at least fo r the ETn. Participation of the ETn in the very early determinative

events of embryogenesis in the mouse, how ever, is still an interesting possib ility.

The re isa possibility that the transpo sed ETn in the abovethree loci could

be an ar tefact associated with DNA rran sfection, i.e.. the large numbe rs of

extrachromosoma! copies of the ETn got tra pped with the DNA-calcium phosphate

precipitate and artefactually co-integrated into the mouse genome. The following

indirect evidence however support my content ion that the ETn is movable in the
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mouse geno me. They are: firstly, the 6kb-fra gmcnt observed in the Southern bioi

ana lysis of th e cell extract using the ETn probe (Fig. IV·S) is DNA and not RNA

(poss iblya reverse transcribed product of ETn RNA) . SecondJy,lhe Ern has direct

repeats at the ends, a commonlyobserved characteristic of other transposons and

retroviruses which integrate into the host genom e. Th ese repeats a re though t III

be involved in the site specific recombination process during transposon integration

Th irdly, there ore at least 1000 copies per ha p loid ge nome of these ETn-like genes

in the mouse geno me. A large increase in copy n umbers of a gene is gene rally

believed to occur by n) tandem du plication couple d with unequal c ross overs and

positive sele ction of such cells under a selective pressure, b) bi-directional

replication , or c) ext rachromosomal amplification, and tI) tran sposition, panicularly

through cycles of reverse transcription and topy DNA integrat ion. A likely

explanation for the presence of > 1000 copies of ETn genes in the mouse ge nome

would be the reverse transcription of ETnRNA into DNA followed by transpos ition.

O ur results there for e are in agree ment with the contention tha t these E'I' n-like

genes are movable in the mouse genome.
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CHAPTER V

::ONCLUSIONS

Using the app roach of randomly markinJ; chromosnmulloci with 11 trr msgene,

severa l chrornosomn l domains which a re active o nly il l the undifferentiated EC stem

cells but not in thei r dlffer e nttuted dcr lvatlves, were clone d. T he analys is of the

clone d DNA revea led that three of the loci contained stem ce ll specific e nhancer

cleme nts of the early trunsposon-like eleme nt genes.

The uncovering of the stem cell specific enhance r of the ETn in this study

has provided the basis for further research. The enhancer isolated here is a stem

cell specific en hance r. This stem cell specificity could he d ue to; i) positively

regulating ste m cell spec ific tra ns-acting factlt r(s ), ii) nega tively regulating trans­

act ing f:lct\lr(s) repressing the enhancer acuvity <It the onset o f differe ntiation, or

iii) the stage specific modification of trans-acting fllctnr (s) thai interact with this

enhancer either positively or negatively (see review by Ptas hne, 1988). In any case,

it is possible that there are ta rget genes other than the ETn for these factors. The

isolation of factor(s) and the gene(s) encoding them et c., using the enhancer

elemen t cloned in this study, will be a significant step in the study of embryogenes is.

The prclnscruon chromosoma l regions correspo nd ing to the above stern

cell specific loci were subsequent ly cloned and searched for genes. It might be
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possible that the hybridizing messages foun d in som e of the loci arc from functiona l

gene s (possibly the 034 Incus and the 023 locus), in which case the time consuming

and risky part of the ir st udy has been accomplished.

Finally, evidence has been provided thnt the stem cell-specific ETn genes

arc movable in the mouse genom e. Thi s is significant because it indicates that the

trunspcson can act as a powerful ste m cell stage muta gen and can alter gene

expression prog rams in the fo unding t e lls of the e mbryo. T his has obvious

implicat ions for the study of evonulcnury and de velopme ntal bio logy.
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