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A graph on 2𝑛 vertices can be starter-labelled, if the vertices can be given labels from the nonzero elements of the additive group
Z
2𝑛+1

such that each label 𝑖, either 𝑖 or 𝑖
−1, is assigned to exactly two vertices and the two vertices are separated by either 𝑖 edges

or 𝑖
−1 edges, respectively. Mendelsohn and Shalaby have introduced Skolem-labelled graphs and determined the conditions of 𝑘-

windmills to be Skolem-labelled. In this paper, we introduce starter-labelled graphs and obtain necessary and sufficient conditions
for starter and minimum hooked starter labelling of all 𝑘-windmills.

1. Introduction

Consider Z
𝑛
as an additive abelian group of odd order 𝑛. A

starter in Z
𝑛
is a partition of the nonzero elements of Z

𝑛

into unordered pairs 𝑆 = {{𝑥
𝑖
, 𝑦
𝑖
} : 𝑖 = 1, 2, . . . , (𝑛 −

1)/2} such that {±(𝑥
𝑖

− 𝑦
𝑖
) : 1 ≤ 𝑖 ≤ (𝑛 − 1)/2} =

Z
𝑛

\ {0}. Starters were first used by Stanton and Mullin to
construct Room squares [1]. Since then, starters have been
widely used in several combinatorial designs such as Room
cubes [2], Howell designs [3, 4], Kirkman triple systems
[5], Kirkman squares and cubes [6, 7], Kotzig factorizations
[8, 9], Hamilton path tournament designs [10], and optimal
optical orthogonal codes [11]. A starter sequence of order 𝑛

is an integer sequence; 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠2𝑛) of 2𝑛 integers
such that, for every 𝑟 ∈ {1, 2, . . . , 𝑛}, we consider either 𝑟

or 𝑟
−1 such that 𝑠

𝑖
= 𝑠
𝑗

= 𝑟 or 𝑟
−1, respectively, and if

𝑠
𝑖

= 𝑠
𝑗

= 𝑘 with 𝑖 < 𝑗 then 𝑗 − 𝑖 = 𝑘. When 𝑟
−1 is the

additive inverse of 𝑟 in Z2𝑛+1 and if the inverse appears in
the sequence, we call it a defect. For example, the sequence
5, 3, 1, 1, 3, 5 is a starter sequence of order 3 with one defect
(2−1) in the groupZ7. We notice that Skolem sequences are a
special case of starter sequences when the number of defects
is zero. It is well known that Skolem sequences and their
generalizations have been used widely to construct several
designs such as Room squares, one-factorizations, and round
robin tournaments. In 1991, Mendelsohn and Shalaby [12]
introduced the concept of Skolem labelling and also provided

the necessary and sufficient conditions for Skolem labelling of
paths and cycles. Eight years later, Mendelsohn and Shalaby
[13] determined the condition for the existence of Skolem
labelling for 𝑘-windmills. In 2008, Baker and Manzer [14]
obtained the necessary conditions for the Skolem labelling of
generalized 𝑘-windmills inwhich the vanes need not be of the
same length and proved that these conditions are sufficient in
the case where 𝑘 = 3. In this paper, we introduce the concept
of starter labelling of graphs and explore the necessary and the
sufficient conditions for the existence of starter andminimum
hooked starter labelling of 𝑘-windmills. Furthermore, we
restate the definitions of starter and hooked starter-labelled
graphs.

Definition 1. A starter-labelled graph is a pair (𝐺, 𝐿), where

(a) 𝐺 = (𝑉, 𝐸) is an undirected graph,
(b) 𝐿 : 𝑉 → Z2𝑛+1 \ {0},
(c) 𝐿(V) = 𝐿(𝑤) = 𝑖 exactly once for each 𝑖 ∈

{1(1−1), 2(2−1), . . . , 𝑛(𝑛
−1

)},
(d) if 𝐺 = (𝑉, 𝐸) and 𝐸 ⊂ 𝐸 then (𝐺, 𝐿) violates (c).

Definition 2. A hooked starter-labelled graph is a pair (𝐺, 𝐿)

satisfying the conditions of Definition 1 with (b̂) instated of
(b):

(b̂) 𝐿 : 𝑉 → Z2𝑛+1.
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Figure 1: A hooked starter-labelled graph for 4-windmills.

Example 3. Figure 1 illustrates a hooked starter-labelled
graph for 4-windmills.

According to Definition 2, a hooked starter-labelled
graph can have some vertices labelled zero, but every edge
is still essential. This leads us to the definition of the strong
(weak) starter-labelled graph.

Definition 4. A graph on 2𝑛 vertices can be strongly starter-
labelled if the removal of any edge destroys the starter
labelling.

Definition 5. A graph on 2𝑛 vertices can be weakly starter-
labelled if there exists at least one edge in the graph such that
the removal of that edge does not destroy the starter labelling.

Example 6. Figures 2 and 3 show weak starter-labelled 3-
windmills and strong starter-labelled 3-windmills, respec-
tively.

Definition 7. A 𝑘-windmill is a tree containing 𝑘 paths of
equal positive length, called vanes, which share a center
vertex called the pivot or the center.

2. Necessity

We notice that a tree 𝑇 = (𝑉, 𝐸) can only be starter-labelled if
the number of the vertices is even (|𝑉| = 2𝑛).This implies that
the length of the vane must be odd and that all 𝑘-windmills
where 𝑘 is even cannot be starter-labelled. In addition, an
obvious degeneracy condition for a starter-label (a hooked
starter-label) of a tree 𝑇 is that the tree must have a path of
length at least (𝑛 + 1). Thus, only 3-windmills can be starter-
labelled.
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Figure 2: Weak starter-labelled 3-windmills.
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Figure 3: Strong starter-labelled 3-windmills.

2.1. Starter Parity. Mendelsohn and Shalaby [13] defined
Skolem parity and proved that it was necessary for
the existence of any Skolem-labelled tree. Similarly, we
establish the parity condition for starter-labelled 𝑘-windmills.

Definition 8. The starter parity of a vertex 𝑢 of a tree 𝑇 =

(𝑉, 𝐸) is the sum of the lengths of the paths from 𝑢 to all the
vertices of the tree (𝑇). Thus, 𝑃

𝑢
= ∑V∈𝑉 𝑑(𝑢, V) (mod 2).

Lemma 9 (Mendelsohn and Shalaby [13]). If 𝑇 is a tree with
2𝑛 vertices, then the starter parity of 𝑇 is independent of 𝑢 ∈ 𝑉.

Lemma 10. If 𝐺 is a starter-label 𝑘-windmill with 2𝑛 vertices
and 𝑘 vanes, then either

(1) 𝑛 ≡ 0, 2 (mod 4), and the starter parity of 𝐺 is odd,
or

(2) 𝑛 ≡ 1, 3 (mod 4), and the starter parity of 𝐺 is even.

Proof. Assume that 𝐺 is a starter-label 𝑘-windmill with 2𝑛

vertices and 𝑘 vanes of length 𝑚. Using the center point 𝑐 to
calculate the starter parity, we obtain

𝑃
𝑐

= ∑

V∈𝑉
𝑑 (𝑐, V) =

𝑘

∑

𝑖=1

𝑚 (𝑚 + 1)

2
=

𝑘𝑚
2

− 1
2

+ 𝑛. (1)
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Since 𝐺 is starter-labelled, then 𝑘 = 3 and 𝑚 must be odd
(𝑚 ≡ 1 or 3 (mod 4)); we notice that if 𝑚 ≡ 1 (mod 4) ⇒

3𝑚
2

≡ 3 (mod 4) ⇒ 3𝑚
2

− 1 ≡ 2 (mod 4). Similarly, if
𝑚 ≡ 3 (mod 4) ⇒ 3𝑚

2
≡ 27 (mod 4) and since 27 ≡

3 (mod 4), then 3𝑚
2

− 1 ≡ 2 (mod 4) (by the transitivity).
Now we consider all the following cases of 𝑛:

(1) If 𝑛 ≡ 0 (mod 4), then 𝑃
𝑐

= (1 + 2𝑗) + (4𝑟) ⇒ the
starter parity is odd.

(2) If 𝑛 ≡ 1 (mod 4), then 𝑃
𝑐

= (1 + 2𝑗) + (1 + 4𝑟) ⇒ the
starter parity is even.

(3) If 𝑛 ≡ 2 (mod 4), then 𝑃
𝑐

= (1 + 2𝑗) + (2 + 4𝑟) ⇒ the
starter parity is odd.

(4) If 𝑛 ≡ 3 (mod 4), then 𝑃
𝑐

= (1 + 2𝑗) + (3 + 4𝑟) ⇒ the
starter parity is even.

2.2. The Degeneracy Condition. We saw that a graph with 2𝑛

vertices must have at least a path of length (𝑛 + 1) in order to
be starter-labelled. Therefore all windmills with more than 3
vanes cannot be labelled by a starter sequence. For a (possibly
hooked) starter-label 𝑘-windmill with equal vanes of length
𝑚, the largest label is 2𝑚 and the maximum number of edges
in the corresponding path not used in any other path is 2𝑚

and is covering all edges of 2 vanes. Also, labels that are bigger
than𝑚must cover parts of 2 vanes.The label𝑚may cover the
complete vane. Thus for all labels 𝑚

𝑖
with 𝑚 ≤ 𝑚

𝑖
≤ 2𝑚 the

maximum number of edges covered is no more than

2𝑚 + (2𝑚 − 1) + ⋅ ⋅ ⋅ + 𝑚 =

3 (𝑚
2

+ 𝑚)

2
. (2)

Moreover, the labels 𝑛
𝑖

< 𝑚 must cover at least one edge that
is covered by another label, so the total number of edges for
these labels is at most

1+ 2+ ⋅ ⋅ ⋅ + (𝑚 − 1) =
𝑚

2
− 𝑚

2
. (3)

Therefore, the maximum number of edges is ≤ (2) + (3) since
the total number of edges in a 𝑘-windmill is 𝑘𝑚; hence 𝑘 ≤

2𝑚 + 1.

3. Sufficiency

In this section, we provide and prove the sufficient conditions
for obtaining the starter-label (minimum hooked starter
label) for all 𝑘-windmills, where 𝑘 is the number of the vanes;
we count them arbitrarily (say counterclockwise) from 1 to 𝑘.
Let 𝑚 indicate the length of the vane of the windmill; then
each vertex V can be represented by a pair (𝑖, 𝑗) where 𝑖 is the
number of the vane and 𝑗 is its distance from the center, and
the center point is denoted by (0, 0).

3.1. 3-Windmills

Lemma 11. All 3-windmills with 𝑚 ≡ 1, 3, 5, 7 (mod 8) have
a starter labelling, except for the case 𝑚 = 1.

Table 1

𝑏
𝑖,𝑗

𝑎
𝑖,𝑗

≤ 𝑟 ≤ Label

(2, (𝑚 − 1)/2 + 𝑟 + 1) (2, (𝑚 − 1)/2 − 𝑟) 0 ≤ 𝑟 ≤
𝑚 − 1
2

2𝑟 + 1

(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚 2𝑟

Table 2

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label

(2, 𝑚/2 − 𝑟) (2, 𝑚/2 + 𝑟 + 1) 0 ≤ 𝑟 ≤
𝑚

2
− 1 2𝑟 + 1

(3, 𝑚) (0, 0) — 𝑚

(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤
𝑚

2
− 1 2𝑟

(3, 𝑟) (1, 𝑟 + 1)
𝑚

2
≤ 𝑟 ≤ 𝑚 − 1 2𝑟 + 1

Proof. The required construction is shown in Table 1, where
𝑎
𝑖,𝑗

and 𝑏
𝑖,𝑗

represent the two positions in the windmill of
the label 𝑘. We notice that the number of the defects is ⌊𝑚/4⌋

in case that 𝑚 ≡ 1, 5 (mod 8) and ⌈𝑚/4⌉ in case that
𝑚 ≡ 3, 7 (mod 8).

Lemma 12. For all 3-windmills with vane length 𝑚 ≡ 0, 2, 4, 6
(mod 8) there is a minimum hooked starter labelling with
exactly one hook.

Proof. The solution is given by Table 2, where the number of
the defects is ⌊𝑚/4⌋.

3.2. 4-Windmills. All 4-windmills have an odd number of
vertices, so there is no starter labelling.Theminimumhooked
starter labelling in this case has at least three hooks.

Lemma 13. All 4-windmills with 𝑚 ≥ 2 have a minimum
hooked starter labelling with exactly three hooks.

Proof. We divide the proof into two cases.

Case 1 (𝑚 is odd). The solution is given by Table 3.

Case 2 (𝑚 is even). The solution is given by Table 4.

Table 5 provides us with the construction of the pairs 𝑎
𝑖,𝑗

and 𝑏
𝑖,𝑗
for a weak starter labelling of 4-windmills.

Remark 14. We can construct a hooked starter labelling with
zero defects (Skolem labelling) and one hook for all 4-
windmills. Tables 6 and 7 provide such a required construc-
tion.

Case 1. 𝑚 ≡ 0 (mod 2) is given by Table 6.

Case 2. 𝑚 ≡ 1 (mod 2) is given by Table 7.
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Table 3

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label
(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚 2𝑟

(2, 𝑚) (0, 0) — 𝑚

(4, 𝑟 + 1) (2, 𝑟) 1 ≤ 𝑟 < 𝑚 − (
𝑚 + 1
2

) 2𝑟 + 1

(4, 𝑚 − (𝑚 + 1)/2 + 1) (4, 𝑚 − (𝑚 + 1)/2 + 2) — 1

(4, 𝑟 + 2) (2, 𝑟 − 1) 𝑚 −
𝑚 + 1
2

< 𝑟 ≤ 𝑚 − 2 2𝑟 + 1

Table 4

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label
(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚 2𝑟

(4, 1) (2, 𝑚) — 𝑚 + 1

(4, 𝑟 + 1) (2, 𝑟) 1 ≤ 𝑟 <
𝑚

2
2𝑟 + 1

(4, 𝑚/2 + 2) (4, 𝑚/2 + 1) — 1

(4, 𝑟 + 2) (2, 𝑟 − 1)
𝑚

2
< 𝑟 ≤ 𝑚 − 2 2𝑟 + 1

Table 5

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label
(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚 2𝑟

(4, 𝑟 + 1) (2, 𝑟) 0 ≤ 𝑟 ≤ 𝑚 − 2 2𝑟 + 1

Table 6

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label
(2, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚 2𝑟

(3, 1) (3, 𝑚) — 𝑚 − 1
(4, 𝑚/2) (4, 𝑚/2 − 1) — 1

(3, 𝑟) (4, 𝑟 + 1)
𝑚

2
≤ 𝑟 ≤ 𝑚 − 1 2𝑟 + 1

(3, 𝑟 + 1) (4, 𝑟) 1 ≤ 𝑟 ≤
𝑚

2
− 2 2𝑟 + 1

3.3. 𝐾-Windmills, 𝐾 > 4. In this case there is no starter
labelling; thus the only possibility is a minimum hooked
starter labelling.

Lemma 15. For any 𝑘-windmill, the condition 𝑘 + 1 < 2𝑚 is
sufficient for a minimum hooked starter labelling.

Proof. Fix 𝑚 and consider separate cases for 𝑘.

Case 1 (the number of vanes is even (𝑘 = 2𝑡)). Label the
vanes 𝐿1, 𝐿

𝑘
, 𝐿2, 𝐿

𝑘−1, . . . , 𝐿
𝑡
, 𝐿
𝑡+1, and the solution is given

by Table 8.

Table 7

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label
(2, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚 2𝑟

(0, 0) (3, 𝑚) — 𝑚

(3, 𝑟) (4, 𝑟 + 1)
𝑚 + 1
2

≤ 𝑟 ≤ 𝑚 − 1 2𝑟 + 1

(3, 𝑟 + 1) (4, 𝑟) 1 ≤ 𝑟 ≤
𝑚 − 1
2

− 1 2𝑟 + 1

(4, (𝑚 − 1)/2) (4, (𝑚 − 1)/2 + 1) — 1

Table 8

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label
(𝑘, 𝑚) (1, 𝑚) — 2𝑚

(𝑘 − 𝑟 + 1,
𝑚 − 𝑟) (𝑟, 𝑚) 2 ≤ 𝑟 ≤ 𝑡 2𝑚 − 𝑟

(𝑘 − 𝑟 + 2,
𝑚 − 𝑟)

(𝑘 − 𝑟 + 2, 𝑚) 3 ≤ 𝑟 ≤ 𝑡 + 1 𝑟

(𝑘, 𝑟 − 1) (1, 𝑟 + 1) 𝑡 + 2 ≤ 2𝑟 ≤ 2𝑚 − 𝑡 − 1 2𝑟

(𝑘−1, 𝑟−1) (2, 𝑟 + 2) 𝑡 + 2 ≤ 2𝑟 + 1 ≤ 2𝑚 − 𝑡 − 1 2𝑟 + 1
(3, 2) (3, 1) — 1
(4, 2) (4, 0) — 2

Case 2 (𝑘 = 2𝑡 + 1, 𝑡 > 2). Label the vanes 𝐿1, 𝐿
𝑘
, 𝐿2,

𝐿
𝑘−1, . . . , 𝐿

𝑡
, 𝐿
𝑘+1−𝑡, 𝐿

𝑘−𝑡
.The required construction is shown

in Table 9.

Case 3 (𝑘 = 5). Label the vanes 𝐿1, 𝐿2, . . . , 𝐿5. The required
construction is demonstrated by Table 10.

4. Future Research

Open questions include

(1) finding the necessary and sufficient conditions for
starter labelling of trees,

(2) finding the necessary and sufficient conditions for
starter labelling of generalized 𝑘-windmills, where
𝑘 ≥ 3.
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Table 9

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label
(𝑘, 𝑚) (1, 𝑚) — 2𝑚

(𝑘 − 𝑟 + 1, 𝑚 − 𝑟) (𝑟, 𝑚) 2 ≤ 𝑟 ≤ 𝑡 2𝑚 − 𝑟

(3, 𝑚 − 𝑡 − 1) (𝑘 − 𝑡, 𝑚) — 2𝑚 − 𝑡 − 1
(𝑘 − 𝑟 + 2, 𝑚 − 𝑟) (𝑘 − 𝑟 + 2, 𝑚) 3 ≤ 𝑟 ≤ 𝑡 + 1 𝑟

(𝑘, 𝑟 − 1) (1, 𝑟 + 1) 𝑡 + 2 ≤ 2𝑟 < 2𝑚 − 𝑡 − 1 2𝑟

(𝑘 − 1, 𝑟 − 1) (2, 𝑟 + 2) 𝑡 + 2 ≤ 2𝑟 + 1 < 2𝑚 − 𝑡 − 1 2𝑟 + 1
(4, 1) (0, 0) — 1
(4, 4) (4, 2) — 2

Table 10

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label
(5, 𝑚) (1, 𝑚) — 2𝑚

(4, 𝑚 − 2) (2, 𝑚) — 2𝑚 − 2
(1, 𝑚 − 2) (3, 𝑚 − 1) — 2𝑚 − 3
(4, 𝑚 − 3) (4, 𝑚) — 3
(5, 𝑟) (1, 𝑟) 4 ≤ 2𝑟 < 2𝑚 − 4 2𝑟

(4, 𝑟 − 1) (2, 𝑟 + 2) 4 ≤ 2𝑟 + 1 < 2𝑚 − 4 2𝑟 + 1
(3, 𝑚 − 3) (1, 𝑚 − 1) — 2𝑚 − 4
(5, 𝑚 − 2) (5, 𝑚 − 1) — 1
(3, 𝑚 − 2) (3, 𝑚) — 2
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