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Backpressure based scheduling has revealed remarkable performance in wireless multihop networks as reported in a lot of previous
work. However, its lack of consideration on energy use efficiency is still an obstacle for backpressure based algorithms to be
deployed in resource-constrainedwireless sensor networks (WSNs). In this paper, we focus on studying the design of energy efficient
backpressure based algorithm. For this purpose, we propose a gradient-assisted energy-efficient backpressure scheduling algorithm
(GRAPE) for WSNs. GRAPE introduces a new link-weight calculation method, based on which gradient information and nodal
residual energy are taken into account when making decisions on backpressure based transmission scheduling. According to the
decisions made by this new method, packets are encouraged to be forwarded to nodes with more residual energy. We theoretically
prove the throughput-optimality of GRAPE. Simulation results demonstrate that GRAPE can achieve significant performance
improvements in terms of energy use efficiency, network throughput, and packet delivery ratio as compared with existing work.

1. Introduction

Backpressure algorithm was proposed by Tassiulas and Ephrem-
ides in [1] and it has been proven to be throughput optimal.
Backpressure algorithm is purely queue length based and it
works in away such that packet transmission scheduling deci-
sions are made based on queue backlog differentials between
neighboring nodes. Recently, design of efficient backpressure
algorithms has attracted a lot of attention and much work
has been done in this area. On one hand, backpressure based
algorithms have many remarkable advantages; for example,
they can achieve adaptive resource allocation and support
to dynamic stateless load-aware routing and scheduling and
simplicity. On the other hand, they also have some defi-
ciencies such as large end-to-end (E2E) delivery delay, high
queueing complexity, and centralized computation mode,
which largely affect their usage in practice. Recently, much
progress (e.g., [2–20]) has been made for supporting efficient
and practical backpressure based scheduling and routing in
various networks and application scenarios. However, how to

enable practical backpressure based scheduling in a wireless
sensor network (WSN) is still far from being well studied.

WSNs are often considered to be resource constrained
where energy use efficiency is in general a great design
concern for network protocols to be useful in such networks.
Although existing work (e.g., [2, 4, 10]) has made certain
progresses in enabling efficient backpressure based schedul-
ing in a WSN, lack of consideration on energy use efficiency
is still a big issue in their usage. To ease the understanding
of the issue that backpressure based scheduling faces in this
aspect, here, let us take a look at the operational process
taken by classical backpressure scheduling algorithm. In the
classical backpressure algorithm, per-flow queues (or per-
destination queues as used in some work) are required to be
maintained for each node in the network. At each time slot,
the algorithm works to activate a set of noninterference links
whose link-weights yield a global maximal sum to transmit
packets. The link-weight is assigned to be the maximal
flow-weight and the flow-weight is equal to the differential
of corresponding flow’s queue backlogs between the link’s
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two endpoints. In such a way of transmission scheduling,
packets are always pushed away from network hot-spots
(by the so-called back pressure), no matter whether such
transmissions lead to routing detours or even loops. One
advantage of such backpressure based scheduling is that the
capacity of the whole network can be fully utilized. However,
long E2E packet latency is often observed. Furthermore,
lack of consideration on energy use efficiency when making
decisions on next hop selections in such algorithms results in
poor network lifetime performance.

In this paper, we focus on studying the design of
energy-efficient backpressure based scheduling algorithm
for WSNs. For this purpose, we propose a gradient-
assisted energy-efficient backpressure scheduling algorithm
(GRAPE). GRAPE introduces a new link-weight assign-
ment method, according to which a link’s weight is deter-
mined by not only the differential between its two end-
point nodes’ queue backlogs but also the recipient’s resid-
ual energy status as well as their gradient difference. In
GRAPE, packets are encouraged to be forwarded to neighbor
nodes with more residual energy and lower gradients. We
present the design details of GRAPE and then theoretically
prove its throughput-optimality. Extensive simulation results
demonstrate that GRAPE can yield significant performance
improvements in terms of energy use efficiency, network
throughput, and packet delivery ratio performance as com-
pared with existing work such as the classical backpressure
algorithm [1], enhanced dynamic back-pressure routing algo-
rithm (EDR) [3], and min-hop routing.

The rest of this paper is organized as follows. Section 2
briefly reviews related work. Section 3 presents our system
model. In Section 4, we first introduce how the classical back-
pressure algorithm works and then introduce the motivation
behind our work in this paper via some simulations. Finally,
we present the design details of GRAPE and further prove
its throughput optimality. Extensive simulation results are
presented in Section 5. In Section 6, we conclude this paper.

2. Related Work
Recently, much progress has been made in the design of effi-
cient backpressure based scheduling algorithms for wireless
multihop networks. Existing work in this field can be divided
into two types: one is aimed at reducing the path lengths
and thus reducing the E2E packet delay another is aimed
at improving the queueing structure kept at nodes and thus
improving the scheduling performance. Next, we will briefly
review typical work belonging to either type.

Some existing backpressure based algorithms/protocols
(e.g., [2–6, 10]) work to reduce the chance of using long or
detour routes. BCP [2] is a backpressure based data collection
protocol for WSNs. In BCP, backpressure based routing
decisions are made based on queue backlog differential
and also estimated link rates. Furthermore, BCP uses a
routing-loop-punishment factor for avoiding routing loops.
Furthermore, a LIFO (Last-In-First-Out) queue structure
is adopted, which can help reduce the average E2E delay.
BCP demonstrates good E2E performance comparable to the
well-known collection tree protocol (CTP) [21], especially

for networks with mobile elements. In [3], Georgiadis et al.
proposed an enhanced dynamic backpressure routing algo-
rithm (EDR). In EDR, decisions on routing and scheduling
are made by taking the hop-distance to destination into
account. In EDR, for instance, a neighbor node closer to the
destination node may have higher probability to be chosen
as the next hop forwarder than a remote node when the
former has equal or even higher queue backlog than the
latter. The flow weight assignment in EDR can help reduce
certain routing detours and is also helpful in reducing energy
consumption to certain extent due to the preference to
shorter paths. Similar strategies can also be found in [4],
where several factors including link capacity and network
external arrival rates are considered into the routing decision
making process. In [5], Ying et al. proposed a protocol that
combines backpressure algorithm and shortest-path routing,
which minimizes the average path length determined by
backpressure based routing and thus reduces the average
E2E delay. In [6], Maglaras and Katsaros proposed a layered
backpressure routing algorithm. The main idea is similar to
the gradient based routing inWSNs; that is, nodes are divided
into layers based on their hop distances to the sink node and
data packets are encouraged to be sent from nodes at higher
layers to nodes at lower layers. In [10], Jiao et al. proposed an
anycast based backpressure scheduling algorithm for WSNs,
in which anycast based backpressure scheduling is realized in
the RTS-CTS handshaking process among neighbor nodes in
a localized manner. In this algorithm, packets are restricted
to be forwarded to neighbor nodes with lower gradients.

Some existing backpressure based algorithms/protocols
(e.g., [7–9]) choose to use new queue structures to replace
the commonly used per-flow or per-destination queues for
reducing the queueing complexity as well as the average
E2E delivery latency. In [7, 8], a novel per-neighbor queue
structure was proposed. This new queue structure enables
nodes to only maintain one forwarding queue for each
neighbor, which exhibits low average-case E2E delay and also
low queueing complexity. In [9], Ying et al. proposed a cluster
based backpressure algorithm, according to which each node
keeps two types of queues, that is, one for the gateway node
for each destined cluster and another for nodes in the same
cluster. In this way, the cluster based backpressure routing
largely reduces the number of queues required to be kept at
each node.

There also exist some other algorithms (e.g., [12–18])
that attempt to improve the practicality of backpressure
algorithms. For example, in [12], an adaptive redundancy
technique for backpressure routing was introduced, in which
replicas are generated and sent as regular packets for reducing
the E2E delay under low load conditions, while traditional
backpressure routing is still used under high traffic load
conditions. In [18], interflow network coding was introduced
and integrated with backpressure scheduling, in which net-
work coding gain is utilized for assisting backpressure based
transmission scheduling and thus reducing the E2E delay.
However, these algorithms often cause some overhead during
their operational phase, which are not desirable for a resource
constrained WSN. In this paper, we aimed at designing
energy-efficient backpressure based algorithm for aWSN. To
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the best of our knowledge, this is the first attempt in this
aspect.

3. System Model
In this paper, theWSN under study can be modeled by graph
𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 represent the sets of nodes and
the set of links in the network, respectively. 𝑉(𝐺) consists of
many sensor nodes and one sink node. Sensor nodes generate
sensing data packets when they sample new data and then
inject the data into the network. The sink node is the only
destination of all the data packets generated by sensor nodes.
We assume time is slotted, which is denoted by 𝑡.

3.1. Queue Dynamics and Stability under Classical Back-
pressure Algorithm. Before introducing how our algorithm
works, let us first introduce how the queues in the classical
backpressure algorithm in [1] evolve. The classical backpres-
sure algorithm requires each node 𝑎 ∈ 𝑉(𝐺) to maintain a
forwarding queue for each flow traversing it. We denote the
per-flow queue backlog of flow𝑓 on node 𝑎 at time 𝑡 by𝑈

𝑓
𝑎 (𝑡).

At the beginning of each time slot, external data traffic of
each flow is injected into the network via the source node of
the flow. For example, the dynamics of queue backlog of flow
𝑓, where 𝐴𝑓(𝑡) denotes the number of packets of flow 𝑓 that
actually arrive at the queue at flow 𝑓’s source node (denoted
by 𝑏(𝑓)), are as follows:

𝑈
𝑓

𝑏(𝑓) (
𝑡 + 1) = 𝑈

𝑓

𝑏(𝑓) (
𝑡) + 𝐴𝑓 (𝑡) . (1)

Furthermore, as traffic always leaves the network layer
when they reach their destination(s), for the destination of a
flow 𝑓 (denoted by 𝑒(𝑓)), its queue backlog will always equal
to zero; that is,

𝑈
𝑓

𝑒(𝑓) (
𝑡) = 0, for ∀𝑡 ≥ 0. (2)

A network’s stability is defined via the dynamics of queues
in the network; that is, we can call that a network is strongly
stable when for all 𝑎 ∈ 𝑉(𝐺) and 𝑓 ∈ 𝐹

lim sup
𝑡→∞

1

𝑡

𝑡−1

∑

𝜏=0

E [𝑈
𝑓
𝑎 (𝜏)] < ∞. (3)

3.2. Flows andQueueDynamics in aWSN. Thestatus of flows
in a WSN is quite different from those considered in most
previous backpressure based algorithms. For example, there
exists a common assumption in the study of backpressure
based algorithms; that is, flows are long-lived and data
sources are fixed. However, this assumption does not hold
in a WSN, where each sensor node may start to generate
packets or stop at any time, especially in some environment
monitoring applications wherein sensors sample the environ-
ment and send collected data to the sink upon the occurrence
of particular events. Furthermore, as in many cases, these
sensing packets should be served equally and they all have
a common destination, that is, the sink node in the network.
Thus, all data packets in a WSN can be considered to belong
to the same flow andmanaged by only using one flow-specific
queue at each node (this is also straightforward from the

perspective of per-destination queue structure). The source
of such a flow is a node set which includes all sensor nodes in
the network. As a result, we rewrite the queueing dynamics
equations for a WSN as follows.

At the beginning of each time slot, external data traffic
may enter the network via any sensor node. For a sensor node
𝑎, the dynamics of its queue backlog are as follows, where
𝐴𝑎(𝑡) denotes the number of packets that actually arrive at
node 𝑎:

𝑈𝑎 (𝑡 + 1) = 𝑈𝑎 (𝑡) + 𝐴𝑎 (𝑡) . (4)

Furthermore, the sink’s queue backlog will always equal
to zero; that is,

𝑈sink (𝑡) = 0, for ∀𝑡 ≥ 0. (5)

We call that a WSN is strongly stable when for all 𝑎 ∈

𝑉(𝐺)

lim sup
𝑡→∞

1

𝑡

𝑡−1

∑

𝜏=0

E [𝑈𝑎 (𝜏)] < ∞. (6)

4. GRAPE: Motivation, Design, and Analysis
In this section, we first introduce how the classical back-
pressure scheduling algorithm works. We then bring some
experimental results that motivate our work in this paper.
Finally, we propose the design details of GRAPE and further
prove its throughput-optimality.

4.1. Classical Backpressure Scheduling. Theclassical backpres-
sure algorithm in [1] works as follows. First, it assumes that
time is slotted. At the beginning of a time slot 𝑡, each link
(𝑎, 𝑏)’s link-weight 𝑊𝑎𝑏 is assigned by the maximal flow-
weight, that is, themaximumqueue length differential among
all flows’ queues that the two nodes maintain, which is as
follows:

𝑊𝑎𝑏 (𝑡) = max
𝑓:(𝑎,𝑏)

[𝑈
𝑓
𝑎 (𝑡) − 𝑈

𝑓

𝑏 (
𝑡)] , (7)

where 𝑈
𝑓
𝑎 (𝑡) denotes the queue length for flow 𝑓 on node 𝑎

at time slot 𝑡. Recall the characteristics of flows and queues
in a WSN as we have mentioned previously; that is, all data
packets in network can be seen as belonging to one flow; (7)
can therefore be rewritten as follows for simplicity:

𝑊𝑎𝑏 (𝑡) = 𝑈𝑎 (𝑡) − 𝑈𝑏 (𝑡) . (8)

Packets will be transmitted on link (𝑎, 𝑏) if (𝑎, 𝑏) is selected
by a schedule 𝜋(𝑡) which is derived from the following
optimization problem:

𝜋 (𝑡) = arg max
𝜋∈Γ

∑

(𝑎,𝑏)

𝑊𝑎𝑏 (𝑡) 𝑟𝑎𝑏 (𝑡) , (9)

where Γ represents the set of all feasible schedules according
to given link interference model and 𝑟𝑎𝑏 represents the link
rate of (𝑎, 𝑏).

4.2. Motivation. Energy use efficiency is a big issue for
backpressure based algorithm to be used in a WSN. In
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Table 1: The death time (slot) when the first node dies.

Algorithms Arrival rates (packets/slot)
0.5 1 1.5

BP 247 220 217
Min-hop routing 764 444 392

Table 2:The survival ratio of nodeswhen the simulation terminates.

Algorithms Arrival rates (packets/slot)
0.5 1 1.5

BP 36% 26% 22%
Min-hop routing 98% 92% 92%

backpressure based transmission scheduling, packets are
always forwarded away from network hot-spot (pushed by
the so-called backpressure), which is consequently very
helpful for balancing the network load and fully utilizing the
network capacity. However, such routing and scheduling do
not consider whether a routing selection decision in this way
leads to routing detours or even loops, which often consumes
more energy for packet delivery than shortest paths.

To present a clear understanding regarding this, we next
present a simulation based comparison between the classical
backpressure algorithm (referred to as BP) and min-hop
routing (i.e., each node always chooses a next-hop forwarder
from its neighbor nodes which are closer to the sink than
itself, which is referred to as Min-hop) in terms of their
energy use performance in a WSN. In the simulations, a
WSN constituent of 99 sensor nodes and one sink node is
used, where the network topology is randomly generated.
Link capacity is set to one. The initial energy of each sensor
node is assigned to 200 J, and the sink has infinite energy.
Sending and receiving a packet cost 1.6 J and 1.0 J, respectively.
Each simulation lasts 1000 time slots. Either algorithm’s
energy use performance was evaluated under different flow
arrival rates (i.e., 0.5, 1, and 1.2 packets/slot) and in terms
of the following two measures: the death time of the first
dead node in the network and the survival ratio of nodes
when a simulation comes to the end. From the results in
Tables 1 and 2, it is seen that the classical backpressure
algorithm performs much worse than the gradient based
routing algorithm in terms of energy use efficiency. Under
BP, the node survival ratio is extremely low, which reveals the
backpressure based algorithms’ unsuitability for WSNs. To
the best of our knowledge, no work has been done regarding
how to improve the energy use performance of back pressure
based algorithms in a WSN. In this paper, we take the first
step towards this direction. Specifically, we try to answer the
following two questions:

(i) How to suppress the use of unnecessarily long routes
in backpressure based routing selection.

(ii) How to select nodes with abundant residual energy
to undertake forwarding tasks while still preserving
backpressure algorithm’s throughput-optimality.

In the next, we present the design details of GRAPE and
explain how it addresses the above issues.

4.3. Algorithm Design. In GRAPE, besides nodal queue
backlog status, the following two new factors (i.e., each
node’s gradient information and also its residual energy) are
introduced into the backpressure based scheduling decision
making process. In this paper, the gradient associated with a
node is its hop distance to the sink node and the introduction
of this factor is to encourage packets to travel along shorter
routes. The introduction of nodal residual energy status is
to enable backpressure scheduling to be energy aware when
selecting next hop nodes. For this purpose, a new link-weight
calculation method is presented as follows.

Specifically, in GRAPE, the weight of a link is no longer
simply equal to the queue length differential between the two
end nodes of the link as shown in (8). Instead, a new link-
weight is assigned as follows:

𝑊

𝑎𝑏 (𝑡) = Δ𝑈𝑎,𝑏 + 𝑉𝑎,𝑏, (10)

where Δ𝑈𝑎,𝑏 denotes the queue length differential on link
(𝑎, 𝑏); that is,

Δ𝑈𝑎,𝑏 = 𝑈𝑎 (𝑡) − 𝑈𝑏 (𝑡) . (11)

𝑉𝑎,𝑏 is defined as a selecting-bias factor, which is a parameter
affecting the probability of activating link (𝑎, 𝑏), that is, the
possibility of node 𝑎 choosing its neighbor 𝑏 as the next-hop
forwarder.That is, the smaller𝑉𝑎,𝑏 is, the lower the possibility
of selecting link (𝑎, 𝑏) into final schedule set will be. We
use such node selecting-bias factor to discourage packets to
be sent to nodes which are not expected to be chosen, for
example, nodes with lower residual energy or farther away
from the destination than the sender itself. For this purpose,
the selecting-bias factor𝑉𝑎,𝑏 of link (𝑎, 𝑏) is determined based
on the receiver 𝑏’s residual energy status and also nodes 𝑎 and
𝑏’s gradients, which is calculated as follows:

𝑉𝑎,𝑏 =
{

{

{

𝑘𝐺𝑎, if 𝑏 is the sink node

𝑘 (𝐺𝑎 − 𝐺𝑏) + 𝑒
𝐸𝑏
𝐶
/𝐸𝑏
𝑃 , otherwise.

(12)

In (12), 𝐺𝑎 represents node 𝑎’s gradient. 𝐸𝑏𝑃 represents node
𝑏’s initial energy and 𝐸

𝑏
𝐶 represents node 𝑏’s current residual

energy. 𝑒
𝐸𝑏
𝐶
/𝐸𝑏
𝑃 is determined via extensive simulations by

comparing with several other options. 𝑘 is a constant param-
eter which is also tunable in simulations. Under (12), the
selecting-bias is decided by nodes’ gradients and candidate
next hop receiver’s residual energy status. From (10) and (12),
it can be seen that, for node 𝑎, if its neighbor 𝑏 has higher
residual energy in 𝑎’s one hop scope, this may result in a
higherΔ𝑉𝑎,𝑏 and thus increased probability for it to be chosen
as a next hop forwarder into the final schedule. Similarly,
the introduction of node gradient reduces the probability of
routing loops. By using such routing selection-bias, consid-
erations for nodal energy and path length are introduced
into backpressure based scheduling decision making process
in a moderate manner. That is, in GRAPE, the network
capacity can still be fully utilized, and only a selecting-bias is
added during link-weight calculation, where links with lower
weights are not forbidden but just discriminated (to some
extent) to be chosen.Wewill further theoretically analyze that
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transmission scheduling in such a way that will not violate
backpressure based algorithm’s throughput-optimality in the
next subsection.

After determining the link-weight for each link in the
network, data packets can then be scheduled to transmit
over a link (𝑎, 𝑏) if (𝑎, 𝑏) is to be activated under a schedule
𝜋(𝑡) which is derived based on the following optimization
problem:

𝜋 (𝑡) = arg max
𝜋∈Γ

∑

(𝑎,𝑏)

𝑊

𝑎𝑏 (𝑡) 𝑟𝑎𝑏 (𝑡) . (13)

In GRAPE, scheduling decisions are made by choosing links
whose link-weights can yield a global maximal sum, in which
nodeswith higher residual energy have higher probabilities to
be chosen as relay nodes, as calculated in (10)–(12).

The optimal solution to (13) yields the optimal schedule
and its computation needs to be done in a centralizedmanner
and has high computational complexity of at least 𝑂(|𝑉|

3)
based on which link interference model is used, where |𝑉|

represents the number of nodes in the network. To reduce the
computational complexity, in [22], Lin and Shroff proposed
a distributable Greedy Maximal Matching (GMM) scheme,
which works as follows. To compute a schedule (whose
initial value is null), add a link (𝑎, 𝑏) with the largest weight
𝑊𝑎𝑏(𝑡) into the schedule, remove all the links interfering with
the link (𝑎, 𝑏), and repeat the above link choosing process
until no link left. The computational complexity of GMM is
𝑂(|𝐸| log |𝐸|), where |𝐸| represents the number of links in the
network.

4.4. GRAPE’sThroughput-Optimality. In this section, we pro-
vide a theoretical proof regarding the throughput-optimality
property of GRAPE.

First, for a WSN, we can substitute (11) and (12) into (10),
and accordingly we have

𝑊

𝑎𝑏 (𝑡) = 𝑈𝑎 (𝑡) − 𝑈𝑏 (𝑡) + 𝑘 (𝐺𝑎 − 𝐺𝑏) + 𝑒

𝐸𝑏
𝐶
/𝐸𝑏
𝑃 . (14)

Then, we rewrite (14) in the following form:

𝑊

𝑎𝑏 (𝑡) = (𝑈𝑎 (𝑡) + 𝑘𝐺𝑎) − (𝑈𝑏 (𝑡) + 𝑘𝐺𝑏 − 𝑒

𝐸𝑏
𝐶
/𝐸𝑏
𝑃) . (15)

Here, if we denote the components 𝑘𝐺𝑎 and 𝑘𝐺𝑏 − 𝑒
𝐸𝑏
𝐶
/𝐸𝑏
𝑃 in

the right part of (15) as node-specific functions, respectively,
and use 𝑄𝑎,𝑠(𝑡) to denote 𝑘𝐺𝑎 when node 𝑎 plays the sending
role and use 𝑄𝑏,𝑟(𝑡) to denote 𝑘𝐺𝑏 − 𝑒

𝐸𝑏
𝐶
/𝐸𝑏
𝑃 when 𝑏 plays the

receiving role at time 𝑡, we can rewrite (8) as follows:

𝑊

𝑎𝑏 (𝑡) = (𝑈𝑎 (𝑡) + 𝑄𝑎,𝑠 (𝑡)) − (𝑈𝑏 (𝑡) + 𝑄𝑏,𝑟 (𝑡)) , (16)

where it can be seen that, at each time slot 𝑡, for ∀𝑎, 𝑏 ∈ 𝑉(𝐺),
lim𝑎∈𝑉(𝐺)𝑄𝑎,𝑠(𝑡) = lim𝑏∈𝑉(𝐺)𝑄𝑏,𝑟(𝑡) = 𝑂(|𝑉|) can always
hold (recall that 𝐺𝑎 denotes node gradient and is restricted
by network size). Consequently, GRAPE actually shares the
same scheduling pattern as the EDR in [3] and therefore the
same Lyapunov function 𝐿(U) = ∑𝑎𝑈

2
𝑎 used in [3, 4] can be

used for proving the throughput-optimality of GRAPE. For
the integrality of the paper, we provide them as follows.

For each forwarding queue kept at sensors in the network,
its dynamics meets the following expression:

𝑈𝑎 (𝑡 + 1) ≤ max{𝑈𝑎 (𝑡) − ∑

𝑛

𝜇𝑎𝑛 (𝑡) , 0} + ∑

𝑚

𝜇𝑚𝑎 (𝑡)

+ 𝐼𝑎 (𝑡) ,

(17)

where 𝐼𝑎(𝑡) denotes the external arrival rates. Consider the
Lyapunov function:

𝐿 (U) = ∑

𝑎

𝑈
2
𝑎 , (18)

where U(𝑡) = {𝑈𝑎(𝑡)}𝑎∈𝑉(𝐺). The Lyapunov drift Δ(U(𝑡)) can
then be derived as follows:

Δ (U (𝑡)) ≤ E[∑

𝑎

𝑈𝑎 (𝑡 + 1)
2
− ∑

𝑎

𝑈𝑎 (𝑡)
2
| U (𝑡)] . (19)

Based on the fact that (max(𝑈 − 𝑏, 0) + 𝐴)
2
≤ 𝑈
2
+ 𝐴
2
+

𝑏
2
+ 2𝑈(𝐴 − 𝑏), we can rewrite (16) as follows:

Δ (U (𝑡)) ≤ E[∑

𝑎

(𝑈𝑎 (𝑡)
2
+ (∑

𝑚

𝜇𝑚𝑎 (𝑡) + 𝐼𝑎 (𝑡))

2

+ ∑

𝑛

𝜇𝑎𝑛 (𝑡)
2

+ 2𝑈𝑎 (𝑡) (∑

𝑚

𝜇𝑚𝑎 (𝑡) + 𝐼𝑎 (𝑡) − ∑

𝑛

𝜇𝑎𝑛 (𝑡)))

− ∑

𝑎

𝑈𝑎 (𝑡)
2
| U (𝑡)] .

(20)

Since there always exists a finite constant B such that B ≥

E[∑𝑎∑𝑛 𝜇𝑎𝑛(𝑡)
2
+ ∑𝑎(∑𝑚 𝜇𝑚𝑎(𝑡)+𝐼𝑎(𝑡))

2
| U(𝑡)], we have

Δ (U (𝑡)) ≤ B

+ 2E[∑

𝑎

𝑈𝑎 (𝑡) (∑

𝑚

𝜇𝑚𝑎 (𝑡) − ∑

𝑛

𝜇𝑎𝑛 (𝑡))

+ ∑

𝑎

𝑈𝑎 (𝑡) 𝐼𝑎 (𝑡) | U (𝑡)] .

(21)

The arrival rates are assumed to be within the capacity region;
as a result, there always exists a constant 𝜖 > 0 such that
E[∑𝑎(∑𝑚 𝜇𝑚𝑎(𝑡) − ∑𝑛 𝜇𝑎𝑛(𝑡)) | U(𝑡)] ≤ −(𝐼𝑎(𝑡) + 𝜖). By
substituting it to (18), we can have

Δ (U (𝑡)) ≤ B − 2∑

𝑎

𝑈𝑎 (𝑡) 𝜖. (22)

Thus, we have

lim sup
𝑡→∞

1

𝑡

𝑡−1

∑

𝜏=0

∑

𝑎

𝑈𝑎 (𝑡) <
B

𝜖
, (23)

which means, just like the algorithms proposed in [3, 4], the
transmission scheduling by GRAPE in this paper can always
make queues in the network to be boundedwhen the network
arrival rates are located within the network capacity; that is to
say, GRAPE is throughput optimal.
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Figure 1: Performance comparison of various algorithms on a randomly generated 100-node topology when link capacity equals one.

5. Performance Evaluation

In this section, we conduct extensive simulations to evaluate
the performance of GRAPE by comparing it with several
other existing algorithms including the classical backpressure
algorithm (referred to as BP) [1], the enhanced dynamic back-
pressure routing algorithm (EDR) in [3], and the min-hop
routing algorithm (referred to as Min-hop). Next, we will
first introduce our simulation settings and then present the
simulation results.

In the simulations, we generated a random topology
with 100 nodes located within a 500 × 500 square area. The
communication radius of each node is 100. In the network,

a randomly chosen node acts as the sink node in the
network and all other nodes are sensor nodes. Packets can
be injected into the network via any sensor node where
packet arrival follows a Poisson process with arrival rate
𝜆. In the simulations, we will present comparison results
under different packet arrival rates 𝜆, where 𝜆 varies with
the following values: 0.5, 0.8, 1.0, 1.3, and 1.5. To estimate
different algorithms’ energy use performance, each sensor
node is assigned by 200 J initial energy, and the sink is
assigned by infinite energy. Sending and receiving a packet
cost 1.6 J and 1.0 J to a node, respectively. Each simulation
lasts for 1000 slots. We use two metrics to exhibit the energy
use efficiency between different algorithms, that is, the death
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Figure 2: Performance comparison of various algorithms on a randomly generated 100-node topology when link capacity equals five.

time of the first dead node and number of dead nodes, which
are widely used metrics for measuring network life time and
nodal energy usage efficiency in existing work.

Figure 1 shows the simulation results when network link
capacity is set to one. Figures 1(a) and 1(b) compare the energy
use performance by different algorithms, where Figure 1(a)
shows the numbers of dead nodes under different algorithms
when the simulation terminates and Figure 1(b) compares the
death times of the first dead nodes by different algorithms,
respectively. From these two subfigures, it is seen that GRAPE
outperforms other backpressure based algorithms (i.e., BP
and EDR) in terms of energy use efficiency, which validates

the high energy use efficiency of our new link-weight cal-
culation method used in GRAPE. However, Min-hop can
still outperform GRAPE in some cases. The reason is that
Min-hop restricts packets to be transmitted from nodes with
higher gradients to those with lower gradients. It forbids
the use of any longer alternate paths other than shortest
paths. Thus, it can have higher energy use performance
than backpressure based algorithms including GRAPE, since
backpressure based algorithms leverage alternate routes to
fully utilize the network capacity, which is a key feature of
backpressure based scheduling and can cause more energy
consumption. Figures 1(c) and 1(d) demonstrate the network
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throughput and packet delivery ratio performance by differ-
ent algorithms. It is clearly seen that GRAPE outperforms
Min-hop in terms of these two measures especially as the
traffic arrival rate is increasing. This is due to adaptive
backpressure based routing’s capability in fully utilizing
alternate routes. Figure 1(e) compares the average queue
length performance under different algorithms. It can also be
seen that, due to better throughput performance of GRAPE,
the average queue length under GRAPE is lower than the
other three algorithms as traffic arrival rate increasing. Here,
note that when flow arrival rate is 0.5, the average queue
length by GRAPE is higher than Min-hop. The reason is
that backpressure based algorithms always need some time
to form queue based gradient in the network to act as back
pressure for pushing packets to go. As a result, when flow
rate is low, packets may need to stay at a node and wait for
a longer time than that when arrival rate is high, which result
in longer average queue length. This phenomenon is called
the slow-startup problem of backpressure based scheduling
in [4]. For more details please refer to [4]. Furthermore, we
compared the link use efficiency by each algorithm, which
is defined by the number of links being activated in each
time slot. Average link use efficiency equals to the average
number of links being chosen into the schedule set generated
by an algorithm per time slot, which is an important metric
for estimating a backpressure based algorithm’s scheduling
efficiency. As shown in Figure 1(f), GRAPE has higher
link use efficiency than other algorithms due to its higher
energy use efficiency (since in our simulation, nodes that
had exhausted their energy will no longer participate in
any transmissions). Furthermore, it should be noted that
Min-hop always activates much less links per time slot than
backpressure based algorithms. This is because Min-hop
forces packets to be transmitted along shortest paths. As a
result, in some hot-spots, few links can be activated due
to contentions in medium accessing opportunities. This is
helpful for saving energy but cause reduced network capacity.

Figure 2 compares the performance of different algo-
rithms when network link capacity was set to five. In
Figure 2, it is again seen that GRAPE outperforms the BP
andEDR in terms of energy use efficiency, throughput, packet
delivery ratio, average queue length, and link use efficiency.
Furthermore, it has comparable energy use performance to
Min-hop as shown in Figures 2(a) and 2(b).

6. Conclusion

Energy use performance is always a big design concern
for backpressure based routing and scheduling to be useful
in a resource-constrained wireless sensor network. In this
paper, we proposed GRAPE, a gradient-assisted energy-
efficient backpressure scheduling algorithm for WSNs. In
GRAPE, besides queue backlog differentials, gradient infor-
mation and nodal residual energy are also jointly considered
into the transmission scheduling decision making process
and accordingly a new link-weight calculation method was
designed, according to which packets are encouraged to
be forwarded to nodes with more residual energy and via
shorter paths. We present the detailed design description

of GRAPE and further theoretically prove its throughput-
optimality. Extensive simulations results show that GRAPE
significantly outperforms existing algorithms in terms of
energy use efficiency, packet delivery ratio, and throughput.
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