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In a sparse vehicular ad hoc network, a vehicle normally employs a carry and forward approach, where it holds the message
it wants to transmit until the vehicle meets other vehicles or roadside units. A number of analyses in the literature have been
done to investigate the time delay when packets are being carried by vehicles on both unidirectional and bidirectional highways.
However, these analyses are focusing on the delay between either two disconnected vehicles or two disconnected vehicle clusters.
Furthermore, majority of the analyses only concentrate on the expected value of the end-to-end delay when the carry and forward
approach is used. Using regression analysis, we establish the distributionmodel for the time delay between two disconnected vehicle
clusters as an exponential distribution. Consequently, a distribution is newly derived to represent the number of clusters on a
highway using a vehicular trafficmodel. From there, we are able to formulate end-to-end delay model which extends the time delay
model for two disconnected vehicle clusters to multiple disconnected clusters on a unidirectional highway. The analytical results
obtained from the analytical model are then validated through simulation results.

1. Introduction

In general, a vehicular ad hoc network (VANET) is formed
between nodes on as-needed basis. To create a VANET,
vehicles need to have wireless transceivers and computerized
modules that enable the vehicles to act as network nodes.
Vehicle-to-vehicle and vehicle-to-infrastructure communi-
cations usingwireless short-range technologies allow vehicles
to broadcast and share information that can be used in
different types of applications such as active road safety
applications, traffic efficiency applications, and infotainment
applications [1]. In a VANET, when the distance between two
vehicles is less than the communication range of the vehicles,
these vehicles are able to communicate with each other
using the wireless channel. Nevertheless, in a sparse vehicular
network, the distance between two vehicles is usually larger
than the communication range. Therefore, in this type of
network, a vehicle normally employs a carry and forward
approach, where it holds the message it wants to transmit
until the vehicle meets other vehicles or roadside units.

Consequently, the end-to-end delay in VANET is usually
high. The study of the end-to-end delay in VANET can be
considered as one of the most important investigations in
vehicular network because extensive applications such as
active safety and emergency response applications [2] require
the messages to be transmitted with minimal delay.

Wu et al. [3] have determined an information propagation
speed model in a VANET that is based on the carry and
forward scheme. However, the derivation of the probability
distribution for the time delay when using carry and forward
approach or catch-up delay model is limited to only that
between a cluster with informed vehicles and another cluster
with uninformed vehicles, and the probability distribution of
the catch-up model is not presented in the numerical results.
Therefore, we are not able to ascertain the type of distribution
for the catch-up model.

In this paper, we produce a closed form solution for
the catch-up delay model from Wu et al. [3]. By produc-
ing a closed form solution for the catch-up time delay
model between two disconnected clusters, we are able to

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 425186, 13 pages
http://dx.doi.org/10.1155/2015/425186



2 Mathematical Problems in Engineering

approximate the distribution of the catch-up time delay
model as an exponential distribution by using regression
analysis which, to the extent of our knowledge, has not been
done in the literature. Next, we investigate and derive a new
distribution model to represent the number of disconnected
vehicle clusters on a unidirectional highway. Using a Poisson
process as our basic assumption for the arrival of vehicles and
vehicle-to-vehicle (V2V) connectivity models, we formulate
the distribution model for number of vehicle clusters in a
certain length of a highway. Using this model, we are able
to estimate the number of vehicle clusters in both sparse
and dense networks. The analytical model for number of
disconnected clusters is then utilized in our investigation
to develop a distribution model for end-to-end delay on a
highway formultiple disconnected vehicle clusters usingV2V
connectivity parameters that include the carry and forward
mechanism. We are able to further determine the probability
distribution model for the end-to-end delay between the
multiple disconnected clusters as an 𝐸𝑟𝑙𝑎𝑛𝑔 − 𝑛 distribution
by using the exponential approximation of the catch-up delay
between two disconnected clusters and the models for the
multiple number of clusters. This framework enables us to
assess the end-to-end delivery delay between a source and
destination moving on a highway for both disconnected and
well-connected vehicular networks.

2. Related Works

Although many research studies have been carried out to
incorporate the carry and forward approach in their proposed
routing protocols, not many studies have been done in
analyzing the end-to-end delay when the carry and forward
approach is employed during the packet forwarding in
VANET. Wu et al. [3] have presented an analytical study on
the information propagation speedwhen the carry and forward
approach is used in both one- and two-way highway scenarios
where vehicle arrivals are based on Poisson process and
the vehicle speeds are uniformly distributed in a designated
range. The authors provide numerical results on information
propagation speed under two networkmodels, which are low
density network and high density network.

A number of researches have developed analyticalmodels
for studying vehicular network characteristics and perfor-
mance metrics [4–9]. However, these studies are focusing
mainly on information propagation speed model, connectiv-
ity model, mobility model, and link reliability model. They
do not present any probability distribution model on end-
to-end delay and the information propagation speed model
is normally based on the expected values of the end-to-
end delivery delay. Zhang et al. in [6] have modified the
information propagation speed model from Wu et al. [3] by
using a traffic density for Poisson arrivalmodel and truncated
Gaussian distribution for vehicles’ speed. Nevertheless, the
study done by [6] does not show any distribution model for
the catch-up delay. Furthermore, the authors only include the
results on the expected value for the information propagation
speed for a VANET highway. The study does not show any
development on the distribution model for end-to-end delay.

Wisitpongphan et al. [10] proposed a similar analytical
model as [3] for VANET connectivity in a sparse network.
Using empirical traffic data, the authors study and formulate
VANET parameters such as interarrival time and intervehicle
spacing. The authors also derive a comprehensive analyt-
ical framework that can be used to characterize a sparse
vehicular network for one- and two-directional highways.
Furthermore, the authors did an analysis on a parameter
similar to the catch-up time in [3] which is referred to as
the rehealing time. However, the study on rehealing time in
[10] is focused on the two-directional highways and between
adjacent vehicles.Through simulation, the authors are able to
validate their analytical framework and analyze end-to-end
delay for packet transmission with distance between source
and destination varying from 1 to 30 km [10]. Nonetheless, the
study on the end-to-end delay in [10] is based on the expected
values and purely based on simulation results. There is no
distribution model derived for the end-to-end parameter.

A study on end-to-end delay model is done in [11] where
the authors analyze the total delay time needed by a relay to
carry a packet from a source to a destination using the carry
and forward system.The main goal of this study is to find the
relay’s optimal location that minimizes the total delay while
taking into account the effect of channel fading, path loss, and
forward error correction. However, the study is based on a
mobile ad hoc network scenario with only one relay between
the source and destination.

In [12], the author also proposes a similar study on
the end-to-end model, where the author uses the ergodic
Markov chain tomodel the vehicle’s mobility, the exponential
distribution for the initial vehicle density, and the normal
distribution for the average vehicle speed. The author creates
the model for vehicles that are sparsely arranged on a one-
directional straight road. Using these assumptions, the author
is able to obtain expressions for the exact delay time and
delivery ratio. Nevertheless, themodel in [12] only considered
transmission between two vehicles, not between clusters of
vehicles. In addition, the model does not consider the carry
and forward approach during packet transmissions. Instead,
the authors use 𝑇-seconds-wait rule where the packets are
discarded if vehicles are unable to transmit them within 𝑇
seconds.

3. System Model of the Time Duration for
the Catch-Up Phase

Consider a scenario presented in Figure 1 where a number of
vehicles independently travel along a unidirectional highway
of length 𝐷meters. The speed of each vehicle, 𝑉, is modeled
using uniform distribution over [Vmin, Vmax]. Based on the
studies done in [3, 8, 13], vehicles’ speed can be represented
with uniform distribution with interval [Vmin, Vmax], where
each vehicle freely moves at its chosen velocity. Each vehicle
is then assumed to move along the highway at a constant
speed, Vm/s, such that the distance between the vehicle and
its neighbors remains unchanged. The model assumes that
vehicles arrive to the highway following a Poisson process
with an average rate equal to the traffic flow rate (vehicles
per unit time). Empirical studies have shown that Poisson
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Figure 1: Example of message propagation scenario.

arrival model can be used to model vehicle arrival rate in free
flow phase [10] and it is commonly used model in the studies
of VANETs [6–9]. The vehicles are then partitioned into a
number of clusters. In this model, a cluster can be defined
as a group of vehicles that are able to propagate messages
using multihop forwarding via wireless channel. Road traffic
statistics in [14] have shown that vehicles tend to travel in
clusters on a highway. The clusters, which are formed in the
highway, are split and merged over time due to the mobility
of the vehicles. If the gap between two clusters is larger than
the transmission range, 𝑟, then the carry and forward strategy
is used to forward messages. A vehicle is considered as an
informed vehicle if the vehicle has themessage that needs to be
transmitted. In this scenario, we also assume that the source
of the messages is located in a cluster of informed vehicles and
the receiver of the messages is found in an uninformed cluster
located at the end of the highway.The message is transmitted
via one of two ways, through either the forward process or
the catch-up process. In the forward process, the message is
forwarded to other neighboring vehicleswithin a partition via
the wireless channel, where the message rapidly propagates
hop by hop until it reaches the farthest vehicle of that
partition. In the catch-up process, the message travels along
with the carrying vehicle until the carrying vehicle arrives
within the communication range of the last uninformed
vehicle in the partition ahead of it. Once the carrying vehicle
is inside the partition with a group of uninformed vehicles,
the message will be again propagated via forward process.
Both processes alternate with each other as the message
propagates along the road.

The term 𝑇𝐶 in Figure 1 is the time duration for the catch-
up process, where packets are being carried by the carrying
vehicle until the vehicle is able to forward the packets via
wireless transmission to the last uninformed vehicle in the
partition ahead of it. Although the open form cumulative
distribution function (CDF) of 𝑇

𝐶
has been extensively

studied and derived in [3], as shown in (1), the authors do
not present the CDF or probability density function (PDF)
of 𝑇
𝐶
in their numerical results. Based on the assumptions,

expressions, notations, and model parameters provided by
the authors in [3], we are able to produce the CDF and
PDF of 𝑇

𝐶
via numerical integration. Notations and model

parameters needed for the derivation of 𝑇
𝐶
distribution are

shown in Notations in this analysis.

The cumulative distribution function (CDF) of 𝑇𝐶 as
presented in [3] is shown in

𝐹
𝑇
𝑐

(𝑡)

= ∫

∞

𝑟

[∫

∞

𝑟

𝐹𝑋(𝑡) (𝑥 + 𝑟 − 𝑙) 𝑓𝑋(𝑡) (𝑥) 𝑑𝑥]𝑓𝐿
𝑈𝐶

(𝑙) 𝑑𝑙.

(1)

Based on (1), we conclude that we need to derive closed
form solutions for 𝑓(𝑥; 𝑡), 𝐹(𝑥, 𝑡), and 𝑓

𝐿
𝑈𝐶

(𝑙), which are not
presented in [3].

3.1. The Derivation of Closed Form Solution for CDF and PDF
of Message Propagation Distance, 𝑋(𝑡). Let 𝑋(𝑡) denote the
distance traveled by a first vehicle in the front most informed
cluster after passing a random location, 𝐻, during the time
interval [0, 𝑡] (refer to Figure 1).The CDF of𝑋(𝑡) is expressed
as

𝐹 (𝑥, 𝑡) =

∞

∑

𝑛=0
𝑃 [𝑋 (𝑡) < 𝑥 | 𝑁 (𝑡) = 𝑛] 𝑃 [𝑁 (𝑡) = 𝑛] , (2)

where 𝑃[𝑋(𝑡) < 𝑥 | 𝑁(𝑡) = 𝑛] is given as

𝑃 [𝑋 (𝑡) < 𝑥 | 𝑁 (𝑡) = 𝑛]

= 𝑃 [𝑉0𝑡 < 𝑥, 𝑉𝑖 (𝑡 − 𝑇𝑖) < 𝑥 for each 𝑖 = 1, 2, . . . , 𝑛] .
(3)

Let𝑉0 in (3) denote the speed of the source vehicle located
at the location𝐻 at time, 𝑡 = 0. Let𝑉𝑖 denote the speed of the
vehicle 𝑖 and let 𝑇𝑖 denote the arrival time of a vehicle 𝑖 at
location𝐻 after 𝑡 = 0.

Based on the assumption of a Poisson arrival, 𝑁(𝑡) is
defined as the number of vehicles arriving at the highway
during (0, 𝑡] and expressed as

𝑃 [𝑁 (𝑡) = 𝑛] =
𝑒
𝜆𝑡
(𝜆𝑡)
𝑛

𝑛!
. (4)

Using the Poisson process theorem [15, 16], given that 𝑛
vehicles have passed the location 𝐻 between time (0, 𝑡], the
arrival times 𝑇1, . . . , 𝑇𝑛 at which the events occur, considered
as unordered random variables, are distributed indepen-
dently and uniformly in the interval (0, 𝑡). Therefore, with
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this theorem, 𝑇
𝑖
can be presented as 𝑇

𝑖
∼ uniform (0, 𝑡).

With the assumptions that𝑇1, 𝑇2, . . . , 𝑇𝑛 and𝑉1, 𝑉2, . . . , 𝑉𝑛 are
independent and identically distributed (i.i.d.) and uniformly
distributed at the intervals (0, 𝑡] and [Vmin, Vmax], respectively,
(3) can be expressed as

𝑃 [𝑋 (𝑡) < 𝑥 | 𝑁 (𝑡) = 𝑛]

= 𝑃 [𝑉𝑡 < 𝑥] 𝑃 [𝑉 (𝑡 −𝑇) < 𝑥]
𝑛
.

(5)

Let 𝑉 denote the vehicles’ speed and it is uniformly
distributed at interval [Vmin, Vmax]. Therefore, 𝑃[𝑉𝑡 < 𝑥] can
be expressed as

𝑃 [𝑉𝑡 < 𝑥] =

{{{{{

{{{{{

{

0, 𝑥

𝑡
< Vmin

(𝑥/𝑡) − Vmin
Vmax − Vmin

, Vmin ≤
𝑥

𝑡
≤ Vmax

1, 𝑥

𝑡
> Vmax.

(6)

The probability 𝑃[𝑉(𝑡 − 𝑇) < 𝑥] in (5) denotes the
probability of the distance traveled by 𝑛 vehicles after passing
the location 𝐻 at the speed between the interval [Vmin, Vmax]
and at the time in the interval (0, 𝑡). With the assumption
that the random variable 𝑇 is independent and identically
distributed (i.i.d.) and uniformly distributed in the interval
(0, 𝑡], the probability can be formulated as

𝑃 [𝑉 (𝑡 −𝑇) < 𝑥]

= ∫

Vmax

Vmin

𝑃 [𝑡 −𝑇≤
𝑥

𝑉
| 𝑉= V]𝑓

𝑉 (V) 𝑑V

= ∫

Vmax

Vmin

𝑃 [𝑇> 𝑡 −
𝑥

V
]𝑓
𝑉 (V) 𝑑V.

= ∫

𝑥/𝑡

Vmin

1 ⋅ 𝑓V (V) 𝑑V+∫
Vmax

𝑥/𝑡

𝑥

V𝑡
⋅ 𝑓V (V) 𝑑V,

𝑃 [𝑉 (𝑡 −𝑇) < 𝑥] =
𝑥 − 𝑡Vmin + 𝑥 ln (Vmax/ (𝑥/𝑡))

𝑡 (Vmax − Vmin)
.

(7)

Using (4), (6), and (7), we are able to solve (2), which is
the CDF of𝑋(𝑡) and is shown in

𝐹 (𝑥, 𝑡) =

∞

∑

𝑛=0
𝑃 [𝑋 (𝑡) | 𝑁 (𝑡) = 𝑛] 𝑃 [𝑁 (𝑡) = 𝑛]

=

∞

∑

𝑛=0
𝑃 [𝑉𝑡 < 𝑥] 𝑃 [𝑉 (𝑡 −𝑇) < 𝑥]

𝑛 𝑒
𝜆𝑡
(𝜆𝑡)
𝑛

𝑛!

=
(𝑥/𝑡) − Vmin
Vmax − Vmin

⋅

∞

∑

𝑛=0
((
𝑥 − 𝑡Vmin + 𝑥 ln (Vmax/ (𝑥/𝑡))

𝑡
)

𝑛

⋅
𝑒
−𝜆𝑡
(𝜆𝑡)
𝑛

𝑛!
) ,

𝐹 (𝑥, 𝑡) =

{{

{{

{

(𝑥/𝑡) − Vmin
𝑒𝜆𝑡 (Vmax − Vmin)

⋅ 𝑒
𝜎1 ; Vmin ≤

𝑥

𝑡
≤ Vmax

1; 𝑥

𝑡
> Vmax,

(8)

where

𝜎1 =
𝜆 (𝑥 − 𝑡Vmin + 𝑥 ln (𝑡Vmax/𝑥))

Vmax − Vmin
. (9)

Next, we take the derivative of 𝐹
𝑋(𝑡)
(𝑥) to derive the PDF of

𝑋(𝑡), which is displayed in

𝑓 (𝑥; 𝑡) =
𝑑𝐹
𝑋(𝑡)

𝑑𝑥

=
𝑒
𝜎2

𝑡𝑒𝜆𝑡 (Vmax − Vmin)

−
𝜆𝜎1 ln (Vmax/ (𝑥/𝑡)) (Vmin − 𝑥/𝑡)

𝑒𝜆𝑡 (Vmax − Vmin)
2 ,

(10)

where

𝜎2 =
𝜆𝜎1

Vmax − Vmin
. (11)

3.2. The Derivation of Closed Form Solution for Cumulative
Distribution Function of 𝑋(𝑡): Distance that the Partition
Tail Moves. Let𝑋(𝑡) denote the distance traveled by the last
vehicle in a uninformed cluster that is in front of an informed
cluster during the time interval [0, 𝑡]. The CDF of 𝑋(𝑡) is
expressed in

𝐹 (𝑥

, 𝑡)

= 1

−

∞

∑

𝑛=0
𝑃 [𝑋

(𝑡) > 𝑥 | 𝑁


(𝑡) = 𝑛] 𝑃 [𝑁


(𝑡) = 𝑛] ,

(12)

where

𝑃 [𝑋

(𝑡) > 𝑥 | 𝑁


(𝑡) = 𝑛] 𝑃 [𝑁


(𝑡) = 𝑛]

= 𝑃 [𝑉0𝑡 > 𝑥, 𝑉𝑖 (𝑡 − 𝑇𝑖) for each 𝑖 = 1, 2, . . . , 𝑛] .
(13)

In (13), 𝑉0 is defined as the speed of the uninformed
vehicle at location 𝐽 at time 𝑡 = 0 and 𝑁(𝑡) denote the
number of vehicles that pass location 𝐽. As shown in Figure 1,
we conclude there are no other uninformed vehicles passing
location 𝐽 after the last uninformed vehicle during a catch-up
phrase, and hence the earliest time for the last uninformed
vehicle to pass location 𝐽 is −(Vmax/Vmin − 1)𝑡, with the
condition that the vehicle is in location 𝐽 at the time 0 and the
vehicle speed is in the interval [Vmin, Vmax]. Using the same
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properties of independent and identically distributed (i.i.d)
for 𝑇
𝑖
and 𝑉

𝑖
as in Section 3.1, (13) can be rewritten as

𝑃 [𝑋

(𝑡) > 𝑥 | 𝑁


(𝑡) = 𝑛] 𝑃 [𝑁


(𝑡) = 𝑛]

= 𝑃 (𝑉𝑡 > 𝑥) 𝑃 [𝑉 (𝑡 −𝑇) > 𝑥]
𝑛
.

(14)

Next, given that 𝑁(𝑡) = 𝑛, under the properties of the
Poisson process [15], the 𝑛 jump epochs 𝑇1, . . . , 𝑇𝑛 have the
same distribution as the order statistics corresponding to 𝑛
independent variables uniformly distributed on the interval
[−(Vmax/Vmin − 1)𝑡, 0]. Therefore, (4) has to be rewritten
according to the the new distribution of 𝑇, which is shown
in

𝑃 [𝑁

(𝑡) = 𝑛]

=
𝑒
−𝜆(Vmax/Vmin−1)𝑡 (𝜆 (Vmax/Vmin − 1) 𝑡)

𝑛

𝑛!
.

(15)

In (14), 𝑃(𝑉𝑡 > 𝑥) is expressed as

𝑃 (𝑉𝑡 > 𝑥) = 1−𝑃 (𝑉𝑡 < 𝑥) ,

𝑃 (𝑉𝑡 > 𝑥) =
Vmax − 𝑥/𝑡

Vmax − Vmin
.

(16)

Let 𝑃[𝑉(𝑡−𝑇) > 𝑥] denote the probability of the distance
traveled by 𝑛 vehicles after passing location 𝐽 in the interval

of [−(Vmax/Vmin − 1)𝑡, 0] with a speed between [Vmin, Vmax].
Therefore, (7) can be rewritten as

𝑃 [𝑉 (𝑡 −𝑇) > 𝑥]

= ∫

𝑥/𝑡

Vmin

𝑃 [𝑇< 𝑡 −
𝑥

V
]𝑓
𝑉 (V) 𝑑V

+∫

Vmax

𝑥/𝑡

𝑃 [𝑇< 𝑡 −
𝑥

V
]𝑓
𝑉 (V) 𝑑V

=
Vmin (𝑥/𝑡 − Vmin)

(Vmax − Vmin)
2

−
𝑥Vmin

𝑡V (Vmax − Vmin)
2 [ln(

𝑥

𝑡
) − ln (Vmin)] + 1.

(17)

Finally, we substitute (15), (16), and (17) in (12) to solve
𝐹(𝑥

, 𝑡), which is shown in

𝐹 (𝑥

, 𝑡) = 1−𝑃 [𝑉𝑡 > 𝑥]

∞

∑

𝑛=0
[𝑃 [𝑉 (𝑡 − 𝑇) > 𝑥]

𝑛

⋅
𝑒
−𝜆(Vmax/Vmin−1)𝑡 (𝜆 (Vmax/Vmin − 1) 𝑡)

𝑛

𝑛!
]

=

{{{{{{

{{{{{{

{

0; Vmax <
𝑥

𝑡

1 −
𝑒
𝜎3 (Vmax − (𝑥/𝑡))

𝑒𝜆(Vmax/Vmin−1)𝑡 (Vmax − Vmin)
; Vmin ≤

𝑥

𝑡
≤ Vmax

1; Vmin >
𝑥

𝑡
,

(18)

where

𝜎3 =
𝜆 (𝑡V2max − 2𝑡VmaxVmin + Vmin𝑥 + Vmin𝑥 ln (Vmin) − Vmin𝑥 ln (𝑥/𝑡))

Vmin (Vmax − Vmin)
. (19)

3.3. Derivation of PDF for 𝑓𝐿
𝑈𝐶

: The Distribution of Dis-
connected Vehicles Gap. Let 𝐿 denote the gap between two
neighboring vehicles and let 𝐿𝑈𝐶 denote the gap between two
neighboring disconnected vehicles. According toWisitpong-
phan et al. in [10], the spacing between two vehicles can be
expressed by an exponential distribution and the validity of
assumption for VANETs has been confirmed by the empirical
measurement reported in [10]. Therefore, the gap between
two neighboring vehicles is denoted as

𝑓
𝐿 (𝑙) = 𝜆𝑠𝑒

−𝜆
𝑠
𝑙
, (20)

where the parameter 𝜆
𝑠
, which is the vehicle density, can be

estimated as 𝜆
𝑠
= 𝜆/𝐸[𝑉].

Two neighboring vehicles are considered disconnected if
the gap between the vehicles is larger than communication
range, 𝑟. If the spacing between two neighboring vehicles 𝐿

follows an exponential distribution, then the derivation of the
PDF of 𝑓𝐿

𝑈𝐶

(𝑙) is as follows:

𝑓
𝐿
𝑈𝐶

(𝑙) = 𝑓𝐿 (𝑙 | 𝐿 > 𝑟) ,

𝑓𝐿
𝑈𝐶

(𝑙) = 𝜆𝑠𝑒
−𝜆
𝑠
𝑙
𝑒
𝜆
𝑠
𝑟
.

(21)

3.4. Derivation of CDF and PDF of 𝑇𝐶 via Numerical Integra-
tion and Approximation of 𝑇𝐶 Distribution. It may be noted
that the CDF of 𝑇𝐶 given in (1) does not have a closed form
solution but has to be evaluated via numerical integration.
Plots in Figure 2 present the probability of 𝑇𝐶 distribution
against time in seconds for different values of flow rate.

In general, Figure 2 indicates, with the increase in vehicle
flow rates, the distance between vehicles decreases and
therefore, decreases the catch-up delay. The 𝑥-axis in Fig-
ure 2 denotes the catch-up delay between two disconnected
clusters of vehicles. A large value of 𝑡 indicates that the data
packets are carried by an informed vehicle in a catch-up phase
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Figure 2: 𝐹
𝑇
𝐶

distribution with different values of flow rates (vehicle/hour).

most of the time and a small value of 𝑡 indicates that the
catch-up phase occurs in a short time and the data packets
are transmitted using forwarding phase most of the time.
As shown in Figure 2(a), in a sparse network, the catch-
up phase occurs at a high delay. At 𝜆 = 360 veh/hr, the
frontmost vehicle of an informed cluster of vehicles has a
probability of 70% to catch up with the last vehicle in an
uninformed cluster of vehicles at a time delay 𝑡 larger than
or equal to 200 seconds. However, in a dense network with
𝜆 = 2520 veh/hr, the catch-up process is highly likely to
happen at approximately 100 seconds or less.

Figure 2 shows that the 𝑇
𝐶
distribution has the shape of

an exponential distribution. Therefore, we use exponential
regression analysis to approximate the𝑇

𝐶
distributionwith an

exponential distribution using the following equation [17, 18]:

𝑔 (𝑥) = 𝑎𝑒
𝑏𝑥
, (22)

where 𝑎 and 𝑏 are constant called the model regression
coefficients.

An exponential regression analysis is performed by apply-
ing the logarithm to the base of 𝑒 of both sides of (22).
Subsequently, (22) can be written by

log
𝑒
𝑔 (𝑥) = log

𝑒
(𝑎𝑒
𝑏𝑥
) ,

ln𝑔 (𝑥) = ln 𝑎 + 𝑏𝑥.
(23)

By substituting 𝑦 = ln𝑔(𝑥), a linear regression analysis
equation, which is expressed as 𝑦 = 𝑎 + 𝑏𝑥, can be rewritten
as

𝑦 = ln 𝑎 + 𝑏𝑥, (24)

where the regression coefficients 𝑎 and 𝑏 are expressed as

𝑏 =
∑𝑥𝑦 − 𝑛𝑥𝑦

∑𝑥2 − 𝑛𝑥2
,

ln 𝑎 = 𝑦− 𝑏𝑥,
(25)

Table 1: Exponential regression parameters.

Vehicle
flow rate SSE 𝑅

2 Coefficient 𝑎 Coefficient 𝑏

360 0.0000399 0.9760 0.005067 −0.00498

1080 0.0002648 0.9619 0.01465 −0.01414

1800 0.0006772 0.9448 0.02371 −0.02283

3600 0.0024381 0.9045 0.04433 −0.04252

where

𝑥 =
1
𝑛

𝑛

∑

𝑖=1
𝑥
𝑖
,

𝑦 =
1
𝑛

𝑛

∑

𝑖=1
𝑦
𝑖
,

∑𝑥𝑦 =

𝑛

∑

𝑖=1
𝑥
𝑖
𝑦
𝑖
,

∑𝑥
2
=

𝑛

∑

𝑖=1
𝑥
2
𝑖
.

(26)

There are twomain parameters in regression analysis that
can indicate that an exponential distribution is a good fit for
𝑇
𝐶
distribution [17, 18].

(1) Sum of Square Errors (SSE). In general, this parameter
measures the difference between data points and an estima-
tion model with a value closer to zero to indicate a good fit.

(2) Coefficient of Determination (𝑅2). This parameter indi-
cates how well data points fit an approximation curve with
a value approaching one to demonstrate a good fit.

Table 1 shows the output of the exponential regression
analysis for 𝑇

𝐶
distributions for vehicle flow rates 360, 1080,

1800, and 3600 veh/hr. For each of the traffic flow rates, the
exponential regression yields a high value for 𝑅2 parameter,
which is approaching one. Table 1 also indicates that the
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Figure 3: The comparison between the exact distribution of 𝑇
𝐶
and its approximation.

parameter SSE yields values that are very close to zero. With
the parameter 𝑅2 yielding values close to one and the SSE
values producing values near to zero in the exponential
regression analysis, we can ascertain that our 𝑇

𝐶
distribution

can be approximated with an exponential distribution.
Figure 3 displays the exact distribution function of 𝑇

𝐶

with its approximation counterpart, given in (22) for the
respective vehicle flow rate. From these figures, we can
establish the high accuracy between the exact distribution
and its approximation, and we determine that the exact
distribution function of 𝑇

𝐶
can be approximated using an

exponential distribution expression.

4. Derivation of the End-to-End Time Delay
for Unidirectional Highway

Using Figure 1 as an example, total end-to-end delay from a
source vehicle to a destination vehicle, 𝑇

𝐷
, can be expressed

as
𝑇
𝐷
= 𝑇
𝑓1
+𝑇
𝑐1
+𝑇
𝑓2
+𝑇
𝑐2
+𝑇
𝑓3
+𝑇
𝑐3
+ ⋅ ⋅ ⋅ + 𝑇

𝑓
𝑛

+𝑇
𝑐
𝑛

,

(27)

where 𝑇
𝑓
𝑘

is forwarding time in cluster 𝑘 and 𝑇
𝑐
𝑘

is catching
up time from cluster 𝑘 to cluster 𝑘 + 1.

It is assumed that low vehicle density in a vehicular
network causes the communication range to become smaller
than the average intervehicle gap.Therefore, we ascertain that
the message transmission time can be approximated using
entirely the vehicle movement while ignoring the message
transmission time within a cluster, that is, 𝑇

𝑓1
, as it is very

small, since the packets are transferred via wireless channel
within the cluster, resulting in 𝑇

𝑓1
≪ 𝑇
𝐶1
. We consider that

this assumption is plausible based on the current researches
on performance analysis on IEEE 802.11p technology [19–21].
These researches show that the average transmission delay
between two neighboring vehicles via wireless channel takes
on the values of milliseconds as opposed to the transmission
delay via carry and forward strategy, which has been dis-
cussed in Section 3.4.

Therefore, from the above assumption, (27) can be rewrit-
ten as

𝑇
𝐷
= 𝑇
𝑐1
+𝑇
𝑐2
+𝑇
𝑐3
+ ⋅ ⋅ ⋅ + 𝑇

𝑐
𝑛

. (28)

Generalizing (28) for𝑁
𝑐 clusters, we are able to derive 𝑇𝐷 as

𝑇
𝐷
=

𝑁
𝑐

∑

𝑘=1
𝑇
𝑐
𝑘

. (29)
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Let𝑁
𝑐
denote the number of vehicle clusters on a highway

with the assumption that 𝑁
𝑐
is a random variable that is

independent of 𝑇
𝐶
’s where 𝑁

𝑐
derivation will be explained

later in Section 4.1. Hence, we can find the conditional PDF
of 𝑇
𝐷
given that 𝑁

𝑐
= 𝑛 using the conditional characteristic

function of 𝑇
𝐷
. From (28), the conditional characteristic

function of 𝑇𝐷 given that𝑁
𝑐
= 𝑛 can be expressed as

𝑇
𝐷
= 𝑇
𝐶1
+𝑇
𝐶2
+ ⋅ ⋅ ⋅ + 𝑇

𝐶
𝑛

,

Φ
𝑇
𝐷
|𝑁
𝑐
=𝑛 (𝑠) = 𝐸 [𝑒

𝑠𝑇
𝐷] = 𝐸 [𝑒

𝑠(𝑇
𝐶1+𝑇𝐶2+⋅⋅⋅+𝑇𝐶𝑁 )] ,

Φ
𝑇
𝐷
|𝑁
𝑐
=𝑛 (𝑠) = {Φ𝑇

𝐶

(𝑠)}
𝑛

.

(30)

The conditional PDF of 𝑇
𝐷
can be found by taking the

inverse transform of Φ
𝑇
𝐷
|𝑁
𝑐
=𝑛
. However, since the distribu-

tion of 𝑇
𝐶
in (1) is found using numerical integration, a

closed form solution is not feasible for (30). In Section 3.4,
using exponential regression analysis, we have determined
that the catch-up time (𝑇𝐶) distribution in Figure 2 can be
approximated with an exponential distribution. Henceforth,
𝑓𝑇C

can be denoted with the following expression:

𝑓
𝑇
𝐶

(𝑡) ≈ 𝜆𝑇
𝐶

𝑒
−𝜆
𝑇
𝐶

𝑡
, (31)

where the value of 𝜆
𝑇
𝐶

should be found using minimum
mean square error (MMSE) between the exact distribution
function of 𝑇𝐶 in (1) and its approximation. Using the
approximation of 𝑇𝐶 as an exponential distribution, the
conditional PDF of 𝑇𝐷 given that𝑁𝑐 = 𝑛 can be found using
characteristic function expressions of 𝑇𝐶 and sums of 𝑇𝐶’s.
The characteristic function of 𝑇

𝐶
can be expressed as

Φ
𝑇
𝐶

(𝑠) = 𝐸 [𝑒
𝑠𝑇
𝐶] = ∫

∞

0
𝑒
𝑠𝑡
𝑓
𝑇
𝐶

𝑑𝑡

= ∫

∞

0
𝑒
𝑠𝑡
𝜆
𝑇
𝐶

𝑒
−𝜆
𝑇
𝐶

𝑡
𝑑𝑡,

Φ
𝑇
𝐶

(𝑠) =

𝜆
𝑇
𝐶

(𝜆𝑇
𝐶

− 𝑠)

.

(32)

From (32), we can find the expression for the characteristic
function of 𝑇

𝐷
given that𝑁

𝐶
= 𝑛:

𝑇𝐷 = 𝑇𝐶1
+𝑇𝐶2

+ ⋅ ⋅ ⋅ + 𝑇𝐶
𝑛

,

Φ
𝑇
𝐷
|𝑁
𝑐
=𝑛 (𝑠) = 𝐸 [𝑒

𝑠𝑇
𝐷] = 𝐸 [𝑒

𝑠(𝑇
𝐶1+𝑇𝐶2+⋅⋅⋅+𝑇𝐶𝑛 )]

= Φ
𝑇
𝐶1
(𝑠) ⋅ ⋅ ⋅ Φ𝑇

𝐶
𝑁

(𝑠) ,

Φ
𝑇
𝐷
|𝑁
𝑐
=𝑛 (𝑠) = {Φ𝑇

𝐶

(𝑠)}
𝑛

,

Φ
𝑇
𝐷
|𝑁
𝑐
=𝑛 (𝑠) = {

𝜆
𝑇
𝐶

(𝜆𝑇
𝐶

− 𝑠)

}

𝑛

.

(33)

Thus, the conditional PDF of 𝑇
𝐷

can be found using
inverse Laplace transform of the conditional characteristic
function of 𝑇

𝐷
in (33) which is expressed in

𝑓
𝑇
𝐷
|𝑁
𝑐
=𝑛 (𝑡) =L

−1
{Φ
𝑇
𝐷

(𝑠)}

=L
−1
{{

𝜆
𝑇
𝐶

(𝜆
𝑇
𝐶

− 𝑠)

}

𝑛

} ,

𝑓
𝑇
𝐷
|𝑁
𝑐
=𝑛 (𝑡) =

𝜆
𝑇
𝐶

𝑒
−𝜆
𝑇
𝐶

𝑡
(𝜆
𝑇
𝐶

𝑡)
𝑛−1

(𝑛 − 1)!
.

(34)

From (34), we ascertain that the conditional PDF of 𝑇
𝐷

given that𝑁𝐶 = 𝑛 follows an Erlang(𝑛, 𝜆𝑇
𝐶

) distribution.

4.1. Analysis on the Distribution of Number of Clusters, 𝑁
𝐶
.

To find the PDF of 𝑇
𝐷
, we have to derive the distribution

model for the number of clusters,𝑁
𝐶
. Based on the message

propagation scenario in Figure 1 of Section 3, we consider a
unidirectional highway of length 𝐷meters. The source vehi-
cle is located in the first informed cluster and the destination
vehicle is located at the end of the highway. Therefore, a
message from the source vehicle has to be propagated over
multiple clusters of vehicles in order to be transmitted to the
destination vehicle. In addition, we assume that the vehicles
enter the highway according to a Poisson process with traffic
flow rate of 𝜆. Therefore, by employing the Poisson process
assumption, we consider that the number of clusters can
be modeled by using the Poisson distribution. Subsequently,
by applying the vehicular network analytical framework
provided in [3], we are able to formulate a distributionmodel
for number of clusters for a unidirectional highway of length
𝐷.

Let 𝑁
𝐶
denote number of clusters in a unidirectional

highway and its derivation is based on vehicular network
parameters provided in [3].

4.1.1. Average Distance during Forwarding Phase, 𝐸[𝑋𝑓]. Let
𝑋𝑓 represent the distance traveled by messages during a
forwarding phase where the expected value is given as

𝐸 [𝑋
𝑓
] = 𝐸 [𝑌] + 𝑟, (35)

where 𝑟 is the transmission range and 𝐸[𝑌] is the average
cluster size and it is expressed as

𝐸 [𝑌] = 𝐸 [𝑀]𝐸 [𝐿𝑐] , (36)

where 𝐸[𝑀] is the average number of vehicle gaps in a
cluster and 𝐸[𝐿𝑐] is the average gap between two connected
neighboring vehicles.

Next, we derive the following closed form expressions for
𝐸[𝑀] and 𝐸[𝐿𝑐], respectively:

𝐸 [𝑀] =
𝐹
𝐿 (𝑟)

1 − 𝐹𝐿 (𝑟)
=
1 − 𝑒−𝜆𝑠𝑟

𝑒−𝜆𝑠𝑟
, (37)

𝐸 [𝐿
𝑐
] = ∫

𝑟

0
𝑙
𝑓
𝐿 (𝑙)

𝑓
𝐿 (𝑟)

𝑑𝑙 =

1 − (𝑒−𝜆𝑠𝑟 (𝜆
𝑠
𝑟 + 1))

𝜆
𝑠
(1 − 𝑒−𝜆𝑠𝑟)

. (38)
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Therefore, using (37) and (38), (35) can be solved as follows:

𝐸 [𝑋
𝑓
] = 𝑟 +𝐸 [𝑀]𝐸 [𝐿𝑐] ,

𝐸 [𝑋
𝑓] = 𝑟 +

𝑒
−𝜆
𝑠
𝑟
(1 − (𝑒−𝜆𝑠𝑟 (𝜆

𝑠
𝑟 + 1)))

𝜆
𝑠

.

(39)

4.1.2. Average Distance during Catch-Up Phase,𝐸[𝑋
𝑐
]. Let𝑋

𝑐

denote distance traveled bymessages during a catch-up phase
and the expected value is expressed as

𝐸 [𝑋
𝑐] = ∫

∞

0
𝐸 [𝑋𝑐 | 𝑇𝑐 = 𝑡] 𝑓𝑇

𝐶

(𝑡) 𝑑𝑡

= ∫

∞

0
𝐸 [𝑋 (𝑡)] 𝑓𝑇

𝐶

(𝑡) 𝑑𝑡.

(40)

It may be noted that the closed form expression is not feasible
for (40) since 𝐸[𝑋(𝑡)] is solved using numerical integration.
Therefore, (40) is solved through numerical integration using
the exact distribution of 𝑇

𝐶
in (1).

Finally, the probability mass function for 𝑁
𝐶

can be
expressed as

𝑃 (𝑁=𝑛) =
𝛼
𝑛

𝑛!
𝑒
𝛼
, with 𝛼 = 𝐷

𝐸 [𝑋
𝑓
] + 𝐸 [𝑋

𝐶
]

, (41)

where 𝐷 is the length of the highway, 𝐸[𝑋
𝑓
] is the expected

value of the forwarding distance, and 𝐸[𝑋
𝐶
] is the expected

value of the catch-up distance.

4.2. Derivation of 𝑇
𝐷
Distribution Based on 𝑇

𝐶
and 𝑁

𝑐
Dis-

tributions. It is stated in [15, 16] that the Erlang distribution
is obtained by the 𝑛-fold convolution of 𝑛 independent
exponential distribution. In Section 4, we have shown that
the distribution of𝑇𝐷 is the summation of the catch-up delay,
𝑇𝐶, for 𝑛 vehicle clusters. In addition, we establish that 𝑇𝐶 is a
randomvariable that exhibits the properties of an exponential
distribution.

Therefore, let 𝑇𝐷 denote the sum of the 𝑇
𝐶
for 𝑁
𝐶
= 𝑛

and let𝑁
𝐶
denote the number of vehicle clusters on a unidi-

rectional highway. Based on the Law of Total Probability, the
PDF of 𝑇

𝐷
can be formulated as

𝑓 (𝑇𝐷; 𝑡) = 𝑓𝑇
𝐷

(𝑡 | 𝑁
𝑐
= 𝑛1) 𝑃 (𝑁𝑐 = 𝑛1)

+𝑓
𝑇
𝐷

(𝑡 | 𝑁
𝑐
= 𝑛2) 𝑃 (𝑁𝑐 = 𝑛2)

+𝑓𝑇
𝐷

(𝑡 | 𝑁𝑐 = 𝑛3) 𝑃 (𝑁𝑐 = 𝑛3) ⋅ ⋅ ⋅ ,

𝑓 (𝑇𝐷; 𝑡) =

∞

∑

𝑛=1

𝜆
𝑇
𝐶

𝑒
−𝜆
𝑇
𝐶

𝑡
(𝜆
𝑇
𝐶

𝑡)
𝑛−1

(𝑛 − 1)!
⋅
𝛼
𝑛

𝑖

𝑛!
𝑒
𝛼
,

(42)

where

𝛼 =
𝐷

𝐸 [𝑋
𝑓
] + 𝐸 [𝑋

𝐶
]

. (43)

The PDF of𝑇
𝐷
, as shown in (42), exhibits properties of an

Erlang distribution, which will be proved in Section 5.1.

5. Results and Analysis for Distribution of
Total Catch-Up Time 𝑇

𝐷
in One-Way Street

5.1. Numerical Results. In this section, we present some
pertinent numerical results regarding the analysis done in
this chapter. Figure 4 shows the probability mass functions
for𝑁
𝐶
from (41) and for traffic flow rate 𝜆 = 360, 1080, 1800

and 2520 veh/hr. It can be seen in Figure 4 that, at 𝜆 =

360 veh/hr, the peak of the distributions occurs at 𝑛 = 6 and
at 𝜆 = 2520 veh/hr; the peak of the distribution is at 𝑛 = 1.
Consequently, the plots in Figure 4 demonstrate that as the
traffic density in a highway increases, clusters in the highway
merge to form a larger cluster, thereby reducing number of
clusters in the highway.

In addition, there is a correlation between number of
clusters and traffic density where the number of clusters
decreases as traffic density increases. The relationship is
shown in Figure 5, which presents the average distance
traveled by messages during forward phase, 𝐸[𝑋𝑓], and
catch-up phase, 𝐸[𝑋𝑐]. Figure 5 shows that the value of
𝐸[𝑋𝑓] also increases with the increment of traffic flow rate,
confirming that as the traffic density increases, messages are
mostly transmitted via wireless channel rather than being
carried by vehicles. From Figure 5, we ascertain that the
average cluster length increases as vehicle traffic flow rate
increases; the intervehicle spacing reduces until the gap is less
than the transmission range.

Furthermore, the trend in the plots of 𝐸[𝑋
𝑓
] and 𝐸[𝑋

𝑐
]

in Figure 5 derived from our analysis in Section 4.1 shows
an exact match with the numerical results of the original
𝐸[𝑋
𝑓
] and 𝐸[𝑋

𝑐
] from [3]. The same trend displayed in

Figure 5 and the original result in [3] validated the accuracy
of our work on the distribution of 𝑇

𝐶
from [3]. Figure 6

displayed the information propagation speed based on the
𝑇
𝐷
distribution, which further validates the accuracy of our

analysis as Figure 6 shows similar trend with the information
propagation speed from [3]. Therefore, we are able to arrive
with the same conclusion as [3] in which higher vehicle
density leads to a larger partition size and shorter intercluster
distance and henceforth reduces the catch-up time. Figure 6
shows a sharp increase as the vehicle flow rate increases and
the propagation speed is shown much faster than the vehicle
movement.

Figure 7 displays the PDF of 𝑇𝐷 distribution. The prob-
ability of 𝑇𝐷 is plotted against the time delay in seconds for
different vehicles flow rates. As shown in Figure 7, the PDF of
𝑇𝐷 exhibits similarities to an 𝐸𝑟𝑙𝑎𝑛𝑔 − 𝑛 distribution, which
confirms our analysis that the PDF of 𝑇𝐷 follows 𝐸𝑟𝑙𝑎𝑛𝑔 − 𝑛
distribution given that𝑁

𝐶
= 𝑛.

5.2. Simulation Results. In this section, we present simulation
results in Figures 9(a)–9(c) for our proposed analyticalmodel
using the network simulator NS-2 [22, 23]. Our simulation
scenario, which is displayed in Figure 8, is based on a one-
directional highway with the length of 15 km. The highway
is assumed to have multiple one-directional lanes, where
vehicles can overtake each other without changing their
lane or maneuvering. Vehicles are generated using a Poisson
process with flow rates of 360, 1080, 1800, and 3600 veh/hour.
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Each vehicle is assigned a random speed based on a uniform
distribution between the intervals Vmin = 20m/s and Vmax =
28.89m/s and the assigned speed does not change over the
simulation time.We perform the simulation for 1200 seconds
and repeat the simulation for 1000 iterations. Since NS-2 is
built to simulate a network environment, we configure media
access control (MAC) and physical (PHY) layers in NS-2
to retain [3] assumptions of ideal MAC and PHY layers for
the model so that the simulation is executed under ideal
communication channel. The packets are generated using
Poisson traffic with mean of 0.1 seconds and the transmission
range is set to 250meters. In addition, we configure the source
vehicle to be the only informed vehicle at time 𝑡 and to be
located at position 𝐻; and the destination vehicle is the first
vehicle to pass location𝐻 at time 𝑡.
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Figure 6: Information propagation speed from 𝑇
𝐷
analysis.
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Figure 9 displays the comparison between the numerical
results of the 𝑇𝐷 analysis with the simulation results. Fig-
ure 9(a) presents the numerical and simulation results for the
PDF of 𝑇𝐷 from (42). The results are plotted as a function of
the time delay with different values of traffic flow rates. From
Figure 9(a), at 𝜆 = 360 veh/hr, the simulation result shows
that the peak of the distribution occurs at approximately 𝑡 =
300 seconds, whereas, at 𝜆 = 1800 veh/hr, the distribution’s
peak is at 𝑡 = 50 seconds. It can be concluded that as the traffic
flow rate increases, the end-to-end delay decreases since the
traffic density on the highway will be large enough to allow
packet transmission via multihop forwarding on the wireless
channel.
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Figure 9: Comparison between analytical and simulation results of 𝑇
𝐷
distribution model.

In addition, the plots for 𝑇𝐷 distribution in Figure 9(a)
show that the numerical and simulation plots of 𝑇𝐷 are
very close to each other and exhibit the same trend as the
𝐸𝑟𝑙𝑎𝑛𝑔 − 𝑛 distribution model. From Figure 9, we ascertain
that the small discrepancy between the analytical plots of 𝑇𝐷

distribution and the plots of 𝑇𝐷 simulation is caused by the
configuration of NS-2. We conclude that even though NS-2
has been configured with the ideal communication channel,
MAC and PHY conditions in NS-2 still affect the simulation
results. Furthermore, we ascertain that the use of Poisson
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traffic for data packets generation in the simulation causes a
small deviation between analytical and simulation results.

6. Conclusion

In this section, we propose an analytical framework for
the end-to-end delay model for a vehicular network on
a unidirectional highway by extending the catch-up delay
model between two adjacent vehicle clusters to multiple
vehicle clusters as well as using traffic characteristics models
to determine the distribution model for number of clusters.
We approximate the distribution of the catch-up delay model
between two disconnected clusters using the exponential
regression analysis to derive the catch-up delay model for
multiple clusters. Using the approximation, we establish that
the catch-up delay model for multiple clusters follows an
𝐸𝑟𝑙𝑎𝑛𝑔 − 𝑛 distribution. We also validated our analytical
results through simulation. In this study, we are able to
confirm that the carry and forward process often occurs in a
low density network and the process has caused the packets to
be delivered at high end-to-end delay. Nonetheless, the study
is done without considering a number of real-world commu-
nication aspects such as channel fading and contention issues
at media access layer which can be considered as the research
future works.

Notations

𝐷: The length of a road
𝐿: Gap between two neighboring

vehicles
𝐿
𝑐
: Gap between two neighboring

connected vehicles
𝐿
𝑈𝐶

: Gap between two neighboring
disconnected vehicles

𝜆: Traffic flow rate (vehicles/unit time)
𝜆
𝑠
: Vehicles density (vehicles/unit

distance)
𝜆
𝑇
𝐶

: Minimummean square error
between the exact distribution of 𝑇

𝐶

and an exponential distribution
𝑁(𝑡): Number of vehicles arriving at the

highway during interval [0, 𝑡]
𝑁
𝑐
: Number of vehicle clusters

Φ
𝑌
(𝑠): Characteristic function of a random

variable 𝑌
𝑟: Vehicle radio range
𝑇𝑐: Time duration of a catch-up phase
𝑇𝑓: Time duration of a forward phase
𝑇𝐷: The sum of multiple catch-up times,

𝑇𝑐

𝑉𝑖: Average speed of vehicle 𝑖,
𝑖 = 0, 1, . . . , 𝑛; a random variable in
the interval [Vmin, Vmax]

𝑋𝑓: The distance traveled by messages
during a forwarding phase

𝑋
𝑐
: The distance traveled by messages

during a catch-up phase

𝑋(𝑡): Message propagation distance during
(0, 𝑡]

𝑋

(𝑡): Distance that the partition tail moves

during [0, 𝑡]
𝑌: The size of a cluster.
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