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This paper presents a simulation study of an autonomous underwater vehicle (AUV) navigation system operating in a GPS-denied
environment.TheAUVnavigationmethodmakes use of underwater transponder positioning and requires only one transponder. A
multirate unscented Kalman filter is used to determine the AUV orientation and position by fusing high-rate sensor data and low-
rate information. The paper also proposes a gradient-based, efficient, and adaptive novel algorithm for plume boundary tracking
missions. The algorithm follows a centralized approach and it includes path optimization features based on gradient information.
The proposed algorithm is implemented in simulation on the AUV-based navigation system and successful boundary tracking
results are obtained.

1. Introduction

Most plume tracking and detection systems reported in
the literature are based on surface dynamic oceanographic
features. These are detected by satellites and their images
are preprocessed for selecting regions of interest to generate
optimal tracking sequences [1, 2]. As automated data collec-
tion is becoming more prevalent, optimum path planning
and trajectory designs for autonomous underwater vehicles
(AUVs) are becoming more important, since those planning
approaches are required to navigate the AUV for collecting
information. In order to track evolving features of interest in
the ocean using predictive ocean models, several waypoint
selection algorithms are developed and experimentally tested
in [3]. Design and control of trajectories for AUVs to obtain
optimal data collection are presented in [4]. The AUVs rely
on GPS data for accurate position fixes. However, due to the
dielectric contrast and high dielectric loss factor of seawater
compared to air, most of the strength of the GPS signal is
reflected back or attenuated and the AUV has to surface
occasionally for position update. Therefore, in situations like
under-ice oil spills and deep-sea exploration, the detection
and tracking tasks need to be performedwithoutGPS support
and rely on a very low frequency acoustic communication
channel.

A review of the state-of-the-art AUV navigation tech-
niques is presented in [5, 6], along with a brief comparison
of their mission-based suitability. The methods discussed
include inertial, acoustic, and geophysical AUV navigation.
To this extent, obtaining GPS-based surface fixes as well as
utilizing a Long Base Line (LBL), Short Base Line (SBL),
or Ultra Short Base Line (USBL) system has been the
standard practice for AUVnavigation [7].These systems have
similar deployment and transponder positioning challenges.
Inverted USBL configuration, where the USBL array is
located on the vehicle, interrogates transponders placed in
known positions [7]. The study reported in [8] discusses
underwater transponder positioning (UTP), which requires
only one transducer due to the tight coupling with the
vehicle’s Inertial Navigation System (INS), and serves as an
alternative approach.

In this paper, we use the inverted USBL configuration,
which enables AUV positioning to be single-referenced and
hence greatly reduces the complex operational logistics. A
GPS-capable transponder, which is suspended from surface
ice or a platform, is considered. The transponder transmits
its position with each ping to the AUV and provides a means
to position update in a GPS-denied undersea environment.
It is also assumed that several receivers are placed along the
body of the AUV on a noncoplanar configuration, keeping
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Figure 1: REMUS AUV (image credit: Kongsberg Maritime).

a sufficient space between each of the receivers.The transpon-
der and AUV’s clocks are synchronized and the transponder
broadcasts a unique signal with a known delay [9, 10]. Upon
arrival of the transmitted signal to the AUV, a single trip
travel time for each of the receivers is recorded.The recorded
travel times are then used for themeasurement update in state
estimation. In between transponder broadcasts, short-term
dead-reckoning is utilized based on high-rate INS data.

In operation conditions such as rough bathymetry or
limited sensor range, where DVL bottom-track data is
unavailable, the AUV’s dynamic model-based position infor-
mation is incorporated for position estimation [11–13]. A
Linear Quadratic Regulator (LQR) is implemented based
on the estimated states and further improved by adding a
Proportional-Integral (PI) Controller for rudder control.The
proposed approach is implemented in the nonlinear dynamic
model of the REMUS AUV (Figure 1) presented in [14].

The paper has the following contributions:

(1) a multirate unscented Kalman filter is employed for
sensor fusion in AUV localization;

(2) a novel efficient adaptive plume boundary tracking
algorithm is developed using gradient information;

(3) numerous simulation results are presented to verify
the approach.

The rest of the paper is organized as follows. In Section 2,
an introduction on sensor package is given and the AUV
navigation algorithm is presented. In Section 3, simulated
results ofAUVnavigation are discussed. In Section 4, a plume
boundary tracking algorithm is presented with its simulation
results. The paper concludes by reporting the future research
directions. A preliminary version of this paper appears in
proceedings of the 27th Canadian Conference on Electrical
and Computer Engineering (CCECE) [15]. In this version we
focused on providing a detailed description of the work and
more simulation results.

2. Sensor and System Modeling

2.1. Preliminaries and Notation. According to [16], 𝑛(= 6)

Degrees Of Freedom (DOF) model of AUV dynamics and
kinematics can be derived as

𝐹 = 𝐵 (V) 𝑢in − (𝐶 (V) V + 𝐷 (V) V + 𝑔 (𝑞)) = 𝑀V̇ (1)

𝜂̇ = 𝐽 (𝑞) V, (2)

where 𝑀
𝑛×𝑛

matrix represents the inertia of the vehicle
and hydrodynamic added-mass; 𝐶

𝑛×𝑛
matrix includes rigid

body Coriolis and centrifugal components as well as added-
mass derivatives corresponding to the velocity coupling;

Table 1: Sensor characteristics.

Sensor type Measurand Frequency Noise, 𝜎
Accelerometer Specific force 100Hz 0.1m/s2

Gyroscope Angular velocity 100Hz 0.005 rad/s
Attitude sensors 1 and 2 Roll & pitch 10Hz 0.05 rad
Attitude sensor 3 Yaw 10Hz 0.2 rad
Pressure sensor Pressure 5Hz 200 Pa
DVL Linear velocity 5Hz 0.05m/s
Acoustic receivers Time delay 500 kHz 1/√3 𝜇s

𝐷
𝑛×𝑛

matrix includes energy dissipative terms due to rel-
ative motion between vehicle and surrounding fluid; 𝑔

𝑛×1

combines gravitational and buoyancy forces; and 𝐵
𝑛×𝑚

is the
thruster control matrix, where 𝑚 is the number of thrusters.
Furthermore, V = [𝑢𝑇 𝜔𝑇]𝑇 ∈ R6, where 𝑢 = [𝑢

1
𝑢
2
𝑢
3
]
𝑇

and 𝜔 = [𝜔
1
𝜔
2
𝜔
3
]
𝑇 are body-fixed linear and angular

velocities.The total force matrix is represented as 𝐹. Also, 𝜂 =
[𝑝
𝑇

𝑞
𝑇

]
𝑇, where𝑝 = [𝑥 𝑦 𝑧]

𝑇 is the position vector relative
to the inertial reference frame origin and 𝑞 = [𝜙 𝜃 𝜓]

𝑇

is the vector of Euler angles, which are roll, pitch, and yaw,
respectively.𝑢in ∈ R𝑚 is the control input of the thrusters.The
Jacobian 𝐽 = [ 𝐽1(𝑞) 03×3

0
3×3
𝐽
2
(𝑞)
], where 𝐽

1
is the coordinate transform

matrix from 𝑢 to 𝑝̇ and 𝐽
2
relates 𝜔 to Euler rate vector 𝑞̇.

These are computed as follows:

𝐽
1
=
[

[

[

𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜙 + 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑐𝜙𝑠𝜃

𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑐𝜓𝑠𝜙 + 𝑠𝜃𝑠𝜓𝑐𝜙

−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

]

]

]

𝐽
2
=

[

[

[

[

[

1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃

0 𝑐𝜙 −𝑠𝜙

0

𝑠𝜙

𝑐𝜃

𝑐𝜙

𝑐𝜃

]

]

]

]

]

,

(3)

where 𝑠 ⇒ sin, 𝑐 ⇒ cos, and 𝑡 ⇒ tan, with 0 ≤ 𝜙 < 2𝜋,
−𝜋/2 < 𝜃 < 𝜋/2, and 0 ≤ 𝜓 < 2𝜋. We assume that 𝜃 ̸= ±𝜋/2

as otherwise 𝐽
2
approaches a singularity. If such an operation

is required, quaternion-based attitude representation can be
adopted as in [17]. The coefficient matrices we used in this
work are based on the REMUS AUV dynamic model [14].
Our AUV has a typical set of sensors as mentioned in Table 1.
The noise in each acoustic receiver is the quantization error
introduced by the analog to digital converter of the system
[18]. The transponder emits signals at 1 Hz and the control
loop runs at 100Hz. The AUV navigation system including
USBL array is depicted in Figure 2.

2.2. Sensor Modeling

2.2.1. IMU Measurements. The Inertial Measurement Unit
(IMU) sensor consists of accelerometers and gyroscopes
(gyros), which measure specific forces and angular rates in
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Figure 2: AUV navigation system adopted from [19].

the body-fixed coordinate system.The accelerometer reading
𝑍
𝑎
can be modeled as [20]

𝑍
𝑎
= 𝑢̇ + [𝜔×] 𝑢 + 𝐽

𝑇

1
𝑔⃗ + 𝑏
𝑎
+ 𝑛
𝑎
, (4)

where [𝜔×] is the skew symmetric matrix cross product form
of the vector 𝜔, which is given as

[𝜔×] =
[

[

[

0 −𝜔
3
𝜔
2

𝜔
3

0 −𝜔
1

−𝜔
2
𝜔
1

0

]

]

]

, (5)

where 𝑔⃗ = [0 0 9.81 m/s2]𝑇 is the gravity vector and
𝑏
𝑎
= 0.05m/s2 is the bias of the reading with ̇

𝑏
𝑎
= 0. The

measurement noise is distributed as 𝑛
𝑎
∼ N(0, 𝜎2

𝑎
𝐼
3
), with

𝜎
2

𝑎
as the variance for each direction. The gyro reading 𝑍

𝑔
is

modeled as [20]

𝑍
𝑔
= 𝜔 + 𝑏

𝑔
+ 𝑛
𝑔
, (6)

where 𝑏
𝑔
= 0.01 rad/s is the bias of the reading with ̇

𝑏
𝑔
= 0.

The noise of the reading is distributed as 𝑛
𝑔
∼ N(0, 𝜎2

𝑔
𝐼
3
),

with 𝜎2
𝑔
as the variance on each axis.

2.2.2. Attitude Measurements. Attitude sensors composed of
magnetometers and compasses measure roll, pitch, and yaw
angles. These sensors are modeled as 𝑍

𝜙𝜃𝜓
[20]:

𝑍
𝜙𝜃𝜓

= 𝑞 + 𝑛
𝜙𝜃𝜓
, (7)

where the sensor noise is distributed as 𝑛
𝜙𝜃𝜓

∼ N(0, 𝑄
𝜙𝜃𝜓
)

with 𝑄
𝜙𝜃𝜓

= diag(𝜎2
𝜙
, 𝜎
2

𝜃
, 𝜎
2

𝜓
) having 𝜎

2

𝜙
, 𝜎
2

𝜃
, 𝜎
2

𝜓
as the

variances of 𝜙, 𝜃, 𝜓measurements.

2.2.3. Pressure Sensor Reading. A model for the pressure
sensor is given as [20]

𝑍pr = 𝜌sw𝑔⃗
𝑇

(𝑝 + 𝐽
1
𝑙pr) + 𝑛pr, (8)

where 𝑍pr is the sensor reading, 𝜌sw is the seawater density,
and 𝑙pr is the sensor location in body frame.The sensor noise
is distributed as 𝑛pr ∼N(0, 𝜎2pr) with 𝜎

2

pr as the variance.

2.2.4. DVL Sensor Reading. The DVL update (in processed
form) is modeled as

𝑍dvl = 𝑢 + 𝑛dvl, (9)

where 𝑍dvl is the DVL reading and the sensor noise is
distributed as 𝑛dvl ∼ N(0, 𝑄dvl) with 𝑄dvl = 𝜎

2

dvl𝐼3 having
𝜎
2

dvl as the variance in each direction.

2.2.5. Velocity Estimation Using Dynamic Model. When DVL
bottom-track data is unavailable, the body-fixed linear veloci-
ties are calculated usingAUV’s nonlinear dynamicmodel and
used in the measurement update process:

𝑍mod = 𝑢 + 𝑛mod, (10)

where 𝑍mod is an estimate for 𝑢 calculated using (1) and
𝑛mod ∼ N(0, 𝑄mod). The noise matrix 𝑄mod for this estimate
can be calculated recursively as

𝑄mod = 𝐺𝑡𝑄mod𝐺
𝑇

𝑡
+ 𝑉
𝑡
𝑀
𝑡
𝑉
𝑇

𝑡
, (11)

where 𝐺
𝑡
= 𝐼
3
+ 𝑀
−1

[𝜕𝐹/𝜕𝑢]𝑑𝑡 and 𝑉
𝑡
= [𝜕𝑢/𝜕𝑢in]. The

matrix 𝑀
𝑡
= 0.01𝐼

3
represents the noise in control space,

which includes the noises in rudder and elevator angle control
and the noise in thruster force.

Therefore, the linear velocity measurement 𝑍
𝑢
= 𝑍dvl or

𝑍mod and its noise covariance𝑄𝑢 = 𝑄dvl or𝑄mod accordingly.

2.2.6. Time of Arrival Measured Using USBL. The time of
arrival (TOA) of the acoustic wave from the transponder to
the 𝑖th receiver 𝑟

𝑖
(𝑖 = 1, . . . , 5) is modeled as follows:

𝑍
𝑡
𝑖

=

⌊𝑓

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑝 + 𝐽

1
𝑙
𝑟
𝑖

) − Tr
𝑥𝑦𝑧

󵄩
󵄩
󵄩
󵄩
󵄩
/𝑉
𝑠
⌉

𝑓

+ 𝑛
𝑟
𝑖

, (12)

where 𝑍
𝑡
𝑖

is the counted reading, 𝑓 is the sampling fre-
quency, 𝑙

𝑟
𝑖

is the position of 𝑟
𝑖
on the AUV body, Tr

𝑥𝑦𝑧

is the transponder position, 𝑉
𝑠
is the speed of sound in

the seawater, and 𝑛
𝑟
𝑖

is the quantization noise. Note that
𝑛
𝑟
𝑖

∼ U(−1/(2𝑓), 1/(2𝑓)). In this work we assume 𝑉
𝑠
=

1500m/s. However, in practical implementations 𝑉
𝑠
can be

computed using Conductivity Temperature Depth (CTD)
sensor readings [21]. Furthermore, we assume that TOA is
disturbed by a noise of 𝑛

𝑡
𝑖

∼ N(0, 𝑄
𝑡
) with 𝑄

𝑡
= 𝜎
2

TOA𝐼5 and
𝜎TOA = 1/√3 𝜇s, having 𝜎

2

TOA as the noise variance.
A tightly coupled approachwas adopted to infer the range

and angle of arrival information.This is performed by feeding
an array of TOA measurements to the estimation program.
Let 𝑍
𝑡
be the vector that includes all TOA measurements as

𝑍
𝑡
= [𝑍
𝑡
1

, . . . , 𝑍
𝑡
5

]

𝑇

. (13)
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2.3. SystemModeling. Incorporating the kinematics andmea-
surements, the system equations can be written as follows
[20]:

𝑞̇ = 𝐽
2
(𝑍
𝑔
− 𝑏
𝑔
) ,

̇
𝑏
𝑔
= 0,

𝑝̇ = 𝐽
1
𝑢,

𝑢̇ = 𝑍
𝑎
− [𝜔×] 𝑢 − 𝐽

𝑇

1
𝑔⃗ − 𝑏
𝑎
,

̇
𝑏
𝑎
= 0.

(14)

The state vector consists of 15 states:

𝑦 = [𝑞
𝑇

𝑏
𝑇

𝑔
𝑝
𝑇

𝑢
𝑇

𝑏
𝑇

𝑎
]

𝑇

. (15)

The process noise covariance matrix is given as

𝑅 =

[

[

[

[

[

[

[

[

[

[

𝐽
2
(𝜎
2

𝑔
𝐼
3
) 𝐽
𝑇

2
𝑑𝑡
2

0 0

0 0 0

0 𝐽
1
(𝜎
2

𝑢
) 𝐽
𝑇

1
𝑑𝑡
2

0

0 (𝜎
2

𝑎
𝐼
3
) 𝑑𝑡
2

0

0 0 0

]

]

]

]

]

]

]

]

]

]

. (16)

The measurement model is written as 𝑍 = ℎ + 𝑄, where 𝑍
is the measurement vector, ℎ is the measurement function,
and 𝑄 is the measurement noise covariance. They are given
as follows:

𝑍 = [𝑍pr 𝑍𝑡 𝑍𝜙𝜃𝜓 𝑍𝑢]
𝑇

,

ℎ

=

[

[

[

[

[

[

[

[

𝜌sw𝑔⃗
𝑇

(𝑝 + 𝐽
1
𝑙pr)

⌊𝑓

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑝 + 𝐽

1
𝑙
𝑟
𝑖

) − Tr
𝑥𝑦𝑧

󵄩
󵄩
󵄩
󵄩
󵄩
/𝑉
𝑠
⌋

𝑓

, 𝑖 ∈ [1, 5]

}
}
}

}
}
}

}

(= ℎ
1
)

𝑞 (= ℎ
2
)

𝑢 (= ℎ
3
)

]

]

]

]

]

]

]

]

,

𝑄 =

[

[

[

[

[

[

𝜎
2

pr 0 0 0

0 𝑄
𝑡

0 0

0 0 𝑄
𝜙𝜃𝜓

0

0 0 0 𝑄
𝑢

]

]

]

]

]

]

.

(17)

3. State Estimation, Control, and Navigation

Based on (14), the state vector is propagated through time and
a multirate unscented Kalman filter (UKF) is implemented
for state estimation. The filter update process runs asyn-
chronously as a response to the measurement readings. Once
the transmitted signal is received by all of the receivers, the
system performs the position update. If the difference in time
of arrival of the signal between the first and last receiver is
very small, then the AUVmovement at that time is neglected.

3.1. Controller Implementation. The navigation system is
decoupled for ease of control implementation, assuming
negligible coupling effects between vertical and horizontal
planes. AUV movement in these two planes is governed
by the control of its elevator angle (𝛿

𝑒
) and rudder angle

(𝛿
𝑟
), respectively. Two controllers are developed based on

estimated states and the linearised versions of state equations
to control 𝛿

𝑒
and 𝛿

𝑟
. Mechanical constraints on these angles

are such that −𝜋/3 ≤ 𝛿
𝑒
, 𝛿
𝑟
≤ 𝜋/3.

𝛿
𝑒
is controlled by 𝐶

𝛿
𝑒

:

𝐶
𝛿
𝑒

= LQR
𝑒

= 𝑒𝑘
1
𝑢
3
+ 𝑒𝑘
2
𝜔
2
+ 𝑒𝑘
3
𝜃 + 𝑒𝑘

4
𝑧 + 𝑒𝑘

5
∫𝑧err,

(18)

where LQR
𝑒
is the Linear Quadratic Regulator (LQR) con-

troller for elevator angle, 𝑒𝑘
1
, . . . , 𝑒𝑘

5
are LQR gains, and

𝑧err = 𝑧 − WP
𝑧
(i.e., the difference between 𝑧 and current

waypoint 𝑧 coordinate).
𝛿
𝑟
is controlled by 𝐶

𝛿
𝑟

, which combines LQR and
Proportional-Integral (PI) Controllers:

𝐶
𝛿
𝑟

= LQR
𝑟
+ PI
𝑟
,

LQR
𝑟
= 𝑟𝑘
1
𝑢
2
+ 𝑟𝑘
2
𝜔
3
+ 𝑟𝑘
3
𝜓err,

PI
𝑟
= 𝑘
𝑝
𝑑
⊥
+ 𝑘
𝑖
∫𝑑
⊥
,

(19)

where 𝑟𝑘
1
, 𝑟𝑘
2
, 𝑟𝑘
3
are LQR gains and 𝑘

𝑝
, 𝑘
𝑖
are proportional

and integral gains. Also, 𝜓err = 𝜓 − 𝜓𝑑, where

𝜓
𝑑
= tan−1 (

WP
𝑦
− 𝑦

WP
𝑥
− 𝑥

) , (20)

and 𝑑
⊥
is the perpendicular distance from the AUV position

to the assigned path 𝑥, 𝑦 plane. After several iterations to
reduce settling time, overshoot, and steady state errors, the
optimized controller gains were found to be

𝑒𝑘
1
= 0.5110,

𝑒𝑘
2
= −4.1867,

𝑒𝑘
3
= −6.6161,

𝑒𝑘
4
= 3.1698,

𝑒𝑘
5
= 0.0035.

𝑟𝑘
1
= 0.3137,

𝑟𝑘
2
= −0.9071,

𝑟𝑘
3
= −1.1180,

𝑘
𝑝
= 0.01,

𝑘
𝑖
= 0.00001.

(21)

AUV reaching the waypoint is determined by
󵄩
󵄩
󵄩
󵄩
󵄩
WP
𝑥𝑦𝑧

− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
< 1m. (22)



Journal of Control Science and Engineering 5

3.2. An Algorithm for Localization and Autonomous Naviga-
tion. Incorporating the state estimation and control strate-
gies, an algorithm is developed for AUV localization and
navigation and is shown in Algorithm 1.

One advantage of this approach is that gyroscope readings
are not treated as measurements and hence 𝜔 is not included
in the state vector. Consequently, the dimension of the
state vector is reduced. In fact, 𝜔 is used for the state-
based controller implementation. However, since the gyros
have very low noise (𝜎 = 0.005 rad/s), we assume that
eliminating the bias error from gyro readings will provide 𝜔
with sufficient accuracy.

3.3. Simulation Setup. Navigation simulations are performed
assuming a 2400m × 1000m × 10m three-dimensional
space. The ocean current velocity is assumed as 𝑉

𝐶
(m/s) =

[0.2 0.4 0.3]
𝑇 in 𝑥, 𝑦, and 𝑧 directions, respectively. The

mission is to perform a lawnmower-type navigation in the
environment under five different cases:

(1) navigation without acoustic-based position fixes,
(2) navigation with position aiding and DVL dropout,
(3) dynamic model-aided navigation when DVL data is

unavailable,
(4) navigation with transponder dropout and no velocity

aiding,
(5) navigation with incremental transponder dropouts.

The start and end positions of the mission are given as
1200m, 0m, and −10m and −1200m, 1000m, and −10m
in inertial 𝑥, 𝑦, 𝑧 directions, respectively. While navigating
between these two positions, a 10m step change occurs in
vertical (𝑧) direction.

3.4. Bias Estimation. The predefined bias values of the
accelerometers and gyroscopes are estimated. This is
depicted in Figure 3. Figures 3(a)–3(c) show the estimates of
accelerometer bias in directions 𝑢

1
–𝑢
3
, respectively. Figures

3(d)–3(f) show gyro bias estimates, respectively, in 𝜔
1
–𝜔
3
.

All the bias estimates converged quickly within less than 30 s
and remained constants thereafter.

3.5. Navigation without Acoustic-Based Position Fixes. Sim-
ulation is performed without transponder aiding for 𝑥, 𝑦
position fixes throughout the run. However, velocity aiding
is provided by DVL measurements. The results are shown in
Figure 4. Figures 4(b)–4(d) show the error in AUV position
estimates of inertial 𝑥, 𝑦, 𝑧 directions, respectively.The errors
in 𝑥, 𝑦 positions are still low due to the accurate localization
based on low noise DVL measurements. The error in 𝑧 is still
very low as the estimation of 𝑧 is updated based on pressure
sensor readings.

3.6. Navigation with DVL Dropout. Navigation simulation is
performedwith a DVL data dropout over a 5000 s period, but
transponder aiding is provided throughout the run. During
the DVL dropout period, (9) and (10) are not used and the

(1) Initialize with: 𝑦
0
and its covariance 𝑃

0

(2) for 𝑖 ∈ (1, . . . , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓WP) do
(3) for 𝑘 ∈ (1, . . . ,∞) do
(4) Read IMUmeasurements
(5) Calculate sigma points
(6) Compute 𝑦−

𝑘
, 𝑃
−

𝑘
using 𝑦+

𝑘−1
, 𝑃
+

𝑘−1
and (14)

(7) Redraw sigma points
(8) if Attitude measurements are available then
(9) Read 𝑍

𝜙𝜃𝜓

(10) if Pressure measurement is available then
(11) Read 𝑍pr
(12) if DVL bottom-track is available then
(13) 𝑍

𝑢
= 𝑍DVL, 𝑄𝑢 = 𝑄DVL

(14) else
(15) 𝑍

𝑢
= 𝑍mod, 𝑄𝑢 = 𝑄mod

(16) if Tr signal is received by all receivers then
(17) Construct 𝑍

𝑡

(18) Compute 𝑦+
𝑘
, 𝑃
+

𝑘

(19) Implement 𝐶
𝛿𝑠
and 𝐶

𝛿𝑟
using (18) and (19)

(20) Check the condition in (22)
(21) if WP is achieved then
(22) Exit and start from the next WP

Algorithm 1: AUV localization and navigation algorithm.

lines (12)–(15) in Algorithm 1 are not implemented in the
controller. The results are shown in Figure 5. In Figure 5(a),
the blue path shows the navigation in normal conditions
where DVL data is available. The red path from A to B shows
the time where DVL data is unavailable.

3.7. Model-Aided Navigation under DVL Dropout. In this
case, the AUV’s dynamic model-based information is incor-
porated in the DVL dropout period. Figures 6(a) and 6(b)
depict the 2D and 3Dplots of the trajectory, respectively. Note
that from A to B the algorithm uses model-based data and
successful navigation is performed. Figures 7(a)–7(c) show
the errors associated with this model-aided navigation which
occurs between 0.5 × 104 s and 1 × 104 s. Figures 8(a)–8(c)
show the errors in Euler angles undermodel-aided navigation
from A to B shown in Figure 6.The errors in 𝜙 and 𝜃 are very
low and under the range of ±0.02 rad. However, error in 𝜓
is under ±0.05 rad. The computation of Euler angles is not
affected by the DVL dropout.

3.8. Navigation with Transponder Dropout and No Veloc-
ity Aiding. Navigation simulation is performed with the
transponder dropout and no velocity aiding for 5000 s period.
The 2D plot of the trajectory is shown in Figure 9(a) and
errors in 𝑥, 𝑦, and 𝑧 are shown in Figures 9(b), 9(c), and
9(d), respectively. Note that, with no velocity aiding, the AUV
quickly diverges from the assigned path resulting in high
errors in 𝑥 and𝑦. Once the velocity aiding is established again
(in this case the DVL reading) the AUV converges and errors
in 𝑥, 𝑦 are decreased.
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Figure 3: Estimated accelerometer and gyro biases.

3.9. Navigation with Incremental Transponder Dropouts. In
this case, we consider a scenario where transponder dropout
occurs at every 50 s and consequent loss of 𝑥, 𝑦 position fixes.
The simulation run is limited to 10000 s. Figures 10(a) and
10(b) show the errors in range and azimuth from the AUV
to the transponder position, respectively. Figures 10(c) and
10(d) show the errors in inertial 𝑥 and 𝑦 directions due to
the transponder dropouts. It can be observed that, even with
incremental loss of 𝑥, 𝑦 position, the estimated horizontal
position is maintained with low error bounds.

3.10. Discussion on the AUV Navigation Results. We have
performed numerous simulations using theAUV localization
and navigation algorithm.TheAUV localization is performed
by employing an unscented Kalman filter, where the true
nonlinear system is used to capture the correct mean and

covariance to the 3rd order, providing better performance
than standard extended Kalman filter based approaches [22].
The localization scheme yields satisfactory performance even
with the transponder dropouts.

In Figures 5(b) and 5(c) increased errors in 𝑥, 𝑦 positions
can be observed when DVL dropout occurs. At this period
the AUV failed to perform a smooth navigation. Also, in
Figure 5(d) there is a small reduction of the error in inertial 𝑧
at theDVLdropout period.At theDVLdrop the observability
matrix is not full rank. Hence, to preserve the observability
the dimensions are reduced. As a result, the cross-covariance
(which is introduced by DVL measurements) of filter covari-
ance matrix is eliminated and a better representation of the
uncertainty can be obtained in inertial 𝑧direction, whichmay
cause the error reduction. However, in practice the error in
𝑧 is mainly caused by the depth controller, which is mostly
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Figure 4: Navigation with DVL support and without 𝑥, 𝑦 position fixes.
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Figure 5: Navigation with DVL dropout for 5000 s.
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Figure 6: 2D and 3D plots under model-aided navigation from A to B.
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Figure 7: Errors of 𝑥, 𝑦, 𝑧 in model-aided navigation within 0.5–1.0 ×104 s (A to B) in Figure 6.

decoupled from the horizontal motion and makes decisions
based readings from only the pressure sensor.

In the model-aided navigation under DVL dropout, an
increment of the error in inertial 𝑧 direction can be observed
at the DVL dropout period on Figure 7(c). This can be due to
the fact that the new cross-covariance, which is introduced
by using the model-aided information in the DVL dropout
period, degrades the filter performance, hence leading to
higher error in 𝑧.

The rudder angle control is achieved by combining
LQR with PI controller. As a result, the AUV was able to

withstand the strong currents (𝑉
𝐶
(m/s) = [0.2 0.4 0.3]

𝑇)
and successful performances are shown in all cases.

4. Adaptive Plume Tracking

According to Algorithm 2, AUV navigation is performed
and information is collected about the plume boundary
based on in situ fluorometer readings. Incorporating that
information, an estimate on dispersion of the plume can
be achieved. Table 2 depicts the methods and limitations
of the state-of-the-art plume tracking strategies used in the
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input: Fluorometer readings Fr
𝑖
(𝑖 = 1, . . . , 𝑛), threshold (𝑇

𝑓
)

output: Adaptive boundary tracking algorithm
(1) while Fr

𝑖
< 𝑇
𝑓
do

(2) Navigate the AUV through pre-defined path.
(3) if AUV reaches to last WP then
(4) Could not locate the plume. . .! exit
(5) while boundary track is not complete do
(6) if Fr

𝑖
> 𝑇
𝑓
then

(7) Plume boundary is detected: log (𝑥
𝑡
, 𝑦
𝑡
)

(8) Move AUV until 𝑖 = 𝑘
1
(Δ𝑎 ∝ 𝑘

1
)

(9) Calculate the gradient 𝑔
𝑡
using (𝑥

𝑡
, 𝑦
𝑡
) and (𝑥

𝑡−1
, 𝑦
𝑡−1
)

(10) Set 𝜓 = 𝑔
𝑡

(11) Calculate section length Δ𝑏 ∝ 1/‖𝑔
𝑡
− 𝑔
𝑡−1
‖ and move AUV

(12) Set 𝜓 = 𝜋/2 and move
(13) if Fr

𝑖
< 𝑇
𝑓
then

(14) Repeat from line (8) to (12)
(15) if 𝑖 > 𝑘

2
then

(16) Plume cannot be located. . .!
(17) Calculate the center point (𝑥

𝑐
, 𝑦
𝑐
) using 𝑥

1
, 𝑦
1
, . . . , 𝑥

𝑡
, 𝑦
𝑡

(18) Set 𝜓 to (𝑥
𝑐
, 𝑦
𝑐
) and move

(19) Repeat from line (6)

Algorithm 2: Plume boundary tracking algorithm.

literature. In this work, we developed an efficient adaptive
plume tracking algorithm to track the plume boundary and
investigate its dispersion, with path optimization. An initial
bounding box is assigned based on some prior knowledge
(such as remote sensing data) and it is assumed that the
oil plume is located inside the bounding box. The tracking
algorithm navigates the AUV through the predefined search
path and fluorometer readings are incorporated for detecting
the plume boundary. Once a fluorometer reading Fr

𝑖
exceeds

a predefined threshold 𝑇
𝑓
, a plume can be detected with a

higher concentration. At this point, the AUV reaches the first
boundary point and the algorithm switches to the boundary
detecting mode.

The proposed approach is depicted in Figure 11 and the
steps followed are described in Algorithm 2. Let 𝑘

1
be a

predefined number of consecutive fluorometer readings to
ensure the AUV is inside the plume boundary. Also, let 𝑘

2

be another predefined number of consecutive fluorometer
readings, which are lower than 𝑇

𝑓
, to ensure that the plume

cannot be located. The transect Δ𝑎 is proportional to 𝑘
1
. The

same can be applied when the AUV is outside the boundary.
Furthermore,Δ𝑏 is used for rapid plumemapping and it helps
to improve the efficiency of the algorithm. To calculateΔ𝑏, the
system needs the two latest consecutive gradient values (as
stated in line (11) of Algorithm 2).These consecutive gradient
values are obtained from the four consecutive logged (𝑥, 𝑦)
positions. The calculation of Δ𝑏 is mentioned in line (9) of
Algorithm 2.When the plume boundary is relatively smooth,
the two consecutive gradients are nearly equal and the section
length Δ𝑏 can be long. This is better for smooth sections of

the plume boundary. Also when the plume boundary seems
irregular, those consecutive gradients will be different andΔ𝑏
will be short comparatively. As a result, the system can map
the complex, irregular-shaped section of the boundary.

Lines (15)–(18) in Algorithm 2 ensure that the plume
is tracked all the time. Here, 𝑘

2
controls the distance the

AUV moves before it turns to the center point direction.
The condition in line (5) is evaluated based on a predefined
distance between start and end points (points A and B in
Figure 11) and terminates the plume detection mode.

One limitation of the approach is that the accuracy of
plume boundary coverage entirely depends on the sensitivity
of the fluorometer and the predefined 𝑘

1
, 𝑘
2
values. The

performance on “noisy” plume boundaries may be improved
by adaptively changing the 𝑘

1
, 𝑘
2
values and adding an array

of fluorometers.

4.1. Plume with an Ellipse-Shaped Boundary. A horizontal
plume dispersion with a simple ellipse shape is considered.
Themajor and minor axis lengths of the ellipse are 100m and
150m.The angle shift from the major axis is 𝜋/3. Figure 12(a)
shows the true and detected plume boundaries under DVL-
aided and dropout (dynamic model-based) navigation. Fig-
ures 12(b) and 12(c) show the 3D view of the navigation and
the error in plume detection in 𝑥, 𝑦, 𝑧 directions, respectively.
Point A is the place where the AUV looses the DVL data.
Although instant high errors can be observed in inertial
𝑥, 𝑦, 𝑧, those errors slowly converge due to the help of model-
aided navigation.
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Table 2: Different plume tracking strategies in literature.

Article Number of agents Properties Limitations

[23] Multiple
Uses CUSUM algorithm, presents the
boundary estimation problem as a HMM,
and recast as an optimization problem

Considered only ellipse-shaped, no path
optimization, simulation only,
intervehicle communication issues not
addressed, and AUV dynamics not
considered

[24] Multiple Decentralized, gradient-free algorithm,
convergent and stable

AUV dynamics not considered, high
computation cost, intervehicle
communication issues not addressed, and
only very simple plume shapes considered

[3] Single, multiple
Cooperative, generating polygons to
follow based on ocean model predictions,
simulation, and practical implementation

Trajectory based on (roughly)
approximated polygons, temporal
constraints not considered, unable to
react to the fast moving features, and
ignoring the dynamics of the glider

[25] Single
Behavior-based approach for plume
mapping, subsumption architecture,
showing experimental results

Limitations of behavior-based approach,
no description on adaptive mapping, and
implementing simple preplanned
lawn-mower strategy

[26] Single

Uses colored dissolved organic matter
(CDOM) sensor for planed missions,
adaptive planning using in situ current,
and temperature measurements, and gets
the 3D track of the AUV, practical
implementation

No information on path optimization and
no adaptive tracking

[27] Single
Based on peak-capture algorithm, it
generates a sawtooth trajectory and uses
depth information and practical
implementation

No information on path optimization

[28] Multiple
Adaptive behavior-based system, acoustic
communication within AUVs,
representing the plume using Fourier
orders when reconstructing

No information on path optimization and
communication overhead

[29] Single

Uses a plume indicator function and
real-time implementation and uses
adaptive transects; transect length
depends on number of consecutive
samples; distance between transects is a
percentage of previous samples

Less path optimization, not using an
AUV, no information about the
convergence, and coverage of the used
algorithm

[30] Single

Uses remote sensing data to detect
hotspots, uses surface current to project
plumes spatiotemporally, and runs in a
lawnmower type pattern, practical
implementation

No path optimization, only using
predefined pattern, and no adaptive
tracking

Proposed Single
Path optimization based on gradient
information, adaptive plume tracking,
and centralized approach

Only simulation results, no comparison
data available, relying on remote sensing
data for locating the plume region
initially, low performance to noisy plume
boundaries, and using only one
fluorometer

4.2. Plume Boundary Modeled Using Fourier Orders. A rough
estimate of the horizontal dispersion of a real plume can be
obtained using Fourier orders of the form [28]

𝑅
𝑘
=

𝑘

∑

𝑖=0

𝐴
𝑖
cos (𝑖𝜃 + 𝜙

𝑖
) + 𝑅
𝑢
, (23)

where 𝑅
𝑘
is the radial distance to the plume boundary, 𝑘(=

10) is the highest Fourier order of the series, 𝑅
𝑢
(= 50m)

is the undisturbed plume radius, 𝜃(= [0, 2𝜋)) is the angles
about the center of the plume evaluated for each degree,𝐴

𝑖
(=

(+25𝑅
𝑢
/2𝑘, −25𝑅

𝑢
/2𝑘)) is the radial amplitude perturbation,

and 𝜙
𝑖
(= [−𝜋, +𝜋]) is the phase shift of 𝑖th order. Figures 13(a)
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Figure 10: Navigation with incremental transponder dropouts at every 50 s.
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Figure 11: Plume boundary tracking.

and 13(b) show the dispersion of the plume and the detected
plume boundary in 2D and 3D view. Figure 13(c) shows the
error in plume detection in 𝑥, 𝑦, 𝑧 directions. Note that the
section length Δ𝑏 is reduced due to the irregularity of the
plume dispersion.

4.3. Discussion on the Developed Plume Tracking Algo-
rithm. The proposed approach was able to successfully track
a more realistic plume boundary demonstrating its path

optimization and adaptive features. This can be observed
in Figure 13(a). From sections A-B where the irregularity of
the plume boundary is lower, the AUV crosses the plume
more loosely. Also at the places where the irregularity seems
higher (sections C-D or E-F) AUV crosses the plume tightly.
Also, the AUVnavigation plan is not predefined and adaptive
according to the shape of the plume boundary.

Certainly there are lots of facts that could influence the
limitations of the algorithm.Themeasurement uncertainty of
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Figure 12: Plume with an ellipse-shaped boundary.

the oil sensor is not considered and the operation is assumed
as an ON/OFF type. Consequently, those uncertainties can
affect the accuracy of the detection/tracking of the plume
boundary. The accuracy of the plume tracking system can
be improved by adding an array of fluorometers to better
estimate the oil concentration. Another challenge is the noisy
plume boundaries where the gradient information based
on fluorometer readings cannot be established accurately
enough. Consequently, the AUV could fail to generate a
reliable boundary tracking. Furthermore, the accuracy of
the boundary tracking specially with irregular gradients is
limited by the physical AUV dynamics and actuator con-
straints. Moreover, due to the medium density changes in a
plume area the behavior of the acoustic could be complicated.
This can introduce screening effects that severely impair
the acoustic system and the AUV may fail to estimate 𝑥, 𝑦
positions accurately. However, at this work we did not model
the medium density changes and its effect in acoustics. We
assumed that the acoustic channel behaves the same both in
andout of the plume.Webelieve it can be an interesting future
work.

5. Conclusion

In this work we have developed a multirate UKF algorithm
forAUV localization in aGPS-denied undersea environment.
Furthermore, an adaptive plume detection and tracking
system is developed. The proposed tracking algorithm uses
gradient information. The algorithms are implemented in
simulations and successful results are obtained.

The adaptive plume tracking system developed in this
work is not limited to tracking oil plumes and it can be
also used to track other types of plumes such as biological
and chemical. As a future work we expect extending the
proposed system to track 3D dynamic plumes and imple-
menting it in real time to investigate most of the issues
present in physical scenarios, which are not examined in
detail with the current simulation work. Moreover, extending
this system for multi-AUV navigation missions such as
implementing a cooperative AUV network for under-ice
oil plume detection and tracking would be an interesting
research study. This will decrease the overall time for feature
tracking and improve the usage and sharing of information,
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Figure 13: Plume boundary modeled using Fourier orders.

which lead to a better representation of the plume bound-
ary.
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