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A shadowing-analysis-based algorithm is modified to estimate significant wave height from shipborne X-band nautical radar
images. Shadowed areas are first extracted from the image through edge detection. Smith’s function fit is then applied to illumination
ratios to derive the root mean square (RMS) surface slope. From the RMS surface slope and the mean wave period, the significant
wave height is estimated. A data quality control process is implemented to exclude rain-contaminated and low-backscatter images.
A smoothing scheme is applied to the gray scale intensity histogram of edge pixels to improve the accuracy of the shadow threshold
determination. Rather than a single full shadow image, a time sequence of shadow image subareas surrounding the upwinddirection
is used to calculate the average RMS surface slope. It has been found that the wave height retrieved from the modified algorithm is
underestimated under rain and storm conditions and overestimated for cases with low wind speed.Themodifiedmethod produces
promising results by comparing radar-derived wave heights with buoy data, and the RMS difference is found be 0.59m.

1. Introduction

Marine radars can image both temporal and spatial variations
of the sea surface while buoys provide only temporal point
measurements. The radar signature of the sea surface, also
known as sea clutter, is undesirable and generally suppressed
in navigation purposes, but it is useful in monitoring the
sea state [1]. The clutter is, in general, generated by the
Bragg scattering of the near-grazing incidence radar signal
with short wind-induced sea surface ripples. Longer waves
become visible in radar images due to their modulations
of the short ripples, mainly via hydrodynamic modulation,
tilt modulation, and shadowing [2]. Thus, analysis of time
series of X-band nautical radar sea surface images allows the
estimation of directional wave spectra and integrated sea state
parameters [3–5]. Algorithms for such purposes have been
largely developed during the last several decades.

A widely accepted method of wave height estimation for
X-band radar is based on the signal-to-noise ratio (SNR)
derived from the image spectrum [5–7]. Another class of
algorithms is based on the statistics of radar sea surface
images. Through a constant threshold probability of illumi-
nation 𝑃0 based on the theory of geometric optics [8], a

model relating the significant wave height to the island-to-
trough ratio extracted from the image was established in [9].
In [10], an algorithm based on [9], but with a varying 𝑃0,
was proposed to enhance the wave height determination. In
[11, 12], wave height was derived by analyzing the texture of X-
band radar sea surface images. Other techniques, including
an iterative least square approach [13] and a wavelet-based
algorithm [14], have been similarly developed. In all cases,
the algorithmic outputs require calibration by additional
reference sensors such as wave buoys.

Recently, a shadowing-analysis-based wave height algo-
rithm has been proposed [15]. Assuming a geometric shad-
owing condition, shadowed areas are first extracted from the
image by edge detection. Then, using the calculated illumi-
nation ratios in local areas, the RMS surface slope is derived
by curve-fitting Smith’s function [16]. Finally, the significant
wave height is estimated from the RMS surface slope and the
average zero-crossingwave period.Unlike earlier approaches,
this algorithm does not require calibrations using additional
reference sensors. Therefore, it shows promise for improving
the ease of implementation and reducing operational cost.
Here, such amethod is modified and applied to data acquired
from a radar on a moving ship.
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This paper proceeds as follows. In Section 2, the
shadowing-analysis-based wave height algorithm is briefly
reviewed and the proposed modifications are described.
Section 3 contains experimental results obtained from
shipborne radar data using both the original and modified
algorithms, as well as the comparison with buoy data. Finally,
a conclusion and future directions for this work appear in
Section 4.

2. Method

2.1. The Shadowing-Analysis-Based Wave Algorithm. The
algorithm was introduced in detail in [15]. It contains the
following major steps.

2.1.1. Estimating Shadow Threshold. The edges in the image
that separate shadowed areas from illuminated areas are iden-
tified using an edge detection technique. Here, this involves
the convolution of a raw radar image 𝐼(𝑟, 𝜃) with a simple
pixel difference operator 𝐻

𝑖
(𝑟, 𝜃) for each of 𝑖 = 1, 2, . . . , 8

directions, and 𝑟 and 𝜃 are range and azimuth, respectively.
In [17], this convolution results in 𝑖 edge-detected images
(𝐼
𝐸𝑖
(𝑟, 𝜃)) given by

𝐼
𝐸𝑖 (𝑟, 𝜃) = 𝐼 (𝑟, 𝜃) ⊗𝐻

𝑖 (𝑟, 𝜃) . (1)
A thresholding process is then applied to the eight edge
images using a threshold value equal to the highest 𝑁-
percentile of the pixels. Edge image pixels whose intensity
levels are higher than the threshold are assigned the value
of 1, and the remaining pixels take the value of 0. The
process results in eight thresholded edge images 𝐼

𝑇𝑖
(𝑟, 𝜃).

Subsequently, an overall edge image 𝐼
𝐹
(𝑟, 𝜃) is obtained by

combining the eight thresholded edge images 𝐼
𝑇𝑖
(𝑟, 𝜃) and a

filtering process given by [15]

𝐼
𝑇 (𝑟, 𝜃) =

8
∑

𝑖=1
𝐼
𝑇𝑖 (𝑟, 𝜃) , (2)

𝐼
𝐹 (𝑟, 𝜃) =

{

{

{

1, 𝐼
𝑇 (𝑟, 𝜃) ∈ [1, 𝜏

𝐹
]

0, otherwise.
(3)

The filtering is implemented to remove the single pixel noise
that has edges in more than 𝜏

𝐹
directions.

Using the raw radar image pixels corresponding to the
pixels of intensity value of 1 in 𝐼

𝐹
(𝑟, 𝜃), a statistical distribution

𝐹
𝐻
(𝜂) of gray level values 𝜂 is created. From the distribution,

the gray level threshold 𝜏
𝑆
used to identify shadow can be

determined as [15]
𝜏
𝑆
= mode (𝐹

𝐻
(𝜂)) . (4)

2.1.2. Calculating Illumination Ratio. Using the shadow
threshold 𝜏

𝑆
determined in Section 2.1.1, the shadow image

can be derived. Pixels with the values less than 𝜏
𝑆
are regarded

as shadowed, and the remaining pixels are understood to be
illuminated. Next, the shadow image is divided into segments
along the range 𝑟 and the azimuth 𝜃, and the illumination
ratio 𝐿(𝛾) as a function of grazing angle 𝛾 for each segment is
calculated [15].

2.1.3. Estimating RMS Surface Slope. Having obtained the
illumination ratios for each azimuth direction, the RMS
surface slope 𝜎RMS of a random rough surface described
by a one-dimensional Gaussian surface height probability
density function (PDF) can be derived by curve-fitting
Smith’s function [16] for that direction. The curve fitting is
implemented by the Neilder-Mead simplex method in one
dimension [18]. After deriving 𝜎RMS for all azimuth angles,
an average RMS surface slope 𝜎𝐴RMS can be calculated.

2.1.4. Estimating Significant Wave Height. Finally, from the
average RMS surface slope 𝜎

𝐴

RMS and the average zero-
crossing wave period 𝑇

𝑚02, the significant wave height 𝐻𝑚0
can be determined as in [15] by

𝐻
𝑚0 =

𝜎
𝐴

RMS𝑔𝑇
2
𝑚02

√2𝜋
, (5)

where 𝑔 is the gravitational acceleration. 𝑇
𝑚02 can be derived

from the radar images themselves using existing wave algo-
rithms [1–5]. However, the average zero-crossingwave period
𝑇
𝑚02 measured by well-accepted buoy data instead of radar

was used here since the radar employed in this study did not
produce a good value for 𝑇

𝑚02.

2.2. Modification

2.2.1. Data Quality Control. Before processing the raw radar
data, low quality images, such as rain-contaminated or low-
backscatter cases, should be discarded. The data quality
control procedure described in [19] is employed here.

Rain leads to the change of the normalized radar cross
section (NRCS) and significantly affects wave height retrieval.
Due to the strong impact of rain on the number of zero-
intensity pixels in X-band nautical radar images, the zero-
pixel percentage (ZPP), which is defined as the ratio of the
number of zero-intensity pixels to the total number of pixels
in an image, is identified as a parameter for rain recognition
[20]. For the data used here, pixels with gray scale intensity
lower than 5 are regarded as zero-intensity pixels [19]. Images
with ZPP less than 10% are considered as rain-contaminated
and are not used for wave height retrieval.

Low-backscatter images that appear almost completely
black due to low wind speed or unknown system errors
contain little or no wave information. A parameter called
low-clutter direction percentage (LCDP), which is defined
as the ratio of the number of low-clutter directions to total
number of directions in an image, is used for identifying
low-backscatter images [19]. If the ZPP of a single azimuth
direction is higher than 40% (empirical and also varies with
systems), the direction is regarded as a low-clutter direction.
Then, the images with LCDP higher than 90% are excluded
from subsequent processing.

2.2.2. Edge Pixel Intensity Histogram Smoothing. In [15], the
shadow threshold is directly determined as the intensity value
corresponding to the highest occurrence of the intensity
histogram of edge pixels. This is viable if the distribution
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is smooth. However, the data used in this work has a
small gray scale depth (8-bit, i.e., 0–255) and a relatively
small number of pixels. The shadow threshold may not be
correctly determined by seeking the highest occurrence of
the histogram. In order to improve the accuracy of shadow
threshold determination, a smoothing process using a spline
function is applied to the edge pixel intensity histogram. The
smoothing spline function [21], 𝑠, minimizes

𝑝

𝑛

∑

𝜂𝑖=1
(𝐹
𝐻
(𝜂
𝑖
) − 𝑠 (

𝜂
𝑖

𝑛
))

2
+∫

1

0
(
𝑑
2
𝑠 (𝜏)

𝑑𝜏2
)

2

𝑑𝜏, (6)

where𝑝 is the smoothing parameter determining the tradeoff
between fidelity to the data and smoothness of the function.
When 𝑝 approaches 0, the function converges to a simple
linear least squares regression. When 𝑝 approaches infinity,
the function converges to the interpolating spline. Here, 𝑝 is
selected as 9 since the tendency can be maintained and the
outlier of the distribution can be removed with this choice.
This smoothing process is performed using the MATLAB
built-in curve-fitting function “fit”. It should be noted that
other smoothing methods (e.g., moving average, median
filtering) can remove outliers but may change the details of
the tendency of a distribution. Thus, an inaccurate mode of
the edge pixel intensity histogrammay be obtained, leading to
an inaccurate shadow threshold.However, the spline function
does not cause such a problem. The shadow threshold is
estimated from the smoothed intensity histogram.

2.2.3. Subareas Selection. In [15], all the azimuth directions
in the shadow image were used for the derivation of the
average RMS surface slope.However, the image portion in the
azimuths far from the upwind direction usually has low sea
clutter intensities and overestimated shadowed areas. Includ-
ing such a portion may result in wave height overestimation.
Here, for each shadow image, only a subarea selected from
the portion ±5∘ around the upwind direction is used for RMS
surface slope estimations since the clutter signal is stronger
in those directions and more robust results may be obtained.
The technique for determining the upwind direction is based
on a dual-curve-fitting algorithm found in [19]. Then, a RMS
surface slope is derived from the subarea for each image.
Moreover, an average RMS surface slope is calculated using a
time sequence of images instead of all the subareas in a single
image. Since the RMS surface slope is calculated from the
portion around the upwind direction in each single image,
the variation of RMS surface slope obtained from the upwind
direction is negligible between consecutive images. Thus, it
does not require two consecutive radar images to be perfectly
overlapped, and the ship motion will not affect the result
significantly. As with most existing works on the topic, a
typical value of 32 images is used here to obtain an average
RMS surface slope for wave height estimation.

3. Results

3.1. Data Overview. In order to test the modified method,
data provided by Defence Research and Development
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Figure 1: Ship’s course and track of buoys from 23:43 November
26 UTC to 12:06 November 29 UTC (2008), and every half a day
is marked by a black star.
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Figure 2: Time sequence of ship speed throughout the sea trial.

Canada (DRDC) is used. The data was collected from
23:43 November 26 to 12:06 November 29 (2008), in a sea
trial approximately 300 km south-southeast of Halifax, Nova
Scotia, Canada. Three free-floating Triaxys directional wave
buoys were deployed about 4 to 15 km apart to measure the
wave field. The distances between the ship and the buoys
were generally less than 10 km, but occasionally up to 15 km
throughout the trial.Thewater depth around the ship and the
buoys is about 200m. Figure 1 depicts the ship’s course and
the track of the three wave buoys. Figure 2 displays the time
sequence of ship speed throughout the sea trial.

The radar utilized in the sea trial was a standard HH-
polarized Decca marine radar which operated at 9.41 GHz
with a sampling frequency of 20MHz. The radar covered
360∘ in azimuth with a beam width of 2∘ and an antenna
rotation speed of 28 rpm. The antenna was installed at a
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Figure 3: B-scan raw radar image.
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Figure 4: Edge image. Edges are black.

height of 21.9m above the sea level, covering a range from
240m to 2160m with a range resolution of 7.5m. The radar
was connected to a Wave Monitoring System II (WaMoS
II) [22]. As indicated in Section 2.2.2, the system scaled and
stored the radar backscatter power in gray levels from 0 to
255 (8-bit unsigned integers), with 0 corresponding to lowest
radar return (black colour in the radar image) and 255 to the
maximum radar return (white colour in the radar image).

3.2. Experimental Results. One example of the B-scan (i.e.,
polar coordinate) raw radar image is shown in Figure 3.
The corresponding edge image obtained by edge detection
and filtering is depicted in Figure 4, in which edges are
shown in black. The threshold values used for the edge
detection and filtering in this study are 20% and 5 (𝜏

𝐹
in

(3)), respectively. The requirement of a higher threshold
for the edge detection than that (10%) in [15] in order
to produce robust results was likely due to the different
operational parameters including lower antenna height and
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Figure 5: Intensity distribution of edge pixels and all image pixels.
Smoothed histogram is indicated by solid line and shadow threshold
is illustrated by dash-dots.

lower range and azimuth resolutions used here. In [23], an
additional filtering process with a constant threshold was
introduced to remove those edges located too far away from
shadow in order to obtain the reasonable shadow threshold
from the edge pixel intensity histogram. However, from the
result in [23], it can be seen that filtering with a constant
threshold was not robust to variation in sea state. Here, the
smoothing process is used instead.The intensity distributions
of the edge pixels (red circles), along with the spline-fitted
curve (red line), and the entire set of image pixels (blue
points) for the image in Figure 3 are shown in Figure 5, in
which pixels with zero intensity level are excluded, and the
gray level shadow threshold is illustrated by the dash-dot.
Note that if no smoothing is used, the shadow threshold
will be determined by the outlier for the histogram curve,
corresponding to the level intensity of 63 rather than a correct
value (40 in Figure 5). It should also be noted that the shadow
threshold is estimated for each image. Thus, the ship motion
does not have a significant effect on the shadow threshold
estimation. After thresholding the raw image in Figure 3,
the corresponding shadow image is obtained and shown in
Figure 6. In that figure, shadowed areas are shown as black
and the subarea used for RMS surface slope calculation is
the portion between the dashes-dots. Figure 7 depicts the
illumination ratio as a function of grazing angle and the
corresponding Smith’s function fit for one single subarea
(the portion between the dashes-dots in Figure 6). The RMS
surface slope 𝜎RMS is estimated by the curve fitting. The
threshold that distinguishes the usable data and eliminated
data in Figure 7 is sought by gradually eliminating the
illumination ratio data used for the 𝜎RMS calculation from
the longest range towards the direction of decreasing ranges
(i.e., increasing grazing angles). This threshold is determined
as the range beyond which the corresponding illumination
ratio data is excluded from calculating 𝜎RMS and the 𝜎RMS
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Figure 6: Shadow image. Shadowed areas are black. Subarea is the
portion between the dash-dots.
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Figure 7: Illumination ratio as a function of grazing angle and curve
fitted Smith’s function for one single subarea.

obtained from the remaining data is the smallest [15]. This
is done because the radar backscatter from long ranges may
be weak simply due to the decay law for the electromagnetic
energy. This causes an overestimation of shadowed areas at
long ranges, leading to a corresponding overestimated 𝜎RMS
and wave height.

The original and modified shadowing-based algorithms
described above are both applied to the quality-controlled
Decca radar data, and the results are compared with the
reference data measured by the buoys. The comparison of
the time sequences of significant wave heights is displayed in
Figure 8. It should be noted that a storm appeared between
2:30 and 12:00 on November 28, and radar data was not
recorded for most of this period. Moreover, low quality
images were discarded by the data quality control process.
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Figure 8: Comparison of the time sequences of significant wave
heights derived by the original and the modified shadowing-based
algorithm and buoys.

It can be observed that the wave heights obtained using
the original algorithm are consistently overestimated. The
overestimation is mainly due to the overestimated shadow
threshold caused by the outliers in the intensity distribution
of the edge pixels (see Figure 5). However, the radar results
derived from themodified algorithm agreewell with the buoy
data for most of the period. Differences are observed over
some periods. The wave heights were underestimated from
4:20 to 6:30 on November 27 and overestimated from 2:00 to
2:30 on November 29. During these periods, light rain and
relatively low wind speed occurred. These conditions were
not detected by the data quality control process. Since rain
enhanced the image intensity, shadowed areas were reduced.
Thus, wave heights were underestimated. However, low wind
speed resulted in overestimation of shadowed areas and wave
heights. From 2:50 to 3:50 and from 11:20 to 11:50 on Novem-
ber 28, wave heights were high but also underestimated.
During this period, a strong swell signature was observed in
addition to the wind wave component. An example of the
wave frequency spectrum derived from buoy data during this
period is given in Figure 9, in which the dual-mode wave
field is clearly seen.The peak frequency in Figure 9 is 0.03Hz
which corresponds to a swell wave period of 33.3 s.Therefore,
wave height estimation for such a complex sea state needs
to be further analyzed. The corresponding scatter plots of
the retrieved significant wave heights using the original and
modified algorithms with the reference data are shown in
Figures 10(a) and 10(b), respectively. With the modification,
the correlation coefficient is increased from 0.81 to 0.91,
and the RMS difference is reduced significantly from 1.82m
to 0.59m. By excluding the data with buoy-recorded wave
heights larger than 8m, the correlation coefficients between
the buoy-recorded and radar-derived wave heights are 0.47
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Figure 9: Wave frequency spectrum containing wind wave and strong swell components.
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Figure 10: Scatter plots of significant wave heights comparing with reference data: (a) original algorithm; (b) modified algorithm.

and 0.68, respectively, for the original and modified algo-
rithms. The corresponding RMS differences are 1.79m and
0.50m, respectively.

4. Conclusions and Outlook

In this paper, a modified shadowing-analysis-based wave
height estimation method has been applied to X-band nau-
tical radar data. The modifications include (1) a data quality
control process to exclude rain cases and low-backscatter
images; (2) a scheme for smoothing the edge pixel intensity
histogram to determine shadow threshold; and (3) employing
of a time sequence of subareas around the upwind direction
to calculate the average RMS surface slope. By comparing
the radar-derived results and the buoy-measured data, it
has been found that the wave height retrieved from the
algorithm is underestimated under rain and storm conditions
and overestimated under low wind speed. Still, the proposed
method produces promising results, with a RMS difference of

0.59m and a correlation coefficient of 0.91. However, in order
to improve the robustness of this wave height algorithm, the
effects of rain, low wind speed, and storm conditions with
dual-mode wave fields need to be further analyzed. This will
bemore intensively investigated in the next phase of thework.
Moreover, the algorithm needs to be further validated using
radar data that can produce good estimation of average zero-
crossing wave periods to make it completely independent of
external sensors.
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