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Abstract

Thermal analysis of electronic devices is one of the most important steps for designing

of modern devices. Precise thermal analysis is essential for designing an effective ther-

mal management system of modern electronic devices such as batteries, LEDs, micro-

electronics, ICs, circuit boards, semiconductors and heat spreaders. For having a precise

thermal analysis, the temperature profile and thermal spreading resistance of the device

should be calculated by considering the geometry, property and boundary conditions. Ther-

mal spreading resistance occurs when heat enters through a portion of a surface and flows

by conduction. It is the primary source of thermal resistance when heat flows from a tiny

heat source to a thin and wide heat spreader. In this thesis, analytical models for modeling

the temperature behavior and thermal resistance in some common geometries of micro-

electronic devices such as heat channels and heat tubes are investigated. Different bound-

ary conditions for the system are considered. Along the source plane, a combination of

discretely specified heat flux, specified temperatures and adiabatic condition are studied.

Along the walls of the system, adiabatic or convective cooling boundary conditions are

assumed. Along the sink plane, convective cooling with constant or variable heat trans-

fer coefficient are considered. Also, the effect of orthotropic properties is discussed. This

thesis contains nine chapters. Chapter one is the introduction and shows the concepts of

thermal spreading resistance besides the originality and importance of the work. Chapter

two reviews the literatures on the thermal spreading resistance in the past fifty years with
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a focus on the recent advances. In chapters three and four, thermal resistance of a two-

dimensional flux channel with non-uniform convection coefficient in the heat sink plane is

studied. The non-uniform convection is modeled by using two functions than can simulate

a wide variety of different heat sink configurations. In chapter five, a non-symmetrical flux

channel with different heat transfer coefficient along the right and left edges and sink plane

is analytically modeled. Due to the edge cooling and non-symmetry, the eigenvalues of

the system are defined using the heat transfer coefficient on both edges and for satisfying

the orthogonality condition, a normalized function is calculated. In chapter six, thermal

behavior of two-dimensional rectangular flux channel with arbitrary boundary conditions

on the source plane is presented. The boundary condition along the source plane can be

a combination of the first kind boundary condition (Dirichlet or prescribed temperature)

and the second kind boundary condition (Neumann or prescribed heat flux). The proposed

solution can be used for modeling the flux channels with numerous different source plane

boundary conditions without any limitations in the number and position of heat sources. In

chapter seven, temperature profile of a circular flux tube with discretely specified boundary

conditions along the source plane is presented. Also, the effect of orthotropic properties are

discussed. In chapter 8, a three-dimensional rectangular flux channel with a non-uniform

heat convection along the heat sink plane is analytically modeled. In chapter nine, a sum-

mary of the achievements is presented and some systems are proposed for the future studies.

It is worth mentioning that all the models and case studies in the thesis are compared with

the Finite Element Method (FEM).
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Chapter 1

Introduction

1.1 Overview

Thermal management is a key factor that determines the capability, life, and safety of the

product. For designing an effective thermal management system, thermal characteristics of

the device such as spreading resistance should be considered, Fig. 1.1. Thermal spreading

resistance occurs when heat flows through different layers with different areas and even in

some cases is the main source of thermal resistance. Thermal spreading resistance should

be analyzed in different electronic industries such as batteries [1], micro processors [2],

LEDs [3-5], semiconductors like Gallium Nitride (GaN) devices [6], ICs [7], circuit boards

[8-10], and heat spreaders [11-13], Fig. 1.2.

1.1.1 Spreading Resistances

Spreading resistance is a type of thermal resistance which occurs in heat conduction through

different cross sections. Spreading resistance or constriction resistance have the same gen-

eral meaning and are often used interchangeably. However, the term of spreading resistance

is mostly used when heat flows from a narrower region to a wider region and constriction

1
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Figure 1.1: A schematic view of the relationship between thermal spreading resistance,
thermal analysis, and thermal management.

Thermal
spreading
resistance

Battery systems

LEDs

Micro electronic
packages

Semiconductors
(Gallium Nitride

GaN)

Heat spreaders

ICs and circuit
boards

Figure 1.2: A schematic view of different industries which are actively involved with ther-
mal analysis and spreading resistance.
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isotherms

Q

heat source

Flow lines

Heat sink

Figure 1.3: Arbitrary shape heat source on a half space.

resistance is used when heat flows from a wider region to a narrower one [14]. For steady

state problems, Laplace’s equation is used to obtain temperature distribution:

O2T = 0. (1.1)

In the following section, thermal spreading resistance for semi-infinite regions and finite

regions will be discussed.

1.1.1.1 Spreading Resistance in Semi-infinite Regions

In semi-infinite regions, heat enters through a finite region and spreads over the semi-infinite

region without any spatial boundaries, as shown in Fig. 1.3. For the case of steady state

heat transfer, Laplace’s equation should be satisfied, O2T = 0.

In these systems, spreading resistance is calculated using mean temperature over the heat

source area (Ts), temperature far from the heat source as a heat sink (Tz→∞), and total

heat flow rate (Q)[15, 16]. Therefore, the equation of thermal spreading resistance has the

following form [17]:
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heat source

Q

Figure 1.4: Arbitrary shape heat source on a flux tube or channel.

RT = Ts − Tz→∞
Q

= θ

Q
. (1.2)

For defining the mean heat source temperature, the following integration is used,

T s = 1
As

∫ ∫
As

T (x, y, 0)dAs. (1.3)

1.1.1.2 Spreading Resistance in Finite Regions

For finite regions, thermal spreading resistance depends on all boundary conditions of the

system. For example, if a circular heat source is mounted on top of a circular flux tube

with adiabatic edges, heat flux lines are bent and constrained because of adiabatic edges

and after some distance, become parallel to the axis of the flux tube. The temperature near

the heat source is multi-dimensional, while the temperature far from the source becomes

one dimensional [18]. This system is shown in Fig. 1.4. As shown, the heat flux lines are

orthogonal with isotherm lines. Temperature distribution can be obtained solving Laplace’s

equation and applying the boundary conditions.

For the case of flux tube or channel with adiabatic edges, the total thermal resistance is
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composed of the one dimensional thermal resistance and thermal spreading resistance.

RT = R1D +Rs. (1.4)

Also, one dimensional thermal resistance for multilayered devices can be obtained from the

following equation,

R1D =
N∑
i=1

ti
kiA

+ 1
hA

. (1.5)

The total thermal resistance for steady heat transfer can be calculated by mean source tem-

perature (T s), temperature far from the source (Tz→∞), and total heat transfer rate from the

source into the flux (Q),

Rtotal = T s − Tz→∞
Q

. (1.6)

The one dimensional thermal resistance is,

R1D = T z=0 − Tz→∞
Q

(1.7)

and the total thermal resistance is,

Rtotal = R1D +Rs. (1.8)

After some algebra, the spreading resistance equation that was proposed by Mikic and

Rohsenow [19] is defined as follows,

Rs = Rtotal −R1D = T s − Tz→∞
Q

− T z=0 − Tz→∞
Q

, (1.9)
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Rs = T s − T z=0

Q
. (1.10)

It is worth mentioning that the thermal spreading resistance will disappear when heat source

area is equal to the area of the channel or tube. However, for many devices which have

both types of thermal resistances, thermal spreading resistance can be the major part of

thermal resistance and should be considered as the main factor for designing the thermal

management system of the device [14].

Semi-conductor micro-electronic devices can be assumed as a finite region which is in

contact with heat sources and heat sinks. For finding the temperature distribution for this

finite region, Laplace’s equation should be satisfied by considering specified boundary con-

ditions. For isotropic systems, thermal conductivity is constant in all of directions and

Laplace’s equation has the following form:

O2T = 0. (1.11)

However, for orthotropic systems, thermal conductivity varies in different directions and

Laplace’s equation becomes,

O · (kOT ) = 0. (1.12)

1.1.2 Parameters Involved in Spreading Resistance Solution

Different parameters are involved in spreading resistance solutions. The most important

parameters are definition of characteristic length scale which is used for solving process,

shape effects of different systems, imposed boundary conditions, and the reference temper-

ature that is assumed for heat sources, Fig. 1.5.
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Spreading
Resistance

Reference
Temperature
(average,
centroid)
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Length Scale

Boundary
Condition for

Flux
Distribution

Figure 1.5: Some parameters that involved in spreading resistance solution.

1.1.2.1 Characteristic Length Scale

Defining the proper characteristic length scale is very important for considering thermal

spreading resistance in different devices with different geometries. As was shown in differ-

ent research [18, 20, 21, 22], the best characteristic length scale is the square root of heat

source area, ` =
√
A.

1.1.2.2 Shape Effects

The effects of shape and geometries of a system are negligible when the square root of

heat source area,
√
A, is used as the characteristic length scale. For example, spreading

resistance for different shape of heat sources including rectangular and elliptical sources

with similar areas, aspect ratios, and boundary conditions are approximately identical when

square root of source area is used as the characteristic length scale.

1.1.2.3 Boundary Condition of Flux Distribution

Different types of heat flux distributions can be applied to the systems as heat sources.

Therefore, considering different models for heat flux distributions and considering its effect
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on thermal spreading resistance is essential. However; in most of the systems with different

heat sources, the heat flux distribution for each individual source is not known. In these

cases, a constant heat flux can be assumed for the heat source without loss of accuracy.

Considering isoflux heat source instead of isothermal boundary conditions for circular and

elliptical sources cause a 8% greater thermal spreading resistance. This result is 4.1%

less for parabolic heat source condition. Also, for other geometries like regular polygonal

areas and semicircles, the spreading resistance has small difference for different heat source

boundaries. Therefore, it is noticeable that the isoflux boundary condition can be assumed

as the heat source boundary condition without causing any major error when the boundary

condition of the heat source is not precisely known [23].

1.1.2.4 Reference Temperature

As has been shown earlier, for calculating thermal spreading resistance, mean temperature

of the heat source should be used. Due to the different types of heat sources, an error

approximation is required for the case of using maximum source temperature as the mean

temperature. For instance, if the maximum source temperature is used for a circular source

on a half space, the spreading resistance is −21.4% less for the case of uniform heat flux.

Also, for the case of parabolic heat flux, thermal spreading resistance based on maximum

temperature is 17.9% greater than exact value.

1.1.3 Dimensionless Thermal Resistance

To compare thermal spreading resistance in different systems with different parameters and

boundary conditions, it is better to define dimensionless thermal spreading resistance. Di-

mensionless thermal spreading resistance can be defined as follows using thermal spreading

resistance (R), thermal conductivity (k), and characteristic length scale (`),
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●

o

■

o

I I

Figure 1.6: Dimensionless resistance versus dimensionless source area for different source
contours and flux tubes [24].

R∗ = Rk`. (1.13)

As mentioned before, the characteristic length scale is assumed as ` =
√
As.

Dimensionless spreading resistance is a weak function of shape of heat source and flux

tube, if the area ratio of source on flux tubes does not change [14, 20, 21, 22], Fig. 1.6.

1.2 Thermal Analysis

In this thesis, the thermal spreading resistance is studied in the flux tubes and channels

which are the basic geometries that are practically used in different industries. In this sec-

tion, some industrial applications of this problem is mentioned and the problem statement

is clarified.
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1.2.1 Industrial Applications

As discussed earlier, the thermal spreading resistance is a key factor for designing the ther-

mal management system of different applications such as batteries [1], micro processors

[2], LEDs [3-5], semiconductors like Gallium Nitride (GaN) devices [6], ICs [7], circuit

boards [8-10] and heat spreaders [11-13]. In the following, a schematic view of batteries,

LED and micro electronic devise are shown.

In the battery cooling industry, battery cells are heat sources which are in contact with

cooling plate which can be considered as a flux channel and the cooling plate contains

cooling channels which can be modeled as discrete heat sink lines, Fig. 1.7.

 ½Battery
 ½Cooling Ks 1/2 Cooling T(x,y,z)

h(x,y)

Source plane
q(x,y)

Battery Stack

Battery

Cooling

Battery

Cooling

Battery

Cooling Battery cell

Battery
cell

Battery
cell

Cooling plate and cooling channels

Figure 1.7: A schematic view of a battery stack which consist of several battery cells and
cooling channels.

Thermal management in the LEDs industry is crucial in the life time and lighting design,

Fig. 1.8. Therefore, the designer should have accurate information about the accurate

temperature over time in order to conclude the life time of the system [4].

Microelectronic industry which is one of the fastest growing industry [25] need a capa-

ble thermal management system to keep the micro-electronic device operating at optimum



11

Figure 1.8: Left) Sketch of Luxeon Rebel LEDs [5] Right) A sample of micro-electronic
device [25].

temperature. By using the novel micro-fabrication technologies, the size of microelectronic

devices are decreasing. However, because of high density of circuits in micro fabrication

and the resulting heat generation, thermal management and heat removal systems of these

devices should be more precise and reliable than previous models.

1.2.2 Problem Statement

Thermal spreading resistance occurs in semi-conductor devices which is in contact with

heat sources and heat sinks and varies by changing the geometry, boundary conditions,

properties and specifications of the device. In this thesis, a number of new applications of

thermal spreading resistance theory for flux channels and circular disks are addressed such

as the effect of variable heat transfer coefficient, convective cooling along the edges, and

different heat source types along the source plane. Both isotropic and orthotropic systems

are considered.

For finding the temperature profile, Laplace equation should be satisfied by considering
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the specified boundary conditions. Laplace equation have the following form for the or-

thotropic flux channel and tube:

kx
∂2θ

∂x2 + ky
∂2θ

∂y2 + kz
∂2θ

∂z2 = 0, 0 < z < t Flux channel, (1.14)

kr

(
∂2θ

∂r2 + 1
r

∂θ

∂r

)
+ kz

∂2θ

∂z2 = 0, 0 < z < t Flux tube.

In the case of isotropic system, thermal conductivity , k, is constant in different directions.

However, in the orthotropic problems, different thermal conductivity in different directions

should be considered. For this purpose, the method of stretched coordinates is used and the

orthotropic system is converted to the isotropic system with effective isotropic properties.

For solving the Laplace equation, the method of separation of variables is used and the con-

stants are specified by considering different boundary conditions. The boundary conditions

along the walls of the system specify the eigenvalues of the system. Due to the complexity

of the boundary conditions in the source and sink plane, the orthogonality property can-

not be used and the least squares techniques is applied. Different methods will be used

for simplification of the Least squares technique and a computational efficient method is

presented.

In the following, some of the specifications of the studied problems are shown:

• Different geometries

– Two-dimensional flux channel

– Three-dimensional flux channel

– Flux tube

• Boundary conditions in the source plane:
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– Different sources such as isothermal and isoflux

– Adiabatic surfaces outside of the heat source regions

– Single or multiple heat sources

– Concentric and eccentric heat sources

• Boundary conditions along the edges:

– Adiabatic surface

– Convective cooling

• Boundary conditions in the sink plane:

– Uniform heat transfer coefficient

– Variable heat transfer coefficient, h(x)

• Different Properties:

– Isotropic

– Orthotropic

1.3 Methodology

1.3.1 Separation of Variables

The method of separation of variables is widely used for solving the conduction heat trans-

fer problems. This method can be used for solving non-homogeneous problems. A system

is considered non-homogeneous if more than one boundary or initial condition is non-zero

and/or the governing differential equation contains constant or variable terms which are not

differentials. Non-homogeneous problems are characterized by either non-homogeneous
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boundary condition and/or non-homogeneous differential equations. Many problems with

non-homogeneous boundary conditions can be solved using the principle of superposition,

by alternately solving auxiliary homogeneous problems. For multi-dimensional steady-

state heat conduction problems with no source; if more than one boundary condition is non-

homogeneous, the problem can be split up to simpler problems with one non-homogeneous

boundary condition [26].

As the method of separation of variables is widely used through the thesis, an example of

solving procedure is presented in this section. If the problem characterized by the following

mathematical statement:

∂2T

∂x2 + ∂2T

∂y2 = 0, (1.15)

and the following boundary conditions:

x = −a T (−a, y) = Ts, (1.16)

x = +a T (+a, y) = Ts,

y = −b T (x,−b) = Ts,

y = +b T (x,+b) = To.

This problem is characterized by a homogenous problem and four non-homogenous bound-

ary conditions. In order to apply separation of variables, we most have at most one non-

homogenous boundary condition. Since the system is linear, we may systematically set

all but one boundary condition to zero and solve the system. The final solution is then a

superposition of four solutions. Alternatively, we may homogenize the system by defining
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a temperature excess:

θ(x, y) = T (x, y)− Ts, (1.17)

such that the following system results:

∂2θ

∂x2 + ∂2θ

∂y2 = 0, (1.18)

and the following boundary conditions:

x = −a θ(−a, y) = 0, (1.19)

x = +a θ(+a, y) = 0,

y = −b θ(x,−b) = 0,

y = +b θ(x,+b) = To − Ts = θo.

Further, for convenience we will redefine the placement of the co-ordinate axes, and take

advantage of symmetry by applying the following equivalent boundary conditions:

x = 0 ∂θ

∂x
= 0, (1.20)

x = a θ(a, y) = 0,

y = 0 θ(x, 0) = 0,

y = 2b θ(x, 2b) = To − Ts = θo.
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The benefits of these changes will be apparent later as we proceed through the solution. The

method of separation of variables may now be applied by assuming that a product solution

of the form:

θ(x, y) = X(x) ∗ Y (y). (1.21)

Substituting this solution into the governing differential equation yields the following ex-

pression after dividing by the assumed solution form:

∂2X
∂x2

X(x) = −
∂2Y
∂y2

Y (y) (1.22)

This relationship can only be satisfied if the left hand side and right hand side equal a

constant which may be equal to zero, a negative number or a positive number. In other

words:

∂2X
∂x2

X(x) = −
∂2Y
∂y2

Y (y) = 0,−λ2,+λ2 (1.23)

This yields the following three cases for solutions to the separated equations:

Case A - 0

∂2X

∂x2 = 0, X(x) = Ax+B, (1.24)

∂2Y

∂y2 = 0, Y (y) = Cy +D.

Case B - −λ2
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∂2X

∂x2 + λ2X(x) = 0, X(x) = A cos(λx) +B sin(λx), (1.25)

∂2Y

∂y2 − λ
2Y (y) = 0, Y (y) = C cosh(λy) +D sinh(λy).

Case C - +λ2

∂2X

∂x2 − λ
2X(x) = 0, X(x) = A cosh(λx) +B sinh(λx), (1.26)

∂2Y

∂y2 + λ2Y (y) = 0, Y (y) = C cos(λy) +D sin(λy).

Each of these solutions is admissible and a linear combination of each may be assumed.

However, it is easier to examine each separately and determined which solutions contribute

to the final solution.

Examination of the boundary conditions at x = 0 and x = a reveals that the Case (A)

and case (C) solutions for X(x) vanish since these conditions yield A = 0 and B = 0.

However, for case (B) we obtain the following:

∂X

∂x

∣∣∣∣∣
x=0

= −Aλ sin(λ.0) +Bλ cos(λ.0) = 0, (1.27)

or

B = 0, (1.28)

and
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X(a) = A cos(λa) = 0. (1.29)

Since A 6= 0, otherwise we would have no solution, we must choose,

λa = nπ

2 , n = 1, 3, 5, · · · , (1.30)

or,

λn = (2n− 1)π
2a , n = 1, 2, 3, · · · . (1.31)

Thus there are an infinite number of values of λ which satisfy the solution for X(x). In

applied mathematics, the system defined by,

∂2X

∂x2 + λ2X(x) = 0, (1.32)

and,

x = 0, ∂θ

∂x
= 0, (1.33)

x = a, θ(a, y) = 0,

is referred to as a boundary value problem or more appropriately as a Sturm-Liouville

problem. The solution to the problem up to this point may be written as,

θ(x, y) =
∞∑
n=1

[Cn cosh (λny) +Dn sinh (λny)] cos(λnx), (1.34)
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which is a superposition of all possible solutions. The remaining constants referred to as

Fourier coefficients may now be solved by applying the final boundary conditions along

y = 0 and y = 2b.

Application of the boundary condition along y = 0 yields,

Cn = 0. (1.35)

Thus the solution becomes:

θ(x, y) =
∞∑
n=1

Dn sinh (λny) cos(λnx), (1.36)

The final constant may now be evaluated from the following expression:

θo =
∞∑
n=1

Dn sinh (λn2b) cos(λnx). (1.37)

We will evaluate the constants by means of a Fourier expression, by multiplying each side

of the expression by the eigenfunction such that,

θo cos(λmx) =
∞∑
n=1

Dn sinh (λn2b) cos(λnx) cos(λmx), (1.38)

and integrating over the interval [0, a],

∫ a

0
θo cos(λmx)dx =

∞∑
n=1

∫ a

0
Dn sinh (λn2b) cos(λnx) cos(λmx)dx, (1.39)

The trigonometric functions of sine and cosine exhibit a property of orthogonality such that,
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∫ l

0
cos(λnx) cos(λmx)dx = 0, n 6= m, (1.40)∫ l

0
cos(λnx) cos(λmx)dx 6= 0, n = m.

Thus, using this property, we may write Eq. (1.39) in the following manner, since all terms

in the series vanish except for when n = m:

∫ a

0
θo cos(λnx)dx =

∫ a

0
Dn sinh (λn2b) cos2(λnx)dx. (1.41)

This may now be solved for the constant Dn to give:

Dn =
∫ a

0 θ0 cos(λnx)dx
sinh(λn2b)

∫ a
0 cos2(λnx)dx. (1.42)

Evaluation of the integrals yields the following expression:

Dn = 2θo sin(λna)
λna sinh(λn2b) . (1.43)

The final solution now becomes:

θ(x, y) =
∞∑
n=1

2θo sin(λna)
λna sinh(λn2b) sinh (λny) cos(λnx). (1.44)

The method of separation of variables is widely used through the thesis.

1.3.2 Least Squares

The method of least squares is an approximate analytic solution technique which is applied

to linear and non-linear problems. Accuracy of this method is usually determined by com-
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paring the method with known solutions to gauge the level of approximation, otherwise,

when solving problems which no known solutions exist, the only indicator is whether or

not there is convergence in successive approximations. The terminology applied in this

method is that the first approximation is the solution obtained using a trial function with

one undetermined coefficient, while the successive approximations using two or more un-

determined coefficients are denoted as the second, third approximations, and so on. Given a

differential equation which governs some quantity say φ, we denote the differential operator

as L(φ). We may define:

∫
v
wL(φ)dv = 0, (1.45)

where w is a weight function. If we approximate a solution for φ denoted as φ̃, where,

φ̃ =
N∑
i=1

aiφi(x1, x2, x3) = a1φ1 + a2φ2 + a3φ3 · · · . (1.46)

Assuming that φ̃ is chosen such that the end conditions are all satisfied, then we define the

residual:

R = L(φ̃). (1.47)

The residual will change as the coefficients of the trial solution are varied. Thus we strive

to minimize the residual R for N constraints. We have:

∫
v
wiL(φ̃)dv =

∫
v
wiRdv = 0, i = 1..N. (1.48)

In the least squares method we choose:

wi = ∂R

∂ai
, (1.49)
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such that,

∫
x

∂R

∂ai
Rdx = ∂

∂ai

∫
x
R2dx = 0. (1.50)

1.4 Organization of the Thesis

This thesis contains nine chapters including seven papers that are published, accepted, or

submitted to international journals and conferences. The first chapter is an introduction

about the thermal spreading resistance. The second chapter is a review paper that is submit-

ted to the Journal of Thermophysics and Heat Transfer. This chapter is a review of literature

about different spreading resistance problems in the past fifty years with a detailed discus-

sion about the recent advances in analytical modeling of these problems. Chapter three

is published in the Journal of Heat Transfer and chapter four is presented in the ASME

IMECE 2014 conference. In these chapters, the effect of variable conductance on the ther-

mal resistance of flux channels with different properties and configurations is discussed,

Fig. 1.9 and Fig. 1.10. Furthermore, different symmetrical and non-symmetrical systems

with different thicknesses and different heat sinks configurations are studied.

Figure 1.9: 3D view of symmetrical flux
channel with variable conductance.

c

t
d

Figure 1.10: 3D view of non-
symmetrical flux channel with variable
conductance.

Chapter five is submitted to the Journal of Advances in Applied Mathematics and Me-

chanics and discussed the thermal resistance of eccentric flux channels with different edge
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cooling boundary conditions along the edges. Due to the non-symmetry of the channel, the

eigenvalues of the system are more complex and the orthogonality property is not satisfied.

Therefore, a proper weight function is defined to satisfy the orthogonality property. Also,

the effect of directional orthotropic properties is discussed. Some case studies for different

orthotropic systems are modeled and the results are compared with numerical commercial

software, Fig. 1.11.

Figure 1.11: 2D flux channel with eccentric heat source and edge cooling.

Chapter six was presented in the ASME InterPACKICNMM 2015 conference. This chapter

is about the thermal behavior of flux channels with discretely specified boundary conditions

along the source plane. An analytical approach for modeling the temperature profile along

the system is discussed, Fig. 1.12. In the proposed model, the source plane boundary

condition can consist of a combination of first kind (Dirichlet or prescribe heat flux) and

the second kind (Neumann or prescribed heat flux). The time efficiency of the presented

analytical method versus numerical commercial software is shown.

Chapter seven is submitted to the ITHERM 2016 conference. In this chapter, the tempera-

ture profile in circular disks with different specified boundary conditions along the source

plane is modeled, Fig. 1.13. In the presented method, there is no limitation in the number

of heat sources. Also, the effect of prescribed temperature and heat fluxes are considered

simultaneously.

Chapter eight is submitted to the Journal of Thermophysics and Heat Transfer. In this

chapter, a three-dimensional flux channel with non-uniform heat conductance along the



(a) Discretely specified contact temperatures
along the source plane.

(b) Discretely specified temperature, heat
flux, and adiabatic conditions along the
source plane.

Figure 1.12: 2D symmetrical flux channel.

heat sink plane is modeled, Fig. 1.14. For modeling the system, the problem was divided

to three simpler problems and the superposition method is used.

Chapter nine is a summary of advantages of the presented models throughout the thesis.

Several suggestions to continue further investigations are presented in this chapter as well.
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Abstract

Thermal spreading resistance problems were studied by different researchers for fifty years.

Some reviews were written on different models of thermal spreading resistance problems

in 1986 [1], 2003 [2], and 2005 [3]. After 2005, some advanced analytical models were

presented for thermal spreading resistance in three dimensional compound flux channels

and compound cylindrical flux tubes. In this paper, the literature on thermal spreading

resistance in the past fifty years is chronologically presented and the past decade advances

are specifically described. The spreading resistance of compound rectangular flux channel

and circular flux tube with and without contact resistance are presented. The sink boundary

condition is assumed as isothermal and convective cooling with constant and variable heat

1Submitted to the Journal of Thermophysics and Heat Transfer
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transfer coefficient. Furthermore, the effects of discrete sinking, orthotropic property and

temperature dependent thermal conductivity are presented.

Keywords: Electronics Cooling, Heat Conduction, Thermal Resistance, Orthotropic Prop-

erty, Temperature Dependent Thermal Conductivity

2.1 Introduction

Thermal engineers are interested to obtain the thermal spreading resistance for modeling the

thermal behavior of electronic devices. The spreading resistance occurs when heat enters

the system through a small region and flows by conduction. Thermal spreading resistance

becomes the main source of the thermal resistance in the electronic devices with small

contact ratios of source to the cross-section of the system. For the analytical modeling,

the geometry of the system usually was simplified to the flux channel (rectangle) or flux

tube (cylinder). The electronic devices with multi-layers were modeled as compound flux

channels and flux tubes. Due to different boundary conditions and properties, different

approaches were used to model the systems. Different factors were involved in the thermal

spreading resistance problems including the modeling approach, geometry, property and

boundary conditions of the system. A schematic diagram that shows some of the important

factors for modeling the thermal spreading resistance problems is shown in Fig. 2.1.

Thermal spreading resistance problems have been considered since 1960 [4]. Different

analytical models [4-6], numerical models [7-10] and experimental studies [11, 12] were

proposed on thermal spreading resistance problems. Different configurations of the system

such as systems with single layer [6, 13] and compound systems [10, 14, 15, 16], axisym-

metric systems [17-19] and non-axisymmetric systems [6, 16, 20, 21, 22] were investigated.

The compound systems were assumed with perfect contact [14] and interfacial contact re-

sistance [16]. The main studied geometries were rectangular flux channels [20] and cylin-
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Figure 2.1: Important factors for modeling the thermal spreading resistance problems.

drical flux tubes [23]. Further, the systems with isotropic properties [6, 7, 13, 20, 24, 25]

and orthotropic properties [16, 26, 27] were studied. The temperature dependent thermal

conductivity was also considered [10, 28, 29, 30, 31]. Different source boundary conditions

were studied including systems with one heat source [6, 20, 32, 33, 34] and multiple heat

sources [16, 21]. The concentric heat source [35] and eccentric heat source [6, 9, 16, 20]

were discussed by different researchers. The boundary conditions along the walls were

considered as adiabatic [14] or convective cooling [6, 13]. The sink boundary condition

was assumed as isothermal sink [4, 36] or convective cooling [16, 32, 37, 38, 39]. The

heat transfer coefficient along the sink plane was assumed constant in most of the litera-

ture [13, 16, 20, 34]. Recently, a flux channel with variable heat transfer coefficient along

the sink plane was studied [6]. In the following, some of the research studies on thermal

spreading/constriction resistance chronologically ordered and briefly described.
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2.1.1 Thermal Spreading Resistance Research Before 1980

Kennedy [4] started the research on thermal spreading resistance problems in semiconduc-

tor devices in 1960. He obtained an analytical solution for a finite cylinder with uniform-

axisymmetric heat source and isothermal sink. Mikic [40] considered thermal contact re-

sistance in semi-infinite regions. Mikic and Rohsenow [5] investigated thermal constriction

resistance of symmetric, coaxial cylindrical contacts and obtained an infinite series ex-

pression to model the isothermal contact for the boundary condition over the contact area.

Cooper et al. [41] presented the thermal contact resistance and introduced the thermal

constriction parameter based on the isothermal contacts spots. Yovanovich [42] obtained

a theoretical model for the overall contact resistance of a smooth sphere in contact with

a rough flat in the vacuum by using linear superposition of micro and macro constriction

resistances. He also proposed a correlation for the minimum thermal resistance of soldered

joints [43].

After 1970, many research studies were done on analytical modeling of transient and steady

spreading/constriction resistance in isotropic semi-infinite regions, flux channels and flux

tubes [3, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53].

Yovanovich et al. [54] considered the thermal constriction resistance between contacting

paraboloids and developed a general expression for thermal constriction resistance of cir-

cular contact flux on right circular cylinders [51] and on a half-space [55]. Then single

arbitrary shape with constant flux on insulated half-spaces [46], annular contacts on circu-

lar flux tubes [50], and constriction resistance due to a circular annular contact [55] were

investigated.

Schneider et al. [49, 52] considered transient thermal behavior of a thin circular disk on

a half-space and transient behavior for two semi-infinite bodies in contact through a small

circular contact area. Burde et al. [56] theoretically obtained a model of steady thermal

constriction resistance between smooth spheres and rough flats in contact. Ellison [11]



33

used theoretical and empirical methods for obtaining thermal characteristics of a forced-

convection cooled ceramic package with an extruded aluminum heat sink.

Yovanovich et al. [53] examined steady state thermal constriction resistance of doubly-

connected, planar, contact areas with constant heat flux bounded by coaxial circles, squares

and equilateral triangles. They presented a general solution for the thermal constriction

resistance of a compound disk due to a heat flux over a circular portion of the upper surface

[15].

2.1.2 Thermal Spreading Resistance Research 1980-1990

In this decade, different aspects of thermal spreading resistance problems were investigated.

Transient spreading resistance problems [57, 58] and steady and transient constriction were

considered [17]. Some analytical and numerical methods were proposed for the thermal

resistance of arbitrary contacts on half-spaces [7, 37, 38, 59, 60, 61, 62]. Further, spreading

resistance problems were considered for flux tubes and channels [1, 3, 8, 35, 60, 61, 62, 63,

64]. Finally, thermal constriction affected by surface layers [12] and the effect of contact

boundary condition on thermal constriction resistance for circular contacts [65] were inves-

tigated. The main concepts of some of them are mentioned in the following paragraphs.

Yovanovich et al. [59] developed an analytical-numerical solution for the constriction re-

sistance of arbitrary single or multiple areas subjected to uniform or distributed heat flux.

Also, the thermal constriction resistance of an ellipsoidal contact model [64] and transient

heat conduction from an arbitrary uniform heat source into a semi-infinite solid [57] were

studied. Moreover, a transient constriction resistance for isoflux heat source on semi-infinite

flux channels was considered [58].

Martin et al. [7] numerically obtained the spreading resistance of arbitrary shaped planar

contacts on isotropic half-spaces. Further, Rozon et al. [8] numerically investigated the

geometry effect between material interfaces. Negus and Yovanovich [35, 60] presented an
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analytical-numerical method for spreading resistance in concentric circular flux tube with

uniform contact flux and calculated the thermal constriction resistance for circular flux tube

with an isothermal contact. Furthermore, Negus et al. [61, 65] considered the problem of

thermal constriction resistance for anisotropic rough surfaces and developed the thermal

constriction resistance of a circular isoflux and isothermal heat source on a half-space.

Dryden et al. [17] analyzed the effect of coating on steady-state and transient thermal

spreading resistance for an arbitrary axisymmetric contact spot flux on half-spaces. Saabas

and Yovanovich [62] proposed an analytical-numerical solution for the thermal spreading

resistance of circular micro-contacts distributed over elliptical contours on circular flux

tubes and half-spaces.

Yovanovich [1] reviewed thermal contact, gap and joint conductance for point and line con-

tacts and conforming rough surfaces. Lemczyk and Yovanovich [37] conducted a research

on thermal constriction resistance for circular heat source on a half-space and its variation

with variable Biot number. Also, they modeled the same problem for more general layered

problems [38]. Fisher and Yovanovich [12] analytically and experimentally investigated

the thermal constriction of a sphere in elastic contact with a flat surface coated with a layer.

Negus et al. [63] used the square root of heat source area to non-dimensionalize thermal

constriction resistance of three different configurations on insulated semi-infinite cylinders

and observed similar results for all configurations at any given relative contact size.

2.1.3 Thermal Spreading Resistance Research 1990-2000

In this time period, many analytical and numerical research studies were published about

different thermal spreading resistance problems. Industrial applications of thermal spread-

ing resistance problems were studied by Muzychka et al. [66, 67], Yovanovich et al.

[36, 39], and Mantelli and Yovanovich [68]. Further, thermal spreading resistance in the

compound systems were considered by Yovanovich et al. [36, 39, 69, 70] and Muzychka et
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al. [66, 67].

Lee et al. [71] developed an analytical model for the thermal resistance of bolted joints.

Mantelli and Yovanovich [68] considered the same problem for satellite application. Lee

et al. [32] and Song et al. [72] developed an analytical solution for constriction/spread-

ing resistance for electronic components with different types of heat sinks. Das and Sadhal

[73] modeled the thermal constriction resistance between two solids for random distribution

of contacts by using a square region contains randomly placed contacts. Lam and Fisher

[26] presented a solution for the thermal resistance of rectangular orthotropic heat spread-

ers. They demonstrated the result for several values of the vertical-to-horizontal thermal

conductivity ratio, the Biot number, and the full range of the nondimensional width of the

applied heat flux.

Ellison [33, 74, 75] analytically considered the thermal behavior of printed circuit boards

and microelectronic packages like a rectangular, multi-layer structure with discrete heat

sources. Muzychka et al. [66, 67] presented a solution for the thermal constriction re-

sistance of an isoflux or isothermal planar heat source in contact with multilayered semi-

infinite flux tube with application in conductive coating.

Yovanovich and Teertstra [76] presented a numerical solution for thermal constriction re-

sistance of isothermal circular disks. Yovanovich [77] obtained the constriction resistance

of planar isoflux heat sources within semi-infinite conductors. He considered the transient

spreading resistance of arbitrary isoflux contact areas such as regular polygons and the hy-

perellipse [78]. Furthermore, Yovanovich et al. [36, 39] reviewed the previously published

analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks

which were relevant to diamond spreader on copper heat sink. Finally, a general expression

for the spreading resistance of isoflux rectangles and strips on the surface of a finite com-

pound rectangular flux channel with convective or conductive heat sinks were presented

[69, 70].
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2.1.4 Thermal Spreading Resistance Research After 2000

After 2000, different aspects of thermal spreading resistance were analytically and numer-

ically investigated. Some of these aspects are as follows: different types of flux tubes

[22, 27, 79, 80, 84], channels [20, 22, 27, 79, 80], annular sectors [34], and half space

[81, 82, 83, 84, 85]; isotropic materials [14, 20, 79], anisotropic materials [86], orthotropic

materials [14, 27, 79, 87], and materials with temperature dependent conductivities [84];

single and multiple heat sources [21]; concentric and eccentric heat sources [9, 20, 22, 27];

isoflux [20, 34, 83], isothermal [81, 85], inverse parabolic [34], and parabolic [34] heat flux

distribution; centroidal and mean temperature of each heat source [14]; elliptic or hyperel-

lipse [81, 82, 83, 85], strip and circular [22], rectangular [22, 82], and equilateral triangular

heat sources [9]; side and end cooling [18], edge cooling [27, 80] and convection in the

source plane [14]; single and multilayer systems [14, 19, 20, 27, 34, 87, 88].

Numerical studies on the thermal spreading resistance were done by Ying and Toh [86],

Wang and Yan [9] and Rahmani and Shokouhmand [84]. Ying and Toh [86] studied the

thermal spreading resistance for the materials with anisotropic properties. Wang and Yan

[9] numerically studied the eccentric circular, square and equilateral triangular heat sources

on circular heat flux tubes and investigated the influence of eccentricities, shapes and fractal

boundary of the heat source on the thermal spreading resistance. Rahmani and Shokouh-

mand [84] numerically investigated the thermal spreading resistance of isotropic half-space

and heat flux tube which have temperature-dependent conductivity.

Ellison [25] examined the thermal spreading resistance for a rectangular source centered

on a rectangular plate. Vermeersch and Mey [89] studied the thermal spreading resistance

of a rectangular flux channel as a function of the convective heat transfer coefficient at the

bottom of the flux channel. Sadeghi et al. [81, 85] obtained a general model based on an

elliptical source on a half-space which can be used for calculating the spreading resistance

for different geometries for isoflux and isothermal conditions.
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Thermal spreading resistance for different industrial applications were considered [19, 22,

86, 21, 24]. Ying and Toh [86] analytically and numerically studied the thermal spreading

resistance for electronic packaging with anisotropic properties. Kim et al. [21] established

a correlation to predict spreading resistance of multi-electronic components with multiple

heat sources. Karmalkar et al. [22] proposed curve-fit models for quick estimation of the

thermal spreading resistance for some geometry applicable for designing of ICs. Culham et

al. [88, 90] considered the role of the thermal spreading resistance and material properties

for designing of plate fin heat sinks and multilayer printed circuit boards. Lasance [91, 92]

studied different approaches for obtaining the spreading resistance in LEDs. Dong et al.

[24] analyzed the influence of the thermal spreading resistance in high power LED package.

Guan et al. [19] proposed an approximate model to solve the spreading resistance in a

pyramidal structure for multilayer substrates which has application in power electronics.

Muzychka et al. [14, 16, 20, 23, 27, 34, 79, 80, 82, 87] solved the thermal spreading resis-

tance problems for different systems with different geometries, boundaries and properties.

They analyzed the circular and rectangular systems with isotropic and orthotropic prop-

erties and concentric and eccentric arbitrary heat sources [13, 18, 20, 79, 80, 87]. They

obtained a general solution for the thermal spreading resistance in a compound annular

sector for uniform, parabolic, and inverse parabolic heat flux distribution [34]. Also, they

reviewed the thermal spreading resistance in compound and orthotropic systems and pro-

posed simple transformations for orthotropic and isotropic systems [87]. They considered

the solution of stationary and moving rectangular and elliptic heat sources on a half space

and showed if the square root of the heat source area is used to non-dimensionalize the

thermal spreading resistance, it is a weak function of shape for stationary and moving heat

sources [82]. Further, they obtained thermal spreading resistance of circular flux tubes and

rectangular flux channels for isotropic and compound system and modeled the rectangular

flux channel by the circular flux tube’s solution with using the suitable geometric equiva-



38

lence [13, 79]. They considered the effect of edge cooling on the thermal spreading resis-

tance in circular flux tubes and rectangular flux channels [80]. They proposed a solution for

the thermal spreading resistance of eccentric isoflux rectangular heat sources on finite rect-

angular compound flux channels [20]. They presented the solution of the thermal spreading

resistance for flux tubes and channels by considering compound and orthotropic systems.

They also considered the system with or without edge cooling and considered the effects

of eccentric heat sources and different heat flux distributions [27]. Furthermore, Muzychka

[14] presented an influence coefficient method for calculating the mean and centroidal tem-

perature of discrete heat sources on a finite convectively cooled substrate by considering

isotropic, orthotropic, and compound systems. Also, the convection in the source plane

which causes heat dissipation through the source plane was considered. Recently, Muzy-

chka et al. [16, 23] modeled the thermal spreading resistance in compound orthotropic

systems with interfacial resistance.

Yovanovich [18] presented a solution for the thermal spreading resistance of a circular

source on a finite circular cylinder with uniform side and end cooling. The thermal spread-

ing resistance models were summarized in a heat transfer handbook by Yovanovich and

Marrota [2]. Furthermore, Yovanovich wrote a review paper about his forty years of re-

search in contact, gap and joint resistance [3].

Gholami and Bahrami [93] studied the thermal spreading resistance in a rectangular slab

with different thermal conductivity in different directions, kx 6= ky 6= kz, and discretely

specified inward and outward heat flux along the source and sink plane, respectively. Re-

cently, Razavi et al. [6] studied the effect of variable heat transfer coefficient along the sink

plane to consider the effect of variable heat sinking in electronic devices.
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2.2 Problem Statement

For analytical modeling of the electronic devices, the geometry of the system is usually

simplified as the rectangular flux channel or circular flux tube. Due to the existence of dif-

ferent layers in the electronic devices, the simplified geometries are assumed as compound

flux channel or compound flux tube. The material of each layer can be orthotropic with

different in-plane and through-plane thermal conductivities. Further, a contact thermal re-

sistance may exist between different layers. The geometries of the discussed systems are

shown in Figs. 2.2- 2.3.

Figure 2.2: Compound flux tube with in-
terfacial contact resistance, hc, and or-
thotropic properties.

Figure 2.3: Compound flux channel with
interfacial contact resistance, hc, and or-
thotropic properties.

The interfacial contact resistance is presented in the form of a contact conductance, hc,

that also may represents as equivalent resistance by considering the nominal thickness of

contact region and its thermal conductivity,

Rt = ti
kiAb

= 1
hcAb

⇒ hc = ki
ti
. (2.1)

The coordinate system for both geometries is localized and each layer has dependent coor-

dinate system to model different thermal conductivity in plane and through plane of each

layers. The governing equation of both systems is Laplace’s equation. The variable θ is de-
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fined as the temperature excess relative to the film temperature in the sink plane, θ = T−Tf .

The Laplace equation based on the Cartesian coordinate system for the rectangular flux

channel is,

k1,xy

(
∂2θ1

∂x2 + ∂2θ1

∂y2

)
+ k1,z

∂2θ1

∂z2 = 0, 0 < z < t1, (2.2)

k2,xy

(
∂2θ2

∂x2 + ∂2θ2

∂y2

)
+ k2,z

∂2θ2

∂z2 = 0, 0 < z < t2.

The Laplace’s equation for the circular flux tubes using the cylindrical coordinate system

is,

k1,r

(
∂2θ1

∂r2 + 1
r

∂θ1

∂r

)
+ k1,z

∂2θ1

∂z2 = 0, 0 < z < t1, (2.3)

k2,r

(
∂2θ2

∂r2 + 1
r

∂θ2

∂r

)
+ k2,z

∂2θ2

∂z2 = 0, 0 < z < t2,

where k1,xy, k2,xy, k1,r, k2,r are in plane thermal conductivities and k1,z, k2,z are through

plane thermal conductivities.

Regarding the boundary conditions of the system along the source plane, a constant heat

flux, q, exists over the source region and an adiabatic condition specified out of the source

region,

−k1,z
∂θ1

∂z

∣∣∣∣∣
z=0

= q, Over source region, (2.4)

−k1,z
∂θ1

∂z

∣∣∣∣∣
z=0

= 0, Outside source region.

Along the interfacial contact region of the flux channel and the flux tube, the condition
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represents the equality of flux exists,

k1,z
∂θ1

∂z

∣∣∣∣∣
z=t1

= k2,z
∂θ2

∂z

∣∣∣∣∣
z=0

. (2.5)

Further, a condition for the temperature drop due to the thermal contact resistance is defined

as follows,

−k1,z
∂θ1

∂z

∣∣∣∣∣
z=t1

= hc[θ1(x, y, t1)− θ2(x, y, 0)], Flux channel, (2.6)

−k1,z
∂θ1

∂z

∣∣∣∣∣
z=t1

= hc[θ1(r, t1)− θ2(r, 0)], Flux tube. (2.7)

The boundary conditions along the sink planes of the flux channel and the flux tube are,

− k2,z
∂θ2

∂z

∣∣∣∣∣
z=t2

= hsθ2(x, y, t2), Flux channel, (2.8)

− k2,z
∂θ2

∂z

∣∣∣∣∣
z=t2

= hsθ2(r, t2), Flux tube. (2.9)

The adiabatic boundary conditions exist along the edges of the system. For the rectangular

flux channel,

∂θi
∂x

∣∣∣∣∣
x=0,c

= 0, i = 1, 2; (2.10)

∂θi
∂y

∣∣∣∣∣
y=0,d

= 0, i = 1, 2. (2.11)

and for the flux tube,
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∂θi
∂r

∣∣∣∣∣
r=0

= 0, i = 1, 2; (2.12)

∂θi
∂r

∣∣∣∣∣
r=b

= 0, i = 1, 2. (2.13)

2.2.1 Transformation of Orthotropic System to Isotropic System

To facilitate the solution, the orthotropic system is transformed to the isotropic system

using the method of stretched coordinates [16, 27]. The effective isotropic properties for

each layer of the flux channel is obtained by defining the following variables for each layer,

ζ = z√
k1,z

k1,xy

, Top layer of the flux channel, (2.14)

ς = z√
k2,z

k2,xy

, Bottom layer of the flux channel. (2.15)

and for the flux tube,

ζ = z√
k1,z

k1,r

, Top layer of the flux tube, (2.16)

ς = z√
k2,z

k2,r

, Bottom layer of the flux tube. (2.17)

Using the variables ζ and ς , the effective isotropic layer properties for the flux channel are

defined as,



43

k1 =
√
k1,xyk1,z, t1 = t1√

k1,z

k1,xy

, Top layer of the flux channel, (2.18)

k2 =
√
k2,xyk2,z, t2 = t2√

k2,z

k2,xy

, Bottom layer of the flux channel,

and for the flux tube,

k1 =
√
k1,rk1,z, t1 = t1√

k1,z

k1,r

, Top layer of the flux tube, (2.19)

k2 =
√
k2,rk2,z, t2 = t2√

k2,z

k2,r

, Bottom layer of the flux tube.

By using the definition of k1 and k2, the orthotropic Laplace’s equations are transformed to

the isotropic form. The transformed Laplace’s equations for the flux channel are,

∂2θ1

∂x2 + ∂2θ1

∂y2 + ∂2θ1

∂ζ2 = 0, 0 < ζ < t1, (2.20)

∂2θ2

∂x2 + ∂2θ2

∂y2 + ∂2θ2

∂ς2 = 0, 0 < ς < t2,

and for the flux tube,

(
∂2θ1

∂r2 + 1
r

∂θ1

∂r

)
+ ∂2θ1

∂ζ2 = 0, 0 < ζ < t1, (2.21)(
∂2θ2

∂r2 + 1
r

∂θ2

∂r

)
+ ∂2θ2

∂ς2 = 0, 0 < ς < t2.
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The boundary conditions should also be transformed. Along the source plane,

−k1
∂θ1

∂ζ

∣∣∣∣∣
ζ=0

= q, Over source region, (2.22)

−k1
∂θ1

∂ζ

∣∣∣∣∣
ζ=0

= 0, Outside source region.

Along the contact plane,

k1
∂θ1

∂ζ

∣∣∣∣∣
ζ=t1

= k2
∂θ2

∂ς

∣∣∣∣∣
ς=0

, Condition of equality of flux,

(2.23)

−k1
∂θ1

∂ζ

∣∣∣∣∣
ζ=t1

= hc[θ1(x, y, t1)− θ2(x, y, 0)], Temperature drop for flux channel,

−k1
∂θ1

∂ζ

∣∣∣∣∣
ζ=t1

= hc[θ1(r, t1)− θ2(r, 0)], Temperature drop for flux tube,

and along the sink plane,

− k2
∂θ2

∂ς

∣∣∣∣∣
ς=t2

= hsθ2(x, y, t2), Flux channel, (2.24)

− k2
∂θ2

∂ς

∣∣∣∣∣
ς=t2

= hsθ2(r, t2), Flux tube.

The other boundary conditions remain unchanged, Eqs. (2.10- 2.13).

2.2.2 Solution of the Flux Tube

In this section, the general solution of isotropic flux tube is briefly described. The solution

is extended to the compound system later. The Laplace’s equation for the isotropic flux
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tube is,

∂2θ

∂r2 + 1
r

∂θ

∂r
+ ∂2θ

∂z2 = 0. (2.25)

The general form of the solution using the method of separation of variables is,

θ(r, z) = A0 +B0z + [A1J0(λr) +B1Y0(λr)][A2 cosh(λz) +B2 sinh(λz)]. (2.26)

The first two terms represent uniform heat flow. To consider the spreading resistance portion

of the solution, first two terms are discarded. The thermal resistance based on uniform heat

flow can be added to the thermal spreading resistance to obtain the total thermal resistance,

Rt = R1D + Rs. Applying the center line condition of the flux tube, Eq. (2.12), results in

B1 = 0. The eigenvalues of the system are obtained using Eq. (2.13),

d

dr
(J0(λr))

∣∣∣∣∣
r=b

= −λJ1(λr)
∣∣∣∣∣
r=b

= J1(λb) = 0, (2.27)

and the eigenvalues are,

δn = λnb = 3.8317, 7.0156, 10.1735.13.2327, · · · . (2.28)

To obtain more eigenvalues, the constant π can be added to the previous eigenvalue, δi −

δi−1 = π. The general solution at this point is,

θ(r, z) =
∞∑
n=1

J0(λnr)
(
An cosh (λnz) +Bn sinh (λnz)

)
. (2.29)

Using the boundary condition at z = t relates the unknown coefficients An and Bn by
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spreading function, φ,

Bn = −An

λn tanh(λnt1) + hs

k1

λn + hs

k1
tanh(λnt1)

 = −Anφ. (2.30)

The solution becomes,

θ(r, z) =
∞∑
n=1

AnJ0(λnr)
(

cosh (λz)− φ sinh (λnz)
)
. (2.31)

The final boundary condition is along the source plane. Applying this boundary condition

and using the orthogonality property results,

An =
q
k1

∫ a
0 J0(λnr)rdr

λnφ
∫ b

0 J
2
0 (λnr)rdr

= 2qa
φk1

J1(δn ab )
δ2
nJ

2
0 (δn) (2.32)

Substituting the An in the solution gives the final solution,

θ(r, z) =
∞∑
n=1

(
2qa
φk1

J1(δn ab )
δ2
nJ

2
0 (δn)

)
J0

(
δn
r

b

)(
cosh

(
δn
z

b

)
− φn sinh

(
δn
z

b

))
. (2.33)

The temperature distribution along the source plane, z = 0, is,

θ(r, 0) =
∞∑
n=1

(
2qa
φk1

J1(δn ab )
δ2
nJ

2
0 (δn)

)
J0

(
δn
r

b

)
. (2.34)

The mean temperature in the source region is,

θs = 1
πa2

∫ a

0
θ(r, 0)2πrdr = 4qb

k1

∞∑
n=1

J2
1 (δn ab )

φδ3
nJ

2
0 (δn) . (2.35)

The thermal spreading resistance is defined as [5],

Rs = θs − θcp
Q

= 4b
k1πa2

∞∑
n=1

J2
1 (δn ab )

φδ3
nJ

2
0 (δn) , (2.36)
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and the total thermal resistance is,

Rt = R1D +Rs = t1
k1πb2 + 1

hsπb2 + 4b
k1πa2

∞∑
n=1

J2
1 (δn ab )

φδ3
nJ

2
0 (δn) . (2.37)

To extend the solution to the case of compound system with interfacial resistance, the only

required change is defining an appropriate spreading function, φ.

2.2.3 Rectangular Flux Channel with Eccentric Heat Source

The general form of the solution for the isotropic rectangular flux channel may be obtained

using the method of separation of variables. The general procedure is similar to the ap-

proach that is discussed in the previous section. The eigenvalues of the system, λm, δn and

βmn, are defined as,

λm = mπ

a
, δn = nπ

b
, βmn =

√
λ2
m + δ2

n. (2.38)

The general form of the solution is,

θ(x, y, z) = A0 +B0z (2.39)

+
∞∑
m=1

cos(λmx)[A1 cosh(λmz) +B1 sinh(λmz)]

+
∞∑
n=1

cos(δny)[A2 cosh(δnz) +B2 sinh(δnz)]

+
∞∑
m=1

∞∑
n=1

cos(λmx) cos(δny)[A3 cosh(βmnz) +B3 sinh(βmnz)]

where A0 + B0z represents the uniform flow solution and three spreading resistance solu-

tions in the form of Fourier series expansions [20]. By using the boundary condition along

the sink plane, the Fourier coefficients relate to each other by the spreading function, φ, as
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follows,

Bi = −φ(γn)Ai, i = 1, 2, 3. (2.40)

The spreading function, φ, for the convective cooling boundary condition along the sink

plane is,

φ(γn) =
γn tanh(γnt1) + hs

k1

γn + hs

k1
tanh(γnt1)

, (2.41)

where γn is replaced by λm, δn and βmn. The spreading function for the ideal heat sink,

hs →∞, that represents the constant sink temperature is,

φ(γn) = coth(γnt1). (2.42)

The final coefficients are obtained by using the boundary conditions along the source plane.

Applying the boundary conditions at z = 0 and using the orthogonality property result,

Am = Q

bck1λmφ(λm)

∫Xc+ c
2

Xc− c
2

cos(λmx)dx∫ a
0 cos2(λmx)dx =

2Q
[
sin

(
(2Xc+c)

2 λm
)
− sin

(
(2Xc−c)

2 λm
)]

abck1λ2
mφ(λm) ,

(2.43)

An = Q

adk1δnφ(δn)

∫ Yc+ d
2

Yc− d
2

cos(δny)dy∫ b
0 cos2(δny)dy

=
2Q

[
sin

(
(2Yc+d)

2 δn
)
− sin

(
(2Yc−d)

2 δn
)]

abdk1δ2
nφ(δn) , (2.44)

Amn = Q

cdk1βmnφ(βmn)

∫ Yc+ d
2

Yc− d
2

∫Xc+ c
2

Xc− c
2

cos(λmx) cos(δny)dxdy∫ b
0
∫ a

0 cos2(λmx) cos2(δny)dxdy
, (2.45)
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Amn =
16Q cos(λmXc) sin

(
1
2λmc

)
cos(δnYc) sin

(
1
2δnd

)
abcdk1βmnλmδnφ(βmn) .

The coefficients of the uniform flow solution are,

A0 = Q

ab

(
t1
k1

+ 1
hs

)
, B0 = − Q

k1ab
. (2.46)

To calculate the thermal resistance, the mean source temperature should be obtained. For

this purpose, temperature profile along the source plane, z = 0, is written using general

form of the solution, Eq. (2.39), as follows [16],

θ(x, y, 0) = A0 +
∞∑
m=1

Am cos(λmx) +
∞∑
n=1

An cos(δny) +
∞∑
m=1

∞∑
n=1

Amn cos(λmx) cos(δny),

(2.47)

where,

Am =
4Q cos (λmXc) sin

(
λm

c
2

)
abck1λ2

mφ(λm) , (2.48)

An =
4Q cos (δnYc) sin

(
δn

d
2

)
abdk1δ2

nφ(δn) , (2.49)

Amn =
16Q cos(λmXc) sin

(
1
2λmc

)
cos(δnYc) sin

(
1
2δnd

)
abcdk1βmnλmδnφ(βmn) . (2.50)

The mean temperature excess along the source plane is calculated by integration of Eq. (2.47),
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θs = A0 + 2
∞∑
m=1

Am
cos(λmXc) sin

(
1
2λmc

)
λmc

(2.51)

+ 2
∞∑
n=1

An
cos(δnYc) sin

(
1
2δnd

)
δnd

+ 4
∞∑
m=1

∞∑
n=1

Amn
cos(δnYc) sin

(
1
2δnd

)
cos(λmXc) sin

(
1
2λmc

)
λmcδnd

where Xc and Yc are the position of the heat source’s central point.

The total thermal resistance of the flux channel may be obtained using the mean source

temperature excess over the source area,

Rt = θs
Q

= R1D +Rs, (2.52)

where one dimensional resistance is,

R1D = 1
ab

(
t1
k1

+ 1
hs

)
, (2.53)

and the thermal spreading resistance is,

Rs = 2
Q

∞∑
m=1

Am
cos(λmXc) sin(1

2λmc)
λmc

(2.54)

+ 2
Q

∞∑
n=1

An
cos(δnYc) sin(1

2δnd)
δnd

+ 4
Q

∞∑
m=1

∞∑
n=1

Amn
cos(δnYc) sin(1

2δnd) cos(λmXc) sin(1
2λmc)

λmcδnd
.

The solution for the flux channel with multiple heat sources was also implemented using

the superposition method [16, 20].
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2.2.4 Rectangular Flux Channel with Concentric Heat Source

One of the common geometries in the electronic devices is the rectangular flux channel

with central heat source, Fig. 2.4. It is a special case of the solution for the rectangular flux

channel that is presented in the previous section.

Figure 2.4: Compound flux channel with central heat source, interfacial contact resistance,
hc, and orthotropic properties.

For simplicity in using the symmetry properties, the length and width of the heat source

and the flux channel are assumed as 2a, 2b, 2c and 2d, respectively [23]. The eigenvalues

of this problem are,

λm = mπ

c
, δn = nπ

d
, βmn =

√
λ2
m + δ2

n. (2.55)

Total thermal resistance consists of one dimensional thermal resistance and thermal spread-

ing resistance, Eq. (2.52). The one dimensional thermal resistance and thermal spreading

resistance are as follows,
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R1D = 1
4cd

(
t1
k1

+ 1
hs

)
, (2.56)

Rs = 1
2a2cdk1

∞∑
m=1

sin2(aλm)
φ(λm)λ3

m

+ 1
2b2cdk1

∞∑
n=1

sin2(bδn)
φ(δn)δ3

n

(2.57)

+ 1
a2b2cdk1

∞∑
m=1

∞∑
n=1

sin2(aλm) sin2(bδn)
φ(βmn)λ2

mδ
2
nβmn

.

2.3 Extension the Solutions to Compound Systems

The presented solutions for the rectangular flux channel and cylindrical flux tube can be

extended to the compound system with and without interfacial contact resistance. The only

change to the solution is the definition of the spreading function. The spreading functions

for the compound systems are presented in the following subsections. It is worth mention-

ing that area of the base, Ab, for each case is different and should be calculated as follows,

Ab = πb2, Base area for the cylindrical flux tube, (2.58)

Ab = a . b, Base area for the general flux channel, (2.59)

Ab = 2c . 2d, Base area for the flux channel with central source. (2.60)

To model the system with multiple layers, some extensions were done by Bagnall et al.

[94]. The general procedure is the same and a recursion method was used to consider the

effect of each layer in the spreading function of other layers.
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2.3.1 Compound System with Interfacial Contact Resistance

For the case of compound flux channel or flux tube with interfacial contact resistance, the

spreading function is,

φ = C1 + C2 tanh(γnt1)
C1 tanh(γnt1) + C2

, (2.61)

where,

C1 =
[
γn tanh(γnt2) + hs

k2

]
, (2.62)

and,

C2 = k1

k2

[
γn

(
1 + hs

hc

)
+
(
hs
k2

+ γ2
nk2

hc

)
tanh(γnt2)

]
. (2.63)

Further, the one dimensional thermal resistance, R1D, is changed due to the different con-

ductivities in different layers and existence of contact conductance,

R1D = 1
Ab

(
t1
k1

+ 1
hc

+ t2
k2

+ 1
hs

)
. (2.64)

2.3.2 Compound System with Interfacial Contact Resistance and Ideal

Heat Sink

The spreading function for the compound flux channel or compound flux tube with ideal

heat sink, hs →∞, that represents the constant sink temperature is,

φ =
1 +

(
γnk1
hc

)
tanh(γnt1) + k1

k2
tanh(γnt2) tanh(γnt1)

γn
k1
hc

+ k1
k2

tanh(γnt2) + tanh(γnt1)
(2.65)
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and the one dimensional thermal resistance is,

R1D = 1
Ab

(
t1
k1

+ 1
hc

+ t2
k2

)
. (2.66)

2.3.3 Compound System without Interfacial Contact Resistance

The spreading function for the compound flux channel or compound flux tube with perfect

interfacial contact is,

φ =

[
γn tanh(γnt2) + hs

k2

]
+ k1

k2

[
γn + hs

k2
tanh(γnt2)

]
tanh(γnt1)[

γn tanh(γnt2) + hs

k2

]
tanh(γnt1) + k1

k2

[
γn + hs

k2
tanh(γnt2)

] , (2.67)

and the one dimensional thermal resistance is,

R1D = 1
Ab

(
t1
k1

+ t2
k2

+ 1
hs

)
. (2.68)

2.3.4 Compound System without Interfacial Contact Resistance and

Ideal Heat Sink

The last case is the spreading function of the compound flux channel and compound flux

tube with constant temperature heat sink, hs → ∞, and no interfacial resistance between

the layers,

φ =
1 + k1

k2
tanh(γnt2) tanh(γnt1)

tanh(γnt1) + k1
k2

tanh(γnt2)
, (2.69)

and the one dimensional resistance is,

R1D = 1
Ab

(
t1
k1

+ t2
k2

)
. (2.70)
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It is worth mentioning that the base area for all of the above cases should be substituted by

the proper value based on Eqs. (2.58- 2.60).

2.4 Influence Coefficient Method

Muzychka [14] proposed the influence coefficient method for solving the spreading resis-

tance problems in the flux channel. In this method, a matrix approach is used to solve

the problems with more than five sources with less computation. Later, Muzychka et al.

[16] extended the solution to the multi-layer system with and without interfacial contact

resistance. Based on this method, for the mean temperature excess of the jth heat source,

θj = θ1j + θ2j + · · ·+ θNsj = Q1f 1j +Q2f 2j + · · ·+QNsfNsj =
Ns∑
i=1

Qif i,j, (2.71)

where,

f ij = Bi
0 +

∞∑
m=1

Bi
m

2 cos(λmXc,j) sin(1
2λmcj)

λmcj
(2.72)

+
∞∑
n=1

Bi
n

2 cos(δnYc,j) sin(1
2δndj)

δndj

+
∞∑
m=1

∞∑
n=1

Bi
mn

4 cos(δnYc,j) sin(1
2δndj) cos(λmXc,j) sin(1

2λmcj)
λmcjδndj

.

The influence coefficients, fij , are affected by the location and size of the neighboring heat

sources. The temperature excess may be written in the following form,
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

θ1

θ2

θ3

...

θNs



=



f11 f12 · · · f1Ns

f21 f22 · · · f2Ns

f31 f32 · · · f3Ns

...
...

...
...

fNs1 fNs2 · · · fNsNs





Q1

Q2

Q3

...

QNs


⇒
{
θ

}
=
[
Fij

] [
, Q

]
(2.73)

where Fij is the matrix of influence coefficients. In this method, the reciprocity property

exists when i 6= j,

fij = fji. (2.74)

By using this property, the computation time reduces significantly when there are more than

five heat sources. In general, for a system with N sources, the number of coefficient that

should be calculated is (N2
s +Ns)/2.

2.5 Flux Channel with Arbitrarily Specified Inward and

Outward Heat Fluxes and Different Thermal Conduc-

tivities in the x, y and z Directions

Gholami and Bahrami [93] studied the thermal spreading resistance in graphite-based ma-

terials which have different thermal conductivities in different directions, kx 6= ky 6= kz.

The considered geometry is a rectangular flux channel with discretely specified inward and

outward heat fluxes along the source and sink plane, respectively. The outer surfaces of

sources and sinks beside the edges of the channel are insulated, Fig. 2.5. Their solution for

one source and one sink is briefly described which can be extended to system with multiple

sources and sinks by using the superposition method.
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Figure 2.5: Schematic of anisotropic rectangular spreader with multiple hotspots on a) top
and bottom surfaces size and b) location of hotspots [93].

The governing equation and boundary conditions are defined using the following dimen-

sionless parameters,

ε = W

L
, εH = H

L
, x∗ = x

L
, y∗ = y

W
, z∗ = z

H
, (2.75)

a∗i = ai
L
, b∗i = bi

W
, q∗i(x,y) = LWqi(x,y)

Q0
, θ = Lk0

Q0
(T − T0),

κx =
√
k0

kx
, κy =

√√√√k0

ky
, κz =

√
k0

kz
, R∗ = LkzR,

(2.76)

where, Q0 is the arbitrary reference heat flux and k0 is the arbitrary reference thermal con-

ductivity. The dimensionless form of the governing equation and boundary conditions are

presented as follows,

∇2θ = 1
κ2
x

∂2θ

∂x∗2
+ 1
ε2κ2

y

∂2θ

∂y∗2
+ 1
ε2
Hκ

2
z

∂2θ

∂z∗2
= 0. (2.77)
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Due to the insulated edges, the boundary conditions along the edges are,

∂θ

∂x∗
= 0 at x∗ = 0, x∗ = 1, (2.78)

∂θ

∂y∗
= 0 at y∗ = 0, y∗ = 1.

Source and sink boundary conditions are defined using the Neumann boundary condition

or prescribed heat flux. Along the source plane,

at z∗ = 0→


∂θ
∂z∗

= κ2
zεH
ε
q∗i(x,y) at spot i domain,

∂θ
∂z∗

= 0 at remainder ,
(2.79)

and along the sink plane,

at z∗ = 1→


∂θ
∂z∗

= κ2
zεH
ε
q
′∗
i(x,y) at spot i domain,

∂θ
∂z∗

= 0 at remainder.
(2.80)

The general form of the solution is obtained using the method of separation of variables,

θ = A0z
∗ +

∞∑
m=1

cos(λκxx∗)[Am cosh(λεHκzz∗) +Bm sinh(λεHκzz∗)] (2.81)

+
∞∑
n=1

cos(δεκyy∗)[An cosh(δεHκzz∗) +Bn sinh(δεHκzz∗)]

+
∞∑
n=1

∞∑
m=1

cos(λκxx∗) cos(δεκyy∗)[Amn cosh(βεHκzz∗) +Bmn sinh(βεHκzz∗)],

where the eigenvalues of the system are,
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λ = mπ

κx
, δ = nπ

κyε
, β =

√
λ2 + δ2. (2.82)

To apply the discretely specified Neumann boundary conditions along the source and sink

plane in the general form of the solution, Eq. (2.81), a two dimensional Fourier expansion

technique is used. For a system with one heat source along the top plane (superscript t) and

one heat sink along the bottom plane (superscript b), the coefficients of the solution are,

A0 = κ2
zεH
ε

st00 = κ2
zεH
ε

sb00, Bm = 2κzstm0
ελ

, Bn = 2κzst0n
εδ

, Bmn = 4κzstmn
εβ

,

Am = 2κz
ελ

(
Sbm0csch(λεH)− stm0 coth(λεH)

)
, (2.83)

An = 2κz
εδ

(
Sb0ncsch(δεH)− st0n coth(δεH)

)
,

Amn = 4κz
εβ

(
Sbmncsch(βεH)− stmn coth(βεH)

)
,

where the auxiliary coefficients obtained from Fourier expansion are,

s
t/b
00 =

∫∫
t/b
q∗(x,y)dx

∗dy∗, (2.84)

s
t/b
m0 =

∫∫
t/b
q∗(x,y) cos(λκxx∗)dx∗dy∗,

s
t/b
0n =

∫∫
t/b
q∗(x,y) cos(δεκyy∗)dy∗dx∗,

st/bmn =
∫∫

t/b
q∗(x,y) cos(λκxx∗) cos(δεκyy∗)dx∗dy∗.

2.6 Temperature Dependent Thermal Conductivity

Thermal conductivity of some of the semiconductor materials are dependent on the work-

ing temperature. This temperature dependent thermal conductivity should be considered
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in the solution of the thermal behavior of the system for having a proper thermal analysis.

To solve the heat conduction problems with the temperature dependent thermal conductiv-

ity, the Kirchhoff transform is used. The general form of the non-linear steady-state heat

conduction equation is,

∇ . (k∇T ) = 0, (2.85)

where k = k(T ) is temperature dependent. To transform this equation to the Laplace’s

equation, a new variable is defined as,

θ = T0 + 1
k0

∫ T

T0
k(τ)dτ, (2.86)

where θ is the apparent temperature. Therefore, the non-linear heat conduction equation

may be transformed to the Laplace’s equation in terms of the apparent temperature, θ, as

follows,

∇2θ = 0. (2.87)

All boundary conditions should also be transformed in form of the apparent temperature.

The problem can be solved using the presented solutions in the previous sections. Finally,

the obtained apparent temperature should be transformed back to the non-linear temperature

by using the inverse Kirchhoff transform.

2.6.1 Boundary Condition of the First Kind

To consider the procedure for applying the Kirchhoff transform to the boundary condition

of the first kind, a linear thermal conductivity in the form of k(T ) = A + BT is assumed.

The apparent temperature for this case is,
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θ = T0 + 1
k0

∫ T

T0
k(τ)dτ = T0 + 1

k0

∫ T

T0
(A+Bτ)dτ, (2.88)

θ = T0 + 1
k0

(
AT + 1

2BT
2 − AT0 −

1
2BT

2
0

)
.

As can be seen, the constant temperature in the problem with temperature dependent ther-

mal conductivity turned to a more complicated expression as an apparent temperature.

Therefore, application of the Kirchhoff transform to the first kind of boundary condition

adds some complexity to the solving process of the thermal spreading resistance problems.

2.6.2 Boundary Condition of the Second Kind

The second kind boundary condition or prescribed heat flux can be stated as,

~q = −~n . k∇T. (2.89)

The temperature, T , should be transformed in terms of the apparent temperature, θ, as

follows,

k∇T = k0∇θ (2.90)

and as a result, the heat flux of the apparent temperature remains the same with the heat

flux of the temperature, T ,

~q = −~n . k∇T = −~n . k0∇θ. (2.91)
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2.6.3 Boundary Condition of the Third Kind

The boundary condition of the third kind can be expressed as,

−~n . k∇T = h(T − T∞). (2.92)

As discussed, −~n . k∇T = −~n . k0∇θ and T = K−1{θ} 6= θ. Therefore, the convection

boundary condition is not linear on θ,

−~n . k0∇θ = h
(
K−1{θ} − T∞

)
6= h(θ − T∞). (2.93)

Due to the non-linear behavior, the Kirchhoff transform cannot be applied to the bound-

ary condition of the third kind or Robin boundary condition. Recently, Bagnall et al. [10]

proposed a solution to approximate the thermal spreading resistance problems with temper-

ature dependent thermal conductivity and the third kind of boundary condition. For the flux

channel and flux tube problems that are discussed in this paper, the temperature, T , and the

apparent temperature, θ, are approximately equal at the sink plane. To obtain an appropriate

reference temperature, T0, the problem is assumed as a one dimensional problem with heat

flux boundary condition in the source plane and convective cooling along the sink plane.

Therefore, the reference temperature is assumed as,

θ ≈ T0 = T base = Q

Ab

1
hs

+ T∞. (2.94)

The common expression for the temperature dependent thermal conductivity of semicon-

ductors is,

k(T ) = kref

(
Tref
T

)n
. (2.95)

For the compound system, the limitation for using the Kirchhoff transform is that the ex-

ponent in the dependence of the thermal conductivity, n, for all layers should be equal.
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The temperature of the flux channel or the flux tube with temperature dependent thermal

conductivity can be found by substituting the temperature dependent thermal conductivity,

k(T ), into the Kirchhoff transform, Eq. (2.86), and solve to obtain the temperature. For the

semiconductors with n > 1, the actual temperature is,

T = K{θ}−1 = T0

[
1 + (θ − T0)(1− n)

T0

] 1
1−n

. (2.96)

2.7 2D Flux Channel with Variable Heat Transfer Coeffi-

cient Along the Sink Plane

The heat transfer coefficient along the sink plane in all previous research was assumed

constant. However, the geometry of the heat sinks is designed to remove heat from the

hot spots of the system. Therefore, the heat transfer coefficient along the sink plane is not

constant in most of the electronic devices. Razavi et al. [6] considered the flux channel

with variable conductance along the sink plane. A schematic 3D view of the studied system

is shown in the Figs. 2.6- 2.7 and the 2D model of the system is shown in the Fig. 2.8.

Figure 2.6: 3D view of symmetrical flux
channel with variable conductance.

c

t
d

Figure 2.7: 3D view of non-symmetrical
flux channel with variable conductance.

As mentioned, the sink boundary condition is convective cooling with variable heat transfer

coefficient,
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∂θ

∂z

∣∣∣∣∣
z=t

= −h(x)
k

θ. (2.97)

Figure 2.8: 2D flux channel with linear heat transfer coefficient along the sink plane.

The general form of the solution is,

θ(x, z) =
∞∑
n=1

cos (λnx) (Cn cosh (λnz) +Dn sinh (λnz)) , (2.98)

where the eigenvalues of the system are obtained using the right edge boundary condition.

λn sin(λnc) = he
k

cos(λnc). (2.99)

By considering Bie = hec
k

and δn = λnc, the eigenvalues are,

δn sin(δn) = Bie cos(δn) n = 1, 2, 3, · · · . (2.100)

By using the boundary condition along the sink plane, the Cn and Dn become related based

on the spreading function,
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Dn =− Cn

λn sinh(λnt) + h(x)
k

cosh(λnt)
λn cosh(λnt) + h(x)

k
sinh(λnt)

 , (2.101)

Dn =− Cnφn(x),

Due to the dependence of heat transfer coefficient on x, the spreading function is a function

of x. For the compound system, the spreading function would be more complex. Now, the

only unknown coefficient is the general form of the solution is Cn,

θ(x, z) =
∞∑
n=1

Cn cos
(
δn
x

c

)(
cosh

(
δn
z

c

)
− φn(x) sinh

(
δn
z

c

))
, (2.102)

To obtain the Cn, the orthogonality property cannot be used as the spreading function is de-

pendent on x. The authors used the method of least squares to apply the boundary condition

along the source plane,

IN =
∫ x1

0

[
−k ∂θ

∂z

∣∣∣∣∣
z=0
− f(x)

]2

dx (2.103)

+
∫ x2

x1

[
−k ∂θ

∂z

∣∣∣∣∣
z=0
− g(x)

]2

dx

+
∫ c

x2

[
−k ∂θ

∂z

∣∣∣∣∣
z=0
− p(x)

]2

dx,

where,
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f(x) = −k ∂θ
∂z

∣∣∣∣∣
z=0

= 0 (0 < x < x1), (2.104)

g(x) = −k ∂θ
∂z

∣∣∣∣∣
z=0

= q (x1 < x < x2),

p(x) = −k ∂θ
∂z

∣∣∣∣∣
z=0

= 0 (x2 < x < c).

Substituting Eq. (2.104) in Eq. (2.103), results,

IN =
∫ x1

0

[
−k

∞∑
n=1
−Cn

(
δn
c

)
φn(x) cos

(
δnx

c

)
− 0

]2

dx (2.105)

+
∫ x2

x1

[
−k

∞∑
n=1
−Cn

(
δn
c

)
φn(x) cos

(
δnx

c

)
− q

]2

dx

+
∫ c

x2

[
−k

∞∑
n=1
−Cn

(
δn
c

)
φn(x) cos

(
δnx

c

)
− 0

]2

dx.

and the last unknown coefficients, Cn, can be calculated by a mathematical software pack-

age in order to minimize the IN ,

∂IN
∂Cn

= 0 n = 1, 2, ...N. (2.106)

Finally, the thermal resistance is obtained using the mean source temperature,

Rt = θs
Q

= c

q (x2 − x1)2 d

∞∑
n=1

Cn
(
sin

(
δnx2
c

)
− sin

(
δnx1
c

))
δn

. (2.107)
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2.8 Comparing Analytical Method with Finite Element Anal-

ysis (FEA)

In this section, a case study is presented to compare infinite series analytical method and

FEA results and their efficiencies [19]. The case study is a Gallium nitride (GaN) high

electron mobility transistors (HEMTs) with geometry and specification that is shown in

Fig. 2.9.

Figure 2.9: Layout of a two layer device with ten heat sources [19].

On the top of the device, there are 10 heat sources of 0.5µm length by 75µm width and

their source-to-source spacing is 50µm. Top layer of the device is isotropic with thermal

conductivity of k1 = 150W/mK and the bottom layer is orthotropic with thermal conduc-

tivities of k2,xy = 490W/mK and k2,z = 390W/mK. An interfacial conductance exists

between the layers with the magnitude of hc = 9.28 × 107 W/m2K and sink heat transfer

coefficient and temperature are hs = 3.27 × 105 W/m2K and Tf = 20◦C. The average

and centroidal temperatures of the heat sources that are obtained by analytical and FEA are

shown in Table. 2.1, [19]. The results of two methods differ by < 0.1%.

To compare the computation efficiency of both methods, the computation time required to

calculate the mean temperature of the heat sources is considered. The computation time for

the analytical model is ∼ 22 s for all heat source numbers while the FEA model required

from ∼ 4 min to ∼ 8 h for two to ten heat sources. The reason is that when the heat source

dimensions are much smaller than the other characteristic lengths, an extremely fine mesh is
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Table 2.1: Average and centroidal temperature.

required near the sources. Although FEA is more flexible, it is less efficient than analytical

models especially for the heat conduction problems involving many discrete heat sources.

2.9 Recommendation for Further Studies

Many aspects of thermal spreading resistance problems were studied in the past six decades.

Due to the complexity of the problems, each literature studied a special case with some

simplifications in the geometry, property and boundary conditions. Although a wide variety

of models were presented, there are still some gaps that should be addressed. The authors

propose the following problems be studied:

• Systems with more flexible specification of conductance such as discretely specified

heat transfer coefficient along the heat sink plane. It is a practical boundary condition

in electronic devices such as systems with coolant channels along the heat sink plane

or systems with fin heat sinks with varying fin heights and gaps between the fins.

• Systems with a combination of temperature, heat flux, and conductance along the

heat source plane.

• Multi-layer systems with discretely specified inward and outward heat fluxes along



the heat source and heat sink plane.

• Extension of problems with variable and discretely specified heat conductance along

the heat sink plane in compound systems.

• Examining the effect of orthotropic properties and temperature dependent thermal

conductivity in compound systems with variable or discretely specified heat conduc-

tance.

• Additionally, studying the effect of different thermal conductivity in all three princi-

pal directions will further add value to all previously published papers.
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Abstract

In this paper, thermal resistance of a 2D flux channel with non-uniform convection coeffi-

cient in the heat sink plane is studied using the method of separation of variables and the

least squares technique. For this purpose, a two dimensional flux channel with discretely

specified heat flux is assumed. The heat transfer coefficient at the sink boundary is defined

symmetrically using a hyperellipse function which can model a wide variety of different

distributions of heat transfer coefficient from uniform cooling to the most intense cooling

in the central region. The boundary condition along the edges is defined with convective

cooling. As a special case, the heat transfer coefficient along the edges can be made negli-

gible to simulate a flux channel with adiabatic edges. To obtain the temperature profile and

1Published in the Journal of Heat Transfer
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the thermal resistance, the Laplace equation is solved by the method of separation of vari-

ables considering the applied boundary conditions. The temperature along the flux channel

is presented in the form of a series solution. Due to the complexity of the sink plane bound-

ary condition, there is a need to calculate the Fourier coefficients using the least squares

method. Finally, the dimensionless thermal resistance for a number of different systems is

presented. Results are validated using data obtained from the finite element method. It is

shown that the thick flux channels with variable heat transfer coefficient can be simplified

to a flux channel with the same uniform heat transfer coefficient.

Keywords: Electronics Cooling, Heat Conduction, Thermal Resistance, Variable Heat

Transfer Coefficient, Least Squares Method, Spreading Resistance

3.1 Introduction

Thermal resistance calculations are one of the most important challenges for designing mi-

croelectronic devices. In these devices, heat enters through a portion of the semi-conductor

area and flows by conduction. Semi-conductors can often be modelled as flux channels. In

a flux channel with adiabatic edges and uniform cooling over the sink region, the total ther-

mal resistance is composed of one dimensional resistance and thermal spreading resistance.

However, when the cooling over the sink region is not uniform and/or the edges are not

adiabatic, the total thermal resistance cannot be simply divided into one dimensional and

spreading resistances. Therefore, the total thermal resistance should be calculated. Due to

the different geometries and boundary conditions of each device, this aspect becomes more

complicated and as a result, some thermal engineers prefer to use more time consuming

software packages to model devices.

Significant research has been done on different aspects of thermal spreading resistance

during the previous five decades. Lee et al. [1] and Song et al. [2] developed an analytical
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solution for constriction/spreading resistance for electronic components with different types

of heat sinks. Das and Sadhal [3] modeled the thermal constriction resistance between two

solids for random distribution of contacts by using a square region containing randomly

placed contacts. Lam and Fischer [4] presented a solution for the thermal resistance of

rectangular orthotropic heat spreaders. They demonstrated the result for several values of

the vertical-to-horizontal thermal conductivity ratio, the Biot number, and the full range of

the nondimensional width of the applied heat flux.

Ellison [5-7] analytically modeled the thermal behavior of printed circuit boards and mi-

croelectronic packages as a rectangular, multi-layer structure with discrete heat sources.

Muzychka et al. [8-17] solved thermal spreading resistance problems for different systems

with different geometries, boundary conditions and properties. The most important models

for thermal spreading resistance are summarized by Yovanovich and Marotta [18]. Also,

Yovanovich [19] reviewed forty years of research on thermal spreading resistance.

Although, different aspects of thermal spreading resistance were considered by different

researchers, no research has been done on non-uniform convective heat transfer coefficients

in the sink plane and its influence on the total thermal resistance. The non-uniform heat

transfer coefficient can be caused by the heat sink’s configuration to make it more practical

in the thermal management systems. In Fig. 3.1, a symmetrical heat sink which causes

variable heat transfer coefficient (conductance) is shown.

Figure 3.1: A sample of heat sink with variable heat transfer coefficient.

The non-uniform heat sink is widely used in the industry. It helps to reduce the material,

distribute convection cooling exactly at the place that is needed and effective passive cool-
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ing systems. For example, ASUS released NVIDIA GeForce GT 520 silent low profile

graphics card, Fig. 3.2a, and ASUS R.O.G. Rampage Formula that is part of the Repub-

lic of Gamers (ROG) line of motherboards, Fig. 3.2b. Both systems are equipped with an

efficiently designed heat sink.

(a) ASUS NVIDIA GeForce GT 520 silent low
profile graphics card [20].

(b) ASUS R.O.G. Rampage Formula motherboard
[21].

Figure 3.2: Example of systems with non-uniform heat sink.

The main goal of this research is modeling thermal resistance of 2-D heat flux channels with

a finite and uniform heat source on the source plane and non-uniform convection coefficient

in the sink plane. The heat sink plane conductance models both the combined effect of

fins and prime surface through an effective conductance. The proposed approach is useful

for thermal engineers who want to define the heat sink plane convection as a distributed

function by considering a specific configuration of cooling channels or fins on the sink

plane.

3.2 Problem Statement

Long semi-conductor devices can be assumed as a 2-D flux channel. In this paper, a flux

channel is studied considering a discrete strip heat source in the source plane and a non-

uniform convection coefficient in the sink plane, Fig. 3.3. Due to the non-uniform cooling



87

over the sink plane, the thermal resistance of the system is multi-dimensional even when the

heat source covers the source plane of the flux channel with adiabatic edges. Therefore, the

total thermal resistance of the system should be considered. For this purpose, the total ther-

mal resistance, Rt, is calculated using the mean source temperature, T s, film temperature,

Tf , and total heat transfer rate from the source:

Rt = T s − Tf
Q

. (3.1)

Figure 3.3: 2D flux channel with a central heat source and a variable heat transfer coeffi-
cient.

The temperature distribution in the flux channel can be obtained by solving the Laplace

equation:

∂2T

∂x2 + ∂2T

∂z2 = 0 (3.2)

and, by defining θ = T − Tf :

∂2θ

∂x2 + ∂2θ

∂z2 = 0. (3.3)

Boundary conditions of the system are as follows. Over the source plane of the flux channel:

∂θ

∂z

∣∣∣∣∣
z=0

= − q
k
, 0 < x < a, (3.4)
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∂θ

∂z

∣∣∣∣∣
z=0

= 0, a < x < c, (3.5)

and along the center line:

∂θ

∂x

∣∣∣∣∣
x=0

= 0. (3.6)

The boundary condition along the edges is convective cooling. The convective cooling

boundary condition turns to adiabatic when he → 0 where he is the heat transfer coefficient

along the edge. Therefore, the edge boundary condition is defined as follows:

∂θ

∂x

∣∣∣∣∣
x=c

= −he
k
θ. (3.7)

Over the heat sink plane, a variable heat transfer coefficient is applied. For modeling the

heat transfer coefficient, the following function is proposed which can model a wide variety

of heat transfer coefficient distributions:

h(x) = ho

[
1−

(
x

c

)m]
. (3.8)

It is clear that by changing the power of the function, m, the distribution of the heat transfer

coefficient changes over the sink plane. The dependency of the non-uniform heat transfer

coefficient using the power of the function, m, for half of the slab is shown in Fig. 3.4.

However, the total conductance is changed for different m values. For instance, a system

with m = 1 has almost half of the heat sink ability in comparison with a system with

m → ∞. To specify a model with different distributions of the heat transfer coefficient

of a system with the same constant overall conductance, the heat transfer coefficient is

integrated over half of the slab and ho is redefined based on h,
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Figure 3.4: Variable heat transfer coefficient for half of the slab by considering the conduc-
tance as the function of: h(x)

ho
= 1− (x

c
)m.

h = 1
c

∫ c

0
h(x)dx = mho

m+ 1 ⇒ ho = h (m+ 1)
m

, (3.9)

h(x) = h (m+ 1)
m

[
1−

(
x

c

)m]
. (3.10)

The dependency of the non-uniform heat transfer coefficient using the exponent of the func-

tion, m, for Eq. (3.10) is shown in Fig. 3.5. This approach can be used to compare different

distributions of heat transfer coefficient for a system with constant overall mean heat trans-

fer coefficient or conductance.

By considering the functions for variable heat transfer coefficient, the boundary condition

along the sink plane is:

∂θ

∂z

∣∣∣∣∣
z=t

= −h(x)
k

θ. (3.11)

By applying the mentioned boundary conditions, Laplace’s equation, Eq. (3.3), can be
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Figure 3.5: Variable heat transfer coefficient for half of the slab by considering the conduc-
tance as the function of: h(x)

h
= (m+1)

m
[1−

(
x
c

)m
] .

solved using the separation of variables technique. The solution which satisfies the symme-

try condition can be stated as:

θ(x, z) =
∞∑
n=1

cos (λnx) (Cn cosh (λnz) +Dn sinh (λnz)) . (3.12)

The eigenvalues of the system, λn, are obtained using Eq. (3.7) as follows:

λn sin(λnc) = he
k

cos(λnc) n = 1, 2, 3, · · · . (3.13)

For simplicity, δn = λnc and Bie = hec
k

are used. The characteristic length that was

employed to determine the Biot number is half length of the flux channel, c. Therefore, the

eigenvalues are:

δn sin(δn) = Bie cos(δn) n = 1, 2, 3, · · · . (3.14)

This equation can be solved numerically to obtain the eigenvalues of the system.
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Applying the sink boundary condition to the solution, Eq. (3.12), gives:

Dn =− Cn

λn sinh(λnt) + h(x)
k

cosh(λnt)
λn cosh(λnt) + h(x)

k
sinh(λnt)

 , (3.15)

Dn = −Cnφn(x), (3.16)

where φn(x) is the spreading function. This function can be written as follows:

φn(x) = δn tanh(δnτ) +Bi(x)
δn +Bi(x) tanh(δnτ) , (3.17)

where Bi(x) = h(x)c
k

and τ = t
c
. Therefore,

θ(x, z) =
∞∑
n=1

Cn cos
(
δn
x

c

) [
cosh

(
δn
z

c

)
− φn(x) sinh

(
δn
z

c

) ]
. (3.18)

Now the application of the final boundary condition which is the source plane boundary

condition is considered. Due to the dependency of spreading function on x, φn(x), the or-

thogonality property is not easily satisfied. For the flux channel with constant heat transfer

coefficient, the last unknown coefficient can be obtained by using an orthogonal function

expansion [10]. However, for the flux channel with variable heat transfer coefficient, the

method of least squares is used to obtain the unknown coefficients, Cn [22]. For this pur-

pose, the following integral is defined in different regions of the heat source plane,

IN =
∫ a

0

[
−k ∂θ

∂z

∣∣∣∣∣
z=0
− f(x)

]2

dx+
∫ c

a

[
−k ∂θ

∂z

∣∣∣∣∣
z=0
− g(x)

]2

dx, (3.19)

where f(x) and g(x) are the exact value of the source plane flux distributions,



92

∂θ

∂z

∣∣∣∣∣
z=0

=
∞∑
n=1
−Cn

(
δn
c

)
φn(x) cos

(
δnx

c

)
(3.20)

f(x) = −k ∂θ
∂z

∣∣∣∣∣
z=0

= q (0 < x < a) (3.21)

g(x) = −k ∂θ
∂z

∣∣∣∣∣
z=0

= 0 (a < x < c).

Therefore,

IN =
∫ a

0

[
−k

∞∑
n=1
−Cn

(
δn
c

)
φn(x) cos

(
δnx

c

)
− q

]2

dx (3.22)

+
∫ c

a

[
−k

∞∑
n=1
−Cn

(
δn
c

)
φn(x) cos

(
δnx

c

)
− 0

]2

dx.

The coefficients Cn should be calculated in order to minimize the above function,

∂IN
∂Cn

= 0 n = 1, 2, · · ·N. (3.23)

This equation can be solved numerically by using the symbolic computation program Maple

[23] in order to obtain the constants, Cn. As a result, the temperature distribution over the

channel is known by substituting the calculated constants, Cn, in the Eq. (3.18).

For calculating the total thermal resistance, the mean temperature over the source region

is calculated, θs = T s − Tf , and divided by the total heat flow rate over the source area,

Q = 4ab× q. Then,

Rt = θs
Q
, (3.24)
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θs = 1
2a

∫ a

−a
θ(x, 0)dx = 1

ε

∞∑
n=1

Cn sin (δnε)
δn

, (3.25)

Rt = 1
Qε

∞∑
n=1

Cn sin (δnε)
δn

. (3.26)

Finally, the total thermal resistance is non-dimensionalized as follows:

R∗t = kaRt, (3.27)

using the half source width. In the next section, the dimensionless thermal resistance for

flux channels with different geometries and properties are calculated.

3.3 Results and Discussion

In this part, dimensionless thermal resistance of a flux channel versus dimensionless source

aspect ratio are calculated analytically and compared to FEM computations for different

variable heat transfer coefficients over the sink plane including linear, m = 1; quadratic,

m = 2; and uniform heat transfer coefficient, m → ∞. To consider the effect of variable

heat transfer coefficient along the sink plane, the edges of the channel are assumed adia-

batic, he → 0. Different Biot numbers for the sink conductance, Bi = 0.1, 1, 10, 100, and

different dimensionless thicknesses, τ = 0.1, 0.5, are considered.

The FEM results are obtained using a commercial finite element software package [24].

The convergence of the FEM was checked by increasing the number of elements as shown

in Table 3.1. The system with a triangular mesh consisting of 2606 elements is converged.
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Table 3.1: The convergence of the FEM by refining the mesh.

Both FEM and analytical results are presented on the same plot. The variable heat transfer

coefficient is calculated for both of the proposed approaches by considering m = 1, 2 and

∞. The analytical solution based on the least squares technique is used for modelling the

variable heat transfer coefficient with m = 1 and 2. The analytical results for the case of

uniform convective cooling, m → ∞, are based on another paper of one of the authors

[10].

As mentioned before, there are two approaches to specify the variable heat transfer co-

efficient. The first approach is using the maximum conductance, h(x) = h0[1− (x/c)m],

which results in a variable conductance with the same peak but not the same average for

different values of m, Fig. 3.4. The second approach is using the mean conductance,

h(x) = h(m+1)
m

[1−
(
x
c

)m
], which results in the same effective cooling but distributed non-

uniformly over the heat sink plane, Fig. 3.5.

At first, the dimensionless thermal resistance is calculated based on the first approach. It is

worth mentioning that in this approach, the total heat transfer coefficient in the sink plane is

changed by changing m and as shown in Fig. 3.4, the area below of the curves is expanding

by increasingm. Therefore, in this approach the total convective cooling is not the same for

different values of m. Figures 3.6-3.8 demonstrate the dimensionless thermal resistance of

the flux channels with different geometries, properties and variable heat transfer coefficient.
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Figure 3.6: Dimensionless thermal resistance for Bio = 1 and τ = t/c = 0.1.

Figure 3.7: Dimensionless thermal resistance for Bio = 1 and τ = t/c = 0.5.
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Figure 3.8: Dimensionless thermal resistance for Bio = 10 and τ = t/c = 0.1.

As shown, the analytical and FEM results are in excellent agreement. In the analytical

solution based on the least squares technique, 5 and 9 terms are used in the series to ensure

the series expansion is sufficiently well approximated. If the Biot number is greater than

10, Bio > 10, and contact ratio is less than 0.1, ε = a/c < 0.1, more terms are needed to

have a more precise answer.

Now, the dimensionless thermal resistance is calculated based on the second approach. Due

to the constant overall mean heat transfer coefficient over the sink plane for different values

ofm, this approach is much more meaningful for comparison of different flux channels with

different geometries, properties and boundary conditions. In other words, the integrals of

the plots over the sink are constant as shown in the Fig. 3.5. Hence, the system has the same

overall mean conductance for different distributions over the sink region, m = 1, m = 2

andm→∞. Figures 3.9-3.13 show dimensionless thermal resistance versus dimensionless

source size based on analytical and FEM results for a variety of flux channels.
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Figure 3.9: Dimensionless thermal resistance for Biavg = 0.1 and τ = t/c = 0.1.

Figure 3.10: Dimensionless thermal resistance for Biavg = 1 and τ = t/c = 0.1.
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Figure 3.11: Dimensionless thermal resistance for Biavg = 1 and τ = t/c = 0.5.

Figure 3.12: Dimensionless thermal resistance for Biavg = 10 and τ = t/c = 0.1.
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Figure 3.13: Dimensionless thermal resistance for Biavg = 100 and τ = t/c = 0.1.

Results show the least squares technique works efficiently by using less than 10 terms in

the series. The percent error of the dimensionless thermal resistance based on the second

approach for the case of Biavg = 100 and τ = t/c = 0.1 in a channel with linear heat

transfer coefficient, m = 1, is shown in Table 3.2 . The percent error is measured based on

a comparison between FEM and analytical results with 5 and 9 terms in the series.

Table 3.2: Percent error of dimensionless thermal resistance for a flux channel with linear
heat transfer coefficient, m = 1, and Biavg = 100 and τ = t/c = 0.1.
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Results given in Table 3.2 indicate that the percent error for Biavg = 100, τ = t/c = 0.1

and m = 1 is decreased from 13.5% to 1.9% by increasing the number of terms in the

series, Eq. (3.26), from 5 to 9 terms. Moreover, the percent error is less than 1% if 9 terms

is used in the series for most of the cases.

Some important characteristic of thermal resistance of the flux channel with variable heat

transfer coefficient can be concluded from the Figs. 3.9-3.13. These figures show that the

order of magnitude for dimensionless thermal resistance decreases by increasing the Biot

number from 0.1 to 100. It is worth mentioning that for increasing the Biot number, the ther-

mal conductivity of the flux channel is constant and the value of the heat transfer coefficient

increases. Therefore, the one dimensional thermal resistance of the system decreases and

more heat can be removed from the system. The other interesting point for the systems with

the dimensionless thickness of τ = 0.1, is that the lines for different conductance are so

close in the Fig. 3.9 and Fig. 3.13 in comparison to the Fig. 3.10 and Fig. 3.12. The reason

for this behavior is that the total thermal resistance consists of both spreading resistance and

one dimensional resistance. For the case of Biavg = 0.1, the spreading resistance is much

smaller than the effect of one dimensional resistance and for theBiavg = 100, the spreading

resistance is much greater than the one dimensional resistance. Therefore, the slope of the

thermal spreading resistance is not so dependent on the variable heat transfer coefficient in

Fig. 3.9 and Fig. 3.13 and a uniform conductance can be assumed without too much loss in

accuracy. Further, due to the strength of the conductance in the system with Biavg = 100,

the heat easily flows through the channel and the lines overlap and the variable heat transfer

coefficient can be assumed as a uniform conductance. For the Biot numbers greater than 0.1

and less than 100, 0.1 < Biavg < 100, the effect of both spreading resistance and one di-

mensional resistance should be considered. As shown in Fig. 3.10 and Fig. 3.12, the shape

of the variable heat transfer coefficient has significant impact on the thermal resistance and

the variable conductance can not be simplified to a uniform conductance.
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Another important physical characteristic is the effect of the source size on the thermal

resistance of the systems with variable heat transfer coefficient. In Table 3.3, the thermal

resistance of flux channels with different distributions of heat transfer coefficient is shown.

It can be seen that for the systems with linear heat transfer coefficient,m = 1, thermal resis-

tance decreases when the source aspect ratio increases from 0.1 to 0.7 and then it increases

again from 0.7 to 1. The reason is that the heat flow should spread over the channel for

the small source aspect ratios and when the source aspect ratio is greater than 0.7, the heat

should constrict to go through the heat sink. Therefore, less effort is needed for transferring

the heat through the heat sink when the source aspect ratio is almost 0.7. The same trend

can be seen for the quadratic distribution, m = 2, of heat transfer coefficient. The thermal

resistance of the system with uniform heat transfer coefficient, m → ∞, continuously de-

creases by increasing the source aspect ratio and reaches its minimum when ε = 1 because

of disappearing of the thermal spreading resistance.

Table 3.3: Thermal resistance for flux channels with Biavg = 1, τ = t/c = 0.1, and
different distributions of heat transfer coefficient.

Another interesting comparison which can be done is considering the effect of different

configuration of heat transfer coefficient in the flux channels with different thicknesses. In

other words, the accuracy of simplifying a flux channel with variable heat transfer coeffi-

cient to a flux channel with the same overall mean heat transfer coefficient over the sink
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plane. As mentioned, the mean convective cooling of the system remains constant in the

second approach, h(x) = h(m+1)
m

[1 −
(
x
c

)m
], and the dimensionless thermal resistance for

different variable heat transfer coefficient can be easily compared. For this purpose, the

uniform and quadratic heat transfer coefficient, m = 2, are compared for different Biot

numbers, Biavg = 0.1, 1, 10, 100, and dimensionless thicknesses, τ = t/c = 0.1, 0.5. Fig-

ure 3.14 shows two systems with different dimensionless thicknesses, τ = t/c = 0.1, 0.5,

to give a better insight of the geometry aspect ratio of the system.

Figure 3.14: Left) 2D flux channel with dimensionless thickness of τ = 0.1 Right) 2D flux
channel with dimensionless thickness of τ = 0.5.

Table 3.4: Mean percent error for assuming uniform heat transfer coefficient instead of
equivalent quadratic distribution heat transfer coefficient,m = 2, for different Biot numbers
in a flux channel with dimensionless thickness of τ = 0.1.
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Table 3.5: Mean percent error for assuming uniform heat transfer coefficient instead of
equivalent quadratic distribution heat transfer coefficient,m = 2, for different Biot numbers
in a flux channel with dimensionless thickness of τ = 0.5.

The percent error for assuming a uniform heat transfer coefficient instead of quadratic con-

ductance for a channel with τ = 0.1 is shown in Table 3.4. As shown, the mean percent

error for different cases is always less than 13% and even in most of the cases, it is less than

5%.

The effects of different Biot numbers, 0.1 < Biavg < 100, that are already discussed are

also shown in the Table 3.4 that quantified the mean percent error for assuming uniform heat

transfer coefficient instead of equivalent quadratic distribution heat transfer coefficient. As

shown in Table 3.4, the mean percent error for assuming a uniform heat transfer coefficient

shows a peak for Biot number between 1 and 10.

Furthermore, the percent error for the channel with τ = 0.5 is shown in Table 3.5 and it

shows the mean percent error is less than 2% in all cases. The same manner can be seen

in Fig. 3.11 that the values of dimensionless thermal resistance for different configurations

of conductance are almost the same and the lines are very close. Therefore, it can be

concluded that for flux channels with τ = t/c > 0.5, the variable heat transfer coefficient

can be simplified to a uniform heat transfer coefficient with the same mean coefficient. The



cases which need more attention are thin flux channels with the dimensionless thickness

less than 0.5, τ < 0.5. Hence, for the thick channels, a uniform distribution of mean overall

conductance can be assumed without too much loss in accuracy and the proposed approach

in paper [10] which is more computationally efficient can be used.

3.4 Conclusion

In this paper, general expressions for temperature distribution and thermal resistance of a

two dimensional flux channel with central strap heat source and variable heat transfer coeffi-

cient are investigated using the separation of variables method. A novel solution for temper-

ature distribution is obtained using the least squares technique. For modeling the variable

heat transfer coefficient, two functions are proposed to simulate a wide variety of different

heat sink configurations. Different factors including the size of the heat source, thickness

of the channel and the variable heat transfer coefficient are considered in both methods.

Finally, the trend of dimensionless thermal resistance versus dimensionless source size is

presented considering variable heat transfer coefficient, dimensionless thickness, and dif-

ferent Biot numbers. The presented results show a good agreement between the analytical

solution and the FEM method. Also, based on the mean percent error for different flux

channels with different geometries, properties and variable heat transfer coefficient, it can

be concluded that the simplification of using a uniform heat transfer coefficient instead of

variable coefficient can be applied without too much loss in accuracy.
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Abstract

Thermal spreading resistance is one of the key factors for designing the thermal manage-

ment systems in microelectronic devices. This type of thermal resistance occurs in most

of the microelectronic devices and causes some difficulties for thermal engineers to model

the system. One of the common geometries in these devices is the flux channel. Differ-

ent boundary conditions can be applied on the flux channel based on the designing criteria

of the system including the arbitrary distribution of heat sinks over the sink plane. This

boundary condition is usually simplified as a constant heat transfer coefficient to facilitate

the modeling of the system. In this paper, a flux channel with an arbitrary distributed heat

1IMECE 2014, the ASME 2014 International Mechanical Engineering Congress & Exposition, Montreal,
Canada.

109



110

transfer coefficient over the sink plane is studied without simplification of the sink bound-

ary condition. Both adiabatic and convective cooling over the edges of the flux channel are

considered. Due to the complexity of the sink boundary condition, the conventional ana-

lytical solutions are not applicable and the method of least squares is used. By employing

this approach, the effect of a non-uniform heat transfer coefficient on thermal spreading

resistance is investigated. The solution is presented in form of a Fourier series expansion

which can be used to obtain the temperature all over the channel. Results are validated with

Finite Element Models, FEM. This approach is useful for thermal engineers who have some

difficulty for modeling complex boundary conditions and presents an effective solution for

thermal resistance in the flux channels.

Keywords: Thermal analysis, Thermal spreading resistance, Variable heat transfer coeffi-

cient, Least squares method

4.1 Introduction

Design of effective thermal management systems for micro-electronic devices is one of the

most important factors for capability, life and safety of the product. Due to different config-

urations and boundary conditions, thermal resistance of each device should be studied. The

thermal resistance of micro-electronic devices consist of one dimensional resistance and/or

spreading resistance. The thermal spreading resistance occurs whenever heat flows in the

regions with different cross sections.

Different researchers have worked on different aspects of thermal spreading resistance

for more than five decades. The primers in this field are Kennedy [1] and Mikic [2, 3]

who considered the spreading and contact resistance in cylindrical semiconductor devices.

Yovanovich [4] comprehensively studied the thermal spreading/constriction resistance and

reviewed all of his fourty years research on thermal spreading, constriction and gap resis-
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tance. Yovanovich and Marrota [5] wrote a chapter on thermal spreading and constric-

tion resistance in a heat transfer handbook. Lemczyk and Yovanovich [6, 7] used the

least squares method to solve the thermal constriction resistance problems with convec-

tive boundary conditions. Yovanovich et al. [8] studied the spreading resistance of isoflux

strips and rectangles on compound flux channel. Muzychka et al. [9-15] studied the thermal

spreading resistance for different systems. They considered different geometries including

single and multi-layer flux channels and flux tubes with different boundary conditions. The

edges of both mentioned geometries can be adiabatic or have convective cooling condition.

The sink boundary condition assumed as a constant temperature or a constant heat transfer

coefficient. Bagnall et al. [16, 17] studied the spreading resistance problem in single and

multi-layer structures with discrete heat sources and considered the effect of temperature

dependent thermal conductivity of the channel.

Although, a comprehensive research has been done on different aspects of thermal spread-

ing resistance, no research conducted on variable heat transfer coefficient along the sink

plane. This boundary condition always simplified and assumed as a constant heat transfer

coefficient along the sink. In this paper, a 2D flux channel with variable convective cooling

along the sink plane is considered. Both adiabatic and convective cooling along the edge

are considered. All results are validated with COMSOL multiphysics commercial software

package [18] that is based on Finite Element Method (FEM). The presented models are

useful for thermal engineers who want to analytically model the systems with variable heat

transfer coefficient.

4.2 Problem Statement

In this research, a 2D flux channel with variable heat transfer coefficient along the sink

plane is considered. The flux channels that are usually used in the real engineering sys-



112

Figure 4.1: 3D view of symmetrical flux channel with linear heat transfer coefficient along
the sink plane.

c

t
d

Figure 4.2: 3D view of non-symmetrical flux channel with linear heat transfer coefficient
along the sink plane.

tems are symmetric with the most intense cooling along the center line of the heat sink

plane, Fig. 4.1. As it is a specific case, a more general model for non-symmetrical systems

are studied that can be simplified as half of the channel in the symmetrical systems. A

schematic 3D view of the flux channel is shown in the Fig. 4.2 and the 2D model of the

system is shown in the Fig. 4.3. The temperature profile over the flux channel is obtained

and the total thermal resistance is calculated. The total thermal resistance can be calculated

using the mean source temperature, T s; film temperature, Tf ; and the total heat flow rate of

the system, Q;

Rt = R1D +Rs = T s − Tf
Q

. (4.1)

In the symmetrical system, half of the channel is investigated and the total thermal resis-

tance of the system is equal to the total thermal resistance of half of the channel divided by
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Figure 4.3: 2D non-symmetrical flux channel with linear heat transfer coefficient along the
sink plane.

two.

The governing equation of the system is the Laplace equation,

∂2T

∂x2 + ∂2T

∂z2 = 0. (4.2)

For solving this equation and homogenized the boundary conditions, the variable θ is de-

fined as θ = T − Tf .

∂2θ

∂x2 + ∂2θ

∂z2 = 0. (4.3)

The source plane boundary conditions are,

∂θ

∂z

∣∣∣∣∣
z=0

= − q
k
, over the source region (4.4)

∂θ

∂z

∣∣∣∣∣
z=0

= 0, out of the source region

The left edge of the system is adiabatic,
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∂θ

∂x

∣∣∣∣∣
x=0

= 0, (4.5)

and the boundary condition along the right edges is,

∂θ

∂x

∣∣∣∣∣
x=c

= −he
k
θ. (4.6)

Although, the convective cooling along the right edge is considered, the adiabatic boundary

condition can be produced using a small number for heat transfer coefficient along the right

edge, he.

The sink boundary condition is convective cooling with variable heat transfer coefficient,

∂θ

∂z

∣∣∣∣∣
z=t

= −h(x)
k

θ. (4.7)

The variable heat transfer coefficient assumed as a linear profile along the sink plane,

h(x) = ho

[
1−

(
x

c

)]
. (4.8)

The Laplace equation can be solved using the separation of variables method with the men-

tioned boundary conditions. The general form of the solution after applying the boundary

conditions along the edges of the system is,

θ(x, z) =
∞∑
n=1

cos (λnx) (Cn cosh (λnz) +Dn sinh (λnz)) , (4.9)

where λn are the eigenvalues of the system and obtained using the right edge boundary

condition, Eq. (4.6).

λn sin(λnc) = he
k

cos(λnc). (4.10)
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Figure 4.4: Eigenvalues of a flux channel with Bie = 1.

By considering Bie = hec
k

and δn = λnc, the eigenvalues of the flux channel are,

δn sin(δn) = Bie cos(δn) n = 1, 2, 3, · · · . (4.11)

This equation can be solved numerically to obtain the eigenvalues of the system. For ex-

ample, the eigenvalues of a flux channel with Bie = 1 is shown in the Fig. 4.4 and are as

follows:

δ1 = 0.86, δ2 = 3.426, δ3 = 6.437, δ4 = 9.529, · · · . (4.12)

More eigenvalues can be calculated using δn = π+ δn−1. Applying the boundary condition

along the sink plane,
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Dn =− Cn

λn sinh(λnt) + h(x)
k

cosh(λnt)
λn cosh(λnt) + h(x)

k
sinh(λnt)

 , (4.13)

Dn =− Cnφn(x),

where φn(x) is the spreading function. As the heat transfer coefficient is a function of x,

the spreading function is also a function of x. For the flux channels that consists of several

layers, the spreading function is much more complex. Therefore, the variable conductance

along the sink plane is simplified to a constant conductance in the multi-layer systems to

reduce the complexity of the spreading function. In this case study, the spreading function

can be written in terms of Bi(x) = h(x)c
k

, δn = λnc, and τ = t
c

as follows,

φn(x) = δn tanh(δnτ) +Bi(x)
δn +Bi(x) tanh(δnτ) . (4.14)

Substituting the defined variables, the general form of the solution is,

θ(x, z) =
∞∑
n=1

Cn cos
(
δn
x

c

)(
cosh

(
δn
z

c

)
− φn(x) sinh

(
δn
z

c

))
. (4.15)

Due to the dependency of the spreading function on x, i.e. φn(x), the orthogonality property

is not easily satisfied and can not be applied for obtaining the last unknown constant, Cn.

Therefore, the least squares method is used for solving the problem [19]. The least square

method along the source plane can be defined as follows,
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IN =
∫ x1

0

[
−k ∂θ

∂z

∣∣∣∣∣
z=0
− f(x)

]2

dx (4.16)

+
∫ x2

x1

[
−k ∂θ

∂z

∣∣∣∣∣
z=0
− g(x)

]2

dx

+
∫ c

x2

[
−k ∂θ

∂z

∣∣∣∣∣
z=0
− p(x)

]2

dx

where f(x), g(x), and p(x) are the known values of heat flux along the source plane. Im-

plementing this concept to the general form of the solution, Eq. (4.15), and the boundary

condition along the source plane, Eq. (4.4):

∂θ

∂z

∣∣∣∣∣
z=0

=
∞∑
n=1
−Cn

(
δn
c

)
φn(x) cos

(
δnx

c

)
, (4.17)

f(x) = −k ∂θ
∂z

∣∣∣∣∣
z=0

= 0 (0 < x < x1),

g(x) = −k ∂θ
∂z

∣∣∣∣∣
z=0

= q (x1 < x < x2),

p(x) = −k ∂θ
∂z

∣∣∣∣∣
z=0

= 0 (x2 < x < c).

By substituting the values of Eq. (4.17) in the Eq. (4.16),

IN =
∫ x1

0

[
−k

∞∑
n=1
−Cn

(
δn
c

)
φn(x) cos

(
δnx

c

)
− 0

]2

dx (4.18)

+
∫ x2

x1

[
−k

∞∑
n=1
−Cn

(
δn
c

)
φn(x) cos

(
δnx

c

)
− q

]2

dx

+
∫ c

x2

[
−k

∞∑
n=1
−Cn

(
δn
c

)
φn(x) cos

(
δnx

c

)
− 0

]2

dx.

The coefficients Cn are calculated in order to minimize the IN ,
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∂IN
∂Cn

= 0 n = 1, 2, ...N. (4.19)

This equation can be solved numerically in order to obtain the coefficients, Cn, using the

Maple mathematical package [20]. As a result, the temperature profile over the flux channel

is known. The thermal resistance can be calculated using the mean source temperature,

θs = Ts − Tf , and the total heat flux, Q.

Rt = θs
Q
, (4.20)

θs = 1
(x2 − x1)

∫ x2

x1
θ(x, 0)dx =

∞∑
n=1

Cn c
(
sin

(
δnx2
c

)
− sin

(
δnx1
c

))
δn (x2 − x1)

,

Q = q (x2 − x1) d.

Rt = θs
Q

= c

q (x2 − x1)2 d

∞∑
n=1

Cn
(
sin

(
δnx2
c

)
− sin

(
δnx1
c

))
δn

. (4.21)

Dimensionless thermal resistance can be calculated using the thermal conductivity, k, length

of the source, x2 − x1, and total thermal resistance, Rt, as follows:

R∗t = k (x2 − x1) Rt. (4.22)

Using the above mentioned solution, temperature profile and thermal resistance in a 2D flux

channel with variable heat transfer coefficient is known. In the next section, the solution is

compared with the result of COMSOL commercial software package based on FEM.
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Table 4.1: Checking the convergency of FEM.

4.3 Results and Discussion

In this section, the thermal resistance of a flux channel with variable heat transfer coefficient

along the sink plane is calculated using analytical method and FEM. Both adiabatic edges

and convective cooling along the right edge are considered. The geometry and property of

the flux channel are k = 2W/mK, ho = 200W/m2K, c = d = 0.02m, and t = 0.001m.

For the case of adiabatic edges, the convective cooling along the right edge is assumed a

small number such as he = 0.01W/m2K. For the case of convective cooling along the

right edge, the heat transfer coefficient along the right edge is he = 1000W/m2K to show

the effect of the edge cooling.

Also, for testing the convergency in the FEM, a flux channel with mentioned geometry

and properties and adiabatic edges is considered. The heat source position is defined by

x1 = 0.007m and x2 = 0.01m. The temperature distribution of the flux channel modelled

with FEM is shown in Fig. 4.5. The convergency of the FEM is checked using finer mesh in

the system. In the Table 4.1, the converegency of the thermal resistance for different number

of elements in the mesh is shown. It shows that the result of the thermal resistance in a flux

channel with a mesh consist of 95981 free tetrahedral elements is converged with 2 digits

of precision and there is no change in the thermal resistance of the system by increasing the

number of elements in the mesh.

The results of the thermal resistance of a flux channel with adiabatic edges is shown in
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Figure 4.5: Thermal modeling of a flux channel with linear heat conductance and adiabatic
edges by Comsol (FEM).

Table 4.2. As mentioned, for modeling the channel with adiabatic edges, the heat transfer

coefficient along the right edge, he, is assumed a small number to calculate the eigenvalues

of the system, Eq. (4.4). Different source sizes and different heat source positions are

considered. In the analytical method, less than 10 terms is used in the series. Table 4.2

demonstrate the percent error between the analytical method and FEM and it shows less

than 1% error.

Also, the flux channel with convective cooling along the right edge is considered in Ta-

ble 4.3. The heat transfer coefficient along the right edge is assumed he = 1000W/m2K to

show the effect of edge cooling. As expected, the thermal resistance decreases in compari-

son of the flux channel with adiabatic edges. For the analytical results, the number of terms
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Table 4.2: Percent error for thermal resistance of flux channels with adiabatic edges.

Table 4.3: Percent error for thermal resistance of flux channels with convective cooling
along the right edge.

in the series is less than 10 terms. For the FEM, the mesh consists of 95981 free tetrahedral

elements. The percent error between the analytical results and FEM is less than 1%.

Based on the presented results, it can be seen that the presented analytical method with less

than 10 terms in the series can model the system accurately.

4.4 Conclusion

In this paper, an analytical solution for modelling the temperature profile and thermal re-

sistance of a 2D flux channel with variable heat transfer coefficient along the sink plane is

studied. The governing equation of the system is the Laplace equation and solved using

separation of variables method and least squares technique. Both adiabatic edges and con-

vective cooling along the right edge of the system are considered. All results are compared

with COMSOL commercial software package that is based on FEM. A perfect agreement



exist between the analytical models and FEM results. This method is really useful for

thermal engineers who want to model the flux channels in micro electronic devices with

variable heat transfer coefficient along the sink plane.
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Abstract

In this paper, an analytical solution is presented for the temperature profile and thermal

resistance of a non-symmetrical flux channel with convective cooling along the sink plane

and edges. The heat transfer coefficients along the right and left edges of the channel

are defined separately and both are independent from the heat transfer coefficient applied

over the sink plane. The system is solved using the method of separation of variables.

Due to the edge cooling and non-symmetry, the eigenvalues should be calculated using

the heat transfer coefficient on both edges. For satisfying the orthogonality condition, a

normalized function is defined. The temperature distribution over the channel is presented

in the form of a Fourier series expansion and some expressions are presented to calculate

1Submitted to the Journal of Advances in Applied Mathematics and Mechanics
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the thermal resistance and dimensionless thermal resistance. Application of the method

to the orthotropic channels is also discussed. Some case studies are considered and the

results are compared with other literature and the Finite Element Method (FEM) using

COMSOL commercial software package [1]. The proposed model is useful for thermal

engineers who wish to model micro-electronic devices with different conductance and heat

sink configurations.

Keywords: Electronics Cooling, Heat Conduction, Thermal Resistance, Separation of

Variables, Eccentric System

5.1 Introduction

Thermal analysis of electronic devices is crucial for designing a proper thermal manage-

ment system. For analytical modeling of the temperature profile over the electronic device,

the geometry of the device is usually simplified as a flux channel (cubical geometry) or a

flux tube (cylinder). Rectangular flux channels are one of the common geometries of dif-

ferent electronic devices. Different boundary conditions are applied on the channels based

on the design and configuration of the system. Several analytical solutions are available for

analyzing the thermal spreading resistance in the flux channels. Due to different properties

and boundary conditions of the system, there is no general analytical solution for modeling

the temperature profile and thermal resistance.

Many studies have been done on different aspects of thermal spreading resistance [2-4].

Different industrial applications were studied in [5-12]. Ying and Toh [7] studied the ther-

mal resistance in electronic packaging. Kim et al. [8] presented a correlation for modeling

the thermal spreading resistance of multi electronic components with several sources. Cul-

ham et al. [9, 10] modeled the thermal resistance in circuit boards. Lasance [11, 12] studied

the thermal resistance in LEDs.
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Muzychka et al. [13-19] studied the thermal spreading resistance of flux channels with dif-

ferent geometries and boundary conditions, and considered isotropic and orthotropic prop-

erties. They [19] modeled the rectangular flux channel using an equivalent system in a

circular flux tube. Furthermore, the effect of edge cooling in a symmetrical flux channel

is considered. These researchers considered the effect of interfacial resistance on thermal

resistance of compound, orthotropic systems [18]. Bagnall et al. [20] presented an approx-

imate solution for the spreading resistance in compound orthotropic systems with interfa-

cial resistance and convection in the sink plane using Kirchhoff transform. Yovanovich

and Marrota [21] summarized the most important models of thermal spreading and con-

tact resistance. Yovanovich [22] also reviewed forty years research on thermal spreading

resistance.

Although different aspects of thermal spreading resistance problems are considered, no

research has been done on the effect of edge cooling and different wall conductance for the

non-symmetrical flux channels. In most of the analytical models, the convective cooling

condition along the edges of the channel is simplified as an adiabatic boundary condition.

This is usually a proper assumption due to the small surface area along the edges that is

exposed to natural convection. However; in some cases, the heat sinks are designed to

install along the edges. For these systems, an analytical solution was proposed for the case

of symmetrical flux channel with a concentric heat source [19]. In the symmetrical channel,

the heat source is concentric and the heat transfer coefficient is the same for all edges of

the channel. In this paper, a more general model for non- symmetrical channel with an

eccentric heat source and different convective cooling along each edge is proposed. For

solving the problem, the method of separation of variables is used. In this analysis, the

most challenging problem is satisfying the orthogonality condition by defining a weight

function. It is worth mentioning that heat transfer coefficient along each edge is defined

independently from each other and both are different from the heat transfer coefficient along
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the sink plane.

5.2 Problem Statement

In this paper, a non-symmetrical flux channel is studied using the method of separation of

variables. Convective cooling exists along the edges and bottom surface. As shown in the

Fig. 5.1, the heat transfer coefficient along the left edge is shown as h1, along the right edge

as h2, and along the sink plane is shown as hs. An eccentric heat source as a constant heat

flux is applied along the source plane.

Figure 5.1: 2D flux channel with eccentric heat source and edge cooling.

5.2.1 Isotropic Systems

The governing equation for the system is the Laplace equation and for the isotropic system

can be written as follows,

∂2T

∂x2 + ∂2T

∂z2 = 0. (5.1)

The parameter θ = T − Tf is defined and the Laplace equation takes the form,

∂2θ

∂x2 + ∂2θ

∂z2 = 0. (5.2)

The boundary condition along the source plane, z = 0, is,
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∂θ

∂z

∣∣∣∣∣
z=0

= 0, 0 < x < x1, (5.3)

−k ∂θ
∂z

∣∣∣∣∣
z=0

= q, x1 < x < x2,

∂θ

∂z

∣∣∣∣∣
z=0

= 0, x2 < x < c.

A different heat transfer coefficient is assumed for the left, right, and bottom of the flux

channel. The boundary condition along the left edge, x = 0, is,

k
∂θ

∂x

∣∣∣∣∣
x=0

= h1θ, (5.4)

and along the right edge, x = c, is,

−k ∂θ
∂x

∣∣∣∣∣
x=c

= h2θ. (5.5)

The boundary condition along the bottom of the flux channel, z = t, is defined as,

−k ∂θ
∂z

∣∣∣∣∣
z=t

= hsθ. (5.6)

The method of separation of variables is used for solving the Laplace equation, Eq. (5.2),

by considering the mentioned boundary conditions. The general form of the solution is,

θ(x, z) = [A cos (λx) +B sin (λx)][C cosh (λz) +D sinh (λz)]. (5.7)

Applying the boundary condition along the left edge, Eq. (5.4), results,

B = h1A

kλ
. (5.8)



130

Using the boundary condition along the right edge of the system, Eq. (5.5), gives,

k

(
−Aλ sin(λc) + h1A

kλ
λ cos(λc)

)
= −h2

(
A cos(λc) + h1A

kλ
sin(λc)

)
(5.9)

which results in eigenvalues of the system [23],

tan(λnc) =
λn
(
h1
k

+ h2
k

)
λ2
n − h1h2

k2

n = 1, 2, 3, · · · . (5.10)

The general solution can be written in the following form:

θ(x, z) =
∞∑
n=1

(
cos (λnx) + h1

kλn
sin (λnx)

)(
Cn cosh (λnz) +Dn sinh (λnz)

)
. (5.11)

Applying the boundary condition along the bottom of the channel, Eq. (5.6), results,

Cn = −Dn

(
λn cosh(λnt) + hs

k
sinh(λnt)

λn sinh(λnt) + hs

k
cosh(λnt)

)
= −Dnφn (5.12)

and the spreading function, φn, is defined as follows:

φn =
λn + hs

k
tanh(λnt)

λn tanh(λnt) + hs

k

. (5.13)

Now, the general solution can be written as,

θ(x, z) =
∞∑
n=1

Dn

(
cos(λnx) + h1

kλn
sin(λnx)

)(
sinh(λnz)− φn cosh(λnz)

)
. (5.14)

The boundary condition along the source plane, Eq. (5.3), is the last boundary condition

that is applied,
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∂θ

∂z

∣∣∣∣∣
z=0

=
∞∑
n=1

Dn

(
λn cos (λnx) + h1

k
sin (λnx)

)
= 0, 0 < x < x1, (5.15)

∂θ

∂z

∣∣∣∣∣
z=0

=
∞∑
n=1

Dn

(
λn cos (λnx) + h1

k
sin (λnx)

)
= − q

k
, x1 < x < x2,

∂θ

∂z

∣∣∣∣∣
z=0

=
∞∑
n=1

Dn

(
λn cos (λnx) + h1

k
sin (λnx)

)
= 0, x2 < x < c.

The eigenfunction is defined as,

X = λn cos (λnx) + h1

k
sin (λnx) . (5.16)

This function is not orthogonal and as a result the orthogonality property cannot be used

without using a weight function, N(λn). The weight function is defined as,

N(λn) =
∫ c

0
X2
ndx. (5.17)

By considering the method of separation of variables, the differential equation for X is,

X ′′ + λ2
nX = 0, 0 < x < c. (5.18)

where primes denote differentiation with respect to x. Therefore,

X = A cos(λnx) +B sin(λnx), (5.19)

X ′′ = −Aλ2
n cos(λnx)−Bλ2

n sin(λnx). (5.20)

and,
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X = − 1
λ2
n

X ′′. (5.21)

As discussed, the weight function is defined as,

N(λn) =
∫ c

0
X2
ndx = − 1

λ2
n

∫ c

0
XnX

′′
ndx = − 1

λ2
n

[
XnX

′
n

]c
0

+ 1
λ2
n

∫ c

0
X ′2n dx. (5.22)

Further, by differentiating the eigenfunction, Eq. (5.16),

1
λn
X ′n = −λn sin(λnx) + h1

k
cos(λnx). (5.23)

Squaring the Eq. (5.16) and Eq. (5.23) and then adding the resulting equations gives,

(Xn)2 + ( 1
λn
X ′n)2 =

(
λn cos (λnx) + h1

k
sin (λnx)

)2

+
(
−λn sin(λnx) + h1

k
cos(λnx)

)2

=λ2
n +

(
h1

k

)2

. (5.24)

which can be rewritten as,

X2
n = λ2

n +
(
h1

k

)2

−
(
X ′n
λn

)2

, (5.25)

and the weight function takes the form,

N(λn) =
∫ c

0
X2
ndx = λ2

nc+
(
h1

k

)2

c− 1
λ2
n

∫ c

0
X ′2n dx. (5.26)

By adding Eq. (5.22) and Eq. (5.26), we obtain,
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2N(λn) = λ2
nc+

(
h1

k

)2

c− 1
λ2
n

[
XnX

′
n

]c
0
, (5.27)

and after the following substitutions for the eigenfunction and its derivative,

Xn

∣∣∣∣∣
x=0

= λn X ′n

∣∣∣∣∣
x=0

= h1

k
λn. (5.28)

Further, in the right edge of the channel, x = c,

∂X

∂x
= −h2

k
X → XnX

′
n

∣∣∣∣∣
x=c

= −h2

k
X2
n

∣∣∣∣∣
x=c

(5.29)

The results of Eq. (5.28) and Eq. (5.29) are used to evaluate
[
XnX

′
n

]c
0

as follows,

[
XnX

′
n

]c
0

= −h2

k
X2
n

∣∣∣∣∣
x=c
− λ2

n

h1

k
. (5.30)

Using the boundary condition at the right edge, x = c, and Eq. (5.24), gives,

X ′n = −h2

k
Xn and X2

n =
λ2
n +

(
h1
k

)2

1 + h2
2

λ2
nk

2

. (5.31)

This equation is substituted in the Eq. (5.30),

[
XnX

′
n

]c
0

= −
h2

(
λ2
n +

(
h1
k

)2
)

k
(
1 + h2

2
λ2

nk
2

) − λ2
n

h1

k
(5.32)

and the result is used in Eq. (5.27). Therefore, the weight function can be defined as follows:

N(λn) = 1
2


λ2

n +
(
h1

k

)2

c+

(
h2
k

)
λ2
n +

(
h2
k

)2

+ h1

k

 . (5.33)

By using the above weight function, the orthogonality condition is now satisfied,
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∫ c

0
Dn

(
λn cos (λnx) + h1

k
sin (λnx)

)2

N(λn)dx = (5.34)

− q
k

∫ x2

x1
N(λn)

(
λn cos (λnx) + h1

k
sin (λnx)

)
dx.

Then, Dn can be calculated as,

Dn = 4q [−h1 cos (x1λn) + h1 cos (x2λn) + kλn (sin (x1λn)− sin (x2λn))]
2λn(ch2

1 + h1k + ck2λ2
n)− 2h1kλn cos(2cλn) + (k2λ2

n − h2
1) sin(2cλn) . (5.35)

Now, the Eq. (5.14) can be written as follows:

θ(x, z) =
∞∑
n=1

(
4q [−h1 cos (x1λn) + h1 cos (x2λn) + kλn (sin (x1λn)− sin (x2λn))]

2λn(ch2
1 + h1k + ck2λ2

n)− 2h1kλn cos(2cλn) + (k2λ2
n − h2

1) sin(2cλn)

)

(5.36)(
cos(λnx) + h1

kλn
sin(λnx)

)(
sinh(λnz)− φn cosh(λnz)

)
.

The thermal resistance can be calculated as follows:

Rt = θsource
Q

, (5.37)

θsource =
∫ x2
x1
θ(x, 0)dx

(x2 − x1)
, (5.38)

Q = q(x2 − x1)d. (5.39)

θsource is calculated to be,
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θsource =
∞∑
n=1

4q(kλn + hs tanh(λnt))
k(x2 − x1)λ2

n(hs + kλn tanh(λnt))
× (5.40)

[h1 cos (x1λn)− h1 cos (x2λn) + kλn (sin (x2λn)− sin (x1λn))]2

[2λn(ch2
1 + h1k + ck2λ2

n)− 2h1kλn cos(2cλn) + (k2λ2
n − h2

1) sin(2cλn)] .

Finally, the total thermal resistance is defined as,

Rt =
∞∑
n=1

4(kλn + hs tanh(λnt))
kdλ2

n(x1 − x2)2(hs + kλn tanh(λnt))
× (5.41)

[h1 cos (x1λn)− h1 cos (x2λn) + kλn (sin (x2λn)− sin (x1λn))]2

[2λn(ch2
1 + h1k + ck2λ2

n)− 2h1kλn cos(2cλn) + (k2λ2
n − h2

1) sin(2cλn)] .

The dimensionless thermal resistance can be defined as,

R∗t = k(x2 − x1)Rt. (5.42)

This new solution is general and can model the non-symmetrical flux channel with different

heat transfer coefficient along each edge and sink plane. Further, the solution can model

the adiabatic boundary condition in each edge or even along the bottom plane. The only

required change is that the value of the heat transfer coefficient should set to a small number

for the adiabatic boundary condition, i.e. h→ 0, and not h = 0.

5.2.2 Orthotropic Systems

For an orthotropic system with different in-plane and through plane thermal conductivity,

kx = ky = kxy 6= kz, the Laplace equation, Eq. (5.1), has the following form:

kxy
∂2T

∂x2 + kz
∂2T

∂z2 = 0 0 < z < t. (5.43)
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This equation and associated boundary conditions can be transformed to the discussed

isotropic system using the method of stretched coordinates [13, 18]. The schematic view of

the transformation from an orthotropic system to an isotropic system is shown in Fig. 5.2.

Figure 5.2: Transformation of an orthotropic system to an isotropic system.

The method of stretched coordinates is applied to the system. Application of the following

transformation simplifies the Laplace equation,

ξ = z√
kz

kxy

. (5.44)

The effective isotropic properties are as follows:

keff =
√
kxykz, teff = t√

kz

kxy

. (5.45)

By using the effective isotropic properties and defining θ = T − Tf , Eq. (5.43) becomes,

∂2θ

∂x2 + ∂2θ

∂ξ2 = 0 0 < ξ < teff . (5.46)

The boundary conditions are also transformed. The boundary condition along the source

plane is,
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∂θ

∂ξ

∣∣∣∣∣
ξ=0

= 0, 0 < x < x1, (5.47)

−keff
∂θ

∂ξ

∣∣∣∣∣
ξ=0

= q, x1 < x < x2,

∂θ

∂ξ

∣∣∣∣∣
ξ=0

= 0, x2 < x < c.

Along the edges of the system,

keff
∂θ

∂x

∣∣∣∣∣
x=0

= h1θ, (5.48)

−keff ∂θ

∂x

∣∣∣∣∣
x=c

= h2θ. (5.49)

The boundary condition along the bottom of the flux channel, ξ = teff , is defined as,

−keff
∂θ

∂ξ

∣∣∣∣∣
ξ=teff

= hsθ. (5.50)

The transformed governing equation and boundary conditions have the same form as the

governing equation and boundary conditions of the isotropic system. Therefore, the same

procedure can be used for solving the orthotropic system. The only differences are the

thermal conductivity, k, and the thickness, t, should be transformed to the effective thermal

conductivity, keff , and the effective thickness, teff . The total thermal resistance for the

orthotropic system can be written as follows:
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Rt =
∞∑
n=1

4(keffλn + hs tanh(λn teff ))
keff d λ2

n (x1 − x2)2 (hs + keff λn tanh(λn teff ))
× (5.51)

[h1 cos (x1λn)− h1 cos (x2λn) + keff λn (sin (x2λn)− sin (x1λn))]2

[2λn(c h2
1 + h1 keff + c k2

eff λ
2
n)− 2h1 keff λn cos(2cλn) + (k2

eff λ
2
n − h2

1) sin(2cλn)] .

The dimensionless thermal resistance can be calculated using Eq. (5.42) by substituting the

equivalent thermal resistance in the orthotropic systems.

5.3 Results and Discussion

This section considers the thermal resistance of a non-symmetrical flux channel with differ-

ent conductance along the edges. Three different cases are investigated including: different

heat transfer coefficients along the left and right edges and the heat sink plane, an adia-

batic boundary condition along the right edge of the channel, and an adiabatic boundary

condition along the bottom surface of the channel. For these three cases, the source dimen-

sion increases to investigate its effect on dimensionless thermal resistance. All results are

compared with FEM using COMSOL commercial software package.

The geometry of the flux channel are c = d = 0.02m and t = 0.001m. Some arbitrary

properties are used for modeling the three case studies. The properties of the channel for

the first case study are k = 2 W/mK, h1 = 100 W/m2K, h2 = 200 W/m2K and

hs = 300 W/m2K. The position of the left edge of the source is assumed x1 = 0.002m

and the position of the right edge of the source varies from x2 = 0.004m to x2 = 0.018m

with an increment of 0.002m. The dimensionless thermal resistance for different source

dimensions is shown in Fig. 5.3.

The flexibility of the proposed approach is shown by considering some other case studies.

For the second case study, the right edge of the channel is assumed adiabatic. For mod-
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Figure 5.3: Dimensionless thermal resistance for the 1st case study (h1 = 100 W/m2K,
h2 = 200 W/m2K and hs = 300 W/m2K).

eling the adiabatic boundary condition, the heat transfer coefficient along the right edge is

assumed h2 = 0.01 W/m2K. Dimensionless thermal resistance of the channel is shown in

Fig. 5.4.

The third case study is for a flux channel with an adiabatic boundary condition along the

bottom plane. The heat transfer coefficients are h1 = 100 W/m2K, h2 = 200 W/m2K

and hs = 0.01 W/m2K. The dimensionless thermal resistance for this case study is shown

in Fig. 5.5.

By considering the dimensionless thermal resistance for case 1 and case 2, it can be con-

cluded that the convective cooling along the edges almost has no effect in total thermal

resistance of thin flux channels if the conductance along the bottom surface is greater than

conductance along the edges. However, if the heat transfer coefficient along the bottom

plane is small in comparison to the heat transfer coefficient along the edges, the cooling
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Figure 5.4: Dimensionless thermal resistance for the 2nd case study (h1 = 100 W/m2K,
h2 = 0.01 W/m2K and hs = 300 W/m2K).

along the edges has a significant effect on the thermal resistance of the system even for the

thin systems, Fig. 5.5.

The presented analytical solution is in the form of a Fourier series. The convergence of

the Fourier series can be checked by increasing the number of terms. A similar approach

should be used to check the convergence of the FEM by refining the mesh and increasing

the number of free tetrahedral elements. Table 5.1 shows the convergence of both methods

for the first case study when x2 = 0.004. For testing the convergence of the Fourier series

representation of the solution, six partial sums of the series are used,
∑5
n=1,

∑10
n=1,

∑20
n=1,∑50

n=1,
∑90
n=1,

∑100
n=1. As can be seen, 90 terms in the series can model the dimensionless

thermal resistance of the system with four digits of precision. Further, it shows that even

10 terms can model the dimensionless thermal resistance with two digits of precision. The

execution time for 100 terms is 0.16 seconds. Furthermore, the convergence checking of
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Figure 5.5: Dimensionless thermal resistance for the 3rd case study (h1 = 100 W/m2K,
h2 = 200 W/m2K and hs = 0.01 W/m2K).

FEM shows 95851 elements can model the dimensionless resistance with four digits of

precision. The execution time for 226061 elements is 22 seconds. Based on a comparison

of the execution time for each method in a converged solution, it is clear that the analytical

method is much faster than FEM.

Table 5.1: Checking the convergence of the Fourier series and FEM.

For comparing both analytical and FEM results, the percent difference and mean percent

difference for all aspect ratios are presented in Table 5.2. The results of both methods are in
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good agreement and the mean percentage difference is less than 0.01% for all three cases.

Table 5.2: Percent difference for analytical and FEM for three case studies.

For a better understanding of the thermal resistance trend in these three cases, the total

thermal resistance for different source sizes is presented in Table 5.3. By increasing the

dimensionless source aspect ratio, ε = (x2 − x1)/c, the total thermal resistance decreases

as a result of decreasing the thermal spreading resistance.

Table 5.3: Total thermal resistance for different source sizes.

The last validation test is done with published literature about thermal spreading resistance

in a flux channel with adiabatic edges [15]. For this purpose, a symmetrical flux channel

with different dimensionless source aspect ratios is investigated. The adiabatic condition

along the edges of the system is modeled using a small number for the heat transfer co-

efficient, h1 = h2 = 10−10. All other geometries and properties are the same as other
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presented case studies. The dimensionless thermal resistance versus dimensionless source

aspect ratio is shown in Fig. 5.6. A good agreement is observed between both models.

Figure 5.6: Comparison of proposed analytical model with published literature [15] for
modeling a symmetrical flux channel with adiabatic edges.

Based on the presented results, the validation for the proposed model is done and it shows

this model can solve the thermal resistance problems faster than FEM. Furthermore, this

method is more general than previously published literature and can model different con-

ductance along the edges in non-symmetrical flux channels. The proposed approach can

even model the flux channels with an adiabatic boundary condition along any of the edges

and/or the bottom plane.



5.4 Summary and Conclusions

In this paper, an analytical model is presented for modeling the temperature distribution

and thermal resistance of non-symmetrical flux channels with different heat transfer co-

efficients along each edge and convective cooling along the sink plane. For solving the

governing equation, the method of separation of variables is used. Due to different heat

transfer coefficients along the edges of the channel, the orthogonality property is not sat-

isfied without a weight function. After some algebra, a weight function is proposed for

satisfying the orthogonality property. The temperature distribution in the flux channel is

presented in the form of a Fourier series, Eq. (5.36). The proposed method is a general

solution for modeling different conductance along the edges and the bottom plane includ-

ing the adiabatic boundary condition. Different case studies are investigated and results are

compared with FEM and other literature. The dimensionless thermal resistance, Eq. (5.42),

for four different case studies is illustrated for different source aspect ratios. Based on the

results, it can be concluded that the common adiabatic assumption along the edges is valid

for thin flux channels with an effective heat sinking along the sink plane. The proposed

model is much faster than FEM and can be used as a practical tool for modeling the thermal

behavior of flux channels. Thermal engineers just need the Eqs. (5.10, 5.36, 5.40, 5.41) to

model the system.
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Chapter 6

Thermal Behavior of Rectangular Flux Channels with Discretely

Specified Contact Flux and Temperature
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Abstract

An analytical approach for the thermal behavior of two dimensional rectangular flux chan-

nels with arbitrary boundary conditions on the source plane is presented. The boundary

condition along the source plane can be a combination of the first kind boundary condition

(Dirichlet or prescribed temperature) and the second kind boundary condition (Neumann

or prescribed heat flux). For modeling the boundary conditions along the source plane, the

method of least squares is used. The proposed solution is in the form of Fourier series

expansion and can be applied to both symmetrical and non-symmetrical channels. This

method is more general than other approaches and there is no need to use equivalent heat

1InterPACKICNMM2015, the ASME 2015 International Technical Conference and Exhibition on Pack-
aging and Integration of Electronic and Photonic Microsystems and ASME 2015 12th International Confer-
ence on Nanochannels, Microchannels, and Minichannels, San Francisco, California.
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flux distributions to model isothermal heat sources. The general approach for obtaining

the multidimensional temperature profile in flux channels and the advantages of the least

squares method is discussed. The proposed solution can be used to calculate the tempera-

ture at any specified point in the flux channel. Two case studies are presented. The first case

study is a flux channel with five discretely specified contact temperature along the source

plane. The second case study has both the first kind and second kind boundary conditions

on the source plane. The analytical results for both systems are compared with FEM re-

sults using COMSOL multiphysics commercial software package [1]. It is shown that the

proposed approach can precisely model the temperature profile over the flux channel. The

proposed model can be used to model the electronic devices with different heat contact

boundary condition on the surface.

Keywords: Heat Conduction, Temperature Profile, Thermal Resistance, Least Squares

Method

6.1 Introduction

Temperature profile and thermal resistance in electronic devices are of interest to thermal

engineers for designing an effective thermal management system. Thermal resistance con-

sists of one dimensional resistance and thermal spreading resistance. Thermal spreading

resistance is the main source of thermal resistance in some electronic devices and occurs

when heat flows from a portion of a surface and flows by conduction. If there is just one

source in the source plane, the thermal spreading resistance can be exactly calculated using

the difference between the total thermal resistance and one dimensional thermal resistance.

However, the exact value for thermal spreading resistance cannot be calculated when there

is more than one heat source since the resistance of anyone source will depend on the prox-

imity and strength of a neighboring source. For the flux channels with multiple heat sources,
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the temperature profile along the system is useful for designing the proper thermal manage-

ment system. For modeling the temperature profile along the system, the electronic devices

usually assumed as some common geometries such as flux channels (cubical geometries) or

flux tubes (cylinders). Due to the variety of applied boundary conditions in the flux chan-

nels and tubes, different analytical and numerical models were proposed according to the

specified boundary conditions, geometries, and properties.

Research on thermal spreading resistance starts with Kennedy [2] who worked on spreading

resistance in semiconductor devices. Lee et al. [3] and Song et al. [4] proposed an analytical

model for spreading resistance in electronic devices with different heat sinking. Ellison [5]

used theoretical and empirical methods for obtaining thermal characteristics of a forced-

convection cooled ceramic package with an extruded aluminum heat sink. Also, Ellsion [6-

8] analytically studied the thermal modeling of printed circuit boards and microelectronic

packages such as discrete patches of heat flux on rectangular multi-layer devices. Kokkas

[9] analytically studied the thermal behavior of multi-layer structures and the insulated

semiconductor chip. Lemczyk et al. [10-13] studied the thermal constriction resistance

with convective boundary condition for half-space contacts and thermal analysis of three-

dimensional conjugate heat transfer problems.

Muzychka et al. [14-21] worked on different aspects of thermal spreading resistance. They

presented a solution for the thermal constriction resistance of an isoflux or isothermal planar

heat source in contact with multilayered semi-infinite flux tube with application in conduc-

tive coatings [14, 15]. Also, they obtained thermal spreading resistance of circular flux

tubes and rectangular flux channels for isotropic and compound systems and modeled the

rectangular flux channel using the circular flux tube’s solution using suitable geometric

equivalence. They also considered the effect of edge cooling on the thermal spreading re-

sistance in circular flux tubes and rectangular flux channels [16]. Further, they proposed a

solution for the thermal spreading resistance of eccentric isoflux rectangular heat sources
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on finite rectangular compound flux channels [17, 18]. Muzychka [19] presented an in-

fluence coefficient method for calculating the mean and centroidal temperature of discrete

heat sources on a finite convectively cooled substrate by considering isotropic, orthotropic,

and compound systems. The convection in the source plane which causes heat dissipation

through the source plane was considered. Muzychka et al. [20, 21] modeled the thermal

spreading resistance in compound orthotropic systems with interfacial resistance. Bagnall

et al. [22, 23] modeled the systems with temperature dependent thermal conductivity and

multi-layer structures. Recently, Razavi et al. [24-26] studied the thermal spreading re-

sistance problems in two dimensional flux channels and modeled the thermal behavior of

channels with a non-uniform heat convection along the sink plane. Yovanovich [27] has

researched over four decades on solutions of thermal spreading resistance problems.

Although numerous researches have been done on different aspects of thermal spreading

resistance problems, there are still some gaps in this subject. For example, some of the

boundary conditions were simplified in order to be easily solved by analytical methods.

One of these boundary conditions is the specified heat source temperature that was modeled

as a general expression equivalent to the isothermal flux distribution [28, 29]. This model

has some limitations including the contact ratio of the heat source and the channel. Also, it

can just model one source over the channel. In this paper, a more general model for thermal

bahaviour of convective cooled flux channel with different boundary conditions along the

source plane is presented. The source plane boundary conditions can be a combination of

discrete heat fluxes, specified temperatures, and adiabatic conditions. Also, no equivalent

flux distribution is used for modeling the isothermal sources. For solving the problem and

modeling the thermal behavior of the system, the method of separation of variables and the

least squares technique are used.
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6.2 Problem Statement

Two common geometries in semi-conductor devices are flux tubes and flux channels. In

this article, a rectangular flux channel with discrete boundary conditions that are arbitrarily

specified along the source plane is studied. Convective cooling exist in the sink plane. The

edges of the channel are adiabatic. The proposed method can solve both symmetrical and

non-symmetrical channels with the mentioned boundary conditions, Fig. 6.1 and Fig. 6.2.

Two case studies are considered. The first case study is a channel with discretely specified

contact temperatures along the source plane, Fig. 6.1a and Fig. 6.2a, and the second case

study has a combination of arbitrary specified flux, temperature, and adiabatic conditions

along the source plane, Fig. 6.1b and Fig. 6.2b.

(a) Discretely specified contact temperatures
along the source plane.

(b) Discretely specified temperature, heat
flux, and adiabatic conditions along the
source plane.

Figure 6.1: 2D symmetrical flux channel.

Temperature profile is obtained by solving the Laplace equation:

∂2T

∂x2 + ∂2T

∂z2 = 0, (6.1)

or, by defining θ = T − Tf :
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(a) Discretely specified contact temperatures
along the source plane.

(b) Discretely specified temperature, heat
flux, and adiabatic conditions along the
source plane.

Figure 6.2: 2D non-symmetrical flux channel.

∂2θ

∂x2 + ∂2θ

∂z2 = 0. (6.2)

Along the source plane, the boundary condition for the first case study, Fig 6.1a and

Fig 6.2a, is as follows:

θ = θ1 0 < x < x1, θ = θ2 x1 < x < x2 ... θ = θn xn−1 < x < a.

(6.3)

and for the second case study, Fig. 6.1b and Fig 6.2b:

θ = θ1 0 < x < x1, (6.4)

−k∂θ
∂z

= 0 x1 < x < x2,

...

−k∂θ
∂z

= q1 xn−1 < x < a.
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The boundary conditions along the center line in Fig. 6.1 and first edge in Fig. 6.2 are:

∂θ

∂x

∣∣∣∣∣
x=0

= 0. (6.5)

Also, the edges of the channels, x = a, for both cases are adiabatic,

∂θ

∂x

∣∣∣∣∣
x=a

= 0. (6.6)

In the sink plane, z = t, the constant heat transfer coefficient represents the convective

cooling condition,

∂θ

∂z

∣∣∣∣∣
z=t

= −h
k
θ. (6.7)

The Laplace equation, Eq. (6.2), is solved using separation of variables method and pre-

scribed boundary conditions. The general solution of the Laplace equation has the follow-

ing form:

θ(x, z) = A0 +B0z +
∞∑
n=1

cos(λnx)[Cn cosh(λnz) +Dn sinh(λnz)]. (6.8)

By applying the boundary condition at x = a and by defining δn = λna, the eigenvalues of

the system are stated as follows:

λn = nπ

a
⇒ δn = nπ n = 1, 2, 3, · · · . (6.9)

Now, the sink boundary condition is applied and deduced:

A0 = −B0

(
t+ k

h

)
, (6.10)
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Cn = −Dn

(
λn cosh(λnt) + h

k
sinh(λnt)

λn sinh(λnt) + h
k

cosh(λnt)

)
= −Dnφn. (6.11)

The spreading function, φn, is defined as follows:

φn = δn +Bi tanh(δnτ)
δn tanh(δnτ) +Bi

, (6.12)

where Bi = ha
k

and τ = t
a
. Therefore,

θ(x, z) = −B0

(
t+ k

h
− z

)
+
∞∑
n=1

Dn cos(λnx)
(

sinh (λnz)− φn cosh (λnz)
)
. (6.13)

To obtain the unknown constants, B0 and Dn, the source plane boundary condition is used.

For the case of arbitrarily specified contact temperatures in the different regions of the

source plane, Fig. 6.1a and Fig. 6.2a, source plane boundary condition, Eq. (6.3), is applied

to the general form of solution, Eq. (6.13).

−B0

(
t+ k

h

)
−
∞∑
n=1

Dnφn cos(λnx) = θ1 0 < x < x1, (6.14)

−B0

(
t+ k

h

)
−
∞∑
n=1

Dnφn cos(λnx) = θ2 x1 < x < x2,

...

−B0

(
t+ k

h

)
−
∞∑
n=1

Dnφn cos(λnx) = θn xn−1 < x < a.

For the case of arbitrary specified heat flux, temperature, and adiabatic boundary conditions,

Fig. 6.1b and Fig. 6.2b, Eq. (6.4) is applied to the general form of solution, Eq. (6.13) and

results:
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θ = −B0

(
t+ k

h

)
−
∞∑
n=1

Dnφn cos(λnx) = θ1 0 < x < x1, (6.15)

−k∂θ
∂z

= −k
(
B0 +

∞∑
n=1

Dnλn cos(λnx)
)

= 0 x1 < x < x2,

...

−k∂θ
∂z

= −k
(
B0 +

∞∑
n=1

Dnλn cos(λnx)
)

= q1 xn−1 < x < a.

For more simplicity, the naming of the coefficients Dn in Eqs. (6.13- 6.15) can be changed

to Bn . Therefore, Eq. (6.14) can be written as follows, [30],

∞∑
m=0

Bmρmψm(x) = θ1 0 < x < x1, (6.16)

∞∑
m=0

Bmϕmψm(x) = θ2 x1 < x < x2,

...
∞∑
m=0

Bmϑmψm(x) = θn xn−1 < x < a,

where,

0 < x < x1 →


ρm =


−(t+ k

h
), m = 0

−φm, m = 1, 2, ...

ψm(x) = cos(λmx)

, (6.17)
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x1 < x < x2 →


ϕm =


−(t+ k

h
), m = 0

−φm, m = 1, 2, ...

ψm(x) = cos(λmx)

, (6.18)

...

xn−1 < x < a→


ϑm =


−(t+ k

h
), m = 0

−φm, m = 1, 2, ...

ψm(x) = cos(λmx)

. (6.19)

and Eq. (6.15) can be written as follows,

∞∑
m=0

Bmρmψm(x) = θ1 0 < x < x1, (6.20)

∞∑
m=0

Bmϕmψm(x) = 0 x1 < x < x2,

...
∞∑
m=0

Bmϑmψm(x) = q1 xn−1 < x < a,

where,
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0 < x < x1 →


ρm =


−(t+ k

h
), m = 0

−φm, m = 1, 2, ...

ψm(x) = cos(λmx)

, (6.21)

x1 < x < x2 →


ϕm =


−k, m = 0

−kλm, m = 1, 2, ...

ψm(x) = cos(λmx)

, (6.22)

...

xn−1 < x < a→


ϑm =


−k, m = 0

−kλm, m = 1, 2, ...

ψm(x) = cos(λmx)

. (6.23)

Applying the least squares method, the following integrals are defined in different regions

of the heat source plane. For the first case study, Fig. 6.1a and Fig. 6.2a,
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IN =
∫ x1

0

[
N∑
m=0

Bmρmψm(x)− θ1

]2

dx (6.24)

+
∫ x2

x1

[
N∑
m=0

Bmϕmψm(x)− θ2

]2

dx

...

+
∫ a

xn−1

[
N∑
m=0

Bmϑmψm(x)− θn
]2

dx,

and for the second case study, Fig. 6.1b and Fig. 6.2b,

IN =
∫ x1

0

[
N∑
m=0

Bmρmψm(x)− θ1

]2

dx (6.25)

+
∫ x2

x1

[
N∑
m=0

Bmϕmψm(x)− 0
]2

dx

...

+
∫ a

xn−1

[
N∑
m=0

Bmϑmψm(x)− q1

]2

dx.

The coefficients, Bm, should be calculated in order to minimize the above integrals,

∂IN
∂Bm

= 0 m = 0, 1, 2, ..., N. (6.26)

For having a more computationally efficient method, the following N + 1 algebraic equa-

tions can be defined,
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Ajm =ρjρm
∫ x1

0
ψj(x)ψm(x) dx (6.27)

+ϕjϕm
∫ x2

x1
ψj(x)ψm(x) dx

...

+ϑjϑm
∫ a

xn−1
ψj(x)ψm(x) dx,

bj = ρjθ1

∫ x1

0
ψj(x) dx+ ϕjθ2

∫ x2

x1
ψj(x) dx+ ...+ ϑjθn

∫ a

xn−1
ψj(x) dx. (6.28)

Then ρj , ρm, ϕj , ϕm, ϑj , ϑm and ψj(x), ψm(x) are substituted into Eq. (6.27) and Eq. (6.28)

using Eqs. (6.17- 6.19) for the first case, Fig. 6.1a and Fig. 6.2a, or by using Eqs. (6.21-

6.23) for the second case, Fig. 6.1b and Fig. 6.2b.

Ajm =ρjρm
∫ x1

0
cos(λjx) cos(λmx) dx (6.29)

+ϕjϕm
∫ x2

x1
cos(λjx) cos(λmx) dx

...

+ϑjϑm
∫ a

xn−1
cos(λjx) cos(λmx) dx,

bj = ρjθ1

∫ x1

0
cos(λjx) dx+ ϕjθ2

∫ x2

x1
cos(λjx) dx+ ...+ ϑjθn

∫ a

xn−1
cos(λjx) dx.

(6.30)
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As a result, a matrix system, AB = b, can be easily solved in a mathematical package in

order to obtain Bm constants. As mentioned, the coefficients Dn was changed to Bn in

Eq. (6.13). Thus, the temperature over the channel is known by substituting obtained Bm

coefficients in Eq. (6.13) and the temperature profile along the flux channel can be obtained.

In the next sections, the temperature profile of flux channels representing both discussed

case studies are presented. The first system has five discretely specified contact tempera-

tures along the source plane and the second system has specified contact temperature, heat

flux, and adiabatic conditions.

6.2.1 First Case Study Example

A symmetrical flux channel is assumed with arbitrary specified contact temperatures in the

source plane, Fig. 6.3.

Figure 6.3: Symmetrical flux channel with specified contact temperatures in five regions.

In this example, dimensions of the channel are assumed a = 10 cm, t = 1 cm and the

positions of the sources are x1 = 3 cm and x2 = 7 cm. The temperatures of the sources are

T1 = 100◦C, T2 = 50◦C and T3 = 70◦C. Also, the sink plane properties are h = 1000 W
m2K

and Tf = 25◦C and the thermal conductivity of the channel is assumed k = 20 W
mK

. The
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temperature profile of the channel is modeled analytically and the results are compared with

the FEM results.

The proposed analytical solution is applied and temperature profiles in different cross-

sections of the channel, z = 0.2, 0.4, 0.6, 0.8, 1 cm, are shown in Fig. 6.4. The calculations

are done in Matlab [31].

Figure 6.4: Temperature profile based on analytical model for the first case study example.

The convergence of analytical model is evaluated using different number of terms in the

Fourier series expansion. In Table 6.1, the temperature over the convective cooling sink

plane is shown for different number of terms in the series, n = 1, 5, 10, 100, 150. It shows

that the analytical solution is completely converged after using 100 terms in the series. Also,

it shows even 5 terms in the series can model the system precise enough for most designing

applications. The other interesting point is the execution time. It shows that the execution

time for modeling the system with 100 terms in the series is done in less than 2 seconds in
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a laptop with 4 GB RAM and Intel Core i5-2410M CPU. It is worth mentioning that this

execution time can be reached by defining a separate function in the Matlab for calculating

the integral of
∫ x2
x1

cos(λjx) cos(λmx) dx.

Table 6.1: Checking the convergence of partial sums in the Fourier series representing the
analytical solution for the first case study example.

Moreover, FEM results are obtained using the commercial COMSOL multiphysics soft-

ware package for comparison purposes. A triangular mesh is used in the FEM and the

convergence of the FEM was checked by increasing the number of elements and produc-

ing finer mesh in the system. As can be seen in Table 6.2, the accuracy of the results and

the computation time are increased by increasing the number of elements. For having an

accurate result with five digits of precision, 20230 elements are required. These results are

shown in the last row of Table 6.2 and are as same as the analytical results with n = 100 in

Table 6.1. However, 1332 elements can model the system accurately enough. In Fig. 6.5,

the temperature plot of the FEM is shown.

Table 6.2: Checking the convergence of the FEM by increasing the number of elements.

For comparing analytical and FEM results, temperature at specified points in the x and z

directions, x = 0, 2, 4, 6, 8, 10 cm and z = 0.2, 0.4, 0.6, 0.8, 1 cm, is shown in Table 6.3.

For modeling the system using FEM, 1332 elements are used. It shows that both models

agree with 4 decimal digits of precision in most of the points.
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Figure 6.5: Temperature profile over the channel based on FEM for the first case study
example.

Table 6.3: Comparison of analytical and FEM results for the first case study example.

6.2.2 Second Case Study Example

A system with different source boundary conditions including heat flux, constant temper-

ature, and adiabatic conditions is shown in Fig. 6.6, [26]. The geometry and properties

of the flux channel are assumed as same as the first case study example. For calculation

purposes, temperature and heat flux on the source plane are assumed as T1 = 50◦C and

q1 = 10000 W
m2 . Also, adiabatic regions exist between T1 and q1. Temperature profile that

is calculated by the analytical method is presented in Fig. 6.7.

The convergence of the Fourier series expansion is shown in Table 6.4. Based on this table,
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Figure 6.6: Symmetrical flux channel with temperature, heat flux, and adiabatic boundary
conditions along the source plane.

it is clear that the good results can be achieved by using 20 terms in the series and the

computation time for 20 terms is just 0.17 seconds.

Table 6.4: Checking the convergence of partial sums in the Fourier series representing the
analytical solution for the second case study example.

Figure 6.8 shows the temperature potential lines obtained by FEM. To compare the analyti-

cal and FEM results, the calculated temperatures of both methods are shown at 30 specified

points in the channel, Table 6.5. Also, Table 6.6 shows the mean average difference of both

methods along different planes, z = 0.2 cm · · · 1 cm. According to the presented results in

Table 6.6, the mean average difference is less than 0.5%.
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Figure 6.7: Temperature profile based on analytical model for the second case study exam-
ple.

6.3 Results and Discussion

These examples shows that the proposed analytical method can precisely calculate the tem-

perature profile for a channel with discretely specified boundary conditions along the source

plane. The proposed analytical model has some advantages in comparison with other ex-

isting heat transfer spreading tools. The heat transfer tools discretize the domain to solve

the governing equations. As a result, the temperature is obtained for the nodes and the

final result is not continuous over the domain. In the analytical model, domain griding

is not needed and the obtained temperature profile is continuous over the system. Also,

there is no need to do the regridding for modeling a system with different parameters and

as shown in another paper of one of the authors, the regridding time is conserved [20]. In

the numerical commercial packages, different meshing systems should be used to ensure
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Figure 6.8: Temperature potential lines over the channel based on FEM for the second case
study example.

Table 6.5: Comparison of analytical and FEM results for the second case study example.

a good convergency in the result. The other advantage is the accessibility of the proposed

approach. This method can be easily implemented in most of the mathematical softwares.

Therefore, if there is no access to the heat transfer tools, the system can be modeled easily

in a mathematical package. Moreover, thermal engineers can have a better understanding

of the system using the analytical models.

6.4 Summary and Conclusions

An analytical method for modeling the temperature profile in a flux channel with dis-

cretely specified source plane boundary conditions is presented. Both symmetrical and

non-symmetrical channels are studied. The Laplace equation is solved using the separation

of variables method and least squares technique. The proposed solution is in the form of

Fourier series expansion which can be easily modeled in computational software packages.

Two case studies are presented and the temperature profiles over the channel for both cases

are calculated. The effect of using different number of terms in the series is considered.



Table 6.6: Mean average difference between the analytical and FEM results along different
planes of the flux channel for the second case study example.

Also, the results are compared with FEM and an excellent agreement is obtained between

analytical and FEM results. The proposed analytical solution can be used for modeling

the flux channels with numerous different source plane boundary conditions without any

limitations in the number and position of heat sources. Different temperatures and fluxes

can be specified for each source. All sources are modeled at the same time and there is no

need to use the superposition method to consider the effect of each individual heat source.

The proposed method can be efficiently used by thermal engineers for designing electronic

devices.
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Chapter 7

Temperature Distribution in a Circular Flux Tube with Arbitrary

Specified Contact Temperature and Heat Flux
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Abstract

Temperature profile and thermal resistance of the electronic devices are the key factors for

designing the thermal management system. In this paper, an analytical solution for tem-

perature distribution and thermal resistance of a circular flux tube with discretely specified

source boundary conditions is presented. The boundary condition along the source plane

can be specified as constant temperature, heat flux, adiabatic condition or a combination

of all mentioned conditions. The boundary condition along the sink plane is convective

cooling and the boundary condition along the walls is adiabatic. For solving the governing

equation, the method of separation of variables and the least squares method are used by

considering the mentioned boundary conditions. Three different case studies are presented
1Submitted to ITHERM 2016, The Intersociety Conference on Thermal and Thermomechanical Phenom-

ena in Electronic Systems, Las Vegas, NV, USA.
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and the results are compared with the Finite Element Method (FEM). Further, the effect of

orthotropic properties is considered. These analytical solutions help thermal engineers to

have a better understanding of the thermal behavior of electronic devices.

Keywords: Electronic Cooling, Heat Conduction, Temperature Profile, Thermal Resis-

tance, Orthotropic Properties, Separation of Variables, Lease Squares Method

7.1 Introduction

Thermal management is one of the most important issues for designing modern micro-

electronic devices. One of the key factors for choosing the best thermal management system

is the accurate prediction of temperature profile and thermal resistance of the system. Due

to the heat flow through different layers with different areas in electronic devices, thermal

spreading resistance is important and in some cases is the main source of thermal resistance.

Thermal spreading resistance is a known parameter needed when designing electronic de-

vices. Many researchers work on different aspects of spreading resistance by considering

different shapes, materials, configuration, boundary conditions and other properties. Re-

search on thermal spreading resistance began with Kennedy [1] who worked on spreading

resistance in semiconductor devices. Yovanovich et al. [2] considered the thermal spread-

ing resistance between contacting paraboloids. They developed a general expression for

thermal spreading resistance of circular contact flux on right circular cylinders [3] and on a

half-space [4]. Single arbitrary shape with constant flux on insulated half-spaces [5], annu-

lar contacts on circular flux tubes [6], and constriction resistance due to a circular annular

contact [4] were investigated. Negus et al. [7] considered square root of the heat source to

non-dimensionalize thermal constriction resistance.

Muzychka et al. [8-15] solved the thermal spreading resistance problem for different sys-

tems with different geometries, boundaries and properties. They analyzed the circular and
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rectangular systems with isotropic and orthotropic properties and concentric and eccen-

tric arbitrary heat sources [9, 10, 11, 15, 16, 17]. Furthermore, they considered thermal

spreading resistance of circular flux tubes and rectangular flux channels for isotropic and

compound system [9, 17]. Orthotropic and compound systems were investigated and a sim-

ple transformation for orthotropic and isotropic systems were proposed [15, 18]. Moreover,

the effect of edge cooling on thermal spreading resistance in circular flux tubes and rectan-

gular flux channels was considered [10]. The solution for thermal spreading resistance for

flux tubes and channels by considering compound and orthotropic systems with or without

edge cooling was considered and the effect of eccentric heat sources and different heat flux

distributions was investigated [8]. Recently, Muzychka et al. [19] analyzed the compound

orthotropic systems with interfacial resistance. Bagnall et al. [20] studied the thermal

spreading resistance for a system with temperature dependent thermal conductivity.

Yovanovich and Marrota [21] summarized most of the important models for spreading re-

sistance problems. Furthermore, Yovanovich [22] reviewed all of his forty years of research

on steady-state and transient thermal constriction and spreading resistances.

The main goal of this research is modeling the temperature profile and thermal resistance of

a circular flux tube (cylinder) with discretely specified source plane boundary conditions.

The boundary conditions along the source plane can be specified as constant temperature,

heat flux, adiabatic condition and a combination of them. The only limitation is that the

specified boundary condition should be concentric on the flux tube. Furthermore, systems

with orthotropic properties are analyzed and a general model for the orthotropic systems is

presented. The proposed models are useful for modeling the thermal behavior of electronic

devices such as LEDs.
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7.2 Thermal Spreading Resistance

Thermal spreading resistance exists in microelectronic devices where heat enters a material

through a finite region. Some microelectronic devices can be modeled as a heat source on a

flux tube which is cooled by a heat transfer coefficient in the sink plane. In the case of a flux

tube with adiabatic edges, the total thermal resistance is composed of the one dimensional

thermal resistance and thermal spreading resistance as follows:

RT = R1D +Rs. (7.1)

The total thermal resistance for steady heat transfer can be calculated using mean source

temperature (T s), film temperature (Tf ), and total heat flow rate from the source into the

flux (Q),

RT = T s − Tf
Q

. (7.2)

The one dimensional thermal resistance can be obtained as follows:

R1D = T z=0 − Tf
Q

. (7.3)

For a single discrete source, Mikic and Rohsenow [23] proposed,

Rs = RT −R1D = T s − Tf
Q

− T z=0 − Tf
Q

, (7.4)

Rs = T s − T z=0

Q
. (7.5)

The thermal spreading resistance disappears when the source completely covers the top of

the flux tube. The thermal spreading resistance is the major part of the thermal resistance
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for thin electronic devices and should be considered for designing the thermal management

system [24].

In some flux tubes, combinations of different sources such as discretely specified contact

temperature and heat flux exist along the source plane. For these cases, the thermal spread-

ing resistance cannot be exactly calculated as the thermal resistance of each source depends

on the strength of other sources. Therefore, the temperature distribution can be used to have

a better understanding of the uniformity of the temperature along the system and recognize

the hot spots. Also, if the heat fluxes of all the heat sources are known, the total resistance

can be calculated by using the mean source contact plane temperature to the sink plane

temperature and total heat flow. The total heat flow can be calculated if the prescribed heat

flux in different regions of the source plane is known.

T cp = 1
A

∫ ∫
A
TdA, (7.6)

QT =
∫ ∫

A
qdA, (7.7)

RT = T cp − Tf
QT

. (7.8)

In this paper, the temperature profile along the flux tube is calculated. The obtained tem-

perature profile shows the thermal spreading along the flux tube and can be used to identify

the uniformity of the temperature and recognize the hot spots of the system.

7.3 Problem Statement

The semi-conductor of micro-electronic devices can be assumed as a finite region such as

flux tubes or flux channels that are in contact with heat sources and heat sink. To obtain
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the temperature distribution along the flux tube, the Laplace equation should be solved by

considering specified boundary conditions. In this paper, a flux tube is considered as a

model of a micro-electronic device with discretely specified concentric heat sources. The

sources can be defined as specified temperature and heat flux and there is no limitation on

their quantity. A sample of the flux tube with three discrete regions along the source plane

is shown in Fig. 7.1. The surfaces between the specified sources and along the walls of the

tube are assumed to be adiabatic. Furthermore, the convective cooling condition is applied

along the sink plane.

Figure 7.1: Flux tube with arbitrary boundary condition along the source plane.

For the isotropic system, thermal conductivity is constant in all directions and the Laplace

equation has the following form:

O2T = 0. (7.9)

For cylindrical co-ordinates, the Laplace equation is defined as follows:

∂2θ

∂r2 + 1
r
∂θ

∂r + ∂2θ

∂z2 = 0 0 < z < t. (7.10)
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where θ = T − Tf is the temperature excess that is defined relative to the sink temperature.

The following boundary conditions are imposed on the system. Along the source plane,

discretely contact temperature and heat flux are arbitrary specified. All of the sources are

concentric and the adiabatic condition exists between them. There is no limitation for the

number and position of the sources. In this paper, a sample of the source plane boundary

conditions is presented, Fig. 7.1. The system has the following boundary condition along

the source plane,

−k ∂θ
∂z

∣∣∣∣∣
z=0

= q1 0 < r < r1, (7.11)

θ

∣∣∣∣∣
ξ=0

= θ1 r1 < r < r2,

−k ∂θ
∂z

∣∣∣∣∣
z=0

= 0 r2 < r < r3,

...

−k ∂θ
∂z

∣∣∣∣∣
z=0

= qn rn−1 < r < a.

The boundary conditions along the center-line and edge of the flux tube are,

∂θ

∂r

∣∣∣∣∣
r=0

= 0, (7.12)

∂θ

∂r

∣∣∣∣∣
r=a

= 0. (7.13)

The boundary condition along the sink plane can be defined as follows:

−k ∂θ
∂z

∣∣∣∣∣
z=t

= hθ. (7.14)
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7.3.1 Solution for Isotropic Circular Disk

In this section, a short summary of the solving procedure is introduced. A solution may

be found using the method of separation of variables and the least squares technique. The

general solution to the Laplace equation is,

θ(r, z) = A0 +B0z + [AJ0(λr) +BY0(λr)][C cosh(λz) +D sinh(λz)]. (7.15)

The first two terms of the above equation stand for uniform heat flow.

Applying the condition along the center-line of the flux tube, Eq. (7.12), results in B = 0.

Further, the eigenvalues of the system can be determined using the edge boundary condi-

tion, Eq. (7.13) as follows:

d

dr
(J0(λr))

∣∣∣∣∣
r=a

= −λJ1(λr)
∣∣∣∣∣
r=a

= J1(λa) = 0 (7.16)

and the eigenvalues are,

δn = λna = 3.8317, 7.0156, 10.1735.13.2327, · · · . (7.17)

It is worth mentioning that each eigenvalue can be determined by adding π to the previous

eigenvalue (δn − δn−1 → π) when n > 5. Hence, the general solution is,

θ(r, z) = A0 +B0z +
∞∑
n=1

J0(λnr)
(
Cn cosh (λnz) +Dn sinh (λnz)

)
. (7.18)

Applying the boundary condition along the sink plane, Eq. (7.14), results,

A0 = −B0

(
t+ k

h

)
, (7.19)
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Cn = −Dn

(
λn cosh(λnt) + h

k
sinh(λnt)

λn sinh(λnt) + h
k

cosh(λnt)

)
= −Dnφn. (7.20)

The spreading function, φn, is defined as follows:

φn = δn +Bi tanh(δnτ)
δn tanh(δnτ) +Bi

, (7.21)

where the Biot number is defined as , Bi = ha/k, and dimensionless thickness is defined

as, τ = t/a.

The solution at this point can be stated as,

θ(r, z) = −B0

(
t+ k

h
− z

)
+
∞∑
n=1

DnJ0(λnr)
(

sinh (λnz)− φn cosh (λnz)
)
. (7.22)

To obtain the unknown coefficients, Dn, the boundary condition along the source plane

should be used. As mentioned, the source plane boundary condition is arbitrarily specified

as a combination of heat flux, contact temperatures and adiabatic condition. Applying the

general form of the solution, Eq. (7.22), to the source-plane boundary condition, Eq. (7.11),

results,

−k ∂θ
∂z

∣∣∣∣∣
z=0

= −k
(
B0 +

∞∑
n=1

DnλnJ0 (λnr)
)

= q1 0 < r < r1, (7.23)

θ(r, 0) = −B0

(
t+ k

h

)
−
∞∑
n=1

DnφnJ0(λnr) = θ1 r1 < r < r2,

−k ∂θ
∂z

∣∣∣∣∣
z=0

= −k
(
B0 +

∞∑
n=1

DnλnJ0 (λnr)
)

= 0 r2 < r < r3,

...

−k ∂θ
∂z

∣∣∣∣∣
z=0

= −k
(
B0 +

∞∑
n=1

DnλnJ0 (λnr)
)

= qn rn−1 < r < a.
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The coefficients Dn are renamed to Bn in Eqs. (7.22- 7.23), and as a result, Eq. (7.23)

becomes [25],

−k ∂θ
∂z

∣∣∣∣∣
z=0

=
∞∑
m=0

Bmρmψm(r) = q1 0 < r < r1, (7.24)

θ(r, 0) =
∞∑
m=0

Bmϕmψm(r) = θ1 r1 < r < r2,

−k ∂θ
∂z

∣∣∣∣∣
z=0

=
∞∑
m=0

Bmϑmψm(r) = 0 r2 < r < r3,

...

−k ∂θ
∂z

∣∣∣∣∣
z=0

=
∞∑
m=0

Bmκmψm(r) = qn rn−1 < r < a.

where,

0 < r < r1 →


ρm =


−k, m = 0

−kλm, m = 1, 2, ...

ψm(r) = J0 (λmr)

, (7.25)

r1 < r < r2 →


ϕm =


−(t+ k

h
), m = 0

−φm, m = 1, 2, ...

ψm(r) = J0 (λmr)

, (7.26)
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r2 < r < r3 →


ϑm =


−k, m = 0

−kλm, m = 1, 2, ...

ψm(r) = J0 (λmr)

, (7.27)

...

rn−1 < r < a→


κm =


−k, m = 0

−kλm, m = 1, 2, ...

ψm(r) = J0 (λmr)

. (7.28)

For obtaining Bm coefficients, the method of least squares is used and the following inte-

grals are defined in different regions of the heat source plane,

IN =
∫ r1

0

[
N∑
m=0

Bmρmψm(x)− q1

]2

dr (7.29)

+
∫ r2

r1

[
N∑
m=0

Bmϕmψm(x)− θ1

]2

dr

+
∫ r3

r2

[
N∑
m=0

Bmϑmψm(x)− 0
]2

dr

...

+
∫ a

rn−1

[
N∑
m=0

Bmκmψm(x)− qn
]2

dr.

The coefficients, Bm, are calculated in order to minimize the above integrals,
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∂IN
∂Bm

= 0 m = 0, 1, 2, ..., N. (7.30)

A more computationally efficient method can be obtained using the following N + 1 alge-

braic equations,

Ajm =ρjρm
∫ r1

0
rψj(r)ψm(r) dr (7.31)

+ϕjϕm
∫ r2

r1
rψj(r)ψm(r) dr

+ϑjϑm
∫ r3

r2
rψj(r)ψm(r) dr

...

+κjκm
∫ a

rn−1
rψj(r)ψm(r) dr,

bj =ρjq1

∫ r1

0
rψj(r) dr (7.32)

+ϕjθ1

∫ r2

r1
rψj(r) dr

+ϑj0
∫ r3

r2
rψj(r) dr

...

+κjqn
∫ a

rn−1
rψj(r) dr.

The variables ρj , ρm, ϕj , ϕm, ϑj , ϑm,κj , κm and ψj(r), ψm(r) are defined based on

Eqs. (7.25- 7.28) and substituted into Eq. (7.31) and Eq. (7.32),
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Ajm =ρjρm
∫ r1

0
rJ0 (λjr) J0 (λmr) dr (7.33)

+ϕjϕm
∫ r2

r1
rJ0 (λjr) J0 (λmr) dr

+ϑjϑm
∫ r3

r2
rJ0 (λjr) J0 (λmr) dr

...

+κjκm
∫ a

rn−1
rJ0 (λjr) J0 (λmr) dr,

bj =ρjq1

∫ r1

0
rJ0 (λjr) dr (7.34)

+ϕjθ1

∫ r2

r1
rJ0 (λjr) dr

+ϑj0
∫ r3

r2
rJ0 (λjr) dr

...

+κjqn
∫ a

rn−1
rJ0 (λjr) dr.

The matrix system of AB = b is defined in order to obtain the Bm constants. This matrix

can be solved in a mathematical package. Therefore, the temperature profile in the disk is

known by substituting the obtained Bm coefficients in Eq. (7.22) by considering that the

coefficients Dn were changed to Bm. This equation can be used to obtain temperature at

each specified point of the flux tube.

7.3.2 Solution for Orthotropic Circular Disk

The Laplace equation for a circular disk with different thermal conductivity (kr 6= kz) can

be written as follows:
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kr

(
∂2 T
∂r2 + 1

r
∂T
∂r

)
+ kz

∂2 T
∂z2 = 0 0 < z < t. (7.35)

To convert the orthotropic system to the isotropic system, the method of stretched coordi-

nates is used. By using ξ = z√
kz
kr

and θ = T − T∞ , the orthotropic system is converted to

the following isotropic system with effective isotropic properties (ke =
√
krkz , te = t√

kz
kr

),

∂2θ

∂r2 + 1
r
∂θ

∂r + ∂2θ

∂ξ2 = 0 0 < ξ < te. (7.36)

Further, the boundary conditions of the system are transformed. Along the source plane,

the boundary conditions are,

−ke
∂θ

∂ξ

∣∣∣∣∣
ξ=0

= q1 0 < r < r1, (7.37)

θ

∣∣∣∣∣
ξ=0

= θ1 r1 < r < r2,

−ke
∂θ

∂ξ

∣∣∣∣∣
ξ=0

= 0 r2 < r < r3,

...

−ke
∂θ

∂ξ

∣∣∣∣∣
ξ=0

= qn rn−1 < r < a.

Along the center and edge of the flux tube, the following conditions are required,

∂θ

∂r

∣∣∣∣∣
r=0

= 0, (7.38)

∂θ

∂r

∣∣∣∣∣
r=a

= 0. (7.39)

The boundary conditions along the sink plane can be defined as follows:
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−ke
∂θ

∂ξ

∣∣∣∣∣
z=te

= hθ. (7.40)

All of the above boundary conditions have the same form of the boundary conditions for

the isotropic system; however, k, t and z were replaced by ke =
√
krkz, te = t√

kz
kr

and

ξ = z√
kz
kr

. Hence, the temperature profile for the orthotropic system can be obtained by

substituting the effective properties:

θ(r, z) = −B0

(
te + ke

h
− ξ

)
+
∞∑
n=1

BnJ0(λnr)
(

sinh (λnξ)− φn cosh (λnξ)
)
, (7.41)

where,

φn =
λn cosh(λnte) + h

ke
sinh(λnte)

λn sinh(λnte) + h
ke

cosh(λnte)
. (7.42)

To obtain the unknown constants, the least squares method is used. The only difference

from the isotropic system is the following redefined variables based on the effective prop-

erty,

0 < r < r1 →


ρm =


−ke, m = 0

−keλm, m = 1, 2, ...

ψm(r) = J0 (λmr)

, (7.43)
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r1 < r < r2 →


ϕm =


−(te + ke

h
), m = 0

−φm, m = 1, 2, ...

ψm(r) = J0 (λmr)

, (7.44)

r2 < r < r3 →


ϑm =


−ke, m = 0

−keλm, m = 1, 2, ...

ψm(r) = J0 (λmr)

, (7.45)

...

rn−1 < r < a→


κm =


−ke, m = 0

−keλm, m = 1, 2, ...

ψm(r) = J0 (λmr)

. (7.46)

Using the above variables in Eq. (7.33) and Eq. (7.34), the matrix system of AB = b can

be defined to obtain the Bm constants.

7.4 Results and Discussion

In this section, three different case studies for a symmetrical flux tube are investigated. In

the first case study, the boundary condition along the source plane consists of one central

heat flux and adiabatic condition, Fig. 7.2a. The second case study consists of one central
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heat source with constant temperature and adiabatic condition, Fig. 7.2b. The third case

study consists of the constant contact temperature, heat flux and adiabatic condition along

the source plane, Fig. 7.2c.

(a) Case A (b) Case B (c) Case C

Figure 7.2: Case studies.

The boundary condition along the source plane for the first case study is,

−k ∂θ
∂z

∣∣∣∣∣
z=0

= q1 0 < r < r1, (7.47)

−k ∂θ
∂z

∣∣∣∣∣
z=0

= 0 r1 < r < a.

The boundary conditions for the second case study are constant contact temperature and

adiabatic condition as follows:

θ

∣∣∣∣∣
z=0

= θ1 0 < r < r1, (7.48)

−k ∂θ
∂z

∣∣∣∣∣
z=0

= 0 r1 < r < a.
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The boundary condition along the source plane for the third case study includes the constant

contact temperature, heat flux and adiabatic condition,

θ

∣∣∣∣∣
z=0

= θ1 0 < r < r1, (7.49)

−k ∂θ
∂z

∣∣∣∣∣
z=0

= 0 r1 < r < r2,

−k ∂θ
∂z

∣∣∣∣∣
z=0

= q1 r2 < r < a.

The geometry and property are assumed as follows: a = 0.1m, r1 = 0.03m, r2 = 0.07m,

t = 0.01m, q1 = 104 W
m2 , T1 = 45 ◦C, Tf = 20 ◦C, k = 20 W

mK
and h = 1000 W

m2K
.

Temperature distribution of the flux tube is modeled using the computation program Mat-

lab [26]. The temperature profile for all three cases is shown in Figs. 7.3- 7.5. Different

cross-sections, z = 0, 0.2, 0.4, 0.6, 0.8, 1 cm, are considered. Further, all case studies are

compared with the Finite Element Method (FEM) using a commercial software package

[27]. The temperature of the flux tube in 36 points is compared. As can be seen in Ta-

bles 7.1- 7.3, the obtained temperatures for both methods are in good agreement.
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Figure 7.3: Temperature profile for the case A.

Figure 7.4: Temperature profile for the case B.
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Figure 7.5: Temperature profile for the case C.

Table 7.1: Comparing the results of analytical and FEM for the case A.
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Table 7.2: Comparing the results of analytical and FEM for the case B.

Table 7.3: Comparing the results of analytical and FEM for the case C.

For a better understanding of the accuracy of the results, the mean percentage difference

between the analytical and FEM results for all three cases are calculated, Table 7.4. All 36

points in the flux tube are considered. The results show the mean percentage difference in

all three cases is less than 0.5%.

Table 7.4: Mean percentage difference between the analytical and FEM results.

The proposed method can be easily programmed in most of the mathematical software



packages.

7.5 Summary and Conclusions

In this paper, the temperature distribution of a cylindrical flux tube with arbitrary boundary

conditions along the source plane is analytically studied using the method of separation of

variables and least square method. A combination of different boundary conditions along

the source plane including the contact temperature, heat flux and adiabatic condition is in-

vestigated. Further, three different case studies are considered and their temperature profiles

are presented. All results are compared with the FEM using a commercial software pack-

age. Based on the comparison between the analytical and FEM results, it can be concluded

that the proposed analytical method can accurately solve the thermal distribution problems

along the flux tube. The mean percent error for all three cases is less than 0.5%. The pro-

posed model is really useful for thermal engineers who want to have a better understanding

of thermal distribution of cylindrical flux tubes with complex boundary conditions along

the source plane. It is a popular geometry in electronic industry.
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Abstract

In this paper, the temperature profile and thermal resistance of a three dimensional flux

channel with non-uniform heat convection in the sink plane is modeled analytically using

the method of separation of variables. The heat source on the flux channel is concentric

and the conductance along the sink plane is defined symmetrically using a hyperellipse

function. This function is used to define different conductance distributions along the sink

plane from the most intense cooling in the central region to uniform conductance along

the sink plane. Further, the convective cooling condition is assumed along the edges of

the system. This boundary condition can even model the system with adiabatic edges by

assuming a negligible heat transfer coefficient along the edges. Due to the three dimensional

1Submitted to the Journal of Thermophysics and Heat Transfer
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geometry of the flux channel, the thermal resistance consists of thermal spreading resistance

in the x and y directions and three dimensional spreading resistance on the xy plane. The

governing equation of each part is solved individually and the final answer is obtained using

the superposition method. The final solutions for temperature profile and thermal resistance

are presented in form of Fourier series expansions. All results are compared with the Finite

Element Method (FEM) using COMSOL commercial software package [1].

Keywords: Electronics Cooling, Heat Conduction, Thermal Resistance, Variable Heat

Transfer Coefficient

8.1 Introduction

A proper analysis of temperature profile and thermal resistance of electronic systems is

essential for designing a durable device. For this purpose, different analytical, experimental

and numerical methods are used to obtain a precise thermal behavior of the system. For the

analytical methods, the geometry of the device is usually simplified to rectangular flux

channels (cubical geometries) or cylindrical flux tubes (cylindrical geometries). Another

important factor for thermal behavior and thermal resistance calculation is the effect of

thermal spreading resistance. Thermal spreading resistance occurs when heat enters the

channel through a small region and flows by conduction. Thermal spreading resistance is a

major part of thermal resistance in some electronic devices.

Kennedy [2] started the research on thermal spreading resistance. Ellison [3-5] analyt-

ically studied the thermal spreading resistance in electronic devices. Yovanovich [6-10]

studied different spreading resistance problems for more than forty years. Lemczyk and

Yovanovich [11, 12] studied the thermal spreading/constriction resistance in systems with

convective boundary conditions. Yovanovich [13] summarized the most important mod-

els of thermal spreading resistance in a review paper about contact, gap and joint resis-
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tance. Yovanovich and Marotta [14] wrote a chapter about thermal spreading resistance in

a heat transfer handbook. Muzychka et al. [15-19] have done comprehensive research on

different aspects of thermal spreading resistance problems including different geometries,

boundaries and properties. They modeled the spreading resistance of rectangular flux chan-

nels with eccentric heat sources, adiabatic edges and a uniform heat transfer coefficient

along the sink plane [15]. Further, they studied the effect of the geometry and edge cooling

on thermal spreading resistance [16]. He developed a computationally efficient method for

calculating the temperature of flux channels with discrete heat sources and uniform conduc-

tance along the sink plane [17]. Recently, Muzychka et al. [18] analytically modeled the

thermal spreading resistance for compound orthotropic systems with interfacial resistance

between layers of the channel. He developed the same model for the cylindrical flux tubes

[19]. Bagnall et al. [20] studied the effect of temperature dependent thermal conductivity

on thermal spreading resistance of the system with a uniform heat transfer coefficient along

the sink plane using the Kirchhoff transform. Furthermore, they modeled the spreading

resistance in multi-layered flux channels [21].

Although a comprehensive study has been done on different aspects of thermal spreading

resistance, no research has been conducted on the effect of non-uniform conductance along

the sink plane. The heat transfer coefficient along the sink always simplifies as a uniform

conductance. However, in the most of the electronic devices, the sink configuration is not

uniform, Fig. 8.1.

Figure 8.1: Flux channel with non-uniform conductance.
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In this study, the effect of non-uniform heat transfer coefficient on the sink plane of a three

dimensional flux channel is investigated.

8.2 Problem Statement and Solving Procedure

Rectangular flux channels are one of the main geometries that are used in the electronic

devices. Based on the configuration and boundary conditions of the system, the heat transfer

analysis of the flux channels is done in two or three dimensions. In this paper, a three

dimensional flux channel is assumed with a central heat source, convective cooling along

the edges and variable heat transfer coefficient along the sink plane. The top view of the

system is shown in Fig. 8.2.

Figure 8.2: Top view of a 3D flux channel with a central heat source and convective edge
cooling.

The thermal behavior of the flux channel can be obtained by solving the Laplace equation,

∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2 = 0, (8.1)

or,
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∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2 = 0, (8.2)

where θ = T − Tf . Based on the Fig. 8.2, boundary conditions of the system along the

source plane stated as follows:

∂θ

∂z

∣∣∣∣∣
z=0

= − q
k
,Over the source region, (8.3)

∂θ

∂z

∣∣∣∣∣
z=0

= 0,Out of the source region. (8.4)

The boundary conditions along the edges of the system are as follows:

∂θ

∂x

∣∣∣∣∣
x=c

= −he
k
θ, (8.5)

∂θ

∂y

∣∣∣∣∣
y=d

= −he
k
θ. (8.6)

The side views of the system are shown in Fig. 8.3 and Fig. 8.4. The convective cooling

boundary condition along the edges of the system can be turned to the adiabatic condition

when he → 0.

The boundary conditions along the centerline of the system are as follows:

∂θ

∂x

∣∣∣∣∣
x=0

= 0, (8.7)

∂θ

∂y

∣∣∣∣∣
y=0

= 0. (8.8)

Along the sink plane, a variable heat transfer coefficient exists. The boundary condition

along the sink plane is stated as follows:



204

z

q

z

h(x) Tf

a

c

x

he

t

Figure 8.3: xz view of a 3D flux channel.
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Figure 8.4: yz view of a 3D flux channel.

∂θ

∂z

∣∣∣∣∣
z=t

= −h(x)
k

θ. (8.9)

To define the variable heat transfer coefficient, h(x), a hyperellipse function in the x di-

rection is used to define a wide variety of different conductance distribution along the sink

plane,

h(x) = ho

[
1−

(
x

c

)m]
. (8.10)

To change the configuration of the conductance along the sink plane, the power of the

hyperellipse function, m, should be changed. Different distributions of conductance for

half of the flux channel in the x direction for different values of m is shown in Fig. 8.5.
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Figure 8.5: Variable heat transfer coefficient for half of the slab by considering h(x)
ho

=
1− (x

c
)m.

It is clear that the total conductance is dependent to the value of m. For instance, the total

conductance for m = 1 is half of the conductance for m→∞. To represent a system with

constant conductance for different values of m, the conductance is integrated over half of

the flux channel and ho is reevaluated according to the h,

h = 1
c

∫ c

0
h(x) dx = mho

m+ 1 ⇒ ho = h (m+ 1)
m

,

h(x) = h (m+ 1)
m

[
1−

(
x

c

)m]
. (8.11)

Eq. (8.11) can be used to compare flux channels with different distributions of the heat

transfer coefficient and the same total conductance. Different distribution of heat transfer

coefficient based on Eq. (8.11) for half of the flux channel is shown in Fig. 8.6.
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Figure 8.6: Variable heat transfer coefficient for half of the slab by considering
h(x)
h

= (m+1)
m

[1−
(
x
c

)m
].

To obtain the thermal behavior of the 3D flux channel with non-uniform conductance along

the sink plane, Fig. 8.1, the governing equation, Eq. (8.2) is solved with the method of sep-

aration of variables and using the mentioned boundary conditions. The solution is obtained

by superposing the solution of temperature distributions for 2D flux channels in the xz and

yz planes and the effect of the three dimensional solution.

8.2.1 Temperature Distribution of 2D Flux Channel in xz Plane

The two dimensional flux channel in the xz plane is shown in Fig. 8.3. As mentioned, the

method of separation of variables is used to solve the Laplace equation. By considering the

boundary condition along the centerline, Eq. (8.7), and edge of the channel, Eq. (8.5), the

solution for the 2D flux channel in the xz plane can be stated as follows:
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θ(x, z) =
∞∑
n=1

cos (λnx) (Cn cosh (λnz) +Dn sinh (λnz)) . (8.12)

The edge boundary condition, Eq. (8.5), is used to define the eigenvalues of the system,

λn sin(λnc) = he
k

cos(λnc)n = 1, 2, 3, · · · . (8.13)

To obtain the eigenvalues of the system, this equation can be solved numerically by a math-

ematical software package. The first eigenvalue, n = 1, represents the effect of one dimen-

sional solution. However, due to the non-uniform heat conductance along the sink plane

and edge cooling, there is no one dimensional resistance.

The next boundary condition that is applied to Eq. (8.12) is the sink boundary condition,

Eq. (8.9). Therefore,

Dn =− Cn

λn sinh(λnt) + h(x)
k

cosh(λnt)
λn cosh(λnt) + h(x)

k
sinh(λnt)

 , (8.14)

Dn = −Cnφn(x). (8.15)

where φn(x) is the spreading function. The general solution can be rewritten as follows:

θ(x, z) =
∞∑
n=1

Cn cos (λnx) (cosh (λnz)− φn(x) sinh (λnz)) . (8.16)

The final boundary condition is along the source plane for the 2D flux channel in the xz

plane. According to Eq. (8.3) and Eq. (8.4), the boundary condition along the source plane

can be defined as follows:
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∂θ

∂z

∣∣∣∣∣
z=0

= − q
k
, 0 < x < a, (8.17)

∂θ

∂z

∣∣∣∣∣
z=0

= 0, a < x < c.

Due to the dependence of the spreading function, φn(x), on x, the orthogonality property

cannot be used and the method of least squares [22] is applied to obtain the last unknown

coefficient, Cn, of the Fourier series in the xz plane. By considering the source plane

boundary condition in the xz plane, Eq. (8.17), the following integrals are defined for use

in the least squares method,

IN =
∫ a

0

[
−k ∂θ

∂z

∣∣∣∣∣
z=0
− f(x)

]2

dx+
∫ c

a

[
−k ∂θ

∂z

∣∣∣∣∣
z=0
− g(x)

]2

dx (8.18)

where f(x) and g(x) are the known source plane flux distributions in different regions,

∂θ

∂z

∣∣∣∣∣
z=0

=
∞∑
n=1
−Cnλnφn(x) cos (λnx) , (8.19)

f(x) = −k ∂θ
∂z

∣∣∣∣∣
z=0

= q, (0 < x < a), (8.20)

g(x) = −k ∂θ
∂z

∣∣∣∣∣
z=0

= 0, (a < x < c). (8.21)

Therefore, Eq. (8.18) can be rewritten as:

IN =
∫ a

0

[
−k

∞∑
n=1
−Cnλnφn(x) cos (λnx)− q

]2

dx (8.22)

+
∫ c

a

[
−k

∞∑
n=1
−Cnλnφn(x) cos (λnx)− 0

]2

dx.
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The above Eq. (8.22) should be minimized in order to obtain the unknown coefficients, Cn,

∂IN
∂Cn

= 0n = 1, 2, · · · , N. (8.23)

This equation can be easily solved to obtain the unknown coefficient, Cn, using the sym-

bolic computation program Maple [23]. Therefore, the temperature distribution of the 2D

flux channel is found by substituting the values of Cn in Eq. (8.16).

Thermal resistance for the 2D flux channel in the xz plane can be obtained as follows:

θs,xz = T s − Tf = 1
2a

∫ a

−a
θ(x, 0)dx = 1

a

∞∑
n=1

Cn sin (λna)
λn

, (8.24)

Rt,xz = θs,xz
Q

= 1
4 a2 b q

∞∑
n=1

Cn sin (λna)
λn

. (8.25)

This definition describes the total thermal resistance of a 2D flux channel in the xz plane

with variable heat transfer coefficient along the sink plane.

8.2.2 Temperature Distribution of 2D Flux Channel in yz Plane

In this section, the thermal behavior of the 2D flux channels in the yz plane, Fig. 8.4, is

solved using the method of separation of variables. The main difference between the 2D

flux channel in the xz and yz planes is the sink boundary condition. As the heat transfer

coefficient along the sink plane is a function of x and it is not dependent on y and z direc-

tions, conductance is assumed constant and considered as the average of h(x) over the sink

plane. The general solving procedure is similar to the solving procedure for the 2D flux

channel in the xz plane except for the method that is used for obtaining the last unknown
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coefficients. The general solution for the 2D flux channel in the yz plane can be written as

follows:

θ(y, z) =
∞∑
m=2

cos (δmy)
(
Cm cosh (δmz) +Dm sinh (δmz)

)
. (8.26)

The first term in the series, m = 1, was discarded as it represents the one dimensional

solution and was considered in the solution in the xz plane. Therefore, all summations

started from m = 2 for the solution in the flux channel in yz plane. The eigenvalues of the

channel in the yz plane, δm, are,

δm sin(δmd) = he
k

cos(δmd)m = 2, 3, 4, · · · . (8.27)

By using the sink boundary condition,

Dm =− Cm

δm sinh(δmt) + h(x)
k

cosh(δmt)
δm cosh(δmt) + h(x)

k
sinh(δmt)

 = −Cmφm(x), (8.28)

and the spreading function in the yz plane is defined as,

φm =
δm sinh(δmt) + h(x)

k
cosh(δmt)

δm cosh(δmt) + h(x)
k

sinh(δmt)
. (8.29)

Therefore, the general form of the solution has the following form:

θ(y, z) =
∞∑
m=2

Cm cos (δmy)
(

cosh (δmz)− φm(x) sinh (δmz)
)
. (8.30)

To obtain the last unknown coefficients, Cm, the source plane boundary condition is used.

This boundary condition can be written as follows:
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∂θ

∂z

∣∣∣∣∣
z=0

= − q
k
, 0 < y < b, (8.31)

∂θ

∂z

∣∣∣∣∣
z=0

= 0, b < y < d.

Due to the non-dependence of the heat transfer coefficient, h(x), on the y and z directions,

we assume that it is constant on the sink plane and consider its average along the sink plane.

Therefore, the orthogonality property is satisfied. Applying the source boundary condition,

Eq. (8.31), to Eq. (8.30) gives,

∞∑
m=2
−Cmφm(x)δm cos (δmy) = − q

k
, 0 < y < b, (8.32)

∞∑
m=2
−Cmφm(x)δm cos (δmy) = 0, b < y < d.

To use the orthogonality property, both sides of Eq. (8.32) are integrated over the flux

channel and multiplied by cos(δmy),

Cm

∫ d

0
φmδm cos2(δmy)dy =

∫ b

0

q

k
cos(δmy)dy. (8.33)

As a result, the last unknown coefficient for the solution of 2D flux channel in the yz plane,

Cm, is,

Cm = 2 q sin(b δm)
k δ2

m d φm
, (8.34)

and the final solution for the 2D flux channel in the yz plane is,
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θ(y, z) = 2 q
k d

∞∑
m=2

(
sin(δm b) cos (δmy)

δ2
m φm

)(
cosh (δmz)− φm sinh (δmz)

)
, (8.35)

where φm is obtained by Eq. (8.29). Thermal spreading resistance in the yz direction is

calculated using the mean temperature of the source in the yz direction,

Rs,yz =
∞∑
m=2

(
sin2(δmb)

2 c k b2 d δ3
m

)δm cosh(δmt) + h(x)
k

sinh(δmt)
δm sinh(δmt) + h(x)

k
cosh(δmt)

 . (8.36)

As mentioned, the first term in the series was discarded as the effect of the first eigenvalue

was considered in the Rt,xz in Eq. (8.25).

8.2.3 Effect of 3D Spreading on Temperature Distribution

The last component of the solution for the temperature distribution along the 3D flux chan-

nel is the effect of 3D spreading. For this purpose, the method of separation of variables is

used for solving the Laplace equation, Eq. (8.2), as follows [24]:

θ(x, y, z)3D =
∞∑
m=2

∞∑
n=2

cos (λnx) cos (δmy)
(
Cnm cosh (βnmz) +Dnm sinh (βnmz)

)
,

(8.37)

where βnm =
√
λ2
n + δ2

m.

The heat transfer coefficient along the sink plane is assumed to be the average of the variable

heat transfer coefficient,

h =
∫ c

0

∫ d

0
h(x) dxdy. (8.38)

By using the boundary condition along the sink plane, Eq. (8.9), and the assumption of
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average conductance instead of variable heat transfer coefficient, Eq. (8.38), the spreading

function, φnm, can be defined as follows:

Dnm =− Cnmφnm, (8.39)

φnm =
βnm sinh(βnmt) + h

k
cosh(βnmt)

βnm cosh(βnmt) + h
k

sinh(βnmt)
. (8.40)

The final boundary condition is along the source plane,

∂θ

∂z

∣∣∣∣∣
z=0

= − q
k
, 0 < x < aand0 < y < b, (8.41)

∂θ

∂z

∣∣∣∣∣
z=0

= 0, a < x < corb < y < d.

By applying the source plane boundary condition and using the orthogonality property, the

last unknown coefficients are obtained,

Dnm = −q
∫ a

0
∫ b

0 cos(λnx) cos(δmy)dxdy
βnmk

∫ c
0
∫ d

0 cos2(λnx) cos2(δmy)dxdy
, (8.42)

and after some algebra,

Dnm = −16 q δmλn sin(aδm) sin(bλn)
δm λn βnm k (2cδm + sin(2cδm) (2dλn + sin(2dλn)) , (8.43)

Cnm = −Dnm

φnm
= −

−16 q δm λn sin(aδm) sin(bλn)
δm λn βnm k (2cδm+sin(2cδm)(2dλn+sin(2dλn))

βnm sinh(βnmt)+ h
k

cosh(βnmt)
βnm cosh(βnmt)+ h

k
sinh(βnmt)

. (8.44)

All coefficients are known and the temperature distribution based on the 3D effect is calcu-

lated using Eq. (8.37),
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θ(x, y, z)3d =
∞∑
m=2

∞∑
n=2

cos (λnx) cos (δmy) (8.45)− −16qδmλn sin(aδm) sin(bλn)
δmλnβnmk(2cδm+sin(2cδm)(2dλn+sin(2dλn))

βnm sinh(βnmt)+ h
k

cosh(βnmt)
βnm cosh(βnmt)+ h

k
sinh(βnmt)

cosh (βnmz) +

−16qδmλn sin(aδm) sin(bλn)
δmλnβnmk (2cδm + sin(2cδm) (2dλn + sin(2dλn)) sinh (βnmz)

.
The thermal spreading resistance for 3D effect is obtained as follows [10]:

Rs,3D = 1
a2 b2 c d k

∞∑
m=2

∞∑
n=2

(
sin(a δm)2 sin(b λn)2

δ2
m λ

2
n βnm

)βnm sinh(βnmt) + h
k

cosh(βnmt)
βnm cosh(βnmt) + h

k
sinh(βnmt)

 .
(8.46)

Both series started at two, m = 2 and n = 2, to discarded the first eigenvalues.

8.2.4 Superposition of Solutions

The temperature profile along the three dimensional flux channel is calculated by superpo-

sition of the solution in the xz plane, Eq. (8.16); solution in the yz plane, Eq. (8.35); and

3D effects, Eq. (8.45),

T (x, y, z) = Tf + θ(x, z) + θ(y, z) + θ(x, y, z)3d. (8.47)

The thermal resistance of the three dimensional flux channel can be calculated by super-

posing Rt,xz, Eq. (8.25); Rs,yz, Eq. (8.36); and Rs,3D, Eq. (8.46),

Rt = Rt,xz +Rs,yz +Rs,3D. (8.48)

The total thermal resistance is non-dimensionalized as follows:
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R∗t = k
√
abRt. (8.49)

In the next section, the dimensionless thermal resistance for a three dimensional flux chan-

nel with different source aspect ratios will be analyzed.

8.3 Results and Discussion

In this part, the dimensionless thermal resistance of a three dimensional flux channel for

different source size aspect ratios is calculated. The obtained results are compared with

the Finite Element Method (FEM) using COMSOL Commercial Software Package [1].

The flux channel has the following geometry and properties: c = 0.01m, d = 0.01m,

t = 0.001m, k = 2W/mK, he = 100W/m2K, h = 200W/m2K.

The convergence of the FEM was checked by refining the mesh in the system. Different

numbers of tetrahedral elements is used. As a sample, the convergence of the FEM for a

three dimensional flux channel with the aforementioned geometry and properties, a source

size of a = 0.002m and b = 0.002m and a variable heat transfer coefficient along the

sink plane based on Eq. (8.11) for m = 1 is analyzed. The system with a tetrahedral

mesh consisting of 7338 elements converged with two digits of precision for dimensionless

thermal resistance, Table 8.1.

R
t

R*
t

27 55.98292 0.223932

98 64.56095 0.258244

270 66.97987 0.267919

728 67.46619 0.269865

7338 67.74133 0.270965

226061 67.82096 0.271284

Table 8.1: The convergence of the FEM by refining the mesh.
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To specify the variable heat transfer coefficient, two approaches may be used, Eq. (8.10)

and Eq. (8.11). Based on the first approach, the variable heat transfer coefficient for dif-

ferent values of m have the same pick and different averages, Fig.8.5. For the second

approach, variable heat transfer coefficients for different values of m have the same aver-

age and different picks, Fig.8.6. The second approach is more appropriate for comparing

different configurations of heat sinks with the same overall conductance. In this case study,

the variable heat transfer coefficient over the sink plane is based on Eq. (8.11) and assumed

to be linear with m = 1 and quadratic with m = 2.

As discussed, the total thermal resistance of a three dimensional flux channel consists of

three parts as follows: Rt,xz, Rs,yz and Rs,3D. Tables 8.2 and 8.3 show the effects of each

part and their influence on the total thermal resistance of a three dimensional flux channel

with linear and quadratic variable heat transfer coefficient along the sink plane. Further, the

effect of different source aspect ratios is shown. The number of terms that are used in each

series is equal to 10. The first column represents the source aspect ratios, ε =
√
ab/
√
cd =

0.1 · · · 1; the second column represents the total thermal resistance in xz plane, Rt,xz that is

obtained by Eq. (8.25); the third column shows the spreading resistance in yz plane, Rs,yz,

using Eq. (8.36); the fourth column represents the effect of three dimensional spreading

resistance, Rs,3D, Eq. (8.46); and the last column is the total thermal resistance of the flux

channel, Rt, Eq. (8.48). As can be seen in Table 8.2, the effect of three dimensional

spreading resistance is negligible for source size aspect ratios greater than 0.8, ε > 0.8.
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Table 8.2: Thermal resistance of a flux channel with linear heat transfer coefficient, m = 1,
and different source aspect ratios.

Table 8.3: Thermal resistance of a flux channel with quadratic heat transfer coefficient,
m = 2, and different source aspect ratios.

The dimensionless thermal resistance for different source size aspect ratios, ε = a/c =

b/d, for both the analytical method and the FEM is shown in Figures 8.7 and 8.8. The

dimensionless thermal resistance in both methods is calculated using R∗t = k
√
abRt.
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Figure 8.7: Dimensionless thermal resistance for m = 1.

Figure 8.8: Dimensionless thermal resistance for m = 2.



219

Figures 8.7 and 8.8 show that the results of the dimensionless thermal resistance for both

methods are in agreement. As an approximation technique is used in the analytical solution,

the percent error is evaluated by comparing the results with the FEM. Table 8.4 shows the

mean percent error of all aspect ratios for both linear and quadratic variable heat transfer

coefficient.

Table 8.4: Mean percent error of different source size aspect ratios for linear, m = 1, and
quadratic, m = 2, variable heat transfer coefficient.

As shown in Table 8.4, the mean percent error for both cases is less than 2.5%. The main

source of error is the assumption of constant heat transfer coefficient, Eq. (8.38), for the

third part of the solution. Furthermore, the mean percent error decreases by increasing m

in the variable heat transfer coefficient. The reason is that by increasing m, a more uniform

conductance occurs along the sink plane and the assumption of uniform conductance in the

third part of the solution, Eq. (8.38), becomes more reasonable.

The proposed solution is useful for thermal engineers who want to have a better understand-

ing of different factors contributing to the total thermal resistance of the three dimensional

flux channels. Although, this method is able to calculate the total thermal resistance of

the system with high accuracy, the dimensions of the flux channels should be analyzed

precisely to consider the effect of the first term in the series.

8.4 Conclusion

In this paper, a general expression for the thermal resistance of a three dimensional flux

channel with variable heat transfer coefficient along the sink plane is obtained. The method

of separation of variables is used and the unknown Fourier coefficients are obtained using

the least squares method and the orthogonality property. A hyperellipse function is used to



simulate a variable conductance along the sink plane. Furthermore, a dimensionless thermal

resistance for different variable heat sink distributions is presented and compared with the

Finite Element Method (FEM). The results are in agreement and the mean percent error

for different source aspect ratios is less than 2.5%. The proposed models are useful for

thermal engineers who want to have a better understanding of thermal resistance in three

dimensional geometries to be able to analyze the effect of each dimension of the system.
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Chapter 9

Summary, Conclusions, and Recommendations for Future Studies

Thermal analysis is an essential factor for designing the electronic devices. Thermal anal-

ysis of electronic devices was investigated by different researchers in the past fifty years.

However, each model is applicable to a specific system with different limitation such as

specific kind of geometry, property, and boundary conditions. Although a wide variety of

models were presented, there are still some systems with specific boundary conditions that

were not modeled. In this thesis, some of these systems are analytically studied and some

models are presented for the thermal analysis of two common geometries in the electronic

devices. The proposed models can be effectively used by thermal engineers for modeling

the system.

The systems that are presented in this thesis can be categorized based on the geometry,

boundary condition, and properties. The geometry of the system usually is simplified to

circular flux tube or rectangular flux channel. Both of these geometries are analytically

studied in this research. Also, symmetrical and non-symmetrical systems are modeled.

Different boundary conditions along the source plane are discussed. Various configurations

are studied and the trend of dimensionless thermal resistance versus dimensionless source

size is presented. Furthermore, the effects of the following factors in the thermal resistance

problems are examined in different chapters:
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• Size of the heat source,

• Thickness of the channel,

• Variable conductance,

• Different Biot numbers.

The governing equation of the discussed problems through the thesis is the Laplace equation

and solved by using the method of separation of variables. Also, a novel solution is obtained

by using the least squares technique for temperature distribution in flux channels and tubes

with variable conductance along the sink plane or combined heat sources along the source

plane. Furthermore, a method for defining the appropriate weight function to satisfy the

orthogonality property is discussed. The proposed method can be used to define the weight

function for non-symmetrical flux channels with different conductance along the left edge,

right edges, and sink plane. This is a useful model for analyzing the devices with wall-

mounted heat sinks. The proposed solution is in the form of Fourier series expansion which

can be easily modeled in computational software packages.

In chapter one, the general aspects of thermal spreading resistance problems are discussed.

Also, some of the industrial applications are presented. In chapter two, past decades liter-

atures are categorized and some of the most important models are summarized. In chapter

three and four, a novel solution is presented for flux channels with variable heat transfer co-

efficient along the sink plane. In chapter five, a computational efficient model is presented

for modeling a non-symmetrical flux channel with three different heat transfer coefficients

along the edges. In chapter six, a system with numerous discretely specified source plane

boundary conditions is modeled. This model has no limitation in the number and posi-

tion of heat sources. Also, different temperatures and heat fluxes can be specified for each

region along the source plane. All sources are modeled at the same time and there is no

need to use the superposition method to consider the effect of each individual heat source.
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In chapter seven, a circular flux tube with different boundary conditions along the source

plane is modeled. The source plane boundary condition can be defined as a combinations of

heat fluxes, adiabatic conditions, and contact temperatures. Both isotropic and orthotropic

properties are discussed. In chapter eight, a general expression for the thermal resistance of

a three-dimensional flux channel with variable heat transfer coefficient along the sink plane

is obtained. A hyperellipse function is used along the heat sink plane to simulate a variable

conductance.

The source plane boundary conditions in the presented models can be a combination of

prescribed temperature, prescribed heat flux, and the adiabatic condition. In the proposed

models, the prescribed temperature along the source plane is applied directly to the solu-

tions. In the previous literature, this boundary condition was converted to an equivalent heat

flux distribution and then applied to the solution. This conversion has some limitations for

the contact size of the system. In the proposed models, there is no need for this conversion

and different specified contact temperatures along the source plane can be modeled directly.

The other big advantage versus the previous literature is that there is no need to model the

system for each specific heat source and then apply the superposition method to consider

the effect of each specific heat sources. The effect of all heat sources can be considered at

the same time as discussed in the chapters five and seven.

Furthermore, the boundary condition along the edges of the system mostly assumed as

convective cooling through the thesis. This boundary condition is general and even can

model the adiabatic boundary condition along the edges by assuming he → 0.

The boundary condition along the sink plane is assumed as constant or variable conduc-

tance. The variable conductance is a practical boundary condition in the industrial systems

and never had been studied analytically. All the previous literature are assumed that the

uniform heat transfer coefficient exists along the sink plane to simplify the solution proce-

dure. Different configuration of heat sink conductance is presented and the effect of this



227

boundary condition in the thermal resistance of the system is discussed. Two functions are

proposed to simulate a wide variety of different heat sink configurations. Due to the vari-

able conductance, the orthogonality property is not satisfied and the least squares method

is used to solve the problem.

The main contribution of this thesis for modeling the thermal behavior of the systems can

be summarized as follows:

• In this thesis, a model for analyzing systems with variable heat transfer coefficient

along the sink plane is proposed. Although it is a common heat sink configuration

in the electronic industry, it was never addressed in the previous literature. This

boundary condition was usually simplified as a uniform heat conductance. Through

this thesis, it is shown that this simplification causes some errors for flux channels

with dimensionless thickness less than 0.5, τ < 0.5. However, if the dimensionless

thickness is greater than 0.5, τ > 0.5, a uniform heat transfer coefficient can be

applied without too much loss in accuracy.

• Rectangular flux channels and circular flux tubes with combined heat source bound-

ary conditions are modeled. The source plane boundary condition can be a combi-

nation of different heat fluxes, contact temperatures, and adiabatic conditions. All

boundary conditions along the source plane are modeled simultaneously and there

is no need to do the superposition method. In the previous literatures, the superpo-

sition method was used to capture the effect of each individual heat source on the

source plane. The proposed model is faster and can be easily used to model complex

systems.

• The contact temperature along the source plane is modeled without using the equiva-

lent flux distributions. In previous literatures, contact temperatures were converted to

the equivalent flux distribution to model the thermal behavior of the system. By using
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the actual temperature instead of equivalent flux distribution, the proposed model is

simpler and more accurate and there is no limitation on the geometry of the system.

• Rectangular flux channel with different heat conductance along the edges is modeled.

Although it is a practical boundary condition for electronic devices with different

wall-mounted heat sinks along the edges of the system, it was never addressed in the

previous literature. Due to the non-similarity of the heat transfer coefficient along the

edges, a weight-function is proposed to satisfy the orthogonality property and a com-

putational efficient model is presented. Also, based on the results that are presented

through the thesis, it can be concluded that the common adiabatic assumption along

the edges is only valid for thin flux channels with an effective heat sinking along the

sink plane.

• Through the thesis, it is shown that the proposed analytical methods are faster than

commercial software. Therefore, the time of design phase of electronic products

can be significantly reduced that results less expensive production cycle. Also, an-

alytical methods produce more accurate results and thermal engineers can have a

better insight about the thermal behavior of the system. Furthermore, commercial

software usually does not provide enough information about the solving algorithms.

Therefore, software works as a blackbox and thermal engineers usually cannot have

enough insights about the accuracy of their result. Moreover, the results of analytical

models are continuous through the models and there is no need to do gridding and the

regridding time is conserved in case of any changes in the specification of the system.

Although different aspects of thermal spreading resistance problems are studied, there are

still some gaps that should be addressed. The author proposes the following problems be

studied:

• Systems with more flexible specification of conductance such as discretely specified
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heat transfer coefficient along the heat sink plane. It is a practical boundary condition

in the electronic devices such as systems with coolant channels along the heat sink

plane or systems with fin heat sinks with varying fin heights and gaps between the

fins.

• Systems with a combination of temperature, heat flux, and conductance along the

heat source plane.

• Multi-layer systems with discretely specified inward and outward heat fluxes along

the heat source and heat sink plane.

• Extension of problems with variable and discretely specified heat conductance along

the heat sink plane in compound systems.

• Considering the effect of orthotropic properties and temperature dependent thermal

conductivity in compound systems with variable or discretely specified heat conduc-

tance.

• Studying the effect of different thermal conductivity in all three principal directions

will add value to all previously published papers.

It is worth to emphasize that the main advantage of the proposed models through the thesis

is that thermal engineers can have a better understanding of the system by using these

analytical models.


