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Abstract 

To predict the maneuvering performance of a propelled SPAR vessel, a mathematical 

model was established as a path simulator. A system-based mathematical model was 

chosen as it offers advantages in cost and time over full Computational Fluid Dynamics 

(CFD) simulations. The model is intended to provide a means of optimizing the 

maneuvering performance of this new vessel type. 

In this study the hydrodynamic forces and control forces are investigated as individual 

components, combined in a vectorial setting, and transferred to a body-fixed basis. SPAR 

vessels are known to be very sensitive to large amplitude motions during maneuvers due 

to the relatively small hydrostatic restoring forces. Previous model tests of SPAR vessels 

have shown significant roll and pitch amplitudes, especially during course change 

maneuvers. Thus, a full 6 DOF equation of motion was employed in the current 

numerical model. 

The mathematical model employed in this study was a combination of the model 

introduced by the Maneuvering Modeling Group (MMG) and the Abkowitz (1964) 

model. The new model represents the forces applied to the ship hull, the propeller forces 

and the rudder forces independently, as proposed by the MMG, but uses a 6DOF equation 

of motion introduced by Abkowitz to describe the motion of a maneuvering ship.  

The mathematical model was used to simulate the trajectory and motions of the propelled 

SPAR vessel in 10˚/10˚, 20˚/20˚ and 30˚/30˚ standard zig-zag maneuvers, as well as 
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turning circle tests at rudder angles of 20˚ and 30˚. The simulation results were used to 

determine the maneuverability parameters (e.g. advance, transfer and tactical diameter) of 

the vessel. The final model provides the means of predicting and assessing the 

performance of the vessel type and can be easily adapted to specific vessel configurations 

based on the generic SPAR-type vessel used in this study. 
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1 Introduction 

1.1 Background and motivation 

The operational function of marine vessels in higher sea conditions has always been a 

challenge for the marine industry. The concentration of hydrodynamic forces at the sea 

surface, i.e. wave and flow forces, in harsh sea states cause severe motions that impair the 

vessel’s service.  

The propelled SPAR vessel which was developed at MUN and has been commercialized 

under the name TranSPAR attempts to address this problem and has been under 

development since 2010, when it was selected as one of the top projects in the Carbon 

Trust’s, Offshore Wind Accelerator (OWA) Access competition. The SPAR-type vessel 

is a unique solution to the problem of reduced vessel motions. Based on a combination of 

offshore structure technology with a vessel concept, the propelled SPAR was originally 

designed as a service vessel to transfer personnel and equipment to offshore wind 

turbines. However, this type of vessel could be applicable in a wide range of the ocean 

industries where small, stable vessels are required. 

The SPAR-type vessel concept is under continuing development and there are areas 

where the performance of vessels with surface piercing struts might be improved through 

better understanding of the performance parameters and the links between the physical 

characteristics and the dynamic response of the vessel. The significant feature of the 

vessel type is the relatively small strut that links the submerged body of the vessel to the 
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above water load-carrying cab of the vessel. Although this feature directly addresses the 

reduction of wave-induced motions, the slenderness of the strut introduces challenges in 

terms of the controllability and maneuverability of the vessel. 

 

Figure 1- The Tran-SPAR vessel model 

In this research, the maneuvering performance of the propelled-SPAR vessel will be 

examined through numerical simulation. Moreover, this research will study the 

characteristics of the SPAR-type vessel to better understand the influence of the main 

vessel characteristics such as the weight distribution of the struts and the immersed 

propeller hull and the position of the rudder and thruster, in maneuvering performance of 

the vessel. Better understanding of these aspects of the vessel performance may lead to 
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overall improvements in the performance of SPAR type vessels or other applications 

where specialized vessels or vehicles make use of surface piercing struts.  

This research is based on a combination of numerical models and physical model tests to 

understand and optimize vessel performance. The mathematical analysis is based on 

physical laws governing bodies in fluids and boundary conditions. A numerical 

computing environment was employed to solve the governing equations in a real-time 

simulation.  

1.2 Scope of work 

To predict the vessel trajectory under certain controlled circumstances and simulate its 

motions, the equation of motion is expressed and solved at each time-step of a real-time 

simulation. The equation of motion for the maneuvering motion of ships is normally 

expressed in 3 or 4 degrees of freedom (DOF) as the roll, pitch and heave motions are 

relatively small and their effect in the maneuvering of the ship is negligible. However, for 

the case of this study, as the roll, pitch and heave motions are significant due to the long 

surface piercing strut, the equation of motion is expressed in 6 DOF, which describe all 

axial and rotational motions of the vessel. 

In order to solve the equation of motion at each time step, the forces and moments on the 

vessel are expressed as rudder forces, steady hydrodynamic forces, propulsion, added 

mass, gravity and buoyancy forces. In this study, rudder forces and steady hydrodynamic 

forces are measured experimentally and then mathematically modeled. Propulsion and 

restoring forces are estimated by empirical formulations based on the geometry of the 
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vessel, and added mass coefficients are obtained by the boundary integral equation 

method. 

MATLAB software is employed to complete the real-time numerical simulation of the 

vessel maneuvering. In this phase, a comprehensive model of the dynamic behavior of 

the vessel is achieved. 

The numerical model is used to simulate the trajectory and motions of the propelled 

SPAR in 10˚/10˚ , 20˚/20˚  and 30˚/30˚  standard zig-zag maneuvers, as well as turning 

circle tests at rudder angles of 20˚ and 30˚. The simulation results are used to determine 

maneuverability parameters (e.g. advance, transfer and tactical diameter) of the vessel. 

The final model provides the means of predicting and assessing the performance of the 

SPAR vessel and can be easily adapted to specific vessel configurations based on the 

generic SPAR-type vessel used in this study. In this study, some geometrical 

characteristics of the vessel such as the weight distribution of struts and immersed 

propeller hull (affecting the center of gravity), and the position of the rudder and thruster 

are modified to observe their influence in the maneuvering performance of the vessel 

type and suggest an enhanced geometry in terms of maneuverability. 

 

1.3 Outline of the thesis 

This thesis is presented in 6 chapters:  
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1.3.1 Chapter 1 – Introduction 

The first chapter introduces the purpose and outline of the study. 

1.3.2 Chapter 2 – Literature review 

In this chapter experimental and analytical methods to study the maneuvering 

performance of a marine vessel are introduced and compared. Predictions based on 

captive model tests and simulations are represented in more detail as this method is the 

basic idea behind this study. 

1.3.3 Chapter 3 – Mathematical model of the maneuvering 

In chapter 3 the coordinate systems that the mathematical model is based on are 

introduced. The equation of motion is then expressed based on the body-fixed coordinate 

system. The forces and moments acting on the vessel are then expressed as rudder forces, 

steady hydrodynamic forces, propulsion, added mass, gravity and buoyancy forces. The 

procedure for evaluating forces and moments is also described in this chapter. 

1.3.4 Chapter 4 – Experimental procedure 

In this chapter, the procedure of the experiments is explained. In the first part, the 

instruments used in the experiments are introduced and the calibration procedure and 

results are shown. 75 model towing experiments in various yaw angles, rudder angles and 

towing speeds were conducted and the results are presented in this chapter. 

1.3.5 Chapter 5 – Results and discussion 

The mathematical model introduced in chapter 3 is used to simulate the vessel trajectory 

and motions during standard zig-zag and turning circle maneuvers. The outcomes of the 
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simulations, along with maneuvering characteristics of the vessel determined from the 

simulations, are presented in this chapter. 

1.3.6 Chapter 6 – Conclusions and recommendations 

In this chapter the assumption made in the study, concluding remarks and 

recommendations for a future study are presented.  
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2 Literature Review 

In this section, the state-of-the-art methods used to predict the maneuvering of a marine 

vessel are introduced and discussed. The purpose of this review is to find the most 

accurate, responsive, fast and flexible simulation method applicable for the case of this 

study under limitations of time and instrumentation.  

To predict the maneuvering parameters of a ship, the forces and moments acting on ship 

must be determined. These forces and moments are then used to complete the equation of 

motion. According to Kim et al.(2008), the amount of computational resources available 

to predict the maneuvering of a vessel changes year-to-year due to advances in 

technology. In the following, the methods used to determine hydrodynamic forces on the 

ships are summarized and compared. 

2.1 Mathematical models to predict ship maneuvering  

There are several mathematical models to describe the forces and moments acting on a 

ship, including Abkowitz (1964) polynomial model, Blanke's (1998) 2nd order modulus 

expansion model, the model based on “principles of low aspect-ratio aerodynamic theory 

and Lagrangian mechanics” introduced by Ross (2007), and the model developed by the 

Maneuvering Mathematical Modeling Group (MMG) in Japan, which studies the forces 

on ship components individually (Araki et al. 2012). Among these models, the Abkowitz 

model and the MMG model are the most accepted and widely-used models. 
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The equation of motion at the center of gravity for a maneuvering ship with 3 degrees of 

freedom is expressed as (Zaojian 2006): 

𝑋 = 𝑚(𝑢̇ − 𝑣𝑟) 

𝑌 = 𝑚(𝑣̇ + 𝑢𝑟) (1) 

𝑁 = 𝐼𝑧𝑟̇ 

where X , Y and N are the external forces and moments acting on the ship, m denotes the 

total mass, u and v denote surge and sway velocity and r denotes the yaw rate. 

In the Abkowitz model, the hydrodynamic forces on the ship are expressed as a 

polynomial function of maneuvering parameters and control parameters, i.e. the propeller 

revolution and rudder angle, in form of  the Taylor’s series. In this model, by partial 

differentiation of hydrodynamic forces with respect to each variable, the hydrodynamic 

derivatives can be obtained (Yoon & Rhee 2003). Zaojian (2006) expresses the 

hydrodynamic forces and moments on the Abkowitz model as: 

𝑋 = 𝑋(𝑢, 𝑣, 𝑟, 𝑢̇, 𝑣̇, 𝑟̇, 𝛿) 

𝑌 = 𝑌(𝑢, 𝑣, 𝑟, 𝑢̇, 𝑣̇, 𝑟̇, 𝛿) (2) 

𝑁 = 𝑁(𝑢, 𝑣, 𝑟, 𝑢̇, 𝑣̇, 𝑟̇, 𝛿)  

where δ denotes the rudder angle. 

In the MMG model, the hydrodynamic forces acting on a ship are studied individually for 

the hull, propeller and rudder. Taking the interaction between these forces into account is 
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critical in the MMG model (Yoon & Rhee 2003). The hydrodynamic forces and moments 

in this model are expressed as (Zaojian 2006): 

𝑋 = 𝑋𝐻 + 𝑋𝑃 + 𝑋𝑅 

𝑌 = 𝑌𝐻 + 𝑌𝑃 + 𝑌𝑅 (3) 

𝑁 = 𝑁𝐻 + 𝑁𝑃 + 𝑁𝑅  

The main difference between the Abkowitz model and the MMG model is the method 

they use to obtain the hydrodynamic forces acting on a maneuvering ship. The Abkowitz 

model studies all the hydrodynamic forces simultaneously, whereas the MMG model 

breaks the hydrodynamic forces into hull, propeller, rudder forces, and their interactions. 

The state of the art methods used to evaluate these forces are described in detail in the 

next section. 

In reality, the hydrodynamic forces are composed of steady and non-steady contributions, 

which make it very difficult to build a descriptive mathematical model. Hence, the 

hydrodynamic forces on a ship are assumed to be a function of the velocity and 

acceleration components only. This assumption is known as the “quasi-steady approach” 

(Yoshimura 2005). 

2.2 Methods for determining the hydrodynamic forces acting on a 

maneuvering ship 

The hydrodynamic derivatives in the equation of motion must be determined in order to 

solve this equation in the time domain and perform a simulation. Accurately determining 
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these coefficients is sometimes hard to achieve due to the non-linearity of the ship’s 

maneuvering (Luo et al. 2014). Zaojian (2006) effectively categorizes the methods to 

determine forces and moments acting on a ship in four categories: 

2.2.1 Captive model tests 

Captive model tests have proved to be the most accurate way to determine the 

hydrodynamic force coefficients of the ship. However, due to the high cost of conducting 

these tests and the limited availability of the experimental facilities, sometimes 

institutions and companies cannot use this method, or must limit the number of 

experiments (Luo et al. 2014). 

Captive model tests are usually conducted in a long and narrow towing tank. A 

seakeeping and maneuvering basin is sometimes employed to carry out a Circular Motion 

Test (CMT) (Zaojian 2006). The hydrodynamic derivatives of a ship are obtained by 

three types of captive model tests (ITTC 2002a): 

2.2.1.1 Oblique/straight towing test in a conventional towing tank 

In the stationary oblique/straight towing test, the drift angle of the vessel is fixed during 

each experiment. Maneuvering parameters such as rudder angle, propeller revolution, 

drift angle and towing velocity might be changed during experiments to determine the 

hydrodynamic forces as a function of these parameters. Four types of towing tests can be 

carried out with this method (ITTC 2002a): 

Straight towing; 

Straight towing with rudder deflection; 
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Oblique towing; 

Oblique towing with rudder deflection. 

2.2.1.2 Planar motion test in a tank equipped with a Planar Motion Mechanism 

(PMM) 

A PMM system consists of electromechanical equipment which is designed to tow a 

vessel model in a pre-programed path in a towing tank. Forces and moments on the 

model are measured during this procedure and are used to predict the maneuvering 

performance of the full-scale vessel (Millan & Thorburn 2009). This device is widely 

used to carry out four types of tests (ITTC 2002a): 

Pure sway; 

Pure yaw; 

Pure yaw with rudder deflection; 

Pure yaw with drift. 

2.2.1.3 Circular tests in a tank equipped with a rotating arm carriage 

Like the oblique/straight towing facility and PMM facility, the Rotating Arm Facility 

(RAF) is also designed to perform captive towing experiments to measure forces and 

moments on a model vessel. As the name of this facility indicates, it is designed to tow 

the vessel in circular orbits across water by means of a rotating arm (Orfano 2009). Four 

types of circular towing tests are widely conducted in this facility (ITTC 2002a): 

Pure yaw; 

Yaw with drift; 
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Yaw with rudder deflection; 

Yaw with drift and rudder deflection. 

Among the tests mentioned above, the ones with no rudder deflection are carried out to 

determine the forces on the hull. Tests with rudder deflection are designed to measure 

rudder induced forces and therefore they are not applicable to models with no rudder and 

propeller installed.   

2.2.2 System identification technique 

Another method to determine the hydrodynamic derivatives of a vessel is to conduct a 

free-running model or full-scale test. In this method, the control parameters, such as the 

rudder angle and the propeller revolution, are input data and the kinematic reaction to 

these inputs, such as the velocity and the acceleration, are output data. Hydrodynamic 

derivatives of the vessel are determined using parameter identification methods (Zaojian 

2006). 

The traditional methods to identify the maneuvering derivatives of a ship such as the least 

square method and extended Kalman filter are widely used. Estimation Before Modeling 

(EBM), also called the two-step method, is an important system identification method to 

determine the maneuvering coefficients. In this method the hydrodynamic coefficients 

can be estimated by means of the extended Kalman filter and modified Bryson–Frazier 

smoother from sea trials (Yoon & Rhee 2003). However, using these methods might 

affect the accuracy of the prediction since the estimations depend on the target of study 

and initial guess. Artificial Neural Networks (ANN) can significantly overcome these 
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limitations and provide an effective means of determining maneuvering derivatives. This 

method has been used to identify the ship maneuvering derivatives. For example, Zhang 

and Zou (2011) used the data of a 10˚/10˚ zig-zag test to identify the derivatives in the 

Abkowitz model and predicted the maneuvering of the same ship in 20˚/20˚ 

maneuvering. The results show a very good consistency between predicted and simulated 

results.   

2.2.3 Semi-empirical methods (database methods) 

The third method to estimate the hydrodynamic derivatives of a vessel is to gather a 

database of hydrodynamic derivatives of similar vessels. These values can be empirically 

formulated and used to determine the hydrodynamic derivatives of any of the same type 

of vessel (Zaojian 2006). However, this method is not always accurate and reliable, 

especially when the specifications of the studied object are not consistent with the 

database (Luo et al. 2014) . 

2.2.4 Numerical methods  

Computational Fluid Dynamics (CFD) is being widely used to determine the forces and 

moments on a moving vessel. CFD methods can be generally classified into two 

categories: 

1. Potential flow theory methods (e.g. Boundary Element Method (BEM) or panel 

method)  

2. Predictions based on viscous flow theory (e.g. solution of Reynolds-Averaged Navier-

Stokes (RANS) equations) (Zaojian 2006).  



14 

 

2.2.5 Comparison 

Running a sufficient number of simulations using CFD is a very time and money 

consuming approach, but it requires only the ship geometry along with propulsion system 

characteristics to predict the maneuvering of the ship. On the other hand, system-based 

methods are more accurate and faster to determine the maneuvering derivative, but they 

also need access to the test facilities and numerous captive model tests need to be 

conducted to estimate the maneuvering coefficients (Araki et al. 2012).  

 

Figure 2- Overview of maneuvering prediction methods (Tran Khanh et al. 2013) 
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Maimun et al. (2011) indicates that obtaining the hydrodynamic coefficients by means of 

captive model tests generates more accurate results in comparison with empirical 

formulations. Comparison between empirical methods and CFD based methods indicates 

that predictions using both the viscous flow calculations and the slender-body 

coefficients method are closer than empirical formulas to the experimental results 

(Toxopeus 2009). 

2.3 Control application 

Understanding the dynamic characteristics of the ship is the key to designing the control 

system. It is understood that predicting the maneuvering characteristics of a vessel from 

model tests is hard due to the lack of knowledge of the interaction between rudder 

deflection and roll motion. This is especially true for the case of this study. Thus, 

identifying and analyzing these interactions are essential not only to obtain a 

comprehensive maneuvering model, but also to design a  proper control system (Perez & 

Blanke 2002). 

Identifying the maneuvering derivatives of a ship also allows path simulation in the time 

domain with respect to the control settings. One of the main applications of these 

simulations is for training simulators. To be as realistic as possible, the training 

simulators generally use the full equation of motion (Yoon & Rhee 2003).  

2.4 Purpose of study and methodology 

The purpose of this research is to develop a mathematical model of maneuvering for a 

propelled SPAR vessel with the following properties: 
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- The model must be able to simulate the maneuvering motion of a propelled SPAR 

vessel in the standard maneuvering tests, such as the zig-zag test and the turning 

circle test. 

- The dynamic and kinematic parameters of the ship, such as roll angle, drift angle, 

lateral force and moment, velocities, etc. must be measurable at any given time 

during the simulation to provide the means of better understanding of dynamic 

behavior of the vessel type. 

- The mathematical model, should be adjustable in terms of the vessel geometry, 

since one of the main purposes of this study is to find effective ways to improve 

the maneuvering performance of the vessel type by changing the main 

dimensions. 

- The simulation time should be minimized to enable the user to study the 

maneuvering performance of the vessel in various test types, vessel sizes and new 

configurations. 

To achieve these goals and due to limitations of time and resources, the best achievable 

method in each step is taken as follows: 

2.4.1 Method selection to determine the hydrodynamic forces acting on the 

maneuvering ship 

The CFD simulations are time consuming; simulating the maneuvering of the ships with 

this method might take few days to few weeks depending on the experiment conditions 
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and mesh sizes. Hence, for this study as numerous maneuvering tests for the few ship 

geometries are to be conducted, this method is not applicable. 

To determine the forces on the ship using semi-empirical methods, a database consisting 

of the test results for many same type vessels is needed. As the object of this research is 

not a conventional vessel, there is no database available to extract the hydrodynamic 

derivatives. 

To obtain the hydrodynamic derivatives of a ship using the system identification method, 

the ship model needs to be equipped with an accurate control system and motion tracking 

systems. Due to the small size of the available model and the inaccuracy of the installed 

control system, precise application and monitoring of the controls is not achievable. 

Moreover, the small size of the ship results in significant effect of the currents on the 

performance of the vessel.  

According to the above mentioned conditions and limitations, the best and only 

achievable method to determine the forces on the ship for this study is the captive model 

test. Furthermore, as mentioned earlier, this method is the most accurate and reliable 

method at the moment to determine the hydrodynamic coefficients of the ship. 

2.4.2 Captive model test mechanism selection 

Among the mechanisms to conduct captive model tests, the PMM and RAF tests obtain 

the most accurate hydrodynamic model for the ship, as they are able to define the 

hydrodynamic forces as a function of both magnitude and rate of motion parameters such 

as the yaw angle. However, the available towing tank at MUN is not equipped with the 
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PMM and RAF systems. Moreover, as the vessel is at the design stage and is not 

commercialized, the high cost of conducting these types of tests is not reasonable at this 

time. Thus, in this study the stationary oblique/straight towing tests are selected as the 

captive model test method. This type of captive model tests are widely used by many 

researchers, and it is proven that, if conducted properly, they can result in reliable 

outcomes. 

2.4.3 Mathematical model 

The mathematical model employed in this study, is a combination of MMG model and 

the Abkowitz (1964) model. This model represents the forces applied to the ship’s hull, 

the propeller and the rudder, and the interactions between these forces independently, as 

proposed by the MMG, but uses a 6DOF equation of motion introduced by Abkowitz to 

describe the motion of a maneuvering ship.  



19 

 

3 Mathematical model of maneuvering 

In this chapter the development of the mathematical model used to simulate the trajectory 

of the propelled SPAR vessel is introduced and forces and moments acting on the vessel 

are evaluated. 

3.1 Equation of motion at center of gravity 

In order to describe forces acting on the vessel and the resulting maneuvering motions of 

the vessel, two coordinate systems were employed: the body-fixed coordinate system that 

has its origin at the center of gravity and moves with the ship, and an earth-fixed 

coordinate system that lies on the calm water surface.  

Figure 2 demonstrates the two coordinate systems used in this study. The origin o of the 

body-fixed coordinate system is located at the center of gravity and axes x, y and z lie on 

the ship’s bow, ship’s starboard and perpendicular to the xy plane downward, 

respectively. The origin of the earth-fixed coordinate system o0 is fixed on the calm water 

surface and is aligned with the initial position of the body-fixed system, the x0y0 plane 

coincides with the calm water surface and the z0 axis is vertical downward. 

Unit vectors associated with x, y, z, x0, y0 and z0 are denoted as i, j, k, I, J and K 

respectively. Vector R0 can be defined as the position of the ship’s origin (CoG): 

𝑅0 = 𝜉0𝐼 + 𝜂0𝐽 + 𝜁0𝐾 (4) 

So the velocity of the origin is expressed as: 
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𝑈0 =
𝑑𝑅0

𝑑𝑡
 (5) 

 

 

Figure 3- Coordinate systems 

u and v are the surge velocity and lateral velocity at the center of gravity,  p, q and r are 

roll, pitch and yaw angles, β and α denote the drift angle of the origin and heading angle 

respectively.  

For a small perturbation, it can be shown that: 

𝑥𝑡+𝜀 = 𝑥𝑡 + 𝑢𝑡 𝑐𝑜𝑠 𝛼𝑡 +𝑣𝑡 𝑠𝑖𝑛 𝛼𝑡 

𝑦𝑡+𝜀 = 𝑦𝑡 + 𝑢𝑡 𝑠𝑖𝑛 𝛼𝑡 −𝑣𝑡 𝑐𝑜𝑠 𝛼𝑡 
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𝑧𝑡+𝜀 = 𝑧𝑡 + 𝑤𝑡𝑡 

𝜙𝑡+𝜀 = 𝜙𝑡 + 𝑝𝑡𝑡 

𝜃𝑡+𝜀 = 𝜃𝑡 + 𝑞𝑡𝑡 

𝜓𝑡+𝜀 = 𝜓𝑡 + 𝑟𝑡𝑡   (6) 

Where the subscript t denotes the value of a parameter at time t and 𝜺 represents a small 

increment in time.  ϕ, θ and ψ are roll, pitch and yaw angles respectively. 

In this study, the body-fixed coordinate system is used to express the equation of motion 

and evaluate the hydrodynamic forces. Assuming the vessel is a rigid body with six 

degrees of freedom in motion and small pitch angles, the equation of motion can be 

written as (Fang et al. 2005): 

𝑋 = 𝑚(𝑢̇ − 𝑣𝑟)  

𝑌 = 𝑚(𝑣̇ + 𝑢𝑟)  

𝑍 = 𝑚𝑤̇  

𝐾 = 𝐼𝑥𝑥𝑝̇ − 𝐼𝑥𝑥𝑞𝑟   

𝑀 = 𝐼𝑦𝑦𝑞̇ + 𝐼𝑥𝑥𝑝𝑟   

𝑁 = 𝐼𝑧𝑧𝑟̇ − 𝐼𝑥𝑥𝑝𝑞   (7) 
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where X, Y and Z are external forces with respect to  surge, sway and heave and K, M and 

N are external moments with respect to roll, pitch and yaw respectively. The terms m and 

I denote the total mass and moment of inertia. In this equation, the non-diagonal elements 

of moments of inertia matrix are neglected as they are small comparing to the diagonal 

terms and the vessel assumed to be symmetrical in port and starboard. 

The left side of Equation 7 can be expressed as:   

𝑋 = 𝑋𝑅 + 𝑋𝐻𝑆 + 𝑋𝑃 + 𝑋𝐴 

𝑌 = 𝑌𝑅 + 𝑌𝐻𝑆 + 𝑌𝐴 

𝑍 = 𝑍𝐻𝑆 + 𝑍𝐴 + 𝑍𝐺−𝐵 

𝐾 = 𝐾𝑅 + 𝐾𝐻𝑆 + 𝐾𝐴 + 𝐾𝐺−𝐵 

𝑀 = 𝑀𝐻𝑆 +𝑀𝑃 +𝑀𝐴 +𝑀𝐺−𝐵 

𝑁 = 𝑁𝑅 + 𝑁𝐻𝑆 + 𝑁𝐴   (8) 

where subscripts R, HS, P, A and G-B denote rudder forces, steady hydrodynamic forces, 

propulsion, added mass and combined gravity and buoyancy forces, respectively. Later in 

this chapter, the evaluation and calculation of the forces and moments acting on the 

vessel are described in detail.  
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3.2 Hydrodynamic forces acting on ship’s hull 

Hydrodynamic forces acting on ship hull are expressed as: 

𝑋𝐻 =
1

2
𝜌𝐿𝑑𝑈2𝑋´𝐻(𝜓, 𝑟´)   

𝑌𝐻 =
1

2
𝜌𝐿𝑑𝑈2𝑌´𝐻(𝜓, 𝑟´)   

𝑍𝐻 =
1

2
𝜌𝐿𝑑𝑈2𝑍´𝐻(𝜓, 𝑟´)   

𝐾𝐻 =
1

2
𝜌𝐿2𝑑𝑈2𝐾´𝐻(𝜓, 𝑟´)   

𝑀𝐻 =
1

2
𝜌𝐿2𝑑𝑈2𝑀´𝐻(𝜓, 𝑟´)   

𝑁𝐻 =
1

2
𝜌𝐿2𝑑𝑈2𝑁´𝐻(𝜓, 𝑟´)  (9) 

where X´H, Y´H, Z´H, K´H, M´H and N´H are expressed as polynomial functions of 𝜓 and the 

non-dimensionalized yaw rate r´ by rL/U (Yasukawa & Yoshimura 2014). However, for 

the case of this study several experiments were conducted in various yaw angles, so 

hydrodynamic coefficients of forces acting on the ship hull are expressed only as a 

function of the yaw angle. Non-dimensional damping coefficients are then added to the 

model to take the effects of heave, roll, pitch and yaw rate into consideration. The 

magnitude of these coefficients were estimated during a trial and error procedure, to 

match the maneuvering behavior of the vessel in free-running trials. To achieve more 
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reliable and accurate estimation of damping coefficients, a Planar Motion Mechanism can 

be employed during the towing experiments. 

𝑋𝐻
´ = 𝑋𝜓𝜓𝜓𝜓

´ 𝜓4 + 𝑋𝜓𝜓𝜓
´ 𝜓3 + 𝑋𝜓𝜓

´ 𝜓2 + 𝑋𝜓
´ 𝜓 + 𝑋0

´   

𝑌𝐻
´ = 𝑌𝜓𝜓𝜓

´ 𝜓3 + 𝑌𝜓𝜓
´ 𝜓2 + 𝑌𝜓

´𝜓 

𝑍𝐻
´ = 𝑍𝜓𝜓

´ 𝜓2 + 𝑍𝜓
´ 𝜓 + 𝑍0

´   

𝐾𝐻
´ = 𝐾𝜓𝜓𝜓

´ 𝜓3 + 𝐾𝜓𝜓
´ 𝜓2 + 𝐾𝜓

´ 𝜓 

𝑀𝐻
´ = 𝑀𝜓𝜓𝜓𝜓

´ 𝜓4 +𝑀𝜓𝜓𝜓
´ 𝜓3 +𝑀𝜓𝜓

´ 𝜓2 +𝑀𝜓
´ 𝜓 +𝑀0

´   

𝑁𝐻
´ = 𝑁𝜓𝜓𝜓

´ 𝜓3 +𝑁𝜓𝜓
´ 𝜓2 + 𝑁𝜓

´ 𝜓  (10) 

where X´𝜓𝜓𝜓𝜓, X´𝜓𝜓𝜓, X´𝜓𝜓, X´𝜓, X´0, Y´𝜓𝜓𝜓, Y´𝜓𝜓, Y´𝜓, Z´𝜓𝜓, Z´𝜓, Z´0, K´𝜓𝜓𝜓, K´𝜓𝜓, K´𝜓, 

M´𝜓𝜓𝜓𝜓, M´𝜓𝜓𝜓, M´𝜓𝜓, M´𝜓, M´0, N´𝜓𝜓𝜓, N´𝜓𝜓 and N´𝜓 are the hydrodynamic derivatives 

of the maneuvering.  

The hydrodynamic derivatives shown above were obtained by conducting towing 

experiments which are described in detail in chapter 4 of this thesis. Table 1 shows a 

summary of the result: 

Table 1- Non-dimensional hydrodynamic derivatives of the hull 

X´𝜓𝜓𝜓𝜓 -8.84 K´𝜓𝜓𝜓 63.48 

X´𝜓𝜓𝜓 0.211 K´𝜓𝜓 -0.393 
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X´𝜓𝜓 7.05 K´𝜓 -36.38 

X´𝜓 -0.131 M´𝜓𝜓𝜓𝜓 -58.19 

X´0 0.0946 M´𝜓𝜓𝜓 -0.506 

Y´𝜓𝜓𝜓 -8.93 M´𝜓𝜓 38.65 

Y´𝜓𝜓 0.199 M´𝜓 0.00268 

Y´𝜓 3.56 M´0 0.123 

Z´𝜓𝜓 2.83 N´𝜓𝜓𝜓 0.402 

Z´𝜓 0.196 N´𝜓𝜓 0.0658 

Z´0 0.0966 N´𝜓 -0.382 

 

3.3 Evaluation of rudder forces and moments 

Forces and moments acting on a ship by the rudder can be expressed as: 

𝑋𝑅 =
1

2
(𝜌𝐴𝑅𝑈𝑅

2 𝑠𝑖𝑛 𝛼𝑅) 𝑠𝑖𝑛 𝛿 𝑋´𝑅   

𝑌𝑅 =
1

2
(𝜌𝐴𝑅𝑈𝑅

2 𝑠𝑖𝑛 𝛼𝑅) 𝑐𝑜𝑠 𝛿 𝑌´𝑅    

𝐾𝑅 =
1

2
(𝜌𝐴𝑅𝐿𝑈𝑅

2 𝑠𝑖𝑛 𝛼𝑅) 𝑐𝑜𝑠 𝛿 𝐾´𝑅   

𝑁𝑅 =
1

2
(𝜌𝐴𝑅𝐿𝑈𝑅

2 𝑠𝑖𝑛 𝛼𝑅) 𝑐𝑜𝑠 𝛿 𝑁´𝑅  (11) 

where AR is the profile area of the movable part of the marine rudder, UR is the resultant 

inflow velocity to the rudder, 𝛼R is the effective inflow angle to the rudder, and X´R, Y´R, 

K´R and N´R are non-dimensional hydrodynamic coefficients for maneuvering and mainly 

represent the hydrodynamic interaction between the rudder and hull.  
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The hydrodynamic coefficients shown above are empirically expanded and described for 

conventional marine vessels, i.e. the one introduced by Hirano (1980), but for the case of 

the propelled SPAR vessel, there is no empirical formulation to describe the coefficients. 

Hence, in this study rudder forces and moments are assumed to be a linear function of AR, 

U2, αR, δ, L and the hydrodynamic coefficients of the rudder.  

These coefficients are evaluated by comparing the results of towing experiments at 

various rudder angles. When the effective inflow angle to the rudder is zero, rudder 

forces and moment are expected to be zero and the ship hull is responsible for the total 

measured forces. In the same situation, as the rudder angle changes, rudder forces and 

moments are assumed to be the cause of any variations in results.  

Figures 3 to 6 show the effect of rudder angle on the total hydrodynamic forces and 

moments in the towing experiments. 
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Figure 4- Surge resistance force vs. yaw angle at various rudder angles 

 

Figure 5- Sway resistance force vs. yaw angle at various rudder angles 
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Figure 6- Roll resistance moment vs. yaw angle at various rudder angles 

 

Figure 7- Yaw resistance moment vs. yaw angle at various rudder angles 
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The calculated magnitude of rudder forces lies on the left side of equation 11. On the 

right side, values of AR, U2, αR, δ and L could be determined in each experimental setup, 

so the only unknown parameters in each equation are the non-dimensional hydrodynamic 

coefficients of the rudder X´R, Y´R, K´R and N´R. The values of these coefficients were 

curve fitted to the experimental results with the lowest achievable deviation.  

3.4 Propeller hydrodynamic force 

The propelled SPAR model was fitted with a Wageningen B-series 4 blade propeller B4-

70. Figure 7 shows the propeller and rudder components setup on the model strut and the 

propeller specifications are presented in Table 2. 

Table 2- Propeller specifications 

Designation Modified B-Series 

D (Diameter) 0.107m 

P/D (Pitch/Diameter) 1.1 

AE 0.7 

z 4 
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Figure 8- Rudder and propeller setup 

The hydrodynamic force due to propulsion of a marine vessel with a single propeller is 

expressed as a fraction of the propeller thrust: 

𝑋𝑃 = (1 − 𝑡𝑃)𝑇  (12) 

The thrust deduction factor tP is assumed here to be constant at 0.1 in any given propeller 

load. Propeller thrust T is calculated as: 

𝑇 = 𝜌𝑛𝑃
2𝐷𝑃

4𝐾𝑇(𝐽𝑃)  (13) 

where nP is the propeller revolution in rps, DP is the propeller diameter, and the thrust 

coefficient KT is defined as a quadratic polynomial function of the propeller advance ratio 

JP. The thrust coefficient of the propeller at the zero forward speed test was found to be 

0.6 (ExtremeOcean Innovation Inc. 2013) which is 20% higher than the expected value of 

0.5 and reaches zero at an advance coefficient of 1.17.  
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Figure 9- B-series Wageningen propeller chart, from (Bernitsas et al. 1981) 

𝐾𝑇 = −0.115𝐽𝑃
2 − 0.379𝐽𝑃 + 0.6  

𝐽𝑃 =
𝑉𝐴

𝑛𝐷
  (14) 

where VA  denotes the speed of advance. In the calculation of propeller force, the effect of 

steering on propeller thrust is neglected as the propeller was not installed during the 

experiments. 

As the propeller is at a different height from the vertical center of gravity, it also 

produces a trimming moment around the CoG equivalent to propeller thrust multiplied by 

the vertical distance betweenthe CoG and propeller hub. As the propulsion force is 

applied at the latitudinal center of the vessel and parallel to the longitudinal vector of it, 

roll and yaw moments can be considered zero. 
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3.5 Restoring forces 

Gravity and buoyancy forces applied to a floating body are expressed in a matrix form as: 

{
 
 

 
 
𝑋𝐺−𝐵
𝑌𝐺−𝐵
𝑍𝐺−𝐵
𝐾𝐺−𝐵
𝑀𝐺−𝐵

𝑁𝐺−𝐵}
 
 

 
 

= −[𝐶] ×

{
 
 

 
 
𝜉
𝜂
𝜁
𝜙
𝜃
𝜓}
 
 

 
 

   (15) 

in which elements C33, C34, C35, C43, C44, C45, C53, C54 and C55 are the only non-zero 

elements of the matrix C. In a small perturbation, all the diagonal terms are negative, 

which indicates that Gravity-Buoyancy forces are opposing the perturbations 

(Lewandowski 2004). Center of Floatation (CoF) of a freely floating body lies at the 

center of its water plane. Equation 16 expresses the restoring forces and moments of a 

body with port-starboard symmetry. 

𝑍𝐺−𝐵 = −𝜌𝑔𝐴𝑊𝑃𝜁 + 𝜌𝑔𝑆𝑥𝜃   

𝐾𝐺−𝐵 = −𝜌𝑔[𝛻0(𝑧𝐺 − 𝑧𝐵) + 𝑆𝑦𝑦]𝜙   

𝑀𝐺−𝐵 = −𝜌𝑔[𝛻0(𝑧𝐺 − 𝑧𝐵) + 𝑆𝑥𝑥]𝜃 + 𝜌𝑔𝑆𝑥𝜁  (16) 

where  AWP is the water plane area, Sx, Sxx, and Syy are water plane moments, ∇0 is volume 

of displacement, zG  is the height of the CoG and zB is the height of the center of 

buoyancy.  
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In order to estimate values of AWP, Sx, Sxx, Syy, ∇0, zG and zB, a detailed 3D CAD model of 

the vessel was built. Figure 9 shows a rendering of the 3D model beside a picture of the 

physical model. Table 3 shows the calculated values of the restoring force parameters 

from the CAD model. 

 

Figure 10- Rendering of the CAD model vs the physical model 

 

Table 3-  Calculated parameters of the model vessel 

AWP 29365mm2 Sxx 2.2E-5m4 zB 95mm 

∇0 0.0666m3 Syy 2.5E-4m4 zG 0 
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3.6 Added mass and added moment of inertia 

When a body accelerates in a fluid, it experiences a hydrodynamic force opposing the 

acceleration due, and proportional, to acceleration. This force can be explained as the 

amount of force needed to accelerate the fluid surrounding the body. The added mass and 

added moment of inertia are defined as matrix A, where Aij indicates the “magnitude of 

the hydrodynamic force in direction i due to unit acceleration in direction j” where 

subscripts i and j range from 1 to 6 and correspond the surge, sway, heave, roll, pitch and 

yaw directions (Lewandowski 2004). 

The added mass forces are considered negative because they oppose the acceleration. 

Unit of Aij is the mass for i and j between 1 and 3, the moment of inertia for i and j 

between 4 and 6 and the mass×length for all other cases.  The added mass matrix is 

composed of 36 elements; however, it is a symmetrical matrix for all floating objects so 

Aij=Aji. It can be shown that the added mass forces and moments can be expressed as 

(Newman 1977): 

𝐹𝐴𝑀 = −∑ (𝑈̇𝑗𝐴𝑗 + 𝑈𝑗𝛺 × 𝐴𝑗)
6
𝑗=1   (17) 

𝑀𝐴𝑀 = −∑ (𝑈̇𝑗𝐴𝑗 + 𝑈𝑗𝛺 × 𝐴𝑗 + 𝑈𝑗𝑈 × 𝐴𝑗)
6
𝑗=1   (18) 

For a body with port-starboard symmetry, it can be shown that: 

A32=A34=A36=A52= A54=A56=A12=A14=A16=0 

Due to the symmetry property of the matrix: 
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A23=A43=A63=A25= A45=A65=A21=A41=A61=0 

Expanding Equations 17 and 18 and considering the symmetry of the body and added 

mass matrix, the final equations of added mass and added moments of inertia due to small 

accelerations are: 

𝑋𝐴𝑀 = −𝐴11𝑢̇ − 𝐴13𝑤̇ − 𝐴15𝑞̇  

𝐘𝐀𝐌 = −𝐀𝟐𝟐𝐯̇ − 𝐀𝟐𝟒𝐩̇ − 𝐀𝟐𝟔𝐫̇  (19) 

𝑍𝐴𝑀 = −𝐴31𝑢̇ − 𝐴33𝑤̇ − 𝐴35𝑞̇  

𝑋𝐴𝑀 = −𝐴42𝑣̇ − 𝐴44𝑝̇ − 𝐴46𝑟̇  

𝐗𝐀𝐌 = −𝐀𝟓𝟏𝐮̇ − 𝐀𝟓𝟑𝐰̇ − 𝐀𝟓𝟓𝐪̇  (20) 

𝑋𝐴𝑀 = −𝐴61𝑣̇ − 𝐴63𝑝̇ − 𝐴65𝑟̇  

Evaluation of added mass coefficients is obtained using the boundary integral equation 

method, also known as the panel method. The outer shell of the CAD model was 

exported to WAMIT software (Anon 2015b) . To estimate the fluid forces, potential flow 

theory is considered for the relationship between fluid pressure and interface acceleration, 

where the velocity potential function satisfies the Laplace equation (Bašić & Parunov 

2013). Table 4 shows the added mass coefficients for the vessel calculated by this 

method. 
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Table 4- Non-dimensional added mass coefficients 

ADDED-MASS COEFFICIENTS 

I J Aˈ(I,J) I J Aˈ(I,J) 

1 1 3.34E-03 4 2 2.92E-02 

1 3 -6.04E-05 4 4 1.73E-02 

1 5 -1.95E-03 4 6 8.56E-04 

2 2 4.95E-02 5 1 -1.97E-03 

2 4 2.92E-02 5 3 4.48E-04 

2 6 1.35E-03 5 5 5.62E-03 

3 1 -4.91E-05 6 2 1.38E-03 

3 3 5.13E-02 6 4 8.74E-04 

3 5 4.71E-04 6 6 2.56E-03 

 

The added mass coefficients are non-dimensionalized by ρLk where: 

k = 3 for (i; j = 1; 2; 3) 

k = 4 for (i = 1; 2; 3; j = 4; 5; 6) or (i = 4; 5; 6; j = 1; 2; 3) 

k = 5 for (i; j = 4; 5; 6) 
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4 Experimental procedure 

4.1 Instrumentation  

Scale model experiments were conducted to measure the hydrodynamic forces on the 

vessel including the rudder forces at various fixed yaw angles and various forward 

speeds. The purpose of these experiments was to obtain the hydrodynamic coefficients of 

the hull and the rudder for the numerical maneuvering model. This chapter introduces 

equipment and devices used for the experiments. 

4.1.1 Dynamometer 

A global dynamometer was used to measure forces and moments on the model vessel, 

propeller or any other instrument connected to its arm. The global dynamometer used as 

the force measurement device in this project was a global dynamometer designed and 

built by Mr. Andrew MacNeill, a former Master’s student in Ocean and Naval 

Architectural Engineering, as a part of his master’s degree project.  

The dynamometer is composed of 6 individual 1000 lbs (4447 N) load-cells mounted on 

an adaptor frame. With the design of the adaptor and dynamometer frame completed in 

detail, the flex links and their mounts were added to the main frame.  

In order to achieve design goals within limitations, the materials used in the majority of 

the dynamometer were mild steel plate and thin walled square tubing. The main thought 

behind the design was to gain an optimum design which would provide both maximum 
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stiffness and lightness at the same time. In addition, to ease the machining and fabrication 

process, bolt connections are used widely in the design (MacNeill 2011). 

 

Figure 11- NSERC global dynamometer 

 

4.1.2 Flex links 

The forces applied to the live frame are transferred to the load cells through flex links. 

The main purpose of using the flex links is to transfer forces only from the primary 

direction to the load cells. The links are stiff in the axial direction but flexible in the 

lateral direction and thus they do not transmit side loads to the load cells as the frame 

moves slightly under load or moment. This ensures that the measured loads in each 

direction are not influenced by small motions in other directions (known as crosstalk). 

Moreover, the design of the flex links ensures that when the amount of forces or moments 

applied to the frame exceeds the capacity of the load cells, the flex link attached to the 

load cell will break and prevent damage to the load cell.  
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The material selected for the flex link was 17-4 PH stainless steel. The following is the 

specification of the 17-4 PH: 

Table 5- Chemical properties of the flex links material (Anon 2015a) 

TYPE Cr Ni Cu Cb + Ta C Mn P S Si 

17-4 
(H900) 

min: 15.0 min: 3.0 min: 3.0 min: 0.15 0.07 1 0.04 0.03 1 

max: 17.5 max: 5.0 max: 5.0 max: 0.45 max max max max M 

 

Table 6- Mechanical properties of the flex links material (Anon 2015a) 

Hardening or Precipitation Treatment at 900°F 

Thickness, 
Ultimate 
Tensile 

0.2% Yield 

Elongation % in 
2″ min. 

Reduction in 
Area min. % 

Hardness, 
Hardness, 

Brinell, 

inches 
Strength, ksi 

min. 
Strength, ksi 

min. 
Rockwell, min. / max. 

      min. / max   

Under 0.1875″ 190 170 5 — C40 – C48 — 

0.1875″ to 
190 170 8 25 C40 – C48 388 / 477 

0.625″ 

0.625″ to 4.0″ 190 170 10 30 C40 – C48 388 / 477 

 

4.1.3 Load cells 

As mentioned above, six individual load cells are installed on the fixed frame, three, two, 

and one load cells in Z, X and Y directions respectively. The capacity of each load cell is 

1000 lbs.  

All flex links and load cells are designed with the ability of being installed or removed 

independently from other assemblies (MacNeill 2011). 
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4.1.4 Adjustable towing arm 

The NSERC global dynamometer was initially designed to measure forces on a  podded 

propeller. As the purpose of this research is to study forces applied to a model vessel, a 

few adjustments needed to be made to the instruments.   

In order to connect the model vessel to the live frame of the dynamometer, an adjustable 

towing arm was designed (by Cotrim Ferreira Oliveira Botelho, a Brazilian exchange 

program student at the time) and built by MUN Technological Services. The aluminum 

towing arm consists of a rotatable circular plate bolted to a cubic hollow column. The 

whole setting is secured to the live frame of the dynamometer with a thick rectangular 

plate. The other end of the column is connected to the vessel with four stainless steel 

bolts.  

 

Figure 12- Adjustable towing arm 

The design of the arm provides a fixed roll and pitch angle at zero degrees, but an 

adjustable yaw angle between 40° to -40°.   
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4.1.5 Data Acquisition System 

The process of measuring an electrical or physical phenomenon such as voltage, pressure 

or current is called data acquisition (DAQ) (National Instruments 2015). The DAQ 

system consists of: 

1- Sensors: which are the six load cells described above.  

2- DAQ measurement hardware: The NI cDAQ-9178 (which is an eight-slot 

National Instruments (NI) CompactDAQ chassis) was used as the measurement 

hardware. This is a portable chassis that can be combined with up to eight NI C 

series I/0 modules for a custom analog input, analog output, digital I/O, and 

counter/timer measurement system (National Instruments 2015). 

 

Figure 13- NI cDAQ-9178 DAQ chassis 

  

The following are the highlights of the technical specification of the NI cDAQ-

9178 measurement DAQ chassis: 
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Table 7- Technical specification of the NI cDAQ-9178 DAQ chassis 

Input FIFO size  127 samples per slot 

Maximum sample rate Determined by the C Series I/O module(s) 

Timing accuracy 50 ppm of sample rate 

Timing resolution 12.5 ns 

Number of channels supported  Determined by the C Series I/O module(s) 

Onboard regeneration 16 

 

3- Universal analogue input: Two NI 9219 analogue input modules were used to 

digitize voltages after excitation. Three load cells were connected to each module 

to cover signals from all six load cells. Table 8 shows highlights of technical 

specifications of the NI 9219 analogue input module: 

Table 8- Technical specifications of NI 9219 analogue input module 

Number of channels  4 analog input channels 

ADC resolution  24 bits 

Type of ADC  Delta-sigma (with analog prefiltering) 

Sampling mode  Simultaneous 

Type of TEDS supported  IEEE 1451.4 TEDS Class II (Interface) 
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Figure 14- NI 9219 analogue input module 

4- Industrial controller: the NI 3100 industrial controller is an industrial PC which 

incorporates a 1.06 GHz Intel Celeron M processor. This PC is connected to the 

measurement hardware via Hi-Speed USB connection. This computer reads and 

stores digitized data from the load cells.  

 

Figure 15- NI 3100 industrial controller 

  

PC-based DAQ systems, like the one used during these experiments provide high power, 

connectivity capabilities, flexibility and display options (National Instruments, 2015). 
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4.2 Calibration 

Section describes the process of calibrating six axial load cells and the towing carriage 

during the model experiments.  

4.2.1 Load cell calibration 

Each load cell was calibrated individually in an un-installed condition. As the factory 

specification sheet of the load cells states that the slope of the trend line of the load cells 

is identical for tension and compression, calibrating them in only pull mode was 

adequate. To achieve pure tension force on each load cell, the load cell was vertically 

installed and fixed on a rigid frame, and a small steel adaptor was used to install a hanger 

on it.  

 

Figure 16- Loading and unloading assembly of load cells 
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Figure 17- Load cell Y1 time series plot 

 

Table 9- Average output voltage in stable regions of loading and unloading of load cell Y1 

Test 
Number 

Added 
weight 

(g) 

Total 
weight 

(g) 

Average 
voltage 

(μV) 

1 884 884 12.694 

2 5032 5916 33.100 

3 5036 10952 53.599 

4 5019 15971 74.159 

5 5031 21002 94.913 

6 4577 25579 113.572 

7 4018 29597 130.544 

8 -4018 25579 113.741 

9 -4577 21002 94.656 

10 -5031 15971 74.077 

11 -5019 10952 53.712 

12 -5036 5916 33.331 

13 -5032 884 13.161 
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Figure 18- Calibration plot for loading (left) and unloading (right) load cell Y1 

The value of R2 for the linear trend line is 0.9999, which means choosing a linear 

calibration line for the load-cells is reliable. As the slope of the trend line for loading and 

unloading is slightly different, the average of 0.2442 was chosen as the calibration 

coefficient.  

To validate the calibration coefficient, two verification experiments were conducted. In 

each experiment a known amount of weight was hung on the load cell. Then, the 

predicted value from applying the coefficient to the average voltage was compared to the 

actual weight. 

Table 10- Verification result for calibration of load cell Y1 

Weight(g) Voltage(V) Prediction(g) 
Error 
(%) 

10934 5.38E-05 10933.6 0.004 

21001 9.55E-05 21127.6 0.603 
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For all other load cells the same procedure for calibration and validation is implemented. 

The calibration and validation data and diagrams for the 5 remaining load cells are shown 

in the Appendix A. 

4.2.2 Towing carriage velocity calibration 

The towing carriage in the MUN Fluids lab is widely used for academic and industrial 

purposes, so it is professionally calibrated on an annual basis to ensure precision in 

velocity during experiments. It has been calibrated again just before the beginning of the 

experiments. The velocity of the carriage in each run is measured by counting the rotation 

time of the carriage axle with an optical (laser) sensor. The rpms are then converted to 

velocity and compared to the output voltage of the velocity sensor.  

 

Figure 19- Towing carriage velocity calibration data 

4.2.3 Assembled dynamometer reliability validation 

In section 4.2.1 of this thesis, the procedure of the calibration and validation of each 

individual load-cells are described. To validate that the total force on the live frame of the 

y = 1.0065x - 0.004
R² = 1

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

Sp
e

e
d

 (
m

/s
)

Voltage (v)



48 

 

dynamometer, conform the summation of the forces on individual load cells, pull 

experiment on the assembled dynamometer with 5 known weights on the three axial 

directions was conducted. Figure 20 shows the results of the pulling experiment in the x 

direction: 

 

Figure 20- Assembled Dynamometer pull on experiments results in x direction 

The assembled dynamometer pulling experiments confirm the compliance between the 

estimated forces (from the load-cells outputs) and applied forces for all the directions. 

The errors for the estimations are in the range of 1% for x direction, 3% for y direction 

and 4% for z direction.   
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4.3 Experimental setup 

The experimental setup for the towing test of the model is shown in Figure 20. More 

details on the installation are referred to in MacNeill (2011).  

- Fixed frame: the fixed frame is set on the towing rail on the carriage and provides 

secured rigid support for the rest of instrumentation. This frame is not adjustable 

and remained parallel to the tank line for all the experiments. 

- Live frame: the live frame is secured by the fixed frame and houses all of the 

measuring instrumentation including load cells and flex links. This frame was 

fixed to the upper frame to avoid any bending or failure on the flex links. After 

putting the dynamometer on the towing tank, solid connections were removed to 

divert all forces applied to the model load cells.  

- Towing carriage: the towing carriage located in the MUN Fluids lab is an 

electronic powered carriage capable of towing models up to maximum of 5 m/s; 

however due to the limitation on the maximum force on the dynamometer, the 

maximum towing velocity was selected as 2.5 m/s. 

- Wave tank: the experiments were conducted in the 52 meter long wave tank in the 

MUN Hydraulic Lab. 
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Figure 21- Experimental setup for towing test 

 

1- Model vessel 

2- Connecting arm 

3- Live frame 

4- Fixed frame 

5- Data acquisition system 

6- Carriage fixed towing rail 

4.4 Experiments 

As mentioned above, the direct output of the experiments are voltages read from the load 

cells in a time domain. These voltages represent the amount of force applied to a load cell 

at time t. The data acquisition frequency during all the experiments was set to 50 Hz. 
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This rate was selected to ensure that enough data points were recorded to observe all the 

fluctuations in forces at any specific time.  

 

Figure 22- Experiment # 19 water surface 

The first step to analyse the data is to average the output voltage of each load cell over 

the steady state process. 

 

Figure 23- Experiment # 50 load cell voltage data 
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Figure 22 demonstrates the raw results of experiment 1. The towing carriage in this 

experiment was stopped in the first 4.5 seconds of the experiments. It then started moving 

forward and reached the maximum velocity of 0.5 m/s at t=6s. It moved with constant 

velocity of 0.5 m/s for about 50 seconds and then stopped at t=56s.  

The goal of this experiment was to measure the forces applied to the vessel at a velocity 

of 0.5 m/s, so the output voltages of the load cells were averaged between the t=20s and 

t=50s. Then the tare value, which is the average voltage read from t=0s to t=4s, when the 

vessel was stopped, was subtracted from them. The taring procedure ensures that the 

outcome does not include any initial forces on the load cell resulting from the weight of 

the instrumentations or any other external forces; it only describes forces applied to the 

vessel due to forward displacement.  

These subtracted average output voltages were then converted to forces on the load cells, 

using the calibration coefficient described and calculated earlier.  

 

Average voltage at maximum velocity 
 

Average voltage at speed of 0 
 

Voltage difference  
 

Calibration coefficient  (N/v) 
 

Force (N) 
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Table 11- Calculation of force on individual load cells in experiment #1 

load cell z1 z2 z3 y1 y2 x1 

Average voltage 
at speed of 0.5 

m/s  
1.57E-04 1.66E-04 3.01E-04 -1.65E-05 2.04E-05 2.86E-05 

Average voltage 
at speed of 0 

1.99E-04 2.26E-04 1.97E-04 -5.75E-06 6.14E-06 1.14E-05 

Voltage 
difference  

4.22E-05 6.02E-05 -1.04E-04 1.07E-05 -1.43E-05 -1.72E-05 

Calibration 
coefficient 

(kg/μv) 
2.32E-01 2.28E-01 2.19E-01 2.44E-01 2.23E-01 2.47E-01 

Calibration 
coefficient  (N/v) 

2.27E+06 2.24E+06 2.15E+06 2.40E+06 2.18E+06 2.43E+06 

Force (N) 95.84 134.75 -222.78 25.66 -31.16 -41.63 
 

Forces on the load cells are then transferred to forces and moments applied to the model’s 

center of gravity.  

 

Figure 24- Geometry of the model CoG related to the dyno 
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As both of the frames and the towing arm were fixed, the acceleration and thus, the sum 

of the forces applied to point A in each direction was zero.  

ΣFx=0 → X+FX1=0 → X=-FX1 

ΣFY=0 → Y-FY1+FY2=0 → Y=FY2-FY1 

ΣFZ=0 →  Z+FZ1+FZ2+FZ3=0 →  Z=-FZ1-FZ2-FZ3 

ΣKA=0 → K=(FY1-FY2)*ZH+FZ1-FZ2)*YZ1 

ΣMA=0 → M=-FX1*ZH+(FZ1+FZ2)*XZ2-FZ3*XZ3 

ΣNA=0 → N=(FY2+FY1)*XY2  (21) 

Design of Experiments 

The following considerations were taken in the process of designing these experiments: 

- All experiments needed to be conducted at a constant velocity. The goal of these 

experiments was to measure steady forces (only dependent on the steady velocity 

of the vessel). Added mass (resulting from acceleration) and hydrostatic forces 

were studied separately with different approach. The experiments were designed 

to be done at 6 values of velocities: 0.25, 0.5, 1, 1.5, 2 and 2.5 m/s. 
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- As the rudder angle was one of the key factors in the maneuvering behavior of a 

vessel, the second parameter studied was rudder angle. 5 values of rudder angle 

were selected in the design: ±30, ±15 and 0 degrees.  

- During maneuvers, the yaw angle of the vessel fluctuated which significantly 

affects the forces applied to the vessel. Hence, the third factor to be studied was 

the yaw angle. The yaw angles designed for the experiments were ±30, ±15 and 0 

degrees. 

- For each individual experiment, the model was fixed in all degrees of freedom 

excluding surge. This provides a steady range for each experiment to study forces 

applied to the vessel in each experimental setup.  

Table 12 shows the experimental setup for all experiments: 

Table 12- Experimental setup for towing experiments 

Test # Yaw 

Angle 

Rudder 

Angle 

Velocity 

(m/s) 

  Test # Yaw 

Angle 

Rudder 

Angle 

Velocity 

(m/s) 

1 0 0 0.5   31 15 15 1.5 

2 0 0 1   32 15 15 2 

3 0 0 1.5   33 -15 15 0.5 

4 0 0 2   34 -15 15 1 

5 30 0 0.5   35 -15 15 1.5 

6 30 0 1   36 -15 15 2 

7 30 0 1.5   37 -30 15 0.5 

8 30 0 2   38 -30 15 1 

9 15 0 0.5   39 -30 15 1.5 

10 15 0 1   40 -30 15 2 

11 15 0 1.5   41 0 30 0.5 

12 15 0 2   42 0 30 1 

13 -15 0 0.5   43 0 30 1.5 
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14 -15 0 1   44 0 30 2 

15 -15 0 1.5   45 30 30 0.5 

16 -15 0 2   46 30 30 1 

17 -30 0 0.5   47 30 30 1.5 

18 -30 0 1   48 30 30 2 

19 -30 0 1.5   49 15 30 0.5 

20 -30 0 2   50 15 30 1 

21 0 15 0.5   51 15 30 1.5 

22 0 15 1   52 15 30 2 

23 0 15 1.5   53 -15 30 0.5 

24 0 15 2   54 -15 30 1 

25 30 15 0.5   55 -15 30 1.5 

26 30 15 1   56 -15 30 2 

27 30 15 1.5   57 -30 30 0.5 

28 30 15 2   58 -30 30 1 

29 15 15 0.5   59 -30 30 1.5 

30 15 15 1   60 -30 30 2 

 

A second series of experiments was designed and conducted afterward to achieve 

following goals: the first additional set of findings was used to study the effect of higher 

velocities on the forces, which enabled the development of a more comprehensive and 

accurate mathematical model. In the second series of additional experiments, 5 random 

experiments were selected to be conducted again to provide means of uncertainty 

analysis.    

Table 13- - Experimental setup for additional towing experiments 

Test # Angle of 

Attack 

Rudder 

Angle 

Velocity 

(m/s) 

61 0 30 2.5 

62 0 15 2.5 

63 0 0 2.5 
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19 re -30 0 1.5 

32 re 15 15 2 

60 re -30 30 2 

17 re -30 0 0.5 

55 re -15 30 1.5 
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5 Results and discussion 

The final results of the experiments are the forces and moments transformed to the center 

of gravity in the body-fixed coordinate system at each experimental point. The following 

table presents the results:  

Table 14- Summary of experimental results 

Test # 
Yaw 

Angle 
Rudder 
Angle 

Velocity 
(m/s) 

Surge 
(N) 

Sway 
(N) 

Heave 
(N) 

Roll 
(Nm) 

Pitch 
(Nm) 

Yaw 
(Nm) 

1 0 0 0.5 3.53 2.31 1.30 -12.28 4.98 0.26 

2 0 0 1 22.21 1.16 6.07 -33.31 54.91 0.28 

3 0 0 1.5 47.97 -9.86 10.09 -37.63 139.99 -3.40 

4 0 0 2 66.53 -12.22 30.23 -55.19 190.30 -7.52 

5 30 0 0.5 7.65 -70.02 -7.80 192.39 131.65 -1.87 

6 30 0 1 32.12 -295.31 -34.15 816.14 529.79 -10.24 

7 30 0 1.5 61.15 -721.97 -88.31 2011.77 1277.36 -28.00 

8 15 0 0.25 0.86 -10.35 -1.80 29.82 19.01 -0.18 

9 15 0 0.5 1.41 -44.29 -8.28 127.15 73.75 -0.90 

10 15 0 1 8.78 -195.62 -38.27 562.96 333.25 -6.94 

11 15 0 1.5 17.70 -476.67 -101.48 1370.80 789.41 -22.65 

12 15 0 2 35.12 -836.36 -170.66 2407.02 1392.66 -46.46 

13 -15 0 0.25 1.24 11.20 3.49 -34.82 -16.34 0.31 

14 -15 0 0.5 5.08 40.98 10.25 -127.26 -56.17 0.93 

15 -15 0 1 23.21 181.70 44.56 -561.92 -241.98 6.40 

16 -15 0 1.5 53.48 450.45 94.88 -1375.54 -589.64 21.51 

17 -15 0 2 97.12 807.16 157.66 -2450.69 -1061.31 42.00 

18 -30 0 0.25 3.71 18.22 3.54 -57.97 -21.46 0.62 

19 -30 0 0.5 11.60 70.02 15.37 -219.39 -88.21 2.54 

20 -30 0 1 49.66 287.79 67.65 -891.05 -353.45 10.37 

21 -30 0 1.5 107.18 697.33 147.20 -2147.37 -872.11 29.99 

22 0 15 0.25 0.74 0.01 -0.73 -1.95 1.24 0.01 

23 0 15 0.5 3.68 3.55 1.06 -15.90 3.19 0.53 

24 0 15 1 22.63 8.79 6.62 -56.67 43.47 1.64 

25 0 15 1.5 49.53 10.17 13.17 -98.00 111.60 -0.93 

26 0 15 2 69.03 14.74 37.44 -137.18 152.56 -3.43 

27 30 15 0.25 2.20 -18.32 -2.91 50.86 34.74 -0.41 
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28 30 15 0.5 7.21 -67.85 -7.48 186.66 127.09 -1.51 

29 30 15 1 26.74 -287.73 -29.87 798.32 514.21 -8.91 

30 30 15 1.5 55.33 -709.19 -90.07 1985.28 1242.36 -25.91 

31 15 15 0.25 0.67 -11.43 -2.59 33.21 20.06 -0.19 

32 15 15 0.5 1.37 -42.93 -7.88 123.57 72.00 -0.72 

33 15 15 1 8.45 -186.02 -37.45 536.39 319.04 -5.12 

34 15 15 1.5 17.83 -466.87 -100.62 1343.17 777.02 -19.83 

35 15 15 2 38.57 -805.54 -161.82 2315.49 1357.61 -38.70 

36 -15 15 0.25 2.07 10.07 0.72 -31.88 -12.19 0.35 

37 -15 15 0.5 5.55 43.62 8.60 -134.73 -59.33 1.48 

38 -15 15 1 24.54 191.64 46.68 -592.43 -252.88 7.70 

39 -15 15 1.5 58.31 465.34 95.09 -1423.16 -601.76 24.43 

40 -15 15 2 104.68 848.13 158.53 -2578.23 -1103.58 50.63 

41 -30 15 0.25 3.37 19.99 4.72 -62.05 -24.86 0.82 

42 -30 15 0.5 13.91 70.77 16.77 -224.48 -83.51 3.08 

43 -30 15 1 53.84 294.17 71.19 -913.01 -352.10 11.31 

44 -30 15 1.5 110.88 713.06 149.89 -2197.86 -886.84 32.69 

45 0 30 0.25 1.32 1.44 -0.16 -5.65 0.89 0.11 

46 0 30 0.5 3.88 1.34 0.77 -9.41 6.80 0.43 

47 0 30 1 24.28 9.84 6.50 -62.30 46.50 2.17 

48 0 30 1.5 54.87 17.41 13.53 -127.13 115.90 1.95 

49 0 30 2 78.02 26.13 36.31 -183.81 161.20 2.17 

50 30 30 0.25 1.75 -20.51 -2.85 57.25 36.46 -0.49 

51 30 30 0.5 7.47 -66.67 -7.05 182.37 126.26 -1.24 

52 30 30 1 27.49 -282.05 -31.78 779.77 508.74 -6.88 

53 30 30 1.5 58.65 -694.24 -89.37 1935.60 1230.41 -21.58 

54 15 30 0.25 0.98 -11.01 -1.35 31.69 20.13 -0.13 

55 15 30 0.5 1.70 -41.90 -7.01 120.33 71.22 -0.57 

56 15 30 1 9.99 -182.55 -35.81 524.04 318.47 -3.99 

57 15 30 1.5 21.86 -444.54 -97.05 1272.34 755.22 -15.86 

58 15 30 2 44.66 -793.73 -158.91 2271.88 1354.27 -34.14 

59 -15 30 0.25 0.92 11.42 2.33 -35.33 -16.74 0.41 

60 -15 30 0.5 4.78 44.04 10.09 -136.35 -60.92 1.72 

61 -15 30 1 26.39 195.80 47.82 -605.75 -254.09 8.81 

62 -15 30 1.5 62.58 475.46 94.79 -1457.31 -607.64 26.21 

63 -15 30 2 112.70 864.84 158.76 -2636.74 -1105.81 54.77 

64 -30 30 0.25 3.45 20.68 4.28 -64.19 -25.62 0.91 

65 -30 30 0.5 12.62 72.34 16.44 -227.39 -88.79 3.25 

66 -30 30 1 53.84 299.60 70.83 -927.78 -359.17 12.49 
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67 -30 30 1.5 110.24 732.29 148.72 -2251.64 -915.84 35.00 

68 0 30 2.5 102.54 43.37 80.12 -258.75 187.75 2.13 

69 0 15 2.5 88.88 16.22 76.81 -160.66 191.63 -4.10 

70 0 0 2.5 97.21 0.72 63.97 -98.37 213.28 -1.66 

71 (13 re) -15 0 0.25 1.14 10.44 2.04 -34.09 -12.28 0.43 

72 (14 re) -15 0 0.5 4.76 39.86 8.15 -129.91 -45.26 1.38 

73(15 re) -15 0 1 23.75 180.35 43.01 -586.17 -194.95 8.45 

74 (21 re) -30 0 1.5 106.89 712.30 147.49 -2317.10 -825.80 44.60 

75 (62 re) -15 30 1.5 64.11 467.53 91.64 -1508.70 -484.16 37.59 

76 (35 re) 15 15 2 35.12 -807.81 -164.96 2270.12 1049.77 -58.49 

77 (49 re) 0 30 2 79.31 39.01 -662.30 14.15 300.79 3.60 

78 (18 re) -30 0 0.25 3.00 20.15 3.78 -65.73 -24.07 1.25 

79 (19 re) -30 0 0.5 12.80 67.18 14.42 -225.67 -74.68 4.05 
 

These results represent forces acting on and moments about the center of gravity of the 

vessel in calm water condition at constant velocity. In the mathematical model these 

forces are considered as total of steady forces at a given velocity, yaw angle and rudder 

angle. Acceleration dependent forces (added mass), hydrostatic forces, and restoring 

moments are calculated separately and summed to steady forces to give the total forces 

and moments on the model.  

To be able to use the above experimental results in the simulation, a mathematical model 

which fits the result must be employed. In the following, the method used to build this 

model is described. 

5.1 Non-dimensional analysis 

The approach taken to find a descriptive mathematical model was to use dimensionless 

coefficients of forces and moments. For instance, the dimensionless coefficient of drag is 

Cd=2Fd/ρv2A. As the density of the fluid and projected area are both constant, dividing 
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the drag force by square of velocity would return a coefficient of drag force which is a 

dimensionless value.  Experiments are then divided into groups with the same rudder 

angle. Consequently for each group, a non-linear 2D curve is fitted to match the trend of 

the drag coefficients.  

 

Figure 25- Surge coefficient vs yaw angle at effective rudder angle 0 
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Figure 26- Sway coefficient vs yaw angle at effective rudder angle 0 

 

Figure 27- Heave coefficient vs yaw angle at effective rudder angle 0  
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Figure 28- Roll coefficient vs yaw angle at effective rudder angle 0 

 

Figure 29- Pitch coefficient vs yaw angle at effective rudder angle 0 
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Figure 30- Yaw coefficient vs yaw angle at effective rudder angle 0 
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formulation to correct the hydrodynamic coefficients. For that, two possible solutions for 

the scaling effects could be suggested for further studies. First, CFD simulations for the 

both model-scale and full-scale vessel could achieve the hydrodynamic forces and 

coefficients of maneuvering in both scales and this can be used to study the scale effects. 

Second recommended procedure to determine the hydrodynamic coefficients for the full-

scale vessel is to conduct some maneuvering experiments with the ship and use the 

system identification methods to estimate this coefficients (Bugalski et al. 2013). Both 

above mentioned solutions need considerable amount of time and resources and time and 

are beyond the scope of the project. So, for this study the scale effects are assumed to be 

negligible and not taken into consideration.  
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5.2 Simulation results 

A mathematical model based on the equation of motion described in a previous chapter 

was developed to predict the trajectory of the propelled SPAR vessel in standard 

maneuvering trials. The Euler method to solve ordinary differential equations (ODEs) 

with time step 0.01 sec was employed for the simulations. The initial values of the total 

of forces, accelerations and velocities in all directions were zeros as all the simulation 

were started in steady state.   

The standard 10˚/10˚ , 20˚/20˚  and 30˚/30˚  zig-zag maneuver (z-maneuver) and turning 

circle maneuver at 20˚ and 30˚ rudder were simulated. The simulation results are 

presented for the model size vessel.  

Of particular interest, in these simulation results, is the extent of roll and pitch motions 

that are caused by the maneuvering forces. For conventional vessels, maneuvering 

models traditionally neglect the roll and pitch motions, but in the case of a propelled 

SPAR vessel, these motions are expected to be significant in magnitude and thus a 

significant factor in the vessel design. Thus the model developed here includes simulation 

of roll and pitch motions. 

5.2.1 Turning circle maneuver 

In a turning circle maneuver, after the vessel reaches a steady speed with zero yaw rate, 

the rudder angle is changed to a new setting and maintained for the rest of the 

experiment. The vessel response to this action is to turn in a circle. After reaching a 

steady state, the information to be obtained is: 
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- Tactical diameter 

- Advance 

- Transfer 

- Loss of speed on steady turn 

- Time to change heading 90 degrees 

- Time to change heading 180 degrees 

Figures 29-30 indicate the simulation results of the turning circle maneuver with the 

rudder angle of 20˚ and 30˚ for the model scale vessel L7.  
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Figure 31- Simulation results of 20˚ turning circle maneuver for L7 model (a) propeller revolution vs time (b) 

rudder angle vs time (c) roll and pitch angle vs time (d) surge and sway velocity vs time (e) trajectory in earth-

fixed coordinate system 
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Figure 32- Simulation results of 30˚ turning circle maneuver for L7 model (a) propeller revolution vs time (b) 

rudder angle vs time (c) roll and pitch angle vs time (d) surge and sway velocity vs time (e) trajectory in earth-

fixed coordinate system 

The turning circle simulation shows relatively high maximum roll angles of 62˚ for the 

20˚ turning circle maneuver and 67˚ for the 30˚ turning circle maneuver. The main reason 

for the high roll motion during maneuvers and high pitch motion during course changing 

is the high ratio of draft to length of the vessel. This characteristic motion might be 

partially reduced by lowering the center of gravity and consequently increasing the 

restoring forces. 

Table 15 presents turning circle maneuvering parameters of the vessel in the simulation.  

Table 15- Turning circle maneuvering parameters 

  
L7 

δ=20˚ 
L1 

δ=20˚ 
L7 

δ=30˚ 
L1 

δ=30˚ 

Tactical diameter 4.7 31 3.2 22.7 

Advance 4.9 30.4 3.96 25.7 

Transfer 5.05 34.5 4 27 

Loss of speed on steady turn 0.16 0.4 0.25 0.65 

Time to change heading 90 degrees 4.6 11.3 3.92 9.7 

Time to change heading 180 degrees 7.3 18.6 6.1 15.4 

Maximum roll angle (degrees) 9 62 9 62 

Maximum pitch angle (degrees) 9 67 9 67 

 

 

5.2.2  Zig-Zag maneuver 

In a zig-zag maneuver, the rudder angle is reversed by δ degrees alternately to either side 

at a deviation Ψ from the initial course. After the vessel reaches a steady state, the rudder 

angle changes to δ and maintains this setting until the heading angle is Ψ degrees off the 
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initial course; then the rudder is reversed by the same angle. This procedure continues 

and results in a zig-zag trajectory for the vessel.  

The most common values for the change of the heading angle are 10˚/10˚  and 20˚/20˚ . 

The 30˚/30˚  zig-zag maneuver was also simulated for this study. The main results of the 

zig-zag maneuver follow (ITTC 2002b):   

- Initial turning time (sec) 

- Execute heading angle (degrees) 

- Overshoot angle (degrees) 

- Reach (sec) 

- Time of a complete cycle (sec) 

- Angular speed (deg/sec) 

Figures 31-33 demonstrate the simulation results of the 10˚/10˚ , 20˚/20˚  and 30˚/30˚  

zig-zag maneuver for the model scale vessel L7 and Table 16 shows the zig-zag 

maneuvering parameters of the vessel in the simulation. The Δ sign in the x-y diagrams 

indicate the rudder activation point. 

Table 16- Zig-zag maneuvering parameters 

  

L7 

10˚/10

˚  

L1 

10˚/10

˚  

L7 

20˚/20

˚  

L1 

20˚/20

˚  

L7 

30˚/30

˚  

L1 

30˚/30

˚  

Initial turning time (s) 3.7 9.4 4.1 10.8 4.7 11.7 

Execute heading angle 

(degrees) 
11.2 11 22.1 22 32.5 32.8 
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Overshoot angle (degrees) 2.65 1.25 4.5 4.45 4.17 5.9 

Reach (sec) 9.1 20.1 9.4 25 12.8 26.5 

Time of a complete cycle (sec) 17.6 39.2 18.4 48.7 25.2 52.3 

Angular speed  (deg/sec) 3.4 1.4 6 2.3 7.9 3 
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Figure 33- Simulation results of 10˚ zig-zag maneuver for L7 model (a) propeller revolution vs time (b) rudder 

angle vs time (c) roll and pitch angle vs time (d) surge and sway velocity vs time (e) trajectory in earth-fixed 

coordinate system 

0 20 40 60 80 100 120 140
-0.5

0

0.5

1

1.5

t(s)

v
e
lo

c
it
y
(m

/s
)

(d)

 

 

u (surge velocity)

v (sway velocity)

0 20 40 60 80 100 120 140 160 180 200
-0.5

0

0.5

1

1.5

x(m)

y
(m

)

(e)

0 20 40 60 80 100 120
0

5

10

15

20

25

30

t(s)

p
ro

p
e

lle
r 

re
v
o

lu
ti

o
n
(r

p
s)

(a)

0 20 40 60 80 100 120
-30

-20

-10

0

10

20

30

t(s)

ru
d
d

e
r 

a
n

g
le

(b)



74 

 

 

Figure 34- Simulation results of 20˚ zig-zag maneuver for L7 model (a) propeller revolution vs time (b) rudder 

angle vs time (c) roll and pitch angle vs time (d) surge and sway velocity vs time (e) trajectory in earth-fixed 

coordinate system 
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Figure 35- Simulation results of 30˚ zig-zag maneuver for L7 model (a) propeller revolution vs time (b) rudder 

angle vs time (c) roll and pitch angle vs time (d) surge and sway velocity vs time (e) trajectory in earth-fixed 

coordinate system 

The simulation results indicate that the maximum magnitude of the roll angle in the 

20˚/20˚ zig-zag maneuvering is 27° and is around 48° for the 30˚/30˚ test. Moreover, 

changing the rudder angle from 20˚ to 30˚ doesn’t significantly affect the performance of 

the vessel. This indicates a sharp increase in roll angle during the larger zig-zag turn. 

It also must be considered that the most significant pitch moment of the vessel happens 

during acceleration, so steering and rolling motion do not play an important role in the 

pitch motion of the vessel.  
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6 Conclusion 

In this study, a mathematical model for the maneuvering of the propelled SPAR was built 

and the hydrodynamic coefficients were determined by conducting captive model tests. 

The following can be concluded:  

- The hydrodynamic forces on the hull, propeller and rudder were separately 

investigated and then combined in the mathematical model. The interactions 

between rudder and hull forces were taken into account as the rudder was 

installed during the captive model tests, so the measured forces were the result of 

hull and rudder forces and their interaction. The interaction between propeller 

thruster and hull was also estimated by the thrust deduction factor; however, the 

estimated amount of the thrust deduction factor was not validated. The interaction 

between propeller and rudder forces was not studied.  

- The interactions between velocity and acceleration dependent components were 

neglected in the mathematical model (quasi steady approach). Although the 

hydrodynamic forces on a ship consist of complex combinations of steady and 

unsteady terms, it is assumed that neglecting the interactions between velocity and 

acceleration does not affect simulation results significantly. 

- In the mathematical model developed for the propelled SPAR, the steady 

hydrodynamic forces were assumed to be functions of rudder angle, roll angle, 

angle of attack and surge velocity. Determining the effect of yaw rate on the 
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hydrodynamic forces by conducting planar motion tests might improve the 

accuracy of the prediction. 

- The equations of motion used in this study consider the vessel as a rigid body 

with small pitch motions. The rigidity of the body is a safe assumption; the 

assumption of small magnitude of the pitch motion for this vessel type is 

acceptable only when the acceleration is not large, because the hydrodynamic 

derivatives of maneuvering are subject to change of high pitch angles. 

- For simulating the maneuvering motion of a ship, the pitch and the roll motions 

are generally neglected. However, in this study the pitch and roll motions are 

incorporated, since previous free-running tests on the model showed significant 

rotational motion during the course-changing. These motions are clearly observed 

in the simulation results as well.  

- The simulation result of the ship’s motion in turning circle and zig-zag 

maneuvering shows high roll and high pitch motions during the course change. 

This characteristic is mainly the result of the long strut of the propelled SPAR. 

Simulation results state that the magnitude of these motions could be significantly 

diminished by lowering the center of gravity. For example by lowering the center 

of gravity by 10cm in the model, the magnitude of pitch motion is reduced by 

50% and the magnitude of roll motion is reduced by 30% in the 20˚ turning circle 

test, and by 55% and 40% in the 20˚/20˚  zig-zag test respectively 

- To validate the results of the simulations, a more controllable and instrumented 

vessel model is needed; however, the performance of the vessel is consistent with 
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the simulations and the motion properties of the vessel can be seen in the 

simulation. 

- This maneuvering model is well developed and the predicted motions appear to be 

within a reasonable range based on limited experience with this vessel type. 

However the model needs to be validated (and possibly tuned) with full scale or 

model scale trials data for this vessel or a similar SPAR type vessel. Specially, it 

would be a useful next research step to test the SPAR model in a free-running 

configuration in the same standard maneuvers as were simulated.  

- This numerical model (with some additional validation) can be used to optimize 

the design of a propelled SPAR type vessel particularly the aspect of limiting 

large amplitude pitch and roll motions or to establish operational guidelines to 

limit such motions during vessel maneuvers.  
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Appendix A – Load cells calibration and 

validation data 

 

Figure 36- Load cell Y2 time series plot 

 

Figure 37- Calibration plot for loading (left) and unloading (right) load cell Y2 
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Table 17- Verification result for calibration of load cell Y2 

Weight(g) Voltage(V) Prediction(g) 
Error 
(%) 

10864 5.30E-05 10846.1 -0.165 

20931 9.81E-05 20906.1 -0.119 

 

 

Figure 38-Load cell Z1 time series plot 

 

Figure 39- Calibration plot for loading (left) and unloading (right) load cell Z1 
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Table 18- Verification result for calibration of load cell Z1 

Weight(g) Voltage(V) Prediction(g) 
Error 
(%) 

10613 6.31E-05 10622.3 -0.088 

21031 1.08E-04 20867.7 -0.780 

 

 

Figure 40- Load cell Z2 time series plot 

 

Figure 41- Calibration plot for loading (left) and unloading (right) load cell Z2 
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Table 19- Verification result for calibration of load cell Z2 

Weight(g) Voltage(V) Prediction(g) 
Error 
(%) 

10613 5.54E-05 10511.4 0.957 

 

Figure 42- Load cell Z3 time series plot 

 

Figure 43- Calibration plot for loading (left) and unloading (right) load cell Z3 
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Table 20- Verification result for calibration of load cell Z3 

Weight(g) Voltage(V) Prediction(g) 
Error 
(%) 

10613 6.45E-05 10607.3 0.054 

 

 

 

Figure 44- Load cell X1 time series plot 
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Figure 45- Calibration plot for loading (left) and unloading (right) load cell X1 

 

Table 21- Verification result for calibration of load cell X1 

Weight(g) Voltage(V) Prediction(g) 
Error 
(%) 

10922 6.34E-05 11025.5 0.948 

20989 1.03E-04 20837.6 0.721 
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