
 

The diet and influence of the spionid polychaete Marenzelleria on  

benthic communities in coastal Newfoundland  

by 

© Samantha Green  

A Thesis submitted to the 

School of Graduate Studies 

in partial fulfillment of the requirements for the degree of 

 

Masters of Science 

Department of Biology 

Memorial University of Newfoundland 

 

October 2015 

St. John's   Newfoundland and Labrador



ii 

 

ABSTRACT 

 

Spionid polychaetes within the genus Marenzelleria are common inhabitants of 

organically enriched sediments in the Northern hemisphere. The species M. viridis has 

unique ventilation behaviors that create dynamic, fluctuating oxygen conditions in 

sediments, enhancing sulfate reduction. These behaviours may have negative effects on 

other macrofauna and positive effects on sulfur bacteria. A Marenzelleria species recently 

sampled in Newfoundland is here identified as M. viridis, and its abundance correlates 

little with abiotic factors and macrofaunal community composition at examined sites. 

Various types of surrounding sediments (oxic and suboxic as well as M. viridis burrow 

linings) contained surprisingly similar total prokaryotic, sulfate reducing and sulfur 

oxidizing bacteria numbers. The high abundance of sedimentary prokaryotes, combined 

with the stable isotopic composition of M. viridis tissues and lack of obvious symbionts, 

suggest that, thanks to its ventilation behaviour, this species may “farm” sulfur bacteria in 

sediments and use them as a primary food source. 
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Chapter One: Introduction 

 

1.1 Polychaete Feeding Modes and the Family Spionidae 

Polychaetes, one of the dominant taxonomic groups in marine sedimentary 

environments, are key links in benthic and pelagic ecosystems as common prey items for 

fish, birds and other invertebrates and play important roles in biogeochemical cycles 

(Compton et al. 2013; Jumars et al. 2015). Recently, polychaetes have been classified into 

several feeding guilds, including microphages (active or passive suspension feeders, 

mixed mode suspension feeders, surface or subsurface deposit feeders, funnel feeders, 

food-cachers or scrapers), macrophages (carnivores, scavengers, parasites, herbivores on 

microphotoautotrophs or macroalgae), omnivores or osmotrophs (vestimentiferan tube 

worms), with some families capable of switching between feeding modes depending on 

food conditions (Jumars et al. 2015). 

The family Spionidae Grube, 1850 is one of the largest groups of polychaetes, 

with more than 450 species in 38 taxa, and is the predominant polychaete group in mud-

sand sediments from the intertidal zone to the deep sea, where they construct tubes from 

mucus and sand (Rouse and Pleijel, 2001). Spionids are generally described as passive 

suspension feeders, relying on particle movement or water currents to bring food within 

reach of typically long, grooved feeding palps that intercept passing food particles (Dauer 

et al. 1981; Rouse and Pleijel, 2001; Jumars et al. 2015). Although suspension feeding is 

observed frequently in spionids, some members of the family may also surface deposit 
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feed using feeding palps, depending on the availability and quality of food particles in the 

water column, thus providing an advantage in environments with changing water flow 

and food supply (Dauer et al. 1981; Jumars et al. 2015). While many polychaetes that 

surface deposit feed can also suspension feed, there are no species known to subsurface 

deposit and suspension feed, with the exception of some Magelonidae and Praxillura 

masculata in the Maldanidae family and Nereis virens (Herringshaw et al. 2010, Jumars 

et al. 2015). However, one taxon within the Spionidae, the genus Marenzelleria (Figure 

1.1), has members which have been reported to surface deposit feed, suspension feed and 

potentially feed on reduced burrow sediments (Dauer et al. 1981; Essink and Kleef 1988; 

Miller et al. 1992; Zettler et al. 1996; Urban–Malinga et al. 2013). Because of this 

potential diversity in feeding modes, Marenzelleria species may have variable impacts on 

benthic ecosystems in different regions. 

  

Figure 1.1: Marenzelleria species collected in Neddy Harbour, NL. Specimen length is approxiamately 

12 cm 
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1.2 The genus Marenzelleria and sibling species 

 The genus Marenzelleria is distributed in the Northern hemisphere and is 

abundant in organically enriched intertidal and subtidal sediments of fine sand to mud 

(Hines and Comtois 1985; Sikorski and Bick 2004; Bick 2005; Blank et al. 2006). Within 

this genus, there are five described species found in the Arctic, both sides of the Atlantic 

and in the Eastern Pacific (Sikorski and Bick 2004). Species of Marenzelleria reported in 

the Arctic include M. arctia Chamberlin, 1920, M. wireni Augner, 1913 and M. neglecta 

Sikorski and Bick, 2004 (Sikorski and Bick 2004; Blank et al. 2006). In the Western 

North Atlantic, Marenzelleria species include M. viridis Verrill 1873, M. neglecta 

Sikorski and Bick 2004 and M. bastropi Bick, 2005, with the latter endemic to the 

Currituck Sound (Sikorski and Bick 2004; Bick 2005; Blank et al. 2006). Species are 

difficult to identify based on morphology alone, with three species, M. viridis, M. 

neglecta, and M. arctia, forming a cryptic sibling species complex (Sikorski and Bick 

2004; Blank et al., 2006). Although morphologically identical, the three sibling species 

differ in burrow morphology, burrow construction, sediment reworking and water 

transport (Renz and Forster 2014). Other species of Marenzelleria with distributions 

overlapping those of M. viridis, M. neglecta and M. bastropi were only recently 

recognized as separate species (Sikorski and Bick 2004; Blank et al., 2006), so it is 

possible that studies of “M. viridis” have also included M. neglecta and M. bastropi. Most 

studies on the Marenzelleria genus have focused on M. viridis, as this species has become 

a highly successful invader in European seas, along with M. neglecta and M. arctia. 

Marenzelleria viridis was first observed in European seas during the 1980’s in relatively 
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low numbers, and since then the population has increased drastically (Essink and Kleef 

1988). In the Baltic Sea, Marenzelleria now composes up to 80% of species assemblages, 

with the introduction of the species correlating with decreases in other macrobenthic 

species (Zettler et al. 1996; Delefosse et al. 2012). 

 

1.3 Physiological Adaptations to Hydrogen Sulfide and Anoxia  

As occupants of nearshore organic-matter rich environments, many Marenzelleria 

species are adapted to withstand salinity fluctuations (from 0 – 20) and exposure to 

anoxic and sulfidic conditions (Delefosse et al. 2012). In particular, M. viridis and M. 

neglecta typically inhabit I- or J-shaped burrows up to 40 cm depth in organically 

enriched, sulfidic intertidal sand-mudflats and are often the first colonizers in polluted 

sediments (Blank and Bastrop 2008; Norkko et al. 2012; Renz and Forster 2014). As 

such, both species can be exposed to high levels of ambient hydrogen sulfide. The 

presence of hydrogen sulfide in sediments is considered to be an important environmental 

factor for endobenthic animals, due to its toxicity (Bochert et al. 1997). In soft-bodied 

animals such as polychaetes, hydrogen sulfide diffuses into tissues, and the fraction that is 

not oxidized accumulates and can bind irreversibly to cytochrome c oxidase, inhibiting 20 

different enzymes, and causing sulfohemoglobin formation, mitochondrial polarization, 

increased free radical production as well as oxidative stress (Bochert et al. 1997; Schiedek 

1997; Hance et al. 2008). When exposed to sulfide, most animals show a reduction in 

metabolic activity (Dubilier et al. 1997).  In contrast, M. viridis has an enhanced 

metabolic rate in the presence of sulfide in concentrations up to 250µmol 1-1, apparently 
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gaining energy via the oxidation of hydrogen sulfide to sulfur, even in the absence of 

oxygen (Schneider 1996). The mitochondria of M. viridis may be capable of sulfide 

oxidation, as in Arenicola marina and Heteromastus filiformis (Schiedek 1997). 

Furthermore, M. viridis has better survival during hydrogen sulfide exposure than M. 

wireni, is better able to survive longer exposures to hydrogen sulfide even at toxic levels 

by oxidizing sulfide faster but with a lower energy gain, and is proposed to have an 

alternative pathway for sulfide oxidation that bypasses cytochrome c oxidase (Bochert et 

al. 1997; Hahlbeck et al. 2000).   

 

1.4 Ventilation and Irrigation by Marenzelleria viridis 

Physiological adaptations of Marenzelleria viridis for detoxifying hydrogen 

sulfide would be beneficial when ambient levels in the sediment are high. Intriguingly, M. 

viridis has a unique, ventilation behavior that increases the exposure of the polychaetes to 

sulfidic porewater. Typically, polychaetes create ventilation currents through either 

muscular pumping or ciliary action (Quintana et al. 2011). Ventilation currents created by 

peristaltic muscular pumping, in which the body forms a seal against the burrow wall to 

create a current, are usually more forceful than currents created by cilia (Quintana et al. 

2011). Unlike polychaetes that use only one mode of ventilation, M. viridis creates 

currents through a combination of muscular pumping and ciliary action (Quintana et al. 

2011). The muscular pumping directs anoxic water from deeper sediments upwards, 

resulting in regular anoxic events at the opening of M. viridis burrows lasting from 6-13 

minutes (Quintana et al. 2011). Ciliary ventilation, on the other hand, is continuous and 
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directed towards the posterior of the polychaete, with water drawn from the anterior end 

by bands of cilia located on arched gills (Figure 1.2), supplying oxygen for respiration 

(Quintana et al. 2011). Consequently, the dual ventilation behavior creates oscillations 

from oxic to anoxic conditions in both the burrow and near the sediment surface, and M. 

viridis is therefore regularly exposed to anoxic and sulfidic water (Quintana et al. 2011; 

Jovanovic et al. 2014). Furthermore, the ciliary ventilation into the burrow forces 

oxygenated water across the burrow wall and into surrounding sediment, transporting 

anoxic, sulfidic and nutrient rich porewater from deeper sediments towards the surface 

sediment-water interface (Quintana et al. 2011). The powerful, deep irrigation created by 

M. viridis increases the availability of organic substrates and electron acceptors for 

microbes, and flushes the burrows of inhibitory agents, thereby altering microbial 

community structure (Quintana et al. 2013).

 

Figure 1.2: Photograph of bright red, arched gills on anterior end of Marenzelleria sp. found in 
Neddy Harbour, NL. 
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The unique ventilation behavior of Marenzelleria viridis, combined with the depth 

of its burrows, has been proposed to affect microbial activity in occupied sediment, in 

particular sulfate reduction and sulfur oxidation. In experimental cores containing M. 

viridis, sulfate reduction in sediments below 12-14 cm depth was higher than in control 

sediments, and total sulfate reduction was more than doubled in cores with M. viridis 

(Kristensen et al. 2011). In other experiments involving M. viridis, the presence of the 

polychaetes had a distinct effect on microbial reactions involving total CO2, dissolved 

organic carbon (DOC) and sulfide, with a stimulation of microbial CO2 production and 

sulfur and carbon turnover (Quintana et al. 2013).  While it is not clear how M. viridis 

causes the microbial response, the deep irrigation behavior likely increases the flux of 

produced sulfide throughout the sediment column and the sediment water interface 

(Kristensen et al. 2011; Quintana et al. 2011). In turn, this flux encourages the growth of 

sulfur-oxidizing bacteria, as observed with the growth of Beggiatoa mats on the sediment 

surface of cores with M. viridis (Kristensen et al. 2011, Quintana et al. 2011). Not only 

does the presence of M. viridis stimulate sulfate reducers and sulfide production, but it 

also affects other anaerobic processes, decreasing denitrification and increasing 

ammonium production (Bonaglia et al. 2013; Renz and Forster, 2014). 

 

1.5 Goals and Objectives 

 The physiological adaptations of Marenzelleria viridis to anoxic and sulfidic 

conditions suggest the importance of its unique ventilation behavior and subsequent 

enhanced sulfide exposure for this species. While the effect of M. viridis ventilation on 
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biogeochemical process has been investigated in recent years, the function of this unique 

behavior remains unknown. Furthermore, while the presence of M. viridis has been 

documented to stimulate microbial processes in sediments, there have been no direct 

investigations of the influence of this behavior on microbes or other macrofauna in the 

sediment. In Chapter 2, I determine the species identity of Marenzelleria found in coastal 

Newfoundland and describe site characteristics and the macrofauna associated with these 

polychaetes. In Chapter 3, I examine the abundances of prokaryotic microbes in 

sediments inhabited by M. sp., in particular the numbers and proportions of sulfate 

reducers and sulfur oxidizers, as the activity of these groups is known to be stimulated in 

the presence of M. viridis. Finally, in Chapter 4 I explore the potential food sources of M. 

sp. and consider whether its ventilation behavior may be linked with the enhancement of 

a chemosynthetically-derived food source. Collectively, this research expands knowledge 

of Marenzelleria genus distribution, adds insight into potential impacts in invaded 

regions, including Newfoundland, and increases understanding of ecosystem roles of 

Marenzelleria species in benthic communities, such as species displacement as well as 

effects on biogeochemical cycles.  
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Chapter Two: Sediment Characteristics and Macrofauna Community 

Structure of Marenzelleria sp. Occupied Sandflats  

2.1 Introduction 

Soft-sediment habitats cover the majority of the Earth’s surface, and are easily 

modified by both physical forces and infaunal organisms (Reise 2002; Norkko et al. 

2012). In intertidal zones, sediments are highly influenced by waves, tides, and faunal 

activity, creating an extremely dynamic, ephemeral, harsh habitat (McLachlan et al. 1993; 

Reise 2002).  The organisms that inhabit this fluctuating environment must also overcome 

the challenges of emersion, fluctuating air temperature and salinity, humidity changes and 

desiccation, and, in many cases, high organic loading and low oxygen concentrations 

(Raffaelli and Hawkins 1996; Blank et al. 2006).  The benthic fauna living in these harsh 

conditions play important roles in biogeochemical cycles, and are key to the sustainability 

of intertidal ecosystems, as they recycle nutrients, decompose organic matter, and are an 

important food source for higher trophic levels, including migrating birds, fish, mobile 

invertebrates and even large land mammals, serving as an important link between benthic, 

pelagic, marine and terrestrial ecosystems (Quammen 1984; Compton et al. 2013; Norkko 

et al. 2012). 

The activities of organisms living in coastal marine environments can modify 

sedimentary fabric and chemistry, and the interplay between community members in soft 

sediment, intertidal marine ecosystems creates a complex web of dynamic conditions with 

easily changed short-term modifications (Reise 2002). A constant reworking or activity 
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by any community member is needed for any effect to persist, and if an organism is an 

ecosystem engineer, whose activities affect other species by either providing a habitat or 

transforming the environment, it can determine the proportion of energy flow to either 

producers, consumers or microbes (Widdows and Brinsley 2002; Reise 2002). In soft 

sediments, an ecosystem engineer can influence particle composition, distribution and re-

suspension, sediment stability, microbial activity and nutrient flux rates, as well as 

modify the depth of oxic/anoxic chemocline, impacting other community members and 

their habitat (Reise 2002). As conditions in soft-sediment intertidal ecosystems are 

dynamic, a change that affects the interplay of community members can have 

repercussions on the entire ecosystem. If an ecosystem engineer is either removed or 

added to the community, it has the potential to create drastic changes in the habitat.  

 In Fall 2012, Marenzelleria was noted for the first time in Indian Pond, 

Newfoundland by Fiona Cuthbert of Memorial University during the collection of 

specimens for a Biology of Invertebrates course. Marenzelleria is a genus of spionid 

polychaete with five described species that are difficult to distinguish based on 

morphology alone, three of which are sibling species that have become successfully 

established in European waters (Sikorski and Bick 2004; Blank et al. 2006; Urban-

Malinga 2013; Norkko et al. 2012). Members of the genus Marenzelleria occur on both 

sides of the Atlantic and the Arctic, as well as the Eastern Pacific (Sikorski and Bick 

2004).  Species known in the Western North Atlantic are: M. neglecta Sikorski and Bick, 

2004; M. viridis Verrill, 1873; and M. bastropi Bick, 2005 (Sikorski and Bick 2004; Bick 

2005; Blank et al. 2006). Arctic species include M. neglecta in the Canadian arctic, as 
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well as M. wireni Augner, 1913, and M. arctia Chamberlin, 1920 that are reportedly 

circumpolar although M. arctia have been noted only in Russian Seas (Sikorski and Bick 

2004; Blank et al. 2006). All species typically occupy fine-grained sand to clay-grade 

sediments, and occur from the lower intertidal to depths of approximately 30 m (Hines 

and Comtois 1985; Sikorski and Bick 2004; Bick 2005; Blank et al. 2006).  Despite being 

nearly morphologically identical, species can differ in their burrow structure and in the 

magnitude and quality of their irrigation activity, as demonstrated by the three sibling 

species M. viridis, M. neglecta, and M. arctia (Renz and Forster 2014). Most ecological 

studies have focused on these three species due to recent invasions in European seas, with 

less work focusing on M. wireni and M. bastropi.  

The least studied of the three sibling species, Marenzelleria arctia, is found up to 

30 m depth (where it is most abundant), in silty, sandy or mixed bottoms in regions with 

extreme changes in salinity (0 to 31.5)  and temperature (0-12˚C) (Sikorski and Bick 

2004; Bastrop and Blank 2008). This species usually constructs continuously ventilated, 

J, Y or U shaped burrows up to 8 cm deep, with about 0.4 m2 of extended sediment-water 

interface below each square meter of surface sediment (Renz and Forster 2014). The 

constant, unidirectional flow created by M. arctia creates more stable conditions than the 

deeper burrowing M. neglecta and M. viridis. 

 Marenzelleria neglecta (up to 115 mm long and 2.0 mm wide)  and M. viridis (up 

to 93 mm long and 1.1 mm wide)  both occur  along Atlantic coastlines of North 

America, with M. neglecta being distributed from Chesapeake Bay to Georgia in salinities 

up to 10, and M. viridis spanning Chesapeake Bay to Nova Scotia and the Gulf of St 
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Lawrence (easternmost location: eastern Bradelle Valley) in areas of higher than 10 or 

more fluctuating salinity (Brunel et al. 1998; Sikorski and Bick 2004; Blank et al. 2006). 

Both species construct 25-35 cm deep, I or J shaped burrows and induce a two-way 

directional flow through those burrows, creating oscillating, dynamic conditions that 

stimulate anaerobic bacterial metabolism (Quintana et al. 2007; Blank and Bastrop 2008; 

Renz and Forster 2014). The sediment-water interface extended by these species is 

similar, on average 2.8 m2 for M. viridis and 2.1 m2 for M. neglecta, however, M. viridis 

is capable of transporting almost twice as much water as M. neglecta – on average, 12 mL 

day-1 per individual, compared to 6.6 mL day-1 per individual for M. neglecta (Renz and 

Forster 2014). Since the magnitude of burrow ventilation is quite different between those 

two species, there might be differences in the degree to which they stimulate both 

microbial activity and nutrient exchange rates, and therefore different propensities to 

cause ecosystem change.    

Since the introduction of Marenzelleria spp. into European waters in the 1980s, 

M. viridis, has become a prevalent invasive species. By 1993, M. viridis became the 

dominant macrobenthic species in the Baltic Sea, comprising up to 80% of species 

assemblages in some areas (Zettler et al. 1996).  Occupying an empty niche and lacking 

predators, this species quickly propagated and reached high densities, from 100-200 

individuals to 8000 individuals per square metre (Schneider 1996; Delefosse et al. 2012). 

Reports of the introduction of M. viridis correlate with a decrease in other macrobenthic 

species (Delefosse et al. 2012), and raise concerns that the increased production of 

hydrogen sulfide, changes in organic matter degradation and a re-suspension of deep 
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buried contaminants may further harm the already stressed ecosystem of invaded regions 

(Kristensen et al. 2011; Norkko et al. 2012; Quintana et al. 2013).  

  The discovery of Marenzelleria sp. in Indian Pond, NL, outside the reported 

ranges of all species within this genus, prompted an investigation to determine the 

species' identity and thereby confirm the first record of Marenzelleria in coastal 

Newfoundland. Species identity is also important in assessing the potential influence this 

species may have on community structure and ecosystem functioning. In a first attempt to 

examine ecosystem correlates, the abundance of Marenzelleria sp. and the characteristics 

of inhabited regions were investigated in four opportunistically selected intertidal 

locations in Newfoundland, including Indian Pond. Sediment core samples and 

macrofauna were collected at these locations to investigate associations between 

Marenzelleria sp., sediment characteristics and macrofaunal community structure.    

 

2.2 Materials and Methods 

2.2.1 Sampling Locations 

This study considered two locations, Conception Bay and Bonne Bay, both in 

Newfoundland. The location in Conception Bay, Indian Pond (Figure 2.1), was chosen as 

this was the location of the first observed Marenzelleria spp. Indian Pond is a brackish 

lagoon with a narrow opening connecting it to Conception Bay; it serves as an industrial 

cooling water intake source for the nearby Holyrood Thermal Generating Station. Located 

in the center of the community of Seal Cove, Indian Pond receives anthropogenic impacts 

from boating activities and domestic runoff from nearby dwellings, in addition to the 
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influence of the power plant. Although protected from wave action, the narrow opening 

of the lagoon creates strong tidal currents with rapid water level changes (personal 

observation). Surface salinity varied from 10 to 22, and temperature varied between 4 °C 

and 26 °C through the sampling period (April to December 2013). In mid-August 2014, 

the time of this study, the water temperature was 19.5°C, and the salinity 21. 

                                                                                                                                 

Figure 2.1: Map of sampling location in Conception Bay, Indian Pond. Section in red represents 

sampling area of 2013 and 2014.  (Adapted from the National Topographic System Maps, Natural 

Resources Canada). 

Bonne Bay is a sub-arctic fjord with two basins – South Arm and East Arm – with 

East Arm separated from South Arm and the Gulf of St. Lawrence by a shallow glacial 

sill (approximately 13 m depth). Bonne Bay sites were chosen due to similar communites 
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and potential habitat for Marenzelleria spp. For this study, two locations within East Arm, 

Neddy Harbour and Deer Brook Lagoon, and one on other side of the sill, Sandy Head, 

were selected (Figure 2.2). 

 

Figure 2.2: Map of sampling locations in Bonne Bay, Deer Brook Lagoon (A), Neddy Harbour (B) 

and Sandy Head (C). Sections in red represent sampling areas within each location for 2013 and 

2014. (Adapted from the National Topographic System Maps, Natural Resources Canada). 
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Deer Brook Lagoon (Figure 2.2, inset A), located at the mouth of Deer Brook, has 

the least anthropogenic influences of the three Bonne Bay locations. This area receives 

abundant input of terrestrial organic matter and detritus from the Brook. The lagoon is 

sheltered from wave action and mobile sea ice by long sand bars, and substrate is fine 

sand to mud. During the lowest spring low tides, this location is almost completely 

exposed. Salinitiy is typically low but varies with tide and season. The salinity in Deer 

Brook measured 11.4 in early September 2013 and the temperature 22°C; in late August 

2014 the temperature and salinity is unknown, although previous sampling in the area 

measured salinity as usually no higher than 15.  

Neddy Harbour (Figure 2.2, inset B) is a sheltered cove that has with the greatest 

anthropogenic influences of the three Bonne Bay locations, primarily through the effects 

of dredging. It receives minor freshwater runoff from Neddy Pond Brook. In late August 

2013, the water temperature at this site was 16.1°C and the salinity unknown; in late 

August 2014 the salinity was 23.1 and temperature 18.3°C. 

Sandy Head (Figure 2.2, inset C) has the greatest exposure to the Gulf of St. 

Lawrence, with a line of boulders providing moderate protection from wave and sea ice 

action.  The main feature of this site is a headland that is being rapidly eroded and 

experiences slumping, contributing to the sediments in this region. Similar to Deer Brook 

Lagoon, salinity and temperature varies with tides and precipitation.  In late August 2013, 

the surface salinity was 18.8 and the temperature 18.5°C, and in late August 2014 the 

salinity was 28.9 and temperature 17.1°C. 
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All sampling was done haphazardly within the four study locations, with sites (N 

= 3 to 5) generally separated by a distance of 10 to 15 m and between 2 to 4 m from the 

water's edge at low tide. Sample sites were in locations only exposed during spring tides, 

when sampling took place. Fecal rods deposited at the surface of the sediment were taken 

to indicate the presence of Marenzelleria sp. within sampling locations, and sample plots 

were selected haphazardly in the general area where fecal rods were observed (about 25 

m2; see Fig. 3.1 for image of fecal rods). In 2013, sample collection took place on the low 

tides of August 27th for Neddy Harbour (5 sites) and Sandy Head (5 sites), and on 

September 2nd for Deer Brook Lagoon (3 sites). In 2014, sample collection took place in 

Indian Pond (4 sites) on August 13th, in Neddy Harbour (5 sites) on August 19th, in Sandy 

Head (5 sites) on August 25th and in Deer Brook (5 sites) on August 29th. Sample 

collection took place in the same general area where fecal rods were observed for each 

location in 2013 and 2014. Samples were collected at these times due to time constraints 

and available assistance. 

 

2.2.2 Macrofaunal Community Sampling 

Sediment samples for the characterization of macrofaunal assemblages were 

collected by measuring a 30 cm x 20 cm wide and 10 cm deep plot, and transferring the 

sediments into a bucket for transportation back to the Bonne Bay Marine Station or to 

Memorial University for processing. Sediment was run through 1.5 mm and then 1 mm 

mesh sieves, and all organisms collected. Specimens were visually identified to species 

based on morphological characteristics using a stereomicroscope, and enumerated.  
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To quantify the macrofaunal community diversity in sampled plots, the Shannon-Wiener 

diversity index (H) was calculated: 

        s 
H = ∑ - (Pi * ln Pi) 
        i=1 
 

where: 

 pi = proportion of individuals of the ith species 

S = number of species encountered  

∑ = sum from species 1 to species S 

 

2.2.3 Identification of Marenzelleria species. 

As there is a Marenzelleria cryptic species complex consisting of three species 

(M.arctia, neglecta and viridis), the mitochondrial COI gene segment was amplified and 

sequenced to determine the identity of Newfoundland specimens, as in Bastrop and Blank 

(2006). Two individuals, one each from Bonne Bay and Indian Pond, were fixed in 100% 

ethanol. Total genomic DNA was extracted using a Qiagen DNeasy Blood and Tissue Kit 

according to manufacturer’s instructions and the concentration and purity of each 

extraction was quantified using a ND-1000 Spectrophotometer. The gene fragment COI 

(632 bp, Table 2.1) was amplified with polymerase chain reactions (PCR) performed with 

a BIO- RAD C1000 Thermal Cycler in 25 µL total volume, with a concentration of 25 

ng/mL of DNA. The amplification profile consisted of denaturation for 60 seconds at 

94°C, followed by 38 cycles of extension-elongations with 30 seconds at 94°C, 30 

seconds at 50°C and 60 seconds at 72°C, and a final elongation at 72°C for 5 minutes. 
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PCR products were purified and sequenced at the Genomics and Proteomics lab, 

Memorial University. Sequences from the samples were edited using Sequencher 

(Version 5.0) and matched to closest known sequences in GenBank using the Basic Local 

Alignment Search Tool (BLAST).  

Table 2.1: Primers used for amplification and sequencing to identify collected Marenzelleria sp. 

Primer Sequence Reference 
LCOI 1490 5’-GGTCAACAAATCATAAAGATATTGT-3’ Blank and Bastrop 2006 
HCOI 2198 5’-TAAACTTCAGGGTGACCAAAAAATCA-3’ Blank and Bastrop 2006 

 

2.2.4 Sediment characteristics 

The concentration of photosynthetic pigments, percentage of organic matter, 

median grain size and sorting were investigated for each sampled plot. One core sample 

for each plot was taken immediately adjacent to the plot sampled for macrofauna with a 5 

cm diameter x 50 cm long plastic corer. Core samples were subsequently wrapped in 

aluminum foil to reduce light exposure, and brought back to the Bonne Bay Marine 

Station or Memorial University for further processing. Cores were sectioned into 0-2 cm, 

2-4 cm, 4-6 cm, and 6-10 cm depth intervals in a darkened room. Sections were 

homogenized, wrapped in aluminum foil and frozen at -20°C.  Each depth interval was 

subsampled for one measurement of each sediment characteristic listed above.   

  

2.2.4.1 Photosynthetic pigment analysis 

  Photosynthetic pigment levels were measured from each depth section to 

characterize sampling site as well as investigate possible correlates with Marenzelleria 

sp., as Marenzelleria has been described as feeding on surface diatoms. To determine the 
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concentration of photosynthetic pigments, 2.0 g of thawed sediment was placed in a pre-

weighed glass centrifuge tube with 8 mL of 90% acetone and left at 4°C for 18 hours for 

pigment extraction. Subsequently, the samples were transferred to plastic 15 mL 

centrifuge tubes and centrifuged at 3000 rpm for 10 minutes, with the supernatant 

immediately placed back into a glass centrifuge tube. One mL of supernatant was pipetted 

into a cuvette, transferred to a spectrophotometer, and absorbance measurements at 

wavelengths of 665 and 750 nm were recorded with 90% acetone as a blank. Then, 200 

µL of 0.1M hydrochloric acid was added to the cuvette, and after two minutes a second 

reading at wavelengths of 665 and 750 nm was recorded. To determine the dry weight of 

sediment samples, 0.5 g of the same thawed sediment sample was dried overnight in an 

embedding oven at 60°C and the resulting weight difference used to calculate the 

equivalent weight loss of the sample from which pigments were extracted. To calculate 

the amount of chlorophyll a, the following formula was used (Danovaro 2010): 

 Chl a (µg/g) = 26.7(A665O-A665aO) * (v +(PPu-PPs)) / (CO*Ps) 

where: 

A665O = (A665- A750) 

A665aO = (A665a- A750a) 

A665 =absorbance of sample at 665nm before acidification 

A750 = absorbance of the sample at 750nm before acidification 

A665a= absorbance of sample at 665nm after acidification 

A750a = absorbance of the sample at 750nm after acidification 

V= volume of acetone 
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CO = optical length (in this case, 1 cm) 

PPu = weight of the tube containing wet sediment 

PPs = weight of the tube containing dry sediment 

Ps = weight of dry sediment 

2.2.4.2 Organic Matter 

  Organic matter percentage in each depth fraction to characterize the sampling 

sites, as well as correlate with Marenzelleria sp. as Marenzelleria has been described as a 

deposit feeder. To determine the percentage of organic matter, approximately 1.00 g of 

thawed sediment was transferred to a pre-weighed crucible, and left overnight in the 

drying oven at 60°C. The crucible and dried sample was reweighed the following day 

once the crucible had cooled. A bench-top furnace (Thermo Scientific, Thermolyne) set to 

550°C was used to burn off organic matter present in the sample, and the weight of the 

crucible and resulting ash recorded. The following equation was used to quantify the 

percentage of organic matter: 

 % organic matter = ( (dry weight of sediment-ash weight of sediment)/ (dry 

weight of sediment))*100   

 

2.2.4.3 Median Grain Size and Sorting Coefficient 

Median grain size and sorting coefficient were measured from each depth fraction 

to characterize the sampling site as well as determine correlates with Marenzelleria sp., as 

other marcrofauna have shown preference to certain sediment sizes. To determine median 

grain size and the sorting coefficient, grain size analysis by dry sieving, adapted from 
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Folk (1974), was used.  Thawed sediment samples (55 g) were dried overnight at 60°C in 

a drying oven and reweighed the following day. Samples were transferred to pre-labeled 

50 mL centrifuge tubes for analysis at the CREAIT TERRA facility in the Earth Sciences 

Department of Memorial University. Sieves (8 in diameter) of multiple screen sizes were 

selected for this analysis based on differentiation between different grain size classes of 

the Wentworth scale: gravel and very coarse sand (-1 Ø, 2.00 mm), very coarse to coarse 

sand (0 Ø, 1.00 mm), coarse to medium sand (1 Ø, 0.5 mm), medium to fine sand (2 Ø, 

0.25 mm), fine to very fine sand (3 Ø, 0.125 mm), and very fine sand to coarse silt (4 Ø, 

0.0625 mm). Screens were nested in order, with the coarsest screen on top and catch pan 

on the bottom, and placed in a Ro-Tap machine with the dry sample for 10 minutes. Each 

size fraction was carefully removed from the screen, and weighed to a precision of 0.01g.  

Once the sample size fractions were weighed a cumulative weight graph was 

plotted, where the 50th percentile (Q50) corresponded to the median grain size of the 

sample. To calculate the sorting coefficient, the following formula (Gray and Elliot 2009) 

was used:  

 (Q84 – Q16/4) + (Q95 –Q5/ 6.6) 

where: 

Q84 = 84th percentile on cumulative weight graph 

Q16 = 16th percentile on cumulative weight graph 

Q95 = 95th percentile on cumulative weight graph 

Q5 = 5th percentile on cumulative weight graph 

2.2.5 Multivariate Analysis 
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Sediment characteristics were compared among locations (Indian Pond, Neddy 

Harbour, Sandy Head or Deer Brook) and years (2013, 2014) after data normalization; the 

dataset consisted of surface (0-2 cm) chlorophyll a, and organic matter, along with 

average chlorophyll a, organic matter, median grain size, and sorting coefficient. An 

analysis of similarity (ANOSIM) procedure was then run on the Euclidian distance matrix 

of sediment data, using 9999 permutations. 

To explore macrofaunal communities classified by location-year, macrofaunal 

data were transformed to the fourth root to work on the same scale and nonmetric 

Multidimensional Scaling (nMDS) using the Bray Curtis similarity was performed. 

Species found in just one sampling plot were discarded from the analysis.  

Then, in order to examine if structuring of assemblages might be driven by 

sediment characteristics, Pearson correlations of sediment data were plotted together with 

the macrofaunal nMDS.  

To determine if there were significant differences in macrofaunal communities 

between locations and years, an ANOSIM was run on the previously obtained Bray Curtis 

similarity matrix, using 9999 permutations. In the ANOSIM, location and years were 

analyzed as cross-factors. To relate environmental variables with assemblages, a Biota 

and/or Environmental matching test (BEST) was conducted, based on Spearman rank 

correlations.  

Finally, to determine whether Marenzelleria sp. presence or abundance may be 

related to community structure, another nMDS was run without Marenzelleria data (run 
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with dummyvaraibles to reduce the effect of zeros). All analyses were conducted using 

the software PRIMER 6.0 (Clarke & Warwick 2001).   

 

2.3 Results 

2.3.1 Presence of Marenzelleria viridis in Indian Pond and Bonne Bay 

Analysis of the COI mitochondrial gene fragment amplified from total DNA 

extracted from the two specimens confirmed the presence of Marenzelleria viridis in both 

Indian Pond and Bonne Bay. The top 15 matches for the gene fragment (510 bp) from the 

specimen in Deer Brook were Marenzelleria viridis (top 3 matches: haplotype Mv 4, Mv 

2 and Mv 1) all with an E-value of 0.0, query cover 100% and identity of 99%. The top 

15 matches for the gene fragment (590 bp) from the Indian Pond specimen were also 

Marenzelleria viridis (haplotypes Mv 2, Mv 1 and Mv 4 in the top 4 matches) all with an 

E value of 0.0, query cover from 98 - 100%, and identity 99 - 100%. The species was 

found in all four locations sampled in both years, with average densities ranging from 3.7 

± 3.8 individuals m-2 in Neddy Harbour in 2013 to 22 ± 8.4 individuals m-2 in Deer Brook 

in 2014 (Table 2.2). In 2013, M. viridis accounted for 8% of the total macrofaunal 

abundance in Neddy Harbour, 28% in Sandy Head, and 48% in Deer Brook. In 2014, M. 

viridis accounted for 14% of the total macrofaunal abundance in Indian Pond, 31% in 

Neddy Harbour, 18% in Sandy Head, and 69% in Deer Brook.  
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Table 2.2: Densities (mean ± 1 SD individuals m -2) of the five most common species found at all four 
sampling locations from 2013 and 2014. The Shannon-Wiener diversity (H) is also indicated. (See 
Appendix 1 for full list of species collected) 

 Indian Pond 
2013    2014 

Neddy Harbour 
2013            2014 

Sandy Head 
2013            2014 

Deer Brook Lagoon 
2013            2014 

Diversity (H) N/A 0.7 ± 0.5 1.1 ± 0.6 1.0 ± 0.3 0.9 ± 0.5 1.0 ± 0.4 1.0 ± 0.3 0.7 ± 0.4 

Marenzelleria viridis N/A 6.3 ± 6.3 3.7 ± 3.8 11 ± 8.6 9.7 ± 14 10 ± 5.9 8.9 ± 8.4 22 ± 8.4 

Nereis virens N/A 28 ± 14 4.0 ± 3.0 14 ± 9.9 3.3 ± 4.7 9.0 ± 8.8 3.3 ± 1.7 2.5 ± 3.1 
 

Heteromastus filiformis N/A 0 4.3 ± 7.0 15 ± 13 13 ± 16 30 ± 9.4 0.6 ± 1.0 6.0 ± 8.4 

Mya arenaria N/A 5.6 ± 6.6 6.3 ± 8.7 0.5 ± 1.1 1.7 ± 1.7 0.5 ± 1.1 0 0 

Macoma balthica N/A 0 24 ± 18 0 5 ± 1.5 1.5 ± 2.2 4.4 ± 4.2 2.5 ± 2.5 

 

2.3.2 Characteristics of Locations with Marenzelleria viridis 

2.3.2.1 Indian Pond 

For 2014, the average Shannon-Wiener diversity (H) of macrofauna at Indian 

Pond was 0.7 ± 0.5. The most abundant species was Nereis virens with 28 ± 14 

individuals m-2 (Table 2.2). Surface sediments in Indian Pond had an average chlorophyll 

a content of 9.43 ± 3.88 µg g-1 of dry sediment, an average organic matter content of 1.17 

± 0.13%, an average median grain size of 0.62 ± 0.24 mm and a sorting coefficient of 

1.04 ± 0.13. Chlorophyll a and organic matter content decreased with depth, except for an 

increase in organic matter in the 6-10 cm depth fraction to 1.20 ± 0.29%. Both average 

median grain size and sorting coefficients remained similar with depth (Table 2.3). 
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Table 2.3: Average sediment characteristics (mean ± SD) at depth intervals for each sample location 
in 2013 and 2014.  

 Chl a (ug g-1 dry 
sediment) 
2013          2014 

Organic Matter (%) 
 
2013           2014 

Median Grain Size 
(mm) 
2013            2014 

Sorting Coefficient 
 
2013            2014 

Indian 
Pond 

        

 0-2 cm N/A 9.4 ± 3.8 N/A 1.2 ± 0.1 N/A 0.6 ± 0.2 N/A 1.0 ± 0.1 

 2-4 cm N/A 3.6 ± 1.4 N/A 0.8 ± 0.1 N/A 0.6 ± 0.1 N/A 1.0 ± 0.1 

 4-6 cm N/A 1.8 ± 1.2 N/A 0.8 ± 0.2 N/A 0.6 ± 0.1 N/A 0.9 ± 0.1 

 6-10 cm N/A 1.5 ± 1.0 N/A 1.2 ± 0.3 N/A 0.6 ± 0.1 N/A 1.1 ± 0.1 

Neddy 
Harbour 

        

 0-2 cm 3.4 ± 1.0 3.4 ± 2.5 0.7 ± 0.5 1.5 ± 0.5 0.3 ± 0.1 0.2 ± 0.1 1.5 ± 0.3 1.4 ± 0.1 

 2-4 cm 1.5 ± 0.6 1.7 ± 0.5 0.9 ± 0.6 1.3 ± 0.4 0.3 ± 0.1 0.2 ± 0.1 1.4 ± 0.2 1.4 ± 0.2 

 4-6 cm 0.9 ± 0.5 1.0 ± 0.5 1.0 ± 1.0 1.2 ± 0.2 0.3 ± 0.1 0.2 ± 0.1 1.5 ± 0.2 1.4 ± 0.3 

 6-10 cm 0.6 ±0.3 0.6 ± 0.3 0.8 ± 0.8 1.2 ± 0.3 0.3 ± 0.1 0.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.2 

Sandy 
Head 

        

 0-2 cm 2.0 ± 1.4 4.3 ± 2.1 0.6 ± 0.4 1.3 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 0.6 ± 0.4 0.7 ± 0.9 

 2-4 cm 0.5 ± 0.2 0.9 ± 0.3 0.8 ± 1.5 1.3 ± 0.6 0.2 ± 0.0 0.2 ± 0.0 1.0 ± 0.6 0.9 ± 0.6 

 4-6 cm 0.4 ± 0.2 1.0 ± 0.8 0.5 ± 0.0 1.2 ± 0.4 0.2 ± 0.0 0.2 ± 0.1 0.6 ± 0.1 0.9 ± 0.6 

 6-10 cm 0.3 ± 0.2 1.3 ± 0.8 0.5 ± 0.0 1.2 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 0.7 ± 0.2 1.2 ± 0.5 

Deer 
Brook 
Lagoon 

        

 0-2 cm 17 ± 7.7 8.4 ± 2.5 1.7 ± 0.3 3.0 ± 0.8 0.2 ± 0.0 0.2 ± 0.0 1.0 ± 0.0 0.9 ± 0.6 

 2-4 cm 6.1 ± 1.0 5.5 ± 2.3 1.8 ± 0.3 3.4 ± 0.8 0.2 ± 0.0 0.2 ± 0.0 1.5 ± 0.0 1.0 ± 0.5 

 4-6 cm 2.1 ± 0.6 2.6 ± 1.7 5.9 ± 1.2 3.3 ± 1.0 0.2 ± 0.0 0.6 ± 0.9 1.3 ± 0.2 1.0 ± 0.6 

 6-10 cm 0.8 ± 0.1 1.7 ± 2.4 1.5 ± 0.6 4.1 ± 2.4 0.2 ± 0.0 0.1 ± 0.0 1.7 ± 0.2 0.8 ± 0.4 
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2.3.2.2 Neddy Harbour 

The macrofaunal Shannon-Wiener diversity at Neddy Harbour averaged 1.1 ± 0.6 

in 2013 and 1.0 ± 0.3 in 2014. The most abundant species in 2013 was Macoma balthica 

with 24 ± 18 individuals per m-2.  In 2014, this drastically changed as the abundance of 

Macoma balthica sampled went to 0, and Heteromastus filiformis, followed closely by 

Nereis virens, were the most abundant species, with 15 individuals m-2 and 14 individuals 

m-2, respectively (Table 2.2).  

In 2013, surface sediment samples (0-2 cm depth) had an average chlorophyll a 

content of 3.44 ± 1.00 µg g-1 dry sediment and 0.69 ± 0.55% organic matter. The average 

median grain size was 0.30 ± 0.08 mm, and the average sorting coefficient was 1.55 ± 

0.33. In deeper fractions, chlorophyll a content decreased to 1.52 ± 0.98 µg g-1 dry 

sediment at 6-10 cm, with the average percentage of organic matter being higher in 

deeper sediment fractions, up to 0.96 ± 1.02%. Median grain size and sorting coefficient 

were relatively similar with depth (Table 2.3).    

In 2014, surface sediment samples were similar to those collected in 2013 in their 

chlorophyll a content, with an average value of 3.37 ± 2.45 µg g-1 dry sediment, but the 

percentage of organic matter was slightly higher than in the previous year, with an 

average of 1.55 ± 0.49%. The average sorting coefficient and median grain size were also 

both similar to 2013 values, with a sorting coefficient average of 1.43 ± 0.14 and a 

slightly smaller median grain size of 0.20 ± 0.05 mm. Chlorophyll a content decreased 

with depth to 0.625 ± 0.265 µg g-1 dry sediment at 6-10 cm depth, with the percentage of 
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organic matter, median grain size and sorting coefficient remaining at similar values with 

depth (Table 2.3).  

 

2.3.2.3 Sandy Head 

The Shannon-Wiener macrofaunal diversity of Sandy Head averaged 0.9 ± 0.5 in 

2013 and 1.0 ± 0.4 in 2014. For both 2013 and 2014, Heteromastus filiformis was the 

most abundant species, with 13 ± 16 and 30 ± 9.4 individuals m-2 in 2013 and 2014 

(Table 2.2). In 2013, surface samples (0-2 cm depth) had an average chlorophyll a content 

of 1.95 ± 1.38 µg g-1 dry sediment, an average organic matter content of 0.62 ± 0.40%, an 

average median grain size of 0.20 ± 0.03 mm and a sorting coefficient of 0.62 ± 0.4. 

Chlorophyll a content and organic matter percentage decreased with depth down to 0.32 ± 

0.22 µg g-1 and 0.48 ± 0.05% respectively. Median grain size and sorting coefficient were 

relatively consistent with depth, with the sorting coefficient slightly higher in the 2-4 cm 

depth fraction (0.98 ± 0.64). 

In 2014, the average chlorophyll a content and organic matter were higher than in 

the previous year, with values of 4.25 ± 2.14 µg g-1 dry sediment, and 1.33 ± 0.14% 

respectively. The average median grain size was 0.19 ±0.01 mm and the sorting 

coefficient was 0.68 ± 0.85, both very similar to 2013 values. The average chlorophyll a 

content and organic matter percentage decreased with depth, to 1.33 ± 0.88 µg g-1 and 

1.17 ± 0.13% at 6-10 cm depth. The median grain size remained the same with depth, 

although the sorting coefficient increased to 1.22 ± 0.49 in the 6-10 cm depth fraction 

(Table 2.3). 
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2.3.2.4 Deer Brook Lagoon 

       The Shannon-Wiener macrofaunal diversity in Deer Brook Lagoon averaged 1.0 ± 

0.3 in 2013 and 0.7 ± 0.4 in 2014. Marenzelleria viridis was the most abundant 

macrofaunal species in both sampling years, with 8.9 ± 8.4 individuals m-2 in 2013 and 22 

± 8.4 individuals m-2 in 2014 (Table 2.2). In 2013, surface sediment had a chlorophyll a 

content averaging 16.95 ± 7.7 µg g-1 dry sediment, an average organic matter percentage 

of 1.69 ± 0.33%, an average median grain size of 0.17 ± 0.00 mm, and a sorting 

coefficient of 1.03 ± 0.00. As expected, chlorophyll a content decreased with depth to 

0.78 ± 0.11µg g-1 dry sediment although the organic matter percentage remained 

relatively constant with depth, with an increase at the 4-6 cm depth fraction to 5.86 ± 

1.15%.  Median grain size remained similar with depth, and sorting coefficient increased 

to 1.55 ± 0.00 in the 2-4 cm depth fraction but remained similar for other depths.  

In 2014, the surface chlorophyll a content was 8.41 ± 2.50 µg g-1 dry sediment, 

almost half the concentration measured in 2013; however, the percentage of organic 

matter was higher, at 2.95 ± 0.85%. The median grain size was similar to the previous 

year with an average of 0.17 ± 0.05 mm. Similar to the chlorophyll a content, the average 

sorting coefficient (0.86 ± 0.57) was lower than in 2013. Chlorophyll a content decreased 

with depth to 1.67 ± 2.43 µg g-1 dry sediment, the percentage of organic matter increased 

with depth to 4.14 ± 2.43, while median grain size and sorting coefficients remained 

similar with depth (Table 2.3). 
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2.3.3 Multivariate Analysis 

The ANOSIM on sediment characteristics shows highly significant differences 

between all locations (R = 0.722, p = 0.00001) and, to a lesser degree, between years (R = 

0.258, p = 0.0024). The nMDS showed some differences in macrofaunal assemblages 

between location-year groupings (Figure 2.3). The overlap between macrofaunal nMDS 

and Pearson correlation results from the sediment characteristics dataset revealed no 

evident driver of assemblage composition (Figure 2.3). The ANOSIM on macrofaunal 

community structure revealed that the effect of both location and year was significant (R 

= 0.324, p < 0.0001; R = 0.207, p = 0.045, respectively). Furthermore, pairwise 

comparisons indicate that Indian Pond assemblages were highly different from the other 

sites (R values between 0.4 and 0.9, p < 0.005).  

Biota and or Environmental matching (BEST) revealed no significant 

relationships (p-value = 0.17 and Rho = 0.223) between environment characteristics and 

macrofauna. Removing Marenzelleria viridis from the dataset resulted in a similar pattern 

of sample assemblage composition (Figure 2.4A). When M. viridis abundance data were 
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then plotted for each of these samples, no particular structure was evident (Figure 2.4B).

 

Figure 2.3: Superimposed Pearson correlation of sediment characteristics on Bray Curtis similarity 
of macrofaunal densities of sampling location and year (HR = Holyrood (Indian Pond), NH = Neddy 
Harbour, SH = Sandy Head, DB = Deer Brook Lagoon). 

Transform: Fourth root
Resemblance: S17 Bray Curtis similarity

site-year
HR-2014
NH-2013
NH-2014
SH-2013
SH-2014
DB-2013
DB-2014

Surface Chl a (0-2 cm)Ave. Chla for Core
Surface %OM (0-2 cm)Ave. % of OM for Core Average Median GS for Core

Ave Sorting Coefficient

2D Stress: 0.16
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A) 

 
B) 
Figure 2.4: A) nMDS analysis of macrofaunal data, with the exclusion of Marenzelleria viridis. B) 
Densities of M. viridis (individuals m-2) superimposed on a). Numbers and circle diameter correspond 
to individuals m-2 in sampled plots. All locations and both years are considered. 

 

Transform: Fourth root
Resemblance: S17 Bray Curtis similarity (+d)

site-year
HR-2014
NH-2013
NH-2014
SH-2013
SH-2014
DB-2013
DB-2014

2D Stress: 0.2

Transform: Fourth root
Resemblance: S17 Bray Curtis similarity (+d)

# of M. viridis
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28

40

2D Stress: 0.2
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2.4 Discussion 

2.4.1 Confirmed Presence of Marenzelleria viridis in Newfoundland 

This is the first confirmed report of the Marenzelleria genus in Newfoundland. As 

only two individuals were sequenced for this study, it is possible other Marenzelleria sp. 

besides M. viridis are present, but unfortunately due to time constraints more individuals 

could not be sequenced. Future studies could sequence more Marenzelleria individuals to 

confirm whether or not other species of the genus are distributed in Newfoundland.  

Nonetheless, this is the first confirmed report of Marenzelleria viridis in 

Newfoundland, although other macrofaunal surveys have included this region (Maciolek 

1984; Pocklington 1989; Blank et al. 2006). Marenzelleria viridis was found in the four 

investigated sites in both sampling years, and while it appears to be common, abundances 

are much lower than reported in both the native range and introduced regions. The highest 

density in this study (33 individuals m-2 in a plot from Deer Brook Lagoon, 2013) was 

low compared to the reported maximum densities of 1000 individuals m-2 in Nova Scotia 

(George 1966), and no fewer than 100-200 individuals m-2 in Europe. The lower density 

reported herein may be due to the modest human impacts at the sampling sites. 

Marenzelleria viridis is a highly opportunistic species and one of the first to colonize a 

region experiencing hypoxia (a common occurrence in polluted coastal regions); the 

species can reach extremely high abundances in these conditions (Norkko et al. 2012). 

While sites in Bonne Bay and Indian Pond were located near communities and likely 

experience some low-level pollution from the communities, both regions would naturally 

be eutrophic at times from organic inputs, such as leaves and wood particles in runoff 
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from Deer Brook into Deer Brook Lagoon. Numbers reported here could reflect relatively 

low anthropogenic influences in these regions compared to the stressed environments 

examined by other researchers, or could indicate recent introduction of this species, as 

discussed below.     

The four sampling sites varied in average chlorophyll a content, percentage of 

organic matter, sorting coefficients, salinity, temperature, wave exposure, and to a lesser 

extent, median grain size. These factors, however, did not appear to structure macrofaunal 

communities to a great extent, likely due to the dynamic nature of the soft sediment and 

intertidal habitat of sampling sites. Strong conclusions on structuring factors cannot be 

made, however, since the low number of samples considered herein reduces the statistical 

power of multivariate analyses. Nevertheless, and despite observed differences in 

environmental conditions, Marenzelleria viridis reached similar abundances at all 

locations, and along with Nereis virens, was the only species to be found ubiquitously and 

in both sampling years. As a successful, established invader in Europe, typically 

inhabiting highly dynamic intertidal, low salinity regions of muddy sand (George 1966; 

Blank et al. 2006; Delefosse et al. 2012), it is not particularly surprising that M. viridis is 

can successfully inhabit the range of environmental conditions characterized by the 

sampling sites examined here.  

 

2.4.2 A New Arrival? 

Even though this is the first report of Marenzelleria viridis in Newfoundland, it is 

unclear whether it is a new arrival. While abundances are relatively low (<33 individuals 
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m-2) compared to other regions, M. viridis is common, at least within the locations 

examined.  It is possible the species has been present in very low abundance and went 

unnoticed; unless sampled carefully, M. viridis individuals often fragmented into small, 

unidentifiable pieces (personal observation). The presence of M. viridis in Newfoundland 

could represent an expansion of the species within its native range, and low abundances 

may indicate a maximum northern limit in the Western North Atlantic. On the one hand, 

colder temperatures, poor quality of organic matter, limited growth period of phototrophs, 

and even shore ice and pack ice could limit the population growth of M. viridis. On the 

other hand, the relatively low abundances may indicate a recent arrival to coastal 

Newfoundland ecosystems. In invaded regions of Europe, abundances of M. viridis are 

initially low before a sharp increase within a few years (Essink and Kleef 1988; Zettler et 

al. 1996). It is not known how long the species may have been present or its historical 

abundance, so no conclusion can be made at this time concerning how long M. viridis 

may have been present (i.e. a few years, decades or centuries). 

If Marenzelleria viridis is a new arrival, it has the capacity to change ecosystem 

dynamics in Newfoundland coastal sediments. In regions where it has been introduced, 

M. viridis has been implicated with declines in, and even the displacement of local 

macrofauna through suspected increases in competition for food in nutrient poor 

environments, the stimulation of sulfate reduction or the re-suspension of buried 

contaminants (Kotta et al. 2006; Kristensen et al. 2011; Quintana et al. 2011; Delefosse et 

al. 2012; Urban-Malinga 2013). However, there is yet to be a report of a direct negative 

impact of M. viridis on other species (Norkko et al. 2012) and in this study, the 
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assemblage structure and abundance of other species did not seem affected by M. viridis 

presence. Additionally, the species may help increase oxygen levels in sediments, as M. 

viridis tolerates low oxygen levels, and is the first to settle in an area after a hypoxic 

event, which would lead to colonization by other species in otherwise inhabitable areas 

(Reise 2002; Norkko et al. 2012).   

The potential for Marenzelleria viridis to be an ecosystem engineer and cause a 

change in communities depends on the population density of the species in a given area 

(Norkko et al. 2012).  At present, densities of M. viridis in Newfoundland – or at the very 

least, the sampling locations – are quite low, and therefore M. viridis may be a 

“passenger” i.e., it does not significantly alter the ecosystem (Norkko et al. 2012). On the 

one hand if densities increase in coming years, the species may not necessarily have a 

negative impact on Newfoundland intertidal ecosystems –the arrival of M. viridis could 

fill an empty niche, provide an essential service, and create a more diverse community 

and a more resilient ecosystem. On the other hand, if abundances were to increase past 

some threshold, or if community structure changed, then M. viridis may drive ecosystem 

change, further altering community structure and possibly leading to the successful 

introduction of new, potentially harmful species (Reise 2002; Norkko et al. 2012). In this 

study, the abundances of M. viridis were, on average, higher in 2014 than in 2013. This 

increase coincided with increased abundance of Heteromastus filiformis, which has a 

similar lifestyle to M. viridis, and a decline in the abundance of the bivalve species 

Macoma balthica and Mya arenaria. One limitation in conclusions for this study is the 

lack of sampling during different times of year to investigate seasonal trends; future 
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studies should sample macrofauna during different times of the year, monitor the 

abundance of M. viridis in Bonne Bay and Indian Pond, and note any changes in species 

abundance. In addition, it would be beneficial to investigate other sites at different times 

of the year to determine the complete distribution of M. viridis in Newfoundland.  
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Chapter Three: Exploration of Prokaryotic and Bacterial Numbers in 

Sediments with Marenzelleria viridis  

 

3.1 Introduction 

Marine sediments, in the absence of bioturbation, become divided into stratified 

zones driven by the input of organic carbon (generally from above) and resulting from 

various redox processes, where electron acceptors of decreasing redox potentials are 

preferentially used at increasing depths (Nealson 1997; Matsui et al. 2004). Without fauna 

present, solute transport between sediments and overlying water occurs exclusively by 

passive diffusion or advection, limiting the aerobic respiration of organic matter to the 

depth to which oxygen can diffuse (Nealson 1997; Aller 2001). Beyond the depth of 

oxygen diffusion, a variety of anaerobic processes degrade organic matter, including 

nitrate reduction, manganese and iron oxidation, sulfur oxidation, metal reduction and 

finally, sulfate reduction in the deepest sediments (Nealson 1997; Matsui et al. 2004).    

 The most abundant inhabitants of marine sediments are the metabolically diverse 

prokaryotes. An enormous range of metabolic capabilities allows prokaryotes to exploit a 

variety of electron donors and electron acceptors (Nealson 1997). Generally, the 

availability of energy sources and metabolites, usually only available via diffusion, 

stratify prokaryote distributions although many prokaryotes are facultative in their 

metabolism and versatile in their requirements, with some capable of limited motility 

within the sediment (Nealson 1997; Aller 2001). The type of prokaryotes and their rate of 
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growth, in marine sediments depend upon the quality and the quantity of energy sources 

(Nealson 1997). Sulfate reducers and sulfur oxidizers are the two most common 

prokaryote groups that affect the sulfur cycle of marine sediments. 

 The sulfate reducers are a well-studied group of bacteria that dissimilate – or 

reduce - sulfate for energy gain (Jorgensen and Postgate 1982). Although considered 

obligate anaerobes, they can survive under aerobic conditions (Nealson 1997). In its 

highest oxidized state, sulfur exists as sulfate, a highly stable ion unless reduced 

biologically, e.g. by sulfate reducing bacteria (Gibson 1990; Nealson 1997). Sulfate is 

used as an electron acceptor for the oxidation of organic carbon (and thus the breakdown 

of organic matter), realeasing reduced sulfate as sulfide (Gibson 1990). About 50% of 

organic matter in coastal sediments is degraded by sulfate reducing bacteria, with the 

intensity of sulfate reduction  dependent on the amount of organic matter present 

(Jorgensen and Postgate 1982; Gibson 1990). The sulfide produced by sulfate reducers 

contains a significant amount of energy, and as it diffuses down into the sediment it is 

converted to hydrogen sulfide (Jorgensen and Postgate 1982; Gibson 1990; Nealson 

1997). Hydrogen sulfide is a strong reducing agent that is poisonous to most aerobic 

organisms because it binds to cytochrome-c oxidase, leading to metabolic breakdown 

(Gibson 1990; Hahlbeck et al. 2000). Hydrogen sulfide is, however, an important electron 

donor for another group of aerobic organisms – the sulfur oxidizing bacteria (Gibson, 

1990). 

Sulfur oxidizing bacteria are a highly diverse group of chemolithoautotrophs, 

chemolithoheterotrophs and mixotrophs, depending on their source of carbon (CO2, 
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organic carbon or both; Jorgensen and Nelson 2004). One common feature of this group 

is the ability to oxidize reduced, inorganic sulfur compounds, such as hydrogen sulfide, 

elemental sulfur or thiosulfate, with oxygen or nitrate as the electron acceptor, and in 

doing so derive energy (Jorgensen and Postgate 1982; Nealson 1997).  These bacteria are 

commonly found as endosymbionts or free-living in sediments, either forming 

filamentous mats on the sediment surface, living as individual filaments buried in the 

sediment, or as non-mat forming unicellular individuals, although the latter group has 

rarely been investigated (Jorgensen and Nelson 2004; Lenk et al. 2011). Sulfur oxidizers 

are highly abundant in intertidal sediments, and are important in both sulfur oxidation as 

well as inorganic carbon fixation, creating biomass and contributing to primary 

productivity (Lenk et al. 2011). Typically, these bacteria use oxygen as the electron 

acceptor to oxidize sulfur compounds, and require access to both sulfides and oxygen for 

their metabolism.Thus, most sulfur oxidizers ocuur at oxic-anoxic interfaces where 

oxygen and sulfides co-exist, where diffusing sulfides are rapidly chemically oxidized by 

metal oxides present in sediments or by oxygen (Nealson 1997; Jorgensen and Nelson 

2004). One group of sulfur oxidizers can oxidize sulfur under anaerobic conditions using 

nitrate, which is incorporated into vacuoles under oxic conditions, as an electron acceptor 

instead of oxygen (Nealson 1997; Jorgensen and Nelson 2004). Nitrate is reduced 

primarily through dissimilatory nitrate reduction, producing ammonium, with sulfide 

suggested to be an important substrate for this pathway (Jorgensen and Nelson 2004).  

While sulfate reducers and sulfur oxidizers are capable of motility (Jorgensen and 

Nelson 2004), in a system where passive diffusion is the main method of solute transport, 
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microbial growth and activity are primarily limited by the availability and diffusion rate 

of these energy sources. The diffusion driven stratification of the otherwise stratified 

biogeochemical system of sediments is broken down through processes of particle 

reworking and burrow ventilation, or bioturbation (Aller 2001; Kristensen et al. 2012). 

These activities alter the undisturbed sedimentary fabric as macrofauna move particles to 

build structures and irrigate them with oxygen for their own, oxic, metabolism. Particle 

transport can take place through sediment ingestion and/or egestion or via burrow 

construction, maintenance and subsequent collapse.  Burrows vary from complex and 

semi-permanent to simple and transient (Aller 2001; Kristensen et al. 2012). Most 

notably, burrows create a “radial chemocline” with a vertical oxic-anoxic interface 

penetrating through the sediment layers (Steward et al. 1996; Matsui et al 2004). The 

exchange of solutes is enhanced by non-local and local transport across this interface as 

the burrow is ventilated and inhibitory metabolites are flushed out (Aller 2001; Kristensen 

et al. 2012, Renz and Forster 2014). Burrows created by a wide variety of infaunal 

invertebrate species stimulate metabolic activity and bacterial growth and increase the 

efficiency of organic matter breakdown (Alongi 1985; McIlroy and Logan 1999; Steward 

et al. 1996; Matsui et al. 2004; Papaspyrou et al. 2006; Ashforth et al. 2011; Bonaglia et 

al. 2013). The effects of macrofaunal activity on microbial communities depend on the 

depth and morphology of the burrow along with sediment characteristics, since selective 

grain sizes or a mucous lining can limit the exchange of certain solutes selectively 

(Kristensen et al. 2012; Renz and Forster 2014). 
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The polychaete Marenzelleria viridis constructs deep, blind ended I- or J-shaped 

burrows, creating an estimated 2.8 m2 of burrow wall for every square metre of surface 

sediment (Renz and Forster, 2013).  The 40 cm depth of this simple burrow construction, 

combined with a ventilation behavior described as a combination of ciliary and muscular 

pumping which drives water in and out of the burrows, stimulates anaerobic processes 

(particularly sulfate reduction) in sediments (Quintana et al. 2011, Bonaglia et al. 2013, 

Renz and Forster, 2014). Sulfate reduction was enhanced almost two fold in experimental 

cores with M. viridis (Kristensen et al. 2011), and other experiments have reported 

decreased denitrification rates (Bonaglia et al. 2013), increased production of ammonium 

(Renz and Forster 2014) and the growth of the sulfur oxidizing bacteria Beggiatoa spp. at 

the sediment surface attributed to the effusion of hydrogen sulfide (Quintana et al. 2013). 

Additionally, the ventilation behavior of M. viridis creates oscillations from oxic to 

anoxic conditions within the burrow and near the sediment-water interface as the cilia-

driven irrigation draws oxygen from overlying surface waters deeper into the sediment, 

increasing the surface oxic zone for a short period (Jovanovic et al. 2014). The dynamic 

oxic-anoxic interfaces generated by M. viridis would likely create a favorable 

environment for microbes around the burrow and near the sediment-water interface 

surface, in particular sulfate reducers and sulfur oxidizers able to withstand fluctuations 

from complete anoxia to oxygenated conditions.  

Previous work has demonstrated the enhancement of sulfate reduction and the 

growth of sulfur oxidizing bacteria in experimental cores with Marenzelleria viridis 

(Kristensen et al. 2011; Quintana et al. 2013), however, no study has quantified the 
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influence of M. viridis on the abundance of either sulfate reducers or sulfur oxidizers in 

sediments.  Furthermore, there is a lack of experimental field studies looking at M. viridis 

and microbial communities under natural, uncontrolled conditions where seasonal effects, 

such as input of organic matter, may play a role. The goals of this chapter were to 

quantify sulfate reducing and sulfur oxidizing bacterial abundance using a fluorescence in 

situ hybridization (FISH) approach (cf. Manz et al. 1998; Ravenschlag et al. 2001; Matsui 

et al. 2004; Mermillod-Blondin et al. 2005), in order to: 1) determine the relative 

abundance of sulfate reducing and free-living sulfur oxidizing bacteria in M. viridis 

burrows and surrounding sediments; and 2) observe seasonal effects on the microbial 

communities therein.  

 

3.2 Materials and Methods 

3.2.1 Sample Site 

Sediment samples were collected from Indian Pond, Newfoundland. Indian Pond 

is a brackish lagoon with a narrow opening into Conception Bay, with sediment 

composed mostly of sand (See Chapter 2 for more detail). During the course of this study, 

salinity varied from 10 to 20 and water temperature from 4°C in December to 26°C in 

July.  

 

3.2.2 Sediment Collection and Preservation 

To determine temporal trends of total prokaryotes, sulfur oxidizers and sulfate 

reducers, 3 g sediment samples (catergorized according to physical appearance and 
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hereafter refered to as sediment “type”) were collected from Marenzelleria viridis rich 

sediments in Indian Pond (N 47° 27’21, W 53°05’42) in April, July, September and 

December of 2013 during the lowest low tide of each month. Triplicate surface sediment 

samples (to approximately 2 mm deep), and M. viridis fecal rods, identified by their 

characteristic “string-like” appearance as described by  Renz and Forster 2013( Fig. 3.1), 

were collected using a stainless steel spatula rinsed with ethanol and transferred to 15 mL 

centrifuge tubes. Surface sediment was mainly composed of sand, light brown in colour, 

and appeared oxidized. Fecal rod samples were mostly similar to the surface sediment in 

appearance, with the exception of some fecal rods composed of finer, occasionally dark 

sediment. Following collection of surface and fecal rod samples, a shovel was used to 

carefully extract sediments. During this process, fracturing occurred and exposed M. 

viridis burrows (Fig. 3.2). Triplicate sediment samples were collected by scraping burrow 

linings occupied by M. viridis.  Sediment collected from the burrow of M. viridis was 

composed mostly of sand, and brownish in colour, with grains bounded together, 

presumably by colorless mucus.  In addition to burrow sediment samples of deeper 

(approximately 15-20 cm from the surface), reduced sediments, differentiated by color 

and termed “black reduced” and “grey reduced”, were collected. Reduced sediment 

samples differed in colour but were similar in sand grain size and shape to each other and 

to surface samples.Surface and reduced sediments were sampled as far away as possible 

from the burrows to avoid potential influence of M. viridis ventilation activity.  
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Figure 3.1: Photograph of Marenzelleria viridis string-like fecal rods deposited on the sediment 
surface. Rods measure approxiamately 10mm in length (Photo Credit: Eli Schatz). 

 

Figure 3.2: Photograph of Marenzelleria viridis occupied burrow, exposed by fracturing with a shovel. 
Samples from burrow sediment were collected by careful scraping; only sediment from occupied 
burrows were collected (Photo Credit: Eli Schatz). 
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  Sediment samples were immediately fixed for cell counting with 4.5 mL of 2% 

formalin in 0.22 µm-filtered seawater buffered with 2% sodium tetraborate. Samples were 

left for 24 hours at 4°C, centrifuged at 16000x g for 5 minutes, and the supernatant 

removed. Samples were then rinsed with 4.5 mL of phosphate buffered saline (PBS) and 

preserved in a  mixture of 1:1 PBS/ethanol 95% at -20°C until further processing 

(Danavaro, 2010).  

 

3.2.3 Extraction and Filtering  

The procedure to separate bacteria from sediment grains was modified from the 

extraction procedure outlined in Epstein and Rossel, 1995. Six mL of 0.1% sodium 

pyrophosphate, a detergent commonly used in extraction procedures to break apart 

mucus, was added to one gram of sediment sample. Samples were incubated at room 

temperature for 15 minutes, with 4 mL of filtered (0.22 µm), autoclaved seawater added 

afterwards.  Samples were then sonicated for 30 minutes in a Bransonic 5510® ultrasonic 

bath to agitate the sediment grains and detach bacterial cells. Ice was added periodically 

to the ultrasonic bath to prevent samples from overheating. After sonication, samples 

were rinsed with 5 mL of filtered, autoclaved seawater, hand shaken, and particles left to 

settle for 1 minute. The resulting supernatant was then carefully decanted into a 50 mL 

centrifuge tube, and this washing process repeated 7 times. Samples were lightly 

centrifuged at 21000 rpm (500 g) for 5 minutes, and 1.5 mL of resulting supernatant 

carefully pipetted into a 2 mL Eppendorf tube. The extract was frozen at -20˚C until 

further processing. 
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Sample extracts were thawed, diluted by a factor of 83 (120 µL extract: 880 µL 

MilliQ water), pipetted onto GE black polycarbonate filters (0.22 µm, 25 mm diameter) 

and filtered using a Nalgene MittyVac hand vacuum pump with a pressure of no more 

than 5 mm Hg. Each filter was then transferred onto a glass slide, cut into quarters and 

air-dried. Individual quarter filters were transferred to clean, labeled glass slides for the 

hybridization procedure, using two of the quarters for each probe. 

 

3.2.4 Hybridization 

3.2.4.1 Selection of oligonucleotide probes and prokaryotic stain 

Two oligonucleotide probes (GAM 660 and DSS 658) were selected to hybridize 

with sulfur oxidizers and sulfate reducers and determine their respective proportions 

within prokaryotic communities. The probe GAM 660 (Ravenschlag et al. 2001) targets 

sulfur oxidizing gammaproteobacteria and has previously been successfully used in 

marine sediment studies (Ravenschlag et al. 2001; Lenk et al. 2011). This particular group 

of bacteria was targeting as some studies have suggested Marenzelleria viridis ventilation 

activity may encourage the growth of sulfur oxidizing bacteria. The probe DSS 658 

(Manz et al. 1998) targets one of the most common groups of sulfate reducing bacteria, 

the Desulfobacteraceae. This family is considered strictly anaerobic and includes 

Desulfofrigus, Desulfococcus and Desulfosarcina (Gibson 1990). This particular group of 

bacteria was targeting for three reasons: 1) the ventilation activity of M. viridis has been 

suggested to enhance the activity of sulfate reducers in sediment 2) this family is one of 

the most common groups of sulfate reducing bacteria and finally 3) this probe had similar 
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hybridization conditions as the GAM660 probe, and therefore hybridizations could be 

performed concurrently and a better comparison between the two groups for the same 

sample could be made. Both probes were labeled with fluorescein (excitation 450 nm, 

emission 518 nm) at the 5’ end. Working solutions of probes were created by dilution 

with autoclaved TE (1 mM Tris buffer stock and 0.1 mM EDTA) to a final concentration 

of 25 ng/µL.  Prokaryotes were counterstained using 4',6-diamidino-2-phenylindole 

(DAPI, excitation 365 nm, emission 463). Working solutions of DAPI were created by 

dilution of stock DAPI solution (5 mg/mL) with 0.22 µm filtered, autoclaved seawater for 

a final concentration of 5 ng/µL. 

3.2.4.2 Hybridization Procedure 

Filter samples were hybridized following the procedure outlined by Pernthaler et 

al. (2001), with all steps performed in the dark to avoid photosensitive flurochromes 

exposure to light and thus affecting counting of cells.. Hybridization solutions were 

prepared for each probe (DSS 658 and GAM 660) by combining 400 µL of 5x 

hybridization buffer (4.5 M NaCl, 0.05% SDS and 0.1M Tris HCl), MilliQ water and 

formamide, to obtain a final formamide concentration for each probe as in Table 3.1. 

Once prepared, 20 µL of this hybridization solution (2 µl of probe working solution + 18 

µL hybridization solution) was pipetted directly onto each filter section, previously 

placed on a glass slides. The slides were then transferred into pre-warmed hybridization 

chambers (50 mL centrifuge tubes containing hybridization solution) and incubated in a 

46°C water bath for 1.5 hours.  
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 Following hybridization, filter sections were transferred individually into 2 mL 

Eppendorf tubes containing 1.5 mL of pre-warmed (48°C) 10x wash buffer (1.0M NaCl, 

0.2M Tris HCl, 0.001% SDS, 50 mM EDTA) for 15 minutes in a 48°C water bath to 

remove non-specific staining.  Filter sections were removed from the wash buffer, rinsed 

with distilled water and placed on clean, glass slides. Each filter section was then counter-

stained with 50 µL of DAPI [5.0 ng/µL] for 3 minutes, rinsed with distilled water, and 

then rinsed with 80% ethanol for several seconds to remove non-specific DAPI staining 

and reduce background fluorescence. Filter sections were air dried on clean, labeled glass 

slides and mounted in PermaFluor (ThermoScientific). Slides were left in the dark 

overnight at 4°C before counting.  

Table 3.1: Oligonucleotide Probes used in this study 

Probe Name Sequence Formamide 
Concentration 

Hybridization To 
& Duration 

Reference 

GAM 600 TCCACTTCCCTCTAC 35-40% 46°C for 90 mins Ravenschlag,et al. 
2001 

DSS 658 TCCACTTCCCTCTCCCAT 60% 46°C for 90 mins Manz et al., 1998 

 

3.2.5 Counting 

Slide preparations were examined in the dark at 1000x magnification with a light 

microscope fitted for epifluorescence with a Carl Zeiss Microscopy GmbH, Germany 

filter set 01 (for DAPI stained cells) and filter set 09 (for cells hybridized with 

fluorescein-labeled DSS 658 and GAM 660). All DAPI- and fluorescein-labeled cells 

within a single field of view were counted, for a minimum of 10 fields of view and 200-

400 DAPI stained cells for each sample. These numbers were then used to calculate the 

proportions of prokaryotic cells that were sulfate reducers (DSS:DAPI) or sulfur oxidizers 
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(GAM660:DAPI) in each sample. All counts were made within a 24 hour period 

(following Kepner and Pratt 1994).  

To calculate the total number of prokaryotes per gram of sediment, the following 

formula was used (Danovaro, 2010): 

 

(Average cell number for each optical field) x [Optical field coefficient x 

extraction coefficient x dilution factor of the sediment/ [sediment wet weight] 

 

Where: 

Optical field coefficient =(filtration area/counting area), = 226.98 mm / 0.026 mm = 8730 

Correction for the extraction co-efficiency = 1.44 

 

To calculate the total number of sulfate reducers or sulfur oxidizers, the following 

formula was used (Mermillod-Blondin et al. 2005): 

(Total number of prokaryotes) x (proportion of cells detected by probe to DAPI 

stained cells)  

 

3.2.6 Statistical analyses 

Once the number of prokaryotes and bacterial groups were calculated, the effects 

of the five types of sediment and four collection months were compared using a two –way 

ANOVA with type of sediment and collection months as main effects (Minitab® 17, 

Minitab® Statistical Software) for total prokaryotes, number of sulfate reducers and 
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sulfur oxidizers, and ratio of sulfate reducers and sulfur oxidisers. Tukey post-hoc tests 

determined which type of sediment or collection month differed significantly.  

 

3.3 Results 

3.3.1 Total Prokaryotic Abundance  

The total number of cells stained with DAPI per gram of wet sediment was similar 

for all types of sediment sampled in all collection months, with the highest mean cell 

count of 9.76 ± 1.68 x 107 cells g-1 for burrow samples collected in December (n =3), and 

the lowest mean count of 4.92 ± 0.14 x 107 cells g-1 for fecal rod samples collected in July 

(n= 3) (Figure 3.3). Type of sediment did not significantly affect the number of cells 

stained by DAPI (F-value = 1.51, p-value = 0.218, df= 4), nor did the month in which 

samples were collected (F-value = 2.31, p-value = 0.091, df= 3). There were also no 

significant interactions between month and sediment sampled (F-value = 1.77, p-value = 

0.088, df =12). 
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Figure 3.3: Abundance of prokaryotic cells per gram of wet sediment detected by DAPI in burrow 
sediment and fecal rods of Marenzelleria viridis, and in surface, black and grey reduced sediment 
samples (mean ± SD, n=3) 

 

3.3.2 Sulfate Reducing Bacteria (DSS 658) 

The mean number of cells detected by the DSS 658 probe per gram of wet 

sediment varied between types of sediment samples and collection month, with fecal rod 

samples collected in September having the highest mean of 4.20 ± 1.08 x 107cells g-1, and 

grey reduced sediment samples collected in July having the lowest mean of 0.20 ± 0.23 x 

107 cells g-1 (Figure 3.4; See Appendix 2 for full list of counts of DSS 658 cells). Type of 

sediment did not significantly affect the number of cells detected by the DSS 658 probe 
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(F-value = 0.68, p-value = 0.608, df= 4), nor was there a significant interaction between 

type of sediment collected and month sampled (F-value = 1.21, p-value 0.31, df= 12). 

Sampling month did significantly affect (F-value = 6.93, p-value = 0.00, df= 3) the 

number of cells detected by the DSS 658 probe for grey reduced sediment samples (F-

value = 5.83, p-value = 0.02, df= 3), with significantly lower number of cells in samples 

collected in July than samples collected in September. Sampling month did not have a 

significant effect on number of cells in other types of sediment.  

 

Figure 3.4: Abundance of sulfate reducers detected by the DSS 658 probe in burrow sediment and 
fecal rods of Marenzelleria viridis, and in surface, black and grey reduced sediment samples  (mean ± 
SD, n=3) 
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3.3.3 Sulfur Oxidizing Bacteria (GAM 660) 

As found with cells labeled with the DSS658 probe, the mean number of cells 

detected with the GAM 660 probe also varied among sediment samples and collection 

month. Fecal rod samples collected in September contained the greatest number of 

labeled cells, with 4.19 x 107 ± 0.27 cells g-1; black reduced sediment samples collected in 

July had the least: 0.78 ± 0.70 x 107 cells g-1 (Figure 3.5; see Appendix 3 for full list of 

GAM 660 cells). Type of sediment did not significantly affect the number of cells labeled 

by the GAM 660 probe (F-value = 0.50, p-value = 0.739, df= 4), and there was no 

significant interaction between type of sediment and collection month (F-value = 1.51, p-

value = 0.160, df= 12). Sampling month had a significant effect (F-value = 8.70, p-value 

= 0.00, df= 3) on the number of cells labeled by the GAM 660 probe for both black (F-

value = 4.22, p-value = 0.05, df= 3) and grey (F-value = 5.79, p-value = 0.02, df =3) 

reduced sediments. The number of cells detected in both reduced sediments was 

significantly lower for samples collected in July compared to those samples collected in 

December, with a significantly lower number of cells in grey reduced sediment collected 

in July than in samples collected in September. Sampling month did not significantly 

affect the number of cells detected in other sediment samples. 
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Figure 3.5: Abundance of sulfur oxidizers detected by the GAM 660 probe in burrow sediment and 
fecal rods of Marenzelleria viridis, and in surface, black and grey reduced sediment samples (mean ± 
SD, n=3) 

 

3.3.4 Percentage of cells labeled with DSS 658 and GAM 660 

The percentage of prokaryotic cells labeled with the DSS 658 and GAM 660 

probes ranged widely, with mean percentages ranging from 3-43% for cells labeled by 

DSS 658, and a range of 8-45% for cells detected by GAM 660 (Table 3.2).  Type of 

sediment did not significantly affect the percentage of cells detected by either the DSS 

658 or GAM 660 probe (F-value = 0.74, p-value = 0.57; F-value = 0.70, p-value = 0.60, 

df= 4), nor was there a significant interaction between type of sediment and sampling 
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month on percentage of cells detected for either probe (F-value = 1.33, p-value = 0.243; 

F-value= 1.42, p-value = 0.197, df = 12). Sampling month did significantly affect the 

percentage of cells detected by both DSS 658 and GAM 660 (F-value = 7.33, p-value = 

0.00; F-value = 10.23, p-value = 0.00, df = 3, respectively).  

The percentage of cells detected by the DSS 658 probe was significantly lower (F-

value = 6.74, p-value = 0.01, df = 3) in burrow samples collected in July compared to 

September, and the percentage of these cells were also significantly lower in grey reduced 

sediment samples collected in July compared to all other sampling months (F-value = 

10.60, p-value = 0.00, df=3).  

The percentage of cells detected by the GAM 660 probe was significantly lower in 

both black (F-value = 5.99, p-value =0.02, df = 3) and grey (F-value = 13.94, p-value = 

0.00, df = 3) reduced sediment samples. The percentage of these cells detected in black 

reduced sediment was significantly lower for samples collected in July compared to those 

samples collected in December, and for grey reduced sediment the percentage of cells 

detected was significantly lower in July compared to all other sampling months.   

The ratio of cells labeled with the two probes (number of cells detected by DSS 658 : 

number of cells detected by GAM 660 per sample) was similar among types of sediment 

and sampling months, with at least twice as many cells labeled with DSS 658 than with 

GAM 660 in  burrow and fecal rod samples collected in April and black reduced sediment 

collected in July (Figure 3.6). Type of sediment or sampling month did not significantly 

affect the ratio of cells labeled with the probes (F-value = 0.57, p-value = 0.689, df=4; 

and F-value = 0.51, p-value = 0.679, df= 3, respectively). There was also no significant 
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interaction between type of sediment sampled and collection month (F-value = 1.91, p-

value = 0.063, df = 12). 

Table 3.2: Percentages of prokaryotic cells detected by oligonucleotide probes (mean ± SD, n=3) for 
each sediment type, at each sampling month. The total number of cells labeled by DAPI (# DAPI) per 
gram of wet sediment, the percentage of prokaryotic cells labeled by DSS 658 and GAM 660 (%DSS 
658, %GAM 660) and the ratio of cells labeled by each of the probes (DSS 658:GAM660) are 
presented. 

 April July September December 
Burrow     
   # DAPI  
   (x107 · g dry sediment-1) 7.8 ± 1.4 6.9 ± 0.5 7.4 ± 2.5 9.8 ± 1.7 
   % DSS 658 29.2 ± 6.9 6.4 ± 7.3 38.8 ± 6.2 28.9 ± 14.0 
   % GAM 660 23.2 ± 16.7 12.1 ± 5.9 39.6 ± 15.6 31.7 ± 12.8 
   DSS 658:GAM 660 2.2 ± 2.2 0.5 ± 0.7 1.2 ± 0.3 1.2 ± 0.9 
Surface     
   # DAPI 
   (x107 · g dry sediment-1) 

 
6.9 ± 1.7 

 
7.8  ± 1.8 

 
9.0 ± 0.3 

 
7.6 ± 0.2 

   % DSS 658 22.5 ± 2.9 17.6 ± 19.0 26.2 ± 13.8 23.3 ± 10.8 
   % GAM 660 24.6 ± 4.7 18.1 ±18.6 38.6 ± 14.0 14.2 ± 14.3 
   DSS 658:GAM 660 0.9 ± 0.2 1.0 ± 0.7 0.8 ± 0.6 2.2 ± 1.0 
Black reduced     
   # DAPI 
   (x107 · g dry sediment-1) 

 
7.0 ± 3.3 

 
7.8 ± 1.6 

 
7.3 ± 0.4 

 
7.6 ± 1.1 

   % DSS 658 20.3 ± 27.4 28.6 ± 8.5 35.1 ± 3.5 27.9 ± 8.2 
   % GAM 660 24.6 ± 13.5 8.4 ± 5.5 31.2 ± 8.7 38.5 ±6.7 
   DSS 658:GAM 660 0.8 ± 1.2 3.7 ± 1.9 1.3 ± 0.3 0.6 ± 0.3 
Grey reduced     
   # DAPI 
   (x107 · g dry sediment-1) 

 
8.3 ± 2.3 

 
8.5 ± 1.1 

 
8.1 ± 0.6 

 
7.8 ± 1.3 

   % DSS 658 37.7 ± 9.2 2.1 ± 2.2 43.7 ± 2.0 43.2 ± 18.8 
   % GAM 660 39.0 ± 4.6 9.3 ± 10.4 33.4 ± 2.3 43.7 ± 8.2 
   DSS 658:GAM 660 0.9  ± 0.3 0.2 ± 0.1 1.3 ± 0.0 1.1 ± 0.4 
Fecal Rods     
   # DAPI 
   (x107 · g dry sediment-1) 

 
8.3 ± 2.3 

 
8.5 ± 1.1 

 
8.1 ± 0.6 

 
7.8 ± 1.3 

   % DSS 658 37.7 ± 9.2 2.1 ± 2.2 43.7 ± 2.0 43.2 ± 18.8 
   % GAM 660 39.0 ± 4.6 9.3 ± 10.4 33.4 ± 2.3 43.7 ± 8.2 
   DSS 658:GAM 660 3.4 ± 4.6 0.9 ± 0.3 1.0 ± 0.2 0.6 ± 0.7 
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Figure 3.6: Prokaryotic cells detected by either DSS 658 or GAM 660 probe (expressed as a ratio of 
number of cells detected by DSS 658: number of cells detected by GAM 660 within a single sample) in 
burrow sediment and fecal rods of Marenzelleria viridis, and in surface, black and grey reduced 
sediment samples (mean ± SD, n= 3) 

 

3.4 Discussion 

3.4.1 Total Prokaryotes 

The total abundance of prokaryotes in all sediments sampled, ranging from 4.48 x 

107 cells g-1 and 1.08 x 108 cells g-1 is almost one to two orders of magnitude lower than 

other studies from similar environments. In Arctic marine sediments, abundances were 

found to range between 2.0 x 108 to 4.0 x 109 cells mL-1 in September/October, 2.1 to 4.7 
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x 109 cells mL-1 in July, and between 1.8 to 4.1 x 109 cells mL-1 when experimentally 

exposed to temperatures ranging from 0 to 20˚C (Sahm and Berniger 1998, Ravenschlag 

et al. 2001, Robador et al. 2009). Temperate, estuarine sediments had total prokaryotic 

numbers between 11.9 to 15.5 x 109 mL in July and 3.8 to 6.1 x 109 when exposed to 

temperatures ranging from 0 to 20˚C (Wellsbury et al. 1996; Robador et al. 2009). The 

numbers of prokaryotes reported here are slightly lower than in another study, also from 

Conception Bay, Newfoundland, which reported a range of 3.5 x 108 to 1.3 x 109 

prokaryotic cells ml-1 at the sediment-water interface (Goudie 1997). A study of 

planktonic bacteria in Conception Bay reported values ranging from 1.52  to  4.12 x 105 

cells ml-1 (Pomeroy 1991), which is slightly lower than worldwide abundances. Similarly 

to planktonic bacteria, the abundance of prokaryotes in intertidal sediments in 

Newfoundland may fall on the lower end of a worldwide abundance spectrum; 

confirmation requires more studies in other intertidal regions in Newfoundland.  

Prokaryotic numbers obtained from four collection months were similar, despite 

differences in temperature during these time periods. Temperature has been positively 

linked to prokaryotic abundance (Garcia-Martinez et al. 2009). These findings suggest 

that the total prokaryotic abundances in Indian Pond are independent of temperature, and 

may be influenced by other physical or chemical factors, as suggested in other studies 

showing no or weak temporal trends in abundances (Boer et al. 2009; Garcia- Martinez et 

al. 2009). It is possible that the prokaryotic community itself varies, with certain taxa 

dominating under different temperature and substrate conditions; however, this study 
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focussed on two major functional groups, the sulfate reducers and sulfur oxidizers, rather 

than the diversity of the prokaryotic community as a whole. 

  Typically, surface sediments support higher abundances of prokaryotes than in 

deeper, reduced sediments (Ravenschlag et al. 2001; Llobet-Brossa et al. 2002; Matsui et 

al. 2004; Papaspyrou et al. 2006; Boer et al. 2009), and significantly higher abundances 

within or in the vicinity of an organism's burrow than surrounding sediments (Aller and 

Aller 1986; Papaspyrou et al. 2005, 2006). This study showed little difference in total 

prokaryotic abundance between the oxic surface, reduced deeper sediments, the burrow 

material and fecal rods of Marenzelleria viridis.  A lack of vertical differentiation in the 

abundance of prokaryotes has been attributed to high energy input from either waves or 

tides, creating a high sediment turnover rate and therefore a mixing of prokaryotic 

numbers (Garcia-Martinez et al. 2009), or to higher porewater content within sediments 

(Ravenschlag et al. 2001). Indian Pond is a small, sheltered, brackish lagoon with 

relatively low energy input. While Indian Pond serves as a cooling water intake source for 

the Holyrood Thermal Generating Station and experiences strong tidal currents (personal 

observation), these processes do not generate the level of energy required to disrupted 

vertical sediment layers. It is possible that physical and chemical processes in Indian 

Pond promote equal numbers of prokaryotes at the surface and in deeper sediments, 

independent of mechanical disruption. The prokaryotic communities within each type of 

sediment sampled are likely to be distinct, and so the relative abundance of certain taxa 

may differ, however, the prokaryotic community as a whole was not investigated. 
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3.4.2 Sulfate Reducers 

The total abundance of sulfate reducers targeted by the DSS 658 probe ranged 

from 8.29 x 105 cells g-1 to 5.56 x 107 cells g-1, with no detected sulfate reducers in some 

samples. Unfortunately, no studies have investigated abundances of sulfate reducers in 

Newfoundland sediments using this probe, so it is not known if these values are within 

normal ranges for this region. 

The abundance of sulfate reducers from samples was similar in the four collection 

months, with slightly (non-significant) lower abundances in July, with the exception of 

abundances in grey reduced sediment samples which were significantly lower than 

samples collected in September. Abundances of sulfate reducers were  relatively constant 

temporally, although the abundance of specific groups of sulfate reducers declined with 

increasing temperature; some groups of sulfate reducers may be better able to use specific 

available substrates, such as diatom-derived carbohydrates, during  a given time period 

(Haynes et al. 2007; Garcia-Martinez et al. 2009; Robador et al. 2009).  The lower 

abundance of sulfate reducers in July samples may relate to increased temperatures and 

difference in available substrates. These variables may inhibit the growth of the targeted 

sulfate reducing bacteria and give other groups of prokaryotes, not identified in this study, 

a competitive advantage.  

Sulfate reducers were detected in all types of sediments; this result was expected 

because the targeted Desulfobacteraceae is the most abundant group of sulfate-reducing 

bacteria (Garcia-Martinez et al. 2009). Although considered to be strict anaerobes, 

members of this group can temporarily survive under aerobic conditions and occur in a 



 

 

62 

 

wide variety of marine sediments, including oxic-anoxic interfaces and oxic surface 

sediments, with some reports of higher sulfate reducer abundance at the surface than at 

depth (Nealson 1997; Llobet-Brossa et al. 2002; Matsui et al. 2004; Buhring et al. 2005). 

Aggregates of these bacteria could exist within anoxic microhabitats at the surface and 

within Marenzelleria viridis burrows; furthermore, aggregations with oxygen consuming 

bacteria such as sulfur oxidizers could provide sulfate reducers with further protection 

from oxygen (Matsui et al. 2004). 

The detection of sulfate reducers in all types of sediments is not unusual; however, 

the abundance of detected cells and the percentage of total prokaryotes are unexpected. 

As mentioned above, abundances of sulfate reducers in Newfoundland sediments are 

unknown so it is unclear whether these values are typical for this region. Studies 

elsewhere reported lower proportions of DSS 658 targeted sulfate reducers, between 16% 

of total prokaryotes in Arctic subtidal sediments, and 1.0 - 5.3% in mud flats in up to 20 

cm depth (Ravenschlag et al. 2000; Llobet-Brossa et al. 2002), although Buhring et al. 

(2005) found this group accounted for 43% of total bacterial abundance in deep sediment 

(excluding Archaea). The Desulfobacteriaceae are metabolically diverse and therefore 

better competitors than most other sulfate reducing groups (Matsui et al. 2004). The high 

abundance and percentage of these bacteria in the sediment samples of the current study 

may be linked to the ventilation behavior and irrigation effects of Marenzelleria viridis. 

Oscillations between oxic and anoxic conditions presumably supply the 

Desulfobacteriaceae with a variety of fresh metabolites for sulfate reduction while 

simultaneously excluding competitors unable to cope with oxygen exposure and dynamic 
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conditions. Because the burrow is assumed to be nutrient rich from M. viridis-derived 

organic matter and influxes of reduced porewater, a higher number of sulfate reducers 

was expected in burrows compared to surrounding and surface sediments, especially 

given enhanced sulfate reduction in experimental sediments containing M. viridis (Matsui 

et al. 2004, and references therein; Kristensen et al. 2011). The lack of significant 

differences in the abundance and proportion of sulfate reducers between types of 

sediment is therefore unexpected; however, homogeneity between burrow, surface and 

reduced sediments are consistent with observations of oscillating oxic to anoxic 

conditions both within the burrow and at the sediment surface (Jovanovic et al. 2014). 

Altough Desulfobacteriaceae are highly abundant in all sediments, other sulfate reducers 

not targeted by the DSS 658 probe may have been present in the burrow and surrounding 

sediments, and  gone undetected in this study. Future investigations using a similar 

methodology but with a variety of probes targeting other sulfate reducing groups could 

shed further light on the sulfate reducing communities associated with M. viridis burrows. 

 

3.4.3 Sulfur Oxidizers 

The mean total abundance of sulfur oxidizers targeted by the GAM 660 probe 

ranged from 1.06 x 106 cells g-1 to 5.02 x 107 cells g-1. As for the DSS 658 probe, the lack 

of studies investigating sulfur oxidizers in Newfoundland using the GAM660 probe, 

precludes any conclusion on whether these values are within a typical range.  

As for sulfate reducers, the abundance of sulfur oxidizers within samples from the 

four collection months did not differ significantly among most sediment types, with the 
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exception of significantly lower abundances in July within both reduced sediment 

samples. Studies of temporal trends in sulfur oxidizer abundance are few; however, sulfur 

oxidizers are also likely temperature sensitive, as demonstrated for sulfate reducers 

(Haynes et al. 2007; Robador et al. 2009). The decreased abundance of sulfur oxidizers in 

reduced samples from July may relate to higher temperature or different substrate 

availability.  

Sulfur oxidizers were detected in all types of sediment sampled, which was 

expected since gammaproteobacteria are common and highly abundant in intertidal 

sediments (Jorgensen and Nelson 2004; Lenk et al. 2011). While unicellular, free living, 

non-mat forming sulfur oxidizers are rarely investigated, they are common at oxic-anoxic 

interfaces, can migrate up to 15 cm and can occur in large numbers in sub-oxic sediments 

a few centimeters beneath the sediment-water interface (Jorgensen and Nelson 2004; 

Lenk 2006). 

The abundance of sulfur oxidizers detected by the GAM 660 probe did not differ 

significantly among types of sediment sampled. The abundance of the sulfur oxidizers 

appears consistent with values from Ravenschlag et al. (2001) who reported values up to 

9.4 x 107 cells mL -1. The lack of a difference between surface and reduced sediments is 

consistent with thier study, which reported no vertical zonation. Some sulfur oxidizers 

can oxidize sulfur in anaerobic conditions, so the presence of abundant sulfur oxidizers in 

reduced sediment may not be uncommon. An abundance of sulfur oxidizers in burrow 

sediments is likely to be common, because burrows commonly concentrate at the oxic-

anoxic transition zone.  
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Although the abundance of sulfur oxidizers appears within ranges reported in 

comparable studies, the proportions of sulfur oxidizers are much higher – up to 45% in 

this study, compared to 2.1% reported by Ravenschlag et al. (2001). The high percentage 

of sulfur oxidizing bacteria in all types of sediment may be a product of the dynamic 

redox conditions in the sediment created by Marenzelleria viridis. Additionally, the 

stimulation of sulfate reduction results in production of more sulfide, to the benefit of 

sulfur oxidizers. The highly dynamic conditions would also exclude competitors and 

allow sulfur oxidizers to flourish.  

Admittedly, as was the case with sulfate reducers, the sulfur oxidizers targeted by 

the GAM 660 probe do not target all sulfur oxidizers that may have been present, given 

that they are a highly diverse group. Additionally, different sulfur oxidizers may have 

been present in different sediment samples, given that the probe targets a wide diversity 

of sulfur oxidizing bacteria, with some better able to cope with higher sulfide 

concentrations than others (Thomas et al. 2014). Future work should use a wider variety 

of probes to target more specific groups, or use a metagenomic approach to shed further 

light on the sulfur oxidizing communities associated with Marenzelleria viridis burrows.    

 

3.4.4 Ratio of Sulfate Reducers to Sulfur Oxidizers 

The similar and approximately 1:1 ratio between sulfate reducers and sulfur 

oxidizers for all sediment types and at the four collection months indicates similar 

abundances of both groups despite the varying sediment conditions.  Because sedimentary 

conditions were expected to differ among samples, and because sulfate reducers are 
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considered strict anaerobes and sulfur oxidizers require aerobic conditions to undergo 

metabolism (Nealson 1997; Jorgensen and Nelson 2004), a predominance of one or the 

other group was expected, especially in sediments with different oxygen conditions. 

Ventilation by Marenzelleria viridis may obscure patterns by creating dynamic 

fluctuating oxygen conditions within the burrow, surrounding sediments and also at the 

sediment surface (Jovanovic et al. 2014). Given that Indian Pond sediments are highly 

porous and chemical conditions vary over short temporal scales, sulfate reducers and 

sulfur oxidizers tolerant of these changes may coexist in relatively similar abundances 

given that conditions fluctuate too much to have one group dominate over the other.  

Although this study investigated specific groups of sulfate reducers and sulfur oxidizers 

as opposed to sulfate reducing and sulfur oxidizing communities as a whole; future 

studies using a wider variety of probes could determine whether broader microbial 

communities associated with M. viridis occur in similar abundances. Addtioanally, 

examining oxygen conditions in the sediment in realtion to the prokaryotes could aid in 

the interpretation on the sulfur oxidizing and sulfate reducing bacterial communities. 

 

3.4.5 Conclusions  

The lack of significant differences in the abundance and relative proportions of 

total prokaryotes, sulfate reducers and sulfur oxidizers between different sediment types 

was unexpected; however  low replication and lack of oxygen and sulfur characterization 

of the sediments limits interpretation and could be improved upon in future studies.The 

(presumably) nutrient rich environment of the burrow wall, enhanced by the dual 
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ventilation of Marenzelleria viridis, was expected to support a higher abundance of 

sulfate reducers and sulfur oxidizers than surrounding sediments with more stable redox 

conditions. Burrows with lower or similar total prokaryotic abundances compared to 

surrounding sediments still have as high, or sometimes higher, microbial activity than 

non-burrowed sediment (Alongi 1985; Papaspyrou et al. 2005, 2006). The enhanced 

activity of microbes along burrow linings has been attributed to grazing by meiofauna, 

protozoa or macrofauna, which maintains prokaryotes in a constant growth phase (Alongi 

1985; Grossmann and Reichardt 1991; Mayer et al. 1995; Traunspurger et al. 1997; 

Papaspyrou et al. 2005, 2006). Deposit feeding by macrofauna is thought to selectively 

impact certain biogeochemical processes, with species-dependent enhancement of given 

processes (Grossmann and Reichardt 1991; Mayer et al. 1995). Marenzelleira viridis 

stimulates the microbial activity of specific groups of bacteria, in particular sulfate 

reducers (Kristensen et al. 2011; Bonaglia et al. 2013). While the activity of prokaryotes 

and abundance of meiofauna were not measured in this study, observations of M. viridis 

deposit feeding in its burrow (Essink and Kleef 1988) suggest that these polychaetes 

stimulate microbial activity through consumption of microbes from the burrow lining, but 

without increasing the total abundance of microbes in comparison to surrounding 

sediments. The unique ventilation habits of M. viridis may therefore create an 

environment favorable for specific types of bacteria, such as the Desulfobacteriaceae and 

sulfur oxidizers able to switch carbon and energy sources, which could subsequently be 

consumed by M. viridis. 
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Chapter Four: Investigation of the Diet of Marenzelleria viridis  

 

4.1 Introduction 

Polychaetes of the family Spionidae are common inhabitants of organic rich 

sediments, where they either surface deposit feed or suspension feed in overlying water 

using characteristic feeding palps (Dauer et al. 1981). The paired feeding palps of 

spionids contain a median, ciliated food groove, and when in contact with the sediment 

surface, particles are transferred to this food groove and transported via cilia to the 

pharynx for ingestion (Dauer et al. 1981; Dauer 1997). Under certain conditions, feeding 

palps are used to suspension feed and collect food particles in the water column (Dauer 

1997).  

    The spionid Marenzelleria viridis has received recent attention as a result of its 

widespread invasion of European waters, with diverse consequences to benthic resident 

communities and habitats (Kristensen et al. 2011; Delefosse et al. 2012; Norkko et al. 

2012; Quintana et al. 2013). Morphological specialization on the distinctive feeding palps 

of M. viridis may provide clues to better understand the ecological success of this species. 

Compared to other spionids, the feeding palps of M. viridis are relatively short and can 

produce only a small feeding radius at the sediment-water surface; consequently, these 

polychaetes must leave the safety of their burrow to surface deposit feed unless food 

particles are rapidly replenished (Dauer 1997). Additionally, the cilia of the palp food 

groove are distinct in M. viridis. On most spionids feeding palps, frontal cilia line the 
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median food groove to capture food particles, lateral and latero-frontal cilia produce 

currents and direct food particles to the frontal surface of the palps, and sensory cirri and 

cilia may be used to reject non-food particles from the pharynx (Dauer 1997). The 

number of ciliary types varies among species, and M. viridis only has frontal cilia and 

scattered cirri on the lateral and abfrontal surface of their palps (Dauer 1997). The feeding 

palps of all other spionids have a symmetrical arrangement of frontal cilia lining a median 

groove that directs food towards the pharynx. In M. viridis, the frontal cilia on one side of 

the palp extend away from the food groove on a flat lateral extension when the palp is in 

contact with the sediment surface (Dauer 1997). The functional significance of this ciliary 

arrangement has not been explored or determined by direct observation, but is 

hypothesized to aid in dislodging mucus-bound particles of bacteria (Dauer 1997).  

 Spionids are generally considered to either feed on freshly deposited material or 

diatoms at the surface, suspension feed, or use both feeding mechanisms facultatively 

(Dauer et al. 1981). Marenzelleria viridis exhibits different feeding strategies under 

different sediment conditions, with suspension feeding observed in silt-clay sediments, 

and deposit feeding in silt-sand sediments despite an abundance of suspended material 

(Dauer 1997). Marenzelleria viridis has been documented feeding on benthic diatoms at 

the surface, surface deposit feeding, suspension feeding and potentially feeding on 

reduced burrow sediments (Sanders et al. 1962; Dauer et al. 1981; Essink and Kleef 1988; 

Miller et al. 1992; Zettler et al. 1996; Urban–Malinga et al. 2013). It is considered herein 

that the feeding palps of M. viridis are likely inefficient in collecting food particles at the 

sediment-water interface because of their small size and ciliary arrangement; the potential 
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for suspension feeding is similarly weak in this species because no palp movement was 

observed at higher current speeds (Dauer 1997; Miller et al. 1992). The inferred 

inefficiency of both surface deposit feeding and suspension feeding strategies suggests an 

alternate method of food collection of M. viridis.  Deep tier deposit feeding has been 

suggested based on reports of both light and dark fecal rods inferred to result from 

feeding on oxic (light) and reduced (dark) sediments respectively (Dauer 1997; Essink 

and Kleef 1988). 

The unique ventilation behavior of Marenzelleria viridis enhances the flux of 

metabolites within sediments, stimulates anaerobic processes and creates oscillations of 

oxic and anoxic conditions (Hahlbeck 2000; Kristensen et al. 2011; Quintana et al. 2013; 

Jovanovic et al. 2014), and may play a role in meeting the nutritional requirements of M. 

viridis by enhancing a food source of chemosynthetic origin. The purpose of the 

alternating ventilation behavior is not clear, and the extreme tolerance of M. viridis to 

sulfide suggests that this compound may be important for this species. Enhancement of 

metabolites and competitive exclusion would presumably encourage chemoautotrophs, 

and sulfate reducers and sulfur oxidizers in particular, to grow along the burrow. Indeed, 

the abundance of these microbes was elevated around the burrow wall and in surrounding 

sediments (See Chapter 3).  The enhancement of certain bacterial groups, or microbial 

gardening/farming, has been suggested as a feeding strategy for other deposit feeding 

polychaetes inhabiting sulfidic sediments, such as lugworms, Heteromastus filiformis and 

capitellids (Clough and Lopez 1993; Kikuchi and Wada 1996; Tsutsumi et al. 2001; 
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Ashforth et al. 2011). Results from Chapter 3 suggest grazing on the prokaryotic 

population in the burrow, possibly by M. viridis.  

As a constructor of deep burrows that extend into the reduced sediment layer, 

Marenzelleria viridis is exposed to higher levels of ambient hydrogen sulfide that may be 

utilized for nutritional benefit. Many animals in reducing habitats, such as hydrothermal 

vents and organic rich sediments, harbor sulfur-oxidizing symbionts both to cope with 

toxic sulfide exposure, and to provide an energy source (Bagarinao 1992; Cavanaugh 

1994; Childress 1995; Giere 1996). Chemosymbiosis occurs widely between invertebrates 

and chemoautotrophs, spanning at least 100 species across 5 invertebrate phyla 

(Cavanaugh 1994; Distel 1998). To meet the biogeochemical requirements of thiotrophic 

endosymbionts, which require oxygen or nitrate as well as either sulfide or thiosulfate, 

many symbiotic macroorganisms occupy the redox boundary (Giere 1996; Stewart and 

Cavanaugh 2006). The ventilation behavior of Marenzelleria viridis may provide 

metabolites to chemoautotrophs living in a chemosymbiotic relationship with M. viridis 

that may supply extra nutrients to the host. However, no previous ultra-structural studies 

of M. viridis have investigated the possible presence of symbionts.  

No studies to date have investigated which of several reported feeding strategies is 

the primary feeding mode of Marenzelleria viridis, and whether the species depends on a 

chemosynthetic food source.  This chapter explores potential chemosynthetic nutritional 

sources of Marenzelleria viridis, either in the form of 1) chemoautotrophic symbionts or 

2) gardening or cultivation of chemoautotrophic microbes in sediments. Potential 

nutritional sources were investigated by sampling a variety of potential food sources from 
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the M. viridis environment, as well as the polychaetes themselves, to explore trophic 

strategies using stable isotope analysis. If M. viridis is dependent on a chemoautotrophic 

source of nutrition, stable isotope analysis will reveal isotopic signatures comparable to 

other organisms dependent on chemosynthesis. Additionally, transmission electron 

microscopy (TEM) was used to explore whether M. viridis may harbor sulfur-oxidizing 

endo- or ectosymbionts.  In other symbiont bearing annelids (with the exception of 

specialized Riftia species), symbiotic bacteria typically occur in the cuticle, the epidermis 

or the cuticle to epidermis boundary (Giere 1996); therefore, TEM investigations 

concentrated in these areas of M. viridis tissue.  

 

4.2 Materials and Methods 

4.2.1 Stable Isotope Analysis of 13C, 15N and 34S 

 To explore dietary sources of Marenzelleria viridis, the stable isotope ratios of 

organic C, N and S were determined for annelids and their potential food sources. Three 

M. viridis individuals were collected from Deer Brook in November 2013 (see Chapter 2 

for descriptions of sampling sites) and kept in filtered seawater (0.22 µm) at 4°C for gut 

purging. Once purged, specimens were rinsed with distilled water and transferred to acid 

washed scintillation vials and frozen at -20°C. 

 Potential food sources of Marenzelleria viridis were sampled at Deer Brook. 

These included two types of organic matter deposited at the surface (distinguished by 

color, “brown organic matter” and “black organic matter”), surface sediment, black 

reduced sediment from about 10 cm depth, and M. viridis burrow sediment. Seawater 
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from Deer Brook was collected at high tide using an acid rinsed plastic jug dipped 

approximately 10 cm below the water surface for analysis of suspended particulate 

organic matter (SPOM). Seawater (2 L) was filtered on GF/F Whatman® filters (47 mm 

diameter, 0.7 µm porosity) to collect suspended particulate matter.  

 Sediment and tissue samples were freeze-dried and ground into powder with a 

mortar and pestle. Ground tissue samples were then transferred to acid-washed 

scintillation vials. One set of sediment subsamples were weighed in tin caps and treated 

with HCl to remove carbonates for analysis of 13C and 15N. For analysis of suspended 

particulate organic matter, one filter was fumigated with HCl to remove carbonates for 

analysis of 13C and 15N. Untreated sediment samples, acid treated sediment sub-samples 

in tin caps, tissue and filter samples in scintillation vials were sent to the G.G. Hatch 

Stable Isotope Laboratory, University of Ottawa for analysis (Table 4.1). For 13C and 15N, 

samples were analyzed with a Delta Advantage (Thermo, Germany) isotope ratio mass 

spectrometer, and for 34S samples were analyzed with a Delta XP isotope ratio mass 

spectrometer.   
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Table 4.1: Total number of samples and isotopes analyzed for Marenzelleria viridis tissue and 
potential food sources from the sediment and the water column. 

Samples Submitted for Analysis Isotopes Analyzed Number of Samples  
Tissue   

Marenzelleria viridis 13C, 15N and 34S 3 individuals  

Sediment Samples (Food Sources)   

Surface 13C, 15N and 34S 2 (1 acid treated, 1 untreated)  

Black Reduced (10 cm depth) 13C, 15N and 34S 2 (1 acid treated, 1 untreated) 

Marenzelleria viridis burrow 13C, 15N and 34S 2 (1 acid treated, 1 untreated) 

Brown Organic Matter, surface film 13C, 15N and 34S 2 (1 acid treated, 1 untreated) 

Black Organic Matter, surface film 13C, 15N and 34S 2 (1 acid treated, 1 untreated) 

Suspended Particulate Organic Matter 
Samples (Food Source) 

  

Filter with high tide seawater sample 
13C and 15N 2 (1 acid treated, 1 untreated) 

 

 

4.2.2 Transmission Electron Microscopy 

To search for potential chemosynthetic symbionts associated with Marenzelleria 

viridis tissues, one specimen collected from Indian Pond in December 2012 was selected 

for TEM analysis (see Chapter 2 for a description of sampling location in Indian Pond). 

The individual was left in a beaker of filtered seawater (0.22 µm) at 4°C until it had 

purged gut contents (approximately 24 hours). Two gills were removed from the anterior 

region, and to ensure that body tissue samples were small enough to be embedded, the 

specimen was cut into anterior, middle and posterior regions, and further cut transversely. 

Body tissue and gill samples were placed in separate scintillation vials with 2.5% 

gluteraldehyde in 0.1M sodium cacodylate- 1% HCl buffer, with enough volume to 

ensure complete immersion of the tissue. After 24 hours, the fixative was replaced with 

0.1 M sodium cacodylate- 1% HCl buffer to cover the tissues. 
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Samples were post-fixed with 1% osmium tetroxide in 0.1M sodium cacodylate 

buffer for 15 minutes. Tissues were subsequently dehydrated in a series of increasing 

concentrations of ethanol (two changes of 50%, 70%, 90% and 100%) for 10 minutes in 

each change. Each tissue sample was placed in a drop of EPON resin (16.0 g TAAB 812, 

8.0 g DDSA, 9.2 g NMA, and 0.4 g DMP) on a strip of Parafilm for 15 minutes. This 

process was repeated twice more. Tissue samples were transferred to molds filled with 

EPON resin, properly orientated to enable transverse sections to view epidermal and 

cuticle ultrastructure, and left in an embedding oven at 80°C overnight for curing.  

Tissue samples were sectioned with a LKG Bromma 8800 ultramicrotome using 

glass knives to a thickness of approximately 3 µm. These semi-thin sections were placed 

on microscope slides, dried, and then stained using 1% toluidine blue in 1% sodium 

borate on a heated surface to allow the stain to permeate the tissue. Semi-thin sections 

were then viewed with a light microscope to help determine if the sections were 

appropriate for viewing with TEM (i.e. apporpriate orientation to view ultrastucture) and 

selected for further processing. 

Ultrathin sections (approximately 60 nm) were cut with a diamond knife using the 

same ultramicrotome on the automated heating advancement setting. Sections were 

placed on 3.05 mm copper grids (Type G200) and brought to the Electron Microscopy 

and Flow Cytometry Unit of the Health Sciences Centre at Memorial University for post 

staining and examination. Grids were post stained with uranyl acetate for 15 minutes, 

rinsed three times with 50% methanol, and then stained with lead citrate for seven 
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minutes, followed by a rinse with distilled water. Once dry, grids and respective tissue 

samples were examined with a Phillips 300 transmission electron microscope.     

 

4.3 Results 

4.3.1 Stable Isotope Analysis 

4.3.1.1 Carbon 

 Organic carbon isotopic values for sediment samples from the burrow and from 

black reduced sediment were similar, varying between -24.36 and -24.82 ‰ (Table 4.2).  

Surface sediment had a heavier δ13C value of -23.84 ‰, and brown organic matter was 

lighter, at -25.12 ‰. Suspended particulate organic matter δ13C was slightly lighter than 

the sediment samples at -27.66 ‰. The δ13C of Marenzelleria viridis was heavier than the 

potential food sources tested (-17.8 to -17.45 ‰). 

Table 4.2: Stable isotopic signatures of Marenzelleria viridis individuals collected in Deer Brook. 
Isotope signatures of potential food sources (sediment, surface films and suspended particulate 
matter) are presented. δ13 C signatures from investigated food sources are from fumigated samples; 
δ15N and δ34S signatures are from non-fumigated samples. 

Sample δ13 C δ15N δ34S 
Marenzelleria viridis 1 -17.8 5.48 -9.45 
Marenzelleria viridis 2 -17.45 5.43 -5.54 
Marenzelleria viridis 3 -17.49 6.73 2.24 
Surface sediment -23.84 5.18 -18.28 
Black reduced sediment -24.82 4.32 -16.61 
Burrow sediment -24.36 4.4 -20.36 
Brown organic matter -25.12 0.92 0.22 
Black organic matter -24.69 1.15 -10.18 
Suspended particulate organic matter -27.66 3.54 -13.16 

  

 

 



 

 

77 

 

4.3.1.2 Nitrogen 

 Brown and black organic matter sediment samples were lightest in organic δ15N, 

with values of 0.92 and 1.15 ‰ respectively. Black reduced and burrow sediments had 

similar nitrogen isotopic values of 4.32 ‰ and 4.4 ‰. The surface sediment sample was 

the heaviest, with a value of 5.18 ‰. The SPOM had a nitrogen isotopic value between 

those of sediment samples, 3.54 ‰. The δ15N of Marenzelleria viridis ranged from 5.48 

to 6.73 ‰ (Table 4.2). 

4.3.1.3 Sulfur 

 The organic δ34S values of sediment and SPOM varied the most of the three 

elements examined. Burrow sediment samples were lightest in S, with a value of -20.36 

‰. The next lightest signatures were from surface sediment (-18.28 ‰), black reduced 

sediment (-16.61 ‰), and black organic matter (-10.18 ‰), and the heaviest δ34S value 

was in brown organic matter (0.22 ‰). The sample of SPOM was intermediate at -13.16 

‰.  The δ34S of Marenzelleria viridis was relatively heavy and varied widely between 

individuals (-9.45 to 2.24 ‰) (Table 4.2).  

4.3.1.4 Dual isotope plots 

 A graphical representation of δ13C and δ15N values along two axes separated the 

sample types into distinct groups (Fig. 4.1). The Marenzelleria viridis samples were 

grouped together and were characterized by the heaviest δ13C and δ15N signatures; the C 

isotopic signature was notably high compared to other samples. All sediment samples 

grouped together, and were relatively heavy in δ15N compared to SPOM and surface 
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films. The surface films grouped together and had the lightest δ15N values, while the 

SPOM had the lowest δ13C.  

 When graphing the δ13C and δ34S signatures together, Marenzelleria viridis 

samples grouped together and were distinguished by heavier δ13C, and relatively 

variableδ34S values (Fig. 4.2). All other samples were lighter in δ13C.  The surface films 

had the most similar δ34S values to M. viridis, while the sediment samples were grouped 

together and had comparably light δ34S values. 

  

 

Figure 4.1: Stable isotopic signatures (δ13C and δ15N) of Marenzelleria viridis tissues and potential 
food sources. 
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Figure 4.2: Stable isotopic signatures (δ13C and δ34S) of Marenzelleria viridis tissues and potential 
food sources 

 

4.3.2 Transmission Electron Microscopy 

4.3.2.1 Transverse sections of Gill Tissue 

 The gill epidermis was covered by a cuticle about 0.75 µm thick, and a large 

blood vessel dominated the center of the gill filament (Figure 4.3A). The distance from 

the blood vessel and the outer surface of the cuticle was about 4 µm. Numerous 

mitochondria in the epidermal cytoplasm were electron dense and contained few cristae. 

Epidermal extensions (microvilli) crossed the cuticle and ended in somewhat inflated tips 
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laying flat on the cuticle surface. Surrounding the microvilli were round, electron dense 

epicuticle projections. Cuticle “pockets”, approximately 0.42 µm across and 0.25 µm 

deep bordered the epidermal-cuticle interface (Figure 4.3B). These pockets contained an 

abundance of electron dense granules 0.08 µm in length. The electron dense granules 

were not observed elsewhere in other cells, cell layers or on the surface of the gill 

filament. No recognizable bacteria were found in either intracellular or extracellular 

spaces.  

   

Figure 4.3: Transmission electron micrographs of Marenzelleria viridis gill tissue. (A) Electron 
micrograph depicting gill epithelium with large blood vessel and electron dense “pockets” bordering 
epidermal-cuticle interface. No obvious bacteria were observed. (B) “Pockets” of electron dense 
granules bordering epidermal-cuticle boundary. Granules were not observed elsewhere in gill 
epithelia. bv: blood vessel, c: cuticle, edg: electron dense granules, ep: epicuticle projection, m: 
mitochondria, mv: microvilli    
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4.3.2.2 Transverse Sections of Body Segments 

 4.3.2.2.1 ANTERIOR REGION 

  In the anterior region of Marenzelleria viridis, TEM revealed abundant, electron 

dense mitochondria throughout the cytoplasm of epidermal cells.  Some mitochondria 

appeared swollen with few cristae and electron dense inclusions (Figure 4.4A). Round, 

electron dense bodies (approximately 0.5 µm in diameter) and vacuoles were also 

abundant in the epidermal cytoplasm (Figure 4.4B). Crescent and dumbbell shaped 

electron dense particles aggregated in the epidermal cytoplasm next to the epidermal-

cuticle boundary, with some particles contained within inclusions (Figure 4.4C). These 

particles were approximately 0.5 µm in length and 0.1 µm wide, and not observed 

elsewhere in the epidermis or the cuticle. Microvilli crossed to cuticle and tips were 

somewhat inflated and flat on the surface. Similar to the gill filament, round, electron 

dense epicuticle projections surrounded the microvilli. Both microvilli and projections 

were coated with numerous long, thin filaments (approximately 2 µm), likely a type of 

glycocalyx. No identifiable bacteria were detected in either intracellular or extracellular 

spaces.  
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Figure 4.4: Electron micrographs of Marenzelleria viridis anterior body segment (A) Swollen, electron 
dense mitochondria with few cristae present in anterior epithelia. (B) Electron micrograph depicting 
abundant electron dense bodies and empty vacuoles in epithelia. No obvious bacteria were observed. 
(C) Putative baculoviruses bordering the epidermal-cuticle boundary. These particles were not 
observed elsewhere in epithelia. ba: baculovirus, c: cuticle, cr: cristae, edb: electron dense body, ep: 
epicuticle projections, m: mitochondria, v: vacuole. 
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4.3.2.2.2 MID BODY REGION 

 In the mid-body region of Marenzelleria viridis, TEM revealed a similar 

ultrastucture as observed in the anterior region. Electron dense bodies and mitochondria 

were present throughout the epidermal cytoplasm, with a higher abundance of 

mitochondria with electron dense inclusions (Figure 4.5A). The crescent and dumbbell 

shaped particles were more abundant compared to the anterior region, yet were still 

aggregated in the epidermal cytoplasm near the epidermal-cuticle boundary (Figure 4.5A, 

4.5B). The epicuticle in this region, with microvilli, epicuticle projections and glycocalyx, 

was very similar to the anterior region. No bacteria were observed in either the 

intracellular or extracellular spaces. 

     

Figure 4.5: Electron micrographs of Marenzelleria viridis mid body section. (A) Electron micrograph 
depicting placement of putative baculoviruses bordering the epiderimal – cuticle interface. No 
obvious bacteria were observed. (B) Putative baculaviruses. Some appeared to be degrading in 
vacuoles. ba: baculoviruses, c: cuticle, edb: electron dense bodies, ep: epicuticle projections, g: 
glycocalyx, m: mitochondria, mv: microvilli, v: vacuole 
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4.3.2.2.3 POSTERIOR BODY REGION 

 In the posterior region of Marenzelleria viridis, TEM revealed a similar 

ultrastructure as the mid and anterior body region, with some minor differences. 

Mitochondria were abundant, electron dense, and vacuoles containing electron dense 

material and what appeared to be degrading mitochondria were observed throughout the 

epidermal cytoplasm (Figure 4.6 A, B). Electron dense bodies were numerous in the 

cytoplasm (Figure 4.6 B). Crescent shaped and dumbbell-shaped particles were also 

observed in this body region similarly to the anterior and median regions, albeit in lower 

abundance (Figure 4.6 C). Compared to the other two regions, more glycogen was 

observed in the cytoplasm of epidermal cells. The epicuticle, with microvilli, epicuticle 

projections and glycocalx, was similar to that in the other body regions. No recognizable 

bacteria were observed in either the intracellular or extracellular spaces. 
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Figure 4.6: Electron micrograph of Marenzelleria viridis posterior body section. (A) Electron 
micrograph depicting epithelia and cuticle. No obvious bacteria were observed. (B) Electron dense 
bodies were numerous in cytoplasm of epithelial cells. (C) Putative baculoviruses were observed 
bordering the epidermal – cuticle boundary, and not elsewhere in cells. ba: baculoviruses, c: cuticle, 
edb: electron dense bodies, ep: epidermal projections, g: glycocalyx, m: mitochondria, mv: microvilli, 
v: vacuole 
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4.4 Discussion 

4.4.1 Potential food sources of Marenzelleria viridis  

4.4.1.1 Suspended Particulate Organic Matter (SPOM) 

Suspended particulate organic matter (SPOM) is often predominantly planktonic 

in origin, and its isotopic signature depends on the sources of assimilated carbon, sulfur or 

nitrogen in its multiple components. In estuaries, these components can have terrestrial, 

marine or autochthonous sources, with each source having distinct isotopic signatures 

(Martineau et al. 2004). While the δ15N values of primary producers in estuaries are 

highly variable, estuarine plankton can have a δ13C range of -29‰ to -22‰, and a δ34S of 

7‰ to 20‰, whereas more brackish/freshwater plankton have signatures of -28‰ to -

25‰ for δ13 C and -3.6‰ to 4.3‰ for δ34S (Chanton and Lewis 1999; McKinney et al. 

2001; Chanton and Lewis 2002). The sampling site was located close to Deer Brook, 

which drains the watershed of the peatland environment in the Long Range Mountains; 

this runoff can provide carbon, nitrogen and sulfur sources for plankton, and additionally 

contributes to the total SPOM of the sample site. 

The SPOM of Deer Brook, collected at high tide, had a δ15N value of 3.54‰, 

within the range of δ15N values for marine phytoplankton (between 0-10‰, Fry et al. 

1991; Peterson 1999). However the δ13C value of -27‰ falls within the -28‰ to -25‰ 

range of fresh or brackish water plankton, and outside of typical marine phytoplankton 

values (-19‰ to -24‰), with temperate plankton between -20.7‰ and -20.9‰ (Peterson 

1999; Kharlamenko et al. 2001; Chanton and Lewis 2002; Fry 2006). Furthermore, the 

very light δ34S value of -13.54‰ is also unlike typical values for marine plankton (~ 17‰ 
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to 21‰), and terrestrial plants (1.8‰), and is more depleted than chemosynthetic primary 

producers at hydrothermal vents, which have a δ34S range of -2.8‰ to 10‰ (Peterson 

1999; Fry 2006; Reid et al. 2012). It is possible that runoff from Deer Brook contributes 

the majority of carbon, nitrogen and sulfur for plankton at the sampling site. Runoff from 

Deer Brook would also carry POM from peatlands and other terrestrial sources as the 

water flows downstream. In estuaries, plankton δ13C values can vary due to differences in 

the carbon sources of dissolved organic carbon, and can result in phytoplankton 

signatures more similar to organic matter from terrestrial plants (~-28‰) (Fry et al. 1991; 

Peterson 1999). In this study, δ13C values for the SPOM, which is isotopically light, are 

similar to typical terrestrial plants or Sphagnum moss (about -28‰ and -26‰, 

respectively; Kracht and Gleixner 2000; Fry et al. 1991), and the δ34S signature of SPOM 

is closest to saltmarsh plants (Spartina alterniflora), which can be as light as -7.7 ‰ 

(Peterson et al. 1986), suggesting an allochthonous source for C and S. Although care was 

taken during sampling to not re-suspend sediment, it is possible that contamination 

occurred; anoxic marsh and benthic sediments tend to be more depleted in δ34S due to 

sulfate reduction, which could also explain the light δ34S signature of the SPOM 

(Peterson 1999). 

4.4.1.2 Surface, Black Reduced and Burrow Sediments 

Bulk sedimentary organic matter in Deer Brook Lagoon is likely composed of a 

mixture of detritus from terrestrial (Deer Brook) and marine (tidal transport) sources, in 

addition to autochthonous organic matter from planktonic and benthic primary production 

as seen in other estuaries (Thornton and McManus 1994; Chanton and Lewis 2002). 
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Detritus from marine sources is usually isotopically heavier in nitrogen and carbon (δ13C: 

-18‰ to -23‰ and δ15N: 6‰ to 11‰) than terrestrial detritus (δ13C: -29‰ to -26‰ and 

δ15N -5‰ to 3‰) (Tsutsumi et al. 2001; Clough and Lopez 1993; Thornton and 

McManus 1994; Karlson et al. 2014). Estuarine sediments, containing organic matter 

from a variety of sources, have reported ranges of -26.6 to -21‰ for organic δ13C, and 8 

to 10‰ for organic δ15N (Thornton and McManus 1994; Chanton and Lewis 2002). 

Estuarine sediments are depleted in organic δ34S with values between -24‰ to 6.3‰, due 

to microbial sulfate reduction, which discriminates against 34S and favors 32S, producing 

isotopically light sulfides (Peterson 1999; Stribling and Cornwell 1997; Detmers et al. 

2001; Chanton and Lewis 2002).  

Surface, black reduced and burrow sediment samples were similar in organic δ13C 

and δ15N, with surface sediments slightly more enriched in δ15N (Table 4.2); these fall 

within reported ranges for estuarine sediments, in particular lagoons (around -25.6 ‰ for 

δ13C and 4.3 to 6.7‰ for δ15N; Tsutsumi et al. 2001). Although organic sulfur isotopes 

were light, chemosynthetic carbon, which is typically ranges from -27‰ to -35‰ for 

chemoautotrophs with RuBisCo type I (Robinson and Cavanaugh 1995), was not obvious 

in these sediment samples; rather, bulk organic carbon was relatively enriched in 13C, 

likely due to the presence of various types of organic matter in the sediment, in particular 

marine algae. Chemosynthetic carbon, however, is difficult to detect in sediments unless 

abundant within the bulk organic matter (Tsutsumi et al. 2001). The slightly more 

enriched δ15N value of the surface sediment compared to the black reduced and burrow 

sediments likely results from  either organic matter decomposition at the sediment 
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surface, which generally leads to 15N enrichment, or nitrification in subsurface sediments, 

which depletes 15N, resulting in a lighter signature (Peterson 1999, Tsutsumi et al. 2001, 

Roach et al. 2011). Nitrification in black reduced sediment, burrow sediment, and 

potentially in surface sediments, may result from increased production of ammonium 

from Marenzelleria viridis ventilation, which can then be used by nitrifying bacteria 

(Bonaglia et al. 2013).  

The δ34S values of the surface, black reduced and burrow sediments were more or 

less similar and distinct from the surface films and SPOM. Organic matter-degrading 

bacteria or fungi may either use sediment sulfide or seawater sulfate as a source of sulfur, 

resulting in a variety of δ34S signatures in sediments (Peterson 1999). The light δ34S value 

of burrow sediment likely results from microbial incorporation of porewater sulfides, 

which have δ34S signatures of -19‰ and -22‰ in reducing sediments, such as those 

induced by M. viridis ventilation (Peterson et al. 1986; Stribling and Cornwell 1997; 

Kristensen et al. 2011; Bonaglia et al. 2013).  Additionally, δ34S depletion can occur after 

several cycles of sulfide oxidation to intermediate sulfur compounds through 

disproportionation, which likely occurs in the burrow of M. viridis (Canfield 2001). 

While high sulfate reduction rates are not expected to occur in oxic surface sediments, the 

ventilation activity of M. viridis may promote sulfate reduction near the sediment surface 

and influence the δ34S value. The isotopic sulfur signature of benthic microalgae within 

surface sediments similarly varies depending on how reducing sediments are, with a 

lighter signature in algae growing over sulfidic muds than in oxic sediments (Chanton and 

Lewis 2002). The combination of elevated sulfate reduction rates and isotopically light 
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microalgae may have contributed to the depleted δ34S signature of bulk surface sediment 

organic matter. 

4.4.1.3 Black and Brown Surface Films 

Black and brown surface films collected in Deer Brook lagoon were likely 

composed of different species of benthic microalgae (diatoms and other algae) and other 

microbes as well as terrestrial detritus and settling plankton.  Isotopic signatures of the 

two films, therefore, result from a combination of these sources. Although δ15N signatures 

of estuarine primary producers vary depending on N availability and species-dependent 

fractionation, marine photosynthetic organisms have a typical δ13C signature around -

21‰ and a δ34S signature ranging from 17‰ to 22‰, with benthic microalgae ranging 

from 3.9‰ to 5.4‰ for δ34S and around -15‰ for δ13C (McKinney et al. 2001; 

Kharlomenko et al. 2001; Chanton and Lewis 2002; Fry 2006).  

Signatures for both surface films were more depleted in δ13C in comparison to the 

typical isotopic signature of benthic microalgae (around -15‰), and more similar to 

terrestrial values or estuarine plankton, which range from -29‰ to -22‰, reflecting the 

mixture of organic matter sources in both films (Fry 1986; Chanton and Lewis 2002; Fry 

2006). While the δ13C and δ15N signatures of both films were similar, with the differences 

in δ15N likely caused by different primary producer species in the two films, the δ34S 

signatures were both isotopically light compared to benthic microalgae (i.e. 3.9‰ to 

5.4‰), and variable. As suggested for the surface sediment, the reducing conditions of 

the sediment and the recycling of S in the sediment results in more depleted δ34S values, 

thus driving the light δ34S in both films (Canfield 2001; Kharlomenko et al. 2001; 
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Chanton and Lewis 2002; Fry 2006). As was the case for the δ15N signatures, different 

microbial composition of the two films likely explains the large differences in δ34S with 

species composing the black surface film possibly using more sulfides to degrade organic 

matter than species in the brown surface film, which may use seawater sulfate, resulting 

in a heavier δ34S signature for the brown surface film (Peterson 1999). 

 

4.4.2 Lack of Bacterial Symbionts and Chemosynthetically Derived Sulfur: a Case of 

Selective Deposit Feeding? 

Stable isotopes are useful tools in studying food web dynamics because of 

differences in C, N and S isotopes from different food sources and the fractionation of 

isotopes during metabolism, although isotope shifts can vary depending on tissue and 

species (Peterson et al. 1985; Cifuentes et al. 1988; Kikuchi and Wada 1996; Post 2002; 

McCutchan et al. 2003). Typically, sulfur and carbon isotopes fractionate by a small 

amount, between + 2.0‰ to -0.5‰ for δ34S and +0.5‰ for δ13C, and so the δ34S and δ13C 

signatures of the consumer generally reflect the δ34S and δ13C of the food source 

(Peterson et al. 1985; Kikuchi and Wada 1996; Bosheker and Middelburg 2002; 

McCutchan et al. 2003).  Nitrogen isotopes become more enriched from food source to 

consumer, with fractionation depending on food source (+ 1.4 ± 0.21 ‰ if consuming 

invertebrates or + 2.2 ± 0.65 if consuming plants/algae): most consumers become 3-4 ‰ 

heavier with each trophic level (McKinney et al. 2001; Post 2002; McCutchan et al. 

2003). 
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It is important to note this study as primarily an exploratory one; due to time and 

cost restraints, these is low replication of samples which limits interpretation of the data.  

Future work could increase the number of samples of food sources and Marenzelleria 

viridis individuals, as well as collect samples from different times of the year in case 

isotope values of individuals were a reflection of the polychaetes not feeding at time of 

sampling (November).  

Nonetheless, considering fractionation and based on δ15N values of the samples 

collected, either food source could form a component of the diet of Marenzelleria viridis. 

However, the δ13C of M. viridis tissue is more enriched than expected considering the 

typical carbon fractionation through consumption and assimilation and the food sources 

considered. An enrichment of δ13C in comparison to food sources has also been 

documented in other deposit feeding polychaetes (Notomastus sp., Heteromastus 

filiformis and Capitella sp.), in filter-feeding zooplankton, in black fly larvae and in 

Marenzelleria arctia, with selective feeding on a isotopically distinct fraction of total 

organic matter suggested to be the cause of this discrepancy, as SPOM and sediment are 

composed of a wide variety of organic matter material with distinctive δ13C signatures 

(Clough and Lopez 1993; Kikuchi and Wada 1996; Tsutsumi et al. 2001; Martineau et al. 

2004; Karlson et al. 2014). Therefore, M. viridis selectively feed on an isotopically 

distinct fraction, not isolated in this study, in the water column, surface films or sediment.  

The δ34S signatures of Marenzelleria viridis are much lighter than the standard 

range for typical deposit feeders of 12‰ to 14.9‰ (Chanton and Lewis 2002). Other 

marine or estuarine animals with δ34S signatures similar to M. viridis, such as the bivalves 



 

 

93 

 

Macoma incongrua (δ34S = -3.9‰ to -3.5‰) and Polymesoda erose (δ34S = -4.3‰) are 

considered to be among the most depleted in δ34S (Kharlamenko et al. 2001). Depleted 

δ34S values typify chemosymbiotic species such as the bivalve Pillucina pisidium 

(Kharlamenko et al. 2001), although ultrastructural analysis revealed a lack of both extra- 

and endo-cellular symbionts in M. viridis. Consumers of chemosynthetic primary 

production have δ34S values of -9‰ to 10‰, in contrast to δ34S values of 16‰ to 19‰ in 

consumers of photosynthetic primary production (Reid et al. 2012).  Assimilation of 

considerable amounts of microbial biomass in detritivores may contribute to low δ34S 

values (Peterson 1999). In this study, neither SPOM nor deeper sediments had the δ34S 

signature of the expected main food source of M. viridis, and this species may consume 

an isotopically distinct fraction of organic matter from the bulk sediment or water 

column, consistent with the interpretation of δ13C values. SPOM in the water column is 

generally composed of plankton using a consistent source of sulfur, mostly seawater 

sulfate; therefore, similar δ34S  values would be expected in individuals of a species 

depending mainly on SPOM as a main food source, which was not the case in this study. 

In comparison, δ34S in sediments vary depending on the use of either seawater sulfate or 

porewater sulfide by producers (Peterson 1999). The variability of δ34S among M. viridis 

specimens suggests consumption of this distinct organic matter source, from the burrow 

or black reduced sediments rather than the water column. The δ34S signatures observed in 

different individuals of M. viridis suggest that they fed mainly on organic matter at 

different stages of decay, and on species of bacteria that assimilated sulfur from different 

sources, such as sulfur oxidizing bacteria whose δ34S signature depends on the availability 
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of sulfate or thiosulfate (Peterson 1999; Detmers et al. 2001). Variable δ34S signatures 

have also been reported in other detritivores, and in dorvilleid polychaetes that consume 

fish pellets at varying stages of decay, resulting in a range of δ34S signatures 

(Kharlamenko et al. 2001; Salvo et al. 2015). M. viridis may also consume materials from 

surface mats, given the similarity in δ34S signatures; however, the discrepancy in δ13C 

signatures between surface mats and M. viridis tissues suggests that surface mats are  not 

its sole food source and supports the hypothesis of selective microbial feeding. 

The δ34S signatures of Marenzelleria viridis suggest a food source of chemosynthetic 

origin, and although the δ13C values of M. viridis are more enriched than would be 

expected from chemosynthesis using RuBisCo type I, they are close to the -9‰ to -15‰ 

range for chemoautotrophs that use RuBisCo type II (Robinson and Cavanaugh 1995). 

Like animal consumers, δ13C signatures in bacteria reflect their food sources or substrates 

used for growth, unless they fix CO2 (Robinson and Cavanaugh 1995; Boscheker and 

Middelburg 2002). Some bacteria use carbon sources with very specific δ13C signatures 

or produce lipids with distinct isotopes ratios, a characteristic used to identify certain 

bacterial populations (Bosheker and Middelburg 2002). Although chemosynthetic 

products are usually δ13C depleted, some bacteria, including sulfate reducers, utilize  a 

reverse citric acid cycle (TCA) for carbon fixation, resulting in lipids enriched in δ13C 

(Boscheker and Middelburg 2002, Buhring et al. 2005).  The Desulfobacteraceae, a group 

of sulfate reducers, have distinct C17 fatty acids, iC17:1w7 and aiC17:0 , and differ from most 

chemoautotrophic bacteria in δ13C enrichment in fatty acids, with a signature of  -17.1 

and -17.6‰ (Buhring et al. 2005). The δ13C values of -17.8 ‰ to -17.45 ‰ in M. viridis 
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suggest an exclusive feeding and/or assimilation of Desulfobacteraceae bacteria, or 

feeding on a carbon source from other chemoautotrophs that use RuBisCo type II.  

4.4.3 Ultrastructure of Epithelia and Cuticle 

While TEM did not reveal the presence of any obvious bacterial symbionts that 

may aid in sulfide detoxification or help meet nutritional requirements, the ultrastructure 

of epidermal and cuticle tissues from gill and body segments is consistent with that of 

other annelids and invertebrates that live in sulfidic and hypoxic environments. The 

branchial hemocoel of Marenzelleria viridis is much larger than in other polychaetes, 

indicating high oxygen uptake efficiency (Storch and Alberti 1978). The small distance 

between the hemocoel and the external environment (4 µm) may also lead to a high 

uptake of sulfides. The epithelium and cuticle of M. viridis are typical of polychaetes, 

with distally flattened microvilli crossing the cuticle, epicuticle projections, and a 

glycocalyx layer covering microvilli in the body sections (Hausen 2005). Microvilli and 

epicuticle projections may play roles in mucus production, and the abundance of these in 

M. viridis suggests the importance of mucus for the species (Giere et al. 1988; Hausen 

2005). When collected in the field, sediment grains attached via mucus to the body 

surface of M. viridis were difficult to remove. Although some species, such as the 

polychaete Tubificoides benedii, produce a thick, bacteria-housing mucus layer that may 

help to prevent sulfide from entering body tissues (Giere et al. 1988; Menon et al. 2003), 

there was no evidence of a thick mucus layer or associated bacteria in the specimen of M. 

viridis examined (although TEM processing may have removed surficial mucus and any 

associated bacteria). The relatively long glycocalyx filaments may form a protective layer 
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against sulfides; while the function of the glycocalyx in the polychaete integument is not 

certain, in other cells it is involved in substrate uptake or protection. Therefore, the 

glycocalyx, combined with mucus, may limit sulfide diffusion into body tissues, with 

mucus also likely involved in burrow construction and maintenance.  

 The electron dense bodies (EDBs) and mitochondria observed in Marenzelleria 

viridis epithelia are consistent with life in sulfidic, low oxygen content sediments. 

Invertebrates in environments with either periodic or constant sulfide exposure typically 

have abundant mitochondria that are misshapen, swollen or have electron dense matrices 

with few cristae, possibly resulting from stressful low oxygen conditions, sulfide 

exposure or a poor development due to anaerobic metabolism (Giere et al. 1988; Dubilier 

et al. 1997; Menon et al. 2003). Additionally, the epithelial cells of animals exposed to 

sulfides typically have membrane bound, electron dense bodies, referred to as electron 

dense organelles, sulfur oxidizing bodies, precipitates, inclusions or granules (Giere et al. 

1988; Menon et al. 2003; Wohlgemuth et al. 2007). Such EDBs have been reported in 

every sulfidic environment-inhabiting annelid examined, but the origin and function of 

these structures remain unknown (Menon et al. 2003; Wohlgemuth et al. 2007). In other 

annelids, these structures contain iron, copper and zinc and their presence and abundance 

depend on sulfide exposure, suggesting an adaptive function in sulfide oxidation, and/or 

the autophagic degradation of damaged organelles (Menon et al. 2003; Wohlgemuth et al. 

2007). The EDBs in the body and gill epithelia of M. viridis may have the same 

function(s); in both epithelia, the EDBs were located at the periphery of cells, with the 
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smaller, more granular EDBs in “pockets” of the gill cuticle. The EDBs present in the gill 

may help limit the amount of sulfide entering the gill cells and hemolymph. 

 

4.4.4 Possible Presence of Baculoviruses in Marenzelleria viridis 

The electron dense, crescent and dumbbell shaped particles aggregated near the 

epidermal-cuticle boundary are similar in size and shape to baculoviruses. This family of 

large viruses causes disease in specific arthropods, and is commonly used as a 

biopesticide because these viruses liquefy their host (Clem 2001; Slavicek 2012). 

Baculoviruses can manipulate apoptosis and interfere with the immune response of the 

host cell (Clem 2001). Baculoviruses are not known to cause an infection in polychaetes, 

although they have been detected in polychaetes and in another annelid (Giere et al. 1998; 

Desrina et al. 2013). This is the first report of putative baculoviruses in Marenzelleria 

viridis, but, because only one specimen was observed with TEM, the prevalence of 

baculoviruses in M. viridis is uncertain. . 

 

4.4.5 Conclusions: Microbial Gardening in Marenzelleria viridis? 

Gardening of chemoautotrophic bacteria, whereby ventilation activities enhance 

the growth of some species of bacteria that are subsequently digested by macrofauna, 

have been suggested for some deposit feeders in reduced sediments because the bacteria 

would help with sulfide exposure and serve as a food source (Clough and Lopez 1993; 

Ashforth et al. 2011).  Microbial gardening has been hypothesized for other deposit 

feeding polychaetes, including lugworms, Heteromastus filiformis, and capitellid species 
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(Clough and Lopez 1993; Kikuchi and Wada 1996; Tsutsumi et al. 2001; Ashforth et al. 

2011). While bacteria in sediments alone may not provide an adequate food supply, given 

their lack of essential fatty acids and cell numbers too low to meet caloric requirements, 

polychaetes that feed on chemoautotrophic bacteria can synthesize missing fatty acids de 

novo, or may facultatively feed on other food sources to acquire missing fatty acids 

(Kharlamenko et al. 2001; Thurber et al. 2012; Salvo et al. 2015). Additionally, 

exopolymers produced by bacterial cells in biofilms can provide 10 times more food than 

cells alone, increasing the caloric content of a bacteria-based food source (Hall and Meyer 

1998). 

Marenzelleria viridis is known to enhance the activity, and likely growth, of 

sulfate reducing and sulfur oxidizing bacteria (Kristensen et al. 2011; Bonaglia et al. 

2013). The surprisingly low abundance of Desulfobaceraceae in burrow sediment 

suggests grazing of the population (See Chapter 3), possibly by M. viridis. The δ34S 

signature of M. viridis is of chemosynthetic origin, and the δ13C signature is similar to the 

δ13C signature of Desulfobacteraceae, suggesting a selective feeding, and potentially an 

active cultivation through ventilation behavior, of sulfur bacteria. Sub-surface deposit 

feeding, and likely consumption of farmed bacteria, has been observed in M. viridis 

(Essink and Kleef 1988). In this species, the short feeding palps, with their peculiar 

arrangement of frontal cilia, suggest an adaptation for dislodging particles (e.g. bacteria 

or diatoms) held together by mucus within a narrow space (i.e., the burrow wall) (Dauer 

1997). Longer feeding palps would be unnecessary if feeding on a readily available 

source within the burrow. The behavior of M. viridis might support the active cultivation 
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of populations of bacteria in the burrow, through a constant supply of metabolites, 

providing M. viridis with a readily available food source. M. arctia has an isotopic niche 

distinct from other deposit feeders from the same habitat and is thought to consume old 

organic matter in the sediment more than freshly deposited phytoplankton bloom material 

(Karlson et al. 2011, 2014). It is possible that the old detrital organic matter in the 

sediment provides a food source for microbes.  Periodically, M. viridis likely grazes on 

microbes and the microbial productivity on the burrow wall stimulated by bioirrigation 

behavior. The ultrastructural features, observed with TEM and adaptations of M. viridis to 

high sulfide environments (Schneider 1996; Bochert et al. 1997; Schiedek 1997; 

Hahlbeck et al. 2000) suggest potential importance of sulfur bacterial cultivation for this 

species. 
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Chapter Five: Thesis Summary and Conclusions 

5.1 Summary of Results 

This study focused on questions related to the unique, dynamic ventilation 

behavior of Marenzelleria; in particular, how this behavior may affect other organisms in 

surrounding sediments, and whether the unusual ventilation behavior of Marenzelleria is 

linked to its mode of feeding. This study is a first exploration to these questions with 

unfortunately low replication; as such, caution is needed in interpretations of results. 

In Chapter 2, I determined the species identity of Marenzelleria sampled in 

coastal Newfoundland and examined it in context of the associated macrofauna and 

sediment characteristics. I confirmed the identity of the species as M. viridis, reported 

here for the first time in Newfoundland, although at lower maximum abundances than 

reported for other regions of the world. The abundances of M. viridis in Bonne Bay and 

Conception Bay sampling locations were relatively similar, despite differences in salinity, 

temperature, wave regime, sedimentary chlorophyll a, organic matter content, sorting 

coefficient, and median grain sizes at the sampling sites. The ubiquity of M. viridis in 

locations spanning a range of abiotic characters is not particularly surprising given that 

the species has successfully invaded several European seas, and its typical habitat 

encompasses dynamic, low salinity intertidal mud to sand (George 1966; Blank et al. 

2006; Delefosse et al. 2012).   

 In Chapter 3, I determined the relative abundances of total prokaryotes, sulfate 

reducing bacteria and free-living sulfur oxidizing bacteria along the burrow lining of 
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Marenzelleria viridis and in surrounding sediments, as well as seasonal influences on 

these abundances. Because the highly dynamic, unique ventilation behavior of M. viridis 

creates oscillating redox conditions within the burrow that should favor microbial growth, 

I expected the burrow  to contain the highest numbers of prokaryotes and sulfur bacteria 

among the five sediment types studied (M. viridis burrow sediment and fecal rods, surface 

sediment, and both black and grey reduced sediments).  For each group of prokaryotes 

examined, abundances were not significantly different between collection months, a 

finding consistent with  similar studies that have found weak to no temporal trends 

elsewhere  (Boer et al. 2009; Garcia-Martinez et al. 2009). Relatively similar abundances 

of total prokaryotes, sulfate reducers, and sulfur oxidizers were found in all five sediment 

types considered.  This homogeneity of sedimentary microflora is unexpected given 

reports of stimulated anaerobic activity and the growth of Beggiotoa mats in experimental 

cores with M. viridis, and reports of high abundances of prokaryotes in burrows relative 

to host sediments (Aller and Aller 1986; Papaspyrou et al. 2005, 2006).  The relatively 

high abundances and apparently homogeneous distribution of the prokaryotic groups 

examined suggest far-field (cm to dm distance) microbial enhancement effects of 

bioirrigation by M. viridis in permeable sediments, combined with the grazing behaviour 

of M. viridis, which I inferred cropped prokaryote populations in near-burrow sediments.  

 In Chapter 4, I consider the potential nutritional sources of Marenzelleria viridis, 

including investigation of the possibility of chemoautotrophic symbionts and the culturing 

of free-living chemosynthetic bacteria in the burrow wall or surrounding sediments. The 

lifestyle of M. viridis includes the construction of deep burrows extending into reduced 
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sediment layers and a unique ventilation behavior that increases exposure of the 

polychaete to hydrogen sulfide. Such behaviors may indicate adaptations for utilizing 

chemosynthetic nutrition. Despite a ventilation behavior that would increase access of 

metabolites for symbiotic chemoautotrophic bacteria, M. viridis does not form a 

symbiotic association with such bacteria. Although M. viridis could feed on some 

material from surface mats, C, N and S stable isotopic signatures of M. viridis indicate 

that it also feeds on an isotopically distinct fraction of organic matter. The δ34S signature 

provides evidence for a chemosynthetic origin for this food source, and the δ13C 

signature, while more enriched then typical chemosynthetic values, is consistent with the 

biogeochemical activity of the bacteria family Desulfobacteraceae, suggesting selective 

feeding or assimilation of this group by M. viridis.  

 

5.2 Conclusions 

Members of the Spionidae family commonly inhabit organic rich sediments that 

either suspension or surface deposit feed using characteristically short feeding palps 

(Dauer et al. 1981). The genus Marenzelleria is abundant in intertidal, organically 

enriched, and often polluted, sediments, and while the five known species within this 

genus are nearly morphologically indistinguishable, they can differ in burrow 

construction and in the magnitude of ventilation activity (Sikorski and Bick 2004; Blank 

et al. 2006; Renz and Forster 2014). Three of the more commonly investigated (and 

cryptic) species, M. arctia, M. neglecta and M. viridis, are distinctive in both burrow 

structure and burrow ventilation (Renz and Forster 2014). M. bastropi and M. wireni 
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could also show different burrow construction and ventilation behaviors; however, these 

species have not yet been investigated. The most studied member of the genus, 

Marenzelleria viridis, constructs I or J shaped burrows that extend deep into reduced 

sediments. Unique dual ventilation habits  cause fluctuation between oxic to anoxic 

conditions and stimulate sulfate reduction (Kristensen et al. 2011; Quintana et al. 2011; 

Jovanovic et al. 2014) that  increase the amount of metabolites available for 

chemoautotrophic bacteria.  An individual M. viridis affects on average 2.8 m2 of the 

sediment-water interface, compared to 2.1 m2 in M. neglecta. M. viridis can pump   

almost twice as much water during its burrow irrigation activities as M. neglecta; on 

average, 12 mL day-1 per individual versus 6.6 mL day-1 per individual for M. neglecta 

(Renz and Forster 2014).    

The purpose of bi-directional burrow ventilation by Marenzelleria viridis has yet 

to be explained, however the ultrastructure of the epidermal tissue (Chapter 3) suggests 

adaptation for dealing with sulfide exposure. Based on the results of Chapters 2 and 3, I 

suggest that ventilation links to the cultivation of chemoautotrophic bacteria on the 

burrow wall, and in the near-burrow sediment, as a source of nutrition. Field studies 

demonstrated higher numbers of sulfate reducers and sulfur oxidizers than in similar 

sediment types, and may result from an enhancement effect of oscillating redox 

conditions created by the ventilation behavior of M. viridis (Jovanovic et al. 2014). The 

isotopic signatures of M. viridis tissue suggest that M. viridis diet consistentely includes 

chemosynthetic bacteria, such as members of the Desulfobacteraceae family. Cultivation 

of a chemosynthetic food source provides the benefit of a readily available food supply 



 

 

104 

 

without the need to move across the seafloor to feed. The feeding palps of M. viridis, 

which are shorter in comparison to other spionids with a different arrangement of frontal 

cilia (Dauer 1997), may be an adaptation for exploiting biomass cultivated by on the 

burrow wall by bioirrigation.  

Because there are differences in burrow construction and ventilation between 

sibling species (Renz and Forster 2014), and given that previous isotopic work 

demonstrates Marenzelleria arctia feeding on old organic matter in the sediment (Karlson 

et al. 2011), food acquisition could be a significant driver for evolution and speciation in 

this genus.  Phylogenetic work has revealed that the most basal species in the genus 

Marenzelleria are the Arctic species M. arctia and M. wireni, which suggests an Arctic 

origin for the genus (Blank and Bastrop 2008). The remaining three species, M. viridis, 

M. neglecta and M. bastropi are cryptic boreal species, with M. bastropi considered 

endemic to Currituck Sound (Blank and Bastrop 2008). Noting that M. neglecta and M. 

bastropi were only recognized as a distinct from M. viridis in recent years, it is possible 

that previous observations of suspension, surface deposit and sub-surface deposit feeding 

in M. viridis misidentified other species as M. viridis. However, more work comparing 

the feeding strategy of the sibling species, including stable isotopic studies in different 

locations, is needed before definitive conclusions can be made.   

Potentially, as the genus Marenzelleria radiated outwards from the Arctic into 

warmer habitats, differences in feeding strategies developed along with differences in 

burrow morphology, burrow construction and ventilation habits. The sister species M. 

neglecta and M. viridis overlap in ranges and form hybrids, however, M. viridis forms 



 

 

105 

 

deeper burrows, reworks sediment more intensely and exchanges more water than M. 

neglecta (Renz and Forster 2013). Given that the feeding mode of M. viridis varies with 

substrate type (Dauer et al. 1981), it is possible that all members of the genus 

Marenzelleria have adaptable modes of feeding, with some species depending more on 

certain food sources than others. Differences in burrow construction and bioirrigation 

between M. neglecta and M. viridis may indicate greater dependence on farmed 

chemoautotrophic bacteria on the burrow wall, wheareas M. neglecta relies more on 

either surface deposit feeding on diatoms or suspension feeding. Because  M. viridis 

occurs  further north than M. neglecta, chemoautotrophic bacteria may be a more reliable 

food source than photosynthetic food sources such as diatoms that are restricted by the 

short growing period in the sub-arctic. 

 

5.3 Future Directions  

Given that this is the first formal report of a member of the genus Marenzelleria in 

coastal regions of Newfoundland, investigations of other areas around Newfoundland 

could provide beneficial further information on the distribution of this species. 

Monitoring changes in the abundance of this species in both Bonne Bay and Indian Pond 

would be useful if Marenzelleria viridis is indeed a new arrival, and—in which case—

study of such possible changes could help determine the potential impacts M. viridis on 

ecosystem processes in the region.  

This thesis has also provided a first report of the prokaryotic abundance and 

relative numbers of sulfate reducers and sulfur oxidizers in field-collected sediments 
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inhabited by Marenzelleria viridis. Future work could either apply a wider variety of 

probes specific to other groups of bacteria or use metagenomics to investigate Archeal 

and bacterial communities in sediments colonized by M. viridis. Additionally, laboratory 

studies comparing prokaryotic communities in sediments containing M. viridis to control 

sediments would confirm the influence of the ventilation behavior on microbial 

populations in sediments.  

 Investigations of Archeal and bacterial communities in burrow sediments of other 

species of Marenzelleria, combined with stable isotope analyses, could indicate whether 

the ventilation behavior and burrow of M. viridis occur widely throughout the genus or 

represent unique adaptations for cultivating sulfate reducing bacteria as a food source. 

Furthermore, feeding studies of the different species could reveal whether species-

specific burrow morphologies and irrigation behaviors link to dietary differences and 

speciation within the genus.  
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Appendix 1 

Macrofaunal Abundance in Indian Pond and Bonne Bay Sites in 2013 and 2014 

Polychaetes 

Site	   Year	  
Marenzelleria	  
viridis	  

Nereis	  
virens	  

Heteromastus	  
filiformis	  

Nephtys	  
ciliate	  

Arenicola	  
marina	  

Lagis	  
sp.	   Phyllodocidae	  

IP1	   2014	   5	   42.5	   0	   0	   0	   0	   0	  
IP2	   2014	   5	   10	   0	   0	   0	   0	   0	  
IP3	   2014	   15	   35	   0	   0	   0	   0	   0	  
IP4	   2014	   0	   25	   0	   0	   0	   0	   0	  
NH1	   2013	   0	   5	   16.7	   0	   0	   0	   0	  
NH2	   2013	   3.3	   3.3	   0	   0	   0	   0	   0	  
NH3	   2013	   8.3	   8.3	   1.7	   0	   0	   0	   0	  
NH4	   2013	   0	   0	   0	   0	   0	   0	   0	  
NH5	   2013	   6.7	   3.3	   3.3	   0	   0	   1.7	   0	  
NH6	   2014	   5	   7.5	   35	   0	   0	   0	   0	  
NH7	   2014	   7.5	   20	   20	   0	   0	   2.5	   0	  
NH8	   2014	   22.5	   12.5	   7.5	   0	   0	   0	   0	  
NH9	   2014	   2.5	   2.5	   0	   0	   0	   0	   0	  
NH10	   2014	   17.5	   27.5	   12.5	   0	   0	   2.5	   0	  
SH1	   2013	   1.7	   6.7	   0	   0	   0	   0	   0	  
SH2	   2013	   8.3	   0	   35	   0	   0	   0	   21.7	  
SH3	   2013	   5	   0	   6.7	   1.7	   0	   0	   0	  
SH4	   2013	   33.3	   10	   25	   0	   0	   0	   0	  
SH5	   2014	   7.5	   0	   35	   0	   0	   0	   0	  
SH6	   2014	   20	   12.5	   35	   2.5	   0	   0	   5	  
SH7	   2014	   5	   0	   25	   0	   0	   0	   0	  
SH8	   2014	   10	   12.5	   37.5	   0	   0	   0	   0	  
SH9	   2014	   7.5	   20	   15	   0	   2.5	   0	   0	  
DB1	   2013	   16.7	   3.3	   1.7	   0	   0	   0	   0	  
DB2	   2013	   0	   1.7	   0	   0	   0	   0	   0	  
DB3	   2014	   22.5	   2.5	   20	   0	   0	   0	   0	  
DB4	   2014	   17.5	   0	   7.5	   0	   0	   0	   0	  
DB5	   2014	   35	   7.5	   0	   0	   0	   0	   0	  
DB6	   2014	   22.5	   0	   0	   0	   0	   0	   0	  
DB7	   2014	   12.5	   2.5	   2.5	   0	   0	   0	   0	  
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Molluscs 

Site	   Year	  
Mya	  
arenaria	  

Macoma	  
balthica	  

Littorina	  
saxatilis	  

IP1	   2014	   12.5	   0	   0	  
IP2	   2014	   10	   0	   0	  
IP3	   2014	   0	   0	   5	  
IP4	   2014	   0	   0	   0	  
NH1	   2013	   20	   53.3	   8.3	  
NH2	   2013	   10	   13.3	   3.3	  
NH3	   2013	   1.7	   8.3	   0	  
NH4	   2013	   0	   25	   0	  
NH5	   2013	   0	   18.3	   1.7	  
NH6	   2014	   0	   0	   0	  
NH7	   2014	   0	   0	   0	  
NH8	   2014	   2.5	   0	   0	  
NH9	   2014	   0	   0	   0	  
NH10	   2014	   0	   0	   0	  
SH1	   2013	   0	   3.3	   0	  
SH2	   2013	   3.3	   1.7	   0	  
SH3	   2013	   1.7	   0	   0	  
SH4	   2013	   0	   0	   1.7	  
SH5	   2014	   2.5	   0	   0	  
SH6	   2014	   0	   0	   0	  
SH7	   2014	   0	   0	   0	  
SH8	   2014	   0	   5	   0	  
SH9	   2014	   0	   2.5	   0	  
DB1	   2013	   0	   5	   0	  
DB2	   2013	   0	   0	   0	  
DB3	   2014	   0	   0	   0	  
DB4	   2014	   0	   5	   0	  
DB5	   2014	   0	   5	   0	  
DB6	   2014	   0	   0	   0	  
DB7	   2014	   0	   2.5	   0	  
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Crustaceans 

Site	   Year	  
Carcinus	  
maenas	  

Crangon	  
septemspinosa	  

IP1	   2014	   0	   0	  
IP2	   2014	   0	   0	  
IP3	   2014	   0	   0	  
IP4	   2014	   0	   0	  
NH1	   2013	   0	   0	  
NH2	   2013	   0	   0	  
NH3	   2013	   0	   0	  
NH4	   2013	   0	   0	  
NH5	   2013	   0	   0	  
NH6	   2014	   0	   0	  
NH7	   2014	   0	   0	  
NH8	   2014	   0	   0	  
NH9	   2014	   0	   0	  
NH10	   2014	   2.5	   0	  
SH1	   2013	   0	   0	  
SH2	   2013	   0	   0	  
SH3	   2013	   0	   0	  
SH4	   2013	   0	   0	  
SH5	   2014	   0	   0	  
SH6	   2014	   0	   0	  
SH7	   2014	   0	   0	  
SH8	   2014	   0	   0	  
SH9	   2014	   0	   0	  
DB1	   2013	   0	   0	  
DB2	   2013	   0	   1.7	  
DB3	   2014	   0	   0	  
DB4	   2014	   0	   0	  
DB5	   2014	   0	   0	  
DB6	   2014	   0	   0	  
DB7	   2014	   0	   0	  

 

IP= Indian Pond   NH = Neddy Harbour 

SH = Sandy Head   DB= Deer Brook 
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Appendix 2 

 

Direct Counts of Cells Labeled with the probe GAM 660 

Month Sediment 
Wet 
Weight 

Counted 
DAPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FOV 

Average 
Number 
FOV 

(X/wet 
weight) 

Total 
number 
of cells 

GAM 
Ratio 

# of 
GAM in 
Sample 

Apr S 1.014 202 26 7.769 7438580 57792044 0.2723 15736773 
Apr S 0.995 161 22 7.318 7580623 55476378 0.2733 15161694 
Apr S 1.003 208 16 13 7520160 97762074 0.1923 18799647 
Apr BR 0.999 200 14 14.285 7550270 1.08E+08 0.235 25347336 
Apr BR 0.997 204 29 7.034 7565416 53218790 0.1176 6258530 
Apr BR 1.003 202 33 6.121 7520160 46032492 0.3861 17773145 
Apr GR 1.003 200 23 8.695 7520160 65392691 0.375 24522259 
Apr GR 0.996 206 18 11.444 7573012 86668916 0.3544 30715464 
Apr GR 1.002 206 14 14.714 7527665 1.11E+08 0.4417 48924551 
Apr B 0.991 206 26 7.923 7611221 60304289 0.0534 3220249 
Apr B 0.991 211 22 9.59 7611221 72998529 0.3828 27943837 
Apr B 1.009 209 15 13.933 7475441 1.04E+08 0.2607 27153942 
Apr F 1.017 203 26 7.807 7416637 57906821 0.0887 5136335 
Apr F 1 204 23 8.869 7542720 66900647 0.3971 26566247 
Apr F 0.993 200 38 5.263 7595891 39978375 0.05 1998919 
Jul S 1.0048 201 25 8.04 7506688 60353771 0.0647 3904889 
Jul S 1.009 206 22 9.363 7475441 69997311 0.0825 5774778 
Jul S 1.0013 202 15 13.466 7532927 1.01E+08 0.396 40171594 
Jul BR 1.0285 150 15 10 7333709 73337093 0.0666 4884250 
Jul BR 0.9932 200 14 14.285 7594362 1.08E+08 0.145 15731178 
Jul BR 1.0184 204 22 9.272 7406441 68677912 0.0392 2692174 
Jul GR 1.0056 206 15 13.7333 7500716 1.03E+08 0.0534 5500725 
Jul GR 1.008 204 18 11.333 7482857 84805714 0.2108 17877045 
Jul GR 1.0068 200 21 9.523 7491776 71350247 0.0149 1063119 
Jul B 1.0163 200 23 8.695 7421746 64536918 0.125 8067115 
Jul B 1.0036 201 29 6.931 7515664 52091324 0.0597 3109852 
Jul B 1.0064 203 21 9.666 7494754 72449285 0.1773 12845258 
Jul F 1.0061 67 12 5.583 7496988 41858185 0.1044 4369995 
Jul F 1.0051 201 25 8.04 7504447 60335756 0.2139 12905818 
Jul F 1.0083 42 7 6 7480631 44883785 0.3333 14959765 
Sep S 1.0035 195 19 10.263 7516413 77142129 0.2359 18197828 
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Sep S 0.9975 209 17 12.294 7561624 92963496 0.4067 37808254 
Sep S 0.9963 103 8 12.875 7570732 97473171 0.5146 50159694 
Sep BR 1.0169 205 21 9.761 7417367 72407625 0.2683 19426966 
Sep BR 0.99 206 22 9.363 7618909 71340694 0.4126 29435170 
Sep BR 1.0125 203 26 7.807 7449600 58164185 0.2562 14901664 
Sep GR 1.0175 208 17 12.235 7412993 90700145 0.3077 27908435 
Sep GR 1.0042 205 19 10.789 7511173 81041604 0.3415 27675708 
Sep GR 1.0097 139 14 9.928 7470258 74168995 0.3525 26144571 
Sep B 1.014 152 25 6.08 7438580 45226566 0.2171 9818687 
Sep B 1.0078 200 20 10 7484342 74843421 0.465 34802191 
Sep B 1.0043 204 17 12 7510425 90125102 0.5049 45504164 
Sep F 0.9955 202 17 11.882 7576816 90030398 0.4851 43673746 
Sep F 1.0131 205 15 13.666 7445188 1.02E+08 0.4244 43183083 
Sep F 1.0007 173 15 11.533 7537444 86931852 0.4451 38693367 
Dec S 0.996 205 20 10.25 7573012 77623373 0.0341 2646957 
Dec S 1 207 18 11.5 7542720 86741280 0.087 7546491 
Dec S 1.0089 204 21 9.714 7476182 72625768 0.3039 22070971 
Dec BR 0.9922 204 15 13.6 7602016 1.03E+08 0.348 35978820 
Dec BR 1.0089 203 25 8.12 7476182 60706598 0.3448 20931635 
Dec BR 1.019 208 17 12.235 7402080 90566632 0.4615 41796501 
Dec GR 1.009 201 22 9.136 7475441 68298348 0.3532 24122976 
Dec GR 0.9917 202 17 11.882 7605849 90375377 0.4406 39819391 
Dec GR 1.006 201 24 8.375 7497734 62793519 0.5174 32489367 
Dec B 1.011 200 14 14.285 7460653 1.07E+08 0.455 48494243 
Dec B 0.9911 206 15 13.733 7610453 1.05E+08 0.2913 30445770 
Dec B 1.0066 157 19 8.263 7493264 61918027 0.2038 12618894 
Dec F 1.0093 203 17 11.941 7473219 89239028 0.5123 45717154 
Dec F 1.011 200 15 13.333 7460653 99475371 0.075 7460653 
Dec F 1.009 205 21 9.761 7475441 72974543 0.376 27438428 

 

Where: 

Apr = April 

Jul = July  

Sep = September 

Dec = December 
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S=Surface 

BR = Black Reduced 

GR = Grey Reduced 

B = Burrow 

F = Fecal Rods 

FOV = Field of View 

X = (Optical Coefficient) x (Extraction Coefficient) x (Dilution) = 7542720 

Optical Coefficient = 8730 

Extraction Coefficient = 1.44 

Dilution Factor of Sediment = 600  
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Appendix 3 

Direct Counts of Cells Labeled with DSS 658 

Month Sediment 
Wet 
Weight 

Counted 


Average 
Number 
FOV 

(X/wet 
weight) 

Total 
number 
of cells 

DSS 
Ratio 

# of DSS 
in Sample 

Apr S 1.014	   202	   26	   7.77	   7438580	   57797766	   0.1931	   11160749	  
Apr S 0.995	   200	   23	   8.7	   7580623	   65951421	   0.25	   16487855	  
Apr S 1.003	   203	   19	   10.68	   7520160	   80315304	   0.2315	   18592993	  
Apr BR 0.999	   200	   14	   14.29	   7550270	   1.08E+08	   0.515	   55565082	  
Apr BR 0.997	   200	   19	   5.68	   7565416	   42971564	   0	   0	  
Apr BR 1.003	   203	   25	   8.12	   7520160	   61063695	   0.0936	   5715562	  
Apr GR 1.003	   202	   32	   6.31	   7520160	   47452207	   0.2921	   13860790	  
Apr GR 0.996	   204	   15	   13.6	   7573012	   1.03E+08	   0.3627	   37355548	  
Apr GR 1.002	   202	   18	   11.22	   7527665	   84460398	   0.4752	   40135581	  
Apr B 0.991	   206	   23	   8.96	   7611221	   68196540	   0.2233	   15228287	  
Apr B 0.991	   202	   30	   14.43	   7611221	   1.1E+08	   0.2913	   31993455	  
Apr B 1.009	   202	   28	   7.21	   7475441	   53897930	   0.3614	   19478712	  
Apr F 1.017	   203	   24	   8.46	   7416637	   62744750	   0.0493	   3093316	  
Apr F 1	   201	   26	   7.73	   7542720	   58305226	   0.398	   23205480	  
Apr F 0.993	   202	   	  31	   6.52	   7595891	   49525211	   0.3515	   17408112	  
Jul S 1.0048	   203	   26	   7.807	   7506688	   58609909	   0.115	   6740140	  
Jul S 1.009	   209	   18	   11.611	   7475441	   86798176	   0.0239	   2074476	  
Jul S 1.0013	   206	   17	   12.117	   7532927	   91281353	   0.3883	   35444549	  
Jul BR 1.0285	   114	   15	   7.6	   7333709	   55736191	   0.2895	   16135627	  
Jul BR 0.9932	   209	   19	   11	   7594362	   83537978	   0.3684	   30775391	  
Jul BR 1.0184	   201	   19	   10.578	   7406441	   78352355	   0.199	   15592119	  
Jul GR 1.0056	   205	   21	   9.761	   7500716	   73221275	   0.0195	   1427815	  
Jul GR 1.008	   206	   15	   13.733	   7482857	   1.03E+08	   0.0437	   4490812	  
Jul GR 1.0068	   201	   20	   10.05	   7491776	   75292348	   0	   0	  
Jul B 1.0163	   202	   21	   9.619	   7421746	   71390124	   0.1436	   10251622	  
Jul B 1.0036	   201	   20	   10.05	   7515664	   75532419	   0	   0	  
Jul B 1.0064	   203	   20	   10.15	   7494754	   76071749	   0.0488	   3712301	  
Jul F 1.0061	   200	   28	   7.142	   7496988	   53549917	   0.0842	   4508903	  
Jul F 1.0051	   168	   31	   5.419	   7504447	   40669263	   0.1726	   7019515	  
Jul F 1.0083	   202	   28	   7.214	   7480631	   53967408	   0.2723	   14695325	  
Sep S 1.0035	   208	   15	   13.866	   7516413	   1.04E+08	   0.2452	   25556604	  
Sep S 0.9975	   196	   16	   12.25	   7561624	   92629895	   0.1326	   12282724	  
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Sep S 0.9963	   202	   20	   10.1	   7570732	   76464390	   0.4074	   31151593	  
Sep BR 1.0169	   202	   21	   9.619	   7417367	   71348002	   0.3614	   25785168	  
Sep BR 0.99	   206	   19	   10.842	   7618909	   82605014	   0.3786	   31274258	  
Sep BR 1.0125	   202	   19	   10.631	   7449600	   79201011	   0.3119	   24702795	  
Sep GR 1.0175	   195	   18	   10.833	   7412993	   80307420	   0.4462	   35833171	  
Sep GR 1.0042	   198	   18	   11	   7511173	   82622904	   0.4141	   34214144	  
Sep GR 1.0097	   189	   19	   9.947	   7470258	   74309413	   0.4497	   33416943	  
Sep B 1.014	   154	   25	   6.16	   7438580	   45821652	   0.3181	   14575868	  
Sep B 1.0078	   198	   17	   11.647	   7484342	   87170573	   0.4091	   35661481	  
Sep B 1.0043	   199	   15	   13.266	   7510425	   99638307	   0.4371	   43551904	  
Sep F 0.9955	   200	   15	   13.3333	   7576816	   1.01E+08	   0.53	   53542831	  
Sep F 1.0131	   207	   16	   12.9375	   7445188	   96322120	   0.4155	   40021841	  
Sep F 1.0007	   165	   14	   11.785	   7537444	   88834159	   0.3636	   32300100	  
Dec S 0.996	   202	   22	   9.181	   7573012	   69534020	   0.1089	   7572255	  
Dec S 1	   206	   23	   8.956	   7542720	   67556536	   0.2961	   20003490	  
Dec S 1.0089	   204	   19	   10.736	   7476182	   80270585	   0.2941	   23607579	  
Dec BR 0.9922	   206	   32	   6.4375	   7602016	   48937976	   0.2087	   10213356	  
Dec BR 1.0089	   200	   22	   9.09	   7476182	   67965291	   0.26	   17670976	  
Dec BR 1.019	   203	   18	   11.277	   7402080	   83479019	   0.3695	   30845497	  
Dec GR 1.009	   202	   22	   9.181	   7475441	   68638140	   0.2426	   16651613	  
Dec GR 0.9917	   202	   16	   12.625	   7605849	   96023838	   0.4356	   41827984	  
Dec GR 1.006	   210	   19	   11.052	   7497734	   82869687	   0.619	   51296336	  
Dec B 1.011	   200	   14	   14.285	   7460653	   1.07E+08	   0.42	   44763917	  
Dec B 0.9911	   205	   14	   14.642	   7610453	   1.11E+08	   0.1414	   15757443	  
Dec B 1.0066	   202	   16	   12.625	   7493264	   94602464	   0.3069	   29033496	  
Dec F 1.0093	   161	   18	   8.9444	   7473219	   66843793	   0.0124	   828863	  
Dec F 1.011	   200	   29	   6.896	   7460653	   51452778	   0.055	   2829903	  
Dec F 1.009	   200	   21	   9.523	   7475441	   71194676	   0.52	   37021232	  

 

Where: 

Apr = April 

Jul = July  

Sep = September 

Dec = December 

S=Surface 
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BR = Black Reduced 

GR = Grey Reduced 

B = Burrow 

F = Fecal Rods 

FOV = Field of View 

X = (Optical Coefficient) x (Extraction Coefficient) x (Dilution) = 7542720 

Optical Coefficient = 8730 

Extraction Coefficient = 1.44 

Dilution Factor of Sediment = 600  

 


