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ABSTRACT

Xenopus earty response gene 1 is a matemally-cterived immediate-earfy gene

...mose expression is activated by FGF during mesoderm induction in Xenopus

embryos. The purpose of this project was to characterize the expression and

investigate the function of ER1 protein during earty development in Xenopus.

Analysis of the expression pattern of ER1 showed that the protein is present

in the earty embryo but retained in the cytoplasm until mid-blastula stages

after which it is translocated to the nucleus, first in the presumptive

mesoderm, then in the presumptive ectoderm, and finally in the endoderm.

Overexpression of the dominant negative FGF receptor XFD completely

blocks translocation of ER1 to the nucleus at mid-blastula suggesting that

nuclear translocation of ER1 is dependent on events triggered by FGF

signalling. Deletion analysis of stretches of acidic amino acid in the N­

terminal region of ER1 showed thai the protein has transactivation activity in

vitfO, suggesting that the protein may function as a transcription factor in vivo.

Overexpression of ER1 in embryos results in embryos with posterior

truncations, a phenotype similar to thai of embryos overexpressing XFD. RT­

peR analysis of molecular markers expressed during early development

showed that overexpression of ER1 downregulates the expression of Xbra,

BMP-4. and HoxB9. These results suggest that ER1 may function as an

endogenous, negative regulator of the FGF signalling pathway during

Xenopus embryogenesis.
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SECTION I

CHAPTER 1: GENERAL INTRODUCTION

1.1 FOREWORD

There has been considerable progress in recent years in identifying new

genes and in determining the function of their protein products, both in normal

biological systems, and in malfunctioning systems. Often, the identification of

genes and proteins only gives us a two-dimensional picture of their function in a

cellular system. tn order to gain a more complete understanding of how a

biological system functions, one needs to understand the dynamic interactions

that are ongoing at all times in cells, tissues and organisms. These interactions

involve a complex network of molecules that are turned on and off at specific

times through constant signalling and feedback loops. Model systems, both in

vivo and in vitro, have provided researchers with tools to test hypotheses on how

and why genes are expressed and how proteins interact with each other in

biological systems. Each model system presents strengths and weaknesses, but

together they have provided many insights into the functioning of organisms.

Model organisms, both vertebrate and invertebrate, are used for the study

of developmental processes. Reasoos for this include: ease of study, familiarity

with their development andJor genetics, and because of their biological interest



(Wolpert et a/., 2002). Some of these model systems such as the fruit fly

Drosophila melanogaster, the nematode Caenorhabditis elegans, sea urchins,

zebrafish, amphibians, chickens, rats and mice, have been studied widely.

The vertebrate group is comprised of a large number of different

organisms, all possessing the characteristic vertebral column. As adults, some

of these organisms are very different in their morphology. However, during the

early stages of their life cycle, atl vertebrate embryos undergo similar

developmental stages and pass through a phylotypic stage (where they resemble

each other) (reviewed in Galis & Metz, 2001). All vertebrate embryos start by

cleavage of the zygote after fertilization. Initially, the embryo repeatedly divides

into a number of smaller cells without a matching increase in mass. This process

is followed by gastrulation, a stage characterized by cell movements, which

results in the laying down of the germ layers determining the body plan. The

phylotypic stage occurs after gastrulation, and the vertebrate embryos more or

less resemble each other and have characteristic vertebrate features such as the

notochord, somites and neural tube. The notochord forms along the antero­

posterior axis and subsequently becomes incorporated into the vertebral column.

The brain and the spinal column are derived from the neural tube, which is

formed from ectodermal tissue lying directly above the notochord. The somites

develop into the vertebral column, muscles of the trunk, dermis and into limbs.

These structures are representative of all vertebrate classes (reViewed in Galis &

Metz, 2001).



The similarity in morphology during the early development of vertebrates

has loog been used to· justify the use of what may seem like a limited number of

developmental models to study development in general. The similarity in body

plan suggested that the processes that regulate development in different animals

might also be similar. In the last few years, molecular evidence has supported

the view that early development may be conserved at the gene level. With the

recent progress in the cloning of several genomes such as human, Drosophila

melanogaster, and Caenorhabditis e/egans, there is evidence that the genes

involved in the early development of organisms are conserved throughout

evolution not only between vertebrates but, as is the case tor certain ancestral

genes, even between vertebrates and invertebrates

Developmental models are often useful for studying cancer. It has been

shown that expression of these genes that are very tightly regulated during earty

development and is up- or down·regulated spatially and temporally in cells and

tissues with a high degree of precision may become misregulated in

developmental diseases and cancer. The various components of signal

transduction cascades, from the ligands and receptors initiating the cascades to

the transcription factors which effect a response at the DNA level, are potential

oncoproteins and tumor suppressor proteins. Loss of regulation at any step can

result in uncontrolled cell growth and in neoplastic growth (Powers at al., 2000).



The W()(k, in this thesis deals with the protein product of er1, a Xenopus

f8Svis gene, and attempts to provKIe further insight into its expression pattern

and its function during earty development.



1.2 Xenopus !aevls as a model organism for vertebrate development

Xenopus Isevis (Xenopus), the South-African clawed frog, has been useful

in elucidating some of the cellular, molecular and genetic mechanisms that

control cellular processes in vertebrates and has helped advance two important

areas in vertebrate biology: early embryonic development and cell biology. In the

past, the use of newts and salamanders was very common, and nowadays

Xenopus tropics/is is becoming more popular among developmental biologists

due to its potential for creating transgenics.

Xenopus {aevis has been critical in identifying basic embryonic processes

such as early fate decisions, patterning of the basic body plan, and

organogenesis. Xenopus has helped cell biologists and biochemists understand

chromosome replication, chromatin and nuclear assembly, cell cycle

components, cytoskeletal elements, and signalling pathways. Xenopus {aevis

presents many advantages for the study of development and cellular processes.

1. The frogs are relatively easy to raise and breed in laboratory conditions

and develop normally in tap water.

2. Eggs are easy to obtain in large quantities by stripping females

induced overnight with the human chorionic gonadotropin hormone

(HCG).

3. FertiliZation can be perfonnecl in vitro on a large number of eggs by

using sperm from testes removed from Xenopus males.



4. The embryos are hardy, highly resistant to infection and easy to

maintain in saline solutions.

5. The eggs are large -1 to 2 mm- in diameter and are very easy to

manipulate and dissect.

6. The life cyde of Xenopus is fully known.

1.3 Xenopus IBevis development

In this study, Xenopus embryos in the early stages of development (stage

1 to 45) were used. This section will highlight some of the major stages in the life

cycle of Xenopus (Figure 1.1) with emphasis on stages fertilization up to

gastrulation. Figure 1.1 shows stages 1, 6.5, 10 (gastrula), 13 (neurula), 22

(tailbud), 28 (late tailbud), 40 (tadpole) and adult frogs.
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Figure 1.1 The Ufe cycte of Xenopus laevls
The major devek>pmental stages and the approximate time
scale following fertilization at room temperature are shown
(reproduced from
http:Jcllrmed.ucalgary.ca/pv;whllTilbuttonsIXenCydeH.jpg).



1.3.1 Oogenesis

Xenopus females produce gametes or ova through the process of

oogenesis. Prior to oogenesis, primordial germ cells undergo mitotic cell

divisions and migrate to the genital ridge or future gonad (for review see Saffman

& Lasko, 1999). The primordial germ cells differentiate into eggs at the start of

meiosis. Adult females have eggs in different stages of development in their

ovaries; these stages are often classified according to their size, the smallest

being stage I and the largest stage VI. Growth from stage I to stage VI requires

about 8 months and during this time oocytes acquire the yolk, enzymes and

precursors of DNA, RNA and protein synthesis required by the embryo during

early development (Smith etal., 1991a).

It is during oogenesis that the animal-vegetal polarity is specified in the

egg. The animal hemisphere in the Xenopus egg is dar1<;ly pigmented, whereas

the vegetal hemisphere is unpigmented. During the earty stages of oogenesis,

the eggs are asymmetric with respect to their constituents, but as oogenesis

proceeds, pigment is localized to the animal hemisphere and largest yolk

granules to the vegetal. Yolk synthesis and deposition in the eggs occurs by a

process known as 'Vitellogenesis' and is triggered by environmental cues. These

signals stimulate the release of gonadotropin-releasing hormone from the

hypothalamus, which itself stimulates the release of gonadotropins by the

pituitary. These gooadotropins signal the follicle cells of the ovary to release

oestrogens, which circulate to the liver where vitellogenin is made. The



vitellogenin is carried to the eggs for uptake. Yolk is a highly important

constituent of the egg because it is the only food source available to the embryo

during ear1y development. other matemal constituents such as glycogen

granules, ribosomes, lipochondria, endoplasmic reticulum and the germinal

vesicle (nucleus) translocate towards the animal hemisphere and matamal RNA

localizes to different regions of the egg (Danilchik and Gerhart, 1987). The

matemal RNA transcribed during oogenesis suffices to meet all the reqUirements

of the embryo until it initiates transcription of its own RNA at the mid-blastula

transition (MBT), which occurs after the 121h cleavage cycle (Newport & Kirshner,

1984).

The oocytes arrest in the first meiotic cycle at the G2IM transition at stage

VI unless stimulated (Smith at al., 1991). Eggs can remain in this state for

several months until environmental cues prompt the follicle cells surrounding the

oocytes to produce the hormone progesterone, which causes the resumption of

meiosis and ovulation. Unstimulated eggs will usually undergo atresia (Hunt,

1989; for reviews see Sagata, 1988, Ferel!, 1989). In the laboratory, females are

stimulated to complete ovulation by an injection of HCG, which causes the stage

VI oocyI.es to mature to the second meiotic metaphase followed by ovulation

(reviewed in Wolpert at 81., 2002). Females can be manually harvested of the

mature eggs about 14-18 hours after stimulation with HCG and fertilized in vitro

with spann obtained from adult males



1.3.2 Fertilization

Fertilization is triggered by the sperm entering the egg (Fig. 1.2A). Fusion

of the sperm and egg plasma membrane causes a rapid release of free calcium

ions from the egg's endoplasmic reticulum into the egg's cytoplasm. As a result

of the high levels of intracellular calcium, the egg membrane becomes

depolarised and cortical granules are released into the space between the egg

and the vitelline membrane (an acellullar membrane surrounding the plasma

membrane). The vitelline membrane prevents polyspermy. Calcium release also

causes the activation of the enzyme, calmodulin-dependent protein kinase II.

This enzyme causes the degradation of the eyelin component of maturation

promoting factor (MP'F) causing the egg to re--enter and complete meiosis

(Nuccitelli, 1991; Wanatabe at a/., 1991; Runft et al., 1999).

The sperm and egg pronuclei fuse to form the zygote nucleus. The

vitelline membrane lifts off the surface of the egg and the egg rotates under the

influence of gravity so that the heavier, yolky, vegetal region is facing downward.

(reviewed in Wolpert et a/., 2002)

1.3.3 Cortical rotation and establishment of the future dorsal side

Before fertilization, the Xenopus egg has a radial symmetry along the

animal-vegetal axis, which is broken by sperm entry. The dorsal side forms

opposite the sperm entry point (reviewed in Harland & Gerhart, 1997). The

10



series of events triggered when the sperm enters the egg result in the definition

of the dorsa-ventral axis of the embryo. Within 90 minutes of fertilization, the

plasma membrane and the cortex opposite the spenn entry point perform a 30°

rotatiOl1 in the direction of the sperm entry point relative to the rest of the

cytoplasm, a process known as cortical rotation (Fig. 1.28) (reviewed in Harland

& Gerhart, 1997).

Cortical rotation results in the formation of a signalling center in the

vegetal region opposite the site of sperm entry. This signalling center has been

named the Nieuwkoop center, after the embryologist Peter Nieuwkoop. The

Nieuwkoop center is a vegetal dorsalizing center, which signals to the

surrounding tissues and determines dorso--ventral polarity in the embryo (Fig. 1.2

C) (reviewed in Harland & Gerhart, 1997)

II
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B.
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Figure 1.2: Fertilization, cortical rotation and establishment of future
dorsal side
After fertilization (A), the cortical layer rotates 30 degrees
towards the site of sperm entry (8), and results in the formation
of the Nieuwkoop centre opposite the site of sperm entry. Later,
the Spemann organizer and the blastopore form in a region just
above the Nieuwkoop centre (C). V=ventral; D=dorsal (adapted
from Wolpert at a/.• 1998).

12



1.3.4 Cleavage events, blastula stages and patterning events

The first cleavage occurs about 90 minutes after fertilization and passes

through the point of sperm entry and through the Nieuwkoop center. The embryo

divides into two equal halves. SUbsequent cleavages occur at intervals of about

20-30 minutes. The second cleavage is also along the animal-vegetal axis but at

right angles to the first. The third cleavage is equatorial and at right angles to the

first two and results into four smaller animal cells and four bigger vegetal cells

known as blastomeres. The difference in size of animal and vegetal cells is a

direct result of the unequal distribution of yolk in the embryo. The blastomeres

keep dividing at regular intervals without any increase in cell mass. These

continued synchronous divisions result in a spherical mass of cells inside which a

fluid-filled cavity, the blastocoel, develops. The embryo is now known as a

blastula (reviewed in Jones & Smith, 1999).

After about 12 cycles of cell divisions, the embryo reaches a stage known

as mid-blastula transition (MBT). This stage is characterized by a slO'Ning of the

mitotic rate, the beginning of asynchronous cell divisions, the onset of zygotic

transcription and cell motility (Newport and Kirshner, 1984; Masui and Wang,

1998).

13



1.3....1 Patterning of the Xenopus blastula

The different regions in the embryo, the animal region, the marginal region

(a belt~like region dividing the animal and vegetal regions), and the vegetal

region, give rise to the three germ layers: the ectoderm, mesoderm, and

endoderm, respectively (Fig. 1.3A). The ectoderm later covers the entire surface

of the embryo and farms the epidermis; ectodermal derivatives also give rise to

nervous tissue. The mesoderm differentiates into the notochord, lateral plate

(which farms heart, kidney and blood islands), and somites (Boterenhood &

Nieuwkaop, 1973). The lining of the gut and gut-associated organs such as the

liver and pancreas are derived from the endoderm (Fig. 1.3B). The late blastula

stage embryo is a sphere of cells consisting of the Mure ectoderm, mesoderm

and endoderm (Fig. 1.3) (Dale & Slack, 1987; reviewed in Harland & Gerhart,

1997).

By the time the Xenopus egg is laid. there are already differences along

the animal-vegetal axis. Maternal factors are thought to determine the fates of

the ectodermal and endodermal regions. For example, if explants from the

different regions of the early blastula are cultured in simple salt medium, explants

from the animal region will farm an epidermal ball of cells whereas explants from

the vegetal region will be endodermal in nature (Nieuwkoop, 1969; Boterenhaod

& Nieuwkoop, 1973). These results match the expected fates of these regions

and there is no evidence that signals from other regions are required. However,
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if an explant from the animal region is cultured in combination with an explant

from the vegetal hemisphere, it is induced to form mesodermal deriVatives. whid'l

normally result from explants from the marginal zone only (Boterenhood &

Nieuwkoop, 1973; reviewed in Isaacs, 1997).
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Agure 1.3 Fate map of the Xenopus embryo
A. The Xenopus embryo showing the animal, marginal and
vegetal regions which will develop into ectoderm. mesoderm
and endoderm respectively. B. A fate map of the Xenopus
blastula (lateral view) illustrating the normal fates of the different
blastula regions (adapted from Keller, 1975; Keller 1976; Dale
and Slack 1987; reproduced from Wolpert at al., 199B).
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It is now widely accepted that inductive cell interactions between the

animal and vegetal hemispheres control the differentiation of the mesodermal

embryonic germ layer. landmark experiments by Nieuwk.oop (1969)

demonstrated that vegetal cells induced animal cells to form mesoderm. One of

the most important and famous experiments demonstrating the presence of

inducers during mesoderm induction and embryonic axis formation was

performed by Spemsnn and Mangold in 1924. They transplanted a section of the

dorsal marginal zone from one embryo into the ventral side of a second embryo

and obtained an embryo with two body axes. These results demonstrated that

cells of the dorsal marginal zone were responsible for the formation of dorsal

mesodermal structures such as the notochord, in addition to specifying or

organizing the antero--posterior body axis. In these experiments, it was

effectively shown that cells of one type, dorsal mesoderm, had the ability to

induce the formation of mesodermal derivatives in other cells. This region of the

dorsal marginal zone subsequently became known as the 'Spemann organizer'

(Figure 1.2) (reviewed in Harland & Gerhart, 1997).

It has been proposed that signals are established by general mesoderm

inducers shortly after cortical rotation, which is triggered by sperm entry in the

egg and causes the division of the vegetal cytoplasm into ventrovegetal and

dorsovegetal regions. Cortical rotation involves the establishment of a parallel

array of micrctubules in the vegetal hemisphere along which the cortex is thought

to move (Elinson & Rowning, 1988). Disruption of the microtubule array by
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ultraviolet radiation prevents cortical rotation, and results in embryos lacking an

embryonic axis (Gertlart et 81., 1969). Conversely, manual tipping or

centrifugation of egg during the first cycle causes a duplication of the axis

(Gertlart et 81., 1969). Cortical rotation establishes a dorsal determining activity

region opposite the point of sperm entry, the Nieuwkoop centre, which induces

the Spemann's Organizer. In tum, the organizer establishes dorso-ventral

polarity in the embryo (reviewed in Moon & Kimelman, 1998).

In recent years, a widely accepted model for mesoderm patterning, the

Three Signal Model (Smith & Slack, 1963) has been proposed (depicted in

Figure 1.4). The Three Signal Model proposes that mesoderm patterning is

initiated by early signalling, from general mesoderm inducers released by the

vegetal region to the animal region. The first set of signals originates in the

dorsovegetal (DV) region (Nieuwkoop centre) and induces the formation of dorsal

mesoderm, including the Spemann's organizer. The inducing factors from the

ventrovegetal 0fV) region induce the marginal zone cells directly overlying them

to broadly specify ventral-type mesoderm such as mesenchyme, mesothelium

and blood. Subsequently, the third signal, a dorsalizjng inductive signal,

emanates from the organizer and imposes more dorsal or paraxial (resulting in

the formation of notochord) and intermediate fates (such as muscle) on

neighbouring ventral mesoderm at gastrula stages (Smith & Slack, 1983; Dale at

sl., 1985; reviewed in Harland & Gertlart, 1997).
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The model described above does not necessarily imply only three distinct

signalling molecules. It is possible that each signal represents more than one

molecule or one molecule acting at several different concentration gradients.

Some of the inducing and competency factors involved in mesoderm induction

have been identified and will be discussed further in the next section.
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Figure 1.4 The three-signal model of mesodenn Induction

Shown are the origins and actions of the three signal types involved in mesoderm

induction. During mesoderm induction, the dorsovegetal (DV) region induces the

organizer (0) and the ventrovegetal (W) region induces ventrally specified

mesoderm (M3) in the marginal zone. Signals from the organizer region

·dorsaHze~ the ventral mesoderm to give regions of lateral mesoderm (M1 and

M2). A = animal hemisphere. (adapted from Smith & Slack, 1983).
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1.3.4.2 -Molecules that pattem the mesoderm

Several molecules have been shown to induce mesoderm in animal cap

explants in culture. However, to be qualified as a natural inducer in the embryo,

several criteria need to be met by potential mesoderm-inducing proteins. These

criteria include the presence of the inducing protein in the right concentration and

at the right time in the vegetal region of the embryo; showing that the appropriate

cells can respond to the factor; and that blocking the response prevents induction

(reviewed in Harland & Gerhart, 1997). Furthermore, it is thought that the

mesoderm-inducing molecules are most likely to be secreted. It has been shown

that when isolated animal and vegetal cell fragments are cultured together but

separated by a filter with pores too small to allow cell contacts to develop, the

animal cells still differentiate into mesoderm (Slack, 1991). This demonstrates

that mesoderm induction is due to small, secreted diffusible molecules prodUced

by the vegetal region (Slack, 1991). It has also been shown that mesoderm

induction starts at around the 32-cell stage and is almost complete by the time

gastrulation starts (Dale & Slack, 1987). Nakamura and Takasaki (1970) showed

that the equatorial region of the embryo formed mesoderm in culture only after

the 64-ce1l stage; before this they would differentiate into epidermis. Therefore,

natural mesoderm inducers are most likely maternally-derived factors that are

present in the vegetal hemisphere and induce overlying animal cells to form

mesoderm.
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Although there is still a debate as to which moleculeJs actls as the general

mesoderm inducer released by the W region, several candidates have been

proposed. It is generally agreed that TGF-p proteins play a key role in

mesoderm induction (reviewed in Kessler & Melton, 1994; Jones 8t af., 1995;

Smith st a/., 1995). The various members of the TGF-p family implicated in

mesoderm induction are activin (Asashima 8t at, 1990, Smith at aI., 1990;

Thomsen at aI., 1990); Vg1 (Thomsen & Melton, 1993); TGF-p2 (Rosa at aI.,

1988) and Xenopus nodal-related 1 and 2 (Xnr1, Xnr2) (Jones at al., 1995).

Bone morphogenetic proteins (BMPs) have also been shown to have ventral­

mesoderm inducing activity at high doses (Wilson & Hemmati-Brinvanlou, 1995).

Signalling by p-catenin (Heasman et 81., 1994) is also important during

mesoderm induction (discussed later) and FGF signats have been shown to be

necessary for the maintenance of induced mesoderm (Amaya st aI., 1993;lsaacs

at 91.,1994).

Although the mature, active protein products of the various molecules

listed above can induce mesoderm in animal cap explants in vitro, it has been

difficult to block the actiVity of specific proteins in order to show their importance

(reViewed in Harland & Gerhart, 1997). All of these molecules are present in the

form of mRNA and/or protein in the embryo or are transcribed in the lale blastula.

When a dominant negative TGF·~ family receptor, activin type liB receptor

(XAR1; lacking most of the cytoplasmic portion of the receptor), is injected in the
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embryo at an early stage, mesoderm formation is prevented (Hemmati-Brinvalou

& Melton, 1992), and signalling by aetivin (Hemmati-Brinvanlou & Melton, 1992),

Vg1 (Shulte-Merker at al., 1994), and BMPs (Hemmati-Brinvanlou & Thomsen,

1995) is blocked. These experiments implicate a TGF-p in the induction of the

mesoderm but do not identify a specific family member.

Activin is a potent mesoderm inducer of animal cap explants in culture but

is thought to be an unlikely inducer in the embryo since follistatin, an inhibitor of

activin, has been shown to blocl<. the activity of activin added to animal caps but

not to prevent mesoderm induction (Shulte-Merker et al., 1994, Kessler & Melton,

1995). Another attractive candidate for general mesoderm induction is Vg-1,

which is expressed from matemal RNA localized to the ventral region of the

embryo. Like other members of the TGF-13 family, Vg-1 has to be proteolytically

cleaved in order to be active. Researchers have shown that mature, processed

Vg-1 induces mesoderm when injected into animal cap explants (Thomsen &

Melton, 1993; Kessler & Melton, 1994; Forristall at al., 1995). Although

processed/active forms of Vg-1 have not yet been detected in the embryo,

inhibition of Vg-1 with a dominant-negative mutant leads to defects in dorsal

mesoderm formation (Joseph & Melton, 1998).

Using antisense oligodeoxynucleotides to deplete maternal mRNA, it has

been also been shown that VegT, which encodes a transcription factor containing

aT-box, is a matemal determinant required for early embryonic events (Zhang at

al., 1998).
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Zygotic signals such as Derriere and the NodaJ..related genes Xnrf, Xnr2

and Xnr4 are also involved in mesoderm induction (Zhang at al., 1998; Kimelman

& Griffin, 1998; reviewed in Kimelman & Griffin, 2000). The expression of Xnrf,

Xnr2, and Xnr4 starts at midblastula can be activated synergistically by VegT and

Vg-1 (Zhang at al.• 1998, Joseph & Melton, 1998; Agius at af" 2000) acting

together wnh the dorsal determinant f}-catenin (Heasman at 81., 1994;

Scheneider at al., 1996). Endogenous Xnrf. Xnr2, and Xnr4 are expressed

zygotically in the blastula endoderm in a graded fashion with a maximum in the

dorsal endoderm (Agius at aI., 2000). These zygotic factors can induce both

ventral and dorsal mesoderm. It has been proposed that a gradient of Nodal­

related signals, released by the endoderm during mesoderm induction, may be

acting as the first two signals in the three-signal model (Agius at af., 2000). VegT

can also activate Derriere. Derriere is functionally different from the Xnrs as it

seems to be required only in trunk and tail development, in contrast to Xnrs,

which are required throughout the body (Kofron at al., 1999; Piccolo at al., 1999;

Sun et al., 1999).

Members of the FGF family have also long been considered prime

candidates as mesoderm inducing factors (Slack, 1994). FGF-2 (bFGF) and

eFGF (Isaacs at al., 1992; Tanahill at af., 1992; Song & Slack, 1994; Song &

Slack, 1996) have been proposed as mesoderm inducers. However, recent work

has shown that during blastula stages the FGFs do not act as vegetally localized

inducing signals. Instead, they are required in the animal hemisphere as
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competence factors that are required in the animal hemisphere for the full range

of responses to the vegetally localized molecules (reviewed in Isaacs, 1997). In

contrast to the data obtained using the dominant negative activin receptor, which

suggest that the TGFp signalling pathway is required for the expression of all

mesodermal genes (Comell at at, 1995), FGF function is required for the correct

regulation of only a subset of the genes that are expressed throughout tha newly

formed mesoderm (reviewed in Harland & Gerhart, 1998).

Several molecules have been identified as the potential dorsal and ventral

signals (Figure 1.5). An essential component of the Wnt signalling pathway, the

protein kinase, Glycogen synthase Kinase-3 (GSK-3) has been implicated in the

normal suppression of dorsal fates. When GSK-3 activity is blocked by injecting

dominant-negative GSK·3 mutants in the embryo on the ventral side of the

embryo, a secondary axis is i~duced on the ventral side of the embryo indicating

that GSK-3 normally functions to suppress dorsal axis formation (Dominguez et

81., 1995; He et 81., 1995; Pierce & Kimelman, 1995). GSK·3 regUlates the level

of the dorsal determinant, ~-catenin, in the embryo by phosphorylation, which

tags ~catenin for proteolysis. (3-catenin is a transcription factor which is a

member of the Wnt ~ignalling pathway and has been identified as a potential

early dorsal determinant involved in inducing actiVity (reViewed in Moon &

Kimelman, 1998). Activation of Wnt signalling or overexpression of the

dominant-negative kinase, prevents phosphorylation and stabiliZes ~-catenin.
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Lithium had been shown to dorsalize Xenopus embryos when added or injected

at early cleavage stages much before the identification of any of the signalling

molecules in axis specification (Kao at al., 1989). It has now been shown that

lithium acts as a non-eompetitive inhibitor of GSK-3 in vitro (Klein & Melton,

1996; Stambolic et al., 1996) and stablilizes p-eatenin in cultured cells and

Xenopus embryos (Stambotic at al., 1996; Larabell at al., 1997). These results

suggest that lithium dorsalizes Xenopus embryos by increasing the levels of (}­

catenin in the embryo (Moon & Kimelman, 1998).

During early cleavage stages, p-eatenin becomes enriched in the

cytoplasm in the dorsal side of the embryo and by 16- to 32-ce1l stages is found

in the nuclei of the dorsal side (Heasman, 1997; Moon & Kimelman, 1998),

where it binds the HMG Box factor, XTd-3. Expression of a XTd-3 mutant

lacking the f}-catenin binding domain blocks the formation of the dorsal axis in

Xenopus (Molenaar et af., 1996). The association of f}-catenin with XTd-3 in the

nuclei is believed to be required for the specific expression of dorsal genes

during late blastula stages (reviewed in Moon & Kimelman, 1996). XTcf-3

directly binds the siamois promoter and activates the gene. Siamois is a

homeobox gene encoding a transcription factor (Lemaire et al., 1995). It is

thought to play a major role in the specification of Spemann's organizer

(Heasman, 1997; Moon & Kimelman, 1998). A dominant- inhibitory mutant of

siamois created by fusing the repressor domain of the Drosophila engraifed gene
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to the homeodomain of siamois blocks axis development and the expression of

organizer-specific genes such as goosecoid (reviewed in Moon & Kimelman,

1998). Goosecoid in tum activates other organizer genes such as chordin (Sasai

at aI., 1994).

After the induction of the organizer, further patteming subdivides the

mesoderm into mesodermal subdomains along the dorso-ventral axis. Molecules

such as BMP-4, Xwnt-8, Derriere and FGFs have been to be proposed

molecules, present throughout the marginal zone, which act as ventralizing

factors in the mesoderm (Figure 1.5) (revieWed in Moon & Kimelman, 1998). The

activity of these ventralizing factors is controlled by dorsalizing signals,

emanating from the Spemann's organizer (Figure 1.5) The dorsalizing

molecules include noggin, chordin and frizbee, which act as anti-ligands by

binding to the ventralizing factors and hence preventing the latter from binding to

their receptors. Noggin and Chordin bind with BMP-4 and prevent it from binding

to its receptor (Kessler & Melton, 1994; Zimmerman et af., 1996; Piccolo at a/.,

1996; reviewed in Moon & Kimelman, 1998). Frlzbee acts by interacting with

Wnt proteins (Leyns et a/., 1997; Sokol. 1999). Therefore, the mesoderm is

probably patterned in a dose-dependent manner according to the distribution of

the ventralizing factors and the localization of their inhibitors. The Spemann's

organizer has been proposed to act as an anti-ventralizing zone, releasing

dorsalizing factors, which inhibit the ventralizing factors. The cells near the

organizer are therefore able to give rise to more dorsal-type mesoderm whereas
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the tissues furthest from the organizer, which do not 'see" dorsalizing signals,

give rise to more ventral-type mesoderm.

For mesoderm induction to occur, the signalling molecules described

above must bind specific cell surface receptors and activate signal transduction

pathways which mobilize transcription activators and result in transcription of

specific genes which specify and pattern mesoderm. Examples of early

response zygotic activated genes that encode transcription factors are Xbra,

goosecoid, chordin, pintavallis, HNF-3p, Xnot, and Xlim-1 (Smith et a/., 1991;

Taira at a/., 1992; von Dassow at a/., 1994; Ang & Rossant, 1994; O'Reilly et af.,

1995). The genes activated by these transcription factors remain largely

unknown but they are likely to encode secreted proteins such as noggin and

frizbee. Goosecoid, for example, has been shown to activate the dorsal

signalling gene chordin, (Heasman, 1997; Moon & Kimelman, 1998).
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Figure 1.5 A mesoderm induction and patterning schematic showing a revised version
of the Three-Signal Model with some of the molecules implicated. Vg-1
may act as the first signal or general mesoderm inducers. p-catenin binds
to XTcf-3 and induces the expression of Siamois in the Nieuwkoop Centre
on the dorsal side of the embryo. These molecules act as the second
signal and induce the formation of the organizer. The Nodal-related Xnrs,
which are activated by VegT may also be acting as both s19nal1 and 2 in a
dose dependent manner. Noggin, Chordin and Frizbee, which are
released by the Organizer, act as Signal 3 by inhibiting molecules such as
BMP-4, Xwnt-8, Derriere and FGFs which expressed throughout the
marginal zone and give rise to ventral type mesoderm. Signal 3 results in
more dorsal mesodermal type tissues in the organizer region
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1.4 FGFs in mesoderm formation

FGFs are thought to playa two-part role during mesoderm induction. It has

been suggested that maternal FGFs act to provide sub-threshold stimulation of

the tyrosine kinase pathway in the animal hemisphere. The second function of

FGF during mesoderm induction is the maintenance of mesodermal genes.

FGFs act as competence factors which are required for the full range of

response to vegetally localized mesoderm inducers (reviewed in Isaacs, 1997).

It has been shown that FGFs can induce mesoderm in animal cap explants in

culture and that the type of mesoderm induced by FGF is concentration­

dependent: at low doses of FGF, there is ventral mesoderm formation (such as

mesothelium) while higher doses induce more lateral type mesoderm such as

muscle (Slack et a/., 1987; Slack et af., 1988). Furthermore, expression of a

dominant-negative FGF receptor (XFD) inhibits mesoderm formation in animal

caps and causes defects in trunk and posterior development in embryos (Amaya

at 8/.. 1991; Kessler & Melton. 1994). It has been proposed that FGFs may

potentiate the response of animal cap celis to TGF-13-like molecules and that they

are involved in the control of cell movements and gene expression in the early

mesoderm (Isaacs etal., 1994).

Therefore, rather than being primary inducing factors, FGFs are

competence factors that are required for mesoderm induction by general

mesoderm inducers. They are also required for the continued expression of a

number of mesodermal genes (Dyson & Gurdon, 1997; reviewed in Isaacs,
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1997). In support, ablation of FGF signalling affects primarily induction of ventral

type mesoderm (Amaya et a/., 1991; Kessler & Melton, 1994). The low level of

activity of matemal FGFs is necessary for the transcription of the mesodermal

gene, Xbra (Isaacs et al., 1994; Schulte-Merker & Smith, 1995), the Xenopus

homologue of the Brachyury gene, an early response gene expressed throughout

the mesoderm and encoding a transcription factor (Smith et al., 1991b). Xbra

aets in an autocatalytic loop to induce eFGF, which may function as a mesoderm

secondary inducing factor (reviewed in Isaacs, 1997).

eFGF is necessary for the maintenance of Xbra. Injection of Xbra mRNA in

the presumptive ectoderm causes formation of ventral mesoderm and further

supports a role for Xbra and FGF in mesoderm patterning (Cunliffe & Smith,

1992; Cunliffe & Smith. 1994).

FGFs are among the major regulators of patterning of the developing

embryo. The activities of FGFs dUling embryonic development appear to depend

on FGF regulation of several fundamental life functions: the abilities to survive,

replicate, make attachments, move, and attain a characteristic form (reviewed in

Szebenyi & Fallon, 1999).

The next three sections will provide a brief overview of the structure and

function of FGFs, FGF receptors and FGF signal transduction pathways.
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1.4 FGFs - Structure and Function

FGF was first purified from bovine pituitary gland as a mitogen that could

stimulate the grc>'Nth of NIH3T3 cells (reviewed in: Burgess and Maciag, 1989;

Mason, 1994; Galzia et a/., 1997; McKeehan st 8/., 1998; Kato and Sekins, 1999;

Szebenyi and Fallon, 1999; Ornitz 2000; Powers at 8/., 2000). Since the initial

discovery of FGF, approximately 25 years ago, 20 FGFs (Table 1.1), among

which are some FGF homologous factors (FHFs 1--4; also referred to as FGFs

11-14, which comprise a separate branch of the FGF family and have been

implicated in the development of the nervous system and limbs), have been

identified in vertebrate species. Four FGF receptors (FGFRs) have been

identified in vertebrates, t'NO FGFRs and one FGF have been identified in

Drosophila and one FGF/FGFR has been identified in C. elagans (Szebenyi &

Fallon, 1999).

Historically, the first FGFs cloned (FGF-1 and 2) were shown to have

mitogenic activity in fibroblasts, hence the name fibroblast growth factor.

However, structure and heparin-binding ability, not specifically growth promoting

activity, is the defining feature of the FGF family (Powers at al,. 2000). Although

by no means exhaustive, Table 1.1 shows a sample of the functions of FGF

family members. Therefore, although the members of the FGF family are

collectively referred to as "FGF" followed by a numerical designation (Table 1.1),
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each exerts different biological actions through specific high-affinity receptors

(FGFRs) (Powers et 81" 2000).
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Tabla 1.1 Characteristics of the members of the FGF family (adapted from Powers et al., 2000

and Szebenyi & Fallon, 1999)

N.m~ Synonym Species Sipal Comments

sequena

FGF- Acidic
, FGF,

aFGF

FGF- Basic
2 FGF,

bFGF

FGF- Kaposi
4 FGF,

KFGF,
hst-'

FGF­
5

FGF- Hst·2
6
FGF- KFGF
7

FGF- A1FGF
8

FGF- GAF
9

Human,
hamster,
bovina, Absarrt
rat, pig,
chicl<.,
moo..
Human,
opossum,
bovine,
rat, chicl<., Absent
moo",
sheep,
Xenopus,-Human,
chick,

'''',mouse, Present
Xenopus

Human,
chicl<.,
mouse, Present
bovine,
Xeno s
Human,
mouse, Present
cat
Human,
mouse Present
Human,
mouse, Present
rat,
sheep,
doo
Human,

'mouse,
chicken, Present
XenoDUS
Human,
rat, Absent

=~s

1 mRNA form, nuclear localization motif, mitogenic,
angiogenic, induoes limb bud formation

4 protein isoforms through the use of alternate start
codons, some isoforms have nuclear localization
motifs, mitogenic, mesoderm inducing factor in
Xenopus, angiogenic, induces limb bud formation,
may be involved in apoptosis, highly expressed in
human gliomas

Site of MMlV integration in mouse genome, nuclear
localization motif, exprassed primarily during
development, mesoderm inducing factor in Xenopus,
involved in induction of inner ear, activated in mouse
mammary carcinogenesis and tumorigenic clones of
human colon cancer cell lines
Identified by screening stomach tumours and Kaposi's
sarcoma, induces limb bud formation

Regulatory factor in gastrulation, expressed in
pancreatic cancer-associated macrophages and
fibtoblasts

Specific for epithelial cells, mitogenic, angiogenic

7 isoforms, involved in migration of mesenchymal cells
2NiaY from the primitive streak in mouse emblyos,

~~~I~~~:a~~::~~i:e~~::~i:emjng
Not angiogenic
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FGF· KGF-2 Human, Similar in structure and function to FGF-7, involved in

'0 rat, chick, Present lung development
mouse

FGFs FHFs Human, All contain nuclear localization motifs,,- ~'"

" (FGF-
11), Absent
Human,
mouse,
chicken
(FGFs
12-13).
mouse
FGF 14

FGF· Moo," Activated by E2A-Pbxl
15
FGFs Rot,6- Present

"FGF- XFGF- Xenopus SeQuence homology to FGF-9
20

20
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FGFs have been implicated in numerous cellular processes such as

regulation of cell growth, survival, differentiation, migration, angiogenesis,

chondrogenesis, morphogenesis, wound healing. skeletal formation,

tumorigenesis, and metastasis (Kato and Sekine, 1999; Omitz, 2000) and are

produced at some point during the development of each of the four histological

tissue types (epithelial, muscle, connective, and nervous tissue) (Szebenyi and

Fallon, 1999).

FGFs form a family of structurally related polypeptide growth factors

(Figure 1.6 shows a generic FGF protein). which range in molecular weight from

17 to 34 kDa in vertebrates, and up to 84 kDa in Drosophila (Omitz, 2000).

Members of the FGF family share a strong affinity for heparin and heparan-like

glycosaminoglycans (HLGAGs) (Burgess & Maciag, 1989).

The most conserved sequence within the FGFs is a core of 120 amino

acids. where FGF orthologs (divergence resulting from speciation) are 71-100%

and FGF paralogs (divergence due to gene duplication resulting in several

isotypes within a single species) are 22-66% identical (Szebenyi & Fallon, 1999).

This core region does not contain a secretory signal. The mechanisms whereby

some members of the FGF family such as FGF-1, ·2, -9, ·11, -12, -13, -14 are

secreted by cells is still unknown but may be dependent on novel

uncharacterized secretory pathways (Femig & Galllagher, 1994; Szebenyi &

Fallon, 1999; Powers et 81., 2000). Other family members such as FGF·3 to-8

and FGF-10 have a consensus signal sequence found near the AUG translation
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initiation site (Figure 1.6) and are targeted for secretion through the endoplasmic

reticulum.

Some FGF family members. such as fgf~2 and fgf~3 make use of

altemative 5' CUG translation initiation sites as well as the canonical AUG codon

(Figure 1.6) and yield high and low molecular weight proteins. The protein

isoforms have different subcellular localization; the high molecular weight forms

of FGF-2 contain nuclear localization sequences and localize to the nucleus

whereas the low molecular weight form is cytoplasmic. The high and low

molecular weight forms associate with distinct sets of proteins and have a

different range of biological activities (Bivfalvi at al., 1995; Patry et aI., 1997)

Post-translational modifications of FGFs include gtycosylation,

phosphorylation and ADP-ribosylation (Figure 1.6) (Szebenyi & Fallon, 1999).

Glycosylation may have a role in modulating interactions between FGFs and

proteases. Mutating the glycosylation site in FGF-4 results in cleavage of FGF-4

prior to secretion resulting in peptides that are biologically more active than the

full-length protein (Bellosta et al., 1993). The phosphorylation state of some

FGFs such as FGF-2, which is phosphOf)'lated on threonine 121, regulates their

binding affinity for their receptors (Baird, 1994).

A number of different FGFs have been identified during the early stages of

embryonic development in Xenopus. To date, four members of the FGF family

have been identified in Xenopus (reviewed in Isaacs, 1997). These are FGF~2,

FGF~3, eFGF and FGF-9. FGF-2, eFGF and FGF-S all show matemal and
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zygotic expression in Xenopus. FGF-3 becomes expressed in the embryo after

the onset of zygotic transcription (reviewed in Isaacs, 1997). Both FGF·2 mRNA

and protein are present in the early embryo. At blastula stages, FGF-2 is present

predominantly in ~he animal hemisphere (Song and Slack, 1994). At later stages

(neurula and tailbud), FGF-2 has widespread expression in the central nervous

system and somatic tissue (Song and Slack, 1994). FGF·3 has a posterior

domain of expression in the mesoderm of the blastopore region of the Xenopus

gastrula and in the anterior domain of the ectoderm; at later stages, the posterior

domain becomes localized to the tailbud and the anterior domain breaks up into

a complex pattern of expression in the head (reviewed in Isaacs, 1997). FGF·9

is present throughout early development with materna! expression being primarily

in the animal hemisphere and later zygotic expression throughout the whole of

the developing axis (reviewed in Isaacs, 1997) The maternal expression of

eFGF is primarily in the animal hemisphere. At gastrula stages eFGF is

expressed zygotically in a ring around the blastopore region with a higher

expression level on the dorsal side of the embryo (Isaacs et aI., 1996). In late

gastrula and early neurula stages eFGF expression ;s seen in the blastopore

region and in the notochord. SUbsequently, eFGF becomes localized to the

extreme posterior of the embryo in the chordoneural hinge and posterior wall of

the neuroenteric canal at late neurula and tailbud stages (Isaacs et al.. 1996).
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Figure 1.6 The structure of a generic FGF protein
There are four translation initiation sites (three CUGs and one AUG),
sites of post-translational modification, and a conserved core region
thai contains receptor-binding sites. The scale in amino aerds is
indicated (adapted from Szebenyi & Fallon, 1999).
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The FGF system has multiple functions in early development including

mesoderm formation, gastrulation movements and anteroposterior patterning

(Slack et aI., 1996; Song & Slack, 1996; Isaacs, 1997).

Mesoderm induction by FGFs has been demonstrated in vitro. FGF-1-6,

FGF·9 and eFGF mimic the activity of the presumptive endoderm (vegetal pole)

and induce animal cap elongation and the expression of mesodermal markers in

vitro (reviewed in Isaacs at af., 1997). In addition, FGF overexpression has been

shown to suppress anterior development (reviewed in Isaacs, 1997) and a

dominant-negative FGFR inhibits the formation of posterior and lateral mesoderm

and disrupts the normal dorsoventral pattern (Amaya et af., 1991). As mentioned

previously, the type of mesoderm" induced by FGFs is concentration dependent

and, in vivo, FGFs such as FGF-2 and eFGF are probably involved in mesoderm

patterning rather than mesoderm induction. As described previously, FGFs are

thought to act in synergy with molecules such as BMP-4 and WNT genes as

ventralizing factors that pattem the mesoderm and give rise to ventral

mesodermal derivatives (Gotoh & Nishida, 1996).

The results of disrupting FGF signalling pathways by either its

overexpression or its inhibition are quite striking. DisnJption of fgfr1 results in

severe growth retardation and severely misshapen embryos, which often die at

gastrula stages. Expression of a dominant-negative FGF receptor (XFD) inhibits

mesoderm formation in animal caps and causes defects in trunk and posterior

development in embryos (Amaya at 81., 1991; Kessler & Melton, 1994).
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FGFs are also involved in patterning events, which will not be discussed

further here, occurring later in development such as neural induction and

patterning of the brain, and patterning of the limbs; Szebenyi & Fallon (1999) and

Powers at a/., (2000) provide recent reviews of these activities.
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1.6 FGF receptors

FGFs bind to at teast three distinct types of receptors: fibroblast growth

factor receptors (FGFRs), heparan sUlphate proteoglycans (HSPGs), and a

cysteine-rich FGF receptor (CFR) (reviewed in Szebenyi and Fallon, 1999).

FGFRs are receptor tyrosine kinases (RTKs), which are required for most

biological activities of FGFs; H$PGs are low-affinity receptors for FGFs, which

alter or modulate FGF·FGFR interactions, and CFR participates in FGF

intracellular transport (reviewed in $zebenyi & Fallon, 1999).

The diverse activities exhibited by the FGF family reflect a complex

process involving potential interactions between multiple FGFs, FGFRs and the

side chains of H$PGs (Faham at al., 1998).

HSPGs have been traditionally classified as low-affinity receptors for

FGFs. FGFs bind to the extracellular matrix of target tissues by interacting with

heparan sulfates and related proteoglycans. H$PGs are sulphated

glycosaminoglycans covalently bound to a core protein (reviewed in Szebanyi &

Fallon, 1999). A number of roles have been proposed for proteoglycans in FGF·

mediated cellular response: protection from prQteolysis, localization, and storage

and internalization of FGFs (reviewed in Taipale & Keski·Oja, 1997). FGF­

stimulated signal transduction involves the dimerization of FGFR and it is

probable that H$PGs participate in this process through a direct interaction with

FGFR (Ken at al., 1993; Kan at al., 1996) and/or through oligomerization of FGFs

(Omitz at al.• 1992; Mach at al., 1993; Spivak-Kroizman at al., 1994; Thompson
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et al., 1994). It is thought that H$PGs are important for sustained cellular

response to FGFs. This idea is supported by FGF-induced gene expression

studies, which have shown that FGF·1 can activate early response genes in the

absence of exogenous heparin, but that H$PGs are required for sustained

cellular responses (Donohue et a/., 1997). HSPGs have also been shown to

protect FGF·2 from degradation in the cell matrix; this protection is most probably

an important component in ensuring sustained cellular responses (Donohue et

al., 1997; V10davsky st 8f., 1996; Yeoman, 1993). The H$PGs implicated in

FGF action include syndecans, glypican, and perlecan (reviewed in Szebenyi &

Fallon, 1999). FGFs may require different HSPGs with distinct

glycosaminoglycans for their activities; for example, glypican has been shown to

promote the mitogenic activity of FGF·2, but inhibits responses to FGF·7

(Bonneh·Barkay et al., 1997). Therefore, HSPGs have been proposed as factors

that regulate specific FGF·FGFR interaction and determine which biological

activity prevails (Szebenyi & Fallon, 1999).

CFR is a 150·160 kDa single transmembrane protein that has an

extracellular region with 16 cysteine·rich repeats and a short intracellular tail.

FGF binding to CFR and to FGFRs is mutually exclusive, suggesting that the

binding sites in FGFs for these two receptors are overlapping, and CFR may

regulate intracellular FGF levels and signalling through FGFR by competing with

the latter for FGFs (Zhou at a/., 1997). CFRs may be involved in intracellular

43



trafficking and targeting of FGFs but their function and interaction with FGFs

have not yet been fully characterized (Szebenyi & Fallon, 1999).

FGF-stimulated signal transduction involves its binding to the FGFR and

dimerization of the receptor. FGFRs are members of the RTK superiamity

(reviewed in Omitz, 2000), which also includes other receptors such as platelet­

derived growth factor (PDGF) receptor, apidermal growth factor (EGF) receptor,

and insulin growth factor (IGF) receptor (Heldin & Westermark, 1989). There are

four known FGFR genes, FGFR-1, -2, -3, -4, which have an overall similar

structural organization (Figure 1.7). The extracellular domain (Ee) contains two

(11 and Hl) or three (I, II, III) immunoglobulin {lg)-like domains, followed by the

transmembrane (TM) stretch, the juxtamembrane (JM) domain, the kinase

domain (KD) interrupted by a short kinase insert, and a carboxy tail that has

several potential autophosphorylation sites; all these regions interact with

intracellular substrates (reviewed in Szenbenyi & Fallon, 1999). The FGF­

binding site is contained within a 139 amino acid region that includes parts of the

Ig-2 and 19-3 loops (Wang, 1995). Ligand selectivity is detennined by 19-3 loop

(OmitZ £It 8/.,1996). The 19-1 loop is the least conserved region in the FGFR and

regulates binding affinity to different FGFs (Szebenyi & Fallon, 1999). Recent

reviews of the structure and function of these different domains are provided in

Klint & Claesson-Welsh (1999); Szebenyi & Fallon (1999) and Powers £It 81.,

(2000).
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Alternative splicing of the FGF receptor mRNAs generate several different

variants of the receptors, some of which have distinct ligand-binding and

signalling properties (reviewed in Johnson and Williams, 1993; Szebenyi &

Fallon, 1999). The genomic sequence of the third immunoglobulin·like loop of

FGFR-1 to -3 contains two alternative exons (lIIb and lIIe) for the second half of

the third Ig-like loop (Figure 1.7) (reviewed in Klint & Claesson-Welsh, 1999).

Different FGF family members will activate the receptor subtypes to different

extents depending on their abilities to bind with high affinity to each receptor type

(Table 1.2) (Ornitz at 8/., 1996). This explains the ability of a large number of

FGFs to generate different cell specific responses through a somewhat limited

number of receptors (Table 1.2).

Mutations in FGFR1, FGFR2, and FGFR3 can cause different congenital,

autosomal dominant disorders affecting the craniofacial (craniosyntosis) and

sketal (chondrodysplasias) development (Hertz et at, 2001).
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Figure 1.7 The structure of a generic FGFR protein. The major structural features of
FGFRs, an acidic box, CAM binding domain, heparin-binding region, Ig
toops, transmembrane, juxtamembrane, kinase, and kinase insert regions,
are indicated by different colour codes and the three Ig loops are labelled.
Ig loop 3 is alternatively spliced in FGFR 1-3 but not FGFR-4 yielding B or
C splice variants that differ in their ligand-binding properties.
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Table 1.2 FGF signalling through high-affinity FGFR isoforms (adapted from POYIerS et aJ., 2000)

FGF FGFR

FGF·1 FGFR·'.llIb& lIIe; FGFR-2, Illb & ll1e; FGFR-3, IIlb & 1l1c, FGFR-4

FGF-2 FGFR-1, IIlb & lIle; FGFR-2, lIIe; FGFR-3, lIIe: FGFR-4

FGF-3 FGFR-1, IIIb: FGFR-2, IIlb

FGF-4 FGFR-1-lHe; FGFR-2, 11Ie, FGFR-3, lIIe; FGFR-4

FGF-5 FGFR1-lIIe; FGFR-2,Ulc

FGF-6 FGFR1-lIle; FGFR·2,lIlc; FGFR-4

FGF-7 FGFR-2,lIIb

FGF-8 FGFR-1; FGFR-2, IIle, FGFR-3.11lc-, FGFR-4

FGF-9 FGFR-2, IlIe: FGFR-3, IIlb & lIle; FGFR-4

FGF-10 FGFR-1, IIlb; FGFR-2, IIIb

FGF-15 Unknown

FGFs 16-19 FGFR·1,1IlC; FGFR-2, lIIe

FGF-20 Unknown
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1.7 FGF signalling pathways

Ligand binding to receptors initiates signal transduction cascades which

propagate the signals and result in the activation of molecules downstream in the

cascade. FGF signal transduction cascades are initiated by the binding of FGF

to its cell surtace FGFR. The activated receptor then undergoes dimerization

and autophosphorylation on tyrosines within the dimer. Phosphorylated tyrosine

residues recruit other signalling molecules, such as proteins containing src­

homology (SH2) domains and phosphotyrosine-binding domains (PTB), to the

activated receptors (reviewed in Klint & Claesson-Welsh, 1999). SH2 domain

proteins may be substrates for receptor-mediated phosphorylation themselves or

may, as is the case for PTB proteins, function as adaptor proteins to recruit other

target proteins and hence propagate the signal through many signal transduction

pathways (Pawson, 1995).

Although the signal transduction cascades initiated by FGF within

activated cells have yet to be fully elucidated, FGFs have been shown to activate

several well-known cascades such as the phospholipase C y (PLCy) pathway,

the mitogen activated protein kinase (MAPK) pathway, and the phosphoinositide

3' knase (PI3'K) pathway (reviews by HaYt1<ins et 81., 1997; Kamat & Carpenter,

1997; Powers et al., 2000; Szebenyi & Fallon, 1999). These transduction

cascades are initiated by the autophosphorylation of the FGFRs. It should be

noted that mitogenic response has been observed in cells in which receptor

transphosphorylation is much reduced (Krufka et 8f., 1996) and that some FGFs
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have nuclear localization sequences, so that FGFs may also have signalling

pathways that are distinct from those activated on the cell surface (Szabenyi &

Fallon, 1999)

The next three sections will briefly review the three main pathways.

1.7.1 The Phospholipase Cr Pathway

PLCy is a signal transduction enzyme which, when activated, initiates

hydrolysis of phosphatidylinositol 4,5-biphosphata to diacylglycerol (DAG) and

phosphatidylinositol 3 (IP3). DAG is an activator of protein kinase C (PKC), a

serine--threonine kinase, and IP3 initiates CaZ+ release from intracellular stores.

Second messengers like PKC and Ca2~ activate several molecules including

transcription factors and thereby result in desired cellular responses such as

transcripUon (reViewed by Kamat & Carpenter, 1997).

PLCy has been identified as being phosphorylated and associated with

FGFR following ligand-dependent activation (Burgess st a/., 1990; Gillespie st

a/., 1992; Ryan & Gillespie, 1994; Ryan et al., 1998) by the binding of its SH2

domain to the phosphorylated Tyr766 of FGFR·1 (Mohammadi at af., 1991).

However, although mutation of the phosphorylated tyrosine residue to

phenylalanine demonstrated that phosphatidylinositol hydrolysis was disrupted

(Mohammadi at sf., 1992; Peters st a/., 1992), the mutation did not affect FGFR­

mediated mitogenesis, neuronal differentiation (Spivak-Kroizman st al., 1994), or
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mesoderm·induction in Xfflnopus animal caps (Muslin at 81., 1994). II has been

shown that activation of protein kinase C (PKC) alone, a downstream effector of

the PLCy pathway, is not sufficient to induce mesoderm in animal cap explants,

although activated PKC has been detected in FGF-treated explants (Gillespie et

al., 1992). This implies that either PLCy is redundant with respect to mitogenesis

and differentiation or that the PLCy pathway is important for other functions of

FGFR signalling (Powers et 81., 2000). It has been suggested that the activation

of PKC during mesoderm activation could be part of a negative feedback

mechanism on the FGF mesoderm induction pathway (Gillespie et aI., 1992).

1.7.2 The Phosphoinositide 3' Kinase Pathway

PI3'K, which phosphorylates the inositol ring at the 3' position and thereby

activates inert membrane phospholipids and initiates a signal transduction

pathway, has been found to be involved in signal transduction of most, if not all,

tyrosine kinases (reviewed in Hawkins et 8/., 1997). The PI3'K pathway is

involved in many systems, including: cytoskeletal rearrangements, cellular

migrations, mitogenesis, differentiation, and protection from apoptosis (reviewed

by Vanhaesebroeck at 8f., 1997; Wymann and Pirola, 1998; Leevers et 81.,

1999).

FGF receptors lack optimal binding motifs for PI3'K, and FGF-induced

PI3'K activity is difficult to detect in vitro as well as in vivo (Kanda et af., 1996;
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van Weering et al., 1998). However, PI3'K activity has been implicated in both

migration and mitogenesis stimulated by a range of other growth factors, and

since FGFs are capable of transducing both these responses, it is quite possible

that PI3'K initiates some of these responses in FGf-mediated signal transduction

(Klint and Claesson-Welsh, 1999). Activated PI3'K has been shown to be

associated with the FGFR during mesoderm induction (Ryan & Gillespie, 1994;

Ryan et al., 1998). Recent work. has shown that PI3'K acts downstream of Ras

and in parallel to the MAPK pathway (described in next section) in the fGf

pathway during Xenopus mesoderm induction (Carballada et al., 2001). Using

natural and synthetic inhibitors of P13'K, the authors found that PI3'K catalytic

activity is required for the definition of trunk mesoderm in the FGF signalling

pathway.

1.7.3 The RAS/MAPK Pathway

SUbsequent to receptor autophosphorylation, SH2 (src homology) domain

containing proteins and phosphotyrosine-binding domain (PTB) docking proteins

bind to specific phosphotyrosines (reviewed in Szebenyi & Fallon, 1999). Some

of the docking molecules for different FGFRs are distinct; for example, SHC and

FRS2 function as docking molecules for FGfR1 whereas FGfR4 was shown to

associate with a p85 serine kinase, and the activated fGfR3-GRB2-S0S

complex contains either a novel 66~kDa protein or SHC (reviewed in Szebenyi &

Fallon,1999). The RASIMAPK pathway is propagated through the recruitment of
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SH2 domain proteins and PTB domain molecules to the activated FGFR

receptor, 'Docking molecules such as FRS2 bind to the phosphorylated receptor

and recruit the GRB2-S0S complex. GRB2 can also dock directly on the

phosphorylated receptors through its SH2 (Src homology 2 domain, which binds

to phosphorylated tyrosines). GRB2 contains SH3 (Src homology-3) domains

that allow it to bind to 'S guanine nucleotide exchange factor (GNEF) such as

SOS. This puts SOS in dose vicinity with RAS, which is membrane bound. SOS

promotes the dissociation of GDP from RAS, allowing the protein to bind a GTP

molecule and to become activated (reviewed in Ferell, 1996).

The activated membrane-associated RAS then recruits RAF-1, a serine·

threonine MAPK kinase kinase (MAPKKK). In tum, RAF·1 activates MAPKK

(MEK), which activates MAPK. MAPK phosphorylates transcription factors such

as JUN, FOS, and the ribosomal S6 kinase. In addition to nuclear substrates,

MAPK has been found to phosphorylate cytosketal proteins, phospholipase, and

protein kinases (reviewed in Ferall, 1996). The RAS/MAPK pathway has been

associated with a number of different FGFR-mediated cell responses such as cell

proliferation, cell responses during gastrulation, migration of certain cell types in

Drosophila, and activation of the urokinase plasminogen activator, cell motility,

and mesoderm formation in Xenopus embryos (reviewed in Szebenyi & Fallon,

1999).

Activated forms of MAPK have been shown to induce the expression of

the mesodermal marker Xbra in animal caps (LaBonne at a/., 1995). The
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RASlMAPK pathway has been shown to be necessary for FGF signalling during

mesoderm induction using a MAPK·specific phosphatase, which blocked the

FGF-mediated formation of mesoderm in animal cap explants (Gotoh at 81.,

1995; LaBonne at al., 1995). Embryos lacking ventral type mesoderm were

produced and were similar in phenotype to embryos overexpressing a dominant

negative FGFR, XFD. which ablates FGF signalling in the embryo (Gotoh at 8/.,

1995; LaBonne at al.. 1995; Amaya at 8/., 1991). These results directly implicate

the RAStMAPK pathway in FGF signalling during mesoderm induction.

The MAPK family consists of five distinct groups of related kinases: A. the

TEY MAP kinases (include the well studied p42JEr1<:2 MAP kinase and p44/Er1<:1

MAP kinase), B. the Hog1fTGY group, C. the JnkfSAP kinase group, D. the

Smk1 group, and E. the Er1<:3 group (reviewed in Ferell, 1996). The different

groups have been implicated in biological processes such as mitogenesis, cell

fate determination. differentiation and induction (reViewed in Ferell,1996).

The RAS/MAPK pathway is well characterized in FGF/FGFR cell

signalling, but it is becoming clear thaI there are several proteins acting in

parallel with RAS, RAF and MAPK. For example. PKC and PKA can also

activate RAF (revieWed in Szebenyi & Fallon, 1999). Several mammalian

isoforms of MAPK and parallel MAPK pathways have been found (FeraH. 1996).

There is also some evidence of crosstalk between the RASIMAPK pathway and

other pathways such as the phosphoinositide (PI) cycle during mesoderm

induction in Xenopus (Rose & Busa. 1998). Stimulation of the PI cycle in
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explants in the absence of growth factors does not induce mesodenn. However,

PI cycle stimulation during treatment of explants with FGF·2 has been shown to

increase MAPK activity and potentiate FGF-2-induced expression of the

mesodermal mar1<er, Xbra (Rose & Busa, 1998). These results suggest that the

PI cycle may be acting synergistically with the MAPK pathway during mesoderm

induction.

In Xenopus, the FGF family seems to be responsible for the full pattern of

activated MAPK in early development (Christen and Slack, 1999). LaBonne and

Whitman (1997) showed that the presence of activated MAPK, or phosphorylated

MAPK, is abolished by XFD injection during early gastrula stages. MAPK

activation first starts at stage 8 in Xenopus embryos, and XFD has been shown

to abolish activated MAPK staining until tailbud stages whereas eFGF activates

MAPK only in embryos (Christen and Slack, 1999).

The staining pattern of activated MAPK during embryonic development

has been characterized. At stage 7, activated MAPK is not visible in embryos.

Activated MAPK is first seen as a dorsal patch in stage 8 embryos in the region

of the future blastopore. At stage 10.5, activated MAPK is present around the

blastopore and at neurula stages is expressed strongly around the blastoporal

ring and in the forebrain, the midbrain/hindbrain junction, dorsal midline and on

either side of the neural plate. At tailbud stages, MAPK is active in the tailbud,

brachial arch, otic vesicle, stomodeal anlage, forebrain and midbrain junction,

heart anlagen and dorsal region of the cement-gland (Christen and Slack, 1999).
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This staining pattem is indicative of regions of active FGF signalling during

mesodermal and posterior patteming in Xenopus (Christen and Slack, 1999).

1,8 FGF Target Genes

FGF treatment result in changes in the steady-state levels of many

different mRNAs. Some of the targets of the FGF signalling pathway during

mesodermal and posterior patterning have been identified. It has been shown

that FGF is involved in the maintenance of Xbra expression in mesoderm

precursor cells (Smith at a/., 1991b). Xbra and eFGF have been shO'Nn to be the

components of an autoregulatory loop in which Xbra induces aFGF expression,

which in tum maintains Xbra expression (Isaacs at al., 1994; Schulte-Merker and

Smith, 1995). FGF signals also regulate the expression of the caudal gene

family member Xcad3 (Northrop and Kimmelman, 1994; Pownall at al., 1996),

which has a critical function in the regulation of posterior hox genes (Isaacs et 8f.,

1998). It has been shown that krox20 and Hoxb9 expression is induced in

explants following FGFR1 activation (Umbhauer at al., 2000). FGF-regulated

genes also include: homeobox genes, patteming genes, growth factors and their

receptors, skeletal muscle regulatory factors, matrix proteins, protesses, and

protease activators and inhibitors (Szebenyi & Fallon, 1999)

While the list of FGF-modulated genes is still incomplete, it supports the

hypothesis that FGFs have a broad and diverse range of action and affect the

expression and function of many diverse groups of proteins. It should be noted
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that not all these FGF regulated proteins are expressed at the same time and in

the same cet! type, although many of them have been observed be to activated

simultaneously or sequentially, Furthermore, FGFs have been shown to act

either synergistically or antagonistically with other growth factors such as

members of the TGF-13 family, insulin-like growth factor (IGF), and members of

the wingless family (WNT) (reviewed in Szebenyi & Fallon, 1999).

The next section will focus on one class of FGF target genes, the

immediate-early genes.
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1.8.1 Growth factor-induced immediate~arlygenes

The first genes to be transcribed in response to growth factor treatment of

a cellular population are known as immediate-early genes (or earty response

genes). Immediate-earty genes have also been described as the set of genes

linked directly to receptors by transduction mechanisms and include those that

are expressed when a cell is stimulated to leave the Ga phase of the cell cycle

and enter Gt (reviewed in Thomson at a/., 1999).

To be classified as immediate--earty, a gene must be transcribed without

de novo protein synthesis and depend solely on factors already present in the

cell to enable a quick response, and is usually expressed within thirty minutes of

mitogen activation (Thomson at 81., 1999). Some immediate-early genes, such

as members of the c-fos and c-jun families, are characterized by their rapid and

transient expression in response to extracellular stimuli. In addition,

phosphorylation of a number of transcription factors and two chromatin­

associated proteins, HMG·14 (high mobility group-14) and histone H3, is tightly

correlated to immediate-earfy gene induction (Mahadevan at 81., 1991; Barratt at

al., 1994a; Barratt at 81., 1994b; Hazzalin at 8/., 1996). ImmediatEHlarly gene

response is elicited by three broad classes of biochemical, physical and

pharmacological stimuli: (i) polypeptide growth factors such as epidermal growth

factor (EGF), FGF, platelet derived growth factor (PDGF) and cytokines; (ii)

stresses such UV radiation and heat shock; and (iii) pharmacological compounds
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such as 12-Q-tetradecanoylphorbol 13-acetate (TPA), okadaic acid and

anisomysin compounds (revie'Ned in Thomson et al., 1999).

Thus, transcriptional activation of immediate-earty genes, such as

transcription factors, is the first response to the signal transduction pathways

initiated by growth factors. In tum, the transcription factors initiate (or terminate)

transcription of new genes, which are or are not subsequently translated into

proteins. The absence or presence of the latter ultimately carry out the desired

cellular response.

To date, only occasional immediate--early FGF response genes have been

identified and characterized. One well..characterized FGF immediate-early

response gene is the Xenopus homologue of the Brachyury gene, Xbra.

Expression of Xbra is an immediate-early response to mesoderm induction by

FGF (Smith et al., 1991). Xbra is able to induce mesoderm formation: ventral

mesoderm at IO'N concentrations and intermediate mesoderm at higher

concentrations (Cuncliffe and Smith, 1994). Furthermore, as mentioned

previously, Xbra has been shown to activate transcription of eFGF in an

autocatalytic manner during mesoderm induction (Isaacs et al., 1994).

1.9 Isolation and cloning of eM

Our lab recently identified a novel transcript, early-response gene 1 (er1),

whose expression levels increased in Xenopus embryo explants during

mesoderm induction by FGF-2 (Paterno et al., 1997).
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As described in Paterno et al., (1997), ert was identified through the peR·

based differential display method (liang & Pardee, 1992) in an attempt to identify

and charaderize genes that are expressed during earty cellular response to FGF.

A Xenopus blastula library (Gillespie at aI., 1995) was used to obtain the full

sequence of ert eDNA, which is 2.3 kb, and consists of a 1497-base pair single

open reading frame predicted to encode a protein of 493 amino acid residues.

Expression of ert mRNA peaks during the late blastula stage of Xenopus

(Paterno et 81., 1997).

The steady-state levels of ert were shown to increase 3-4 fold upon

treatment with FGF. However, this increase in erl levels was not due to de

novo protein synthesis because cycloheximide (an inhibitor of protein synthesis)

did not affed the FGF·jnduced increase in art lavels. These results effectively

showed that er1 is an immediate--earty gene (Paterno at al., 1997).

A database homology search revealed three regions 01 similarity in the

predicted ER1 amino acid sequence to rat and human proteins encoded by the

metastasis-associated gene, mta1, and two regions of similarity to the

Caenot1Jabditis alegans saquence that has similarity to mla1 (Paterno at a/.,

1997). However, ert is not the Xanopus homolog of mta1, since a human

homolog of arl has been found that is distinct from human mts1 (Paterno at al.,

1997; Paterno at al., 1998).

The expression of rat mta1 has been associated with metastatic

phenotypes (Toh at 81., 1994). Human ert is expressed in breast-carcinoma cell
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lines and breast tumour tissue 'Nhile being undetectable in normal tumour ceO

lines and tumour tissue suggesting that en expression is associated with the

neoplastic state in human breast carcinoma (Paterno et al.. 1998). Figure 1.8A

shows amino acid homology between Xenopus ER1 and rat and human MTA 1

and figure 1.88 shows the amino acid homology between Xenopus and human

ER1.
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Figure 1.8 Amino acid homology between ERI and MTAI and Xenopus and human
ERI
A. Homology between Xenopus ER I and C. elegom, rat and human MTA I
B. Homology between Xenupus and human ER 1
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lysis of the ER1 amino acid sequence revealed four regions that contain

putative nuclear localization signals (NLSs) (Paterno at al., 1997; Post at al.,

2001) These are 13aRPRRCK1<43 (NLS1), 261RRLR26<4 (NLS2),

32oKKSERYDFFAOQTRFGKKK338 (NLS3) and <463RPIKRQRMDSPGKm (NLS4)

(Post et al., 2001), NLS4, which contains a core region ~RPIKRORNIMD<471)

similar to the core NLS directing c-MYC to the nucleus, has been found to be the

only bona fide NLS necessary and sufficient for targeting ER1 to the nucleus

(Post at af., 2001). Of the other putative three NLSs, only NLS1 has been shown

to function only as a weak NLS (Post etaf., 2001).

A proline-rich sequence corresponding to the PXXP motif found in all high

affinity SH3 (src homology 3) ligands was identified near the C terminus. The N

terminus of ER1 contains four highly acidic regions, characteristic of the acidic

activation domain of many transcription factors (Patemo at aI" 1997). There is

also a highly conserved region in the middle region of ER1 (amino acid 287-349),

the SANT domain (Paterno at al., 1998). Tha SANT domain is a motif with

potential transcription and chromatin-related functions initially found in ~3,

8da2, the co-repressor McaR, and IFIIB, and conserved in a number of

transcription factors and oncogenes such as mta1 and members of the myb

family of oncogenes (Aasland et ai" 1996). Although the function of the SANT

motif is itself unclear, SANT homologous repeats in the Myb oncoprotein have

been implicated in DNA binding (Howe at af., 1990; Ogata at al., 1994). Recent

reports have indicated that a SANT-containing region of several co-repressors
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can bind (You at al., 2001; Guenther at al., 2001) and activate (Guenther at al.,

2001) histone deacetylases, indicating a chromatin-related role. Analysis of the

amino acid sequences of both ER1 and MTA1 has revealed that the similarity

between ER1 and MTA1 lies in the SANT domain (Paterno et a/., 1998). Another

conserved region, ELM2 (EGl·27 and MTA1 homology2), has been found in

ER1 (amino acid 169-229) (Solari at al., 1999). As discussed in Solari et aI.,

(1999), the ElM2 region is not similar to any domains of known function but is

present in many proteins containing the $ANT domain including MTA1.

Figure 1.9 shows a schematic of the putative functional domains in ER1.

63



Figure 1.9 A schematic showing putative functional domains in ER1

There are four regions of acidic amino acids in the N-terminal region. The ELM2

region is found in the middle of the protein and the SANT domain is found in the

C-terminal region. There is a PXXP motif in the C-terminal region and two NLSs.

The NLS in the N-terminus functions as a weak NLS and the NLS in the C­

terminus has been found to be the bona fide NLS that is sufficient for targeting

ER1 to the nucleus (Post et al., 2001).
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1.10 Purpose of this study

At the time this study was undertaken, er1 was a newly cloned gene

whose expression pattern and function were unknown. The purpose of this study

was to characterize the expression and function of ER1 protein during early

development of Xenopus and gain an insight into its function.

Objective 1: Characterization of the expression pattern of ER1 protein

during earty development in Xenopus

The mRNA levels of a gene give a good indication of the expression of

transcripts, but ultimately it is the expression of the protein products of the gene

that are most useful in determining the tissues and time frame of the expression

of a particular gene. The spatio-temporal expression pattern of proteins is critical

to understanding their function. At the start of this project, Northern blotting had

given us an indication of the levels of er1 transcripts during early development. It

was shown that er1 was a maternal transcript, whose steady-state levels were

relatively constant during early cleavage stages, increased 2-foId at blastula

stages, and then decreased 6-fold during gastrula, neurula and tailbud stages

and remained below detection level during subsequent development (Paterno at

al., 1997). The first objective of this project was therefore to characterize the

expression pattern of ER1 protein during early developmental stages in Xenopus
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Objective 2: Identification of mechanisms regulating the expression of ER1.

Spatio-temporally restricted expression pattern is a characteristic of many

genes that are expressed during early development, and is often an indication of

a distinct and defined role in embryogenesis. The mechanisms that regulate the

differential expression of these genes often vary. Resolving the processes that

regUlate the expression of a gene is often crucial to determining their function in

a biological system. Once the expression pattem of ER1 protein was

characterized, the second objective was to determine how this expression

pattern was regulated during development.

Objective 3: Characterization of the function of ER1.

Analysis of the DNA sequence of genes gives clues to the function of the

protein products of these genes. At the start of this project, computer assisted

analysis of the DNA sequence of eri had identified several domains, including

stretches of acidic amino-acid residues, nuclear localization signals, and protein­

protein interaction domains (Paterno et al., 1997). Identification of these

domains, as well as characterization of the expression pattern of ER1 (Objective

1), helped design experiments to determine the function of ER1. A common

strategy used when working with new genes, like eri, whose functions are

unknown, is to use the information present in the DNA sequence to identify

putative function. The third objective of this project was to characterize the
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Objective 4:

function of ER1 using in vitro assays involving deletion constructs of putative

functional domains of ER1.

Characterize the function of ER1 during early development

in Xenopus

A common technique used to elucidate the function of genes and gene

products in developmental studies is to misregulate their expression by

overexpressing or inhibiting them in vivo. In embryological studies, cRNA is

injected in newly fertilized embryos and their development is followed to detect

morphological abnormalities. By misregulating the expression of a gene, and

studying the effects of this misregulation, one can attempt to define the normal

function of the gene and its product. The fourth objective of this project was to

characterize the function of ER1 in embryos by studying the effects of ER1

overexpression.
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SECTION II ER1 IS DIFFERENTIALLY LOCALIZED TO

NUCLEI DURING EARLY DEVELOPMENT IN

XENOPUS EMBRYOS

CHAPTER 2 CHARACTERIZATION OF THE EXPRESSION

PATTERN OF ER1 DURING EARLY

DEVELOPMENT IN XENOPUS EMBRYOS

Note: Part of chapter 2 was previously published in Luchman et 81., (1999)

2.1 INTRODUCTION

There is little or no transcription during early cleavage stages in amphibian

development. As a result, earty embryos depend on proteins translated from

maternally inherited mRNAs (transcribed during oogenesis and stored in the

maternal cytoplasm) and on maternal proteins (which are already present in the

egg) for the numerous cellular processes that take place in the embryo before

the onset of zygotic transcription (Seydoux, 1996). Maternal mRNAs and

proteins provide essential factors for growth and cell viability and regulate

embryonic polarity and cell fate. It is critical, therefore, to regulate precisely the
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accumulation of both matemal proteins and of the proteins translated from

maternal mRNAs after fertilization as a means of regulating their function

(Seydoux, 1996). The expression pattern of a protein is the gateway to

understanding its function during development.

en is a Xenopus immediate-Early response gene, cloned in our

laboratory, whose expression is activated by FGF~2 (Paterno et al., 1997).

was shown that en is a maternally derived message whose expression is

restricted to stages prior to mid-gastrula. The first objective for this study was to

characterize the expression pattern of ER1 protein during early development.

Western blotting, whole-mount staining and immunocytochemistry techniques

were used.

2.2 MATERIALS AND METHODS

2.2.1 In vitro fertilization of mature Xenopus oocytes

Female Xenopus frogs (Nasca) were induced to ovulate with a

subcutaneous injection in the dorsal_side in the upper portion of one of the hind

legs towards the cloaca with 400·500 I.U. (0.4-o.5ml) of HeG (Sigma-Aldrich)

and left at room temperature (RT) for 12-14 hours until they started to ovulate.

A male frog (Nasca) was sacrificed by a subcutaneous injection in the

dorsal side in one of the hind legs with a lethal dose of the anaesthetic
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Methanesulfonate (MS222, Sigma-Aldrich) and the testes were removed. The

testes were cleaned by rinsing in 1 times Normal Amphibian Medium (1xNAM;

110mM NaCI (BDH), 2mM KCI (Fisher Scientific), 1mM Ca(N03~.4H20 (Fisher

Scientific), 1mM MgSO".7H20 (Fisher Scientific), 0.1mM EDTA pH 8.0 (Fisher

Scientific), 10mM HEPES (Fisher Scientific), pH 7.5, 1mM NaHC(h (Fisher

Scientific), and 12.5mg Gentamycin (Sigma-Aldrich) in dH20) and stored at 4°C

in 1xNAM.

Before fertilization, a small portion of testes was macerated in a drop of

distilled water (dH~) and the released sperm were examined under a compound

microscope for viability. Eggs were squeezed from an ovulating female into a

100x15mm Fisher brand disposable petri dish. A small portion of testes was

rinsed in dH20 and macerated in fresh dH20 before being pipetted on the eggs.

The eggs and sperm were mixed by rocking gently for a few seconds and left at

RT for 5 minutes to allow fertilization to take place. The eggs were flooded with

dH20 to dilute the sperm mixture. After 15 minutes, successfully fertilized eggs

rotated so the dark pigmented side of wild-type eggs was on top. Albino eggs

were also left for 15 minutes to rotate. The dH20 was poured off and 2.0%

Cysteine-HCL (Sigma-Aldrich) in dH~, pH 7.8-8.1, was added to the embryos,

the mixture was transferred to a 250 ml glass beaker and shaken for a few

minutes to remove the jelly coat from the embryos. Once the outer jelly coat was

removed, eggs became close packed. Dejellying was stopped by gently diluting

the embryo-cysteine mixture with dH20 and rinsing with at least five changes of
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dH20 and two changes of NAM120 (NAMI20; 5.5mM NaC!. O.1mM KCI, O.05mM

Ca(NO:)h.4H20, O.05mM MgS04.7H20, 0.005mM EDTA pH 8.0, 0.5mM HEPES

pH 7.5, 0.05mM NaHC03; 1.25mg Gentamycin in dH20). Embryos were cultured

in NAMl20 at RT, 14°C or 18·200C, and staged according to Nieuwkoop and

Faber (1967).

2.2,2 Western blot analysis of ER1 protein at different embryonic stages

Extracts from embryos at different developmental stages (stage 2, 6.5, 8, 8.5, 10,

13, 27, and 45) were prepared for Western blotting by homogenizing whole embryos

in iee-cold solubilization buffer (1% Triton-X100 (Fisher Scientific), 10mM Tris-CI

(Fisher Scientific), pH 7.5, 10mM EDTA, plus protease inhibitors: 1mM PMSF

(Sigma-Aldrich), 25 Ilglml aprotinin (Sigma-Aldrich), 25 j.1g1ml leupeptin (Sigma­

Aldrich), and 5 ....g/ml TlCK (Sigma·Aldrich) in dH20). Ten embryos were processed

per treatment. After 30-min solubilization at 4°C, the samples were centrifuged at 10

OOOg for 5 min. The clear middle layer was removed with a 1ml syringe leaving the

bottom pellet of insoluble material and the top lipid layer behind. The process was

repeated if the middle layer was cloudy. The extracts were vortexed with an equal

volume of Freon (Sigma·Aldrich) to separate yolk proteins from the other soluble

proteins and the upper aqueous layer was removed. Total protein was precipitated

out of the aqueous layer with 100% acetone at _20° C for 25 min and centrifuged at

10 ooOg for 20 min. The pellet was washed once by vortexing with ice-cold 70%

acetone and centrifuging for 20 min. The pellet was air-dried for 5 min and
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resuspended in sample buffer [50mM Tris pH 6.8, 2%Sodium dodecyl sulfate (50S)

(Fischer SCientific), and 800mM beta~Mercapto Ethanol (BME) (Bio-Rad

Laboratories) in dH20j. Protein measurements were performed using the Bio-Rad

protein assay (Bio-Rad laboratories), to ensure equal loading of protein.

The samples were subjected to 50S-PAGE through 8% polyacrylamide gels,

followed by Western blotting onto HybondTM~ECL nitrocellulose membranes

(Amersham Pharmacia Biotech). Bio-Rad prestained molecular weight standards

(12.5 J.lgllane) (Bio-Rad laboratories) were included on each gel. The blots were

blocked for 1 hour with 5% non-fat milk powder in TB5~T buffer (20mM Tris, pH 7.6,

137mM NaCI, and 0.1% (liN) Tween·20 (Bio-Rad) in dH20) plus 0.02% sodium

azide) and stained with anti·ER1 antiserum at a 1:1000 dilution in TBS-T (Paterno et

at, 1997) overnight at RT. The blots were washed with four changes of 100ml TBS~

T over a one-hour period followed by a one-hour incubation with a 1:3000 dilution of

a 1mg/ml HRP-labelled goat anti-rabbit secondary antibody (lnllitrogen Life

Technologies Inc.) in TBS~T. The wash step was repeated. The detection step was

perfonned using the ECl system (Amersham Pharmacia Biotech), as per

manufacturer's directions. The experiments were repeated three times.
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2.2.2 Embryo staging, sectioning, and ER1 immunocytochemistry and

nuclear and antibody staining of embryos

Albino Xenopus laevis embryos were obtained as described above and

staged according to Nieuwkoop and Faber (1967). Antibody staining of whole­

mount embryos, immunocytochemistry and nuclear staining of sectioned

embryos was perfonned according to the procedure described by Harland (1991)

with some modifications. Ten embryos at each different developmental stage

(stage 6.5, 8, 8.5, 10, 13, 27, and 45) were fixed for one hour with rotation in

freshly prepared MEMFA (100 mM MOPS (Fisher Scientific), 2mM EGTA (Fisher

Scientific), 1mM MgS04 • and 0.37% formaldehyde (Fisher Scientific) in dH20) at

RT. The fixed embryos were stored in 100% Methanol at _20°C until required for

staining. Embryos were bleached under white light for one hour in bleaching

solution (1:3 (vlv) of 30% H20 2 and two parts Dent's fixative (20% dimethyl

sulfoxide (DMSO) (Sigma-Aidrich), 80% methanol». Bleaching decreases

pigmentation and optimizes visualization of the stain. The bleaching solution was

replaced with maleic acid buffer (MAS; 100 mM maleic acid (Sigma-Aldrich) and

150mM NaCI in H20, pH 7.5). The embryos were washed with three changes of

MAB and placed into an 8 well polystyrene (Costar) insert dish. The embryos

were incubated on a rotator for one hour in blocking buffer (2% (w/v) blocking

reagent toT nucleic acid hybridiZation and detection (8MB) (Boehringer

Manheim), 5% (vlv) DMSO, 5 % (vlv) heat-inactivated goat serum (Invitrogen Life

Technologies Inc.,) and 0.02% (vlv) sodium azide (Sigma-Aldrich) in MAB) at RT.
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The blocking buffer was replaced with a 1:200 dilution of anti-ER1 antibody

(Patamo at at, 1997) in blocking buffer. The embryos were incubated overnight

on a rotator at 4°C after which they were washed with MAS every 30 minutes for

6 hours. The embryos were then incubated with a 1:200 dilution of an alkaline

phosphatase-coupled goat-anti-rabbit secondary antibody (Invitrogen Life

Technologies, Inc.) in blocking buffer and the embryos were rotated at 4°C

overnight. The following day, the embryos were washed as before followed by

two 5 min washes with alkaline phosphatase (AP) buffer (100mM Tris, pH 9.5,

5mM MgClz (Fisher Scientific), 100mM NaCI, 0.5% (vlv) Tween-20, and 5mM

Levamisole (Sigma·Aldrich) in dHzO). Embryos were stained with a mix of 4-nitro

blue tetrazolium chloride (NBT; 33.75 mg/ml; Boeringher Manheim) and X·

phosphate/5-brom0-4-chloro-3-indoyl-phosphate (BCIP; 17.5 mg/ml; Boeringher

Manheim) in AP buffer until a dark purple colour developed. The staining reaction

was stopped by removing the staining solution and replacing it with MEMFA. The

stained embryos were kept at 4°C. For long-tenn storage, the embryos were

kept in MAS plus 0.02% sodium azide at 4°C. The experiment was repeated

three times.

For sectioning, ten embryos at each of stage 6.5; 8, 8.5, 10, 13,27, and 45 were

fIXed in MEMFA and stored in 100% methanol at 4°C. Polyester wax (PEG 400

distereate, A1drige Chem Co.) and embedding moulds were wanned at 40°C in a

water bath a few hours before use. Embryos were transferred to 100% ethanol then

transferred into moulds in a 1:1 ethanol:wax solution and some of the ethanol wax
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solution was removed and replaced by fresh molten wax. This was repeated several

times over one hour to allow the wax to penetrate. The mould containing the

embryo and wax was removed from the water bath and cooled to RT, a mould

holder was placed on top of the mould while the wax was still molten. The embryo

was oriented in the wax using two forceps until the wax solidified. The' wax was

allowed to harden at RT for 2-3 hours after which the moulds were kept at 4°C. All

sectioning instruments were cooled at _20°C for 5 minutes before sectioning. The

block of wax was carefully removed from the mould and trimmed to expose the

embryo. The holder was placed in a microtome, 8~ sections were made, and

sections were collected on gelatin subbed glass slides. A solution of 0.1% Triton­

X100 in dH20 was carefully pipetted on the slides to spread the sections, after which

the solution was removed and the slides left to air dry at RT. The sections were de­

waxed using a 100%, 95%, 80%, 75%, 50%, 30% ethanol rehydration series in MAS

and a MAS rinse). Antibody staining was pel10rmed as for whole mount staining

except slides were incubated in small plastic boxes and washes were pel10rmed in

Coplin jars. Nuclear staining was pel10rmed by incubating the slides in a 1:500

dilution of a liv~J1 nucleic acid stain (Molecular Probes). The experiment was

repeated three times.
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2.3 RESULTS

Northem blotting by Patemo at a1. (1997) had previously shown that ert

mRNA is expressed as a single message, which is detectable during earty

cleavage stages prior to the onset of zygotic transcription, Densitometric

analysis showed that er1 levels stay constant dUring these early cleavage

stages, increase slightly at blastula and decrease during gastrula, neurula and

tailbud stages. This pattern of expression indicates that er1 is a maternally

derived RNA, since the mRNA is present in the embryo before the onset of

zygotic transcription at mid-blastula stages.

Although mRNA expression gives an idea of the expression pattern of a

gene, it does not atways give an accurate picture of the spatio-temporal

expression pattern of a protein since amphibian embryos often contain maternal

stores of protein as well as mRNA. Some maternal mRNAs, such as CRM1,

have been shown to be under negative translational control during early

development in Xenopus (Kudo et aI., 1997). Other maternal RNAs, such as

x1gv7/xlcaax~1, have been shown to be redundant during early development

When the store of xlgv7lx1caax-1 maternal RNA is depleted through antisense

technology, the embryos still develop normally due to the presence of a maternal

storeofxlcaax~1 protein (Reddy etal., 1991a, 1991b).
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The spatio-temporal expression pattern of ER1 protein was therefore

examined in order to get a better indication of the tissues in which ER1 was

functional.

2.3.1 The expression level of ER1 protein is constant during early

developmental stages in Xenopus

The expression pattern of ER1 protein was analysed by Western blotting

during stages similar to those examined by Paterno at 81., (1997) for RNA

expression by Northern blotting. Stages 2, 6.5. 8. 8.5, 10. 13, 27 and 36 were

examined. The Western blot revealed that ER1 protein is detectable and that

expression levels are similar for all stages examined; staining pattern for stages

6.5, 8, 8.5, and 10 are shown in Fig. 2.1

77



Stage: 6.5 8 8.5 10 6.5 8 8.5 10
Antibody: Pre Immune

200-

106-
80-

50-

1 2 6 7

Figure 2.1 ER1 protein is expressed during early development
Embryo extracts from stages 6.5 (lanes 1 and 5), B (lanes 2 and 6),
8.5 (lanes 3 and 7) and 10 (Janes 4 and 8) were subjected to $DS­
PAGE, blotted and stained with anti·EA1 (lanes 5 and 8). The blot
was stripped and re-stained with pre-immune serum (lanes 1-4).
The position of ER1 is indicated on the right and the molecular
weight standards are on the left.
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2.3.2 ER1 Is differentlalty localized to the nucleus during earty embryonic

development

In embryo whole-mounts and sections stained with anti-ER1 antiserum,

the first detectable staining is observed in the nucleus of marginal zone cells

(presumptive mesoderm) of stage 8 blastula (Figs. 2.2 and 2.3), even though

equivalent levels of ER1 protein are present at earlier stages (stage 6.5, Fig.

2.1). ThUS, ER1 protein is present in the cells of the early stage embryo but does

not become concentrated in the nucleus until mid-blastula stage.

No staining was observed at stage 6.5 using preimmune or anti·ER1

serum, (Fig. 2A and B, respectively). As development proceeds, more nuclei

become stained and by late blastula (stage 8.5-9), virtually aU nuclei in the animal

hemisphere are stained (Fig. 2.1E,F). At this stage, the nuclei in the vegetal

hemisphere begin to stain and by early gastrula (stage 10) ubiquitous nuclear

staining is observed (Fig. 2.4). The same trend was observed for neurula stages.

During tailbud stages, endodermal and mesodermal tissues retain their

nuclear staining (Fig. 2.5B, E, F); however, in ectodermally-derived tissues, such

as the brain and epidermis, nuclear staining begins to disappear (Fig 2.5e, D).

This pattern of decreasing concentration of ER1 in the nucleus of various tissues

continues throughout late development and by tadpole stage; nuclear staining is

observed only in some endodermal nuclei (Fig 2.6A, B). At tadpole stage of

development, nuclear staining is no longer detected in any ectodermally or

mesodennaliy-derived tissue (Fig. 2.68-0), however, cytoplasmic staining is
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observed in some mesodermal tissues (Fig. 2.68-0). Neural tissue is not stained

except for weak cytoplasmic staining in the eye (Fig. 2.6B. C).
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Figure 2.2 Localization of ER1 to the nucleus begins during blastula stages.
Albino embryos were fixed at stages 6.5 (A,S), 8 (C,D) or 8.5 (E,F) and
stained with either pre-immune serum (A, C, E) or anti·EA1 (8, 0, F). Nuclear
staining (see arrows in D) first appears in the marginal zone cells (presumptive
mesoderm) of stage 8 blastulae; by stage 8.5 (one additional cell division), virtually
all nuclei in the animal hemisphere are stained (F). The animal hemisphere of the
embryo is shown facing up. Bar = 0.1 mm.
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Figure 2.3 ER1 is concentrated in the nucleus of marginal zone cells in stage 8
blastulae.
Embryos were fixed at stages 6.5 (A) or 8 (&D), sectioned and stained with
anti-ER1. (A) The nuclei (arrows) remained unstained in early cleavage stages.
(8-0) At stage 8, the nuclei (arrowheads in B and arrow in D) in the marginal
zone begin to stain for ER1 while nuclei in the endoderm (B) as well as nudei
(arrows in C) in the rest of the animal hemisphere remained unstained. An =
animal hemisphere. Veg = vegetal hemisphere. Bars = 0.1 mm in A, B
and 0.02 mm In C, D.
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Vag
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Figure 2.4 ER1 is concentrated in the nucleus of all cells in stage 10 gastrulae.
Embryos were fixed at stage 10, sectioned and stained with either pre-immune
(A) or anti-ER1 (B). at stage 10, ER1 is concentrated in the nucleus in virtually
aU cells of the three germ layers; the arrowhead indicates the involuting lip; ar,
archenteron; ble, blastocoel. An = animal hemisphere, Vag = vegetal hemisphere
8ar5=0.1 mm
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fig 2.S ERI begins to disappear from the oucleus in tbe epidermis and bf1lin during
tanbudstages.

Embryos were fixed at stage 27, sectioned and stained with either preimmune (A)
or anti-ERI (B-f). At stage 27, nuclei are stained in the endodenn (B), somites

(arrows in B and E), notochord (arrows in F). as well as in most ofthe spinal cord
(tailed arrows in F). Many of the nuclei in the brain (tailed arrows in B-D) and

epidermis (arro....'S in C, O) are no longer Slained, as iJIustraled by comparing the
anti-ERI stained epidermis and brain in (C) with the same section incubated with
a fluorescent nuclear stain (D). The black arrows in (C) mark the position of me

nuclei identified by white arrows in D. Bars s 0.1 mm.
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Figure 2.6 ER1 is no longer concentrated in the nucleus in stage 41 tadpoles
Embryos were fixed at stage 41, sectioned and stained with either preimmune (A)
or anti-ER1 (B-D). At stage 41, staining is absent from neural tissue (8) except for
weak cytoplasmic staining in the eye (C). Staining in mesodermal tissues is
exclusively cytoplasmic and is observed in 50mites (tailed arrows in B and C).
Nuclear staining is also absent in the epidermis (tailed black arrows in C) but is still
observed in some of the endodermal cells (tailed arrows in B). Bars = 0.1 mm.
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2.4 DISCUSSION

Analysis of the protein expression levels of ER1 during early

developmental stages showed that, unlike the mRNA levels, the expression level

of ER1 protein remained constant for all stages examined (Figure 2.1). ER1

protein is expressed at constant levels at stages when the mRNA levels go up

(Figure 2.1 lanes 6 & 7, blastula stages) or are very low or undetectable (Figure

2.1 lane 8, gastrula; neurula and tailbud stages not shown). Although it was not

possible to determine whether the ER1 protein detected on the Western blot was

the product of maternal mRNA translated during early development and/or was

matemal protein already present in the egg, it was clear that ER1 protein is

present in the embryo from early cleavage stages at detectable and constant

levels.

There are several mechanisms, which could be potentially involved in

maintaining constant ER1 expression levels throughout the developmental

stages examined: 1. The protein may be longer-lived than the maternal mRNA.

since the protein is detectable at stages when the mRNA levels decrease; 2. The

protein may be very efficiently translated from low levels of mRNA during the

later developmental stages 3. The embryo may have a store of matemal ER1

protein as well a.s en mRNA, and the protein detected on the Western blot could

be from either or both sources.
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There are examples of other proteins with similar protein expression

patterns to that of ER1. An example is OCT1/POU, a maternally derived

transcriptional activator in Xenopus, where the protein is at a constant level

during early development and persists until neurula stages after downregulation

of the mRNA (Veenstra et aI., 1995; Veenstra at aI., 1999). As discussed

previously in this thesis, mRNA expression and localization during early

development do not always give an accurate picture of the expression and

distribution of the protein.

Many studies use RNA in situ hybridization techniques to visualize the

tissues in which a gene is being actively transcribed. In the case of Xenopus

embryos, maternal RNA is transcribed during oogenesis and localized to different

parts of the egg, where it is in a stable form and is translated at different stages

after fertilization. Localization of RNA during oogenesis is a means of regulating

the translation of the protein to a specific embryo region and hence spatially

regulating expression of the protein. However, mRNA is not always

translationally active in regions where it is localized (Seydoux, 1996). For

example, Xwnt~11 mRNA is symmetrically distributed in the vegetal region of the

early Xenopus embryo, but Xwnt·11 protein is asymmetrically distributed along

the dorso-ventral axis of the embryo, where it probably acts as a dorsa-ventral

determinant during establishment of the dorso-ventral axis (Schroeder at at,

1999).
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Therefore, ER1 protein whole·mount antibody staining was used to

visualize the spatia-temporal localization pattern during early cleavage and later

developmental stages. During earty blastula stages, ER1 is found in the

cytoplasm (as shown by Western blotting, Figure 2.1) and is gradually localized

to nuclei at mid- and late-blastula stages. The staining in the cytoplasm at early

blastula stages is weak (almost similar to pre-immune staining). However, at

these stages, the cytoplasm/nuclei ratio in the embryos is quite high, since the

cells are very large. The staining is much darker at later stages when ER1 is

localized to nuclei, as the protein spread over a large cell becomes confined to a

smaller cytoplasm and a comparatively small nucleus. Although ER1 protein is

present during earty cleavage stages, nuclear localization only starts at mid­

blastula stages. The spatia-temporal localization pattern of ER1 indicates that

nuclear translocation of the protein is regulated during earty development.

Appropriate subcellular localization is crucial for the proper functioning of

proteins. Cytoplasmic localization is a way of regulating the functions of proteins

including DNA replication, transcription and nuclear transport There are several

examples of proteins whose functions are regulated by spatia-temporal

localization in Xenopus. For example, the Xnf·7 protein product, a maternally

expressed putative transcription factor, is cytoplasmic during early cleavage

stages in the Xenopus embryo and enters embryonic nuclei at mid-blastula

transition (Dreyer and Hausen, 1983; Miller et al., 1989; Kloc et al., 1989; Reddy

et 81., 1991b). Ultimately Xnf-7 becomes enriched in the nuclei of the cells of the
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central nelVOUS system at larval stages of development (Miller et al.. 1989).

OCT-1. a transcription activator in Xenopus, is also cytoplasmic until mid-blastula

stages after which it gradually translocates to nuclei and is highly abundant in the

nuclei of cells of ectodermal lineages during gastrulation (Veenstra et aI., 1995).

CCAAT, a matemal fact~r, which activates GATA-2 transcription in Xenopus, is

localized within the cytoplasm of the embryo, until the beginning of gastrulation,

when it becomes specifically translocated to the nucleus as zygotic GATA-2

transcription begins (Brewer et at, 1995). CRM1IXP01, a protein involved in the

specific export of proteins and RNA from the nucleus, is initially present in the

cytoplasm of embryos in an inactive form, and becomes functional during the

gastrula-neurula transition after which it becomes localized to the nuclear

membrane (KUdo et 81.. 1997).

The stUdy of processes involved in the regulation of the localization of

ER1 to the nucleus will be described in chapter 3.
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SECTION II ER1 IS DIFFERENTIALLY LOCALIZED

DURING EARLY DEVELOPMENT IN

XENOPUS EMBRYOS

CHAPTER 3 INVESTIGATION OF THE MECHANISM/S

REGULATING NUCLEAR LOCALIZATION OF

ER1 DURING EMBRYONIC DEVELOPMENT IN

XENOPUS

Note: Part of this chapter has been submitted for pUblication.

3.1 INTRODUCTION

Numerous proteins have been identified in Xenopus whose subcellular

localization is developmentally regulated (Dreyer, 1987). The germinal vesicle

(GV) accumulates a reserve of maternal RNA and proteins, which are required in

the early developmental stages of the embryo such as enzymes and precursors

for DNA synthesis, chromatin assembly, nuclear formation and transcription

(AJmouzni and Wolffe, 1993;von Dassow at al., 1993). During oocyte maturation,

the GV disintegrates and its proteins become distributed in the cytoplasm. Some

maternal proteins quickly re-accumulate into nuclei during early cleavage stages
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while others do not re.enter nuclei until blastula and gastl1Jla stages (Dreyer,

1967). Examples of these are: nucleoplasmin, which rapidly migrates to the

nuclei of the cleaving embryo after fertilization (Dreyer, 1967) and small nuclear

ribonucleo proteins (snRNPs), which enter the nuclei only during late blastula

and early gastrula slages (Zeller et al., 1983). Xnf7 and Oct-1 are transcription

factors that are also retained in the cytoplasm until mid-blastula to gastl1Jla

stages (Miller etaf., 1991; Veenstra et 81.,1999).

Different mechanisms in various cells have been identified that regUlate

retention of proteins in the cytoplasm. For example, members of the ReIJNF-KB

family of transcription factors are retained in the cytoplasm through interaction

with an inhibitor that is differentially phosphorylated (reviewed in Karin et aI.,

1999). NF-KB heterodimers usually exist in the cytoplasm as a complex with the

inhibitor IK8 Extracellular stimuli activate signalling pathways leading to

phosphorylation and subsequent proteolysis of IKB, thereby releasing and

enabling translocation to the nucleus of NF-xB heterodimers. In the case of Xnf­

7, a 22-amino acid cytoplasmic retention domain (eRD) functions cooperatively

with two phosphorylation sites within the Xnf-7 molecule to retain the protein in

the cytoplasm (Li et at, 1994)

The developmentally regulated nuclear translocation of ER1 indicates that

there is a tight control on nuclear localization of ER1 during early development.

Regulated nuclear localization is often a means of controlling the function of
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proteins such as transcription factors. Therefore, the controlled nuclear

localization of ER1 during earty Xenopus development may be an important

mechanism in regulating its activity. In this chapter, different regulatory

mechanisms that might control translocation of ER1 protein to the nucleus during

early development in Xenopus laevis were investigated.

3.2 MATERIALS AND METHODS

3.2.1 In vitro transcription of RNAs
Xenopus er1, Xenopus fibroblast growth factor receptor (FGFR1) and

dominant-negative FGFR (XFD, Amaya et aI., 1991) cRNA were prepared from

eDNA templates that had been previously subcloned in the sp64T vector using

the SP6 Ribomax large scale RNA production system (Promega Corporation)

and cap analogue (New England Biolabs, Inc.). The cap analogue is a 7-rnethyl

guanine residue, which is added ooto the 5' terminus of the RNA to increase its

stability and translation efficiency in Xenopus. The er1 and FGFR1 templates

were linearized with the restriction endonuclease Xba1 (Amersham Pharmaeia

Biotech) and the XFD template with EcoR1 (Amersham Pharmacia Biotech). The

following reagents were combined in a 1.5ml eppendorf tube: 10l-l1 SP6

5xTranscription buffer, 2.5J,.l.l each 100mM AT?, CTP and UTP, 1.5jJl 100mM

GTP, 10Jll 30mM cap analogue (New England Biolabs, Inc.), 10J.1.Q of linearized

eDNA template, 5jJ.1 SP6 RNA polymerase enzyme mix and nuclease-free H20 to
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a final volume of 100jil. The mixture was gently pipetted up and down, briefly

centrifug9d and incubated in a 370e water bath for two hours. After incubation,

5U (5~1) of RQ1 RNAse free DNAse (Promega Corporation) was added to

remove the cDNA template, and the reaction mixture was further incubated at

3t'C for 20 minutes. Then 200 ~l of nuclease-free H20 was added and

phenol/chloroform extraction was sequentially performed by addition of equal

volu.mes of buffer-saturated phenol and chloroform. The top aqueous layer

was removed and precipitated ovemight at _20°C with one tenth the initial

volume of 3M sodium acetate (Fisher Scientific), pH 5.2, and 2.5 volumes of

100% ethanol. The cRNA was palleted by centrifuging at 10,000g for 20

minutes. The pellet was washed three times with 70% ethanol and briefly

vacuum dried. The cRNA pallet was resuspended in 501-11 DEPC-treated H20.

To verify the presence of intact cRNA of the right size and the absence of

impurities such as cDNA, 1jiI of the each of the cRNA samples was run on a

0.8% agarose gel. Absorbance was measu~d at 260 and 280nm to determine

concentration, purity and integrity of the cRNA The cRNA samples were stored

at-70°C.

3.2.2 RNA injections
The cRNA was injected into embryos with a Drummond "Nanoinject"

Microinjeetor using 31/2" Drummond glass capillary tubes (Fisher Scientific). The
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needles were previously pulled vertically using a Narishige Model PB-7

micropipette puller and the tips bevelled at a 20° angle with a Narishige EG-40

grinder. For the overexpression studies, albino embryos were injected with 1·

20ng erl cRNA in the animal pole at two-cell stage. Albino embryos were

injected at two-cell stage in both cells with either 1ng en cRNA alone or co­

injected with 10n9 FGFR1 or 10ng XFD, for experiments involving disruption of

the FGF signalling pathway. All experiments were repeated 3·5 times and SO­

100 embryos/experiment were injected. Injection volumes were 4.6nl.

3.2.3 Whole-mount antibody staining

Albino embryos were collected at stage 6.5-7, S.5 and 9 and whole-mount

antibody staining was performed as preViously described (Luchman et at, 1999).

A 1;400 dilution of anti-ER1 antiserum (Paterno at. a/., 1997) and a 1:400 dilution

of alkaline-phosphatase-linked goat-anti-rabbit antibody (Invitrogen life

Technologies, Inc.) was used for staining. At each stage, 10·15 embryos were

stained per experiment, which were repeated 3-5 times.
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3.2.4 a-amanitin treatment and reverse transcriptionlpotymerase chain

reaction (RT/peR)

en cRNA was prepared using the Ribomax large scale RNA production

system (Promega Corporation) as described above. Embryos were injected with

DEPC~treated H20 or en cRNA (4 ng/embryo) plus or minus GC-amanitin (Sigma­

Aldrich) (50IJg/embryo; Newport and Kirshner, 1982 & Sible et al., 1997).

Embryos were processed for whole-mount staining as described above at stage

7,8 and 9. RNA was extracted from stage 8.5 and 10.5 embryos and processed

for RT/PCR as described below.

3.2.4.1 RNA extractfon

Ten whole embryos were transferred to 1.5ml eppendol1 tubes containing

1ml of Tn-Reagent (Invitrogen Life Technologies, Inc.) and homogenized with a

micropipette. RNA extraction was performed as instructed by the manufacturers.

After the reaction, total RNA was re-suspended in 39~t1 of DEPC-treated dH:p.

Remaining traces of DNA were removed by incubating for 20-30 minutes in a 37°

C water bath with O.1U (1JlI) of RNAguard RNase inhibitor (Amersham

Pharmacia Biotech), 5JlI 10X transcription buffer (400mM Tris~HCL, pH 7.5,

60mM MgCI2, 20mM spermidine (Invitrogen Life Technologies Inc.) and 5U (5Jll)

RQ1 RNAse free DNase (Promega Corporation). After incubation, the final
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volume in each tube was adjusted to 100jJ.1 with OEPC·treated dH20 and

phenol/chloroform extracted with equal volumes of buffer·saturated phenol and

water·saturated chloroform. The remaining aqueous layer was precipitated with

2.5 volumes of 100% ethanol and one tenth volume of 3M sodium acetate, pH

5.2 at _200 C ovemight then centrifuged at 40 C for 25 minutes at 10,000g. The

supematants were removed and the pellets were washed with 70% ethanol. The

pellets were briefly vacuum dried, re-suspended in OEPC·treated dH20 and

stored at _700 C. The concentration and integrity of the RNA was examined by

absorbance and by gel electrophoresis.

3.2.4.2 Reverse transcription of isolated RNA

About 200ng of each extracted RNA sample was diluted to a final volume

of 15jJ.1 with OEPC·treated dH20 in 0.5ml Eppendorf tubes. 2jJ.1 of 100ng/ml

random hexanucleotide primers (Boeringher Manheim) was added to each tube,

after which the RNA was denatured at 70° C for 10 minutes and placed

immediately in an ice bath to prevent intemal pairing of RNA strands and allow

annealing of the primers to the RNA. To each tUbe, a reverse transcription

mixture consisting of 8jJ.1 first strand buffer (Invitrogen life Technologies Inc.), 8jJ.1

of 2.5mM deoxyribonucleotide triphosphates (dNTPs, Amersham Pharmacia

Biotech), 4jJ.1 100mM on (Invitrogen life Technologies Inc.), 1 jJ.1 RNAguard

RNAse inhibitor (Amersham Pharmacia Biotech) and 2jJ.1 M-MLV reverse
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transcriptase (Invitrogen Life Technologies Inc,) was added. The reaction

mixtures were incubated at 3r C for one hour after which the resulting eDNA

samples were kept frozen at _200 C,

3.2.4.2 peR of reverse transcribed products

A premix was prepared for PCR amplification reactions (10mg/ml 10xPCR

buffer (Invitrogen Life Technologies Inc.), 1.5mM MgCI2 (Invitrogen Life

Technologies inc.), O.8mM dNTPs (Amersham Phamacia Biotech), 2ng/mt each

primer of 1 set of specific primers (Oligos Etc.), 0.02 U/J.l1 platinum Taq DNA

polymerase (Invitrogen Life Technologies Inc.), and 50 jJ.Curieslml [32p)ATP

(Amersham Pharmacia Biotech) in dH20), Histone H4, was used as an internal

control with 5'-eGGGATAACAnCAGGGTATCACT-3' and 5'-

ATCCATGGCGGTAACTGTCTTCCT-3' as forward and reverse primers. EF1-a::

was amplified using 5'-CCTGAATCACCCAGGCCAGATTGGTG-3' and 5'·

GAGGGTAGTCTGAGAAGCTCTCCACG-3', In O.5ml thin·walled eppendorf

tubes (Fisher Scientific), 48j.l.1 of the master mix was added to 2J.l1 of reversed

transcribed eDNA. The reaction mixtures were vortexed briefly and 50j.iJ of light

mineral oil (Fisher Scientific) was added to the top of the mixtures to prevent

evaporation during thermocycling. A Perkin Elmer Thermal Cycler was used for

the thermocycling reactions. The [32P)ATP·labelled PCR products were analyzed

in the linear range for amplification, using the following program:
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1 cycle: 94°C, 5 minutes for activation of enzyme

'x' cycles: 55°C, 1 minute for annealing of primers

72°C, 1 minute for primer extension

94°C, 1 minute for denaturation

1cycle: 55°C, 1 minute for annealing of primers

72°C, 7 minutes for primer extension.

'x' was empirically determined to be 22 cycles for Histone and 24 cycles for EF1­

<:c. The PCR products were examined by a 6% polyacrylamide/6M urea gel

electrophoresis and autoradiography.

3.2.5 lmmunoprecipitatlon and Western Blotting

Extracts from embryos at different stages were prepared for Western

blotting as described in Chapter 2, except 50 mM sodium pyrophosphate, 50 mM

sodium fluoride. and 1mM sodium vanadate were added to the extraction buffer

to prevent dephosphorylation. Extracts were immunoprecipitated with a 1:50

dilution of anti-ER1 antiserum (Paterno et. aI, 1997) overnight at 4°C, 50 ,.u of

Protein-A-Sepharose (Amersham Pharmacia Biotech) was added and the

mixture was rotated at 4 °c for one hour. The Sepharose protein was wash~
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three times with 1ml extraction buffer plus phosphatase inhibitors and twice with

1ml 150mM NaC!. To each sample, 35 ~I of sample buffer (50mM Tris pH 6.8,

2% sodium dodecyl sulfate (SOS) (Fischer Scientific) was added and the

samples were boiled for 4 minutes. The protein was resolved on an 8%

acrylamide gel and transferred to a nitrocellulose membrane (Hybond ECl,

Amersham Pharmacia Biotech). The membranes were stained with a 1:1000

dilution of biotin-conjugated anti-phosphotyrosine (Upstate Biotechnology, Inc.),

anti-phosphoserine (Sigma-Aldrich) or anti-phosphothreonine (Sigma-Aldrich).

Detection of ER1 protein was performed by loading 150 ~g of total embryo

extract for uninjected embryos or 7.5 ~g total embryo extract for er1·injected

embryos and staining with a 1:5000 dilution of ER1 antiserum. The Femtolucent

system (Chemicon Intemational, Inc.) was used for chemiluminescence

detection. To compare expression levels of ER1 in H20·injected and er1 cRNA

injected embryos, densitometric analysis was performed using a Canberra·

Packard Chemilmager.
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3.3 RESULTS

Several possible mechanisms were investigated in order to characterize

the localization of ER1 to the nudeus.

3.3.1 ER1 Is localization to the nucleus does not require zygotic

transcription

The localization of ER1 to the nucleus appear to coincide with the start of

zygotic transcription at mid-blastula stages. The possibility that targeting of ER1

to the nucleus was dependent on protein(s) translated from zygotic message(s)

was therefore examined. Zygotic transcription was inhibited to determine jf

nuclear translocation is dependent on newly transcribed gene products.

Xenopus embryos were injected with or without a-amanitin, an inhibitor

of RNA polymerases II and Ill, and/or with er1 cRNA. Co-injection was provide

high concentrations of ER1 and a-amanltin at the same site. Subcellular

localization of ER1 antibody staining was examined at several stages in whole­

mount antibody preparations (Fig. 3.1). In both er1-injected and er1/a-amanitin

injected embryos, ER1 remained cytoplasmic at stage 7 (Fig. 3.1A &.6), was first

found in the nuclei (see arrowheads in Fig. 3.1C & 0) at stage 8 and became

nuclear at stage 9 (Fig. 3.1E & F). Thus, no difference was detected in the

subcellular localization pattern of ER1 in er1-injected compared to er1/a-amanitin
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co-injected embryos, and both pattems were the same as that of endogenous

ER1, previously described (Luchman at al. 1999)

To verify that (l~amanitin was effective in blocking zygotic transcription, the

expression levels of elongation factor 1~o:: (EF1·o::) was examined by ~p.

radiolabelling using RT·PCR (Fig. 3.2). EF1·o:: is a maternal gene whose

expression level increases dramatically through zygotic transcription (Krieg at al.,

1989). Our results show that the expression level of EF1-o:: increases

significantly in post-MBT embryos (Fig. 3.2, lanes 1 and 4; 2 and 5), but not in a~

amanitin-injected embryos (Fig. 3.2, lanes 3 and 6).
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a-amanitin
+

Figure 3.1 Translocation of ER1 to the nucleus is not dependent on zygotic
transcription.
Fertilized embryos were injected with 4n9 e,1 cRNA plus (+) or minus (-)
a-amanitin as descibed under "Materials and Methods~ and cultured until
they reached stage 6.5-7, 8 or 9. Whole mount staining was performed as
described under "Malerials and Methods", Nuclear staining first appears at
stage 8 (red arrowheads B and D). A total of 10-15 embryos per stage were stained
for each experiment and the experiment was repeated three times. Embryos
were photographed with the animal hemisphere facing up. Scale bar, 0.1 rom.
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Figure 3.2 The expression of zygotic EF1-a is blocked bya-amanitin.
Total RNA (8 embryos per condition) was extracted at blastula (lanes
1-3) or gastrula stages (lanes 4-6) from DEPC-H20 injected (lanes 1
and 4), ert cRNA injected (lanes 2 and 5) or ert plus a~amanitin

injected (lanes 3 and 6) embryos and analyzed by 32P-labelled RT-PCR
as described under "Materials and Methods". The positions of EF1-a and
Histone H4 PCR products are indicated on the right.
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3.3.2 Overexpressed ER1 is localized In the nucleus

The second possibility investigated was that ER1 is retained in the

cytoplasm through its association with an inhibitor or anchor protein, as is the

case for NF-kB (reviewed in Karin, 1999) and Xnf-7 (Li at 81.,1994), respectively.

Inhibitor proteins mask the nuclear localization signals and prevent nudear

localization; for example, h::B associates with NFkB and prevents it from

localizing to the nucleus (reviewed in Karin, 1999) Other proteins such as Xnf-7

have a cytoplasmic retention domain through which it associates with a

cytoplasmic protein, and is anchored and retained in the cytoplasm (Li et al.,

1997). ER1 protein was overexpressed to titrate any possible protein causing

retention of ER1 in the cytoplasm.

Embryos were injected with 1-20n9 of er1 cRNA and ER1 protein was

visualized by whole-mount antibody staining at stage 6.5, 8 and 9 (Figure 3.1A,

C, and E, shows staining pattern of embryos injected with 4n9 of er1 cRNA). The

staining pattern in the overexpressed embryos (Figure 3.1A, C, and E) was the

same as for endogenous ER1 (Fig. 2.2, B, D and F). ER1 remained cytoplasmic

at stage 7, (Fig. 3.1A), was first found in the nuclei, (arrowheads in Fig. 3.1C), at

stage 8, and became nuclear at stage 9, (Fig. 3.1E). This pattern was also

observed when higher concentrations were injected. As can be seen in Fig.

3.3A(1I), injection of as much as 20n9 of en cRNA did not lead to premature

translocation of ER1 to the nucleus at stage 6.5, a stage where endogenous ER1
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is exclusively cytoplasmic (Luchman et al., 1999). Injection of 20ng of er1 cRNA

did not affect localization of ER1 to the nucleus at stages 8 and 9, the pattern of

nuclear localization was the same as for endogenous ER1. That ER1 was indeed

overexpressed in these embryos was verified by Western blot (Fig. 3.38). Using

densitometric analysis, the level of ER1 in injected embryos was determined to

be in vast excess over endogenous ER1, at approximately 1DO-fold.
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Figure 3.3 Overexpression of ER1 does not lead to premature targeting
to the nucleus
(A) Fertilized embryos were injected with either CEPe H20 (I) or 20 n9
ef1 cRNA (II), fixed at stage 6.5 and stained by whole mount staining as
described under· Materials and Methods". (B) ER1 protein was collected
from DEPc-.H20 injected (0) and erl cRNA injected (+) embryos; Western
blotting with anti·ER1 was pertormed as described (Luchman at al.• 1999).
Due to the high levels of ER1 protein in the er1-injected embryos, only 7.5
~g of total embryo extract was loaded (lane 2), while 150 ~g of extract from
CEPe-H2o injected embryos was loaded (Ianel). Scale bar, 0.1 rom.
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3.3.4 XFD injections disrupts nuclear localization of ER1

Given that en transcription is activated in response to FGF (Paterno at aI.,

1997), a possible connection between nuclear localization of ER1 and the FGF

signalling was investigated. The FGF signalling pathway was disrupted by co­

expressing a dominant-negative FGF receptor, XFD, with ER1 in order to

determine jf nuclear translocation of ER1 was dependent on the FGF signalling.

Embryos were injected with 1ng of erl cRNA alone or co-injected with

either. 1-10ng of wild-type Xenopus FGFR1 cRNA, or 1-10ng of the dominant­

negative receptor, XFD, cRNA. Wholemount staining for ER1 was per10rmed at

stage 9 since we had previously shown that, in the animal hemisphere, ER1 was

exclusively nuclear at this stage (Luchman et al., 1999). Embryos were also

scored morphologically. Embryos injected with XFD cRNA had truncations in the

trunk and posterior region as previously reported by Amaya et a/., (1991). In

embryos expressing both ER1 and XFD, a significant proportion of the cells

around the injection site exhibited cytoplasmic staining at aU concentrations of

co-injected XFD. Fig. 3AA shows the pattern obtained when the highest

concentration of XFD, 10ng, is co-injected with erl. In cells co-expressing wild­

type FGFR1 and ER1, on the other hand, staining was exclusively nuclear, even

when 10ng of wild-type FGFR1 was co-injected with erl (Fig. 3.48); the latter

was similar to the staining pattern of cells expressing ER1 alone (Fig. 3AC) as

well as to the pattem of endogenous ER1 staining previousty described
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(luchman et al., 1999). These results suggest that, nuclear translocation of ER1

is dependent on events triggered by FGF signalling.
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Figure 3.4 Nuclear translocation of EA1 Is dependent on FGF signalling
Fertilized embryos were Injected with 1ng ar1 cRNA alone (C) or with 10ng
XFD (A) or FGFA (8) as described under "Materials and Methods' and cultured
until they reached stage 9. Whole mount staining was periormed as described
under "Materials and Methods". At the bottom of each panel, a magnified view of
the injection site in the embryo on the left is shown. Examples 01 cytoplasmic
staining are indicated by arrowheads and nuclear staining by arrows. A total of
10-15 embryos per stage were stained for each experiment and the experiment was
repeated five times. Embryos were photographed with the animal hemisphere facing
up. Scale bar, 0.5 mm (white) 0.2 mm (black).
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3.3.5 Different phosphorylated proteins are associated with cytoplasmic

and nuclear ER1 \

Signal transduction cascades initiate events such as protein-protein

interactions, protein phosphorylation and protein dephosphorylation.

Furthermore, retention of nuclear proteins in the cytoplasm is often regulated by

phosphorylation (Dreyer, 1987). Differential phosphorylation was therefore

examined as a potential mechanism for the regulation of ER1 targeting to the

nucleus.

Embryo extracts were immunoprecipitated with anti-ER1 antibody at

stages when ER1 is either predominantly cytoplasmic (Reynolds et at, 1996) or

predominantly nuclear (Ryan and Gillespie, 1994). Western blots were stained

with anti-phosphotyrosine, anti-phosphothreonine, anti-phosphoserine or anti­

ER1. Staining with anti-ER1 resulted in detection of a single band, with no

evidence of additional slower migrating bands that might represent

phosphorylated forms (Fig. 3.5, 'lane 3). This is consistent with our previous

findings that ER1 was present as a single band at all developmental stages

examin6d (Luchman £It al., 1999). In addition, ER1 did not co-migrate with any of

the observed phosphoprotein bands (Fig. 3.5, lanes 1-6). Taken together, these

results indicate that ER1 is not itself phosphorylated.

Staining with anti-phosphothreonine did not reveal any reproducible bands

(results not shown), while staining with anti-phosphotyrosine and anti­

phosphoserine revealed several bands co-precipitating with ER1 (Fig. 3.5, lanes
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1-2, 4·5). Of the two phosphotyrosine bands detected, neither exhibited

differences in intensity between stage 7 and 9 (Fig. 3.5, lanes 1 and 2).

Four phosphoserine bands (Fig. 3.5, arrowheads) of calculated molecular

weight 226, 118, 76 and 38 kDa were detected and a significant decrease in the

level of the latter three were detected at stage 9 when compared to stage 7 (Fig.

3.5, lanes 4-5). The 226 kDa band, on the other hand displayed little difference

in intensity between the two stages. The identity of these phosphoserylproteins

is presently unknown; therefore, I cannot measure their expression level to

determine whether the differences in band intensity are due to changes in the

amount of associated protein or due to changes in the level of phosphorylation.

Interestingly, stage 9 embryos injected with XFD did not display these changes

(Fig. 3.5, lane 6), but rather retained the phosphoserine pattern seen at stage 7,

in which ER1 is retained in the cytoplasm (Fig. 3.5, compare lanes 6 and 4

respectively).
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Figure 3.5 Changes in ER1-associated phophoserylproteins during early development
are correlated with ER1 nuclear translocation.
Embryo extracts (150 embryos/sample) were obtained from stage 7 (lanes
1 and 4) and stage 9 (lanes 2 and 5) embryos and from stage 9 embryos
injected wi1h XFD cRNA (lane 6). Immunoprecipitation and Western blotting
were performed as described in "Materials and Methods", The Western blot
was stained with anti-phosphotyrosine (lanes 1,2) and antiphosphoserine
(lanes 4-6). For comparison, total embryo extract was loaded in lane 3 and
stained with anti-ER1. The arrowheads indicate the four phosphoserine bands
while the square bracket indicates the heavy chain of IgG. The positions of the
molecular size markers is indicated on the right.
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3.4 DISCUSSION

ER1 translocates to the nucleus in NIH 3T3 transfected cells (Paterno at

81., 1997; Post at ai"~ 2001) however, in Xenopus embryos the timing of nuclear

translocation is precisely regulated Therefore, there must be intrinsic

mechanisms present in the embryo, regulating nuclear translocation of ER1

during early development. This may be an important mechanism for regulating

ER1 activity during early development. Elucidation of these regulatory

mechanisms would, therefore, provide clues to the function of ER1 in the

embryo.

Recently, an NLS, 463RPIKRQRM04n, similar to the core FIlLS directing the

human c·MYC protein to the nucleus (Makkerh at af., 1996) was identified near

the C·terminus of ER1. This sequence was found to be necessary and sufficient

for ER1 targeting to the nucleus in NIH 3T3 cells (Post at 8/., 2001). The

presence of a functional NlS in the ER1 sequence oonfinns that the importin

transport machinery has the ability to mediate the localization of ER1 to the

nucleus. However, the presence of an NlS on a protein is not always sufficient

to direct its nuclear import. For example. the NlS may be modified or masked so

that it is no longer recognized by the nuclear transport machinery. Masking the

NlS may be achieved by post·translational modifications such as

phosphorylation or intra- or inter-molecular interactions. The protein is then

sequestered in the cytoplasm until the NlS is unmasked, as is the case for the
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proteins of the NF-KB family. NF-KB heterodimers usually exist in the cytoplasm

as a complex with the inhibitor IKB. Extracellular stimuli activate signalling

pathways leading to phosphorylation and subsequent proteolysis of h,Boc,

thereby releasing NF-KB heterodimers and enabling translocation to the nucleus

(reviewed in Karin at a/.. 1999).

Furthermore, as discussed earlier, an NLS-<:ontaining protein might be

anchored in the cytoplasm by binding another protein as seen for Xnf·7 (Li at aI.,

1994). Cadherins act as anchors for proteins such as p..catenin in the cytoplasm

(reviewed in Ben-Ze'ev, 1999). My overexpression.study attempted to titrate out

any such factor.

Overexpression of ER1 did not result in its nuclear translocation. Although

the possibility that a regUlatory factor(s) is present at high enough concentration

to prevent complete titration cannot be ruled out, the 100-foJd overexpression of

ER1 in injected embryos over uninjected embryos makes it unlikely that at least a

partial titration would not have been observed. These considerations suggest

that translocation of ER1 to the nucleus is not regulated by binding to an inhibitor

or anchor protein and it is hypothesized that nuclear translocation of ER1 is

regulated by another mechanism such as differential phosphorylation or

interaction with a positive regulatory protein. This eventJs may be triggered by a

signalling pathway such as the FGF signalling pathway, which has previously

been shown to activate er1 transcription in Xenopus (Paterno et a/., 1997)
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Nuclear translocation of ER1 does seem to be dependent on events

triggered by the FGF signalling cascade since ER1 remained cytoplasmic in

embryos injected with XFD, a dominant-negative FGFR, which shuts down the

FGF signalling pathway. The pattern of nuclear translocation of ER1 is

consistent with the same spatia-temporal pattern as the FGF signalling pathway

during early development. FGF triggers several signal transduction cascades in

the embryo: both the P13' kinase and the ERK (MAPK) pathways are involved in

mesoderm formation (Carballada et al., 2001). Although some FGFs are

expressed maternally, FGF signalling through MAPK is initiated at blastula

stages (Christen & Slack, 1999). ERK activity is first detected at stage 8 in the

embryo and at gastrula stages ERK is expressed in a ring around the newly

formed mesoderm region in Xenopus embryos (Christen & Slack, 1999). ER1 is

also first seen in nuclei of mesodermal cells at blastula stages (Luchman et 8/.,

1999).

Signal transduction cascades triggered by mitogens often result in events

such as phosphorylation, dephosphorylation or protein-protein interaction and in

tum may initiate nuclear translocation of certain proteins. For example, STATs

are transcription factors that are involved in eliciting transcriptional effects in

response to cytokine signalling. Nuclear translocation of STATs is dependent on

receptor signalling by molecules such as EGF, PDGF or CSF-1, subsequent to

which members of the Janus kinase (JAK) family are recruited to the receptor.

The JAKs phosphorylate the cytoplasmic domains of the tyrosine kinase
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receptors, which in tum recruit $TAT members to the receptor via their SH2

domains. Once the STATs are receptor associated, they are phosphorylated by

the JAKs on their essential tyrosine residues. Following phosphClfy1ation, the

STATs homo- or heterodimerize, and are translocated to the nucleus, where they

can activate transcription (reviewed in Cartwright and Helin, 2000).

Several other proteins have been shown to localize to the nucleus

following stimulation by mitogens. For example, in PC12 cells, the localization of

the transcription factor FnIL-6 (which binds to the serum-response element

(SRE) in the c-fos promoter in response to cAMP) changes following stimulation

of cells with forskolin, which raises intracellular cAMP levels. FNIL-6 is IlOnnatly

located in the cytoplasm of untreated cells but becomes predominantly nuclear

after treatment with forskoHn. This re-distribution correlates with an increased

phosphorylation of FNIL-6 (reviewed in Vandromme at 8/.. 1996).

localization of four proteins involved in gene expression (c-fos and c-myc)

or replication (DNA polymerase a and proliferating cell nuclear antigen (PCNA»)

are subject to significant variation during celt cycle progression. In serum·

starved NIH 3T3 cells, the proteins accumulate in the cytoplasm, whereas serum

stimulation triggers nuclear translocation of c-fos and c-myc, foHowed by PCNA

and DNA polymerase (l (Vriz at 81., 1992). c-fos nuclear translocation is

dependent on continuous stimulation of the celt with mitogens. It was shown that

stimulation of quiescent cells with agents that raise intracellular cAMP levels
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restored the nuclear translocation of c-fos in serum-starved cells (Roux et aI"

1990).

The phosphorylation results for ER1 demonstrate a link between nuclear

translocation and changes in ER1-associated phosphoserylproteins and suggest

that these changes are triggered by FGF signalling.

However, athough Phospho-antibodies provide a relatively simple and fast

way to analyze phosphorylation in vivo, there are some inherent problems which

have to be considered when using these antibodies. Phosphospecific antibodies

do not always detect phosphorylation of certain proteins due to sterie hindrance

of the recognition sites. This is specially true for phosphothreonine and

phosphoserine antibodies Kauffmann et al., 2001). Furthennore, antibodies

against phospho-serine and phospho-threonine are generally not specific enough

to detect one phosphorylated serine or threonine side chain although they are

specific for sequence motifs containing phospho-serine or phospho-threonine.

This is because the epitope presented by a single phosphorylated serine or

threonine side chain is too small (reviewed in Sickmann & Meyer, 2001; Sun at

af., 2001). The use of phospho-specific antibodies can also result in the isolation

of non-phosphorylated species along with the phosphorylated species of interest

(Conrads at al., 2002). Detection of phosphorylation of ER1 or associated

proteins may also have been limited by the relative abundance of the

phosphorylated protein species; low levels of phosphorylated protein may not

have been detected by the antibodies. Therefore, it is possible that, for the
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reasons stated above, the phosphorylation profile of ER1 and proteins

associated with it during nuclear localization has not yet been fully resolved.

Furthennore, the possibility that the aitica1 event triggered by FGF

signalling is interaction with a non-phosphoprotein that 'NOuld thus have not been

detected by the antibodies used cannot be ruled out. The results with oc:-amanitin

suggest that these phosphoserylproteins are not zygotic proteins, but either

maternal proteins or proteins translated from maternal message

The results presented in this chapter suggest that nuclear translocation of

ER1 is regulated by changes in ER1-associated phosphoserylproteins, triggered

by the FGF signalling pathway. in Xenopus embryos.
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SECTION III

CHAPTER 4

INVESTIGATION OF THE FUNCTION OF ER1

ANALYSIS OF PUTATIVE

TRANSACTIVATION FUNCTION DOMAINS

IN ER1 PROTEIN

Note: Part of this chapter was previously published in Patemo at al. (1997). The

results presented here represent solely the thesis author's contribution to the

manuscript

4.1 INTRODUCTION

The N-terminus of ER1 includes several highly acidic stretches (Fig. 1)

characteristic of the acidic activation domains of many transcription factors

(Ptashne, 1988). ER1 also contains a proline-rich sequence near the C-terminus

which corresponds to the PXXP motif found in all high affinity SH3-domain binding

ligands (Cohen at aI., 1995). As previously discussed in this thesis, a nuclear

localization signal (NLS), ~RPIKRaRMDm, found to be necessary and sufficient

for targeting to the nucleus, was identified near the carboxy terminus of ER1 (Post

at aI., 2001). These domains are highly characteristic of transcription factors.

Transcription factors or regulators fall into two classes, those that activate

transcriptioo (activators) and those that inhibit it (repressors). However, it has
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become increasingly dear that there are several factors, that are capable of

performing both these functions (Roberts and Green, 1995). Transcriptional

activation domains, which are better characterized than transcription repression

domains, have been loosely classed according to their amino acid composition

(Hampsey, 1998; Orphanides et a/., 1996; Ptashne & Gann, 1997): regions rich

in acidic amino acids, glutamine, or proline regions and bUlky hydrophobic

residues. Other that these general characteristics, activation domains do not

show apparent sequence conservation (reviewed in Melcher, 2000). Typical

examples of acidic activation domains are the potent activation domains of the

herpes virus VP16 protein and yeast GAl4 protein (Cress & Triezenberg, 1990).

Repression domains are less well characterized than activation domains

(Johnson, 1995; Gashler at 8/., 1993). A few of the known repression domains

are rich in alanine (Licht et aI., 1990), basic amino acids (Baniahmad et al., 1992)

and prolines (Han & Manley, 1993; Ostling et 81.,1996; Madden at af., 1991).

Transcription factors are synthesized in the cytoplasm and must

translocate to the nucleus at some stage in order to potentially activate

transcription. ER1 was shown to localize to the nuclei of Xenopus embryos

during certain developmental stages (chapter 2; Luchman et aI., 1999). In this

chapter, the ability of nuclear ER1 to intrinsically regulate transcription during

Xenopus embryo development was investigated.

125



4.2 MATERIALS AND METHODS

4.2.1 Cell culture

NIH 313 cells (American type Culture Collection) wefe grown in tissue

culture medium (13 giL (w/v) Dulbecco's Modified Eagle Medium (DMEM,

Invitrogen), 3.7 gil (wlv) NaHC03, 10% (vlv) calf serum, 50 UlL Penicillin

(Invitrogen Ufe Technologies Inc.), and 50~g/ml Streptomycin (Invitrogen Ufe

Technologies Inc.) in dHzO) at 37 ~C, 10% CO2. Cells were trypsinized (0.025%

(v/v) trypsin (Invitrogen Life Technologies Inc.) in PBS/EDTA (137 mM NaCI

(SOH), 2.7 mM KGI (Fisher Scientific), 1.4 mM KHzPO.. (Fisher Scientific), 8.1

mM NazHPO.." 7H~ (Fisher Scientific), and 1mM EDTA (Fisher Scientific) in

dHzO»), passaged at a 1:5 dilution every three days, and plated into fresh 100

mm tissue culture dishes. Stocks of cells were frozen at -70G e in calf serum plus

10% (v/v) DMSO.

4.2.2 Plasmid construction

The expression vectors used were engineered to oontain various regions

of ERl fused to the GAL4 BD (DNA binding domain) of the pM plasmid

(CLONTECH) a~d are named according to the amino acids of ER1 that each

encodes. Specific primers inoorporating 5' and 3' Bgnl sites (ER 1-493 and ER

176-493) or a 5'EcoR1 and a 3' BamH1 site (ER 1-175 and ER 1-25) were used
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to amplify PCR fragments encoding the appropriate amino acids. The digested

PCR fragments were inserted into the complementary sites of the pM plasmid,

and all plasmids were sequenced to verify the insertion junctions, the en

sequence and the proper reading frame. ER 1-98 and ER 1-57 were generated

by digesting the ER 1·175 construct with Pst! or Pvull respectively, and re­

ligating the largest fragments.

4.2.2 Transient transactivation assays

0.5 Ilg of a chloramphenicol acetyl transferase (CAT) reporter plasmid

(pG5CAT, CLONTECH) was co-transfected into 3 x 10$ cells with 1.0).1g of either

the pM vector alone or one of the pM-en fusion constructs using 12111

LipofectAmine reagent (Invitrogen Life Technologies Inc.) according to

manufacturer's directions. After 48 h, celt extracts were prepared and assayed

for CAT enzyme activity using a CAT enzyme-linked immunosorbent assay kit

(Boehringer Manheim) according to the manufacturer's directions. The amount

of CAT was normalized with the protein concentration.

4.2.3 Immunocytochemistry

For ER1 immunocytochemistry, NIH 3T3 cells were cultured and

transfected with either 1f.19 of pcDNA3 vector (Invitrogen Life Technologies Inc.)

or with 1J.1Q en-pCONA3 using LipofectAmine as described above. Following 24h
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transfection, cells were trypsinized with 0.025% trypsin in PBSJEDTA as

described" above and plated on chamber slides (Labtek, Nalge Nunc

Intemational). At 48h after transfection, the cells were fixed with 4%

paraformaldehyde (Fisher Scientific) in PBS, pH7.2, and processed for

immunocytochemistry using an anti·rabbit antibody detection system (Santa Cruz

Biotechnology ABC staining system) as described below. The chamber slides

were sequentially washed in PBS, incubated for 10 min in 0.2% Triton X~100

(Fisher Scientific) in PBS, incubated for 20 min in 1.5% normal goat serum in

PBS, transferred to a 1:50 dilution of anti-ER1 antibody (Patemo et 81., 1997) in

normal blocking serum, incubated at RT for two hours, washed in 0.2% Triton X­

100 in PBS twice for 10 min each. The slides were incubated for 30 minutes at

RT in normal blocking serum containing a 1:200 dilution of biotinylated goat-anti

rabbit IgG secondary antibody, washed once with 0.1% Triton X-10D in PBS for 3

min and once with PBS for 3 min. The avidin-biotin-HRP complex from the

detection kit was added to the slides for 30 min, followed by washing in PBS for 3

min. Detection was performed by DAB staining (Sigma-Aldrich) for 4-7 min or

until a brown colour developed. The gasket was then removed from the slides

and the slides were mounted in a 10% glycerol in PBS solution and viewed under

light compound microscope.
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4.2.4 Protein anatysis

For Western blotting, transiently transfected cells were lysed in the CAT

lysis buffer (Boeringher Manheim) on ice for 30 minutes. The protein extracts

were centrifuged at 4°C to pellet the insoluble proteins. The soluble proteins in

the supernatant were precipitated with 100% acetone on ice for 25 minutes

followed by centrifugation at 10,000g for 20 minutes. Protein pellets were

washed with 70% acetone, dried under vacuum and prepared for 50S·

polyacrylamide gel electrophoresis as described Chapter 2. Protein levels were

standardized with the Bio-Rad assay kit as per the manufacturer's directions and

sUbjected to electrophoresis and equal amounts of total protein (200Il9) was

loaded in each well in the gels. Western blots were stained with a 1:1000 dilution

of anti·ER1 antiserum (Paterno at a/., 1997) or a 1:500 dilution of anti.pGAL4

antibody (UBI) as described in Chapter 2 and Western blots were analyzed using

the Chemican detection system (Chemicon Intemationallnc.).

4.3 RESULTS

Subcellular localization of the. ER1 protein was verified using a polyclonal

anti~ER1 antibody to stain transfected NIH 3T3 cells. To test whether ER1

contains transactivation activity, ER1 protein was fused to the ONA·binding

domain of yeast GAL-4 (GAL-4 BO) and the effect of the fusion on CAT reporter

activity was examined. Furthermore, to identify domains in ER1 that may
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mediate its transcriptional effect, deletion mutations of full length ERl eDNA were

constructed and fused to GAL-4 DNA binding domain.

4.3.1 ER1 localizes to the nucleus in transiently transfected cells

Anti-ER1 antibody, directed against a synthetic C-tenninal peptide,

recognizes full-length ER1 protein synthesized in vitro (Paterno at al.. 1997) and

specifically stains the nudei of cells expressing ER1 (Fig. 4.1 B). Cells transfected

with the pcDNA3 vector alone (Fig. 4.1 A) as well as pcDNA3-erl transfected cells

stained with pre-immune serum (data not shown) gave similar patterns and no

specific nudear staining.
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Figure 4.1 Nuclear localization of ER1 in transiently transfected NIH 3T3

cells.

NIH 3T3 cells were transfected with either the pcDNA3 vector alone

(A) or er1-pcDNA3 (B). After 48 h, cells were fixed and stained with

anti-ER1 as described in the "Materials and Methods" section. ER1

is localized within the nucleus in transfected NIH 3T3 cells (B).
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4.3.2 ER1 has transactlvatlon activity.

The fact that ER1 is targeted to the nucleus and that its N-terminus contains

stretches of acidic residues characteristic of acidic activation domains (Paterno et

8/.• 1997), suggests that ER1 may function as a transcription factor. This hypothesis

was investigated by testing the transactivation potential of various regions of the

ER 1 protein. Constructs, containing different regions of arl fused to the GAL4 DNA

binding domain, were used along with a CAT reporter plasmid in transient

transfections. Assays of CAT enzyme levels revealed that, although full-length ER1

did not activate transcription, the N-tenninal region (ER 175), containing all four

acidic amino acid regions stimulated transcription 1D-fold (Fig. 4.2) The

complementary C-terminal portion, ER 176-493, on the other hand, had no

transactivational activity. Interestingly, deletion of the fourth acidic stretch to

produce a construct containing only the first three acidic stretches (ER 1-9B),

resulted in a much more potent transactivator that stimulated transcription BO-fold

(Fig. 4.3). These results suggest the presence of a negative regulatory region in

amino acids 99--175. Further truncation of the N-terminus to generate ER 1·57 and

ER 1-25 completely abolished transactivation. These results demonstrate that the

N-terminus of the ER1 protein contains regions with transcription transactivating

activity and that ER1 has the potential to function as a transcription factor.

In addition to the previously published results, (Paterno et 81., 1997)

described in section 4.3.2, transient transfections and CAT assays were performed

with a deletion construct lacking the fourth acidic stretch (ERA99-175). This
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construct did not give any detectable CAT activity, although it lacked the putative

negative regulatory region (amino acids 99-175). This additional result suggests that

there may be additional negatively acting domainls in the C-terminal portion of ER1.

This idea is also supported by the fact that full-length ER1 does not activate

transcription.
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Figure 4.2 The N terminus of ER1 functions as a transcriptional activator.
NIH 3T3 cells were transiently transfected with various GAL4-ER1
fusion constructs along with a CAT reporter plasmid. After 48 h, CAT
enzyme levels were measured as described in the -Materials and
Methods~ section. Vector denotes the control pM plasmid, containing
only the GAL4 DNA binding domain, whereas the numbers indicate
the amino acids of ER1 encoded by each construct. The value for
each construct represents the fold activation relative to the pM
plasmid, averaged from 3 to 12 independent transfections.

134



In order to verify that the differences in fold transactivation of the different

constructs were not due to unequal translation of the different constructs, equal

amounts of total protein from NIH 3T3 cells transfected with the different

constructs were resolved on an 8DS-PAGE gel, transferred to nitrocellulose

membrane and stained with anti-pGAL4 antibody. The Westem blot shows that

the different constructs yield varying amounts of fusion protein (Figure 4.3).

The highest level of protein detected was for the full-length protein (ER 1-493),

which does not have any transactivation activity in the CAT assay. Less protein

was detected for ER 1-175, which activates transcription 10-fold, than for the full­

length protein. Surprisingly, no protein was detected for ER 1·98 (lane 6), which

has the highest transactivation activity in the CAT assay (Figure 4.2). In contrast,

protein was detected for both ER 176-493 (lane 3) and ER.199·175 (lane 7),

neither of which activates transcription. No protein was detected for ER 1-25

(lane 4), ER 1-57 (lane 5), or for the control GAL4 vector (lane 8). Although

these results do show unequal expression of the different fusion constructs, it

was not possible to determine whether the difference was due to unequal

translation of the different constructs or to an detection problem since the fusion

construct that gave the highest transactivation activity (ER 1-98) was not

detected on the blot.
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Figure 4.3 Protein expression levels of transiently transfected ER1 constructs
NIH 3T3 cells were transiently transfected with various GAl4-ER1 fusion
constructs. After 48 h, total protein was extracted and prepared for Western
blotting as described in the "Materials and Methods· section. The Western
blot was stained with anti-pGAL4 (lanes 1-8). The protein loaded in each
lane ;s indicated on the top.
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4.4 DISCUSSION

The GAL4 DNA binding fusion protein has been used extensively to define

the transcriptional activation domains of numerous proteins (Tolnay at aI., 2000;

Weintraub at al., 1991; Nielsen at al., 1992; Sadowski at af., 1988; Sadowski &

Ptashne, 1989). Since no mammalian protein binds to the GAl-4 recognition sites

in the reporter plasmid, determination of the potential transactivating activity of the

fused protein being tested is possible.

Several studies have used pGAL4 SO fusion constructs in combination

with the CAT assay to define transaetivation activity. Activity is measured as the

fold-activation of the CAT enzyme compared with that of the empty pGAL4

vector. For example, the activation domain of thyroid receptor ~1 activates

transcription 4Q-fold (Wilkinson & Towles, 1997); Smad4. which mediates the

transcriptional activation of target genes of the TGF·p signalling pathway,

activates transcription of CAT 25-fold (Shioda et al., 1998); the activation domain

of hEZF activates transcription 50-fold (Yet et aL, 1998). Other studies (Yet at

al., 1998) have reported much higher fold-activation, in the 200 to 300-fold range,

but these numbers were obtained after normalization for transfection efficiency

and protein expression. From the CAT assay kit, the HBx trans-activating factor,

which stimulates the transcription of several cellular and viral genes, was tested

as a positive control for detection of transactivation. The CAT assay kit provides
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a four- to nine-fold increase in the steady state le'lel of CAT protein was detected

in the presence of HBx.

Full-length ER1 protein did not up-regulate transcription but the N-terminal

portion of ER1 (ER 1-175) consisting of aU four acidic stretches up-regulated

transcription 10-fold and the first three acidic (ER 1-98) stretches 8o-fold,

showing the presence of an transactivation domain in ER1. These results also

suggest that a negatively acting domain is located between amino acids 99-176.

It is unclear why full-length ER1 was unable to stimulate transcription, but one

possible explanation is that fusion of ER1 to GAL4 may alter the tertiary structure

of the ER1 protein, affecting its activity. A similar observation was made with the

ET$ transcription factor ER81 fused to the GAL-4 BD, which lost its ability to

activate transcription (Janknecht, 1996) Other proteins have also been identified

for which deletion mutants encoding the activation domains have higher activity

than the full-length proteins. For example
l

N-terminal deletion mutants of the

NS5A protein have strong transcriptional activity when fused to the GAL-4 BD,

whereas full length N$5A does not (Tanimoto et aI., 1997). Although full-!ength

ATF-2 protein fused to the GAL-4 80 is inactive, a chimeric protein containing

the ATF-2 N-terminus fused to GAL-4 80 can stimulate the expression of a GAL­

4 dependent reporter (Livingstone et aI., 1995). These results are probably due

to the masking of the activation domains in full-length proteins by inhibitory

domains.
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Another possibility is that ER1 may need to interact with other proteinls to

become transcriptionally active or to expose the activation domains. This has

been shown 10 be the case for NK-4, for which NK-4 dependent transactivation is

augmented after physical interaction with the p300 co-activator (Choi et aI.,

1999).

Ful1hennore, transcription factors often have inhibitory regions masking

their activation domains. Activation and inhibitory domains were identified in the

C-tenninal region of PEBP2ClB1. The inhibitory domain was contained within a

40 amino acid region and was located next to the activation domain, keeping the

full transactivation potential of the full length protein below its optimal level,

probably through intramolecular masking of the activation domain (Vagi et aI.,

1999). IRF·1 has both transactivating domains and inhibitory domains In

addition to inhibiting transactivation activity by the adjacent activation domain in

the lRF·1 protein, one of the inhibitory domains, when fused to the strong

activator VP-16, reduced the transcriptional activity of the latter by 60%. The

authors suggest several models through which inhibitory domains could

potentially act: 1. Inhibitory domains can come in physical contact with the

activator domain, thereby blocking its activity, 2. The inhibitory domain could also

be interacting with the target molecules of the activation domains such as TAFs

or other components of the transcription machinery and 3. The inhibitory domain

may modify the enzymatic activity of stimulators involved in the transcription
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activation process. In vivo, inhibitory activity is probably blocked by processes

such as phosphorylation or protein-protein interaction.

ER1·98 activates transcription aD-fold, but ER1-175 only 1D-fold.

Therefore, the region containing the putative inhibitory domain (99-176) was

deleted to test for transcriptional activity in the absence of the inhibitory region.

However, a deletion construct (ER.6.99-175) fused to the GAl4 SO provided no

transactivational activity. These results may indicate the presence of further

negative regulatory regions in the C-terminal portion of ER1 or once again may

be due to conformational changes created by fusion to GAl BD.

It is important to note that the use of truncated proteins to identify

functionally important regions always involves uncertainty about the proper

folding and conformation of the truncated protein. Removal of one part of a

protein may affect the thermodynamic stability of the protein or alter the

conformation of more distant regions (Tolnay et at, 2000).

Furthermore, deletion constructs are often not translated at the same

levels or the protein products are not equally stable. Western blotting was

therefore used to analyze the levels of protein expressed by the different

constructs (Fig. 4.3).

Protein was detected for the N-terminal portion encoding all four acidic

stretches of ER1 (1-176) and which activates transactivation 1Q-fold. The Westem

blot detected protein for the GAl-4 SO fusions with full length ER1 (1-493), the C·

terminal portion (176-493) and ERi199-175, none of which have transaetivation
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activity. The Western blot (Fig. 4.3) failed to detect protein for the assays

involving ER 1-25, ER 1-78 and ER 1-98, although the latter gave the highest

activity in the transactivalion assay.

It is probable thai the CAT reporter assay detects activity by proteins that

are present at too low levels to be detected by Western blotting. Full-length coding

regions of Id proteins (ld1, Id2, Id3 and Id4) all activate transcription of a GAL4­

responsive reporter gene when fused to GAl-4 BD (Bounpheng at a/., 1999).

However, Western blot analysis failed to detect GAl-4-ld3 protein even though it

had strong transactivation activity. In the case of ER1, however, since the Western

blot also failed to detect the control GAl4 protein, detection limitations cannot be

excluded. At the time these experiments were done, the only anti-ER1 antibody

available was unable to detect most of the fusion constructs. Most of the deletion

constructs lacked the C-terminus portion of the ER1 protein and the antibody was

made against a synthetic peptide encoding part of the C-terminal region of ER1

(Patemo et 81., 1997). Recently, a new anti-ER1 antibody that was prepared

against the full protein has become available. It will be interesting to stain the

Western blot with this new antibody and determine whether the staining patterns

are repeated.

In view of the current Western blotting results, it is possible that the two

fusion constructs for which protein was not detected, ER 1-25 and ER 1-57, also

have transactivation activity and that activity was not detected because protein was
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not produced or the proteins were not adequately stable and are therefore unable

to activate transcription of the reporter gene.

It has been found that acidic activation domains can act synergistically, such

as for the transcription activation domain of RelA, wtlich contains several acidic

modules (Blair et aI., 1994). The first acidic module of ReJA fused to the DNA­

binding region is inactive by itself but a GAl4 fusion protein bearing two or more of

the acidic modules is a very efficient activator of the reporter gene, even though all

the fusion constructs express protein at the same levels (Blair et aI., 1994). No

consensus sequences other than clusters of acidic residues giving a net negative

charge have been found to be common for acidic activation domains. However, it

has been shown that bulky hydrophobic amino acids, such as phenylalanine, play

a critical role in increasing the efficiency of transactivation by the activation

domains of transcriptions factors such as VP16, GAL4, GCN4, Jun, Fos, and ReJA

(Cress & Triezenberg, 1991; Regier et al., 1993; Hope et 8/., 1988; Ma & Ptashne,

1987; Sutherland et 81.,1992; Blair et al., 1994). In the case of ER1, the second

acidic domain contains a phenylalanine residue bracketed by acidic amino acids

(EFDDEOTlEEEEMlEGE). Therefore, it is possible that the first three acidic

domains of ER1 or even all four (since the fusion encoding all four domains does

activate transactivation 10-fold) are all required for transactivation activity,

As discussed above, the activity of inhibitory regions can be modulated

through phosphorylation or protein-protein interactions. In the native protein,

folding in the proper configuration would ensure that the activation domains would
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act in a synergistic fashion and activate transcription. To further define the specific

amino acids that are sufficient for the activation domain, further deletions will have

to be constructed and analyzed. This could prove to be difficult, as activation

domains can be partially deleted and have only a gradualloss of activity (Hope at

a/., 1988; Triezenberg at 8/.,1988).

It is important to note that the pGAL4 system can give false positives and

that it is an artificial system. Non-transcriptional proteins can function as

transcriptional activators when fused to a DNA·binding domain as baits in two­

hybrid screens (Bartel at ai"~ 1993; Warbrick, 1997) and about 0.1-1% of random

Escherichia coli peptides or random synthetic peptides (Ma & Ptashne, 1987) can

substitute as activation domains when tethered to DNA. The ability of ERl to

function as a transcription factor is therefore being confirmed through other

projects in the laboratory, listed below.

The experiments described in this chapter have shown that ER1 localizes to

the nucleus and have provided support for ER1 functioning as a transcription

factor. Other ongoing projects in the lab are investigating DNA·binding ability and

protein-prolein interactions in ER1, other key characteristics of transcription

factors. ER1 has been shown to have consensus sequences for protein·protein

interactions (Paterno at af., 1997). Results demonstrating DNA-binding activity

and/or interaction with proteins associated with the transcription machinery will

help confirm transcriptional activity and determine which genes are transactivated

by ER1.
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The activation domain identified in ER1 (ER 1-98) stimulated high levels of

transactivation activity in the CAT assay (8o-fold) and coupled with intrinsic

translocation to the nucleus of the full protein, it is highly probable that ER1

functions as a transcription factor in vivo. The investigation of the function of ER1

during early development in Xenopus embryos, will be described and discussed in

Chapter 5.
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CHAPTERS FUNCTIONAL CHARACTERIZATION OF erl BY

ITS OVEREXPRESSION XENOPUS EMBRYOS

5.1 INTROOUCTION

A common technique used to elucidate the function of genes and gene

products in developmental and other studies is to over- or under-express them in

vivo. The most effective technique developed to dale for manipulating gene

expression in Xenopus is the injection of cRNA synthesized from the eDNA of

cloned genes. In over-expression studies, cRNA is injected shortly following

fertization of embryos and its effect on development is followed to detect

morphological abnormalities. The function of a protein in particular pathways can

be analysed by looking examining for changes in the expression of molecular

markers representative of particular tissues. Alternatively, the mar1<ers maybe

expressed at specific times. By misregulating a gene and studying the effects,

the functions of the gene and its product and the signalling pathways in which the

latter is involved can be defined.
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5.2 MATERIALS AND METHODS

5.2.1 RNA injection

erl and XFO cRNA was prepared using the Ribomax large scale RNA

production system '(Promega Corporation), as described in Section 3.2.2 and

dissolved in DEPC-treated H20. Embryos were injected with DEPC-treated

dH:!O or 10ng, 509, 2ng, 1ng and 0.509 er1 cRNA in the marginal zone region at

two-cell stage adjacent to the cleavage furrow. Each experimental condition

induded 40-60 embryos and experiments were repeated at least five times.

Morphology differences between control and experimental conditions were

scored and recorded by photographs using a RS Photometries digital

camera,attached to a 52 PT Olympus dissecting microscope. Embryos were

staged (Njeuwkoop, 1994) and deviations from normal development were

soored. Student T-tests were used to anlyze the numbers.

5.2.2 Total RNA extraction and reverse transcription

Embryos were injected at the two-cell stage, as described above, with

DEpe-treated H20, 5ng en cRNA or 5ng XFD cRNA respectively. Five whole

embryos were .transferred to 1.5ml Eppendort" tubes containing 1ml of Tri­

Reagent (Life Technologies. Inc.) and homogenized with a micropipette.

Embryos were collected at stage 10.5. 11.5 and 15. At stage 10.5, since there
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were no morphology differences in the embryos in the three experimental groups

and embryos were randomly selected for total RNA extraction. At stages 11.5

and 15, er1 and XFD·injected embryos with gastllJlation defects were used for

RNA extraction. RNA extraction was performed as described in section 3.2.4.1.

The concentration of the RNA was assayed before use by a combination of

absorbance readings at 260nm (ODz&ol and agarose gel electrophoresis. RT of

the RNA samples was performed as described in Chapter 3.

5.2.3 RT·PCR

Table 5.1 lists forward and reverse primers used for molecular marker

analysis. The number of amplification cycles used for each primer set is also

shown in Table 5.1. PCR reactions for each primer pair were optimized so that

amplifications cycle numbers were in the linear range. Reactions were

performed with increasing numbers of cycles and resolved on electrophoresis

gels. The gels were exposed to autoradiography films, which were examined by

computer scanning densitometry. The cycle numbers were plotted against the

densitometry values to determine the linear and plateau phases.
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Table 5.1 List of primer pairs used for peR reactions

Primer Primer Sequence Expected Slle of Number of Reference
Product PeR cvcle.

BMP-4F 5'GCATGTMGGATMGTCGATC3' 500bp 26 Koster st al., 1991
BMP-4R 5'GATCTCAGACTCMCGGCAC3'
H4·F 5'CGGGATMCATICAGGGTATCACT3' 191 bp 22 Niehrs st a/., 1994
H4-R 5'ATCCATGGCGGTMCTGTCTICCT3'
HoxB9·f 5'GAGGCCACAGTGTMTGTIGG3' 269bp 26 Wright 8t 81.,1990
HoxB9~R 5'ATICCGCTCTGCGCMTTCCC3'
GSC·F 5'GAGCAMGTGGAGGAGGCAG3' 207 bp 30 Cho st 81.,1991
GSC·R 5'CCCACATCGTGGCACTGCTG3'
Xbra·f 5'CMGGATCGTIATCACCTCTG3' 187 bp 26 Smith st al., 1991
Xbra·R 5'TGTGTAGTCTGTAGCAGCAG·3'
XpcrF 5'CACTIAGGGATIGGTCTCAGGAGTC3' 500 bp 24 Sato st 8'.. 1991
xDo-R 5'TGAGGGAGGGCTATGGTCTAGG3'

F, FOfWard; R, Reverse
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5.3 RESULTS

5.3.1 Qver-expresslon of ER1 leads to posterior truncations In the embryo.

Injecting H20 provides a control tor the injection procedure and provides

background levels for abnormalities arising from injection wounds. Injecting RNA

controls is important to monitor morphological abnormalities that may be a factor

when injecting non-physiological amounts of RNA These samples require

controls for contaminants, which may be present after the in vitro synthesis of the

RNA. An appropriate RNA control was not available for en when these

experiments were done. A control er1 RNA with a mutated start ATG codon was

subsequently generated; injection of this RNA, at doses of 1Dog or lower,

generated only morphological abnormalities similar to those observed upon

injecting DEPC-treated H20.

Further dose/response experiments are required to account for

abnormalities due to injecting large amounts of RNA. In cases in which the

phenotype is weak, hundreds of surviving embryos need to be examined in order

to obtain an accurate representation of the injected embryo phenotype (Vize et 8/.,

1991).

er1 cRNA was microinjected into fertilized eggs at twQ.ce1i stage in the

marginal zone region and the embryos were compared with control DEpe-treated

H20 injected embryos for their ability to develop into normal tadpoles. In the

injection experiments, 0.5-10ng of RNA was used, and the injection series was
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repeated at least 5 times. A total of 40-60 embryos were injected per condition in

each experiment. These measures ensured that the phenotype observed upon

injecting en was due to the RNA rather than a non-specific effect.

Injection of RNA at high concentrations (10 ng) resulled in death of 90% of

RNA-injected embryos at late gastrula stages. Embryos injected with RNA at

concentrations of 0.5ng and lower did not show any significant abnormalities over

control embryos. Figure 5.1 shows the percentage of abnormal embryos in the

experimental series injected with DEPC-treated H20, 1 and 2ng er1 respectively.

5% of DEPC~treated HzO, 64% of embryos injected with 2ng er1 and, 32% of

embryos injected with 1ng er1 developed abnormally. Student T·tests showed

that these values were different from each other at 1% significance level (Table

5.2).

Embryos developed normally during early cleavage stages. Abnormalities

in morphology were first observed at gastrulation stages 10·12h post·injection;

gastrulation was incomplete, leaving an enlarged open blastopore and protruding

yolk plugs. Embryos were SCOI"ed at stage 36, three days after fertilization.

Abnormalities were seen in 59% of embryos which were primarily posterior

truncations resulting in normal heads but little or no tails (Figure 5.3). The

remaining 5% of the embryos that developed abnormally had no truncations but

displayed abnormalities such as split tails and bodies, enlarged heads, elongated

shapes and poorly defined organs and tissues. In the control DEPC-treated H20

injected, group. 5% of the embryos developed abnormally. Half of these abnormal
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embryos failed to gastrulate nonnally and developed minor posterior

abnormalities, such as kinked teils andlor spines, and mild posterior truncations

The remainder of the abnormal embryos in the control group had enlarged or

poorly defined heads. The fact that the abnormal phenotype of the embryos

injected with different doses of en cRNA gave primarily one type of phenotype,

posterior truncations as opposed to many different abnormalities seen in the

controls, indicates that the phenotype is en-specific.

In the injection experiments described above, the phenotype of the er1

cRNA injected embryos was observed to be similar to the phenotype of embryos

injected with a dominant negative FGFR, XFD cRNA, previously described in the

literature (Amaya et aI., 1991). Furthermore, since the levels of en RNA had

previously been found to increase in response to FGF treatment (Patemo et aI.,

1997), indicating the ER1 is on the FGF signalling pathway. Therefore, it was

highly interesting to investigate this similarity further and determine the role that

ER1 might play in the FGF signalling pathway. To follow this interest, XFD and

en RNA were injected in embryos for comparison purposes at both the

morphological and molecular levels.
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Figure 5.1 OVer-expresslon of erl cRNA results In abnormal embryos

Embryos were injected with OEPC·treated dH20 (control) or eri cRNA (209 or

109) in the marginal zone region at two-cell stage as desaibed in the -Materials

and Methods· section. After 72h at room temperature, embryos 'Here scored for

abnormal phenotype; the percentage is based on total number (n) of embryos

injected. Abnormal embryos in the erl-injected groups failed to complete

gastrulation normally and as a result had heads but little or no tails (posterior

truncations). The total number of embryos injected and standard deviation values

(error bars) of six individual experiments are shown.
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Table 5.2 Statistical analysis methods for resuhs from er1-lnjected embryos.

The Student T-test was performed at the 1% significance level (Critical T-value c -4.604) and the following algorithm

was used:

HO: Mean of Test1 = Mean otTest2

H1: Mean of Tesl1 'I- Mean of Tesl2

Injections Mean values T-value Interpretations

DEPC-treated HzO 0.05 (Test 1) -6.97 Hypothesis is rejected at the1% significance level.

1n9 ert 0.32 (Test 2) Mean of Test 1 Is signifICantly different from mean of Test 2

DEPC-treated HzO 0.05 (Test 1) -24.78 Hypothesis ;s rejected at the1 % significance level.

2ng erl 0.64 (Test 2) Mean of Test 1 Is significantly different from mean of Test 2

1ng erl 0.32 (Test 1) -7.61 Hypothesis Is rejected at the1% signifICance level.

2ng ert 0.64 (Test 2) Mean of Test 1 is significantly different from mean of Test 2
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Embryos were injected with either 2ng ert or 2ng XFD cRNA and the

phenotypes of embryos were then scored. The abnormal embryos in both the

er1- and XFD-injected groups failed to gastrulate properly, which resulted mainly

in posterior truncations. The abnormal phenotypes from injecting either were

highly similar (Figure 5.3). The percentage abnormal embryos in each group

were compared. 59% of the embryos injected with er1 cRNA and 62% of the

embryos injected with XFD had posterior truncations. These values were not

significantly different at the 1% signifICance level (critical T-value = -4.604; Test

T-value = -0.47 at a: = 0.01).
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Figure 5.2 OVerexpresslon of eri and XFD cRNAs result In similar

percentages of embryos with posterior truncations.

Embryos were injected with DEPC-treated dH20 (control), 2ng en cRNA or 2ng

XFD cRNA in the marginal zone region at tw<rce11 stage as described in the

"Materials and Methods" section. Embryos were left to develop for 72h at room

temperature and scored for abnormalities. Both er1- and XFD-injected embryos

failed to gastrulate properly resulting in posterior truncations (normal heads but

little or no tails). Values were determined as the percentage of number of

embryos injected. Error bars represent the mean (+1-) standard deviation (error

bars) of four individual experiments.
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Normal

ER1 phenotype

XFD phenotype

Figure 5.3 Effects of ER1 over-expression on embryonIc development
Embryos were injected with 2ng efT cRNA or 2119 XFD cRNA, fixed in
MEMFA after 72tl and photographed. Examples are shown of embryos,
which develop normally (normal) and of the posterior truncations observed
in ar1·injected embryos (ER1 phenotype) a nd XFD-injected embryos (XFD
phenotype). scale bar represents 0.1 mm.
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5.3.2 Over-expression of ER1 during Xenopus development

changes in the expression levels of early molecular markers.

Molecular markers were chosen to compare the effect of ER1 to the

effects of XFD, which has been previously characterized (Amaya et aI., 1993) on

representative posterior mesodennal, general mesodennal and anterior

mesodermal markers during early development Embryos were injected with 5ng

of RNA to ensure that there was an abnonnal phenotype in the majority of the

embryos injected since injections of 2ng of RNA resulted in abnormal phenotype

in only approximately 60% of injected embryos (Figure 5.2).

The results presented here are preliminary results and the number of

molecular markers examined was small. However, the effect of XFD

overexpression on the chosen molecular markers has been well characterized

and the primary objective of these experiments was to establish whether there

was a similarity at the molecular level between ER1 and XFD, since similar

phenotypes were observed upon overexpression of both ER1 and XFD. These

experiments were used to establish a working model for further experiments

examining the relationship between ER1 and FGF signal transduction.

The expression levels of the general mesodermal marker Xbra, posterior

markers BMP-4, Xpo, and HoxB9, and the early anterior marker goosecoid in erl

and XFD·injected embryos were examined. The effect of XFD on these markers

has been previously described in the literature (Amaya at 8f., 1993; Isaacs at 81.,
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1994; Pownall st 81.,1996; Holawacz and Sokol, 1999)and was therefore useful

tor comparisons to the effects of sri. Figure 5.4 shows the expression patterns of

XbrB. BMP~, HoxB9, )(PO. and Goosecoid in embryos injected with DEpc·

treated H~. sri or XFD cRNAs during subsequent development al stages 10.5.

11.5 and 15. Histone, H4. was used as an internal and gel loading control.
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Figure 5.4 Effects of overexpressing er1 and XFD on molecular markers
Embryos were injected with DEPC·trealed H20, 5n9 er1 (eRNA
or 5n9 XFD cRNA and RT-peR was performed on ANAs extracted
at stages 10.5, 11.5 and 14.
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5.3.3.1 Erl down-regulates the expression of the mesodermal marker

Xbra

The Xenopus brachyury gene (Xbra) is expressed throughout the marginal

zone and serves as a general mesodermal marker (Smith et aI., 1991). Xbra

transcripts first appear in Xenopus embryos at the mid-blastula transition. The

highest level of Xbra expression is at gastrula stages in the presumptive

mesodermal cells around the blastopore lip, The level of expression starts to

decline at the end of gastrulation but Xbra expression persists in the notochord

during neurula stages

Xbra is induced by either activin A or FGF-2 in animal caps in a

cycloheximide-independent manner, suggesting that it is a general early

mesodermal response gene for mesodermal induction (Smith et at, 1991). It has

been found that the expression of Xbra is regulated by eFGF during development

in Xenopus embryos (Isaacs et aI., 1994) and Xbra levels were up-regulated in

eFGF-injected embryos (Pownall at aI., 1996). In situ hybridization techniques

showed that embryos displayed a complete circle of Xbra expression throughout

the marginal zone whereas XFD embryos lacked Xbra expression in a quarter to

half of the marginal zone (Amaya et aI., 1993). The RT-PCR results presented

here (Fig. 5.4) are consistent with results reported for XFO in the literature: Xbra

expression was lower than for control embryos in XFO-injected embryos at stage

10.5 and there was a complete lack of Xbra expression at stage 11.5 and 15 in
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XFD·injected embryos. Relative to histone control, Xbra expression was similar

to control H20-injected embryos in er1·injecled embryos at stage 10.5 and 11.5

but was much lower than in control embryos at stage 15. Therefore, both XFD

and ER1 over-expression were found to result in the down·regulation of Xbra

expression. Previous experiments have shown that Xbra is necessary for the

formation of posterior mesoderm (Conlon et a/., 1996; Cuncliffe and Smith,

1992). The RT·PCR results described here suggest that ER1 is inhibiting Xbra

expression or is causing a premature decrease in Xbra expression level and thus

acts as a negative regulator of the FGF signalling pathway during mesoderm

induction

5.3.3.2 Erl down-regulates the expression of the ventral marker BMp·

4.

Bone morphogenetic proteins (BMPs) are members of the transforming

growth factor ~ (TGF-~) family, which play diverse roles in embryonic

development (reviewed in Dale & Jones, 1999). BMPs have been shown to be

involved in both mesoderm induction and dorsoventral patteming (reviewed in

Dale & Jones, 1999). BMP-4 transcripts are localized in the ventral and lateral

regions of the gastrula stage embryo, and are absent from the dorsal side

(Falnsod et aI., 1994;Schmidt at aI., 1995). Studies in Xenopus have identified a

number of inhibitory proteins encoded by genes such as chemin and noggin,

which bind to BMP-4, establishing a morphogen gradient of BMP-4 activity, which

165



specifies different dorsoventral fates in early gastrulae (reviewed in Dale &

Jones, 1999; Thesis Introduction). Hence high BMP-4 expression in the ventral

side of the embryo results in more ventrally derived tissues whereas inhibition on

the dorsal side of the embryo gives dorsal derivatives. Genetic studies in mice

have shown that BMP-4 plays an important role in mesodermal patterning; mice

with a null mutation in the bmp--4 gene typically die prior to gastrulation, but the

small number that survive typically exhibit disorganised mesoderm and strongly

truncated posterior structures (Winnier et aI., 1995). This phenotype is similar to

that obtained with the over-expression of XFD and arl in Xenopus embryos

(Figure 5.3). The RT-PCR expression asays showed that the level of BMP-4 was

similar to control level in both erl and XFD·injecled embryos at stage 10.5 and

11.5, but lower than control for erl- and XFD-injected embryos at stage 15

(Figure 5.4).

Northrop el al. (1995) showed that BMP-4 rescues the expression of Xbra

and Xcad3, which are also regula1ed by FGF, in XFD-injected embryos. The

authors suggest that BMP-4 is involved in the ventral regulation of these genes.

Our results suggest that, by down-regulating the expression of BMP-4, both XFD

and ERl inhibit the formation of ventrally derived tissues, a process which could

result in posterior truncations.
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5.3.3 Er1 down-regulates the expression of HoxB9, a posterior marker.

Hox genes are widely accepted to be regulators of anteroposterior

specification in animal groups ranging from Drosophila to vertebrates (Holland

and Garcia-Fernandez, 1996;Pownall et a!., 1996;Slack, 1993). The expression

of some Hox genes has been shown to be regulated by FGF signalling during

gastrula and neurula stages, after the period of mesoderm induction (Pownall et

aI., 1996). HoxB9 expression starts at neurula stages and the marker is

expressed at stage 14 in the posterior neural plate from the blastopore to

approximately the middle of the antero-posterior axis in the embryo and is later

expressed in the spinal cord until tailbud stages (Godsave et aI., 1994;Pownall et

aI., 1996). Hoxe9 expression was upregulated in eFGF-injected embryos

(Pownall et aI., 1996b). Pownall et s/., (1998) showed that the activation of Hox

genes during early neurula stages absolutely requires FGF signalling and

transcriptional activation by Xcad3, while the maintenance of. Hox gene

expression in the trunk and tail during later development is independent of both

FGF and Xcad. Since both XFD and ert-injected embryos have severe posterior

truncations (Figure 5.3), it was expected that the expression level of a posterior

marker such as HoxS9 would be much lower than that of control in these

embryos. The RT-peR results showed that HoxB9 expression can be first

detected in control embryos at stage 15 and is considerably and comparably

lower in both ert- and XFD-injected embryos (Fig. 5.4). The down-regulation of
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HoxB9 by ER1 suggests that the FGF signalling pathway, criticaJ to posterior

patterning, is blocked in en-injected embryos.
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5.3.3.4 Expression levels of the posterior marker, Xpo, are unaffected

by over.expression of ert as opposed to XFD.

Xpo is a posterior mesodermal marKer. Xpo expression starts at or shortly

after MaT. The RNA accumulates to a relatively low level, which remains

constant until gastrulation then rapidly and transiently increases in posterior

ectoderm and mesoderm (Sato and Sargent, 1991). Amaya et 81., (1993) found

that Xpo was expressed strongly at the mid-gastrula stage in the lateral and

ventral marginal zones. The authors report high expression levels in posterior

structures at stage 13. Furthermore. Xpo gene expression is induced in animal

caps by either activin A or FGF-2 (Sato and Sargent, 1991). Xpo expression was

found to be up-regulated in eFGF-injected embryos (Pownall et aI., 1996). At

stage 11, Xpo expression was partially inhibited in XFD-injected embryos

(Amaya et aI., 1993). It was therefore expected that Xpo levels would be lower

than control in both XFD and en-injected embryos. RT-PCR analysis showed

that the expression level of Xpo is initially lower than control levels in XFD­

injected embryos at stage 10.5, and is only slightly lower than in control embryo

levels at later stages (Figure 5.4). Amaya et 81., (1993) showed that the level of

Xpo expression was down-regulated at stage 11, but there were no reports

whether this effect was sustained past stage 11. Our results show that, similar to

the results of Amaya et sl., (1993), there is a decrease in the level of Xpo

expression in XFD injected embryos but that this effect is transient. In contrast,

there were no detectable differences between Xpo levels in en-injected and
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oontrol embryos at stage 10.5 and 11.5 and were only slightly lower in er1­

injected than in control embryos at stage 15.

5.3.3.5 Erl overexpression delays the upregulation of the anterior

marker goosecoid at Xenopus late gastrula stages.

Goosecoid is an anteriorly expressed marker, which encodes a homeobox

containing transcription factor. Goosec:oid is expressed early in the dorsal lip of

the blastopore and the RNA levels decrease during neunJlation (eho et a!.,

1991;PownaU et at, 1996).

In XFD injected embryos, goosecoid levels were lower than that of control

embryos at stage 10.5, similar to controls at stage 11.5, and much higher than for

controls at stage 15 (Fig. 5.4). Expression level of goosecoid was lower in erl­

injected embryos than for controls at stage 10.5, higher than for controls at stage

11.5 and returned to the same level as for control embryos at stage 15 (Fig. 5.4).

Interestingly, goosecoid levels are lower for both erl and XFD-injected

embryos at stage 10.5. The highest expression of goosecoid is seen at stage

11.5 for er1-injected embryos and 15 for XFD-injected embryos. Amaya at al.,

(1993) found that goosecoid expression is not affected by XFD at stage 10, but

did not investigate the effects of XFD on goosecoid expression at later stages.

Pownall et 81. (1996) showed that the expression of goosecoid is down-regulated

by eFGF only during stage 12 and 15. No differences were seen between
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control and eFGF·injected embryos at earlier or later stages. My results suggest

that both ER1 and XFO delay the upregulation in the expression of goosecoid.

The up-regulation of goosecoid by ER1 further supports the hypothesis

that ER1 may be acting as a negative regulator of the FGF signalling pathway

during early Xenopus development. However, the lower expression of goosecoid

in embryos injected with eri and XFD at stage 10.5 will need to be investigated

further by RNase protection assays and in situ hybridization in order to determine

whether eri and XFD repress or delay goosecoid expression at early gastrula

stages. There is a delicate balance in the expression of patterning molecules

during early development in Xenopus. As a negative regulator of the FGF

signalling pathway, ER1 may be shifting the balance in favour of anteriorly

expressed genes such as goosecoid.
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5.4 DISCUSSION

The gross morphological abnonnalities observed from overexpressing

ert were very similar to the phenotype observed by Amaya at a/., (1991) upon

injecting a mutant FGFR, XFD, which contains only an extracellular and a

transmembrane domain and inhibits FGF signalling. When XFD is injected in

embryos. they fail to complete gastrulation. There are major neurula stage

deficiencies in lateral and posterior mesodenn, which later result in extreme trunk

deficiencies and little or no tails but XFD embryos develop nannal heads

(Amaya at aI., 1991).

Truncated posterior phenotype was observed in 64% of the embryos

injected with 2n9 of erl, the remaining embryos had normal phenotypes or minor

defects (Figure 5.1). The percentage of abnormal embryos was only 32% when

embryos are injected with 1ng ert cRNA (Figure 5.1) and no significant

abnormalities are observed when lower amounts of cRNA are injected. The ER1

phenotype (Fig 5.3 B), is very similar to the XFD phenotype for which Amaya at

al. (1991) reported severe posterior truncations in up to 60% of embryos injected

with 4ng to 8ng of XFD cRNA whereas 29% of the injected embryos developed

normally. The authors observed that when XFD is injected in embryos, normal

embryos and less extreme phenotypes were present in the experimental group.

The authors attribute this variation in severity of the phenotype to a non-uniform

distribution of the injected RNA in some embryos and/or a low level of translation
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of the injected cRNA. These factors may also account for the difference in

severity of phenotype in in the 2ng er1-injected embryos, in which 36% of the

embryos develop normally.

There are several lines of evidence indicating that FGF is a potent

posterionzing factor (Amaya et aI., 1993; Cox and Hemmati-Brivanlou, 1995;

Holowacz and Sokol, 1999; Isaacs et aI., 1994;Lamb and Harland, 1995; Pownall

et aI., 1996). It has been shown that FGFs are secreted in the posterior of

gastrula and neurula stage embryos (Isaacs at af., 1992; Tanahill at al., 1992;

Isaacs et al., 1995) and play a role in the posterior development of Xenopus

embryos (Altaba and Melton, 1989, Isaacs et al., 1994). Over-expression of

eFGF in embryos during the gastrula stages produces a characteristic phenotype

of reduction of the head and enlargement of the proctodeum (Isaacs et al., 1994).

This observation of a similar phenotype is an indication that ert, like XFD, may

be involved in blocking the FGF signalling pathway, and that ER1 may be a

natural regulator or inhibitor of the FGF signalling pathway dUring early

developmental processes in the Xenopus embryo. Thus, ER1 may function to

tum off the FGF signalling pathway in villO. However, the similarity in phenotype

between ER1 and XFD overexpression has only been established by scoring

gross morphological defects. In order to further characterize the effects of ER1

on specific tissues and similarity to XFD-injected embryos, it will be necessary to

examine embryos histologically and use a larger array of molecular markers.
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The abnormal phenotype obtained upon over-expressing ER1 is very

similar to the XFD phenotype. Therefore, a molecular profile was established for

ER1 by comparing the effect of over-expression on the expression of

representative mesodermal, posterior and anterior markers on 'Nhich the effects

ofXFD had been previously documented (Amaya at aI., 1993).

Molecular biologists utilize many techniques in gene expression studies.

Some of the most common techniques are Northern blot analysis, RNAse

protection assays and in situ hybridizations. RT-peR remains a relatively new

technique and the technology is continually being optimized. It has proven to be

a more sensitive and discriminating procedure than those mentioned above, as it

permits the analysis of very small amounts of RNA. Furthermore. RT-PCR is a

fairly rapid and simple procedure, in which simultaneous analysis of several

transcripts from total RNA and quantitation can be achieved. One major

shortcoming in using RT-PCR is the high degree of variability associated with the

procedure. In addition to greatly amplifying the target, any errors or

contaminations present are also amplified, thus affecting the accuracy and

reliability of the result. However, with proper experimental design, it can be a

useful technique.

Although the RT-PCR procedure followed here did not allow for

quantitative analysis between the different developmental marker primer sets, the

use of histone to standardize the amount of cDNA used in the PCR amplification

with each primer set did allow comparison of samples. The methodology used
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here allowed qualitative comparison of the effects of XFD and ER1 on embryos.

Further analysis of these markers using in situ hybridization and RNAse

protection assays would complement the RT-PCR results and help give a better

indication of how the expression of these molecules are being quantitatively,

spatially and temporally affected by en over-expression.

Pownall at al. (1996) have previously shown that eFGF up-regulates the

expression of posterior genes such as XhoxC6 (Xlhbox1), HoxA7 (Xhox36),

HoxB9 (Xfhbox6), Xcsd3 and Xpo. These authors also showed that eFGF up­

regulates the expression of Xbra, a mesodermal marker and down-regulates the

expression of anterior markers such as goosecoid and otx2. Conversely, XFD

has been shown to down·regulate the expression of posterior molecular markers

such as Xpo, Xcad3, and HoxB9 and the mesodermal marker Xbra (Amaya at

al., 1993; Pownall at af., 1996; Holawacz and Sokol. 1999). Our RT-PCR results

with ER1 over-expression follow a similar pattem to that of XFD for the

mesodermal marker Xbra, the ventral marker BMP-4 and the posterior marker

HoxB9 and the anterior marker goosecoid.

It is possible that XFD and ER1 are blocking the FGF signalling pathway

at different steps and/or to different extents. Furthermore, XFD shuts down all

signalling cascades triggered by FGF whereas a downstream regUlator like ER1

may be aff8cting only specific pathways triggered by FGF. Hence the different

temporal profiles are seen. It is also of interest to examine the effects of ER1

overexpression on these molecular markers at stages later than stage 15 in order
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to determine whether the effect of ER1 on the expression levels is transient or

sustained, since the expression of the molecular markers examined, such as

HoxB9, only starts at neurula stages. RTMPCR was used in this study, whereas

previous studies of factors other than erl had used in situ hybridization and

RNAse protection assays. In the future, it is therefore of interest to confirm the

erl results presented us'ing such techniques.

When XFD is overexpressed in embryos, there is a reduction in

mesoderm formation, abnormalities arising from the inhibition of normal

gastrulation movements and there are defects in the formation of posterior parts

(Isaacs at al., 1994). II is believed that the mesoderm formation and cell

movement defects are due to loss of Xbra expression and that the posterior

defects are due to a lack of posterior Hox activity (Isaacs et af., 1994; Pownall et

al., 1996). Our results show that erl over-expression results in gross

morphological defects that are very similar to XFD. With the limited number of

molecular markers used in this study and the different temporal profiles of these

markers in response to ER1 and XFD, it may be too early to establish a definite

similarity between the effects of ER1 and XFD at the molecular marker level.

However, the molecular profile established for ER1 suggests that ER1 is a

regulatory molecule, which is up-regulated by FGF pathway (Paterno et aI.,

1997), and negatively regulates the FGF pathway when developmental

processes triggered by FGF signalling, such as mesodermal and posterior

patterning, have been established.
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In the future a larger spectrum of molecular markers, especially dorsal

markers, such as ChorrJin, Noggin (inhibitory to the ventral patterning molecules)

as well as more specific mar1<:ers for tissue patterning, Xnot (notochord) and P­

actin and MyoD (muscle), will confirm whether erl is truly a negative regulator of

specific FGF signalling pathways and characterize the pathways involved.

Isaacs at a1., (1994) used XFD to investigate the role of eFGF in

mesoderm during gastrula stages. When 2-cell stage embryos are injected with

eFGF and animal caps are removed at stage 9 and cultured for three days, the

animal caps develop fluid·filled mesoderm indicating the formation of

mesodermal derivatives Similarly, incubation of animal caps with other FGFs

such as FGF·2 leads to differentiation of the animal caps into mesoderm of a

ventro--Iateral nature. Co--injection of eFGF with XFD leads to a marked reduction

in the auto--induction activity of eFGF (Isaacs et af., 1994). Repeating these types

of experiments with erl and eFGF co-injection or incubating animal caps injected

with erl with FGF·2 would demonstrate whether ER1 can suppress the

mesodel1Tl'-inducing activity of FGFs and act in an inhibitory fashion similar to

XFD by shutting off FGF signalling.

177



References

Altaba,A, 0 A Melton, 1989, Interaction between peptide growth factors and
homoeobox genes in the establishment of antero-posterior polarity in frog
embryos: Nature, v. 341, p. 33-38.

Amaya,E, T J Musci, M W Kirschner, 1991, Expression of a dominant negative
mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos:
Cell, v. 6..6, p. 257-270,

Amaya,E, P A Stein, T J Musci, M W Kirschner, 1993, FGF signalling in the early
specification of mesoderm in Xenopus: Development, v. 118, p. 477-487

ChO,KW, B Blumberg, H Steinbeisser, EM De Robertis, 1991, Molecular nature
of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid:
Cell, v. 67, p. 1111-1120.

Cox, WG, A Hemmati-Brivanlou, 1995, Caudalization of neural fate by tissue
recombination and bFGF: Development, v. 121, p. 4349-4358.

Conlon,FL, S G Sedgwick, K M Weston, J C Smith, 1996, Inhibition of Xbra
transcription activation causes detects in mesodermal patterning and reveals
autoregulation of Xbra in dorsal mesoderm: Development, v. 122, p. 2427-2435.

Cunliffe,V, J C Smith, 1992, Ectopic mesoderm formation in Xenopus embryos
caused by widespread expression of a Brachyury homologue: Nature, v. 358, p.
427-430.

Dale,L, C M Jones, 1999, BMP signalling in early Xenopus development:
Bioessays, v. 21, p. 751-760.

Fainsod,A, H Steinbeisser, E M De Robertis, 1994, On the function of BMP-4 in
patterning the marginal zone of the Xenopus embryo: EMBO J., v. 13, p. 5015­
5025.

Godsave,S, E J Dekker, T Holling, M Pannese, E Boncinelli, A Durston, 1994,
Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in
anteroposterior specification of the hindbrain and in dorsoventral patterning of the
mesoderm: Dev.Biol., v. 166, p. 465--476.

Hotland,RW, J Garcia-Fernandez, 1996, (Hox genes, developmental evolution
and the origin of vertebrates]: Ontogenez, v. 27, p. 273-279.

178



Holowacz,T, S Sokol, 1999, FGF is required for posterior neural patterning but
not for neural induction: Dev.BioL, v. 205, p. 296-308.

Isaacs,HV, M E Pownall, J M Slack, 1994, eFGF regulates Xbra expression
during Xenopus gastrulation: EMBO J., v. 13, p. 4469-4481.

Lamb,TM, R M Harland, 1995, Fibroblast growth factor is a direct neural inducer,
which combined with noggin generates anterior-posterior neural pattern:
Development, v. 121, p. 3627-3636.

Nieuwkoop,PD. Normal Table of Xenopus laevis (Daudin). 1994. New York,
Garland Publishing, Inc. Ref Type: Serial (Book,Monograph)

Northrop,J, A Woods, R Seger, A Suzuki, N Ueno, E Krebs, 0 Kimelman, 1995,
BMP-4 regulates the dorsal-ventral differences in FGF/MAPKK-mediated
mesoderm induction in Xenopus: Dev.BioL, v. 172, p. 242-252.

Patemo,GO, Y Li, H A Luchman, P J Ryan, L L Gillespie, 1997, cDNA cloning of
a novel, developmentally regulated immediate early gene activated by fibroblast
growth factor and encoding a nuclear protein: J.BioLChem., v. 272, p. 25591­
25595.

Pownall,ME, H V Isaacs, J M Slack, 1998, Two phases of Hox gene regulation
during early Xenopus development: Curr.Biol., v. 8, p. 673-676.

Pownall,ME, A STucker, J M Slack, H V Isaacs, 1996, eFGF, Xcad3 and Hox
genes form a molecular pathway that establishes the anteroposterior axis in
Xenopus: Development, v. 122, p. 3881-3892

Sato,SM, T D Sargent, 1991, Localized and inducible expression of Xenopus­
posterior (Xpo), a novel gene active in early frog embryos, encoding a protein
with a 'CCHC' finger domain: Development, v. 112, p. 747-753.

Schmidt,JE, A Suzuki, N Ueno, 0 Kimelman, 1995, Localized BMP-4 mediates
dorsaVventral patterning in the earty Xenopus embryo: Dev.BioL, v. 169, p. 37­
50

Slack,JM, 1993, Embryonic induction: Mech.Dev., v. 41, p. 91-107.

Smith,JC, B M Price, J B Green, 0 Weigel, B G Herrmann, 1991. Expression of a
Xenopus homolog of Brachyury (T) is an immediate-earty response to mesoderm
induction: Cell, v. 67, p. 79-87.

179



Tannahill,D, H V Isaacs, M J Close, G Peters, J M Slack, 1992, Developmental
expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and
neural induction: Development, v. 115, p. 695-702.

Vtze PO, Melton DA, Hemmati-Brivanlou A, Harland RM, 1991. Assays for gene
function in developing Xenopus embryos. Methods Cell BioI., v.36, p.367-387

Winnier,G, M Blessing, P A Labosky, B L Hogan, 1995, Bone morphogenetic
protein-4 is required for mesoderm formation and patteming in the mouse: Genes
Dev., v. 9, p. 2105·2116.

180



SECTION IV

CHAPTER 6: GENERAL DISCUSSION, FUTURE DIRECTIONS

AND CONCLUSION

6.1 GENERAL DISCUSSION

One of the main objectives of modem developmental biology has been

and continues to be the identification of the molecular nature of inducing signals

in early development. It is now known that key developmental pathways are

triggered by members of the TGF·p and FGF families (see section 1.4-1.8). FGF

has multiple functions in early development, including mesoderm formation,

gastrulation movements and anteroposterior patterning (Slack, 1994). Er1 was

identified as a novel gene, whose expression is upregulated by FGF during

mesoderm induction in Xenopus, (Patemo at al., 1997). The objectives of this

thesis were to characterize the expression pattern of ER1 protein, identify

mechanisms regulating its expression and characterize and understand its

function.

It was shown that the spaticHemporal nuclear translocation of ER1 is

tightly regulated during early development (Chapters 2 and 3). Nudear

localization of ER1 is possibly a response to the FGF signalling pathway as

suggested by the inhibition of nudear localization of ER1 in XFD-injected
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embryos (Chapter 3). Transcriptional activity was established for deletion

constructs of ER1 protein, suggesting that ER1 may function as a transcription

factor in vivo (Chapter 4). The results in Chapter 5 suggest that ER1 may

function as a negative regulator of the FGF signalling pathway, since

overexpression of ER1 gives a phenotype that is the converse of that of FGF

overexpression and is Similar to that of XFD overexpression. FurthermOfe, ER1

overexpression results in downregulation in the expression of molecular markers

such as Xbra and HoxBox9. whose expression are activated, and in the case of

Xbra, maintained, by FGF.

ER1 is initially translocated to the cell nuclei of the marginal zone and

animal hemisphere of the early blastula stages embryo, regions that have been

shown to express the three maternal forms of FGF: FGF-2, FGF-9 and

eFGF(Song and Slack, 1994; reviewed in Isaacs, 1997). At gastrula and neurula

stages, ER1 is ubiquitously present in all nuclei (Chapter 2). Gastrula and

neurula stages are also stages where maternally expressed and zygotically

expressed FGFs overlap in the embryo. Zygotic eFGF is expressed in the

blastopore region at gastrulation (reviewed in Isaacs, 1997). At gastrula and

neurula stages. FGF expression spans both the animal and vegetal regions of

the embryo. At tailbud stages ER1 can be found in the nuclei of the notochord,

somites. arid spinal cord, but starts to disappear from the nuclei of the brain and

epidermis. FGF-2 is zygotically expressed in the CNS and somitic tissue (Song

and Slack, 1994) and eFGF is expressed in the notochord as well as in the
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posterior region of the embryo (reviewed in Isaacs, 1997). At these stages, I

found that ER1 is also nuclear in endodermal and mesodermal tissues and not in

ectodermally derived tissues. The expression pattem of ER1 protein along with

the inhibition of its nuclear localization by XFD suggests that ER1 may be a

downstream effector of the FGF signalling pathway whose nuclear localization is

analogous to the expression of various FGFs dUring early development

The major role of the FGF pathway during early development is the

formation of mesoderm and posterior structures in the Xenopus embryo. The

current model for the role of FGFs during early amphibian development proposes

that the matemal pool of FGFs is required to provide sub-threshold stimulation of

the tyrosine kinase signal transduction pathway in the animal hemisphere

(reviewed in Isaacs, 1997). The FGFs act as competence factors to vegetally

localized inducing signals from activin-like factors (Hemmati-Brinvanlou and

Melton, 1992; Thomsen and Melton, 1993). It has been proposed that

mesoderm forms in the marginal zone because it is a region where FGF factors

and activin-like factors overlap (Cornell and Kimelman, 1994). It has been shown

that FGF is involved downstream of earty mesoderm inductive signals in the

maintenance of the Xbra expression in mesoderm precursors (Smith st 81.,

1997). FGF signals also regulate the expression of the caudal gene family

member Xcad3 (Northrop and Kimelman, 1994; Pownall at al., 1996), which has

8 critical function in the regulation of posterior hox genes (Isaacs at al., 1998).

183



The results presented in Chapter 5 suggest that ER1 is functioning as a

negative" regulator of the FGF pathway. However, the expression of FGFs and

the nuclear localiZation pattem of ER1 in the embryo show that ER1 is nuclear in

regions where FGFs are active such as the marginal zone in the earty embryo

and later in the blastopore region, notochord, somites, and CNS As a

transcription factor, ER1 may be either 1) enhancing the transcription of genes

whose products act to shut down the FGF pathway or 2) repressing the

transcription of genes required for the FGF response. One possible scenario is

that the supression of the FGF pathway is happening at varying levels in the

embryo. Inductive events are the result of finely balanced positive and negative

interactions. Therefore, the ability of ER1 to shut down the FGF pathway may be

dependent on several factors such as the level of expression of the FGFs in

different regions of the embryo as well as the expression of other spatially

specific factors, which interact with the FGF pathway.

It is interesting to note that ER1 may be remaining cytoplasmic until the

FGF pathway is itself activated as illustrated by the expression of activated

MAPK, detected for the first time in the embryo at stage 8 (LaBonne and

Whitman, 1997; Christen and Slack, 1999). ER1 also first localizes to the nuclei

of marginal zone cells at stage 8. MAPK is initially present in the region of the

future blastopore at stage 8 and around the blastoporal ring at gastrula stages.

The staining pattem of activated MAPK has been fully described and is indicative

of the regions in which FGF signals are being transduced through FGFR1
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(LaBonne and Whitman 1997; Christen and Slack 1999; Umbhauer et a/., 2000;

section 1.7.3). ER1 may be regulating the FGF pathway at a different threshold

in the regions where MAPK is fully active, such as in mesodermal derivatives,

than in tissues such as the ectoderm, where activated MAPK does not appear to

be expressed (Christen and Slack, 1999). First, ER1 becomes undetectable in

the nuclei of ectodermal derivatives, where FGF may no longer be active, and

remains nuclear in tissues that retain FGF expression such as semites and

notochord.

Although nuclear localization of ER1 coincides with the activation of the

MAPK signalling cascade by FGF at blastula stages, it has not yet been

determined whether the MAPK cascade is reqUired for nuclear translocation of

ER1. Preliminary results, not presented in this thesis, have shown that

overexpression of a dominant-negative MAPK kinase (MEK~DN), which blocks

MAPK signalling, does not prevent nuclear localization of ER1. It is therefore

possible that nuclear localization of ER1 is triggered by a different signalling

pathway, such as the PLCy1 or PI3'K pathway. Previous work in our laboratory

has shown that both phosphorylated PLCy1 and PI3'K associate with FGFR1

during early blastula stages in Xenopus (Gillespie et af., 1992; Ryan & Gillespie,

1994; Ryan at af., 1998). Similar to MAPK signalling, these two pathways are

therefore also adivated correct time for initiating ER1 nuclear localization. The

results in Chapter 3 showed that XFO blocks nuclear localization of ER1

However, XFD blocks FGF signalling at the receptor level and abrogates all FGF
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signalling. Further worK is therefore required to determine which specific

downstream FGF signalling cascade may lead to dephosphorylation of ER1

associated proteins and consequent nudear localization of ER1.

The results presented in this thesis suggest a model whereby FGF

signalling is modulated by a negative feedback mechanism through ER1. As

illustrated in Figure 6.1, nuclear localization of ER1 is initiated by FGF signalling.

Signalling initiated by FGF leads to the dephosphorylation of proteins associated

with ER1, and the latter event is correlated with translocation of ER1 to the

nudeus. Once in the nudeus, ER1 may be activating the transcription of genes

whose products act to inhibit FGF signalling, and/or repress the transcription of

genes required for the FGF·mediated response during mesoderm induction.
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Figure 6.1 A model illustrating the putative mechanism underlying
nuclear localization and function of ER1.
The above model proposes a negative feedback loop on FGF
signalling by ER1. FGF binding to FGFRs triggers the FGF
signalling cascade, which may lead to dephosphorylation
events on ER1 associated proteins, followed by nuclear
localization of ER1. In the nuclelS, ER1 possibly activates
transcription of genels whose products shut down FGF
signalling and/or represses the transcription of genels required
for mesoderm induction
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6.2 FUTURE OIRECnONS

Future experiments of relevance to each of the chapters were discussed

earlier. After considering all the infonnation presented, there are several areas of

immediate interest, which can be examined to confirm the results presented in

this thesis.

6.2.1 Down~regulating ER1 expression or function.

Overexpression of ER1 in the embryo was useful in determining its

function in the embryo. Another strategy often used in unravelling the function of

proteins is the use of dominant-negative mutants. The dominant-negative FGF

receptor, XFO, has been crucial in investigating some functions of FGFs in the

embryo. Qverexpression of a dominant-negative ER1 will provide further clues

to the function of the protein. Hence, jf ER1 truly functions as a regulator of the

FGF pathway, overexpression of a dominant-negative fonn of the protein should

give reverse effects to those observed here from overexpressing ER1 and

putatively similar results to overexpression of FGFs. A protein, which does not

exhibit transcriptional activity but blocks endogenous ER1 activity by interacting

with nonnal ER1 partners, should act as a good dominant-negative. Other

ongoing projects in the laboratory are attempting to characterize the ER1

domains ER1, that may be responsible for DNA·binding or protein·protein

interaction.
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Other strategies, which can be used to cause -loss of function", are RNA

interference and the use of antisense oligonucleotides and morpholino

oligonucleotides. RNA interference technology, using double stranded RNA

corresponding to the gene of interest, has been found to be effective in

downregulating gene expression in Xenopus (Nakano at al., 2000). Antisense

oligonucleotides lead to degradation of mRNA and morpholino oligonucleotides

act by preventing the translation of specific mRNAs into protein, hence ablating

the function of the gene of interest (Summerton & Weller, 1997).

6.2.2 Determining which FGF pathway is responsible for nuclear translocation of

ERl

FGF signalling activates three major pathways, RasIMAPK, PLCy1 and

PI3'K pathways (reviewed in Powers at al., 2000). The work in this thesis has

shown that nuclear localization of ER1 is tightly regulated during early

developmental stages and is under the control of FGF signalling. Dominant­

negative mutants (such as dominant negative MAPK) and chemical inhibitors

(such as wortmannin, which inhibits PI3'K, and U713122, the synthetic inhibitor

of PlCy) or neutralizing antibodies to specific components of these pathways,

will help determine which of the three pathways listed above is responsible for

nuclear localization of ER1. Nuclear localization of ER1 in response to

overexpressing of dominant-negative mutants or chemical inhibitors can be

verified by whole-mount antibody staining.
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Activated PlCy and PI3'K both associate with FGFR during mesoderm

induction (Ryan & Gillespie, 1994; Ryan at 81., 1998). Activated PKC, a

component of the PlCy pathway, has been detected in FGF-treated explants

(Gillespie et 81., 1992). Simultaneous treatment of explants with TPA (an

activator of PKC) and FGF results in significant inhibition of mesoderm induction

by FGF, suggesting that activation of PKC oould be part of a negative feedback

mechanism on the FGF mesoderm induction pathway (Gillespie et a/., 1992). It

is possible that nuclear localization of ER1 is triggered by either the PLCy or the

PI3'K pathway as part of a negative feedback mechanism to regulate mesoderm

induction by FGF.

6.2.3 Further characterization of the role of ER1 during mesoderm induction

A low level of activity from maternal FGFs is required for the transcription

of the mesodermal marker Xbra in late blastula marginal zone. Xbra then

activates the zygotic expression of eFGF in the earty mesoderm leading to a

period of autocatalytic activity of eFGF and Xbra in the nascent mesoderm of the

marginal zone. During gastrula and neurula stages, eFGF continues to regulate

the expression of Xbra in the blastopore region and the notochord. The FGF­

Xbra autocatalytic pathway is important for the establishment of the mesoderm.

Different types of mesoderm are induced in animal cap explants at varying doses

of FGFs (Slack €It a1., 1987; Slack at a1., 1988). Mesodermal tissue of a ventral

nature such as mesenchyme and mesothelium are induced at low doses, and of
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a more lateral nature such as muscle at higher doses (reviewed in Isaacs, 1997).

These induced caps express mesodermal molecular markers such as Xbra.

Animals caps from embryos injected with ert should inhibit the ability of FGFs to

induce mesoderm. This would be verified by visually scoring the explants,

looking at the expression of molecular markers for mesoderm and by histological

analysis for mesodermal derivatives. These experiments will confirm the ability

of ER1 to regulate the mesoderm-inducing ability of FGF.

6.2.4 Investigating effect of ER1 on the MAPK pathway and rescue of the ER1

phenotype by activated MAPK.

Mesoderm and posterior signals transduce through FGFR1 by activation

of the RasIMAPK pathway (Umbhauer et a/., 2000). Transduction of FGF signals

leading to Xbrs maintenance involves Ras, Raf and the MAPK cascade (Gotoh et

al., 1995; LaBonne at a/., 1995; MacNicol et al., 1993; Umbhauer et al., 1995)

and downstream the heterodimeric AP-1 transcription factor (Kim et a/., 1998). In

Xenopus, the FGF family seems to be responsible for the full pattern of activated

MAPK in early development since activation can be blocked completely by XFD

until tailbud stages (Christen and Slack, 1999). The connection of ER1 to the

FGF signalling pathway can be further investigated by looking at the effect of

ER1 on the expression of activated MAPK. The level of activated MAPK in

embryos overexpressiog ER1 can be verified by whole mount staining or by

Western blotting
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SillC8 ER1 may be having a negative regulatory effect on FGF signalling

during mesoderm induction and the main pathway activated dUring mesoderm

induction by FGF is through MAPK, it will be interesting to determine whether

expression of activated MAPK will rescue the phenotype seen in embryos

overexpressing ER1.

6.3 CONCLUSION

This study has provided insight into the expression and function of ER1 in

the Xenopus embryo. There is preliminary evidence that ER1 functions as a

transcription factor. The protein has a tightly regulated spatio--temporal nuclear

localization pattem in the embryo. Investigation of the mechanisms regulating

this nuclear localization pattem suggests that nuclear translocation of ER1 is

regulated by changes in ER1-associated phosphoserine proteins, triggered by

the FGF signalling pathway in Xenopus embryos.

ER1 over-expression results in posterior truncations in the embryo and

inhibits the expression of mesodermal and posterior markers, which are induced

by FGF, suggesting that ER1 is a modulator of the FGF pathway. Further

expression analysis of a larger array of markers will support this premise. In

addition, analysis of the response of components specific to the FGF signalling

pathway will determine the specificity of the ER1-FGF connection.
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