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Abstract

This thesis begins by studying the thickness of evaporative spin coated colloidal crys-

tals and demonstrates the variation of the thickness as a function of suspension con-

centration and spin rate. Particularly, the films are thicker with higher suspension

concentration and lower spin rate. This study also provides evidence for the repro-

ducibility of spin coating in terms of the thickness of the resulting colloidal films.

These colloidal films, as well as the ones obtained from various other methods such

as convective assembly and dip coating, usually possess a crystalline structure. Due

to the lack of a comprehensive method for characterization of order in colloidal struc-

tures, a procedure is developed for such a characterization in terms of local and longer

range translational and orientational order. Translational measures turn out to be

adequate for characterizing small deviations from perfect order, while orientational

measures are more informative for polycrystalline and highly disordered crystals. Fi-

nally, to obtain an understanding of the relationship between dynamics and structure,

the dynamics of colloids in a quasi-2D suspension as a function of packing fraction is

studied. The tools that are used are mean square displacement (MSD) and the self

part of the van Hove function. The slow down of dynamics is observed as the packing

fraction increases, accompanied with the emergence of 6-fold symmetry within the

system. The dynamics turns out to be non-Gaussian at early times and Gaussian at

later times for packing fractions below 0.6. Above this packing fraction, the dynamics
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is non-Gaussian at all times. Also the diffusion coefficient is calculated from MSD

and the van Hove function. It goes down as the packing fraction is increased.

iii



Acknowledgements

I would like to express my deepest appreciation and gratitude to my supervisors Dr.

Anand Yethiraj and Dr. Kristin M. Poduska for their support, guidance, and patience.

They both spent incredible amounts of time at each stage of my progress towards this

thesis. Moreover, I learned valuable lessons from both of them in conducting an

organized research. I am particularly grateful to them for teaching me how to work

with various laboratory equipments. I would like to thank Dr. Maynard Clouter for

teaching me to use the metal vapor deposition device, and letting me use it in his lab.

Also I am grateful to Dr. Erika Merschrod of department of chemistry for allowing me

to use the micropatterning device in her lab. As well, I thank Dr. Ivan Saika-Voivod

for helpful theoretical discussions. I am also grateful to Dr. Ahmad Almudallal for

helpful discussions, support and contributions to my work.

And finally I want to express my high appreciation to my wife, without whose

tireless patience and constant support this achievement would have been out of reach.

iv



Table of Contents

Abstract ii

Acknowledgments iv

Table of Contents v

List of Tables vi

List of Figures vii

List of Abbreviations viii

List of Symbols x

1 Introduction 1

1.1 Colloids and self assembly . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Spin coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 What is spin coating? . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 The advantages and drawbacks of spin coating . . . . . . . . . 4

1.2.3 The role of spin coating in this project . . . . . . . . . . . . . 4

1.3 Measuring the thickness of colloidal films . . . . . . . . . . . . . . . . 5

1.4 Assessing order in colloidal crystals . . . . . . . . . . . . . . . . . . . 5

v



1.5 Dynamics of quasi-2D colloidal systems . . . . . . . . . . . . . . . . . 6

1.6 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Evaporative spin coated colloidal crystals 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Emergence of symmetries and their relevance to thickness . . . 10

2.2.2 Thickness control . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Making the spin coated colloidal film . . . . . . . . . . . . . . 16

2.3.2 Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . 17

2.4 Controlling the thickness of spin coated colloidal crystals . . . . . . . 21

2.4.1 Reproducibility and the effect of washing the substrates . . . . 23

2.4.2 Dependence on suspension concentration . . . . . . . . . . . . 25

2.4.3 Dependence on the spin rate . . . . . . . . . . . . . . . . . . . 25

2.4.4 Effect of suspension volume . . . . . . . . . . . . . . . . . . . 27

2.4.5 Producing films of definite thickness . . . . . . . . . . . . . . . 29

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Quantitative metrics for assessing positional and orientational order

in colloidal crystals 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Structural quantification . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Computer-generated 2D lattices . . . . . . . . . . . . . . . . . 42

3.2.3 2D images of colloidal crystals . . . . . . . . . . . . . . . . . . 43

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



3.3.1 Orientational order correlates with positional order . . . . . . 48

3.3.2 Intermediate-range correlations versus local orientational order 51

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Dynamics of quasi-2D colloidal suspensions 60

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Diffusion and subdiffusion . . . . . . . . . . . . . . . . . . . . 62

4.2.2 The self part of the van Hove function . . . . . . . . . . . . . 64

4.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Dynamics and structure . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 The van Hove function . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Gaussian vs. non-Gaussian dynamics . . . . . . . . . . . . . . 79

4.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusion 86

A van Hove function for selected examples 90

A.0.1 The examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.0.2 Discussion on the initial peak of the Gs(r, t) . . . . . . . . . . 100

Bibliography 103

vii



List of Tables

2.1 Spin coating conditions for the my experiments. . . . . . . . . . . . . 22

2.2 Conditions for producing films of definite thickness. . . . . . . . . . . 30

3.1 Summary of structure metrics. . . . . . . . . . . . . . . . . . . . . . . 37

3.2 A complete set of metrics calculated for images of colloidal crystals. . 45

4.1 List of the samples made for the dynamics study. . . . . . . . . . . . 66

viii



List of Figures

2.1 Large scale structure of a spin coated colloidal crystal. . . . . . . . . 11

2.2 Laser diffraction for determining the structure of a spin coated colloidal

crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 4-fold and 6-fold arrangement of spherical particles in 2D. . . . . . . 14

2.4 Using AFM profile to obtain the film thickness. . . . . . . . . . . . . 19

2.5 Examples of AFMmicrographs of monolayer and multilayer spin coated

colloidal film. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Reproducibility of spin coated colloidal films. . . . . . . . . . . . . . . 24

2.7 Film thickness vs. suspension concentration in spin coating. . . . . . 26

2.8 Film thickness vs. spin rate in spin coating. . . . . . . . . . . . . . . 28

2.9 The effect of volume of the suspension on film thickness in spin coating. 29

2.10 Films of various thicknesses with spin coating. . . . . . . . . . . . . . 31

2.11 AFM micrograph of colloidal sub-monolayer. . . . . . . . . . . . . . . 32

3.1 Exponential vs. power-law fit for g(r). . . . . . . . . . . . . . . . . . 40

3.2 Triangulation of an imperfect 4-fold lattice . . . . . . . . . . . . . . . 42

3.3 Local order parameter vs. α . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Representative images of colloidal crystals produced by different methods. 52

3.5 Representative orientational correlation functions gs(r). . . . . . . . . 54

3.6 〈Ψs〉 and ∆s vs. fs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



4.1 Examples of 2D colloidal samples. . . . . . . . . . . . . . . . . . . . . 69

4.2 log(W (t)) vs. log(t) for the selected examples. . . . . . . . . . . . . . 70

4.3 γ vs. φ, and symmetry fractions vs. φ. . . . . . . . . . . . . . . . . . 72

4.4 γ vs. Disordered fraction. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 〈Ψ6〉 vs. φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Example of the issues in the van Hove function. . . . . . . . . . . . . 77

4.7 Summary of the van Hove function calculations. . . . . . . . . . . . . 81

4.8 Time range for non-Gaussian and Gaussian behavior. . . . . . . . . . 82

4.9 Diffusion coefficient vs. φ. . . . . . . . . . . . . . . . . . . . . . . . . 83

A.1 γ vs. φ, and symmetry fractions vs. φ. . . . . . . . . . . . . . . . . . 91

A.2 ln(Gs(r, t)) for example 1, and the D values obtained from it. . . . . . 92

A.3 ln(Gs(r, t)) for example 2, and the D values obtained from it. . . . . . 93

A.4 ln(Gs(r, t)) for example 3, and the D values obtained from it. . . . . . 94

A.5 ln(Gs(r, t)) for example 4, and the D values obtained from it. . . . . . 95

A.6 ln(Gs(r, t)) for example 5, and the D values obtained from it. . . . . . 96

A.7 ln(Gs(r, t)) for example 6, and the D values obtained from it. . . . . . 97

A.8 ln(Gs(r, t)) for example 7. . . . . . . . . . . . . . . . . . . . . . . . . 98

A.9 ln(Gs(r, t)) for example 8. . . . . . . . . . . . . . . . . . . . . . . . . 99

A.10 A typical frame and the z-project of the movie. less than 10% of the

particles are stuck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.11 (Top) (2πr)Gs(r, t) for t = 225.5 s of point 1 in the appendix. (Mid-

dle) The ln(Gs(r, t). (Bottom) The area under the (2πr)Gs(r, t) as a

function of r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.12 A typical frame and the z-project of the movie. less than 10% of the

particles are stuck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

x



A.13 (Top) (2πr)Gs(r, t) for t = 175.5 s of point 3 in the appendix. (Mid-

dle) The ln(Gs(r, t). (Bottom) The area under the (2πr)Gs(r, t) as a

function of r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xi



List of Abbreviations

2D Two-dimensional

3D Three-dimensional

AFM Atomic force microscope (microscopy)

CCD Charge-coupled device

CFM Confocal fluorescent microscopy

CG Computer generated

EG Ethylene glycol

ETPTA Ethoxylated trimethylolpropane triacrylate

FITC Fluorescein isothiocyanate

IDL Interactive data language

MEK Methyl ethyl ketone

MPK Methyl propyl ketone

MSD Mean square displacement

PMMA Poly(methyl methacrylate)

RPM Revolutions per minute

SEM Scanning electron microscope (microscopy)

SERS Surface Enhanced Raman Spectroscopy

UV Ultra-violet

xii



List of Symbols

α Lindemann parameter for positional disorder

γ Slope of log(W (t)) vs. log(t)

∆s Approximate domain size (s=4 or 6)

ξs Positional correlation length within a single domain (s=4 or 6)

ρSiO2 Density of SiO2 colloids

σ Most probable inter-particle distance

τ Characteristic time in colloidal dynamics

φ Packing (area) fraction

Φs Suspension concentration in %

Ψs Local bond order parameter (s=4 or 6)

a Scaling factor in the Gs(r, t) fit function

D Diffusion coefficient

f4, f6, fdis 4-fold, 6-fold, and disordered fraction

g(r) Pair correlation function

gs(r) Orientational correlation function (s=8 or 6)

Gs(r, t) The self part of the van Hove function

mSiO2 Mass of SiO2 powder

r0 Shift factor in the Gs(r, t) fit function

xiii



Vsolc Volume of solvent

W (t) The mean square displacement function

xiv



Chapter 1

Introduction

1.1 Colloids and self assembly

Colloid is a term that describes particles of a few nanometers to a few micrometers

in size, which can be dispersed homogeneously in a continuous medium to form a

dispersion. A colloidal dispersion can be composed of tiny gas bubbles in liquid

(foam), liquid droplets in liquid (emulsion), solid or liquid particles in gas (aerosol),

and solid particles in liquid (suspension) [1]. Examples of colloidal dispersions from

everyday life are milk (emulsion of milk fat in water), blood (suspension of blood

globules in blood plasma) and smoke (aerosol of solid smoke particles in air). In

colloidal physics, common colloidal particles for making colloidal suspensions are silica

(SiO2) [2, 3], polystyrene [4], and PMMA (Poly(methyl methacrylate)) [5] particles.

Typically, the colloidal particles in a dispersion are subject to Brownian motion [6],

which means that they are in a constant random motion which is the result of constant

bombardment by the molecules of the dispersion medium.

A phenomenon that is usually associated with colloidal systems is self assembly.

What this means is that, in the course of their agglomeration, colloids tend to form
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ordered structures, at a scale many orders of magnitude larger than the size of the

colloids. Various symmetries arise, depending on the shape of the particles and the

interactions between them, to minimize the free energy of the system. In other words,

macroscopic order is not imposed upon the system from outside, but happens sponta-

neously, through the internal dynamics of the system. In fact it is possible to modify

the interactions between colloidal particles in many different ways to obtain more

complex structures than the ones obtainable from spherical particles with isotropic

interactions [7, 8].

Colloidal crystals obtained via self-assembly processes have been considered as

templates for producing periodic structures for different applications like photonics

[9–11], quantum dot lasing [12], and sensing [13]. The advantage of self-assembly over

methods like micropatterning is that it is generally cheaper and does not usually need

high-tech instruments, and in some cases it can be faster [2].

A generic drawback of colloidal self assembly methods is that usually the resulting

structures contain all kinds of defects, like stacking faults, dislocations and poly-

crystallinity. However, this is not necessarily undesirable. In fact, even amorphous

colloidal structures are interesting, for example, due to their possible applications

in producing uniform and “angle-independent structural color” [14] and color pig-

ments [15]. A common definition for an amorphous structure is a structure without

long range positional and orientational correlations1. But due to the general tendency

of colloidal particles to self assemble and form crystalline structures, even obtaining

an amorphous colloidal structure needs some control to prevent crystallization, for

example, by using particles of different sizes together [14,16].

Between the extremes of perfect colloidal crystals and amorphous colloidal struc-
1With regard to structural colors, if there is long range order in the arrangement of colloidal

particles, Bragg planes can be defined in the structure and interference of light reflected from Bragg
planes results in observation of different wavelengths in different viewing angles, so for angle inde-
pendent structural color we need an amorphous structure.
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tures, there are poorly crystalline and polycrystalline structures .A polycrystalline

structure is one that is composed of many crystalline domains with different relative

orientations. These are the kind of structures that are commonly obtained from a

method like spin coating. But even these structures are not without application. For

example, it has been shown [17] that a polycrystalline colloidal structure can be used

as a template for producing a porous structure, which can then be used to assemble

gold nano-particles in an array. This in turn can be used as a substrate for Surface

Enhanced Raman Spectroscopy (SERS). A structured substrate is shown to greatly

improve the SERS signal intensity.

1.2 Spin coating

In all of my projects I have worked with a method called spin coating to produce

colloidal films. What follows is a general description of this method, its advantages

and shortcomings, and its role in this thesis.

1.2.1 What is spin coating?

Spin coating is simply the use of centrifugal force to spread a fluid over a rotating

substrate. This method is widely used to obtain uniform layers of polymers and

colloidal films on various types of substrates [2, 4, 18, 19]. Due to the fact that this

process happens on a typically fast rotating substrate (ranging from a few hundred

rpm to thousands of rpm), it is a non-equilibrium process and the dynamics involved

can be very complicated [20–22]. Spin coating is done by a device called a spin coater,

which provides control over spin rate, the ramp-up acceleration to the desired spin

rate, and spinning time.
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1.2.2 The advantages and drawbacks of spin coating

Spin coating is a fast and robust method for producing films (and particularly, colloidal

crystals) with reproducible thickness. The resulting colloidal films are crack free and

free from instabilities that are observed in some other methods like vertical deposition.

However, the resulting colloidal crystals in this method are very far from perfect single

crystals. In fact, they are inherently polycrystalline at the macroscopic scale due to

the lack of translational symmetry in their overall structure, although there exists

overall orientational correlation [3]. Also as it will be shown in this thesis they are

usually polycrystalline even at the microscopic scales. As well, it is shown [23, 24]

that the colloidal films obtained by spin coating are thicker at the center relative to

the edges.

1.2.3 The role of spin coating in this project

In this project spin coating is used to study film thickness, crystalline structure, as

well as dynamics of quasi-2D colloidal suspensions.

First, in Chapter 2, colloidal films are produced for the purpose of studying the

dependence of their thickness on spin coating conditions, namely spin rate and suspen-

sion concentration. Next, in Chapter 3, colloidal films are produced for the purpose

of studying their crystalline structure. Finally, in Chapter 4, spin coating is utilized

as a simple and fast method for producing wet colloidal films, with ethylene glycol as

solvent, for studying the dynamics of quasi-2D colloidal suspensions as a function of

particle packing fraction.
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1.3 Measuring the thickness of colloidal films

The first part of my project was to demonstrate control over the thickness of spin

coated colloidal films. This was done following the work done by others: Jiang et al.

showed controllable use of spin coating for producing colloidal crystals with a non-

volatile solvent [2]. Mihi et. al. produced colloidal crystals with a slowly evaporating

solvent mixture [4]. And Giuliani et al. [23] studied the thinning rate during spin

coating of a colloidal suspension with MEK (methyl ethyl ketone) as solvent, which

evaporates much more quickly.

The goals of my work were to demonstrate the reproducibility of the spin coating

process with highly evaporative solvents like MEK and MPK (methyl propyl ketone),

and to study in more detail the thickness of the resulting film as a function of spin

coating parameters. Also I was interested in finding detailed spin coating conditions

for producing colloidal films of various thicknesses, with particular interest in mono-

layer.

1.4 Assessing order in colloidal crystals

During the study of the film thicknesses (Chapter 2), I obtained several atomic force

micrographs of my spin coated colloidal crystals, which naturally raised the question

of the quality of crystalline order in them. Therefore, it was decided to perform a

quantitative characterization of the order in colloidal crystals.

What is common in the literature is a visual inspection of microscopy images [25–

28]. Also, there are reciprocal space methods, such as Fourier transformation of optical

images [2, 29]. Some recent studies have presented more quantitative assessments in

real space [29,30]. However a comprehensive procedure for assessing order in different

respects (local, long-range, translational, and orientational) was lacking. So as the
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next goal I set out to come up with such a procedure for the assessment of order of

the top layer of colloidal crystals, not only made by spin coating, but made by any

other methods. To this end, I studied a large number of images of colloidal crystals

made by various methods, which I collected from the literature, in addition to the

AFM images of my spin coated colloidal crystals. I calculated bond order parameter

(from which symmetry fractions were calculated), positional disorder, pair correlation

function (from which positional correlation length was calculated), and orientational

correlation function (from which domain size was calculated) for more than 70 images

produced by 8 techniques. This work is published [31].

1.5 Dynamics of quasi-2D colloidal systems

Chapters 2 and 3 deal with the study of dried colloidal films in terms of thickness and

their crystalline structure. Thereafter, my focus shifted to the dynamics of colloids

in a film, in order to obtain an understanding of the relationship between dynamics

and structure. Spin coating was used to produce quasi-two-dimensional colloidal

suspensions for this purpose.

There has been a long standing interest in the dynamics and phase transitions of

2D systems [32–35]. In my work I look at the mean square displacement (MSD) of

colloids in a 2D suspension as a function of packing (area) fraction to see how dynamics

changes with packing fraction. Also the self part of the van Hove function is calculated

to identify the behavior as Gaussian or non-Gaussian at different packing fractions as

a function of time. As well, symmetry fractions are used to correlate dynamics with

structure.
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1.6 Scope of this thesis

In this work, I started by measuring the thickness of colloidal films made by spin

coating. Afterwards, analytical tools were used to quantify the structure of colloidal

crystals made with various methods, including spin coating. Finally, I studied the

dynamics of quasi-2D colloidal suspensions.

Chapter 2 presents the results of the analysis of the thickness of colloidal crystals

made by spin coating as a function of spin rate and suspension concentration. Also

conditions for producing films of definite number of layers are provided.

Chapter 3 presents the analysis of the structure of the top layer of colloidal crystals,

in terms of local and long range orientational and translational order.

Chapter 4 presents the results of the study of the dynamics of quasi-2D colloidal

suspension as a function of their packing fraction, and the relationship between dy-

namics and structure.

Chapter 5 is the conclusion chapter which presents an overview of the projects

in connection with each other and their goals. The results of each project are then

summarized.
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Chapter 2

Evaporative spin coated colloidal

crystals

2.1 Introduction

In this chapter, after a review of the highlights of the literature on spin coating of

colloidal suspensions, the experimental work for producing colloidal films is presented.

The objectives are to demonstrate the reproducibility of spin coating for producing

colloidal films of certain thickness, and to demonstrate the control over the thickness

through controlling spin coating parameters, such as suspension concentration and

spin rate. Having control over the thickness of colloidal films is important for different

applications. Particularly, it is useful to know how to make a monolayer, because a

monolayer colloidal crystal can have special applications, e.g., as a diffraction grating

or a patterning mask [36, 37]. As well, in other potential applications where thicker

colloidal films can be used as a 3D template (like photonic applications [9–11, 38],)

knowing the thickness of the film can be relevant.

What was missing in the literature was an experimental demonstration of thick-
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ness reproducibility. Therefore, as my first objective, following the work of Giuliani et

al. [23], I demonstrated reproducible control over the thickness of spin coated colloidal

films produced with volatile solvents by changing spin rate and suspension concentra-

tion. Conditions for producing different thicknesses, including monolayers, are also

presented.

The experimental thickness results presented in this chapter (Section 2.4) are not

published anywhere other than in this thesis. Section 2.2 presents an overall view of

the different aspects of spin coating for producing colloidal films and crystals, with

the main focus being on spin coating dynamics and how different symmetries arise

during the process and in the final dried colloidal film. The main points of this

section are included in the following review article: Soft Matter, 9, 2013. authored

by M. Pichumani, P. Bagheri, W. González-Viñas, K. M. Poduska, and A. Yethiraj.

[19]. As the second author, my contribution was to write a section on the structure

and symmetries of spin coated colloidal crystals, proof reading, and implementing

referee’s comments. In Section 2.2 reference is made to this review paper, wherever

the discussion at hand can be found in it in more detail.

2.2 Background

Spin coating is a method that uses the centrifugal force produced by a rotating sub-

strate to spread the suspension over the substrate [2,19]. For spin coating of colloidal

suspensions, we can use two types of solvents:

• Volatile solvents: Examples are ethanol, MEK (Methyl Ethyl Ketone), or MPK

(Methyl Propyl Ketone), which evaporate very fast (in a few seconds or even less

than a second) during spin coating, or a mixture like distilled water, ethanol and

ethylene glycol [4], or even pure ethylene glycol, which give the experimenter
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minutes before evaporating. The resulting film is dry at the end of spin coating.

In this case, since the solvent has evaporated, the colloidal thin film that is

obtained is a self-supporting structure of colloidal particles.

• Non-volatile solvents: These solvents do not evaporate during spin coating and

the resulting thin film is not dry. An example is ETPTA (ethoxylated trimethy-

lolpropane triacrylate) monomers [2] which need photocuring after the spin coat-

ing is done. This means that it needs to be exposed to UV light for hardening.

In this case the resulting colloidal film after hardening of the polymer contains

the colloidal particles and the polymer between the particles.

A remarkable feature of spin coated colloidal films is that, in spite of the very far

from equilibrium dynamics of the process, the resulting structure is reproducible in

terms of thickness, and contains local and global symmetries.

2.2.1 Emergence of symmetries and their relevance to thick-

ness

There have been attempts to explain the rise of local symmetries during spin coating

using approximate hydrodynamical models. Shereda et al. [39] showed that in spite

of the complexity of the hydrodynamics of spin coating, a simple model connects the

rise of crystallinity to the Peclet number. In fact, Ackerson and Pusey had shown in a

seminal work [40] that a steady or oscillatory flow increases the rate of crystallization

in colloidal suspensions if the Peclet number exceeds a threshold value of order unity.

Shereda et al. showed that the same threshold value for the Peclet number works

in the same way in the much more complex process of spin coating (see the review

paper [19] for more details on the Shereda et al. model).

In spin coating with volatile solvents, the process consists of an initial stage where
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Figure 2.1: (a) Schematics of the relative orientation of local patches in a spin coated
colloidal poly-crystal. (b) An atomic force micrograph of a spin coated colloidal
crystal. A lighter gray means higher height. In this example each patch has a 4-
fold local symmetry. (c) local 4-fold structure and their relative global orientational
correlation give rise to colored arms which is an example of structural colors. This
sample is 2.5 cm×7.5 cm.

the flow of the solvent is dominant and the shear stress provided by it is the ordering

factor. The second stage is when the evaporation dominates and the capillary forces

between the particles re-arrange the particles to their final dry structure.

Giuliani et al. [23] studied the dynamics of evaporative spin coating in detail

by video imaging and observed some symmetry transitions for the first time. They

observed that during the first stage (when the hydrodynamics dominates) a 6-fold

symmetry arises in the rotating colloidal suspension due to the shear stress provided

by spinning and then there is a transition from 6-fold to 4-fold symmetry. Then,

immediately before entering the evaporation dominated stage, symmetry is lost in

the system and afterwards the circular drying front propagates radially towards the

center and rearranges the particles into their final structure which shows either 4-fold

or 6-fold symmetry (see [19] for more details on Giuliani et al. study).

The appearance of 4-fold or 6-fold symmetry in the final dried film depends on

the rotation rate and concentration of the initial suspension [3,4,19,41], although the

symmetries and their transitions are the same before the start of the evaporation and
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do not depend on the rotation rate or concentration. The final structure, either 4-fold

or 6-fold, is believed to have an fcc structure in three dimensions. In fact, when the

top layer shows 6-fold symmetry, the (111) plane of the fcc structure is parallel to

the substrate and when it shows 4-fold symmetry, the (100) plane is parallel to the

substrate. Experiments show that the evaporation front starts from the periphery

and moves inward and gives rise to these symmetries for the colloidal film [23], but it

is not yet completely understood how these different orientations result from different

spin coating parameters (see [19] for more detailed discussion about symmetries in

spin coated colloidal films). The assumption of a three-dimensional fcc structure for

spin coated colloidal crystals should be considered with caution, because it has been

shown (via confocal imaging) by Vermolen [41] that the bottom layer of the spin

coated colloidal film is not as ordered as the top layer. The global structure of a

spin coated colloidal crystal was shown to be inherently polycrystalline [3]. This is

illustrated in Fig. 2.1. Fig. 2.2 illustrates the use of laser diffraction to reveal the

local symmetry and overall structure of spin coated colloidal crystals.

In spite of the possible imperfections of the supposed fcc structure for a spin

coated colloidal crystal, its thickness depends on whether it is the (100) plane that is

parallel to the substrate (which gives rise to the 4-fold symmetry for the top layer)

or it is the (111) plane (which results in 6-fold symmetry for the top layer). Fig.

2.3 compares a 6-fold compact arrangement with a 4-fold compact arrangement for

spherical particles. It is clearly seen that when the particles are in 4-fold order, there

is more space between them, and therefore the next layer can interpenetrate deeper

among the previous layer. Specifically, if the diameter of the colloids is D, in the

4-fold case each layer adds
√

2
2 D to the thickness, and in the 6-fold case it adds

√
2
3D.

So the resulting thickness of the spin coated colloidal film is affected by the symmetry

of the film.
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Figure 2.2: (a) Schematics of the experimental set up for laser diffraction. The
diffraction pattern forms on the sample itself, and shows a 4-fold symmetry for the
local structure of the colloidal film. (b) The gray rectangle is a spin coated colloidal
film. By moving the laser spot along the line L, the diffraction pattern rotates. (c)
We define angle B as the angle between an arbitrary line and the line connecting the
center of the sample to the central laser spot, and angle R as the angle between the
vertical line and the line connecting the central laser spot and one of the diffraction
spots. R is a linear function of B with a slope very close to 1. This reveals the global
orientational correlation of the structure of the spin coated sample.
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Figure 2.3: Top view of hexagonal (left) and square (right) arrangement of spheres.

There is more space between the spherical particles when they are in a square ar-

rangement. Therefore, the particles of the next layer interpenetrate deeper among

the particles of the lower layer, and consequently, a square arrangement leads to a

thinner film, compared to a film with the same number of hexagonally symmetric

layers.

2.2.2 Thickness control

Theoretical and experimental work on the dynamics of spin coating and the thickness

of the resulting films dates back to mid 20th century. In a seminal work, Emslie et

al. [20] theoretically studied the thinning rate of a viscous fluid during spin coating.

In a following work, Meyerhofer [21] worked out the theory of the dependence of the

final thickness of a spin coated photoresist on solution concentration and spin rate by

taking evaporation into account. Later on, Rehg et al. [22] presented the theory of

spin coating of colloidal suspensions. They studied the thinning rate considering the

suspension dynamics during the spinning, by also taking evaporation into account.

They backed up their theory by experimental results.

Jiang et al. experimentally demonstrated the use of spin coating for producing

colloidal crystals with a non-volatile solvent [2]. They also showed the control over

thickness by controlling spin rate and time. Mihi et al. produced colloidal crystals
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with a volatile solvent mixture [4], and also demonstrated thickness control as a

function of spin rate. In their experiments the spinning time was between 2 to 15

minutes. Giuliani et al. [23] studied the details of the thinning rate during the spin

coating of a colloidal suspension with MEK (methyl ethyl ketone) as solvent. In their

experiments, the spinning time was typically up to a few seconds. They presented

the specifics of the thickness profile of a spin coated colloidal film as a function of the

distance from the center for films of various thicknesses made at different conditions.

Spin coating with very volatile solvents like MEK or MPK (methyl propyl ke-

tone) is worth attention, because of the speed of the process for obtaining a colloidal

crystalline layer.

2.3 Experimental methods

I use 22 mm×22 mm glass cover slips (Fisherbrand, catalog number 12-542B) as sub-

strate for producing spin coated colloidal films. Also, the following washing procedure

is used for cleaning the substrates. Section 2.4.1 shows that the cleanness of the sub-

strates has a direct effect on the reproducibility of the spin coating process in terms

of the thickness of the films.

First, each cover slip is rinsed with acetone and then with ethanol. In the next

step, they are ultrasonicated (Branson 8510 sonicator) in a dilute NaOH solution

(NaOH pellets: ACP chemicals, catalog number S-3700) with pH of 9 to 10 in plastic

tubes with the caps closed, for about 30 minutes. The cover slips, as well as the insides

of the tubes are rinsed with distilled water, and then each cover slip is ultrasonicated

in distilled water for another 30 minutes in the tubes. Afterwards, the cover slips are

taken out of the tubes and rinsed with distilled water, and then dried with nitrogen.

These cover slips are glued (using Norland UV sealant 91, catalog number 9104) to
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glass microscope slides (Technologist Choice, catalog number LAB-033 (7101)) to

provide support. For observing the contact angle of water on the surfaces, a droplet

of a few microliters is used. The droplet spreads over the surface, such that the top

surface of the spread water is nearly flat. Water spreads well enough on both washed

and unwashed substrates, and so they are both hydrophilic enough for doing spin

coating.

2.3.1 Making the spin coated colloidal film

The mass of silica colloids needed for a target concentration Φs is calculated as follows:

mSiO2 = ρSiO2

ΦsVsolv
1− Φs

(2.1)

where ρSiO2 is the density of SiO2 colloids (1.8 g/cm3), Φs is their concentration in

the suspension, and Vsolv is the volume of the solvent. All suspension concentrations

reported in this chapter are particle volume percentages. The silica particles used in

this work are purchased from Angstromsphere (catalog number SIOP050-01). They

are claimed to have a diameter standard deviation of ∼ 5%.

The monodispersity of the particles (that is, the particles being of the same size)

is quite crucial here if one wants to make a colloidal crystal. In fact, it has been

shown that the concentration of various kinds of defects will increase with increasing

polydispersity [42].

Once its mass is measured, I heat the silica powder in the oven (at 200 ◦C) for

three hours to dry it. This is necessary, because the surface of the silica particles

absorbs water molecules, and this causes the particles to stick together. The heating

temperature is low enough that the particles do not get sintered together. After

heating, the glass vial is immediately capped and sealed to prevent the powder from
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being exposed to the moisture in the outside air. Once the vial cools down, I add

the solvent and cap it immediately. In my experiments, I used MEK (methyl ethyl

ketone, Sigma Aldrich, catalog number 360473) or MPK (methyl propyl ketone, Sigma

Aldrich, catalog number 87032604) as solvent.

To obtain a homogeneous suspension with colloids well dispersed (not clumped

together), I ultrasonicate the suspension for at least three hours. If the size of the

particles is comparable to the wavelength range of visible light, upon obtaining a

monodisperse suspension, diffraction of visible light from the particles in the suspen-

sion creates iridescence, and therefore when such iridescent colors are visible near the

edge of the meniscus of the suspension, it is considered ready for spin coating.

The spin coater used in this work is a Laurell Technologies spin coater (model

no. WS-400B-6NPP/LITE). For spin coating, typically a volume of 30 to 40 µl of

the suspension is picked with a micropipette and is discharged in one shot on the

rotating substrate. The suspension spreads on the substrate via rotation. With MEK

or MPK, the evaporation occurs within a fraction of a second up to a seconds, for

spin rates from 1000 rpm to 7000 rpm.

2.3.2 Atomic force microscopy

Contact mode atomic force microscopy (AFM) is used for two different purposes in

this work: film thickness measurements (via strip scans) and imaging of the structure

of the top layer. The AFM used is an Asylum Research MFP-3D AFM, with the

Asylum Research MFP-3D software which runs within WaveMetrics Igor Pro. I used

gold coated n-type silicon AFM tips for imaging (MikroMasch, catalog number CSC37,

k = 0.8 N/m). However, I observed that these tips can displace the particles on the

surface of the colloidal films. This makes thickness measurements less accurate and

the imaging of the arrangement of the particles close to impossible. To overcome this
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problem, I found that spin coating a layer of Poly(methyl methacrylate) (PMMA) on

top of the spin coated colloidal film fixes the particles in their positions. I use 50 µl

of the PMMA solution (MicroChem, 495PMMA A2; 2% in anisole) and spin coat at

5000 rpm. This produces a PMMA layer of thickness ∼ 30 nm when spin coated on

pure glass. This thickness is negligible compared to the uncertainties in the thickness

of the spin coated colloidal crystals.

• Strip scans: I use a metal razor to make a radial scratch from the center of the

spin coated colloidal film to the edge. The scratch tears the film down to the

glass substrate. It is better for the razor to be rather dull so that the resulting

scratch takes a slight width on the glass surface. The height information is

obtained from an AFM scan across the scratch. Such a height profile is shown

in Fig. 2.4. The left side of the profile shows the glass substrate surface and the

right side is the top of the colloidal film. The peak at the edge of the colloidal

film is a build-up of particles, due to the act of scratching the film, so I ignore

it in my thickness measurement. The average height of the glass substrate is

measured as the average height between points a and b (in Fig. 2.4). The

uncertainty will be the standard deviation of the mean of the data between

these points. A similar height and uncertainty is obtained for the top of the

colloidal films from the data points between c and d. The film thickness is the

difference of these height values, and the corresponding uncertainty is the sum

of the individual uncertainties. In the case of the example shown in Fig. 2.4,

the height is 1.07± 0.01 µm.

For thickness measurement, I take strip scans with a width to height ratio of

4:1 at 128 points and lines. The physical size of the scanned region is 90 µm×

22.5 µm and the image size is 1419 × 351 pixels, which amounts to nearly 7

pixels per particle (with a diameter of 0.460 µm). At this resolution, individual
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Figure 2.4: The height profile across a scratch made on a colloidal film, obtained by
AFM imagining. The height of the glass side (left) is measured as the average height
between a and b, and the height of the colloidal film is the average height between c
and d. The thickness is equal to the difference of these heights.

particles are not resolved, but this does not affect the height measurement which

is the main goal here. This choice of resolution helps the imaging to be done

faster. Taking a 90× 22.5 µm image takes only two or three minutes, while at a

resolution where individual particles are resolved, the imaging could take over

10 minutes.

• Square scans: With our AFM, the largest possible scan size is 90 µm×90 µm.

I perform square scans with a width to height ratio of 1:1 at 512 points & lines.

The physical size of the scanned region is 60 µm × 60 µm and the image size

is 1384× 1384 pixels, which amounts to nearly 23 pixels per point and line. At

this resolution each particle (with a diameter of 0.460 µm) is around 12 pixels

in diameter, and each imaging takes around 30 minutes. Fig. 2.5 shows two

examples (a monolayer and a multilayer) of square AFM images of spin coated

colloidal films.

In both of the above cases (high resolution and low resolution scans) a PMMA

layer was spin coated on the colloidal films to facilitate the AFM imaging.
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Figure 2.5: Examples of square AFM micrographs of (top) a monolayer (made with
Φs =10% suspension of 460 nm silica colloids in MEK at 3600 rpm), and (bottom) a
multilayer spin coated colloidal film (made with Φs =20% suspension of 460 nm silica
colloids in MEK at 2000 rpm). The resolution is 512 point & lines. In the multilayer
sample, slight thickness variations show up as variations in grayness.
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2.4 Controlling the thickness of spin coated col-

loidal crystals

I investigated the relation between colloidal film thickness and the following spin

coating parameters:

• Suspension concentration

• Spin rate

• Suspension volume

Table 2.1 shows a table which summarizes the spin coating conditions at which

spin coated colloidal films were made. Their thickness were measured along the radial

direction from the center to the edge. The results presented in the following sections

are based on these measurements.
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Solvent: MEK

Φs=10% 15% 20% 30% 40%

RPM=1600 2

1800 2

2000 16 1

2200 2

2400 2

2500 2

2750 1

3000 3 2 1

3200 1

3250 1 2

3300 1

3500 1 1

3600 1

3800 1

4000 1 2

4500 7 1

5000 2 1

5500 1

Solvent: MPK

Φs=10% 15% 20% 30% 40%

RPM=2000 5

3000 1 1 6 1 1

4000 9

5000 14

6000 1 1 8 1 1

7000 9

Table 2.1: A summary of the spin coating conditions at which samples were made.

The numbers represent the number of samples made at each concentration & spin

rate.
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2.4.1 Reproducibility and the effect of washing the substrates

The parameters that one can play with in spin coating for obtaining films of different

thickness are suspension concentration, spin rate and the amount of suspension used

[23]. In the case of spin coating with non-volatile solvents, time is also a parameter

that can be controlled [4], but with evaporative solvents, it is usually not one of the

controllable parameters, as long as the same solvent is used. However, one can change

the solvent itself to obtain different evaporation times.

To check the reproducibility, I made two batches of samples (6 samples in each

batch) under the same conditions. One batch was made on unwashed substrate, so

that I can observe the effect of washing the substrates on the reproducibility of the

process.

Fig. 2.6 summarizes the results of the thickness measurements for these samples.

Each point on each plot is the average thickness of the samples of the corresponding

batch at a certain distance from the center. Each error bar is the standard deviation

of the mean value (σ/
√
n− 1; σ is the standard deviation, and n is the number of

samples). The size of the error bar relative to the absolute thickness is a measure

of the reproducibility of the process. The error bars obtained here (for the samples

made on washed substrates) will be used for the rest of the thickness measurement

data. The uncertainty in the r-positions (along the horizontal axis) in the following

thickness diagrams is roughly 0.5 mm.

In Fig. 2.6 the error bars corresponding to the samples made on unwashed sub-

strates (red squares) are significantly larger than the error bars corresponding to the

samples made on washed substrates (blue squares), while the mean values for thick-

nesses are nearly identical. This means that washing the substrates improves the

thickness reproducibility. It also gives us general confidence in the reproducibility of

the spin coated colloidal layer thicknesses.
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Figure 2.6: Thickness of two batches of spin coated colloidal films, made at the same
conditions (Φs =20%, spin rate=2000 rpm, with MEK as solvent), as a function of the
distance from the center of the sample. One batch is made on washed substrate, and
one batch on unwashed substrates. The relative size of the error bars to the absolute
value of mean thickness shows that spin coating is a fairly reproducible method when
the substrates are washed.
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2.4.2 Dependence on suspension concentration

As shown in Fig. 2.7, at the same spin rate, with higher suspension concentration

one obtains thicker films. This is mainly due to the fact that the viscosity of the

colloidal suspension is lower at lower concentrations [43] and during the spin coating,

a lower viscosity suspension tends to leave the substrate at a faster rate (due to the

centrifugal force). By the time the solvent has completely evaporated, a thinner layer

is left. This would be intensified by considering the fact that at a lower concentration,

there is a higher volume of the solvent present in the discharged suspension, which

needs more time for evaporation. Longer evaporation time generally means thinner

films.

What is noticeable is that, in the case of thicker films (produced with Φs =30% and

Φs =40%), there is a significant difference in thickness at radii close to zero compared

to larger radii, while in the case of the lower concentrations the film thickness is quite

uniform. In fact, this kind of profile (thicker at the center and thinner towards the

edges) is a typical feature of spin-coated colloidal films [23] that is related to the non-

Newtonian nature of colloidal suspension. A Newtonian fluid becomes planar during

rotation [20], but a non-Newtonian fluid will keep a non-planar shape [44] because of

the lower magnitude of shear tension near the center where the centrifugal force is

lower. This effect is not observed for suspensions of lower concentration (Φs =10% –

20 in Fig. 2.7) because probably the dynamics of the suspension is dominated by the

properties of the solvent, which is a Newtonian fluid.

2.4.3 Dependence on the spin rate

Fig. 2.8 shows that for the same concentration, higher spin rates result in thinner

films. As well, in the thickness profiles at 2000 rpm, 3000 rpm, and 5000 rpm the film

25



Figure 2.7: Thicker films are obtained at higher suspension concentrations. MPK
(Methyl Propyl Ketone) has been used as solvent and the spin coating has been done
at 3000 rpm with different concentrations Φs =10%, 15%, 20%, 30% and 40%.
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generally becomes thinner further from the center of rotation.

Obtaining thinner films at higher spin rates can be explained by noting that the

main factor in spreading the suspension over the substrate during the spinning is the

shear stress provided by the centrifugal force. This force is greater for greater spin

rates. Therefore, the radial flow rate is higher at higher spin rates. A higher flow rate

results in a higher volume of the suspension to leave the substrate (before drying),

and thus a thinner film.

However a noticeable feature of the thickness profiles in Fig. 2.8 is that, from

2000 rpm to 3000 rpm, there is a clear difference between the thickness profile of the

films, but the difference is not so prominent for 5000 to 7000 rpm. This could be

related to the fact that at these spin rates, the thickness is between that of a single-

layer and a double-layer and it is hard to disrupt the film to yield a sub-monolayer

film. For disrupting the film and obtaining a sub-monolayer, the centrifugal force

must overcome the strong capillary force that presses the particles together during

evaporation [45]. However it is still true that at 7000 rpm the thickness is less than

that of 6000 and 5000 rpm.

2.4.4 Effect of suspension volume

Fig. 2.9 shows the thickness profiles of the films obtained with a relatively wide

range of different suspension volumes (20 µl to 100 µl) used for spin coating. What is

noticeable is that thickness, especially at larger radii, is not significantly dependent on

the volume. This can be explained by considering that the volume of the suspension

that remain on the substrate during the spinning (before drying) is mainly determined

by a balance between the centrifugal force and the adhesion of the suspension to the

substrate and the excess volume will simply leave the substrate: the volume that

remains on the substrate will eventually determine the thickness. However, at 3 mm
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Figure 2.8: Higher spin rates yields thinner films. MPK (Methyl Propyl Ketone) used
as solvent and the spin coating has been done at 2000 to 7000 rpm with Φs =20%
suspension.
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Figure 2.9: The effect of the volume of the suspension used for spin coating. Despite
the wide range of volumes the change in thickness, especially in larger radii is not
significant. These samples are produced at 5000 rpm with a 20% suspension.

from the center volume seems to be affecting the thickness, but the dependence on

volume is not monotonic and does not show a clear trend.

2.4.5 Producing films of definite thickness

Having at hand a set of parameters for producing colloidal films of predefined thickness

can be useful. The diagram in Fig. 2.10 summarizes the results of attempts to

make films of thicknesses from a single layer up to six layers. The colloidal films

produced have a thickness that is function of distance from the center of rotation,

in particular for Φs ≥ 30% (Fig. 2.7) or for spin rates less than 3000 rpm. Below
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3000 rpm and for Φs < 30%, we are able to produce uniform films across most of

the sample. Table 2.2 lists a set of parameters that led to films of each thickness:

the suspension concentration, with MEK as solvent in this case, and the spin rate.

For purposes of comparison, all thicknesses quoted in Table 2.2 are obtained 3 mm

from the centre of rotation. Fig. 2.10 also shows the ideal thickness for 1 to 6

of layers (assuming fcc structure for the films with 4-fold symmetry for the layers)

as well as the average measured thickness of the films are given. The assumption

of 4-fold symmetry is based on the fact that I observed 4 iridescent arms on all of

the samples reported in this plot, except for the monolayer case, which is always 6-

fold symmetric. The uncertainty for the ideal thickness values in this Figure comes

from the uncertainty in the diameter of the particles (which was measured to be

0.460± 0.005 µm). The thicknesses shown in the diagram nearly agree with the ideal

values at the shortest radii, though consistently a bit lower, which can be attributed to

the possible non-compact arrangement of particles. Indirect evidence for the existence

of non-compactness in multilayer spin coated colloidal films is the fact that there is a

height non-uniformity observable in the AFM images of the top layers of such films.

See Fig. 2.5(bottom) as an example.
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Figure 2.10: Films with thicknesses from mono-layer to six layers. The gray lines
are the thicknesses for ideal fcc arrangement. The widths of these lines represent
their uncertainties, coming from the uncertainty in the particle size. The red plots
are the thicknesses for spin coated films with closest thickness to ideal values. The
corresponding set of preparation parameters are indicated in Table 2.2.
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Number of layers Φs Spin rate

1 10% 3600 rpm

2 15% 4500 rpm

3 15% 3000 rpm

4 20% 3200 rpm

5 20% 2000 rpm

6 20% 1600 rpm

Table 2.2: Conditions that led to films with integer-layer thicknesses at 3 mm distance

from the center of rotation. The solvent is MEK in all cases.

Another possibility is to make a sub-monolayer film. This is a non-compact single

layer covering of the substrate and typically is obtained at low concentrations of the

suspension (Φs =l0% or less) and high enough rotation rate. Fig. 2.11 shows an AFM

image of a sub-monolayer film which was obtained with a Φs =5% suspension at the

spin rate of 3000 rpm.

2.5 Conclusion

In this chapter, I demonstrated control over the thickness of spin coated colloidal films

produced with suspensions of 0.460 µm silica colloids in volatile solvents of MEK and

MPK. This is a faster process compared to spin coating with non-volatile solvents [2]

or less volatile solvents [4]. My data shows the general reproducibility of the spin

coating thickness when substrates are washed properly.

Higher suspension concentrations generally produce thicker films, with greater

difference between the thickness at the center compared to the edges in the films

made with higher concentration suspensions. As well, at higher spinning rates the
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Figure 2.11: Atomic force micrograph of a colloidal submonolayer film. The black
regions are the glass substrate. This sample is made with 5% suspension at 3000 rpm.
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obtained film is thinner, although the differences becomes less drastic as we go to the

highest spin rates. Thickness is not dependent on the volume of the suspension used

for spin coating. Finally, examples of specific spin rates and suspension concentrations

(with MEK as solvent) are included as future guides for producing films of thicknesses

from a monolayer up to six layers.
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Chapter 3

Quantitative metrics for assessing

positional and orientational order

in colloidal crystals

Reprinted (adapted) with permission from Langmuir, 2015, 31 (30), pp 8251–8259.

Copyright 2015 American Chemical Society. P. Bagheri performed the analysis and

the wrote the initial draft of the manuscript, and implemented subsequent revisions.

A. Almudallal provided 2D simulated colloidal structures, to be compared with our

data. A. Yethiraj provided comments on the drafts and contributed to the final text

of the manuscript. K. M. Poduska provided comments on the drafts and contributed

to the final text of the manuscript. A correction to the article has been accepted

for publication. Equation 3.1 in this chapter (Equation 1 in the published paper) is

affected by the correction.
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Abstract

Although there are numerous self-assembly techniques to prepare colloidal crystals,

there is great variability in the methods used to characterize order and disorder in

these materials. We assess different kinds of structural order from more than 70

two-dimensional microscopy images of colloidal crystals produced by many common

methods including spin-coating, dip-coating, convective assembly, electrophoretic as-

sembly, and sedimentation. Our suite of analysis methods includes measures for both

positional and orientational order. The benchmarks are two-dimensional lattices that

we simulated with different degrees of controlled disorder. We find that transla-

tional measures are adequate for characterizing small deviations from perfect order,

while orientational measures are more informative for polycrystalline and highly disor-

dered crystals. Our analysis presents a unified strategy for comparing structural order

among different colloidal crystals, and establishes benchmarks for future studies.

3.1 Introduction

An important materials challenge in the last two decades has been to obtain perfect,

defect-free colloidal crystals for use as photonic band-gap materials [2, 25, 46–49].

While this goal has thus far remained elusive, new applications have recently been

proposed for colloidal films with lower degrees of order (such as substrates for surface-

enhanced Raman spectroscopy [17]) or even amorphous structures (such as angle-

independent structural color [14]). This manuscript assesses, using different measures

of positional and orientational order, the crystalline quality of 2D images of colloidal

crystals, thus allowing systematic comparisons, with a single toolbox, on colloidal

crystals reported in the literature.

Structural comparisons of colloidal crystals have often been based on visual in-
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spection of microscopy images [25–28]. Reciprocal space methods, either via Fourier

transformation of optical images [2, 29] or via small-angle scattering methods, are

useful in characterizing crystalline structures [50, 51]. However, spatial resolution is

invaluable for studies of the kinetics of crystallization. Positional and orientational

order, and correlations, are all convenient for characterizing time-independent and

time-dependent processes on the same footing [3, 19, 52–54].

A few recent studies have presented more quantitative assessments in real space

[29,30]. Portal-Marco et al. [29] have compared colloidal structures composed of col-

loids with different size distributions by calculating positional and orientational corre-

lation functions. Krejci et al. [30] have assessed the order in a system of nanoparticles

using Voronoi tessellation, local bond-order parameter, an order parameter defined

form the radial distribution function g(r), and an anisotropy parameter which quan-

tified orientational order. However, a detailed characterization of colloidal structures

in terms of their local and overall translational and orientational order is still lacking.

In this work, we present a comprehensive comparison of structural order in col-

loidal crystals based on two classes of parameters: positional order and orientational

order. We apply our metrics first to computer-generated structures [55, 56] to cali-

brate our assessments, and then to a large collection of images of colloidal crystals.

This includes images from the literature for samples prepared by a wide variety of

techniques [2, 4, 25–28, 38, 46–48, 57–72]. We also analyze large-area atomic force mi-

croscopy images of colloidal crystals that are new to this study.
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Local parameters
α Lindemann parameter for positional disorder
Ψs local orientational bond order (s = 4 or 6)
〈Ψs〉 average local orientation bond order (s = 4 or 6)

f4, f6, fd fraction of particles with 4-fold, 6-fold or disordered coordinations
σ most probable inter-particle distance

Long-range parameters
ξs positional correlation length within a single domain (s = 4 or 6)
∆s approx. domain size from diminishing orientational correlations (s = 4 or 6)

Table 3.1: Summary of quantification parameters for structural order in colloidal
crystals.

3.2 Methods

3.2.1 Structural quantification

The positional coordinates of the particles in each image were determined using a

well established method introduced by Crocker and Grier [73]. With these particle

positions, we calculate the parameters summarized in Table 3.1.

Local positional disorder is reported via the Lindemann parameter α, defined as

the standard deviation of the distribution of displacements divided by the ideal lattice

spacing [74, 75]. For images from real colloidal crystals and the computer generated

lattices labelled CG2, the distributions in nearest-neighbor distances were calculated

over an entire image and fit with a Gaussian function to extract an effective α. For

computer generated lattices labelled CG1, α is the input parameter used to generate

a Gaussian distribution of particle displacements in these images.

Local bond orientational order, defined as

Ψs =

∣∣∣∣∣∣ 1
N

 N∑
j=1

lje
isθj

 /  N∑
j=1

lj

∣∣∣∣∣∣ , (3.1)

is assessed in the immediate neighborhood around a single lattice point [76,77]. Here,

38



N is the number of the nearest neighbors at that lattice point, and θj is the angle

between a reference axis and the line connecting that lattice point to its jth nearest

neighbor. The line segment that connects the neighbors j− 1 and j has the length lj.

Here we are calculating the length-weighted bond order parameter to prevent slight

distortions in the lattice that result in sharp changes in Ψs [78]. Ψs is calculated

relative to either perfect 4-fold (s=4) or 6-fold (s=6) symmetry, with a value between

0 and 1, with 1 indicating perfect s-fold symmetry. We calculate Ψs for both s =

4 and 6 for each particle and choose Ψs = 0.7 as the minimum threshold for s-fold

order. The choice of 0.7 is arbitrary but reasonable. Lower Ψs values are designated as

disordered coordination. In very rare cases (less than 0.1%), both Ψ4 and Ψ6 are larger

than the threshold value, and the order is undecidable. For easy visualization, we use

color-coded images based on these assignments such that blue signifies Ψ4 > 0.7, red

indicates Ψ6 > 0.7, and white corresponds to disordered coordination.

For each image used in this work, we report average bond orders 〈Ψs〉 to quantify

the average values of Ψ4 (for only particles designated as 4-fold sites) and Ψ6 (for only

particles designated as 6-fold sites). Furthermore, we assess the fraction fs (s = 4, 6,

or d) of 6-fold, 4-fold, or disordered regions, respectively, within a single image.

Next, going beyond nearest neighbor order, we assessed the positional correlations

across an entire image through the radial distribution function

g(r) = 1
N

(∑ dn

dA

)/(
N

A

)
. (3.2)

Here, dn is the number of lattice points in a ring of inner radius r and area dA, N is the

total number of particles in the image, and A is the total area of the image. We use the

position, r = σ, of the first maximum in g(r) as a measure of the most probable inter-

particle spacing for a given image. By fitting this g(r) with a complicated function,
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we extract a characteristic positional correlation length ξs that we report relative to

the most probable inter-particle spacing σ.

It is well known in the literature of 2D phase transitions that an exponential decay

in a radial distribution function g(r) indicates short range-order (such as for liquids),

while a power law decay is consistent with quasi-long range order (such as for 2D

solids) [52,79–82]. An earlier report showed that the g(r) for a two-dimensional solid

can be fitted to distinguish between exponential and power law behaviors [83]:

gfit(r) =
[

A

(2π)(3/2)
1
σ̃

n∑
i=1

gid(xi)
D xi

exp
(
−(r −D xi)2

2σ̃2

)
− 1

]
× L(r) + 1. (3.3)

Here, L(r) can be either exp(−r/ξ) for an exponential fit or r−k for a power-law

fit. We applied this fit to the radial distribution functions for all 69 colloidal crystal

images listed in Table 3.2. An example is shown in Figure 3.1, and the details of our

method follow below.

To use Equation 3.3, we constrained several parameters during fitting. The peak

widths are set by σ̃ = σ0

√
ln(r/r0), where r0 = 0.3D and σ0 was limited to values

between 0.03 and 0.08. D is the normalized lattice spacing, which we constrained

between 0.8 and 1.1. The remaining parameters were unconstrained in our fits. A is

a scaling factor to adjust peak heights. ξ is the positional correlation length (for the

exponential fits), and k is the exponent (for the power law fits).

The most computationally intensive part of the fit is the gid(xi) term, which gives

the number of particles at a distance xi from a point in a perfect lattice (either 6-fold

or 4-fold, as appropriate). We used up to 400 terms in the summation in the fit

function over a range from 0 ≤ r ≤ rmax. The quality of the overall fit – especially

in the first few g(r) peaks – is influenced by the value of rmax. For this reason, we
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investigated a statistical χ2 test, using the sum of squared errors between the true g(r)

and gfit(r), as a function of the fitting range separately for each image. In general,

the statistical χ2 value grows as rmax increases, until it reaches a plateau. Because

of this, we chose the optimal rmax to be where the statistical χ2 plateaus. Beyond

this range, the tail of the g(r) function overwhelms the fit at the expense of the first

peaks.

Figure 3.1: (a) A cropped SEM micrograph of a colloidal monolayer [84] and (b) its

local coordination color map (red = 6-fold coordination, white = disordered coordi-

nation). The g(r) is compared with both an exponential gfit (c) and power law gfit

(e) using histograms of the residuals for each fit (d, f). After fitting the histograms

with a Gaussian form, the narrower width of the exponential fit leads us to favor it

over the power-law fit.

We applied the fit in Equation 3.3 to all images listed in Table 3.2. This included

images of true 2D colloidal monolayers, as well as images that showed the top of

multi-layer structures (either quasi-2D or 3D). It was surprising that an exponential
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fit works well for all images. Figure 3.1 compares an exponential and a power-law

fit to the g(r) for a representative image of a colloidal monolayer. In this case, we

favor the exponential fit over the power-law fit because of the narrower residual width.

Thus, it is noteworthy that we see (liquid-like) exponential g(r) decay trends even for

structures that are ostensibly crystalline.

Finally, we also assessed orientational correlations among different domains within

a single image. The orientational correlation function [83],

gs(r) =

∣∣∣∣∣∣ 1
NB

NB∑
l=1

1
nl

nl∑
k=1

eis(θ(rk)−θ(rl))

∣∣∣∣∣∣ , (3.4)

is defined in terms of bonds l between particles, and the angular orientations of these

bonds relative to either 4-fold symmetry (s = 8) or 6-fold symmetry (s = 6). In order

to identify the bonds within a lattice, Delaunay triangulation is performed [85]. This

process consists of connecting each lattice point to its neighbors to form triangles

such that no circumcircle of any triangle contains any lattice point. The circumcircle

of a triangle is the circle that contains the triangle, with its corners being on the

circle. In the process of triangulation to identify bonds in a 4-fold structure (see

Figure 3.2), we can sometimes encounter diagonal bonds. This can be accounted for

by using s = 8 for 4-fold symmetric order parameters, as was first suggested by Weiss

and Grier. [86] For the remaining parameters in Equation 3.4, θ(rk) and θ(rl) are

the angles between the bonds at rk and rl, each with respect to the same reference

axis. nl is the number of bonds at the distance r from the mid-point of the bond

l, and NB is the total number of bonds in the 2D colloidal structure. By assessing

the orientational correlation function over an entire image, we use the first value of r

at which the correlations disappear (gs(r) → 0) to indicate a representative size for

a single domain; we denote this value as ∆s, and give its value relative to the most
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probable inter-particle spacing σ.

Figure 3.2: An example of the Delaunay triangulation of an imperfect 4-fold lattice.

3.2.2 Computer-generated 2D lattices

We used four different sets of 2D computer-generated lattices to compare with im-

ages of laboratory-produced colloidal structures. The first set of computer-generated

(CG1) lattices has a predetermined degree of disorder, introduced by displacing each

lattice point in a 2-dimensional crystal (with 4-fold or 6-fold symmetry) indepen-

dently, such that there is a Gaussian distribution of displacements relative to their

positions in the unperturbed crystal lattice.

The second set of computer-generated lattices (CG2) has disorder introduced in

a more physically meaningful way, by mimicking the effect of volume exclusion that

occurs with non-zero particle sizes. We used 4-fold symmetric configurations obtained

from Monte Carlo simulations of a 2D system of particles subject to a square-shoulder

square-well potential [55], calculated at different temperatures to generate different

levels of disorder.

The third set of generated lattices (CG3) addresses the limiting case when there

is no long-range positional or orientational order. These computer-generated random

structures were obtained based on earlier published work. [56]

Finally, multi-domain crystals (CG4) were simulated by manually rotating a small
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number of perfectly ordered lattices (CG1 with no positional displacements) to create

mosaics with arbitrarily rotated domains.

3.2.3 2D images of colloidal crystals

We collected 40 scanning electron microscopy (SEM) and confocal fluorescence mi-

croscopy (CFM) images from the literature to span a wide range of common col-

loidal crystal assembly techniques: convective assembly [26–28,38,46,47,57–61], elec-

trophoretic assembly [62–64], electrospraying [65], air-liquid interface assembly [25,

66, 67], confinement [48, 68], dip coating [69, 70], spin coating, [2, 4, 71] and sedimen-

tation [72].

Additionally, 29 new atomic force microscopy (AFM) images were obtained from

spin-coated colloidal crystals made by spin coating (2000-7000 rpm) a suspension of

0.46 µm spherical silica particles (10–40 vol%), in methyl ethyl ketone (MEK) or

methyl propyl ketone (MPK), on glass substrates as described in earlier work by

some of the same authors [53]. Prior to AFM imaging (with Asylum Research MFP-

3D in contact mode, with Au-coated Si cantilevers (Mikromasch CSC37/Cr-Au/50,

k ∼ 0.50 N/m)), the spin coated colloidal crystals were coated with a thin (∼50 nm)

spin coated layer of polymethylmethacrylate (PMMA) to prevent displacement of the

colloidal particles while scanning.

A comprehensive summary of the images, their sources, and our calculated pa-

rameters is given in Table 3.2. Images from the literature are named according to the

paper from which they came: the last name of the first author, its publication year,

the reference citation, and its figure number. In cases where images were obtained

through private communication, “pc" replaces a figure number. Our own images (new

to this study) use a different naming convention. For example, “10MEK40µ3600"

signifies 10 volume percent suspension of 0.460 micron spherical silica particles in
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Methyl Ethyl Ketone, using 40 µl during spin coating at 3000 rpm. A dagger (†) af-

ter an image name indicates that the colloidal crystal is monolayer; all other samples

are multilayers. This is important to note because earlier studies have demonstrated

that a high degree of order in a surface layer does not guarantee a high degree of order

deeper inside a colloidal crystal. [87, 88] The full size of each image is listed as x× y

in units of σ.

Each image has an effective Lindemann parameter α. The remaining order param-

eter values (local orientational bond order 〈Ψs〉, symmetry fraction fs, representative

domain size ∆s, and positional correlation length ξs) were calculated for s=4-fold and

s =6-fold regions separately in each image whenever possible. Where symmetry frac-

tions or domain sizes were too small to calculate meaningful values, table entries show

“–” or “×”. Single-domain images are indicated with ∆s = S. Uncertainty magnitudes

are as follows: δα is 2 in the last decimal digit; δΨs = 0.04; δfs/fs = 0.1 for fs above

0.2, and 0.1 < δfs/fs < 0.3 for fs below 0.2. δ∆s/∆s = 0.05. δξs/ξs = 0.05.

For some of the SEM and AFM images, g(r) fits were poor until we modified the

aspect ratio to compensate for image distortion (drift). The ξs values extracted from

rescaled images are noted with an asterisk (*) in the table, based on these horizontal

scaling factors: Wang(2011)pc1=0.94, Wang(2011)pc2=0.93, Wang(2011)pc3 = 0.93,

Wang(2011)pc4=0.94, Wang(2011)pc5=0.92, Jiang(2004)5a=0.90, Li(2005)1b=0.88,

Li(2005)1d=0.80. There were four cases for which linear rescaling was not sufficient,

and these have no positional correlation length value listed.
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Image source x × y α 〈Ψ4〉 f4 ∆4 ξ4 〈Ψ6〉 f6 ∆6 ξ6
Convective
Wong(2003) [47], 3a 94× 70 0.038 – – – – 0.96 1 S *
Wong(2003) [47], 3c 67× 49 0.027 – – – – 0.95 1 S *
Cong(2003) [57], 4c 29× 24 0.050 0.89 0.39 S 12 0.92 0.47 S 5
Gu(2002) [59], 8 20× 20 0.020 – – – – 0.98 1 S 14
Gu(2002) [59], 8 20× 20 0.025 – – – – 0.99 1 S 28
Teh(2005) [60], 4a 29× 22 0.046 – – – – 0.92 0.85 S 17
Kuai(2004) [27], 4b 76× 62 0.027 – – – – 0.98 1 S 6
Kuai(2004) [27], 4c 76× 62 0.033 – – – – 0.96 1 S 7
Kuai(2004) [27], 4d 76× 62 0.036 – – – – 0.96 0.94 S 5
Kim(2005) [61], 1a† 98× 60 0.0634 – – – – 0.87 0.52 S 2
Kim(2005) [61], 1c† 98× 65 0.055 – – – – 0.90 0.80 S 9
Kim(2005) [61], 1d† 98× 65 0.027 – – – – 0.96 0.97 S 6
Ye(2001) [38], 1b 31× 27 0.028 – – – – 0.97 1 S 14
Electrophoretic
Zhou(2013) [62], 6c 81× 56 0.028 0.91 0.20 S 7 0.96 0.71 S 5
Zhou(2013) [62], 6d 36× 62 0.019 – – – – 0.98 1 S 10
Choi(2013) [64], 3b† 18× 18 0.020 – – – – 0.98 1 S 16
Electrospray
Coll(2013) [65], pc1 47× 35 0.021 – – – – 0.95 0.79 19 8
Coll(2013) [65], pc2 170× 83 0.040 – – – – 0.90 0.53 25 3
Coll(2013) [65], pc3 55× 45 0.026 – – – – 0.98 0.97 S 7
Coll(2013) [65], pc4 35× 29 0.027 – – – – 0.97 1 S 29
Air-liquid
Wang(2011) [25], pc1 19× 13 0.038 – – – – 0.98 1 S 12∗
Wang(2011) [25], pc2 24× 18 0.034 – – – – 0.97 1 S 8∗
Wang(2011) [25], pc3 21× 18 0.030 – – – – 0.98 1 S 21∗
Wang(2011) [25], pc4 21× 15 0.043 – – – – 0.97 1 S 34∗
Wang(2011) [25], pc5 24× 17 0.026 – – – – 0.98 1 S 6∗
Confining cell
Park(1998) [48], 2a 77× 64 0.023 – – – – 0.97 0.96 S 12
Wang(2009) [68], 2b 58× 61 0.045 – – – – 0.92 0.87 S 4
Wang(2009) [68], 2h 52× 32 0.040 – – – – 0.91 0.86 S 3

Table 3.2: A complete set of parameters calculated for images used in this study.
This includes: image size (x × y), effective Lindemann parameter (α), average local
orientational bond order (〈Ψs〉), symmetry fraction (fs), representative domain size
(∆4), and positional correlation length (ξs). A dagger (†) denotes monolayer crystals.
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Image source x× y α 〈Ψ4〉 f4 ∆4 ξ4 〈Ψ6〉 f6 ∆6 ξ6
Dip coating
Nagao(2008) [69], 2a† 22× 24 0.024 – – – – 0.97 1 S 7
Fu(2008) [70], pc 23× 19 0.051 – – – – 0.93 1 S *
Spin coating
Mihi(2006) [4], pc1 39× 29 0.053 0.90 0.57 32 3 0.86 0.09 3.0 ×
Mihi(2006) [4], pc2 39× 29 0.054 0.89 0.52 S 3 0.85 0.09 3.0 ×
Mihi(2006) [4], pc3 39× 29 0.048 0.87 0.35 17 5 0.90 0.30 16 3
Mihi(2006) [4], pc4 37× 27 0.059 – – – – 0.90 0.85 S 6
Jiang(2006) [71], 2b† 29× 24 0.048 – – – – 0.92 0.94 S 4
Jiang(2004) [2], 5a 87× 55 0.039 – – – – 0.94 0.93 S 13*
Cheng(2014) [84], 5b† 145× 106 0.030 – – – – 0.96 0.93 33 16
10E40µ3600 † 115× 115 0.026 – – – – 0.92 0.79 18 4
10E50µ4000 † 115× 115 0.040 – – – – 0.90 0.79 15 5
10E50µ4000 † 115× 115 0.037 – – – – 0.90 0.65 12 3
10E50µ4500 † 115× 115 0.049 – – – – 0.89 0.70 18 5
10E50µ4750 † 115× 115 0.039 – – – – 0.86 0.54 17 3
15E40µ2750 115× 115 0.081 0.82 0.06 5.0 – 0.85 0.52 18 5
15E40µ2750 115× 115 0.045 0.86 0.29 8.0 4 0.86 0.26 16 4
15E40µ3000 115× 115 0.046 0.87 0.47 14 5 0.84 0.12 7.0 4
15E40µ3250 115× 115 0.055 0.88 0.60 16 6 – – – –
15E40µ4500 115× 115 0.038 0.87 0.25 8.0 4 0.87 0.35 20 3
15E40µ5000 115× 115 0.040 0.89 0.60 15 4 – – – –
15E40µ5500 115× 115 0.038 0.90 0.60 15 4 0.82 0.05 × ×
20E40µ2000 115× 115 0.051 0.88 0.69 S 6 – – – –
20E40µ2000 115× 115 0.034 0.89 0.65 S 6 – – – –
20E40µ2000 115× 115 0.037 0.90 0.73 S 7 – – – –
20E40µ2000 115× 115 0.034 0.89 0.76 S 7 – – – –
20E40µ3000 115× 115 0.047 0.89 0.78 S 9 – – – –
15P40µ3000 90× 90 0.072 0.86 0.35 11 4 0.84 0.16 15 5
15P40µ5000 115× 115 0.082 0.87 0.66 11 6 – – – –
15P40µ5000 115× 115 0.085 0.86 0.45 10 4 – – – –
20P100µ2000 115× 115 0.054 0.84 0.08 5.0 3 0.87 0.50 20 5
20P100µ5000 115× 115 0.047 – – – – 0.88 0.65 23 5
20P100µ5000 115× 115 0.058 0.88 0.66 17 5 – – – –
20P100µ5000 115× 115 0.068 0.87 0.65 19 5 – – – –
20P10µ7000 115× 115 0.054 0.84 0.17 9.0 3 0.83 0.26 18 3
20P20µ5000 90× 90 0.064 0.89 0.46 S 5 0.88 0.21 15 4
30P40µ3000 90× 90 0.057 0.88 0.66 S 5 – – – –
40P40µ3000 90× 90 0.054 0.86 0.40 19 3 0.84 0.14 5.0 2
40P40µ3000 90× 90 0.058 0.87 0.59 S 4 0.82 0.06 3.0 ×
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Image source x× y α 〈Ψ4〉 f4 ∆4 ξ4 〈Ψ6〉 f6 ∆6 ξ6
Sedimentation
Li(2005) [72], 1a 32× 27 0.035 – – – – 0.88 0.92 S *
Li(2005) [72], 1b 32× 27 0.039 – – – – 0.91 0.98 S 9∗
Li(2005) [72], 1d 32× 27 0.027 – – – – 0.89 0.96 S 11∗
Random (CG3)
Ferry(2011) [56], pc1 22× 22 0.31 0.82 0.09 1.5 × 0.80 0.11 2.0 ×
Ferry(2011) [56], pc2 27× 27 0.28 0.81 0.07 2.0 × 0.79 0.13 3.5 ×
Ferry(2011) [56], pc3 30× 30 0.23 0.82 0.07 2.0 × 0.80 0.13 1.5 ×
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3.3 Results and Discussion

We begin by examining order as obtained through local measures that depend only

on the immediate (nearest-neighbour) environment. We then compare this with pa-

rameters for order related to longer-range correlations. Finally, we apply both local

and longer-range characterizations to images with multiple domains.

3.3.1 Orientational order correlates with positional order

We calibrated differences in local order for images of real colloidal crystals by compar-

ing with data from computer-generated lattices (CG1, CG2, and CG3) with controlled

levels of positional disorder. The first step was to assign each particle a coordination

environment based on its local orientational order parameter Ψs.
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Figure 3.3: (a) Representative computer-generated lattices (CG1) and (b-e) AFM

images of spin coated colloidal monolayers. Red indicates 6-fold coordination, blue

4-fold, and white disordered coordination. Effective α values are noted below each

color-coded image. (f) correlates the average local bond order 〈Ψs〉 with values of α.

Trend lines for computer generated lattices (CG1), including those shown in (e), are

shown as solid curves (s = 4(6) in blue (red)). Additional computer-generated images

(CG2, CG3) are shown as solid black circles and solid triangles. The remaining data

points, shown with open circles, are from images of real colloidal crystals.

Figure 3.3a-e shows representative examples for both computer-generated (CG1)

and colloidal crystal lattices using color codes of blue for 4-fold, red for 6-fold, and

white for disordered coordinations. In computer-generated random lattices (CG3),

most lattice points show disordered coordination, as expected. However, in real sam-

ples, the disordered coordinations tend to coincide with point defects and domain

boundaries.
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Our comparisons between real and computer generated lattices show a useful cor-

relation between average local orientational order and average local positional order.

For each image, we calculated 〈Ψ6〉 and 〈Ψ4〉 for each symmetry separately. The mea-

sured α value and 〈Ψs〉 for each image are plotted in Figure 3.3f. Data for computer-

generated lattices with a simple Gaussian distribution of displacements (CG1, solid

curves) serve as an upper bound for 〈Ψs〉 at a given α value. This is true for both

s = 4 (blue) and s = 6 (red). For images from real colloidal crystals, α falls in

a narrow range above 0.03 but below 0.10, consistent with the Lindemann melting

criterion [74]. On the other hand, highly disordered computer-generated structures

(CG3) have liquid-like values (α ≥ 0.2). We note that all of the images used in

this study can be considered crystalline, since they do not exhibit orientational order

features (small dislocations) that are indicative of hexatic phases. [55]

We refer to all the order parameter measures discussed here as “local” because

they are based on nearest-neighbour correlations. We find that the best indicator of

local order for real crystals is the parameter related to orientational order, 〈Ψs〉. In

both simulated and experimentally obtained images, the average bond orientational

order parameter 〈Ψs〉 is very high (0.9 < 〈Ψs〉 < 1) only when the positional disorder

α is rather small (0 < α < 0.05). The shoulder in the simulated curves (0.85 ≈ 〈Ψs〉)

highlights the region below which Ψs is simply not very sensitive. This is especially

evident in the data for the highly disordered computer-generated lattices (CG3), which

are not equally random based on their different α values, but have very similar 〈Ψs〉

values. Thus, in all subsequent discussions, we use 〈Ψs〉 as the primary local order

parameter.
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3.3.2 Intermediate-range correlations versus local orientational

order

Figure 3.4 examines correlations between local order (through 〈Ψs〉) and longer-range

order (through the positional correlation length ξs). Due to the large number of im-

ages in this study, we grouped the data based on different colloidal crystal production

techniques in Figure 3.4: convective assembly [26–28,38,46,47,57–61], electrophoretic

assembly [62–64], electrospraying [65], air-liquid interface assembly [25, 66, 67], con-

finement [48,68], dip coating [69,70], spin coating [2,4,71] (the majority of which are

original to this work), and sedimentation [72].

Based on 〈Ψs〉 (Figure 3.4i) and ξs data (Figure 3.4j), it is tempting to make

quantitative comparisons of crystal quality among different production methods. For

example, convective assembly appears to have the potential to produce crystals with

the highest 〈Ψs〉. Convective assembly is also capable of producing colloidal crystals

with relatively high ξs, with spin coating offering a competitive quality, although this

technique in most cases seems to be poor in that regard. However, our sampling

of data is implicitly biased since published images tend to be highest-quality areas

rather than typical examples. This is why we made and measured a larger range of

crystal images for one category of samples (spin coating). It is worthy of note that

the best spin coated samples are comparable to the best from convective assembly

methods, even though our data show that spin-coated crystals can be made with far

lower degrees of positional correlation under some conditions.

Figure 3.4k shows the relation between positional correlation length ξs and the

average local (orientational) bond order 〈Ψs〉. ξs is very small for 〈Ψs〉 < 0.9, which

is another indication that crystals with 〈Ψs〉 ≤ 0.9 do not correlate with good crys-

tallinity. This is a reasonable result, since good local orientational order is necessary
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Figure 3.4: Representative images of colloidal crystals produced by (a) convective
assembly [38], (b) electrophoretic assembly [62], (c) electrospraying [65], (d) air-liquid
interface assembly [25], (e) confinement [48], (f) dip coating [69], (g) spin coating
(new to this work), and (h) sedimentation. [72]. Comparisons of (i) average local
orientational bond order 〈Ψ6〉, and (j) positional correlation length ξ6, sorted ac-
cording to production method. In (i) and (j), the black filled circles correspond to
the data points for images (a)-(h). Data points marked with (*) in (i) correspond
to computer-generated random structures. [56] Panel (k) shows the correlation of ξs
with 〈Ψs〉, including data from colloidal crystals produced by all methods.
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for longer range positional correlations.

Distinguishing between single domains and polycrystals

The metrics discussed thus far (〈Ψs〉, α, ξs) work well to characterize order within a

single domain. This is sufficient for many images of colloidal crystals in the literature,

due perhaps to the drive to make perfect photonic-grade crystals. However, more

disordered crystals are also finding uses in optical applications. [14,17] In an extreme,

the average bond orientational order 〈Ψs〉 is not very informative for a polycrystalline

sample containing grains with different symmetry (4-fold versus 6-fold). Instead, for

polycrystalline colloidal materials (as are produced routinely by spin coating [2,3]), it

is helpful to identify domain sizes. As we will show, these domain sizes are consistent

with practical upper limits for the intra-domain parameters 〈Ψs〉 and ξs.

We found a new and expedient way to assess representative domain sizes based

on differences in orientational order.
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Figure 3.5: Representative orientational correlation functions gs(r). For a single do-

main (a), there is orientational correlation across the entire image, so gs(r) never

reaches zero (b). Polycrystals (c) have orientational correlations that go to zero (d)

at its representative domain size (∆s). (e) Examples of computer-simulated polycrys-

talline lattices and their corresponding gs(r) plots. Arrows show ∆s values (where

gs(r)→ 0) for three simulated polycrystals.

Figure 3.5 shows two representative orientational correlation functions gs(r) that have

qualitatively different behaviors. When gs(r) is calculated over a single domain, a

non-zero plateau appears for large r values (Figure 3.5a,b). However, gs(r) decays

to zero when the image contains multiple domains that disrupt the orientational

correlation (Figure 3.5c,d). We define ∆s as the normalized distance (r/σ) at which

the orientational correlations vanish. These gs(r) decays are replicated in simulated

polycrystalline lattices (Figure 3.5e).
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A representative domain size derived from orientational correlations has two clear

benefits for quantitative characterization of colloidal crystals. First, this parame-

ter can distinguish a single domain with defects (Figure 3.5a, with ill-defined ∆s)

from a polycrystalline sample (Figure 3.5c, with a finite ∆s). Second, the concept

of a representative domain size provides a reasonable upper bound for the useful

range of intra-domain characterization parameters such as 〈Ψs〉 and ξs. Figure 3.6a-f

demonstrates that higher fractions of s-fold coordination (fs) correlate strongly with

increases in both the average orientational bond order parameter 〈Ψs〉 and the repre-

sentative orientational domain size ∆s. We note that, as demonstrated in Figure 3.6g,

the orientational domain size is consistently larger than the translational correlation

length for all colloidal crystals.

Finally, we address local order in polycrystals. The average bond order 〈Ψs〉

increases monotonically as the corresponding fraction fs increases (Figure 3.6e). When

one symmetry dominates (< 0.1 or > 0.9), small increases in fs lead to large increases

in the average bond order. For crystals that contain a mixture of 4-fold and 6-fold

regions (0.1 < f < 0.9), there is a more modest increase in the average bond order

with increasing f . These results compare well with the trends observed for computer-

generated structures (solid lines in Figure 3.6e). Our analyses show that, for a given

fs value, real colloidal crystals have average bond order values that are consistently

equal to or greater than those for computer-generated structures.

We emphasize that 〈Ψs〉 is calculated only within regions of specific symmetry (4-

fold or 6-fold) and is not averaged over the entire image. Thus, the increase in average

bond order with higher fractions is a true indication that the local order improves.

It is not a trivial artifact related to averaging over ordered and amorphous regions.

Figure 3.6f shows a strong correlation between increasing fs and increasing domain

size ∆s.
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3.4 Conclusion

Historically, a high degree of perfection was the goal for colloidal crystals for potential

use in photonics. However, an increasing number of application can take advantage

of colloidal films with lower degrees of order (such as substrates for surface-enhanced

Raman spectroscopy [17]), and even amorphous structures (such as angle-independent

structural color [14]). In this context, we find that for 2D characterizations of crys-

tallinity, both orientational and translational measures are useful. For very good

crystals, translational measures are often adequate because good translational order

implies good orientational order. However, for crystals with higher levels of disorder

that lead to polycrystallinity, the orientational measures such as ∆s are more sensitive

indicators.

Although the positional correlation lengths are larger for samples with better

orientational order, it is a noisy correlation. For example, excellent orientational

order (〈Ψs〉 = 0.96) can be found in samples with either very short (5σ) or very large

(20σ) ξs values. Even in single-domain samples, ξs is often limited. Considering the

spread of ξs and 〈Ψs〉 (Figure 3.4), the disappointing conclusion is that no single

method can consistently produce only good crystals. Nevertheless, we found that

all real crystals have crystallinity metrics (α and ξs) that are far better than truly

random computer-generated structures.

A useful finding is that the orientational correlation function gs(r) is a sensitive

way to detect domain size in polycrystalline samples. This orientational domain

size ∆s shows a consistent increase as the symmetry fraction fs increases. It is also

consistently larger than the positional correlation length. Furthermore, the average

local orientational order 〈Ψs〉 in real samples is consistently better than values from

simulated samples. This trend is nonlinear as a function of symmetry fraction, which

shows once again that 〈Ψs〉 is a very sensitive order parameter for nearly single-domain
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samples (fs = 0 or 1), while the symmetry fraction fs is more informative for mixed

symmetry samples.

It is also interesting to note that we see good agreement with an exponential decay

in the g(r) functions in our images from crystalline samples. It is well known in the

literature of two-dimensional phase transitions that an exponential decay suggests

short-range order (as is typical for liquids), while a power law decay implies quasi-

long-range order (as is typical for 2D solids). [52, 79–82] Since the thickness of many

samples in this study are not reported, it is unlikely that most published images

correspond to true 2D crystals. Out-of-plane distortions are readily detected from

AFM images in our spin coated colloidal crystals, but such distortions are tricky to

infer from SEM images. Furthermore, previous studies have demonstrated that there

can be different degrees of order among surface and inner layers of multilayer colloidal

crystals. [87, 88]

From an overall perspective, the present study is valuable because it compares

a large number of published images of colloidal crystals using the same assessment

methods. Without this kind of a standardized approach, there are too many disparate

methods of qualitative and semi-quantitative characterizations that make it hard to

assess advances in controlling order in these materials. The multiple characterizations

of order that we use here are relatively straightforward to calculate. In addition, the

analysis code we used is available to others upon request. Looking ahead, this set

of analysis tools will enable quantitative comparisons between colloidal crystals from

new experiments with images of older samples.
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Figure 3.6: (a)-(d) Four representative images with their associated local coordination

color maps. In all panels, blue (red) means 4-fold (6-fold) local coordination. (e)

Average local bond order 〈Ψs〉 improves with increasing symmetry fraction fs, and

is very sensitive when fs ≥ 0.9. Data points are for real colloidal crystals; trends

for computer-generated structures are given by solid lines. In cases where a single

domain spanned the entire image, the data points are shown as solid circles. The

remaining (polycrystalline) structures are denoted with open triangles. (f) ∆s vs. fs

shows correlation between these parameters. The data points corresponding to the

images in (a-d) are marked by "a", "b", "c", "d" in panels (e) and (f).

59



Acknowledgments

We thank A. Coll, V. Ferry, Y. Fu, A. Mihi, and A.J. Wang for providing images that

helped this study. We also thank I. Saika-Voivod for discussions on effective simu-

lations of disordered colloidal crystals. A.Y. and K.M.P. thank the Natural Science

and Engineering Resource Council (Canada) for funding.

60



Chapter 4

Dynamics of quasi-2D colloidal

suspensions

4.1 Background

It is a well known fact that colloidal particles in a fluid undergo a random motion,

called Brownian motion, which is the result of being constantly hit by the molecules

of the fluid medium. This was first observed by Robert Brown in 1827 when he

was looking at pollen grains in water under the microscope. Brownian motion was

later analyzed by Einstein in 1905 to conclusively establish the corpuscular nature of

materials [89]. In fact, Brownian motion is the mechanism at the core of diffusion in

colloidal systems [89]. Since Einstein’s seminal work, colloidal diffusion phenomena

and dynamics of colloidal particles dispersed in fluid media has grown into a vast field

of study of both fundamental and applied interest [90–92].

Particle dynamics in 2D or quasi-2D systems has attracted particular interest,

because it has its own phase transitions and dynamical characteristics. The system

is considered quasi-2D if motion in one dimension is much more limited than the
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other two dimensions. The study of 2D dynamics gained impetus with theoretical

investigations of a two dimensional phase transition [32] and melting [33], which were

followed by computer simulations [34] and experiments [35].

In addition to phase transitions, theoretical and experimental studies of quasi-

2D colloidal systems have revealed interesting phenomena like different dynamical

behaviors at different time scales, string-like motion [93,94], hopping [95], dynamical

heterogeneity [95,96], and cooperative motion [93,95].

In this thesis I have looked at the mean square displacement (MSD) as an indi-

cator of dynamics. With regard to MSD calculations, Schoefield et al. [97] theoret-

ically studied the asymptotic long time dynamics of quasi-2D colloidal systems and

presented MSD for a wide range of packing fractions of the particles. They also pre-

dicted the ratio of long-time to short-time diffusion coefficient as a function of packing

fraction. Following this work, Marcus et al. experimentally studied the dynamics of

quasi-2D colloidal systems at low packing fractions [98]. In this work they reported

the experimental verification of the ln(t)/t time evolution of the diffusion coefficient

(which was predicted theoretically before) via MSD calculations. The time range in

this work was up to 300 ms (i.e. experimental time is very short in comparison with

the characteristic diffusion time of seconds). Marcus et al. [93] looked at the dynamics

of quasi-2D colloidal systems at a wide range of packing fractions, from very dilute

to dense and reported a host of interesting behaviors such as string-like motion, dy-

namical heterogeneity, and collective motion. The time range in this work was up

to around 1 second (characteristic time τ ∼ 1 s). At higher packing fractions they

observed slow down of dynamics at short times. In the following papers, the focus has

mostly been on particular aspects of dynamical heterogeneity, glass transition, etc.

Particularly, Cui et al. in [96] experimentally studied dynamical heterogeneity of a

quasi-2D system and also reported the behavior of the MSD at different time scales,
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up to 30 seconds (characteristic time τ ∼ 0.1 s). However they do not demonstrate

the dynamics to become more subdiffusive as the packing fraction increases. The

study of quasi-2D colloidal systems has remained an active research area with focus

on different aspects such as phase and glass transitions [99–102] and dynamics under

periodic potentials [103,104].

This chapter presents the results of an experimental study of dynamics of colloidal

particles in a quasi-2D system as a function of the packing fraction of the particles

for the time ranges from 200 to 1000 seconds (characteristic time τ ∼ 100 s). My

experiments provide preliminary data at a wide span of packing fractions, for a rela-

tively wide time range. The goal is to establish a relationship between dynamics and

structure, using MSD and symmetry fraction calculations, and to identify the type of

dynamical behavior at different times, using the self part of the van Hove function.

4.2 Theory

4.2.1 Diffusion and subdiffusion

I have studied the dynamics of quasi-two-dimensional colloidal suspensions at different

(area) packing fractions φ, defined as

φ = N(πr2)/A, (4.1)

where N is the number of particles in the area under study, r is the radius of each

particle, and A is the total area of the region (e.g. the area I looked at is ∼ 130 µm×

130 µm). Theoretically, in two dimensions φ can range from 0 to nearly 0.91 (for

hexagonal close packing).

At low values of packing fraction the dominant interaction is between colloidal
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particles and solvent molecules, but as the packing fraction of the particles increases,

the collisions between the colloidal particles themselves become more and more im-

portant.

At low enough packing fraction, where the interaction between the particles is

negligible the mean square displacement W (t) of a typical particle in two dimensions

follows standard diffusion behavior in 2D [105]:

W (t) = 〈(r(t)− 〈r(t)〉)2〉 = 4Dt (4.2)

The 〈r(t)〉 is subtracted to remove the effect of an overall drift. The average is an

ensemble average, and in the case of a steady system an average over the time origin

is implied by it as well. D is the diffusion coefficient of the particles in the solvent. So

a plot of W (t) vs. t can be used to calculate the diffusion coefficient. Also, we have:

log(W (t)) = log(4D) + log(t) (4.3)

So a plot of log(W (t)) vs. log(t) has a slope of one for pure diffusion. As the packing

fraction increases the interactions between the particles could slow down the dynamics.

One may then write W (t) ∼ tγ, with γ < 1 being referred to as subdiffuive behavior.

Therefore, the departure of γ from unity would indicate that mechanisms other than

diffusion within the solvent are affecting the dynamics of the particles. In particular,

at high packing fractions, caging is notable [95], which means that a particle sees the

surrounding particles as a temporary cage at a shorter time scale (which results in

subdiffusion). However, collective motion resulting in possible hoppings can push the

particle out of its cage, and so at a longer time scale the dynamics would tend to the

simple diffusive dynamics with γ closer to one.
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4.2.2 The self part of the van Hove function

It is reasonable to expect the displacements of the particles over time to be affected

by the interactions that the particles have with their surrounding. The self part of the

van Hove correlation function (for an isotropic system) is defined as the probability

of finding a particle at a distance r from its original position (at t = 0) after time

t [106]. Therefore the shape of this function will be affected by the mechanisms which

affect the displacements of the particles. Particularly, the self part of the van Hove

function is defined as follows:

Gs(r, t) = 1
N
〈
N∑
i=1

δ(r − |ri(t)− ri(0)|)〉. (4.4)

The averaging 〈 〉 indicates an average over the time origin, assuming ergodicity

for the system. N is the total number of particles, and the summation is over all of

the particles; ri(t) is the position of a particle at time t; and δ is the Dirac delta

function.

It is known that for a pure Brownian dynamics the Gs(r, t) takes the following

Gaussian form [105]:

Gs(r, t) = (4πW (t))(−d/2) exp
(
− r2

4W (t)

)
(4.5)

with d being the dimensionality of the system.

So when Gs(r, t) is Gaussian, the function yields the MSD function W (t), and in

this regime the dynamics should be diffusive. Any deviation from the above function-

ality would be a sign of deviation from pure Brownian dynamics. Particularly, in the

literature, the existence of an exponential tail for the Gs(r, t) has been associated with

the existence of dynamical heterogeneity [107–109], which means the co-existence of
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faster and slower regions within the system.

4.3 Experimental methods

To obtain a “wet” monolayer colloidal film, which can act as the quasi-2D colloidal

system, 2 µm silica particles (Angstromsphere, catalog number SIOP200-01, polydis-

persity ∼ 5%) are dispersed in ethylene glycol (Sigma-Aldrich, 99.8%, catalog number

324558) and spin coated on a glass substrate similar to the one described in Chapter

2. The gravitational length of the particles is ∼ 0.1 µm, which is roughly 20 times

smaller than the size of the particles, so we may consider the system quasi 2D. Grav-

itational length is a measure of the gravitational (vertical) spread of the particles at

a temperature T.

Unlike the experiments with evaporative solvents in Chapter 2, control of packing

(area) fraction and thickness with ethylene glycol, which evaporates considerably more

slowly, was poor. The reason that I used ethylene glycol was to be able to have a wet

film in the end. Therefore, the final drying stage (as with the evaporative solvents)

that pushes the particles together through capillary forces, and brings about the final

compact film is not there. One may still expect to obtain particle packing fractions

in the wet film in a predictable way, by controlling the spin coating conditions. But

there is one step which brings huge uncertainty to the process, and that is adding a

small droplet of ethylene glycol to the wet film after spin coating to minimize bubble

formation under the cover that we put on the film (see below). In practice, putting the

cover creates uncontrollable flows that pushes an unpredictable number of particles

towards the edges and possibly out. Overcoming this difficulty is left as a future

work. Six samples were made for the experiments described here. Table 4.1 lists the

spin coating conditions used for making each sample, the substrate used in each case,
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the range of packing fractions found on each sample, and the number of data points

obtained from each one.

Φs Spin rate Spin time Substrate Range of φ # of points
1 20% 6000 rpm 30 s Pure glass 0.03-0.40 4
2 40% 3000 rpm 30 s Pure glass 0.04-0.69 11
3 40% 6000 rpm 30 s Patterned ITO glass 0.08-0.53 5
4 40% 6000 rpm 30 s Patterned ITO glass 0.12-0.22 5
5 40% 2500 rpm 30 s Pure glass 0.20-0.41 5
6 40% 3000 rpm 30 s Pure glass 0.63-0.78 19

Table 4.1: List of the spin coating conditions and the substrates used for producing
the samples used for the colloidal dynamics study. Also listed is the range of packing
fractions φ found on each sample, and the number of data points obtained from
each. ITO coated glass used was SPI, catalog number 06463B-AB. Patterning was
done by Intelligent micropatterning llc ss100 system. The regions imaged for our
particle dynamics study were on bare glass, where the ITO coating was removed by
micropatterning.

Regions of one packing fraction (to ±5%) were typically of the order of 200 µm.

Utilizing this fact, a challenge was made into a virtue by studying, in just a handful of

samples, the dependence of colloidal dynamics on the regional area fraction φ. In fact,

I obtained 49 values of φ from just 6 samples. In dilute samples, the particle diffusion

coefficient is ∼ 0.008 µm2/s. Using this, and a lengthscale of 200 microns, one obtains

a timescale of ∼ 1, 000, 000 s. For the timescales probed in these experiments (< 1000

seconds), I believe that the regions at different packing fractions can be treated to be

at steady state.

For the purpose of video imaging of the colloids a fluorescent dye called fluorescein

(Sigma-Aldrich, catalog number 32615) is dissolved in the ethylene glycol which is

used as the dispersion medium for the suspension. This enables doing fluorescent

microscopy to obtain higher quality images of the particles.

After spin coating, a tiny droplet (∼ 1 µl) of EG with fluorescein dissolved in

it, is added to the colloidal layer, and then a cover slip is placed on top of the spin
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coated layer and the edges are sealed with UV glue (Norland optical adhesive, 61)

to prevent evaporation. In fact, the EG droplet is added to reduce the possibility of

bubble formation under the cover slip. Afterwards the cell is placed under UV lamp

for 30 minutes in order for the UV glue to be cured. To prevent possible bleaching of

the fluorescent dye molecules, the top cover slip is covered with a piece of aluminium

foil, which of course does not cover the UV glue.

Video imaging of the particles in the cell is done with a Nikon Eclipse 80i optical

microscope. An oil immersion 40X lens is used, and the mode of operation is fluores-

cent microscopy. The sample, which is illuminated with a blue light (FITC excitation

475-490 nm) emits a green light which passes through a filter (FITC emission 505-535

nm) and reaches the detector, which in this case is the CCD of the digital camera

(sCMOS pco.edge 3.1) attached to the microscope for digital imaging. A software

called CamWare controls the digital camera. In the resulting digital view, which is

black and white, the solvent is bright and the particles are dark circular disks. This

provides perfect image quality for the subsequent particle tracking analysis. For par-

ticle tracking, the video images are inverted in ImageJ to make the particles bright

and the surrounding medium dark. The view size is typically 800× 800 pixels, corre-

sponding to a region of interest of ∼ 130 µm× 130 µm, while each particle’s diameter

(2 µm) is roughly 12.4 pixels. The video imaging is done at a frame rate of 1 fps or

2 fps.

During the oil immersion microscopy of the cell, I noticed that the image grad-

ually goes out of focus. It turned out to be due to the lab’s air flow system that

would go on and off roughly every 20 minutes, which would affect the temperature of

the environment and so the immersion oil, and causes its refractive index to change

gradually with temperature, and therefore would result in loosing the focus during

the imaging. To fix this issue, I drew the curtains around the microscopy area, which
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stabilized the temperature well enough and prevented the gradual de-focusing. None

of the samples listed in Table 4.1 were affected by this temperature instability.

4.4 Results

As mentioned in Chapter 3, the positional coordinates of the particles are determined

using the method introduced by Crocker and Grier [73], implemented in IDL (Interac-

tive Data Language). This enables us to calculate structural parameters, such as local

bond order parameter, and hence symmetry fractions. Then, procedures developed

by Crocker and Grier [73] and Weeks [110] are used to calculate tracks of individual

particles which can be used to calculate dynamical functions. Here I have used posi-

tional coordinates information to calculate symmetry fractions, and particle tracking

to calculate W (t) and the self part of the van Hove function. In what follows, I try to

establish a relationship between dynamics and structure and also to look at the type

of dynamical behavior at different packing fractions and times.

4.4.1 Dynamics and structure

Fig. 4.1 shows eight examples of the quasi-2D colloidal structures that are studied.

In what follows we see how different parameters respond to the change in packing

fraction, and how they are correlated with each other. The van Hove function is

calculated for the eight examples shown in Fig. 4.1 for determining the dynamical

behavior of the particles at different packing fractions as a function of time.
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Figure 4.1: Examples of the quasi-2D colloidal structures that are studied, with pack-

ing (area) fractions φ = 0.03, 0.04, 0.20, 0.40, 0.49, 0.57, 0.64, and 0.78, for 1-8

respectively.

Figure 4.2 shows the log(W (t)) plots for the 8 samples shown in Fig. 4.1. All of

the plots are shown up to log(t) = 2 (i.e. 100 s). It is seen that log(W (t)) is linear

up to log(t)=2 for φ below 0.6. Up to φ=0.2, γ (the slope of log(W (t))) is very close

to one, which means that the dynamics is purely diffusive. At φ=0.4, γ is already

significantly different from 1, which indicate that the interaction between the particles

has started to take effect. As φ increases, dynamics becomes increasingly subdiffusive.

However, considering the linearity of the log(W (t)) up to φ=0.64, the short time and

the long time behavior of the system are not different. At φ=0.78, γ decreases after

roughly t = 10 s. In fact, γ tends to zero at t = 100 s, which indicates trapping of

the particles at long times.
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Figure 4.2: log(W (t)) vs. log(t) for the samples shown in Fig. 4.1. the parameter a

is the intercept for the linear fit, and b is the slope, which is called γ in this chapter.

Fig. 4.3(top) shows γ as a function of φ to demonstrate how dynamics responds

to the increase in packing fraction. In this plot the data points corresponding to the
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8 samples that are studied in more detail are highlighted. Marcus et al. [93] provide

similar data, which I have compared with my results in Fig. 4.3. In my case, I have

provided considerably more number of points. Also Cui et al. [96] report W (t) for 2D

packing fractions from dilute to dense, but do not report numerical values for the γ

vs. φ. Kasper et al. [111] report W (t) for a range of φ for a 2D system, but do not

report γ vs. φ data. Marnette et al. [112] present an experimental method to produce

2D colloidal crystals at the interface between two liquids. They observe Brownian

motion for the particles, and that the particles crystallize above the packing fraction

of 0.7.
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Figure 4.3: Top: γ vs. φ. Different shapes for data points indicate different substrates

in the experiments. The points marked with numbers are the ones for which further

analysis is done in this chapter. The insets are snapshots of the colloidal systems

associated with the chosen data points. The blue plot is data from Marcus et al. [93]

Bottom: Symmetry fractions vs. φ. The dashed line at φ = 0.719 indicates the area

fraction above which hard disks crystallize [113].
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As is seen in Fig. 4.3(top), as the packing (area) fraction φ increases, γ decreases,

but this trend is very slow up to a packing fraction of 0.6, after which γ goes down

more quickly until φ = 0.7, and then there is a dramatic drop after φ = 0.7. The blue

plot in Fig. 4.3(top) compares γ values extracted from [93] with my measurements.

It is seen that there is an overall agreement and some differences. Specifically, the

concentration at which γ starts to go down sharply is similar in both data sets. Also

before this concentration, γ ≈ 1 in both data sets. However, in my results, initially

there is a gradual downward trend as the concentration increases, while in Marcus et

al. a roughly opposite trend is seen, and then the drop appears sharper.

Symmetry fraction calculations give us a way to see how dynamics and structure

correlate with each other. Fig. 4.4 is an indication of such a correlation. It shows

that the γ value increases as the fraction of disordered local structure increases, or in

other words, the dynamics is more sub-diffusive when there is more order within the

system. The curve running among the data points is only a guide to the eyes. At a

closer look we observe the following details: there are roughly three regions, one below

(fd, γ) = (0.77, 0.84), corresponding to φ & 0.6, a second above (fd, γ) = (0.77, 0.84)

but below (fd, γ) = (0.98, 0.93), corresponding to 0.5 . φ . 0.6. The last region

(fd > 0.98), corresponding to φ . 0.5, shows that there appears to be a small decrease

in gamma even in very dilute suspensions where there is nothing apparent structurally.

The change in the trend at (fd, γ) = (0.77, 0.84) (φ ∼ 0.6) is noticeable in the sense

that this is the φ value at which γ starts a sharper downtrend in γ vs. φ plot (Fig.

4.3(top)).
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Figure 4.4: γ vs. Disordered fraction for all of the samples. The dynamics is more

sub-diffusive when there is more order in the system.

Looking at other symmetry fractions yield more detailed information. In fact,

comparison between how 6-fold symmetry on the one hand, and γ on the other hand,

respond to the change in φ (Fig. 4.3(top & bottom)) reveals that there are subtle

differences between the response of the structure and that of the dynamics: from

φ ∼ 0.4 to 0.6 the rate of slowdown of dynamics (the slope of γ vs. φ) is moderate;

between 0.6 and 0.7 the slowdown rate is considerably faster; and then after 0.7 the

curve drops very sharply. However the 6-fold symmetry fraction’s response is not

exactly like that. Between φ ∼ 0.4 to 0.7 it increases with more or less a steady

rate, and after 0.7 the rate becomes faster, but overall after φ ∼ 0.4 one can say

that the rate of change of 6-fold symmetry is considerably steadier than the rate of
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change of γ. As a further observation, φ ∼ 0.7 is the crystallization packing fraction,

since f6 crosses fd at this packing fraction. In comparison, in the phase diagram for

hard disks [113] one sees that the structure is liquid-like below φ = 0.706, hexatic

(long-range orientational order, short-range translational order) between φ = 0.706

and φ = 0.719 and solid-like (crystallized) above φ = 0.719. These compare well with

our observation of φ ∼ 0.7 as a critical value.

A possible reason for the the difference in the response of γ and fhex to the change

in φ could be as follows: to calculate f6 one looks at the neighborhood around each

particle and if |Ψ6| (the local bond order parameter) for that particle is higher than

the threshold, it is counted as a hexagonal neighborhood/particle (See Section 3.2.1

for details). This is done for all of the particles to obtain the total number of particles

with hexagonally symmetric neighborhoods. So in this process there is no averaging.

Finally, this number is divided by the total number of particles to obtain f6. Now, if

there is a higher-than-average-density cluster somewhere with slow dynamics, some-

where else there would be a lower-than-average-density region with fast dynamics;

but to obtain MSD we average over all of the particles, and if the existence of a clus-

ter can reduce the gamma value, the existence of the low-density region will counter

this effect, particularly because they both contribute to the final MSD. So, according

to this argument, it seems that the existence of the cluster has pushed the f6 value

up, but it is screened from having direct effect in the MSD by averaging over all of

the particles. So, in short, f6 increases relatively quickly by the formation of local

clusters, while increase in γ value is partly hampered by the averaging process. This

for now is more of a conjecture than a justified observation. A justification for this is

left as a future work.

To see what happens to the average local order as the packing fraction changes,

average Ψ6 is plotted against φ. The average is calculated in two ways: average over
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the 6-fold regions (〈Ψ6〉), and average over the entire image (〈Ψ6〉tot). 〈Ψ6〉 is not

reported below φ = 0.4, because there is no 6-fold order within the system below

this φ value (see Figure 4.3(Bottom)). We see that in both cases φ ∼ 0.7 is where

the average local bond order shows a significant rise. Particularly, 〈Ψ6〉 seems almost

unchanged below φ ∼ 0.7.

Figure 4.5: Ψ6 averaged over the 6-fold regions (〈Ψ6〉), and averaged over the entire

image (〈Ψ6〉tot), as a function of area fraction φ.

4.4.2 The van Hove function

The self part of the van Hove function has the following form for an isotropic, purely

diffusive system in 2D [106]:

Gs(r, t) = 1
4πDt exp

(
−r2

4Dt

)
, (4.6)
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where r is displacement, t is time, and D is the diffusion coefficient for the colloidal

particles in the solvent. This equation is normalized, i.e.
∫∞

0 (2πr)Gs(r, t)dr = 1.

I examine the dependence of ln(Gs(r, t)) on time t, for dilute and concentrated

suspensions. So a good fit for ln(Gs(r, t)) would be:

f(r, t) = ln
( 1

4πDt

)
−
(
r2

4Dt

)
, (4.7)

which is a quadratic function. Both the coefficient of the quadratic term and the

intercept yield the diffusion coefficient.

However, there are a couple of complications which make some changes to the

above fitting function necessary. First is the possible presence of stuck particles,

which causes a peak to show up at small r values in the Gs(r, t). Second is the

possible existence of an overall sample drift, which causes a non-zero peak position.

Fig. 4.6(a) shows an example.

Figure 4.6: (a) The ln(Gs(r, t)) for φ = 0.03 at t = 250.5 s. The initial peak is due to

stuck particles. The shaded region is excluded from the curve fit. Also the curve is

peaked at r 6= 0, due to the overall drift of the particles. (b) The position of the peak

due to drift (r0) vs. time.
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Obviously one does not want to include the peak due to stuck particles in the

fitting. However, as was pointed out before, the normalization is valid for the specific

functional form 4.6, in the range between 0 and∞. In my Gs(r, t) calculations I have

normalized the Gs(r, t) regardless of the existence of the initial peak, and so if I want

to use the form 4.7 to fit the result, I need to include a parameter to correct for the

existence of the peak due to the stuck particles. Also the non-zero peak position due

to drift is taken care of by replacing r with r − r0 in the fitting function. Fig. 4.6(b)

shows r0 as a linear function of time which indicates a steady drift. So the form that

I have used for fitting is

f(r, t) = ln
( 1

4aπDt

)
−
(

(r − r0)2

4Dt

)
, (4.8)

which contains an “a” parameter to include the stuck particles’ effect, and the r0 to

include the drift.

Equation 4.9 can be expanded as:

f(r, t) = ln
(1
a

)
+ ln

( 1
4πDt

)
−
(

(r − r0)2

4Dt

)
. (4.9)

Including the correction parameter a would mean an adjustment of ln( 1
a
) to the

y-intercept of the fitting function.

In the following results presented here, there are cases where ln(Gs(r, t)) is not

quadratic (equivalently Gs(r, t) is non-Gaussian). Non-Gaussian behavior for Gs(r, t)

(particularly, the presence of an exponential tail) is believed to be a sign of hetero-

geneous dynamics [107, 109]. In [107], Chauduri et al studied different systems near

glass transition, and showed that in all of them the self part of the van Hove function

has an exponential tail as a universal indication of dynamical heterogeneity. Stariolo

et al. in [109] studied the dynamics of a Lenard-Jones system via molecular dynamics
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simulation. They identified length and time scales associated with transition from a

dynamically heterogeneous regime (indicated by the exponential tail for the van Hove

function) to Gaussian diffusion.

It should be noted that the initial peak at very small r in Figures 4.7(a) and 4.7(c)

come from a small fraction (less than 10%) of stuck particles (see Appendix A, Section

A.0.2, where we see that its contribution to
∫∞

0 (2πr)Gs(r, t)dr is small).

4.4.3 Gaussian vs. non-Gaussian dynamics

The van Hove function is used to study the dynamical behavior of the quasi-2D

monodisperse colloidal systems, namely, whether the behavior is Gaussian (Brownian)

or non-Gaussian. One can also also extract diffusion coefficient as a function of time

(wherever the behavior is Gaussian) for different packing fractions. In the following

discussion, it should be noted that a Gaussian Gs(r, t) is equivalent to a quadratic

ln(Gs(r, t)), and a Gs(r, t) with an exponential tail is equivalent to a ln(Gs(r, t)) with

a linear tail. In what follows ln(Gs(r, t)) will be presented, but I would talk about

Gaussian vs. exponential instead.

Fig. 4.7 shows examples of the van Hove functions at φ =0.03, 0.40, and 0.64. We

see Gaussian behavior at all times for φ =0.03 (Fig. 4.7(a)). For larger φ, Gs(r, t) has

an exponential tail at the earliest times (see the inset of Fig. 4.7(b)), but is Gaussian

at later times. For φ = 0.64 (Fig. 4.7(c)), Gs(r, t) exhibits non-Gaussian behavior at

all times. (The detailed van Hove function plots for all of the 8 selected examples are

presented in Appendix A.) This is summarized in Fig. 4.8. So, once again φ ∼ 0.6

shows up as a transition point. In this case, the dynamical behavior is non-Gaussian

at all times above this packing fraction (within our time resolution and time range

limit). This observation suggests a correlation between the slowdown of dynamics (as

manifested in a sharper downtrend in γ after φ ∼ 0.6) and the type of dynamical

80



behavior, indicated by the van Hove function.

Structural and dynamical measures are presented in this chapter for a range of

packing fractions and a range of times. I have also presented a more detailed analysis

for a few selected examples. In the literature the relevant works that can be compared

with the results here are as follows: Kasper et. al [111] report non-Gaussian parameter

for packing fractions from 0.4 to 0.56 as a function of time. Generally, it has higher

values at earlier times, and the highest value is seen for φ = 0.56 where the Gaussian

parameter peaks early in the time range and then goes down. Marcus et al. [93]

look at Gs(r, t) at different φ values (from ∼ 0.10 to ∼ 0.70) at different times (33

ms, up to 1.3 s) and observe a non-Gaussian tail (in fact, a low peak in the tail)

for lower packing fractions. As mentioned before, Marnette et al. observed φ ∼ 0.7

as the packing fraction at which crystallization starts. In this chapter we saw that

this is roughly the packing fraction at which f6 starts to supersede fd, and also γ to

plunge down sharply, although we observed that subdiffusion had started well before

(at φ ∼ 0.4). Also we saw that the dynamics is non-Gaussian at all times, starting

from φ ∼ 0.6, which is not too far from the crystallization packing fraction reported

by Marnette et al.
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Figure 4.7: ln(Gs(r, t)) vs. r for 3 packing fractions, φ = 0.03, 0.40, and 0.64. (a)
φ =0.03 (Example 1 in Fig. 4.3(top)). The behavior is Gaussian in the whole time
range. The inset is the diffusion coefficient (D) vs. time, obtained from the fit to
the ln(Gs(r, t)). The dashed line in the inset is D obtained from W (t). (b) φ =0.40
(Example 4 in Fig. 4.3(top)). Gs(r, t) is non-Gaussian up to 41 s; it has an exponential
tail between 11 s and 41 s. It is Gaussian for the rest of the time range. (c) φ =0.64
(Example 7 in Fig. 4.3(top)). Gs(r, t) has an exponential tail for the whole time
range. In each plot, the ln(Gs(r, t)) for a later time moment reaches to greater r
values, and is represented in a darker color.
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Figure 4.8: The time range for non-Gaussian and Gaussian behavior for the 8 examples

with φ =0.03, 0.04, 0.20, 0.40, 0.49, 0.57, 0.64, 0.78.

For the samples and the times at which the Gs(r, t) is Gaussian, the diffusion

coefficient is calculated. Also the diffusion coefficient is calculated from the slope

of W (t). The average D goes down as φ increases. Fig. 4.9 shows that the two

measures for the diffusion coefficient are close and follow similar trends, which is a

good consistency check.

The existing literature gives an idea of the physical meaning of this set of behaviors.

In the literature, an exponential tail of the Gs(r, t) has usually been associated with

the concept of the lifetime of a “dynamical heterogeneity”, which is observed (or

expected) to exist until some characteristic time and the Gaussian behavior to be

recovered at longer times [107–109]. So the fact that we observe exponential behavior

at earlier times seems consistent with the literature. One can conjecture the existence

of local clusters, that is, regions with higher than average particle density, within

which particles have slower than average dynamics, and consequently regions with

lower than average density and faster than average dynamics. The crossover time
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Figure 4.9: Average D obtained from quadratic fit to log(Gs(r, t)), as a function of
φ (the blue plot), and the D obtained from W (t) as a function of φ (the red data
points). D goes down as φ increases.

after which Gaussian behavior is recovered should be related to the average cluster

size. At low packing fractions, clusters have limited average size and their effect would

be averaged out when the average particle displacement becomes bigger than their

average size. At a high enough packing fraction (above φ = 0.6, according to Fig.

4.8) the clusters are so big that the associated time scale encompasses all of the time

range that is looked at, i.e. up to t ∼ 500 s. In microscopy images one could find

these regions simply by showing fast and slow particles in different colors. This will

provide a good way to test the above conjecture.

4.5 Future work

In this chapter, there are a few points which require further work:

• Finding an experimentally robust way for producing wet colloidal films of con-

trollable thickness and packing fraction. Since the addition of an extra droplet

of the solvent to the wet film after the spin coating is considered as the main

source of unpredictability, one should attempt to remove this step. Using a

solvent less viscous than ethylene glycol can be helpful, since it may result in a
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smoother wet layer after spin coating, which may eliminate the need to add the

extra droplet to prevent bubble formation.

• Considering the arguments presented in the discussions, based on the assump-

tion of the existence of local clusters, and the consequent dynamical hetero-

geneity, it is worthwhile to do further analysis to identify this feature (i.e. local

clusters, in case they exist), and to establish the link between their existence

and the dynamics of the system. In particular, to see how their existence would

possibly account for the difference between the response of γ to the change in

φ, and the response of f6. Also, how they would account for the crossover time

from non-Gaussian to Gaussian behavior, at different packing fractions.

• To do the van Hove function calculation for all of the samples (data points

presented in Fig. 4.3(top)), to obtain more detailed information about the

dynamical behavior at different packing fractions.

4.6 Conclusion

This chapter presented an inter-relationship between structure and dynamics in quasi-

2D colloidal suspensions, as the packing (area) fraction φ changes. The type of the

dynamical behavior at different packing fractions and times were also discussed. In

particular, a detailed plot of the slope of log(W (t)),γ, as a function of packing fraction

φ (Fig. 4.3(top)) was presented. According to this plot the packing fraction value

above which a departure from pure diffusion becomes significant is ∼ 0.4. From

φ = 0.4 to φ = 0.6, γ decreases slowly, but from φ = 0.6 to φ = 0.7 there is a

sharper drop, and then after φ = 0.7 it plummets abruptly. Together with the slow

down of dynamics (decrease in γ), 6-fold symmetry starts to show up in the system

(Fig. 4.3(bottom)), i.e. after φ = 0.4, f6 starts to take off from around zero and goes
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up more or less steadily as φ increases. Another indication of correlation between

dynamics and structure is the observation that as the disorder fraction goes up, γ

tends toward 1 (Fig. 4.4). In this case, φ ∼ 0.6 is again a packing fraction at which

a change in the trend of γ vs. φ is noticeable.

By examining the self part of the van Hove function, Gs(r, t), I was able to deter-

mine the time range and φ values for which the dynamical behavior is Gaussian, or

non-Gaussian. Specifically, we see that below φ ∼ 0.6 the dynamics is non-Gaussian

for very small times, and at later times Gaussian behavior is recovered (Figs. 4.8 and

4.7). This could mean that at earlier times dynamical heterogeneity exists. Above

φ ∼ 0.6 dynamics is non-Gaussian for the whole time range.

The Gs(r, t) study allowed the calculation of the diffusion coefficient (D) as a

function of time. At the same time, I was able to extract D from W (t). The average

D values from Gs(r, t) agree with the ones obtained from W (t) (Fig. 4.9). It is seen

that D goes down as φ goes from 0.03 to 0.57, which is the range for which D was

possible to obtain from both methods.
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Chapter 5

Conclusion

This thesis presents the results of three projects: Thickness measurements of spin

coated colloidal films with volatile solvents, quantitative characterization of crystalline

structure of colloidal films, and a study of the dynamics of quasi-2D colloidal systems.

I started with producing spin coated colloidal film with the purpose of showing the

reproducibility of the process and studying the way thickness depends on spin coating

parameters, and also providing conditions for producing films of definite thickness.

These spin coated colloidal films possess crystalline structure, because they are made

of monodisperse spherical colloids. Therefore we aimed at a quantitative characteriza-

tion of their crystalline structure in terms of local and overall parameters, with regard

to positional and orientational order. The tools used in the structure characterization

provided a chance to study the relationship between structure and dynamics in a col-

loidal system. Therefore, the final project was a study of the dynamics of colloids in

quasi-2D colloidal suspensions.
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Evaporative spin coated colloidal crystals

In this project, the reproducibility of spin coating for producing colloidal films of def-

inite thickness is demonstrated. Also it is shown that a proper washing procedure for

the substrate improves the reproducibility. It has been known from previous studies

that higher concentrations and lower speeds result in thicker films [2, 4]. However in

this work these results were specifically confirmed with highly evaporative solvents of

MEK and MPK. Also it is shown that the thickness is not dependent on the volume

of the suspension used for spin coating. Also new to this work is a list of spin coat-

ing conditions for producing films of various thicknesses, especially a monolayer film.

From there, conditions for obtaining sub-monolayer follows.

It was known by our group that during AFM imaging, the AFM tip scratches the

surface of the spin coated colloidal films. As a side product of this project I found a

way to stabilize the particles (to improve AFM imaging) by spin coating a PMMA

layer on top of the colloidal film, without any significant change of its thickness.

Quantitative metrics for assessing positional and ori-

entational order in colloidal crystals

For 2D characterizations of crystallinity, both orientational and translational measures

are useful. For very good crystals, translational measures are often adequate because

good translational order implies good orientational order. For crystals with larger

amounts of disorder that lead to polycrystallinity, however, orientational measures

such as ∆s are a more sensitive indicator.

The positional correlation length is larger for samples with better orientational or-

der, but it is a noisy correlation. Nevertheless, a useful finding is that the orientational
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correlation function gs(r) is a sensitive way to detect domain size in polycrystalline

samples. This orientational domain size ∆s shows a consistent increase as the symme-

try fraction fs increases. It is also consistently larger than the positional correlation

length. Furthermore, the average local orientational order 〈Ψs〉 in real samples is

consistently better than values from simulated samples. This trend is nonlinear as a

function of symmetry fraction, which shows once again that 〈Ψs〉 is a very sensitive

order parameter for nearly single-domain samples (fs = 0 or 1), while the symmetry

fraction fs is more informative for mixed symmetry samples.

An interesting observation in our analysis of the images of colloidal crystals was

that the g(r) could be fit with an exponentially decaying function which, as is well

known in the literature of 2D structures, is indicative of short range order, while a

power law decay means quasi-long-range order [52, 79–82]. However, since in many

cases the thickness information was missing, drawing any particular conclusion from

this observation should be done with care.

The overall value of this work lies in the fact that it offers a unified framework

for quantitative assessment of 2D order in colloidal crystals that makes assessing the

future advances in controlling order in colloidal crystals (and their comparison with

the existing results ) straightforward.

Dynamics of quasi-2D colloidal suspensions

The dynamics of quasi-two-dimensional colloidal suspensions was studied as a function

of the area fraction φ. Many area fractions were accessed by utilizing the variation

in packing within samples - the timescales probed were short enough, that we do not

think that long-time transients play an important role, but a detailed justification of

this is left for future work
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The dynamics study presents a detailed plot of the slope of log(MSD) vs. log(t)

(γ) as a function of packing fraction (φ). According to this plot, after φ = 0.4 the

dynamics starts to slow down (i.e. γ goes down) and at the same time disorder

decreases in the system and 6-fold symmetry starts to appear. This trends continues

with increasing the packing fraction, although the details of the trend for the decrease

in γ is different from the trend for the increase in fhex. Particularly, γ goes down slowly

as φ goes toward 0.6, and at 0.6 < φ < 0.7 this rate speeds up and then γ plummets

down sharply after φ ∼ 0.7; but the rate of increase of fhex after φ ∼ 0.4 is more or

less steady.

Also, I was able to determine the time range and φ values for which the dynamical

behavior is Gaussian, or non-Gaussian, by examining the self part of the van Hove

function, Gs(r, t). Specifically, we see that before φ ∼ 0.6 the dynamics is non-

Gaussian for very early times, and at later times Gaussian behavior is recovered.

This means that at earlier times dynamical heterogeneity exists. Above φ ∼ 0.6

dynamics is non-Gaussian for the whole time range.

The Gs(r, t) calculation allowed the calculation of the diffusion coefficient (D) as

a function of time. We were also able to extract D from mean square displacement

plots. The average D values from Gs(r, t) agree with the ones obtained from MSD.

D goes down as φ goes from 0.03 to 0.57.

This dynamics study reveals how the slow down of dynamics is correlated to the

emergence of order in the quasi-2D colloidal system as the packing fraction increases.

Also, it identifies the type of dynamical behavior at different packing fractions as a

function of time.

90



Appendix A

van Hove function for selected

examples

Eight examples are highlighted in Fig. A.1 (which is the reproduction of Fig. 4.3

for convenience of reference). Figs. A.11 to A.9 illustrate the results of Gs(r, t)

calculations for these examples. The results of these calculations are summarized in

Fig. 4.8. In short, the Gs(r, t) calculations show that at φ values lower than 0.6, the

Gs(r, t) is non-Gaussian at early times and Gaussian at later times. After φ ∼ 0.6,

the Gs(r, t) is non-Gaussian at all times.
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Figure A.1: Reproduction of Fig. 4.3. Top: γ vs. φ. Different shapes for data points

indicate different substrates for the experiments. The points marked with numbers are

the ones for which further analysis is done in this chapter. The insets are snapshots

of the colloidal systems associated with the chosen data points. The blue plot is data

from Marcus et al. [93] Bottom: Symmetry fractions vs. φ.
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A.0.1 The examples

Point 1 (φ = 0.03)

Figure A.2: Top: Examples of the quadratic fit to the ln(Gs(r, t)). Quadratic fit
seems to work from the beginning to the end, i.e. t = 0.5 s to t = 495.5 s. The
initial peak in the ln(Gs(r, t)), (particularly visible in the later times) is due to stuck
particles, and therefore the low r values are excluded in the fit. This peak is removed
in subsequent Figures when applicable. Also the ln(Gs(r, t)) is not peaked at zero
due to the drift present in the system. The Gs(r, t) is Gaussian from t = 0.5 s to
t = 495.5 s.Bottom: Diffusion coefficient values (D) obtained from the quadratic fit
to the ln(Gs(r, t)), as a function of time. The dashed line is the D value obtained
from MSD vs. t.
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Point 2 (φ = 0.04)

Figure A.3: Top: Examples of the fits to the ln(Gs(r, t)). ln(Gs(r, t))) has a linear
tail at t = 0.5 s, which according to the literature is a sign of dynamical heterogeneity.
Quadratic fit works for the rest, i.e. t = 5.5 s to t = 200.5 s. Bottom: Diffusion
coefficient values (D) obtained from the quadratic fit to the ln(Gs(r, t)), as a function
of time. The dashed line is the D value obtained from MSD vs. t.
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Point 3 (φ = 0.20)

Figure A.4: Top: Examples of the quadratic fit to the ln(Gs(r, t)). Quadratic fit
works for t = 10.5 s to t = 500.5 s. The ln(Gs(r, t)) for t = 0.5 s has a linear
tail, which according to the literature is a sign of dynamical heterogeneity. Bottom:
Diffusion coefficient values (D) obtained from the quadratic fit to the ln(Gs(r, t)), as
a function of time. The dashed line is the D value obtained from MSD vs. t.
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Point 4 (φ = 0.40)

Figure A.5: Top: Examples of the quadratic fit to the ln(Gs(r, t)). Quadratic fit
works from t = 51 s to t = 501 s. At t = 1 s the Behavior is ambiguous (neither
Gaussian, nor exponential). Also, it has a linear tail from t = 11 s to t = 41 s. t = 51
s seems to be the onset of quadratic behavior for ln(Gs(r, t)). Bottom: Diffusion
coefficient values (D) obtained from the quadratic fit to the ln(Gs(r, t)), as a function
of time. The dashed line is the D value obtained from MSD vs. t.
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Point 5 (φ = 0.49)

Figure A.6: Top: ln(Gs(r, t)) does not seem quadratic for t = 0.5 s.The quadratic
fit works well from t = 10 s to t = 200 s. Bottom: Diffusion coefficient values (D)
obtained from the quadratic fit to the ln(Gs(r, t)), as a function of time. The dashed
line is the D value obtained from MSD vs. t.
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Point 6 (φ = 0.57)

Figure A.7: Top:ln(Gs(r, t)) does not seem quadratic for t = 0.5 s.The quadratic fit
works well from t = 10 s to t = 400 s. Bottom: Diffusion coefficient values (D)
obtained from the quadratic fit to the ln(Gs(r, t)), as a function of time. The dashed
line is the D value obtained from MSD vs. t.
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Point 7 (φ = 0.64)

Figure A.8: The ln(Gs(r, t)) has a linear tail for t = 1 s to t = 501 s.
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Point 8 (φ = 0.78)

Figure A.9: The ln(Gs(r, t)) (for all times) show the exponential behavior at short
distances, but deviate from it at longer distances.
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A.0.2 Discussion on the initial peak of the Gs(r, t)

Figures A.10 and A.11 are related to the point 1 in the appendix.

As is seen in Figure A.10, less than 10% of the particles are stuck. In Figure

A.11(Top) the initial peak (presumably due to stuck particles) is up to r ∼ 0.5 µm.

In Figure A.11(Bottom) the integral reaches to around 0.06 which is 6% of the total

integral (i.e. 1). This means that the ratio integral under the initial peak to the whole

integral is consistent with the fraction of stuck particles.

Figure A.10: A typical frame and the z-project of the movie. less than 10% of the

particles are stuck.
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Figure A.11: (Top) (2πr)Gs(r, t) for t = 225.5 s of point 1 in the appendix. (Middle)

The ln(Gs(r, t). (Bottom) The area under the (2πr)Gs(r, t) as a function of r.
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Figures A.12 and A.13 are related to the point 3 in the appendix.

As is seen in Figure A.12, around 10% of the particles are stuck. In Figure

A.13(Top) the initial peak is up to r ∼ 0.6 µm. In Figure A.13(Bottom) the integral

reaches to around 0.08 which is 8% of the total integral (i.e. 1). This means that

the ratio integral under the initial peak to the whole integral is consistent with the

fraction of stuck particles.

Figure A.12: A typical frame and the z-project of the movie. less than 10% of the

particles are stuck.
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Figure A.13: (Top) (2πr)Gs(r, t) for t = 175.5 s of point 3 in the appendix. (Middle)

The ln(Gs(r, t). (Bottom) The area under the (2πr)Gs(r, t) as a function of r.
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