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Abstract

In longitudinal data analysis, our primary interest is in the regression parameters for

the marginal expectations of the longitudinal responses; the longitudinal correlation

parameters are of secondary interest. The joint likelihood function for longitudinal

data is challenging, particularly for correlated discrete outcome data. Marginal mod-

eling approaches such as generalized estimating equations (GEEs) have received much

attention in the context of longitudinal regression. These methods are based on the

estimates of the first two moments of the data and the working correlation structure.

The confidence regions and hypothesis tests are based on the asymptotic normal-

ity. The methods are sensitive to misspecification of the variance function and the

working correlation structure. Because of such misspecifications, the estimates can

be inefficient and inconsistent, and inference may give incorrect results. To overcome

this problem, we propose an empirical likelihood (EL) procedure based on a set of

estimating equations for the parameter of interest and discuss its characteristics and

asymptotic properties. We also provide an algorithm based on EL principles for the

estimation of the regression parameters and the construction of a confidence region

for the parameter of interest. We extend our approach to variable selection for high-

dimensional longitudinal data with many covariates. In this situation it is necessary

to identify a submodel that adequately represents the data. Including redundant

variables may impact the model’s accuracy and efficiency for inference. We propose a

penalized empirical likelihood (PEL) variable selection based on GEEs; the variable

selection and the estimation of the coefficients are carried out simultaneously. We

discuss its characteristics and asymptotic properties, and present an algorithm for op-

timizing PEL. Simulation studies show that when the model assumptions are correct,

our method performs as well as existing methods, and when the model is misspecified,

it has clear advantages. We have applied the method to two case examples.
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Chapter 1

Introduction

1.1 Longitudinal Data

Longitudinal studies are common in areas such as epidemiology, clinical trials, eco-

nomics, agriculture, and survey sampling. These studies investigate inference for data

that involve repeated observations of the same subject over periods of time. The main

feature of longitudinal data is that the repeated responses for each subject will likely

be correlated since they relate to the same individual and consequently share the same

covariates at any given point in time. In longitudinal studies, we are interested in the

changes in the responses over time as a function of the covariates, generally under

the assumption that observations from different individuals are independent. For ex-

ample, longitudinal studies are used to characterize growth and aging, to assess the

effect of risk factors on human health, and to evaluate the effectiveness of treatments.

To obtain an unbiased, efficient, and reliable estimate, we must properly model the

correlation between the repeated responses for each individual. However, the mod-

elling of correlation, especially when the responses are discrete, is a challenging task

even if the responses are collected over equi-spaced time points. The major methods
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used for the analysis of longitudinal data dealing with mixed effects, transitional, and

marginal regression models and the generalized estimating equation (GEE) approach.

1.2 Analysis of Longitudinal Data

Mixed effects regression is probably the most widely used methodology for the anal-

ysis of longitudinal data. The most common models are linear mixed effects models

(LMMs), nonlinear mixed effects models (NLMMs), and generalized linear mixed ef-

fects models (GLMMs). Mixed effects models incorporate the correlation within the

individual responses by introducing random effects. LMMs and NLMMs are appropri-

ate only for continuous responses. However, in practice, many types of responses follow

non-Gaussian distributions, and in these cases GLMMs are appropriate. A potential

disadvantage of mixed effects models is that they rely on parametric assumptions,

which may lead to biased parameter estimates when a model is misspecified. More-

over, the estimation of the parameters is challenging when the random effects have a

high dimension; it typically involves integrals that do not have an explicit form. In the

absence of an analytical solution, Breslow and Clayton [1993] proposed the penalized

quasi-likelihood (PQL) for the GLMM; it uses a Laplace approximation to find the

marginal likelihood. However, the PQL often yields biased estimates of the regression

parameters since the estimators of the variance components are biased, especially for

discrete longitudinal data.

Generalized linear models (GLMs) often handle longitudinal data by assuming a

Markov structure that incorporates the correlation-within-individual measurements

in the transitional models. In these Markov structure based GLM models, the con-

ditional distribution of each response is expressed as a function of the past responses

and the covariates. These models are more difficult to apply when there are missing
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data and the repeated measurements are not equally spaced in time. In addition, the

interpretation of the regression parameters varies with the order of the serial correla-

tion, and the regression parameter estimates are sensitive to the assumption of time

dependence. Because of the aforementioned difficulties in modelling and performing

inference, we focus on marginal models in this thesis.

1.3 Marginal Models

The key component of the marginal model is that the mean response at each time

point depends on the covariates through a known link function. The longitudinal

observations consist of an outcome random variable yit and a p-dimensional vec-

tor of covariates xit, observed for subjects i = 1, . . . , k at a time point t, t =

1, . . . ,mi. For the ith subject, let yi = (yi1, . . . , yimi
)T be the response vector, and

let X i = (xi1,xi2, ...,xit, ...,ximi
)T be the mi × p matrix of covariates. Marginal

models assume that the conditional mean of the tth response depends only on xit:

E(yit|X i) = E(yit|xi1, . . . ,ximi
) = E(yit|xit). However, this assumption does not hold

when the covariate effect is time-dependent. As a result, special care is required when

fitting marginal models with time-varying covariates. Marginal models describe only

the (marginal) means of the outcome variables, ignoring the correlation or covariance

structure of longitudinal observations.

Marginal models for longitudinal data can be extended to the GLM framework.

The marginal density of yit is assumed to follow an exponential family (McCullagh

and Nelder [1989]) of the form

f(yit) = exp [(yitθit − a(θit))φ+ b(yit, φ)], (1.1)

where θit = h(ηit), h is a known injective function with ηit = xitβ, β is a p× 1 vector
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of regression effects of xit on yit, and a(∗) and b(∗) are functions that are assumed to

be known. The mean and variance of yit can be written

E(yit|xit) = a′(θit) = µit and Var(yit) = a′′(θit) = v(µit)φ, (1.2)

where φ is the unknown over-dispersion parameter and v(∗) is a known variance

function. For simplicity, we set the nuisance scale parameter φ to 1 in Equation (1.1)

for the rest of this thesis. Let Θ be the natural parameter space of the exponential

family distributions presented in (1.1) and Θ◦ the interior of Θ. Let {a′(θ)} be a three

times continuously differentiable function with {a′′(θ)} > 0 in Θ◦. Also, let h(η) be

a three times continuously differentiable function with h′(η) > 0 in g(M)◦, where M

is the image of {a′(Θ◦)}.

When the responses are continuous, the correlation can be represented by the linear

dependence among the repeated responses. However, in the absence of a convenient

likelihood function for discrete data, there is no unified likelihood-based approach for

marginal models. Since our main interest is in modelling the relationship between the

covariates and the response, we will not precisely model within-subject correlation

(McCullagh and Nelder [1989]). Assuming the existence of the first two moments,

Wedderburn [1974] proposed a quasi-likelihood (QL) approach for independent data.

This approach is widely used to estimate regression coefficients without fully specifying

the distribution of the observed data.

1.3.1 Quasi-likelihood

When there is insufficient information about the data for us to specify a parametric

model, QL is often used. We can then develop the statistical analysis without fully

specifying the distribution of the observed data; we first concentrate on cases where
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the observations are independent. We assume that the mean µit is a function of the

covariates with the regression parameters β and covariance diagonal matrix σ2V(µit).

To construct the QL, we start by looking at a single component yit of y. The QL for

complete data is

Q(µ;y) =
k∑

i=1

mi∑
t=1

Q(µit; yit),

where Q(µit; yit) =

∫ µit

yit

yit − t

σ2V(t)
dt. The QL estimating equations for the regression

parameters β are obtained by differentiating Q(µ;y):

k∑
i=1

mi∑
t=1

[
∂a′(θit)

∂β

(yit − a′(θit))

Var(yit)

]
= 0.

For instance, in the Poisson case Var(yit) = a′′(θit) = a′(θit) = µit = exp(xitβ).

In the longitudinal setup, the components of the response vector yi correspond

to repeated observations of the same covariates for the same subject, and they are

likely correlated. Let Ci(ρ) be the mi×mi true correlation matrix of yi, i = 1, . . . , k,

which is unknown in practice. Our primary goal is to estimate β after taking the

longitudinal correlation Ci(ρ) into account. For a known Ci(ρ), the QL estimator of

β under (1.1) is the solution of the score equation

g(y;β) =
k∑

i=1

XT
i AiΣ

−1
i (ρ)(yi − µi) = 0, (1.3)

where Ai = diag [a′′(θi1), ..., a
′′(θit), ..., a

′′(θimi
)] and Σi(ρ) = A

1/2
i Ci(ρ)A

1/2
i is the

true covariance of yi.

In real applications the true correlation structure is often unknown. Ignoring the

correlation of the measurements for the same individual could lead to an inefficient

estimate of the regression coefficients and an underestimate of the standard errors.
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If the probability distribution of the response yi is poorly characterized, then it is

obvious that we cannot use the likelihood approach. Even if it is not of primary

interest, the correlation among a subject’s repeated measurements must be taken

into account for proper inference. The joint distribution of the correlated discrete

responses may not have a closed form when the correlation is taken into account.

To avoid specifying the joint distribution of correlated discrete responses, Liang and

Zeger [1986] proposed the GEE approach, an extension of GLMs to longitudinally

correlated data analysis using QL.

1.3.2 Generalized Estimating Equation Approach

The GEE approach is a semiparametric method where the estimating equations are

derived without a full specification of the joint distribution of the observed data.

This approach to estimating the regression parameters allows the user to specify any

structure for the correlation matrix of the outcomes yi.

Liang and Zeger [1986] introduced a “working” correlation structure based on

the GEE approach to obtain consistent and efficient estimators for the regression

parameter β. They solved

g(β, α̂(β)) =
k∑

i=1

XT
i A

1/2
i R−1

i (α̂)A
−1/2
i (yi − µi) = 0, (1.4)

where Ai is an mi × mi diagonal matrix with Var(µit) as the tth diagonal element

and Ri(α̂) is the mi × mi working correlation matrix of the mi repeated measure-

ments used for Ci(ρ) in Equation (1.3). For j = 1, . . . ,mi and j
′
= 1, . . . ,mi, the

(j, j
′
)th element of Ri is the known, hypothesized, or estimated correlation. The

working correlation may depend on an unknown s × 1 correlation parameter vector

α. The observation times and correlation matrix may differ from subject to subject,
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but the correlation matrix Ri(α) for the ith subject is fully specified by α. The work-

ing variance-covariance matrix for yi is Var(α) = A
1/2
i Ri(α)A

−1/2
i . Some common

working correlation structures are independence, autoregressive of order one (AR(1)),

equally correlated (EQC), moving average of order one (MA(1)), or unstructured.

When Ri(α) = I in (1.4), the score equations are from a likelihood analysis, which

assumes that the repeated observations from a subject are independent of one another.

Liang and Zeger [1986] established the following properties of the estimator β

that satisfies g(β̂, α̂(β)) = 0 under the assumption that the estimating equation is

asymptotically unbiased in the sense that limk→∞E[g(β0, α̂(β0))] = 0, β̂ is consistent,

and Cov(β̂) can be consistently estimated. For a given working correlation structure,

α can be estimated using a residual-based method of moments.

To improve the efficiency of the regression parameter estimates, Prentice and Zhao

[1991] extended the GEE approach to allow for joint estimating equations for both the

regression parameters β and the nuisance correlation parameters α. This approach

needs the existence of the third and fourth moments of yi, i = 1, . . . , k.

1.3.3 Limitations of GEE Approach

The GEE-based estimate of β is not necessarily consistent, as discussed by Crowder

[1995] and Sutradhar and Das [1999]. Crowder [1995] demonstrated that in some

situations the use of an arbitrary working correlation structure may lead to no solution

for α̂, which may break down the entire GEE methodology. Sutradhar and Das [1999]

showed that the GEE approach may yield an estimator of β, that, although consistent,

is less efficient than that of the independence estimating equation approach under an

arbitrary working correlation structure. To overcome this difficulty, Sutradhar [2003]

proposed using a stationary lag correlation structure instead of the working correlation

matrix.
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The estimate for β is obtained by solving the following estimating equations:

g(β, ρ̂(β)) =
k∑

i=1

XT
i AiΣ

−1
i (ρ̂)(yi − µi) = 0, (1.5)

where Σi(ρ̂) = A
1/2
i C∗

i (ρ)A
1/2
i , with C∗

i (ρ) the stationary lag correlation structure

for the AR(1), MA(1), or EQC models, and

C∗
i (ρ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 . . . ρm−1

ρ1 1 ρ1 . . . ρm−2

. . . . . . .

ρm−1 ρm−2 ρm−3 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (1.6)

The stationary lag correlations can be estimated via the method of moments intro-

duced by Sutradhar and Kovacevic [2000]:

ρ̂l =

k∑
i=1

m−l∑
t=1

ỹitỹi,t+l/k(m− l)

k∑
i=1

m∑
t=1

ỹ2it/km

, (1.7)

where l = |t−t′|, t ̸= t′, t, t′ = 1, . . . ,m and ỹit is the standardized residual, defined as

ỹit = {yit − µit}/{a′′(θit)}1/2. For an unequal number of time points, the correlation

matrix given in (1.6) is estimated using the estimate of the lag correlation ρl:

ρ̂l =

∑k
i=1

∑m−l
t=1 δitδi,t+lỹitỹi,t+l/

∑k
i=1

∑m−l
t=1 δitδi,t+l∑k

i=1

∑mi

t=1 δitỹ
2
it/
∑k

i=1

∑mi

t=1 δit
, (1.8)
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where m = max1≤i≤k mi, l = 1, . . . ,m− 1, and

δiu =

⎧⎪⎪⎨⎪⎪⎩
1, if u ≤ mi

0, if mi < u ≤ m.

Sutradhar and Das [1999] showed that the stationary lag correlation approach

produces regression estimates that are consistent and more efficient than those ob-

tained from the independence-assumption-based estimating equation approach. This

approach assumes a known longitudinal correlation structure even though the corre-

lation parameters are unknown.

We conducted a small simulation study to compare GEE with a stationary lag

correlation approach when the correlation structure is misspecified. We consider a

stationary correlation AR(1) model for longitudinal count data discussed by McKenzie

[1988] and Sutradhar [2011]; see Table 1.1. We consider the stationary covariates

x̃i = (x̃i1, x̃i2), where (x̃i1, x̃i2) is generated from the normal distribution with mean

0 and variance 1, and β = (0.3, 0.2)T . For a given yi,t−1, ρ ∗ yi,t−1 is the binomial

thinning operation discussed by McKenzie [1988]. That is, ρ ∗ yi,t−1 =
∑yi,t−1

j=1 bj(ρ)

with Pr[bj(ρ) = 1] = ρ, Pr[bj(ρ) = 0] = 1 − ρ. In our simulation we use m = 5 time

points and k = 100 subjects. We simulated 1000 data sets with ρ = 0.49 and 0.70.

Model Dynamic Relationship Mean, Variance,
& Correlations

AR(1) yit = ρ ∗ yi,t−1 + dit, t = 2, . . . ,m E[yit] = µ̃i

yi1 ∼ Poi(µ̃i = exp[x̃iβ]) Var[yit] = µ̃i

dit ∼ Poi[µ̃i(1− ρ)], t = 2, . . . ,m corr[yit, yi,t+l] = ρl = ρl

Table 1.1: A class of stationary AR(1) correlation model for longitudinal count data.

Table 1.2 gives the average estimated values of the regression coefficients and, in

parentheses, the corresponding simulated standard errors. The table also gives the
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coverage probabilities and the width of the confidence interval (CI) for β1 and β2 for

the 0.95 and 0.99 confidence levels. We generated the data using an AR(1) correla-

tion structure. We used AR(1), EQC, and MA(1) for the parameter estimation under

GEEs, and we compared the results with those for GEEs with lag correlation. Table

Coverage Probability
True Model Method Parameter Estimate 95% level 99% level

GEE (AR(1)) β1 0.3000 0.952 0.987
(0.070) (0.279) (0.367)

β2 0.2009 0.950 0.988
(0.073) (0.286) (0.375)

AR(1) GEE (EQC) β1 0.2997 0.911 0.973
ρ = 0.70 (0.073) (0.247) (0.325)

β2 0.1956 0.902 0.963
(0.076) (0.252) (0.332)

GEE (lag) β1 0.3003 0.952 0.986
(0.070) (0.278) (0.366)

β2 0.2007 0.950 0.988
(0.073) (0.284) (0.374)

GEE (AR(1)) β1 0.2989 0.938 0.988
(0.062) (0.237) (0.319)

β2 0.1956 0.940 0.981
(0.062) (0.243) (0.319)

GEE (EQC) β1 0.2992 0.899 0.968
(0.061) (0.206) (0.272)

β2 0.1986 0.908 0.980
(0.062) (0.211) (0.278)

AR(1) GEE (MA(1)) β1 0.2991 0.897 0.968
ρ = 0.49 (0.062) (0.205) (0.270)

β2 0.1985 0.905 0.981
(0.062) (0.210) (0.276)

GEE (lag) β1 0.2989 0.931 0.990
(0.061) (0.235) (0.309)

β2 0.1955 0.936 0.992
(0.061) (0.241) (0.317)

Table 1.2: Coverage probabilities of regression estimates for data from an AR(1) correlation
model under different working correlation models (m=5).

1.2 shows that when we use the true working correlation structure, the coverage prob-

abilities based on GEEs and GEEs with lag correlation are almost the same. However,
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under an arbitrary working correlation structure, the GEEs with lag correlation have

better performance. This indicates the loss of efficiency of the GEE estimators when

the correlation structures are misspecified. We therefore recommend defining a lag

correlation structure for the longitudinal responses.

The correlation structure (1.6) is quite robust, and it accommodates the AR(1),

EQC, and MA(1) structures. Note, however, that the structure is unknown in prac-

tice, and it is better to use a stationary lag-correlation structure to represent all three

correlation structures. We did not consider all possible cases since some working corre-

lation structure may lead to no solution for α̂. For instance, under true exchangeable

correlation with the MA(1) working correlation structure, the correlation parameter

α̂ does not exist.

The parameter β is defined by the estimating equations E[g(y;β)] = 0, where

g(y;β) ∈ Rr is an estimating function for β ∈ Rp. When r = p the estimating

equations k−1
∑k

i=1 g(yi;β) = 0 have a unique solution for β. When r > p we have

extra information about the parameter for improved efficiency, but it may not be

possible to directly solve the estimating equations. To overcome this problem, Qu,

Lindsay and Li [2000] proposed an adaptive quadratic inference function of the form

Q(β) = g′C−1g, where g is a set of estimating functions based on moment assumptions

and C is the estimated variance of g; this does not involve direct estimation of the

correlation parameter. The above approaches are robust to the working correlation

assumption. However, they are not robust to model misspecification.
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1.4 Variable Selection for Longitudinal Data

Variable selection is an important issue in statistical modelling. It is especially im-

portant for longitudinal data because of the high dimension of the explanatory vari-

ables or predictors that arise in large-scale studies. A large number of predictors,

(X1,X2, . . . ,Xp), are hypothesized to have an influence on the response variable y

of interest. However, some predictors may have no influence or a weak influence, and

may add noise to the estimation. Excluding these variables results in simpler model

that may provide a better understanding of the underlying process.

Variable selection is the problem of identifying an optimal subset of predictor

variables that adequately models the relationship between the response variable of

interest and the predictors. The advantages of selecting a subset of the predictors are:

� Simpler models are easier to interpret.

� The predictive ability may be improved by eliminating irrelevant variables.

� Removing redundant predictors reduces noise.

� It is cheaper to measure fewer variables.

The main objective of variable selection is to identify the smallest adequate model. In

GLMs, the submodel for a random variable y with mean µ is a subset of components

of X for which

g(x;µ) ≃ X(s)β(s)

where g(∗) is the link function, X(s) is a subset of the components of X, β(s) is a

vector of the corresponding regression parameters, and s ⊆ (1, 2, . . . , p). The variable

selection problem is to find the best subset s such that the submodel is optimal

according to some criteria that gives an adequate description of the data-generating

mechanism.
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Several variable selection methods for GLMs have been developed. Sequential ap-

proaches such as forward selection, backward elimination, and the stepwise procedure

are commonly used. These approaches are less computationally intensive than other

methods, but the final model may not be optimal. The most widely used method

for prediction models is the cross-validation approach (Stone [1974]). The resulting

model may have a lower prediction error. However, in GLMs the concept of prediction

error is not well defined (Fielding and Bell [2002]).

Two popular methods based on an information theoretic approach are Akaike’s

information criterion (AIC), proposed by Akaike [1973, 1974], and the Bayesian infor-

mation criterion (BIC), introduced by Schwarz [1978]. In these approaches, we need

to evaluate all possible submodels and identify the best. A well-defined parametric

model is necessary; if a parametric likelihood is not available, the empirical likelihood

(EL) versions of AIC and BIC (Variyath, Chen and Abraham [2010]) can be used.

With high-dimensional data we cannot directly apply AIC or BIC because of the

computational burden. Regularization methods have been developed to overcome the

computational difficulties and to achieve selection stability. There is a large literature

on the penalized likelihood approach, and two important approaches are the least ab-

solute shrinkage and selection operator (LASSO; Tibshirani [1996]) and the smoothly

clipped absolute deviation (SCAD; Fan and Li [2001]). Both approaches have many

desirable properties. Related methods include penalized EL-based variable selection

(Variyath [2006]; Nadarajah [2011]), adaptive LASSO (Zou [2006]; Zhang and Lu

[2007]), least-square approximation (Wang and Leng [2007]), and the folded concave

penalty method (Lv and Fan [2009]). Tang and Leng [2010] used a penalized EL

framework, which is limited to mean vector estimation and linear regression models.

The above methods are applicable only to GLMs.
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Variable selection for longitudinal data is challenging because of the high dimen-

sionality of the covariates and the need to construct a convenient joint likelihood

function for correlated discrete outcome data. Pan [2001] developed the QL infor-

mation criterion (QIC) under the working independence model and naive and robust

covariance estimates of the estimated regression coefficients. Cantoni, Flemming and

Ronchetti [2005] proposed a generalized version of Mallows’s Cp, suitable for use with

both parametric and nonparametric models. This approach avoids a stepwise proce-

dure, and is based on a measure of the predictive error rather than on significance

testing. Wang and Qu [2009] introduced a BIC-type procedure based on the quadratic

inference function; it does not require the full likelihood or a QL. The implementa-

tion of best-subset procedures requires the evaluation of all possible submodels, which

becomes computationally intensive when the number of covariates is large.

The idea of penalization is useful in longitudinal modelling and particularly in

high-dimensional variable selection. Fan and Li [2004] proposed an innovative class

of variable selection procedures for semiparametric models with continuous responses.

Wang, Li and Huang [2008] studied regularized estimation procedures for nonparamet-

ric varying-coefficient models with continuous responses; their procedures can simulta-

neously perform variable selection and the estimation of smooth coefficient functions.

Xiao, Zhang and Zhang [2009] investigated a double-penalized likelihood approach

for selecting fixed effects in semiparametric mixed models with continuous responses.

Dziak, Li and Qu [2009] discussed the application of a SCAD-penalized quadratic

inference function. Xu, Wang and Zhu [2010] investigated a GEE-based shrinkage

estimator with an artificial objective function. Xue, Qu and Zhou [2010] considered

procedures for a generalized additive model where responses from the same cluster

are correlated.

The above methods assume that the dimension of the predictors is small, and
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some of them are applicable only to continuous responses. To avoid specifying the

full joint likelihood for correlated discrete data, Wang, Zhou and Qu [2012] proposed

an approach based on penalized generalized estimating equations (PGEEs) with a

nonconvex penalty function. This approach requires only the specification of the first

two marginal moments and a working correlation matrix. In the next section, we will

discuss PGEEs for variable selection in the context of longitudinal data analysis.

1.4.1 Penalized Generalized Estimating Equations

The approach of Wang et al. [2012] requires only the specification of the first two

marginal moments and the correlation structure. This method provides computational

efficiency and stability. It simultaneously performs the variable selection and the

estimation of the regression parameters. That is, insignificant variables are removed

by setting their regression parameters to zero. The method works reasonably well for

high-dimensional problems.

In this method a penalized generalized estimating function is defined to be

U(β) = g(β, α̂(β))− k ∗ p′δ(|β|)sign(β), (1.9)

where g(β, α̂(β)) =
∑k

i=1X
T
i A

1/2
i R−1

i (α̂)A
−1/2
i (yi−µi) are the GEEs given in (1.4),

p′δ(∗) is the first derivative of the penalty function, sign(β) = (sign(β1), . . . , sign(βp))
T

with sign(t) = I(t > 0) − I(t < 0), and δ is the tuning parameter. Different penalty

functions can be used. According to Fan and Li [2001], a good penalty function results

in an estimator with the following three oracle properties:

1. Unbiasedness: The estimator is nearly unbiased when the true unknown param-

eter is large.

2. Sparsity: This is a thresholding rule that automatically sets small estimated
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coefficients to zero to reduce the model complexity.

3. Continuity: This property eliminates unnecessary variation in the model pre-

diction.

A suitable penalty function is the SCAD penalty (Fan [1997]). Its first derivative is

p′δ(θ) = δ

{
I(θ ≤ δ) +

(aδ − θ)+
(a− 1)δ

I(θ > δ)

}
for some a > 2 and θ > 0. (1.10)

Necessary conditions for the unbiasedness, sparsity, and continuity of the SCAD

penalty have been proved by Antoniadis and Fan [2001]. This penalty function in-

volves two unknown parameters, a and δ. Under some regularity conditions, Wang

et al. [2012] show that the estimator based on the SCAD penalty satisfies the oracle

properties for a certain choice of a and δ.

PGEEs work reasonably well in high-dimensional problems, but the GEE ap-

proach gives inconsistent estimators of β under an arbitrary working correlation struc-

ture, and model misspecification limits the application of this method (see Section

1.3.3). Nadarajah, Variyath and Loredo-Osti [2016] developed penalized generalized

QL (PGQL) variable selection based on the stationary lag correlation structure given

in (1.6). We perform a simulation study to compare PGEEs and PGQL when the

correlation structure is misspecified.

We consider the stationary AR(1) correlation model of Table 1.1. We use five

covariates X̃ i = (x̃i1 , . . . , x̃i5), where x̃i1 ∼ Bernoulli(0.5) and xi2 to xi5 are generated

from a multivariate normal distribution with mean zero, the correlation between xil

and xjl is 0.5|i−j|, l = 2, . . . , 5. We set β = (0.5, 0.5, 0.6, 0, 0)T . We report (i) the

median of the relative model error (MRME) and (ii) the average number of correct

zero and nonzero coefficients. We also give the average estimated values of the nonzero

coefficients and the corresponding simulated standard errors. The model error (ME)
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is defined to be ME(β̂) = Ex

{
µ(Xβ)− µ(Xβ̂)

}2

, where µ(Xβ) = E(y|X), and

the relative model error is RME = ME/MEfull, where MEfull is the model error when

fitting the data with the full model and ME is the model error of the selected model.

We generated a sample with k = 100 individuals and m = 5 time points with three

different correlation structures.

Table 1.3 shows that when we use the true working correlation structure, the

MRME of the PGEEs is very close to that of PGQL. The average number of zero

coefficients is close to the target of two, and the nonzero regression parameter esti-

mates are close to the true values. However, under an arbitrary working correlation

structure the PGEEs have a larger MRME, and the average number of zero coeffi-

cients is not close to the target of two. When the working correlation is misspecified,

PGQL performs better than the PGEEs. We repeated the simulation with different

scenarios, and the conclusions were similar, so these results are omitted. However, the

PGQL is not robust to misspecification. To handle possible misspecification of the

mean, variance function, and correlation structure, a nonparametric method should

be used.

1.5 Motivation and Proposed Approach for Longi-

tudinal Data Analysis

Marginal models or GEE approaches require only the specification of the first two

marginal moments and a correlation structure. GEE estimators are consistent and

asymptotically normal as long as the mean, variance, and correlation structure are

correctly specified. Marginal models have satisfactory performance when the assump-

tions are satisfied. Misspecification is a concern. Moreover, if the covariates are

time-dependent the assumption limk→∞E[g(β0, α̂(β0))] = 0 might not hold for an
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True Model Method MRME% Avg. no. of zero Estimates of nonzero
coefficients coefficients

Correct Incorrect β̂1 β̂2 β̂3

PGEE (IND) 86.86 1.25 0.0 0.5002 0.5023 0.5909
(0.068) (0.075) (0.076)

PGEE (AR(1)) 65.60 1.85 0.0 0.5029 0.5058 0.5930
(0.066) (0.073) (0.071)

AR(1) PGEE (EQC) 69.76 1.84 0.0 0.5030 0.5047 0.5935
ρ = 0.70 (0.066) (0.073) (0.072)

PGQL 66.90 1.85 0.0 0.5034 0.5052 0.5930
(0.066) (0.073) (0.071)

PGEE (AR(1)) 63.60 1.80 0.0 0.5003 0.5025 0.5968
(0.056) (0.056) (0.057)

AR(1) PGEE (MA(1)) 70.57 1.65 0.0 0.5011 0.5021 0.5986
ρ = 0.49 (0.060) (0.061) (0.062)

PGQL 67.64 1.79 0.0 0.5014 0.5029 0.5973
(0.059) (0.060) (0.061)

PGEE (IND) 77.95 1.23 0.0 0.5059 0.5053 0.5913
(0.074) (0.076) (0.080)

PGEEs (EQC) 61.43 1.87 0.0 0.5022 0.5066 0.5921
(0.073) (0.076) (0.074)

EQC PGEE (AR(1)) 63.37 1.70 0.0 0.5025 0.5066 0.5914
ρ = 0.70 (0.074) (0.076) (0.076)

PGQL 62.61 1.87 0.0 0.5026 0.5069 0.5916
(0.073) (0.076) (0.073)

PGEE (EQC) 65.39 1.82 0.0 0.5023 0.5057 0.5922
(0.062) (0.065) (0.064)

EQC PGEE (MA(1)) 75.50 1.59 0.0 0.4996 0.5022 0.5980
ρ = 0.49 (0.065) (0.068) (0.073)

PGQL 66.40 1.82 0.0 0.5017 0.5046 0.5938
(0.064) (0.068) (0.069)

PGEE (IND) 70.29 1.54 0.0 0.5002 0.5006 0.5994
(0.052) (0.054) (0.054)

PGEEs (MA(1)) 63.56 1.72 0.0 0.5004 0.4993 0.5981
(0.052) (0.053) (0.052)

MA(1) PGEE (AR(1)) 69.39 1.78 0.0 0.5018 0.5013 0.5963
ρ = 0.67 (0.052) (0.056) (0.054)

PGEE (EQC) 71.37 1.71 0.0 0.5006 0.5008 0.5974
(0.052) (0.056) (0.058)

PGQL 65.20 1.75 0.0 0.5005 0.5004 0.5970
(0.051) (0.053) (0.053)

Table 1.3: Performance measures for count data with stationary covariates (m=5)

arbitrary working correlation structure, and so the GEE estimate of β is not neces-

sarily consistent; see Hu [1993], Pepe and Anderson [1994], Emond, Ritz and Oakes
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[1997], Pan, Louis and Connett [2000], and Diggle, Heagerty, Liang and Zeger [2002].

The GEE estimator of β with the independent working correlation is always consis-

tent so Pepe and Anderson [1994] recommended using this correlation as a safe choice.

The independent working correlation is often efficient for the estimation of coefficients

associated with time-independent covariates (Fitzmaurice [1995]). However, it may

be much less efficient when the covariates are time-dependent (Fitzmaurice [1995]).

In practice, the true correlation structure is unknown, and using an arbitrary

working correlation structure limits the application of marginal models. Misspecifica-

tion can cause estimates based on marginal models to be inefficient and inconsistent,

and inference in this situation can be completely inappropriate. Confidence regions

and hypothesis tests are based on asymptotic normality, which may not hold since

the finite-sample distribution may not be symmetric. These problems motivate us to

investigate a nonparametric likelihood method. Instead of using marginal models, we

define a subject-wise EL, based on a set of GEEs for the parameter of interest.

1.5.1 Proposed Approach to Longitudinal Data Analysis

Owen [1988] introduced the EL. The EL is a nonparametric method for statistical

inference; that is, we need not assume that the data come from a particular distribu-

tion. The EL combines the reliability of nonparametric methods with the flexibility

and effectiveness of the likelihood approach. The EL has many nice properties parallel

to those of parametric likelihood, including the ability to carry out hypothesis tests

and construct confidence intervals without estimating the variance. The shape of EL

confidence regions automatically reflects the emphasis of the observed data set. These

regions are invariant under transformations and often behave better than confidence

regions based on asymptotic normality when the sample size is small. The EL method

also offers advantages in parameter estimation and the formulation of goodness-of-fit
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tests. Moreover, it is possible to have more estimating equations than the number of

parameters, i.e., r > p, where g(y;β) ∈ Rr is an estimating function for the param-

eter β ∈ Rp. For instance, let y1, . . . , yn be independent and identically distributed

univariate observations from a member of a semiparametric family F for which the

first two moments are equal. If our aim is to estimate θ, the information about F is ex-

pressed in the form of the estimating equations g1(y, θ) = y−θ; g2(y, θ) = y2−θ−θ2.

In this example, r = 2 > p = 1. In this situation, we can estimate θ by maximizing

the EL subject to the constraint E[g(y, θ)] = 0. The EL has been successfully applied

in areas such as linear models, GLMs, survey sampling, variable selection, survival

analysis, and time series.

We investigate the use of a nonparametric EL in longitudinal data analysis. We

explore the asymptotic properties of the method and assess the performance of the

method based on a large number of simulations. Our procedure provides consistent

estimators, and has comparable performance to marginal models when the model

assumptions are correct. It is superior to marginal models when the variance function

and correlation structure are misspecified.

This result motivates us to extend the EL to the penalized EL-based variable se-

lection with carrying out the estimation of the coefficients simultaneously. Simulation

studies show that when the model assumptions are correct, its performance is com-

parable to that of existing methods, and when the model is misspecified, our method

has clear advantages.

1.6 Outline of Thesis

The main goal of this thesis is to explore longitudinal data analysis based on a non-

parametric approach. We focus on the EL via a set of GEEs. In Chapter 2, we
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develop the subject-wise EL via a set of GEEs of the parameter of interest, and

discuss its characteristics and asymptotic properties. We also provide an algorithm

based on EL principles for the estimation of the regression parameters and the con-

struction of a confidence region for the parameter of interest. In Chapter 3 we present

a performance analysis of our method in the context of count and continuous lon-

gitudinal data. In Chapter 4, we extend this EL to penalized EL variable selection

for high-dimensional longitudinal data. We discuss its characteristics and asymptotic

properties, and provide an algorithm. We also present a performance analysis of the

penalized EL variable selection in the context of count and continuous longitudinal

data. In Chapter 5 we apply our method to two case examples. In Chapter 6 we

provide concluding remarks, and discuss future research.



Chapter 2

Empirical Likelihood

The EL method is a powerful inference tool with promising applications in many

areas of statistics. It is a nonparametric-likelihood-based approach, introduced by

Owen [1988] that is an alternative to parametric likelihood and bootstrap methods.

This method enables us to fully employ the information available from the data for

making asymptotically efficient inference about the population parameters. In this

chapter, we introduce the basic concept of EL for a mean vector and discuss EL-based

longitudinal modelling.

2.1 Empirical Likelihood for Mean

For a given random sample y1, y2, . . . , yn from a known density f(y,µ), let L(µ) =∏n
i=1 f(yi,µ) be the likelihood function for the parameter µ, and let µ̂ = argmaxµ L(µ)

be the maximum likelihood estimator. Suppose we wish to test the hypothesisH0 : µ = µ0.

Let

R(µ0) =
L(µ0)

L(µ̂)
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be the likelihood ratio statistic. Wilks’ theorem (Wilks [1938]) states that under

some regularity conditions −2 logR(µ0) converges in distribution to a chi-square with

degrees of freedom equal to the dimension of µ.

Consider a random sample y1, y2, . . . , yn from an unknown distribution function

F (y) with pi = Pr(Yi = yi), i = 1, . . . , n, where pi ≥ 0 and
∑n

i=1 pi = 1. Since

Pr(Y1 = y1, . . . , Yn = yn) = p1 . . . pn, the likelihood function of F can be written

Ln(F ) =
n∏

i=1

pi,

which is called an EL. The maximum EL estimator (MELE) for F gives an equal mass

probability 1/n for the n observed values. The corresponding cumulative empirical

distribution function of y1, y2, . . . , yn is

Fn(y) =
1

n

n∑
i=1

I(yi ≤ y),

where I(∗) is the indicator function and the inequality is expressed componentwise.

The log EL is of the form

ln(F ) =
n∑

i=1

log(pi), (2.1)

subject to the constraints
n∑

i=1

pi = 1 and pi ≥ 0, i = 1, 2, . . . , n.

Suppose that we are interested in the parameter µ = T (F ) under the assumption

that F is a member of a unknown distribution family F , for some functional T of

the distribution. The purpose of the profile likelihood is to find the F at which the

EL attains its maximum value over the set {F : T (F ) = µ}. Define the profile EL
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function to be

Ln(µ) = sup {Ln(F ) | T (F ) = µ, F ∈ F}.

We can make likelihood inference on µ based on Ln(µ). This likelihood has similar

properties to its parametric counterpart. Since Ln(µ) ≤ n−n, it is convenient to

standardize Ln(µ) by defining the likelihood ratio function to be

R(F ) = nnLn(µ),

and it is easily shown that this can be written

R(F ) =
n∏

i=1

npi.

To obtain confidence regions for µ = (µ1, µ2, . . . , µd), we define the profile empirical

log-likelihood to be

ℓ(µ) = sup

{
ln(F ) : pi ≥ 0, i = 1, 2, . . . , n;

n∑
i=1

pi = 1,
n∑

i=1

pi(yi − µ) = 0

}
. (2.2)

We can compute ℓ(µ) by maximizing ln(F ) given in (2.1) as a constrained optimiza-

tion problem using the Lagrange multiplier method. Making use of the first-order

conditions of the Lagrangian function with respect to the pi and the constraint on pi,

we see that the likelihood is maximized when

p̂i =
1

n
{
1 + λ̂

T
(yi − µ)

} , i = 1, 2, . . . , n,
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and the Lagrange multiplier λ̂ = λ̂(µ) is the solution of

n∑
i=1

(yi − µ)

1 + λT (yi − µ)
= 0.

Therefore, we can write the profile EL function as

ℓ(µ) = −n log(n)−
n∑

i=1

log(1 + λ̂
T
(µ)(yi − µ)).

Consequently, the profile empirical log-likelihood ratio function becomes

W (µ) =
n∑

i=1

log(np̂i) =
n∑

i=1

log
[
1 + λ̂

T
(µ)(yi − µ)

]
.

Owen [1990] showed that when µ0 is the true population mean, 2W (µ0)
D−→ χ2

d

as n −→ ∞; similar to the parametric likelihood ratio function of Wilks [1938]. This

result is useful for testing the hypothesis H0 : µ0 = T (F0) and for the construction of

100(1− α)% confidence regions, defined by

{
µ : 2W (µ) ≤ χ2

d(1− α)
}
,

where χ2
d(1−α) is the (1−α)th quantile of the chi-square distribution with d degrees

of freedom. These are different from the CIs based on a normal approximation. Note

that there is no need to estimate the scale parameters in the construction of the CI,

and the confidence regions are not necessarily symmetric because of the data-driven

approach. Because of these properties, the EL method has become popular in the

statistical literature.
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2.2 Empirical-Likelihood-Based Longitudinal Mod-

elling

Owen [1991] first considered the EL for linear models. EL confidence regions for

regression coefficients in linear models were studied by Chen [1994]. The EL method

can also be used to estimate the parameters defined by a set of estimating equations

(Qin and Lawless [1994]). Owen [2001] provides a comprehensive overview of the EL

and its properties. EL methods have attracted increasing attention over the last two

decades, and the literature is extensive.

You, Chen and Zhou [2006] were the first to apply the EL to longitudinal data,

using a subject-wise working independence model. This method ignores the within-

subject correlation structure. Xue and Zhu [2007] proposed a subject-wise EL by

centering the longitudinal data and obtained asymptotic normality of the MELE

of the regression coefficients. They did not consider the within-subject correlation

structure. It is well known that the working-independence assumption may lead to a

loss of efficiency in estimation when within-subject correlation is present. Wang, Qian

and Carroll [2010] showed how to incorporate the within-subject correlation structure

of continuous repeated measurements into the EL. To estimate the within-subject

covariance matrices, they used the nonparametric sample covariance matrix obtained

from the residuals of a GEE using the working-independence assumption. In this

thesis, we show how to incorporate the within-subject correlation structure of the

repeated measurements into the EL.

We propose a subject-wise EL that assigns a probability pi to subject i. For the ith

subject, let yi = (yi1, . . . , yit . . . , yimi
)T be the response vector,X i = (xi1,xi2, . . . ,ximi

)T

the mi×p matrix of covariates, and β ∈ Rp the vector of the regression effects of x on

y. We assume that all the subjects are independent and the repeated measurements
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yit taken on each subject are correlated.

Assuming the existence of the first two moments of y, we can estimate the regres-

sion parameters using the unbiased estimating equation

g(Y i;β, ρ̂(β)) =
k∑

i=1

XT
i AiΣ

−1
i (ρ̂)(yi − µi) = 0

as given in (1.5). Following Owen [1991] and Qin and Lawless [1994], we can extend the

EL inference to longitudinal data based on a set of estimating functions g(Y ;β, ρ̂(β)).

We incorporate the within-subject correlation structure of the repeated measurements

into the EL using the well-known method of moments estimators given in (1.7) and

(1.8) for a given value of β. The profile empirical log-likelihood function of β is

defined by

ℓ(β) = sup

[
k∑

i=1

log(pi) : pi ≥ 0, i = 1, 2, . . . , k;
k∑

i=1

pi = 1,
k∑

i=1

pigi(β, ρ̂(β)) = 0

]
.

The EL is maximized when

p̂i =
1

k
{
1 + λ̂

T
gi(β, ρ̂(β))

} , i = 1, 2, . . . , k, (2.3)

where the Lagrange multiplier λ̂ = λ̂(β) is the solution of

k∑
i=1

gi(β, ρ̂(β))

1 + λTgi(β, ρ̂(β))
= 0. (2.4)

This result leads to the profile empirical log-likelihood function

ℓ(β) = −k log(k)−
k∑

i=1

log(1 + λ̂
T
(β)gi(β, ρ̂(β)))
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and the profile empirical log-likelihood ratio function

Wl(β) = −
k∑

i=1

log(kp̂i) =
k∑

i=1

log[1 + λ̂
T
(β)gi(β, ρ̂(β))]. (2.5)

Under some regularity conditions, we have 2Wl(β0)
D−→ χ2

p as k −→ ∞ if

E
[
g(β0, ρ̂(β0))g

T (β0, ρ̂(β0))
]

is full rank where β0 is the true parameter value. This conclusion is similar to that for

the parametric likelihood ratio function. The vector β can be estimated by minimizing

Wl(β) =
k∑

i=1

log(1 + λ̂
T
(β)g(β, ρ̂(β))) (2.6)

with respect to β. Note that the profile log-likelihood ratio function can be minimized

with respect to β when ρ is known. In practice, ρ is unknown, but can be consistently

estimated using the method of moments; see Section 1.3.3.

The computation of the profile EL function is a key step in EL applications, and it

involves constrained maximization. In some situations, the algorithm may fail because

of poor initial values of the parameters. Moreover, the poor accuracy of EL confidence

regions has been reported by several authors, including Qin and Lawless [1994], Hall

and La Scala [1990], Corcoran, Davison and Spady [1995], Owen [2001], Tsao [2004],

and Chen, Variyath and Abraham [2008]. In the next subsection we will discuss how

to address these problems in the context of longitudinal data.
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2.2.1 Adjusted Empirical Likelihood

The computation of the profile EL ratio function Wl(β) given in (2.6) is a key step in

EL applications. The solution for λ must satisfy {1 + λ̂
T
(β)gi(β, ρ̂(β))} > 0 for all

i = 1, . . . , k. A necessary and sufficient condition for its existence is that the vector

0 is an interior point of the convex hull of {gi(β, ρ̂(β)), i = 1, . . . , k}. Under some

moment conditions on g(β, ρ̂(β)) (Owen [2001]), the convex hull contains 0 as an

interior point with probability 1 as k → ∞. However, when β is not close to the true

parameter value β0 or when k is small, it is possible that the solution of (2.4) does not

exist. To avoid this problem, Chen et al. [2008] introduced the adjusted EL (AEL).

The AEL is obtained by adding a pseudo-observation to the data set. It overcomes

the difficulties arising when the estimating equations for λ have no solution.

Let gi(β) = gi(β, ρ̂(β)) and gk(β) =
1

k

k∑
i=1

gi(β) for any given β. For some positive

constant bk, by the addition of an artificial observation

gk+1(β) = −bk
k

k∑
i=1

gi(β)= −bkgk(β)

with bk = log(k)/2. The adjusted profile empirical log-likelihood ratio function is

W ∗
l (β) = inf

[
−

k+1∑
i=1

log [(k + 1)pi] : pi ≥ 0, i = 1, 2, . . . , k + 1;
k+1∑
i=1

pi = 1,
k+1∑
i=1

pigi(β) = 0

]

=
k+1∑
i=1

log
[
1 + λ̂

T
(β)gi(β)

]

with λ̂ = λ̂(β) being the solution of
k+1∑
i=1

gi(β)

1 + λTgi(β)
= 0. Note that 0 always lies

inside the convex hull of {gi(β, ρ̂(β)), i = 1, . . . , k + 1}. The adjusted profile empirical

log-likelihood ratio function is well defined after adding a pseudo value gk+1(β). For
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a wide range of bk, following Chen et al. [2008], we can show that the adjusted profile

EL ratio function W ∗
l (β) has the same asymptotic properties as the unadjusted profile

EL ratio function Wl(β). We define the adjusted profile EL ratio estimator of β to

be the minimizer of

W ∗
l (β) =

k+1∑
i=1

[
log(1 + λ̂

T
(β)gi(β, ρ̂(β))

]
(2.7)

with respect to β.

The adjustment is particularly useful because, even for some undesirable values of

β, the algorithm guarantees a solution. The confidence regions constructed via the

AEL are found to have better coverage probabilities than those for the regular EL,

and the algorithm provides a promising solution for λ particularly when the sample

size is small. The improved coverage probability is achieved without resorting to more

complex procedures such as Bartlett correction or bootstrap calibration.

2.2.2 Extended Empirical Likelihood

One of the advantages of the EL is that we can use more information about the

parameters. In other words, we can use more estimating equations than the number

of parameters. The extra information should improve the accuracy of the estimates.

In such cases, EL-based confidence regions can have undercoverage (Qin and Lawless

[1994]). This is mainly because the parameter space is Rp, and the domain is a

bounded subset of Rp (Tsao [2013]; Tsao and Wu [2013]). This mismatch is a result

of the convex hull constraint set for the formulation of the EL. As a result, the values

of β ∈ Rp that violate this constraint are excluded from the domain. To overcome this

problem, Tsao [2013] and Tsao and Wu [2013] expand the EL domain geometrically.

This extended EL (EEL) for parameters based on estimating equations is a natural
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generalization of the regular EL to the full parameter space. Similar to AEL, EEL

have the same asymptotic properties as the EL.

For longitudinal data the EL domain is

Θk = {β : β ∈ Rp such that
k∑

i=1

pigi(β, ρ̂(β)) = 0},

where g(β, ρ̂(β)) is given in (1.5). Tsao and Wu [2013] expand Θk to Rp through a

composite similarity mapping hC
k : Θk → Rp. They define hC

k (β) to be

hC
k (β) = β̃ + γ(k,Wl(β))(β − β̃), β ∈ Θk, (2.8)

where β̃ is the MELE for β, and the function γ(k,Wl(β)) is the expansion factor,

given by

γ(k,Wl(β)) = 1 +
Wl(β)

k
.

Under the regularity conditions discussed by Tsao and Wu [2013], hC
k : Θk → Rp is

surjective. Thus, s(β) = {β′ : hC
k (β

′) = β}, ∀β ∈ Rp is nonempty. If s(β) contains

more than one point and hC
k does not have an inverse, then hC

k is surjective. Hence,

a generalized inverse h−C
k : Rp → Θk is

h−C
k (β) = arg min

β′∈s(β)
{∥β′ − β∥} .

The extended profile empirical log-likelihood ratio function W ∗∗(β) under h−C
k is

defined to be

W ∗∗
l (β) = W (h−C

k (β)) for β ∈ Rp,

which is well-defined throughout Rp. Tsao and Wu [2013] highlight the first-order

version of this EEL, which is easy to use and substantially more accurate than the
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regular EL. It is also more accurate than available second-order EL methods. In our

performance analysis in Chapter 3, we will explore the coverage probabilities based

on the EEL, EL, and AEL.

In the next section, following Qin and Lawless [1994], we state and prove the

results on the distributional properties of the adjusted profile EL estimates of β̂.

We construct these theorems based on the GEE with lag correlation given in (1.5),

since the GEE estimate of β under an arbitrary working-correlation structure is not

necessarily consistent; see Sections 1.3.3 and 1.4.1.

2.3 Distributional Properties

In this section, we present the first-order asymptotic properties of β̂ and the adjusted

profile empirical log-likelihood ratio statistics. We first introduce some notation and

regularity conditions that are used in the theorems and lemma.

Regularity Conditions:

A1: E {g(β0, ρ̂(β0))} = 0, where β0 is the true value of β, g(β, ρ̂(β)) =
∑k

i=1 D
T
i Σ

−1
i (ρ̂)(yi−

µi) be the estimating function for β ∈ Rp (defined in (1.5)), Di = ∂{a′i(θ)}/∂β,

Σi(ρ̂) = A
1/2
i C∗

i (ρ̂)A
1/2
i , andAi = diag{a′′i (θ)} for i = 1, 2, . . . , k. Let gk(β, ρ̂(β)) =

1

k

k∑
i=1

gi(β, ρ̂(β)) and gk+1(β, ρ̂(β)) = −bkgk(β, ρ̂(β)), where bk is a positive con-

stant.

A2: {a′(θ)} is three times continuously differentiable and {a′′(θ)} > 0 in Θ◦, where

Θ be the natural parameter space of the exponential family distributions pre-

sented in (1.1) and Θ◦ the interior of Θ. Also, h(η) is three times continuously

differentiable and h′(η) > 0.
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A3: Eβ0

{
∂gk(β, ρ)

∂β

}
and V k(β0, ρ̂(β0)) = Eβ0

{
gk(β, ρ̂(β))g

T
k (β, ρ̂(β))

}
are posi-

tive definite.

A4: The rank of E

{
∂gk(β, ρ)

∂β

}
is p in a neighbourhood of β0.

A5: There exist functions G(y,X) such that in a neighbourhood of β0.

⏐⏐⏐⏐∂gk(β, ρ)∂β

⏐⏐⏐⏐ < G(y,X), ∥gk(y,X,β, ρ̂(β))∥3 < G(y,X)

with E [G(y,X)] < ∞.

Lemma 2.3.1 Under regularity conditions A1-A5, suppose (yi,X i), i = 1, 2, . . . , k is

a set of independent and identically distributed random vectors. Let

2W ∗
l (β) = 2

k+1∑
i=1

log
[
1 + λ̂

T
(β)gi(β, ρ̂(β))

]
(2.9)

be the adjusted profile empirical log-likelihood ratio function. Then, as k → ∞, ρ̂(β)

is a consistent estimator in the neighbourhood of β; the correlation matrix of yi is

C∗
i (ρ), defined in (1.5) and W ∗

l (β) attains its minimum value at some point β̂ in

the interior of ∥β̂ − β0∥ < k−1/3 in probability. In addition, β̂ and λ̂(β) satisfy the

equations

Q1,k+1(β̂, λ̂, ρ̂(β)) = 0 and Q2,k+1(β̂, λ̂, ρ̂(β)) = 0

where

Q1,k+1(β,λ, ρ(β)) =
1

k

k+1∑
i=1

gi(β, ρ(β))

1 + λT (β)gi(β, ρ(β))
,

Q2,k+1(β,λ, ρ(β)) =
1

k

k+1∑
i=1

1

1 + λT (β)gi(β, ρ(β))

(
∂gi(β, ρ)

∂β

)T

λ.

Proof of Lemma 2.3.1:

First, we will show that the ρ̂(β) is consistent estimator in a neighborhood of β for
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the repeated count responses which can be generalized for any repeated responses.

Second, we are going to show that the Lagrange multiplier λ(β) = Op(k
−1/3) for β

such that ∥β − β0∥ ≤ k−1/3 and then going to show the consistency of the minimum

adjusted profile empirical likelihood ratio estimators β̂.

Let yi1, . . . , yit, . . . , yim be the repeated count responses with the variance and the

lag 1 covariance are given by

E(yit − µit)
2 = σitt

and

E[(yit − µit)(yi,t+1 − µi,t+1)] = σi,t,t+1 = ρµit + µitµi,t+1

respectively. Let ỹit be the standardized residual, defined as ỹit = {yit − µit}/
√
σitt.

Then it follows that

E

[
k∑

i=1

m∑
t=1

ỹ2it/km

]
= 1 (2.10)

and

E

[
k∑

i=1

m−1∑
t=1

ỹitỹi,t+1/k(m− 1)

]
= ρ

k∑
i=1

m−1∑
t=1

µit(σittσi,t+1,t+1)
−1/2/k(m− 1)

+
k∑

i=1

m−1∑
t=1

µitµi,t+1(σittσi,t+1,t+1)
−1/2/k(m− 1). (2.11)

By using (2.10) and (2.11), we can write the first order approximate expectation

E(w1) = ρh1 + f1, (2.12)
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where

w1 =

k∑
i=1

m−1∑
t=1

ỹitỹi,t+1/k(m− 1)

k∑
i=1

m∑
t=1

ỹ2it/km

is the lag 1 correlation as discussed in Section 1.3.3, and

h1 =
k∑

i=1

m−1∑
t=1

µit(σittσi,t+1,t+1)
−1/2/k(m− 1),

and

f1 =
k∑

i=1

m−1∑
t=1

µitµi,t+1(σittσi,t+1,t+1)
−1/2/k(m− 1).

We then obtain an approximate unbiased moment estimator of ρ

ρ̂ =
w1 − f1

h1

.

Now consider,

E

[(
yit − µit√

σitt

)(
yi,t+1 − µi,t+1√

σi,t+1,t+1

)]
= σi,t,t+1(σittσi,t+1,t+1)

−1/2 for all i and j.

That is,

E

[
m−1∑
t=1

ỹitỹi,t+1 − σi,t,t+1(σittσi,t+1,t+1)
−1/2

]
= 0 for all i = 1, . . . , k,

where ỹit is the standardized residual. If µij’s and m are bounded, it is easy to see

that

E

⎡⎣(m−1∑
t=1

[
ỹitỹi,t+1 − σi,t,t+1(σittσi,t+1,t+1)

−1/2
])2

⎤⎦ < M

for some 0 < M < ∞ for all i = 1, . . . , k and yi’s are independent. By the law of
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large numbers for independent random variable we can conclude that

k∑
i=1

m−1∑
t=1

[
ỹitỹi,t+l − σi,t,t+1(σittσi,t+1,t+1)

−1/2
]
/k(m− 1)

P−→ 0 as k → ∞.

Now, (2.11) can be written

k∑
i=1

m−1∑
t=1

ỹitỹi,t+1/k(m− 1) = ρ
k∑

i=1

m−1∑
t=1

µit(σittσi,t+1,t+1)
−1/2/k(m− 1)

+
k∑

i=1

m−1∑
t=1

µitµi,t+1(σittσi,t+1,t+1)
−1/2/k(m− 1) +Op(1). (2.13)

Similarly, consider,

E
[
ỹ2it
]
= 1 for all i and j.

That is,

E

[
m∑
t=1

(
ỹ2it − 1

)]
= 0 for all i = 1, . . . , k.

Then if µij’s and m are bounded,

E

⎡⎣( m∑
t=1

[
ỹ2it − 1

])2
⎤⎦ < M

for some M for all i = 1, . . . , k and yi’s are independent. By the law of large numbers

for independent random variable we can again conclude that

k∑
i=1

m−1∑
t=1

[
ỹ2it − 1

]
/km

P−→ 0.

From this we can write

k∑
i=1

m−1∑
t=1

ỹ2it/km = 1 +Op(1). (2.14)
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By using (2.13) and (2.14), we can obtain w1(1 + Op(1)) = ρh1 + f1 + Op(1) ⇒

ρ̂ =
w1 − f1

h1

= ρ+Op(1) as k → ∞, where w1, f1, and h1 are defined in (2.12). So

ρ̂ =
w1 − f1

h1

P−→ ρ as k → ∞. (2.15)

Let Vk(β, ρ̂(β)) = 1
k

∑k
i=1 gi(β, ρ̂(β))g

T
i (β, ρ̂(β)) and σ1k ≥ σ2k, . . . , σpk > 0 be

eigenvalues of Vk(β0, ρ̂(β))). Without loss of generality, we assume σ1k → 1. We will

claim that λ̂ = Op(1). Let g∗(β, ρ̂(β)) = max1≤i≤k ∥gi(β, ρ̂(β))∥. By condition A5,

g∗(β, ρ̂(β)) ≤ max
{
G1/3(yi,X i)

}
, i = 1, 2, . . . , k + 1 in the neighborhood of β0.

Following by Owen [2001] Lemma 11.2 (page 218), we obtain, g∗(β, ρ̂(β)) = Op(k
1/3).

We now consider the order of gk(β, ρ̂(β)).

gk(β, ρ̂(β)) =
1

k

k∑
i=1

gi(β, ρ̂(β))

=
1

k

k∑
i=1

gi(β0, ρ̂(β)) +
1

k
(β − β0)

k∑
i=1

∂gi(β
∗, ρ̂(β))

∂β
,

where β∗ is in the neighborhood of β0.

By condition A1 E[g(β0, ρ̂(β))] = 0 and V [g(β0, ρ̂(β))] < ∞, we have

gk(β0, ρ̂(β)) =
1

k

k∑
i=1

gi(β0, ρ̂(β)) = Op(k
−1/2). (2.16)

Also by condition A5,

⏐⏐⏐⏐∂gi(β, ρ)∂β

⏐⏐⏐⏐ < G(y,X) such that E [G(y,X)] < ∞, we have

1

k

k∑
i=1

∂gi(β
∗, ρ̂(β))

∂β
= Op(1).
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Therefore, uniformly in the region of ∥β − β0∥ < k−1/3, we have

gk(β, ρ̂(β)) = Op(k
−1/3).

Note that λ̂(β) is the solution of the equation

k+1∑
i=1

gi(β, ρ̂(β))

1 + λT (β)gi(β, ρ̂(β))
= 0. (2.17)

Let ξ = ∥λ̂∥ and ϑ =
λ

ξ
. Multiplying (2.17) by

ϑT

k
, we get

0 =
ϑT

k

k+1∑
i=1

gi(β, ρ̂(β))

1 + λT (β)gi(β, ρ̂(β))

=
ϑT

k

k+1∑
i=1

gi(β, ρ̂(β))−
ξ

k

k+1∑
i=1

{ϑTgi(β, ρ̂(β))}2

1 + ξϑTgi(β, ρ̂(β))
.

≤ ϑTgk(β, ρ̂(β))(1− bk/k)−
ξ

k(1 + ξg∗(β, ρ̂(β)))

k∑
i=1

{ϑTgi(β, ρ̂(β))}2 .

= ϑTgk(β, ρ̂(β))−
ξ

k(1 + ξg∗(β, ρ̂(β)))

k∑
i=1

{ϑTgi(β, ρ̂(β))}2 +Op(k
−4/3bk). (2.18)

Since 1 + ξg∗(β, ρ̂(β)) ≥ 0, we have

ϑTgk(β, ρ̂(β)) ≥
ξ

k[1 + ξϑTg∗(β, ρ̂(β))]

k∑
i=1

{ϑTgi(β, ρ̂(β))}2 +Op(k
−4/3bk).

For some 0 < ϵ < 1, the variance assumption on g(β, ρ̂(β)) in condition A3 gives

1

k

k∑
i=1

{ϑTgi(β, ρ̂(β))}2 ≥ (1− ϵ)σ2
1k = (1− ϵ)
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in probability. Therefore, as long as bk = op(k), (2.18) implies that

ξ

[1 + ξg∗(β, ρ̂(β))]
≤ ϑTgk(β, ρ̂(β))×

1

(1− ϵ)
= Op(k

−1/3).

From this, we can arrive ξ = Op(k
−1/3) and hence λ(β) = Op(k

−1/3).

Next,

0 =
1

k

k+1∑
i=1

gi(β, ρ̂(β))

1 + λT (β)gi(β, ρ̂(β))

=
1

k

k+1∑
i=1

gi(β, ρ̂(β))−
1

k

k+1∑
i=1

λT (β)
[
gi(β, ρ̂(β))g

T
i (β, ρ̂(β))

]
+ op(k

−1/3)

= gk(β, ρ̂(β))(1− bk/k)− λT (β)V k(β, ρ̂(β))(1 + b2k/k) + op(k
−1/3), (2.19)

where gk+1(β, ρ̂(β)) = −bkgk(β, ρ̂(β)) and bk is a positive constant. Hence, when

k → ∞,

λ(β) = V −1
k (β, ρ̂(β))gk(β, ρ̂(β)) + op(k

−1/3). (2.20)

This result corresponds to Lemma 1 in Qin and Lawless [1994] which is about the

consistency of maximum empirical likelihood estimates for independent and identically

distributed data. By following Qin and Lawless [1994], under the regularity conditions

A2-A5 and using (2.20), we can obtain, as k → ∞, with probability tending to 1 the

equations Q1,k+1(β,λ, ρ(β)) and Q2,k+1(β,λ, ρ(β)) has a solution within the open ball

∥β̂−β0∥ < k−1/3. It is noted that rest of the proof is similar to the proof of Lemma 1

in Qin and Lawless [1994] and the details are omitted here. This completes the proof.

Theorem 2.3.2 In addition to the regularity conditions A1-A5, suppose that
∂2g(β, ρ)

∂β∂βT



40

is bounded by some integrable function G(y,X) in the neighbourhood. Then, there ex-

ists a sequence of adjusted profile EL estimates β̂ of β such that

√
k
(
β̂ − β0

)
D−→ N(0,∆),

√
k
(
λ̂− 0

)
D−→ N(0,U)

where

∆ =

[
Eβ0

{
∂g(β, ρ̂(β))

∂β

}T {
Eβ0

{
g(β, ρ̂(β))gT (β, ρ̂(β))

}−1
}
Eβ0

{
∂g(β, ρ̂(β))

∂β

}]−1

and

U =
{
Eβ0

{
g(β, ρ̂(β))gT (β, ρ̂(β))

}−1
}

[
I − Eβ0

{
∂g(β, ρ̂(β))

∂β

}
∆Eβ0

{
∂g(β, ρ̂(β))

∂β

}T {
Eβ0

{
g(β, ρ̂(β))gT (β, ρ̂(β))

}−1
}]

.

Proof of Theorem 2.3.1:

Theorem 2.3.1 shows that the adjusted profile empirical likelihood ratio estimators β

is consistent and asymptotically normally distributed. Since g(β, ρ̂(β)) is a smooth

function this implies local minimum β̂ satisfied the following equations

Q1,k+1(β,λ, ρ̂(β)) =
1

k

k+1∑
i=1

gi(β, ρ̂(β))

1 + λT (β)gi(β, ρ̂(β))
= 0.

Q2,k+1(β,λ, ρ̂(β)) =
1

k

k+1∑
i=1

1

1 + λT (β)gi(β, ρ̂(β))

(
∂gi(β, ρ̂(β))

∂β

)T

λ = 0.

Now by using (2.19), Q1,k+1(β,λ, ρ̂(β)) can be written

Q1,k+1(β,λ, ρ̂(β)) = gk(β, ρ̂(β))(1− bk/k)− λT (β)V k(β, ρ̂(β))(1 + b2k/k) + op(k
−1/3).
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The partial derivatives of the above equations are

∂Q1,k+1(β0,0, ρ̂(β))

∂β
=

1

k

k∑
i=1

∂gi(β0, ρ̂(β))

∂β
,

∂Q1,k+1(β0,0, ρ̂(β))

∂λ
= −1

k

k∑
i=1

gi(β0, ρ̂(β))g
T
i (β0, ρ̂(β)),

∂Q2,k+1(β0,0, ρ̂(β))

∂β
= 0,

∂Q2,k+1(β0,0, ρ̂(β))

∂λ
=

1

k

k+1∑
i=1

{
∂gi(β0, ρ̂(β))

∂β

}T

=
1

k

k∑
i=1

{
∂gi(β0, ρ̂(β))

∂β

}T [
1− bk

k

]
.

Now by following Qin and Lawless [1994] in Theorem 1, expanding Q1,k+1(β̂, λ̂, ρ̂(β))

and Q2,k+1(β̂, λ̂, ρ̂(β)) at (β0,0) under the conditions A2-A5, which leads to⎡⎢⎣ λ̂

β̂ − β0

⎤⎥⎦ = S−1
k

⎡⎢⎣ −Q1,k+1(β0,0, ρ̂(β)) + op(δk)

op(δk)

⎤⎥⎦
where

Sk =

⎡⎢⎣ ∂Q1,k+1(β,λ, ρ̂(β))

∂λT

∂Q1,k+1(β,λ, ρ̂(β))

∂β
∂Q2,k+1(β,λ, ρ̂(β))

∂λT
0

⎤⎥⎦
(β0,0)

→

⎡⎢⎢⎣ −E
{
g(β0, ρ̂(β))g

T (β0, ρ̂(β))
}

E

{
∂g(β0, ρ̂(β))

∂β

}
E

{
∂g(β0, ρ̂(β))

∂β

}T

0

⎤⎥⎥⎦
and δk = ∥β̂ − β0∥+ ∥λ̂∥.

Since by (2.16), Q1,k+1(β0,0, ρ̂(β)) = gk(β0, ρ̂(β))(1− bk/k) = Op(k
−1/2), we can

easily show that δk = Op(k
−1/2). Then by central limit theorem, we have

√
k
(
β̂ − β0

)
D−→ N(0,∆),
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√
k
(
λ̂− 0

)
D−→ N(0,U)

where

∆ =

[
Eβ0

{
∂g(β, ρ̂(β))

∂β

}T {
Eβ0

{
g(β, ρ̂(β))gT (β, ρ̂(β))

}−1
}
Eβ0

{
∂g(β, ρ̂(β))

∂β

}]−1

,

and

U =
{
Eβ0

{
g(β, ρ̂(β))gT (β, ρ̂(β))

}−1
}

[
I − Eβ0

{
∂g(β, ρ̂(β))

∂β

}
∆Eβ0

{
∂g(β, ρ̂(β))

∂β

}T {
Eβ0

{
g(β, ρ̂(β))gT (β, ρ̂(β))

}−1
}]

.

This completes the proof.

Theorem 2.3.3 Under regularity conditions A1-A5, the adjusted profile empirical

log-likelihood ratio function 2W ∗
l (β0), where β0 is the true value of β, is asymptotically

chi-squared distributed with degrees of freedom p.

Proof of Theorem 2.3.3:

Now consider,

2W ∗
l (β0) = 2

k+1∑
i=1

log{1 + λT (β0)gi(β0, ρ̂(β))}

= 2
k+1∑
i=1

λT (β0)gi(β0, ρ̂(β))−
k+1∑
i=1

[
λT (β0)gi(β0, ρ̂(β))

]2
+ op(1)

By (2.17), we have

0 =
k+1∑
i=1

λT (β0)gi(β0, ρ̂(β))

1 + λT (β0)gi(β0, ρ̂(β))

=
k+1∑
i=1

λT (β0)gi(β0, ρ̂(β))−
k+1∑
i=1

[
λT (β0)gi(β0, ρ̂(β))

]2
+ op(1)
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Now we have

k+1∑
i=1

λT (β0)gi(β0, ρ̂(β)) =
k+1∑
i=1

[
λT (β0)gi(β0, ρ̂(β))

]2
+ op(1)

From this we can write

2W ∗
l (β0) =

k+1∑
i=1

[
λT (β0)gi(β0, ρ̂(β))

]2
+ op(1)

=
k+1∑
i=1

λT (β0)gi(β0, ρ̂(β))gi(β0, ρ̂(β))
Tλ(β0) + op(1)

Substituting the expansion of λ(β) in (2.20), we get that

2W ∗
l (β0) =

[
k∑

i=1

gi(β0, ρ̂(β))

]T [ k∑
i=1

gi(β0, ρ)gi(β0, ρ̂(β))
T

]−1 [ k∑
i=1

gi(β0, ρ̂(β))

]
+ op(1)

=

⎧⎨⎩
[

k∑
i=1

gi(β0, ρ̂(β))gi(β0, ρ̂(β))
T

]−1/2 [ k∑
i=1

gi(β0, ρ̂(β))

]⎫⎬⎭
T

⎧⎨⎩
[

k∑
i=1

gi(β0, ρ̂(β))gi(β0, ρ̂(β))
T

]−1/2 [ k∑
i=1

gi(β0, ρ̂(β))

]⎫⎬⎭+ op(1)

= k
{
[V k(β0, ρ̂(β))]

−1/2 [gk(β0, ρ̂(β))]
}T {

[V k(β0, ρ̂(β))]
−1/2 [gk(β0, ρ̂(β))]

}
+ op(1) (2.21)

Note that, by condition A3 as k → ∞, k−1

[
k∑

i=1

gi(β0, ρ̂(β))

]
→ N(0,V ) ,

where V = limk→∞ k−1
∑k

i=1 gi(β0, ρ̂(β))gi(β0, ρ̂(β))
T . Hence adjusted profile empir-

ical log-likelihood ratio function 2W ∗
l (β0)

D−→ χ2
p. This completes the proof.

We develop an efficient algorithm for estimating the regression parameters. We

also construct confidence region for the parameter of interest using EL principles.

These topics will be discussed in the next section.
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2.4 Algorithm

To implement our method, we need an efficient algorithm. We minimize the profile EL

ratio function Wl(β) with respect to β using a Newton–Raphson algorithm. At each

Newton–Raphson iteration, we compute the Lagrange multiplier for updated values

of β and ρ̂(β). Chen, Sitter and Wu [2002] proposed a modified Newton–Raphson

algorithm for computing the Lagrange multiplier for a given value of the parameter.

We implemented this method, which is numerically stable. The algorithm given in

Sections 2.4.1, 2.4.2, and 2.4.3 can easily be extended to the AEL by the addition of

a pseudo-value gk+1(β) = −bkgk(β, ρ̂(β)), where bk is a positive constant.

2.4.1 Computation of Lagrange Multiplier

The Lagrange multiplier λ is estimated by solving the equation

k∑
i=1

gi(β, ρ̂(β))

1 + λTgi(β, ρ̂(β))
= 0

for a given set of vectors gi(β, ρ̂(β)), i = 1, 2, . . . k. Note that the above equation is

the derivative of R with respect to λ for a given β, where

R =
k∑

i=1

log
{
1 + λTgi(β, ρ̂(β))

}
. (2.22)

In the EL problem, the solution must satisfy

1 + λTgi(β, ρ̂(β)) > 0, i = 1, 2, . . . k.

The modified Newton–Raphson algorithm for estimating λ for a given value of β and

ρ̂(β) is as follows:
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1. Set λc = 0, c = 0, γc = 1, ϵ = 1e−08, ρ = ρ0, and β = β0.

2. Let Rλ and Rλλ be the first and second partial derivatives of R (given in (2.22))

with respect to λ:

Rλ =
k∑

i=1

[
gi(β, ρ̂(β))

{1 + λTgi(β, ρ̂(β))}

]
,

Rλλ = −
k∑

i=1

[
gi(β, ρ̂(β))g

T
i (β, ρ̂(β))

{1 + λTgi(β, ρ̂(β))}2

]
.

Compute Rλ and Rλλ for λ = λc and let ∆(λc) = −
[
Rλλ

]−1
Rλ.

If ∥∆(λc)∥ < ϵ stop the algorithm and report λc; otherwise continue.

3. Calculate δc = γc∆(λc). If 1 + (λc − δc)gi(β, ρ̂(β)) ≤ 0 for some i, set γc =
γc

2

and go to Step 2.

4. Set λc+1 = λc−δc, c = c+1, and γc+1 = (c+ 1)−
1
2 and go to Step 2. Step 2 will

guarantee that pi > 0 and the optimization is carried out in the right direction.

2.4.2 Algorithm for Optimizing Profile Empirical Likelihood

Ratio Function

Let λ̂(β) be the estimated value of λ for a given β. We minimize the profile EL ratio

function defined in (2.6) over β. The Newton–Raphson algorithm is as follows:

1. Set β = β0, h = 0, and ϵ = 1e−08.

2. Let λ̂ = λ(β) and ρ̂(β) be the estimated values of λ and ρ.

3. Compute the new estimate of β via

β(h+1) = β(h) −
{
Wββ

l (βh)
}−1 {

Wβ
l (β

h)
}

(2.23)
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whereWl(β) is the profile empirical log-likelihood ratio function defined in (2.6),

with

Wβ
l =

∂Wl(β)

∂β
, Wββ

l =
∂2Wl(β)

∂β∂βT
.

Note that to computeWβ
l andWββ

l , we need to estimate the Lagrange multiplier

λ̂(β) as in Section 2.4.1. In practice, ρ is unknown, and the correlations can be

consistently estimated using the method of moments.

4. If min
⏐⏐⏐β(h+1) − β(h)

⏐⏐⏐ < ϵ stop the algorithm and report β(h+1); otherwise set

h = h+ 1 and go to Step 3.

The simplified expressions for Wβ
l and Wββ

l are as follows. Let Rβ, Rββ, and Rβλ be

the first and second partial derivatives of (2.22) with respect to β and λ

Rβ =
k∑

i=1

[
g′i(β, ρ̂(β))λ

{1 + λTgi(β, ρ̂(β))}

]
,

Rββ =
k∑

i=1

{[
g′′i (β, ρ̂(β))λ

T

{1 + λTgi(β)}

]
−
[
g′i(β, ρ̂(β))λλ

T [g′i(β, ρ̂(β))]
T

{1 + λTgi(β, ρ̂(β))}2

]}
,

and

Rβλ =
k∑

i=1

[
{1 + λTgi(β)}g′i(β, ρ̂(β))− g′i(β, ρ̂(β))λ[gi(β)]

T

{1 + λTgi(β)}2

]
.

The first derivative of Wl(β) with respect to β is

Wβ
l =

k∑
i=1

⎡⎢⎣
[
∂λ(β)
∂β

]T
gi(β, ρ̂(β)) + g′i(β, ρ̂(β))λ(β)

{1 + λT (β)gi(β, ρ̂(β))}

⎤⎥⎦

=

[
∂λ(β)

∂β

]T
Rλ +Rβ.
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Note that for λ = λ̂(β), Rλ = 0. Therefore,

Wβ
l = Rβ. (2.24)

Similarly, the second derivative of Wl(β) with respect to β is

Wββ
l =

k∑
i=1

⎡⎢⎢⎣{1 + λT (β)gi(β, ρ̂(β))}
{[

∂2λ(β)

∂β∂βT

]
gi(β, ρ̂(β)) + 2g′i(β)

[
∂λ(β)
∂β

]T
+ g′′i (β, ρ̂(β))λ(β)

}
{1 + λT (β)gi(β, ρ̂(β))}2

⎤⎥⎥⎦

−
k∑

i=1

⎡⎢⎢⎢⎣
{[

∂λ(β)
∂β

]T
gi(β, ρ̂(β)) + g′i(β, ρ̂(β))λ(β)

}{[
∂λ(β)
∂β

]T
gi(β, ρ̂(β)) + g′i(β, ρ̂(β))λ(β)

}T

{1 + λT (β)gi(β, ρ̂(β))}2

⎤⎥⎥⎥⎦
=

[
∂λ(β)

∂β

]T
Rλλ

[
∂λ(β)

∂β

]
+ 2

[
∂λ(β)

∂β

]T
Rβλ +Rββ.

Following Owen [2001], a local quadratic approximation to R leads to

[
∂λ(β)

∂β

]
=
(
Rλλ

)−1
Rβλ,

so

Wββ
l = Rββ −Rβλ

(
Rλλ

)−1
Rλβ. (2.25)

2.4.3 Construction of Confidence Interval

We use the bisection method to construct the lower and upper confidence limits based

on the profile EL ratio for β. Let β̂ = (β̂1, β̂2)
T be the estimated value of β from

Section 2.4.2.
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1. Compute a reasonable lower bound L2 for the lower confidence limit. Set L1 =

β̂1, L2 = β̂1−a×SE(β̂1), and ϵ = 1e−05, where SE(β̂1) is the standard error of β̂1

using any existing method. We can choose a such thatWl(L2, β̂2) < [χ2
1,1−α]/2 <

Wl(L1, β̂2), where χ2
1,1−α is the (1 − α)th quantile from a χ2 distribution with

one degree of freedom.

2. Compute the profile empirical log-likelihood ratio values W1 = 2Wl(L1, β̂2) and

W2 = 2Wl(L2, β̂2), where W2 < χ2
1,1−α < W1.

3. Minimize the profile EL ratio function defined in (2.6) over β2 for a given Lnew =

(L1+L2)/2. Let β̂2 new be the new estimate of β2 andWnew = 2Wl(Lnew, β̂2 new).

4. If Wnew < χ2
1,1−α set L1 = Lnew; else set L2 = Lnew and go to Step 3.

5. If |W1 −W2| < ϵ stop the algorithm and report β1,L; otherwise go to Step 2.

We can use this approach to construct the upper confidence limit by setting U1 = β̂1

and U2 = β̂1 + a × SE(β̂1). Figure 2.1 illustrates the bisection search for the lower

bound of the CI.
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Figure 2.1: Construction of confidence interval using bisection.



Chapter 3

Performance Analysis

In this chapter, we conduct simulation studies to investigate the performance of our

EL-based approach. We compute the coverage probabilities based on the ordinary

EL and compare them with those of the GEE approach, which is based on a normal

approximation. We use different working correlations for the comparison. We also

compute the coverage probabilities based on the AEL and EEL since both approaches

improve the coverage probabilities. We generate count and continuous responses with

different correlation structures and compare the methods under different working cor-

relation structures.

3.1 Correlation Models for Stationary Count Data

We consider the stationary correlation models for count data discussed by McKenzie

[1988] and Sutradhar [2011]. The three models used to generate the data are

(i) Poisson Autoregressive Order 1 (AR(1)) Model

Let yi1 ∼ Poi(µ̃i), where µ̃i = exp(x̃iβ). The repeated responses follow the AR
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lag 1 dynamic model given by

yit = ρ ∗ yi,t−1 + dit, t = 2, . . . ,mi. (3.1)

Given yi,t−1, ρ ∗ yi,t−1 is the binomial thinning operation. That is,

ρ ∗ yi,t−1 =

yi,t−1∑
j=1

bj(ρ) = zi,t−1,

where the bj(ρ) are independent and identically distributed Bernoulli(ρ) random

variables. We assume that dit ∼ Poi(µ̃i(1 − ρ)) and it is independent of zi,t−1.

Let x̃i = (x̃i1, . . . , x̃ip) be the time-independent covariate for the ith individual.

It is given in Sutradhar [2011] that each response satisfying model (3.1) has a

marginal Poisson distribution with

E(yit) = Eyi,t−1
E[yit|yi,t−1] = µ̃i,

Var(yit) = Eyi,t−1
Var[yit|yi,t−1] + Varyi,t−1

E[yit|yi,t−1] = µ̃i.

That is,

E(yit) = Var(yit) = µ̃i = exp(x̃iβ).

Similarly, we can show that

E(yityi,t−l) = µ̃2
i + µ̃iρ

l,

yielding lag l correlation between yit and yi,t−l:

corr(yit, yi,t−l) = ρl, l = 1, . . . ,mi − 1.
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This is similar to the lag l Gaussian AR(1) autocorrelation structure. However,

under model (3.1) ρ must satisfy 0 ≤ ρ ≤ 1, whereas for a Gaussian AR(1)

structure ρ satisfies −1 < ρ < 1 (Sutradhar [2011]).

(ii) Poisson Moving Average Order 1 (MA(1)) Model

The repeated responses follow the MA lag 1 dynamic model given by

yit = ρ ∗ di,t−1 + dit, t = 2, . . . ,mi, (3.2)

where ρ∗di,t−1 =
∑di,t−1

j=1 bj(ρ) is a binomial thinning operation and dit ∼ Poi

[
µ̃i

1 + ρ

]
,

t = 0, . . . ,mi, with µ̃i = exp(x̃iβ). Here t = 0 is the initial time. Following a

similar approach to that for the AR(1) process, we get

E(yit) = Var(yit) = µ̃i

corr(yit, yi,t−l) =

⎧⎪⎪⎨⎪⎪⎩
ρ

(1+ρ)
, l = 1

0, otherwise.

Again, the lag correlations are like those for the Gaussian MA(1) correlation

structure, except that 0 ≤ ρ ≤ 1 whereas in the Gaussian structure −1 < ρ < 1.

(iii) Poisson Equally Correlated Model

Let yi0 ∼ Poi(µ̃i) and dit ∼ Poi [µ̃i(1− ρ)] for all t = 1, . . . ,mi. The repeated

responses follow the dynamic equicorrelation model given by

yit = ρ ∗ yi0 + dit, t = 1, . . . ,mi (3.3)
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yielding marginal properties similar to those for the AR(1) and MA(1) processes:

E(yit) = Var(yit) = µ̃i.

The correlation between yit and yi,t−l is

corr(yit, yi,t−l) = ρ,

for all l = 1, . . . ,mi − 1 with 0 ≤ ρ ≤ 1. Under the Gaussian equally correlated

model we have −(1/mi − 1) ≤ ρ ≤ 1.

We simulated 1000 data sets from each of these three models. In each simulation

we use the parameters β = (β1, β2)
T = (0.3, 0.2)T and ρ = 0.5. We consider k = 100

subjects and m = 4 time points. For the ith subject, we generate the covariates

x̃i = (x̃i1, x̃i2) from a normal distribution with mean 0 and standard deviation 1. For

the analysis, we consider the working correlation to be either true correlation or a lag

correlation, as discussed in Section 1.3.3.

Table 3.1 gives the average estimated values of the regression coefficients with the

corresponding simulated standard errors in parentheses for the independent, AR(1),

EQC, and MA(1) models. We also give the coverage probabilities for β1 and β2 for

the 0.95 and 0.99 confidence levels with the average width of the CI in parentheses.

The results in Table 3.1 shows that the estimates β̂1 and β̂2 are close to the true

values, width, and the coverage probabilities of the intervals based on the EL, EEL,

and AEL are similar to those of the GEE. For instance, in the AR(1)/AR(1) case

(true model/working correlation structure) the coverage probabilities of β̂1 based on

the GEE, EL, EEL, and AEL are 0.947, 0.928, 0.937, and 0.937 respectively for the

nominal level of 0.95. For β̂2, these probabilities are 0.954, 0.934, 0.940, and 0.942 for
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the same nominal level. Note that the intervals based on the EL have slight under-

coverage compared with those based on GEE. The EEL and AEL give substantially

better coverage probabilities. Moreover, the EEL and AEL are consistently more

accurate than the EL. The results for lag correlations have similar patterns.

3.2 Misspecified Working Correlation Structure

In the simulation studies discussed in Section 3.1 we considered the correlation struc-

ture used to generate the data as the working correlation in the GEE-based modelling.

However, in practice, we do not know the correlation structure of the data. As dis-

cussed in Section 1.3.3, if the working correlation is misspecified, we may lose the

efficiency of the parameter estimates (Crowder [1995]; Sutradhar and Das [1999]).

We conducted a simulation study to assess the loss of efficiency. We generated

repeated counts with the AR(1) correlation structure given in Section 3.1(i) with ρ =

0.49 and 0.70 and m = 5 time points. We used three working correlation structures:

EQC, MA(1), and lag correlation. Table 3.2 gives the results for the GEE, EL, EEL,

and AEL. The table shows that the EL, EEL, and AEL are superior to the GEE when

the correlation structure is misspecified. Note that, in this EL-based approach, we

could construct CIs without estimating the variance of the parameter of interest. For

example, in the AR(1)/EQC case the coverage probabilities of β̂1 based on the GEE,

EL, EEL, and AEL are 0.917, 0.928, 0.934, and 0.935 respectively for the nominal

0.95 level. For β̂2, these probabilities are 0.916, 0.929, 0.937, and 0.937 for the same

nominal level. In this situation, the GEE with stationary lag correlation performs

better than the GEE with a misspecified working correlation, supporting the findings

of Section 1.3.3. However, the EL, EEL, and AEL perform as well as the former

method, despite being nonparametric methods based on a data-driven likelihood ratio
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function. We did not consider all possible cases, for instance a true EQC or MA(1)

correlation model, since under different working correlation structures the correlation

parameter α̂ does not exist.

3.3 Over-dispersed Stationary Count Data

In this section, we consider the performance of our approach when the variance func-

tion is misspecified, in the context of stationary count data. We generate over-

dispersed stationary count data yit using µ̃i = uiexp(x̃iβ) for the three models

discussed in Section 3.1, where ui is a random sample such that E(ui) = 1 and

Var(ui) = ω. Marginally, we have E(yit) = µ̃i and Var(yit) = µ̃i(1 + µ̃iω). The

distribution of u is chosen to be gamma with shape parameter ω and scale parameter

1/ω, where ω is the over-dispersion parameter. We choose over-dispersion parameter

ω = 1/4. However, the GEE, EL, EEL, and AEL CIs are constructed under the

assumption that there is no over-dispersion. Table 3.3 gives the average estimated

values of the regression coefficients, the corresponding simulated standard errors in

parentheses, the coverage probabilities for β1 and β2 for the 0.95 and 0.99 confidence

levels, and the average width of the CI in parentheses for the independent, AR(1),

EQC, and MA(1) models. Table 3.3 shows that when there is over-dispersion, the EL,

EEL, and AEL outperform the GEE. In the AR(1)/AR(1) case the coverage prob-

abilities of β̂1 based on the GEE, EL, EEL, and AEL are 0.876, 0.916, 0.926, and

0.931 respectively for the nominal 0.95 level. For β̂2, these probabilities are 0.891,

0.920, 0.929, and 0.931 for the same nominal level. This indicates that the EL, EEL,

and AEL are fairly robust to model misspecification. Note that the construction of

the CI based on the EL, EEL, and AEL does not require the estimation of the scale

parameter.
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True model/ Coverage Probabilities
Working 95% level 99% level
correlation Parameter Estimate GEE EL EEL AEL GEE EL EEL AEL

β1 0.2975 0.953 0.929 0.936 0.937 0.986 0.985 0.987 0.987
IND/IND (0.046) (0.184) (0.175) (0.178) (0.179) (0.242) (0.232) (0.240) (0.238)
ρ = 0.50 β2 0.1978 0.944 0.927 0.934 0.936 0.990 0.980 0.984 0.984

(0.048) (0.188) (0.179) (0.183) (0.184) (0.248) (0.238) (0.246) (0.244)
β1 0.3006 0.947 0.928 0.937 0.937 0.985 0.980 0.981 0.981

AR(1)/AR(1) (0.065) (0.258) (0.246) (0.251) (0.252) (0.339) (0.326) (0.338) (0.335)
ρ = 0.50 β2 0.1978 0.954 0.934 0.940 0.942 0.990 0.980 0.984 0.983

(0.067) (0.264) (0.251) (0.256) (0.257) (0.347) (0.332) (0.343) (0.340)
β1 0.3006 0.946 0.930 0.936 0.939 0.985 0.978 0.981 0.981

AR(1)/Lag (0.066) (0.256) (0.246) (0.250) (0.252) (0.337) (0.325) (0.337) (0.334)
ρ = 0.50 β2 0.1978 0.952 0.931 0.938 0.940 0.990 0.980 0.985 0.985

(0.067) (0.263) (0.250) (0.255) (0.256) (0.345) (0.331) (0.342) (0.339)
β1 0.2984 0.955 0.942 0.946 0.948 0.988 0.986 0.988 0.987

EQC/EQC (0.074) (0.288) (0.274) (0.280) (0.281) (0.379) (0.364) (0.376) (0.373)
ρ = 0.50 β2 0.1936 0.950 0.939 0.941 0.941 0.990 0.986 0.986 0.986

(0.074) (0.295) (0.282) (0.288) (0.289) (0.387) (0.372) (0.386) (0.383)
β1 0.2985 0.954 0.940 0.948 0.948 0.987 0.984 0.987 0.986

EQC/Lag (0.074) (0.288) (0.274) (0.280) (0.281) (0.379) (0.363) (0.376) (0.373)
ρ = 0.50 β2 0.1933 0.952 0.937 0.940 0.943 0.990 0.986 0.986 0.986

(0.075) (0.294) (0.281) (0.287) (0.288) (0.387) (0.372) (0.385) (0.382)
β1 0.2989 0.943 0.926 0.929 0.931 0.989 0.982 0.985 0.983

MA(1)/MA(1) (0.058) (0.222) (0.211) (0.215) (0.216) (0.291) (0.280) (0.289) (0.287)
ρ = 0.50 β2 0.2022 0.952 0.932 0.935 0.936 0.994 0.984 0.991 0.989

(0.056) (0.227) (0.216) (0.220) (0.221) (0.298) (0.285) (0.296) (0.293)
β1 0.2990 0.944 0.928 0.929 0.929 0.986 0.980 0.985 0.985

MA(1)/Lag (0.058) (0.220) (0.210) (0.215) (0.216) (0.290) (0.279) (0.289) (0.287)
ρ = 0.50 β2 0.2024 0.946 0.931 0.934 0.937 0.992 0.983 0.989 0.988

(0.056) (0.225) (0.215) (0.220) (0.221) (0.296) (0.285) (0.295) (0.293)

Table 3.1: Coverage probabilities of regression estimates for count data with stationary covariates for the independent, AR(1), EQC, and
MA(1) models.
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True model/ Coverage Probabilities
Working 95% level 99% level
correlation Parameter Estimate GEE EL EEL AEL GEE EL EEL AEL

β1 0.3001 0.952 0.938 0.944 0.946 0.987 0.983 0.984 0.984
AR(1)/AR(1) (0.070) (0.279) (0.265) (0.270) (0.272) (0.367) (0.351) (0.364) (0.361)

ρ = 0.70 β2 0.2009 0.950 0.928 0.938 0.941 0.988 0.986 0.989 0.988
(0.073) (0.286) (0.0.270) (0.275) (0.276) (0.375) (0.356) (0.369) (0.366)

β1 0.2997 0.911 0.932 0.935 0.936 0.973 0.975 0.978 0.978
AR(1)/EQC (0.073) (0.247) (0.273) (0.278) (0.280) (0.325) (0.361) (0.375) (0.371)
ρ = 0.70 β2 0.1956 0.902 0.934 0.936 0.936 0.963 0.977 0.982 0.980

(0.076) (0.252) (0.278) (0.284) (0.286) (0.331) (0.368) (0.381) (0.378)
β1 0.3002 0.952 0.932 0.940 0.940 0.986 0.982 0.982 0.982

AR(1)/Lag (0.070) (0.278) (0.264) (0.268) (0.270) (0.366) (0.349) (0.361) (0.359)
ρ = 0.70 β2 0.2007 0.950 0.926 0.938 0.940 0.988 0.985 0.988 0.987

(0.073) (0.284) (0.268) (0.273) (0.275) (0.373) (0.354) (0.367) (0.364)

β1 0.2989 0.938 0.918 0.922 0.923 0.988 0.977 0.982 0.978
AR(1)/AR(1) (0.062) (0.237) (0.225) (0.229) (0.231) (0.311) (0.298) (0.309) (0.306)

ρ = 0.49 β2 0.1956 0.940 0.920 0.928 0.928 0.993 0.985 0.988 0.987
(0.062) (0.243) (0.231) (0.235) (0.236) (0.0.319) (0.305) (0.316) (0.313)

β1 0.2992 0.899 0.931 0.936 0.936 0.968 0.978 0.985 0.984
AR(1)/EQC (0.061) (0.207) (0.231) (0.236) (0.237) (0.272) (0.306) (0.317) (0.314)
ρ = 0.49 β2 0.1987 0.908 0.945 0.948 0.950 0.980 0.987 0.992 0.990

(0.062) (0.212) (0.236) (0.241) (0.242) (0.278) (0.313) (0.324) (0.321)
β1 0.2991 0.897 0.931 0.934 0.936 0.968 0.979 0.985 0.984

AR(1)/MA(1) (0.061) (0.205) (0.228) (0.232) (0.233) (0.270) (0.302) (0.313) (0.310)
ρ = 0.49 β2 0.1985 0.905 0.936 0.944 0.944 0.981 0.990 0.993 0.991

(0.061) (0.210) (0.233) (0.238) (0.239) (0.276) (0.309) (0.319) (0.317)
β1 0.3006 0.946 0.930 0.936 0.939 0.985 0.978 0.981 0.981

AR(1)/Lag (0.066) (0.256) (0.246) (0.250) (0.252) (0.337) (0.325) (0.337) (0.334)
ρ = 0.49 β2 0.1978 0.952 0.931 0.938 0.940 0.990 0.980 0.985 0.985

(0.067) (0.263) (0.250) (0.255) (0.256) (0.345) (0.331) (0.342) (0.339)

Table 3.2: Coverage probabilities of regression estimates for count data with stationary covariates when the working correlation is misspecified
for an AR(1) model.



58

True model/ Coverage Probabilities
Working 95% level 99% level
correlation Parameter Estimate GEE EL EEL AEL GEE EL EEL AEL

β1 0.2978 0.808 0.937 0.941 0.941 0.902 0.985 0.989 0.988
IND/IND (0.074) (0.191) (0.273) (0.278) (0.280) (0.252) (0.361) (0.374) (0.370)
ρ = 0.50 β2 0.1980 0.813 0.934 0.937 0.937 0.919 0.979 0.985 0.983

(0.071) (0.188) (0.265) (0.270) (0.271) (0.247) (0.349) (0.361) (0.358)
β1 0.2974 0.876 0.916 0.926 0.931 0.971 0.978 0.982 0.982

AR(1)/AR(1) (0.080) (0.276) (0.314) (0.317) (0.319) (0.363) (0.410) (0.425) (0.421)
ρ = 0.50 β2 0.2016 0.898 0.924 0.929 0.932 0.973 0.983 0.987 0.986

(0.086) (0.282) (0.316) (0.323) (0.324) (0.370) (0.417) (0.432) (0.428)
β1 0.2916 0.899 0.928 0.930 0.931 0.973 0.978 0.983 0.983

AR(1)/Lag (0.085) (0.282) (0.310) (0.316) (0.318) (0.371) (0.408) (0.423) (0.419)
ρ = 0.50 β2 0.1978 0.952 0.931 0.938 0.940 0.990 0.980 0.985 0.985

(0.088) (0.288) (0.315) (0.321) (0.323) (0.378) (0.415) (0.430) (0.426)
β1 0.2960 0.903 0.917 0.922 0.926 0.967 0.975 0.980 0.977

EQC/EQC (0.091) (0.305) (0.336) (0.342) (0.344) (0.401) (0.443) (0.459) (0.455)
ρ = 0.50 β2 0.2000 0.892 0.905 0.912 0.913 0.963 0.970 0.979 0.977

(0.094) (0.311) (0.339) (0.346) (0.347) (0.409) (0.447) (0.463) (0.458)
β1 0.2957 0.901 0.917 0.923 0.924 0.967 0.974 0.978 0.976

EQC/Lag (0.091) (0.305) (0.335) (0.341) (0.343) (0.400) (0.441) (0.457) (0.453)
ρ = 0.50 β2 0.2001 0.894 0.905 0.912 0.912 0.961 0.974 0.978 0.977

(0.095) (0.311) (0.338) (0.344) (0.346) (0.409) (0.445) (0.461) (0.457)
β1 0.2980 0.859 0.928 0.933 0.935 0.949 0.980 0.983 0.983

MA(1)/MA(1) (0.080) (0.234) (0.289) (0.295) (0.297) (0.307) (0.382) (0.395) (0.392)
ρ = 0.50 β2 0.1987 0.861 0.915 0.917 0.917 0.938 0.975 0.982 0.981

(0.080) (0.239) (0.289) (0.295) (0.296) (0.314) (0.381) (0.395) (0.391)
β1 0.2975 0.897 0.922 0.935 0.936 0.967 0.979 0.982 0.981

MA(1)/Lag (0.080) (0.257) (0.288) (0.294) (0.296) (0.337) (0.380) (0.394) (0.391)
ρ = 0.50 β2 0.1986 0.891 0.915 0.920 0.920 0.962 0.973 0.984 0.981

(0.080) (0.262) (0.288) (0.294) (0.295) (0.344) (0.380) (0.393) (0.390)

Table 3.3: Coverage probabilities of regression estimates for over-dispersion of count data with stationary covariates for the independent,
AR(1), EQC, and MA(1) models.
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3.4 Correlation Models for Nonstationary Count

Data

In this section, we assess the performance of our approach under AR(1) and EQC

nonstationary correlation models for count data. When the covariates are time-

dependent, it may not be reasonable to use a stationary lag correlation structure

(Sutradhar [2011]).

(i) Nonstationary AR(1) Model

Let yi1 ∼ Poi(µit), where µit = exp(xitβ). The repeated responses follow the

AR lag 1 dynamic model given by

yit = ρ ∗ yi,t−1 + dit, t = 2, . . . ,m, (3.4)

and studied by Sutradhar [2011]. In the model (3.4), for a given yi,t−1, ρ ∗ yi,t−1

is the binomial thinning operation discussed in Section 3.1(i). Furthermore,

we assume that dit ∼ Poi(µit − ρµi,t−1). Let xi = (xi1, . . . , xip) be the time-

dependent covariate for the ith individual.

Each response satisfying model (3.4) has a marginal Poisson distribution with

E(yit) = Var(yit) = µit = exp(xitβ).

For u < t, where t = 2, . . . ,m, we can derive the nonstationary correlations

between yit and yiu as

corr(yiu, yit) = ρt−u

√
µiu

µit

,
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with ρ satisfying the range restriction

0 < ρ < min

[
1,

µit

µi,t−1

]
, t = 2, . . . ,m.

Under the nonstationary AR(1) model, the moment estimate of the lag correla-

tion ρ is given by

ρ̂ =

∑k
i=1

∑m
t=2 ỹitỹi,t−1∑K

i=1

∑m
t=1 ỹ

2
it

km∑K
i=1

∑m
t=2[µi,t−1/µit]1/2

where the ỹit are the standardized residuals. Note that the formula for ρ given

above was obtained by equating the lag 1 sample autocorrelation to its popula-

tion counterpart (see Sutradhar [2011]).

(ii) Nonstationary Equally Correlated Model

Let yi1 ∼ Poi(µi1) and dit ∼ Poi [µit − ρµi1] for all t = 1, . . . ,m. The repeated

responses follow the dynamic model given by

yit = ρ ∗ yi1 + dit, t = 2, . . . ,m

yielding marginal properties similar to those for the AR(1) process:

E(yit) = Var(yit) = µit.

Similarly, we can obtain the nonstationary correlation between yiu and yit as

corr(yiu, yit) =
ρµi1√
µiuµit

,
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with ρ satisfying the range restriction

0 < ρ < min

[
1,

µit

µi1

]
, t = 2, . . . ,m.

The moment estimating equation for the lag correlation ρ parameter for the

exchangeable model is similar to that of the AR(1) model. The moment formula

for the lag correlation ρ under the exchangeable model is given by

ρ̂ =

∑k
i=1

∑m−1
l=1

∑m−l
t=1 ỹitỹi,t+l∑k

i=1

∑m−1
l=1

∑m−l
t=1 ỹ2it

km∑k
i=1

∑m−1
l=1

∑m−l
t=1 µi1/[µitµi,t+l]1/2

,

where the ỹit are the standardized residuals (see Sutradhar, 2011).

We simulated 1000 data sets from the above two models with the same parameter

set as before given in Section 3.1. Table 3.4 gives the mean estimated values of the

regression coefficients together with the simulated standard errors in parentheses. We

also report the simulated coverage probabilities for β1 and β2 for the 0.95 and 0.99

confidence levels and the average width of the CI in parentheses for the independent,

AR(1), and EQC models.

Table 3.4 shows that the mean estimated values β̂1 and β̂2 are close to the true

values, and the coverage probabilities of the intervals based on the EL, EEL, and AEL

are similar to those of the GEE. For instance, in the EQC/EQC case the coverage

probabilities of β̂1 based on the GEE, EL, EEL, and AEL are 0.949, 0.937, 0.941, and

0.942 respectively for the nominal 0.95 level. For β̂2, these probabilities are 0.952,

0.928, 0.932, and 0.933 for the same nominal level. However, the EEL and AEL give

substantially better coverage probabilities than the EL.
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True model/ Coverage Probabilities
Working 95% level 99% level
correlation Parameter Estimate GEE EL EEL AEL GEE EL EEL AEL

β1 0.2977 0.958 0.938 0.944 0.944 0.992 0.987 0.991 0.991
IND/IND (0.046) (0.184) (0.175) (0.178) (0.179) (0.242) (0.232) (0.240) (0.238)
ρ = 0.50 β2 0.1983 0.944 0.926 0.933 0.936 0.990 0.981 0.983 0.983

(0.049) (0.188) (0.179) (0.183) (0.184) (0.247) (0.238) (0.246) (0.244)
β1 0.2958 0.959 0.941 0.943 0.946 0.993 0.987 0.988 0.988

AR(1)/AR(1) (0.063) (0.253) (0.240) (0.245) (0.246) (0.332) (0.318) (0.329) (0.327)
ρ = 0.50 β2 0.1991 0.944 0.925 0.929 0.930 0.989 0.978 0.982 0.980

(0.068) (0.259) (0.247) (0.252) (0.253) (0.340) (0.327) (0.338) (0.335)
β1 0.2957 0.957 0.941 0.944 0.945 0.993 0.987 0.988 0.988

AR(1)/Lag (0.063) (0.252) (0.240) (0.245) (0.246) (0.331) (0.318) (0.329) (0.327)
ρ = 0.50 β2 0.1989 0.943 0.925 0.928 0.930 0.989 0.978 0.983 0.982

(0.068) (0.258) (0.247) (0.252) (0.253) (0.339) (0.327) (0.338) (0.335)
β1 0.3003 0.949 0.937 0.941 0.942 0.991 0.981 0.986 0.985

EQC/EQC (0.073) (0.288) (0.272) (0.277) (0.279) (0.378) (0.360) (0.373) (0.369)
ρ = 0.50 β2 0.1931 0.952 0.928 0.932 0.933 0.985 0.979 0.981 0.981

(0.076) (0.294) (0.279) (0.285) (0.286) (0.386) (0.369) (0.382) (0.378)
β1 0.2958 0.912 0.923 0.927 0.928 0.978 0.977 0.983 0.982

EQC/Lag (0.075) (0.256) (0.274) (0.280) (0.281) (0.337) (0.363) (0.376) (0.373)
ρ = 0.50 β2 0.1952 0.919 0.935 0.940 0.940 0.977 0.982 0.985 0.985

(0.075) (0.262) (0.281) (0.287) (0.288) (0.344) (0.371) (0.384) (0.381)

Table 3.4: Coverage probabilities of regression estimates for count data with nonstationary covariates for the independent, AR(1), and EQC
models.
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3.5 Over-dispersed Nonstationary Count Data

We now consider the performance of our method when the parametric model is mis-

specified, in the context of nonstationary count data. We generate over-dispersed

nonstationary count data yit using µit = uitexp(xitβ) for the parameter set in Sec-

tion 3.4 with uit a random variable generated from the gamma distribution, as in

Section 3.3. Table 3.5 gives the results for the independent, AR(1), and EQC models.

It shows that in the presence of over-dispersion the EL, EEL, and AEL outperform the

GEE. For instance, in the AR(1)/AR(1) case the coverage probabilities of β̂1 based

on the GEE, EL, EEL, and AEL are 0.889, 0.921, 0.926, and 0.928 respectively for

the nominal 0.95 level. For β̂2, these probabilities are 0.890, 0.923, 0.927, and 0.927

for the same nominal level. This again shows that the EL, EEL, and AEL are fairly

robust to misspecification.

3.6 Correlation Models for Continuous Data

In this section, we investigate the performance of our EL approach on a class of

stationary and nonstationary correlation models for longitudinal continuous data.

The random errors (ϵ1, ..., ϵ4)
T are generated from the multivariate normal distribution

with marginal mean 0, marginal variance 1, and an auto-correlation coefficient ρ = 0.5.

In this performance analysis, we consider three correlation models: exchangeable,

AR(1), and MA(1).

(i) AR(1) Structure

For t = 1, . . . ,mi, for the ith individual

yit = xitβ + ϵit, (3.5)
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and we assume that

ϵit = ρϵit + ait,

with |ρ| < 1 and ait ∼ N(0, 1). The mean and variance of ϵit are given by

E[ϵit] = 0, and Var[ϵit] =
1

(1− ρ2)
, t = 1, . . . ,mi,

respectively. Similarly, we can obtain the stationary covariance between ϵit and

ϵiu as

cov(ϵit, ϵiu) =
ρt−u

1− ρ2
, t, u = 1, . . . ,mi.

The repeated responses yi1, . . . , yimi
follow the AR(1) model with mean and

variance, respectively,

E[yit] = xitβ and Var[yit] =
1

(1− ρ2)
.

The lag |t− u| correlations ρ|t−u| are

ρ|t−u| = corr[yit, yiu] = ρt−u, u ̸= t, u, t = 1, . . . ,mi,

where ρ is referred to as the correlation parameter.

(ii) MA(1) Structure

The ϵit in (3.5) follow the model

ϵit = ρai,t−1 + ait

where ρ is a suitable scale parameter that does not necessarily satisfy |ρ| < 1,
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and ait ∼ N(0, 1). The mean and variance of yit are

E[yit] = xitβ, Var[yit] = (1 + ρ2),

respectively, and the lag |t− u| correlations of the repeated responses are

ρ|t−u| = corr[yit, yiu] =

⎧⎪⎪⎨⎪⎪⎩
ρ

(1+ρ)
if |t− u| = 1

0, otherwise.

(iii) Equicorrelation (EQC) Structure

The ϵit in (3.5) follow the model

ϵit = ρai0 + ait,

where ai0 is an error value at the initial time, and ρ is a suitable correlation

parameter. We assume that

ait ∼ N(0, 1) and ai0 ∼ N(0, 1),

and ait and ai0 are independent for all t. The mean and variance of yit are

E[yit] = xitβ, Var[yit] = (1 + ρ2),

and the lag |t− u| correlations are

ρ|t−u| = corr[yit, yiu] =
ρ2

(1 + ρ2)
, u ̸= t, u, t = 1, . . . ,mi.
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We simulated 1000 data sets from the above models under stationary and nonsta-

tionary covariates, using the parameters β = (β1, β2)
T = (0.4, 0.5)T , ρ = 0.5, and

m = 4. For the ith subject, we generate the covariates x̃i = (x̃i1, x̃i2) from a nor-

mal distribution with mean 0 and standard deviation 1. Table 3.6 gives the mean

estimated values of the regression coefficients, the corresponding simulated standard

errors in parentheses, the simulated coverage probabilities for β1 and β2 for the 0.95

and 0.99 confidence levels, and the average width of the CI in parentheses for the

independent, AR(1), EQC, and MA(1) models with stationary covariates. Table 3.7

gives the results for nonstationary covariates.

The coverage probabilities of the intervals based on the EL, EEL, and AEL are

similar to those of the GEE. For instance, in the MA(1)/MA(1) case in Table 3.6 the

coverage probabilities of β̂1 based on the GEE, EL, EEL, and AEL are 0.955, 0.945,

0.955, and 0.954 respectively for the nominal 0.95 level. For β̂2, these probabilities

are 0.958, 0.944, 0.948, and 0.951 for the same nominal level. Note that the intervals

based on the EL have slight undercoverage compared with those for the GEE. Also, the

EEL and AEL are consistently more accurate than the EL. The lag-correlation-based

coverage probabilities have similar patterns.
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True model/ Coverage Probabilities
Working 95% level 99% level
correlation Parameter Estimate GEE EL EEL AEL GEE EL EEL AEL

β1 0.3000 0.793 0.927 0.930 0.931 0.904 0.973 0.977 0.976
IND/IND (0.072) (0.184) (0.264) (0.269) (0.270) (0.242) (0.348) (0.360) (0.357)
ρ = 0.50 β2 0.2021 0.803 0.926 0.929 0.933 0.919 0.983 0.987 0.986

(0.072) (0.187) (0.262) (0.267) (0.268) (0.246) (0.345) (0.357) (0.354)
β1 0.2931 0.889 0.921 0.926 0.928 0.963 0.979 0.982 0.982

AR(1)/AR(1) (0.084) (0.268) (0.301) (0.307) (0.308) (0.351) (0.397) (0.411) (0.408)
ρ = 0.50 β2 0.1972 0.890 0.923 0.927 0.927 0.959 0.978 0.980 0.980

(0.085) (0.273) (0.305) (0.311) (0.312) (0.359) (0.403) (0.417) (0.413)
β1 0.2914 0.890 0.917 0.927 0.930 0.963 0.979 0.982 0.982

AR(1)/Lag (0.082) (0.267) (0.303) (0.306) (0.308) (0.351) (0.397) (0.411) (0.408)
ρ = 0.50 β2 0.2015 0.882 0.927 0.929 0.930 0.959 0.977 0.980 0.980

(0.085) (0.272) (0.307) (0.311) (0.313) (0.358) (0.402) (0.417) (0.413)
β1 0.2978 0.905 0.925 0.937 0.937 0.968 0.977 0.982 0.981

EQC/EQC (0.090) (0.301) (0.328) (0.335) (0.337) (0.395) (0.433) (0.448) (0.444)
ρ = 0.50 β2 0.1985 0.900 0.926 0.932 0.932 0.977 0.985 0.986 0.986

(0.091) (0.307) (0.332) (0.338) (0.340) (0.404) (0.437) (0.453) (0.448)
β1 0.2986 0.856 0.918 0.923 0.923 0.941 0.973 0.975 0.976

EQC/Lag (0.092) (0.266) (0.333) (0.339) (0.341) (0.350) (0.439) (0.455) (0.451)
ρ = 0.50 β2 0.1961 0.848 0.923 0.928 0.928 0.941 0.973 0.975 0.976

(0.095) (0.272) (0.338) (0.0.345) (0.347) (0.358) (0.446) (0.461) (0.457)

Table 3.5: Coverage probabilities of regression estimates for over-dispersion count data with nonstationary covariates for the independent,
AR(1), and EQC models.
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True model/ Coverage Probabilities
Working 95% level 99% level
correlation Parameter Estimate GEE EL EEL AEL GEE EL EEL AEL

β1 0.4010 0.955 0.947 0.950 0.951 0.989 0.988 0.988 0.988
IND/IND (0.050) (0.197) (0.191) (0.195) (0.196) (0.259) (0.254) (0.262) (0.260)
ρ = 0.50 β2 0.5015 0.953 0.936 0.942 0.942 0.993 0.985 0.990 0.989

(0.051) (0.197) (0.191) (0.195) (0.196) (0.259) (0.253) (0.262) (0.260)
β1 0.4019 0.949 0.944 0.950 0.952 0.990 0.989 0.990 0.990

AR(1)/AR(1) (0.071) (0.278) (0.270) (0.276) (0.277) (0.365) (0.358) (0.371) (0.368)
ρ = 0.50 β2 0.5027 0.959 0.948 0.951 0.952 0.994 0.993 0.993 0.993

(0.068) (0.278) (0.270) (0.275) (0.277) (0.365) (0.358) (0.371) (0.367)
β1 0.4018 0.946 0.944 0.949 0.950 0.990 0.988 0.989 0.989

AR(1)/Lag (0.071) (0.277) (0.270) (0.275) (0.277) (0.364) (0.357) (0.370) (0.367)
ρ = 0.50 β2 0.5026 0.959 0.948 0.950 0.953 0.994 0.992 0.994 0.994

(0.077) (0.310) (0.302) (0.308) (0.310) (0.408) (0.401) (0.415) (0.411)
β1 0.4016 0.949 0.942 0.949 0.951 0.993 0.986 0.988 0.987

EQC/EQC (0.079) (0.310) (0.302) (0.308) (0.310) (0.408) (0.400) (0.415) (0.411)
ρ = 0.50 β2 0.5023 0.963 0.947 0.953 0.954 0.995 0.989 0.994 0.992

(0.091) (0.307) (0.332) (0.338) (0.340) (0.404) (0.437) (0.453) (0.448)
β1 0.4015 0.948 0.945 0.948 0.949 0.992 0.986 0.988 0.987

EQC/Lag (0.079) (0.310) (0.301) (0.307) (0.309) (0.407) (0.399) (0.414) (0.410)
ρ = 0.50 β2 0.5024 0.961 0.947 0.953 0.954 0.996 0.989 0.994 0.994

(0.077) (0.310) (0.301) (0.308) (0.309) (0.407) (0.400) (0.414) (0.410)
β1 0.3981 0.955 0.945 0.955 0.954 0.992 0.986 0.991 0.991

MA(1)/MA(1) (0.065) (0.254) (0.247) (0.252) (0.253) (0.334) (0.327) (0.338) (0.335)
ρ = 0.50 β2 0.4974 0.958 0.944 0.948 0.951 0.995 0.989 0.992 0.990

(0.062) (0.254) (0.246) (0.251) (0.252) (0.334) (0.327) (0.338) (0.335)
β1 0.3981 0.956 0.942 0.951 0.953 0.994 0.986 0.989 0.987

MA(1)/Lag (0.065) (0.252) (0.246) (0.251) (0.253) (0.332) (0.326) (0.338) (0.335)
ρ = 0.50 β2 0.4974 0.957 0.943 0.948 0.950 0.994 0.989 0.991 0.991

(0.062) (0.252) (0.246) (0.251) (0.252) (0.332) (0.326) (0.338) (0.335)

Table 3.6: Coverage probabilities of regression estimates for continuous data with stationary covariates for the independent, AR(1), EQC,
and MA(1) models.
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True model/ Coverage Probabilities
Working 95% level 99% level
correlation Parameter Estimate GEE EL EEL AEL GEE EL EEL AEL

β1 0.4003 0.947 0.940 0.945 0.945 0.986 0.986 0.988 0.988
IND/IND (0.051) (0.196) (0.194) (0.198) (0.199) (0.258) (0.257) (0.266) (0.263)
ρ = 0.50 β2 0.4996 0.948 0.946 0.949 0.949 0.985 0.986 0.988 0.988

(0.051) (0.196) (0.195) (0.199) (0.199) (0.258) (0.258) (0.267) (0.264)
β1 0.3998 0.939 0.926 0.936 0.937 0.989 0.987 0.989 0.989

AR(1)/AR(1) (0.043) (0.160) (0.158) (0.161) (0.162) (0.211) (0.209) (0.216) (0.214)
ρ = 0.50 β2 0.4980 0.959 0.949 0.954 0.955 0.992 0.992 0.993 0.993

(0.040) (0.160) (0.159) (0.162) (0.163) (0.211) (0.210) (0.218) (0.215)
β1 0.3998 0.935 0.923 0.932 0.934 0.988 0.986 0.989 0.988

AR(1)/Lag (0.043) (0.159) (0.157) (0.160) (0.161) (0.209) (0.208) (0.216) (0.214)
ρ = 0.50 β2 0.4979 0.958 0.946 0.955 0.955 0.991 0.993 0.994 0.993

(0.040) (0.159) (0.158) (0.161) (0.162) (0.209) (0.209) (0.217) (0.215)
β1 0.4018 0.954 0.947 0.955 0.956 0.992 0.988 0.989 0.989

EQC/EQC (0.040) (0.155) (0.153) (0.156) (0.157) (0.204) (0.203) (0.210) (0.208)
ρ = 0.50 β2 0.5001 0.953 0.947 0.952 0.954 0.989 0.989 0.991 0.990

(0.040) (0.155) (0.153) (0.156) (0.157) (0.204) (0.203) (0.210) (0.208)
β1 0.4019 0.947 0.945 0.950 0.951 0.988 0.985 0.990 0.990

EQC/Lag (0.040) (0.154) (0.153) (0.156) (0.156) (0.202) (0.202) (0.209) (0.207)
ρ = 0.50 β2 0.5011 0.946 0.938 0.944 0.945 0.988 0.987 0.989 0.989

(0.040) (0.154) (0.153) (0.156) (0.157) (0.202) (0.202) (0.209) (0.207)
β1 0.4000 0.942 0.936 0.946 0.947 0.992 0.993 0.995 0.993

MA(1)/MA(1) (0.043) (0.165) (0.166) (0.169) (0.170) (0.217) (0.220) (0.227) (0.225)
ρ = 0.50 β2 0.5027 0.938 0.931 0.939 0.939 0.987 0.979 0.986 0.983

(0.044) (0.165) (0.165) (0.168) (0.169) (0.217) (0.218) (0.226) (0.223)
β1 0.4004 0.926 0.926 0.931 0.932 0.982 0.976 0.983 0.981

MA(1)/Lag (0.038) (0.138) (0.136) (0.139) (0.140) (0.181) (0.180) (0.187) (0.185)
ρ = 0.50 β2 0.5001 0.943 0.950 0.957 0.957 0.992 0.988 0.990 0.990

(0.035) (0.138) (0.137) (0.140) (0.141) (0.181) (0.182) (0.188) (0.187)

Table 3.7: Coverage probabilities of regression estimates for continuous data with nonstationary covariates for the independent, AR(1),
EQC, and MA(1) models.
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3.7 Correlation Models for Misspecified Continu-

ous Data

In this section, we compare the performances of the methods of Chapter 2 when the

correlation model for continuous data is misspecified. The stationary and nonstation-

ary correlation models for longitudinal continuous data are generated from (3.5) for

the parameter set in Section 3.6, and the correlated random errors (ϵ1, ..., ϵ4)
T are

generated from the χ2(1) − 1 distribution instead of the normal distribution for the

three correlation models:

� AR(1): ϵit = ρϵi,t−1 + ait, t = 1, . . . , 4

� EQC: ϵit = ρai,0 + ait, t = 1, . . . , 4

� MA(1): ϵit = ρai,t−1 + ait, t = 1, . . . , 4

However, the confidence regions for the GEE are constructed under the normality

assumption.

Table 3.8 gives the mean estimated values of the coefficients and the corresponding

simulated standard errors in parentheses. It also includes the coverage probability for

β1 and β2 for the 0.95 and 0.99 confidence levels and the average width of the CI

in parentheses for samples of sizes k = 50 and k = 100 for the independent, AR(1),

EQC, and MA(1) models with stationary covariates. Table 3.9 gives the results for

nonstationary covariates.

When the model is misspecified the EL, EEL, and AEL outperform the GEE. For

example, in the AR(1)/Lag case in Table 3.8 the coverage probabilities of β̂1 based

on the GEE, EL, EEL, and AEL are 0.790, 0.918, 0.931, and 0.932 respectively for

the nominal 0.95 level. For β̂2, these probabilities are 0.801, 0.924, 0.937, and 0.937

for the same nominal level. Note that we do not need to estimate a scale parameter
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in the construction of the CI in the EL setup, and also in the EL we did not model

the over-dispersion. Table 3.9 shows that when the covariates are time-dependent the

GEE has substantial undercoverage compared with the results for time-independent

covariates, as discussed in Section 1.5.

3.8 Summary

Our performance analysis shows that our EL, EEL, and AEL methods have consistent

performance when the model assumptions are correct for longitudinal count and con-

tinuous responses. However, when the model is misspecified our EL, EEL, and AEL

methods outperform the GEE. This shows that the EL, EEL, and AEL are robust to

model misspecification since the CIs are constructed without estimation of the scale

parameter.
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True model/ Coverage Probabilities
Working 95% level 99% level
correlation Parameter Estimate GEE EL EEL AEL GEE EL EEL AEL

β1 0.3971 0.836 0.906 0.909 0.913 0.930 0.963 0.975 0.971
IND/IND (0.103) (0.281) (0.357) (0.367) (0.369) (0.369) (0.479) (0.512) (0.501)
ρ = 0.50 β2 0.4988 0.838 0.904 0.926 0.926 0.928 0.966 0.978 0.976

(0.101) (0.281) (0.350) (0.370) (0.372) (0.369) (0.473) (0.513) (0.502)
β1 0.3954 0.805 0.923 0.934 0.934 0.910 0.971 0.973 0.977

AR(1)/AR(1) (0.157) (0.397) (0.587) (0.610) (0.613) (0.522) (0.783) (0.827) (0.814)
ρ = 0.50 β2 0.4986 0.807 0.935 0.942 0.944 0.913 0.975 0.983 0.980

(0.154) (0.397) (0.593) (0.610) (0.613) (0.522) (0.784) (0.827) (0.815)
β1 0.3949 0.790 0.918 0.931 0.932 0.902 0.971 0.980 0.977

AR(1)/Lag (0.156) (0.391) (0.581) (0.601) (0.604) (0.513) (0.772) (0.816) (0.803)
ρ = 0.50 β2 0.4983 0.801 0.924 0.937 0.937 0.911 0.977 0.986 0.983

(0.152) (0.391) (0.581) (0.602) (0.604) (0.513) (0.714) (0.818) (0.805)
β1 0.3970 0.885 0.927 0.940 0.943 0.953 0.981 0.989 0.987

EQC/EQC (0.143) (0.444) (0.570) (0.590) (0.593) (0.584) (0.759) (0.803) (0.790)
ρ = 0.50 β2 0.4935 0.893 0.943 0.955 0.955 0.960 0.984 0.991 0.990

(0.140) (0.444) (0.565) (0.585) (0.588) (0.584) (0.753) (0.798) (0.785)
β1 0.3973 0.811 0.928 0.935 0.941 0.902 0.981 0.989 0.987

EQC/Lag (0.143) (0.371) (0.568) (0.588) (0.591) (0.487) (0.756) (0.800) (0.787)
ρ = 0.50 β2 0.4940 0.812 0.941 0.953 0.956 0.928 0.986 0.990 0.989

(0.140) (0.371) (0.562) (0.583) (0.586) (0.487) (0.750) (0.795) (0.782)
β1 0.3996 0.802 0.935 0.941 0.942 0.897 0.976 0.984 0.981

MA(1)/MA(1) (0.144) (0.363) (0.563) (0.584) (0.587) (0.477) (0.750) (0.796) (0.782)
ρ = 0.50 β2 0.4974 0.808 0.949 0.955 0.955 0.917 0.985 0.991 0.989

(0.139) (0.363) (0.560) (0.580) (0.583) (0.477) (0.747) (0.792) (0.779)
β1 0.3997 0.802 0.932 0.943 0.943 0.906 0.977 0.983 0.982

MA(1)/Lag (0.144) (0.366) (0.561) (0.582) (0.585) (0.481) (0.748) (0.794) (0.780)
ρ = 0.50 β2 0.4980 0.808 0.948 0.960 0.960 0.921 0.985 0.991 0.989

(0.138) (0.366) (0.558) (0.578) (0.581) (0.481) (0.745) (0.791) (0.777)

Table 3.8: Coverage probabilities of regression estimates for misspecified data with stationary covariates for the independent, AR(1), EQC,
and MA(1) models (k=50).
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True model/ Coverage Probabilities
Working 95% level 99% level
correlation Parameter Estimate GEE EL EEL AEL GEE EL EEL AEL

β1 0.3992 0.843 0.930 0.943 0.943 0.945 0.983 0.990 0.989
IND/IND (0.098) (0.279) (0.377) (0.392) (0.393) (0.366) (0.491) (0.544) (0.530)
ρ = 0.50 β2 0.4936 0.846 0.926 0.934 0.935 0.936 0.979 0.987 0.985

(0.098) (0.279) (0.377) (0.392) (0.394) (0.366) (0.489) (0.544) (0.531)
β1 0.3949 0.776 0.925 0.930 0.932 0.890 0.972 0.983 0.979

AR(1)/AR(1) (0.094) (0.221) (0.354) (0.368) (0.369) (0.291) (0.477) (0.512) (0.500)
ρ = 0.50 β2 0.4982 0.777 0.933 0.942 0.945 0.887 0.984 0.988 0.986

(0.092) (0.221) (0.353) (0.368) (0.369) (0.291) (0.476) (0.511) (0.499)
β1 0.3990 0.750 0.919 0.931 0.933 0.870 0.981 0.988 0.985

AR(1)/Lag (0.094) (0.214) (0.355) (0.369) (0.371) (0.281) (0.477) (0.513) (0.500)
ρ = 0.50 β2 0.4952 0.762 0.917 0.927 0.928 0.864 0.972 0.982 0.979

(0.096) (0.214) (0.355) (0.369) (0.371) (0.281) (0.478) (0.514) (0.501)
β1 0.3980 0.772 0.928 0.938 0.938 0.896 0.979 0.986 0.985

EQC/EQC (0.107) (0.256) (0.408) (0.424) (0.426) (0.336) (0.548) (0.588) (0.574)
ρ = 0.50 β2 0.5018 0.778 0.923 0.934 0.936 0.890 0.980 0.988 0.984

(0.106) (0.256) (0.404) (0.421) (0.422) (0.336) (0.543) (0.583) (0.569)
β1 0.3981 0.751 0.921 0.932 0.934 0.888 0.979 0.983 0.983

EQC/Lag (0.109) (0.253) (0.405) (0.421) (0.423) (0.332) (0.544) (0.585) (0.570)
ρ = 0.50 β2 0.5026 0.761 0.918 0.937 0.938 0.880 0.978 0.986 0.983

(0.107) (0.253) (0.402) (0.419) (0.420) (0.332) (0.541) (0.581) (0.566)
β1 0.3961 0.709 0.920 0.930 0.931 0.827 0.980 0.989 0.987

MA(1)/MA(1) (0.100) (0.213) (0.369) (0.385) (0.386) (0.274) (0.497) (0.534) (0.521)
ρ = 0.50 β2 0.5009 0.728 0.926 0.941 0.941 0.834 0.983 0.991 0.989

(0.100) (0.213) (0.369) (0.385) (0.386) (0.274) (0.497) (0.534) (0.522)
β1 0.3972 0.749 0.913 0.929 0.930 0.866 0.981 0.989 0.987

MA(1)/Lag (0.096) (0.222) (0.356) (0.370) (0.372) (0.292) (0.478) (0.514) (0.502)
ρ = 0.50 β2 0.5002 0.762 0.929 0.938 0.939 0.872 0.981 0.991 0.989

(0.096) (0.222) (0.356) (0.370) (0.372) (0.292) (0.478) (0.515) (0.502)

Table 3.9: Coverage probabilities of regression estimates for misspecified data with nonstationary covariates for the independent, AR(1),
EQC, and MA(1) models (k=100).



Chapter 4

Penalized Empirical Likelihood

The penalized EL (PEL) method is a powerful inference tool with promising applica-

tions in many areas of statistics. It is a useful method for simultaneous estimation and

variable selection. In this chapter, we briefly discuss PEL-based variable selection and

then discuss variable selection for longitudinal data based on the penalized adjusted

EL and its asymptotic properties.

4.1 Penalized Empirical Likelihood for Linear Mod-

els

Owen [1991] first considered the EL for linear models. EL confidence regions for

regression coefficients in linear models were studied by Chen [1994]. Most of the

existing works on the EL focus on fixed-dimensional regression parameters; see Owen

[2001] and Chen and Van Keilegom [2009] for more details. Variyath [2006] and

Variyath et al. [2010] introduced EL-based variable selection as an alternative to

AIC and BIC. They showed that these methods perform better in situations where

the parametric distributional assumptions are misspecified. In this case, a complete
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enumeration of all the submodels is necessary to identify the best submodel, which is

difficult when there are many covariates.

The importance of high-dimensional statistical inference using the EL has recently

been recognized by Variyath [2006], Hjort, McKeague and Van Keilegom [2009] and

Chen, Peng and Qin [2009]. Variyath [2006] introduced the PEL for linear models,

and reported some computational issues with over-penalizations. To overcome this

problem, Nadarajah [2011] proposed the penalized adjusted EL (PAEL) variable se-

lection for GLMs, a modification of the method proposed by Fan and Li [2001] to

avoid the technical problem of the nonexistence of the Lagrange multiplier when the

sample size is small. Tang and Leng [2010] studied variable selection using a penalty

in the EL framework; it is limited to mean vector estimation and linear regression

models.

Consider a linear model of the form

yi = X iβ + ϵi, i = 1, 2, . . . , n,

where X i ∈ Rp is a vector of covariates and β ∈ Rp a vector of parameters. Following

Owen [1991] and Qin and Lawless [1994], we extend EL inference for linear models

based on a set of estimating functions g(y,X,β) with dimension p. This leads to the

profile empirical log-likelihood ratio function

W (β) =
n∑

i=1

log(1 + λ̂
T
(β)g(yi,X i,β)),

and the penalized profile empirical log-likelihood ratio estimator of β is the minimizer
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of

L(β) = W (β) + n

p∑
j=1

pδ(|βj|)

=
n∑

i=1

[
log(1 + λ̂

T
(β)g(yi,X i,β))

]
+ n

p∑
j=1

pδ(|βj|) (4.1)

with respect to β, where pδ(∗) is the penalty function.

When the dimension p grows, variable selection using GEEs becomes more interest-

ing. In this situation, the EL is challenging, both theoretically and computationally.

Tang and Leng [2012] introduced the penalized EL for high-dimensional GEEs us-

ing quadratic inference functions, which is applied to incorporate correlation into the

model. In this approach, it is assumed that the inverse of the working correlation

can be approximated by a linear combination of several basis matrices, which are not

directly involved in the estimation of the correlation parameter. In high-dimensional

longitudinal data analysis, it is reasonable to expect that only a subset of the covari-

ates are relevant. To identify the subset of influential covariates, we propose using

the PEL.

4.2 Penalized Empirical Likelihood for Longitudi-

nal Data

In this section, we introduce penalized subject-wise EL variable selection, using the

method of moments to exploit the within-subject correlation. Following Owen [1991]

and Qin and Lawless [1994], we extend EL inference to longitudinal data based on

the set of estimating functions discussed in Section 2.2.

We now consider the subject-wise penalized profile empirical log-likelihood ratio
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estimator of β as the minimizer of

Ll(β) = Wl(β) + k

p∑
j=1

pδ(|βj|)

=
k∑

i=1

[
log(1 + λ̂

T
(β)g(yi;β, ρ̂(β)))

]
+ k

p∑
j=1

pδ(|βj|) (4.2)

with respect to β, where g(yi;β, ρ̂(β)) and Wl(β) are given in Equations (1.5) and

(2.6) respectively.

In practice, ρ is unknown and ignoring this within-subject correlation may result

in a loss of efficiency in general problems. The within-subject correlations can be

consistently estimated using the method of moments given in (1.7) and (1.8). We use

the continuous differential SCAD penalty function with two unknown tuning param-

eters (δ, a), proposed by Fan and Li [2001] and defined in (1.10). Finding the profile

EL function is a key step in applications of the subject-wise penalized EL likelihood

ratio; it involves constrained minimization. However, in some situations, a solution

may not exist. To avoid this problem, we introduce PAEL, obtained by adding a

pseudo-observation to the data-set as discussed in Section 2.2.1.

4.3 Penalized Adjusted Empirical Likelihood for

Longitudinal Data

The adjusted profile empirical log-likelihood ratio function is well defined after the

addition of a pseudo-value gk+1(y;β, ρ̂(β)) = −bkgk(β, ρ̂(β)), as discussed in Section

2.2.1, where gk(β, ρ̂(β)) =
1
k

∑k
i=1 gi(β, ρ̂(β)) and bk = log(k)/2 is a positive constant.

We now define the penalized subject-wise adjusted profile empirical log-likelihood ratio
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estimator of β as the minimizer of

L∗
l (β) = W ∗

l (β) + (k + 1)

p∑
j=1

pδ(|βj|)

=
k+1∑
i=1

[
log(1 + λ̂

T
(β)gi(y;β, ρ̂(β)))

]
+ (k + 1)

p∑
j=1

pδ(|βj|) (4.3)

with respect to β, where pδ(∗) is the SCAD penalty function. This adjustment is

useful because even for some undesirable values of β and the tuning parameters, the

proposed algorithm guarantees a solution. By following Fan and Li [2001], we state

the results showing that the PAEL estimates have oracle properties.

4.4 Oracle Properties

In this section, we present the oracle properties of the PAEL estimates.

For the ith subject, let yi = (yi1, . . . , yit . . . , yimi
)T be the response vector asso-

ciated with X i = (xi1,xi2, . . . ,ximi
)T the mi × p matrix of covariates. We assume

that all the subjects are independent and the repeated measurements yit taken on

each subject are correlated. Suppose (yi,X i), i = 1, 2, . . . , k, is a set of indepen-

dent and identically distributed random vectors. We denote the true value of β0 by

β0 =
(
βT

10,β
T
20

)T
. The covariate matrix is partitioned into X i = (X i1,X i2) accord-

ingly. Without loss of generality, we assume that β20 = 0 and that the elements of

β10 are all nonzero. We denote the dimension of β10 by s, where s may be fixed or

growing with k.

Theorem 4.4.1 Let β̂ =
(
β̂

T

1 , β̂
T

2

)T
be the minimizer of (4.3). Under regularity

conditions A1-A5, as k → ∞,

(i) with probability tending to 1, β̂2 = 0; and
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(ii)
√
k
{
β̂1 − β10 + (−∆)−1p′δ(|β10|)

}
D−→ N(0,∆), where β̂ is the PAEL estimate

of β and

∆ =

[
Eβ10

{
∂g(β, ρ̂(β))

∂β

}T {
Eβ10

{
g(β, ρ̂(β))gT (β, ρ̂(β))

}−1
}
Eβ10

{
∂g(β, ρ̂(β))

∂β

}]−1

.

Proof of Theorem 4.4.1(i):

The first result is corresponds to the Lemma 1 in Fan and Li [2001] which is about

the estimator must have the sparsity property β̂2 = 0, with probability tending to

one. It is sufficient to show that for any β1 satisfying β1 − β10 = Op(k
−1/2) and for

any constant C some small ϵk = Ck−1/2 and j = s+ 1, . . . , p,

∂L∗
l (β)

∂β
< 0, 0 < βj < ϵk,

∂L∗
l (β)

∂β
> 0, − ϵk < βj < 0. (4.4)

Assume that

lim
k→∞

lim
β→0+

{
p′δk(β)

δk

}
> 0 (4.5)

and by the condition on pδk(|β|), we are going to show that, uniformly in both i =

1, 2, . . . , k and β, ⏐⏐⏐⏐∂W ∗
l (β)

∂βj

⏐⏐⏐⏐ = Op(k
2/3).

Now consider

W ∗
l (βj) =

k+1∑
i=1

log {1 + λ(βj)gi(βj, ρ̂(β))}
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where λ and gi as functions of a specific component of β for simplicity. Note that

∂W ∗
l (βj)

∂βj

=
k+1∑
i=1

1

1 + λ(βj)gi(βj, ρ̂(β))

{
∂gi(βj, ρ̂(β))

∂βj

}
λ(βj).

Since β1 − β10 = Op(k
−1/2), then by Theorem 2.3.1, we have

max
1≤i≤k

∥gi(βj, ρ̂(β))∥ = Op(k
1/3) and ∥λ(βj)∥ = Op(k

−1/3).

Hence,

λ(βj)gi(βj, ρ̂(β)) = op(1)

uniformly in both i = 1, 2, . . . , k and β. Thus we have

⏐⏐⏐⏐∂W ∗
l (βj)

∂βj

⏐⏐⏐⏐ ≤ ∥λ(βj)∥
k∑

i=1

∂gi(βj, ρ̂(β))

∂βj

(1− bk)

 [1 + op(1)],

where gk+1(β, ρ̂(β)) = −bkgk(β, ρ̂(β)) and bk is a positive constant.

⏐⏐⏐⏐∂W ∗
l (βj)

∂βj

⏐⏐⏐⏐ ≤ ∥λ(βj)∥
k∑

i=1

∂gi(βj, ρ̂(β))

∂βj

 [1 + op(1)]

= Op(k
−1/3)Op(k)[1 + op(1)]

= Op(k
2/3).

Thus, for every βj, j = s+ 1, . . . , p, it is true that

∂L∗(β)

∂βj

= (k + 1)δk
{
−δ−1

k p′δk(|βj|)sgn(βj) + δ−1
k Op(k

−1/2)
}
.

By the assumption (4.5),
√
kδk → ∞, and δk → 0, the sign of the derivative is

completely determined by that of βj, hence the sparsity is proved. This completes the

proof.
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Second, we can prove the asymptotic normality of the PAEL estimate.

Proof of Theorem 4.4.1(ii):

Theorem 4.4.1(ii) shows that all nonzero PAEL estimator β1 is consistent and asymp-

totically normally distributed. Due to the sparsity property given in Theorem 4.4.1(i),

it is seen that the PAEL estimator with proper tuning parameter δk minimizes L∗
l {(β1,0)

T}

with respect to β1. Hence,

∂L∗
l (β̂, λ̂)

∂λ
= L∗

l,1,k+1(β̂, λ̂) = 0,
∂L∗

l (β̂, λ̂)

∂β
= L∗

l,2,k+1(β̂, λ̂) = 0

where

L∗
l,1,k+1(β,λ) =

1

k

k+1∑
i=1

gi(β, ρ̂(β))

1 + λT (β)gi(β, ρ̂(β))

and

L∗
l,2,k+1(β,λ) =

1

k

k+1∑
i=1

1

1 + λT (β)gi(β, ρ̂(β))

(
∂gi(β, ρ̂(β))

∂β

)T

λ+ (k + 1)p′δ(|β1|)sgn(β1).

By using (2.19), L∗
l,1,k+1(β,λ) can be written as

L∗
l,1,k+1(β,λ) = gk(β, ρ̂(β))(1− bk/k)− λT (β)V k(β, ρ̂(β))(1 + b2k/k) + op(k

−1/3).

The partial derivatives of L∗
l,1,k+1(β̂, λ̂) and L∗

l,2,k+1(β̂, λ̂) at (β = β0,λ = 0) are

L∗
l,1,k+1(β0,0)

∂β
=

1

k

k∑
i=1

∂gi(β0, ρ̂(β))

∂β
→ −E

{
∂g(β0, ρ̂(β))

∂β

}
,

L∗
l,1,k+1(β0,0)

∂λ
=

1

k

k∑
i=1

gi(β0, ρ̂(β))g
T
i (β0, ρ̂(β)) → E

{
g(β0, ρ̂(β))g

T (β0, ρ̂(β))
}
,

L∗
l,2,k+1(β0,0)

∂β
= p′′δk(|β0|),

L∗
l,2,k+1(β0,0)

∂λ
=

1

k

k+1∑
i=1

{
∂gi(β0, ρ̂(β))

∂β

}T
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=
1

k

k∑
i=1

{
∂gi(β0, ρ̂(β))

∂β

}T [
1− bk

k

]
→ E

{
∂g(β0, ρ̂(β))

∂β

}T

,

where gk+1(β, ρ̂(β)) = −bkgk(β, ρ̂(β)) and bk is a positive constant. Now by following

Fan and Li [2001] in Theorem 2, expanding L∗
l,1,k+1(β̂, λ̂) and L∗

l,2,k+1(β̂, λ̂) at (β0,0)

under the conditions A2-A5, which leads to⎡⎢⎣ λ̂

β̂1 − β10

⎤⎥⎦ = S−1
k

⎡⎢⎣ −L∗
l,1,k+1(β0,0) + op(δk)

−L∗
l,2,k+1(β0,0) + op(δk)

⎤⎥⎦
where

Sk =

⎡⎢⎢⎣ −E
{
g(β0)g

T (β0, ρ̂(β))
}

E

{
∂g(β0, ρ̂(β))

∂β

}
E

{
∂g(β0, ρ̂(β))

∂β

}T

p′′δk(|β0|)

⎤⎥⎥⎦.
Since L∗

l,1,k+1(β0,0) = gk(β0, ρ̂(β)) = Op(k
−1/2), we know that δk = Op(k

−1/2), so,

when p′′δk(|β|) → 0 as k → ∞, the limiting distribution of β̂1 −β10 will be asymptot-

ically normal, i.e.,

√
k
{
β̂1 − β10 + S22

k L∗
l,2,k+1(β0,0)

}
D−→ N(0,∆),

where

∆ =

[
Eβ10

{
∂g(β, ρ̂(β))

∂β

}T {
Eβ10

{
g(β, ρ̂(β))gT (β, ρ̂(β))

}−1
}
Eβ10

{
∂g(β, ρ̂(β))

∂β

}]−1

,

and S22
k = −∆−1 is the (2, 2)th element of S−1

k assuming p′′δk(|β|) = 0. This completes

the proof.

In practice, we arrive the simplest model using variable selection methods and

make inference from the resulting model. Due to randomness in the resulting model,

these inferences always not guarantee the classical statistical theory provides for tests

and confidence intervals when the model has been chosen as priori. To overcome this,
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researchers provided different approaches (see Berk, Brown, Buja, Zhang and Zhao

[2013]), which focus on the simultaneous inference procedures. We will explore this

post-selection inference in PEL as future work.

4.5 Algorithm

To implement our method, we need an efficient algorithm. We minimize the PEL

given in (4.2) or the PAEL given in (4.3) with respect to β using a modified Newton–

Raphson algorithm. At each Newton–Raphson iteration, we compute the correlation

parameter ρ̂(β) and the Lagrange multiplier λ̂(β) for an updated value of β. The

parameter ρ̂(β) can be estimated by the method of moments. The algorithm given in

Section 4.5.1 can easily be extended to the PAEL, by the addition of a pseudo-value

gk+1(β) = −bkgk(β), where bk = log(k)/2 is a positive constant.

4.5.1 Algorithm for Optimizing Penalized Empirical Likeli-

hood

Let λ̂(β) be the estimated values of λ for a given value of β (see Section 2.4.1) and ρ̂(β)

the estimated values of ρ for a neighbourhood of β. We minimize the PEL or PAEL

over β using the modified Newton–Raphson algorithm. Note that the penalty function

pδ(|βj|) is irregular at the origin and may not have a second derivative at some points.

Therefore, special care is needed in the application of the Newton–Raphson algorithm.

The penalty function is locally approximated, as discussed by Fan and Li [2001]. We

assume that the profile empirical log-likelihood function is smooth with respect to β

so that its first two partial derivatives are continuous. Thus, the term in the profile

empirical log-likelihood ratio can be locally approximated via Taylor’s expansion.

Therefore, the minimization problem can be reduced to a quadratic minimization
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problem, and the Newton–Raphson algorithm can be used. The modified Newton–

Raphson algorithm for estimating β uses a quadratic approximation of the profile

empirical log-likelihood ratio function. The algorithm for optimizing the PEL is as

follows:

1. Set β = β0, h = 0, and ϵ = 1e−08.

2. Let λ̂(β) = λ(β) and ρ̂(β) be the estimated values of λ and ρ.

3. Compute the new estimate of β via

β(h+1) = β(h) −
{
Wββ

l (βh) + kΣδ(β
h)
}−1 {

Wβ
l (β

h) + kUδ(β
h)
}

(4.6)

whereWl(β) is the profile empirical log-likelihood ratio function defined in (2.6),

with

Wβ
l =

∂Wl(β)

∂β
, Wββ

l =
∂2Wl(β)

∂β∂βT
,

Σδ(β
h) = diag

[
p′δ(|βh

1 |)
|βh

1 |
, . . . ,

p′δ(|βh
p |)

|βh
p |

]
, and Uδ(β

h) = Σδ(β
h)βh.

Note that to compute Wβ
l and Wββ

l , we need to estimate the Lagrange multi-

pliers λ̂(β) and ρ̂(β).

4. If min
⏐⏐⏐β(h+1) − β(h)

⏐⏐⏐ < ϵ stop the algorithm and report β(h+1); otherwise set

h = h+ 1 and go to Step 3.

The simplified expressions for Wβ
l and Wββ

l are given in Section 2.4.2.
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4.5.2 Selection of Thresholding Parameters

The SCAD penalty function involves two unknown parameters, δ and a. In prac-

tice, we could search for the best pair (δ, a) over a two-dimensional grid using cross-

validation (CV; Stone [1974]) or generalized cross-validation (GCV; Craven andWahba

[1979]). However, this is computationally expensive. From the Bayesian point of view,

Fan and Li [2001] suggested using a = 3.7, and we use this value throughout our sim-

ulation studies. Let the profile EL ratio function evaluated at β̂, λ̂(β), and ρ̂(β)

be

Wl(β̂) =

{
k∑

i=1

log(1 + λ̂(β)Tgi(β̂, ρ̂(β))

}
.

Then, we define the GCV criterion to be

GCV(δ) =
Wl(β̂)

k [1− e(δ)/k]2
, (4.7)

where e(δ) is the generalized degrees of freedom given by

e(δ) = tr

{[
Wββ

l (β̂) + Σδ(β̂)
]−1

Wββ
l (β̂)

}
,

where Wββ
l (β̂) is the second derivative of the profile EL ratio function with respect

to β (see (2.25)) evaluated at β̂, and tr denotes the trace of a matrix. We choose the

tuning parameters δ to minimize GCV(δ).

4.6 Performance Analysis for Penalized Empirical

Likelihood Variable Selection

To assess the performance of our variable selection method, we conducted a series

of Monte-Carlo simulations for longitudinal count and continuous data. In the sim-

ulations we compare the PEL and PAEL with the PGEE under different working
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correlation structures. Our performance measures are (i) the median of the relative

model error (MRME), (ii) the average number of estimated zero coefficients that are

initially set to zero, (iii) and the average number of zero coefficients that are initially

set to nonzero. We also compare the estimated values of the nonzero coefficients and

the corresponding simulated standard errors.

Following Tibshirani [1996], we compare the MRME (Fan and Li [2001]) rather

than the mean relative model error because of the instability of the best-subset variable

selection. The model error for the GLM is defined by

ME(β̂) = Ex

{
µ(Xβ)− µ(Xβ̂)

}2

,

where µ(Xβ) = E(y|X). The relative model error is

RME =
ME

MEfull

where MEfull is the model error calculated by fitting the data with the unpenalized

full model.

4.6.1 Correlation Models for Stationary and Nonstationary

Count Data

We consider the stationary and nonstationary correlation models for count data given

in Sections 3.2 and 3.5. For the analysis, we consider the covariates xi = (xi1, . . . , xi5),

where xi1 ∼ Bernoulli(0.5), xi2 to xi5 are generated from a multivariate normal dis-

tribution with mean zero, the correlation between xil and xjl is 0.5
|i−j|, l = 2, . . . , 5,

β = (0.5, 0.5, 0.6, 0, 0), and ρ = 0.5. There are m = 4 time points and k = 100

subjects.
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We simulated 1000 data sets from each of these models follow the AR(1), EQC,

or MA(1) structure, and used penalized methods to estimate the parameters using

different working correlation such as AR(1), EQC, and MA(1) as well as lag correla-

tion. We compute the MRME values based on the PEL and PAEL and compare them

with the PGEE. Table 4.1 gives the results for the independent and AR(1) models

with stationary covariates; Table 4.2 gives the results for the EQC and MA(1) models

with stationary covariates; and Table 4.3 gives the results for the independent, AR(1),

and EQC models with nonstationary covariates. We also report the average number

of zero coefficients, the estimated values of the nonzero coefficients, and the corre-

sponding simulated standard errors in parentheses. The column labelled “Correct” is

the average number of estimated zero coefficients that were initially set to zero, and

the column labelled “Incorrect” is the average number of zero coefficients that were

initially set to nonzero.

Tables 4.1 and 4.2 show that the MRMEs of the PEL and PAEL are almost the

same as that of the PGEE. For instance, in the AR(1)/AR(1) case the MRMEs based

on the PGEE, PEL, and PAEL are 61.33, 60.04, and 59.62, and the average numbers

of correct zero coefficients are 1.80, 1.97, and 1.97 respectively. This shows that the

“Correct” values for PEL and PAEL are close to the target of two, and the nonzero

estimates are close to the true values in all cases. However, when there are time-

dependent covariates in the model, the consistency of the GEE, especially with the

working correlation approach, is not guaranteed (see Section 1.5). Table 4.3 shows

that the PEL and PAEL can provide substantial efficiency gains over the PGEE for

nonstationary covariates. Overall, the methods have similar performance when the

covariates are stationary. However, our methods are superior when the covariates are

nonstationary.
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂3

PGEE 63.90 1.73 0.00 0.5018 0.5010 0.5973
(0.040) (0.044) (0.044)

IND/IND PEL 64.81 1.94 0.00 0.5015 0.5021 0.5969
ρ = 0.50 (0.042) (0.044) (0.043)

PAEL 63.07 1.93 0.00 0.5014 0.5026 0.5965
(0.042) (0.044) (0.043)

PGEE 61.33 1.80 0.00 0.4965 0.5018 0.5976
(0.058) (0.061) (0.061)

AR(1)/AR(1) PEL 60.04 1.97 0.00 0.5006 0.5035 0.5953
ρ = 0.50 (0.059) (0.060) (0.061)

PAEL 59.62 1.97 0.00 0.5001 0.5028 0.5961
(0.059) (0.060) (0.060)

PGEE 64.44 1.80 0.00 0.4981 0.5010 0.5976
(0.058) (0.062) (0.062)

AR(1)/lag PEL 60.06 1.98 0.00 0.5018 0.5025 0.5963
ρ = 0.50 (0.058) (0.060) (0.060)

PAEL 60.06 1.98 0.00 0.5016 0.5024 0.5967
(0.059) (0.060) (0.061)

Table 4.1: Performance measures for count data with stationary covariates for the
independent and AR(1) models.

4.6.2 Misspecified Working Correlation Structure

In the above simulation studies we set the working correlation to either the true corre-

lation or the lag correlation. As discussed in Section 1.4.1, if the working correlation

is misspecified, we may lose the efficiency of the parameter estimates. To assess this

loss in efficiency, we conduct a simulation study in which the repeated counts follow

the AR(1), EQC, or MA(1) structure but we use different working correlation struc-

tures. This model misspecification and the corresponding correlation estimation are

discussed by Sutradhar and Das (1999). Tables 4.4, 4.5, and 4.6 give the results for

the AR(1), EQC, and MA(1) models respectively.

We see that the PEL and PAEL are superior to the PGEE for misspecified working
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂3

PGEE 66.00 1.83 0.00 0.5050 0.5007 0.5948
(0.065) (0.066) (0.066)

EQC/EQC PEL 63.32 1.97 0.00 0.5068 0.5046 0.5924
ρ = 0.50 (0.064) (0.065) (0.065)

PAEL 62.36 1.97 0.00 0.5069 0.5043 0.5930
(0.064) (0.065) (0.065)

PGEE 64.52 1.83 0.00 0.5048 0.5015 0.5953
(0.064) (0.064) (0.066)

EQC/lag PEL 66.68 1.98 0.00 0.5078 0.5043 0.5928
ρ = 0.50 (0.066) (0.066) (0.068)

PAEL 65.36 1.98 0.00 0.5088 0.5045 0.5928
(0.065) (0.066) (0.067)

PGEE 66.00 1.83 0.00 0.5004 0.4993 0.5981
(0.052) (0.053) (0.052)

MA(1)/MA(1) PEL 62.52 1.96 0.00 0.5017 0.5024 0.5965
ρ = 0.50 (0.051) (0.052) (0.051)

PAEL 61.80 1.97 0.00 0.5005 0.5031 0.5967
(0.051) (0.052) (0.050)

PGEE 65.20 1.75 0.00 0.5005 0.5004 0.5970
(0.051) (0.053) (0.053)

MA(1)/lag PEL 63.68 1.96 0.00 0.5012 0.5021 0.5958
ρ = 0.50 (0.051) (0.052) (0.050)

PAEL 62.98 1.97 0.00 0.5017 0.5021 0.5967
(0.051) (0.052) (0.050)

Table 4.2: Performance measures for count data with stationary covariates for the
EQC and MA(1) models.

correlation structures. For example, in the AR(1)/EQC case the MRMEs based on

the PGEE, PEL, and PAEL are 69.76, 64.63, and 65.47, and the average numbers of

correct zero coefficients are 1.84, 1.98, and 1.98 respectively. In the AR(1)/Lag case

the MRMEs based on the PGEE, PEL, and PAEL are 66.90, 60.50, and 60.74, and

the average numbers of correct zero coefficients are 1.85, 1.97, and 1.98 respectively.

The MRME of the PGEE with a lag correlation structure is smaller than that for
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂3

PGEE 73.88 1.68 0.00 0.4994 0.5003 0.5989
(0.041) (0.046) (0.040)

IND/IND PEL 76.12 1.93 0.00 0.4982 0.5003 0.5997
ρ = 0.50 (0.042) (0.047) (0.042)

PAEL 77.60 1.94 0.0 0.4978 0.5011 0.5992
(0.042) (0.047) (0.043)

PGEE 74.35 1.82 0.00 0.4960 0.5070 0.5945
(0.060) (0.066) (0.058)

AR(1)/AR(1) PEL 66.25 1.96 0.00 0.4981 0.5194 0.6085
ρ = 0.50 (0.059) (0.063) (0.055)

PAEL 65.26 1.97 0.00 0.4978 0.5207 0.6079
(0.059) (0.063) (0.055)

PGEE 74.37 1.81 0.00 0.4956 0.5079 0.5949
(0.056) (0.063) (0.055)

AR(1)/lag PEL 74.29 1.97 0.00 0.4970 0.5077 0.5933
ρ = 0.50 (0.054) (0.062) (0.054)

PAEL 74.51 1.97 0.00 0.4971 0.5080 0.5930
(0.054) (0.062) (0.054)

PGEE 73.68 1.85 0.00 0.4978 0.5033 0.5957
(0.065) (0.076) (0.068)

EQC/EQC PEL 60.14 1.97 0.00 0.5014 0.5256 0.6094
ρ = 0.50 (0.064) (0.071) (0.064)

PAEL 59.87 1.97 0.00 0.5009 0.5266 0.6091
(0.064) (0.071) (0.064)

PGEE 74.10 1.70 0.00 0.4988 0.5020 0.5962
(0.066) (0.075) (0.069)

EQC/lag PEL 69.89 1.97 0.00 0.5025 0.5034 0.5963
ρ = 0.50 (0.065) (0.073) (0.066)

PAEL 71.44 1.97 0.00 0.5026 0.5019 0.5984
(0.065) (0.074) (0.066)

Table 4.3: Performance measures for count data with nonstationary covariates for the independent,
AR(1), and EQC models.

the PGEE with a misspecified working correlation, supporting the findings of Section

1.4.1. The average numbers of correct zero coefficients for the PEL and PAEL are

close to the target of two in all cases. This result shows that the PEL and PAEL

outperform the PGEE since they are nonparametric methods based on a data-driven

likelihood ratio function. It also shows that a working correlation based on the PGEE

variable selection procedure is sensitive to the choice of covariance structure, leading
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to a loss of efficiency of the regression estimators.

True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂3

PGEE 69.76 1.84 0.00 0.5030 0.5047 0.5935
(0.067) (0.073) (0.072)

AR(1)/EQC PEL 64.63 1.98 0.00 0.5068 0.5086 0.5918
ρ = 0.70 (0.066) (0.071) (0.071)

PAEL 65.47 1.98 0.00 0.5061 0.5089 0.5914
(0.066) (0.071) (0.070)

PGEE 66.90 1.85 0.00 0.5034 0.5052 0.5929
(0.066) (0.074) (0.071)

AR(1)/lag PEL 60.50 1.97 0.00 0.5083 0.5091 0.5889
ρ = 0.70 (0.065) (0.070) (0.068)

PAEL 60.74 1.98 0.00 0.5077 0.5091 0.5896
(0.065) (0.070) (0.069

PGEE 70.57 1.65 0.00 0.5011 0.5021 0.5986
(0.060) (0.062) (0.062)

AR(1)/MA(1) PEL 64.01 1.98 0.00 0.5063 0.5930 0.5930
ρ = 0.49 (0.058) (0.061) (0.061)

PAEL 63.42 1.97 0.00 0.5023 0.5068 0.5929
(0.059) (0.061) (0.061)

PGEE 67.64 1.79 0.00 0.5014 0.5029 0.5973
(0.059) (0.062) (0.062)

AR(1)/lag PEL 62.52 1.96 0.00 0.5017 0.5056 0.5932
ρ = 0.49 (0.058) (0.061) (0.061)

PAEL 63.11 1.97 0.00 0.5026 0.5063 0.5920
(0.058) (0.061) (0.061)

Table 4.4: Performance measures for count data with stationary covariates when the
working correlation is misspecified for an AR(1) model.

4.6.3 Over-dispersed Stationary and Nonstationary Count

Data

In this section, we consider the performance of our approach when the variance func-

tion is misspecified, in the context of stationary and nonstationary count data. We
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂3

PGEE 63.37 1.70 0.00 0.5025 0.5066 0.5914
(0.074) (0.076) (0.076)

EQC/AR(1) PEL 58.53 1.98 0.00 0.5098 0.5074 0.5918
ρ = 0.70 (0.074) (0.074) (0.074)

PAEL 57.82 1.98 0.00 0.5093 0.5090 0.5906
(0.074) (0.072) (0.073)

PGEE 62.61 1.87 0.00 0.5026 0.5069 0.5916
(0.074) (0.076) (0.074)

EQC/lag PEL 58.63 1.99 0.00 0.5098 0.5100 0.5887
ρ = 0.70 (0.073) (0.073) (0.073)

PAEL 59.65 1.98 0.00 0.5094 0.5102 0.5880
(0.073) (0.073) (0.073)

PGEE 75.50 1.59 0.00 0.4996 0.5023 0.5980
(0.065) (0.068) (0.073)

EQC/MA(1) PEL 63.75 1.98 0.00 0.5035 0.5044 0.5948
ρ = 0.49 (0.064) (0.067) (0.069)

PAEL 65.49 1.97 0.00 0.5020 0.5050 0.5950
(0.064) (0.067) (0.069)

PGEE 66.40 1.82 0.00 0.5017 0.5046 0.5938
(0.065) (0.068) (0.070)

EQC/lag PEL 63.93 1.97 0.00 0.5037 0.5072 0.5916
ρ = 0.49 (0.064) (0.067) (0.069)

PAEL 63.35 1.98 0.00 0.5028 0.5072 0.5911
(0.064) (0.066) (0.068)

Table 4.5: Performance measures for count data with stationary covariates when the
working correlation is misspecified for the EQC model.
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂3

PGEE 69.39 1.78 0.00 0.5025 0.5016 0.5967
(0.052) (0.056) (0.055)

MA(1)/AR(1) PEL 64.76 1.96 0.00 0.5018 0.5013 0.5963
ρ = 0.67 (0.051) (0.055) (0.054)

PAEL 66.90 1.97 0.00 0.5012 0.5011 0.5965
(0.051) (0.055) (0.054)

PGEE 69.03 1.76 0.00 0.5021 0.5022 0.5963
(0.053) (0.056) (0.055)

MA(1)/lag PEL 64.99 1.97 0.00 0.5008 0.5031 0.5962
ρ = 0.67 (0.052) (0.055) (0.054)

PAEL 65.00 1.97 0.00 0.5013 0.5022 0.5969
(0.052) (0.055) (0.053)

PGEE 71.37 1.71 0.00 0.5006 0.5008 0.5974
(0.052) (0.056) (0.058)

MA(1)/EQC PEL 59.73 1.97 0.00 0.5010 0.5025 0.5955
ρ = 0.67 (0.051) (0.055) (0.055)

PAEL 60.18 1.98 0.00 0.5010 0.5024 0.5955
(0.051) (0.055) (0.055)

Table 4.6: Performance measures for count data with stationary covariates when the
working correlation is misspecified for the MA(1) model.
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generate over-dispersed count data with over-dispersion parameter ω = 1/4 as dis-

cussed in Section 3.4. We simulated 1000 data sets with the parameter set used in

Section 4.6.1. We report the MRME, the average number of zero coefficients, the es-

timated values of the nonzero coefficients, and the corresponding simulated standard

errors in parentheses.

Table 4.7 gives the results for the independent and AR(1) models with stationary

covariates; Table 4.8 gives the results for the EQC and MA(1) models with stationary

covariates; and Table 4.9 gives the results for the independent, AR(1), and EQC

models with nonstationary covariates.

The tables show that the MRMEs of the PEL and PAEL are smaller than the

MRMEs of the PGEE in all cases. For instance, in the EQC/EQC case in Table

4.7 we see that the MRMEs based on the PGEE, PEL, and PAEL are 82.80, 68.08,

and 67.14, and the average numbers of correct zero coefficients are 1.53, 1.98, and

1.98 respectively. This shows that the PEL and PAEL are superior to the PGEE,

and the average numbers of correct zero coefficients for the PEL and PAEL are close

to the target of two in all cases. The PGEE based on lag correlation has a similar

pattern to the PGEE based on working correlation. When there is over-dispersion,

the PEL and PAEL outperform the PGEE. Note that the PEL and PAEL did not

model the over-dispersion. This shows that the EL approaches are robust to model

misspecification.

4.6.4 Correlation Models for Continuous Data

In this section, we compare the performance of our PEL and PAEL approaches under

stationary and nonstationary correlation models for continuous data. The correlated

normal responses are generated from model (3.5) with β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and

p = 8. For the ith covariate X i = (xi1, . . . , xip) are generated from the multivariate
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂3

PGEE 84.94 1.00 0.00 0.4962 0.5035 0.5905
(0.082) (0.098) (0.111)

IND/IND PEL 59.85 1.97 0.00 0.5037 0.5062 0.5896
ρ = 0.50 (0.080) (0.092) (0.097)

PAEL 59.24 1.98 0.00 0.5053 0.5068 0.5891
(0.080) (0.093) (0.095)

PGEE 73.07 1.47 0.00 0.5018 0.5121 0.5864
(0.092) (0.102) (0.108)

AR(1)/AR(1) PEL 63.32 1.98 0.00 0.5132 0.5161 0.5862
ρ = 0.50 (0.091) (0.101) (0.097)

PAEL 64.26 1.98 0.00 0.5119 0.5159 0.5878
(0.091) (0.101) (0.099)

PGEE 69.04 1.52 0.00 0.5037 0.5110 0.5874
(0.089) (0.102) (0.102)

AR(1)/lag PEL 65.54 1.99 0.00 0.5115 0.5171 0.5882
ρ = 0.50 (0.086) (0.097) (0.099)

PAEL 66.10 1.99 0.00 0.5107 0.5162 0.5893
(0.086) (0.098) (0.100)

Table 4.7: Performance measures for over-dispersion count data with stationary co-
variates for the independent and AR(1) models.

normal distribution with mean 0 and an AR(1) covariance matrix with marginal

variance 1 and auto-correlation coefficient 0.5. The random errors (ϵ1, ..., ϵ4)
T are

generated as in Section 3.7. We simulated 1000 data sets with k = 50 individuals

from the models given in Section 3.7. We compute the MRME values based on the

PEL and PAEL and compare them with the PGEE.

Table 4.10 gives the results for the independent and AR(1) models with stationary

covariates; Table 4.11 gives the results for the EQC and MA(1) models with stationary

covariates; Table 4.12 gives the results for the independent and AR(1) models with

nonstationary covariates; and Table 4.13 gives the results for the EQC and MA(1)

models with nonstationary covariates. We also report the average number of zero
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂3

PGEE 82.80 1.53 0.00 0.5117 0.5075 0.5832
(0.093) (0.109) (0.116)

EQC/EQC PEL 68.08 1.98 0.00 0.5163 0.5168 0.5825
ρ = 0.50 (0.092) (0.106) (0.106)

PAEL 67.14 1.98 0.00 0.5170 0.5168 0.5830
(0.092) (0.106) (0.105)

PGEE 81.79 1.51 0.00 0.5104 0.5082 0.5850
(0.092) (0.107) (0.118)

EQC/lag PEL 65.47 1.98 0.00 0.5161 0.5168 0.5838
ρ = 0.50 (0.091) (0.106) (0.106)

PAEL 64.55 1.98 0.00 0.5151 0.5191 0.5822
(0.091) (0.106) (0.106)

PGEE 73.78 1.31 0.00 0.5059 0.5071 0.5892
(0.087) (0.099) (0.111)

MA(1)/MA(1) PEL 59.64 1.98 0.00 0.5101 0.5125 0.5882
ρ = 0.50 (0.086) (0.091) (0.101)

PAEL 61.28 1.98 0.00 0.5092 0.5143 0.5875
(0.086) (0.092) (0.103)

PGEE 68.37 1.46 0.00 0.5054 0.5058 0.5892
(0.086) (0.097) (0.106)

MA(1)/lag PEL 58.86 1.97 0.00 0.5103 0.5096 0.5882
ρ = 0.50 (0.085) (0.092) (0.101)

PAEL 59.05 1.97 0.00 0.5107 0.5115 0.5879
(0.085) (0.092) (0.102)

Table 4.8: Performance measures for over-dispersion count data with stationary co-
variates for the EQC and MA(1) models.

coefficients, the estimated values of the nonzero coefficients, and the corresponding

simulated standard errors in parentheses.

The tables show that the MRMEs of the PEL and PAEL are similar to those of the

PGEE, but the average numbers of correct zero coefficients for the PEL and PAEL

are close to the target value of five in all cases. For example, in the EQC/lag case in

Table 4.10 we see that the MRMEs based on the PGEE, PEL, and PAEL are 32.34,
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂3

PGEE 96.20 0.82 0.00 0.4988 0.5106 0.5881
(0.102) (0.115) (0.119)

IND/IND PEL 62.92 1.96 0.01 0.5036 0.5087 0.5940
ρ = 0.50 (0.097) (0.112) (0.102)

PAEL 62.31 1.96 0.01 0.5021 0.4817 0.6272
(0.101) (0.113) (0.102)

PGEE 85.19 1.28 0.00 0.4970 0.5068 0.5907
(0.102) (0.115) (0.121)

AR(1)/AR(1) PEL 72.04 1.93 0.00 0.4701 0.5055 0.5694
ρ = 0.50 (0.101) (0.113) (0.119)

PAEL 70.25 1.93 0.00 0.4704 0.5047 0.5677
(0.101) (0.114) (0.118)

PGEE 85.55 1.27 0.00 0.4985 0.5067 0.5908
(0.103) (0.116) (0.121)

AR(1)/lag PEL 67.09 1.97 0.01 0.4968 0.5152 0.5812
ρ = 0.50 (0.102) (0.112) (0.108)

PAEL 68.44 1.98 0.01 0.4997 0.5126 0.5805
(0.102) (0.112) (0.109)

PGEE 77.92 1.37 0.00 0.5010 0.4999 0.5893
(0.109) (0.116) (0.115)

EQC/EQC PEL 71.79 1.88 0.00 0.4689 0.5006 0.5824
ρ = 0.50 (0.106) (0.114) (0.112)

PAEL 69.91 1.86 0.00 0.4722 0.4992 0.5824
(0.106) (0.114) (0.112)

PGEE 77.47 1.19 0.00 0.4910 0.5051 0.5884
(0.109) (0.118) (0.121)

EQC/lag PEL 71.71 1.97 0.03 0.5042 0.5102 0.5908
ρ = 0.50 (0.126) (0.116) (0.118)

PAEL 71.96 1.98 0.03 0.5055 0.5084 0.5922
(0.106) (0.117) (0.119)

Table 4.9: Performance measures for over-dispersion count data with nonstationary covariates for
independent, AR(1), and EQC models.

31.99, and 31.92, and the average numbers of correct zero coefficients are 4.59, 4.96,

and 4.97 respectively. This clearly indicates that our methods perform as well as the

PGEE when the model assumptions are correct. However, the results in Tables 4.12

and 4.13 show that the PEL and PAEL are superior to the PGEE. For instance, in the

EQC/EQC case in Table 4.12 the MRMEs based on the PGEE, PEL, and PAEL are

41.04, 34.65, and 34.13, and the average numbers of correct zero coefficients are 3.97,
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4.83, and 4.85 respectively. This shows that the PGEE estimates are not necessarily

consistent when there are time-dependent covariates in the model; see Section 1.5.

True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂5

PGEE 35.79 4.24 0.00 2.998 1.501 2.001
(0.091) (0.088) (0.075)

IND/IND PEL 33.40 4.85 0.00 3.000 1.500 1.996
ρ = 0.50 (0.088) (0.087) (0.073)

PAEL 33.40 4.87 0.00 3.000 1.500 1.996
(0.088) (0.087) (0.074)

PGEE 34.53 4.54 0.00 2.997 1.504 2.004
(0.120) (0.118) (0.106)

AR(1)/AR(1) PEL 34.45 4.94 0.00 2.999 1.504 2.001
ρ = 0.50 (0.121) (0.119) (0.107)

PAEL 34.21 4.96 0.00 2.999 1.503 2.002
(0.121) (0.119) (0.107)

PGEE 34.50 4.49 0.00 2.997 1.501 2.002
(0.117) (0.118) (0.107)

AR(1)/lag PEL 34.64 4.94 0.00 2.999 1.500 1.999
ρ = 0.50 (0.121) (0.121) 0.107)

PAEL 34.86 4.95 0.00 3.001 1.500 2.000
(0.122) (0.122) (0.107)

Table 4.10: Performance measures for continuous data with stationary covariates for
the independent and AR(1) models.

4.6.5 Misspecified Correlation Models for Continuous Data

We now consider the performance of our method when the model is misspecified.

We generate a class of stationary and nonstationary correlation models for longitu-

dinal misspecified continuous data from (3.5), where the correlated random errors

(ϵ1, ..., ϵ4)
T are generated from the χ2(1) − 1 distribution instead of the normal dis-

tribution, as in Section 3.7. We simulated 1000 data sets with the parameter set

of Section 4.6.4 for the models discussed in Section 3.7. However, we construct the
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂5

PGEE 32.99 4.60 0.00 3.000 1.495 2.004
(0.132) (0.131) (0.117)

EQC/EQC PEL 33.23 4.96 0.00 2.998 1.500 2.002
ρ = 0.50 (0.134) (0.133) (0.118)

PAEL 33.35 4.97 0.00 2.999 1.499 2.002
(0.135) (0.133) (0.118)

PGEE 32.34 4.59 0.00 3.002 1.495 2.002
(0.134) (0.136) (0.119)

EQC/lag PEL 31.99 4.96 0.00 2.998 1.503 2.000
ρ = 0.50 (0.133) (0.135) (0.118)

PAEL 31.92 4.97 0.00 2.999 1.502 2.001
(0.133) (0.136) (0.118)

PGEE 35.60 4.46 0.00 3.004 1.497 2.001
(0.109) (0.110) (0.096)

MA(1)/MA(1) PEL 35.02 4.90 0.00 3.001 1.499 2.001
ρ = 0.50 (0.108) (0.110) (0.095)

PAEL 34.86 4.91 0.00 3.001 1.498 2.000
(0.109) (0.111) (0.096)

PGEE 34.82 4.46 0.00 3.005 1.494 2.003
(0.110) (0.110) (0.094)

MA(1)/lag PEL 34.66 4.92 0.00 3.001 1.500 1.999
ρ = 0.50 (0.111) (0.111) (0.095)

PAEL 34.77 4.96 0.00 3.001 1.500 2.000
(0.110) (0.111) (0.096)

Table 4.11: Performance measures for continuous data with stationary covariates for
the EQC and MA(1) models.

PGEE, PEL, and PAEL under the assumption that there is no misspecification. We

report the MRME, the average number of zero coefficients, the estimated values of the

nonzero coefficients, and the corresponding simulated standard errors in parentheses.

Table 4.14 gives the results for the independent and AR(1) models with stationary co-

variates; Table 4.15 gives the results for the EQC and MA(1) models with stationary

covariates; Table 4.16 gives the results for the independent and AR(1) models with
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂5

PGEE 39.34 4.28 0.00 3.001 1.497 2.001
(0.087) (0.086) (0.076)

IND/IND PEL 36.46 4.90 0.00 2.999 1.498 2.003
ρ = 0.50 (0.086) (0.085) (0.074)

PAEL 36.61 4.91 0.00 2.998 1.498 2.003
(0.085) (0.085) (0.074)

PGEE 38.34 3.99 0.00 3.000 1.501 1.999
(0.069) (0.067) (0.061)

AR(1)/AR(1) PEL 33.62 4.79 0.00 3.002 1.499 2.000
ρ = 0.50 (0.068) (0.066) (0.060)

PAEL 33.52 4.84 0.00 3.001 1.498 2.000
(0.068) (0.066) (0.060)

PGEE 38.38 3.91 0.00 3.001 1.497 2.001
(0.069) (0.069) (0.062)

AR(1)/lag PEL 33.35 4.81 0.00 3.001 1.498 1.998
ρ = 0.50 (0.068) (0.068) (0.061)

PAEL 32.66 4.83 0.00 3.001 1.498 2.000
(0.068) (0.068) (0.061)

Table 4.12: Performance measures for continuous data with nonstationary covariates
for the independent and AR(1) models.

nonstationary covariates; and Table 4.17 gives the results for the EQC and MA(1)

models with nonstationary covariates.

he results show that the MRMEs of the PEL and PAEL are smaller than that

of the PGEE in all cases. For instance, in the AR(1)/AR(1) case in Table 4.16 we

see that the MRMEs based on the PGEE, PEL, and PAEL are 46.43, 30.74, and

30.44, and the average numbers of correct zero coefficients are 3.03, 4.90, and 4.93

respectively. This shows that the PEL and PAEL outperform the PGEE, and the

average numbers of correct zero coefficients for the PEL and PAEL are close to the

target of five in all cases. The PGEE based on lag correlation has a similar pattern

to the PGEE based on working correlation. This clearly indicates that our method is
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂5

PGEE 41.04 3.97 0.00 2.998 1.499 2.002
(0.067) (0.068) (0.058)

EQC/EQC PEL 34.65 4.83 0.00 2.997 1.500 2.001
ρ = 0.50 (0.066) (0.066) (0.057)

PAEL 34.13 4.85 0.00 2.998 1.499 2.001
(0.066) (0.066) (0.057)

PGEE 41.22 3.91 0.00 3.001 1.497 1.999
(0.068) (0.067) (0.059)

EQC/lag PEL 33.74 4.81 0.00 2.998 1.499 2.002
ρ = 0.50 (0.067) (0.066) (0.058)

PAEL 34.36 4.84 0.00 2.998 1.498 2.000
(0.067) (0.066) (0.058)

PGEE 39.94 4.09 0.00 3.002 1.501 2.005
(0.079) (0.080) (0.070)

MA(1)/MA(1) PEL 35.48 4.82 0.00 3.000 1.502 2.002
ρ = 0.50 (0.076) (0.077) (0.069)

PAEL 35.79 4.85 0.00 3.002 1.502 2.003
(0.076) (0.077) (0.069)

PGEE 45.22 3.69 0.00 2.995 1.502 1.996
(0.062) (0.062) (0.057)

MA(1)/lag PEL 34.55 4.74 0.00 2.997 1.496 2.000
ρ = 0.50 (0.060) (0.061) (0.055)

PAEL 32.94 4.78 0.00 2.999 0.1496 1.999
(0.060) (0.061) (0.055)

Table 4.13: Performance measures for continuous data with nonstationary covariates
for the EQC and MA(1) models.

superior to the PGEE when the model assumptions are incorrect, and the PEL and

PAEL are robust to model misspecification.
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4.7 Summary

Our performance analysis shows that our PEL and PAEL have consistent performance

when the model assumptions are correct for count and continuous responses with sta-

tionary covariates. However, when the model is misspecified our PEL and PAEL are

superior to the PGEE. This shows that the PEL and PAEL are robust to model mis-

specification since they are nonparametric methods based on a data-driven likelihood

ratio function. When there are time-dependent covariates in the model, the consis-

tency of the PGEE is not guaranteed. Our results show that the PEL and PAEL can

provide substantial efficiency gains over the PGEE for nonstationary covariates.

True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂5

PGEE 41.93 3.74 0.00 2.995 1.506 2.000
(0.114) (0.120) (0.106)

IND/IND PEL 30.24 4.91 0.00 2.997 1.504 1.998
ρ = 0.50 (0.112) (0.117) (0.100)

PAEL 30.06 4.94 0.00 2.997 1.505 1.998
(0.112) (0.117) (0.100)

PGEE 37.66 3.95 0.00 2.991 1.515 1.995
(0.186) (0.187) (0.169)

AR(1)/AR(1) PEL 32.69 4.98 0.00 2.990 1.502 2.005
ρ = 0.50 (0.185) (0.185) (0.156)

PAEL 32.69 4.99 0.00 2.990 1.502 2.004
(0.185) (0.185) (0.155)

PGEE 51.37 2.99 0.00 2.986 1.497 2.004
(0.181) (0.193) (0.174)

AR(1)/lag PEL 31.97 4.88 0.00 2.997 1.501 1.995
ρ = 0.50 (0.180) (0.181) (0.153)

PAEL 32.16 4.89 0.00 2.990 1.502 2.004
(0.180) (0.182) (0.155)

Table 4.14: Performance measures for misspecified continuous data with stationary
covariates for the independent and AR(1) models.
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂5

PGEE 37.09 3.76 0.00 3.001 1.502 2.002
(0.170) (0.169) (0.148)

EQC/EQC PEL 33.86 4.98 0.00 3.004 1.496 2.000
ρ = 0.50 (0.168) (0.168) (0.147)

PAEL 33.79 4.98 0.00 3.003 1.498 2.002
(0.168) (0.168) (0.146)

PGEE 39.17 3.74 0.00 3.001 1.501 2.000
(0.171) (0.171) (0.149)

EQC/lag PEL 33.58 4.97 0.00 3.002 1.501 1.999
ρ = 0.50 (0.170) (0.170) (0.148)

PAEL 33.71 4.98 0.00 3.003 1.500 2.000
(0.170) (0.170) (0.148)

PGEE 39.28 3.77 0.00 3.009 1.501 2.001
(0.165) (0.175) (0.147)

MA(1)/MA(1) PEL 33.40 4.99 0.00 2.993 1.512 2.003
ρ = 0.50 (0.161) (0.174) (0.143)

PAEL 33.56 4.98 0.00 2.993 1.513 2.003
(0.161) (0.174) (0.143)

PGEE 39.42 3.81 0.00 3.008 1.502 2.006
(0.167) (0.175) (0.146)

MA(1)/lag PEL 34.97 4.97 0.00 2.996 1.510 2.005
ρ = 0.50 (0.165) (0.174) (0.142)

PAEL 34.97 4.97 0.00 2.996 1.510 2.005
(0.165) (0.174) (0.142)

Table 4.15: Performance measures for misspecified continuous data with stationary
covariates for the EQC and MA(1) models.
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True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂5

PGEE 35.89 3.63 0.00 3.003 1.497 1.993
(0.113) (0.114) (0.103)

IND/IND PEL 29.35 4.93 0.00 3.006 1.501 1.998
ρ = 0.50 (0.107) (0.111) (0.099)

PAEL 28.79 4.96 0.00 3.006 1.501 1.998
(0.108) (0.113) (0.099)

PGEE 46.43 3.03 0.00 3.006 1.499 1.997
(0.111) (0.113) (0.103)

AR(1)/AR(1) PEL 30.74 4.90 0.00 3.007 1.498 1.998
ρ = 0.50 (0.107) (0.111) (0.091)

PAEL 30.44 4.93 0.00 3.007 1.497 1.998
(0.107) (0.112) (0.092)

PGEE 51.16 2.78 0.00 3.002 1.502 1.997
(0.114) (0.117) (0.112)

AR(1)/lag PEL 30.74 4.91 0.00 3.005 1.499 2.001
ρ = 0.50 (0.113) (0.113) (0.095)

PAEL 30.36 4.94 0.00 3.007 1.498 2.002
(0.113) (0.113) (0.094)

Table 4.16: Performance measures for misspecified continuous data with nonstationary
covariates for the independent and AR(1) models.



105

True model/ Method MRME% Avg. no. of zero Estimates of nonzero
Working coefficients coefficients

correlation Correct Incorrect β̂1 β̂2 β̂5

PGEE 44.80 3.14 0.00 3.007 1.495 1.998
(0.124) (0.122) (0.118)

EQC/EQC PEL 31.59 4.93 0.00 3.005 1.497 2.002
ρ = 0.50 (0.121) (0.121) (0.109)

PAEL 31.72 4.95 0.00 3.004 1.498 2.001
(0.121) (0.122) (0.109)

PGEE 47.14 3.08 0.00 3.009 1.498 1.997
(0.129) (0.129) (0.122)

EQC/lag PEL 30.57 4.95 0.00 2.999 1.499 1.999
ρ = 0.50 (0.126) (0.128) (0.113)

PAEL 30.37 4.97 0.00 2.999 1.498 1.999
(0.126) (0.128) (0.116)

PGEE 42.23 3.35 0.00 3.001 1.500 2.001
(0.110) (0.115) (0.108)

MA(1)/MA(1) PEL 29.89 4.92 0.00 3.005 1.493 2.000
ρ = 0.50 (0.109) (0.113) (0.097)

PAEL 30.28 4.93 0.00 3.006 1.493 2.001
(0.109) (0.113) (0.097)

PGEE 49.90 2.91 0.00 3.006 1.500 1.998
(0.115) (0.116) (0.098)

MA(1)/lag PEL 28.84 4.93 0.00 3.003 1.497 2.002
ρ = 0.50 (0.111) (0.110) (0.097)

PAEL 28.67 4.95 0.00 3.004 1.497 2.002
(0.110) (0.111) (0.097)

Table 4.17: Performance measures for misspecified continuous data with nonstationary
covariates for the EQC and MA(1) models.



Chapter 5

Applications

In this chapter, we illustrate the applicability of our proposed method to two real-

world examples.

5.1 Health Care Utilization Study

We consider longitudinal health care utilization data (Sutradhar [2003]) that was col-

lected by Eastern Health, St. John’s, Newfoundland, Canada. These longitudinal

count data contain complete records for k = 144 individuals for the m = 4 years

from 1985 to 1988. The response of interest was the number of visits to a physician

by each individual during a given year. Information on four covariates, namely, gen-

der, number of chronic conditions, education level, and age, was recorded for each

individual. Background information allows us to assume that the response variable,

marginally, follows the Poisson distribution, and the repeated counts over the four

years will be longitudinally correlated. Since the data indicate over-dispersion, we

consider a negative binomial model with two variance functions

var(y) = µ+ αµ
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and

var(y) = µ+ αµ2.

Thus, the variance function is different from that of the Poisson model, var(y) = µ.

To confirm the over-dispersion, we test H0 : α = 0 against Ha : α > 0 using the

likelihood ratio test. The result confirms the presence of over-dispersion in both

variance function models.

Parameter Estimate 95% Confidence Interval
GEE EL

Working Correlation: AR(1)

Gender effect (β̂1) -0.1929 (-0.313, -0.073) (-0.421, 0.020)

Chronic effect (β̂2) 0.1668 ( 0.177, 0.216) ( 0.094, 0.241)

Education effect (β̂3) -0.4738 (-0.624, -0.324) (-0.768, -0.180)

Age effect (β̂4) 0.0308 ( 0.029, 0.033) ( 0.028, 0.033)

Working Correlation: EQC

Gender effect (β̂1) -0.1772 (-0.306, -0.048) (-0.407, 0.034)

Chronic effect (β̂2) 0.1681 ( 0.115, 0.222) ( 0.095, 0.237)

Education effect (β̂3) -0.4354 (-0.597, -0.274) (-0.726, -0.146)

Age effect (β̂4) 0.0302 ( 0.028, 0.033) ( 0.027, 0.033)

Working Correlation: MA(1)

Gender effect (β̂1) -0.1922 (-0.299, -0.086) (-0.421, 0.021)

Chronic effect (β̂2) 0.1669 ( 0.123, 0.211) ( 0.094, 0.241)

Education effect (β̂3) -0.4720 (-0.605, -0.339) (-0.766, -0.179)

Age effect (β̂4) 0.0308 ( 0.029, 0.033) ( 0.028, 0.033)

Working Correlation: Lag

Gender effect (β̂1) -0.1819 (-0.311, -0.053) (-0.411, 0.029)

Chronic effect (β̂2) 0.1677 ( 0.114, 0.221) ( 0.095, 0.238)

Education effect (β̂3) 0.4469 (-0.608, -0.286) (-0.738, -0.156)

Age effect (β̂4) 0.0304 ( 0.028, 0.033) ( 0.027, 0.033)

Table 5.1: Regression estimates for health care utilization count data.

Our analysis used the GEE with a working correlation matrix (AR(1), EQC,
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MA(1), or lag correlation) and our EL approach. Table 5.1 gives the regression pa-

rameter estimates and 95% CIs. The gender covariate was coded as 1 for male and

0 for female. Under the AR(1) structure, the estimate of its regression coefficient is

β̂1 = −0.1929, suggesting that females make more visits to physicians. The GEE

CI indicates that this variable is significant, but the EL CI does not. The estimated

values β̂2 = 0.1668 and β̂4 = 0.0308 suggest that individuals with chronic diseases and

older individuals pay more visits to physicians, as expected. The corresponding CIs

show that both variables are significant. The education covariate was coded as 1 for

less than high school and 0 for higher education. The value β̂3 = −0.4738 indicates

that educated individuals pay more visits to physicians, showing that they are more

concerned about their health or they can afford it. The corresponding CIs show that

this variable is significant. Table 5.1 shows that different working correlations lead to

slightly different parameter estimates, but the overall conclusion remains the same.

Since the data indicate over-dispersion, the GEE-based approach may be inefficient,

as shown in our performance analysis. We conclude that the EL approach is more

appropriate for this data set, and the significant variables identified by this approach

are more reliable.

5.1.1 Penalized Variable Selection for Health Care Utiliza-

tion Data

To examine whether there are any interaction effects between the covariates, we

included some two factor interactions and employed penalized variable selection to

identify important covariates. The goal is to take the longitudinal correlations into

account. Tables 5.2 and 5.3 summarize the results. The PGEE results indicate

that CHRONIC, EDUCATION, AGE, GENDER*CHRONIC, and GENDER*AGE

are significant. Under AR(1) and MA(1), the interaction GENDER*EDUCATION is
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also important. The PEL approach selects CHRONIC, EDUCATION, AGE, GEN-

DER*CHRONIC, and GENDER*AGE. Since the data indicate over-dispersion, the

EL approach may be more appropriate. Note that the PEL approach selected the

simplest model.

Variable Penalized Estimates
PGEE(AR(1)) PGEE(EQC) PGEE(MA(1)) PGEE(Lag)

GENDER 0.000 0.000 0.000 0.000
CHRONIC 0.105 0.103 0.104 0.104
EDUCATION -0.492 -0.432 -0.489 -0.443
AGE 0.033 0.032 0.033 0.033
GENDER*CHRONIC 0.143 0.144 0.144 0.143
GENDER*EDUCATION 0.053 0.000 0.050 0.000
GENDER*AGE -0.009 -0.009 -0.009 -0.009

Table 5.2: PGEE regression estimates for health care utilization data under different
working correlation structures.

Variable Penalized Estimates
PEL(AR(1)) PEL(EQC) PEL(MA(1)) PEL(Lag)

GENDER 0.000 0.000 0.000 0.000
CHRONIC 0.037 0.034 0.037 0.036
EDUCATION -0.471 -0.468 -0.476 -0.466
AGE 0.035 0.035 0.035 0.035
GENDER*CHRONIC 0.005 0.005 0.005 0.005
GENDER*EDUCATION 0.000 0.000 0.000 0.000
GENDER*AGE -0.005 -0.006 -0.005 -0.006

Table 5.3: PEL regression estimates for health care utilization data under different
working correlation structures.
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5.2 Longitudinal CD4 Cell Counts of HIV Sero-

converters

This data set contains 2376 observations of the CD4 cell counts of k = 369 men

infected with the HIV virus (Zeger and Diggle [1994]). The goal of our analysis is

to estimate the average evolution over time of the CD4 counts by considering the

effects of AGE, SMOKE (smoking status measured by packs of cigarettes per day),

DRUG (yes = 1; no = 0), SEXP (number of sex partners), DEPRESSION (measured

by the CESD scale) and YEAR (time since seroconversion). To examine whether

there are any interaction effects between the covariates, we included all the two-factor

interactions in our model.

Figure 5.1 shows the subject-specific evolution over time of the CD4 cell counts

with and without drug use respectively. Figure 5.2 shows the evolution of the square

root of the cell counts with and without drug use respectively. The cell counts are

right-skewed, so a count model is not appropriate. Therefore, we will work with

the square root of the counts. Tables 5.4 to 5.6 summarize the analysis for the

AR(1), EQC, and lag working correlations. The GEE indicates that SMOKE, DRUG,

SEXP, AGE.SEXP, SMOKE.DRUG, SMOKE.SEXP, and DRUG.SEXP are signif-

icant. Under EQC, AGE.SMOKE and AGE.DRUG are also significant. The EL

selects SMOKE, DRUG, SEXP, and DRUG.SEX. Under EQC and lag AGE.SEXP is

also significant. The GEE approach is sensitive to the choice of correlation structure.

In this real data set, the true correlation structure is unknown, so the lag correlation

approach is appropriate since it can accommodate all three correlation structures.

The Shapiro–Wilk test shows that the CD4 cell counts are not normally distributed.

The GEE-based method is therefore not appropriate. We therefore, conclude that the

EL is a better choice.



111

Years

C
D

4

0

1000

2000

3000

−2 0 2 4

drugs

−2 0 2 4

drugs

Figure 5.1: Evolution of CD4 cell count measurements with and without drug use.

Variable Method
GEE EL

INTERCEPT 25.37 ( 25.25, 25.49) 25.37 ( 24.97, 25.77)
AGE -0.001 (-0.014, 0.012) -0.001 (-0.060, 0.060)
SMOKE 0.938 ( 0.864, 1.012) 0.938 ( 0.669, 1.211)
DRUG 0.716 ( 0.597, 0.834) 0.716 ( 0.316, 1.115)
SEXP 0.390 ( 0.365, 0.414) 0.390 ( 0.306, 0.471)
AGE*SMOKE -0.001 (-0.007, 0.004) -0.001 (-0.032, 0.031)
AGE*DRUG 0.001 (-0.013, 0.013) 0.001 (-0.069, 0.071)
AGE*SEXP 0.008 ( 0.006, 0.009) 0.008 (-0.003, 0.016)
SMOKE*DRUG -0.242 (-0.315, -0.169) -0.242 (-0.500, 0.023)
SMOKE*SEXP 0.041 ( 0.033, 0.049) 0.041 (-0.005, 0.089)
DRUG*SEXP -0.270 (-0.295, -0.245) -0.270 (-0.358, -0.183)

Table 5.4: Estimated coefficients for CD4 data set using AR(1) working correlation.
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Figure 5.2: Evolution of square root of CD4 cell count measurements with and without
drug use.

Variable Method
GEE EL

INTERCEPT 25.10 ( 24.96, 25.25) 25.10 ( 24.70, 25.50)
AGE -0.023 (-0.037, 0.008) -0.023 (-0.085, 0.043)
SMOKE 1.241 ( 1.161, 1.322) 1.241 ( 0.972, 1.515)
DRUG 1.132 ( 1.006, 1.257) 1.132 ( 0.732, 1.532)
SEXP 0.545 ( 0.521, 0.569) 0.545 ( 0.459, 0.633)
AGE*SMOKE -0.011 (-0.016, -0.006) -0.011 (-0.044, 0.023)
AGE*DRUG 0.036 ( 0.022, 0.050) 0.036 (-0.031, 0.106)
AGE*SEXP 0.017 ( 0.015, 0.018) 0.017 ( 0.007, 0.027)
SMOKE*DRUG -0.398 (-0.477, -0.319) -0.398 (-0.650, 0.131)
SMOKE*SEXP 0.038 ( 0.030, 0.045) 0.038 (-0.010, 0.091)
DRUG*SEXP -0.184 (-0.209, -0.159) -0.184 (-0.274, -0.091)

Table 5.5: Estimated coefficients for CD4 data set using EQC working correlation.

5.2.1 Penalized Variable Selection for CD4 Cell Counts of

HIV Seroconverters

Since there are many regression parameters, we perform penalized variable selection

for simultaneous estimation and variable selection. Table 5.7 gives the estimates
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Variable Method
GEE EL

INTERCEPT 25.35 ( 25.22, 25.46) 25.35 ( 25.34, 25.36)
AGE -0.001 (-0.015, 0.012) -0.001 (-0.061, 0.059)
SMOKE 0.942 ( 0.867, 1.016) 0.942 ( 0.673, 1.215)
DRUG 0.727 ( 0.608, 0.845) 0.727 ( 0.327, 1.127)
SEXP 0.389 ( 0.364, 0.414) 0.389 ( 0.305, 0.470)
AGE*SMOKE -0.002 (-0.007, 0.003) -0.002 (-0.032, 0.030)
AGE*DRUG 0.002 (-0.011, 0.015) 0.002 (-0.067, 0.072)
AGE*SEXP 0.007 ( 0.005, 0.009) 0.007 (-0.003, 0.016)
SMOKE*DRUG -0.233 (-0.306,-0.160) -0.233 (-0.490, 0.032)
SMOKE*SEXP 0.042 ( 0.035, 0.050) 0.042 (-0.004, 0.090)
DRUG*SEXP -0.268 (-0.356,-0.182) -0.268 (-0.356,-0.182)

Table 5.6: Estimated coefficients for CD4 data set using lag working correlation.

of the regression coefficients. The PGEE indicates that SMOKE, DRUG, SEXP,

SMOKE.DRUG, SMOKE.SEXP, and DRUG.SEXP are significant. The PEL indi-

cates that SMOKE, DRUG, SEXP, and DRUG.SEX are significant. Under EQC

SMOKE.DRUG and SMOKE.SEXP are also selected, whereas under lag SMOKE.DRUG

is selected. PEL with AR(1) selected the simplest model.

Variable AR(1) EQC Lag
PGEE PEL PGEE PEL PGEE PEL

INTERCEPT 25.37 25.30 25.11 25.01 25.34 25.37
AGE 0.000 0.000 0.000 0.000 0.000 0.000
SMOKE 0.936 0.751 1.149 1.123 0.941 0.854
DRUG 0.715 0.685 1.101 1.123 0.729 0.673
SEXP 0.390 0.351 0.532 0.504 0.389 0.409
AGE*SMOKE 0.000 0.000 0.000 0.000 0.000 0.000
AGE*DRUG 0.000 0.000 0.000 0.000 0.000 0.000
AGE*SEXP 0.000 0.000 0.000 0.016 0.000 0.000
SMOKE*DRUG -0.241 0.000 -0.292 -0.281 -0.232 -0.120
SMOKE*SEXP 0.041 0.000 0.034 0.020 0.042 0.000
DRUG*SEXP -0.269 -0.178 -0.165 -0.110 -0.268 -0.257

Table 5.7: Penalized variable selection for CD4 cell count data under different working
correlation structures.



Chapter 6

Summary and Future Work

In this chapter, we summarize our contributions, and discuss future work.

6.1 Summary

Longitudinal data modelling through GEEs assumes a working model for the within-

subject correlation of the responses. When the working correlation is incorrectly

specified, the GEE estimator is not necessarily consistent and may lose substantial

estimation efficiency. To improve the efficiency, we can use a stationary lag correlation

structure instead of the working correlation matrix. We also noticed that, to avoid

losing efficiency, the first two moments of longitudinal responses needs to be correctly

modelled. Any misspecification can cause estimates based on marginal models to

be inefficient and misleading conclusions. Another problem with statistical inference

such as confidence region construction and hypothesis testing are based on asymp-

totic normality, which may not hold since the finite-sample distribution may not be

symmetric.

Taking these issues into account, we have proposed an EL-based longitudinal mod-

elling based on a data-driven likelihood ratio approach sharing many of the properties
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of the parametric likelihood. We do not need to specify the complete parametric dis-

tribution to perform the inference. We can therefore use likelihood methods without

assuming that the data come from a known family of distributions. We defined the

subject-wise profile EL based on a set of GEEs. The estimation and confidence re-

gion construction using the EL approach proposed, which has advantages over other

methods such as those based on normal approximations. A major advantage of EL is

that involves no prior assumptions about the shape of an EL-based confidence region,

which is determined automatically by the data. The construction of the confidence

region based on the EL method does not involve any variance estimation.

We derived the asymptotic properties of the parameter estimates and developed an

algorithm. Our performance analysis showed that our method for longitudinal count

and continuous responses is comparable to the GEE when the model assumptions

are satisfied. For instance, when the working correlation is correctly specified, the

coverage probabilities of the intervals based on the EL, EEL, and AEL are similar to

those of the GEE. CIs based on the regular EL have slight undercoverage compared

with those of the GEE; the coverage probabilities are substantially improved with

the EEL and AEL. Moreover, these methods are consistently more accurate than the

regular EL. When the working correlation is misspecified, the coverage probabilities of

the intervals based on the EL, EEL, and AEL are shown to be equally efficient to the

GEE estimator with stationary lag correlation structure. Also the results shows that

when the working correlation is misspecified, the GEE estimator with stationary lag

correlation structure, EL, EEL, and AEL outperform the GEE with incorrect working

correlation structure. When the model is misspecified such as marginal variance our

method outperforms the GEE. This result shows that EL methods are robust to model

misspecification. Moreover, the EL-based CI has a data-driven shape, whereas the

GEE-based CI, based on the normal approximation, is symmetric.
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We then extended PEL variable selection to high-dimensional longitudinal data

with many covariates. We proposed simultaneous estimation and variable selection

based on the subject-wise profile EL. This approach is possible with a proper choice of

the tuning parameters. Under some regularity conditions, we proved that the PAEL

estimators possess the oracle property. We also discussed the asymptotic properties

of our method. Our algorithm produced accurate estimates of the regression param-

eters. Simulation studies showed that the PEL and PAEL for correlated count and

continuous data are comparable with the PGEE when the model assumptions are

correct and are superior when the model is misspecified. Moreover, when there are

time-dependent covariates, the PGEE is not guaranteed to be consistent. Our results

show that when there are nonstationary covariates our approaches can provide sub-

stantial efficiency gains over the PGEE. We applied our method to two real-world

examples.

6.2 Future Work

Longitudinal and survival data are often associated in clinical trials and other medical

and reliability studies. For example, in AIDS clinical trials, we repeatedly measure

the number of CD4 cells per cubic ml of blood over time for each subject, and we

may also be interested in the time to an event, such as death or disease progression

(survival). In such situations, the longitudinal model may be the primary focus. Al-

ternatively, the focus may be the survival data, especially when the time-dependent

covariates are missing at failure times or there are measurement errors. For example,

in HIV studies, the CD4 cell count per cubic ml of blood, which is measured repeat-

edly on the same individual throughout the study period, may be difficult to measure

accurately, possibly because of machine imprecision. If we treat these mis-measured
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values as true values, we may draw incorrect conclusions. In particular, in regression

models, if the covariates are measured with errors but considered accurate, the infer-

ence will be misleading, and a significant covariate may be found to be nonsignificant.

Hence, measurement errors in the covariates must be taken into account. Two mod-

els are often assumed to be linked through shared parameters or shared unobserved

variables. Our primary interest is in the survival model with measurement errors in

the time-dependent covariates. The unobserved true values of the time-dependent

covariates are the responses of the longitudinal model, so the two models share the

same unobserved variables.

There are several methods for analyzing such data separately, including LMMs

for longitudinal data and Weibull or semiparametric (Cox) proportional hazard (PH)

models for time-to-event data. However, separate analyses may produce inefficient

and biased results when the longitudinal variable is correlated with the survival event

(time to event). In such situations, we need joint models (Tsiatis, DeGruttola and

Wulfsohn [1995]; Wulfsohn and Tsiatis [1997]). The two common approaches are naive

two-stage methods and likelihood methods.

The naive method uses one model to estimate the shared parameters or variables

and then performs inference based on the other model using the estimated shared

parameters or variables as if they were observed data. To apply this method to our

situation, in the first step, we would estimate the true values of the time-dependent

covariates by fitting the longitudinal model. In the second step, we would replace the

unobserved variables by their estimated values and then perform inference based on

the survival model.

The joint modelling of longitudinal and survival processes is based on the joint

likelihood of all the longitudinal and survival data. The classical LMM can be used

to model the time-dependent covariates. Maximum likelihood estimates of all the



118

parameters can be obtained simultaneously by maximizing the joint likelihood. The

maximum likelihood estimates are consistent, asymptotically efficient, and normal

under the usual regularity conditions. We have discussed the disadvantages of us-

ing LMMs in a longitudinal context: they are suitable only for continuous responses.

Discrete responses do not necessarily follow normal distributions. Moreover, the joint

likelihood for longitudinal and survival data typically involves a high-dimensional

and intractable integral. The process is computationally intensive and there may

be convergence problems. Rizopoulos, Verbeke and Lesaffre [2009] use Laplace ap-

proximations for joint models, which can be especially useful for high-dimensional

random effects. For maximization, the EM algorithm has been used. However, a

serious drawback of the EM algorithm is its linear convergence rate, which results in

slow convergence, especially close to the maximum. To overcome these difficulties, we

propose an EL-based two-stage joint modelling of longitudinal and survival data.

In the above approaches, a well-defined parametric model is crucial. However, the

parametric model is often not well defined, limiting the application of these methods.

Another problem with parametric likelihood inference is the risk of model misspeci-

fication. Such misspecification can cause likelihood-based estimates to be inefficient.

The confidence regions and hypothesis tests are based on asymptotic normality. The

resulting CIs are symmetrical about the estimates, which may not be accurate since

the finite-sample distribution may not be symmetric. This encourages us to investi-

gate nonparametric likelihood. Nadarajah [2011] proposed the PEL variable selection

for the Cox PH model, and we extended this approach to survival analysis.
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6.2.1 Empirical-Likelihood-Based Two-Stage Joint Modelling

The observed covariate value for individual i at time tij is denoted zij = zi(tij) (i =

1, 2, ..., k, j = 1, 2, ...,mi). It is measured with measurement error, and the cor-

responding unobserved true value of the covariate is denoted z∗ij. We consider the

following Cox model with time-dependent and time-independent covariates:

hi(t) = h0(t)exp(z
∗
i (t)β1 +X iβ2), i = 1, 2, ..., k (6.1)

where β = (β1,β2). For the inference we must know the value of the time-dependent

covariate zi(t) at every event time ti for all the individuals. Measurement errors in

covariates are a form of missing data and are common in practice. The population

parameters β in the survival model (6.1) are our main interest, and a longitudinal

model is needed to address the measurement errors.

• In the first step, we estimate the true values of the covariates based on the

EL approach discussed in Chapter 2 by minimizing the profile empirical log-

likelihood ratio function of (2.6) with respect to β, ignoring the survival model.

We denote the predicted true values of the covariates by ẑ∗
i .

• In the second step, we extend the EL-based Cox PH model (6.1) to perform

inference. The profile empirical log-likelihood ratio estimator of β for the Cox

PH model is the minimizer with respect to β.

We will investigate the asymptotic properties of this approach. We will also inves-

tigate the use of PEL two-stage variable selection for longitudinal and survival data.

The two-stage method has two limitations. First, it models each process separately,

which may lead to biased estimates. For example, the longitudinal covariate data may

be truncated by the event, so estimation based only on the observed covariate data
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may produce biased results. The bias may depend on the strength of the association

between the longitudinal and survival processes or on the magnitude of the measure-

ment errors in the covariates. Second, the information from the longitudinal process

is not linked with that from the survival process to produce more efficient estimates.

We plan to investigate these limitations.
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