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J learned this at least by my experimell1 : tltar if aile a(/vollce,\' cOI!lit/('IIfly

ill the direction of his dreams, and endeavors to live that life which he hns

imagined, he will meet with a success Ilnexpected iI/ comlllOll hours. fie will

put some things behilld, will pass all iI/visible bollndary; new. uuiversal, alUl

more liberal laws will begin to establish ,hemstlves arouud olld wit"in llilll.

Ifyou have built castles in the air. your work need I/ot be lost; ,hat is where

they should be. Now put the foundations Imder them.

Henry n,0reou, Walden



Abstract

kc scuurinj; IICCUl1i when drirting ice masses impinge upon and move lhrough seabed

Sl.'dimcnL'i. It is a prevalent phenomenon ov~r vast areas of the continental shelf regions

uf the Arelic Ocean al'k.lthc Canadian ellSI coaSI. This lee - seabed interaction represents

11 criticll! dcsij;o consideration for marine pipelines associated with the production of

nITshorc hydrocarbon reserves. Pipelines must be designed 10 accommodate loading

lrnnsmiut:d by scour • induced soil deformalK>n below the depth of ice intrusion in a safe

and cost • effective manner. A f1lional design methodology must therefore incorporate

a tk.1cnninislic model which provides reliable predictions of the magninxle and extent of

the soil di~laccmentS genel1lted during a scouring event.

This disscnalion describes cxperimemal aoo numerical investigations undertaken

to gain a beller umlcrslanding of ice scouring effects on seabed soil. The experimental

progrummc comprised a series of nine I:entrifuge model lests. In each test, an idealized

scouring condition was simulated in an instrumented spttimcn of saturaled clay to pennil

mt:asurements of the stress and d.:fonnalion fields developed in the: soil, the contact

pressun:s and resulLal'll folU5 acling on !he model ice feature, and the qualitalive effects

of scour on buried model pipeline segments. Test variables included the prescribed soil

stress history, the attack angle and width of !he model keel, and the scour depth attained

for steady - slate conditions. Cel'llrifuge modelling was established as a valuab~ tool by

which 10 obtain insight into the mechanics of the ice • soil interaClion, and yielded

quantilatlvc tlata applicable 10 well • defined events, Soil displacement measurements

exhibited variation which was ckpendel'll upon the initial state of the soil. and was also
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innucnced by differences in applied ~tress p:llh.~ re~ulling. fmlll Ch:lllg.C.~ III 1l<.IUmlary

conditions in individOlll scouring. eve1ll~.

The finite clement method was eVOllu:ued a~ :l 1\\I':;lllS I'M pn.:dicti\ll1 Ilf lhc ~Ilil

response under idcalizL>U scouring conditiuns. Thc aduplcd tWtl - dimensiun:!l llumerical

representation incorporatc<.l a tillite strain fllnllulOltiUll and thc suil \\',l~ 1\\1l<.lcllcd OlS :l

two· phase nonlinear elastic· plastic material. Preliminary verificatiull Ill' the IlIll1lCric:Ll

approach was provided through comparison of the analysis results with dm:! 'lC4uin.'d in

representative centrifuge tests. Appropriate charactcrizatinn llf the cffccls Ill' scnuring.

required simulation of large movements associated with steady - Sl,lle cUlttlitiul\s. which

imposed constraints on implementation of the analysis alld discrelizmioll til' the suil

domain. The numerical representation providcd adequate ,lppmximmioll til" Ihe crfL'CtS nf

scouring for compressible soil behaviour, where an cvcnt was char.tcterizcd hy ClllllillllUlll

distonion or now, and volume change due to loss of materiOlI in the scour p:nh W:IS

balanced primarily through compressive defonnation beneath the incisilln.
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Chapter 1

Introduction

1.1 Background

1.1.1 Ice Scour

Curvilinear sea bouom gouge Ceatures which are typically one half to two metres in

dtpth. lens of metres wide. and hundreds of metres or several kilometres in length arc

found over vast areas of the Arctic and sub - Arctic cominental margins. These features

an: allribulable 10 the process of icc scouring which occurs when drifting ice masses

(icebergs, sea ice pressure rklge keels and ice island fragments) impinge upon and move

through seabed sediments. The principal motivation for research pertaining 10 Ihis

I'henomenon arises from the hazard posed to marine pipelines and other prospective

subsea installations in cold ocean regions. Considerable literature exists regarding ice

scouring. including field. experimental, and theoretical sWdics (cr. the bibliography

edited by Goodwin et al., 1985). The developing understanding of ice scouring and

related design issues for marine pipelines was rcccntly summarized at an international

workshop (Canada Oil and Gas Lands Adminislration, 1990).



In Nonh Amelia. comprehensive field studies of ice a:wr have been uI1l.k.Tt2~~n

in me polOllial producdon areas of offshore hydrocarbon rexm:s. which includ.: the

coDlinentaJ shelf rqions 0( me Arctic Ocean and the Can:adi:an C1ISl coast. The bulk 0(

available information on scour form and distribution are derived from sidesan !IiORU"

records (Frgure 1.1). including mcs or scour cmemion evatu:ncd from n..-pctilive

mapping surveys. Scour surface morphology is abo defined baKd on high - n:soIu1ion

sub • boltom profile data and, less rreque«I)'. through direct visual ohsctvatm during

diver or manned submersible investigations (Figure 1.2).

On the Arcltc continenllli shelves, most scour features arc fOllm..'tI hy th~ dL'CJ'I

keels of sea ice pressure ridges. Average scour dimensions for lhe Canadian Rcauforl Sc,t

are summarized in Table 1.l (Lewis and BWco, 1990); however, correne dimcll'liom

may deviale from referenced values as me f'tSlJll ofongoina revision of lhc existilll; llCour

database. The seabed in this rq:ion is erfectively saNn1cd with Ion&:. curvilinear sewn

in Wiler depths rancinl from 10 to 40 m. and recenl or new rearu~ are ~n:D in

WIler depths up to 72 m. The average scour is O.S m deep (7.1 m maximum) and 26 m

wide (1375 m muimwa). Scout lengths are eshmaIc:d to be on the order of sc.eral

hundred metres to tilomeUcs. with a muimum recorded value of 13 kin (HIWM: and

Brown. 1977). Sc:ourin& taleS as high as 8.2 evallS I km I year for the 22 to 2S m W2tet

depth illlerVal. have been delennined from repelitive mapping programs; although, then:

is considerable varialion in the frequency of scour fonnation wilh changes in hUlh

geographical location and water depth on the shelf (Lewl~ and Blasco, 1990).

Along the eaSlern Canadian seaboard, ice scouring is associated with seasonal

incursions of glacial ice in the form of icebergs. Survey data from the Grand Banks of
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Figure 1.1 500 kHz sidescan sonar image (swath width 75 m) showing
ice scour Jeatures at 15 to 25 m water depth interval in Resolute Bay
(courtesy oJ the Atlantic Geoscience Centre)

Figure 1.2 An uruienvarer view oJa small ice island keel scouring into
unconsolidated sediments (counesy of the Geological Survey oJ Canada)



Table 1.1 let! scol/r dimt!IU;OIU for rllt! COII/il/mllll slldl 01 tht.' GII/lldil/ll lJc-dl'.fi,rf .1iI.~1

(SOIIret! : 1~l\;S tl/ld Blasco. 1990)

Parameter Dimension SurVl:Y I'npul;nillll

Mean Seour DCPlh 0.5 m 10 J85 C\'ClllS

Extreme: Scour DelXh 7.i m (45 III water ul."f!th)

Mean Scour Width 26 m 66 S49lo:vlo:nls

Extreme Scour Width 1375 m

Scour Length .5 to 10km c:scimatl."tJ

Mean 8enn Width 15.3 m loolo:ven!s

Mean Oenn Height 0.7 m 100 lo:venl.~

Newfoundland (Fader and King. 1981: Lewis and Barrie. 1981) rcve;ll a n:lativdy IIIW -

density population of modem iceberg scoors and iceberg - cn:alt.'d SI.:abcd pit.. (Mllhil Oil

Canada Ltd., 1985: Barrie c:I al.. 1986) at wOller dcpIhs less lhan about 230 In (within

the limit of observed iceberg dral'ls). The cross • culling pallt.Tfl of eurvililll.:ar fumtwl'i

with parallel side benns displayed in extensively scoured regions is eomll.1r.Lhle with the

observed seabed morphology in the Beaufon Sea. Relic scour fnmtatKllls .. rlo:

differentiated on the basis of discordant trends, dense occurrence. and the pn:.'\Clll,:e nf

fe:atures with greater dimensions. Table 1.2 lists characteristics for the sparse flIlfWl"linn

of modem scoor featufCS on lhe Grand Banks in comparison wilh surw:y data fur olher

scours on the continental shelves off Baffin Islarxl, Lahrador and Ncwfnundland,

including relict features in deeper WOlters (Geonaulics ud., 1989; l..cwis lllld

Blasco, 1990). The majority of measured scours within the water depth nngc nf mndern

iceberg drafts are less than 2 m deep, and the widths of most scours nOb'C hctwl.:cn

20 and 60 m, with rare 0..--urrences exceeding 100 m (Lewis and Blasco. 1990). The



Table 1.2 ICI! scour dimtnsiO/lJ for Iht taSttm Qmadian contintntal margin
(suuru : Geonautics LId.• 1989: Uwis and B/auo, 1990)

Paramctl:r Grand Banks Canadian east coast
(modem features) (an ages)

Mean Scour Deplh 1.3m 1.6m

EXlreme Scour Depth 5.0m Il.Sm

Mean Scour Width 2' m '8m

EXlreme Scour Width 100m 330m

Scour DensilY 0.3 events' km 4 events' Ian

Water Deplh Range down (0 200 m down to TSO m

Survey Population 407 events 21000evenlS

frequency of scouring on the Grand Banks is not well known aoo may be ellpcclcd to be

highly variable. reflecting deviations in the annual flux of kcberg incursions. Maximum

long lem scouring rales on !he northern exposed margin of the Grand Banks on the

order of 1 evenl' 100 km:' year are predicted based on available iceberg arrival data

(Lewis and Parrott. 1987; Lewis el al .. 1988).

1.1.2 Marine Pipelines

Dn~/opml!nl Scmarios

Marine pipelines offer a polentially safe. reliable. aoo cost - effective mode of

conveyance for offshore hydrocarbon reserves in eold ocean regions. Pipeline lransport

is not dependent on the prevailing climatic conditions and may provide a less

enviroMlCnlally lbrtalening allemalive 10 WIker transport in ice-covered waters. To



dale. no nujor oil or gas pipeline has been install'lJ in ;ams whic:h an: suh';',:\:t 11\

scouring b)' sea ice or icebergs. At prese.... the Hibc:mia Fidd on I~ Graoo Banks nf

NewfoundlamJ is tbe oN)' aaiYd)'~ al'Cl under dc:vclopmc:nl for oil ('WOOuc.'1ion

(Bruce. 1991: Chipman. 1992). Seabed soil and icc: coodRions in Ihis n.-gion mal,;~ il

prohibitive (0 deliver oil and cas (0 martel through marinl: pipelines. and Wltcr Iramplf1

is an i...egrat component of the propc:l5al production II.-heme. 1'bc dcYelopn-nt will

include subsea flowlines u a part of the colleclkxl S)'S1tm toeal to the Gravil)' B:uic

Structure. in addition 10 pipelines which will expon crude oil 10 orrshorc It,,!ding systems

situated approximately 2 kilometres away from the structure. The future exploilalioll of

smaller fields off the Canadian east coast may be expected (Q incorporntc some ....;p..'\:ts

of the following development approaches : muhiphase pumping and flowlint:S for suhsl:a

developmentS: seasonal. mobile production systems. and; iceberg detcclton. avoidance.

and management prog:rammes (e.g. Lever. 1991).

In~ rqions. there is poterCiaI for a coosidetabIe S)'Slt:m ofoffshore oil 01.00

gas transmission and p1htring pipelines (K..R. Croudale a. Associales. 1994). The

Panarttic Drakc F - 76 project: demoostJued tbe feasibility of production of a suhsca ps

well COIlIlICaCd to onshore procc:ss facilities lhrouch • 1200 m l10wIine bundle. from

fields off Mclville: Island in the Canadian Archipelago (Palmer cI al.. 1979;

Brown, 1990). On • much larger scale. Gulf Canada Resources Limitl.'CJ evaluated

production from the Amauligak Field in the Canadian Beaufon Sea. with continuous flow

to shorc via marine pipeline. over a distance of approximately 50 kilomctrc.~

(Rogers. 1990). In geRenl. the interaction of icc with the seabed is the ll'I05I. imponant

design considentkm for all marine pipelines planned in lSS4Xiation with oil aoo gas



pnxluction in the cold ocean regions of Canada. Pipclioe design issues related to ice

scouring must also be addressed in regions of the Russian Arctic where offshore

dcvclopmcnLS are proposed, including areas adjacent to Sakhalin Island (e.g. Truskov arxl

Surkov, 1991; Skurihin et al., 1992) and in the Kara Sea. MoS! recently, a major project

hils ht:en initiated to exparxl production of onshore gas rlClds on the Yamal Peninsula in

nonhem Russia. which involves the construction of six large· diameter pipelines across

Baytiaratskaya Bay over a distance of approximately 70 kilomelres (Palmer, 1994).

Pi~lill~ SafelY

The forces imposed directly on the seabed during formation of a typical scour feature are

large enough 10 cause severe distress to an unprotected, conventionally· designed marine

pipeline, likely accompanied by rupture and loss of containment. Simplified calculations

(Palmer et al.. 1990) show thai loads amicipated during scouring events lit: one or [WQ

Of'ders of magnilude larger than anchor forces. which are known 10 cause damage. 11 is

not practicable to design a pipeline system which is able 10 withstand the large forces

appltcd during direct icc contae1; al least not: over considerable distances al an acceptable

COSI. It follows that the pipeline must be protected by burial. The selection of a safe

burial depth may delennine the viability of pipeline transport which. in some instances.

may rrnder developmcnl of the oil or gas rlCld uneconomical. Incremental increases in

the design depth bcyorxllimits achievable using conventional pipeline trenching methods

may result in nearly exponential increases in projected costs (e.g. McKeehan. 1990).

In order to evaluate the risk of direa k:e • pipelmc contact associated with a

particular burial depth. lhe following two conditions must be resolved : (1) the



probabililY that an ice keel will intersect the prcscrihctJ pipdinc mute durin!! tlk: tillk.'

inlerval of interesl. and; (2) for a given ice ked tr:tvcBing the route. the pftlhahility that

the depth of scouring will exceed the burial depth of the pif'Cline. '111e Iwer.11I risk llf

failure due 10 direci contact may then be estahlishl.'iJ w;lh cnnsilkralioll tit' h!,lth

intersection and dept.h exceedance (Comfort et aI., 1990). An eXlcn.."ivc h.1."iC !,If

infonnalion has been compiled on the distribultcmS of scour Char:tC1l'ri"il~'lI in tlk:

Canadian OrrShoR including scour depth. width. orientation, aOO l1p:llial aOO l\.'fllP.lf'il1

frequencies (e.g. Gilbert et aI., 1985; King and GiIIl.'$fl)c. 1985; Gilhcn and

Pedersen, 1986; Gilbert et aI., 1989: Geonaulics LId., 1989). Thcsca~d scourdilla may

be used in probabilislic analyses 10 provide a quantitative risk assessment for a prcscrihcd

pipeline roule (e.g. Del noBke Verilu, 1988; Murraye:: al.. 1990). Altem.1lively. icc

environme~1 data may be applied explicilly in the prediction of ice • pipeline enCUUfUer

frequencies (e.g. Pilkington and Marcellus, 1981; Wadhams. 1982): however, at present.

Ihis approach is Iimiled by derlCiendes in the available ice information. including a lack

of sumcient conlinuity in coverage or resolulion of imagery or mapped data. It m,ly he

possible 10 use ice information 10 augment the seabed scour dalabase hy rdOlling thl:

differences in ice Rgimcs 10 observed scour distributions. by com:lating hetW\.'Cn oclual

ice features and specifIC scours or groups of scours. aOO by developing new scour ,...le

predictions based on ice parameters (Dickins ct aI., 1991).

An implicil assumption of early icc scour research was lh:lt a hurittl pipeline

would only be endangered if it was located above (he base of the scouring ite keel. A

pipeline may, however. also be damaged in a circumstance when: the icc itself did nut

contact il directly. 1be large forces exerted on the seabed during iI scouring event mu!>l.



he IrilnSrnilleU to Ihe sui] Ilene'llh Ihc scour, inducing high stresses and possibly causing

I,lrge uerormiltinns. Experiments carried Oul in a laboratory scour lank facilily

IPIKlf(Klshash el al.. 1989; 1)t1orooshasb, 1989: Paulin, 1992) supponed evidence from

invesligalinns Ill" relicl features and small scale field observations (Woodwonh

l.yrm,~, 1990, 1992) of large sub· scour soil movements. Funhennore, in recent studies

(palmer et ,II., 1989, 1990: Golder Associates l.1d., 1990), it was demonstrated that the

resfllJn,'lC (If ,. pipeline subject to scouring will be predominamly dependent on the soil

uefnmlalitln intlucr.:d in the vicinity of the pipeline. The maximum stresses that can be

tmnsmiued hy the soil are limited by its strength, and, for moSI soil conditions, a typical

marine pifIClinc can be expected to safelY resisl these stresses wilhout incurring excessive

str.lins (Been, 1990). A pipeline siluated in a zone of large soil defonnalion below a

scouring K:e kr..'e1 will be deflected as a flexible structure, unless the soil is very sofl and

ahle to now around the pipeline (Figure 1.3). The soil subjected to failure stresses will

he moved over large distances causing pipeline deflection and associated distress.

The safe burial depth of lhe pipeline must therefore be established not only below

thl;: maximum depth of ice intrusion, but also beneath a zone of excessive sub - scour soil

dcfonnalion. The implication of the latter condition is thai in order to facilitate rational

pipeline design methods, a detenninistic model is required 10 provide reliable predictions

of lhe magnitude and extent of soil defonnation during a scouring event. Once soil

displacements are defined. pipeline performance can be evaluated. The development and

verification of an appropriate model of ice • soil interaction is dependent upon the

availability of quantitative dala on the effects of scouring, applicable to well - defined

event.~ which are relevant 10 anticipated full scale situations.
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1.2 1>revlous Work

The majority of research involving experimental and theoretical in\lc..'''igation.~ (If (he

effects of icc scouring has been undenaken over the last tWO dl.."ClIdes. Early labor-dlory •

based studies were carried out within scour lank facilities constructed al lhe Memorial

University of Newfoundland (e,g. Chari. 1975, 1979 and 1980; Chari anc.l Peters, 1981;

Chari andGrttn. 1981; Chari et al.• 1982;Grcen. 1983; Prasad. 1985, and; Prasad and
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Chari, 1986). Small scale physical model studies were also conducted by Arctec Canada

Umitcd (AhtJelnoor and LapP. 1980; Abdelnour et aI., 1981, and; Abdelnour and

Grolham, 1984). This work provided insight into the parameters which influence the

forces applied to the seabed during a scouring event. In general, the experimental work

was used to verify theoretical models for the prediction of the scoor depth, for given soil

ronditions, of an idealized ice feature subjtcl to specirted environmental loadings.

Early tneorettcal representations of ice scouring included the dynamic model

proposed by FENCO (1975), and the work· energy models of Chari (1979) and

FENCO (1975). In the dynamic model approach, the differential equation of modon was

solvl.od numerically in a lime series fashion for all applied external loads, including soil,

wind, wave, pack. ice. and curreN forces. The horizontal soil reaction was calculated

llSing Coulomb's trial wedge solution with a plane failure surface. assuming full

mohiliution of the passive pressure. The vertical soil reaction was caJcuJated either as

a plastic material, based on the ultimate bearing capacity, or as an elastic malerial

characterized by spring constanlS. In the work· energy model approach. energy balance

considerations were used to estimate scour depths. The initial kinetic energy of the

iceberg, together with the won: done by Clll'Rnt - and wind • drag forces, was equated

to the work expended in ice scouring of the seabed. The wott. done at the seabed was

used looven:ome the fully mobilized passive soil resistance as given by CouJomb'searth

pressure theory, for an idealiud keel geometry with a vertical scouring face.

Chari (1982) extended the model by incorporating the method of stress characteristics

(Sokolovski. 1965) to evaluate the soil resistance. Comfort and Graham (1986) reviewed

the available: theomical models of ice sc:owing and concluded that !bey were best suited

11



for the following applications: (I) assessing the risk of damage (Ihrough din-oct Clmtact)

to buried pipelines by iceberg.s: (2) estimating scour pn."SSUfI:S on hurit.-d inslallalioflS.

and: (3) predicting scour potemial in ;mas where Iicld dala is scarce. The mOOcb may

also be employed to set physical limitalions on ~ximum scour dcplhs. com..'SpORJing

wilh extreme values of !he expected driving and .esiSlive forces.

Research related to soil defomation and associated mechanisms of failure during

scouring has been relatively limited. The lim compelling evidence of large sub • scour

soil movement was obtained from onshore fltld studies of relict iceberg scour!> CXf!l.ISl..V

on the fonner seabed of glacial Lake Agassiz in southeaslern Manitoba (Figure 1.4)

(Woodworth· Lynas and Guigne. 1989. 1990: WoodwOr1h· Lyna.~. 1992). Detailed

mapping of the sidewalls of an excavation Ihrough a large scour approximately SO m in

width. revealed well· defined shear planes in overconsolidated clay. extending to at Ica.~t

3 m below me base of the inferred scoor incision surface (Figure t .S). Suh· scour

displacements as large as 3.S m Wert deduc:ed from measured offsets of remnanl

bedding. The shear plane:s plunged at an angle of about 2S degrees to the horiwt1Ull

which is comparable with the angle of iDlCmlI friction of the Lake Agassiz clay. This

evidence suggested that the soil beneath the ice may have experienced a bearing ClpEity

failure with the fonnation of a Prandtl • type mechanism. in aa:ordance with the solution

of Terzaghi (1943). Clark and PooroosJwb (1989) posculated two distinct modes of

failure during a scouring event. The first mode involved the ploughing Out of ncar •

surface material and subsequent lateral movement from the path of the iet to btnns on

both sides of the resulting scour incision. The second mode was that of a bearing

capacicy failure. in which the downward movement of the soil wedge below the K:e kcc:1

12



Figure 1.4 Aerial photo of the study region near Lorette. Manitoba.
Relict iceberg scour features appear as prominent white lines in cross 
cunmg panerns (couneS)' of Chris Woodwonh - Lynas, C - CORE)

..,.,

Figure 1.5 Cross - .Jection through /tug/! relict scour showing mapped shear planes and
deformed bedding beneath the incision surface (after Woodworth - Lynas. 1992)

13



is equivalent to the tocal volume of soil displaced from the scour lnlugh Ic.:ss the hll:!1

volume of soil comprising lhe adjacent berm S1ructures. The infonllation ohC..ifll.'d fnml

the srudy of relict scours in Manitoba prompted Further field and Iabor-nory inv.:stiwuions

to define the nature and extent of sub - scour soil deformation.

FJeld programmes were conducted by C • CORE, St. John's. Ncwfoundlard 10

investigate soil deformalion benealh modem small scale scours formed hy p;ln icc during

spring breakup on the tidal nats of the St. lawrence estuary near Muntmagny, Quc.ilc\:

and at Cobequid Bay. Nova Scotia. Some of the resulls of these investigation~ were

described by Poorooshasb and Clark (1990) and detailed observ3lioll!l werc prescntcd by

Woodworth - Lynas (1992). The scour features studied were typically 0.5 to 1,0 OJ ill

width, and ranged in depth from about 0.15 (00.2 m. At the Montmagny site. the

scour - affecled soil was a recently - deposited, very soft, brown sill which overlie5 a

S1iffer marine clay, whereas the Cobequid Bay sedimenu consiSl~ of soft to firm, highly

laminated tidal silts, Excavattons were made: through several of the scour tracb to obtolin

visual records of the effects of scouring at the section. and to pennit local shear S1n.-ngth

measurements using a hand - operated vane shear apparatus. The extent of .o;oil

disrurbance below the scour was estimated based on the shear S1rength measurements and

also through mappina of distoned soil horizons. This work provided evidence of sub •

scour soil movements in which the pattern of soil displacements was similar to the

morphology of the scoured surface. Comouring of shear strength measurements suggcstc..'d

a poorly - defined zone of slightl)' increased strength immediately below the SCllUr

incision. At Cobequid Bay. denected sediment layering, small scale fokls. and faults

were kJcalized benealh and immediately adjaccnc to scour features. Sedimenllayers were

14



deflected vertically l.!ownwllrd such that the magnitude of deflection diminished wim

depth to negligible values approximately 0.5 m beneath me trough of a typical feature.

On bOlh edges of the trough, sediment layers were deflected upward over regions

exceeding 0.8 m in widlh, correspoooing with heave of the scoured surface. In addition.

some evidence of low angle shear plane developmeO!, similar to that observed below

relict iceberg scours in Manitoba, was obtained.

Laboratory studies undenaken by C • CORE within the scour tank facilities at the

Memorial University of Newfoundland included model tests conducted in both silt and

sand <Poorooshasb et aI., 1989; Poorooshasb, 1989; Paulin. 1992). The first set of tests

investigated the scouring process in a 0.4 m thick gravity - consolidated silt unit

possessing an average undrained shear strength of 4 kPa. The silt unit was overlain by

a clay layer of 10 mm lhickness, with an average strength of 10 kPa. The entire model

seabed was saturated and submerged during testing. The model iceberg comprised a

series of aluminum plates assembled to form a complex prism shape. The model was

pennitted to pitch and heave during scouring, and these movements were dependent upon

the stiffness of springs which formed a part of the mounting system. The model was

driven forward at a constant velocity of0.06 mls to create a scour. Tests were performed

at two different scour cut depths of 40 and 70 mm. The results were fully reponed by

Poorooshasb et al., (1989). The effects of scouring were evaluated based on pore

pressure measurements and through observation of layer defonnation. In each lest, deep •

seated defonnations were observed, which appeared 10 correspond with large transverse

movements in the plane perpendicular to the direction of travel. Pore pressure

measurements suggested that stress changes may be expected at depths k:ss than about

IS



seven times the depth of scouring, Below the smllowcr Sl.'OUr. soil displacements wcn:

recorded to a maximum dcplh or about 200 mm. wht.'n.'35 app:ln:11l n:mookJinp or the

soil. with lite obliteration or pre • exiSiing laminae. occum:d to a I.kpth "'qwl In Iwice

the scour depth below the deeper feature. In gerw:ral. the effects of scouring tlt'SCrv..'tI in

these experimenls tended to suppon phenomenological dalll acquired from pn:ceding liell.!

studies or relict and small scale scour features,

More rccenlly. a series of model tests were carried out to investiGale the sctlur

process in both dry and submerged sand (Paulin. 1992). as a COnlinualion of the

experimental programme initiated by Poorooshasb (1989). In lolal. eighl t..'SIS wt.'I'C

conducted. of which two involved submerged conditions. The model seabed was 0.4 m

deep. 3 m wide. and 5 m long. and was composed of silica sand plq)ared OIl spccmed

relative densities which were varied between lcsts. from 0 10 50 perccnl. 'Ibc model

iceberg was constructed of aluminum plates. arranged in a regular polygonal shape. with

a horizontal base and a flat inclined front face. The width of the model was set al either

430 or 860 mm for a panicular Itst. and the allacle angle of the front face was similarly

fIXed II either 15 or 30 degrees 10 the horizontal. During testing, lhe model was

advanced at a constant velocity of 0.06 mis, Two different scour cui lk:pths of 40 and

75 mm were investigaled.

The raults of this lest series provided fUMer indicalion of the boundary

conditions and material states for which the effects of scouring may be expected 10 be

significant. Soil displacements were measured 10 depths below the initial surface as great

as 3.5 times the depth of scouring. and the horizontal component of displacement was

domiDanl. The magnitude: and extent or the sub· scour displacements increased

16



significantly wilh decreasing sand density. Soil displacements were restricted to a region

immediately beneath the model keel (within approximately 5 mm) for the tests performed

in santi of higher density. A change in lhe anack angle of lhe model iceberg from 30 to

15 degrecs also produced a noticeable increase in lhe amount of disturbance beneath lhe

scour. For sands of different densities, relatively negligible sub - scour displacement was

recorded in tests where lhe anack angle of the model was set at 30 degrees. As scouring

progressed in a test. successive strong discontinuities. inferred as rupture planes. were

observed to surface both in front of and to the sides of the model iceberg. Paulin (1992)

concluded that vertical forces exerted during lhe model scouring events were of sufncient

magnitude to induce bearing capacity failure. based on comparison of calculated bearing

capacity values wilh measured vertical loads, together wilh evidence of upward vertical

displacement adjacent to lhe scour incision.

Poorooshasb and Clark (1990) reviewed the results of laboratory studies

conducted by C - CORE and submitted general conclusions as follows: (1) under certain

conditions, signiftcant sub - scour defonnations occur in model tests in fine and coarse

materials; (2) in coarse materials. the defonnations are largest in loose soils; (3) in

coarse materials, the effect of reducing the attack angle is to increase the force reqUired

for scouring and to increase the amount of sub - scour defonnation; (4) in coarse

materials, low strength zones appear to attract deformations; (5) in medium to dense

sands, tlte vertical total stress decreases and then increases during the approach of a

model iceberg; (6) the stress levels fall off rapidly as the distance beneath a scouring

iceberg increases in coarse materials; (7) in low S!R'ngth fine materials, shear strains are

set up by the passage of a model iceberg lU up to seven times the scour depth, and; (8) in
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fine: malenals. small surface defonnatKms rn;y coincide wilh signific:ml sub· 9."uur

defomulliof1S.

A 1/4 scale model lest facilily was established by Esso Can;uj;l Resources Lil1lill.-d

(0 obtain large· scale Ihree • dimensional performaRl:e dala on lhe hchavioor uf;1 burk'll

pipeline subjected to soil movemenlS induced by ice scooring (Weaver C( al.. 1988). The

authors described the lest facilily and instrumentation. and discussed their effectiveness

in lighl of the mullS of lhree initial experimenls. The apparalus included an il.'C kl.'C1

simulalor which comprised a 1.0 MN reaction frame and a 3 m wide by I m high rigid

indentor. The indentor may be advanced a disllnce of 2 m at an angle of 20 degrees 10

lhe horizontal, loward a 30 m long steel pipe section, buried up 10 I m in soil and

anchored at both ends. During a test, the pressure dislribultons on !he pi~ alllJ i~nlor

were monitored using a variety of inst.Nmenlalion, including devtccs dcvdoped

specifICally for lhis experimental study. Test mulls were 10 be used 10 calibrate cIlsting

analytical models of the ice • soil· pipeline inleraction.

Considerable research into lhe effects of ice scouring and the response of huried

pipelines was ~ntly conducted by Golder Associates Ud. in conjunction with Andrew

Palmer aIK1 A5$OCiaICS lid. (Palmer et al.. 1989; Been etal., 1990; Palmer et al.. 1990;

Golder Assoc:ialCS lJd., 1990; Been, 1990; Palmer. 1990). The main objective of lhis

researdl was the devdopment of detenninislic models of the inleraction between the

scouring ice. the soil seabed, and a pipeline buried in the seabed. To begin with. the

aulhors suggested a useful concepnaal framework in which to categorize soil defonnations

and their effect on a pipeline. As illustrated in Figure 1.6, the soil displacement neld in

the vicinity or. scouring ice rcaQlre was subdivided inw lhree distina. regions: (I) an
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upper large strain Zone I, above the base of the keel, in which the soil is first displaced

upward into a mound in front of the advancing ice, and is then moved laterally to berms

on eilher side of Ihe resulling scour; (2) a lower large slrain Zone 2, below the base of

the k(..'CI, in which the soil experiences large plastic deformation, and: (3) a small strain

ZOf'lc 3. in which the soil is subjected to stresses transmitted from Zone 2 above. but in

which the resultant soil displacements are small and essentially elastic.

Preliminary studies were undenaken to assess pipeline performance in each of the

aforementioned zones (Palmeretal .. 1990; Gokler Associates Ltd .. 1990; Palmer, 1990).

For a pipeline situated in Zone 3. the potential for collapse under loading applied by the

soil was evaluated through the application of the lower bound theorem of plasticity. A

model was also developed to calculate the elastic siresses and strains in a pipeline buried

within this zone. In this model, the plastic stresses in the failing scoured soil were

compulctl. and stresses at the rupture surface were then applied to the elastic soil in

Zone 3. Both of these analyses suggested that a typical marine pipeline buried wilhin

Zol'll: 3 will be safe. and this conclusion was unaffected by moderate variations in

assumed parameters. For a pipeline located in Zone 1 and contacted by the ice directly.

analyses of plastic bending. denting. buckling, and tensile failure loads and su-esses

demonslrated Ihat severe damage or rupture may be expected. finally. it was indicated

thai in Zone 2. the safety of the pipeline would be dependent on the scour· induced soil

defonnations. As such. lhe following requirements were considered to be the most

peninent to pipeline design: (I) the assessment of the scour path and depth of scouring.

and: (2) the determination of the extent of Zone 2 and the soil defonnations developed

in this zone.
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Figure 1.6 Schematic oj axial Itclioll tll10llgll scouring ice kttl mltl ZO/le.' /II .wil
deformation as defined by Palmu et 01. (1989)

A work • energy mode) and associated computer proglOlm W1:fl: dcvclOflL'l1 10

predict the scour pam and depth of scouring incremenlally :11 small pn.'5Crihcd

displacemem intervals (Been et aI., 1990; Golde, Associates Ltd., 1990), With Ihis

model. it was possible to account for ice uplift buoyanl fon:cs. icc ncltural slirrncss (fllr

a ridge within an ice sheet), driving forces due to wind and currenl, icc - sui! fricliun.

and surcharge due to ploughed soil. User· specifICation of the aUack angle tlf the icc

feature was also pmnittcd. In addition, the model allowed for consideration of !iCOOring

in a heterogeneous soil or in soils with varying strength - depch profiles. The r.oil

resistance was evaluated through passive pressure analysis based on the method of Sln..~

characteristics of Sokolovski for a restricted class of problems in which the (ollowing

conditions were assumed : (I) development or a specific rupcure mechanism including

the presence or experimen1ally observed non • deronning or dead soil wedges. and;
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(2) equality ofthc soil friction and dilation angles. The Sokolovski analytical method was

modiftt:d In include the formation of dead soil wedges within the failure zone following

the pmcedun: propoSl.:d by HeltiaralChi arxl Reece (1975). Simulatioo of an observed

lkaufon Sea scour (Scour EI documented by Shearer et al.. 1986) demonsmted that

reasonable agreement with the measured profile could be obtained using the model.

Been cl al. (1990) compared venial scour forces derived from their genenillized

fl3ssivc pressun: analysis with calculated bearing capacities. for a variety of seabed

straligraphie.~ and soil strengths. In all cases. the calculations were performed for a

constant ."iCoor depth and a constant ice keel attack angle at 30 degrees to the horizontal.

The following tn:ncJs were inferred from the results of the comparative analyses:

(I) there is link: potential for sub • scour disturbance in sand; (2) where clay overlies

sanc.l. there is lillie potential for sub - scour disturbance when the depth of scour is near

the clay· sanc.l interface; (3) in uniform clay layers. the potenlial for sub - scour

disturbance decreases as the: clay s~ngth iDcrea.ses. and; (4) there is a decrease in sub

scoor disturba..:e poeenlial when a soft clay is underlain by • stiffer clay.

A study was carried OOt to predict the depth and size of Zone 2 (Figure 1.6)

"reduced by a passive failure mechanism (Palmer et aI., 1989; Golder Associates

Ltd.. 1990). The upper bound theorem of plasticity was used to generate velocity fteld

solulx>os to the problem. A panicular class of velocity fields was considered wherein

regions of uniform velocity are scpIrated by strong discontiooities in which all shear

deformation and volume change is concentrated. A range of velocity fields was

comMieTed anc.l the solutions optimized to provide an indication of the expected depth of

disturbance. It was found that whik it is possible to generate kinematically admissible
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velocilY lIekls in dil:llant malerials lhal exhih;l r.uh· SI.·our l,kfllnnalillflS. 1hl.'Sl.'

mttbanisms result in passive forces on the ke whkh are larger lhan i1kl:'C fllf \'Clucil)'

fields which do not exhibit sub - scour dcfont\alions. l1lCrefllre. il was ICIII;IIi\'d)'

concluded that sub - scour diSlurbance due Itl ,\ p:L~sivc failure mechanism is lIUI

significant. As a resull of this scudy. lbe authors :llso indicau.'lI Ihal slmn1!ly dihll;lIll

m:uerials are morc likely to experience defonnation below the scour ik."..h. hut lh:u such

defonnations are not expecled to extend far. It was emph:tsil.l.'lI Ihm vclucily licit!

solutions are not unique. and that independent dala an: f1l.."Cl........;ary to Clitahlislt lh:lt the

postulaled velocity fields dcvelor during scouring events.

Palmer el al. (I990) conducted further analyses for non - dilalllni suils Ireatl.'lI as

ideal perfectly' plastic materials with an associated now rule. II wa.~ 1)l;1I1.'d lhat Ihis

idealization may be reasonable for soil in the actively scoured zone which. as a result Hf

repeated deformation. may have reached the crilical Slate. '(be upp:r bountJthcorcm of

plasticity was applied \0 calculale the resultant scour fom:s. By COflo;idcrnlkln uf a

number of defonnation modes. an interaction curve (yteld locus) was gcncr..ltl.~ which

represerud possible combinations of the non - dimcnsionaJizcd vertkal and ourizullIal

cornponenl5 of the resultant forc:e for a particular icc geomt:try. 11lc nonnality rule uf

plasticity was applied 10 determine the point on the interaction cUl"'e which com:spOf'llk.'d

to horizontal motion ofthc ice. In this manner. simple relalionships were dcvclopcd fwm

which lhe resultaN fon:e components may be estimated from. knowk.'lIgc uf Inc suil

shear slrength. and the scour width and depth.

As depkted schematically in Figure 1.7. soil deformation and failure may he

anriooled conccpcuaIly to two types of mechanisms (Been. 1990; Golder Associates
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Ltd .. 1990): (I) passive pressure or hearing c'lp,.city failure. with thc dll\'dllpmcllillf

a rupture surface in which soil undergoes largc slr.lins :mu ui~pl:lclllllelll~, amI; (2) ,m

independent shear dlilgging mechanism. which m:lY ,lCetlUnt for large ~uil mllVClllell1~

below the ice in Zone 2. II was recognized that soil adjaecnl Itl a rupture ~urr:II.;c. IIr ,I
rigid body sliding relative to the soil. will be dT'dggetl along in the dirLoctioli Ill' ~he:lrillg.

Although a delailed analysis of the dlilgging mechanism wa~ nm pcrrunned, the aUlhurs

rostulaled that the depth of a lone of large dragging defonnations helow the icc will he

unlikely to be related to the scour depth but instead will depend only on the strcs.~ • Slrain

behaviour of the soil. Furthennore, it was proPOSl..'d that, due to strc~~ Itlcali~.;.titln

effects, strain hardening soils may be expected to experience a larger tkpth of suh •

scour dragging than strain soflening soils. This suggestion was notl..'d to he ctlll~isleni

with available laborator'j observations, where only loose sands show il signilic:ll\t depth

of sub • scour disturbance, and softer clays display greater depths of disturhance than

stiffer clays. It was also speculated that soil displacement in the direction of travel will

be a function of the soil properties. the width and depth of scouring, and lhe magnitude

of the displacement of the scouring ice relative to the soil.

A laboratory indentor testing program was undertaken hy Golder A.~snci:ltcs

Ltd. (1989) in order to provide experimental data 10 verify analytical models, :lOd 10

identify displacement patterns in soils around scours. A total of 46 tests was performed

in both sand and clay soils. Sand with average densities of 1421. 1612, and 1690 kg/m),

and clay with undrained shear strengths of 10. 20. and 40 kPa were investigated. All of

tbe tests were carried out using flat indentors inclinetl at either 30. 60. or 90 degreCl; to

the horizontal, scouring at a depth of 100 mm below lhe original soil sorface. In a given
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It.ost. illI indentor widlh of 100. 200. or 400 mm was employed.

A summary of Ihc results of lhe indenlor Iesling program was reponed by Golder

Assudaies Lid. (1990). Some of lhe conclusions presemed by the aUlhars were as

folloW!>: (I) ir!dcnlor penelralion imo sands resulted in the development of discrete

rupture surfaces and large nuc!uations in loads as failure occurred on successive rupture

surlaees; (2) in clays. discrete ruplUre surfaces also developed but these occurred less

frt."qucnlly in softer soils: (3) dead wedges of soil were observed in from of the indentor.

hut it was notetl that the front face of the wedge may be close to vertical or sloping back

loward lhe indentor rather !han forward as suggesced by Helliatatehi and Reece (1975);

(4) a width 10 depth ralio eXceeding about three was required before plane strain

a'ISUmplions were found 10 be valid; (S) analylical calculations of passive pressures based

on lhe melhod of stress characlerislics as modified by Heniaratehi and Reece (1975)

provit!cd good agreemenl with measured forces (with allowance for spoil pile

developmem and Ihree dimensional effects): (6) sub • scour disturbance. attributed 10 the

shear· dragging mechanism. was generally limited 10 a small zone below the: indentor;

(7) looser sands and softer clays extUbiled grealer disturbance below the indentor than

was witnessed for denser sands and stiffer clays; (8) based on a limited oomber of

ob§ervations. it was suggested thai inenial effeas and pore pressure generation in sands

may represenl imponanc faclors. and; (9) soft trench backfill materials were noted 10

draw the failure plane downwards below its normalleyel due 10 the development of stress

conccOlrations at lhe stiff· soft materi:1I interface.

Examinations of available rICk! dall on full sized scours indicalcd that such dall

are generally not: suffICiently well· deftncd 10 pennil reliable evaiUlltoR of failure
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mechanisms or sub· scour defonrultions (Gilbert. 1990: Cum fun ct al., \99(1: Lewis :mu

Blasco. 1990). ACOUSIK: disturb:t~ below ice scours h.u tk.ocn infreqUl:ntly f\."\:urili,.'lI un

high· ~Iulion sub • bottom profiles of the scoun.'d 5~:at-.'d in 1'-: 8caufurt Sc3.

Observations of this phenomenon wen: typically limitl.'d to 1'-: Mac/.;l."IYJ-ic Tmul;h

physiographic region. where discurbances arc p~1'VI:lJ in hcdding flla~ tlue III hil:\h

sedimentation rates and relatively low scouring ratt.'S (Comfort t.1 al.. 1990). Figure 1.8

displays two scour features for which a region ofawarcm dislurbancc- may he h.lcmifiJ.'d.

possibly rclated to the effects of the corresponding scouring cwm (O'Connor ,mtl

Associates Ltd., 1980), The scour depth (D) ofthc larger fcature was 2.3 III: Iltlwcvcr,

it was estimated that about 2 m of infilling (I) may havc occurreu. II molY atSiI he

inferred from the acoustic character change (2) lhat the scdimcnLS in :10 cxtcll...ivc n.:giull

below and adjacent to the scour trough were affccted. anti a similar n:'gion of disturh:IOCC

(3) may be defined for the smaUer feature, shown 10 the right in the section. ~udil,$ of

several thousand lin'~ kilometres of sub - boltom profiJer dala in the Canadian 8c'.aufnrt

Sea revealed only 38 cases where this type of disturbance is present. The analysi.. uf thi..

data indicated that. on average, the inferred deplh of disturbance was less than lIhout

I.S times lhe scour CUt depth in soft clayey scdimenu. and the width of disturhancc w...~

approXimately equal to the width of lhe scour (Comfort et 011., 1990).

The region of uisturbance identified on sub • bottom profiles (Figure 1.9) may he

attribuled 10 sub • scour soil defomation caused by the single event in question, it may

be Ihe result or previous scouring activity or lhe infilling of lhe existing scour, or it may

be an acoustic artifact (Lewis and Blasco, 1990). According to the author!i, lhe

presence of the scour incision itself allers the trilvel paths of normally vc:r1teaJ incident
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Figure 1.8 High. r~solutjon sub· borrom profil~ showing cross· sections of two ice
scours in stratified sediment (O'COMO' and A.fsociarts Ltd., 1980)

Figure 1.9 Schematic dUlgram o/appaufIl sub - scour disturbance. as exhibited on sub 
borrom profile records (after UwiJ and Blasco. 1990)
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sound waves emiu~ and n:c~iv~ by the profilin); inslrumcm. 'nlC> tr:tvd path distunitlll

may result in either an aniflcial acoustic void benc::lth the scuur Ilr :m apparcm pull • up

or pull • tJown of horizomal sediment laycn;. 11 ma), be L1irrK:tllt to L1iSl,:riminate bctwl.-,:n

these llCoustic anifacts and the actual effl.'Cts of 5COUring. k"3l1ing til funher uncer1;1inl)'

in the intcrpretation of profile d:lIa.

1.3 Current Research

Objectives and Scope

A knowledge of scour· induc~ soil deformation is Cll!;cnti:.1 Itl alluw fur :1 rlltimlal

approach to the design of marine pipelines in regions vulncmblc 10 icc scouring. With

lhe exception of work cited in the foregoing section. research conlluctl.'tJ in this arca h.a.~

been relativel)' limited and inconclusive. Theoretical studies are unahle to pmvidc

definitive solutions without independent verirlcation of predictions of physical bchaviuur.

Unfonunately. direct measurements of the effccts of icc scouring beneath lhe modc:m

seabed are generally not feasible. and high. resolulion geophysical dala an: nllt

conclusive in resolving the extent of sub - SCOlIr dcfonnation. In additKm. field

investigations of onshore relict scoors are restricted by the age of the fcaturcs. and

inadequate infonnation regarding the scouring event ilSClf. MOf\.'Over. small scale

laboralOry model tests cannot be expected 10 provide resullS which are direclly aPfllicahle

10 the field situation, due 10 depanures from similarity arising from unrealistic initial

stress kvels in the soil.

"The defICiencies inherent in conventional experimental studies may he surmounlt.'t!
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by the applkation of centrifuge modelling, which ensures improved representation of soil

hehaviour through the attainment of similarity of effective stress and pore nuid pressure

liclds with the prototype. The present study involved the design and implementation of

a programme of small scale model tests of ice scouring in a geotechnical centrifuge. The

tests were undenaken to obtain insight into the mechanics of the ice - soil interaction,

lind to yield quantitative data on the effects of ice scouring, for well - defined events

which were representative of particular situations at full scale.

The centrifuge test data provided a basis for the development and verification of

dctcnninistic models of the ice ~ soil interaction. The prediction of scour - induced soil

displacements may nOl be comprehensively resolved without recourse to a numerical

analysis incorporating statics. kinematics. and a complete constitutive relation. In the

pn..-scnt study. the application of a large strain elastic - plastic finite element fonnulation

was invl..'Stigated. in order to account for the material and geometric nonlinearities which

are inherent to the problem. The objectives of the slUdy may be subdivided as follows.

(I) Develop a centrifuge model idealization of ice scouring through an assessment

of the relevant field ice scouring conditions, and based on the available information from

previous laboratory studies. Define the limitations of the idealization which may arise due

to physical features or complexities of the event which are not reproduced, or which

result from scaling relationships that cannot be satisfied simultaneously.

(2) Design a centrifuge test package to simulate the idealized scouring condition.

;md demonstrate the effectiveness of the proposed apparatus for use in the high ~ gravity

environment with remote data retrieval and system control. Provide appropriate

instrumentation to measure the stress and deformation fields within the soil. the
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qualitative effC(;t5 of scour on mOOel pi~linc scgm:ms. and til.: rcsultam forco.~ aClil1~

on the model ice feature during :I scouring eYeIU.

(3) COndUCI a series of centrifuge modcltests IU inVo.osligatc limil\.'l.l variatimtc in

parameters expected to innuence the effC(;t5 of scouring.. In addiliun. conl.!uctlo.'SlS which

model an identical pl"OlOlype at two different SCllIes. to l'StilI'lHsh the imemal cun.'.istcncy

of lhe modelling method.

(4) Reduce and document !he results from each a:ntrifugc tlostto render:J unique

dala set on the effC(;t5 of scouring for an event which corresponds dirl'Ctly wilh a nOliunal

full scale situalion.

(5) Apply finite element analyses 10 simulale nn idcalizl:d scouring cnndil;lI11.

Detail the limitations of the proposed numerical represent'llion. ProvitJc prelimirutry

verification of the numerical approach through comparison with centrifuge leS! rl':iUlts.

(6) Discuss the direct implications of the centrifuge lest results. aOll the

implicalions of a compantive examination of the rcsuhs ofholh centrifuge modelling and

numerical analyses. for the design of marine pipelines situated in ice scoun:d t\.'ITltin.

(7) Provide recommendations for fuMber physical and t~k:al moddling. in

suppoM. of the devdopmenc of a reliable engineering model of the icc: - soil· pipeline

interaction.

1be scope of the physical modelling study was limited to a series uf nine tesl~

perfonned using the beam cenlrifuge at the University of Cambridge Gt:utcchnieal

Cenlrifuge Centre in Cambridge. England. The soil type in which all of the model .<;cours

were created was a reconstituted kaolin clay. and the stress history of eact. ..lay spl'Cimcn

was defined to est.ablisb desired stress staleS wilhout detailed reference to specifIC f.ekJ
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cumlitions. The numerical analyses were restricted 10 two· dimensional plane strain

rcpresenl31ions of the prohlem. and wen: implemenled through use of a commercially

OIvailahle generdl purpose finite element code.

'fIleS;.f Ou/line

The thesis was organiZL'd into seven chapters. Chapter 2 indicates the rationale for use

of the centrifuge. and defines the physical model idealizalion and its limitations. with

reference to available infonnation on relevant field conditions. Chapter 3 describes the

equipment and experimental procedures which were: used to fulfil the model design

requirements. Chapter 4 oullines the centrifuge test programme and presents detailed

results for the individualtesls. Chapter 5 describes the finite element formulation adopted

and lhc implementation of the analysis, with consideration of the restrictions imposed by

thc numerical approach. Chapter 6 provides a comparison of the results of the analysis

with the experimental data from representative centrifuge tests, and discusses the results

of both physical and numerical modelling with regard to charclcterization of the effects

of scouring. the influence of test parameters. and implications for !he design of marine

pipelines. Finally, Chapler 7 summarizes the main contributions of !he present study and

provides recommendations for funher research.
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Chapter 2

Physical Modelling

2.1 Introduction

Physical modelling is an important tool for the investigation of ~oil hchaviour L1urin~ :m

ice scouring event. Models provide an alternative means of obtaining the infllrnl:llion

necessary 10 design or analyze systems involving natural phenomena which cannnl he

rigorously described through the applicatton of mathematical techniques. Full !\Calc

observation should orrer the besI approach for Shldy of the pmblt:m; however. l.Jimcultics

relating 10 conllOl of conditions. instrumentation of a suitable Sill:, a.ntI lime

considerations (in thai occurrences of panicuW' scour events are relatively unpredictable)

restrict lhe practical implementation of field investigations. Small scale modelling tlas

advantages in terms of the ease ofconstruction of models and the cOfllwlll.'d cnvimnmcnt

in which me test is performed. Results from widely different model condilion.'i mill' he

obtained with the same experimental apparatus at a saving in time. cost. and ]:lhHur in

relation 10 a full scak study.

Physkal simulations of tee scouring have lnus rar involved small or ml.:dium •

sized model teslS in wbteb the stress scale bas not been allcred. To addn..~ the



dertcK:ocil".'S inherent in convenlional small stall: modelling of geotechnical phenomena.

lhe pn.."'iCnl re..o;can:h programme applied the method of centrifuge modelling 10 the srudy

of icc 5COOring. The moocl leslS were conducted 10 gain a better underswxling of the

ll'lt.'Chanic.~ of scour and also 10 obeain information on lhe nature, magnitude. and effect

uf the parolmctcl'!l that are present in the system. This chapter describes lhe physical

model idealization of the ice scour problem and the relevant similarity requirements. The

proletical ilO.wcS involved in implemematkm of the experiments are considered in

Ch:tplcr J. A brief discussion of physical modelling is first presenled 10 iIIusuate !he

principles involved in the development of model design criteria and 10 rationalize the use

of the centrifuge technique.

2.2 Physical Models and SImilarity

Physical modelling is commonly used to investigate complex engineering problems. A

model may be defined as a device which is related 10 a physical system, the protOl)'pe.

in such a way that observations and measurements made on the model may be used 10

predict lhe perfonnance of the proIoIype in the desired respecl. The protOlypC may be

an existing system or. in some cin:umstanc:es. it may be a OO1ional silUalion Cflvisaged

in a resean:h study. rtpresenillive of a panicular class of evenl. In all cases. model

design crileria or similarity requirements for the system must be 5alisOed to ensure that

lhe important physical aspects of the prototype are reproduced at specified scales.

The results of model lests may be extrapolated to predtct the prototype response

providing that the model tan be demoostnted to be relevant 10 the protorype sinwion.
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A valid model and protOlyPC must be similar syste:nu.. If Ihe: p3n.~ IIf lhe: twn $yl'l~·tllS

have the same shape. they are said 10 be g~'Omc..1rically simi!:lr. Thi~ is II t\,~ic

requiremenl for most model studies and il implies it poim to point cnrrespunue:ncc ill

terms ofa linear dimension scale. The concept of similarity must :llsu he: e:XIClkku III all

other characterislics which innuence the phenomena untler con.~it1cr.uilln. I~tlr e:xamplc.

in georethnical swd~, similarity of material behavKlur betW\.'Cn mudd and pnlllllype i~

essenlial but has orten been improperly neglecll:d in c:onvcntion:ll L,hc.K01lury

investigations conducted at Eanh's gravit). In general. the prototype COndit:OIL~ which

significantly innuence the behaviour in question should be equivalent al cllITCsplllltJing

points in the model and any dissimilarities should be shown 10 he 01" miTkJr implln:lIk.'C.

Practical constrainu may require lhat compromises be made in the replication II(

prototype conditkms. "The recognilion of these model distonions or depanuR.'S (mill

compkte similarity is essential to assess the limitations of the model in the intcrprctlUion

of test results.

The general principles of modelling lheory are well establisht:d (e.g. L:llI/,:haar,

1951: Sharp, 1981) although, to date, these principles have not been widely cxplllitl.'tl in

lhe field of soil mec:hank:s (Scott, 1988). The development of similarity n:quircmcnu lind

scaling relationships for the model and prototype may be aa:omplishcd u.sing diITcrenl

approaches. Modelling criteria may be determined directly through evaluation uf the.

characteristic equations whicb govern the phenomena under consider.llion. However, Ibis

approach is not viable for model studies underlakcl" to investigate conditions which ;trc

not amenable to rigorous mathematical analysis and, in these cases, motk:lling criteri:t

must be developed from panial analyses which are ba.'iCd on dimensional or similarity
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considerations. Dimensional analysis allows infonnalion aboul a phenomenon to be

d1,.1cnninccJ from the basic premise thai the phenomenon can be described by a

dimensionally homogeneous equalion among certain variab~. Techniques for deriving

a dimensionless funclional equation from a specified lisl of variables thai is both adequate

and minimal arc thoroughly discussed Ihroughout the IileralUre. Inspection of the

dimensionless equation leads 10 lhe establishmenl of model design criteria from which

suilable Sl;:ale ratios for the model may be delennined.

Consider an idealized scouring event in which a body of ice (assumed as rigid)

cuts a Sl;:our in a unifonn clay. The geometry of lbe ice feature and the scour may be

defined by a characleristic length, taken as the scour deplh 0 and by the inlerface attack

angle cr. The buoyant weight or venital force W impo~ by the ice feature may also

innuencc the problem. The event is sufficiently rapMt in lhe relatively impenneable soil

suc:h thai undrained cooditions exist, even 3t lhe small scale of a model. The clay may

be: c.lescribed as an ideal cohesive materia.! in terms of the undrained shear strength c: am

lhe submerged mass density p as well as the adhesion a deYeloped at the ice • soil

interface during relative motion. A strain rate effect on the strength of the c:obesive soil

is not introduced in the analysis. Inertia forces related to the dlange of momentum of the

soil are also constdered to be l'IC:gligible for the range of velocities of interest. The

simplified physical system can therefore be specifted by !he following functional

equation :

F • f ( C, 3, p, g. W, 0, cr )
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which indicates thaI lhe ~ullanl scour force F is relal~ III It.: l!1.·unk.'tl)· and weight Ilf

the rigk! body, and 10 the propt:n;es of lhe soil, wheN 1! is Ihe gr;l\'itatillllal :1I.:cc!er.lliiln.

A panial analysis then leads 10 an ~ua(ion in which the \',trialllcs havc hi.-':ll cllmhilll.'U

10 fonn dimensionless paramelers as follows:

-"- .• 1-' '':'~'"lcD: lpgO c cD~

where .; implies a funclional relationship or dependl.:ncy.

(2.2)

Model design crileria may now be eSlablished on the hasis of Equ3titln 2.2. llll:

resullam force F non· dimensionalized with respecl to c D: will h:IYC thc S;IIIlC Y,lluc

in the model and procotype providing that each of the tcnns on the right hand sitJc lIf thc

equation is equivalent in both systems. The initial two similarity rcquin:mcnL" relalc III

the scaling of the soil medium and pose lhe greatest dimculty from a modelling

standpoinl. These conditions may be expressed as

where the subscriptS m and p refer to model and prototype respeclively. A gconx.1rclly

similar model of linear scale N will have a scour cut depth of 0, / N, II flll!uws lhal

in on::Ier to satisfy the first requirement at nonnal gnlvity levels on the laboratory nnor,

the low self weight stresses must be matched by small soil strengths. The undf'dincd shear

strength must be reduced in proportion to the model scale N, and a small scale model

would therdore have to be consuucted from a very soft wet soil. Funhcrmon:. in

accordance with the second requirement. the n1lio of adhesion 10 soil strength (which is
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known It) d~-crcasc with increasing clay slrenglh) must be the same in bOlh model and

prnlUlypc.

Experience has shown that Ihese lyres of scaling relationships for soil properties

arc dillicult or impossible to fulfil. If Ihey are not salisfied, the model is distorted. In

general, to compensate for n...duct.>d self weight stresses in laboratory geotechnical models

:10 analogue malerial mosl be use<J which does not usually scale all of Ihe relevant

slrcngth anti stiffness properties concurrenUy. In lIddilion the scaled - down Slrengths of

the mootl make sample prepanttion difficull, imposing a limil on the faclor by which !he

protolype scale can be effectively reduced in praclice. There are, therefore, inherent

difllculties in perfonning model tests at small scale in !he laboratory which can be

deemt..d representative of particular situations at a larger scale.

further inspection of the firsl modelling requiremenl in Equalions 2.3 indicates

Ihat if lhe prototype soil were to be used in building the model, the body forces p g must

be increased by a fllclor equal 10 the model scale N. The concept of controlling body

forces gives rise 10 the technique of centrifuge modelling and also suggests a fundamenlal

similarilY relt.liremenL for geole<:hnical models.

2.2.1 Soil Behaviour and Geotechnical Models

In the sludy of gcotechnical problems, allowance must be made for lbe dependency of

the mechanical behaviour of soil on the overall Slress Slate. To accomplish this in a

physical model study. !he state of stress of a given soil element at COTTe.llpOooing poinlS

in !he model and PTOlotype must be equal. This c'~lldilion will not be mel for model teslS
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performed in a one gravity environmtnc using pRllotypc m:llcrials. unk-s." a full scidc

model is constructed. Centrifuge moddling is a lechnique Ihrough which ctk= implln:ml

similaricy condition of equivalent effective Slresses and pon: nuicJ prcssun.'S ill :l sn1.111

scale model and a procot)'pC may be achieved.

Model preparation generally begins with a rtton.~liIUlcd soil which is Itk=n

subjected to prescribed loading paths; the suess hislory is deli,,,..d 10 hring the suil at

poinls in the model into stales which are 'tepl'eSenlalivc of clemenls of snil ill

corresponding points in the prolotypc. The centrifuge lest involves ..n iniliul 1.1ill!e ill

whtch Ihe model Slralum of soil is brought inlo equilibrium under a gencr:llizcd siress in

steady centrifuge nighl. followed by the lest proper in which lhat t:"IuilihriulIl is

pcrturbed in a similar fashion 10 Ihe prototype event Both strcs5 history aod stres."

increments must be correctly reproduced if the comel stress - strain - strength R$pOn.'iC

is to be obtained. The mechanical behaviour or soil alters wilh lhe changing Slate of lhe

soil depending on the effeclive suesses and also the volumetric condition which provides

a IllOIe complete incHcation or the CUrren! Slate of the soil in relation 10 its pn.'viou.oc

history. ScbortekJ (1980) suggested the division or soil behayiour at limiting s1alC5 into

three rqions in a constant volume section. as illustrated in Figure 2.1 : (I) A n.'gion of

strain hardening behaviour with stable yielding al high effective stn:sscs; (2) A n.:gion

of strain softening behaviour wilh Mohr - Coulomb Iype rupture at lower effective

stresses, and; (3) A region of fracture which mighl be governed by a condition or

limiting tensile strain or of no tension at very low crfective stress leYels. Each pan or a

model may therefore be made 10 exhibil a different mode of bch.wiour depending on the

imposed stress history. In this manner. models may be used to gain information on iI
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spact (afttr Sdlofitld, /980: Atkinson and Sransby, /978)

panicular class of soil event and the results will need 10 be interph~led for other soil

condilions.

A model of a specirlc prolotype should ideally be con'ilJUCted of ICeual site

materials in a state closely approximating the in situ conditions. 1be irregular

chara:teristics of the natural soil deposic (including Ilym. fissures, faulls, and stress

hiscory) should also be ~uced in the model. Experiments of this type: are theref~

the most difflCullto perform Sllisfaclorily. The retrieval of suitabte soil samples and the

construction of models for site specifK: studies was discussed by Endicou (1970). In some

circumstances, lhe use of remoulded field soils in the preparation of the model may

provkle an adequate: representation of prototype behaviour (e.g. Nunez. et al.. 1988);

however, the deficiencies of the model in tenns of neg1c:ct of soil fabric and
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inhomogeneities must be rt:CogniZl.:d in tlte assessment uf lest resullS. 'fk exp:rillk:llt;'l1

dala are generally interpreted in an :ll'l3lytical framework. whkh is !lUhSl.'qUCntly ;I[lfIlil.'l.I

10 the field situation.

2.2.2 Centrifuge Modelling

Centrifuge modelling provm:s a direct method of obtaining the COm.'C1 strl."S," rk:1J within

a small scale gcotechnttal model. A prototype Slmtum of soil is rcprcscllll.:d hy ;1

geometrically similar model of linear scak: N which has been con.... ructf.:d of the S;lllle

material. The model is rotaled aboul the central axis of lhe ccntrifuge. Thc urielllatiull

of lhe model is such that the outward radial direclton in lite cc:ntrifuge com.-sponds with

the venical downward direction of the prototype in Eanh's gmvity lido. 'Tl1c angular

velocity Col at which the model is rotated is selected r;uch lhat for a model at rmJius r the

cenlripetal acceleration rCol: is equal to Ng where g is the gr.lvitational ¥'·(.:ck:r.ltion.

Under this condition. depicted schematically in Figure 2.2, the gravity - induced

prototype stresses will be reproduced at corRSpOOding points in the model. In both ntudd

and prototype, the upper surface of the body is unstres.~, and the pressure incn:asc:s

through the depth of the soil body.

Use of the centrifuge allows for ttlt: development of appropriate scaling

relationships between model and prolotype without the need for compcn.."'tion nf

discrepancies related 10 difterences in stress levels. The scaling relationships which arc

generally applicable 10 centrifuge models are well established. Lee (I98S) tCvicwl,.'((

previous analyses and presented derivations based on lhe governing equations (the
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c:qwuions of equilibrium or motion, compatibility equations, generalized SlrtSS • strain

laws, and boundary conditions) for a sawraled porous medium. Table 2.1 provides a

summary of common scaling factors which a~ relevant to centrifug~ modelling.

DiW!rgtnct of Radial Acctltrat;on Field

'11lc: scaling relationships presented in Table 2.1 suictly apply in the case of a unifonn

acceleration field. The centrifuge acceleration rte:1d deviates slightly from this ideal

cordilion in that it is radially directed and the accc:lerattons. which are proportional 10

the radros, increase lh.rough the model. The vertical stress distributions for the model and

prolotype are iIIuslr.lled in Figu~ 2.3. Sc:horlCld (1980) has shown that errors in the

vertical stress due 10 the varialion of acceleration with depth in a model can be:

minimized by ensuring that the model and prolotype suess profiles correspond al a depth

equal to two thirds of the total dtpth of inleccst in Ihe model. The vertical stress fl. at

depth z may be COmpuled by integration from the surface of the model al radius r.10 the

given depth. as follows:

In order to altain the appropriate model smss distribution, the linear scaling

factor N must be cakulated at II depth equal to one third of the model depth h such thai:

fl •• p N g z and N g • (r. + *) (012 (2.5)
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Table 2. I Sculing Rdulionsllips for Centrifuge Modelling

Quantity

Linear Dimension

Area

V"lume

Density

Mass

Stress

Strain

Displacement

Time (inenial events)

Time (diffusion phenomena)

Time (viscous now)
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1:1

1:1

1: lIN

1: lIN

1:1



The error in siress al a given deplh expressed :IS :I r;llio of I~ pmlolypc stres." at

thai depth is !hen equal 10 h I 6r. In I~ present Sludy. models occupM:d :J radial distal'.:c

less than one lenth of !he Ctnlrifuge radius. and lhe maximum error in the mudel Sl~~

profile was only about 1.1 percent of (he pl'Olotype S1ress.

In !he Ctmrifuge, the resullant acceleralion veclor does not act pcrpcndil.:ulal' to

the model surface al all poilUS in lhe model. Tbe concentric OlCCCkratKm contours define

curved phreatic surfaces in models. The radial f1ekl also produces small laternl

components of acceleration whk:h increase wilh dislance away from the eentre of the

model. At the extremities of a 500 mm diameter central punion of the model. the

inclination of acceleration field was about 3.5 degrees relative to (he prototype Yenic:lI

direction. Although the radial divergence of the ace:eleralion field had only limitl..-d

influence on model behaviour. it was an importanl consideration in the dl:5ign of the

system used to regulate water levels within !he centrifuge test paclc.age.

The effect of Earth's gravity. acting perpendicular to the centrifuge accderation

f.eid was reduced by mounting the model on a wedge wkh slope 1 : N. This proviston

ensured dw. !be venical axis of the model coindded with the direction of the n::sultanl

accderation under lest conditions.

A diff~ source of error relates to movements of a pan of the mcw..!cl in the

plane perpendicular to the axis of rotation of the celKr'fuge. Thii pan of the model will

experience an additional CorioUs acceleration equal 10 2 (oJ Ywhere v is the velocity of

movement relative to the model. The error caused by lhe Coriolis acceleration is given

by 2 v I w I' when expressed as a ratio with respect to the centripetal acceleration of Ihc

modd (Schof.ekl, 1980). For evew involving relatively slow movements such a.~ in
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Sl."Cpage problems, the error is small. At higher velocities, the errors increase and

movements in the model follow unrep~ntative curved trajectories; although. at very

high velocities (above: an upper limit exceeding approximately twice the velocity of the

centrifuge model) Coriolis effects again become negligible (Pokrovsky and

Fyodorov. 1968). In general. the potential adverse effects of the radial acceleration rteld

v.oere laken into account in model design for the present study, particularly in relation 10

lhe positioning and orientation of the model scouring event and associaled equipment.

Modelling oj Models

Quite apart from the errors which derive from the use ofananificial gravity field, it will

generally not be possible to replicate all aspects of the prototype siruation in a small scak

model, especially in a model of a complex event such as ice scouring. The discrepancies

may be physical features which can~ !::; i',;yroductd or they may arise due to scaling

relationships which cannot be satisfied simUltaneously. These problems need to be

addressed each time a new model test is uDdenaken. One approach to the validatton of

model studies is to compare the model test results directly with prototype observations

where they are available. In the absence of suitable field data, a useful alternative

approach is thc modelling of models (e.g. Ovesen, 1985) wherein an tdentical prototype

event is modelled at different scales. The correspondence of the lest re:su.lts from different

sized models provides a check on the consistency of the centrifuge model testing scheme

and validates the scaling relations, atlcast within the range of model scales investigated.

4S



2.3 Field Conditions for Ice Scouring

Figure 2.4 shows a stbemalicsectionlbroughallCOUJ.irlliccfeltun:aJJJu.Jiak:sSl.OV1.ToIJ

(actOrS wtUch may affect the ice I soil I pipeline iNeraction. It is dear Itgl the: a:our

procesKS and effects. including soil defonnations. will depeftJ Itrongly-on lhc snil type

and stress state. In addilton. a variety of it:c scour CvcnI scenarios can he Cf1visaged

depending on the environmental driving forces which are ..aing and the characll.'fisti.'s

of the ice feaN!'e. As it is generally not possible 10 observe the creation of full· Sii'L'd

ice scours directly. many uncenainties still exist concerning the physical contlitiol1!l which

are appropriate in describing the problem. Knowledgl: of the possible Iicld icc scuurillJ;

conditions that may arise is c$SCmi.1 to the devdopmellt of 11 relevant idealiUllion. and

:: 1i iIliso required in order In assess the limitations of the model.

The: ic:c scour prottSSCS may be expcacd 10 differ for the continmul shelf rc:&ions

of the Arctic 0ceaD and ttlc Canadian east coast w~ the USWII offending reatun:s an:

respc:c:tivdy SCI ice pruswe ridges and ic:eberp of gbc:iaI ori&in. 1be prevaknl field icc

coaditioos for each rqjoo are therefore acIdressJed sepaBlC:ly in the following sa;tiom.

2.3.1 Arctic Sea Ice Scouring Regime

lu Gt!omelry and Slrllcturollfltt!griry

The seasonal variation and morphology of the sea ice canopy overlying the continental

shelves of the An:tic Ocean and. in particUlar. the southern Beaufon Sea have tx:en

described in several publicattons (e.l. Kovacs and Mellor. 1sr,4; Wadhams, 1975: l.ewi~
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Figure 2.4 Elements of tile ice scour problem

and Blasco, 1990). In general, scouring activil)' in this region may he attributed to either

sea ice pressure ridge features or to tabular icebergs (a island fragments) which

originate from the northern coast of Ellesmere Island, Canada. The latter may represent

the most probable generator of scours in extreme water depths greater than 55 m

(Dickins et aI., 1991): however. pttdicted mum periods for icc: island entry into the

watt:t depth range from 20 to 70 m in the Beaufort !lC3 are on the order of one to two

thousand years (De Paol; et al.. 1982).

Sea ice pressure rKtgcs form as an accumuladon of angular icc: blocks resulting

from the interaction and failure of abutting tee tlocs. For large ridges to develop,

appreciable differences need to exist between the thicknesses of the ice sheets and the

relalive moIion must be primarily compressive. Extreme free - floating ridges may extend

up to 13 m above sea level (Kovacs et al.. 1973) aJthouah ridge heights in excess of

6 to 8 m an: infrequenl. Data on keel measurements is less well documerwed, however,
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the subsurface portion of ;!le ridge is Iypically much more extensive lhan ils s,"\il punitln

above water. The deepesI icc keel in the An:tic Ocean reponc:d to dale PRljl,.'\.'!I,.'d sumc

47 m beneath the waler surface (Lyons. 1967).

The ice S1renglh and S1ruc1ural irMegrity of a pressure ridge increases wilh lime

u brine is expelled from the ice crystal S1ruclure and the ridge consolidall,.'lI. Sc-... icc

deformation structures which survive beyond one summer meh SC<lSOn an: refem'1.l 10 a.~

mulli - year features. During the melt season. lhe angular icc: blocks incorporollcd in the

ridge are gradually rounded lbrough ablation. the inler - block voids an: filk.'1.I with fl'l:sh

water from melting snow and ice. and the overall relief of the ridge is smoollll.'d. '11k:

icc: blocks are subscquenlly bonded together through freezing of the interstitial w;ller.

Visual observation of exposed fracture faces and drilling carried out in conjunction Wilh

field investigations established chat multi - year ridges comprise an es.'iemially solid m:t....~

of low salinity icc with. completc absence of opencavilics (Kovacs et al., 1973: Kovac.."

and Gow. 1976; Hnaliuk et aI., 1978).

Scouring forces will generally not be Iimiled by !he overall structural adequacy

of the ice keel. For solidly refrozen multi - year sea k:e, the elpCCted stn:sscs in the icc

during a scouring event are much smalkr chan the available confined compressive

strength of the: material. and are low by comparison with those mea..'IUn."d in icc 

stNCture inceractions on the same scale (e.g. Sanderson, 1983). Kovac..~ and

Mellor (1974) indicated that a first - year ridge wilh a well· bonded keel block structure

can also withstand the scouring forces associated wilh a typical event without crumbling

or mobilizing internal friction, Fracture of the ice may however occur initially when the

keel may have stwp edges or in the case of an unconsolidated first • year
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ridge (Palmer et al., 1989). Fragments of the ice can break loose and modify the keel

gl'1Jmctry, since thl: OUler surface of the ice is at a temperature near to its melting point

anti is relatively weak. Field invesligalions have indicaled that free - floating first· year

ridges are often poorly consolidated within the bottom half of their keel structure

(Edwards et al., 1918; McGonigal and Wright. 1982; Lowrings and Banke, 1983).

Dickins et al. (1991) suggested that such ridges are unlikely to generate deep scours, and

inferred that most scours greater than 0.5 m deep loca'o:d in water depths exceeding 20 m

(within the transitional ice zone) were created by multi - year features. First· year ridges

which are grounded and fonned in situ are relatively stronger and more consolidated than

free • floating ridges fonned from the current year's ice. According to the authors

(ibid.). deep scours found inside of the 20 m isobath (within the laooras! ice zone) are

thought 10 be primarily relaled to these ridge systems.

Studies of first - year rKige geometry indicated an average sail height 10 keel

depth ratio of approximately 1 to 4.5 and an average keel slope of about 33 degrees

(Kovacs, 1912; Kovacs and Mellor, 1914), The highly irregular Mock structure of the

V - shaped keel of a typical first - year ridge is gradually smoothed over one or more

melt seasons. An average ratio of about 1 to 3.3 between the sail height and keel depth

was detennined through fiCld investigations in which several multi - year ridge

cross - sections were measured (e.g. Kovacs and Melior, 1971; Kovacs et aI., 1975;

Kovacs and Gow, 1976; Dickins and Wetzel. 1981; Voelker et a1.. 1981). The keel

geometry WAS commonly observed to be gently convex or bowl - shaped in

cross • section. Figure 2.5 shows an example of the surveyed cross - section of a

multi - year pressure ridge, and also displays a geometric Ill()'tel proposed by
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Kov..;s (1915). In development of ltlis idealized shape, a nat - bottomed keel wa.~

assumed in Older 10 simplify the reprc5ClIQlion of low leeel face angtes SUgsClllcd by

available rleld evidence. Keel sfo.apes with low aUlck angles arc also found 10 he: rck:vant

based on considerations of the iruegrity of the K:e during a scouring tvent. as described

in Seclion 2.3.2.



IJriv;'IH ffJrc/!.I' tllld Jce Mu/iutl

To initiate a scouring event, the icc feature must be driven by forces whicb may derive

frum 11 combination of current, wind, and ice interactions. First· year sea ice can

tnmsmit the forces n.-quired for scouring to either isolated features or wide pressure

ridges (Kovacs and Mellor, 1974). The forces may he generated through currents, by

wind shear acting ovcr areas of adjacent sea ice, or as a result of loading from pack ice.

RclationshipsdcYcloped between seabed scouring and the ice environment in Inc Deaufon

Sea (Dickins et aI., 1991) indicated that most scours greater than 0.5 m deep found

within the transitional ice zone were created by multi· year floes I fragmenlS moving in

constl"dint'd pack ice conditions during winter months. A strong correlation was also

established between observed deep scours and ice motion during storm episodes.

The mean long - term winter ice drift velocities in the lransitional zone are on the

onler of 0.03 mls with a reported maximum movement of 50 km in one day (Kovacs and

Mellor, 1974). Dickins et al. (1991) observed thai winter ice motion in this zone is

highly variable, and that shon duration velocily increases are generally associated with

periods of low ice concentration. Mean monthly wind speeds in the soutncrn Beaufort Sea

Iypically range from 3.6 10 5.6 mfs. Stonns with gust winds greater than 20 mfs are

common. whereas events involving 35 mfs wind speeds have a return period of

25 years (Boyd, 1965). The Yelocity oflhe iee canopy carely exceeds aboul 2 percent of

the prevailing wind speed due to inertial effects and stresses developed within the ice,

as well as the influence of drag near 10 the edge of the fast ice zone (Kovacs, 1912).

Storms accelerate the tee motion, imparting greater kinetic energy co the pack which may

be subsequently dissipated through grounding and scouring of the seabed sediments.
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The c1uu'3.Cleristics of the icl: featun: iln: importilnt in c.ktemlining it.. cumrkte

mocion during a scouring even!. The motion of a SC"J icc rn:s..'WR: ridge is cun.<lmiOl.'d hy

tbe forces developed between Ihc ridge aOO the ice 5h!.'\..'( in which it is envclup..'d.

Wave· induced movements of the scouring featu~ an: nut l:xr-:cu..'l.Iln hi: signirlCillu c.Iuc

10 the damping effecl provided hy surrourxling pack kc. Non· hnrizlllUill icl: 1I11.lVellJl:nts

may. however. originate as a ~suh of soil uplift fo~ during scouring. As 11'"11: prcs.o;UR:

ridge is driven into shallower water, it is lifted by thc vertical suil reaction such that

scouring occurs al a unifonndeplh relative ((l (he seabed, rather th,m relative Illihe waler

surface (Palmer et aI., 1990). Field data were collected which show rise up of the h:lSl:

of the scour corresponding wilh reduction in the bathymetric profile, with <.Iisl'lllce ,llllllg

lhe track of long scours (Wahlgren. 1979; Shearer et ill., 1986). TIICSC datil limy reOc...'Ct

processes involving either vertical uplift or roullion of the 5(:ouring K.1.' 'ealun: nr

abrasion of the keel during the eveRt. Venical movements <.luring scouring were also

documented through field observations of ridge fragmenu which show evitJcnc.:e of uplift

due to grounding and scouring (e.g. Kovacs and Mellor. 1974; Kovacs <tOO Gow.. 1976).

Uplift during scouring is dependent on the forces developed at the iu: I S()i1

imerface as well as the forces gencr.lted belween the ridge and the surrounding icc m..'C1.

Golder Associales Lid. (l990) examined a r.lnge of possible interaction condititln.~ which

may ari!ie due to vertical movement during a scouring event. These contlition.~ indut.h.'1.I

hydroslalic uplift of the Ice sheet, elastic deneclions of the icc shct:t, and failure tlf tile

ice sheet assuming different failure mechanisms. The failure mechanisms invc..~tigalctl by

the authors included circumferenlial and radial cracking (Nevel .. 1968), shear or plug

failure. am failure invoIvitw tearir1: oflhe~~ from !he ia: shct.1 (Abdcloour, 1988).
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Figure 2.6 Vmicol forr:~ • dl!jltetion relationship for assumaf failure mechanism and
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Figure 2.6 shows the predicted vertical force - deflection relationship for typical

conditions in which the ice sheet was assumed to fail by circumferential and radial

cracking. The preliminary lnaly5e$ suggested thai, initially. me ice sheet may be

eXpeeled 10 undergo elastic deformations rather than being lifted as a complele mass. and
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that failure ·.~·ill result with continued venical movcmcnt. Thc dcflcctiuns nl,.'Ccssary lilr

ice sheet failure (on the order of one metre for a typic,1I casc) wcrc fnund to he lc.'l~ lh;ln

the uplift movements which have been deduced from ficld ohservatiuns. TIle scouring

process may still continue beyond ice failure. as horizontal furccs may he tralL~fcrrcd

across the failure surfaces to the ice fragments which remain in contact with the scatll.'l.I.

Furthermore. the magnitude of the hydrostatic stiffness of the failL'd ice fragmcnts lllay

not be dissimilar to the elastic stiffness of the intact ice sheet. As such. the vertical forces

applied to the seabed are not expected to be signilicandy limited hy icc f:lilurc during

uplift.

2.3.2 Eastern Canadian Iceberg Scouring Regime

Ice Geomerry and Strucmral Integrity

The large icebergs which scour the seabed of the continental shelves of B.llEn Island.

Labrador. and Nev.foundland originate predominantly from the tidewater glaciers in and

around the periphery of Melville Bay in West Greenland (Murray. 1969). The system til'

cold oceanic currents in Baffin Bay. Davis Strait, and the Labrndor Sea is the driving

force responsible for the transport of icebergs southward along the castem Canadi.m

margin. In an average year, about 3000 icebergs travel beyond Hudson Strait. 1000 pass

the Strait of Belle Isle. and 400 survive to drift south of 48° N latitude onto the GI"dnd

Banks of Newfoundland (Dinsmore, 1972; Ebbesmeyer et OIl .• 1980). The annual nux is

inc:onsislem and may deviate by a factor of 3 or 4 times the average. depending on the

upstream population and rate of production of icebergs. as well as on storm evenL~ and
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changes in oceanic tidnspon conditions (Gumjtis, 1979).

The size and geometry of iechergs also vary widely, depending on thc details of

their Ilrigin and the degree of lhcir deterioration during transpon. Icebergs are in isostatic

equilihrium in surrounding scawater with approximately 87 percent of their mass below

lhe water surface; however, the height to draft ratio of individual features ranges

cllnsidcidbly as a result of the diversity of existing geometries. Iceberg drafts have been

estimated from above· water dimensions, inferred from the water depth around grounded

features, and directly measured using dragline, diver, radar, and acoustic profiling

techniques. 1l1c quantity of direct measurements of the subsurface portion of icebergs

llvailahle within the public domain is limited (Brooks, 1982; HClzel and Miller, 1983).

Iceberg shape also changes slowly due to melting and other degradation phenomena. and

associatL'tl mechanical calving of large ice fragments. These processes resuh in instability

and capsizing, and may produce features with draft dimensions that exceed the depth of

the parcnt iceberg (Gram, 1973; Bass and Petcrs, 1984).

The results of the Dynamics of Iceberg Grounding and Scouring (DIGS) field

programme (Hodgson e! :\1., 1988) during which several iceberg grounding events were

monitored Cl!1 lhe Labrador continental shelf, provided insight inlo conditions at the

keel I seabed imerface. Inferences were made pertaining to ice morphology and keel

modification during scouring events based on visual observations of the

iceberg - defonned seabed sediments from manned submersibles (Woodworth - Lynas et

al.. 1991; Woodworth· Lynas, 1992). The investigations confinned thai there rna)' be

considerable llurition of the ice during groUnding and scouring events, and that in some

in.~tances seabed material may be mechanically incorporaled inlo the ice keel.
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Characteristically Oat· bollomed scour troughs implic..'d th:.t lhc inilially im:gul;lr il:c

geometry was altered to fonn a planar surf3C1: in thl: region uf Sl:"dhl.:u 1;1I111ac{. This is

exemplified in Figure 2.7, which shows the debris • ladcn. n:lI Sl.'Clion of an llvcrtUmr,:U

iceberg. interpreted to be the former keel surface. Further cvilkoce \VOL' pnwKk'&llhmuj;h

observatton of the underwater calving of an iceberg which gcncTlIIl."t1 R."t1imcnt - Ctl\'l,.'T\.'d

ice fragments from the edge of the grounded keel. The .....'CnnnainaOlX ur I\.'CCntly runnl'd

scours also revealed pieces of ice that had spalled from the keel as shuwn ill FIgure 2.7.

and melt· out depressions where ice had previously bt:cn cmhcu(k"t1 hcluw the sctlur

surface. In the imerpretation of these direct field obscf\liuions. it was pn;poscd th:1I icc

failure occurs during scouring so as to produce a more efficient shape which OnCnl less

resislaoce to the advancemem of the ice (Clark et al., 1989). The relative. unirllTlIl;ty ill

the shape and dimensions of individual scours along lheir track iOOtcalL"lI 11",t

modiflCalion nf the keel occurs rapidly. likely as the result of shear fracture IIr the k1:

during the imposed dynamic loading of the initial grounding CV1:nt. The inrn.'llUClil

occurrerx:e of small melt - out voids in scour fealures. which implit."lI lilt: hrcakuul uf

minor ice volumes. suggested that fu~r modest changes in the ice gl.'ulTK:try lIIay alli/;I

result from continued abrasion or fracwre during scouring.

Driving Forus and Ice MoriOfl

An iceberg moves under the combined effecls of currcnts and wind. as well as lhe fnfCes

developed due to gravity. CorioHs acceleration, OCeltn surface slope (prcs.~urc I;r.tdient).

waves and swell (Sodhi and EI • Tahan. 1980). In circumstances where pad; :tt is

present. iceberg modon may also be influenced through Ie ,ills transmiuc.:d h) (he
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Approx. 10 m field of view

Figure 2.7 Top: Sediment - covered flat (keel) surface of an ovenumed iceberg;
BotTom: ice fragment embedded in iceberg - deformed seabed sedimems (Photographs
courresy of Chris Woodworrh - LylUlS. C - CORE)
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surrounding K:e she1:1 (Guslajtis. 1919: Clark. 1991). AhlltlSt all ~lf the f\ln.,\-'!) which

comribUle to drirl act on !he K:ebc:rg through tr:U\sl~r fUllI:tions of ils si7.c alll.l !!\.·umelry.

Currents a~ lhc: predominant driving foo:e in ItlOSl cases (DcOlfl~er alll.l 8rul1l.'::lu. 197.1):

wind - induced fortes a~ generally less signifICant. cxet:pl during sturm eVl:lUS Ill' ftlr

lllOVI -.nent under constrained pack ice conditions. Average drift~5 fur icl:hcrg..~ lin

lhe eastern Canadian continenlal margin typically range from 0.1 III 0.3 m/s. with

maximum speeds approaching 1.2 mls (e.g. Bereng!:r and Wright. 1980: Ball cl al..

1981; EI - Tahan and EI- Tahan. 1983). The velocitiesofaclively SI.:tluring icehl:rgs :11'1.:

effeclively indislinguishable from those of icebergs which are fn:cly • Illlouing

(Woodworth - Lynas et al.. 1985).

Icebergs. like s.hips. have six possible rigid body modes of motion in Ihe gener-II

case (Bailey. 1994) and are susceptible 10 rotational movements under the innuctlCc uf

environmental forces. Contact wilh the seabed may be initiatL'd in one of thn:c ways

(Woodworth - Lynas. 1992) : (I) by drifting into progressively shallower wolter: (2) hy

weak rotational capsizing. caused by ablation and minor calving. 10 a da:pcr - draft

orientation (e.g. Bass and Peters. 1984: Hodgson et al.. 1988). or: (3) hy C8ta.'iCropIlic

splitting that causes high energy rotation of one or both fragments 10 a dcl.'flCr • drnft

orientation (Hodgson et al .. 1988: Leveret. al.• 1989). The sealx:d feature crcalL'tI hy the

interaction is nonnally a curvilinear iceberg scour. providctllh:lt molion continues in the

forward direction. or less commonly a discrete pit. if the ict:bcrg remllin~ stationary

following the initial seabed contact (Barrie et al.. 1986).

Introduction of the seabed force creates an imbalance al the inception of lhe

scouring event, and rotational movements are induced about lhe vertical and hllri7.nntal
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axes of the iceberg. An equilibrium orientation is re • established when lhe re5lOring

moment due to the shirt of the buoyancy force counterbalances the moment set up by the

scatx:d n:a<:tion (Lever el. aI., 1989). Based on observations made during the DIGS field

cXpl:rimcnt (Hodgson el aI., 1988). it was inferred that the iceberg may undergo initial

rotlltian lIhout a venical axis such thai subsequent rolling motions occur about the

wellkest hori7.Dntlll axis. These rotational movements also have the effect of minimizing

lhe scouring force developed al Ine ice I soil interface. Once lhese conditions are

established, further rotations aboul a venical axis cease. Examinations of seabed

microtopography resulting from irregularities in the ice keel coruact surface, indicated

that ridges and grooves formed within the scour trough were characteristically parallel

to the axis of the scour, reflecting the rotational stability of the scouring iceberg about

a venical axis (Woodworth· Lynas et aI., 1991).

A study of iceberg scours that occurred both up - slope and down • slope

(Woodwonh - Lynas et a!.. 1986) demonstrated that scour morphok>gy remains relatively

L"ORStaOC for changes in seabed relief as large as IS m. As the iceberg scours into reduced

water deplhs. it is liftetl such that lhe buoyant weight of the ice continues to balance the

venical component of the soil reaction fortt (Palmer, 1990). Rigid body uplift

movemenls of this kind explain the relative unifonnity of scour depth and breadth

typically obsef'ved over long distances and large ranges in bathymetry. The iceberg may

a150 accommodate the changing seabed force through rotational movements (pitch

adjustments) about a harizonlal axis during scouring, as suggested by Woodwonh - Lynas

et al. (I98S). The response of the iceberg to shoaling or increasing waler depths is

clenrly a function of both its vertical and rotational hydrostatic stiffness. Additional

59



vertical movements may occur due 10 faclol'5 olher than I~ scahl.'d uplift ftln.:e. )';lIl:h as

wave loading of the iceberg. Passive failure oflhe soil resulting fmm wave f,)n.:L'$ al:tilll\

on a grounded iceberg. represcms a possible mech:lnism for the cre:niun of pits IkIving

dimensions ellcming those normally associated with the initi.,1 illll':let I)f the ~ahl.'\l

(Clark and Landva, 1988). Extended li~r groupings of pits, refem..'l.I1I1 :as cr:llcr chain.,

(Bass and Woodworth· Lyl\3S. 1986). may be gcncl1lll.-d through hL'OIvc f\.·sumnl.:e uf the

iceberg in response to ocean swell. Seabed featureli of this tyflC :tre rorc, rcnL'Cting the

improbability of resonant iceberg osciJIatkm during scouring (Woodwonh • Lyllm. cl :11.,

1991). Funl1ennore, comact with the seabed serves as fin extremely cffL'Clivc damping

mechanism against wave ~ induced iceberg motion.

2.4 Centrifuge Model Idealization

2.4.1 Materials Selection

Variabiliry of &ab6J Environmenrs

The surficial sedimenlS on me continental she.lr of the southern Bcaufon Sea arc

characterized by extreme variability and patchiness over short lateral di\1afx:cs, and in

water depths of IS 10 40 m me entire seafloor is n: • worketJ by modern icc r.t•.'ouring

activity (Bames et al.. 1980; 1982). The correlalion of shallow seismic pmfiling and

borehole data, limited radiocarbon dating, and paleo· environmental infonnalmn kd tn

the development or a geological model which describes the stratigraphy of the Ocaufort

shelf (O'Connor and Associates Ltd., 1980; 1982). The shelf is blanketed wilh a
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normally thin vem:er of rt.'Ccnt marine clays or silty clays deposited following [he last sea

level rise (Unit A), which grades downwards into interbedded sands, silts, and clays of

tI complex sequence (Unit B) thai was deposited from a transgressing sea. Both Units A

and B overlie older, ntpidly deposited sediments of glacial fluvial - deltaic origin

(Unit C), which may vary regionally from sands to clay. reflecting changes in the

depositional environment. The upper boundary of Unit C is an unconfonnity surface

representing a significant period of subll.:rial exposure. which provided conditions for the

growth of permafrost. The distribution of reUc pennafrost is closely related to lhe

surficial geology and is primarily confined to Unit C, allhough ice content is infrequently

observed within the overlying units. Specific features identified on the continental shelf

(massive ice, shallow gas, relic thermokarst depressions) have indicated [hat the

submarine environment may be as complex as the adjacent pennafrost - affected land

(O'Connor and Associates LId., 1980).

On the eastern Canadian continental shelves, the geological setting is generally

II.'Ss complex and associated soil conditions are less variable, in comparison with

conditiOf'lS encountered along the Beaufort shelf. Physiographic features common 10 both

the Labrador Shelf and the Grand Banks of Newfoundland include an inner shelf of

rough, resistant crystalline rock with shallow Quaternary sediment cover; a central region

oflongiludinal depressions, partly infilled by fine grained sediments, and; an (\'..ter shelf

of large shallow bank areas separated by transverse saddles (topographic depressions),

underlaln by Cretaceous to Teniary sedimemary rocks. mamled by re • worked till and

glacio· marine deposits (Brown, 1986). The surficial Quanenary sedimemary cover of

the Labrador Shelf may be divided into several units. including pro • and post • glacial
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sand, silt and cia)' fonnadons which ov~rlie lhe klwer se:queTJCelli ofillaci:lllill ~'lll1lflrisillg

lhe Labrador Sh~lr Drin Fonnalion (Josenhans. 1981: J~nhans el al .. 1986).

The surficial and shallow bedrock g.:olog.y of the Gr.ullJ D,mks tlf NewftltullJl;ullJ

have be~n syslematically mapped and described hy the GelllogkOlI Survcy "f (':u",d"

(e.g. Fader and King, 1981: Fad~r and Miller. 1986). The lldvlmce Olllll n.'\:cs.~iol1 tlf

Pleistocene continental ice sheets ~rvtd 10 ~rodc existing scdimcf1(s and bL'tlmck. and

det'JSited a relativel)' thin sequence of glacio. marine §aliments and till over the I\.-gioll.

Subaerial exposure during a late Pleistocene· Holocene low sea level stand rc.-.ulted in

desiccalion of the near· surface sediments producing a relatively Imrd cru.~1 scveml

metres in thickness (Segall et al .. 1985). The subsequent marine Ir.JIlsgrcssion erOOl..'d ....d

re • deposited the sediment cover. The recent oceanographic regime further rc - works

the shallow water sediments and transportS icebergs which scour lhe scaht..'CJ (Fader and

Miller. 1986). Thompson and LDng (1989) described lhe geotechnical conditlon.~ in Ihe

vicinity of the Hibernia oil field. situated in the OO",heastem n.ogion of thl: Grantl Danks.

At all sites investigated, very dense granUlar soils (Iypically fine 10 medium grolin sand)

were dominant from lhe seabed 10 depths of 50 10 60 m. and hard cohc!live soils

allemating with layers of sand and silty sand were ~rved at greater depths.

R«OfI.J!irwM Modtl Soil

As may be inferred from the preceding descriptiOflS. a buried pipeline travl:r.iing M.:l:

scoured temin in the Arctic or eastern Canadian offshore may be expected 10 el'K:ountcr

a wide variety of soil types and conditions. To understand the fundamental soil behaviour

during an ice scouring event. uncertainty regarding the nature. Ind structurc nf any
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aniSCUTOpi(; and hl:tcrogcncous Iield soil deposit must be removed. In order to provide

data for the dl:vclopmCOl of theoretical models, it was therefore desirable to examine

relevant prototype behaviour using a r.lnge of known laboratory materials. As a starting

point. the present study considered a class of soil event in which a soil of a particular

type itOO mincr.tlogy WitS investigated. Provided that the modelling capability could be

dcntOostr.llcd in this case. the approach could then be extended to consider other soil

comJitions. The usc of reconstituted soils in ccntrifugc models was describetl in

Section 2.2.1.

The soil type in which the model scouring WaJ, conducted was Speswhite kaolin

clay. An extensivc base of matcrial properties data cxists for this soil type. as the

outconte of research conducted by the Cambridge University Soil Methanics Group

(e.g. Airey. 1984; AI - Tabbaa. 1988). Typical values for some of these properties may

be summarized. as follows (Clegg. 1981):

Liquid Limit

Plastic Limit

Plasticity Index

Spt.'CificGravity

</I' degrees

K.,
>.

r
M
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= 69 %

= 38 %

.,. 31 %

.,. 2.61

= 'l3.0

"'" 0.22 (nonnaJly consolidated)

"" 0.69 (nonnally consolidated)

,. 0.25

"'" 0.05

3.44

"" 0.90



where 9' is the effective angle of friction. c. I a',. i~ the nommlill.'\l u.-.!rai....'\l she:lr

strength, K,. is lhe coeffk:ient of lateral e.3nh pressure at n.'$I. and >., ,., I', ;mll M :Ire

parameters of the Cam clay model (sec for example WOOO, 1990). Values til' the ~ltlJ1Cs

>. and It. of the nonnal compression antl unloading. reloading Iinc~ were m:ljuirell fmm

accumuh.ted experience at Cambridge University with ocdometer and tria:<iat lests. lb1.:

slope M of r.he critical state line in the effective Slress rla~ anti lhe parameter I'

describing me: position of me: critical stale line in the compression pl:art: .......'fC uhlai....'\l

from undmined triaxial tests with pore pressure m.:asurement. Funher l.Ielail~ enncemillJ,;

the material propenies of Speswhite kaolin clay are presented in Chapler 5.

The techniques employed in lhe preparation of clay spt.ocimens lire lIutlined ill

Chapler 3. The labonuory pre • consolidation stress level was :llten.'d in panicular lests

to examine the influence Jf soil state on the effccu: of icc scouring. The !lll'CSS hi...lllry IIf

each clay specimen was selected to establish desired stress Slate" in the specimen wilhoul

detailed reference to a specific prototype. To ensure that the ~ults which wen: ohlaiRl.."tJ

would be relevant in practice, genr.r.l reterence was made to the geolechnieal pmpcnies

of Beaufon Sea clays which fonn a pan of the surncial Unit A sc4ucnce, l.Iescribc1

briefly in the following.

Comparison wirh &Dufort ~a Clays

The lUent marine sediments on the Beaufol1 shelf commonly consist of santo very soft

silty clays of low to medium plasticity. The measured thickncs.~ ofthc surrJCi:11 Unil A

clays is geooally less than 6 m, but may incl'Q....: tu IS 01 20 m where large topographic

depc'e:ss.'ons are infilled (Meagher, 1978). As • result of their shallow extent ;lind son
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l,;onsistency. llll:sc matcri,tls arc ditTicuh 1tJ s:mlple :mll thcrefore olily limited 1.1:11:\ arc

avail:lble nn their geotcchnical properties. BL~n ct al. (1986) pnwillerJ :1 summitry til' test

results for sc:lhcd clays on the Akpilk Plilll.:au and Tingmiark PI:lin rcgiuns of the

Beaufort sht:lf. The dlltll prescmed hy the authors indic:tIL'1I consistcnt trends lIcspitc

widely SP:ICt.'1I sitc loclltions. TIle most notablc feature repurtL'd was high liquidity

indices. which ranged from 2 to 3 lit the seabed. to v:llues in cxcess llf I with depth.

High water contents and liquidity inrJices wcre reflected in the lls~illled undrilinctJ shcllr

strength profiles. The strength data were scauerctl but ~howed a linearly increasing trenrJ

at a rate of about 6 kPalm with depth, and a projected lero strength value at the sellht.'d

surface. Results were presemed for a single consolidated undrllim.'1I trl:I.'(i'll tcSl

performed on a relatively undisturbed surficial clay sample. The observerJ stress· slmin

response was described as elastic - plastic. with no evidence of str:lin soflening. '111e

errective stress path indicated modestly dilatant bchavioor, whieh appears to he II

common feature of Beaufon Sea clays (Crooks et al.. 1986). Studies were ,llsu

undertaken to define the compressibility and stress history chllt'deteristic.~ of tile teceOl

marine sediments (Hivon. 1983: Christian, 1985: Christian anti Morgenstcrtl. 1986). The

clays were shown to be apparently overconsolidated within upper 6 tn 10 III of hurill!'

High values of the overconsolidation ratio at the seabed surf:lcc Illay be :lltrihulcd in p:ln

to the existence of a finile effective cohesion at lero effective strcs... (Christian :Ind

Morgenstern. 1986).

In each centrifuge lest, the mechanical behaviour of a full scalc prulnty['lC stratum

ofsatur3ted clay, 18 m in depth at Earth's gr-dvity. was studil.'d at 1/100 sc,lle in <l mudel

specimen of equivalent soil brought into equilibrium at 100 gr-dvitics in night. <!lIe
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prepariltion of models in the laboralOry pennitted control of the stress history, so that it

W3li possible to obtain a desired range ofSlrenglh and stiffness. At equilibrium conditions

un the (;cntrifuge. the ncar surface <::lay of eaeh specimen was in an ovcrconsolidated state

and cxhihited undrained shear strengths in the range of 10 to 20 kPa.. For comparison.

Figure 2.8 shows undrail"lCd shear strength plotted against prototype depth for llie

hasclil"lC cemrifuge model conditions investigated in the present study, together with llie

strenglh profile suggested by Been et 201. (1986) for surficial Beaufort Sea <::lays. A

comparison of the associated profile of overconsolidation ratio willi results reponed by

Hivon (1983) for the Kringalik Plateau region of the Beaufort shelf is also presented in

Figure 2.8. lbr:se plots demonstrate lhat a comparable range of soil behaviour existed

for the proposed model specimens and relevant rteld conditions.

Another factor which may be expected to influence the behaviour of field soil

deposits is the re • working of surficial sediments due to ice scouring. An interval of

llbc)Ul4 to 5 m over which the original bedding of seafloor sediments has been destroyed

by active scooring. is a ,,;ommon feature observed on nearly all of the high resolution

seismic records coll~ted for the Beaufort shelf (O'COMor and Associates Lid., 1980).

A process of repeated deformation and subsequent re - ~ilibration willi diffusion of

water between scouring events. may bring the soil to a critical state (Palmer et

al.. 1990). This implies that soil in the active scour zone may undergo continued shear

defOntlation without any tendency to dilate or develop changes in pore pressure. The:

dC]'Klsition.11 environment on the Beaufort shelf in addition to the existence of a re 

worked lone. may commonly produce surficial sediments with layers which exhibit

I1lllrkedly different soil behaviour. Horizontally bedded sediments were not investigated
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in lhc research reponed here; however. layered rleposils rerresenl a relevant field soil

condition for further study.

2.4.2 Model Scouring Event

The description of field conditions provided in Sect;on 2.3 suggests that kc scouring is a

complex phenomenon which involves the inleraclion of an ice feature (lo1Jhjl.'Cl 10

environmental driving forces which may include wind, wave, current, and p.1ck icc loading)

and the seabed soil. The ice fealUre may be independent or it may reside within a relatively

continuous ice sheet. It may experience uplift or rotational movements and lhcsc movcmt:nl~
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In;ly he n:!<Iistcd by its buoyant weight or through forces generated between the fearure

allll a sum)llncJing icc sheet. The icc keel may also be irregular in share and its geometry

llIay be altered through abrasion and fracture. In addition, the seabed may exhibit a

signifICant slope or unusual surface lTk.o1lbology. Finally. as indicated in the preceding

SI.'Ction, the scouring cvent may involve a considerable range or soil types and conditions.

De!iJlitt: the inherent complexity of icc scouring, the field evidence also indicates

tmlt most scour fcottures are curvilinear in nature and exceptionally unifonn in

Crill'S - st.'Ction over long distances. For modelling purposes, it can be reasonably

assumed that the forces which are driving the ice feature in these instances are large

cnough to ensure its continued motion. Horizontal movement of the ice at an effectively

cun.~tanl velocity may represent the most relevant scouring condition in practice, and this

stc;ldy - state case also forms a rational starting point for quantitative analysis

(P3lmcr el olio, 1989).

Experimental studies of ice scouring. as referenced in Chapter 1, commonly

involved constant velocity displacement· conuolled simulations. Most srudies also

considered single degree of freedom representations in which the model icc feature was

conqraincd to translate horizontally at a fixed scour depth. In the general case, the ice

fe.lluR: may undergo vertical and rotational movements through its interaction with the

scatx..'C.!. Venical ice movements are directly related to the venical fortes applied (0 the

seatx.'d. The effects of tnc scour process may therefore be expected to vaT)' depending

upon lhe restrictions imposed on the movements of lhe scouring ice. Physical modelling

which allows for uplift of the model ice feature during the event and which considers a

range of plausible venical stiffness conditions may pennit a ralional assessment of the
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imponance of venical mo\'tmenlS on scour effects.

Appropriate modellin~ of the icc featun: gL'Onu.."lry and structural integrily is ;Jlst!

hindered by uncenaimies concerning full scale gL'OfllL1ry :u.J pnlp.'l1it.os. A logical

starting point is the idealizalion of lhe ice ka:1 as a rigid body which h:L~ sumcil:nl

st~nglh 10 wilhstand the forces developed during scouring. The shape of Ib.: ri1:\K1 kL'I,:1

may be chosen 10 renttt lhe equilibrium geornclry of the icc tJcYCIIlp.'d during

sleady - stale scouring. 1lle field evidence given in Section 2.3 provitks a h.1Si.~ fur Ihe

developmem of an appropriate idealizalion. Keel shapes with low Olllaek .mgIL'S which

fonn a planar surface in the region of soil conlact appear to be relcvant hased nn Ihc

a...ailable data. the geometry of scour features. and inferences penaining In keel

modification during the initial slages of the event.

The protOlype scouring event in...estigilled in the prescnl st~dy invtll"'L'lI Ilk:

horimmal movement of an ice fealure through a homogcncou.~. level 5l.':lhc..'lI at a cnn:.1:ll1t

velocity. At model scale. the itt feature was rcpresentL'd by a rigid body which wa.~ fn.:c

to lift or I'OI3te to achieve a steady· state position. 1bcse movement.. wen: rJt.1ermiOL'd

by its buoyant weight in free surface water. and by forcc:s devclop."d through imCr:EClilln

with the soil (hence. the term model ictbcrg is used). The basic gCl.»1lclrical

characteristics of the model iceberg we~ represented by sfIl.'Cifying the allack angle uf

a planar leading face, and the Icngth, width. and depth of the ponion of the mudd which

was in contact with Ihe soil. The model iceberg configufalion and as.'iOCiatcd f1ar.lmctcr~

are depicted schematically in Figure 2.9. These parameters may he ...arit.:d over r.lOge.~

presumed 10 be relevant to the field siluation, 10 examinc their innucnce nn the ef1ccl~

of scouring. For the series of tests reponed hen:, lhe soil initial stress stale, aoo lhe
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Figure 2.9 Mutlel iceberg geometry and parameters oj the scollr problem

allack angle. wJdth. anti venical Sliffness of the model iceberg were investigated as tese

variables. The following sections addn:ss panic:ular issues related 10 the specification of

relCVilnl model contlittons for lee scouring.

Din!/! D;melu;ollo! Repregnrollon

1bc tec scouring process may be modelled as eilher a tWO dimensional plane strain

prohlcm or as a Ihree dimensional problem. To simulate plane strain conditions in

ccntrifuge ICStS. the IWO imponant boundary condilions of zero out - of • plane nonnal

slmin anti zero in • plane shear stress must be fulfilled. In practice, a long narrow

n:cl;mgular container is commonly employed. and side friction effects are minimized by

mJitahle choice of malenals and lubricants. In this type of amngement. a half model

iccberg would lravel adjacent to a lransparenl side wall of the container which would
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coincide with the venical planc thmugh the sc~)ur "xis. An lldv311l1lge llf this

rcpresentation is that sul:~urrace soil defonnalinn along this pl,mc of symmctry lila)' he

observed and recorded during thc cvcnt.

A plane slrain physic,ll moUe! may provide an inadequatc dcscription oflhe enLoet!!

of ice scouring. Experiments conducted in both euarse ,lOd linc grailk.'1J sllils

(e.g. Poorooshasb et aI., 1989: Poorooshasb. 1989: Paulin. 1992) supportl,:d field

observations (Woodworth· Lynas et a1.. 1990) which implied thai large tr.Il1.~ven;c lioil

movements occur in the plane perpendicular to the direction of tr.lVe1. The

implementation of a two dimensional representation may therefore impose streS$ and

displacement constraints on the model which do not exist in the promtypc. To ell~ure test

results which were consistent with real tlehaviour. three dimensiorml modcls were used

in the present study. accepting the limitation that subsurface soil deformiltion could only

be investigated after the completion of the scouring event.

Model Venical Stiffness

The prototype ice feature was represented by a gcometrically similar rigid hotly which

was panial1y immersed in free surface waleI'. For hydrostatic conditioll~. nuid prc.~surc$

were identical in the model and protOtype. and other quantities scak'1J in accordance with

the relationships presented in Table 2.1. Since soil behaviour is exclusively depcndcnt

upon changes in effective stress <Terzaghi. 1936). an identical soil rc.~POTl-.c was cxpcC\(..'1J

during scouring regardless of the depth of free water. provided that tnc soil was fully

saturated at all points. The fluid conditions were, howevcr, importllnt, in eunjunction

with the geometry of the submerged ponion of the model icehcrg, in determining its
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overall movement and stability during a scouring event.

The av,lilable lielt! evidence pertaining to scouring ice motion is outlined in

Sr.:ctiun 2.3. Spcdlie pressure ridge intcraction conditions which involve ice sheet failure

during uplift, as illustnued in Figure 2.6, were nOI modelled in the present study. Initial

rul<ttional movements (pitch adjustments) and rigid body uplift prior to steady - state

scouring, were permitted as expected conditions for an independent ice feature.

Furthcrmore, duc to modcl symmetry al'lout the scour allis and the imposed constant

direction oj" travel, there was no tendency for rotation about a venical axis or later.l1

lr:lll.~l:ltion. To ensure uplift movements whicb were representative of relevant field

hchavinur, it was required to model the prototype vertical stiffness conditions. In

priletice. this implied specification of the maximum practicable waterplane dimensions

for the model, to achieve stiffness values which were plausible for a full· sized iceberg

or pressure ridge. While it was desirable to investigate a range of conditions, only

limited variation was possible in this test series. The model iceberg buoyancy

characteristics for individual tests are detailed in Chapter 4.

lmefjacl! Conditions

The rehltive displacement or slip between the ice feature and the soil affects the soil

TCsponw and depends upon the type of contact surface and the intensities of nOlTTlal and

shear stress developed at the interface. The limited field evidence suggests that the

icc - soil interface is approximately planar and that contact surface roughness conditions

may vary as the result of ice - entrained seabed material. Dead zones of soil with small

or nt:gligihte movement relative to the interface may also be exp«ted to fOlTTl within the
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ruprurc surface in front of the ice keel. This lype of soil b:h.willur ItL~ hL'l,.'1l \lh~I'\'I.."\l ill

soil culling and indentor experiments (c.g. ~klli3ratchi 300 1k"l..'\."C. 197~: Gukler

Associates LLd.• 1990). lind serves to lIller It.: c1TI.."Ctivc intcrf:lCC ~1..'1ll1l1..'try :Ilk!

properties. In addition. observations of trenching plou~hs in son clays ilk!iI..":lll..,j that lIlUst

of the relative motion between the plough and the clay occurs within a hnundary layer

adjacent 10 the plough contact surfitCe (Palmer I:t al.. 1979).

In general. limited infonnation was avai1ahle to define full - scale illlcrfilcc

conditions and it was nOl feasible to model such col1l1ition.~ din.octly in the tests rcPllrtl..'lJ

here. Instead. a reasonably well - defined contact surfllce was USl.-d. with surfucc

roughness attributes expected to fall within the range of conceivahle field cuncJilimL~.

Further investigation is required to assess !he innuence ofchangcs in interfucc pmpcrticli

on the effects of icc scouring. This may be accomplished through parnmctric stotlM.:.~

based on theoretical models which have been validated against experimental results for

known interface conditions.

Scating of Tim~ D~nd~ntProo!sses

A velocity of approximately 0.1 mls was selected for the notional prototype eventtu he

modelled in each test. For icebergs on the Canadian east coast. averagc drin velocilic.~

are typically about 0.2 m/s. whereas mean long tcnn wintcr ice drift velocitic.~ in lhe

transitional zone of the: Beaufort Sea are on the order of 0.03 m/s. In the lauer case,

however, scouring activity has also been strongly correlated with s(onn episodes which

serve to accelerate the ice motion. Palmer et al. (1989) suggestt.'lJ that field scuuring

defomutions in clay and fine silt are always undrained. and that in sands and cnarscr
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sills. velocities greater than about I m/s are required for undrained defonnations to

fhe authors based these conclusions on the observed behaviour of seabed ploughs.

It was requirt:t1 to select the mte at which the model iceberg was advanced such

that the prototype event was scaled correctly. Unfortunately, there eltist different

categories of time· dependent phenomena for geotechnical models, for which different

scaling rdationships are applicable. The time scale for an even! in which pore pressure

dis.~ipation is to be modelled may be derived from the theory of one· dimensional

consolidation (e.g. Taylor, 1948). The solution of the basic differential equation for a

one· dimensionally consolidating soil layer is commonly specified in tenns of a

rcl:ltionship between a dimensionless degree of consolidation and a dimensionless time

faetur. To ensure similarity, the time fnclQr T. must therefore be equivalent for both the

motlel and prototype systems. This condition may be expressed as

(2.6)

where the subscripL~ m and P refer to model and protOtype respectively, c. is the

coefficient of consolidation, and h is the length of a drainage path. In a model with the

same soil and pore "uid as the Pl'()(otype, c. is the same for both systems. aod if the

linear dimensions are scaled by the factor tiN from the prototype. the length of a

drainage path is also reduced in accordance with the change in linear scale. Hence. from

Equlltion 2.6. the times for consolidation in the model and prototype are related by

I {I) I.... N2 p
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such lh:lt consolida!ion pnx::eeds much more mpidly in the mudd lhan in IhI: pml\lIYpc.

For the scale f3CIor N "" 100. Ihis n:131ion indic3tL'$ 111.11 one hour \If mOlleI lime

represetIU greater than one year of prototype consolid.1liun lime.

For dynamic events. a different time scale raClor is deriwd (RIm ctlllsider:llion

of the equations of motion. 1llc acceler31ions in the mood and fll1lllll)'flC :Ire rcl:llL'tI hy

lhe scale faclor N. and the following expressions may be written tll dc.~rihc the mIllion:

d ~ x
__, '" Aw!sin(wt) arwJ
d I; ,

NAw!sin{NwI.>

... (,.g)

where A is the displacement magnitude and w is !he frequency of the motion. This leads

to relationships for displacements in the two systems given by

x, • Asin(wt~) and It•• ~Sin(Nwt.)

which implies that model and prototype limes are related by

(2.9)

(2.10)

Since any motion may be represented as a Fourier series which is a summation of sine

functions. lhe time scaling relationship given by Equation 2.10 is generally apfllic..,ble to

any displacement or loading. However. this result connicts with the time liCllling

requirement for consolidation in Equation 2.7. anti inconsistencies arise when bmh

drainage and inenial effects need 10 be considered. In some inslances. panicu[arly whcre

the dynamic behaviour of sand models is to be invcstigaled (c.g. Dean and

SchofiCld. 1983). this conflict between time scaling factors may he surmounted hy using

a pore fluid with a similar density to the prototype nuid but a much higher ViSC05ity. The
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effect of scaling up the viscosity of the pore fluid is to increase the model consolidation

time Stl that it is compatible with the inertial time.

For a idpid event and impenneable soil. the inertial scaling faclor is the only one

of relevance. Model scouring in the present study was regarded as an approltimation to

this case. with negligible pore pressure dissipation during the event. Model time was

determined in accordance with the scaling relationship given by Equation 2.10 and.

therefore. the specirlCd rdte of scouring for the model was identical !O the protOtype

velocity (i.e. Olpproltimatcly 0.1 m/s). This implied that model pore pressure dissipation

transpin:lI more idpidly relative to other time dependent events and that. at corresponding

points in the mOOtl. pore pres~ure build· up was smaller than in the prototype. Model

time sc'lling based on Equation 2.7 would entail scouring rales which were N times

greater than prototype velocities. For the scale factor N "" 100. this would necessitate

11 model Spl,.'t1J on the order of 10 m/s. which was an impracticable requirement in

cnnsidcrution of the available equipment and instrumentation.

The cltlent of drainage during the model event may be assessed through the

in.~Ill,.'Ction of isochroncs which display the variation of excess pore pressure wilh position

lIt SflCcincd times. Consolidation. with dissipation to a drain at the surface. begins neaT

the surfacc and progresses downwarllthrough the soil. The gradient of an isochrone. and

therefore the seepage velocity. increases with proltimity to the surface. In the present

study. the IOlal length of advance of the model was less than 500 mm which implied an

event dUr:ltion of about 5 seconds at a model speed of 0.1 mls. Hence. for Speswhile

Iwolin e1ay. having a coefficient of consolidation in swelling of about 1.0 mm 1 s .1, the
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mall:imum isochrone depth L develop..'\f during I~ eVCllI may he appnu:inl:lt~'\f as

follows :

L ..~ ..~ ,. 7.8mm (2.11)

using lhe expressK>n derived from the method or parabolic isochmnc..'S for an initially

unifonn excess po~ pressu~ (Schorteld and Wroth, 1968). Thi~ r,,:sult pnwklcs ll1l

indication of the nile at which the effects of consolidation progrt.'SSCd illlu the suil fnull

the drainage boundary of the model. It may be expcctetl tlml execs.~ pure pres,wre

dissipation during the event was confined 10 the surficial region above the ellh:u!;tIL'd

deplh of isochrone penetration.

Strain Rale Effects

Another scaling effect for time dependent processe.t; may ariSl: due In Ihe rail..' uf

defonnation (Craig, 1982). The mechanical properties of clay arc .strolin rute depcoUcllt.

Typically. a ten - fold increase in strain tale may lead to an increase in lhe lIflrllrent

undrained shear strength on the order of 5 percent. The mudel event shlMJld therefure

ideally be conducted at the same strain rate lIS the prototype event, III en.'ilJre tlmt the

same soil behaviour is observed in bolh systems. This requin:.~ that the mudel event he.:

undertaken over the same time scale as that of the prototype. For mlltlellimL'S in Ihe lests

reported here, altered according to inertial similarity (Equutinn 2.10), the slrcngth

mobilized may be expected to increase by a factor consistent with a str,tin r.lle increase

of N ;; 100. with strains being equal at all homologou.~ points in model aoo pmtntyflC

as discussed by Bolton et aJ. (1973). The implementation of Ihe time scaling rclatilln...hip
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Illr lIifrusilln phenomena given hy Equation 2.7. would have produced substantially

higher r.t'c.~ (If ~trdin anti associa\l~d errccts in the model.

Fur the p:lrtkulilf clay and rate of defonnation investig:ued in this study. the

fMlSsihle scilling crff."\;t illlnxluced by differences of strain rate WIIS not expected to be

highly signifICant. For example. from the results of cone penetration tests conducted in

SflC."Swbite kaolin clay. it was observed !hat the measured poinl resistance was not

signiriC::lOlly innucOCl..'d by the pcnelration rale. for rates as high as 20 mm/s

IChc:ah. 1981; Almeida and Parry, 1983). The magnitude of the rale effect may not be

mea.·'luable for thl;.' tests reponed here. as it is comparable 10 acceleration, curvature. and

Cnnniis errors. each of which contributed to limiting the accuracy of the centrifuge

Il\ndcltests.

1.4.3 Medel Pipeline Scaling

1\ typical m<lrine pipeline has an outside diameter of 610 mm (24 inches) and a wall

thic:L:nt."S.'i of 15.9 mm (0.625 inches) (e.g. GtJlder Associates l.J.d.• 1990): although. in

the extreme. a buried pipeline as large as 1422 mm (56 inches) with a wallihicknes.s of

19.1 mm (0.750 inch) was installed offshore in the Gulf of Mexico (Andrier, 1981).

FlnwliOl,.'S <lOO transmission pipelines for oil and gas are conslrucled from carbon steel

alloy..'Il wilh manganese and conforming 10 the API 5L SpecifICation. The APr

Spl."CiticMion details the propenies of the sleel; pipeline steel grade is identified by the

)'icld liln:ngth as X42 10 XBO. where the numbers indicate the yield strength in units

or ksi. Over the period or the last three decades. the strength of commonly used line pipe
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has increased from 290 to 448 MP:1 (corresponding to API Xb5 gr.Kk S1l~1) (Culd ().;c.1lI

Design A.qociates lid .. 1994).

The main objective of the tests l'qlOrted ~n: was 10 undcnll:and Sl,lil t-.:havinur

during ICe SCOUllng by invesligation of the stress and tkfoml.1tinn flClt1... lkvc1l'1p..,,) fur

well· defined soil conditions. Model pipelinl$ Wl:n: lllllO inclwkd in the h..~

representation (0 provide limited direct evidence of the .:frccts of S(....ouring nn huril..,,)

pipelines. Prior to the test. the model pipelines were sct inlo trenches CXeOlVl.lh.''1J wilhin

the specimen and the trenches were backfilled wilh Inc clay Ihal hall heen remuVl'u. ·111e

maximum pre - consolidation stress was reapplied 10 the chi)' specimcn fulluwing.

installation. in ordcr to dissipate excess pore pressures ;lnd minimizc the crfl'Cl III'

disturbances associated with lhe trenching activities. The n.'sultant I'ClI'Iouldcd stalc Ill' lhe

infilled material was representative of field soil condilion..~ prodOCl'd Il)' pluughing ;lIld

backfilling operations. 1l1e model pipeline inslallation PI1lC\..'l.Iures lin: dcl:aik-d ill

Chapter 3.

The defonnation of a buried pipeline ma), be innuenced hy severnl facturs. 311lJ

it was not practicable to reproduce all aspects of the full - scale situ.llion in the mudd.

Only finite pipeline lengths were modelled. as constrained by the dimensions uf the tuh

in which the clay specimen was contained.. As a result, the coos of the motIcl pipeline

segments assumed an unknown degree of fixity in lhe surrounding soil during ales!.

Moreover. otherprotOlYpe features such as operating internal pressures and lemper.llun:s,

and concrete weighl • coating of the pipeline were nOI modelll'd in lhese lesls.

Some of lhe scaling relalionships applicable 10 model pipc1i~ may he devclnpt..-u

from consideration of soil loading • induced defonnation through bending clTccl<; ur lIxial
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cumpression under shear. Other possible mechanisms of deformation and failure, such

as lwisting, buckling, or indentation, arc neglectt.'d in the subsequent derivation. To

specify the simplified physical system for an ideal clastic - plastic material, a functional

equation describing the pipeline deflection ~ may be wriuen as follows:

~ = f(EI,Mp,EA,m,lJ,I,p) (2.12)

in wbich the syml>ols used arc defined such that; E = Young's modulus; I = moment

of inertia; M p =plastic momem capacity; A - cross - sectional area; m = mass per

unit length: 11 = 11 characteristic applied stress; 1 = a characteristic length, and;

p = material density. The application of partial analysis to this system then yields the

followiog equation expressed in terms of non· dimensional groups:

,. ;,{~.~.~.~} (2.13)
111~ all al~ pP

where f refers 10 a relative displacement or strain and 'if indicales a functional

relationship or dependency. Model design criteria which satisfy the requirements of

Equmion 2.13 are presented in Table 2.2 for a geometrically similar model pipeline

subjl'Cted to the same applied Slresses as the prototype. The implication of the

relationships specified in this table is that in order 10 ensure similarity between model and

prototype effects, Ihe pipeline material used in both systems must have the same sliffness

characteristics and yield stress. In particular circumslances where only !he elastic

bl:haviour is of imerest. a different malerial with a reduced elastic modulus may be

cmploYl'd in the model. provided thai wallihickness is increased such Ihat the firstlenn
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Table 2.2 Scofillg RtlatiOtlJltips for MOOtl Pirwfillts

Quantity

Diameter and Wall Thickness

E1utic Bending Stiffness. E I

Plastic Moment Capacity. M ~

Axial Compressive Stiffness. E A

Mass I Length. m

Full SCale: Mood 1I1 Ng

I: II N

1 : I I N~

on [he right hand side of Equation 2.13 is equivalent in both model and prototype

systems.

In the present study. model pipelines were used to provide an indication of the

plutic deformation which may be experienced by typical prototype pipelines situ:tted at

d:fferent depths below a scouring ice keel. In order to accurately model the rlaSlic

response, it was therefore required to use model pipelines whieh wcn: comrri§l'(j of the

same material as the pr~otype, with external diameter and wall thickncss dimcn~ions

reduced in proportion to the length scaling factor for the centrifuge model. Thc sck:ctiun

of material properties and sectional dimensions was limited hy the aVilililhiliLY IIf

appropriate steel tubular sections. Details of model pipeline characteri5lics arc provkk'ti
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in Chapter 3. In gcncr.l), tWO model pipeline segments were used in each test. and placed

al dillercnt depths within the clay specimen. These were 800 mm length segments of

sllliniess steel tuhing having an outside diameter of 6.35 mm and a wall thickness of

0.25 mm. The maximum yield stress of the tubes was about 380 MPa. The

wrrespondinll prototype system therefore involvcd a pipeline with a thickness to diameter

ratio greater than the ["'dnge of values which may be used in common field situations.

Furthermore. the material yield stress was somewhat less than that required for pipeline

stt.'Cls currently employed in practice. These inadequacies of the representation must be

taken into considcl"'dtion in the evaluation of model test results.

The specilied material and boundary conditions which defined the model scouring

events investigated in individual tests. selected in accordance with the discussion of

St.'Clion 2.4. arc presented in Chapter 4.
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Chapter 3

Experimental Devices and Procedures

3.1 Introduction

The concepts discussed in the preceding chapter were npplied in the develupment of a

programme of small scale model tesls of ice scouring. The Objl..'Clive of the mooel 1C."'S

was 10 collcet accurate data for well - defined physical events. Tcsting within the

cenlrifuge environment imposed practical restrictions on the methods usedlO achieve tlli...

objective. lbr: size of lhe model was limited by the physical dimensions and payload

capacity of the cenuifuge. The elevated acceleration field and the remote communicatiun

requirements also constrained the design and selection of the systems used for tc."il t,"tmlml

arxl data ~Irieval. To accommodate these constrainlS, whenever arrlghlc. flnlYC"

modelling techniques and apparatus developed in conjunction with past n:scan:h at the

Cambridge University centrifuge facility were employed in the prc.'iCnt study.

The Icst apparatus and experimental methods used [0 investigatc the pmhlcm ur

ice scouring art: described in this chapter including: thc luborulory prcp.1rutinn or cllty

spt:Cimcns prior to ct:ntrifugt: tt:sting; the equipment and instrumentation USI,.'d in thc

simulation and monitoring of an idt:alizt:d scouring event in • night on the centrifuge.



and; the post - tcst site investigation procedures used to further evaluate the effects of the

mcKlcl .~ouring event. Modifications were made to improve the experimental set - up and

methods on the hasis of knowledge gained as the study progressed. Therefore. a general

cKllline is presented here, and variations in individual tests are described with the

corresponding test results in Chapter 4.

3.2 Preparation of Clay Specimens

Thl.: techniques and apparatus used in the labor.atory preparation of clay specimens are

considered in this section. The installation of pressure transducers and other inclusions

within the specimen which were used to oblain internal measurements of the material

responses are also described.

3.2.1 Laboratory Consolidation

The clay was consolidated in the laboratory to ensure the establishment of appropriate

stress states at consolidation equilibrium conditions under self· weight stresses in the

centrifuge. For the tests perfonned in the present scudy. this involved the application of

a total stress 10 the clay and dissipation of the resulting excess pore water pressures in

order to establish a unifonn vertical effective stress over the depth of the specimen. The

portion of the soil body with in situ effective stresses below this maximum stress was

then overconsolidated. The level of pre - consolidation was selected to obfain a desired

profile of the overconsolidation ratio and was altered in particular tests to examine the

intluencc of s\lil conditions on the effects of ice scouring.
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A sin,gle specimen of clay WJ5 rrep;1~ for each of the centrifu!!c tCSIS

performed. The stress history of I~ matcrial was initiatCtl in the lahl.1r:JtlK)' where il wa.~

reconstilUled from a slurry. Speswhile kaolin day. surrlit..'lJ cummercially in dry fluwdcr

fonn, was combined with deionized water to prot.lucc t~ slurry. 11v.: slurry was mixl.'lJ

in batches which comprised 50 kg of kaolin powtk:r and 60 litR.-s of wilter hi yielll

nominal moisture coment yalucs of 120.percent (abouttwicc I~ lil.luid limit Ill' the l:1ay),

Three batches were prepared for each test to allow for sufficicni slurry to rrl.lduce a

consolidated specimen thickness of ISO mm, The mildng of each h:ltch was carricdllut

under a panial yacuum of approximately 0.5 atmosphcres for II minimum time [lCriotl uf

two hours. This procedure resulled in a homogeneous slurry of smooth ctln.~istcllcy lllW

ensured a high degree of saturation in the subsequently consolid:ltcd clay spl.'Cimcn.

A steel. cylindricallUb. &50 mm in diameter and 400 mm deep, servL't! to contain

the clay specimen both during laboratory prepamtions and in • Oight on the centrifuge.

Of the containers available at the Cambridge facility, this design afforded the maximum

surface area in which 10 conduct the model scouring event.

The container approximated the boundary conditiom required for one·

dimensional consolidation. The walls of the tub provided a condition of high latcnll

stiffness and were coated with a water - resistant grease to reduce friclion. AllowancL':'l

were made for two· way dl1linage at the bollom and top of the clay sfX."Cimcn. A stl.'Cl

plate with channels CUI in its surface was positioned on a rubber mat which n:stL'd on the

base of the tub. The plate served as part of the drainage system for the tub anti lilso

facilitated post • test extrusion of lhe specimen. A porous sintered plastic sht.'Ct was sct

on top of the plate to permit venical drainage from the clay to a bottom drainagc outlct
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in the tub .~iluated al the level of lhe plale. Prior to placement of slurry wilhin the rub,

the base drJinage layers were saturated with deionized water and moist filter paper was

Iiliu tin top IIf the porous sheet. The slurry was lhen placed in Ihe rub, with precautions

taken to ensure that air was nOI Irdpped within lhe soil mass or the underlying drainage

laycPi. Finally. the slurry surface was covered with filter paper and a second sheet of

purClUS plllSlic to permil drJinage at the top of the specimen.

A large hydrJulic press or consolidometer. shown in Figure 3.1, was used to

apply the requin:d constant total stress 10 the clay. The lub containing the slurry was

assemhlL"f.! into the consoJidomeler and the rigid pislon was brought to bear on the upper

ShL'Ct of porous plastic. During consolidation, drainage was allowed through the outlet

al the hase of the tub to an eXlernal reservoir, and waler was also expelled around the

L'tIgL'S oflhc piston at the upper surface. The stress was applied in a series of increments.

The slurry wa~ initially left to consolidate under the ram and piston self weight (about

5 KPa) lor a period of one 10 two days. Each successive increment imposed was then

ahoul two limes as large as the preceding increment until the maximum consolidalion

stress was 3ltained. The enlire procedure was generally completed in Ihree co four weeks

with roughly Ihree days allowed for each incremenl. The degree of consolidation was

monitored by measurement of the vertical settlement of the consolidometer piscon and

3150 by pore pressure transducers installed within the spetimen.

3.2.2 Pore Pressure Transducers and Installation

Pnrc Wlllt:r pressures were measured throughoul the various stages of laboralory
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Figure 3.1 Sectional view of laboratory consolidol/lder

preparations and centrifuge testing, both as a monitor on the cxtent uf cunsnliU;ltion llOO

as a means of defining the soil response during the scouring event. Thcse measurements

were made using miniature differential pore pressure lransducers with an upcratinl:



pressure range of 350 KP" (type PDCR 81 manufactured by Druck Ltd.) shown in

Figure 3.2. The advOlntagc of these devices for use in the present study derived from

lheir .slll,,]1 size (6.4 10m diameter. 11.4 mm length) and their rapid response time. which

is on the order ufO.1 Sl.'Conds in saturated kaolin clay (Mair. 1979). The active face of

lhe transducer eumdsts of .. crystal silicon diaphragm with a strain gauge bridge diffused

i11lu ils surface. The diaphrdgm is shielded by a porous (ceramic) stone which resists the

crfective ,stres...; of the soil particles to isolate water pressure for measurement. To ensure

:1 high degree ofs;lturation of the transducer. the porous stone was de· aired by boiling

in wOller for a period of about 15 minutes. In addition. the transducer was immersed in

water during attachment of the stone immediately prior to placement in the specimen.

A tutul of eight pore pressure transducers was installed. The installation procedure

was c;micd out before application of the final stress increment during laboratory

consulidation. The bmtom drainage outlet was closed, excess WOller was removed from

the surface of the specimen. and the consolidation pressure was released. The pore

pressure tr"nsduccrs were placed at particular depths in the specimen through ports

SilU,llcd at four el.luidistam paints around the tub wall. An extension piece was first

Sl.'CurcrJ til the port to provide alignment for the insertion of a 7 mm diameter greased

Ihin • walled lUbe. The tube was driven horizontally into the clay specimen to a position

which was about 5 mm short of the proposed transducer location. The clay wilhin the

IUhc was llUgered out and the tube was withdrawn leaving a clear passageway to allow

fur placement of the transducer. The de • aired transducer was then set an a guide and

pustled into position wilhin the clay OIl the end of the passage. To backfill the void left

in the spl,.'Cimen. clay slurry was injected using a pump with a long hypodermic tube.
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Finally, the entry port was plugged with a rubber gland SCill filled aruund the lrnnst!ul.:cr

lead at the side wall of the container (Figure 3.2). The ghmt! seal :tI!IlWL'tI fur venting

through the lead 10 provide the reference (atmospheric) pn..'S.~un: fur the tr;lOstluccr.

The installation procedure generally pcnniul,.'l.! positioning to within ± .s mm llf

the proposed uansduccr location. However. encroachment of the suft sidewalls uf the
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placement shan and separation of the instrument from the guide could result in

suhstantially larger inaccuracies. The procedure was repeated for the remaining

trdn.'iduccrs and was generally completed in less than three hours. The pressure on the

specimen was then restored to its fonner level and drainage at the base outlet was

reinstated.

3.2.3 Visual Techniques for Soil Deformation Measurement

The methods employed to measure sub • surface soil displacements involved the

placement of grids of easily deformable materials at sections bolh parallel - and

perpendicular -10 the scour axis. Grids which comprised horizontal aod vertical members

place<l ~lt 10 mm intervals were .used;·a more detailed mesh sizing was considered

impractical in light of the procedures required to construct and install the members. The

horizontal members consistC!l of segments of very fine solder attached to strands of

coloured, dry spagheui of nominal 2 mm diameter. The spaghetti strands were retained

III the appropriate spacing (accurate to within ± 0.5 mm) by similar venical pieces fixed

at 100 mm intervals, which facilitated the installation of all members as a single unit.

After placement within the sample, the spaghetti became pliable due to the presence of

water bUI retained its initial configuration.

Lead powder trails were injected into the specimen to fonn the vertical members

of a grid. Both the lead trails and the solder segments were amenable to detection using

r.ld;ographic techniques. The deformed pattem of each grid could also be detennined by
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direct excavation of the grid members. 1l1c: post • It.'St im'c.'Stig:uion pnJl,.'\.'dun:s an.:

detailed in Seclion 3.6.

To minimize dislurbarv:e of the clay SflCCimen. mood pipeline scy.menls wen:

installed concurrently with fhe grids used to monilot soil di,,"plac..'\.'1llCnts. 'nk: mude!

pipelines we~ lenglhs of commercially available suinlcss stccltuhubr Sl..'Cliull'i (m:llerial

designation 1304, seamless). The tubes hove an outside diomctcr IIf 6.35 IIlm and a wan

thickness of 0.25 mm wilh tolernnces of ± 0.10 Ilnll ± 0.04 mm tl:srx:ctivc1y lln illeSI..'

dimensions. The maximum yielll strenglh of lhe tuhing m<1!eriOll is ;lppmximatc1y

380 MPa. In general, IWO 800 mm length segments were installc<.l within tile cl;ly

specimen at sections f>Cl'JIendicular 10 the scour axis, each III differenl dcplh.~.

For practical reasons relaled to the initial test objl,.'Ctivcs lmd the llvailahility uf

supplies at the time of testing. a different type of tuhing wa.~ uSl:d to rcpn.."'ICni lhc

pipeline segments in the first centrifuge lest of the sen.:!. Tht sections u....w in this tcst

are extruded from an aluminum alloy (material designation 6063 - TF) with a nlinimorn

0.2 percent proof stress of 160 MPa. n.c tubes have an outside di..lmell:r or6.0 mm arxl

a wall thickness of 0.7 mm. Both dimensions have a tolerance of ± 0.1 rom. A tutalur

five 650 mm length segments were placet! in the Test I specimen.

Installation of Grids and Mood Pipeiif/~s

The installation of soil defonnation grids and mOOel pipeline segments Wlts eOlrried nut

SUbsequent to the establishment of equilibrium conditions under the mltximum

pre • consolidation stress increment. To allow accc:ss to the clay surface, the spc.'Cimen

was unloaded and removed in its tub from the consolidometer. The pn:~"'Wn: was n:t.lul.'\.'d
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in sters during unloading 10 avoid the onset of cavitation caused by high pore water

pressure suctions. The confining piston, porous plastic sheet. and filter paper were next

removed. The exposed lap of the clay specimen was then scraped to remove a small

amuunt of excess material, to yield a smooth level surface at the final elevation. An

;t!lclwm'lee WllS made in detennination oflhe requiloo elevation for the elastic rebound of

s<lmple liS measured during unloading.

TrenchL"S were excavated within the clay specimen to permit the placement of

grids lind model pipelines at particular depths below the initial surface level. Markings

wcre first lightly etched into the clay surface to give an accurate plan (if trench locations

relative to the proposed scour axis. To provide a guide for the tool used to cut the

trenches. two steel bars were spanned across the top of the tub. supported at either end

hy the upper nange of the container. The positions of the bars were adjusted to ensure

correct alignment of the 1001 during the cutting process, and the bars were then clamped

in place. The cuning tool comprised a nat plate with a narrow pTOtrtlding section of

widlh cqual to the required 12.5 mm trench width and length somewhat greater than the

llmdmum proposed trench depth of 75 mm. To create a trench. the rounded tip of the

narrow section of the tool was pushed into the clay to a fixed deplh and the tool was

drawn across the specimen while maintaining contact with the guide bars. The extruded

chI)' was intennitlcntly removed from the face of 1001 and stored in plastic wrap for later

u~gc in hllcklilJing opeT3tions. A section of angle bolted to the tool rested on the guide

tms during the cuning process. The height of the angle was adjusted to set the depth of

the cut. To n:duce associated disturbance of the clay ~pecimen, the trenches were

C;I;Cl\v,ltcd g"ulually in .s mm cuning depth increments.
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After lhe completion of exc3.vation. lhe prepan:d ~rid wa.~ lowel\.'d into Ihe trench.

aligned at lhe n:quin:d deplh. and lhen gently prcssctl imo the trench side walliu fix ilS

)Xlsition and prevent cbntage dUring backfilling. Al axi:d sa.1ions. the grid was pl3Cl.....

ag.ainsllhe trench W211 coincideTll wilh the scoor axis whereas. at cross - SI.'CIiom. il wa."

placed al the from wall relative 10 lbe dirttlion of scouring. The lrencti was Ihen

b3.ckfilled by hand using a small spalula with an angled blade. Thc clay thai hat! ht.'CII

removed during excavalion was returned to Ihc Ircnch in a highly remoulded SIMI.' as a

resull of handling and placemem procedures. To inslall the model pipdine ,II ,I ertlSli •

section. the trench was first backfilled 10 a depth slightly higher Ihnn the desired

elevalion of Ihe model pipeline: invert. The lrench cuning tool wns then used to remove

the excess material to provide a level base onto which the tubing segment was placl.'d.

The backfilling process was lhen resumed 10 complelion. The: instnllation pnx:I.'durcs

were carried out over a IWO day period during which efforts were made to prevent

exposure of lhe clay surface in order to limit \he ingress of air into lhe spt:cimcn. The

posilions For insertion of lead powder trails were fhen martc:tl 001. lhe specimcn was

covered with a layer of plastK: wrap. and lhe piston self weighl was n:applil.'d oycmigJll

to ensure an even surface.

Lead Powder Traillnsenion

Lead powder trails were Fonned by injccling a lcad suspension inln the specinll:n III

creale a lead • coated shaft. Figure 3.3 illustrates Ihe preparalion and insertion

procedures. The lead suspension was hand mixed from lead powder (less than 100 mesh

size) and water soluble machine cutting oil. A sufficient quantify of lead poWder was
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added to ensure an even deposition on the wall of the shaft after diffusion of the oil into

the surrounding clay.

The mixture was lirst drawn into a piston cylinder to allow for discharge to the

hypodermic tubing used for injection. The length of the tubing was selected to provide

a del'th of insertion of 80 mnl for the venicaltrails fanning pan of the soil deformation

grids. The tubing consists of a narrow section probe (1.6 mm outer diameter. 0.5

mm wall) to be inserted within the clay. brazed to a larger section barrel. The end of the

hllrrcl is threaded to permit altachmem to a port on the cylinder. To fill the probe and

harrel. the piston was slowly advanced to force the lead suspension from the cylinder into

the tubing. with care taken to expel entrapped air pockets.

Special apparatus was used to locate and guide the probe during insertion of the

lead tmil. The locarion of a line of lead trails was fixed at a section by a rail placed

across the top of the tub. supponed and clamped to the upper flange of the comainer. A

square bar template with tight clearance holes to guide the probe was moveable along the

mil. The position of the template was adjusted until the guide hole was directly above

llll: proposed site. and rhe bar was then clamped to the rail to set the location of a

particular lead lrail. A vertical guide was attached to the tern, late. A channel is machined

into a hallom plate on rhe guide to align the barrel of the lube. A removable assembly

could also be litled onto Ihe top ponion of the guide to fix the posirion of a piston rod

in line with Ihe channel. directly above the hole in the template.

To begin the insertion procedure. Ihe charged hypodermic lUbe was held parallel

to the vertical guide and placed through the hole in the template. The probe was then

pushed slOWly into the clay while the barrel was maintained within the channel along the
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Figure 3.3 Top .. Recharging hypodermic tUbing with lead suspension; Bo!tom . Outfine
sketch of stages in lead powder trail insenion (after Phillips. /990)
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guitk The pi'itlln rocJ assembly was tht:n attached to the guide such that the tip of the rod

fiw..'l.I wilhin the top of the tubing barrel. Finally. lhe tube was gradually removed from

lhl: lif'K."Cimcn; the barrel ponion was withdrawn over the piston rod which prompted the

expulsion elf the lei:ld liUspension from the tube into the shart left by the probe. The

pmcl,.'l.Iurc W,IS completed whcn the tip of tl)e probe was above the cray surface. The

riswn nxl as!icrnbly and the tube were then removed from the guide. To place additional

ICOld trails. the tube wali recharged with lead suspension. the template position was reset.

and the rroc(:ss was repeated.

A tOial of 74 lead trails. comprising the venical members of four separate grids.

were generally installed in the specimen. TIle quantity was limited IS it was recognized

Ihm Ihc open sh;tfts of tbe trails may act as drainage paths within the specimen. The

in.'\Cnion procedures were completed in a single working day aner which lhe rub was

rctumcd to the consolidomeler. The maximum pre • consolidation stress level was

rc"pplicd to the clay specimen to dissipate excess pore pressures and reduce the effect

of di'iturbances caused by the installntion of grids and model pipelines.

SlltfaC'~ Ma,*~rs and Final Sp«im~n PnparaJian

1bc remaining tasks involved. in preparation of the clay specimen were carried oul one

day befon: the scheduled centrifuge test. Drainage access to water was disallowed. !he

spl,.ocimcn was unloaded. and the tub was removed from the consolidometer. The clay

surfacc was lhen uncovered to enable cuning of an initial bay for the model iceberg. and

to permit the placement of surface markers.
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To sel the initial depth of the model icebc~ at II lt~\'d hdll\I' the exr~'<.:!cd

equilibrium scour depth. a bay was cut witll;n the sf'!.'Cimell in which the llwdcl \\':L~ III

be situated prior to the scouring event. To construct the hay. the clay surl'm:e WilS

incrementally scraped and Icvcllcd to a dcpth of 23 mill within a rcgillll whieh cxtcllllcd

200 mm forward from Ihc tub wall and 280 mm in width pcrpcndieul:lr til the sctlur ;!.'(is.

A relatively stiff and light 3 mm thick plllstie platc W;L~ placcu within thc hay tu suprun

the model iceberg with negligible settlemenl from an initial 20 mill ucpth. '111c SIlPfMln

plate was pegged into the clay surface ncar to the tub wall to prevent its movcmcnt.

Surface markers were placed at prescribed lociltion.<; on the specimen; p];ll1 view

photographs of the specimen taken both before and aftcr the tesl then :Lllowed lilr the

evaluation of the movements of the surface ffi:Lrkers using a llim measuremcnt m:n,:hinc

as described in Seclion 3.6. The markers were 2 mm diamcter sphcricill lead - shut,

selected to aid in definition of the model bOundaries during rauiogral'Jhic cx.uninatilln.

Measurements based on these markers were expected to unden:stim.llc surf:lee suil

displacement magnirudes.

To install the lead spheres, a clear plastic template of 6 mm thickm:ss with lin

array of lapered guide holes spaced at regUlar intervals wa.>; used. The template was

posilioned on Ihe clay surface and the lead spheres were inscrtc.:d into the gukh: holes.

A specially fabricated 1001 was then used to indcnt each sphere into the surlitec uf the

specimen to a distance of slightly less than one sphere diameter. A rectangular pallern

of markers (240 mm width, 500 mm lengt/l) were installed at 20 mm spacings eenln.:d

on Ihe proposed scour axis. The spacing interval was sc[ectl,:d to allow for post - lest

identification of the bulk of the markers after large soil movements. and to ensure a
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negligible inlluencc on model behaviour. Four reference markers were also placed at

far - licltJ positions which were unlikely to be affected by the scouring event.

Prepardtion of the clay specimen was completed with the installation of the lead

sphere markers. The gencrallayout of pore pressure transducers, soil deformation grids,

mooel pipeline segments, and surface markers is shown in elevation and plan view in

r:igure 3.4. Individual test variations in the arrangement are detailed in Chapter 4.

The surface of the specimen was photographed to provide a record of the pre •

test pattern of the lead shot markers. The camera used was a Hasselblad Model

500 EUM looded with a high quality 70 mm Aerographic film (Kodak 2645, Estar base).

The camera mounting position was fixed and measured relative to the clay surface so that

the same location could be established for the corresponding post· test pholographs. The

clay surface was then covered with plastic wrap. At this stage, the tub containing the

prepared clay specimen was ready for assembly with external equipment and

iruitrumcntalion to fonn the complete centrifuge test package.

3.3 Equipment and Instrumentation

The lorcgoing dl:scribed construction of the SOl; model with a prescribed stress history,

and the accommodations made for the measurement of internal soil effeclS. In addition

10 the stress history and current stress Slate, the soil behaviour is also dictated by the

stress path followed during the test. The test package equipment and instrumentation

were designed to address this model requirement through appropriate simulation of the

prototype penurbation. In addition. Ihe test apparacus allowed for monitoring of the
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Figure 3.4 Layout of port preuurt transdllctrr. dt/onnafion marl:.t!r.t, (lnd IIwdd
pipeline segments. shown in elevation and plan vim

imposed conditions and external model responses, to ensure a well - defim.:u event

The various components of the package were mounted on a 9.5 mm thick SIL1:1

cover plate to ronn an integral unit which could lhen be bolt.:cj to the upper nanyc of the

tub containing the prepared clay specimen. An opening wu provided in Ihe centn: of the
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cII"'er plilte to penni! access to the clay surface and 10 allow observation during the e...ent.

Su:cl box sections wen: welded to the co...er plate to enhance stiffness and p~vent

cxu:s....i...e dcllcctions in tbe high gra...ity en...ironment. The external equipment was finnly

lol.'l.-ured to the co...er plate to preclude disturbance: of the soil and to allow for mechanical

handling of tbe complete package.

3.3.1 Drive Syslem

Simulation of the icc scour perturbation entailed both the model iceberg (described in

&.-ctilln 3.3.2) and the drive system used [0 actuate the model. Power to dri...e the model

W3S dcri ...ed from a ...ariable speed D.C. penn~nent mag~t electric motor (type PM 2MB

manufactured by Parvalux lJ.d.). The electric motor met output torque requirements

basl..'d 00 cstimated loads and satisrled power requirements for the proposed model speed

uf 0.1 m1~. A thyristor controller was used with the de...ice to facilitate remote operation

ant! SIX:ed rel!ul,uion from me centrifuge control room. The appropriate rued controller

~:Hing for tbe constalU velocity scouring event was established through laboratory

calibration prior to centrifuge implementation.

The elcctric motor provided a relatively simple and reliable method of actuation

and it~ size al'Kl constlllction were suitable for incorporation into the centrifuge package.

The mOlor was supported by an external housing constructed of welded steel plates.

halted (0 the package cover plate. To ensure serviceability in the centrifuge environment.

the device was aligned with the uis of the rotor parallel to the direction of centripetal

acceleration. The increased rotor weight was transmitted from the main output shaft to
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thrust bearings at the base plate of the housing. The loads imposc:d on the tkvicc wen:

also carried through bearings at eaeh end of the douhle - ended shaft on the gearlx1x.

Figure 3.5 shows a drawing of a venical Sl..'Ction thlOUgh the jlllckagc lilung lhe

scour axis. To advance the model iceberg. the electric motor roIatt."d a I.S nun lli.,mctcr

galvanized steel cable around a 20 mOl diameter capstan fi.ed to OIlC eoo of the drive

shaft. A bo. section welded to the bottom of the motor housing extentkd duwnwanl

through the paekage cover plate. The nexible cable WOolS guided around a pulley auw.:hell

at the base of the box section and was connected to the front of the n10tJcl icehcrg.

initially loated at the other extremity of the centrifuge container. In this manner. II'll:

model was driven by application of a horizontal pulling fort:e at a pn.."'iCrih.."d cleV'ollinn

above the clay specimen.

The drive system did not restrict the behaviour of the mood iceberg. rile Illollel

was pennilted to undeTllo motion with six degrees of fn.-el1om. In proletkc. lluc tu

symmetry of the model geometry and the applied driving fora:. movements wen.: limitt.'tl

to the imposed horizontal translation (surge). as well as venicaltranslalion (heave) :ultl

rotation about a transverse axis (pitch). Heave and pitch motions wen.: dcvclllpt.'tl thmuj,th

interaction with the soil and wert dependent upon the vertical anll rotation.,1 hyllrost:ltic

stiffness of the model. Other types of movement could arise: as a result of unanticipatt."d

load eccentricity or specimen inhomogeneity. The direction of Imvel w:t.<; SJl'-'CirH.'tl

pandlel to Ihe axis of rotation of the cenlrifuge (upward movement as viewed external

10 the package) in order 10 minimize errors due to the r..llial aecclcrutiun lielll und

Coriolis effects.

'The forward molten of the model jceberg was tenninated autortUlticalty 10 end tIIc
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Figure 3.5 Sectional view ofcentrifuge test package

scouring even!. For this purpose. two micro· switches were connecled in series with Ihe

dt.'Ctriclll supply to the motor. The switches were supported by a plate positioned in front

of the pulley. and the pulling cable was direcled belween the switches through a groove

in the plale. A small aluminum cone was fixed to the cable at a set position in fronl of

the model iceberg. The cone contacted and activated the switches to SlOp the motor when

the model had travelled a predetermined distance.

nlC horizontal position of the modcl iccberg was monitored using a position

tr.msduecr (type PT 101 manufactured by Celesco Transducer Products Inc.) linked
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directly to the model. The tnmsdueer ClSinp: W2S inV('n~ ;sod mounted on hr.1s5 SU('Plns

wbich were bolted 10 the package cover plate above the inilQIIo..uion 0( It.: mood. This

oricnwion permitted extension of the uansdua=r II'II:'aSUri~ c:ahk V\."r1ica.11y downward

from the dcvict through • hole in the oover pUle. The ahk W3S guided around OIl pulk.")'

moul1led OD the u.ndc:nide of the plale. and then futened 10 the back end of tbe top pb.t!:

on the ~1. 'The positton transducer ~loyed • linear pt*nliometl,.-r which pro'l'itk.'\J

a continuous record of the: horizontal position of the model to within ;sn l,.-rrur uf

± 0.5 mm. The extension of the tl1lnsducer meaS\Jrin~ cable IISSOCi:Ill,.'\J with c.1h:n.1ry :11

Ihe leSI acceleration level was estimated 10 introduce tlddition;ll deviation or the li;lme

ordcr of magnitude.

An indirect measuremcnt of the model position was also ohtail'lL."tI hy mcan.~ of a

rotary polcntiometer connttIed 10 one end of the motor drive shan. This laller

measuremenl intluded the effect of I sliglu pre - len!itoning of the: pulling ahle priur tn

lhe iIaption of model move:rnenl.

3.3.2 Model Iceberg

The model iceberg was consuuctcd of a1umilVJm. 10 represcnl. OIl rigKJ keel of pn:scriht:d

geometry. and balsa wood. to provide buoyancy OIInd esIahlish the vertical stiffnl........ urthc

modcl in free surface water. Aluminum plates (6.3 and 12.5 mm thickl'll.""~) wen:

welded to fonn the keel geometry displayed in Figure 2.9. The model was fahrieated

ovenize and machined to the required final cxternal dimensions. Balsa wood 5Cgmcnts

were coated with water resistant varnish and bonded to tbe periphery of the uppcr purtion
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of the aluminum shell using a high strength adhesive. The wood segments served to

extcno the plan area of lhe model at the waterplane, and thereby to increase the vertical

stiffness of the motlelto a specified value. The baseline model configuration, shown in

Figure 3.6, included II ket:! width of 100 mOl, a horizontal base length of 50 mOl, and

;In attack angle of 15 degrees. The waterplane area of the model was 250 by 250 mm~

which corresponded with a vertical stiffness of 61 N/mm.

The model iceberg design was varied 10 accommodate changes in parameters

proposcd for spccilic tests in the series. The parameters and corresponding model

geometries for each test are given in Chapler 4. Some of the individual model

eonligurations arc exhibited in Figures 3.1 and 3.8 to illustrate particular construction

features and other physical characteristics. The initial configuration, shown in Figure 3.1,

possessed an irregular wnterplane geometry with augmented bow area dimensions. The

tendency 10 overturn during the scouring event was reduced by concentration of the

model mass at the slem and placement of the balsa wood float at the

front plate. 'll\e model was modified in subsequent tests to increase vertical stiffness

Ihrough provision of the maximum practicable waterplane dimensions.

In general, changes to the keel shape produced changes in the buoyancy

ch.1racteristics of the model. To isolate the effect of the test variable, it was therefore

nt.'Cessary to make further adjustments to the model configuration to maintain the same

magnitude and point of action of the buoyant weight. This was achieved through re •

tlcsign of the aluminum shell of the model, by the addition of ballast within the model,

and by the attnchment of balsa wood pieces to the exterior of the model. Adjustments

were also required to ensure a consistent point of application of the horizontal force in
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successive tests. Funhennore. il was necessary to accounl for the weight distriml1illn uf

the instrumentation attached to the model. in tesL!i where (h:viccs were udl,h.:d liT in which

the model scale was altered.

Model Icebtrg {nstntmenlal;on

Each model iceberg was instrumemed to yield data which facilitated dCIl:rmin;lliun or Ihe

resultant scour forces. the pressures acting on the rigid kL'C1. ;as well a.~ the Chan!,'1;S in

depth and altirudc: of the rnodellhroughoul the even!.
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Figure 3.7 Silke~n view of rn.t:Kk/ iceberg used In Tests OJ and 02

The drive system pulling cable was linked to the model by a temion load cell

which measured the horizontal force developed when the model was advanced. The load

cell was fabricated from an aluminum aUoy (material designation HE I5W). The total

length of lhe device was 63 mm including end segments drilled with mounting holes. A

central web, which was 13 rom in length aDd 8 by 2 mm 1 in section, functioned as the

sensing element. Four semiconductor strain gauges were bonded to the web (two per side

oriented with (wo opposite gauges in the axial direction and two opposite gauges in the

uansverse direction) and the arrangement was configured to form a Wheatstone bridge

Cll'CUil. 1be load cell was required to operate while submerged in water at pressures as

large as 100 KPa for a continuous period of up to 10 bours. The device was therefore
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waterproofed by cooting the circuit and lead \Vires with a comnll:rciall}' ilVllibtJlc silicUlll:

rubber sealant suited to this application.

On.: end segment of the tension load cell w:lS coupled 10 the mood. An aluminum

connecting ptece machined as a shackle was altachc:d to the centre of the model il:chcrg

at a fixed elevation. The load cell was pennined to rotate freely in a vcnical plane :thout

the pin of the shackle but allo\\.-ed only limitec.l lateral t1\CIvemcnl. The pulling c.,blc wa.~

looped through the mounting hole at the opposite end of the device aoo sc..'Cun.'t! wit:l ll.

crimped anchoring pin.

Contact pressures acting on the horizontal bottom and inclined leading nice of the

mcxlel iceberg were measured to provide infonnation on imerfacc strcs.~ conditions during

the scouring event. Imerface measurements are affected by the stiffness of the sensing

element in relation to that of the surrounding boundary material. as well a.'l hy arching

in the soil medium. Similarly. measuremems derived from a relatively Sliffporc prcs.'\Ure

transducer implanted wilhin the soil (Section 3.3.2) arc prone 10 influclV."C hy stR:.\.'I

concentration and arching effects (Kutter et al.. 1988).

The soil· and water· induced interface pressures were L'$timall,.'t! through u.'iC uf

inductive pressure uansducers (type PII manufactun.-d hy Ilottingcr B:lldwin

Measurements Inc.) with a nominal pressun: range of SOO KPa. This type uf dcvil,."C is

suitable for measurements involving shon pressure peaks as well as qua.'li - static IIr

dynamic conditions with idpid fluctuations. The pressure medium acts Ilirl,.'Ctly nn a

19 mm flat steel diaphrdgm. The deflection of the diaphragm is din..'Ctly prnpuniumll tu

the differential pressure relalive to the ambient value anti is scn.~-d accumtcly by lin

internal displacemenllransducer. The transducer response is cnnvcnl,.'t! intu an analugue
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electrical signal by means of an inductive half bridge energized via an external measuring

convcrll.:r unit (lyl'JC Me 2A).

II \(Jtlll of three inductive pressure transducers (length 72 mm) could be

accommodated within tbe model iceberg. A top plate or lid on the model was removed

Iu permit installation of the pressure transducers and sealed to provide splash· proof

containment. One transducer was localed allhe centre of the horizontal base plale. The

two remaininll devices were positioned at a height of 10 mOl, and midway between the

centre and each t:tlge on the inclined leading face of the model, as shown in Figure 3.6.

The tidnsducers were fitled direclly into threaded holes machined in the aluminum plates

mll! nush • mounled with the exterior of the model. A narrow cavity between the

diaphrolgm and the edge of the threaded hole was closed with a metal body - filler to

render a smooth outer surface..~eaJing between lhe mounting plane and the device was

effectcU by means of a gasket at lhe shoulder of the device, adjacent to the thread. The

clt..'clrical cables were secured within the model and fed out through an opening at the

front of the lOP plale to permit connection to the measuring convener units.

The model iceberg was unconstrained and it was necessary to monitor ilS venical

position and orientation to define the scouring event, and to permit evaluation of the

resultllnt venical force acting between the model and the soil. Four pore pressure

tidnstJucers (described in Section 3.2.2) were installed at a fixed distance below the free

W,ller surface, at each of lhe four comers of the mode\. The transducers furnished direct

11Ie:lSUremenls of water pressures which served as an indirect monitor on the variation

\If model elevation (scour depth) during the event. The response time of these devices in

PUTC water is on the order of I millisecond (Kutler et aI., 1988). Wind - induced ripples
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or local water level changes provoked by model movement repn.'Sl:nlc:d 3. pl>lcntial suun.'I:

of measurement error. To minimize the effC(;t of thc...'<;( di.'lI:urb3.I1C1..'S. the pore pn.-s.owre

transducen ~re mounted within lUbes 3.lI3.ChctI to the side of the model. as shown in

Figure 3.1. Tbe tubes were machined with a 13 mnt diameter shaft open to tile

atmosphere and a 3 mm botlom apcnure to pcmlit water enlry. The transducer was

push - fiued into a mounlins hole localed JO mm ahove the base of the tube. such lhat

the active face of the device (with porous filler stone removed) was siturttl-d at the shaft

centreline.

To reduce uncenainty associated with the asses.~ment of the mudel venic:tl

position. redundant measurements were undcnakcn in panicular l'-'Sts using tlther

instrumentation. Initially. two linear position sensors (potcntiomcters) Wilh 10llun

electrical stroke and small physical dimensions and mass were mounted on Ihe.: lnp platt:

of me model iceberg. a.s shown in Figure 3.8. To R:'COrd model movcmcnls during the

event. me spring loaded plunger of each device was placed in COniaet with a guXJc rail

at fiXed elevation. This measurement system proved unreliable due to self - weighl

compression of the sensors in the centrifuge environment coupled with thl:ir limilt:d

measuring range. To add~ these deficiencies. the arrangement W;l,S modified in lhe

subsequent tcst. In this inslance, two ± 15 mm stroke linear variable differential

transformers (LVDT: type DC 15 manufactUred by Sangamo Ltd.) were pl:K.1.-d within

the model and clamped in position at the top plate (Figure 3.8). The displacement

transducers were oriented such that the spindle or each device protruded venically

outward from [he upper surface of the model. The lOP or each spindle was lilted with a

low - friclion pad which rested on a level rail spaMing across the opening in the p.1ckagc
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Figure 3.8 lnstrumenud model icebergs used in Tests 07 and 08
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cover plate. Contact with tne rail during the event was e:n.~un.'tJ hy the e:nhaoc\.'\! self

weight of the spindle at the test acceleration level.

Transducers in the test package were interfaced to tne data acquisition sysc\.'ltl

through junction boxes mounted on the cover plate. as de.'iCribed in &.'Ction 3.4. For the

model iceberg instrumentation. lhis necessitated the connection of devices in nlOlion with

the model to conditioning units fixed to the test package. 1be dccllic:lI leilds fnml the:

model instrumentation were routed (0 the upper surface of the model and til-'\! togcther .

to fonn a single bundle. The bundle was anached in a nexihle manner to a har suspended

above the package cover plate. As the model iceberg trnversed the soil !lpl.'Cimcn.the !c;ld

lengths provided were sufficient to pennit advancement with the mcxlcl while pivuting

abom the point of attachment. This arrangement rec.luced the likelihood of possihle

obstroction of the scouring event arising from instrumentation connections.

Provisions for Mod~l Slipport

In the initial tests perfonned. the soil deformation pattern at ItIt: final location of the

model iceberg was altered by the effects of a bearing capacity failun: bdow the model.

The failure was initiated as the system of forces acting on the rnocJcl changed in

conjunction with the tennination of movement. In order to reduce the innucncc IIf th~~

additionnl perturbation. equipment modifications wcn: implemenled 10 provide sUPJlnn

for the model al the end of its travel.

The support apparatus included two 2S mm sections of aluminum angle suspended

at a specified distance from the underside of the packagc cover plate. each at opposite

sides of the final model localion. An ootline drawing or the arrangement is prescntl.'tJ in
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Figure 3.9 SJIPPOI1 QppaTQtuslormod~J mow" i" sid~ and bad: ~levation lIi~

Figure 3.9. The model was supponed when a cross • beam bolted to its top plale came

imo contact with the upper surfacc of the anglc sections. The beam was cantileycred oYcr

a distance of 75 mm from cach side of thc model and intersected with suppan sections

llt n distance of 25 mm from each cnd. The clcyation of the top of thc supports was

adjusted to a leycl approximately 3 mm below that associated with contact for thc

estimated scour depth. and the cnds of the sections were tapered from this height. The
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clearance provided. relalive 10 the level .1.1 which conIlKt was expected. cnsun.'d IhoIl the

scouring evem was nat innumced by the apparaiUS. This impl~ Ih:u a limited amount

of ven.ial movcmC'nt was toler.ucd.

3.3.3 Regulation of Water Levels

A system was required to conlrol and monilar waler kV'els wilhin thI: lest pacbgc. The

preservalion of desi~n waler levels and drainage condilions was l."SS(."I\lial to cn.'iUn:

appropriale pore water pressures and effective S1resse, in the clay spl.:cimen. ·l1le

buoyancy characterislics of the model iceberg and. therefore. the reprllscntililon of ttle

prototype perturbation were also dependent on lhe t1epch of free watcr ahovc the day

surface.

To maintain specified Wiler levels during a lest. w;ater was supplied 10 Il1c

pacb.ge 11 a steady rate an::I the c:xc:es:s flow was vented 10 • sbrxJpipc: alanal 10 the

c:enuifuge col1tlint:r. The water depth was reguJatc:d by tJwe flied heigbt of the ovmlow

on !be standpipe. The COCI:roI position could be easily adjusted between tests 10 allow for

changes in conditions. The system aa::ounttd for potertial Ios:sc:s due to cVlljlODtton

during the test. k'abge or unexpected spillages. To impox hydrostalic water fK'C5SU1'Cll

at !he: bottom and top of the clay specimen. the standpipe was linked to the centrifuge

conlliner .1.1 the base drainage oullet and also al tWO diametrically opposite location~

immediately above Ihe clay surface. Connections to the lub wen: madc using compressiun

fittings and semirigid nylon lublng.

The centrifuge tests were carr)cd out with the surface of the clay submcrgl.'d and
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the prnpll,o;cd free water depth at the centre of the container was 80 mm (baseline

wooitionJ. The control positiun in the standpipe and the resultant water depths across the

clay spl..'t;imen were calculated with allowance for the curvature of the water surface

e;lused hy the nldialdivergencc of the acceleration field, and with consideration of the

cfJi..'{;I.~ or E,lTIh's gnlvity. At a distance of 125 mm from the scour axis (the edge of the

modcl iechcT!1 ;u waterline) the depth of free water was estimated to be 2.0 mm above

the centreline vulue. The water depth along the scour axis increased very slightly in the

directiull of tmvel of the model, with a maximum deviation of 0.3 mm at the tub wall.

The water level W;IS monitored throughout the duration of the test using two pore

preSSure liJn.~duccrs (described in Section 3.3.2). One transducer was installed directly

on the clay surface ;u a fixcd pusition removed from the test area and fhe other device

was situ<uI..'l,/ at fhe hast: of the st:tndpipe. Two pressure transducers were employed to

provide a ehl..'Ck on e;tch other, and to assist in locating the source of possible leakages

or obstructions in water supply to the package during testing.

3.3.4 Au"iliary Test Apparatus

Figure 3.10 shows a plan view schematic of the test package. Additional package

equipment lmd instrumentation needed to observe and measure conditions during the

centrifuge test included a surface seulement monitor, video camera, and vane shear test

device.

A displacement transducer of the LVOT type described in Section 3.3.2 was

enlpluyl..'lI (0 monitor settlement of the clay surface, as one means of evaluating the
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Figure 3.10 Pian vinv iIlllStrotion of tat pactagt! ftil/iplllt!1It ami instnill/t!tlllII;ml

progress of in - night consolidation. The LVOT body was clamp..'lIltI the p;lCl.::age cuvcr

plate and the base of tile spindlz was fitted with a pcrspex pad whieh n..-Slet.l un 11M:

specimen surface.

A charge coupled device (CCO) television camerol with wide angle lens was

installed on the test package to pennit close - up visual monitoring ur the scnuring event.

A camera mounting supported and aligned. the device to provide a view ur the mudd ,It
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jl~ initial pu~ition lintl over a ponion of the scour length, including limited observation

of the sllil ~p(,:cimen through the layer of surface water. The view from the package

cumer;! supplemented an uverall view of the package derived from a similar device

statiuned l1l:;!r to the cemral axis of the centrifuge (Section 3.4).

Valle Shear Te.I't Device

A v;me shear test device (Davies, 1981; Almeida, 1984) was added to the package to

allow for the estimation of clay undrained shear strengths based on site investigation

rcrformed during centrifuge flight. The device, shown in Figure 3.11. comprises a

cumpact set of apparatus designed to operate at an acceleration level of at least

100 gravities. The vane (12) is 18 mm in diameter by 14 mmdeep with blades machined

rrom stainless steel, and is filled to a 6.3 mm diameter aluminum shaft (10). Connection

til the shaft is through a slip coupling (11) which ensures that the vane is rotated only

ufter approximately 10 degrees of initial shaft movement. This arrangement pennils

cstimalion of the shaft resistance, independent from the torque mobilized by the vane

hladl."S alone. A thin· walled 10 mm length of the shaft (9) serves as the sensing element

for a load cell with bonded strain gauges configured to measure the applied torque.

The top of the shaft is atlached to a plate (6) which can be moved vertically to

ildvancc the vane to the test location within the soil specimen. The plate is raised or

lowered by ;10 electric motor (3) acting through a simple gearing mechanism and screw

drive (2). A linear potentiometer (I) is used to monitor the vertical position of the plate,

and hence the penetration of the vane. The vane can be advanced over a maximum

vertical distance of 200 rom. A second motor (5), coupled to Ihe shafllhrough a bearing,
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Figure 3. Ll Ccmpontnl$ of lilt vane slltQr USl d~i« (after Almeida. /984)

is used to rotate the shaft and vane to conduct the test. The nllation:ll movemenl is

monilored by a rotary potentiometer (8) linked 10 the ~hart through (wn nylon gc;u'S.

The vane shear lest device was attached to a r'discd platform suppnnc<.l hy twn

columns bearing on the package cover plait and stiffening members. The platform cnuJd

be detached from the cover plate to facilitate assembly of the apparatus. Steel htl,l:
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sections wen.: well,h..-u 10 the cover plalc 10 enhance stiffness locally. 10 suppan Ihe

<ldditillnallollding. The device extendcU downward through an opening in the cover plate

such tlllll the vane was situated immediately above Ihe surface of the specimen at its

initial positiun.

3.4 Cambridge Geotechnical Centrifuge

1\ dl:taill:d Ul:Sl.:ription of the Cambridge geotechnical beam cenlrifuge facilities and

oper.lIions was provided by Schofield (1980). The main features applicable to Ihe present

sludy arc reviewed brieny in this section.

Figure 3.12 shows a simplified schematic of the 10 m diameter rotor arm of the

hellO! centrifuge. The centrifuge was constlllcted with complete symmetry such that a

mooel may be carrtcd at either end of Ihe rotor with a suitable coumerweight at the

other. Alternatively .. two models could be lested simultaneously, although this is not

common practice. The machine operates wilh swinging platforms which have surfaces

;\1 4.125 m radius 50 that the model is at a working radius of 4 m. At the peak rotational

sf'lCcd of 186 rpm. the acceleration in the model at 4 m radius is 155 g. The maximum

:lcedcr-Ilion level nonnally authorized for geotechnicallesting is 125 g. and a package

with mass not exceeding 900 kg can be accommodated. Therefore. in its current

operations.. the Cambridge centrifuge possesses 112.5 g • tonnes capacity at 4 01 radius.

Thc highest acccleration imposed during the present experimental programme was 125 g.

:100 the mass of the ice scour package was approximately 500 kg.

The test package is mounted on a platform which is suspended on twO swing anns
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Figure 3.12 Ideali1.td sectional drawing altlle CCllllbri(I!:f! Geotel'1mimf Celltrill/Nt'

from pivot supports on the rotor. These piVOOi are free 10 move in iI l'iKIial diru;liuo

againsl: the restnint of lorsion bars to allow for seating or the plalfunn un:l fixClJ vertical

face plate as the applied force reaches a predelcnnincd v:lluc. When the CCnlrirugc is

stationary, the surface of the swinging platform is inclined 01' a small :mgle til the

horizontal. As the centrifuge speed is increased. the platform ruWles upward [nlo the

vertical plane at an acceleration level of about 8 g. where end • sto("i prevent additional

rOiation. With further increases in speed, the flexible pivol system pcnnits the plal(oml

to move radially outward until it bears against the strong race plale of the ro(or lit ahout

20 g. Additional force imposed at higher accelerations is no longer trnnsrcrn:d III the

swing anns and pivot suppons which, therefoR:, carry a substantially retluccu ['KIn inn uf

the applied loading.

1be behaviour of lhe model is dependent on its orientation with rcsp:ct III the

resultant of the centrifuge acceleralion field and Earth's gravity, acting pcrpcndit:ularly
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tllthe r,llJial lield. The design of swing :lmngement for the Cambridge centrifuge is such

Il1<1t Ihe resulwnt acceJcrdtion at,:1S in a plane which is inclined at a minimum angle of

ahuUI H3 .:Iegrces. huth at rest and during a part of the swing· up process. Following this

Ir;lll~itiun slage. the inclination increases to about N : I to the platform surface, where

N is the prevailing centripetal acceleration. In the present study, the effect of the

resultam indination was reduced by placing a wedge of prescribed gradient between the

test p:tckage allr.l the platform surface. This provision was only effective at the test

;lccdet:ltiun level.

Thc facilities available for visual monitoring of the model under test include both

viueu and photographic systems. A CeD camera is fixed adjacent to the central axis of

the centrifuge and din:cted radially outward along the rotor arm. The camera provided

,I continuous overhead view of the upper surface of the test package, which appeared at

resl in the moving reference frame. The signals from this device were acquired remotely

hy television monitors and a video cassette recorder in the centrifuge control room.

Photography of the moving model in night may be achieved using an externally mounted

C:llllem anu high intensilY low duration light nash synchronized to Ihe centrifuge rotor.

This Ilitter system coold not be exploited to record model behaviour in the present series

III' tests due 10 the type of containment selected for lhe soil specimen.

Cell/rijl/1fe Sen'ices and Data Acquisition

The centrifuge slip ring assembly permits communication with the external environment

as required for lest control and data acquisition. Above the upper bearing of the rotor.

:In cXlcn.~ion of lhe shaft carries the slip ring stack, comprising two separate chambers
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for ~Iec[rical pow~r/control rings and It)\\, + noi:-c sign.11 ringli R:1ip..'Ctiwly. '1111:

centrifug~ is also equipped with eight hydlOlUlic or ptk.oum:uK: slip rings whil:h enahk

nuw to now through the c:emral uis of lhe l1\Jchi~. to liUPflly \V;l;ter m l.:omrn,'s~,'d air

to the model during a lest. Water from the slip rings W;t.'i piped into the it.-c scour 1~1

package through a standpipe as described in Section 3.3.3.

Eleclrteal power is fed Ihrough high capacity slip rings 10 supply ""1.luiplncm :and

inslrumentation. Three • phase 415 V AC. single phase 240 V AC. :and 3 Itl 18 V DC

power are readily available on the rotor ann. The excil:nion vollage rcquin..'tlill energise

package instrumentation is protluccd by direct current supplies locat,,'tl on Ihe rtlltlr ne:.r

10 the central axis. The AC power for the various onboord devices is lIetiv:u,,'lI remutely

through solid state relays.

The cemrifuge was COnstrUCled wilh 40 pairs of signal slip rings uf which 10 an:

dedicated 10 signals reponing on the stale of the machine. With :I system 10 mUlliplex

inpul signals. !he ovenJl dati ac::quisitK>n sySlem currently allows for a m:uimum IIf 57

sees of signals 10 be recoveml from a given experiment. The jcc scour tcst p;K:kage

engaged a [Olal of 28 data channels. including channels used to monitor ifl~rumcmalion

power supplies. The daa acquisilion system amngement is illu.'itlOllcd in Figure 3.13.

The electrical leads from all of the tesl instrumentalion were comx,'cl,,'lI to twu

interface boxes mounted on tOe package cover plate. as depicted in Figure 3.10. E:lch

box can accommodate up to 24 transducers. The interface boxes contain the IlI.'CC....·l:uy

circuitry 10 deliver appropriate excitation voltage to the individual Irdfl..uucers :lOd In

condilion their outputs to yield low impedance high • level analoguc sign:lls fur

lransmission through slip rings 10 the data acquisition system. The signal cnooilillning
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Figure 3.13 Schematic represemation ofdata acquisition system (after Phillips, 1992)

providl."t1 includes seleclable decade gain amplification and low - pass analogue filtering.

'ntis arrangement also permitted pre· test verification and calibration of instrumentation

lhrnugh the same electrical configuration as employed during the cemrifuge test.

The multi - channel system includes funher signal conditioning and an analogue

III digital convertor controlled by a microprocessor (386 PC). The from· end signal

c(lndilioning consists of binary gain amplifiers which are adjusted to optimize the range
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of analogue input. Tu acquire and n1.1nipulme digilald.ll:l. the '~llllpUlin!! s~'slcm is u~'\I

logelher wilh commercially available BUfT - Brown hanlware anti LablL'Ch NUlebuuk

software. The data recorded using the acquisition surtW.tfC in Ihis manner W\:fC ~itahlc:

for input to other processing and 3nalysis packages.

The signals retrieved from the centrifuge wefC also rt:l."Onll'tl in analugue funnal

on magnetic I<ipe using two Ratal 14 • lrack tape recorders. This system functllll"-'\1 :IS

a back - up to the main daUl logging system 10 prevent Ios.~ uf L"Sscnli,,1 ICSI d.lla duc III

inadequale logging rates or in Ihe event of failure of the main system. nlC lll1alnguc

information recorded on magnelic lape could be subsequently convcnL'tlllldigillll furm;ll

as required. using the computer code FLYl4 (Dean lind Edgcombc. 1988). Mlllluald;lla

logging using a digital voltmeter was also carried OUI Ihroughoul the dur:uiull uf a lest

10 verify inslrumentation responses independent of the main logging systL'tll.

3.5 Centrifuge Test Procedures

This seclion describes some of lhe details of centrifuge test imp!L'mentatinn fulklwing

model preparations as outlined in the initial ronion of the chapter. 1bc cX(lCrimcnl;ll

programme was planned in accordance with the Code of Practice for Safe Opc:r:tliun uf

the Cambridge Geotechnical Beam Centrifuge (Schofield. 1980). Slructur:tl analysi.~ and

centrifuge balance calculations were performed for cach tesllO demonSlrdtc Ihe safelY nf

the apparatus and proposed activities. Centrifuge proof tests were also undcn'lken III

verify the structural integrit}" of the tes! package and to evaluate systcm performance al

an acceleration level in excess of the normal working condition.
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1'(/{"kaMe ..bsembly and Looding

The clay specimen was removed from the laboratory consolidometer and final model

preparations were completed one day prior 10 Ihe firsl day of scheduled centrifuge

ltequisition. The external equipment and instrumentalion were mounted on the package

cover plale and the resulting assembly was bolted onto the centrifuge container. The

standpipe was auached mechanically and hydraulically 10 the package, and Ihe overflow

height was adjusled to test specifications. The inslrumentalion was connected to the

interface boxes and tran.wucer responses were verified through the dala acquisition

system. Electrical leads were secured al several points on the package to minimize

pOlcnlial distress during centrifuge night.

l1lc model iceberg, ins!rumented and scaled as described in Section 3.3.2, was

placed on the plastic support plale, with care to avoid disturbance of Ihe clay. The model

lind drive system were connected by the pulling cable, and the posilion transducer

mensuring cable was auached to Ihe back end of lhe lOP plale on the model. The

tr;msducer cable provided a small reaction force to lhe initial pulling cable tension, and

this arrangement served to stabilize the model prior 10 conduci of the centrifuge test. To

sct Ihe position of the model in the initial tests, a frame was fitted to the model and

clamped to the package cover plate during limiled pre - tensioning of the pulling cable.

II was SUbsequently found adequate to eSlablish the location of the model manually

without use of a guide frame. The final adjustments to model position were made

immediately prior 10 commencement of the centrifuge test.

The assembled package was weighed, and its mass checked against the balance

c:a1culations manifest prepared for the test. The package was then rested on an aluminum
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wedge of slope I : 100 and boch were bolted to the swing. pl;:llfonn. R':llly f,lr luallin!!

on the centrifuge. The: swing· plafform and package wert. transported into the ,:cntrifu~l:

chamber by overllead crane. and the platform was mount«l al pivOl. supports on the nl(or

ann. Figure 3.14 shows me compieled test pacbge load«l on the ccntrifuge. Hyllraulic

and eltttrical service. control. and inslnimentation lines wen: connected to the pacbge

and final chttks were performed on all systems. At this Sillge. assembly :lnd 10000ing

activities were completed. and thl.: package was ready for centrifuge lesting on Ihe

following day.

Test Procedures

Immedialely prior [0 deployment of lhe centrifuge test. plastic wrap was removed from

the surface of !he clay, the base drainage outlet was opened. and a fixL'lI mass of fROC

surface water was added to !he tesI package. This initial mass and sub!;cquCnt changes

to lhe quantity of water within the package were calculated 10 meet centrifuge balance

requiremelUS. and 10 prevent overtopping of the model iceberg due to inclination of the

water surface at low acceleration levels. 1nc: main data logging system was also initilltl.:d

before application of centrifuge acceleration 10 the package. Tbe sampling rale wa.o; sct

at 0.2 Hz during lhe transition to the lest acceleration level.

To begin the test. the centrifuge motor was started and the speed of the machine

was gradually increased. Following swing - up of the platform. waleI' supply to the

package was introduced at the minimum sleady rate. The centrifuge nominal acceleration

level was increased in stages to IS, 20, 30, SO. 7S. then 100 gravilies. The water level

was closely monitored, and conuol by the standpipe overflow established at each stage.
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Figure 3.14 Pre - test view of completed package mounted on centrifuge
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1lIe water supply nile was adjusted as ~ed 10 mainmin appropriate (.·oooitiuos. The

lime period required for each stage was aboullcn minUies and the tl:Sl ....'\:clcralion le\'1:!

was achieved following approximately one hour of centrifuge Oit:ht. 'The.: PR.."iCtlCC Ilf fn..'C

water and increased stir weight during this transilion ptt."\."C n:duct:d potc Sllclitm.~ within

the soil specimen and. thereby. allered the magnitude and lime n.."quin:d fur the

dissipation of excess pore pressures during the ensuing consol1cJation phase.

Upon reaching the test acceleration level. the clay sp..'Cimen was pcnniul,:d to

consolidate to establish equilibrium conditions under the imposed :>(1\.."1.<; n:gime. 'J1lC

sampling rate for Ihe main data logging system was resct to 0.02 I-Iz during the

consolidation phase. To monllor the progress of consolidation. the system provided

graphical output on lhe cORlrol room display monitor of pore water pressure readings for

transducers implanted within the soil. Manual readings were also acquin.."d every

IS minutes and data from the surface scttlement transducer were ploued. Bas4."d on this

information. lhe degree of consolidation was assessed using lhe rool • lime method of

Taylor (1948). Depending on lhe stress history of the clay specimen under test, greater

than 9S percent of primary consolidation was completed within 4 to 6 hours of centrifug....

flight time. At this stage. transducers in the clay were registering 00 significant cx(.'cs$

~ p~res above lheir expected equilibrium values, and preparations were made to

begin site investigation using the vane shear tcst device.

In - flight vane shear teslS were undcnakcn al three horizons within the clay

specimen. The vane was driven vertically downward from an initial position ahove the

clay to nominal test depths of 30. 60, and 90 mm below surface. The r<ite of venieal

penetration of the vane wu S mm I minute. At each test site. following a brief delay of
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k........~ tmn nne minutc, the vane was rotated at a rate of approximately 75 degrees / minute

flvcr;an anguliu distance of about 90 degrees. ~ rotation was then reversed to return

the vane to its initial oriemation, and venal movement was reinstated 10 advance the

vane III the ocxt test location. The main data logging system was sct up to record at a

s,unpling nltc of 10 Hz during venical movement of the vane and 4 Hz for each vane

tC.~t, as ;Ictivatcd through II digital trigger. Vane shear test procedures were generally

concludL'l.I wilhin a time period of about one half hour.

Preparations for conduct of the model scouring event began subsequent to vane

shear testing. Final checks were made to ensure serviceability of data acquisition and

control systems during the event. 1bc: video cassette recorder was set up to receive the

close romge image conveyed by the package camera. Data logging was staned on the

hack - up magnetic tape recording system, and sampling rates on the main system were

increased to provide deTailed inronnalion during the scouring event. To initiate scouring,

thc drive system was activated remotely to advance the model iceberg across the clay

specimen. During the event, the progress ofthc model was verified viSU;llly on television

monitors in the centrifuge eontrol room. The total length of pull of the model was less

lmn 500 mm, and the dUBtion of the event was on the order of seven seconds. To

capeure instrument responses to the imposed perturbalion, digital sampling rates were set

31 20 Hz for a time period of 50 seconds surroUnding the event, after which the rate

dL-cICascl.1 to I Hz to ensure acquisition of reasonable quantities of data for subsequent

processing. Following scouring, the package was maintained at the lest acceleration level

for a durntion of about one half hour to allow for dissipation of excess pore pressures

gel1CT3tl:d during the event.
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Allhe end of lhe lest, WOller supply 10 the p;lckilge was tenninaled ilnd the ~rced

of lhe centrifuge was gradually reduced. The lnlll.~ililln fmm Ihe lc~lllccdcratiun level

[0 a slationary condition was carried out in slagcs Ill' relalively ~11t1rl uUr;llitl1l. ;md

typically completed wilhin less Ihan one h.,lf hour. Imnu.'tli'llcly following I\ItlPP;lgc Ilf

the machine. the remaining surface waler was siphoned ulTIu reuuce ;vJdilillmll ~welling

of Ihe clay specimen, and cores were laken 10 provide moislure COlllclll slll1lple~. Supply

lines were then disconnecled and Ihe package WOIS removl..'d l'rtlm Ihe cC11Irifugc

rolor ann.

3.6 Site Investigation Procedures

The teSI package equipment and instrumellla!ion were carefully dism,mtled lu prtlvitJc

access to the clay specimen for funher investigation. After the cover plale a~scll1hly had

been completely removed. the scour was documented phOl.ographically willl Ihe mtKlel

iceberg in place and also following withdrawal of the model from the clay surface. In

addition, the pattern of surface lead shot markers was re - photographed using lhe

Hasselblad camera at the preset moullling position (Section 3.2.3). The resulting

negatives were subsequently employed in the quantitative ilsscssmcnt of surface

displacements through film measurement.

Following photographic documentation and visual inspt..'ction tlf~our morphulugy.

a series of measurements were made in order to establish a profile of the clay surface.

A clear plastic template of 25 mm thickness was fixed to the upper nange of Ihe

centrifuge container to provide a level reference relative to the underlying clay surface.

129



I'rnfilc measurements were obtained using a displacenlt'lii :ransducer and 3 mm diameter

measuring rud which W<lS fitted through guide holes in lhe lemplate. Elevations were

l1:corUI".'t.lllt regular 12.5 mm intervals over the entire plan area of the s~imen. Errors

coulu arise as a rcsult of either misalignment due to the small clearance allowed between

the ruu arxl guiue hole, or penetration of the rod into the clay. Measurements were

repeatable to an accuidcy of at least ± 0.5 mm based on successive readings taken at

similar locations. Surface profiling was generally completed on the first day after the

t;clllrifuge lest.

'1"0 llllnw for the investigation of internal scour effects through radiography and

cxcltvaliun, lhe day specimen had to be removed from the centrifuge container. The

connector.; til' implanted pore pressure transducers were first detached, and the ends of

the electrical leads were pulled inside the tub. Sealed plugs were then removed from the

h<ISC (If lhe lub, provkling holes lhrough which venical steel columns were placed in

conIact with the steel drainage plate beneath the specimen. To eXlrude the clay, the tub

was scI onto lhe venical columns and pushed downward, leaving the unconstrained

specimen supported on Ihe steel plate. Soil disturbance resulting from the extrusion

pmcl.'SS was limited to the material which had been adjacent to the side wall of the

container.

Rm!iow"pllic Techniques

Radillgr:lphic methods for soil investigation developed at Cambridge University were

detailed by James (1973 a). A radiographic eltamination of the clay specimen was

undertaken in the present study to display the post - test defonned configuration of the
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lead powder trails and solder SI:!!",en!s which l"tlmpri",-'\l reference 1!rids t&.'\:liull .l.~ ..lt

The grid materials wet\! sumciently tkfonn:lbl~ and :Kkquatcly Spacl'\l to ensure Ihat the

behaviour of the surrounding soil was not excessively nltll1if\l.'t! hy l~ir pn.'SCnt.'C. anll

grtd displacemenu wet\! representative of the movements of thc ClMT1$J'KlnlIillg Sl.\il

dements. The radiographic examination also served to lIeli~ the posilions IIf ('lore

pressure transducers and model pipelines emplaced within the ~lll.'Cimen.

The apparatus used in the examination included an industri.,1 type Muller MG 150

X - ray unit with a maximum source rating of 8 mA at 150 KV fur a focal puint !lilA: nf

1.5 mOl. For the investigation of clay specimens in the prescn! stully. r:ldingraphs uf

acceptable quality 10 convey the required geometrical infommtion were nht:lillCd Wilh il

source current intensity of 4 mA at ISO KV using a line focus sclling. Clllllinuuus

exposure durations of bet~n 10 and IS minuta were typically cmployl"tl with KIII.J:lk

Industrex 0 film. To improve definition of the radiographic image and the al:curacy IIf

subsequent measurements. the source to film distance was incl'C:llSCd to L5 m. and the

object to film distance was minimized. The harmful cffects of scattered radial ion on lhe

quality of the image were reduced by masking the specimen locally willlicatl J;hCl~. anti

by the use of lead foil intensifying screens placed within thc film ClSSCIlC. The cqUiPlllCllI

available at the Cambridge centrifuge facility allowed for manual develoflment or X • my

films in a temperature controlled processing tank immediatdy following cXfllll>"Ure. 'Ole

film exposure conditions could thererore be optimized through trial variatiuns and

subsequent evaluation of the efrects on the processed ntdkgrnflh.

To begin the investigation. the extruded clay specimen was transferred frum the

steel plate to a leu dense wooden support 10 provide suitable conditions for fllan view
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rdcJillgraph.~. ThL"iC roicJiographs were TL"Iuired to determine horizontal displacements of

grids plact:d aL cross - st'Ctions perpendicular to the scour. and also to display grid and

in~trumcntalion locations to aid in subsequent dissection of the specimen. Plan view

information was gcnc:rally compiled from three separate radiographs cemred on the

cross - st:ctional grid positions. The accurale assessmenl of plan view images was limited

by the ohjttt to film di.~tanc:e which could nol be reduced below the combined thickness

tlf the spl.:cimcn and support plate.

The clay sfK."cimen was cJi5Se(:ted to permit elevation view radiographs displaying

htlth axial and cross - Sl,:ctioll:ll grids. A sharp - edged aluminum plate coaled wilh waler

resistant grease was uSt.'d 10 cut the clay along planes which were parallel and

perpendicular to the axis of the scour. Each grid was examined successively afler the

removal of wasle clay in regions remote from the area of imerest. Following Ihe

allainment of a satisfactory radiograph at the section in question. the grid members. pore

pn:s.sure transducers. and model pipelines were carefully excavated 10 provide further

documentation of internal displacement pallems and instrument locations. Finally. the

exposed model pipelines were withdrawn from the specimen and visually inspected alX!

measured to determine any permanent deformations resulting from the scouring eveN.

The investigation of the specimen through radiography and excavation was typically

completed within a lime period of about one ~k.

Film Meosllremtm

Surface displacements al discrele points represented by the movemenlS of lead shot

markers helween pre - and post· test photographs of the clay specimen were detennined
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through film measurement. 1be out of plane \'ertM..'a1 displacelllenls uf the l<olIrfxe

markers were not acCOUnted for in this asscssmenl. FUr1hcmlO~. m:ni.::ers p'llIitMWlI.'\I

within the scour incision wen= generally displaced bduw the c1:1Y sur(:lcc during the evenl

and could not be visually identified to <lnOW (or lllcaSUremcnlS rnlSI.'\IllIl I'lhotllgr:lphic

evidence.

A film measurement machine was used tu oclcm\illl: the lut:atioos o( the dn:ular

images of surface markers. approximately 0.2 mm in diameter, R.-conk.'d un 55 mill hy

55 mOl film negatives. The device was originally dcsigr...-d by James (197] h) aod wa.~

recently upgraded with the replacement of control. drive, and measurement systems. The

modirtcations were implemented by Phillips (1991): the <lutllor pruvif.k.'tJ :l tktailed

description of the refurbished apparalUS and also outlined opcnuioll:lol procl.'durcs.

The film measurement machine consists of a film carriage, a lwo axis stcf'IPinp.

motor drive system, a viewing sysIem, a moire fringe coordinate measuring syslelll, and

a computer control system. The film negative is mounted un an optic:tlly level plate glas.~

surface and illuminated from above by a cold projector light source. An overall vic~ IIr .

the image is projected through a zoom lens anti half silvered mirror nnlO lin uhscrv:ltinn

screen. 11lc viewing system also includes a closed· circuit television carner.. which is

used to exhibit a detailed portion of the image on a television monitor. Tn eXI.'\."Ule a

measurement, lhe operator aligns the marker image wilh a sct nfcross· h.1ir.i which an:

superimposed on the video display. Successive image.\ an: posiliont.'tJ in this m;lOflCr lU1d

their coordinates !ecorded.

The accuracy of measured displacements was dependent on various factors

including camera movement between pre - and post • test pholographs. camc1'3 lens and
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filill Jistuniun, ilntlthc resulutton or the I'iIm measurement apparatus, For the size and

quality ur Ill'': photographic images usctl in the present study, surface displacemems were

......i(,:s.'iCtl III wilhin appro.cimaldy O. J mm.
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Chapter 4

Experimental Results

4.1 Introduction

This chapter dct;.jls the experimental resulls for the centrifuge tests conducletllis a pan

of the present study. An outline of the teSI programme and the rationale for the selection

of investigated tesl variables are first presented. The individual tests arc then dcscrihcc.l

including proposed input conditions. design modifications to lest sci - up or pl'Ol;l.:durcs.

peculiarities arising from system malfunctions, and test rt.'Sults which charm:tcrizc the

effects of the scouring event.

The reduction of the m~surerl output provided a unique data sct fur each lcst

which included the following information in the general case: (I) ffitxlcl iceherg

configuration and tcst sel • up; (2) estimated profiles of soil strength: (3) qualillllivc

surface morphology and measured surface profile; (4) temporal anti spatial rt.-cords of

pore water pressures aod resu!lanl scour forces; (5) surfnce soil mOVemenL'I; (6) sub 

surface soil displacements. and; (7) post - event plastic defonnations of model pipeline

segments. The results are documented here for well - defined model scouring events

which are relllted to relevant prototype conditions through scaling relationships. as



Im:scntcd in Chaptcr 2. The complete pnx::essed data records for each test are also

archivcd on computcrdiskette, in suitable format for use with standard analysis packages.

4.2 Experimental Programme

Thc present study was limited to a lotal of nine centrifuge model tests, in addilion to

proof lests undertaken 10 evaluate system performance in Ihe high gravity environment.

The Ic..~ts were normally carried out with 11100 scale models at a centrifuge acceleration

level of 100 gravities. Due 10 lhe limitation on the number of tests, it was not possible

to conduct a comprehensive parametric study. In general, the effects of modest variations

in the soil initial stress conditions. and the model iceberg attack angle. width, and

vcrtical sliffness were examined in the experimental programme. For each of the tests

performed. thc material type investigated was Speswhile kaolin clay. The specified rate

01" advance of the model iceberg was also fixed al 0.07 m/s. throughout the test series.

In addition. the horizontal bottom face of the model iceberg was normally set at a

constant length of 50 mm or 5 m at protOtype scale. for each configuration investigated.

Table 4.1 summarizes the proposed testcondilions, in terms of the clay laboratory

pre • consolidalion stress a' • D and the model iceberg attack angle, width and vertical

stiffness. The model iceberg was partially buoyant and free to Iifl or rolate during the

event to allain a steady slate level. Due 10 the lack of restriction on movements of the

model iceberg. it was not possible 10 accurately establish the magnitude of the scour cut

depth prior [0 a test. In addition 10 changes in depth experienced by the model iceberg.

initial pilch adjustments also produced small changes in the effective attack angle during
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Table 4.1 Proposed resl Matrir:

Test Auack Venical Test
Number a' '" Angle Width StilTness VOIriable

(KPa) (deg.) (mm) (N I mOl)

soil
140 IS 100 26 sl:tte

110 IS 100 26 bnscline

scour
no IS 100 26 dcpth

soil
110 IS 100 61 slllie

140 IS 100 61 baseline

suil
200 IS 100 61 state

mudel
140 IS SO 31 width

allllCk
140 25 100 61 anglc

125 g
140 IS 80 49 lest

the scouring e".'.:mt. Therefore, while the increased freedom of motion of the model provKled

improved representalion of field conditions, it also reduced control over input test

paramelers. Furthermore, in some tests, lechnical difficulties relalctl to equipment and

instrumentation altered the experimental inputs from the values specified in Tahle 4.1, .md
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this must be accounted for in the interprelation of the tesl results. Details of the

cunditions of individual tests are provided in lhe seclions which follow.

The initial three tests of the series were performed during a time period scheduled

for syslem design and verification. Therefore, equipment development and changes to the

Icst set • up and sile investigation procedures were more notable in these tests.

Tcsts OJ and 02 served to demonstrate use of the proposed apparatus in the centrifuge

with remOie data retrieval and system control. These tests provided information on scour

cffcclS for a given set of boundary conditions and two different soil stress histories.

Test 03 was intended to permit an assessment of the influence of scour cut depth on the

dfects of scour, through a change in the buoyancy characterislics of the model iceberg

in relation 10 Test 02. In Ihis case, the test design proved ineffective as the drive system

capabilities were eltceeded, resUlting in malfunction.

The prototype vertical stiffness represented by the model icebergs used in

Tests 01 to 03 was 2.6 MN/m. This corresponded with the lifting of a slab - skied

free - floating ice mass wilh a waterplane area ofapproltimately 265 m l
. This is below

thc range of vertical stiffness values normally associated with a full - sized iceberg or

pressure rklge. Therefore, the uplift behaviour observed in these teSIS was exaggerated

in relation to the corresponding behaviour of a typical full scale ice feature. In the

remaining tests, to address the concern of unrealistic vertical stiffness, the model iceberg

configuration was modified to provide the maximum practicable walerplane dimensions,

while still allowing for a reasonable length of travel across the centrifuge tub. The

prolotype vertical stiffness in this case was 6.1 MN/m, represenling a waterplane region

of 622 m l. This configuralion allowed for the establishment of steady - Slate scouring
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conditions, with onJy limited vertical movemenl to achieve relevant scour depths.

In Ihe laner portion of the tesl programme. a small range of soil condilions WlIS

examined, as well as a dirrerem model iceberg width and att.ack angle. Pn:vious

investigations have suggested an innuence of lhest variables on the CrrC:CL~ of

scouring (see Chapler I). Tesl OS served as a baseline test for this series of experiments.

The prolotype for lhis test comprised !he following attributes (with corn:sponding tCSl

prognunme variations denoc.ed in brackelS) :

Material Type

Pre· Consolidation Stress (kPa)

Veloc:ity(m/s)

Length of Travel (m)

•',ttack Angle (degrees)

Scour Depth (m) ( steady. state value )

Scour Width (rn)

Keel Horizomal Base Lenglh (m)

Vertical Stiffness (MN/m)

Speswhite kaolin clay

140 (varied to 1101\00 200)

0.07

45 (Iypical)

15 (variet.lto 2S)

1.2 (ranged from 0.4 to 2.2)

10 (varied 10 S)

S (constant for all tCS1S)

6.1 (varied to 2.6)

Tests 04 and 06 were designed to investigalc the innuence of changes in the initial stress

state of the soil, and involved the application of different laboratory pre - consolidation

stresses to the clay specimen. The imposed changes in initial stress conditions were

relatively modest, as conslrained by the requirement to avoid the development of scour

forces which exceeded the capabilities of the drive system. In Test 07, the model iccherg

width was reduced to half of the baseline value. Scour widlhs in excess of 10 m at

prototype scale were deemed untenable due to the dimensions of the tub in which the clay

spec::imen was contained and the maximum allowable g - level for the centrifuge. Tcsi 08
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was designed to allow for the assessment of the effects of a change in the attack angle.

Practical conslderattons also limited the magnirude of this cl\ange, since it was necessary

tu n: - design the model iceberg in order to retain the same buoyancy characteristics as

the baseline configuratton. In Test 09, the: technique of modelling of models was

employed in which the identical prototype at Earth's gravity modelled in Test 05, was

moddk'd at 1/125 scale and at an acceleration level of 125 gravities. This test was

conductcd to t:Stablish the inlernal consistency of the method, and lhereby 10 proVide

greatcr conrKlence in extrapolation of the results to full scale conditions. In general, each

lest involved a unique event which represented a fun scale scouring situation and for

which IIccurate data on the effects of scouring were collected.

4.3 Centrifuge Test Results

Appendix A contains detailed plots and drawings which clarify the descriptions of test

L'Ondilions and ~IIS given in the following sections. Ti;;: appendix information is

presented in sections which correspond with the individualtCSlS in the series, as is the

material p~nted below. Each section of the appendix is subdivided into data groups

which are identified alphabetically as follows: (A) test parameters and set - up; (8) soil

strength measurements; (C) instrument data plots for consolidation and scour event

phases: (D) surface profile data: (E) spatial plots of pore pressure data. and; (F) sile

investigation drawings based on radiographic images. The test results are presented

at model scale unless otherwise denoted; prototype values may be derived in accordance

with the scaling relationships given in Table 2.1. Locations in the model are described
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with reference 10 :I right. lunded coordirulle system Wilh urigill :11 ll~ ..:..:nlre uf lhl.' d>ly

specimen: the x • axis is direcled along the axis of the scour and defines the Imrizolll31

position of the model iceberg, with positive values in the din:ction of trawl; the y • axis

is directed laterally outward from the scour axis. and: the z • axis acts v..:nic3l1y wilh

positive values measured as depths below the initial clay surf>lCl:, CSlablishl.."d folluwing

consolidation settlement.

A summary of the instrumenlation used in this tf.'5t series is given in Tahl..: 4.2.

The data acquired during the scouring event are presented in relation to the ..:vent time

and the horizontal position of the model iceberg. The evcnt time was nll::tsun.'tl with

respect to the start of motion in the tcst. The location of the innl:Ction line at the b;ISC

of the inclined face oflbe model iceberg served as the reference datum for m..:asuremenls

of its horizonlal movement. relative to the origin at the ccntn: of the clay specimen.

4.3.1 Scour Test 01

Modtllnput Conditions

The model iceberg configuration and input parameten for Test 01 an: given in

Figure IA.l in the corresponding section of Appendix A. In this tesl, the clay W'...~

consolidated in the laboratory under a uniform venical effeclivc stress of 140 kPa. The

model iceberg width was 100 mm or 10 m at prototype scale, and the auack angle W;IS

set at 15 degrees to the horizontal. The model iceberg used in this test, shown in

Figure 3.7, possessed a venical hydrostatic stiffness of about 26 Nlmm. This model

configuration included an irregular waterplane geometry. such that initial rotatiun.:JI
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Tahle 4.2 TeJI Instrumentation

Channel Device (measured or derived quantity)

PPT 01

PPT 02

PPTO)

PPT 04

PPT OS

PPT 06

PPT 07

PPT 08

PPT 09

PPT 10

PPT 11

PPT 12

PPT 13

PPT 14

LVDT 15

ROTARY POT. 16

POSITION TRANS. 17

IPT 18

IPT 19

IPT 20

TLC 21

V. D1SPL. 25

V. ROT. 26

V. TORQUE 27

pore pressure transducer (soil pore waler pressure)

pore pressure transducer (soil pore waler pressure)

pore pressure transducer (soil pore waler pressure)

pore pressure transducer (soil pore waler pressure)

pore pressure transducer (soil pore water pressure)

pore pressure transducer (soil pore waler pressure)

pore pressure transducer (soil pore water pressure)

pore pressure transducer (soil pore water pressure)

pore pressure transducer (surface water level)

pore pressure transducer (model vertical position)

pore pressure transducer (model vertical position)

pore pressure transducer (model vertical position)

pore pressure transducer (standpipe waler level)

pore pressure lransducer (model vertical position)

displacement transducer (clay surface seUlemem)

rotary potenliometer (model horizontal movement)

position lransducer (model horizontal movement)

inductive pressure lransducer (contacl pressure)

induclive pressure transducer (contact pressure)

inductive pressure transducer (contact pressure)

tension load cell (model horizontal force)

displacement transducer (vane vertical displacement)

rotary pOlentiometer (vane rolational movement)

lorque load cell (torque mobilized by vane blades)
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movements were discouraged during the event. The: llOmin;lI depth llf fn.'c ~-urfacc watcr

at llie location of the model iceberg was 100 mm in this t~.

1be arrangement of instrUmentation, ddorm.ltion mar\:ers. and model pipeline

segments forTest 01 is shown in ele'·.uion and plan view in Figure IA.2. 1bc test layout

was dissimilar 10 the baseline amngement depicted in Figure 3.3. dUl: to the:

development of procedures as the study progressed. AJ described in St.-ction 3.2.3, ..

different type of tubing section and material were used to represent pipeline segmcnts in

the first centrifuge test. Based on consideration of ela~ic material behaviour. protCHYrc

steel pipelines willi an outside diameter of 762 mm and II wall thickness of 25 mnt were

modelled. The post - yield response was stricUy representative of the plastic hchllviuur

of a prototype pipeline comprised of the same aluminum alloy as the model pipeline

segments. In total, five segments ~re placed at different deplhs within the specimen.

Soil deformation grids installed in conjunction with the segments, consisted of S1raOO5

of colOUred. dry spaghetti. [n this test, lead powder (rails were injected at 45 dcgn."CS III

the specimen surface. to form (wo separate grid patterns, as iIIustratetl in Figure IA.2.

A single horizontal solder member was also placed at a spc:ciflCd cross • section, to

establish the utility of this grid material for use in post - test investigations.

Experimental determinations of the undrained shear strength provided an indirect

means of evaluating the extent to which the preferred stres: history was achieved in eaeh

test, through comparison with theoretical predictions of strength values for the prt:scribcd

stress states. For undrained COnditions. there is a unique relationship between the critical

state strength and the moisruTe eontent fOr a saturated soil. independent of changc5 in the
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lulal normal Slres-\. The undrolincd shear slrength c II is commonly expressed as half of

Ihedeviatoricstressq,utfaiJurcorlhe maximum shear stress. such that

c II = ~ qr '" ~ M exp {I r - ( I + G, w) J I ).} (4.1)

where w is lhe moisture content. and typical corresponding material properties for

Speswhite kaolin clay lire lisled in Section 2.4.1.

The undmincd shear strength may also be related to the overconsolidation

mtio OCR lind the curr~nt vertical effective stress u. using an expression of the fonn

c
II

" u. a OCR~ (4.2)

in which a and (3 are empirically defined constants. Springman (1993) summarized kaolin

slrength data from vane shear and single element test results presented by various

researchers (Almeida and Parry. 1983b; Nunez. 1989; Springman, 1989; Hamilton et

aI., 1991). The use of a =0.22 and (3 = 0.7 in Equation 4.2 for vane shear strengths

provided a reasonable representation of the available data for OCR in the range of I to

20, Wilh some scatter anributable to different testing protocols.

In accordance with the precepts of Modified Cam Clay theory (Roscoe and

Burland. 1968), it can be shown (e.g. Phillips, 1982) that the undrained shear strength

is given by lhe cumbersome expression:

M("2K,,) .. [OCR [[~l [~'M'I])~
6 2M! 1+2Ku (1+2K,"Y

. (4.3)
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A knowledge of the variatton of LLoe codflCicl\l uf l:nc\':I1 ...·:mh pn:ssun: :11 n:~t K_ wilh

the: ovm:onsolilation ratM) is required in onkr to cvalu:1Ie the rn.·e"..ding "''\lU:Ilion. 11-...

following rdationsbips ft~ suuc:sa:ed by Wroth (1975) for dirrcn:nt l':lrl1,.'CS uf OCR :

K. • OCR K. - ~ ( OCR - 1 ) for I s; OCR s S

3m [~-~ 1 = In [OCR I 1'2 K"j fur OCR> S
1 to 2 K.. I .. 2 K. I t 2 K..

. .. (4.41

where the erfective stress Poisson's ralio , and the parnmeter m lin: sp'-'CirK.'d :l~ O.3J :mu

1.81 respectively for kaolin. and K .. is the coeffICient of latcrnl c-.anh pn."SSUrl: :11 n....... fllr

normal consolidation (Section 2.4.1). The lauer equation for high OCR v...l~ may he

solved for K. throu&h a process of iter.lUon..

Figure 18.1 shows the estimated variation of urmr:llinetJ shear~th with Ik-pth

for the Test 01 spc:cimen. Equation 4.1 was used to compute: c. values based (Kl muislun:

COlllCUS measured from com; extruded after the compIdion of the a:ntrifugc test. '1lIe

~Its are compand with predicted empirical arm theon:tial prufiks IIf tta: unUrailL"lJ

shear strength determined in accordance with Equations 4.2 ancJ 4.3. Eqll:ltton 4.1 i.~

sensitive to changes in the moisture content. and small measurement inaccur.aci...'S cuulcl

lead to large errors in the estimated undrained shear strength. Funhcnnorc. pust • lest

determinations of c. may be expected to be lower than tncoreticaJ prcdiclion.~. since

negative pore pressures are set • up with the stoppage of the centrifuge and excess water

is drawn into the specimen. As the clay is relatively permeable. high port water teMiof'ls
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may also lead to air c'ntry or cavitation. In - flight site investigation techniques were

therefore required tu ensure an accurate a~sessment of the soil conditions which were

relevant during the event.

'nlC consolidation n:cords for Test 01 are presented in Figure IC.I as plots of pore

pressure against time, and clay surface settlement versus the square root of time. 111e

pore pressure transducers (PPT Channels I to 8) within the clay specimen were

registering no significant excess pore pressure above their equilibrium values at the

completion of the consolidation phase. The apparent initial clay surface settlement

was 1.7 mm. Using Taylor's root - time cOJUtruction, it was estimated that greater than

95 percent of primary consolidation was completed aft~r about 4 hours of centrifuge

time. The model iceberg rested directly on the clay surface in this test and therefore

underwent considerable additional settlement. In subsequent tests, a suppon plate was

placed beneath the model in order to distribute the applied loading to ensure negligible

relative movements during consolidation.

The instrument outputs during the scouring event are plolted against the event

time and horizontal position in Figure IC.2. The Test 01 event was completed in less

than 7 seconds and the model iceberg travelled a total distance of 460 mm. The

horizontal displacement history was derived from Ihe displacement transducer response

during the event. The average scouring rate. determined as It' .. slope of the

di~placemenl • time curve. was 70.1 mm/s. An indirect measurement of horizontal

movement was also provided by the rotary potentiometer. This record included the effect
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of a slight pre - tensioning of the pulling cahk priur l\lth~ Sl:ln tlf nllIliun in the: 1~'St.

The apparent duration associated with initial at:CclcrOlliun uf th~ nultld it:c~r~ was

negligible in relation to the time period required 10 ~stahlish stc:ldy - stale ctllllliliun,'i.

Figure 4.1 displays a plan view photograph and n:lat~'tI dr.nvinl,\ uf the T..'SI 01

scour, to iIIt1$1,ale''tIC surface morphology. An average crOM - st.,'clion surfa~'C pnllile L'i

presented in Figure 4.2 along with an axial plot depicting scour dcptlL'i and henn

elevations at different horizontal positions. Surface profile datil 1m.: u~l<\i1cd in

Figure 10.1 as cross • sectional plots at 50 mm int~rvals of hurizuntal pusitKlIl.

Seulement of the unsupported model keberg prior to the scouring evcnt W3.'i cvKlent fn"llll

the local depression (approximately 11.5 mm depth) formed 011 the initial motlcl (lusitiull.

The model iceberg underwent a period of rapid uprise to an apparent mcm.ly - male SCl'lIr

depth. The initial portion of the scour feature was characterized hy:m umJul;ltin~ surf:ll.:e.

although the scour incision was relatively uniform in appt:ar.u'lCt: art~r an l."I.\lIilihrium

venical position had betn established. The mean scoor deplh for the aflf'Olrent S1C".KIy •

state region was 3.8 mm or 0.38 m at prototype: scale. Berm c1cvatiultS :lVCr;Jb'\.'l.I

2.3 mm, primarily reflecting heave of the soil immediately atljal.'Cnt ItltlK' scuur.

The amount of remoulded or loose berm material observed along the sit1c... III' the

scour was negligible in this lest. Surface d~pLac:ement markers within the SI.:'Our wen:

dragged fo~ard oycr a limited horizontal distance. and pushc:tl v~nically duwnwanJ

below the base of the incision. The model pipeline segment sitllatt:d nearest III the surface

(crown at 5 mm depth) was panially exposed within the scour lrough. A lincur

depression and soil surface fractures formed in the vicinity of this pipeline. indicating

movement had occurred over a substantia.l portion of its length. A small mountl uf sptlil
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Figure: 4.1 Tc>p: PhOIOgraph o/the moder scou.rcreated in Test 01; Bottom. Plan view
flIImrarion of scour suljacl! features (scales shown in mm)
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Figure 4.2 Top: Avtrago! ct'OJS • s«tion surfoCt! profilt for TtSi OJ $('(111,.; Bmwm .
Scour dqJ/lI and bum tft~'Qlion mmsurtrntnls ploued vtrntS hurizontol positiun

material was evident in fronl of the final resting position of the model icchcrg. The suil

in front of the model was also displaced upward and forward relative Itl the surrounding

material. resulting in the formation of a semi· circular shaped (in plan view) rupture

surface. Surface heave within the scour incision immediately behind the mood it:cbcrg
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Figure 4.3 Test 0/ pore prtssflre responses during e\'tnt - transducer channels OJ to 08

W:ts indic:llive or a soil bearing railure beneath the model, rollowing the completion of

hurizonlal movement in the event.

Figure 4.3 shows. summary of the pore waler pressure responses during the

:lClluring event. Pore pressure changes were recorded by eight transducers within a zone

which extend.:d to an approximate distance or ISO mm lalerally outward near to the clay

surrace, and 145 rom vr-nically with depth below the scour. The measured locations or

the' transducers are f,iven in Table 4.3 along with the corresponding peak and minimum

values or the pore pressure developed during the event. The symbols used in this table
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Table 4.3 Top: Tf!Sl OJ tIlt'oslIrnJ port! prt'ssl/f'I! If'fIllSlJII("f!r It>rtlt;mls; Buuf/II/ :
Ma:rimlUlI Qfld minimulII t!:rCf!SS port! prf!SJlIrt!s QJ/(llwn':.omal (It'stWICt! InNIl It/otlf!1

PPT No. x (mm) y(mm) z(mm) w(mm)l

14' 100.0

- 138 -7 I" 99_9

-7 64 100.0

·128 138 99_9

-, 68 100.0

-3 -37 '4 100.2

-1 47 46 100.3

- 143 130 42 102.8

40' -3 121.i

I w = free water depth at position

PPT No. Ul (KPa) max. du tlx(mm) min. du tlx(mm)
(KPo) (KPa)

244 13 +30

217 30 +60 -3 - 28

164 24 - 21 - 16 + 49

237 24 +30 -2 -43

168 19 +3 - 8 -60

'34 61 - 6

146 " -3 - 6 + 91

142 - 39
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om: defintd as follows u. "" Ihe equilibrium port pn-:>surt under lhe imposed

strcs.<;t.'OnditK>Rs at the test acceleration level; max du - !he maximum iocrease in pore

pressure: min du "" the maximum reduction in port pressure, and: dx - the horizontal

distance between the model iceberg and the transducer which recorded the maximum or

minimum pore pressurC value.

Pon: pressun:: changes within the clay specimen are detailed in Figure IE.l which

displays the spatial distribution of recorded values at SO mm intervals of model horizontal

movement. The effcclS of the scouring event al shallow depths were first observed at a

Pm(otype horizontal distanc.e of about 20 m in front of the current model position. The

nuutimum iocrease in pore pressurt measured within the apparen! steady - state region

of scouring was 61 kPa for a transducer (pn (6) located S.4 m below the initial day

surface. and 3.7 m laterally outward from the scour axis (at prototype scale). This peak

value was n..'Cortled when the model iceberg (inOection line) was at a horizontal distance

uf 0.6 m (dx '" - 6 mm) from the transducer position. A maximum port suction of

16 kPa was measured at a prototype depth of 6.4 m. ne:tr to the axis of the

scour (PP'T 03). This reduction of jK)re pressure occurred immediately following the

pa....Qge of the mod\.:! iceberg over the transducer posilion (dx "" + 49 mm).

The rtSUltam fon::es acting at the model iceberg - soil interface during the even!

arc ploued Yl:rsus (he horizomal position of the model in Figure 4.4. The vertical force

climponent was evaluated indirectly from data on the current vertical position and

urien!lttion of the model iceberg in free surface water. together with detailed infonnation

on the mass and geometry of individual components comprising the model. A summary

of lhe computational procedure i~ presemed in Appendix B. The Test 01 force data are
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Figure 4.4 Tut 01 horizontal and \~niCQt C0I11pOlft!n1S of ,1I~ r~51II'otll [orcf! pftJIl~1

agairm nwdtf /lorilPfltal position

also listed in Table 4.4 at SO mm intervals of nmdel horizootal rnOYCfT\Cnt. In 3l.kJitKm.

the same information is displayed graphically in figure 4.5 which illu.m'lIcs the model

iceberg orientation and the system of forces acling on the model al different huri7.onlal

positions. The vector angle specified in Table 4.4 refers to the _ngle tlf the rt:Jliull;mt

force measured with respect 10 the horizontal. The inclination of the resultant force

vector measured relalive to the scouring face of the model icehcrg. may he calculated hy

the addition of the veclor angle to the effective attack angle of the model.

In this test. the venial component of the resultant force was almost Ihn.:c lime!>

as large as the measured horizontal component. The average IT\lI;gnitudcs or Inc vcnicai
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Tah1c 4,4 Te.\'t 01 resultant force data tabuloredfordifferent modellzorizolllal positions

lIoriz. Horiz. Ven. Total Vector Anack
I'().~. (mm) Force eN) Forcc (N) Force (N) Angle (deg) Angle (deg)

·300 185.1 102.3 211.5 28.9 21.3

·250 203.8 320.6 379.9 57.6 22.1

·200 233.3 531.8 580.7 66.3 20.8

- 150 288.1 584.2 651.4 63.8 17.8

·100 249.7 660.8 706.4 69.3 16.7

50 203.3 604.8 638.1 71.4 14.9

143.7 573.2 590.9 75.9 14.6

+ 50 208.6 573.9 610.6 70.0 15.3

+ 100 225,4 603.4 644.1 69.5 17.3

+ ISO 223.6 590.9 631.8 69.3 18.1

Avcmge l 214.3 600.0 637.9 70.4 15.7

I Avcr:lgc values for approx. steady slate region: x "" - 15010 100.

and horizonlal components for lhe apparenl steady - state region of scouring were 6.0 and

2.1 MN ,It the corresponding prolotype scale. The force record did not show evidence

of significant nuctualions in loading. Some initial irregularity in the measured response

mllY be attributed 10 uplift of the model iceberg and associated re - orientation (pitch

adjustment). As indicaled in Table 4.4, the model iceberg experienced angulal rOlation

:It the beginning of the evenl such that the auack angle decreased from effeclive values

in excess of 20 degrees 10 lhe proposed tesl value of 15 degrees. The inclinalion of the

~suillmt force vector increased during the evenl and, in the apparent sleady - slate

region, Ihe vector angle was ;lpproximately perpendicular to the scouring face of the

mndel iceberg. The position Jf the force vector, calculated as the distance from the Rll..'l:lel
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iceberg inncction line rrM:aSUred along the inclined fa~ of the model. also increased at

the Slilrt of the cvent towan! I relatively consistent value for steady conditions. 11le fon:e

Vl..'Clor actt:d at an avcr;lge distance of 32 nun or 3.2 m at prOlotype scale from the model

inncction lillc. The pressure cells mounted directly on the model i~berg provided limiled

infonnation on the distribution of stresses acting on the model (see Figure IC.2). The

data record from the bollom - mounted transducer suggested that a small ponion of the

R:.~ull:mt scour fon:e acted on the horizontal baSe of the mooel; however. the transducer

R:.'q'IOn5C was chanteterized by considerable fluctuation and the pressure measurements

wen.: subjl:Ct to inaccuracies as the result of stresS concentration and arching effects.

Surface soil displacemel\lS were evaluated based on film measu~n~ _~f the

movements of lead shot: markers. A plln view drawing of surfCK% displacement vectors

at positions cXlemalto lhe Test Ot scour incision is presemed in Figure 4.6. The average

mOlgnitudt:S of the axial (horlzontal) and lateral components of displacement for the

:lpparcnt steady· stale region are also shown in this figure. At a distance of about L m

fmm the edge of lhe scour. the average horizontal and lateral displacemenLS were 0.56

and 0.28 m respectively at protOtype scale. The surface displacements decreased

~r.KIually with distance from the scour axis to approximate values of 0.29 and 0.19 m

n.'SJl&.'Ctivcly at Lateral positions approximalely 5 m from the edge of the scour (i.e.

100 mOl from the scour axis at model scale). The displacements shown for locations

within the scour incision were estimated from plan view radiographs. 11le internal

markers were displaced vertically downward below the scour, and were also moved

hnrizontally forward over an average distance of about 2.3 m at prototype scale. The

lateral movemenl$ of surface markers within the scour were relatively small in this test,
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Figure 4.6 Top: Pian vinll drawing showing slirfart disp/actlllt!nt W!Ctun: BIN/mil:
Averagl! axial and lateral surfact displacements IIl!rsus distanu from tilt! scour axi.f

coinciding with infrequent observations of benn maleriallliong the L'CJgCS of the scuur.

The sub - surface displacements generated during the. Test 01 scouring event were

displayed via radiographic investigation of lead powder lr.Jils. and also lhrough manual

measurements of the grids comprising strands of coloured spaghelli. Figure IF.I shows

a trace (digitized drawing) compiled from plan view radiographs of the clay specimen,
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induding pore pressure transducers. mooel pipeline segments. and the soil defonnation

grids formed from lead powder trails. The trace of a cross - sectional radiograph is

shown in Figure IF .2, including instrumenlation locations and the displaced configuration

llrthc lalerotl grid of lead powder trails. Figure IF.3 shows drawings of the post· event

gL,(lmetry of the initial three lateral grids construCted of spaghetti strands, based on

evidence obtained from manual measurements. The trace of an axial section radiograph,

presentL'<l in Figure IF.4. shows the displaceJ configuration of the grid of lead powder

tmils located al the final positlon of the model iceberg in the vertical plane through the

sctluraxis.

To allow for quantification of the resultant (plastic) sub - surface soil

displacements, the displaced configuration o~ each grid, as acquired from radiographic

and manual investigations, was compared with its apparent initial geometry. The initial

g.rid geometry was assumed 10 correspond with the design condition and aligned to

ctlnfonn with the undeforrned far - field ponion of the grid affected by scouring, since

pre· cvcm radiographic investigations of the clay specimen were deemed impracticable.

The results are given in Figure IF.S as both initial I displaced plots and displacement

vector plots for the various grids implanted in the specimen. Figure 4.7 shows the initial

llnd displaced configuration of the lateral grid of lead powder trails in cross - sectional

:lIIU plan view. The observed displacements in this case were in general agreement with

results as presented in Figure IF.S; however. a more detailed assessment was obtained

from the l"ddk:graphic investigation. Lateral soil movements were small or negligible in

this lest (below the accuracy limitations of the manual techniques); although, shallow

lateral movemems may be inferred from surface profile measurements of heave adjacent
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10 the scour. :be vertical component of displacement was :'l:lativcly unifunn :tenl!S!i the

scour width and gradually attenuated with depth below the scour. The huri1.untal

component of displacement. in the (l:reclion of travel of the mooel kellerg. was larger

in magnitude and decreased more abruptly with depth. Figure 4.8 shuws the

initial I displaced and displacement vector plots ror the axial grid uf lelld puwdcr tr.lils

localed below the final position of the model iceberg. Al this localinn. IhI.: disphlccmcnts

induced by scouring were ob!;cured by the effCClS of a nearing t.OIpacity failure hcnc~l1h
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the model. The displaced configuration of the grid therefore provided only limited

infonnalion on the eXleni of the rupture surface which was observed in front of the final

model position.

The Test 01 measurem~nlS of soil displacement are summarized in Figure 4.9

which shows a profile of the maximum values of the venical and horizontal components.

160



E..s -10 0

o

~
'0

! -20

~
;ji

'§.
~ -30

o

o

OCIOOO Vertical

XXIoXX Horizontal

-40 '----"'---J~-'----'---'---'-__'_--'--__'__~..J

o 4 5 8 10 '2
Displacement (mm)
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"Pte displaC(ment values displayed in this plot were c:valuall.'tl as the aver.tge IIf r.:sull!i

from soil defonnation grids situated within the appamnt steady - Silitc region uf scuuring.

The maximum values of venical and horizontal displacement immcdiately hcluw lhc h;lse

of the scour (interpolated at a depth below husc "" 0.1 m) wen: 0.39 and 1.00 In

respectively at pr()(otype scale. The maximum depth below lhe base: of the scnur al whK:h
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displacementS were me3Sllred. wall eSlim:Il~~ for .. luwcr ~lUnU l.!isfll:lL'Cl11ellt nt,l~lIilul.!c

of 0.2 m. 10 ensure a consistenl hasi~ for eOl1l[l'lri5(ln with the n:sulls tl( olher I~'SIS. In

this tesl. lhe limilingdepths (or venical and huri1.ontal CI1Ul['lltnclils tlf di"{l13l.....'1II1.·ul \\'en:

1.1 and 2.5 m rcspcctivdy at flrocoty~ 5(:alc. The 1i!L·3..'Wn:J \'I:nical and htlri7Allllal

displacements extended to normalized values o( 2.6 :ml.! 6.3 St:uur tk.-plhs Ilt:l~alh lhe

scour base. The measured horizontal displacemcms may he exfll.'Cl\.'t! tu Ilve!\.'Slint,lte

acrual soil movemcms 10 some elUent. as a result of the limiting accuracy Ill' lhe ll\;lIlUal

measurement techniqucs employed in this Icst. and the difficulty uf l'hIOlin;l1~ unt.lis\tlnL'I1

plan view r,l(liographic images.

Model pipeline segments were exeavau:d and inspt:ctel.! in llrt.ler til ueterlllille :ll1Y

pennanent distress caused by the scouring event. TIle pipeline segments sitU<ll\.'t! OIl

prototype depths of 4.5, 3.2, 2.1. and 1.1 m hclow the h.lse of the scour did flut

experience measurable plaslicdeforJnations. 1bc sh:lllllWl:.~tsegment. OIt a pnlluty~ defllh

approx.imately 0.1 m below the scour base. underwent plastic ht:nding as il !\..,'<;U\t IIf lhi.:

scouring event. 1lle pipeline segment was deformed pn:tlominanl1y in lhe vcnicOII

direction. with a maximum de:fleclion measumJ at lhe lat:nion of the pi~ ~'I:nln: - tine

(scour axis) of 1.1 mm or 0.11 m at prototype scale.

4.3.2 Scour Test 02

Mod~l Input Conditions

The input conditions for Tesl 02 are summarized in Figure 2A.1 in the t:llrrcspllnding

section of Appendix A. The model iceberg conlicuroltion anc.l p:Jr.lmeters inve.~tigOltcd in
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lhc !irst tcst wcre also examined in Test 02. with the exception of the initial stress state

of the el:ly spcdmen. In this lest. the clay wa~ consolidated in the lilboratory under a

reduced venieal eff<.'Ctive ~tress of 110 kPa. The width of the model iceberg was 100 mm

IIr HI m ,II pmlOtypc scale. thc attack angle was set at 15 degrees. and the model vertical

stiffness W:tS rewined at 26 N/mm. The nominal depth of free surface waler at the

loeatilill of the model iceberg was also preserved as 100 mm in Ihis test.

The Tcst 02 I,tyoul of instrumentation, deformation markers. and model pipeline

segments is shown in elevation and plan view in Figure 2A.2. The arrnngement was

lIlol,lilied from conditions in the firsl test to beller facilitate sile investigalion of the clay

specimclJ and to enhance the information acquired from the event. The model pipeline

segmcnts cmpJoYl'tl in this and subsequent tests were stainless steel tubes. described in

Section 3.2.3. which represented 80 m length prototype segments comprised of an

idelllica[ m:lteri:ll with an outside diameter of 635 mm and a walllhickness of 25 mm.

/!, IUlUl of two model pipeline segments were placed al differenl depths wilhin Ihe

spcdmcn. Soil t.Ieformiltion grids were installed concurrently with the pipeline segments.

To foml the memhers of each grid. continuous lengths of very fine solder. which could

he detl'CteU using rat.liogrnphy. were altached 10 strands of coloured. dry spaghetti. Lead

[)I.lwt.ler ITlliJ~ were also injected into the specimen 10 create sepilrate grids. Dissimilar 10

cl.looitions in the firsllesl. the axial grid of lead powder trails was placed al a horizontal

fll..lsilion nC:lr to the iniliallocation of lhe model iceberg. In addition. the model iceberg

rested upon a suppan plate in this test, to minimize its initial settlement.

E:'tpcriml:ntal determinations of Ihe undrained shear strer.gth were limited to

values dl:rived from post· leSI moisture content measurements. In Figure 2B.l. the
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resuhs are comp:lml with strength proliles based on E4u:llinfl'l ... ~ ;mtl ·L\. E.'\Iim:LI~-u

c. values within the near· surface scoured ponion of the clay ~f1'.'Cilllen "atiL-u fruUl

about 8.4 kPa at a depth of 10 mOl or 1.0 m at rn\)\llt)'{'IC !\I..-ale. tll a(lflm~imatdy

10.5 k.Pa at a prototype depth of 2.0 m. In this lest. the Sf'k.'Cimcn was U\·en:I'f\''Iutitlatl.-U

10 a depth of 16.0 m at pf'O(ot)'pe scale anti nomlally cOl\.~itIatoo hl:low this tk.'f\lh. in

contrast with the stiffer Test 01 clay. which was owrconsl.IlKlatl.-d thnrughuut ils emin:

stratum. 1be estimated difference in undr.lilx.-u shear ~In:ngths hctWI."C1l the twu

specimens ranged from about 1,3 kPa at a protot)'pe depth of 1.0 In In ;lppro:c:illl;llcl)'

3.8 kPa at a depth of 18.0 m, near to the base of the specimen.

T~st R~sll/ts

Test 02 was intenupted by a power outage after 5.5 hours of ccntrifugc time anti ~,r

to completion of the consolidation phase. The test was restanl."l.I foHowing a tIclay IIf

approximately O.S hours during which me centrifuge came to rest. Thc ctlnsulidalion

records for lhe period subsequent [0 this delay are given in Figun: 2C. 1 as (lInts tlf pin:

pressure against time, and clay surface settlemenl versus the square n)()( of time. An

additional duration of about 3.4 hours was required 10 rc· establish e'luilihrium

conditions in the cia)' specimen. The apparent initial clay surface sculcmcnI wa... 2.0 I1llll

during the first stage of consolidation; 1.5 mm of surface movemcnl W;IS l'l.'CnnJctl

following swelling I rebound of the clay specimen associated wilh the te!lt tlcla)'.

Figure 2C.2 provides a summary of the tcst instrumentation oulpuls pJulIl.'lJ

against time and horizontal position during the scouring event. The time to cumpletiun

of the eveot was 7.1 seconds and the model icebers: travelled a tOlal horizontal distance
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nf 450 mm. The average S(..vuring rate was 66.0 mm/s. as detennined from the posilion

1r:1I1sduecr tl.."'fXIOSC. The horizontal displacement history wu also verified through

intlin:cl mca.wrcments of the tolary potentKxneter.

A plan view photogrolph anti corresponding drawing of the model scour created

in Tesl 02 are prt:scntt.'tl in Figure 4.10. An average cross • section surface profile for

the apfl'ln:nt steady· state region and an axial plot of scour depths and berm elevations

<Ire given in Figure 4.11. Surface profile data are also shown in Figure 20.1. as cross 

Sl.."Cliunal plots at 50 rom intervals of horizontal position along the scour path. The

scouring event involved an initial period of relatively gradual uplifl to an apparent

L-quilihrium scour depth of 12.0 mm or 1.2 m at prototype scale. 1ne scour depth

n.'tIUL"(,.'tI immediately 10 a new equilibrium level at a specifIC cross

S<.'Ction (x ... 2S mm) coincident with the horizontal position of lhe first model pipeline

segment (crown at depth 14 mm). AI sections beyond this change in model vertical

/lIlsitiun. the averngl.' scour deplh was 4.8 mm. The corresponding average berm

e1cv<ltinn wa.. 1.9mm. including both heave and remoulded malerial deposited at the

sitko'S of the scour during the event. A localized linear depression was evident in the

vicinity of Ihe shallowest model pipeline segment (crown at depth 5 mm). indicating that

movemenl had occurred over a substantial portion of its length. The model iceberg

cXflCricncl.'d some rotational movement about its horizontal axis during approximately the

l"in:ll 7S 111m of its Ir.lVcl. The inception of Ihis non • steady motion corresponded with

the Imrizontlll position of the shallowest pipeline segment, situated directly beneath the

scuur ha~.

Tht.: reduction in scour depth 10 a new equilibrium level was accompanied by the
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~;:r.e 4.10 Top: Plan viear photograph ofmodel scour created in Test 02; Bouam : Plan view
'lng illustrating Scour suiface features
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deposition of sizable mounds or benn material which had built· up as surcharge al the

froOl and sides or Ihe advancing model iceberg. The initial portion of the scour feature

was characterized by an undulating incision surfacc. collapse or caving of the scour

sidewalls, and extcnsive heave of surface mlterial indicativc of significant lateral

movements adjaCCnllo the scour. In conlJnt, al horizontal positions beyond the reduction
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in scour depth. the scour incision WOlS rclativd}' unifonll in :lppcarmtl'e. :UlrJ SCr.lflC

markings were evident along the sides of the scour. wilh negligihle tJcml ueposilinll. '(lie

serape markings were fomled as material cnrrierJ with a stahilizlo.'t! fmlll:ll suil mass or

lldhering directly 10 the sides of the model iceberg, ahrJdeu Ihe surface uf the sflt.'Cilllen

as the mooel was advOlnce<.l. A large mound of rel110ulderJ ur spoil nmlerial :lml

considerable surface heave were observed to the front and sides tlf the fin:ll pu~itilln or

the model iceberg.

The Test 02 pore water pressure responses for eighl tnlllsuuecrs silUatlo.'t!

throughoul the clay specimen are shown in Figure 4.12. The measured 10t;:lliorls Ill' Ule

lransducers are listed in Table 4.5. together with the correspontling cquilihrium pore

pressure values, and the peak and minimum pore pressure changes gcner.ltl,.'t! during the

scouring event. Figure 2E.I shows the spatial distribution of the exce....~ pore pressures

at 50 mm intervals of model horizontal movement. The effects of the l'Couring event

were initially recorded at a prototype horizontal distance approximately 25 III fmm Ihe

current posilion of the model iceberg. The maximum increase in pore pressure measured

within the apparent steady - state region of scouring was 47 kPa for a transducer (PPT

06) located 6.3 m below the initial clay surface, and 4.2 m 11lIerJlly outward from the

scour axis (al prolotype scale). The peak response was recorded when the model was III

a horizontal distance of 2.4 m (dx - ·24 mm) from lhe transducer rosltion. The

maximum recorded pore suction was 18 kPa, for a transducer (PPT01) situated at a

prototype depth of 1.8 m and adjacent to one edge of the scour incision. The reduction

of pore pressure occurred after the model iceberg had travelled a horizontal dislance of

1.0 m beyond the lransducer position Cdx ;:: + 10 mm).
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Figure 4.12 Test 02pore pressure responses during event -Ironsdl/cer channels OJ to 08

Figure 4.13 shows the resullam forces acling at the model iceberg - soil interface

during the event ploued against the horizontal position of the model. A listing of lhe

force d,lla is also given in Table 4.6 at 50 mm intervals of model horizonlal position. In

addition, Figure 4.14 provides an illustration of Ihe model iceberg orientation and the

system of forces acting on the model at different positions along the scour path. In this

lest. a large amount of surcharge was developed in front of the model during the event.

The vertical component of the resultanl force was generally less than tWO times as Illrge

as the measured horizontal component. The horizontal force component decreased over
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Table 4.5 Top: TNt 02 mmnm"d porr prrssm~ /flIlWfll'('r "/(ll/i,HU: /l4lillllll :
MafinuUII and mi"i'tfmtf rxrm porr prt'ssllTn wuJ IHIIi:J.Nlttl/ ,IiSl'IIfI'f:'S fnlln modrl

PPT No. x(mm) y(mm) z(nun} w (nunl'

..0 142 100.U

-133 '00 ....
·4 ·17 90 100.1

- 133 136 ".9

·2 59 100.0

·5 ·42 63 \00.2

·4 55 18 I()(I.:'I

- 139 :'IS 102.5

405 ·3 121.1

'w = free water depth at position

PPT No. u,(kP'a) mu. du dx (mm) min. clu clx(mm)
{1d'>l (t.P:I)

242 3 + '00 ·3

200 61 + ,. ·11 ·13

189 30 +111 ., +18

234 29 +21 ·6 • '01

ISS 41 ·13 ·3 ·203

1M 47 ·24 ., ·226II. 31 ·16 ·18 + 70

139 16 ·106
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Scour Test 02
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Figure 4.13 Test 02 horizontal ond vertical components of the remltam force plotted
(/~(/itUl modeillOr;zontal position

lhe lin<11 pcmion of the event. corresponding with the reduction in scour depth and the

I:xlI.::nsivc deposilion of benn material. The average magnitudes of the vertical and

horizontal components for the region beyond Ihe reduction in scour depth were 6.4 and

3.3 MN respectively at prolotype scale. The effective attack angle of Ihe model iceberg

incrcaSf.'d ill the beginning of the event to values in excess of 20 degrees. and then

diminished to values corresponding with the initial model orientation over the apparent

steady· state region of scouring. The inclination of the resultant force vector remained

nCllrly constant throughout the event at an angle approximately 10 degrees from the

perpendicular to the scouring face. suggesting some mobilization of friction I adhesion
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Table 4.6 Tt!s/ 02 rt'SlIfla1ll foret' l/lllil rIIhulil/(~1for diffi·rt·1/I IlIIlj/d lIon":ollllll,ltm·/if/tf.(

Horiz. Boriz. Vert. '1'111,,1 Vectur An:u:k
Pas. (mm) Force (N) Fnrcc (N) Force (N) An~1c ("kg) An}!k (Je}!)

-300 158.0 338.3 373.4 65.0 15.M

·250 245.\ 436.6 SOIl.7 00.7 17 ...

- 200 323.7 579.0 663.3 (o,1.I.K IIJ ....

• 150 433.9 615.8 753.3 54.K 10.4

- 100 457.0 613.2 764.7 53.3 IK..4

50 394.1 623.5 737.6 57.7 Ih.CI

372.6 636.3 7)7.4 59.7 15.M

+50 321.4 640.0 716.2 63.3 15.4

+ 100 295.7 650.4 705.1 65.CI 15.2

+ 139 284.9 658.4 710.1 CI6.6 15.2

Average 1 327.9 645.1 724.4 63.\ 15.4

I Average values for approx. SLeady Slate region: x = - 25 to 139.

at the: model - soil inlerface. The posilion of the force vt,'Ctur incrca.""''l.I at the SI;ln uf the

event to a peak distance of 46 mm or 4.6 m al prototype scale from lhe mudd icchcrg

inflection line, and then decreased IOwani a steady value of 3.4 m on avcr:lllc, during the

laller ponion of the event.

The estimated interface pressures during lhe event an: shown in Figure 2C.2 fur

transducers mounted at the horizonlal base (IPT 18) and inclinct.l scouring fllL-C (WI' 19

and. 20) of the model iceberg. The changes in waler • induced pres.~urc due In moud

uprise must be acrounted for in the interpretation of the mcasun:tl tOlal rre!isun:..~. 'me

pressure response at the scouring face of the model was characterized hy a rolpid inc:n:a.o;c
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aner initial soil conmct. and ;In ahrupi ['leak (nuximul1\ rrcs.~un' ri~ ~ 1~1I k1"JI arkl

immcdialc decrease which cuiD.:Kk't.l wilh t~ n."t!lk:I:nn in sellur dl."lh and :1s."IlCiall.'t.I

berm deposition described previously. The inlerface (In."SSUrc n.'l:unl fllf the Ir.IlL""uc."\."r

silUlllcd al the b.ue oflbe model describl."t! a n..'Sularly OUI.,U;llinl! TCsflon.'lC wilh an initial

build· up of pll$$Ure and ,rndUllI decrease low;an! the l:nd of lhc CVClll. The

measurement of soil· induced pressure changes illung the hllri7Jllll:ll hUllul11 l<o1.lrf;tCC

indicated (hat a component of the resuham scour force actL"t! al Ihis ItlC:lliul1.

Figure 4.15 shows a plan view drawing of IhL: surf:lce uisplacClllCl1l VI.'C'lllrs

measured al positions eXlernlil 10 the Test 02 scoor incision. A summary pill! III" Ihe

llverage values of lhe horizon!.,l antllaleral componcnls of displacel11clIl fur the ,rp(l:lTCm

steady. state region is also presented in Ihis figure. Tht: aver:lgc nnriwnllli and l:lh:r:lI

surface movements recorded at a distance of about I m from Inc cuge Ill' the scllur wen:

0.30 and 0.32 m respectively at prolot)'pe scale. At lateral posilions "pproxmmh:ly .0; m

from the scour edge (the ouler limit of the surface moulteD) the hori7Jmlai :md lilleral

displacements decreased to average values of 0.11 aoo 0.15 m fl:Sp.:t:livcly. 1h:

displacements of the surface ma.rit.:rs within the scour incision were estimaled fnNn plan

view radiographs. The identifICation of surface markers pl:lCed ncar 10 thc hcginning nr

the scour was not possible. as these markers were clisplaet:d over large hurizuntal

distances with the surtharge in front of the model iceberg, Of movctllaterally:t.~ this sllil

was progressively cleared from the path of the advancing moc.lel. In lhe apparent SIColUY •

state region of scouring. the average horizontal tlisplacemenl of the inlermrl surl;1cc

markers was 3.0 m al prototype scale and the corresponding lateral mlJvcmcnL~ wt.:re

relatively small.
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In Tesl 02 ant.! suhsequent lests. information on sub - surface displacements was

'lcljuin.'<.l through rddiogrnphic techniques and verified through the excavation of the soil

ddonn:ltion grids. Figure 2F.l shows a trace based on plan view radiographs of the clay

sJ'll.-cilllCn, including thc locations of pore pressure transducers and model pipeline

segments, ant.! thc displacl.:d configunl.lion of soil deformation grids. In plan view
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radiographs. ttl..: scour incis;on appc.:lrs darker hc)'unU Ille first lllu..k:1 pipdilil' scllllk:nt.

exhibiting the diSlinc:1 transition in 5CtlUr depth otlSCrYl'lJ at Ihis Incaliull. The tr...:cs IIf

cross • sectional radiograplis are given in Figure 2F.2. irv:ludiny. ilL..trumclIl:Itiun

locations and lhe lateral grids of fint: solder. siluatl'tJ IIlIWI) different Imri;wntal pllsilillIL...

Figure 2F.3 presentS the tr.K;e of an lldditional cross· Sl.'Cliunal radio~rllph. dcpictiny.thc

lateral grid of lead powder lrails. The trace of an llX;'ll scetinn radill~r.lph. slmwll in

Figure 2F.4. displays the grid of lead powder trails located '''-'ar to the inilial pll...itillllnf

the model iceberg in the venic:al plane through the scour ,n.is. A side dcv:ttillll VM:W Ill'

the lateral grid of Iud powder trails is also evKJcnt in this axialtr.ll.'1:.

Test 02 sub • surface displacemelWi are iIIuSUall'tJ in FigufC 2F.5 a... hllill

initial J displaced plots and displacement vector plots for exh of Ihe sui\ dcfumlluinn

grids placed within the clay specimen. In this tl'Sl. the p:ltlem tlf htlri>':t1nl:ll suil

displacements was atypical. Horizontal displacements in Ille din.-ctiun uf Ir.lvd were

observed as expected; however, grid movements in lhe opposite din.'Ctiol1 were alstl

evident below a given depth. The displacemenr.s opposite to the direclion or tmvcl wen:

most apparent in the initial region or scour depth adjuSlmcnt. and diminisl"-'lJ wilh the

reduction in scour depth and the establishment or Sleady conditions.

Figure 4.16 shows the initial and displaced configuration or the laternl grid

situated at the beginning of the apparent Sleady - stale region or scouring (x - • 25 mm).

Lateral soil displacemenr.s were small anti were limited 10 the ncar • surrace atca ,ldj:lcent

to the scour edges. with some movements below the scour incision possibly lltiribulllhic

to deviations in the initial grid geometry. The venical component or disphlccmcnt did not

vary significantly across the scour width and gnldually diminished in magnitude with

116



00 ---- INITIAL
_••_..- OISfUCED

100
-100 -SO SO 100

40

~
20

--< I J 6---_c

-20 l-om. I'EHBERS:
Z = 4 TO 34. ~z : 10

- 40
- 100 -SO 0 SO 100

YDISUKE

Figu~ 4.16 Tf!st 02 initioll displaad pial of lauraI grid ar X"" - 25 slluwn in cross
s«1;011 alltl plan vinv (Kaltl in mm)

tll,.'fl!h. The horizontal component of displacement decreased near to the edges of lhe

scour. although the dislonion in plan view l'3.diographs limited the accuracy of

m~asuremenlSaway from the scour axis. The horizontal soil movements decreased more

illlruptl~' with depth than the corresponding venical displacemems and, as described

:lh<wc. small negative displacements were observed below a given depth. The axial grid

llf lead powder tmils situated within the initial region of scouring (x • - 200 10 .75),

shown in Figure 2F.5. was placed to insufficient deplh to allow for reliable interpretation
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of displacements. The displaced confiAuration suggested that malerial ahovc the cltlent

of the grid was severely disturbed or re • worked.

Test 02 measurements of soil displacement arc summarizcc.l in Figure 4. J7 which

displays a profile of the maximum values of vertical and hori1.onlal movcmcnLS. evaluated

as the average of results from grids within the apparcnl steady· state region. The
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milximum values uf venical amI horizontal displacement immediately below the base of

lhe scour (interpulatcd at a depth below base '" 0.1 m) were 0.46 and 0.50 m

res[X.'t:tivcJy at prototype scale. The limiting prototype depths for venical and horizontal

cOl1lpnnenls of displacement. L'Stimatctl for a lower bound displacement magnitude of

0.2111. were 1.7 and 1.4 m respectively. The measured venical and horizontal

displ:lcements cxlCndctlto normalized values of 3.5 and 2.7 scour depths beneath the

scour base. In this t~t. small negative horizontal movements were also apparent at depths

hcluw the limiting value estimated for the assumed lower bound displacement.

The model pipeline segmems were excavated and measured to determine any

permanent distress induced by !he effects of scouring. The horizontal poshion oflhe first

pipeline segment was coincident with the abrupt transhion in scour depth to the reduced

equilihrium level. The segment was located at a depth approximately 0.2 m below the

scour hase in relation to the initial region preceding the reduction in scour depth. This

segment exhibited a small degree of curvature predominantly in the horizontal direction;

Ihe maximum deflection recorded at the pipe centre - line (scour axis) was on the order

uf 0.5 mm or 0.05 m at prototype scale (model displacements were assessed to within

0.1 mm). The second model pipeline segment was located immediately below the base

uf thc scour (0.02 m beneath the scour base at prototype scale) within the apparent

steady - stale region of scouring. beyond the reduction in scour depth. This segment also

expericnccd plastic bending due to the effects of scouring. A maximum deflection of

Oltxmt 0.20 m at prOCotype scale was measured in the vertkal direction at the pipe centre 

line and near to one end of the defonned segment. The measured horizontal

displacements were less extensive, with a maximum prototype deflection of 0.18 m
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fttorded at a position offset from tbe cenlre of the pipeline scgmeru. This ~l:lllo\\'

segment also suffered a minor indenlation at a position adjacent 10 the eme I.'dgc of the

scour incision. indicative of local cOnlact with the model keel.

4.3.3 Scour Test 03

In Test 03, it was proposed 10 investigate the inOuence of the ch,lnge in scour dcpth

associl!;ted with an increase in the buoyanl weight of the model icct'Crg. nil: h:.~

parameters examined were Ktemical to the Test 02 case. with the exception of the llUrfacc

water depth. The nominal depth of free water above the surface of the cl3y specimcn was

reduced to 50 mm in this test from 100 mOl in the preceding tests. The mood icchcrg

was modified to provide the same walerplane area for the revised water levcl. to maintain

the Test 02 model vertical stiffness condilion.

The test was unsuccessful, in thai the initial scour depth was larger than pn.'dictt.'d

and this resulted in the development of forces which exceeded the cap;lbilities of the

drive system. The mOior capacity was also less than anticipated from normal gravity

trials. The model iceberg was advanced over a total horizontal distance: of 135 mOl in a

time period of 2.8 seconds. The model descended immediately as it len contact witb the

initial support plate, a peak horizontal force of 0.79 kN was mobilized. antltbc drive

motor stalled. Following a brief delay, an attempt. was made to advance the model

beyond ils current position, with negligible movement resulting. The centrifuge

acceleration level was subsequently reduced by half 10 50 gravities. and Ihe ~ouring

event was effectively resumed 10 completion. A complele set of results was IC<juin:tl for
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Ihe test; however, scaling changes and other irregularitie" must be a.lIowed for in the

intel'flretation of this information. As a consequence. the value of the 'fest 03 data is

mueh n:duced and details are not presented here.

Figure 4.18 shows a plan view photograph and related drawing of the model scour

created in Test 03. The depression formed as a resull of the initial scourir.g episode at

100 gravities. extended to a maximum depth of 51 mm or 5.1 m at prototype scale. The

scuur incision surface was irregular in this region, and the sidewalls of the cut collapsed

or caved eXlensively following the passage of the model iceberg. The final segment of

the smur feature. generated at the 50 gravity (eS! acceleration level, involved an uprise

10 an llverage scour depth of 13 mm, approaching an equilibrium condition. An extensive

volume of surcharge was displaced forward with the model and amassed in a semi·

circular mound nt the front and sides of its final resting posilion. The latter portion of

Ihe scour feature was also characterized by variable deposition of loose or remouldei;l

material at the sides of Ihc scour incision, with benn elevations ranging from 1.5 [0

12.5 mm above the original surface level. Model pipeline segments situated at initial

depths of 15 and 5 lOm below surface were displaced vertically beneath the scour to

:lpproximate final depths of 21 and 15 mm respectively. The first pipeline segment was

locally dented and experienced plaslic bending with the development of a wrinkle on lhe

compression side of Ihe segment, and a maximum centre -line deflection of about 18 mm

:It model scale. The shallower second pipeline segment was also subject to indentation

as the result of local contacl, and assumed a severely deformed or buckled S - shape

upon removal from the clay specimen, with a maximum deflection on the order

of21 mm.
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Figure 4.18 Top: Photograph a/model scour created ill Test 03; Botrom. Plan view drawing
illustrating scour surface features
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4.3.4 Scour Test 04

MlJd~1 Inpm Conditions

Tht: mudd icdlCrg used in Tcst 04 dcscribed the baseline configuration for subsequent

1C...tli. 11x: model geomctry and input panmeters for lhis tcst are presented in Figure 4A.1

in thl: corresponding section of Appendbl: A. 'Ibe model iceberg represented a 10 m wide

pmtotyp.: ict: fcature with a cutting face allack. angle of 15 degrees, The venical stiffness

of the model was equal to 61 N/mm in free water of nominal 80 rnm depth in lhis test.

TIle clay laboratOf)' pre - consolidation suess was maintained at 110 kPa; soil conditions

were idemical to those investigated in Tests 02 and 03.

The Test 04 arrangement of instrumentation, defonnation markers, and model

pireline segments, shown in Figure 4A.2. was proposed as a sundard layout. with only

slight modirlCalion ~uired in succeeding tests. The soil deformation grids were

constructed using both spaghetti I solder horizontal mcmbers, and venieal members

comprised of injected lead powder. as detailed in section 3.2.3. Two separate lateral

grids wen: installed at horizonl.ll positions within the expected steady· sule region of

,o;couring. A total of two model pipeline segments were placed at different depths. during

tn:nching of the latcral grids. In addilion. two axial grids were installed: the first at a

position near to the initial panion of the proposed scour, and the second at the finaJ

IOCiltion of the model iccberg, The size of the array of surface lead shot mark.ers was also

increased in this lest to facilitate improved definition of the lateral extent of surface soil

movements.
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1be experimental methods U5Cd to c:valu:a1c ulllJr.ainc:tl shc:tr sln:nglh in Ihilll4"l'1

ilK:ludcd in· nighl vafIC shciIr I$ing. in :addition to ('USl' 1I,.'Sl muislun: 4",ltde",

rneasumnenUi. Figure 48.1 displays CSlimal4'd c. profilc:s for the Tc=sI ():J cby Ji(lIX'imen.

Vane lests were to be ul'llSctu.kn al thm: borizom whhin lhe: 5p4'Cim.-n: ~~.,.. We

10 malfunction of the appatalUs. lese results~ obtained:1I only one k:Ye1 68 mm b.iow

surface, or 6.8 m II prolOlypc scale. 1b: vane lCSl data for this 1evc:1 an: s!klwn in

Figure 48.2. including pkxs of rotation and tocque against time. iLS well as lhe

corresponding torque versus rotatton curve:. The: maximum undntinetl shear slrcnglh was

assessed from the peak torque mobilized by the vane hc:ld ulone. wilh shan n..",istllllCe

deducted. It was assumed that lest conditions were dfl.'Ctively undr.tint.'I.I. ant! Ihul :1

constant shear strength was mobilized on the cylindrical surface defined hy the v:lIle

blades. This led to thc fotlowing relattonship between lhe peak torque T and lhe

undrained shear stren&th. expressed in lennS of thc vane geomc:try :

T • c. (r (3 H + D) D! I 6 } (4.S)

where D and Hare. respc:aiw:ly. the di.amet:er and height of the vane b1adc:s c..-mployaJ

in the test. As iIIuslrated in Figure 48.1. the vane lest results predicted a lower 5tn:nglh

value in comparison wilh the estimates based on Equations 4.2 and 4.3. 1l1c mC:lsun..'d

vane strength was 16.1 kPa at the test level. as compared with lin estimate of 18.2 kPu

derived in accordance with lhe empirical relation given by Equation 4.2. The uccc.~~ tlf

surface water 10 the vane head via the opening produced arourd the vane shan allTlO!lt
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ccnainly resulted in some dissipation of excess porc pressures during vane rO(ation, and

Ihis may account for a reduction in the measured shear strength.

Te.fl Re.fulls

Test 04 was initially slopped al the 30 gravity acceleration level, and restarted following

adjustments [0 ensure negligible deviation from required surface water levels.

Figure 4C.I shows the consolidation records for this test, including plots of pore pressure

against time and clay surface settlement versus the square root of time. In order to

achieve greater than 95 percent of primary consolidation, the clay specimen was

maintained at the test acceleration level for a time period of about 5.4 hours, preceding

v,tne lest implementation. The apparent initial clay surface settlement was 1.8 mm during

the consolidation phase of the test. The model scouring event was carried out subsequent

to the completion of vane testing. Figure 4C.2 shows the instrument outputs measured

during the event ploued versus time and horizontal position. The time required to

complete the event was about 5.8 seconds and the model iceberg travelled a total

horizontal distance of 426 mm. The average scouring rate realized was 72.9 mm/s.

A plan view photograph and corresponding drawing illustrating the surface

features of the Test 04 scour are given in Figure 4.18. An average cross - section surface

profile is shown in Figure 4.19 together with a plot of scour depths and benn elevations

against horizontal position along the scour axis. Surface profile data are also presented

in Figure 4D.1 for cross - sections at SO mm intervals of horizontal position. In this test,

a desired scour depth and an increased length of scouring at effectively sleady - state

conditions, relative 10 preceding tests, was achieved. The average scour depth was
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14.6 mm or 1.46 m at prolOlype scale; the equilibrium value was establisbed after a brief

period of uprise from the initial model iceberg position at a nominal 20 nun depth. The

corresponding berm elevations averaged 3.1 mm above the original surface level,

including heave of the soil immediately adjacenllo the SCOUT in addition 10 loose or spoil

material. Remouldcd material arising from berm (annatton and caving of the lrench
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sidewalls afler passage of lhe model iceberg W:lS ~v)dcfl( to a t1L"1311l."C un lhe 1!n1~r ilC

20 mm from lheedges of the: 100 mm wKJe 5COlJr trough. u'I:al surface tJeflrL-ssitll1.'i wen:

also associated with the trench locations of mudd pipeline sc1tn~nts. Soil

dislUrbancc (surface hc:lve) in front of the fin:lliocalion of the motlc! cxtcntk.'ll 111 ahllut

45 mm in a semi - circular region: however. onl)' a limited amount of luuse frlltllal

mound mnterial was observed.

The pore water pressure responses recorded during the scooring evclll ,Ire shown

io plots presented in Figure 4.21. Table 4.7 lists the tne:lSl.lred locations of the pore

pressure transducers. as well as the co~nding peak anti minimum excc.u

pore pressure values measured during the event. The spatial distribution of n..'Conk..d pore

pressure changes is displayed in Figure IIE.l al 50 mm intervals of model icc:hcrg

horizontal movemenl. The erf~ts of scouring were first witnessed al shilllow dcpths. :It

a protot)'pe horizontal dislance on the order of 25 m in fronl of the eurrent Illodel

position. In the steady - stale region of scouring, the maximum r~ordctl il1l,:rensc in pore

pressure was about 88 kPa for a lransducer (PPT 03) localed at a depth of 9.5 m hclow

lhe initial clay surface, and 0.9 m laterally oulward from the scour axis (at prototype

scale). The peale value was observed when the model was at a horizontal dislalX."C of

approximately 9 m (dx ;; - 86 mm) from lhe transducer location. A maximum ron:

suclion of aboul 37 kPa was measured al the same location, immediately suhs~:quent 10

the passage of the model keel (dx :c + 52 mm).

The resultant forces aCling at lhe model iccberg • soil :nlerface during the event

are plotted againsl the horizontal position of the motlel in Figure 4.22. Table 4.8 giYc.~

a listing of the forte data al50 nun intervals of model horizontal movement. Figure 4.23
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Table 4.7 Top: TrSl 04 lllfasurl!tl fHJTI! prt'ullrt' tnlllSlIIlI'I'r lom/;'lIIs; /JOt/OIll :
Maximum and minimum t!Ul'SS porI! prl!UUTI.'S and Iwri:tmWf disrllllty In/III /1/I1I1l'f

PPT No. x(mm) y(mm) z(mm) w(mm)l

- 4 - 19 '0' 80.0

·129 -11 93 79.9

- 4 - 9 95 80."

- 127 -8 '28 79.9

55 80.0

-, - 49 61 80.3

24 29 23 80.1

-I ·149 29 82.9

40' -3 101.1

I w _ free watcr dcplh al position

max. du dx(mm) min. du dx(mm)
(KPo) (KPo)

72 . -78

89 + 29 - 16 - 91

88 -86 -37 + 52

59 + 27 - 12 - 91

" +1 -3 - 2S8

63 -34
"'-104 35 + 10 - 21 - 116

117 43 - 59 -7 + 120
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Figure 4.22 Test 04 IIoriz.ontal and vertical components of tile resultant force plotted
CI~tlillst modeilloriwntal position

displays the model iceberg orientation and !.he sySIC:m of forces aCling on the model for

different horizomal positions. The vertical componenl of force developed in this test was

nearly four limes as large as the measured horizontal component. The average prototype

lllagnitudes of the vertical and horizomal componems in the sleady - slate region of

~ooring were 16.1 and 4.1 MN respectively. The effeclive attack angle increased

initially 10 01 value of about 16.0 degrees, and Ihe model then retained a relctively

conslant orientation during ~:ouring. The inclination of [he resultant force vector was

slightly above the perpendicular 10 the scouring face of the model, and did not change

markedly over lhe duration of the event. The distance between the position of Ihe force
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Table 4.8 Ttsl 04 "slIltalli forct data Wb/lltltttl for Iliffi'rt!1II IIwlM Jwri:.rlllwi ~Jsi';'IIIS

Horiz. Horiz. V(n. Total VI,.'Cltlr Anack
Pos. (mm) Force (N) Fo~(N} Fllnx (N) Angk(") Angle (")

-150 137.9 1398 1418 SO.3 15.6

- 200 291.6 1474 1502 78.8 15.8

- ISO 356.8 1558 1598 77.1 16.2

- 100 393.0 1581 1629 76.0 16.1

-SO 451.8 1665 1725 74.8 16.1

439.7 1640 1698 75.0 15.8

+ 50 420.2 1628 1682 75.5 15.8

+ 100 403.1 1547 1598 75.4 16.0

Average' 412.0 1614 1665 75.7 16.0

1 Average values for approx. steady sUlIe region: x "" - ISO 10 100.

vector and lhe model infleclion line increasrd 10 a steady value of 2.6 m on avcrngc al

prototype scale, during !he laller ponion of the evtlll. In this ttsl, the inlluclive pressure

transducers mounled on the model were damaged by lbe incursion of waler and,

therefore. no data on inlerface pressures were acquired.

Figure 4.24 shows a plan view drawing of surface displacement veclOrs OIl

positions external to Ihe Test 04 scour incision, as well a~ a plm of lhe ;l'Icrngc

magnitudes of the horizoOlal and lateral components of displacement for Ihe :lppa"ml

sleady - stale region. 1be average horizomal and lateral displacements were 0.31 :md

0.58 m respettively at prototype scale, at a lateral position approximately I m frum the

edge of the scour incision. The surface displacements decreased to negligible values

within a distance of about one scour width from the edge of the incision {Le. Ics.'i lhan
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Figure 4.23 T~st 04 lIIod~f ic~btrg on'~ntat;on and r~sultanl forc~ v~ctors
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150 mm from the scour axis al moot! scale). The movement of surface markers within

the scour may be qualitalively assessed based on the r'c1diographic evidence, as dispillycd

in Figure 4F.l. Some of lhe intemal markers were displaced horizontally and laterally

during the eyent, and were deposited at the sides of ltlc scour incision; other markers

were displaced horizontally and Yenially below the scour, and experienced only limited
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lateral movement. Quantitative evaluation of these displacements was impracticable

tll:t;:lUSC Ilf the difliculty of positively identifying particular markers after very large

movements had occurred.

Tht; displaced configurations of soil defonnation grids, and the locations of pore

prc.~surc transducers alKl model pipeline segments, are shown in plan view in the trace

t;ompilcd from Test 04 radiographs presented in Figure 4F.I. Figure 4F.2 displays

similar inJ"onnation acquired from cross - sectional r.l.diographs at two separate horizontal

positi()n.~. coinciding with [he lateral grid anti model pipeline locations. The traces of the

axilll sL'Ction radiographs situated near to the initial portion of the scour, aod at the final

horizontal position of the model iceberg. are shown in Figures 4F.3 and 4F.4

respectively. Figure 4F.4 also includes a view of the displaced grid with the apparent

linal model iceberg position superimposetl on the axial trace.

Figure 4F.5 gives details of Test 04 sub - surface displacements in tenos of both

initial I displaced plots and displacement vector plots for each of the soil defonnation

grids ino;taJlL'd within the clay specimen. The initial and displaced configuration of the

first lateral grid (x =. 19 mm) is shown in cross - sectional and plan view in

Figure 4.25. Soil displacements generated by the scouring event included lateral. vertical.

anc.l horizontal componenls. The lateral component of displacement was more extensive

in this test than in preceding tests; although, significant lateral movements were generally

rcstrlclL'd 10 a shallow region adjacent to the edges of the scour. corresponding with the

measured surface heave. The vertical component of displacement was relatively

consisll:nt across the scour width. but decreased at the edges of the incision where lateral

mowments increased. In general. venical soil displacements occurred in a pattern similar
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10 the morphology of the: scoured surface and decn:ascd gradually with lk.-plh hclow lhe:

scour. The horizontal component of displacement. in the din..'Clion of lravcl of the model

iceberg, was larger in magnitude than the associated venical compoocnt: huwcver. largc

horizontal soil movements were limited to shallower depths. Figun: 4.26 shuws lhe

initial I displaced plot for the axial grid 01\ the Iinal position of the model icdx:rg. The

soil displacements measured at this panicular location include some effL'Cts of .. hc;lring

capacity failure coinciding with the cessation of movement and Ihe consequent changc in

forces acting on the model. To reduce effects eXlraneous to scouring, L"quipmcm
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Figure 4.26 Test 04 initial I displaced plOI of axial grid located at final horizontal
pO:'iifion of model iceberg

modifications to provide vel1ical suPPOrt for the model al the end of the scour path were

implemt:nted in subsequent tests.

A summary of lhe Test 04 displacement records is provided in Figure 4.27, in

which values of the vertical and horizontal components are ploUed against depth below

the base of the scour. The horizontal displacements shown in this plol were evaluated

using the results from the initial axial grid at horizontal positions within the apparent

slt:ady - state region of scouring. Measurements acquired from the axial grid were

considered 10 be more accurate due to distortion in plan view radiographs; however,

larger horizontal soil displacements determined from lateral grid results were more

consistenl with measured model pipeline deformations. described below. The plotted

vertical displacement results were derived from well - defined lateral grid movements.
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The measured maximum values of vertical and horizontal displacement imnll,,'diatcly

below the base of the scour (interpolated at a depth below base - 0.1 m) were

0.94 and 1.52 m respectively at prototype scale; however, there was notable variation

in the results as obtained (rom different grids. The maximum depths below the base of

the scour at which vertical and horizontal displacements were measured, as estimated for
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a lower hound displacemcnt magnitude of 0.2 m, were 3.2 and 3.1 m respectively at

prototype scale. The venical anti horizontal displacements extended to normalized values

of 2.1 lind 2.0 scour dcpths beneath Ihe scour base.

Model pipelinc segments placed at two different deplhs in the Test 04 clay

specimcn cxperienced plastic deformation due to the effects of scouring. The depths of

pipeline segmcnl~ shown in Figure 4F.2 represent appareOi final levels measured

subsequent to complction of the test. Initial depths for the first and second pipeline

segments were approximately 21 and 15 mm respectively as measured from the crown

of the segment 10 the original clay surface (i.e. approximately 0.6 and 0.0 m below the

scour base at prototype scale). Both pipeline segmenls were severely bent or bowed in

the forward horiznntal direction and also exhibited a smaller vertical component of plastic

deformation. The maximum centre - line deflections measured in the vertical and

horizontal directions for the first segment, were about 0.22 and 2.35 m respectively at

prottHype scale. Similarly, the shallower second segment, situated immediately beneath

the scour base, sustained protolype vertical and horizontal deflections on the order of

0.09 and 2.83 m at the pipe centre· line (scour axis). The observed pipeline distress in

this lest was not indicative of any direct contact with the model keel.

4.3.5 Scour Test O~

Model II/pilI Conditions

TCSl 05 represented baseline conditions for the experimental programme. The lest inputs

are displayed in Figure SA. I in the corresponding seclion of Appendix A. The model
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iceberg configuration was identical 10 that used in Tc.'St 04. l1lI: width IIf the mudd W:L~

100 mOl. the auack angle was 1.5 degrees. and the motIcl vcnical Sli((ncss was 61 N/mm

in free water of nominal 80 mOl depth. The clay was consolid':uc.'l1 in the lahoratllry untlcr

a uniform vertical effective Sl~ of 140 It::Pa. coinciding wilh the inilial sucs..~ Sl.1tC fllr

the Test 01 specimen. The test date was delayed due 10 unamicipalec.l n.-pairs ufthc hc.1m

centrifuge. As a result. the time period for laboralory pre • consolidation in Test 05 hat!

10 be extended by about three weeks over the typkal duration allowed for thi.~ proct.'dun:.

The measured compression of the spttimen during this supplementary interval of

laboralory consolidation was negligible.

The Test 05 layout of inslrumentalion. defonnnlion markers. :lilt! model pipeline

segments is shown in elevation and plan view in Figure SA.2. The arrangement was

similar 10 that of Test 04; however. laleral grid positions were 31lered slightly to cxpt.'l1itc

post. test investigation of the clay specimen. In addition. the horizontal length of the

second axial grid was extended. to improve measurements of soil displacc.'lT1Cnt in tilt:

vicinity of the final position of the model iceberg. In this lest. equipment JTl?dirlCatiollS

were also implemented 10 provKk: immediate suppon for the model at lhe end of the

scouring event. The suppon apparalUS is described in Section 3.3.2.

Experimental detenninations of the undrained shear strength in Tc..'it OS were

restricted to values based on post - tcst moisture content measuremcnts. Nfl mcllningful

data were acquired from the vane shear test device due 10 malfunction of the load eell

used to measure the applied lorque. Figure 58.1 gives a comparison of experiment!ll

values with c. profiles eSlimaled in accordance with Equations 4.2 antl4.3. The values

assessed from moisture conlent measurements a~ in apparent agreement with the
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Modified Cam Clay strength profile. The strength predictions were larger lhanamicipated

for post • lc.~t conditions, as it may be expected that free water was drawn into the clay

specimen due to pore suction set - up with stoppage of the centrifuge.

Test Resulls

The consolidation records for Test 05 are given in Figure 5C.l, including plots of pore

pressure against time, and clay surface settlement versus Ute square root of time.

PPT Channel 03 did not function during the Icst and, therefore. seven transducers were

available 10 monitor pore water stress condilions in the clay specimen. The centrifuge

time required to complete grealer than 95 percent of primary consolidation was about

4.7 hours, and the apparent initial clay surface seulement was 1.4 mm in this test. A

summary of the lest instrumentation outpUts ploued against time and horizontal position

during the scouring event is given in Figure 5C.2. The even! was completed in

6.0 seconds, in which the model iceberg lravelled a t01al horizonlal distance of 448 mm.

The average scouring rate was 72.1 mmls, as evaluated from lhe data records of Ihe

position transducer and rolary potentiometer.

Figure 4.28 shows a plan view radiograph and related drawing depicting surface

fcalures of the Test 05 scour. Figure 4.29 displays an average cross - section surface

profile of the scour, together with an axial plot of scour depths and berm elevations.

Furtherdetall~ of the overall surface profile are given in Figure 50.1 as cross· sectional

plots at 50 mm intervals of horizontal position. The initial period of uprise to an apparent

sleady • state scouring level was relatively rapid in this test, similar to lhe Test 04 event.

The average scour depth for equilibrium conditions was 12.1 mm or 1.21 m al prototype
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~4.~8 Top: Plan view photograph o/model SCQUT creaJed in Test 05; Bonom : Plan view
ng dlu.rlrating scour surface !eeuures
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:-ellle. The correspor.ding average benn elevation was 4.3 mm. The sklewalls were caved

along the entire length of the scour, and considerable surface heave was measured

mlj<lcent 10 the incision. Loose or remoulded material due to henn formalion and caving

was uhscrved to a maximum distance of approximately 20 mm from the scour edges, and

lh..-crcasL'I.l in laleral eXlent beyond the first model pipeline cross - section. A linear
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depression was associaloo with thl: trench location uf t~ :dl.1110wl:r Sl."COOO modd

pipeline. suggeSlin~ some local move~nt of thl:: scgmc:nt during lhe scouring ~VCllt. A

frontal mound of spoil matl:rial cxt~I'llk.'(j ttl a maximum dislallLoc on the onlcr of 20 mill

beyond me final point of COntact with the scouring facc of lhe nnkl 1l..ochcrg. 1llc

suppan apparatus served to limit venital movement of the model to ICS5 lh:1n

approximately 4 mOl below the scooring level at the end of the cvent.

Figure 4.30 provides a summary of the pore watcr pressure responses r\.'Conk.'d

during the Test OS scouring event. 11le measured locations of the tr.m5lJuccl1i arc givcn

in Table 4.9, along with the peak and minimum pore pressures devcl0JII.-d as scnuring

progressed. Figure 5E.1 displays the spatial distribution of the CIl~CSS pore pr~ssurcs at

50 mOl intervals of horizontal movement along the scour path. Thc dk'Cts tlf the

scouring event were initially reconled as negalive excess pore prcssun.-s at a pmtotyflC

horizontal distance ..n me order of 2S m from the cumnt position uf the mlllld icctk:rg.

The maximum rise in pore pressure measured within the app;lrent ste<»dy - state n.,,&ion

of scooring was 108 kPa for a transducer (PPT 01) located 2.S m below tbe initial clay

surface:. and 4.1 m laterally OUtward from the scoor axis (at prototype sc:lle). 'Ibc peak

response was Nc;orded when the model was at a horizontal distarv;c IIf 3.5 III

(dx _ - 35 mm) from the transducer position. The maximum pore suction mca,wl\:tl WIlS

44 kPa for the same device, when the model W'dS at a hori1.ontal distance of 10.6 III

(dx ICl - 106 mOl) from the transducer positior:.

Figure 4.31 shows a plot of the resultant forces acting at the model ic.:ehcrg • soil

interface versus the horizontal position of the model. The Test as force data arc also

listed in Table 4.10 at SO mm intervals of model horizonl.'] movement. In addition. the
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Figure 4.30 Test 05 pore pressure responses during event/or seven transducer channels

resu1t~ Olre presented graphically in Figure 4.32. which displays the model iceberg

orientation anti the syslem of forces acting on the model at various horizontal positions.

In this test. the venical fore.: component was about 3.4 limes as large as the horizontal

component. and the resultanl forces remained relatively conslant within the apparent

stc,ldy - state region of scouring. The average magnirudes of the venical and horizontal

components in this region were 16.9 and 5.0 MN respectively at prolotype scale. The

effcctivc attack angle of the model increased at the beginning of the event to a ffiuimum

v:tluc of 17.8 degrees. and then decreased to an approximate steady value of about
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Table 4.9 Top: T~st 05 measured pore pressfl"t! IrlIlIStlllct'r lomlilHLf: Hilt/om:
Maximum al/d mil/iII/lim exress pon! Pn!SS/ln!S (/lid 1I,·ri:tHllll/l/isIlllll·t'!rom f/1I"ld

PPT No. x (mm) y(mm) z(mm) w(llIm)1

-II 12:': 80.0

·131 -7 80 79.9

- 14 -1 .. 80.0

- 134 - 0 133 79.9

6 - 8 60 80.0

- 6 -57 45 80.4

23 41 25 80.2

·152 35 83.0

407 -3 [01.3

t w ... free water depth at position

PPT No. III (KPa) max. du dx (mm) min. du dx (mm)
(I<P.) (KPa)

196 53 - 1('0 - 2 + 75

165 102 +27 - 28 -90

206 68 + 38 -11 -87

127 57 +34 - 8 - 2S2

120 90 - 36 - 4 +81

114 108 -35 -44 - 106

121 43 - 58 - 2 + 105
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Figure 4.31 TeSI 05 horizontal and vertical components of llie reslIllant force plotted
uguin.~l model horizontal position

16.4 degr~, on average, over Ihe laner portion of Ihe scouring event. The inclination

of lhe resullant force veclor did not vary significanrly from the perpendicular to the

inclined face of the model. as scouring progressed. The position of the force veclor

increased at the stan of the event to a peak distance of 30 mm or 3.0 m at protO!ype

scale from the model iceberg inflection line. and Ihen reduced toward an average value

of about 2.6 m near to the end of the event.

Interface pressures measured at the horizontal base (IPT 18) aod inclined scouring

face (lPT 19 and 20) of the model iceberg are shown in Figure SC.2. The data acquired

from the tran.~ucers situated at the scouring face of the model, described an irregUlarly
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Table 4.10 T~st 05 rrsliltam!ol'("r dam rabufolrdjord(ffI!"1It "'t/f/d hllri:umuf IIiIsirilH1S

Horiz. Hom... Vert. Total V\.'Cltlf Albck
Pas. (mm) Force (N) Force (N) RJn:c tN) Angl\: (lkp.) Anllk(dqt)

- 250 338.2 1302 134' 75.4 16.9

- 200 472.2 1464 1538 72.2 17.4

- 150 574.5 1526 1631 69.4 I7.M

- 100 566.4 I>SO 1679 70.3 17.11

-SO 538.2 1672 1756 72.1 16.M

499.8 1706 1778 73.7 16.4

+ '0 487.3 1720 1788 74.2 1(J.3

+ 100 486.6 1720 1787 74.1 16.J

+ 145 491.9 1713 1783 74.0 16.J

Average! >04.9 1694 1768 73.4 16.4

I Average values for approx. steady stale region: x = . 100 10 ISO.

varying response with a peak recorded pressure of 256 kPa. 1l\e pressure acting on lhl:

inclined face decreased to a constant value ofaboul 173 k.Pa near to lhe \:00 of thl: \:vcnl.

The pressure record for the transducer located al lhe base of the model inLlic:ll\.'d a

relalively steady response over the duralion of the evenl. with minor nuclu;l.lions ahuu.

an average pressure of approximately 151 kPa. It should be llI)(ed lnal due to angular

rotation experienced by the model. the bottom face was slighlly inclined relative to lhe

horizontal. as illustrated in Figure 4.32.

A plan view drawing of surface displacement vectors at positions exlcrnal til lhe

Test 05 scour incision is displayed in Figure 4.33. logether with a summary rIO! showing

the average values of the horizontal and lateral components of displacement fur the
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Figure 4.33 Top: T~st 05 pion view drawing a/surface displacf!lnf!nt W!eton: 80110111 :

Awragf! axial and fateral sllrjace displacemf!nfS wnus distancf! from ,flf! scour axis

apparent steady - state region of scouring. At lateral positions about 1 m from till: L"dgC

of the scour, the average horizontal and lateral displacements were 0.42 and 0.51 rn

respectively at prototype scale. The surface displacements diminished with di~lancc from

the scour axis 10 values of 0.03 and 0.21 m at lateral positions approximately 7 m fmm

the scour edge (i.e. 120 mm from the scoor axis at model scale). Qualitative evaluation
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IIf roldiogrolphic Cykkncc. as presented in Figure SF.1. indicated that the majority of

surface marlccfli within the scour wen: displaced horizontally forward and vertically

JuwnwanJ l'M:low Ute scour. and underwent relatively limited lateral movement.

Quantitative as,'iCSSmcnt of thc.~ displacemenlS was precluded by the large movements

cllpcrieocL'tI by someofthc internal markers.

Figure SF.I provides a trace from plan view radiographs of the clay specimen,

whK:h displays the locations of pore pressure transducers, model pipeline segments, and

the displaC\."d configurationJ!L~efonnation grids. TIle traces of cross - sectional

radiographs are given in Figure SF.2. al tWO horizonl11 positions corresponding with !he

latenl grid and model pipeline locations. Figures SF.3 and SF.4 show traces of the axial

section grids situated ne:tr 10 the beginning of !he scour, and at the final horizontal

po!'ition of the model iceberg.

Tesl 05 sub· surface displacements are illustrated in Figure SF.S including

initial I displaced plOlS and displacemem vector plots for each of Ihe grids installed

within the clay specimen. Figure 4.34 shows the initial and displaced configuration of

the second lateral grid (x "" + 41 mm) in both cross - seclional and plan view. The

Jaler.al componem of soil displacemenl was small in this test, and signiflCam movements

were limited 10 me vicinity of the edges of the scour. lbe vertal component of

displacemenl was relatively extensive; downward movements were recorded over the

entire depth (If the emplaced grids. at positions direclly below the scour incision. The

vertic-a: displacements were consistent aeross the width of the scour and gradually

allcnuated with depth beneath the incision. The horizontal displacement component was

larger than !he vertical component immediately below the scour; however. !he horizontal
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Figure 4.34 Test 05 initial I displaced plot of lateral grid ut x '" + 41 ,~/lOlVlI ill Cm.\·.f 

section and plan view

displacement gradient was also steeper. and movements were restricted to shallower

depths. The initial I displaced plot for lhe axial grid situated at the linal rltlsitiun uf the

model iceberg is shown in Figure 4.35. The results from this grid i.lso suggc.~t it

dominant vertical direction of displacement: although. this may he p:lr1i:llly atlributable

to the effects of Iimiteu vertical movement of the model :.ssl.lCiatt.'l.I with the

discontinuation of scouring.

Figure 4.36 provides a summary of the sub - surface displacement measurements

for Test 05. presented as profiles of lhe maximum (below scour) values of the vertical

and horizontal displacement components. The displacements shown in this plot were
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Figure 4.35 Test 05 inirial I displaced plot of axial grid located at final horizontal
position of model iceberg

evaluated as the average of results from born axial and laleral grids within the apparent

steady - state region of scouring. The horizontal displacement results derived from axial

and lateral grid measurements were relatively consistent in this test. The maximum values

of vertical and horizontal displacement immediately below the base of the

scour (interpolated at a depth below base "" 0.1 m) were 0.88 and 1.29 m respectively

at prOiotype scale. The limiting depths al which venical and horizontal components of

displacement were measured, determined for a lower bound displacement magnitude of

0.2 m. were 6.2 and 3.0 m respettively at prototype scale. The vertical and horizontal

di~placements extended to normalized values on the order of 5.1 and 2.5 scour depths

below the base of the scour. Model pipeline segments situated at prototype depths of

approximately 1.5 and 0.6 m beneath the scour base, did not experience any measurable

plastic deformation in [his test.
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4.3.6 Scour Test 06

Model Input Conditions

The Test 06 input conditions, summarized in Figur~ 6A.1 In the corresponding !;t.'Clion

of Appendix A. were identical to the Test 05 case, witlJ the exception of the initial SlrcM
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state of the clay specimen. In Tt:st 06, the clay was consolidated in the laboratory under

an increased venical effective stress of 200 kPa. The width of the model iceberg was

100 mm, the attack angle was 15 degrees, and the model venical stiffness was 61 N/mm.

coinciding with the Test 04 and 05 configuration. The nominal deplh of free surface

waler was also retained al 80 mm in this tcst. In addition, the Test 06 arrangement of

instrumentation, defonnation marker5, and model pipeline segments, shown in

Figure 6A.2, was not altered from the layout used in the succeeding test. The elevation

of the suppon apparatus was changed slightly 10 accommodale the expecled model

vertical position at the end of the scouring event.

The eliiperimenlal methods employed to assess undrained shear strength included

hath in • night vane shear testing and post - lest moisture content measurements. In

Figure 68.1, the eliiperimemally derived c. values are compared with strength estimates

based on Equations 4.2 and 4.3. Vane lests were perfonned at t!tree horizons: 30, 60.

and 90 mm below the clay surface. Test results are given in Figure 68.2, which shows

plots of venical displacement, rotation. and lorque against time, in addition to torque

ver5US rolation curves evaluated for each level. As depicted in Figure 68.1, Ihe vane test

data implied a more rapid increase in strength with depth in comparison against other

predictions. The measured vane strength WtlS 20.1 kPa at a prototype depth of3.0 m. as

compared with an eslimate of 22.3 kPa derived in accordance with the empirical relation

given by Equation 4.2. At a prototype deplh of 9.0 m, the vane strength increased to an

::apparent value of 40.7 kPa, whereas the corresponding empirical strength estimate was

30.9 kPa for this test level. Surface water access to the vane head may have diminished

wilh depth below the clay surface. resulting in more realislic detenninations of the peak
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undrained shear strength. Funhennore. the shan rnisl:mte uf the nrr apf/:U:ltU$.

deducted in the asses.srntnl of the vane shear strerlJth. may tgVl: hem~ signirlantly

underestimated for lCSlS untSeruken at grcaler~. In C'elnr.lSC. tbe umJraincd shear

stn:ngth pmtictioos baKd on mo~ COOleN me:asumnenu wm: tc:lalively~m

with depth but wer: also~ than anlil:ipa.led for post - ICSI conditions.

TtstRuu/rs

Figure 6C.1 displays the consolidation r«ords for Test 06. as rlOis of poTC rH"C511UTC

againsl time and clay surface seltlement versus the square root of timl:. Somc cll,.'Clriclil

noise was evident on consolidation pore pressure tr.lnsducer sign:lls; Ixlwcvcr. thi5

problem was resolved prior to tbe inception of the scouring event. I\. time period Ilf ahtlUl

5.2 hours was ~ircd to complet:e gn:ater lban 95 pcfttnt of primary consoIKJatinn.

prtttding vane Iesl implcmentalion. The appmnt. initial day surface sctllcmc:nt wa5

2.3 nun during the consoIidalion phase of the lcSl.

The model scourina event was initiated subsequeN 10 the oompktion or nne

lesting. Malfunction of the drive: system produced an inlcnuption in rnodICl motton durins;

!he event, followed by movement: at • subslanlially n:duced nile. Thl: model it:chc:rg was

initially advanced over a horizontal distance of 161 mm in. lime period of 3.1 5a:onds.

al an average scouring rale of 60.3 rnm!s. 1lle instrument outpulS fU.-onk.'d during this

inilial section of Ihe event are shown ploued versus time in FiguTC 6C.21\.. Modd

movement was then resumed at a diminished rate of 0.53 mm/s ancr a dday or ahout

33 seconds. The additional time required to complete the event was about 468 St.'CIlOOS

during which !he modellnversed a further distance of 257 mm. Figure 6C.28 provides
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a summary of the test instrumentation outputs for this final section of the event, plot~

againsllirnc and horizontal position. Due to the decreased scouring velocity, the effects

of drainage must be yiven considel'lltion in the interpretation of lest results.

A photograph anti corresponding plan view dl'llwing of the scour crealed in

Tesl 06 arc presented in Figure 4.37. An average cross - section surface profile for the

apfmrcnt steady - slate region, and an axial plot of scour depths and berm elevalions are

given in Figure 4.38. Surface profile data are also displayed in Figure 60.1, as cross 

sl.'Ctinnal plots at 50 mm intervals of horizontal posilion. The Test 06 scour was

Chilr,leterized by eXlensive loose berm and caved sidewall material. A large amount of

surcharge was built - up at the front and sides of the advancing model iceberg. This

m;llerial was displaced horizontally during the evenl and deposited as a mound which

extcn<kd 10 aboul 55 mrn in fronl of the final model position. The scour incision was

relatively unifonn in appearance after an equilibrium scour depth of 16.3 mm or 1.63 m

at prototype scale had been established. The corresponding benn elevations averaged

5.8 mm above Ihe original surface level; peak elevations coincided with. an initial region

of significant surface heave adjacent 10 the scour, possibly allTibutable to effects

associated with the lransilion to a reduced scouring rate. The sidewalls were caved along

Ihe entire length of the scour, and surface soil disturbance was evident to a maximum

di!>lance of about 25 mrn laterally olllward from the edges of the scour incision.

The Test 06 pore waler pressure responses are shown in Figure 4.39, as recorded

during the firml section of the scouring event at the reduced rate of model iceberg

movement. Table 4.11 lists the measured locations of the pore pressure transducers,

together with the corresponding peak and minimum pore pressure values, as recorded
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Figure 4.38 Top: Average cross - section surface profile for steady - state region of
Test 06 scour: Bottom: Axial section plot ofmeasured scour depths and berm elevations

over the emire duration of the scouring episode. The spatial distribution of pore pressure

change." is depicted in Figure GE.l at 50 mm intervals of model horizomal movement.

PPT Channel 06 and 08 responses at the completion of consolidation were inconsistent

with expected equilibrium pore pressures and, lherefore, the tcst records for these

transducers were deemed unreliable. The effeclS of scouring were initially observed at
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Figure 4.39 TUI 06 porr prusllr~ "SJXHISB plottedlor jiMJ .fI!Ction ut ndUCN rull!

a prototype horizontal dis13nte approximately 2S m from the currenl model position. In

the apparent steady - SlIte region associated with the final section of the event at reduced

scouring rale, the maximum recorded increase in pore pressure was 43 kPa for a

transducer (PPT 07) localed at a depth 3.8 m below the initial clay surfaal. and 2.2 m

laterally outward from the scour axis (at prototype scale). The maximum CII.Ccs.~ pun:

pressure was observed when the model was at a horizontal distance of approximately

3.5 m (dlt - - 35 mm) from the transducer position. A similar peak n:spon'iC wa.~

recorded by a transducer (PPT OS) situated at a depth of 6.9 m and 0.8 m laiclillly
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Tahle 4.11 Top: T~st 06 mnlSUrN por~ prasur~ uansduur locations; Bottom :
Muximum tine minimum acess pon pnssuru and horiWnlal diSlonc~ from modd

PI''T No. x (mm) y(mm) z(mm) W(ntm}1

-3 142 80.0

-132 - 2 90 79.9

- 10 87 SO.O

·132 - 2 132 79.9

- 8 69 SO.O

-40 70 SO.2

-9 22 38 SO. I

- 239 40 87.3

407 - 3 101.3

I W _ fn:e Wiler depth at position

PPT No. Uj (KPa) max. du dx(mm} min. du dx(mm)
(KPa) (](pa)

226 34 -S3

I7S 91 + 10 - 39 - 73

166 40 - 39

213 36 +S

149 43 -40 -17 - 135

96 29 - 4S

114 43 -3S - 2 ·242

76 -171 - 12 - S4
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Figure 4.40 Tar 06 horizontal and vt!nica! COtnpon~nJs 0/ Ih~ r~sllftunJ !orr-I! plOittd
against mode! horilOllla! posirion

OUtward from the scour axis (at protOtY!lC SClle). A maximum pore suction of ahout

17 kPa was measured at this same transducer positKJn. when the model was al a

horizontal distance of 13.5 m (dx ::z • 135 mm).

TIle resultant forces acting at the model iceberg - soil interface during (he

scouring event are plotted against the model horizontal position in Figure 4.40. The

break in ploned dp1a is associated with the interruption in model motion and the mlOsilion

to a reduced scouring rate over the final section of the event. Table 4. [2 provides a

listing of me force data at 50 mm intervals of model horizontal movement. Figure 4.41

illustrates the model iceberg orientation and the system of forces acting on the model at
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Table 4.12 T~Sl 06 r~sulfantforce data tabul(ll~dfor diffu~nt modtl horizontal ptnitions

J-1oriz. Horiz. Vert. Total VetlOr Attack
Pes. (mm) Force (N) Force (N) Force (N) Angle (deg) Angle (deg)

- 2SO 399.0 1270 1331 72.6 16.1

- 200 S12.8 14m iS20 70.3 16.0

• ISO 6<>1.9 '504 1621 68.1 IS.9

- 100 626.1 1488 16iS 67.2 IS.S

-so S72.9 1506 1611 69.2 IS.5

1--
0 583.6 1513 1622 68.9 15.4

+ 50 591.8 1471 158S 68.1 15.4

+ '00 592.3 1460 1576 67.9 1S.8

+ 150 621.8 1S29 16S0 67.9 15.7

Average l 6<>1.2 1487 '60S 67.9 is.6

1 Average values for approx. steady Slale region: x ... 100 to 150.

different horiZOnlal posilions along the scour path. In this test, a substantial quantity of

surt:harge material was developed at the front and sides of the model, and was displaced

horizontally with the model during the evem. The resultant forttS did not vary

signirlCanlly over the final section of the event. and the ven.ial component of the force

was about 2.S times as large as the measured horizontal component. The average

prototype magnitudes of the vertical and horizontal components were 14.9 and 6.0 MN

respectively for the apparent steady. Slale region of scouring. The effective attack angle

increased initially to a maximum value of 16.5 degrees, and then reduced 10 a relatively

consistent orientalion with an average angle of 15.6 degrees during the final section of

the event. The inclinalion of the resultant force vector also remained relatively constant

<It an angle approximately 6 degrees from the perpendicular to the scouring face. The
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roSili()n of the force vector increased initially and then retained a steady value during the

linal seclinn of the event. at a rrototype distance of 2.5 m from the model iceberg

inllection line.

The interface pressure responses at the horizontal base (fPT 18) and inc1in~d

sClluring face (lPT 19 and 20) of the model iceb~rg are shown in Figures 6C.2A

and 6C.2B. The maximum total pressures acting at these locations were approximately

207 and 230 kPa respectively. as measured at the complelion of the inilial section of

mpid model mov~menl. The pressures recorded during sUbsequent scouring al the

reduced mte were irregularly varying, conceivably as the result of surcharge build - up

in front of the advancing model, and the intermittent deposition of berm material. Over

the final section of the event, the average pressure was 172 kPa at the base of the model.

The average pressure at the scouring face of the model was 189 kPa, with recorded

variations as large as 15 percent of the mean value. The period of nuctuation of lhe

pressure response also corresponded approximately with changes in the horizontal force

record for the event.

Figure 4.42 shows a plan view drawing of surface displacement vectors at

positions external to the Test 06 scour incision, and also displays a plol of the average

magnitudes ofhorizonlal and lateral components of displacement for the apparent steady 

state region. In this lest, surface displacement magnitudes varied considerably for

different horizontal positions along the scour path. Maximum lateral movements

coincided with the region at which model iceberg movement was suspended prior to

transition to the reduced scouring rate. Most surface markers situated at a lateral posilion

I m frem the edge of the scour incision were obscured by benn deposition or caved



r
'.HI

I

'"
'100

:; r I I•. •.•• :

... . ';

':;Lf'FACE DI5FlACEfoftilS HAG!IFI(A1/[}IT·Aft[J' ,',0 ••• IClHHII]'J'

: ~ -.

Scour Test 06

00000 Axiot
••••• lateral

- -
°50':--~--:7:-5-~--"'IOO-=--~--IC:2:-5-~----'-:'50

Distance from Scour Axis (mm)

Figure4.42 Top: Ttst 06plan viewdrawjng o/sur/au displacement V«Iors: Bollom:
A\'i~rage axial and laural sutfQct displacements IItrsus distonu from fIJI! swur tuis

sidewall material. The average horizontal and lateral surface displacemcnts R.'Cortll:d at

a distance of about 3 m from the scour edge wen: 0.24 and 0.41 m respectively jll

prototype scale. At lateral positions approximately 7 m from the scour t.'llgc (120 mm

from the scour axis at model scale) the horizontal and latent! displacements dI.'Clincd Itl

average values of 0.10 and 0.15 m respectively. The movement of surface markers
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within the seour may be qualitatively evalualed from radiographic evidence. as shown in

Figure 6F.1. Some of the internal markers. located within the initial region of model

movement preceding the n..duction in scouring nte, underwent large lateral movements

anc.l were depositL't1 along the sides of the scour incision. However, the majority of the

internal markers were displ~ horizontally with surcharge matenal amassed in front of

the advancing model, anc.l were deposited within the mounc.l of malerial in front of the

model at its final position.

1'hc plan view trace compiled from radiographs of the Test 06 scour is showll in

Figure 6F.I, including the displaced configuration of soil deformation grids and the

locations of pore pressure lransducers and model pipeline segments. Figure 6F.2displays

the traces of eross • sectional radiographs at two different horizontal positions, which

convey similar information at each of the lateral grid and model pipeline locations, The

ndiograph lrace of the axial grid situated near to the begiMing of the scour is shown in

Figure 6F.3. Due 10 its location. the displaced configuration of the grid shown in this

tr3CC was influenced in part by the initial section of rapid model iceberg movement. The

tr.lte of an axial radiograph showing the grid located at the final horizontal position of

the model is presented in Figure 6F.4.

The initial I displaced plots and displacement vector plots derived from the soil

defonnation grids installed within the Test 06 specimen arc given in Figure 6F.5. Similar

plO(s were not presented for the initial axial grid (Figure 6F.3); quantitative assessment

of displl1cemems from this grid was impeded by the reliability of the radiographic

evidence. sinc~ final locations of the surface level and top horizontal member of the grid

were unclear. The sub· surface displacements evaluated from other grids represented the
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effects of a drained or partially drained stOlIring contlition due 10 the n:duced rolle of

model movement over the final section of the event.

In general. the displacemem patterns observed in Ihis lest were dissimilar 10 the

results from preceding expe'lmcnts. Figure 4.43 shows the initial and tliSpJOlCCtl

configuration of the second laleral grid (x - + 54 rom) in both cross· SI,.'(:lioffill and plan

view. The latenll component of displacement was large within a relatively shallow region
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Figure 4.44 Test 06 initial I displaced plOI of axial grid locoled at final horizontal
position oj model iceberg

immediately beneath the scour incision, and also at positions adjacent 10 the scour edges.

In contrast with prior lest observations. the vertical component of displacement measured

below the scour was relatively small or negligible. The horizontal component of

displacemem was very large at positions above or immediately below the base of the

scour: however. significant horizomal movements wert' also Iimiled 10 shallow depths.

It should be noted that the lOp horizontal member shown in lhe plan view plot of

Figure 4.43 was displaced horizontally from the first lateral grid at x = - 23 mm. This

evidence suggests the development of a relatively stable region of frontal material which

moved concurrently with the advancing model iceberg. Figure 4.44 shows the

initial I displaced plol for lhe axial grid located at the final position of the model iceberg.

Local vertical displacement of horizontal members at the beginning of the grid was

inconsiSlent with other defonnalion data. and may be allributable in pan to manual
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disturbance during placrnlent. The assessment of displacement vectors intlicalctl a

shallow region of large horizontal movemenlS; however, the displaced configur.ltion III'

vertical members displayed the development of thin zones of shearing (IT failure surfaces

which may be indicative of deep. seated soil deformation.

The sub - surface displacement records forTest 06 are summarized in Figure 4.45
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,IS prntilcs oj"lhe maximum values of venical and horizontal components of displacemenI.

The plulIl.:d magnituUcs were evaluated as the average of results from the two lateral

grids, which were located within the apparent steady· state region of scouring, The

maximum values of venical and horizontal displacement immediately below the base of

the scour (interpolated at a depth below base - 0.1 m) were 0.15 and 3.39 m

n:sp.'Ctivcly at prototype scale. The maximum depth below the base of the scour at which

I)()rizcmwl displacements were rccorde,d. evaluated for a lower bound displacement

I1m~nilude of 0.2 m, was 2.0 m at prototype scale. The magnitudes of vertical

disrlOlcement Were less than 0.2 m at all measured positions below the scour base.

'I11erefurc. for an assumed lower bound of 0.2 m. the venical and horizontal

displ<lcelllenls extended to normalized values of lero and 1.3 scour depths below the base

elf the scour. Model pipeline segments situated at prototype depths of approximately 1.3

mid 0.4 OJ heneath the scour base. did not undergo any measurable plastic deformation

in this tL'S1.

4.3.7 Scour Test 07

M(I(Jd Input Conditions

TIle Test 07 model iceberg configuration and input parameters are presented in

Figure 7A.I in the corresponding section of Appendix A. A photograph of the

instrumt:nteU model iceberg used in this test is shown in Figur.<:. 3.8. As described in

SI.'Ction 3.3.2. two linear position sensors were installed on the model 10 allow for

TI.'dundant measurements of vertical position during the scouring event. The input
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conditions were altered from the Tesl 05 baseline case hy reducti(ln of the mood width

10 a value of 50 mm or 5 mal pmOlype scale, TIle buoyant weigh! :and vl,.-nK::a1 sciffl1l.'SS

of !he model were also reduced by half relative to b;a.sclioe conditions. in orucr to

maintain similar applied scress levels to ensure a comp.1rabh: depth of scouring, The

allacl> angle of the model w;u set :11 IS degrees. and the model vcnK:otI stiffness W:tS

31 N/mm in free water of nominal 80 rnm <kpth. The clay laooralory !'1ft: • consolillation

Stress was 140 kPa. coinciding with the initi31 Slrcs.<; stale for the TI,.'St 05 ~'Cill\ell.

Figure 7A.2 shows elevalion and plan view dmwings of the Test. 07 layout of

instrumentation. deformntion markers. and model piflClioc scgmenl~. '!be arTiLOgemelll

was modified to include only one lateral soil deformation grid :md model pipclioc

segment. at a horizontal position within the expected steady - Male region of scouring.

In addition. the length of the axial grid at the final localion of the model icchcrg wm~

extended. These changes were implemented in order 10 reduce disturbance a.s.~iatl,.'l.I

with excavation and backfill of two cross - sectional trenches. and to facilitate improved

investigation of deformation fields at bOIh the axial and lale...1grid kx:alions,

Eslimated undrained shear strength prorlies for Ihe Test 07 specimen are presented

in Figure 7B.I. In - night vane shear lests were conducted at three depths : 30. 60. and

90 mm below the clay surface. 1lle vane test data are shown in Figure B.2. including

venital displacement, rotation. and torque history plots. in addition to the IOrttue veniUS

rotalion curves for each level. In Figure 7B.1, c. values derived from experimental

methods are compared with strength estimates based on Equations 4.2 and 4.3. A hillher

gradient or undrained shear strength with depth was predicted in accordance with the

results from vane tesling. At a prototype depth of 3.0 m, Ihe measured vane strength was
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ZO.1 kl'a. as compared with the strength value of 17.3 kPa based on the empirical

relation given hy Equation 4.2. At greater depths, significantly higher strength

magnitudcs wert: predicted from vane test results. The vane shaft resistance appeared to

he underestimated, which implied higher predicted peak torque values due to the vane

hClld alone, than were actually mobilized during testing. The undrained shear str"ngth

cstimates frum moisfure content measurements were also higher than expected for post"

Icst conditions. and exceeded the strength values detennined using Equations 4.2 and 4.3.

Test RI!.I"/lII.~

The cOIl.'IOlidlltion reconls for Test 07 are given in Figure 7C.l as plots of pore pressure

ilgainsl time and clay surface settlement versus the square root of time. The clay

specimen was permitted (0 consolidate over a time period of about 5.1 hours in order to

ensure the eslablishment of equilibrium conditions. The apparent initial clay surface

settlement was 1.9 mm. following Ihe completion of greater than 95 percent of primary

consolidation: The instrumentation outputs for [he scouring event are presented in

Figure 7C.2. plolled agnilt'a time and horizontal position. The model iceberg travelled

a \olul horizontal distance of 372 mm in a time period of 4.8 seconds, at an average

scouring rnle of 77.8 mm/s. The model became laterally unstable from the outset of Ihe

event, resulting in TO(ational movement (roll) about the x - allis. The resultant lateral

inclination or the scour incision increased gradually with the horizontal distance travelled

hy Ihe modeL

Figure 4.46 shows a plan view photograph and related drawing illustrating surface

re;uures of Ihe scour created in Test 07. Figure 4.47 displays an average cross" section
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Figure 4.47 Top: Average cross - section surface profile for steady - state region of
Test 07 scour; Bottom: Axial section plot ofmeasured scour depths and berm elevations

surface profile of ,he scour, as well as an axial plot of scour depths and benn elevations.

Th~ surface relief in the vicinity of the scour is further described in Figure 70.1. which

dcpicts cross· sectional profiles at 50 mm intervals of horizontal position. The

assessment of scour depths was hindered by lite narrow scour widllt and caved sidewall

material within the incision, as well the lateral inclination of lite scour base due [0 [ilt of
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lhe model. The average scour dqxh was 13.7 mm or 1.37 m ,II prolOlypc .scalc. as

eslimated for the apparem steady· scate region of scouring. l11c t:om:spontling averag,e

berm elevation was 3.7 mm, including he:ave of t~ surface adj:acem tll thc scour and

limited remoulded berm material. The lateml inclination of lhe scuur h:ISC \V,IS ahoul

3 10 5 degrees on average. :at me3.sured cross • sections. 1be sidewalls of the incision

were caved along the entire length of !he deeper scour edge. and over scgmcms of lhe

shallow edge near 10 !he begiJming and end of the scour. Surface soil disturb.1nce wa...

observed to a maximum dislance of aboul 17 mm from the scour edges. A local

depression and associated reduclion in berm elevation were evidcn\ in the vicinity of lhe

model pipeline segment, indicative of displacemem of lhe segmcm during me even!. The

model was urt~;tlPOned at !he completion of the event, and ellpericncetl large venit.:al

movement as would be associated with bearing failure of tile underlying material. Allhe

shallow edge of lhe incision, surface soil disturbance extended 10 approximately 30 mm

beyond the final boutXIary of coolact with the inclined face of the model. A limited

amount of loose berm material was also deposited. along the sides of the model at the

final horizonlal position.

The pore waler pressure responses recorded during the Test 07 scouring event arc

summarized in Figure 4.48. PPT Channel 06 and 08 pore pressures wen: incomistenl

with expected equilibrium values and, therefore, lest records acquired from these devices

may be unreliable. Funhermore, the results from PPT 05, which implied a relatively

limited response over the duration ofthc evem, were incompatible with the measurements

from other devices. The final locatiom of the transducers arc indicated. in Table 4.13.

as well as the peak and minimum port pressure changes developed as scouring progressed.
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Figure 4.48 Tesl 07pore press!ue responses during I!'r'em -Iransducer channels 0110 08

Figure 7E.1 displays the spalial dislribulion of excess pore pressures alSO rom imervals

of model horizontal movement, The efftels of scouring were initially recorded at a

prototype horizontal distance on the order of20 m in from of the current model iceberg

position. The scour - induced pore pressure response was small or negligible for a

lr:lnsducer (PPT 08) situated al lateral dislanct: of 15.0 m from the scour axis. The

maximum riSt: in pore pressure measured wilhin Ihe apparent steady - Slate region of

scouring was 35 kPa for a lransducer (PPT 07) located 3.0 m below lIle inilial clay

surface. and 5.1 m lalerally outward from lhe scour axis (al prototype scale). The peak
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Table 4.13 Top: T~Sf 07111~aSII,tdPO'~ wafer P"SSI/'~ frtmSlllln', lOCI/films: &»(11",:
Maximum and m;II;1II11111 t.JctSS porr prrSSllns alld IIori:o",ul dis((U1n.' frll'" nJ'Hld

PPT No. It(mm) y(mm) z(mm) w(mm)

-13 -13 126 80.0

- 156 79 79.9

-II 91 80.0

·123 131 79.9

-, -6 60 80.0

- 5 -33 70 80.1

- 5 51 30 80.3

- 150 38 82.9

'03 -3 100.9

1 W ::::: free water depth at posilion

PPT No. u 1 (KPa) max. du dlt(mm) min. du dlt(mm)
(KPa) (KP:»

197 18 + 53

159 79 +22

165 26 - 52

203 31 +6

136 . 7 - 6 - 59

9' 33 +6

108 3S +' -28 + 97

61 -, -I
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response was reconJc:d when the model was at a horizontal position (dx "" + 4 mm)

which was approximately coincident with the kxation of the trn15ducer. 1bc maximum

pun: suction measured was 28.0 kPa for the same device, following movemenl of the

model to a horizontal distance of 9.7 m (d%. - + 97 mm) beyond the transducer

position.

Figure 4.49 shows a plot of the venal component of the resultant forces acting

at the model iceberg· soil interface versus the horizontal position of the model during

lhe Test 07 scouring event. The average magnirude of the venical component within the

npparcnl sleady· slate region of scouring was 7.8 MN at prototype scale. The linear

position sensors installed to measure the model venical posilion in this lest, did nOl retain

contact with the reference guide rail, due to compression at the test acceleretion level and

the unanticipaled lateral tilt of the model. In addition. the tension load cell. used to

measure the horizontal component of the resullalll scour force, malfulK:lioned as the

result ofapparenl water damage to the sensor (see Figure 7C.2). Therefore. tht: available

data on model oneOiltion and resultant forces were limiled to the vertical position and

the associated venal component of the resultant force developed during the evenl.

Inlerface pressures measured at the horizontal base (lPT 18) and at the inclined

SCOIJring face (lPT 19) of the model iceberg are shown in Figure 7C.2. The response al

the base of the model indicaled relatively low total pressures of about 115 !cPa on

average. with irregular nucrualions as large as 35 percent oflhe mean value. The average

total pressure measured alone side of the scouring facc of the model was approximately

200 kPa over the initial 260 mm of model horizontal movement. with a maximum

recorded value of 254 kPa. The pressure response along this side of the scouring face
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declined significantly oycr the final pottion of the scouring event as iI result of Inc lateral

inclinalion of the model.

A plan view drawing of surface displacement vectors al positions external to the

Test 07 scour is presented in Figure 4.50. together willi. plot of the average valuC5 of

the horizontal and lateral co;Olponents of displacement fot me apparent steady. slate

region of scouring. The surface displacement field was no( symmetric about the scour

axis, and larger lateral movements were measured at positions adjacent to the shallow

edge of the scour. The average horizontal and lateral displacements were approximately

0.46 and 0.56 m respectively at prototype scale. at lateral positions about I m rrom the
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Figure 4.50 Top: Test 07 plan vie'll! drawing oj surface displacement vectors; Botlom :
A~'erage axial and lateral surface displacements versus distance from the scour axis

scour edge. The surface displacements reduced with distance from the scour axis to

prototype magnitudes of 0.14 and 0.11 m, at lateral positions about 9.5 m from the scour

edge (i.e. 120 mm From the scour axis at model scale). Qualitative assessment of the plan

view radiograph trace shown in Figure 7F.l implied that the majority of internal markers
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were: :Jisplaced vertically 10 positions beneath the scour and horizolUally in the dirt.'Ction

of travel, with only Iimiled lateral movemenl.

Figure 7F.1 displays a trace assembled from plan view radiographs of lhe clay

specimen, iIIUSl1'llting the locations of pore pressure transducers, the ulOtlcl pipdinc

segment, and the displaced configuration of soil defonnalion grids. The t~ of a cross 

seclional radiograph at the localion of the lateral grid and model pipclif"ll: 5CgIlu:nt. is

presented. in Figure 7F.2. As shown in this figure, horizontal grid mcmbcl'll were dividl..'O

into smaller segmenlS in this tesl in order reduce innuence on displaccmcnt patterns

imposed by the measurement technique:. Figure 7F.3 presents the ttllCC of a radiograph

which shows the axial grid situllted near to the beginning of the Sf.."Our. Thl: axial grid at

the final model iceberg position provided limiled relevant dala due to hllcml dcvi:llinn

of the scour path resuhing from tilt of the model.

Test 07 sub· surface displacement records are shown in Figure 7F.5 :t.'l

initial I displaced plOlS and displacement vector plots for grids plaL'Cd al diffcrenl

locations within the clay specimen. Figure 4.51 displays cross • sectional and plan vicws

of the displaced configuration of lhe lateral soil defonnation grid (x ... ·25 mm). In

cross • section, the displacement panero was comparable to a circular failure mcchanism.

with apparent rotational movement toward the shallow edge of the liCOUr. The magnitude

of the lateral component of soil displacement aS50Ciated with the inclination of the 5COLIr

may have been underestimated, as venical grid members wen: unclear at near • surface

positions. Both lateral and vertical movements were evident 10 within a shallow region

below the base of the scour. Vertal movements varied with laterdl position, from

downward displacements at the deep edge of the scour. to upwant heave ;Illjoteenl to the
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shallow edge. The horizomal componem of displacement wu significantly larger than the

vertical component; however, measurable horizontal and venical displacements extended

to similar depths beneath the scour base. The initial I displaced plot for the axial grid

located near to the beginning of the scour is shown in Figure 4.52. The ncar • surface

venical displacements evaluated from the axial grid were inconsistent with measured

scour depths, anti may have been underestimated due to inaccurate definition of the

surface level based on the radiographic evidence,

Figure 4.53 provides a summary of the Test 07 sub - surface displacement

me.1suremenlS. including profiles of the maximum values of the venical and horizontal
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displacement components. The displacements shown in this plot wen: asscs...;cd a.~ the

average of the limited available results from the lall~ral and axial grids. t1escriht.'tl ahove.

The maximum values of vertical and horizontal displacement immediately below the hase

of lhe scour (interpolated al a depth below base - 0.1 m) were 0.62 nnd 1.46 m

respectively at prototype scale. 'The limiting depths at which vertical and hooT.nolal

components of displacement were measured, evalUiJ,led for a loWt,:r hounll tlisplaa..'IDCnt

magnitude of0.2 m. were I.S and 2.3 m respectively al proIOlype5C3lc. 11lc venical anti

horizontal displacements extended 10 normalized values on the oruer of 1.0 and 1.6 scour

depths below the base of the scour. 1be model pipeline st:gmt:nl ]tlCat(.'t! ;11 a pmlUlypc

depth of 0.63 m beneath the scour base exhibited modest veniCOlI curvature following

completion ot" the test, with a maximum centre· line tlencction of approximately 1.3 mm

at model scale.
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Figure 4.53 TeSI 07 maxillll/IJI \'ertical and horizontal componems ofsoil displacemem
l'('r.l'/iS ,Ieplfl be/ollJ scour base

4.3.8 Scour Test 08

Mmlel /npl/I COlldiliollS

In Test 08. the allack angle of the model iceberg was increased 10 25 degrees, and this

W:l~ the only proposed variation relative 10 Test 05 baseline condilions. The model



iceberg configuration and inpul parnmctl:f1; ,Ire: ~ul11ll1arized in Figure 8A.I. in the

corresponding section of Appl:ndix A, TIle widlh of the mlldel W,IS 100 ltll1\. and tlte

modcl venical stiffness WilS 61 N/mm in free w,lIcr uf nomillill 80 llllll dcpth. 'Ille e1it)'

was consolidated in the laboratory under .. unifunn venil:;!l dTl,.'Ctivl: stress {If 140 kl l ".

to establish the same inilial stress stale as for the Tesl 05 SflCcimen. The "rran~emenl of

instrumentation. deronnation nmrkcrs. and mudel pipeline segmcllts. slmwn in

Figure 8A.2. was not allered from lhe layout used in Test 07. TIle c!evmiull nf the

support apparatus was reset in accoruarK:e wilh the expeeled vertie:11 positiun of the

model at the end of the scouring event

Figure 3.8 shows a photograph of lhe instrumenled Ill~el ieeherg used in

Test 08. II was required to compensale for lhe efTects of lhe elt,mge in mo<lel gl,.'(lmetry.

to ensure that the values of other test variables were ,lJentieal to haseline cmlditiollS.

In order to retain a consistent magnitude and point of action of lhe huuyant weight. the

mass distribution of the model was altered lhrough re· dc.~ign ofthc :lluminulll shell. and

balsa wood pieces of prescribed dimensions were attached to the eXleriur of the model.

In addition. the drive system pulling cable was connl,."Ctoo to thc inclined face uf the

model at a specified elevation. in order to preserve an identical point of actio/l of tnc

applied horizontal force. A further equipment modification was imph:mentl,.'d Iu provide

a redundant record of model vertical movements during the scouring event. To 311uw for

measuremems of vertical posilion. two displacement tran.'iducers were lillachcd to Ihe

model and were placed in contact with a reference guidc rdil. as descril>cd in

Seclion 3.3.2.

Fi~ure 88.1 :;hows estimated undrained shear strenglh profiles for tnc Test 08
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day Slx:cimcn. In • nighl vane shear lest dala wert nol acquired due 10 malfunclion of

the mtalillnal drive mOior of the dcvK:e at the test accelenlion level. The c. values

dcriV\..~ fmm moisture content detenninatklns wert signmcamJy higher than strenglh

L""im;Jtcs haSl.~ on Etjualion 4.2, likely as lhe result of moislure content measurement

inaLOCUl1Icics. Undnint."C1 shear strengths evalua!ed by the use of a hand - opented vane

(19 mrn diafl1Clcr by 30 mm Icnglh) after the complelion of the test, were an avenge of

42 pcn:cnt lower than values associa!ed with the empirical relaticaship. The large

discrepancy bclw~n post - test hand - vane predictions and the proposed in - fligh!

strenglh prolilc m,ly be expected due 10 possible air entry 10 the region of the vane tesi.

shear distonion on unloading of Ihe specimen, and wattr drawn into the clay t:l relieve

pore suction set - up by stoppage of the centrifuge (Brillo et al,. 1981).

T~SI R~S/ll(s

Figure Be. I displays dala acquired during consolidalion of the Test 08 clay specimen,

including plots of pore pressure against time aDd surface seulemem versus the square root

of time. A lime period of 5.2 houn was required to achieve greater lban 95 pertent of

primary consolidation. 1be apparent initial clay surface settlement was 0.4 mm during

the consolidation phase of lhe lest. The relatively small magnitude of consolidation

scnlement recorded in this Itsl may be attributllble to inilial disturbance or local bearing

fuilure at the position of diS'r'lacement transducer contact with the specimen surface,

The fabrication of the Test 08 model iceberg was deficient due to porosity in the

welds. whil:h pennilled water leakage 10 the imerior of the aluminum shell. The model

\Va." veriiltd as w3tenicJtl al normal gravity levels in lhe laboratory; however, water
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entry resulted under e!l::valc:d pressures during ccntrifu~c nighl. Water Icakal!c inerc:1SI.'d

the buoy",nl weight of the model. and lhercby altcn:d the sp.:cifK."tJ inpull'tlOl1iliUlUi for

the test. Incrused scour deplhs resullcd in 11k: lkvclopmcOI of fom.-s which eXCl.'\.-dl,J

drive system capabilities. causing an intC1TUpcion of model malion 0l.0l1 suhlil."lucm

movemem al a subsl:lntially reduced nue. The model Wll$ initially ;r,dvaru."tJ OVl'f a

horizontal distance of 171 mm in a lime period of 3.1 seconds. al an avcrnge li(:oorillg

rale of 61.0 mm/s. Figure 8C.2A displays the ICSI inSlnlllu:ntation OUI(lUIS lllCasun.'d

during this inilial seelion of the scouring evcnt. TIle model mOlion was !>-.ts(1Cotk'tl nvcr

a lime interval of approximately 160 seconds, and then restarted willi irregular movement

at an average nile of 0.52 mm/s. The model was advnnccd ovcr an additional disl:mce

of 174 mm within a time duration of alJout 325 seconds. The test instrumenlalion oot(lUls

recorded dunng this final section of the evem are shown in Figure 8C.2B. As a n....~ult

of the significant reduction in velocity. the mOtkI event effectively reprcscntl"tJ a drailll'd

scouring condition.

A photograph and corresponding plan view drawing of the Test 08 scour ;In:

shown in Figure 4.54. An av-:rage cross - scclion surface profile for the 2ppa~nt steady·

stale region is presenled in Figure 4.55. together with an axial plot of measured scour

deplhs and benn elevations. Figure 80.1 displays additioltll cross • section surface

profile data. ploUed at 50 mm intervals of horizontal position. The scour depth increased

gradually from an initial value of approximately 24.5 mm (D an average equilibrium

scour depth of 22.3 mm or 2.23 m at prololypc scale. Benn elevations illso increased

with horizontal distance along the scour path. presumably as the result of !Wrcharge

build - up over '.he duration of the event. The average henn elevation was 7.7 mm above
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Ih~ original surfac~ lev~1. A local reduction in scour depth and corresponding incn.:usc

in berm elevation was evident at a horizontal position coincidem with the location of the

model pipeline segment. A linear depression and soil surface fractures fomu:d in the

vicinil}' of the pipeline segment, indicative of movement over the majority of ill> hllcrul

ext~nl. The sidewalls of the incision were eharacteri7.e<! ":' cXlensiy.~ ItKlSC berm anti
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caved material along the entire length of the scour, in addition to longitudinal surface

fractures. The surface soil disturbance increased with the horizontal distance travelled,

w a maltimum lateral extent of approximately 35 mOl from the edges of the scour. A

massive quantity of remoulded material was displaced concurrently at the front and sides

of the advancing model iceberg. The resultant frontal spoil mound extended to a

horizontal distance of about 60 mOl beyond the final model position. with a maximum

elevation on the order of 35 mOl above the initial surface level.

Figure 4.56 provides a summary of the Test 08 pore pressure responses, as

rc...couled over the final section of the scouring event. Table 4.14 lists the measured

locations of the pore pressure transducers, as well as the corresponding peak and

minimum excess pore pressure magnitudes. Figure 8E.l displays the spatial distribution

of pore pressure changes at 50 mOl imervals of horizontal position. The discontinuity of

model iceberg movements and associated drainage effects. produced irregular pore

pressure responses during the final section of the event. Excess pore pressures induced

by the event were first measured at a prototype horizontal distance approximately 20 m

from the current model position. The maximum recorded increase in pore pressure was

47 kPa for a transducer (PPT 03) located near to the scour axis, at a depth of 7.2 m

below the initial clay surface (at prototype scale). Tilt: peak value was measured during

the final section of the event when the model was siruated almost directly above the

transducer position (dx = - 3 0101). PPT Channel 07. located at a prototype depth of

1.6 m (Le. approximately 0.6 m above the scour base) and immediately adjacent to the

SCOUT edge. developed negative excess pore pressures and displayed a relatively erratic

-.:~ponsc during the event. A maximum pore suction of 31 kPa was recorded at PPT 07.
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Figure 4.56 Ttst 08 port pr~ssur~ responses plOlttd for finol seclion at rtductd rote

for a model localion which was nearly coincident with the position of the

transducer (dx - - 2 mm).

The resulWit scour forces are shown plotted against the horizontal positton of the:

model iceberg in Figure 4.57. The break in the force records shown. corresponds with

the suspension of model movement and ltansition to the reduced ratt: of scouring. In

addition, an extreme increase in the measured horizontal force ncnr to the completion of

the event. was indicative of load cell contact with the frontal surcharge material ur

instrument malfunction arising from this contact. The results preceding this ~pparcnl

deviation in horizontal loading are presented in the figure. Table 4.1.5 gives a listing of
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Tahlc 4.14 Top: Te.\·/ 08 measured pore pressure /ransducer locations; Holtom :
Muximum and minimum excess pore pressures and horizontal dis/ance from model

I'PT No. x (mm) y{mm) z(mm) w(mm)l

-13 -3 141 80.0

·140 85 79.9

- 16 - 4 72 80.0

·141 133 79.9

-2 -3 64 80.0

- 2 - 45 65 80.3

55 16 80.4

-2 - 147 37 82.8

0 407 -3 101.3

I w _ free water depth at posilion

PPT No. ul(KPa) max. du dx(mm) min. du dx(mm)
(KPa) (KPa)

215 27 - 33 -I ·257

160 73 + 22 - 46 - 67

150 47 -3

204 36 + 29 -6 ·108

141 45 - 2 -II - 141

130 30 -18 -. - 192

95 -44 -31 - 2

119 - 144 -15 - 16
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Figure 4.57 Ttst 08 harilontaf and vtrtical compontnts of tltt nsullOnt forct pl()It~1

against modellloriZOll!ui position

lhe force dall at SO mm intervals of model horizonL· movement. Figure: 4.58 provtdcs

a graphical illustration of the model orientation and the acting system of fom:s at

different horizontal positions.

The Test 08 horizontal force records were unreliable, as IOild cell mca!..\u'Cmcnl~

wert lower than expected force magnitudes in consideration of the modd geOR1Ctry.

scour depth, and extent of surchaJltC displaced with !.he model. Based on the ilv,Lilahtc

data, the vertical component of the resultant torce was about 3.0 times as large as the

horizomal component, and the average prototype magnilOOc.s of the vertical and

horizontal components were 11.6 and 5.9 MN respectively over the final section of !he



Tahle 4.15 Tt!.tt 08 n.tultanl furCt! dUla labutott!dfor difftrtnt modt!1 1IorilDnlal POSiliotu

lluril.. Horiz. Ven. Total VttlOr Attack
Pes. (mm) Fon:c (N) Fon:c(N) Force (N) Angle (deg) Angle (deg)

·250 362.4 1134 1711 18.2 22.'
·200 411.4 1192 1853 15.3 23.2

- ISO 646.1 In. 1888 10.0 24.9

- 100 581.8 1161 1851 11.5 25 .•

-SO 598.8 1741 1847 11.1 25.6

586.4 1168 1862 11.6 25.2

+ SO 540.9 1188 1868 73.2 25.0

Averag~ I 586.4 1156 1852 11.5 25.3

I Average values for .approx. sleady Slate region: x :II • 100 to 25.

event. The effective DUDeK angle of the model increased from a minimum value of

approximately 22 degrees to an average value of 25.3 degrees within the apparent

litc:ady - state regKm of scouring. The ~rresponding inclinalio~ of lhe re.sultam force

vector was offset by aboul 7 degrees from the perpendicular :J the scouring face.

conceivably due to underestimation of the horizontal force component. 1be position of

the force vtttor increased initially and maintained a relatively steady value during !he

fi",,1 5CC1ion of the event. at an average prototype distance of 2.0 m from the model

innl'Ction line. As the result of water leakage imo the model during testing, inductive

pressure transducer measuremenlS of imerface pressures were not acquired in this test.

Figure 4.59 displays a plan view drawing of surface displacement vectors at

positions extemnl to the model scour created in Test 08. as well as a plot of the average

magnilUdes of horizontal and IDlenll components of displacement. Surface markers
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Figure 4.59 Top: Test 08 plall view drawing ofsurface displacement vectors; Bottom:
Average axial and lateral sllrface displacements versus distance from the scour axis

located ilt lateral positions approximately I m from the edge of the incision were

obscured by extensive surficial disturbance due to ca~ing and henn deposition. Based on

the a~ailable data, the average horizontal and lateral surface displacements measured at

a prototype distance of about 3 m from the scour edge, were 0.24 and 0.46 m
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respectively. The surface displacements dttreased with dist:lllCe (Rlln lhe 5Cnur ;axis Itl

values of 0.02 and 0.19 m at lateral posilions approximalely 7111 fWlll Ihe lICllur

edge (i.e. 120 mm from the seOl'r axis at model $Calc). The r:u..liogrJph traces PI\:SCllh.'t1

in Figures SF. 1and SF.4. display an accumulalion of surf;M.'l: m:lI1;ers within tilt muunrJ

of material at the front and sides of the final position or lIte fIl(Xkl K:dlle'll. TIle lI1:ljorily

of the surface markers situated within the scour path or immediately adjacent to the scour

edges were displaced concurrently wilh the motlel to its fin:ll position. 'Olis evideOl:e

implied the fonnatton of _ region or fronUlI malerial which remainro relatively stable in

. relation to the model. throughout the scooring event.

The plan view radiograph trace of the Test 08 scour pn."SCnlcd in Figure SF.1.

shows the locations of pore pressure transducers. tilt: model pi(lClinc scgn~:nt. and the

dis:llacerl configuration of soil defomlation grids. The boundarit:s of the scoor were

poorly· defined in this view, due to extensive disturbanct: of surfICial material adj:uxnt

(0 the incision. Figure 8F.2 displays the trace of a radiogrnph which pruvidc5 a cn~ •

sectional view of the ddonned lateral grid and model pipeline segment. The radiograph

traces of the axial grids situated near to the beginning or the scour arnl at the final

horizontal position of the model, are presented in Figures Sf.) and 8F.4 R:S[X.'Clively.

The model was mt supponed dfttth,,:ly at the complelion of mOVl..'tTICnl in thi... test

resulting in some additional displacemer.t of the final axial grid which was unrdatctlto

the scouring event.

Initial I displaced plols and displacement vectors plll15 ohtaiOl:d frnrn lhe suil

defonnation grids in...talled wilhin the Test 08 specimen arc given in Figure SF.5. Wilh

the exception (If ~lts from the initial axial grid. the mc:asu~ sun - surfac:c
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displa('~mc:nts repl"l:senu..'l.I the dTl,.'Cts of il dl'ilincd Uf" pani.tlly dl'ilinl,.'U Sl:uuring l,."\lOllilMm

d~ 10 lhe diminished r.1t~ of :kIvancc of the mocJcl k:~hcrg ..~ displat."CnlCnt pall~ms

witnc:ssed in this It!St wcre COOlp;1l'ilhlc 10 the I"I:sulls from Test 06. wllCl"I: the I'ill~ of

model movement was also n.oduc~ ovcr the fin.11 St.'Ction uf the cv~nt.

Th~ initial and displaced configuration of th~ !;lleral Brid (~ - • 20 111m) i~

dcpictcd in cross - sectional and plan vicw in Figure 4.60. Some lateral muvcmcl\l~ were

observed: however. the lateral componeOl of displacement wa.~ limitl..'U to ~halluw dC(llh~.

with increasing magnitudes Iowan! the edges of the scour. The mcasun,.'U veniCo11

component of displacement was relatively small or negligible. 'Ole v~nic.,1 movement of

the horizorxal grid member immediately below the base of the scour indicall,.'U cumulative

upward displacements. which may be attributable 10 sidewall f3ilure or Cowing following

the passage of lhe model iceberg. Upwan! venital m('lVCmeOlS com:sponding with surface

heave atlj3cem to the scour edges were also noted: although. displacement p<lIlcms in lhis

region included the effects of both the scouring event and subst:qucm failure uf lhe

sidewallS of the inc:iston. The horizontal component of displacement was vcry 1.IISc 011

positions above or immediately below the scour base. A ponion of the upper horizontal

grid member within the scour p:tth, was displaced from the initial grid location to the

final position of the model iceberg. The horizontal displacement grJdicnt with dcplh wa...

also relatively high. such that large horizontal movements were n:5tnctl..'U 10 a sh:lllow

region beneath the scour.

Figure 4.61 shows the initial! displaced plot for the axial gridloc3ll..'d 1'IC00r tu Ihc

beginning of the scour. This axial grid extended over lhe horizontal region a.'ISOCiatl..'d

with the initial rate of advance of the model iceberg and the lransilion to a reduced rate.
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Figure 4.60 Test 08 initial/displaced plot of lateral grid at x - - 20 shown ;n cross 
sect;unu/ldpla/l l'iew

The measurements from litis grid indicaled a shallow region of very large horizonlll

movc:menlS. and small venical displacemenlS at positions below the scour base. In

adtlition. the displaced configuration of the venical members of the grid displayed a thin

zone of ~he3ring or a failure surface. which suggested the development of a deeper zone

of wb • scour displacement The initial I displaced plot for the axial grid at the final

I11OI.lcl position. ~hown in Figure 8F.5. provided comparable infonnation: however, lite

measured venical component of di~placement was larger, as was consistent with a

hearing capacity failure beneath the model follOWing the completion of the event.

The sub • surface displac:emem records for Test 08 are summarized inFi~ 4.62
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Figure 4.61 Test 08 initial I displaced plol afaxia/grid locarelll1eur begilll/ing nlsel/llr

which displays profiles of the maximum values of vertical and horizontal components of

displacement. The displacements shown in this plol were averages. b,lSed on lhe availahlc

data from lateral and initial axial grids. The very large horizontal movements ill posilion.~

above and immediately below Ihe base of the scour, limited the ilccuracy of

measurements in this vicinity. The approximate maximum values of vcrtiClll and

horizontal displacement immediately below the scour base (inlcrpohllcd at a depth hclow

base "" 0.1 m) were 0.44 and 2.84 m respectively at prototype scale. The maximum

depths below the base of the scour at which vertical and horizontal displacements were

recorded, evaluated for a lower bound displacemcnt magnitude of 0.2 m. were 0.7 and

2.8 m respectively at prototype scale. The vertical and horizontal displllccments extended

to normalized values of 0.3 and 1.4 scour depths below the scour basco

The model pipeline segment, initially located at a prototype depth of

"pproximately 0.3 m above the base of the scour (19 mm below the original clay surface
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Figure 4.62 Tesl 08 maximulIl I'enicaf and /toriz.onlal components of soil displacement
"ef'SUS rlertll befall' scour base

at mood scdlc). was displaced vertically during the scouring event to a linal position

hcncath the scour. Void space observed in front of the pipeline segment during

excavation, suggested that forward horizontal movement was followed by limited rebound

of the l>Cgmeot. Scrape markings at positions coinciding with the edges of the scour

incision. provided evidence of direct contact with the model keel. The segment
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experitmced plastic bending, Wilh maximum centre - linl: Vl:rlil:;ll and hllrizllnllli

dellections of approximalely 0.18 and 0.32 m rcspccliwly at prolulypc sellic. 11k:

measured horizontal curVillUrt: of thc segment was not symlllelric ill rclatinn to Ihc pipe

cenne -line (scour axis).

4.3.9 Scour Test 09

Mode/II/pm Conditions

In Test 09, the identical prolOtype scouring event 10 lhal rc('lrcscnlcd in Tesl 05.

modelled at a reduced scale of 11125, and at an incrcaS\..'1l ilccclerillion level Ilf

125 gravities. The model iceberg configuralion and input parameters fur lhis tesl arc

given in Figure 9A.I in lhe corresponding section of Appendix A. 'nlc mudel icehcrg

used in Test 09 was geometrically similar to the Test as model, Wilh all clillleL1sitlll.~

reduced in proportion to the ratio of lhe linear scale factors, 1001125. 'lllC kL'C1 width

was 80 mOl or 10 01 at protOlype scale, the horizontal base length was 40 mOl, amllhe

attack angle was set at IS degrees. The waterplane area of the model was 200 oy

200 0101 2 which corresponded with a vertical stiffness of 49 N/mm or 6.1 MN/m lIt

prototype scale. In accorrlance with the scaling relalionships prc."Cntcd in Tahle 3.1, the

mass of the Test 09 model was reduceu by the nttio of (100/125») from the Test 05

model mass. to ensure that the magnitude of the buoyant weight of the model was scaled

appropriately. In addition, the mass distribution of the reduced scale model, inclUding

attached instrumentation, was designed such that the huoyant weight aetL'1l at

corresponding positions in both tests.
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'Ill\: Test 09 clay s:pccimen was subjected toa laboratory pre - consolidation stress

flf 14U kfla, coinciding with the initial stresS Slate for the Test 05 specimen. At the teSt

:leedcr-Ition levcl in - night, identical vertical stresses were induced at corresponding

rllsitillrlS in both spedmens. The consolKlated lhick~ of the Test 09 specimen was

rcduct.'d hy the nuio of the linear scale factors 10 144 mm, representing a full scale

pmlotyre stratum of saturalcd clay which was 18 m in depth. The thickness of lhe base

draillilgc region was increased by lhe installation of a 36 mm deep saturated sand layer

hclow the clay specimen. Duc to the additional thickness of the sand layer. the upper clay

surface was situated at the same radius in both lests, and this served to minimize

diffcrences in stress levels resuhing from the radial divergence of the centrifuge

3t.-cclerottion flCld. The nominal depth of free surface waler at the location of the model

WltS reduced to 64 mm. representing an 8 m water depth at prototype scale.

Fiyurc 9A.2 shows elevation and plan view drawings of the Test 09 layoul of

instrumentation. deformation markers. and model pipeline segments. The model iceberg

was supported 3t an initial depth 16 mm below the clay surface. and equipment elevalions

were modified to accommodate the reduced scale of the model. The pore pressure

transducers were instilled at the same depths as in Test OS, as constrained by available

('IOns in the tub Which contained the clay specimen: however, lateral distances from the

scour axis were reduced in accordaoet: with the model scale. The soil deformation grids

used in Test 09 were placed at geometrically similar localions in relation to Test OS, and

the mesh sizing was also reduced by the ratio of the linear scale factors 10 8 mm. The

pro(otyflC length of travel was increased. and the location of the final axial grid was

altered to coincKle wilh the expecled model posilion at the completion of the ev~nl. The
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positiJns of surface markers were also changl"d to mudd the Tl.'St 05 layout at the

reduced scale:. In Tcst 09. a rectangular p:lIIem of surfal'C markers (192 mm width.

528 mm length) was ~ablished at 16 mm sp:lCinp ccntl'l'tl on the scoor ;axis. lAc

identical lead shot we~ used in hath tests. such that the f1\3SS anti diill1\1.1er of the

individual markers wen: not modelled.

The selection of stainless steel Sl'etions 10 model Test OS pipeline SI.'glllenlS at

reduced scale. was restrK:ted by commerci31 avail:ability of nppropriate tuhin,g si7.l':'l. '11lC

model pipelines employed in Test 09 had an outside diameter of 4.80 nun ,lIld " wall

thickness of 0.20 mm. and represented prototype segments compri!>Cd IIf ;10 identic;11

material with an outside diameter of 600 mm and a wall thickness of 2S mm. Tile tuhular

sections used in Test OS·.. del1ed prototype segments having the sume wall thickness.

but represented pipelines with a somewhat larger outside t1iameter of 635 mm.

The experimenull methods used to estimate undrained shear strength in Test. 09

included both in • night vine shear testing. and post - test hand - vane and moisture

content measurements, In • night vane shear tests were carried out at three levels: 30.

60, and 90 mm below the clay surface. The vane lest data are presented in Figure 8.2,

including plolS of venical displacement, rotation. and t.lrque against time, as well as till:

torque versus rolation curves for each level. In Figure 98.1, eM values dctcnnincd hy the

use of experimental methods are compared with strength profiles based on Equations 4.2

and 4.3. Similar to preceding test observations. the in • night vane n:~ult!t predicted u

higher strength gradient and larger strength magnituUcs at greater t1epths. in relOltilln ttl

expected values. The measured vane strength was 24.9 kPa at a prototype depth or

3.7S m. as compared with a value of 18.5 kPa derived in accordance with the empirical
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rclOltion given hy Equation 4.2. At a protOlype depth of 7.5 m, the vane strength

incrcOlscd w 36.0 kPa. whereas the corresponding empirical strength estimate was

22.8 kPOl for this test level. The apparent large discrepancies with predicted vane strength

magnitUl.h.:s at greater depths. may be partly attributable to reduced surface water access

10 the vane head. underestimation of the vane shaft resistance. or change in calibration

oflhe ItIrque load ccll. Inadequate ratc of rotation and associated increased drainage, may

also account for larger than anticipated strength measurements; however. the vane testing

pl'l.ltocul was genemlly consistent with that employed by previous researchers

(&:ction 3.5). Undrained shear strengths evaluated from hand - vane measurements were

,10 average of 54 percent lower than estimates from the empirical relation. as expected

for conditions following the completion of the centrifuge tcst. In contrast, thc strength

villu~ based on post - test moisture content determinations exceeded the estimates from

Equation 4.2. Lower than expected moisture contents and implied larger strengths were

also noted in preceding tests. and may be indicative of moisture content measurement

in:lccuracics.

The consolidation records for Test 09 are presented in Figure 9C.l as plots of pore

pressure against time and clay surface settlement versus the square root of time. The time

durmion allowed for consolidation of the reduced scale specimen was about 4.5 hours.

The apparent initial clay surface settlement was 1.9 mm. following the completion of

greater than 95 percent of primary consolidation. Figure 9C.2 provides a summary of the

test instrumentation outputs ploued against time and horizomal position during the
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scouring event. The evenl was completed in 5.9 5I.'Contls. in which the: mudd iCl.'hc:rg

travelled a lotal horizomal dislance of461 mm or ,57.6 m att~ com~nding pmtOlypc

scale. lbe average rate of advance of the model was 77.6 mm/s. as as.q'SSCll fmOl the

data records of Ine position If'lU1sducer and rotary fIOlenlion.ete:r.

Figure 4.63 provides a plan view photograph and relatl.'d drawing 10 iIIu.\1r:tle

surface features of lhe Test 09 scour. Figure 4.64 shows an ;lVer:tge cross· sccliun

surface profile of the scour. together with an axial pial of scour depths and henn

elevations. Additional S\Irface profile data an: presenled in Figure 90.1. ilS cros.,,

sectional plots at 50 mm intervals of horizontal position <llong the seour path. llle mood

iceberg experienced an initial period of relatively rapid uprise to 1m :lPP:lrcnt stCildy •

state level. corresponding with an average scour depth of 8.8 mm or 1.10 In ilt PnlttllyflC

scale. 1lle average benn elevation in this region was 3.8 mm. auributable prim<lrily In

surface heave adjacent to the incision. Shallower scour depths wen: cvident at positions

c:oincidem with the trench kxations of the model pipeline segments: the dI.'Jllh of scuuring

increased slightly over the latter panico of the event 10 values on the ordcr IIf 10 mm.

al posilions beyond the model pipeline cross • sections. loo!;c or remouldcd lTI.1lcrial

arising from caving of the sidewalls of the incision and Iimitt.'d berm fonnation. WlL~

observed to a maximum lateral distance of approximately IS mm from the sctlur l.'dgcs.

with some additional local disturbance. Surface disturbance also extcndl.'d 10 a hurizontal

distance of about IS mm in from of the final position of the model. 1Ind a relatively small

amount of frontal spoil material was evident at this location.

The pore pressure responses measured during the Test 09 .seouring CVl;nt are

summarized in Figure 4.65. The final location5 of the transducers are Jistt.-d in Tahle 4.16
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together with the peak and minimum excess pore pre.'i..'1urcs developed during the event.

The spatial distribution of the pore pressure changes al 50 mm intervals of mudcl

horizontal movemenl is illustrated in Figure 9E.I. The cfft:cts of scouring were initially

recorded ata prototype horilonl.lll distance on the order of25 m from the current position

of lhe model iceberg. The maximum rise in pore pressure measured within the apparcnl
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Figure 4.65 Test 09 pore pressllre responses during event - transducer channels OJ to 08

steady· state region of scouring was 70.1 kPa for a transducer (PPT 03) located 10.5 m

helow the initial clay surface (at prototype scale). and at a lateral poshion coincident with

the scour axis. The peak response was recorded when the model was at a horizontal

distance of 7.9 m (dx = - 63 mm) from the transducer posilion. The maximum measured

pore suction was 23.9 kPa. for a transducer (PPT 07) siruated at a prototype depth of

4.5 m. and lldjacent to one edge of the scour incision. The negative pore pressure

response was recorded following movement of the model to a horizontal distance of

7.5 III (dx ::: + 60 mm) beyond the transducer position.
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Tilbl~ 4.16 TI!JI 09 IIIl!iISlm!ill'f/"j' pr('.r.mrj· trllI~rllt"'j'r lI"'t1tilllu: "/IItll"': ,\lILrifllll/ll
alld "'il/i","m ~.trtJS pan' pl1'5$fln',r 111111 Iwri:tmlill l/i.rll/lll'l' 11'11111 11/111,1('/

PPT No. x (mm) y(mm) z(mnll W!lII111)'

·11 ·3 137 "'.0

- 197 8' 6),4

·14 84 "'.0

- 183 13' 63.5., -, 66 "'.0

·7 ·44 '" 64.2

• 6 36 36 64.1

·3 ·125 30 6(1.0

405 -3 85,1

1 w _ free water depth at position

PPT No. ·.u\(l<Pa) max. du dx(mm) min. du dx(mm)
(KPa) (KPa)

250 19 + 39

m 92 +14 -1 ·103

184 70 ·63

24' 24 + 26 - 2 -94

162 34 -18 ., ·254

145 48 -31

125 4' -27 ·24 +60

113 ·128
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I:il!urc 4.66 shows lhe rcsullant forces aCling;:! !he model K:eberg - soil imerface

pilltlccl a1!ain.'it the hurizomal position oftbe model. The Tesl 09 force data are also listed

3t40 rnm intervoals ofmodcl hori%OOtal movement in Table 4.17. In addition. Figure 4.67

displays the mocJcl orientation and the relatetl system of forces for different horizontal

pnsitiul'lS along the liCour path. The venial component of force developed during the:

even! was ahout 3.8 limes as large: as the measured horizontal component. A region of

higher venical fon.-e may be associaletl with the trench locations of lhe: model pipeline

segments. The ave:l1\ge magnitudes of the venical and horizontal componenlS over the

app>trcnl steady· state region of scouring were 17.6 and 4.6 MN respectively at

prototype scale. The: effective attack angle increased initially 10 a maximum value of

17.8 tJcl::r\."CS, and then declined to an average steady value of IS.6 degrees over the final

~'\:tion of the event. Tbe inclination of the resultant force veclor was approximately

perpendicUlar 10 the scourinj! face uf the model, and remained relatively constanl

thnJUghoul the eveN. The position of the: force vector did not vary signifcntly IS

sclluring progn::ssed: the force veccor acted al a peak distance ~.,: 2.S m (at prototype

5Cilk) from the model iceberg innection line, and then decreased to an average value of

a~lUl 2.2 m at near to the completton of thc: event.

Tbc interface pressure records for transducers situated at the base (lPT 18) and

incliOl.'d scouring face (IPT 19 and 20) of the model iceberg are displayed in

r:igurc 9C.2. The data acquired from the transducer located at the base of lhe model

incJic;lll.'d a regularly nuctuating response over the final section of the event, with an

aVl:r..g~ pressure of t4S kPa and recorded variations as large as 21 percent of the mean

value. 1lle 10011 pressure respl)r\5C measured at the .scouring face of the model was irregularly
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Scour Test 09

Vertical
1.2

Horizontal
0.4
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Horizontol Position (mm)

Figure 4.66 Tesr 09 horizontal and venical componl!/Us of IiiI.' resultant forc(! 1,lo1/I!(1
against model horizontal position

varying with extreme flucNiltions. Maximum pressures were measured :It positions

coincident with the trench locations of the modd pipeline segmenL~; the peak «:cnrded

magnitude was 229 kPa. The average pressure acting on the inc1inc<.l face within the

apparent steady - state region of scouring was 171 kPa.

A plan view drawing of surface displacement vectors at positioo.'l outside of tlu:

Test 09 scour incision is displayed in Figure 4.68, along with a plot of the average

values of horizontal and venical components of displacement for the apparent steady·

state region of scouring. The external displacements varied with horizontal distance along

the scour path; movements near to the initial model position were predominantly lateral
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Tilhlc 4.17 Tf!sI 09 rf!suf/ufII /orrf! dala tabu/att!d/or dijJ~r~nt Illodf!1 hOriZOlllol positions

II0ri7.. Horiz. Ven. TOIaI Vector Attack

'''IS. (mm) Force (N) Force (N) Force (N) Angle (deg) Angle (deg)

- 300 129.9 840 8.\. 81.2 17.1

- 2"" 243.6 '000 1029 76.3 17.8

·220 276.9 1044 1080 75.2 17.0

-11lO 283.8 1079 1116 75.3 16.6

- 140 296.6 1126 1164 75.2 15.7

- 100 312.3 1165 1207 75.0 15.3

-60 295.8 1174 1211 75.9 14.6

- 2. 275.3 1155 tI87 76.6 14.8

+ 2. 285.5 1111 1147 75.6 15.5

+60 303.6 1088 1130 74,4 15.9

+ '00 311.5 1091 1135 74.1 16.0

+ 140 295.3 1126 1164 75.3 15.5

Average l 297.1 1125 1164 75.2 15.6

I Average values for approx. steady state region: x "" • 200 10 100.

in direct"'n. and the horizontal component of displacement i.-:reased over the final

section of the scour. 'The average horizontal and laleral displacemenlS recorded at lateral

positions approximately I m from the edge of the scour. were 0.30 and 0.45 m

respectively at prototype scale. The surface displacements declined to average magnitudes

of 0.08 nncl 0.18 m respectively at lateral positions about 7 m from the scour

edge (i.e. 96 mm from Ihe scour axis at model scale). As illustrated in the radiograph

lrace given in Figure 9F.1, the majority of the surface markers in the path of the

advancing model were displaced venically to positionJ beneath !he scour and forward
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Figure 4.67 T~sJ 09 modt!l icebtrg orienJalion and Taultant fOTei! vtctors

275



.m120')
-""'---'--'--,-~---.-~--.--,

f.. ·100
i

lUI

,,'\ \\',--'
III II \."
.", I \.,.

JJ~AlI lll:I1ACElEHI! KACIi!fl(AIllJ' f,l,(TlJ' :.!.O 10 KH DiSPl..

Seour Test 09

00000 Axial
••••• Lateral

~

-"""-------
°4~O-~~-~60;;--~--:.80;--~--:,:::00;;--~-~120

Distor'ICe from Scour Axis (mm)

Figure 4.68 Top: T~Sl 09pfan vitwdrawing ofsuTfact displacement \/teton; Bottom:
AI'tragt arial and /a(ual surfact disploctmtnJs wrsus distance from the scour axis

over a limited horizontal distance. with negligible lateral movement.

Figure 9F.l presents a lrace compiled from plan view radiographs of the clay

spt:cimen. which displays the locations of pore pressure transducers, model pipeline

segments. and the displaced configuration of soil defonnation grids. Figure 9F.2 provides

similar information in cross - sectional view. al two horizontal positions corresponding
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with the Inleral grid and model pipeline loc:lIion.~. The lmces Ilfaxial sl.'Ction Tlldiogmphs

at grid locations near to the beginning of th~ scour and .11 the final horizontal position of

the model iceberg, are given in Figures 9F.3 and 9F.4 respectively.

The sub· surface displacement records for Test 09 arc rJi~playl.'l,\ in Figure 9F.5

as initial I displaced plots and displacement vector plots for each of the grid~ in~alled

wilhin lhe clay specimen. Figure 4.69 shows cross - ~ct;on:11 and plan views of lhe

inilial and displaced configuration of the second lateml grid (x = ·40 0101). The

observed displacement pallerns in this test were compamhle with Ihe results from

Test 05. The accuracy of near - surface displacement mcasumlents was reduced due 10

poor definition of the upper portion of venical grid memhcrs in site investigation

radiographs. The lateral component of soil displacement was sm'lll, amI movemenls were

limited 10 shallow depths in the vicinily of Ihe edges of the scour. llx: vertical

component of displacement was relatively unifonn across the scoor witllh, and deere'lscd

gradually with depth below the scour. Vertical displacements were measured over Ihe

entire depth of the second lateral grid; however, movements tI.:COrdCtlllt the fin>! lateml

grid (x = - 97 mOl) were less extensive, and displacement magnilutll.'S were sffillllcr at

this location. The horizontal component of displacement was larger in magnitude Ih,m the

corresponding vertical component at shallow depths; however, Ihe horizonlal movements

attenuated more rapidly, and apparent small negative displacements werc evidem below

a given depth.

The initial I displaced plot for Ihe axial grid located at the final poJiition of Ihe

model iceberg is shown in Figure 4.70. The vertical movements of the model associated

wilh the discominuation of scouring were reduced to approximately 3 mOl, as the result
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Figure 4.69 TeSl 09 initioll displaced plot of Imeral grid ot x - • 40 shown in cross •
sectioll alld pIon vinl'

or support provided at the: completion of the evenl. Venical and horizontal displacement

magnitudes were similar at this grid location; however, the vertical component or

displacement was more extensive over the depth of the grid. The displattmenl~rd for

this grid also provided information on the panern of movements developed in front of the

advancing model. The grid measurements al this localion suggesled that soil in fronl of

the model was displaced upward and forward al vertical positions beneath the scour base,

wilhin an apparent zone of large displacement.

Figure 4.7 J presents a summary plol of the Test 09 sub - surface displacement

record.~. which shows profiles of the maximum values of the vertical and horizontal
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posilion ofmodel iceberg

displacemenl components within [he apparent steady· sL1te region or scouring. The

horizontal displacemCni measurements from the initial axial grid were COn.~islcnt with

lateral grid estimales in Ihis test, and the plaued magnitudes were cvalu:tted baJa.'d nn

bolh sets of results. The vertical displacemems shown in Figure 4.71 were OlSSCS.~'d ilS

t!le average of well· defined lateral grid movements. The maximum values or venical

and horizOntal displacement immediately below Ihe base of the scour (interpolated a\ 01

depth below base =::: 0.1 rn) were 0.68 and L.OS m respectively at prototype scale. The

limiting depths at which vertical and horizontal displacements were measured, cVllluatL'd

for a lower bound displacement magniNde of 0.2 m, were 4.2 and 2.8 m rcspt:ctivcly

at prolotype scale. The venical and horizontal displacements eXlcntlcd to normllliZL'<.I

values on the order of 3.8 and 2.5 scour depths below the base of the scour. Moth:1

pipeline segments located at depths of 1,5 and 2,2 m beneath the scour base at prototype

scale, did not exhibit any measurable plastic deformation due to the cffecL'i of the

scouring event.
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Chapter 5

Numerical Analysis

5.1 Introduction

Theoretical modelling and centrifuge physical modelling nrc complcmenlary appro.1Chcs

by which to predict performance in geotechnical Doundary value problems. as ilJuslrlll~-d

schematically in Figure 5.1. Centrifuge model leSt data are well SUill.."d for the

development and verifICation of theoretical models of the ice • soil interaction during a

scouring event. Arter such verification. the theoretical model may then be cxploitt.'\J as

an effective metlKld for the analysis of comparable full scale condil)ons of inlcn:sC Any

design methodology formulated in this manner. however. will incorpor:uc the v:uious

common simplifying assumptions which are inherent to the modelling techniques. Din.'l;t

calibration of the model against field dala. where available. is requiretl in onlcr 10

address the limitations of the idealization, 10 ensure reliable predictions of prototype

behaviour.

The accurate evaluation of soil disturbance effects during a scouring CYcnl ill

complicated by the following faclor!.



,---
IUr,lCAl':IIlUlllJl

1~~HU 1E:If'ESlllS

Figure 5. J &/alionslJip Imwtt!n '''~omical modelling and cenlrlfuge physical model
study of in scouring

(I) The interacting system is characterized by continuous movement of the ice

r~ture. and large defonnalions and ~trailtS are developed within the soil mass.

(2) Soil behaviour is usually highly nonlinear and depends on the complete

geological history of the deposit as rt:presented by the size. shape. packing, and mineral

composilMln of the particles, the stress hiscory that has been sustained, the pore nuid and

other consideraliO:lS.

(3) The ice· soil interface conditions are not well - defined, and include

characteristics that cannot be adequately simulated by linear modelling, e.g. Coulomb

friction.
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At the current level of urderstanding of the process uf ice lIClluring. c1t>sclI funll

allllytical solutions which provide ~Iiabk: predictions of soil displ:K.'\.'fl'k.'flt5 :Ire

intractable. On the other hand. numericalltchniqucs such as the finite element method

have been adequately developed 10 overcome the afomnentKmed diffscullK:s. and m:ty

generate approximate soludons of sufficient accuracy. However. numerical an.1lyscs

which replicate all aspects of the phenomenon of dis[U!'bance a~ considered beyond the

current state· of - the • an. The present study attempted to evaluate the praclK:al validity

of the finite element method as a theoretical means for the tJetcnninmion of soil

perfonnance under idealized scouring conditions. This ent:liled a compaflltivc

examination of the results of centrifuge model tests and preliminary numeric:!1 analyscs

which embraced impor1ant aspects of the physical problem.

Rtlaud Restarch

Finite element models have been used effectively in the solution ofother classes of large

strain geomechaJUcal problems. (n particular. numerical analyses have been performed

to predict disturbance effects induced by the pcnetralton of foundation clements and

devices inlo a soil medium, as during the installation of piles, penetrometers. and

sampling rubes (e.g. BaUgh and Scott, 1976; Kiousis et aI., 1988; van den Berg et al ..

1991, 1992). Despite notable dissimilarity of boundary conditions in relat"'R 10

representations of iee scouring, these studies have demonstrated lhe applicability of the

finite element technique in modelling the effects of large defonnations and large slrain.~,

as well as material nonlinearities and soil - stnttture interface conditions. The finite

element method has also been applied to the problem of soil cutting in the context of
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till<lgc lools, including both two - d:mensional plane slrain analyses for a wide cUlling

hladc (Yong <In<! Hanna, 1977) and three - dimensional analyses for a narrow cuning

hladc (Desai and Phan, 1980; Desai el al., 1982; Chi and Kushwaha, 1988). Ice scouring

may he thought of as a soil cUlling process; however, it differs from soil cutting by

eanh • moving and agricultural machinery which involves sharp, positively' raked blades

ralher than the blunt, negatively· raked geometries that are most commonly associated

with icc keels (Palmer, 1990).

Successful and economically viable analysis of the foregoing problems required

not only correct theoretical fonnulations, but also efficient analysis procedures and

numerical algorilhms to accommodate large strain effects. Funhennore, adequate

modelling of nonlinear boundary effects through the provision of suitable interface

elements was necessary in order to obtain reasonable correspondence between

theoretically computed displacement fields and experimentally measured values.

Experimental or field verification was essential to ensure the accuracy of the calculated

predictions of soil behaviour. The finite element models were successively improved

through repealed practical application and empirical modification of input conditions or

modelling assumptions.

More recenlly, research was initiated in which the finite element method was

applied in the development of numerical models of ice scouring. Poorooshasb and

Yang (1993) summarized the results of initial analyses which were implemented through

use of the general purpose finite element code ANSYS (Swanson Analysis Systems

Inc.. 1989). The finite element analyses allowed for large defonnation conditions,

including large translational and rotational movements; however, a large strain
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fonnulation was not adopted. An extc:ndc=d fllnn tlf the Drucker - PI':l~L'r clltl~lilUti\'c

model was used 10 define an elaslic - perfectly pla.qic lt1.1tc:ri.11 n:spullse.:I00 hmh drolim.'lI

and undrained lotal stress analyses were perfonnl:d. The SCtlUring event wa... simul:ut.'lI

by direct application of horizontal displacements al notks tIclil\L';uing the it:.: - 5uil

interface. Two • dimensional plane strain conditions were initi:lIly invcscigatt."lI.

1be analysis (Poorooshasb and Yang. 1993: Yang ct:ll.. 19(3) was eJUendL'lIlu

consider a preliminary three - dimensional represemalion of the pmhlcm. including :l

simplified beam • element model of a buried pipeline. Based on corrcsJXlOOctlt'C of the

results from two· and three - dimemional models, the authors concludt."lI that a pl;mc

strain idealization may serve as an adequate represenlation of the icc - soil inu:mclilll1

during a scouring event Funhennore, it was found Ihat the prc5Cnce of the mooe!

pipeline within lhe soil domain did nol signifICantly alter the resultam forcc... or the

predicted soil stress and displacement fields. The authors inferred, therefore, that a

separate soil - pipeline interaction analysis may be: carried out 10 investigate load transfer

10 the pipeline from computed free • field soil displacements (i.e. displaccmenl.. noc

innuenced by the rigidity of Iny embedded pipeline) in place of it comprehemivc three 

dimensional finile element analysis of the ice - soil • pipeline imeraction.

Yang et al. (1994) described the plane Simin finite element mooe! and comparal

the resuhs of !he analysis wilh centrifuge mooellesl data acquired .... part of the pn:scnt

study (Scour Test 02). The analysis provided infonnation on the resultant forces and the

stress and displacemem fields in the soil. The predicted soil displacement magnitUdes

markedly exceeded the experimental values at positions immediately below the hase of

the scour; however. the paltem and venial extent of lhe computet.! and measun.:tl soil
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mllvcmcniS was fCMJod (0 he similar. AllhocJgh the represenlalion of the model iceberg

ilUvant.-cmcnt and lhe malcrial response were relalively crude. the comparisons with

c..-cnlrifugc lest dala suggested that realiSlic quantitative prec;Hclions of scour effects might

he uhlaint.'d throogh refinement of the preliminary analysis. More CUrTent research

(C • CORE. I99S) demonstrated inadequacies in realistic representalion of a steady 

stale scuuring condition for the limited range of horizonlal movement which was

simulate..'1J.

In the: present study. il was proposed to address deficiencies in the existing

numerical analysis procetlures in onler to resolve unexplained discrepancies in

comparison with physical evidence. and 10 enhance predictive capabilities. This research

WilS unUcnakcn in parallel with similar numerical investigations of the effects of ice

sccMJring un hurietl pipelines (C· CORE. I99S). In particular. modificalions were made

in relation to the following auributes of the numerical model.

(I) A finite strain fonnulation was adopted in the analysis to account for the

clcvdopmem of bolh large defonnations and large mains. as characteristic effects of the

sc..-c.MJring process.

(2) EITc.."Ctive stress consolidation analyses were perfonned by application of an

algurithm for lhe solulinn of coupled nuid • solid equations. so as to include the effects

uf Ihe pure waler response.

(3) The clastic - perfectly plastk constitutive model was replaced with a more

realistic representation of the soil as a nonlinear elastic - plastic material which may

exhihit both stmin hardening or softening behaviour.

286



(4) Simulation of the: icc - soil int~rface was rdint.'tI lhmut:h usc: Ilf ~lIitahlc

interface elements which allowctl for inherenl nonliJV:ar houooal')' CffCCL<;.

The numerical ana.lyses wt~ implemcNI.'t1 through u.~ of thl.: gel1Crnl purp.l5C

finite elemenl cock ABAQUS (Hibbilt et al .. 1994) which incorpor:lII.'tI the nca:s:sal')'

capabilities to accommodate the above - Slatetl modelling refinements. In thi~ ch:tfllcr.

features of the analysis whM:h an: relevam to the: simulation of an il1ealiZl...t1 Sl.:ouring

condition are described, and Iimil<lIions of the proflOSl..'tI numerical representation are

presentetl. Preliminal')' verification of the approach is pmvidl't1through comparison with

l.'xperiml.'ntal data from representativc eentrifugl.' tests, as detailed in Chapter 6.

5.2 Finite Element Modelling

Nonlineilr behaviour in !he mechanics of defonnable solids may be asslJmt.'tIto occur due

to one or more of the following three factors; (I) geometric nonlinearity, which arises

from the nonlinear tennl in the kinemalic equations or !he expressions describing the

state variables such as slrains; (2) material nonlinearity, which reflects the nonlinear

lenns in the constirutive equations, and; (3) bouooary nonlinearity, which is ClIuscd by

the: interaclion between IWO adjacent botlics with different matcrial propcnics. TIM: utility

of the finite element melhod for the investigation of ice scouring derivcs mainly from ito;

capability of solving problems which involve each of these forms of non!irK:arity.

Funhermore, the method allows for considcralion of arbitrary gt:omctrics, soil

slratigraphies, and applied IO:lds, as may be necessary 10 ensure realistic rcprcscntution

of a range of field conditions.
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5.2.1 Geometric Nonlinearity

SITeu and Slrain Mwsuns

Cla.'i.~iclll finite clement algorithms assume lIIat strains, both elastic and plastM:, are

infinitc.~jmal. anti that the initial geometry of a defonning body is not appreciably altered

uuring the dcfonnation process. The errors associated with Ihis approximation are of the

order of the stl1lins and rotations compared to unity (Nagtegaal. 1982). As a result, the

infinitesimal strain definition is 'lnly useful for small displacement gradients; that is. both

strains and rolations must be small for this definition [0 be appropriate. 11Je large

movements of the soil medium in the VM:inity of an ice k~1 during a scouring event

cause significant modification of the geometry of the solution domain. The resulting

strains arc no longer linearly related {o displacement gradients, and the finite element

fomlUlation must account for the changes in geometry which are inherent to the problem.

In the present study, i{ was therefore necessary to carry Qut the analysis usir, . ~ode

developed in accordance with large strain theory, in order to yield realistk quantitative

predM:tions of soil displacements.

When the small strain approximation is no longer valK:l the correct formalism of

stresses and strains must be established, and the constitutive relations must also be

generalized to accommodate the revised definitions of the large strain fonnulation.

Hibbin et al. (1994) presented detailed derivations relevant to the large strain theory and

solution methods adopted within the code used in the finite element analysis. An elastic

reference Slate was identifted for the material, and the stress and strain measures that

provided a worli: conjugate pairing were dellned. The internal virtual work n.te was
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wriuen in lenns of the Cauchy or tru.: suess tI and a.~ :In inlcgrnl over Ihe n:llut:ll

reference volume. as follows

LtI: D dV.. L. J tI : D dV g (5.1)

where J ::: dV I dV. is tile Jacobian of the elastic ddonn.llion bclwL-cn Ihe n;llur.a1

reference aAd the currem volume. In accordaocc wilh the work conjugacy COncL-pt. the

Kin::hoff stress. defined as

'1" JI1 (5.1)

was Iherefore the conjugate 10 the strain measure for which the associated strain nlle is

equivalent 10 the rate of defonnalion. given by lhe symmetric part ofthc spatial gnKlient

D .. sym {~] (5.)

where v is the velocity of. material poin! and x are the current spalial coordinatcs of the

poinl. The stress measure expressed in Equation 5.2 was useful in the: development of

conslirutive models II large strains. since il is the most direct measure with n:spt..'Ct to an

elastic reference Slale for which the conjugate Slrain rate is given by the nile of

defonnation. The colTtSponding str3.in measure was K1entified in one • dimension ;u lhe

logarilhmic strain. and provkled the most appropriate definition for ela.<;tic • plaMic

materials where the elastic part of !he strain can be assumed to be small.

The solid (continuum) elements availahle wilhin the code used a fully nonJincllr

fonnulation and allowed for finite slrain and rotation. The strains were computed by

approximate integration of the rale ofdefonnation (Equation 5.3) over a given incrcmcnl.

through use of I central difference algorithm. The strain components were rcfem:d to I
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fixed coordinate basis, such that the strain at the start of the increment must be rolated

to account for the rigid body motion during tht= increment. The rigid body rotation

relative 10 ttlt: coordinate system was addressed by application of lhe approximale method

proposed by Hughes and Winget (1980). In accordance wilh this approach. the stress

state was integrated as follows

r,.,!,' = .6R· 7', . .6R r +.6r (.6D) (5.4)

where 7' is the Kirchoff stress tensor defined with respect to the elastic reference

configuration. and the subscripts t and t + .6t refer to !he beginning and end of the time

increment. respectively. The stress increment .67' (60) caused by the straining of Ihe

material during the time increment .6t was dependent on the strain increment.60 defined

by Ihe central difference operator as

60· sym [~]
ax, .•",

(5.5)

in which .6.u is the displacement increment. and x refers to the current spatial position

of Ihe point under consideration. The increment in rmalion .6.R which occurred within

the time increment .6.t was approximated as

(5.6)

where .6.w is the central difference integralion of the rate of spin, given by

(5.7)
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The approximate imcy,rmion u:chniques used to ddin.:: III.:: Slmin ;md nllmilln

measures were deemed inappropriate for appliclltions in which both strains and Matinl\s

are large and the material exhibits siy,nificant anisotropic behaviour. This ellnditilllllllay

arise for finite strain analyses using kinematic hardening plaslicity moods wilh Ihe

induclion of anisolropy Ihrough slraining. For practical purposes with typicillm:\terial

parameters, inaccurate solulions may be anticipated for such material mooels when strain

magnitudes exceed values of 20 to 30 percent (Hibbitt et aI., 1994). An isotropic

hardening conSlitutive model, described in Seclion 5.2.3. was implemcnted in lhe present

study, where peak Slrain levels of the order of 100 percent were develuped in the

simulation of a scouring evem.

UpdOled Lagrangian (relative) Fomllliation

In the finite element approach to cominuum mechanics problems, lhen: <Ire thrc.::

alternative methods by which to describe the defonnation of a cominuous medium; these

are termed spatial, referential and relative fonnulations (Gadala et OIl. 1983; GarJala and

Oravas, 1984). In the spatial or Eulerian fonnulation, a condition of now is mndellt:u

within a fixed region of space, and the currem position of a material point in motion is

implicitly dependent on the variable time. This approach is inappropriOltc for the

representation of moving boundaries and history. dependent materials, as required in Ihc

analysis of ice scouring. In the referential fonnulation, the molion of a materi<ll point is

described in relation to an arbitrarily selected reference configuration. The total

Lagrangian formulation is a particular referential description where the initial stale is

selected as the reference configuration. The relative or updated Lagrangian fonnula!ion
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i5 alsu referential in nature however. in this case. the current state is selected as a time •

cJcpcodcnl reference con(jguration.

An updated Lagrangian fonnulation was implicit to the analysis perfonned as part

of the prescnt study. This approach facilitated the ac:c:ur:lte defmition of the material

5tn:ss history. the boundary conditions, and lbe stress and strain states, as material points

were coincident wilh the (jnite element mesh throughout the deformation process. The

incremental analysis procedure was based upon the following concepts (Nagtegaal and

Dc Jong, 1981).

(I) During each increment. a Lagrangian formulation was used : the state

vOlriables \Vere defined with respect to the state at the start of the increment.

(2) At the end of each increment. the state variables were revised (updated) with

respect to the Slate at the end of the increment.

A computational limit may be exc.ceded where very large local deformations

occur. as severe distortion of the elements may lead to loss of ac:cum:y and eventually

10 numerical divergence. This condition may be partially alleviated by the implementation

of a method of description which incorporates aspects of both the Lagrangian and

Eulerian fonnulations. In this approach. referred to as an Arbitrary Lagrangian

Eulerian (ALE) formulation. the mesh boundaries coincide with the material boundaries;

however. the deformatiOn!: of the mesh and the material are independent of each other.

The application of this method to the analysis of ice scouring was considered impractical

in the present study. owing to the history· dependence of the material behaviour which

introduces additional convective terms in the fonnulation (Liu et al .• 1987). However.

l'l.'Cent ALE finite element models circumvent some of these numerical difficulties
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(e.g. Huetink et OIl.. 1990: van den Berg et al .. 1991. 1992) ;IOU mOlY represent ;a viahle

alternative for further investigation of the scour problem.

Interactive mesh rezoning techniques may also be inuuduced into La~r.lngi;ln

ccxles to address the condilion of mesh degeneration associ.lIC'd with very large 101;3\

defonnations (e.g. Aower and Hallquist. 1986; Shih et al.. 199'J). TIll: crilerion fOf

rezoning is extreme element distortion in regions of high slrain gratlk:nts. sinLOC clenll:ms

may represent Stales of unifonn strain accurately irrespective of lhe strain magnitutk:s

experienced. The procedure involves definition of a new mesh for the defomlt:d

continuum, and transfer of the current state of the material onto the revised mesh. In lhe

general case, the elemental and nodal data, including the stress and strain statl.'S. nlily be

interpolated, deleted. added. or translated during each displacement increment. TIle cOOl:

implemented in the present study provided a limited rezoning capability for Ulil: with

two· dimensional first - order elements. This capability was not employed in the

analysis. as it WlJ insufficient to allow for adaptive mesh refinement throughout (he

simulation of an idealized scouring event.

Eltmtnl &ltetion

An important aspect of the behaviour of soils is that discontinuitks may fonn under

certain conditions. Discontinuities which are pre • existing in the soil mas.~ are relatively

straightforward to deal with numerically, in that their position is known a priori. On lhc

other hand. discontinuities which fonn in an indeumninate manner during the course of

soil deformation. such as failure surfaces during a scouring event. arc more difficult to

deal with in an analysis. In the finite element method. element shape functiOns an:
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defined such that displacements vary continuously, and discontinuities may only be

approximated by zones of elements undergoing intense shear defonnation. In the analysis

of the corresponding large strain problems, the element types used must therefore be

tolerant to localized mesh distonion. Lower - order clemcnts wcre recommcndcd for

cases in which large strains and high strain gradients are anticipated (Nagtegaal

et a!., 1974; Nagtegaal and De Jong, 1981). For a given number of nodes, lower· order

elements were noted to provide lhe greatest number of locations at which some

component of the gradient of the solution may be discontinuous.

The c.ondition of zero volume change throughout an element leads to constraints

on the defonnation of the element (Nagtcgaal et aI., 1974; Sloan and Randolph, 1982).

For incompressible or nearly incomprcssible cases, the predicted response of the finite

elemcnt model may be too stiff. due to the restriction imposed on the modes of

defonnati(ln which assemblages of elements are capable of exhibiting. In order to obtain

accurate solutions for undrained problems. the number of degrees of freedom within each

element must exceed the number of constraints imposed by the condition of zcro volume

change. In accordance with this requirement, first - order (4 • noded quadrilateral)

elements were found to be inadequate for use in the analysis of undrained problems in

plane strain configurations (Sloan and Randolph, 1982). This improper behaviour may

be avoided by amendment of the element fonnulation to address the incompressibility

constraint, or througlt the implementation of higher· order elements in the analysis.

In the selection of element types for the presem study, it was necessary to

accommodate large strain and cssentially undrained conditions. as were relevant to the

analysis of icc scouring. RectangUlar 8 • noded isoparametdc elements with biquadratic
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displacement and bilinear pore pressure descripfion were employed in the plane strnin

discretization of the soil domain. This element type was amcn.1ble 10 fUlly - coupled

effective stress analysis. and allowed for the incompressibility coRSlraint imposed by

undrained conditions. A reduced integration scheme was used in fonning the aiffness

matrices and internal forces for the element. and Ihis 5en'ed to incn:ase the solution

aa:uracy and also to decrease (he associaled compulational costs. SilX:'e an uptlatoo

Lagrangian formulation was used, the element sciffness was formed in the cumnt

deformed configuration of the element. It was noted that 8 - noded isop;lramLiric

elements are sensitiYe to the positions ofthe mid· side nodes, aOO severe distortion may

inh.ibit linear strain variation over the element and decrease (he rote of solution

convergence (Naglcgaal and De Jong, 1981).

5.2.2 Material Nonlinearity

EJfwiw SITUS Analysis

1be soil was modelled as a two - phase material in accordantt: with the principle of

effective stress. Only time effects due to primary consolidation were considered; the

behaviour of the soil skeleton was assumed to be rate and time independent. 'The finite

element mesh was associated with the solid phase or soil skeleton, and pore nuid now

was permitted throughout the mesh. A continuity n::lation.~hip was defined for the pore

fluid based on the principle of conservation of mass, in which the viscous now of the

fluid was described according to Darcy's law. The pon:: nuid continuity and the strcs,'i

equilibrium equations fonned the basis for the coupled deformation I diffusion solution.



The coupled problem was nonlinear and unsymmetric with me inclusion of the effects of

malerial and gt:omclric nonlinearities. and permeability dependence on the void ratio.

Modified Cam - Clay

1bc constitulive model adopted for usc in the present SfUdy was the ModiflCd Cam • clay

model (Burland, 1967: Roscoe and Burland, 1968). The model is based on the concepts

of critical Slate lheory (SchoflCld and Wroth, 1968; Wood, 1990) arxl is known to

.~uccessfully reproduce well - established experimentally delermined behaviour for soft

clays. Modified Cam· clay is an elastic· plastic model, and includes the following

illtributes for lhe description of the soil response : (I) an elasticity theory which

char.teterizes the clastic, recoverable deFormations of the soil; (2) a yield surface which

delineates a boundary in a general stress space, within whkh dcfonnations may be

considered to be elastic arxl recoverable; (3) a flow rule or plastic potential which

specifICS the mode of plastic deformation that occurs when the soil is yielding, and

(4) a hardening law which defines the expansion of the yield surface and the absolute

magnitude of the plastic deformation. The assumptions of the model in relation 10 each

of these anributes are reponed briefly in this section. with discussion entirely in tenns

of effective stresses. The model was implemented numerically lhrough backward Euler

integration of both the flow rule and the hardening law. as presented in detail by

Hibbiu et al. (1994).

In the formulation of the model. the state of stress is defined by the effective

~tress quantities p and q, which represent the mean normal stress and me deviatoric
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St~. respectively. The corresponding incremerual strain variables are 6t~ and at.,

which rep~nt the volumetric and deviatoric components of tile strain. to terms of the

principal effective stresses and strains, the yoJumelric and deyiatoric stresses and strnin

increments are given by the following general expressions :

ae~ • 6e I + ae~ + 6 t 1

Ot
q

• j[(6tl-6e~)2+(6t:1-6tl)z+(Ot:l-Otl)~II/~

These quantities are related to the first and second invariants of the stress tensor and the

strain increment tensor.

The elastic and plastic responses of the soil are distinguished by separntion of the

mechanical deformation into recoverable (elastic) and nonrecoverable (plastic)

components. For large strain problems, definition of the strain rate: mca!.urc in

accordance with Equation 5.3 and the assumption of small elastic strains (negligible

compared 10 unity), results in the usual additive strain rale decomposition for incremenlal

plasticity models, expressed as

(5.9)

in which 6t are the 10Iai strain rates, and the superscripts e and p refer to the cla.~tic and

plastic componenls. respectively.

The soil is assumed to behave as an isotropic elaslic material within the yield

surface, and ~overable changes in volume are associated only with changes in mean



crfl,:t:live stress. An unloading - reloading line for a particular stress state within the yield

surface represents the elastically attainable combinalions of the specific volume II and lhe

mean effeclive slress p. The equation for the unloading - reloading line (denoted URL

in Figure 5.2) is described as a linear relationship belween the specific volume and the

logarithm of the mean effeclive stress in the fonn

II = II, - K lnp (5.10)

where the parameler K describes the gradient of Ihe line and II, is the specific volume

associated with a unil value of the mean effective mess. Since a change in specific

volume Oil produces an incremenl of volumetric strain otp • Equation 5.10 can be

written as an incremental relationship, given by

(5.lI)

in which the superscript e again indicates an elastic strain increment. The definition of

a conslant slope K of an unloading - reloading line in the compression plane implies an

elastic bulk modulus K that increases with the mean effeclive stress according to :

K. ~, (5.12)

It is also assumed that recoverable shear strain increments ot; are induced by changes

in the deviator stress q such that

(5.13)

where G denotes an elastic shear modulus. With the bulk modulus given as a function

the mean effective stress. limitations are imposed on the pcnnitted selection of a variable
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or constant shear modulus (Zytynski et aI., 1978). In practicl:, thc vlllue of G might he

deduced through a specified constant value of the Poisson's rmio 1', leading to a shear

modulus that is dependent on the mean stress in the same manner as the hulk modulus

(BrilCo and Gunn, 1987).

The Modified Cam - clay yield surface describes an elliptical shape in eni.-Ctivc

stress p : q space, as depicted in Figure 5.2. The yield surface is centred on the p axis

and passes through the origin, with size defined by Pc' the maximum mean em.'Ctivc

stress to which the soil has been subjected in its past history. An cqualion defining the

yield surface may be written in the following fonn :

(5.14)

in which 1I '" q/p is the ratio of the deviator and mean effective stresses, lind M is a

constant model parameter equal to the slope of the critical state line, as described hclow.

The change in size of me yield surface Pc is dependent upon changes in the effl.'Ctivc

stresses p and q as the soil yields, in accordance with the differential form of

Equation 5.14. In order to specify the yield surface within a general framework for

elastic - plastic models as presented by Wood (1990), Equation 5.14 can also he

expressed as

where the yield function f delineates the boundary of elastically auainable combinatiuns

oftheeffcctjve stresses,
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Thl: concept of nonnaHty of as.-.ociated plastic main incn:ments is m.lllptl.'lI IU

ueducc thl: change of plastic volumetric strain which must accompany an incrcmclIl of

plastic shear strain. as the soil yields. For associatcd flow, the yield function f and the

plastic potential g are identical. and the vcctor lIf plastic strain increments :lcts in the

direction of Ihe outward nonnal 10 the yield surface. such Ihal

(5.16)

The flow rule given by Equation 5.16 provides an indication of the relative magnitudes

of Ihe individual components of plastic strain. when plastic defonnations lx:cur.

The isotropic hardening or expansion of the yield surface at constant slmpc. is

assumed to depend upon the nonnal compression of the soil. The normal compression

stress p. provides a link. through the hardening law. between the size of the yield

surface in effective stress space and Ihe isotropic nonnal compression line in the

compression plane (denoled NeL in Figure 5.2). A linear relatiOlt~hip be\wl.'Cn thc

specific volume v and the logarithm of the mean effcctive stress is employed to descrihc

the isotropic normal compression. in Ihe form

u = N - h lnp. (5.17)

where h is the gradienl of the line and the pal".Imeter N defines the position (If the lim:

in p : II space, being the specific volume associated with a unit valuc of the rt'ICan

effeclive stress. The plastic volumetric strain increments arc defined by the change in si7.c

of the yield surface in accordance with lhe following relationship:
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(5.18)

which serves as the hardening law for the model, and allows (or the assessment of the

magnitude of the plastic strain.

The model includes the concept of a critical state for the soil in which plastic

shear distortion may continue intlefinitely without changes in volume or effective stresses.

The critical slate condition may be expressed as

(5.19)

In effective stress p : q space, the locus of ultimate states, referred 10 as the critical stale

line (denoted CSL in Figure S.2), is defined according lo

q~•• M p.. (5.20)

where the parameter M. the slope of the line, can be thought of as a frictional constant

relating the shear strength to the effective stress level. In the compression plane, the:

critical stale line is parallel to the isotropic normal compression line, given by a linear

relationship of a similar (ann :

(5.21)

in which the parameter r defines the specific volume associated with a unit value of the

mean effective stress at critical state,

In drained or undrained derormation or normally or lighl1y overconsolidated soil,

yielding initially occurs with stress ratio 17 < M on the wet side or critical state, as
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illustrated in Figure 5.3 (a). For yielding within this region, the plastic volumetric stmin

component is compressive. and continued deformation is associated with expansion of the

yielci surface, and plastic hardening of the soil. Conversely, in drnincd or undrairn..'d

defomlation ofhea\'ily overconsolidated soil, yielding initially oceurs with stres..; mtio" > M

on the dry side of critical state. as illustrated in Figure 5.3 (h). For yielding within this

region, the plastic volumetric strain component is dilative. and cominut,'d del'onnation is

associated with contraction of the yield surface, and plastic softening or the soil.

Although the model provides predictions of plastic strain for stress paths which reach

yield on the dry side of critical state, softening is an unstable process which fails 10

satisfy the condition of normality of plastic strain increments. In this region. failure

involves Ihe localization of shear distortion within distinct rupture bands prior to reaching

the yield surface as defined for the model.

The idealized stTeSS - strain behaviour under states of constant mean effective

stress, with increasing deviatoric strain, is also shown in Figure 5.3. Following initial

yield, which is dependent upon the extent of overconsolidation, the soil expcricnce.'i

hardening or softening until the effective stress state reaches the top of the current yield

surface with stress ratio 1/ • M. where unrestricted plastic shear distortion can occur

without funher expansion or contraction of the yield surface. 11K: critical state line

provides a division between stress states for which positive excess pore pressures and

volumetric compression may be expected to develop and those associated with negative

excess pore pressures and volumetric expansion. The particular response exhihited will

depend upon the initial state and the total stress path 10 which the soil is subjected.
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5.2.3 Boundary Nonlinearity

HiRid Sur/acl! • Soillnfl!roaion

A rational simulation of icc scouring required modelling of !he interaction belween the:

t1donnablc soil medium and a rigid body irlealizalion of the: model keel, under prescribed

mOlion. A finite - sJitling fonnulation was adopted which allowed for separation and

rcl:lIivc t1isplacemem of finite magnitude, and arbitrary rOlation of the contacting

surfacc.~. The finite· sliding capability was implemented by means of rigid surface

interface clements which motlel contact between an elemen! face, auached to the

defomling medium, and a rigid body. The elements used were compatible with the

discrelized soil domain and incorporaled the allTCSponding nodes at the contact surface.

as illustrated in Figure S.4. Three nodes of each element formed part of the defonning

mesh, and a final node acted as a reference node for the rigid body. 1be reference node

was common to each of the inlerface elements employed to detect contael with the rigid

body. The surface geometry of the rigid body was described analyttcally in two·

dimensions in tem1S of a series of inten:onnetted straight line segments. The rigid body

reference node was allowed both translational and rotational degrees of freedom, and

boundary conditions were applied to the node 10 define the motion of the rigid body

during the even!.

The in!erface elements were required to satisfy the conditions of equilibrium and

continuity of displacements in the nonnal contact direction. In Figure S.4, point A is a

node on the contact surface of the deforming mesh with current coordinates x A' and.

poin! C is the rigid body reference node with current coordinates xc. Point B is the
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nearest position to A Oft the rigid surface. at which lbc nonnal 10 the surface n d

interacting surfaces, liven as the diswtt from 8 10 A alon& - no such that

n h • - x...... Xc ... r (s.n)

where r is defined as the VCCIor from C 10 B. If the value of h was less lhan a specified

clearance below which contact occurred, a contact constraint was enforced lhrooJlh

Lagrange multiplier techniques. as detailed by Hibbiu et a!. (1994). The kinematic

measures of overclosure and relative shear sliding. constructed II each inlegrdlion puinl

of the elements, were used 10 introduce constitutive relations which define lhe IOCJI

material response It the contacting surfaces.
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SurfCJC~ C()nstjtuli~ BrhaviouT

The surfaces in contact transmitted shear suess as well as normal pressure, and the

conlact tractkJRS depended upon the relative motions at the interface. In the direction of

the local normal, the pressure suess - clearance relalionship was defined as a perfectly

him! contact condition, for which the contact pressure stress a. at a point was given as

a function of the overclosure h of the surfaces. 'The surfaces separated if the pressure

Slress was reducet.l to zero, and separated surfaces came into contact when the clearance

between them wa~ reduced (0 zero. During contact, any pressure stress could be

lransmiuet.l between the surfaces, with no imerpenetration.

The tangential shear stress tractions were coupled to the nonnal pressure stress

through frictional effects. The standarrl Coulomb friction model was used to describe the

shear response at the interface. As illustrated in Figure 5.5, relativt mOlion or slip was

rJO( permitted if the: equivalent shear stress T"t was less than the critical stress Tcr , or

(5.24)

where the critical stress was proportional to the contact pressure a., accorrling to :

(S.2S)

in which {, is the angle of friclion at the interface, and ~ is the corresponding Coulomb

friction coefficient. For two - dimensional models adopted in the present study, an

isotropic friction condition was implicit. Frictional slip occurred when the equivalent

suess reached the critbl stress value. For isotropic friction, the direction of the slip and
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the frictional shear stress coincide, which may be expressed in the fann

(5.26)

where 6"'t1 is the slip rate in the i· direction, and 6'Y"'I is the equivalent slip rate.

given by

(5.2?)

In the numerical implementation of the friction model. the condition of no relative

motion or sticking response, was approximated by stiff elastic behaviour. The clastic

stiffness ks was defined such that the relative motion was bounded by an allowahle
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maximum elastic slip, permitted before frictional slip occurred. This approximate

appmach may be viewed as an implemt:ntation of a non· local friction model, in which

the Coulomb condition was not applied at a point, but was weighted over a small area

ufthe interface (Oden and Pires, 1983).

5.3 Implementation of Analysis

Thc theoretical approach should be equally valid in prerlicting the response of both the

small scale centrifuge model and the corresponding full scale event. In the present study,

the prototype full scale conditions were simulated directly in the finite element analysis.

The centrifuge model test and the numerical analysis both provided data which were used

to compare numerical predictions and experimental observations, in accordance with the

relationship presented in Figure 5.1.

5.3.1 In situ Stress State

The numerical analysis was implemented through the specification of history data which

defined the sequence of events or loadings for which the response of the model was

sought. For the physical model. the TCtonsolidation phase on the centrifuge altered the

initially uniform effective stress field of the specimen to a distribution of effective

stresses which were in equilibrium with the prescribed acceleration field and boundary

conditions. This in situ effective stress state and the corresponding specific volume

conditions were estJblished in the initial step of the analysis. through the application of

user subroutines. defined in accordance with the following assumptions.
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The prerlicled response of !he soil was dependent upon t~ stress hisl(lry 3111.I the

unloading relalion assumed for conditions prior to lhe initial Stille d~finl...d in the an.1Iysis.

Soil loading and unloading were taken to be one • dimensional such lhat the princip.11

stress directions were venical and hornontaL The ill sitl/ horizontal effective: strc55CS

were computed from !he in situ vertical effective stresses and lhe coeffK:ient of l:.tC.'ral

earth pressure at res! K•. The K. values were defined based on lhe semi· empiric31

relationships proposed by Wroth (1975) (Equation 4.4) for inilial one • diml,lnsional

unloading following one • dimensional nannal consolidation. and were bounded by the

coefficients of passive and active earth pressure. The initial values of the lipl.ocific volume

were compuled from the corresponding in situ mean effective st~ aoo lhe known

history ofoven:onsolidation of the soil, in accordance with Equations 5.10 and 5.17. 1btl

initial size of lhe yield surface Po for a given soil element was detcrmil\l.-d from the

maximum effective Slresses, using the expression for the yield surface giVl:n hy

Equation 5.14. The imposed laboratory pre - consolidationSl~ defined the maltimum

effective stress values at near surface depths, such thai the initial stress state laid within

the initial yield surface.

5.3.2 Material Parameters

Theoretical modelling carried OUt with complex constitutive relationships aotl numerical

procedures may be susceptible to hidden inaccuraci~s, numerical inslabililies, lack of

unique solutions, and other errors. The material paramelers used in the: analysc.~ were

therefore derived from an eltisling base of <fall., sudJ that validation of the analysis
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mcthods was not compromised by empirical modification of the selected input v.alues.

Typical material propenies data for Speswhite kaolin clay were presented in

St.'ction 2.4.1. The Modified Cam· clay model, as implemented ill the present study,

involved specification of five parameters, each of which has identifiable physical

significanc~. To allow for a coupled pore fluid diffusion and defonnation solution, values

of the venical and horiwntal penneabilities were also defined for the material.

Furthermore, selection of the interface angle of friction was required. with use of the

Coulomb friction model 10 describe the surface interaction.

Till! critical Slar/! stress ralio, M

The critical state is approached asymptotically by a nonnally consolidated or lightly

overconsolidated specimen as it is sheared monotonically, and represents the state at

which the soil experiences continued shear distortion without further changes in volume

or effective stresses. II is found from empirical evidence that, at the critical state. the

stress ratio M .. q,,1 p.. is independent of the mean effective stress, defined in

accortlance with Equation 5.20. The value of M may be detennined by plotting the stress

paths of appropriate shear lests in p ; q space. and computing the stress ratio associated

with large strains at the ultimate or failure conditions in the tests. The results are, in

some cases, ohserved to differ between triaxial compression and extension tests, and this

effect could be incorporated within the constitutive model by adopting a non • circular

generalization of the yield locus in the octahedral plane. A direct relationship also exists

between the critical state stress ratio and the effective angle of friction at constant
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volume 4l~~. given by the following expn:ssion for lriaxial c\lmpn.'S~ilm :

M ,. 6 sin 41..

3 - sin q,<~
(5.28)

A series of undrained lriaxial compresston tests with pore pressure 11\l:3SlIremcnt

were conducted by Davidson (1980) on isotropic:ally compn:sscd specimcn.'1 of Spcswhitc

kaolin, encompassing a range of overconsolidation ratios from 1.0 to 7.0. Davies (1981)

perfonned tests on specimens subjected to one - dimensional compn:~'1ion. as relcvunt

to the stress state imposed during laboratory pre - consolidation of cenlrifuge models.

The results of both lest series were used to define a unique lueus of end points in

effective stress space. described by a straight line passing through the origin with

gradient M ::::: 0.88. AI - Tabbaa (1984) presenled data from drnincd triaxial 1C...ts nn

one - dimensionally compressed specimens wilh an overconsolidation rollin nf 2.0. '(be

critical state stress ratio in triaxial compression was higher in comparison with t'-: "-"lUll

obtained in triaxial eluension. with average values of M :: 0.90 and 0.68 n:spcctivcly.

Values of the parameter M for Speswhite kaolin, as reponed hy other n.."'ICarch wor1u:n;

included the following: 0.8 (Knoyle. 1979); 0.88 (Houl~by. 1981); 0.90 (Clegg. 1981 l.

and; 0.84 (Powrie. 1986).

A critical state stress ratio of M =0.9 was specirled for usc in atlillyscs carried

out as pan of the present study, comsponding with a value of the effective angle of

.friction q,<~ ,. 23° in triaxial compression. as given by Equation 5.28. For ~implicity.

a circular generalization of the yield locus in the octahedral plane was adopted, implying

an assumption of equal M in compression and extension.
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nit: wadiem oJ normal cOnJ"CJlidmion lines. h

II is observed empirkalJy that, for clay specimens undergoing normal compression, lIle

rd,ltiurnlh:p between tbe specific volume tI and the logarithm of the mean effective

stress p is approximately linear for a constant stress ratio path, and that the gradienl "

is independent of the stress ratio. A linear relationship, as given by Equation 5.17,

provides <I reasonable representation of the soil behaviour over a range of effective

stresses of engineering interest. The value of h may be determined from that portion of

,In instrumented oedometer or drained triaxial compression lest which exceeds the initial

pre· cunsolidation pressure.

The consolidation characteristics of Speswhite kaolin were investigaled by

Knoyle (1979) under both one - dimensional and isotropic conditions. Mair (1979) and

Davies (1981) compiled the data from one· dimensional compression tests as reported

by several research workers. and the results were consistent with those presented by

Knoyle (I979). indicaling an average gradient of JI. "" 0.25 over an approXimate range

of Illean effective siresses from 100 10600 kPa. Powrie (1986) specified a value of

}" "" 0.26 for Speswhite kaolin, based on the results from a series of isolropic and one·

dimensional compression tests perfonned by Al - Tabbaa (1987). The test results

displayed a reduction of the value of }" by to percent as the mean effective stress was

increased from 60 10 600 kPa. Airey (l984) also reported a dependency on stress level,

with the value of}" decreasing from 0.38 at a vertical effective stress of 2S !cPa to 0.21

at 250 kPa in one • dimensional compression. A linear normal compression relationship

wilh a constant value of the gradient of JI. - 0.25. was assumed to provide an adequate
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representation over the range of effective stresses which were relevant in the

present slUdy.

nle gradienr of swelling lilies, Ie

The relationship between the specific volume 11 and the logarithm of the mean effectiw

stress p during swelling and recompression is also observed to be approximately linear,

with gradient Ie, for clay specimens subjected to constant stress ratio paths, as inrJicatec.l

by Equation 5.10. Since the coefficient of lateral earth pressure at rest K" varies with

one - dimensional unloading, an oedometer capable of horizontal stress measurement ill

required if the value of Ie is to be assessed for one - dimensional unlcmding rather tlmn

isotropic unloading. The empirical evidence indicates that the stress· stiJin bch.1viour

on an unloading· reloading palh is hysteretic. such that a single value of the p.1rotmcter

Ie is insufficient to define the gradient. Immediately following stmin path rcversalthc soil

stiffness is higher and the value of Ie is locally small, with decreasing stiffness during

continued unloading I reloading.

The gradient of swelling lines for Speswhite kaolin was characterized by a value

of Ie .. 0.045. from one • dimensional compression test data obtained by Knoyle (1979).

AI • Tabbaa (1987) investigated both one· dimensional and isotropic unloading anrJ

reloading. and presented values of Ie as a function of the overconsolKiation rdtio. The

measured local gradients were given by K "" 0.01 on first strain reversal whereas. at an

overconsolidation ratio of about 6, average values of K ... 0.06 were obtained. An overall

result of Ie = 0.028 was reported. for the complete range of overconsolidation ratios

315



investigated. Powric (1986) adopted an average gradient of K ::: 0.05. based on lhe data

given hy AI - Tabbaa (1987), and consistent with values assumed in preceding research

on Spcswhitc kaolin (e.g. Davies, 1981; Almeida, 1984). Stewan (1989) found lower

average values of K = 0.034 and 0.038 for one - dimensional unloading of heavily

overconsolidate<! specimens. In consideration of the available experimental evidence. a

constant v,llue of If :: 0.04 was considered to provide the most appropriate represenlation

over the rang~ of unloading I reloading condilions anticipated in the present study.

77,e critical state reference specific volume. r

As illustrated in Figure 5.2, the isotropic normal compression line and Ihe critical stale

line have parallel projections in the compression plane wilh reference values of specific

volume denoted by Nand r respectively. where

r == N - (X - If) In2 (5.29)

in 'lccordance with Modified Cam· clay Iheory. 1be value of r, representing Ihe specific

volume inlercepl at POl '" I kPa. is commonly taken as Ihe single parameter required to

describe the location of !he lines of plastic compression in 1/ : In p space.

The critical state reference specific volume derived from the lests conducled by

Knoyle (1979) on Speswhite kaolin was r :: 3.39. Clegg (1981) obtained a comparable

value of r "" 3.44 and Ihis resull was also adopted in analyses perfonned by

Davies (1981) and Almeida (1984). The extrapolation of normal compression data

presented by AI - Tabbaa (1987) indicated a lower average intercept. given by f "" 3.00.

In lhe present study. a reference specific volume off"" 3.44 was used to locale Ihe
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critical state line in the compression plan~. in acconianc~ with the bulk of avail:lble

experimental evidence for Speswhite kaolin.

The Poisson's rario. "

Cbanges in the deviator stress q within the yield locus. for an isotmpic elastic soil,

produce elastic shl:ar strain increments which can be calculated from Equation 5.13 with

an appropriate value of the shear modulus G. The empirical evidence indiclites that the

value of Gis dependem upon stress level. and is most strongly correlated with the me:m

effective stress (Wroth et aI., 1979). AI - Tabbaa (1987) investigated the relationship

between the shear modulus and the mean effective SIrt.'Ss. for values ohtained fn.llll initinl

unloading I reloading in shear teslS on Speswhite kaolin, and cOlllpart:d the results with

data presented by Davidson (1980). The variation of the shear mtxlulus with stress levd

was described according to Ihe approximate relation given by G ::: 62 p. based on a least

square fit to the experimental data. The introduction of the sh~ar modulus as .1 l'unction

of the value of p results in non· conservative elasticity if the bulk modulus is

independent orthe shear stress. However. the assumption of a constant value of the shear

modulus to address this theoretical requirement is inconsistent with the ohserved

behaviour, and generally leads to greater inaccuracies in the solution.

The selection of a constant value of the Poisson's ratio II was adopted as un

alternative method by which to specify G where, from elasticity thL'Ory.

(5.30)
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which implK..'d lhat Ihe shear modulus was propottionallo the mean effective stress in the

same way as the bulk modulus. This approach was considered 10 provide reasonable

n.:sulls where elastic behaviour does not dominate the solution, and where there is •

,;ignincanl varialion in stress level in the soil. AI - Tabbu (1987) observed that Poisson's

ralio was collSlant on inilial unloading and independenl of the mean erfective stress. For

Spcswhite kaolin, an ave~e result of" = 0.3 was derived from the initial slope of one •

dimensional unloatJing I reloading paths in a. : a~ space. Wroth (1975) reponed a

cunSlant value of .. '" 0.33 for lightly overc:onsolidaled kaolin based on the one·

tJimcnsional consolidation leSI data from Nadanjah (973). This result was used in Ihe

idealization of the elastic behaviour of Speswhite kaolin for analyses perronned in Ihe

pTCSCm Sludy.

nit! 1~t1ical and horizontal fnnneabifitits, k ~ and k.

lbc: permeabililY of the soil musl be speciflCd 10 model the now or waler Ihrough the soil

as pan or a coupled deformation I diffusion solution. An orthouopic definilion is

required ror one - dimensionally compressed specimens. in which the value or the

horizontal permeability differs rrom the value or lIIe venital permeabililY. The empirical

c\'Klence indicates thai pcnneabililY varies with Ihe currenl volumetric stale or the soil.

A decrease in void ratio usociated wilh smaller void passages. will lead to a reduclion

in penneability, since resistance to fluid now is primarily due to viscous effects.

AI • Tabbaa (1987) investigated the variation of pcnneabilily with void ratio for

Spe.~white kaolin subjected to one - dimensional nannal compression. Values of
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permeability were obtained from both falling - head and consolill:uion IllSIS ctlnduclt'tl

using a modified oedometer which permilled radial drainage. Unique rehltilllL~hips

between the venital and horizomal permeabilily (k., and k ~) and the void rutio e were

eSlablished. in the form :

k. 0.50 e Us 10-~ mOlls
(5.31)

which described a linear dependency of the logarithm of permeability on Ihe logarilhm

of void ratio. The expressions provided an acceptable fit to the experimcnlal data for both

normally consolidated and overconsolidated specimens. within a mnge of void mtios from

2.2 to 0.98. Comparison with the results obtained by olher research workers for the

vertical permeabilityofSpeswhite kaolin (Manson, 1980; Davies. 1981; Kusakabc, 1982;

Savvidou. 1984) showed limited scatler, and Equation 5.31 formed a lower bourn.! ut

higher values of the void ratio. In the present study. the variation of vertical mld

horizontal penneabilities with the current state was accounted for through implementation

of Equation 5.31 within the analysis.

Tile interface angle offriction, 6

The surface constitutive model implemenled in the analysis required specincation of the

interface angle of friction 6 as a material parameter, with the assumption that the soil had

no effective cohesion. The frictional resistances between kaolin and diffcrent struclural

malerials trealed with various lubricants, were measured in laboratory dircci sIK..ar lestS.

as summarized in Table 5.1. The recorded values of interface friction were: low. ranging
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Table5.! Valut's of fht' inlt'ifaCt' ungit' offriction bt'fWun kIlofin and orht'r mOlerials
(dOLO tlssemblt'd from: lIombly. 1969; Pawrit'. 1986. ond; Woggetl. 1989 J

Surface in Lubticant It COJUaCt Rate of Angle of
eonlacl with inlerface p=u.. shearing friclion
kaolin <l:!Ilim:) (mmihr) (<leg. )

aluminum silicone 70 24.0 0.57 (00.80......
5lainlcss silicone 100 0.33 LJ3
sleel greASe

brass silicone 70 24.0 0.52 to 0.80
grease

rubber silicone 70 24.0 0..57
grease

rubber silicone 70 2.40 0.92
grease

rubb<. silicone 70 0..50 1.20......
pc:rspex no lubricant 11.9

po""", Adsil silicone 6.3
spn.y

po.,,,," silicone 2.3......
from 0.6 to O.so for an aluminum Cont3C1 surface at which silicone grease was applied

ali a lubricant. The results also indicaled dependency of the value of 6 on the rate of

shearing. where decreasing rates were associated with increasing frictional resistance. In

addition. Waggeu (1989) observed variation of the parameter wilh the degree of

overconsolidation of the soil. and reponed higher values of residual friclion with

increasing overconsolidation ralio al a kaolin I perspex interface.
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A well - defined model keel I soil interface c;onrJilion was provirJl.'lI in Ihe

experimental investigation, through use of a polisht:rJ aluminum c;ontac;1 surfuce lmrJ

application of Adsil silicone spray as a lubricant. The effec;tivencss of Ihe lubric,lnt was

reduced. however, due to submergence of the contaci surface during the event. 'Ole

specified velocity of the model iceberg exceeded rates of deformation imposed in

laboratory direct shear lesting by several orders of magnitude. The ClIntac;t surfllce

represented a practically smooth interface under test conditions. and the em:cts of low

values of the soil I rigid surface friction angle within the nmge of 2.9 Itl 8.5 0 were

investigated in the analysis, as considered relevant to the interf3ce conditiun pl\:scrihcd

in the physical model study.

5.3.3 Model Development

Finite Element Mesh

Figure 5.6 shows the general mesh configuration and the boundary condition... which were

adopted in the two - dimensional plane strain idealization of the scouring process. As

discussed in Section 5.2.1, rectangular 8 - noded isoparnmetric elements with biquadroltic

displacement and bilinear pore pressure description were selected for the discfClilOltion

of the soil domain. The compatible rigid surface interface elements (&:clion 5.2.2)

incorporated the nodes at the surface of the deforming soil, in addition to a common

reference rlode associaled with the interacting rigid body. The initial configuration of the

rigid body was specified in terms of coordinates which connected a series of straighllinc

segments, conforming to Ihe geometry and prototype dimensions of the modcl keel.
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The finitc element mesh was required to accommodate high strain gradients

as~()daled with severe deformation adjacent to the rigid body. It was necessary to provide

llpproprialc mesh refinement, such that displacement models of Ihe selecled elements

could adequately approximate the solution in this region. The simulation of a scouring

event also required sufficient rigid body movement 10 approach a relevant steady - state

condition, for comparison with experimental observations. Preliminary lrial - and - error

analyses were conducted to determine Ihe maximum movement of the rigid body, as

dependent on the selected mesh configuration. Severe element dislOnion restricted

allowable refinement of Ihe mesh for which convergence was allained at large

movements, and it was necessary 10 adopt a relatively coarse discrelization over Ihe depth

of the scour cut. The achievable movement of the rigid body was directly relaled to the

assumed mesh configuration, Comparison with the results from analyses which included

finer mesh subdivisions within the scour cut depth, indicated negligible dependence on

the mesh configuralion over a limited range of movement of Ihe rigid body. In the

analysis of individual scouring events, Ihe general mesh configuration was adapted as a

function of the particular scour depth and keel geometry.

Boundary Conditions

The boundary conditions assumed in the analysis (Figure 5.6) approximated Ihose

imposed by the centrifuge model container (Section 3.2.1). 1be walls of the container

provided a condition of high lateral sliffness and were coaled with water· resistant

grease to reduce friction. The interface at the end boundaries was treated as frictionless

with consideration of the data presemed in Table 5.1. The movement of nodal points
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Figure 5.6 Two· dimensional plane strain idealiZ/ltion of scouring process. finite
element mesh canfiguration and boundary conditions adlJpted in analys;,f
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along lhe end bou"l'llhries was restrained in me horizontal direction. 1ne boundary a1lhe

base of tIM: soil specimen was interpreted as completely fIXed. The nodal point

displaccmenLS at the bottom boundary were restrained in both vertical and horizomal

dil"C(;tions. During a centrifuge model test, allowance was made for two • way drainage

al the lop ami bottom of the soil specimen. In the initial analyses performed, the soil

domain was confined by impervious end boundaries and drainage was penniUed at the

top anti bottom surfaces.

The numerical algorithm for consolidation introduces a relationship between a

minimum allowable time increment and the element dimensions at a drainage boundary.

Initially. consolidation is a surface phenomenon, with a singularity in the derivative of

lhe excess pore pressures at the draining surface. A reasonable approximation with a

linear pore pressure representation can only be expected when consolidation has extended

deep enough to affect the first row of nodes in lite interior of the soil domain. In order

10 accurately model the surface condition which occurs at very small times at a drainage

boundary, the mesh size adjacent to lite boundary and lite time increment must be

selected accordingly (e.g. Vermeer and Verruijt, 1981).

In the present srudy, the solution encompassed a signifttant volume of soil and

an essentially undrained response was anticipated during the simulation of an event. The

specirlcation of impervious boundaries at the top and bottom surfaces was consistent with

the type of analysis undertaken and the degree of refinement of the mesh, where detailed

representation of the surface condition was not relevant. Comparison with analyses that

m..de allowance for surface drainage. indicated lItat results were not signifICantly altered

by the drainage boundary condition assumed at the free surface. Following very large
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mov~ment. th~ sur(ac~ ~Iements immediately in from of the rigid hody wen: more

irregularly distoned in analyses where a surface drainage: boundary was adopted. The

pore pressure tol~rance that controlled the automatic time incremenlalion was k"t 10 a

relatively large value since !he nonlinearity of the malerial restricted the size of the

increments during the traos)ent analysis.

~qu~nc~ of Anal)'sis

The simulation of an event was divided into a series of steps, and the stat~ of the model

evolved throughout the analysis as it responded to the history of loading. In the firsilltcp

of the analysis. the in situ effective stress and volumetric conditions. corresponding with

!he equilibrium statc of the physical model. were established in accordance with the

assumptions presented in Stttion S.3.1. This step iochxJed :I I'rocess of itcration, as

required to ensure a stress state which equilibrated !he prescribed boundary conditions

and geostatic loadings. The size of the initial yield surface was then adjusted at any

material point where !he yield function was violated, such that the initial stress S1atc laid

on a current yield surface.

During a physical model event. a steady· state scour depth was CSllIblistw.:d

following a brief period or uplift ortbe model iceberg from a prescribed initial ('IO!lilion.

In addition to changes in the scour depth experienced by the model iceberg, rotation.~

about a transverse axis through the model produced small changes in the attack IInglc

during the event. It was impractical to simulale the entire scouring episode numerically.

Therefore. a uniform scour depth and II fixed value of the attack angle were adopted in

the analysis. The constant scour depth used in the analysis was selected to represent the
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~tcady • .Iolatc condition. The simulation of the event was carried OUt as a penurbation

Stl..-p following the set • up of the in situ effective stress and volumetric conditions in the

fin;( step of the analysis. The rotatK>n and venial translation degrees of freedom of the

rigid body reference: node were restrained, and the motion of the model iceberg was

idealized as a horizonlJl translation of the rigKl. body. The translation was specified over

a fixed time interval such that the analysis step time corresponded with the phys)cal

model event time, and an identical rate of scouring was defined for the numerical model.

The measurements of scour - induced subsurface soil defonnation presented in

Chapter 4 were acquired following unloading of the imposed scour forces and self

weight stresses at the completion of a centrifuge model test. The recorded values

embodied the cumulative plastic soil deformation, with expected relaxation and recovery

of the elastic component of Ihe soil response. To allow for comparison with the

L-cntrifuge test measuremenLS, a final unloading step was included in the analysis,

following the simulation of In event. A venical translation was prescribed in this step.

5UCh that the rigid body was separated from the soil domain. With the removal of the

recoverable component of the soil response as a result of the unloading Slep, it was

anticipated that the analysis solution would correspond more closely with the deformed

stale exhibited during site investigation of the physical model.

5.3.4 Representation of Scouring Mechanisms

The model scours created in the experimental programme were wide in relation to their

depth. corresponding to the high width I depth ratios characteristic of Iypical fteld scour
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geometries. A two· dimensional plane: str:lin idealiz.:lli~ln uf [he SI.:uuring pnlCes.~ w:as

adOplc:d in Ihc: numerical analysis. The implemcl1I:uion ~lf .. !Wll· dilllCll.'Iiol1:ll

represenlation imposed ctrtain reslr1ctions on potenlial n'k.'Ch:lnisms llf Sl.'tlUring. 3nU

~ limitations were evaluated with consider-Ilion of the availahle evidence (n'm

physical modelling.

Physical Modtfling

During a scouring event. a material point initially situatL-d at some dis\:lnce in (mill ~l(

Ihe advancing keel was first displaced forward and upward. as as.',ocialc(] with Ihe

fonnation of a raised mound in front of the keel. The allainment of a slllble cmlfigur:llion

of the frontal mound with continued scouring involved subsequent lateral d~lllacl:l1lcru

of the material poinl. related 10 henn fonnation on both sides of the resulting incision.

A common fealUre of the measured scour profiles was benn dimensions thai were mlall

in relation to the size of the scour creala:l. The cross - sectional area of henn matcriiJl

above the initial level of the soil surface was Iypally (ound to be less than the cross •

sectional al"'.:J of the scour incision.

A material point in the path of the advancing keel, which initially underwent

upward movement, may also experience subsequent downwartl displacement lowartlthc

base of the scour, with negligible lateral movement. The experimental programme

provided evidence of surface material markers which were displaced ttl posilions at the

scour base, following forward movement over a limited horizontal diSlaI\Cc. The

downward displacement of surface material corresponded with compatible vertical sub·

327



Sl;lIur displacemenl~. which occurn:d in a pattern similar to the morphology of the

Sl:IIUn.."d surface anti aucnuated with depth below the scour.

In the assessment of poll:mial mechanisms of scooring. the ~irement of

vlI/ume conslancy for und,..ined conditions must be addressed. Figure 5.7 illustrates

mucks of dcformation during an evc:nt. as necessary 10 balance lhe volume change

associall."d with loss of malerial in the scour path. The upward displacement ahead of till:

advJocing keel represented only a lransient accommodation for this volume loss, since

developmcnt of the frontal mound was limited to a stable configuration with continued

.~Iluring. Later..1 movement of the malc:rial providled a cll:aring mechanism, as required

tll alluw for additional upward movemenl into the fronlal mound. Thl: material included

in bcnn fonnation through lateral movl:mem was. howc=ver, insufficient to aetount for

the complete volume loss during s.:ooring. and the remainder of the voluml: change was

dcvdopl.'tIthrough sub • scour displacement.

The measureG downward vertical displaceml:nt at posilions beneath the scour must

alliO he compensated through:ll mechanism which involved backward or laleral movement

al dcplh. together with renlcxe upward displaceml:nt. llmitled evidence, as obtained for

a single event (fest 02), was provided in support the former pattern of defonnation;

howcver. backwanl horizontal displacements as recorded for this event, diminished with

lhe e~1bli~hment of sleady conditions. Funhennore. upward movement in back of the

k!"Cl. ,tssociated with infilling oflhl: scour path. was not obSlerved. It may be inferred that

the downward vertical sub· scour displacement was compl:nsated through lateral

movc=mt:nt at depth. and upward displacement across a wide lateral extent; howevl:r, a

mechanism which involved dl:ep. sealed latl:ral movement was not identified I:xpliciUy
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Figure S. 7 POf~ntiaJ sail deformation patttrns during a scouring t!vtnt. Top: Sidt!
tleWltion V;t1V; Bottom: Vinv in diner;on ofmotion

in test measurementS. The TttOrded lateral displacements were generally confined 10

shallow deplhs. comsponding with local heave of the surface adjacent 10 the L'dges of

the scour. Dissipation of the material movement over an extensive area may account for

the lack of correlation of the observed volume change with a characteristic ml.'Chanism.

In addition, as discussed in Section 2.4.2, the effects of consolidation progressed into the

material from the surface drainage boundary much more rapidly in the modellhan in the
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corresponding protolype, Therefore, it may be concluded that the observed compression

of matcrial beneath \.he keel was partially accommodated lhrough pore water drainage

wilhina region ncar to the surface.

Numerical Analysis

The lWO - dimensional numerical model of the scouring process neglected Ihe effeclS of

soil displacement directed laterally OUlward from the scour axis. The continuum

idealization did not allow for a laleral clearing mechanism of failed material within lhe

fronlal mound. The numerical model lherefore represenled a progressive build - up of

the frontal mound, and this restricted lhe range of motion of the rigid body over which

realistic prediclions of the material response could be eltpetted. In panicular, the absence

of a clearing mechanism must be laken into consideration in the evaluation of predicled

resultant forces in relation 10 lesl measuremenlS, as discussed in Chapter 6. The

numcrical model was also unable 10 account for edge effects associated with observed

near • surface taleral sub - scour soil movemenEs. Sub - scour displacement againsl the

direction of motion of the rigid body was penniUed; however, preliminary analyses

indicaled Ihat this pauem of defonnation was not a predominant component of the

malerial response. wilh allowance for conlinued upward displacement in front of the

rigid body.

The numerical model provided a direct representation of a full scale protolype

related 10 the physical model scouring event through scaling laws presented in Chapter 2.

An identical rate of scouring was defined for the physical model and numerical prototype

events. in accordance with Equation 2.10. This implied that surficial drainage during the
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physical model event. associated with the reduclion of the linear scale. WllS not replicalc:d

in the numerical analysis. The anticipated eXlem of drainage and the crfeclS of pon:

pressure dissipalion during the physical model event were discussed in Section 2.4.2.
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Chapter 6

Analysis Results and Discussion

6.1 Introduction

Comparison belwec:n the physical model event data and the finite element analysis results

permitted a preliminary assessment of the admissibility and viability of the adopted

numerical approach for prediction of the effects of scouring. For a mixed boundary value

problem. with boundary conditions specified in teons of both displacement and stress,

the stre~s and velOl;ity fields must be compatible as there is no apparem independence

hc:lween the two fields. Therefore, separate agreement for both the resultant forces

developed and the soil deformation between theorelically compUied values and

experimental measurements was required for verification of the analysis methods.

The limitations of the numerical representation were described in Chapter 5. The

analysis provided infonnation on the resultant forces and Ihe stress and displacement

fields in tht soil for conditions approximating a steady - state, established follOWing

limited ice movemenl at a unifonn deplh of scouring. The data acquired from each

centrifuge lest were applicable to a well - defined scouring event; however. the pennitted

degrees of freedom of the model iceberg restricted the expected range of motion over



which steady - state conditions were relevant. Equipment and instrumc:ntation malfunction

imposed further variation in some tests. which must also be 3a."OOntl.'\I for in the

interpretation of ~hs. The selection of tests for comparison was therefore made: so ;u

to lessen depanures from the idealized conditions adopted in the analysis.

Scour Tests 04. OS and 09 were chosen as representalive tests from the

experimental programme forcomlation willi numerical simulations of the corresponding

prototype scouring events. A realistic vertical stiffness was defined in these tl."Sts. and

uniform scouring conditions were therefore established following limited initial unsteady

motion. The design rate of advance was also achieved during Icsting. such tllllt

approximate undrained conditions were modeHed in each event. Furthermore, in these

tests, the acculilte definition of the event was not hindered by equipment or

instrumentation malfunclion. Comparisons based on the data from Tests 05 and 09. which

represented an identical prototype scouring event. additionally permitted assessment of

the internal consistency of the physical modelling melhods.

In this cbapter, a cornpaliltive examination of the dat:l acqui~ in representative

tests with analysis results is presented. The effectiveness of the numerical representation

for characterization of the effects of scouring is discussed. The implementation of the:

analysis to study a range of parametric variations is also required to evaluate the relative

significance of test parameters and analysis restrictions: however, in the present study.

practical considerations limited the scope of this objective to a direct assessment of Ihe

effects of parameters from the results of the incomplete experimental progrolmme.

Finally, a methodology through which the numerical approach may be applied in design
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nf huricd pipcliJl~s to accommodate the loadings imposed by sub - scour movements is

introduced, and a!iSOCiatcd prdctical implicalions of the study are discussed.

6.2 Analysis of Test 04

6.2.1 Input Conditions

Numerical analyses were undertaken to investip:ate the prototype scouring event

corresponding to Test 04, described in Section 4.3.4. Table 6.1 provides a summary of

input conditions employed in the analyses. including the parameters chosen to describe

the behaviour of Speswhite kaolin. The procedures adopted for implementation of the

analyses were oUllined in Section 5.3. The prototype depth of scouring was specified as

a constant value of IA6 m. in accordance with the average equilibrium venical position

established in the experiment. The prototype rate of horizontal translation of the rigid

hotly was set equal 10 the average test scouring rate of 0.073 mis, on the basis of the

.scaling relationship given by Equation 2.10.

A series of initial analyses were conducted to define the finite element mesh

configuration, liS depicted in Figure 5.6. The coarse discretization pe""itted severe

defonnation adjacent 10 the rigid keel surface associated with large movements required

to approach a relevant steady - state condition. The mesh configuration assumed in the

final analysis of the Test 04 problem comprised 2524 nodes and 774 elements, which

included hath rectangular 8 - noded isoparamelric elements and compatible rigid surface

interface elements. The total number of variables in the model was 5624, which
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Table 6.1 Sunmlary oj lIlortrial parttmtftrs Jor S{ws'II'llitt Iwolin ami tUldifiullul illpm
conditions. as sfNcifitd in nunlLrical anal)'sts oj rrprtstnuuit't Itsts

Input condition I
material parameter

Values for analysis of
Test 04 event

Values for analysis of
Test 05 J 09 event

prototype
scour depth (m)

rate of keel
advance (m J s )

preconsolid. dfective
vert. Slress a' ,a (kPa)

normally
consolidate!! K ~.

K.variation with
overconsoHdation ratio

critical stale
stress ratio M

gradient of normal
consolidation lines ).

gradient of swelling
lines ..

critical reference
specifte volume r
Poisson's
ratio,

permeability
coeffICients k., k.

interface angle
of friction a (deg. )

1.46 1.2\

0.073 0.072

110. 140.

0.69 0.69

Eqn.4.4 E.qn.4.4

0.90 0.90

0.25

0.04

3.44

0.33

Eqn.5.31

2.9
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encompassed the degrees of freedom of the model in addition to the Lagrange mUltiplier

variables. A total of 338 increments were needed to achieve an equivalent protOl}'pe rigid

body movement of 14.5 m. and the analysis was terminated when the incremental

displal:ement was less than IO'~ times the tOlaI prescribed value.

6.2.2 Analysis Results

The results of numerical analyses for the Test 04 event are presented in this section, and

compared with the experimental measurements reported in Chapter 4.

Local Element Behaviour

Figure 6. I indicates positions of reference elements in the finite elemenl mesh, selected

to illustrate patterns of local behaviour during simulation of the event. Elements EL 20,

SO. and 140 were situated at a horizontal position x ::::I 14.4 m in front of the initial

locution of the rigid body. at average depths below surface of 0.9, 2.6. and 4.3 m.

respectively. Figure 6.2 displays the effective stress paths experienced by the reference

elements. lind the associated deviatoric stress - strain responses. In addition, the

computed centroidal element excess pore pressures developed during the event are shown

plotted against deviatoric strain in Figure 6.3.

For an initially overconsolidated state and defonnation under essentially undrained

conditions. the elastic ponion of the elemenl response was characterized by a constant

value of the mean effective stress. until the deviatQr stress had increased sufficiently to

bring the effective stress state to the initial yield surface. The computed isotropic elastic
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Figure 6.1 TtJt 04 analyJ/J tntsil canfigurtJtion iIluJtrating reference elements ami "OIle.f

response therefore involved onIy elastic: shear strains and the pore pressures gencrntL'd

were equal to the changes in total mean stress. With the inception of yield. plast)c shear

strains developed and there was a corresponding decrease in stiffness. Yielding at f'lL'ar

surface element positions, with initial stress ratio" > M on the dry side ofcritical slate.

was associated with plastic softening and contraction of the yield surface. The mean

effective stress increased with continued yielding until the effective stress Slale reaclx..'d

the top of the current yield surface with stress ratio 11 =M. The excess pore pressure

decreased from an initial maximum value. attainetl with the onset of yield. 10 a minimum

value at critical state. For the surface clement EL 20. suppressed volumetric dill'tinn of

the soil resulted in the development of negative excess pore pressures, whereas the

magnitude of pore pressure reduction following yield was less severe for the clement'!

situated at increased depth.
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Figure 6.2 Top: Computed effective stress pathsforreference elements (EL 20, 80. and
/40) during event simulation; Bottom: Element deviatoric stress against strain
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Figure 6.3 Computed uuss pore pressures during ewnt simula/ion plolted against
deviQtoric strain for reference elemems ( EL 20, 80, Qnd /40)

The beginning of yielding corresponded with a decrease in stiffnes..'1 of the soil and

a kink in the pore pressure' suain relationship; however. the passage of the effective

stress palh through the initial yield surface was 1M)( relevant to soil failure or st.ahility.

Whereas a laboratory test on a single element of soil reaches comph:lion as tile crfective

stress path approaches the critical state line. rltld loading and numerical simulatKm for

an element in the scour path was continued. As the effective stress p3lh for the clement

progressed toward critical states, the incremental shear stiffness local to the puinl

approached zero. and the soil was incapable of resisting any auuitiollllJ shear stress. The

local attainment of critical stales. or local failure. was initially contained or supponctl

by sunounding soil whK:.h had nor: yet failed.
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At critical states, defonnation continued without further change in the deviator or

mean effective stresses, and this implied that excess pore pressures generated were equal

ttl the changes in total mean stress. The effective stress sate remained constant; however,

the total stress path moved sideways in p : q space with increased total mean stress at a

constant value of the deviator stress. The surface element EL 20 exhibited a sharp

increase in excess pore pressure at a critical state. with notable periods of nuclUation in

the rate of pore pressure development, as may be attributed to variation in load transfer

associated with a stick - slip response at the rigid body - soil interface. Element EL 140,

at greater depth, displayed a more unifonn excess pore pressure response. with a gradual

decrease in the rale of development during defonnation at a critical state. Despite

dissimilar initial stress states and character of response for the elements situated at

different depths, comparable pore pressure magnitudes were obtained at the completion

of the simulation, with higher rates of total stress change and excess pore pressure

development at shallow depths. A reduction in pore pressure and the development of

negative excess pore pressure values due to the suppression of volumetric expansion, was

predicled for elements which experienced unloading with passage of the rigid body

hl:yond the material point during simuladon of the event. The rigid body movement was

nol extended over sufficient range to represent this unloading condition at the horizontal

position of the selected reference elements.

The cumulative shear strains established at the tennination of movement were

signiticantly larger for elements EL 80 and 140 ( t q = 1.24 and 1.17, respectively)

hdow the depth of the scour cut, relative to the surface element EL 20 ( 1:. = 0.67 )

situated above the base of the rigid body. The deviatoric stress: strain response for
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element EL 20 became emtic: or variable al high stlOlin 1e:vds, and may be relatl.'\! 10 II\\:

effects of extreme element distonion. associaled with high stlOlin gmdic:Ns in this region.

buss Porr Pr~ssurrs

The contours of computed excess pore pressures are shown plotted in Figur.: 6.4 for

different horizomal posilions of tlk. .•tid body over the limited range of movement

simulated i.l the analysis; ItSUlts are presenled for incremenls 50, 100. 200. and 338.

corresponding with horizonlal movements of 1.8, 4.1,8.6, and 14.5 m, respectively. The

spatial distribution of the eltperimenlatly recorded pore pressure changes WIIS t1isplayl.-d

in Figure 4E.l for different intervals of model horizontal movement. In compllrison.

general agreement with the test mea5UremeniS was found; the recorded pore pres.'Wrcs

ranged between extreme values of - 37 and 88 kPa al the transducer locations, which

showed reasonable correspondeoce with the prcdic:1ed bounds illustrated in Figure 6.4.

The horizontal and ,~nical extent of the computed excess pore pressure field also

coincided with the zone of innuence inferred from the transducer records: pon: pressure

changes were predicled at horizontal distaoces on the order of 25 m in front of the

current model posilion. and at venital distances which extended 10 the bottom huundary

of the soil domain. In addition. the development of negative exces.~ pore pn..-.;.'Wrcs within

shallow regions both in front of i111'ld behind the advancing rigid body. was comparahle

with measured pore suctions both preceding and following passage of the model keel over

a panicular location.

The specificalion of impervious surface boundaries was consistent with the

implementation of an essentially undrained consolidation analysis. as discussed in
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Seclion 5.3.3. AI these boundaries, the computed excess pore pressures reached constant

values with no phYSlcal significance which depended upon the loading and geometry of

the solution domain.

The analysis results provided an adequate represenlation of the cbaracter of the

local pore pressure responses, as acquired through transducer measurements during the

event. Figure 6.5 presents comparisons for individual transducer records with values

computed at corresponding prolotype dt:pths in the numerical model. The model

predictions were provided for reference integration points located at different horizomal

distances in front of the initial rigid body position, to illustrate the effect of the range of

movement simulated in the analysis. The magnitude of excess pore pressure development

increased with the initial horizontal distance from the reference point; however, the

difference diminished as a far - field initial distance was approached and an apparent

steady - state response was simulated. The computed values were compared with the

measurements from transducer Channels 05, 06. 07. 04, and 01, with model locations

as specified in Table 4.7. The two • dimensional analysis representation was unable 10

3CCQunt for the measured distribution of excess pore p~res wilh lateral distance from

the scoor axis.

Comparison of the m:orded pore pressure changes with analysis results indicated

close correspondence of measured and predicted peak magnitudes for a given range of

horizontal movement (for typical analysis reference points at x - 13.7 and 17.8 min

front of the initial rigid body position). The analysis results 31so implied similar rates of

ellcess pore pressure development in relation to the individual transducer responses;

however, some over· prediction of recorded magnitudes may be eXj)CCted for simulation

344



•cf 20

',. 17.8 m

~
/:!/'~""'- .". ,,,.
: ,.. ! II - 96 m

,. : "
,. " :

I'~'~-"'" rt ' '--~~" ~
PPT Channel 06

"2LO~__"'''~-_~'L.O~~_5-~~O-~-'-~_,LO-~~""

Horizontol Distance (m)

Figure 6.5 T~s' 04 comparison ofanalysis results wilh uperimtntal m~asurt!mt!nlSfor
individual port prtssuu rransducus

345



i 50

~
l. 25

•it 0

Scour Test 04 -EMper;ment

-- - Analysi!

PPT Channel 07

-2~L20~-_'"'15,......__L'0~-_~5-~~0-~-O-~-,"0~~-.J15

Horizontal Distance (m)

60

~

J
40

~ 20

~

Scour Test 04

'.

-EMperiment

- -- Anolysis

M _ 9.6 m

M _ 5.5 m

PPT Chonnel 04

-2~L.,15~-_::'0:-'-_-':5~-70-~-:-5-~7.'0:-~-:":-5~---,J20
Horizontal Distance (m)

Figure 6.5 (continued) Test 04 comparison oj an1J/ysis results with experimental
measurements Jor individual pore pressure transdacers



100

Sc~, Test O. - E..pe-riment

--- Anolysis
80

i - 17.8 m

i 60
~~1_'_"""~1~~

~ '"
~ '" -9.6 m
~

~
20

PPT Chonnel 01

0
-20 -20 10

Figure 6.5 (continued) Ttst 04 compamon of analysis r~sullS willI apl!rimtrltul
measurontnls for individual port prtJSure rransductn

of an increased range of horizontal movement. n.e physical model loadin~ history

~hcd in a more gradual initial development of excess pore pressure.~ which may have

allowed for a limited amount ofdissipation and a corresponding decrease in lhc mcasun:d

values. The apparent oYer· prediction of lest measurements may also be partially

altributable to the lateral separation of particular transducers from the scour lixis. The

predicted locations associated with attainment of the peak response showed reasonable

agreement wi!!: Ihe recorded values. where some experimental error was cxpt..'Ctcd in

detenninalion of the rel:uivc positions oflhe model keel and individuallransduccrs during

the event. Comparison of computed pore pressure changes with measurements for the

Channel 07 trlI.nsducer, situated at a depth of 2.3 ro, demonstrated thallhe analysis wu
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able to simulate the character of the response, including negative excess pore pressure

developmem related to suppressed volumetric dilation for heavily overconsolidated soil

conditions at shallow depth. In general, the test measurements showed greater variabilitY

of pore pressure magnitudes with changes in depth, in comparison with resullS from

the analysis.

Inlt!rface Pressures

In Figure 6.6, the comact pressures for reference imerface elements, acting in the

direction of the normal to the surface of the rigid body, are shown plotted against

horizontal position during simulation of the event. The reference elements (denoted

EL 1004, 1005, 1006, and 1007) incorporated the nodes along the inclined surface of the

rigid body at the initial position, as shown in Figure 6.1. The analysis results displayed

the development of the nonnal stress with finite· sliding interaction between the rigid

body and the deformable soil medium. The element responses were characterized by a

build· up of compressive nomlal stress with movement along the inclined surface of the

rigid body, to a peak value which occurred at the transilion to lhe horizontal bottom

surface: the nonnal stress decreased to a minimum value with further movement along

the horizontal surface, although an abrupt rise in pressure was associated with the

transition to loss of contact between the element and the rigid body. Computed nonnal

stresses at the inr.lined and horizonlal rigid surfaces may be compared with measured

contact pressures acting on the model iceberg: however, no data were acquired in Test 04

due to malfunction of the inductive pressure transducers mounted on the model. The

predicted reduction of nonnal stresses to minimum values on the horizontal surface
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Figure 6.6 Test 04 analysis COfllOCl normal stress versus horizontal position for refl!rence
rigid surface jmetfau elements

supported evidence from other tests in the experimental programme, from whkh it may

be inferred that the atene armis surface had limited innuerx:e on the effects or scouring.

IUsultant FOfUS

Figure 6.7 shows a plot of the computed horizontal and ven.ieal components of the

resultant force acting on the rigid body together with prototype forces scalct! from the

model teSt metSUlcments presented in Figure 4.22. For the horizontal component, close

agreement was obtained between computed and measured values over the complett ..mgt
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of muvement simulated in the analysis. 10 wilhin a difference of 0.8 percent at the final

h'Jriwnlal position. For the venical compom:n1, the apparenl stiffness of the measured

response initially exceeded the analysis result; however. correspondence between

compuu:d and measured value~ improved following increased movement, 10 within a

diiTercllCe of J.3 percent al the final horizontal position. Adequate prediction of the

resullant force values also served as an indication of the eXlent of similarity between the

associated stress fields.

Several faclors contributed to observed differences in computed and measured

resultant force values. and to potential divergence with representation of a greater range

of movement in the analysis. Measuremenl inaccuracies were anticipated, and values of

the vertical force component. derived indirectly from the test data, were indetenninate

at the inception of movement. The analysis was also unable 10 account for the initial

separation of keel and soil and the variation of scour depth and attack angle preceding

the establishment of an equilibrium venital position and orientation. The continued

build· up of failed frontal mound material represented the forces associated with the

developmelll of surcharge over a limited range of movement: however. the absence of

nclearing mechanism implied an unbounded increase of the computed force and evemual

over· prediction of the measured steady - stale response. In addition, the analysis did

not allow for interface shear forces attributable 10 adhesion or friction at the sides of the

model keel. The expected force contribution arising From side friction was sma!! for the

prllctically smooth interface conditions considered relevant to the physical model study.

11te influence of the imerface conditions adopted in the analysis on the computed

resuhant force magnitudes was investigated for values of the soil I rigid surface friction
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angle of0 = 2.9, 5.7. and 8.5 0 corresponding to friction coefficients of p. = 0.05, 0.10,

amJ 0.15. Figure 6.7 shows the horizontal and vertical fon::ecomponents for the different

interface assumptions, plotted against horizontal position for a consistent range of

movement of 4.5 m. The computed horizontal force increased with greater interface

friction, and a difference of 9.5 percent at the final position was associated with the 2.80

increase of the friction angle. Conversely, the computed vertical force decreased with

greater interface frktion, and a difference of 6.6 pen::ent at the final position was related

10 the same increase of friction angle. The magnitude of the mtal resoltant force was not

,1Ilercd significantly by the change in the interface condition. The use of a realistic low

value of the interface friction angle in the analysis provided improved correlation with

the measured responses.

Soil De/anl/olion

Figure 6.8 shows a view of the displaced configuration of the finite element mesh and

lhe correspooding soil displacement vectors from the analysis, following horizontal

movement of 14.5 m to the final position of the rigid body. The computed displacement

field exhibited discontinuities for elements adjacent to the inclined rigid surface, as may

be attributable 10 lhe inadequacy of the coarse discretization to accommodate high strain

grJdients in this region; the large elements at the interface reflected an averaged

behaviour. The available experimental data on subsurface soil displacements were derived

from measurements at individual soil defonnation grids, presented in Figure 4F.5. In

comparison. the computed two· dimensional displacement field was qualitatively similar
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tll the recorded displaced configuration for an axial section through the clay specimen.

as illustnllcd in Figure 4.26.

Displacement vectors ploHed for different analysis increments displayed the

development of soil deformation patterns during simulation of the event. The material

points initially situated at the interface with the inclined rigid surface were displaced in

a direction between the horizontal and the nonnal to (he surface. with decreasing

magnitude at greater depth. The displacement vectors rotated vertically I~pward with

increased distance in from of the rigid surface. defining a semi - circular region of large

soil displacement which extended to positions beneath the scour depth. The upward and

furward displacement of soil in this region was compatible with heave of the free surface

in front of tOe rigid body and formation of a continuous frontal mound. Small backward

(negative horizontal) displacements were computed at positions below the base of the

rigid body. in agreement with limited data available from other tests in the experimental

programme; however. these movements were associated primarily with elastic extension

which accompanied undrained compression of elements directly beneath the inclined rigid

surlilce.

Contour plots of the horizontal and vertical components of soil displacement are

presented in Fjgurc~ 6.9 and 6.10. for increments 50.100.200. and 338. corresponding

with rigid body horizontal movements of 1.8, 4.1. 8.6, and 14.5 m. respectively. The

horizontal displacement field was defined by a semi - circular region of large

displacement which extended well below the base of the rigid body, and diminished with

distance in front orand below Ihe scour depth at the current position of the inclined rigid

surface. The plotted conlours of the venical component of displacement displayed two
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~;~~:,,~.I~.Test 04 analysis contollr plots of vertical compo",mt of soil displacement (m) for
"HId body positions. Top: x = J.8 m; Bottom: x = 4.1 m
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~~lre 6.10 (conlinued) Test 04 «Wlysis comourplolS ofverricaJ component of soil
Pacemmt (m) /ordiffert!1It rigid body posicions. Top: x = 8.6 m; BOClom : x = /4.5 m



distinct rcgion.~ which scpllratt.'<! upward (positive vertical) displacement, associated with

fonnation of the frontal mound. from downward (negative venica]) displacement. related

to compression hcneath the rigid hody, and bounded by a maximum value equal to the

scour depth. A material point situate<! in front of the rigid body, was initially subjected

til upw,lnl ,lnd forward displacement, and subsequently experienced downward and

cuntinued fnrward displacement with passage of the rigid body. In the assessment of

llmllysis results, it was necessary to differentiate between the transient displacement of

,I matcrial point, which was dependent upon proximity of the rigid body. and the ultimate

lIr cumulativc displacement of the same point following complete passage of the rigid

hody. which represented the displacement value measured in the experiment.

. ... - j2" .} '"The equIvalent plastIC stram magmrude, defined as £p ~ 1"3 e Ij : £ IJ

in which c fj is the plastic strain tensor. served as a measure of the tQ{al accumulation

of phlstic strain induced during the event. Figure 6.11 shows contours of the plastic

stmin magnitude plolted for different increments in the analysis, in order to illustrate the

propagation of a region of large (plastic) defonnation during scouring. A peak magnitude

of plastic strain of 110 percent was established following horizontal movement of 14.5 m

to the tinal position of the rigid body, and values which exceeded about 15 percent were

computed at a maximum depth on the order of 4.5 m or 3.0 scour depths below the base

Ilf the scour. The magnitude and extent of the region of plastic straining underwent

cominued growth over the complete range of movement simulated in the analysis, with

decreased rate of development toward an apparent steady - state condition.
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~g;re 6.11 Tesr 04 analysis comour plots displayillg magnitude of plasric srroin for different
g body posirions. Top: x = 1.8 m; BOflom: x = 4.1 tit
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rtrnr rigid body positions. Top: x = 8.6 m; Bottom: x = 14.5 In



Figures 6.12 and 6.13 provide comparisons of ooll1pulI:d and ll1e:lsun:d pmllks

of the horizorual and venical components of soil displ:ll..'c,.·ll1cm. n."Sfl'.'Clivcly. 1bc ICSI

values were recorded subsequenlto completion of the evcnt. ;u presented in Figure 4.27.

The analysis results are displayed for reference Nodal Lines 27 and 29. with initial

positions in front of me rigid body as depicted in Figure 6.1. selected to repn."5Cm the

cumulative response following complete passage of the rigid body bI..-yund lhe initial

positions. The computed prollle.s of horizontal displacemenl displayed ;ncn.'lllied

magnitude for nodal lines at greater distance in fronl of the in;tiitl rigid body posilion;

the development of an equilibrium displaced configuralion was prt:cludt."tI by the

requirement for continuity of the displacement field together with representation of ;1

continued build· up of the frontal mound. To ensure relevant simulation of the dcfumlcd

state exhibited during site investigation of me physical model, the analysis results wen:

presented for conditions following unloading and associated elastic rebound, :It the

completion of the even'. Figure 6.14 shows computed displacement prollles for

conditions before and after elastic rebound. In comparison. the displacement results

indicated negligible overall change with allowance for rebound; however. small negative

horizontal displacements at depth were found to represent an elastic ponion of the

response which was recovered upon unloading.

The soil displacement prollles for the reference nodal lines in the analysis

displayed close correspondence with the test records. in consideration of measurement

inaccuracies and inherent limitations of the idealization. Some dissimilarity was also

anticipated due to variation of measured results acquired from grids at different locations

within the clay specimen. The horizontal component of displacement was larger in
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magnitude lhan the associatro venical componem, and dl.'C~ more ahruplly Wilh

depth beneath the base of the scour. The maximum horizontal displacement Ilf 1.52 III

scaled from test measuremenls immetliately below the scour base (intcrpolated:1t a rJcplh

below Nst = 0.1 m) was bounded by lhe computed values of 1.40 and 2.00 III for Noo:d

Lines 27 and 29, respectively. The deplh of a region of measun:d Ia",c horizont;l1

displacement below the scour base (assessed for a lower bound displacement mOlgnitude

of 0.2 m) was 3.08 m at prototype scale or2.0 scour depths, whereas vlllue~ of2.78 and

3.12 m were established for the reference nodallincs in the analysis.

The vertical displacement profile included a maximum magnitude equal to the

scour depth. and displayed. mo~ gnldual reduction with distance beneath the scour than

the associated horizonlal componem. The computed vertical displaecmcms for Nodnl

Lines 27 and 29 were almost identical, and both under· predicted prototype magnitudes

scaled from test rttOrds. lbe maximum venical displacement of 0.94 m based on

measurements immediately below the scoor base (interpolated at a deplh below

base "" 0.1 m) exceeded the value of 0.76 m derived from results of the analysis. The

extent of a region of measured large venical displacement below the scour base (assessed

for a lower bound displacement magnitude of 0.2 m) was 3.21 mat pfOtOl:ype scale or

2.1 scour depths. which was greater lhan the depth of 2.60 minferred from the computl.'d

displaceJTll:nl field.

'The effects of changes to the interface conditions on the displacemcnl~ pretlicll.'d

by the analysis were studied for values of the soil I rigid surface friction angle of

6"" 2.9. 5.7. and 8.5· corresponding to friction coefficients of IJ. - 0.05. 0.10. and

0.15. Figures 6.15 and 6.16 display profile$ of the horizontal and vertical components
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uf di"(llattmL-nl t.:Ofllp,,IIed for lhe dirre~m il\lerfatt assumptions. based on a consistena.

r.mgc uf hurimrual moV'enX:nt of [be rigid body of 4.' m. Both componem of

I!isplaa:ment dccn::asod with lrealer il1lelface rriaion. and a 2.8- increase of the friaion

..ngk: n:sullcd in nw:imulll dirremx:es in displ.ac:c:menl on lhe order of 0.1 m fOf" near

liUrfaa: positions. The.: malion in displacemeol magnitude declined with depth below me

!il.·uur twe. ;lind lhc predicled alent of lbe region of large soil displacemenl was similar

rllr c;n:h of lhe interface l,."Ondilions under consideration.

6.3 Analysis of Tests 05 I 09

6.3.1 Input Conditions

Numcric:lI ..nalyscs were a!so performed 10 study the proIotype scouring evmc

cum::spon:Iing to Test 05 and reLaIed modelling of models Test 09. which 'M:re dcsaibed

in Scaions 4.3.5 and 4.3.9. respectively. Input condilXo£o.: and material pamneters used

in [be m;aJyses art: liven in T..ble 6.1. The iniliaJ SlJ'tSS stale for the Test OS clay

lIpCCimm w;as defined Ihrnup application of an increased IabonJory pre - consolidalion

st~ in reLalion to Test 04. with~D1 reduction in Ihc: depth of scouring for

~imiLar imposed boundary conditions. A constanl value of the prototype scour depth of

1.21 m was adopted in the analyses. based on the average equilibrium venical penelration

eSlablished in the experiment. The prtHotype rate of horizontal translation of the rigid

hotly was specified as 0,072 mls. as scaled directly from !he average Test 05 velocity.

TI.'S( 09 measurements were included in a compar1tive examination with results of the
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Figure 6.17 Tes/ 05 I 09 analysis mesh confiSllrario/l ill/mra/illg reference dell/em.'
anti nodes

analyses. bom 10 evaluate correspondence with predicted value...; antltu provide limited

verifteation of the experimenlallechniques through correlation with the Test 05 !bta. The

average equilibrium scour depth established in Test 09 was 1.10 m at prototype scale:.

and lhe recorded depth of scouring increased 10 approximately 1.25 m over the final

portion of the event. The rate of scouring achieved during the experiment n:pn.."iCnlt.'CJ a

prototype velocity of 0.078 mis, which exceeded lhe corresponding Test 05 value.

The finite element mesh, shown in Figure 6.17. was adapted frum lhe general

configuration employed in the Test 04 analysis, with nominal element dimensions

decreased in proportion to the reduction in scour depth. The Tcst 05 I 09 mesh

incorporated 3776 nodes and 1176 elements. which included both rectangular 8 - noc.Ied

isoparametric elements and compatible rigid surface interface ek:ments. The total number

of variables in lhe model was &487. which consisted of the degrees of freedom of the
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model u"" well as the Lagrange multiplier variables. An equivalent prototype rigid body

movement of 12.8 m was established over 202 increments in the analysis, with allowance

for lin incremental displacement less than 10. 6 times the total prescribed value.

6.3.2 Analysis Results

The results of numerical analyses for the Test 05 I 09 event are presented in this section,

,md compared with the experimental measurements reported in Chapter 4.

Locol Elemem Behaviour

Reference Elements, EL 23. 97, and 171, seletled to illustrate patterns of local

behaviour, were situated at a horizontal position x = 11.8 m, and at average depths

hclow surface of 0.7, 2.1. and 3.5 m, respectively, as depicted in Figure 6.17. The

effective stress paths for the reference elements are displayed in Figure 6.18, together

with the corresponding deviatoric stress· strain responses. In addition, excess pore

pressures. generated as the simulation progressed, are shown ploued ve~us deviatoric

strain in Figure 6.19.

The initial yield surface size, defined by the laboratory pre - consolidation stress,

was increased in relation to Test 04. and reference elements in Test 05, at similar initial

stresses. represented more heavily overconsolidated states. It was noted that for states

which are dry of critical, the correspondence between experimental data and the

predictions of Modified Cam - clay theory is less adequate. and that data of failure are

beller described by the equation of the Hvorslev surface (Schofield and Wroth, 1968).
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The peak. shear stresses computed were lhen:fore ~:tpcctJ..'d tlJ be higher than those:

obse~ to cause rupN~. and over - prediction of negative: e:xcess pore: pres5UJU was

also anticipated with ~tion of a more dilaliv.: ~_ While: U5Ie of the

Hvorsic:v equation provides • better fit (0 data in this region. Britto and GUM (1987)

suggested that. in lheir expc:rience of pnail:aI applic:alion via the finite: etc:mer. mc:tbod.

signiriClIll advantages over dirttt use of Cam • clay (or Modified Cam - clay) lheory

we~ IX)( appa~nl.. The adopted numc:rical represerution wu also unable 10 predict

discontinuous behaviour with the localization of dislonion in distincl R1ptU~ (llanes.

The Test OS elements exhibited comparable: pallems of belmviour 10 Test 04 IOClll

responses. described in Seelion 6.2.2. The onset of yield occurred at higher levels of

deviatoric stress. and the subsequent deformation Willi associated with an increased r.mge

of plastic softening and contraction of the yield surface. Once the soil yiekJcd. lhe

effective stress paths turned lOWU'd critical state and pen pra5UftS declinnl 50 that the

recoverable. elasbc compression. arising from the increased mean effective: stn:ss.

balanced the irrec:ove:rable. plastic expansion. rdaud to the chan&ing size of the yield

surface. For the ekme.W EL 23 and 97. at near surfM:C depths. neg.aLive: excess pore

~ wen induced followiftl yield as a result of the suppressed volumetric dilation

under essentially undrained COfX!itions. In relatton to Test 04. the reference eltment5

exhibited similar pore pressure magnitudes at the completion of the simulation. (ollowing

local attainment of crhical $lites and associated positive excess pore p~urc

development. The range of movement was insumcicnt to represenl unloading related to

the passage of the rigid body beyond the horizontal position of the selected elements.

The cumulative shear stnill5 established It reference element kx:ations in Test OS
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Figure 6.18 Top: Computed effective stress paths for reference elements (EL 23. 97.
tIIlll 171 ) during evtllt simulation: Bottom: Element deviatoric stress against strain
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Figure 6.19 CompUltd ucess pore pressures during twill slmufmion plnllf!d (INlli/1SI

deviatoric strain for reference elements (£L 23. 97. and /7/ )

exceeded the values computed rollowing a larger range or movement in Test 04. 1bc

magnitudes or shear strain were higher ror elements fiL 97 and 171 ( t~ :: 1.33 and

1.19. respectively) below the deplh or the scour cut. relative to the ~urrace clement

EL 23 ( t q ... 0.90 ) situated above the base or the rigid body. At high stmin levels. lhe

deviatoric: stress: Sl.rain response rorelement EL 23 was somewhat i~gular. as may be

attributed to errects or severe distonion in this region.

Excess Pore Pressures

Figure 6.20 shows contour plots or computed excess pore rressures ror the: analysis

increments SO. 100. ISO, and 202, representing horizontal movements or the rigid body
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uf 3.lJ, 7.1, 9.9, and 12.8 m, respectively. The computed magnitudes exceeded Test 04

analysis values, for which a larger range of movement was simulated at a greater scour

depth. The spatial dislributions of the measured pore pressure responses in TCSlS 05

and 09, for different horizonLal positions of the model. were displayed in Figures 5E.l

and 9E.I, in the corn:sponding sections of Appendix A. The experimentally recorded

magnitudes ranged between extremes of - 44 and 108 kPa for transducers located within

the apparent steady - state region of scouring. and lhese values were in reasonable

ngrcemcnt with predicted bounds given in Figure 6.20, The distribution of computed

excess pore pressures also showed general correspondence with the region of measured

effects of scouring, which extended [0 a prototype horizontal distance on the order of

25 m in front of the current model position, and to vertical positions at me bottom

boundary of the soil domain. The computed negative excess pore pressures in front of

and behind the current rigid bcxIy )X)Sition coincided with pore suctions measured

preceding and following passage of the model over a given transducer location.

Comparisons of the measured pore pressures in Test 05 with computed responses

at corresponding prototype depths in the numerical model are presented in Figure 6.21

for indivklual transducer Channels 05. 06. 07,04,01, and 02, with model locations as

indicated in Table 4.9. The complete range of movement of the model in relation to a

p:ar1kular transducer location was nol simulated in the analysis. and results were

therefore presented for reference integration points at different horizontal distances in

fronl of the initi:al rigid body position. The computed magnitudes increased with greater

initial horizontal distance from the reference point, with decreasing rate of change toward

an apparent steady - Slale response associated with movement from a far - field initial

375



-4.23e:-Ol

VALUE

-l.9lE-01

-2.26e:+Ol

-6.19£+00

-1.02£-01

·2.61e:+Ol

-'.31.£·01

-5.96£.01

~ure 6.20 Test 05/09 analysis colltour plots 0/ excess pore pressure (kPa) /ordif/erellt rigid
Y positiolls. Top: x = 3.0 m; BOllom: x = 7.1 In



-3.97£·01

-2.19£.01

·1.l7.·01

·).16£.. 01

.4.94£.01

·6."13£·01

VALUR
-).8I1B.01

-1.88£·01

·1.31£.00

.4.16£·01

.6.17£·01

Figure 620 ( . ,
differem' .. conttnued) Test 05/09 lUlOlysls contour plots of excess pore pressure (kPa) for

ngw body positions. Top: x = 9.9 m: Boltom: x = /2.8 III



position. The measured pore pressure diSlribution with laleral diSlance from the r.cour

axis was nOI accounted for in !he two· dimensional analysis represem:ltion.

An assessment of Ihe adequacy of analysis predictions based on consK.lt:r;llion of

a single uansduccr record was inappropriate due to the amicipated experimt:ntal error,

the influence of distUrbance arising during installation. and the effects of art:hing and

stress concentration on the measured response. The analysis I'l:$ults did 001 provide

detailed correlation with individual transducer records in Test 05, as exhibited for simil;lr

comparisons of computed and measured pore pressure values in Test 04. For some

transducers (Channels 05. 04, and 01), reasonable co~ndenc:e of compUled and

measured peak magniwctes was e'lKiem for typical analysis reference points 01\ x = 14.7

and 19.2 m. with slight over· prediction expected for simulation of an increased mnge

of horizontal movemem. The analysis under· predicted measured peak magniludes in

cxher instances (Channels 06, 07, and 02); although. computed pore pressures less than

test valuC$ were anticipated for a tnnsdlX:C:r (Channel 02) situated in the unsteady region

of scouring, near to the initial horizontal position in the physical model event.

(n general, the under - predkrion of experimental peak values in TC!'it 05 W;lS

associated with transducer locations at shallower depth, and the analysis resuils displayed

more umfonnity of magnitude with changes in depth than the leSt m=ords. The rates of

computed excess pore pressure development and dissipation during passage of the rigid

body were reasonably similar to measured responses for individual transducers. In the

analysis, peak magnirudes were realized at horizontal positions of the rigK! body

preceding passage over the malerial point ( at negative values of horizontal distance

in Figure 6.21 ) and depended on the depth of the material point; in the experiment, the
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Figure 6.21 (continued) Test 05 comparison of analysis results with experimental
measurements for individual port pressure transducers
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locations of peak magnitudes showed gr-.::Ilcr \'ariability, panially auributahh: II)

anticipated experimental error in determination of the rd,lIivc position.~ of lIuxlc1 ;IIW

transducer during the event. The development of negativl: e:tCI.'S5 pon: rn:!i.Surc.~. fllr

heavily over - consolidated conditions at shallow depth, was pretlicted qualitatively in thc

analysis; however, associated magnitudes and pore SUCltons r-.:conll.'d by trnn.'idul:cB :It

greater depth were not adequately represented.

In comparison of computed values with Test 09 me;tsurements some over·

prediction was expected, since lhe constant depth of scouring adopted in the an.1lysi5

exceeded the average equilibrium scour depth established in the experiment. An overall

assessment of individual transducer records displayed reasonable com:spontlencc of pc;U:

magnitudes with simulation of limited horizontal movement in the analY5i5, and over 

prediction of experimental values for a more realistic increased range of horizontnl

movement. The analysis indicated a relatively uniform distribution of peak pore pres.WI'C

magnitudes with changes in depth. and was unable to quantitatively n..-PI\..."'iCnl observed

auenuarion of measured peak responses with increased depth.

Inr~rfQc~ Prtssurts

Figure 6.22 shows contact pressures for reference interface clements along the inclined

surface of the rigid bot1y at the initial position (denoted EL 1005. 1006, 1007, and 1008

in Figure 6.11). The contact pressures are plotted versus horizontal position over the

complete range of movement during simulation of the event. The Te....' OS I 09 reference

element responses were similar in character to the corresponding Test 04 analysis results:

however. grealer magnitudes were predicted at both the inclined and horizontal bottom
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~urraces of the rigid hotly. Thl: computed element nonnal stresses increased to peak

v.tlues with movement along the inclined surface, and decreaseti to minimum values with

suhs<-,</uent movement along tnc horizontal surface; the transition to a loss of contact

hetween ihe clement and rigid body was associated with an abrupt rise in pressure.

Te.~t 05 inductive pressure transducer measurements at the inclined surface and horizontal

hase of the model arc also presented in Figure 6.22, where measured peak and average

pressures lire supcrimposl:d on the test records. In addition, the peak and average

exrx:rimc:ntal values arc shown ploued in relation to the reference element responses. The

average pressure magnitude at the horizontal base was less than 40 percent of the peak

pressure which acted at the inclined surface of the model. The comparison of average and

peak measured values with computed nonnal stresses indicated close correspondence with

test data acquired for bexh the inclined and horizontal surfaces.

Rt'Jl/l101II FlJrce.f

Figure 6.23 displays the computed horizontal and vertical components of the resultant

force acting on the rigid body together with prototype forces scaled from the Test 05

:lI1d 09 measurements. which were presented in Figures 4.31 and 4.66 ....~spectively.

Comparison between resultant force records for the modelling of models Tests 05 and 09

indiemed reasonable agreement. with increased correspondence over the final portion of

the event. where similarity of the measured scour depths in both tests was greatest. The

analysis pn.'dicted increased magnitudes of both the horizontal and vertical resultant force

components relative to corresponding Test 04 computed values. and this finding was

in :lccordance with the experimental results; however. the correlation of computed and
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measured resultant force records was less satisfactory for the Test 05 I 09 analysis. For

the horizontal component, the analysis results under - predicted the measured response

IIvcr the extcnt of movement simulated in the analysis. The difference in magnitude

hetween cumputed and measured horizontal forces was approximately 13 percent at the

final hurizontal position. Extr-dpolation of the computed horizontnl force record implied

reasonahle agreement with the experimental results for an apparent steady - state scouring

cundition associated with representation of an increased range of movement. For the

vertical cumponent, reasonable correspondence was obtained between computed and

lllcasun.'d values at the final horizontal position in the analysis, to within a difference of

ahout 5 percent. The analysis predicted a progressive increase of vertical force over the

simulated r.mge of movement, without a marked tendency loward a constant magnitude

consistent with the experimental results.

TIle dissimilarity of computed and measured forces may be attributed in part to

specific limitations of the numerical representation. The analysis did nOI allow for the

;ldditional forces developed as a result of the increased scour depth preceding the

establishment of an equilibrium venical position and orientation of the model.

Furthennore, the effects of adhesion or friction acting at the sides of the model were

nt.'glL'Cted. and this factor also contributed to under· prediction of the test measurements.

TIle eventual divergence of computed and measured venical forces was expected, with

ongoing build - up of frontal mound material, inherent to the two - dimensional

eonlinuum idc:alization. The limited range of movement investigated in the analysis

provided adequate apprmtimation of the measured effects of a steady - state scouring

condition associated with continued movement; however, allowance for a clearing
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mechanism was required as pan of the numerical representation, in order to fonn a

realistk simulation of the complete scouring episode.

The computed horizontal and venieal components of the resultam force are shown

plnllt._-d in Figure 6.23 for values of the soil I rigid surface friction angle of Ii co 2.9, 5.7,

and 8.5° correspondiog to friction coefficients ofp. "'" 0.05, O.lO,and 0_15. The analysis

results displayed a comparable influence of changes in interface conditions in relation to

the Test 04 investigation. The horizontal force component increased in magnitude and the

corresfKInding venical component decreased as a result of the assumption of an increa.~ed

interface friction angle in the analysis, and divergence of the computed force records was

enhanced over a greater range of horizontal movemem. A 2.8° increase of the interface

friction angle reduced the magnitude of the total resultant force by as much as 5 to

10 percent. at the completion of movemem; the modest increase of frictior. angle. relative

10 the realistic low value adopted in the general Test 05 I 09 analysis, provided improved

correspondence of the computed and measured force responses.

Svil De/onl/arion

Figure 6.24 shows the displaced finite element mesh configuration at the termination of

horizontal movement in the analysis. and the corresponding plot of soil displacement

VL'CIOrs. The computed displacement field exhibited comparable characteristics in relation

to the corresponding Test 04 analysis results. The apparent discontinuity of displacements

hctween adjacent elements below the inclined rigid surface suggested improper behaviour

and some deficiency of the numerical representation at very large movement.

Experimental evidence of subsurface displacements recorded at individual grid locations
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wa.~ presentetl in Figures SF.S and 9F.5. The two - dimensional displacement field from

the analysis was 'lualitativt:ly similar to the displaced configuration of the axial grid at

the final model position, depic!et1 in Figures 4.35 and 4.70 for TeslS 05 and 09,

respt'Clivdy. In comparison with computed values, the measured region of large vertical

displacement extended to greater depth below the scour, attributable in pan 10 vertical

movement of the model associaled with the discontinuation of scouring.

Soil displacement veClors, ploued for different horizontal positions of the rigid

hady during simulation of the event, also displayed similar patterns of movement in

comparison with the Test 04 analysis results. The computed displacement field was

char,lctcrizeU hy a semi - circular region of large displacement, compatible with

downward or negative venical displacement of a material point benealh lhe current

posilion of the inclined rigid surface, and posilive vertical displacement at locations in

front of the rigid surface, associated wilh formation of a continuous frontal mound. The

region of large displacement extended below the scour depth, and the magnitude of both

horizontal and venical components of the displacement diminished with increased depth.

The development of small (elastic) negative horizonlal displacements below the scour

depth may be anributcd 10 lateml extension which accompanied undrained compression

of clements benealh Ihe rigid surface; cumulative displacement data for the Test 09 event

provided limited experimental evidence of similar backward· directed movements at

depth.

Figures 6.25 and 6.26 show contours of the horizontal and vertical components

of soil displacement plotted for analysis increments SO, 100. ISO, and 202, corresponding

with rigid body horizontal movemenlS of 3.0,7.1,9.9. and 12.8 m. respectively. The
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CONcurs of lhe horizontal componenl ~ribed a semi - cin:ular region uf brg~

displacement. and display~ decreased magnitudes wilh dislOlIrc in (ronl and bdow lhe

currenr. position of the: inclined rigid surface. The contours of me \Wlic:tl. axnponenI

defined IWO distinct rqions or It'lnSient di5p1acemcu depcndifl£ on proximily to lb: riSid

body : a ~ion of upward displM:c:mcnl rdated to heave or Ihc: free surface and fruncal

mound formation. and; a r'egK>n or downward disptaceme:nl usoc:ialctl wjlh liUhsl."ql"-"OI

compression beneath the advancing rigid body. with maximum value equaltlllhc scour

deplh. Although similar patterns of movement were exhibit~ in relatiun to n..-sults frum

the Test 04 analysis. the predicted displacements wert different in mngnitud~ :mll ~xt~nl,

as described below.

Contours of the equivalent plastic strain magnilucle an: lIispiayed in Figure 6.21.

as computed for different incremenu of horizontal movement of the rigid body. 1b&:

development of a medIanism of general plastic failure or large deformation may hi:

inferred from the: reJion of yielded dements and usoeialed high magnilUdes 0( plaslie

stRin during slmulalion of the event. In relation to the: Tcsa 04 iUWysls results. me

compuled ~ion of plastic straining was 1ess extensive, and maximum plast.ic Slnin

magnitudes etteeded Test 04~ established over an identical range of rigid body

movemenl. A peak plastic strain magnjtude of 106 percent was computed following

horizontal movement of 12.8 m, and values greater than approxim:uely 15 pert:ent were

apparent at a maximum depth on the order of 3.7 m or 3.1 r.cour depths below the ba5C

of the scour. The region of plastic Slraining ellhlblled contlnuell development wllh

increased movement throughout the simulation. toward a constant extent representing an

apparent steady - state condition.
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The l:umputcd and measured profiles of the horizonlal and vertical components

HI" suil displacemcm are prcscmed in Figures 6.28 and 6.29, respectively. The

experimental rL"iUlls repn:scnled the avcrage of values derived from axial and lateral grid

IIll.:a!'l.lIl:mcnts. as givcn in Figun:s 4.36 lind 4.71 for TestS as and 09. respeclively. The

Icsl n1C<lsun:menl'i wcre compa~ with the analysis resull\ ror reference Nodal Lines 33

and 39. ai locations in rrom or t~ initial rigid body position. as shown in Figure 6.11.

Nudal lilli.: 33 displaccment values represented the cumulativc response rollowing

CCltllpl':le pas.-.age or the rillkl body beyond the initial position. whereas Nodal line 39

WilS silualed below the oorizonlal base of the rigid body at the tennination of movement

in tfl'.~ an;alysis. The increased dispiacemenl magnitudes computed ror individual nodal

line..~ Iot:att.'d at greater distance in front or the initial rigid body position may be

au:ihuu.-d 10 the requirement ror continuity or the displacement field together with

cl1n1inlJt.'U huild • up or the rrontal mound. as imposed by constl'3ints of the numerical

rcpn:sc:nt;uion. 11u: computed displacement profiles included the effccts or unloading and

as.....lClatcd elasl:k rebound. relevant 10 conditions during displacement measuremenl in

Ihe cxperiment. The small (elastic) backward· directed or negative horizontal

dl-.placcments. computed at depth below the !;COUt. were ~vered with the allowance

fllr rchuund.

Comparison between displacement profiles for the modelling of models Test 05

,100 09 mcas'UremcniS indicated reasonable correspondence, with notable variation of

TCl:ordcd magnitudes of the vertical displacemenl component between tests. The

diffcteoct's in the compuled responses for Ihe Test 04 and 05 I 09 events represented the

effl..-cls of a n."duclion in scour depth and it decreased range of movement. in addilion to
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the prescribed c11.1nge of the inilial soil Slate:. The comptlh."1.I maximum uisfllace:mcl\t

magniludes and the deplh of the region of large horizontal disfllacc~nt wen: n.."1.IUI:(."1.I in

~Iation to the corresponding Test 04 analysis results. :too these findings ~re in

agreement with the experimental t~nd5. 1k analysis results :lIsa e:xhibited diminishl'\!

alem of the region of large vtnieal displacement. in l.'Ontr.lSl with :10 iIllTl"aSl'\i lk'flIh

of influence inferred from test lTlC<lSUremems.

TIle computed profiles of the horizontal compooem of displaccmcnt for refcrence:

Nodal Lines 33 and 39 are compared wilh lhe experimental n..'Cords for Tcst 05 :md 09

in Figure 6.28. The maximum horizontal displaceffiCm. equal 10 1.12 III for Nuunl

Line 33 (imerpolated at a depth below base ;; 0.1 m). was in rc:lson:lhle: agreclllcnI wilh

values of 1.29 and 1.08 m scaled from the Test OS aoo 09mcasurcme:nts. The n..'SUlIs for

Nodal Line 39. al greater dislance in front of the initial rigid bolIy position. di.~laYl'd

increased horizontal displacement. and implied divergence from an equilibrium displacl."1.I

configuralion with simulation of continued movement in the analysis. The deflth of a

region of computed large horizomal displa.cemem bdow the hase of the );COur (assI.."iSl."1.I

for a lower bound displacement magnilUde of 0.2 m) ranged from 1.83 tu 2.80 m ha.'iCd

on the results for Nodal Lines 33 aoo 39. tCSflt."Cli"ely. The analysis results were

compared with measured values of 2.99 m in Test 05 and 2.78 m in Test 09, ur

approximately 2.5 scour depths; the correlation between computed and mc."\SUn."lJ depth.~

improved with numerical representation of an increased rangc of movement.

The computed profiles of Ihe vertical component of displacement for reference

Nodal Lines 33 and 39 are compared with the experimental records for Test 05 and 09

in Figure 6.29. The analysis results displayed less gradual auenuation of venital
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displacement with depth below the base of the scour, and under· predicted test

measurements over the complete range of depths considered. The computed maximum

vcnical displacement of 0.61 m (interpolated at a depth below base :::: 0.1 m) was lower

than the corresponding values of 0.88 and 0.68 m scaled from the Test 05 and 09

rncasurernents. The region of large vertical displacement extended to a maximum

computt.'<.I depth below the scour base of 1.88 m (assessed for a lower bound

displacement magnitude of 0.2 m) which substantially under· predicted the depth of

inllucncc inferred from lhe experimental evidence. The measured profiles of vertical

displacement represented an apparent upper bound for tests in the experimental

progrolmme. anti were deemed less reliable due to the variation between Test 05 and 09

results. and differences in data acquired f;om the individual grids. The computed venical

displacement magnitudes were comparable to minimum values scaled from the test

Analyses were performed to study the effects of changes in the soil I rigid surface

friction angle over the range of values 6 .... 2.9. 5.7. and 8.5 0 corresponding to friction

coefficients of p. :::: 0.05. 0.10. and 0.15. Similar to results of the Test 04 investigation

of interface conditions, the computed horizontal and vertical components of displacement

decreased with specification of higher values of the friction angle. except at material

points immediately adjacent to the base of the scour. An increase of the friction angle of

2.8 0 resulted in maximum differences in the displacement magnitudes on the order of

O. I m for near surface positions. based on representation of a consistent range of

horizontal movement of 12.8 m in the analysis. The trend of the results :;uggested

modestly improved correlation, between the computed displacements for Nodal Line 33
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and the tesl nKasurements. wilh usc: of a realistic low v:alue of t~ friclton angle. as

adopled in the Tesl 05 I 09 analysis.

6.4 Soil Deformation

6.4.1 Numerical Validation

Practical LimirQ/ions

The requirement to represent large movements relevant to the physic:al model imposed

practical conslraints on implementation of the an:alysis :and discrcliZlltion of the soil

domain. Severe element distortion restricted the mnge of movement over whK:h

convergence was attained, and limited allowable mesh refinement in the vicinity of the

rigid body. Adaptive mesh rezoning algorithms may be introduced to provide: more

delailed and accurate infonnation in the region of high strain gradients :ldj:acenl to lhe

rigid body. For two • dimensional undrained deformation. volume loss in lhc: scour path

must be partially accommodated through continued upward displacement ahead of the

advancing rigid body. Without allowance for a laleral clearing mechanism. a sabk

configuration of the (ronlal mound could not be established in the analysis. :and

divergence of the associated displacement rteld wasanlieipaled with continued movement.

The measured steady· state response was therefore approximated by the cumulative

displacement which followed complete passage beyond a maleri:al point situated in front

of the initial rigid body position. and which corresponded with the development of :a

realistic configuration of the frontal mound.
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Analysis of Scour Tests

Comparison between the Test 04 experimental data and responses compUied through

simulation of the corresponding prototype scouring event, established the viabilily of the

numerical representation. The analysis results exhibited reasonable quantitative agreement

wilh the measured effects of scouring, including excess pore pressures, resultant forces,

and soil displacements. The correspondence between computed and measured values

indicated Ihat realistic approximalions of steady - state conditions may be obtained

without requirement to represent the complete range of horizontal movement in the

analysis. The analysis allowed for progressive development of soil failure with continued

movement: from the inilial elastic response to yield and plaslic defonnation contained by

surrounding elastic regions, followed by very large defonnation in regions ofunTestricted

plastic flow. The soil response was characterized by a semi ~ circular region of large

displacement which extended from the base of the rigid body 10 the free surface, and

encompassed positions beneath the scour depth. The region defined a panero of

displacement and did not represent a physical condilion of shear separation or

discontinuity; the compuled displacement magnitudes attenuated with dislance in front of

and below the current rigid body position, without evidence of localized shear dislonion

associated with fonnalion of diSlinct ruptUre planes.

The development of a localized soil defonnation response which represented a

physical discontinuity was restricted by the relatively coarse discretizalion which was

adopted in the numerical analysis. In addition, the tendency for near surface soil elements

to undergo softening upon shear was partially suppressed by drainage conditions which
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limited the allowable volume change during the cvcnt. The varia(ion of cumulalivc soil

displacements wilh deplh computed for reference nodal lines in the analysis provided

reasonable predictions of m~asured values; (he computed profiles wen: nO[ auributed to

an explicit mechanism of shear df1gging adjaccnlto a ruplUre plane or rigid body sliding

relative to the soil.

The Test 05 I 09 analysis penniued an assessment of the influence of a change

in the initial state of (he soil; although, the results also represent~d the effects of changes

to other variables, including the scour depth and the f1nge of horizontal movement, in

relation to the Test 04 analysis. The correlation of computed and measured values WlI$

less satisfactory for the Test 05 I 09 analysis. which indicated some ddieicncy of the

numerical representation in addition to anticipated measurement inaccuracies. TI"IC

analysis d~fined an increased depth of soil at heavily overconsolidated initial states,

associated with contraction of (he yield surface and strain softening behaviour. 1l"IC

analysis results displayed iocreased magnitudes of cumulative shear strain and ttduction

in extent of the region of large displacement, in comparison with Test 04 computL'CI

values. The greater localization of response was consistent with an increased number of

soil elements which experienced softening toward critical states under contimx..'CI

defonnation throughout the event; stnin softening behaviour was associ<ated with

development of a concentration of defonnation in regions which had become weaker by

comparison with the surrounding soil. In contrast, soil which underwent plaSlic

'olumetric compression and hardening, allowed for increased tf1nsmission ofstrcsses and

distribution of defonnation over a greater depth of influence.
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Comp,~ssibf~ and B,itt/~ Soil Events

In rrcdk:tion of the effects of scouring. two general classes of evem may be distinguished

in accordance with the regimes of soil behaviour defined through concepts ofcritical State

theory: (I) Compressible behaviour with stable yielding of initially lo~se or lightly

ovcreonsolidated materials on the wet side ofcritical stale, and; (2) Briule behaviour with

rupture of initially dense or heavily overconsolidated mater::lls on the dry side of critical

state. In lhe compressible or wet state, an evem may be characterized by continuum

distortion or flow, where loss of material in the scour path is accommodated primarily

through compressive defonnation beneath the incision; distinct rupture planes are not

fomle<! and cumulative soil displacements attenuate with increased distance from the rigid

body. In comrast, where brittle or dry behaviour represents the dominam mode of soil

response, an event may be characterized by fonnation of a succession of rupture planes

which develop from the base of the rigid body to the free surface in a repeating panero,

with related periodic variation of the resultam forces; in this iosmoce, the bulk of

material loss in the scour path may be accounted for through progressive lateral clearing

of blocks of soil separated from the continuum, associated with the creation of

discontinuous benn features at the sides of the scour incision.

The presem study provided evidence of the applicability of the adopted numerical

representation to the defonnation of soft clay under essentially undrained scouring

conditions, in which the integrated effect of eleiiient responses described an event

dominated by compressible soil behaviour. The analysis was not applied to investigate

brittle soil events, for which the development of rupture planes may be expected to

invalidate the numerical representation, without specific allowance made to address the
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effects of discominuilies. Comparalive examin:uion of the Tesl 04 and OS J 09 analyses

displayed dependency of the depth of the region of large displacement on soil ~haviour.

which was altered with the imposed slress history or inilial stale. Compressible soil

events were associated with development of a relatively extensive region of large

displacement. with grealer~ being transmilted through slr;ain hardened material;

this range of soil behaviour may. lherefore. represent I limiting condition for which the

evalualion of sub· scour effects was mOSI relevant 10 ensure pipeline burinl at sufficient

depth below a region of large displacement. In contrasl. briUle soil events. with strolin

softening beyond peak stresses, involved the concentration of intense shearing and

volume change in very thin regions of material. and large sub • scour soil displacement

was expected to be relatively localized for this range of soil behaviour.

The assessment of previous analytical investigations of mechani.~ms of failure

developed during scouring events (see Chapter I ) indicated that, for horizontally

moving ice feaDJ.res, rupture planes were noc expected lo extend below the depth of

scouring. with the exception of strongly dilatant soils, for which minor sub • scour

disDJ.rbance was predicled. 1be available experimental evidcnce displayed cumulative

displacements at positions below the depth of rupDJ.re planes defined through the analysi.~

of failure mechanisms. For brittle soil events, shearing may be expected to occur almost

solely on the rupture planes. with eventual deformation at constant volume and constant

mobilized friction under continued relative motion toward critical slales. An additional

region of large (plastic) soil displacement may be attributed to dragging deformation..; of

soil immediately beneath the rupture planes or adjacent to the rigid body sliding relative

10 the soil; however. the softening response of the neighbouring initially dense or heavily
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overconsolidated soil may also be expected to inhibit the extent of a region of large

dragging displacementS, as further defonnation would remain concentrated in the

weakened soil.

6.4.2 Effects of Parameters

II/itial State and Stress Paths

In the present study. the numerical representation was not implemented to investigate the

complete range of parameters which defined the effects of a scouring event. In addition,

evaluation of the influence of parameters through direct comparison of the results of tests

in the experimental programme, was hindered by the small number of tests perfonned.

and by permitted variation in individual tests. Section 6.4.1 discussed the effects of initial

slale on the depth of the region of large scour· induced soil deformation. with

comparison of the Test 04 and 05 I 09 computed values. The measured displacement

profiles were inconsistent with the analysis results, in consideration of the relatively

extensive region of large vertical displacement recorded for Tests 05 and 09: however,

the variation in measured magnitudes of vertical displacement suggested that results

presented were representative of extreme values and may be associated with unsteady

conditions.

The mode of defonnation and failure was not defined exclusively by the stress

history or initial state of the soil; the expected response was also dependent on the lotal

stress paths (drained or undrained) applied during the event. The influence of the stress

path may be illustrated by considering an element of dense or heavily overconsolidated
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soil, wiUl initial state on the dry side of critical, silU.ned in from of the initial posilion

of the rigid body or ice keel. If passage of lhe keel impostd loading which involVL'd

increased deviatoric or shear Slress at conslant mean nomml stress, the ekmem wuuld

exhibit brittle soil behaviour, wilh strong tendency to sorten and gencr.ue dilat:llu

ruptures; however, if a large increase of mean normal stress wu applied more rapkily

Ulan lhe corresponding deviatoric component, the stress path may reach failure on the weI

side of cridcal, and the element would then display compressible behllviour, as.'iuci,L[I,.'1J

with hardening and continuum distortion. The effects of parametric variations nn the :'\ui!

deformation developed during scouring may, therefore, be evaluated qualitatively in

accordance wiUl anticipated changes to stress paths. which describe the relliltonship

between mean nonnal and dcviatoric components of stress under the applied loading.

DroilUJge Conditions

In the p~nt experimental programme. Test 06 provided the most striking evidence of

the contrast between the mode of soil defonnation and failure exhibiled for britlle ~i1

even[S. in reladon to events dominated by compressible soil behaviour. The input

conditions for Test 06 were identical to those for the Test 05 baseline event. with the

exception of the imposed stress history. which defined a more heavily ovefa)nsoIKJatc:d

initial soil stale. Importantly, due 10 equipment malfunction. Test 06 involved a

substantially reduced scouring velocity which, togelher with the enhanct."t.I rate of

dissipation in the model, implied that the event represented fully or partially drdirn."t.I

conditions. 1be Test 06 scour was characterized by extensive loose or discontinuous

berm material, and • Ia.rge amount of surcharge was built - Ufi at the front and sitlcs of
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the advancing model. Comparison of the cumulative displacement profiles for Tests OS

anti 06 (shown in Figures 4.36 and 4.45) served to illustrate dissimilarities in the

measured effects of scouring. In Test 06, the magnirude of the horizontal component of

displactmcm was very large at poSitions above or immediately beneath the scour base,

but movements were limited to a shaJlow or localized region. The magnirude of the

venical component of displacement was small or negligible at all sub • scour depths. The

loss of material in the scour path was therefore accommodated thraug" fromal mound

development and subsequent lateral clearing to discontinuous benn fearures, rather than

by compressive defonnation below the incision.

The drained soil conditions in Test 06 allowed for dissipation of excess pore

suction by the mechanism of transient flow of pore water, which led to softening and

consequent concentration of defonnation in a narrow region of weakened soil. The

influence of drainage cooditions, also offered an explanation for the relative similarity

of measured displacement patterns for other tests in the experimental programme, which

indicated dominant compressible soil behaviour, despite differences in the initial soil

state. For the essentially undrained conditions which were relevant in the majority of

tests. the dissipation of negative excess pore pressures was restricted, such that softening

beh<lviour and localization of the soil response in a near surface region was partially

inhibitL'd. The suppression of softening was apparent in consideration of the computed

clement deviatoric stress· strain responses for Test 04 and 05 I 09 analyses. shown in

Figures 6.2 and 6.18, respectively. In practice, relatively compressible soil behaviour

may therefore represent the most prevalent response during scouring in clay, where full •

scale fteld conditions may be expected to be undrained for most conceivable events.

409



However. it should also be tIO(ed thaI. for eveNs which an: nomin:llly unc.lrair.ed. in the

sense that the overall volume does not change. then: may still I'lC local umin:lge of pore

water from the surrounding soil, whieh may facilitate softening and uevelopmentllrthin

zones of shearing or rupture planes.

Test 08 provided further substantiation of the: influence of drain:lgc conditions 00

soil behaviour and the: effects of scouring. The displacement pallems in this test wen:

comparable to those measured in Test 06 and both lests involved II signilic:mt n:duction

in the rate of model movement, which allowed for dissipation of nt:gative excess pore

pressures during the event. In addition. an increase of the inh:rface friction angle III'

adhesion with decreased strain race. may have represerued a contributing factor to the

localization of response which wu exhibited in both tests. The effecl~ of ch:tngc.~ III

interface conditions were investigated as pan of the Tesl 04 anc.l 05 f 09 ;tnaly~. Itnd

it was found Wt computed horizontal and venital components of displllCemc.:na dI.-crctscd

with speciflCalion of higher values of the interface friction angle. ;L~ illustrated in

Figures 6.15 and 6.16. respectively.

Attack Ang/~

For briltle soil behaviour, previous analyses have suggested that ruptun: planes wen:

unlikely to extend far below the depth of scouring, and this conclusion WIl.~ unaffected

by changes 10 the angle ofauaek; although, boundary wedges or dead zones of soil were

required to establish compatibility wilh modifICation to the interface geometry. The dft:Ct

of decreasing the attack angle was also to induce high or rapidly increasing mean normal

stresses u lbe rigid body or ice keel approached a blunt conligut1iltion applicable to II
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lidJ sc(lUring event. Therefore, while the initial soil state may define a dense or heavily

uverconsoJidated condition. the large spherical pressures generated at low anack angles

may he sufficient to dkectlhe stress path to failure on the wet side of critical states, with

resulling plastic compression of the soil. In contrast, rupture and fracture may represent

the dominant mode of defonnalion and failure during soil cuning at tow effective stress

levels with sharp or positively. raked implements.

For compressible soil behaviour, decreasing the attack angle altered the pattern

and extent of the expecled defonnation. A blunt interface geometry induced greater

vertical sttL'SSCs during a scouring event, with corresponding increased vertical strains

and displacements. In Test 08, the auack angle of the model iceberg was increased to

25 degrees. and resulting measured vertical displacements were small or negligible, and

large horizontal displacements were limited to a relatively shallow sub - scour region.

The innuence of a change to the angle of auack was not isolated. however, and the

results of Ihis lest also renecled the effects of a substantially reduced rate of model

advance. and a greater scour depth in relation to baseline conditions.

Scour Df!p/1l

The boundary conditions which served to define lhe two - dimensional representation of

scouring included the scour depth in addition to the angle of auack. The analysis of

f:lilure mechanisms proposed for brillle soil events implied thai the expected extent of

rupture planes beneath the scour base was insensilive to changes to both parameters. As

wilh roouctioll of the attack angle. the effect of increasing the scour depth was to

genernte additional mean nonnal stresses which may induce compressible soil behaviour
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for initial stones on the dry side of critical. In this manner thl: innuc~ of hoch

parameters may be expeet~ to be interdependent, in tholl a limiting condition for which

the dominant mode of soil defonnation and failure chang~ from brink to compressive.

for a given initial state, may be described as a function of hoth the auacL: angh: anti the

depth of scouring.

1bc scour depth also innuenced the expecled soil response intlirtttly. as inc:n:ast.'d

depths were related to decreased initial vertical effettive stresses. such that soil within

Ihe region of innuence of the evenl, represented more lightly overconsoli<!:UL'd initial

stiles associated with plastic compression. For compressible soil behaviour, the pallen!

and extent of soil deformation was dependent upon the scour depth. liS the intensity of

vertical stresses induced during loCouring was increased for grealer scour depths. leading

10 increased vertical strains and displacements. In addition. increased spherical presSUrc5

resulted in compression and hardening for soil elements below the SCOIJr and allowed for

greater transmission of stresses, which facilitated distribution of deformation over a

greater depth. The assessment of the influence of scour depth through direct comparison

of the results of testS in the experimental programme was no!. possible; however,

measurements in individual tests displayed decreased magnitude and extern of

displacement for grid locations near to the end of the scour path, associated with a

reduced depth of scouring at steady conditions.

Scour Width

For brittle soil behaviour, analytical descriptions of three· dimensional scouring

mechanisms for narrow Ice features are not available. and limited information exists by
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whkh to define the expected lateral and vertical extent of rupture planes in exceptional

C,ISCS where plane strain assumplions are invalidated. For events in which compressible

soil hchaviour is dominant, decreasing the sc~'ur'~idth may be expected 10 diminish lhe

eltlent of the induced stresses and corresponding slrains and displacements below (he

scour. The allenuation of stresses with depth is more gradual for events which involve

high scour width I depth ratios appropriate to IWO· dimensional representalions of the

field scouring process. The relatively greater depths required to realize the same

reduction in stresses may be allribuled to the reduced capacity for lateral distribution of

lhe ,Ipplied loads during an event: only one laleral dimension is available for large

widths associaled with plane strain conditions whereas, by contrast, stresses developed

beneath a narrow ice keel are pennitled to spread out symmetrically over the horizontal

planes.

The reasonable agreement obtained between experimental data and analysis results

in Test 04 provided support for a two - dimensional numerical representation, particularly

as typical field scouring geometries may be expected to involve greater width I depth

ralios Ihan those investigaled in the experimental programme. The analysis was,

however, unable 10 account for edge effects due 10 observed near· surface laleral

displacements, as well as possible dissipation of laleral sub - scour movement over an

extensive area. Tes! 07 was inlended to permit an assessment of the influence of width

on the effects of scour, and input conditions were altered from the Test 05 baseline case

with reduction of the scour width by half. Comparison of the distribution of measured

lJisplacements withdeplh for Tests 05 and 07 (shown in Figures 4.36 and 4.S3)displayed

similar profiles of horizontal displacemenl; however, in Test 07, the extent and
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magnitude of lbe vertical displacemc:nt were dc'C'1'CUCd subsUU1tially. Mc::uumJ

di.splaceme:m pauetnS also exhibiled~ Ia~ ITKM:mcnlS in the plane: perpendicular

to the d~ion of tnvel: although. lhesc movancru were pani3l1y alln1lUlcd to lak:r:ll

inclination or lilt of the model during the scouring event.

V~t1ical Stiffness

Whereas the venical (hydrostatic) stiffness of the rigid body or ice feature affeCled ilS
" ..

ovtrall motion and Slability for unsleady conditions at the inceplion of 'In eVl:n1. Ihe

influence of venical stiffness on the effects of scouring lit lin equilibrium deplh llnd

orientation may be expetted to be negligible, over the ran£e of stiffocss conditions

considered plausible: for a full • sized iceberg or pressure ridge. The foremosl effect of

I change in lbe venical stiffness was, thetefore. to alter the boundary condiljons of scour

depth ard angle of anack during the eDblishmcnt of steady· Slate condilioos. Test 02

provided limited experime:nlaJ evidence of soil • slIUdUre intenction effects during

.scouring, wit:h uplift response: related 10 inaeucd soil stiffness in the vicinity of a model

pipeline uenth: bowe.ver. comparable beha.viour was not appart:nt in ranaining tesU.

where the model iceberg was modifted to address the concern of unrealistic vertial

stiffness.

Soil Typ~

In the p~nt scudy, the effects of scouring were investigated In Spe.swhite kaolin clay,

and experimental data were not :acquired for soil of dissimilar type and mineralogy.
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Ilowever. the behaviaur of sand may also be fitted into the critical state framework

whieh served to distinguish compressible and brittle soil events for clay. Inferences may,

therefore, be drawn concerning the expected modes of defonnation and failure, with

consideration af similarity between the behaviour of loose sand and that of 1I0nnally or

lightly ovcrconsolidated clay, and between that af dense sand and heavily

overconsolidated clay. While lhe pattern of behaviour af sand is similar 10 that of clay,

there arc differences of degree, and except far situations in which mean normal Stresses

:lre very high, or the sand is unusually loose, the consolidation characteristics are much

less important. The behaviour of sand is influenced most of all by its initial specific

volume. The majority of sands are deposited in slates which 8re denser than critical and,

:It low or modest stresses, behave as though they were heavily overconsolidated,

irrespective of their stress history; allhaugh. some deposits may be suffICiently loose to

compress upon shearing. Most commonly, therefore, sands may be expected to exhibit

hrinle soil behaviour during scouring, characterized by strain softening and localization

of deformation, associated with the development of dilalant ruptures. The applicability

of the continuum numerical representation is limited in such circumstances, without

modification of the method of analysis to account for effects of discontinuous behaviour.

6.4.3 Summary of Eltperimenlal Data

Figures 6.30 and 6.31 present a summary of the test measurements of scour· induced

soil displacement. in which magnitudes of the horizontal and venical components are

plotted against depth below the base of the scour. For compressible soil events, greater
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peak values of the horizontal component were recotded lit~ scour base: however. largc

hori7.omal displacements were limited to shallower extent. as verticttl displ"c:cmcnts

anenuated more gradually with deplh below the scour base. Where brinle soil behaviour

was dominant. as exhibited in Test 06 and. to a lesser degree. in Test 08. Iht: response

was characterized by an intense region of very large horizontal displacl.'1l\Cnts

immedia.ely beneath the incision. together with sma.1I or negligible vertical displ:lCl:mt:f'll

al all m~red sub - scoor positions. The experimental results displayed considerable

variation, attributable to the effects of changes in the initial sail Slale. and to differences

in stress paths during an event, which resulted from changes to boUndary conditions such

as the scour depth and the angle of atlack. Scalier of the data may alsa be ascribt.'d tn

measurement inaccurades and variation in the grid measurements made in each tcst. In

particular. the: Test 01 horizontal displacement profile appeaml to overestimate actual

soil movements as a result of the limiting accuracy of the manual measun:ment

techniques employed. Similarly, the variation in measured magnitudes of vertical

displacement in Tests 05 and 09 indicated that the results presented were represcntlltivc

of extreme values for these events, related to unsteady scouring conditions.

The region of large sub • scour displacement was defined approximately for

individual scouring events by spe.cification of Ulit maximum value immediately below the

scour base (interpolated at depth of 0.1 m below the scour base) togcther with lhe

limiting depth. below which displacement magnitudes less than a lower bound of 0.2 m

were measured. A summary of results from the. experimental programme is presentcd in

Table 6.2. The magnirude of the. horizontal component of displacement at the scour base

ranged from 0.5 to 3.4 m. and averaged 1.6 m for all test measurements. The extreme
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T:l.hk 6.2 I/fJriwnlol and \~niCQI displQc~mtnl magniludts at scour bas~ and limiting
rlc-ptlls Mlow srour btLft' - sununary of "suIts from UfHrimtntal programm~

Scuur TCSI Horizontal component of
sub . scour displacemenl

Venical component of
sub· scour displacement

magnillJde at limiting deplh magnitude at limiting depth
scour base .. below base ... scour base .. below base ....

01 1.0 2.' 0.4 1.1

02 0.5 1.4 0.' 1.7

04 l.S 3.1 0.9 3.2

0' 1.3 3.0 0.9 6.2

06 3.4 2.0 0.1 0.0

07 U 2.3 0.6 U

08 2.8 2.8 0.4 0.7

09 1.1 2.8 0.7 4.2

magnilUdc (m) at depth below scour base =0 0.1 m

depth (m) al lower bound displacement magnitude. 0.2 m
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values of the limiting depth of the region of large horizontal displacement were 1.4 and

3.101, with an average extent of 2.5 01, correspondir,g with a nonnaliud v:llue of

2.5 scour depths. The magnitude of the venical componenl of displncl:mCnl :II 11ll: scour

base ranged from 0.1 to 0.9 m, and averaged 0.6 m for all test mcasurenll:n1s. The

extreme values of the limiting depth of the region of largt: venical displacement were 0.0

and 6.2 m. with an average extent of 2.3 m, corresponding with a nonnaliu.'l.I vlllue of

2.3 scour depths. The average values may be considered relevant to comprcssibh: soil

events for the panicular soil type and states influenced by Ihe mngc of p:lrarneten;

investigated in the present study. In commst. for events which involved pn:<Iominantly

brittle soil behaviour. measured venical sub· scour displacement was negligible, llIxlthc

exwnI of the region of large horizontal displacement may be limited to less than

1.4 scour dcpths. The values quantifying a limiting depth of the region of large

displacement were sensitive to the selected lower bound magnitude; the appropriatc 7.cro

benchmark was dependent on pipeline perfonnance, discussed in Section 6.5. In addition,

inaccuracies may be expected due to interpolation between grid measurements. which

were available for approximate one metre depth intervals at prototype scale.

6.5 Implications for Pipelines

6,5.1 Model Pipeline Results

The experimental programme allowed for limited direct observation of thc effccL'i of

scouring on buried model pipeline segments. The scaling relationships were detailed in

Section 2.4.3, and Chapter 3 provided infonnalion penaining to model charoicteriSl.jc!> and
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installation procedures. Inadequacies of the representation included the following: finite

segment lengths with unknown end fixities; lack of operational internal pressure or

temperalure; lhickness to diameter ratio which exceeded thaI of typical prototype

geumetries. and; material yield stress lower than that of commonly employed pipeline

sleels. Thcse limitations suggested that measured defonnations were unlikely to represent

the detailed response of a typical full - scale marine pipeline. Instead. the models

provided general indication of the sub - scour depths at which pennanent distress of a

pipeline may be induced by the effects of scouring. As indicated in Chapler 4, the nature

of the distress exhibited varied from minor plastic bending in most instances, to more

significant measured horizontal and venical curvature. Model pipeline segments in the

scour path experienced local denting and severe plastic bending to positions below the

scour; however, the development of buckling failure and rupture or loss of integrity was

inhibited by the high thickness to diameter ratio of the pipeline geometries investigated.

Table 6.3 provides a summary of model pipeline perfonnance in the experimental

programme. given as a listing of the depths for which a segment was found to be

plastically defonned. and the depths for which a segment was no! pennanently affected

by the scouring event. Two general results were evident: (1) pennanent distress was

displayed for some model pipelines which were initially situated at depths below the

scour base. and; (2) in some instances, model pipelines subjected to large soil

displacement below the scour base did not exhibit any measurable defonnation. The first

result was consistent with the requirement to address sub - scour soil displacement in a

mtional pipeline design methodology. An implication of the second result was that it may

be possible to establish safe designs for pipelines burted within a region of large (plastic)
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Table 6.3 Mood piJHlin~JHrfonllQnct for dilftrtnt il/itiol d~plla ofRl::mellts ht!101l' mISe
of scour· summary of r~slllts from ap~rimentol programme

Scour Test Model pipeline defonned Model pipdinc unafli.'Clcd
during scouring even! during scouring eVC:n1

Initial depth of segmem Initial depch of lICg.n)l:nt
below scour base (m) below scoor twe (m)

01 0.1 1.1 .3.2.4.5

02 0.0.0.2

04 0.0.0.6

OS 0.6. I.S

06 0.4.1.3

07 0.6

08 - 0.3

09 1.S,2.2

soil displacement below the depth of scouring. as may also be necessary 10 ensure an

econom)cally viable selutton.

6.5.2 Design Methodology

The primary objective of the present study was the development of models which would
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allow for tbe evaluation of soil defonnation due to ice scouring, and the relationship

between theoretical and centrifuge physical approaches, in suppott or this objective, was

dl.-pictcd schematically in Figure S.l. As illustrated in Section 6.5.1, large sub - scour

soil deformations transmit loading to a buried pipeline which is stiffer or more rigid than

the soil in which it is embedded. The soil - pipeline interaction must therefore be

acJdresSt."d in order to facilitate prediction of the pipeline response to loading imposed by

soil movemenl, such that safe burial depths may be established in accordance with

conventional design criteria. To this end, the numerical rt:presentation adopted in the

present study may be eXlended to incorporate a model of the pipeline; however, the

inherent complexity of a three - dimensional finite element analysis of the complete ice •

soil - pipeline interaction, including a realistic model of the nonlinear bending of an

internally - pressured pipeline, may be expected to restrict practical implementation of

such an approach. Alternatively, lhe free field displacements, derived from numerical

simulation of the ice· soil interaction, may serve as input conditions for an independent

analysis of the soil - pipeline interaction. The development and veriftcation of an

engineering model of this type was recently described as pan of a parallel study on the

effects of ice scouring on buried pipelines (C - CORE, 1995). Some oflhe results of this

investigation, which demonstrated the practical implementationoflhe design methodology

implicit in tbe present study, are presented here for completeness.

Soil· Pipeline Inreraction

An existing model of soil - pipeline interaction ( PIPSOL), previously applied in

simulation of the effects of differential ground movements such as frost heave and thaw
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se«lemenl (Nixon et al.. 1984). was adapted for use in the :lTlalysis of Ihc ripclil~

~sponse to ice scour· induced soil dl:formalion. The PIPSOL nlcxJcl (NixUll. 19941 is

a numerical extension of the Winkler solution for an elastic be"'nl on :l spring fuund:lliull.

in which the pipeline is ~presented as a nonlinear. axially loaded t-.'3m . clllur.:n. and

the soil is idealized as an elastic· pll-o;tic material. A nonlinear momcnl • hcndil\{l. stnin

~Iationship is Il5eCI to simulate the response of the pipeline. with considcrnlion of the

biaxial stress state imposed by inlemal pressure. The an.1lysis provides infunllillillll Ill\

pipeline dcfonnation in bending. axial extension. and ovalilOltion.

Figure 6.32 illustrates the sequence of steps involved in implcn~ntatioll of the

engi~ring model. 11Iesc procetlures may be embedded in an overall risk a.."iSt.~n~nl

based on seabed scour dala and ice environmental information for the prescrihed pifIClinc

route, in order to address the following two conditions: (I) the prohahilily thill a

particular ice keel will inlersect the TOUleduring the time inlerval of interest. and: (2) ftlr

a given ice keel· pipeline encounter, the probability that any imposed pipeline distn:ss

will exceed design requirements for serviceability or ultimate limit statc.... For a given

scouring event, the diSlribution of free field soil displacements in lhe vicinity of the

pipeline may be defined based on information from separate numerical analy5t:s of the

ice - soil interaction, or derived direclly from empirical evM;!nte. where available.

Loads are impancd to the pipeline by relative motion between lhe pipeline and

the surrounding soil. as will occur when the soil restriclJ!i the free movement of the

pipeline or when lht pipeline attempts to resist the movement of adjacent soil. This

hchaviour is characterized through soil resislilnce functions, which describe the

relationship between the load per unit length of the pipeline and the relative displacement
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Figure 6.32 Schematic illustration of procedures involved in imptemenlQJion of engineering
1110,11.'1 of ice· soil- pipeline interaction ( modijil!d after C - CORE, 1995 )
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between pipeline and soil. The nonlinear load - displacemem relationships. also blOwn

as p • y curves. may be obtained based on convemional soil mechanics principles in

accordance with the recommendations provided in ASCE (1984) or other accepted

industry guidelines. The final input conditions required for ,he analysis an: the pipeline

characteristics, which include lhe section dimensions and material type. as well as the

tempcralUre and internal pressure of the pipeline during operntion. An advanlage of an

independenl model of the soil· pipeline interaclion, is 10 allow a series of simulalions

10 be conducted in a rapid and computationally effICient manner, for a panicular

distribution of free field soil displacements. Several analyses may be pcrfonned in which

the pipeline structural features and burial depth are varied. in order to optimize lhe

design, with consideration of strain limits or Ol.her design criteria established for lhe

pipeline section.

V~rifiCQt;on of £ngin~tringModtl

An example investigation was carried OUt 10 demonslt3te the procedures involved in

implementalion of the engineering model, and 10 iIluslnlte the effects of changes to scour

parameters on the predicted pipeline performance (C • CORE. 1995). PaniiJl numerical

verification of the model. for use in the study of ice scouring effects on buried pipclinc.~.

was also obtained through comparison of analysis results with dala acquired in lhe

present experimental programme. The analysis was conducted to predici lIle measurcd

pipeline response in Test 04, where segments at two difTerent burial depths suffered

permanent disttesS as a result of the effects of the scouring event. TIle pcrfonnancc of
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the model pipeline segment at greater depth, with an initial soil cover of21 mm (O.6 m

below the SCOlJr base at prototype scale), was simulated.

The lateral and vllnic"l distributions of the free field soil displacements. specified

as inpul conditions for the analysis, were derived from the experimental records

presented in Section 4.3.4and Appendix A. The measured soil displacements represented

cumulative values following complete passage of the rigid body or ice keel. The

maximum tntnsient displacements during the scouring event were approximated as upper

htlUndS for the complete data set acquired from the grid measurements. The nonlinear

load - displacement relalionships were based on the ASCE (I984) recommendations for

suft 10 medium clays. where the peak load was derived from bearing capacity theory

using the soil undrained shear strength at the model pipeline elevation and the inleraction

fllctor suggested by RizkalJa et al. (I992). A surcharge teoo was added to the bearing

c:lpacity equation to account for the high venical stress imposed by the ice keel, such that

calculated peak loads varied with lateral distance along the pipeline axis. The moment·

hending strain relationship for the pipeline was estimated using a hyperbolic uniaxial

stress - str-din curve (Nixon, 1994). Since the experimental pipeline displacements were

measured following unloading allhe completion of the event, it was necessary 10 evaluate

Ihe relaxed strains and the corresponding displacements, with allowance for elastic

rebound of the pipeline to zero bending moment.

Some aspects of the simulated pipeline response showed reasonable agreement

with the experimental results. in consideration of the reqUirement to estimate input

cUnditions from end of test measurements. Figure 6.33 shows a comparison of the

predicted and measured displaced configuration for the pipeline. The predicted pipeline
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displacements were similar in magnitude to the measured pipeline displacements. The

pipeline was defonned with the soil bencath the ice keel, and was reslrained in lhe

transverse direction by the soil outside of the scour path. With allowance for elastic

rel>ound following unloading, the analysis predicled a high degree of straining in the

central panion of the pipeline, wilh relaxation to a relatively unifonn profile loward the

ends of the segment. The measured pipeline displacements were smoother and more

dispersed than Ihe predicted values, which displayed a more pronounced plastic hinge

development. The predicted displaced pipeline configuration also exhibited a slight

reverse curvature adjacenl to the edges of Ihe scour palh, wh.ich was not apparent from

test measurements.

To allow for comparison with Ihe analysis resullS, pipeline bending strains were

calculateJ as the second derivative of the measured pipeline displacements. This approach

was anticipated to imroduce significant error, due to the central differencing procedure

and the limiting accuracy of the test measurements. In Figure 6.33, the predicted pipeline

bending strains are shown ploUed against diSlance along Ihe pipeline axis. together with

values derived from the measured pipeline displacements. The predicled bending strains

al the centre ')f the segment were much greater in magnirude than the corresponding

experimental resulls, as may be panially attribuled to insufficienl measurement precision

10 pennit resolulion of peak values at this location.
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Chapter 7

Summary and Recommendations

7.1 Introduction

The scouring of seabed sediments by a moving body of ice is a common OttUITCOCC

throughout the cOnlincmal shelf regions of the Arctic Ocean, the Canadian east COlIst. and

other potential production areas for offshore hydrocarbon reserves. lbe effects of Ihis

phenomenon represent a critical design consideration for oil and gas pipelines plarmaJ

to tnl;verse these regions of active scouring. It has been detennined that it is unlikely chat

an unprotected pipeline could safely wilhstand the large forces imposed through direct

ice contact. and burial at suffkiem depth to avoid this circumstance is essential.

Importantly, however. large scour· induced soil defonnation may also transmi1loodi08

to a pipeline buried below the maximum depth of ice inlrUsion. causing permanent

distress which may render the structure unsafe or unserviceable. A rational pipeline

design methodology must therefore incorporate a theoretical model which provides

reliable quantitative predictions of the soil displacements generated during icc scouring.

Following definition of the soil displacement field, the pipeline response to the scouring

event may be evaluated through adapted procedures of soil - pipeline interaction analysis.



7.2 Physical Modelling

A programme of centrifuge model tests was undenaken to provide data on the effects of

icc scouring, for well· defined events representative of relevant field situations, in

.~upport of the development and verification of a realistic theoretical model of the ice 

soil interaction. Model design criteria or similarity requirements were salisfied such that

the important physical aspects of the prototype were reproduced at specified scales. Use

of the cenlrifiJge ensured that effective stresses and pore fluid pressures in the small scale

models were equivalent with corresponding full scale conditions, as required to allow for

tlepentlency of the mechanical behaviour of soil on lite overall stress Slate,

Icc scouring is a complex phenomenon. and a variety of event scenarios may be

envisaged depending upon the environmental driving forces which are acting, the

characterisdc,; of the ice Feature. and the soil type and state. The assessment of field

evidence provided a basis for me development of an appropriate physical model

idealization. For modelling purposes, it was assumed thai the ice feature moved

horizomally through a unifonn level seabed at constant velocity, and motion during the

event was not limited by the available driving forces. Initial uplift and rotational

movements were pennitted prior [0 !he achievement of steady - state conditions. The ice

Feature was represented by a rigid body. and the shape of the keel was chosen to reflect

the equilibrium geometry, established following eltpected modification over the initial

slilgCS of the prototype event. The soil type investigated was reconstituted Speswhite

kaolin clay; the stress history of the soil was prescribed to establish paniculal' initial

stress slales, with general reference to propenies of the surficial Unit A sequence of
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Beaufort Sea clays, 10 ensu~ tNl the range of strength and sliITnt:SS moddlaJ w:lS

~Ievant in practice.

Tesl apparatus and experimental mcthods we~ develoJK.'i:I or awptetlto simulate

the idealized scouring condition, including definition of tht.: soil strt."SS history through

laboratory preparation. establishment of the correct current effcclive stress levels in 

night on the centrifuge. and appropriate represc.:ntation of the pfOlOtype perturbation and

associated suess paths. 1be equipment and instrumentation also allowed for monitoring

of the imposed condilions and external model responses. 10 ensure well - dcfil1t."lJ t.:vt.:nts

which were amenable to subsequent analysis. The test measurements were intcndl.'d to

provide infonnation on the contact pressures and resullanl forces acting on Ihe mood K:C

feature, the pore water pressure changes within the soil, the scour - induced soil

displacement field, and the posI - event displaced configuration of model pipeline

segments.

A total of nine tests was conducted, excluding proof tests which were callied out

to evaluale the equipmenl design and system perfonnance. In each tcst, 11 unique event

applicable to a notional field situation was modelled, and accurate dala on the cfft..'ClS or

scouring were acquired. A prototype stratum of saturated clay which was 18 m det:p and

85 m in diameter at Earth's gravity was investigated alII 100 scale in a model specimen

of equivalent soil broughl into equilibrium at 100 gravities on the ccntrifu~e. The level

of pre - consolidation was selected to obtain a desired profile of overconsolidation ratio,

and was altered in particular tests to examine the innuencc of initial soil slute on the

effects of scouring. The maximum vertK:a1 effective stress imposed in the laboratory

ranged from IlD to 200 kPa, and a pre - consolidation stress level of 140 kPa was
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selected to define the baseline test condition. The near surface clay of each specimen was

in an overconsolidated state and exhibited undrained shear strengths of between 10 and

20 kPa, on average.

In addition to changes in me initial soil state, specified boundary conditions were

varied in the test programme, to ascertain the effect of individual parameters on the

experimental results. The vertical posilion of me model ice feature was unrestricted

during a test, to allow for uplift movements at the inceplion of the event. The scour

depth established for steady· state conditions included extreme values of 0.4 and 2.2 m

at prototype scale, with an average magnitude of 1.2 m for the complete range of tests

performed. The prototype scour width was limited to a maximum value of 10 m, which

served as a baseline condition, and was reduced by half to investigate a narrow scour of

5 m width !n a given test. Similarly, the anack angle of the model ice feature was set at

15 degrees to the horizontal, with a single test variation to evaluate a sharper keel

geometry with an attack angle of 25 degrees. The model was advanced at a uniform rate

of 0.07 mls. which was sufficiently rapid for essentially undrained conditions to prevail,

corresponding with expected field conditions for scouring in clay; however, the

capabilities of the drive system were exceeded in particular tests, which resulted in

movement at a substantially reduced rate, applicable to a fully or panially drained

protOtype event.

The centrifuge test programme demonstrated the utility of the test appararus and

experimental procedures. with exceptions where equipment malfunction resulted in

unplanned changes to parameters in individual tests. The modelling of models technique

provided reasonable verifK:ation of the internal consistency of the representation, and
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increased confidence in extrapolation of the experimelU3l results to full sc.,k:. 1be

physical characteristics of the model scours were also compatible with lhe genernl

morphology and structure observed in field invescigations of both modem :md relict

fearures.

Excess pore pressures were measured al discrete locations throu&hoot an an:;a

which extended over a prototype discance of IS m, both laterally ootwanl from the scour

axis and venically with depth. The maximum recorded increase in pore pressure in the

apparent steady· state region of scouring ranged between 35 and 108 kPa, with an

average value of 62 kPa. 'The maximum recorded pore suction in the apparenc stcatly •

state region n.nged between - 16 arxl • 44 kPa, with an average value of· 27 kPa. lbc

peak positive responses were typically observed at times p~ing the model ice feature

passage over the measurement position, whereas the negative pore pressure changes were

wimessed immediately subsequent to passage of the model.

The reliability of the resultant force records was limited by the irxlin:ct

measurement techniques employed in derivation of the experimental results. The tcst

measurements did not show evidence of periodic variation of loading, apan from

irregularities of the response auributed to initial unsteady conditions or measurement

inaccuracies. 1bc average magniNdes of the horizontal component of force at steady 

Slate ranged from 2.1 to 6.0 MN in individual tests, arxl associated measurements of the

venita! force component included values between 6.0 and 17.6 MN at prototype scale.

The inclination of the resultant forte vector was approximately normal to the scouring

face of the model keel over the duration of most of the events investigated. The

venk:aJ I horizontal force ratio ranged between 1.9 arxl 3.9. and an average value of 3.0
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was established for tests in the experimental programme. Contact pressures retorded at

the horizontal base and inclined scouring face of the model provided some infonnation

on the stress distribution at the interface; however, the transducer responses were

characlerizt:d by considerdble fluctuation and the pressure measurements were subject to

inaccurdcies as the result of stress concentration and arching effects. The data records

from bottom· mounted transducers suggested that tlle force contribution developed at tlle

horizontal base of the model typically represented a smaller portion of the resultant force

measured during the event.

7.3 Numerical Analysis

The finite elemenl metllod was evaluated for use in the development of a tlleoretical

model for prediction of the soil response under idealized scouring conditions. The

adopled numerical representation included tlle following attributes: a finite strain

fonnulalion to accommodate both large defonnations and strains as characteristic effects

of scouring; a coupled defonnation I diffusion solution for soil modelled as a two· phase

nonlinear elastic - plastic material. and; a finite - sliding capability applied by means of

rigid surface interface elements to allow for inherent nonlinear boundary effects. The

general purpose finite element code ABAQUS provided tlle necessary capabilities for

implementation of the analysis.

A finite strain theory was required to account for large soil movements which

introduced significant changes in the geometry of tlle solution domain, where peak strain

levels on tlle order of unity were developed in simulation of a scouring event. A correct
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formalism of stresses and suains was emblisbed. and the constitutive relations were

generalized in accordance willi the n:vised definitions. An updaled Lagrangian

fonnulation was adopted, which. allowed for appropriate represemalion of th.e soil stress

history, the boundary conditions. and the suess and suain stales in the current deformed

configuration. RecWIgUlar eight· ooded isoparamecric: elements willi biquadratic

displacement and bilinear pore pressure descript)!)llS were selccled for use in the coupled

effective stress analysis, with consideration of the incompressibility con.~tr:lint imposed

by essentially undrained conditions. The solid (continuum) elemrnts used a fully

nonlinear fonnulation CO attommodate finite suain and rotat)!)n; however. a

computational limit may l)e exceeded in local regions of high smin gradients. when:

severe element distonion may result in loss of accuracy and decreased nuc of solution

convergence.

The soil bcha'lioor was described by the Modified Cam· clay critical state model,

which is known (0 sua:essfully reproduce the major defonnat)!)n characteristics of son

clays. In accordance with .:onceptS of crilical stale lhoory, the soil e:dlibited strain

hardening or softening behaviour following initial yield, anti the panicular response

induced was dependent upon the initial state and lhe applied stress palhs. For yielding

of Iighlly overconsolidated soil on the wet side of critical state, continued defonnation

was associated with volumetric compression or positive excess pore pressure

development, whereas, for yielding of heavily overconsolidated soil on the dry side of

critical state, volumetric expansion or negative excess pore pressures were anticipated.

1be soil underwent hardening or softening toward an ultimate or critical state, where
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plastic shear distortion continued indefinitely without further changes in volume or

effective stresses.

Adequale simulation of nonlinear boundary effects at the ice - soil interface was

accomplished through use of rigid surface interface elements that modelled the contact

between an element face, which formed part of the defonnable soil medium, and a rigid

body idealization of the model keel. The formulation allowed for separation and relative

displacement of finite magninxle, and arbitrary rotation of the contacting surfaces. A

perfectly hard contact condition was defined such that any contact pressure could be

transmitted between the surfaces. with no interpenetration. The tangential shear stress

tr,lctions were related to the normal pressure stress in accordance with the standard

Coulomb friction model.

The material parameters adopted in the analysis were derived from an extensive

base of experimenlal data for Speswhile kaolin clay, acquired through accumulated

cxperience at Cambridge University with triaxial and oedometer tests. The complete

descriptio!: of the constirutive model required five parameters to specify the shape and

size of the yield surface at a given mean effective stress and specific volume, as well as

the elastic properties of the material. The model parameters included the critical stale

stress ratio, the gradient of the normal consolidation lines, the gradient of the swelling

lines, the critical state referencc specific volume, and a constant value of the Poisson's

ralio. The variation of the vertical and horizontal pcnneabilities with the current state

was also specified through empirical relationships which described dependency on the

void ratio. In addition. an appropriatc value of the interface anglc of friction was
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required. with implementation of the friction modellu define the local nlalCtio,1 tL'SplllSC

at the contacting surfaces.

A tWO - dimensional plane str:tin idealization was invcstigalcll. anti full scak

prollxype conditions were simulated dirttUy in the analysis. Numerical represc:nUlion uf

a scooring event required sumcient horizoNal movement of the rigKl body 10

approximate a steady - state condition. Severe diSlonion of elements adjacent to the rigJlI

body restricted allowable n..,:"ement of the finite element mesh for which convergence

was attained at large movements. and it was therefore ~s.~ry to adopt a relatively

coarse discretization ovtr the scour deplh. Preliminary analyses were cooouctctl to

detennine the maximum rigid body movement, as relatetl to the sc:kctoo IDI:Sh

configuration. The boundary conditions adopted in Ihe analysis were compiltiblc with

those imposed in containment of the physical model.

The numerical analysis was implemented through specification of the 5Cq\K.'TICC of

evems or loadings for which the response of the model wu sought. 1be in si,u effeclive

S1ress Slate and the co~nding specific volume conditions were CSliIblished in the

initial step of the analysis, in accordance with the prescribed stress hiSlory and assumed

one - dimensional loading I unloading of the soil. The simulation of the event wa.~

imposed as a perturbation step, following a process of iteration 10 ensure equilibrium of

the initial stress state with boundary conditions and geostatic loadings. The mucion of the

rigid body was idealized as a horizontal translation at a unifonn scour depth, sclcelt:d 10

represent the steady - state condition, A final unloading step followed simulation of the

scouring event, to allow for dirttl comparison of the analysis results with data acquitL~

lhrough post - test site investigation of !he physical model.
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In the assessment of potential scouring mechanisms for essentially undrained

l,;omJilillns, jt was necessary to balance the volume change due to loss of material in the

scour path. The material included in development of a frontal mound. and berm

formation through laterdl clearing, was insuffICient to accommodate the complete volume

los.~ during scouring, and the remainder of Ute volume change involved sub - scour

deformation. II was inferred thai downward vertical sub· scour displacement was

I,;umpcnsatcd through lateral displacement at depth, together with upward displacement

across a wide lateral extent; however, a pattern of deep - seated lateral movement was

not identified explicitly in the experimental study. Lateral displacemems were measured

at shallow depth, and associated with local heave of the surface adjacent to the edges of

lhe Sl:our. The lack of evidence for a characteristic mechanism of sub - scour

dcfomlation was attributed to the distribution of material movement over an extensive

region. In addition, volume change related to compression below the scour depth was

p;:mially accommodated through surface drainage, as pore pressure dissipation transpired

more rapidly in the centrifuge model than in the corresponding prototype.

The limitations of the two· dimensional continuum representation were evaluated

in consideration of restrictions imposed on potential scouring mechanisms. Without

"Uowance for lateral movement of failed material. the model described a progressive

huild· up of the frontal mound, where downward vertical displacement was insufficient

to "ccount for the complete volume loss in the scour path. The absence of a lateral

clearing mechanism limited the range of motion of the rigid body over which realistic

predictions of the material response were expected. In addition, Ute numerical

representation neglected edge effects of near - surface lateral displacement and associated
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local heave. Sub - scour displ3Cements permiued opposite 10 lhe dil't.'Cliol1 uf mOl ion ur

the rigid body did not represent 1I signific,mt componcm of I~ m:llcrial response. wilh

continued upward displac:emem in front of the rigid body.

PrelimitW)' verirlcation of the numeric:ll approach was providl.'d IhnMJgh a

compar.llive examination of the approximate solutions dcrivl:d from the analysis and the

experimental data acquired in representative te...ts. Tesls 04. OS and 09. wilh limilcd

depanu~~ from idealized scouring conditions adopled in the analysis. WI."f'C eoolp.1n.'d

with numerical simulations of the corresponding prolotype cycnls. Correlation or

measurements from Tests OS and 09, which modelled lin idenlleal protolypc cyent, also

penniued assessment of the internal consistency of the experimentlll methods.

The comparison of Test 04 data and yalues computl.'d lhroogh simulation of tllC

event, indicated reasonable quantitative agreement between pn.'dic:«.'d and 1TlCl1SU1't.'d

effects of scouring. including excess pore pressures, n:sultant fom:s, anti soil

displac:ements. The computed excess pore pressure field displayed overall correspondence

with the range of measured pore pressure magnitudes, and the zone of innuencc infem:tl

from transducer records. In addition. the analysis results provided appropriate

representation of the character of the local responses including similar JIC<lk magnittxlC5

and rates of excess pore pressure development: although, ;n general, measured pore

pressure magnitudes exhibiled greater variability with changes in depth, in rellltion 10

computed values.

Adequate prediction of Ihe horizontal and venical components of thc rc~ultant

force also provided evidence of similarity between associated stress fields. Close

agreement was obtained between computed and measured values of the horizontal force
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component. over the complete range of movement simulated in the analysis. For the

vcrtic,ll force component. the correspondence between computed and measured values

improved with increased movement; however. eventual over - prediction of the measured

stcady • state response was anticipated. with continued upward displacement of material

in front of the rigid body and represemalion of a greater range of movement in the

.malysis. Other faclors which served to inhibit realistic prediction of the resultant focce

included measurement inaccuracies. the effects of initial unsteady conditions. and the

furce contribution arising from friction al the sides of the model keel.

The computed two· dimensional displacement field was qualitatively similar to

the measured displaced configuration for an axial section through the clay specimen. 1be

llnalysis results displayed a semi - circular pattern of large soil displacement which

extended from the base of the rigid body to the free surface, and encompassed material

heneath the scour depth. The magnitudes of the computed displacements attenuated with

distance in front of and below the current position of the rigid body. A material point

situated in the scour path, was initially subjected to upward and forward displacement,

'lssocialed with fonnation of a continuous frontal mound. and subsequently experienced

duwnward and continued forward displacement, with passage of the rigid body beyond

the position. Soil displacements opposite to the direction of motion were computed at

positions below the scour depth, consistent with evidence from other tests in the

cxperimcmal programme; however. these backward movements primarily represented an

clastic ponion of the response which was recovered upon unloading.

The profiles of horizontal soil displacement derived from the analysis exhibited

incrcascd magnitudes for venical profiles at greater distance in front of the initial rigid
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body position. without allowance for lateral movem~nt of malerial in the scoor path. The

measured steady· state response was represented by the cumulative: displ:u:enll:lU of

reference venical profiles subje<:ted to complete passage of the rigid body. and associated

with development of a realiscic configuration of the froru.al mound. The comspondcr...-c

between computed and measured horizontal and venial displllccments indicatL"l.! thai

displacement conditions for Sl:eady· Slate scooring may be approximated without

requirement to represent the complete range of horizontal movement in simul:llinn of

the event.

The correlation of Test 05 I 09 analysis results with expt:rimcntal data was Ics.~

S8lisfactory. and indicated deficiencies of the numerical representaliun in atldilion to

expecled measurement inaccuracits. The computed excess pore pressure field displayed

reasonable agreement with the range of recorded magnitudes and the region of mt'a.""rcd

effects of scouring; however, the computed ~nscs did not provide dL1aik...d

correspondence with individual transducer recoTds. as exhibiled for similar cornparisum

of computed and measured pore pressure values for Ttsl 04. The Tesl 05 , 09 analysi~

predicted a relalively uniform distribution of excess pore pressures. and W:lS unable 10

quantitatively represent the observed auenuation of measured peak magnilueJcs with

increased depth. 1bc: contacl pressures for reference interface elements irJ.:n.:3.<;t..'d ttl

maximum values with movement along the inclined surfaa: of the rigid body. and

decreased to minimum values al the horizontal bollom surfacc. The computed normal

stresses at the inlerface displayed close agreement with average and peak values from

measurements at lhe inclined and horizontal surfaces.
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The Test as I 09 analysis predicted greater magnitudes of bolh (he horizontal and

vertk:al components of the resultant force in relation to corresponding Test 04 computed

values, in agf'(.'Cment with the experimental findings: however, the analysis resulls

provided inadequate representation of the force measurements. For the horizontal

component, the computed values under· predicted lhe measured response, as may be

p<lnially auributed to neglect of additional fo~es arising from initial unsteady conditions

.mu the em..-cts of friction acting at the sides of the model keel. For the vertical

component, reasonable correspondence was obtained between computed and measured

values at the completion of movement in lhe simulation; however, lhe computed force

record displayed continued increase wilhout convergence toward the measured steady 

statelt:vcl.

The computed soil displacement field displayed similar patterns of movement in

comparison with results from the Test 04 analysis .. The region of large displacement

extended below the scour depth, and both horizontal and vertical components diminished

in milgnitude with increased distan.:e from the current rigid body position. The vertical

profiles of horizontal displm:ement at refe., nce positions in the analysis provided

rcasonilble predictions of the measured maximum sub - scour displacement, and

correlation hetween the computed and measured depth of large displacement improVed

with representation of a greater range cf movement. For the vertical component, the

measured displacements decreased more gradually with depth below the base of the

scour. and the analysis results under - predicted the test measurements over the complete

profile of depths investigated. The computed venical dj~placement magnitudes were

comparable to lower bounds of the experimental data.
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The laboralory pre • consolid:lIktn Stress applied in Tests OJ and 09 ddinaJ an

increased depth of soil at heaYily overconsolkbled initial Slales in rclatktn to Ti:SI 04

conditions. 1lte Test 05 I 09 analysis predicted increased magnitudl$ of cumulative shear

strain and reduction in the extent of the region of large displacemcnt in relation to

T..:~t 04 computed values. The greater localization of the response was assaci;ltl.'t1 wilh

an increased number of soil elements having lendency to soften toward criticnl ~lillCS

under continued deformation throughout the event.

7.4 Soil Deformation

In evaluation of the effecu: of scouring, two general ';Iasses of eYent were distinguis""'d.

corresponding to compressible and brittle regimes of soil behaviour. tkliOl.'d through

concepl5 of critical state theory. For compressible behaviour. with stOlhle yielding of

initially loose or lightly overconsolidated materials on the wet side of critical state. an

event was characterized by continuum distortion or now. The volume change due to Ios.~

of malerial in the scour path WIS balanced primarily throu~h compressive t1cformatK>n

beneath the incision. rupNre planes were not formed. arxI scour· induced soil

displacements attenuated with disUince from the rigid body_ Compressible soil events

""ere associated with. plastic yolumeiric compression and strain h.ardening. which allowed

for increased transmission of Stresses and distribution of deformation over a greater deplh

of innuence. As a result. events dominated by compressible soil behaviour were most

relevant from the poine of view of pipeline design 10 accommodate sub· scour soil

deformation.
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In contrast, for brittle behaviour of initially dense or heavily overconsolidated

matcri;lls on the dry side of critical state, an event was characterized by development of

a succession of rupture planes, extending from the base of the rigid body to the free

surface in a repealing pattern. and associated with periodic variation of the resultant

fOr1,;e. In this instance. the material loss in the scour path was largely auributed to

progressive lateral clearing ("If di~continuous blocks of soil, and related berm formation

;l! the sides of the incision. For brittle soil events, with strain softening beyond peak

stresses, soil deformalion was concentrated in regions of weakened material. and sub·

scour soil displacement was expected to be relatively localized. Previous analytical

invesligations indicaled thaI rupture planes formed as mechanisms of failure during britlle

events do not extend far below the depth of scouring, although minor sub· scour

disturbance was predicted for strongly dilatant soils. A region of large (plastic) soil

displacement was attributed to shear dragging deformations of soil immediately beneath

the ruplure planes or the rigid body sliding relative 10 the soil; however. the softening

behaviour of adjacent malerial was also expected to limit the extent of a region of large

dragging displacements.

The present study provided verification of the adopted numerical representation

fur prediction of the effects of scouring in soft clay under essentially undrained

conditions. where the soil response was governed by compressible behaviour. Similar

applicability was noI demonstrated for brittle soil events. where the development of

discontinuous failure mechanisms was incompatible with Ihe continuum idealization. The

analysis was not implemented 10 investigate a range of parametric variations. and the
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evaluation of the influence of tesl parameters relk'd primarily on dal:'! aC4uin.'d (mill Ilk:

experimental programme.

'The mode of soil deformation and failure cxhibilN during ;I SI.:ouring event w:t,'l

dependent upon the inilial stale of the soil, arK! was also influenced by ch:J.ng~ 10 lhe

applied s~ paths wnich resulted from varialion of bounLIary conrJitk>RS dcscrit-."tl by

leSt paramelers. A substantially reduced scouring velocity in p;uticubr lestS. tog("'1hcr

with drainage at the enhanced roue of dissipation in the model. allowed for softening of

near surface soil and scouring effects which were charnctcristic of brittle l'Oi! events. 'nlC

relative similarity of measured displacement palterns in other tests wall auributl,.'fJ in pun

10 the influence of drainage conditions. For essentially unUntinl,."tl conditions. thc

dissipation of negative excess pore pressures was supprcSSt.'tI. such llklt softcning

behaviour and consequent localization of the soil response was pnnialJy inhibited,

Tlte attack angle and scour depth defined boundary conditions for the two·

dimensional representation of scouring. For briule soil events, e:trlicr analytical studies

implied mat the extent of rupture planes developed during scouring wa~ intk.-pcudcnt uf

changes to txxh paramcten, and failure mechanisms wen: not cx(X.'Ctl,.'ti 10 enculIlpass

positions below the depth of scouring. 1be effect of decreasing lhe allack :lnglc lIf

increasing the scour depth was to induce high or rapidly increasing mean normal Sln..~<;Cli

which may be sufficient to direct stress paths to failure through stable yielding on the wet

side of critical Slales. For compressible soil behaviour. changes to the allack angle or

scour depth influenced the pattern and extent of the eXfK.'Clcd soil defonnation. The

intensily of venical stresses induced during scouring was incre3.st.'ti for greater scour

depths or bluntt:r keel geometries, leading to increased venical strains and displacemcnL~.
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In addition, increased spherical pressures resulted in plastic compression and hardening

for soil elements below the scour and allowet! for greater transmission of stresses. and

increased distribution of tkformation.

The correspondence of computet! and measured effects of scouring in the analysis

of Test 04 provided support for a two - dimensional numerical representation. where

typical field scouring geometries were anticipated to eJllllil greater scour width I depth

ratios than investigated in the experimental programme. For excepTional cases inVOlving

narrow ice features. where plane strain conditions were invalidated, analytical

descriptions of three - dimensional scouring mechanisms, for events in which brittle soil

behaviour was dominant, were uncenain. For compressible soil behaviour the reduction

of scour· btuced stresses, and corresponding strains and displacements, with depth

below the scour was more gradual for two - dimensional events described by high

width I depth ratios. The diminished capacity for lateral distribution of the applied loads

during a plane strain event accounted for greater depths required to attain a similar

reduction in stresses, resulting in a more extensive region of sub - scour defonnation.

Although the present study was limited to the investigation of Speswhite kaolin

clay, the critical state framework assisted in the evaluation of expected modes of

deformation and failure for scouring events in soil of dissimilar type and mineralogy. 1be

ill sil// states of sand deposits are most commonly situated on the dry side of critical.

Sands therefore exhibit similar patterns of behaviour to heavily overconsolidated clays,

,llthough some deposits may be sufficiently loose to compress during shear. As a result.

briule soil behaviour. associated with localized. deformation and the development of
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dilatanl nlpNres. was expttted for scouring in sand al Sillies rq'll'rSef\tl1tiw of typical

field soil deposits.

A summary of leS! measurements of sub· scour soil liisplac~ml:nt liisplaycd

varialion due [0 the effects of changCJ to the prescribed SIre$S history or initial stl!ote. and

to differences in applied stress paths arising from changes to boundary condilions in

individual SCOIIring events. Some scatter of tht: experimental data was also altribulI..'tI to

the inaccuracies introduced by measurement techniques. In general. the ",I..":tsureli

horizontal component of displacemenl was larger in magnirude at the scour base than the

corresponding vertical component. and the venical component of displacement allet\Wtw

more gradually with depth below the scour. For lhe horizontal component. the magnitude

of displacement al the scour base (interpolated at a depth of O. I m below lhe scour hase)

ranged from 0.5 10 3.4 m. with an average displacement of 1.6 m for nil tests. The

extent of the region of large displacement (estimated for a lower bound liisplaccrnt:nt

magnirude of 0.2 m) ranged from 1.410 3.1 m below the scour base, with an avelOtgc

depth of2.5 m. con-esponding 10 a normalized value of2.5 scour depths. For the: vertK.:al

component. the magnitude of displacement at the scour base rangct.l from 0.1 100.9 m,

with an average displacement of 0.6 m for all tests. The extent of the region of largl:

displacement ranged from 0.0 to 6.2 m below the scour base. with an average depth of

2.3 m. corresponding to a normalized value of 2.3 scour liepths. The aver-tge values

derived from the summary of experimental data were applicable to the particular soiltypc

and Slates investigated in the present study. which defined comprcssibh.: soil events in the

majority of tests perfonned. In contrasl. brittle soil events wen: characterized by small

or neg.ligible vertical displacements. and a ~lalively intense region or large horizonl,!)
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displacement which extended to less than approximately 1.4 scour depths below the

scllur base.

7.5 Pipeline Response

A summary of model pipeline performance in the experimental programme provided an

indication of the sub· scour depths at which permanent (itslress of a pipeline: may result

from the effects of scouring. The plastic deformation exhibited by pipeline segments

initially located at depths below the scour base supported the requirement to accoum for

sub· scour soil displacement in a rational pipeline design methodology. The observation

of Olher segments which were unaffected by the event sli.:o;:ested that, in some instances,

safe designs may be established for pipelines buried in regions of large (plu!>tic) soil

displaceml:nt below the scour depth, as may also be necessary to ensure a cost - effective

solution.

For a given scouring event, the distribution of free field soil displacements was

defined through complementary approaches of physical and numerical modelling of the

ice - soil interaction. A design methodology (C • CORE. 1995) was described in which

the measured or computed soil displacements then served as ir.put conditions for an

independent analysis of the soil - pipeline interaclion. Partial verification of the approach

was obtained through comparative examination of analysis results with test measurements

of the displaced configu:ation of a model pipeline segment, acquired in the present

cxperimenlal programme.
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7.6 Further Research

The present study was undenaken to advance the understanding of icc scouring t:f1l'CIS

on seabed soil through observations from centrifuge mooeltesting and related numcril:,ll

analyses, Further research is recommended to address the limitations of the physical ami

numerical representations and to extend their range of application.

The experimental programme comprised a series of ninc tests in which a

panicular idealization oriee scouring was investigated. The tests explored illimil'-'lI range

of parametric variations for model scouring events conducted in a reconstituted kaolin

clay. The accurate definition of input conditions was hindered by Ihe pcrmiltl,.-d dcgrl.'Cs

of freedom of the model ice feature, and also by equipment aruJ instrumentation

malfunction in some instances. Further testing is requirt:d. to encompas.~ an increased

range of scouring conditions. and to allow for controlled study of the cffl.'Cts of individual

parameters on the soil response. Among the relevant parameters expected 10 innuence

the magnitude and extent of soil displacements developed during :I scouring event are the

stress history or initial state of the soil. the attack angle. and the scour dC(llh. Tc.~ts

should also be perfonned 10 establish the relative significance of the length of the

horizontal surface of the rigid body idealization of the icc keel. (;nponantly, the

experimental dntabase on ice scouring effects shou'.:J be extende<l through investigation

of an increased range of known laboratory materials, in addition 10 layered soil deposits

which may represent a relevant field soil condition.

The programme of additional tests should be planned with considcr.Jtion of the

requirement to provide quantitative data in suppon of the development and verification
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of detcrministic models of the ice· soil interaction. Therefore. continued emphasis

should he placed on the improvement of measurement techniques to facilitate detailed

cvaluation of soil displacements and related mechanisms of soil failure. To allow for

verification of models of the soil - pipeline interaction. more realistic pipeline

representations should also be incorporated in the centrifuge tests. with appropriate

instrumentation to monitor the bending strains and deformations hduced by a scouring

event. Subsequent testing should also address panicular deficiencies of the experimental

methods adopted in the present study, including design of more reliable systems for the

measurement of resultant forc~. Furthennore, undrained shear strength determinations

were inadequate in assessment of the degree to which the preferred stress history was

achieved in each test. As a result, more extensive in - flight site investigation is

recommended to reduce the uncenainty in empirical relationships established between the

measured resistances and the soil strength and stiffness.

In the present study, numerical analyses were restricted to two - dimensional

plane strain representations of the scouring process. Preliminary verification of the

approach was provided through comparison with data acquired in the experimental

programme. Funher analyses are necessary to demonstrate correspondence with

observations for other scouring events, in consideration of the complexity of the

numerical procedures adopted. Ideally, the numerical representation should be

succcssi\'ely improved through repeated application and empirical modification cf input

conditions or modelling assumptions. Pending further validation. the generality of the

finite element method could then be exploited to investigate the influence of parametric

variations over significant or realistic ranges. Although three· dimensional
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representations of ic~ KOUring are not amicipated 10 pnwKJe :t vi:tblc :tppro:u:h fllr

similar practical application. analyses of Ihis type should be unliet1:tken in order tu

provid~ infonnation on the lateral distribution of §oil displacements. anti also to dclinc

scouring ~I\anisms for ~xtreme narrow width events.

Appropriate characterization of the effects of scouring required simul:ttion ofl:trge

movements corresponding to steady - Stat~ conditions. which impo5ell constraints on

implementation of the analysis and discretization of the soil domain. In llddition. the

two - dimensional continuum representarion did not allow for accommodation of volume

loss in the scour pam lhrough lateral soil displacement. and this restricted the r.1ngc of

movement of the rigid body over which realistic: predictions of scouring effc:cts could be

expected. For compressible soil events, the measured steady· state response wns

adequately approximated by the cumulative di$pla~ment following complete pas,<::lgc of

the rigid body. and corresponding wilh the development of a realistic configuration of

the frontal mound. Comparative examination of analysis O$Ults and measured soil

displacements for other scouring events is recommended in onIer to evaluate the

reliability of this approximation and to establish more accur.1lely the required I1lnge of

simulated movement. Con.~ideration should also be given to the application of rezoning

techniques. to allow for appropriate mesh refinement in the region of high strain

gradients adjacent to the rigid body. arxl to provide inc:n::ased consistency in the range

of movement OV.1" which convergent solutions are atlained. Adequate simul:ttlon of brillh:

soil events may only be achieved rhrough element removal and the introduction of a pre •

existing discontinuity at the sc lur base in the numerical represeJl'1lion.
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Direct calibntion against full scale field tes1 dala will ullirnaldy ~ n.'quin.'t1 in

order to evaluate {be model predictive capahitilies and limilatioos immducL'd hy the

various simplifying assumptions adopted in both the physical alll1 nun~rical

representations of the scouring process. Addilional ficld invcslig.1Iion.~ :Ire :llso

recommended to resolYe um:enaimies which still exisl concerning lhe rhy~ic::tl

characteriSllcS and motion of ice features during scouring episodes. Continut.'t1 n:sclirch

will also be necessary to address more complicaled field conditions which may inclutJc

anisotropic and heterogeneous soil deposits, irregular ice geometries. abr.rsion or fmctun:

of !he ice. unsteady uplift or rotational moYemtlUS, and the effects of pipeline trenching.
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Figure IF.3 T~st 01 displaud conjigural;on of initial laural grids: Top: Cross •
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Figure 2A.l Ttst 02 input paramtttrs and model iceberg configuration
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Figure 2C.2 Test 02 ;nstnunentar;on data measured during scouring event
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Figure SF. 1 Test 05 trace compiled from plan view radiographs oj the clay specimen
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Figure 6F.2 Test 06 trace of cross • sectional radiograph showing displaced
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Figure SC.2A Test 08 instrumentation data measured during initial secrion 01 ellCnt
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Figure SF. 1 Test 08 trau compiled from plan view radiographs of Ihe clay specimen
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Scour Test 09
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Figure 9A. J Test 09 input paramtlen and modd icebtrg configuration
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Figure 9C.2 Test 09 iflJtrumentation data measured during scouring event
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Figure 9F.2 Test 09 tract: of cross· StletionaJ radiograph showing displact:d
configuration of wural grid at x = • 97
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Figure 9F.2 TtSl 09 lraCt of cross • s«liOflQJ radiograph showing djsploc~

conjigurarion of lJJJuaJ grid OJ x ., - 40
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Figure 9F.3 Test 09 radiograph trace ofaxial grid; x ... - 230 10 - 125

Figure 9F.4 Test 09 radiograph Irace ofaxial grid; x '"' + 55 to + 285
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Appendix B

Resultant Force Calculation

This appendix describes the computational procedure used in the aSSCSSnteni of the

resullant forces acting at the model iceberg· soil interface. An example of the resultant

force calculation is presented for a specifIC lime and model position during the baseline

Test 05 scouring event. The model vertical position and oricl1lation were established in

two • dimensional space using water pressure measurements from pore pressure

tramducers installed at rUled elevations at the front and rear of the model. 11le dfect of

small out - of - plane model rOlational movements was ICQ)IJnled for lhrough use of the

average of transducer measurements acquired from each sMit of the model.

Identification am Measured Input Data :

Scour Test OS

Event Time ". 4.00 5

Horizontal Position. 0.0 mm

PPT average front",. 20.6 !cPa

PPT average rear =23.2 kPa

Load Cell Horizontal Force, TLC "" 499.8 N



Figure B.I dcpicts the submerged model g«lmeU)' with respect to a local

coordinate system, as well as the force components acting during the scouring event. The

elevalion values Ei were calculated from the measured water pressures, and served to

define the free water surface relative 10 an arbitrary datum at the base of the model float

attachment. In this manner, the model orientation (pilch angle) and venical position were

established in relation to the known surface water level.

Model Venieal Position and Orientation:

elevation al PPT front "" 11.0 mm

elevation at PPT rear = 13.6 mm

E, "" 10.8 mm; E 2 "" 13.8 mm; E} "" 1l.2 nun; E~ = 13.4 nun; E 5 =9.8 nun;

E~ = 14.9 mm.

model pitch angle, 8 = 0.020 radians or 1.2 degrees

scour depth calculated at model inflection line, Z\ "" 12.9 mm

scour depth calculated al model rear, Z2 = 13.8 nun

The horizontal force component was ascenained directly from the tension load eell

record during the scouring event. The venical force component was evaluated indirectly

from data on the current venical position and orientation of the model iceberg in free

surface water, together with detailed infonnation on the mass and submerged geometry

of the model. The simplirltd force system shown in Figure B.l included the total weight

force Wt • Ihe individual components comprising the bUOyancy force Bi, and the

horizontal and vertical components of the resultant force, F h and F., acting on the
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Figure B.t Sketch showing sUbmerged model geometry and force componenrs acting
during scouring event (txaggtraJed pilCh angle)
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inclined face of the model. In the following, the position of the point of action of each

force component was established in relation to the x • y coordinate system for tlte initial

model orientation, prior to the inception of rotational movement.

Force Magnitudes and Positions - Initial Coordinate System:

Component x (mm) y(mm) Force (N) Force (N)
at I g at 100 g

WI 83.3 79.8 ·35.022 3502.2

Bl 80.0 44.2 10.279 1027.9

B2 10.0 70.0 0.107 10.7

B3 139.0 70.0 0.107 10.7

B4 74.5 85.6 2.997 299.7

B5 92.7 92.0 0.298 29.8

B6 - 25.0 84.9 1.200 120.0

B7 - 16.7 90.1 0.063 6.3

B8 174.0 86.9 1.698 169.8

B9 182.3 94.2 0.063 6.3

B10 10.0 85.4 0.503 50.3

B11 13.3 90.9 0.010 1.0

B12 139.0 86.7 0.626 62.6

B13 142.3 93.6 0.010 1.0

TLC 0.0 36.0 ·499.8

In order 10 allow for the rotation of the model iceberg about a transverse axis

(pitch adjustment) al the current position, the force components were transfomed to the

x' • y' coordinate system. The x' - axis is directed parallel to the free water sutface, and
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the y' - axis is di~ed panJlello the ~llanl centrifu&e accelention vector (or normal

to the free water surface) sucb that !be fDlkJwin& rt1alionships may be wrillen :

x· - xcos8 + ysin' and y'''' - x sin. + yCOl'

Force Magnitudes mt Positions· New Coordi.nale System :

Compone.. Force (N) x'(mm) y' (mm) M.......
11100g (Nmm)

WI ·3502.2 84.9 78.1 - 297378,0

B1 1027,9 80.9 42.6 83173.4

B2 10.7 11.4 69.8 122.6

B3 10.7 140.4 67.1 15OS,8

B4 299.7 76.2 84.1 22850.2

BS 29.8 94.5 90.0 2813.8

B6 120.0 ·23.3 85.4 ·2790.3

B7 6.3 - 14.8 90.4 -92.8

B8 169.8 17S.7 &3.4 29843.5

B9 6.3 184.2 90.4 IIS3.9

B10 SO.3 11.7 85.2 S90.8

BII 1.0 lS.2 90.6 14.S

BI2 62.6 140.7 &3.9 8808.0

B13 1.0 144.2 90.6 137.2

TLC - 499.8 0.7 36.0 17987.7

Sum of Forces in + y' . direction,.. - 1706.2 N

Sum of Forces in + x' . direction ~ ·499.8 N

Sum of Moments Ibouc Origin - - 131260 Nmm
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The equations of equilibrium may be used to calculale the magnirude of lhe

ventea! and horizontal components of the resultant force, and the location of the point

of ac(ion of thc resultant force on the inclined face of (he model.

Venteal Equilibrium:

F. (positive y' direction) '" 1706.2 N

Horizontal ~uj]jbrium :

F h (positive x' direction) c ·499.8 N

Resultant Force F = 1777.9 N

Inclin.ation of Resultant Force Vector = 73.7 degrees (measured from + x' - axis)

Location of Resuhanl Force x' = 78.4 mm y' - 5.1 mm

Summary of Forces acting on Model Iceberg:

Component Foree (N) x' (nun) y' (nun)

WI - 3502.2 84.9 78.1

B 1796.0 82.5 60.3

F. - 499.8 78.4 5.1

F. 1706.2 78.4 5.1

TLC 499.8 0.7 36.0

The resullant force calculation was implemented using a spreadsheet macro

program to obtain solutions at other times and model horizontal positions during the
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scouring event. To check. the validity of the calculation, the results were compared with

vertical force estimates based on the post - event measured profile of scour dCflths.
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