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Abstract 

 In this work, desorption/ionization mass spectrometry was employed for the 

analysis of sugars and small platform chemicals that are common intermediates in 

biomass transformation reactions. Specifically, matrix-assisted laser desorption/ionization 

(MALDI) and desorption electrospray ionization (DESI) mass spectrometric techniques 

were employed as alternatives to traditional chromatographic methods.  

 Ionic liquid matrices (ILMs) were designed based on traditional solid MALDI 

matrices (2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid 

(CHCA)) and 1,3-dialkylimidazolium ionic liquids ([BMIM]Cl, [EMIM]Cl, and 

[EMIM]OAc) that have been employed as reaction media for biomass transformation 

reactions such as the conversion of carbohydrates to valuable platform chemicals. 

Although two new ILMs were synthesized ([EMIM][DHB] and [EMIM][CHCA] from 

[EMIM]OAc), chloride-containing ILs did not react with matrices and resulted in 

mixtures of IL and matrix in solution. Compared to the parent solid matrices, much less 

matrix interference was observed in the low mass region of the mass spectrum (< 500 Da) 

using each of the IL-matrices. Furthermore, the formation of a true ILM (i.e. a new ion 

pair) does not appear to be necessary for analyte ionization. 

 MALDI sample preparation techniques were optimized based on the compatibility 

with analyte, IL and matrix. ILMs and IL-matrix mixtures of DHB allowed for qualitative 

analysis of glucose, fructose, sucrose and N-acetyl-D-glucosamine. Analogous CHCA-

containing ILMs did not result in appreciable analyte signals under similar conditions. 

Small platform compounds such as 5-hydroxymethylfurfural (HMF) and levulinic acid 
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were not detected by direct analysis using MALDI-MS. Furthermore, sugar analyte 

signals were only detected at relatively high matrix:IL:analyte ratios (1:1:1) due to 

significant matrix and analyte suppression by the IL ions. Therefore, chemical 

modification of analytes with glycidyltrimethylammonium chloride (GTMA) was 

employed to extend this method to quantitative applications. Derivatization was 

accomplished in aqueous IL solutions with fair reaction efficiencies (36.9 – 48.4 % 

glucose conversion). Calibration curves of derivatized glucose-GTMA yielded good 

linearity in all solvent systems tested, with decreased % RSDs of analyte ion signals in IL 

solutions as compared to purely aqueous systems (1.2 – 7.2 % and 4.2 – 8.7 %, 

respectively). Derivatization resulted in a substantial increase in sensitivity for MALDI-

MS analyses: glucose was reliably detected at IL:analyte ratios of 100:1 (as compared to 

1:1 prior to derivatization). Screening of all test analytes resulted in appreciable analyte 

signals in MALDI-MS spectra, including both HMF and levulinic acid.  

Using appropriate internal standards, calibration curves were constructed and this 

method was employed for monitoring a model dehydration reaction of fructose to HMF in 

[BMIM]Cl. Calibration curves showed wide dynamic ranges (LOD – 100 ng fructose/µg 

[BMIM]Cl, LOD – 75 ng HMF/µg [BMIM]Cl) with correlation coefficients of 0.9973 

(fructose) and 0.9931 (HMF). LODs were estimated from the calibration data to be 7.2 ng 

fructose/µg [BMIM]Cl and 7.5 ng HMF/µg [BMIM]Cl, however relatively high S/N 

ratios at these concentrations indicate that these values are likely overestimated. 

Application of this method allowed for the rapid acquisition of quantitative data without 

the need for prior separation of analyte and IL. 
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Finally, small molecule platform chemicals HMF and levulinic acid were 

qualitatively analyzed by DESI-MS. Both HMF and levulinic acid were easily ionized 

and the corresponding molecular ions were easily detected in the presence of 10 – 100 

times IL, without the need for chemical modification prior to analysis. DESI-MS analysis 

of ILs in positive and negative ion modes resulted in few ions in the low mass region, 

showing great potential for the analysis of small molecules in IL media. 
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Chapter 1: : Introduction and Literature Review 

1.1     Alternative Energy from Biomass 

1.1.1 Overview 

The world currently relies on fossil fuels as our primary source of energy and 

platform chemicals for the production of a huge array of consumer goods. In fact, over  

80 % of the total global energy is sourced directly from coal, natural gas and petroleum 

feedstocks.1 Fossil fuels have long provided us with heat, electricity and an abundance of 

consumer goods such as plastics, pharmaceuticals, and electronics. Unfortunately, the 

fossil carbon feedstocks that supply and provide these amenities are non-renewable, and 

consequently, are unsustainable.2 Furthermore, the burning of fossil fuels has resulted in a 

significant impact on the environment; atmospheric levels of CO2 and other greenhouse 

gases have increased substantially, leading to global climate change, among other 

environmental and health concerns.3 As the world’s population continues to rise, it 

becomes inevitable that alternative sources of energy will be required to supply future 

global demands. 

 The development of sustainable strategies to reduce our current reliance on fossil 

fuels has accelerated in the past decade, with considerable progress in the field. Several 

alternative sources of energy including wind, solar, and hydro-powered processes are 

currently being implemented for the generation of heat and electricity.3 However, in the 

future, liquid fuels and chemicals will also be in high demand, especially in the air and 

sea transportation sectors. Presently, biomass serves as the only renewable resource that is 

capable of supplementing these needs.4 Therefore, significant efforts have been put forth 
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to develop sustainable technologies for processing biomass and subsequently upgrading 

to valuable chemicals. As of 2014, renewable energy sources provided 11 % of consumed 

global energy, 5.5 % of which was supplied by biomass sources.1 

1.1.2  Sustainable Energy from Biomass 

Unlike fossil fuels, biomass is ubiquitous in nature, being produced on a billion-

ton scale annually.5 As a renewable resource, biomass can easily be replenished. 

Exploitation of energy from biomass is a greener alternative to petrochemicals, as it taps 

into the natural carbon cycle, with net life-cycle emissions substantially lower than that of 

fossil fuel utilization. Similar to fossil fuels, however, biomass can also be directly 

incinerated to generate heat and energy, or can alternatively be processed and refined to 

yield liquid fuels and a variety of co-products. Therefore, it is practical to develop 

technologies for the extraction and processing of biomass energy to alleviate demands on 

petrochemicals. 

Biomass refers to any non-fossilized organic matter (living or recently living). The 

definition is generally used to describe vegetation, but is extended to include algae, and 

animal wastes. The stored energy that can be extracted from these renewable biological 

sources is referred to as biomass energy (or bio-energy). Despite a simple definition, 

biomass is quite complex, as its composition can vary immensely depending on the 

source from which it is derived.  
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1.1.3 Valorization of Waste Biomass 

Biomass feedstocks are readily abundant, and can be sourced from both the land 

and the ocean. Attractively, biomass can alternatively be sourced from wastes. Canada’s 

economy relies heavily on its resource sector; with agriculture, forestry, and fisheries 

amongst the key industries contributing to the country’s economy.6 Waste biomass 

obtained from agricultural and forestry processes (e.g. straw and bark), as well as from 

the ocean industry (e.g. crab and shrimp shells) is produced in large quantities. For 

instance, approximately 39,000 tons of shellfish waste is generated in NL per year. 

Currently, this waste is dumped back into the ocean or in specified landfills.7 This is a 

great opportunity for provinces, such as NL, with strong ocean industries to valorize these 

“wastes” as raw feedstocks for the production of fuels, plastics, food and 

pharmaceuticals, as well as various industrial and commercial products.4,8 The 

valorization of waste biomass in general also alleviates pressure of land usage for energy 

crops that could alternatively be used for food crops. Furthermore, the utilization of waste 

biomass reduces overall waste accumulation, and is quickly becoming a widely 

acceptable technology for the sustainable production of energy and chemicals.9 

1.2     Renewable Carbohydrate Feedstocks 

1.2.1 Overview 

The bio-refinery concept relies on nature’s ability to harvest solar energy. 

Through photosynthetic processes, plants and algae convert energy from the sun into 

chemical energy by fixing atmospheric CO2 in the form of carbohydrates, Cn(H2O)n. 

Through a series of chemical processes, the energy that is stored in the chemical bonds of 
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carbohydrates can be harvested and processed to yield sugars and small platform 

chemicals. 

 The carbohydrate content of biomass generally represents about 75 % of the total 

biomass.10 Plant biomass typically consists of three main components: cellulose, 

hemicellulose and lignin. The carbohydrate fraction, however, is highly variable and 

depends on the source from which it is derived. These carbohydrates act as robust 

structural polymers, and are integral components of the cell walls of plants.  

1.2.2 Cellulosic Feedstocks 

Cellulose is the most abundant bio-polymer on Earth,11 and represents the largest 

fraction of plant biomass (40 – 50 % by weight).2 Cellulose is a linear-chained 

polysaccharide, derived from the condensation of hundreds to thousands of D-glucose 

subunits via β(14) glycosidic bonds (Figure 1-1).  

 

Figure 1-1: Structure of Cellulose 

Cellulose is the major component of woody biomass, and can be abundantly 

sourced from the waste streams of agricultural and forestry processes, making it a readily 

renewable and available resource. Common sources of cellulosic feedstocks include 

wood, straw, bark, and food crop residues. Unlike other naturally occurring polymeric 
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species, such as starch and glycogen, cellulose lacks branching and coiling due to the 

equatorial conformation of its glucose subunits. The resulting structure of cellulose is 

therefore very rigid, and rod-like. The presence of hydroxyl substituents on integral 

glucose monomers leads to an extensive hydrogen-bonding network between polymer 

chains (Figure 1-2), which further strengthens the polymer.12 The reinforcement of the 

polymer by hydrogen-bonding leads to poor dissolution in typical organic solvents; a 

limiting factor in the bio-processing of cellulose.12 

 

Figure 1-2: Extensive Hydrogen-Bonding Network within Chains of Cellulose 

(Reproduced with permission from Ref. 12)  

1.2.3 Ocean-Sourced Feedstocks 

Although the primary source of biomass is plant-based organic matter, biomass 

can also be extracted from the ocean. The shells of crustaceans, for example, are sources 

of the carbohydrates chitin and its deacetylated product chitosan, with chitin being the 

second most abundant biopolymer after cellulose.13 The nitrogen-containing carbohydrate 
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chitin is analogous to cellulose, and functions as structural polymers in the exoskeletons 

of crustaceans.  

Comparable to cellulose, chitin is also an abundant carbohydrate that can be 

sourced from wastes. Chitin occurs in the shells of crustaceans such as lobster, crab, and 

shrimp. The structure is similar to that of cellulose, exhibiting a crystalline, fibrous 

macrostructure due to the straight-chained linkage of monomer units. Rather than 

glucose, however, chitin is composed of N-acetyl-D-glucosamine (NAG) subunits linked 

in a β(14) fashion.  

 

Figure 1-3: Structures of Chitin and Chitosan Biopolymers 

Chitosan, which is normally produced from chitin, is composed of randomly 

distributed NAG and D-glucosamine subunits, and is often referred to as partially 

deacetylated chitin. Chitin and chitosan differ from cellulose in the fact that the 

monomeric units are nitrogen-containing, and can therefore serve as a viable renewable 

source of nitrogen-containing platform chemicals.14   

1.2.4 Sugar Feedstocks 

The sugars derived from larger biopolymers are valuable feedstocks for the 

production of platform chemicals. Other sugars can be derived from these monomers, or 

      Chitin           Chitosan 
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can be extracted from specific types of biomass. Sugarcane, for example is an excellent 

source of the disaccharide sucrose, which can be hydrolyzed to yield glucose and fructose 

monomers. Fructose can be extracted from fruits and berries, or can alternatively be 

produced from the isomerization of glucose. Amino-sugars such as N-acetyl-D-

glucosamine (NAG) and D-glucosamine are primarily derived from chitin and chitosan, 

respectively. 

Monosaccharides are the smallest of the carbohydrates and generally consist of 

only C, H, and O, although derivatives containing nitrogen, sulfur and phosphorus are 

possible. Simple sugars (monosaccharides) are polyhydroxy-aldehydes or ketones 

(aldoses and ketoses, respectively). Glucose and NAG are examples of aldohexoses, 

whereas fructose is classified as a ketohexose. Intermolecular cyclization of sugars 

through a hydroxyl group and the carbonyl yield the hemiacetal or hemiketal form. This 

reaction results in a new stereocenter, referred to as the anomeric carbon (C-1; the 

carbonyl carbon in open-chained form). If a sugar contains an aldehyde (or hemiacetal) 

group, or can tautomerize to yield an aldehyde group, the sugar is classified as a reducing 

sugar. In nature, these sugars exist in both straight-chained and cyclic forms, with the 

cyclic form being the prevalent conformer in solution. 
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Figure 1-4: Cyclic Conformers of Common Bio-Derived Sugars 

Cyclization yields further classification of sugars, based on the size of the ring. 

Six-membered rings are collectively referred to as pyranoses, while five-membered rings 

are termed furanoses. In cyclic form, glucose preferentially forms a six-membered ring, 

whereas fructose forms a five-membered ring. Sucrose is the product of the condensation 

reaction between glucose and fructose via an α(12) glycosidic bond. Unlike its 

monomeric units, sucrose is a non-reducing sugar; that is, in solution, it contains neither 

hemiacetal nor aldehyde functional groups that can be oxidized. 

Each of the aforementioned sugars are extremely water-soluble, crystalline solids. 

Due to the presence of many hydroxyl groups, these compounds have appreciable 

polarities, and have limited solubilities in many organic solvents. Since sugars are 

alcohols, they can be deprotonated in solution and have slightly acidic character (refer to 

Table 1-1).15,16 Typically, sugars are slightly more acidic than simple alcohols, and have 

relatively low proton affinities. Therefore, mass spectrometric analysis of sugars 

         Glucose        Fructose 

       Sucrose                          N-acetyl-D-glucosamine 
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generally requires the use of a cationization agent, such as sodium or potassium ions to 

promote ionization and allow detection of positively charged ions.  

Table 1-1: Properties of Selected Sugars 

Sugar Molar Mass 

(g/mol) 

Water Solubility 

at 25 °C (mg/mL) 

pKa (in water 

at 25 °C)15,16  

Glucose (C6H12O6) 180.16 909  12.28 

Fructose (C6H12O6) 180.16 3750  12.03 

Sucrose (C12H22O11) 342.30 2000  12.62 

N-acetyl-D-glucosamine 

(C8H15NO6) 

221.21 148 11.56 

 

Reactions of sugars generally occur through the carbonyl functional group or via 

hydroxyl substituents. Common reactions of sugars include oxidation and reduction of the 

carbonyl, condensation of two or more sugars, and esterification and etherification of 

hydroxyl groups. Generally, the hydroxyl group of the anomeric carbon is the most 

reactive site,17 but this is obviously dependant on the nature of the reaction.  

1.2.5 Value-Added Chemicals from Biomass 

Chemical or enzymatic hydrolysis of cellulose and chitin yield glucose and NAG, 

respectively, which serve as sustainable precursors to a variety of compounds. The 

monomers are also valuable chemicals which can be directly used in the food and 

chemical industries. For instance, glucose and NAG are common products used in the 

food and pharmaceutical industries.18 These compounds can subsequently be chemically 

altered to yield a variety of useful compounds. The catalytic conversion of glucose has 
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received much attention as reactions can be tailored to selectively yield a number of 

value-added derivatives for fuels, plastics, etc.  

The catalytic conversion of glucose has received much attention as reactions can 

be tailored to selectively yield a number of value-added derivatives for fuels, plastics, etc. 

Glucose can be readily converted to sugar alcohols (e.g. sorbitol, xylitol), acids (e.g. 

acetic acid, formic acid, and gluconic acid), etc. Glucose, as well as its isomer fructose, 

can also be used to produce valuable furan-containing compounds (Figure 1-5). 

Figure 1-5: Potential routes to value-added chemicals from glucose (Ref. 19 - Reproduced 

with permission from The Royal Society of Chemistry) 

In particular, the dehydration of glucose and fructose to 5-hydroxymethylfurfural 

(HMF) has received considerable attention as a valuable chemical building block.10 HMF 

is a precursor for the production of fuels, solvents and plastics, as well as a key 

intermediate in the production of liquid alkanes from glucose (or fructose).19  HMF can 
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also be further converted to a number of furan compounds that are useful in a variety of 

different applications. The dehydration of HMF can subsequently yield levulinic acid 

(LA), a valuable precursor for the manufacture of polymers and plastics, pharmaceutica ls, 

food additives and biofuels, with wide industrial applications.20 Furthermore, the 

disaccharide sucrose (commonly obtained from sugarcane biomass) can be hydrolyzed to 

yield its monomers glucose and fructose and subsequently processed to yield the same 

variety of platform chemicals.21,22  

Hydrolysis of chitin and chitosan yield nitrogen-containing sugars, NAG and D-

glucosamine, which are also precursors for the production of platform chemicals HMF 

and LA.23 More recently, NAG has also been dehydrated to form nitrogen-containing 

platform chemicals. For example, the production of a new renewable amide, 3-acetamido-

5-acetylfuran (3A5AF) from NAG and chitin, has been reported.14,24,25 Unlike cellulosic 

sugars, which exclusively contain C, H and O, NAG and 3A5AF from chitin and chitosan 

can serve as renewable nitrogen-containing platform chemicals.  

 Several routes for the conversion of biomass to valuable chemicals have been 

investigated, including gasification, biological (i.e. fermentation) and chemical 

processing.19 These refining processes and technologies have allowed the extraction of 

valuable chemical products during biomass conversion processes using low-value and 

waste products as viable feedstocks. Energy-dense carbohydrates such as cellulose and 

chitin are examples of valuable compounds that can be extracted from biomass. The 

realization of the abundance of valuable chemicals that could be mass produced from 

such bio-feedstocks, aided in the foundation of the bio-refinery concept, whereby biomass 



 

12 
 

could be separated, processed, and converted into an array of products through catalytic 

or biochemical processes.2,4,20
 The development of sustainable technologies to 

complement these processes for commercialization, however, are still underway. 

1.2.6 Bio-Processing of Carbohydrates 

 Arguably the most challenging aspect of the utilization of biomass for fuels and 

chemicals is inherent in the difficulty of dissolving carbohydrate biopolymers in 

traditional solvents such as water and organic solvents.11 To be competitive with the 

petrochemical industry, cheap, efficient technologies must be developed to allow 

economically- feasible biomass processing.10 Dissolution is often the first step to chemical 

processing, and is required to increase the rate of mass transfer, and hence reaction 

kinetics. In nature, both cellulose and chitin act as structural polymers that are innately 

resistant to changes in environment. Structural differences, in the degree of 

polymerization (i.e. the number of monomers per polymer), as well as the variations in 

size and polydispersity of the biopolymer, arise from the biomass from which it is 

sourced and how it is processed.12,26 Furthermore, the extensive hydrogen-bonded 

networks of polymer chains within cellulose and chitin lead to high cohesive energies, 

and therefore high solubility parameters.12,27,28 It follows, that the complex nature of these 

polysaccharides render them difficult to solubilize and further depolymerize in water and 

traditional organic solvents. 

 Dissolution is an equilibrium process driven by thermodynamics. To achieve 

dissolution of a large molecule, such as a biopolymer, there must be appreciable polymer-
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solvent interactions that favor the process. Generally, dissolving crystalline polymers in 

solvents is an endothermic process, as polymer-solvent interactions are not as favorable 

as solvent-solvent or polymer-polymer interactions.29,30 Traditionally, cellulose and chitin 

have been solubilized in strong acids, aqueous solutions of mineral acids, N,N-

dimethylacetamide/lithium chloride (DMAc/LiCl), and N-methylmorpholine oxide 

(NMMO).29 Unfortunately, many of these traditional solvent systems are toxic or 

corrosive, require substantial heating for dissolution, and can be difficult to regenerate 

after the reaction,27 which leads to energy-intensive processes with considerable safety 

hazards. Clearly, industrial scale-up is impractical under these conditions. An ideal 

solvent system must allow the dissolution of biopolymer, further transformation, and 

stabilization of products, while maintaining reasonable handling conditions. 

1.3     Ionic Liquid Solvents in Green Processes 

1.3.1 Overview and Brief History 

Due to the growing concerns of the health and environmental effects caused by 

volatile organic solvents (VOCs), the use of alternative green solvents in chemical 

process design has grown tremendously.31 The use of solvent in industry, in particular, is 

of concern due to the large volumes of solvent used, and the difficulty in containing 

volatile species. Therefore, it is necessary to promote the use of greener, alternative 

solvents for use in such processes. In cases where a solvent cannot be omitted from a 

chemical process, several alternative solvents exist that may take the place of harmful 

VOCs and limit adverse chemical exposure, while providing a medium for heat and mass 

transfer, and solute dissolution while facilitating the reaction. Alternative solvents, such 
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as water, supercritical fluids and ionic liquids (ILs), are now taking the place of more 

harmful solvents in the manufacture of chemicals as well as consumer products such as 

paints, cosmetics and pharmaceuticals.31 

Ionic liquids (formerly known as molten salts) are non-molecular compounds 

composed entirely of ions, which serve as alternative solvents for green chemistry. Ionic 

liquids differ from traditional inorganic salts in that they have relatively low melting 

points, existing in the liquid state at or below an arbitrary temperature – commonly below 

100 °C or room-temperature. Although research into the use and applications of ionic 

liquids has only exploded throughout the last decade, ionic liquids have been known for 

some time. The credit for discovery of ionic liquids is a matter of debate, however, it is 

often attributed to Paul Wadden, who in 1914 synthesized ethylammonium nitrate 

([EtNH3][NO3]) which has a melting point of 12 °C.32 Other materials that have since 

been classified as ionic liquids originated as late as the mid-19th century,33 but the 

breakthrough in ionic liquid research followed the development of air- and moisture-

stable imidazolium salts in 1992, which generated newfound interest in ionic liquid 

applications.34 

1.3.2 Properties of Ionic Liquids 

Ionic liquids are generally composed of a bulky organic cation, with an organic or 

inorganic anion. Typical classes of ionic liquids are those based on imidazolium, 

pyridinium, and pyrrolidinium cations paired with a wide variety of anionic counterparts 

(Figure 1-6). 
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Figure 1-6: Structures of Common Ionic Liquid Ions  

These ions have charge distribution over a much larger surface than typical salts 

such as NaCl, and form unstable lattices due to their bulky, unsymmetrical nature. The 

significantly lower symmetry of ionic liquids lead to their characteristic low melting 

points. Due to the vast number of possible cation-anion combinations, ionic liquids are 

often called “tuneable” solvents, as varying the nature of their two constituent ions can 

change their properties. These ionic compounds are attractive alternatives to VOCs, as 

they generally have no or negligible vapor pressures, low combustibility, and high 

thermal stabilities, meaning they are useful over a wide range of temperatures.31 The ionic 

nature of these solvents give rise to highly polar, non-coordinating solvents, which have 

also proven to be useful in catalytic processes.32 Those ionic liquids that are immiscible 

with water, can also act as part of a biphasic system, or as an extraction medium. 

Furthermore, ionic liquids exhibit powerful dissolution abilities, facilitating otherwise 

difficult reactions. These unique properties make ionic liquids attractive replacement 

solvents for processes that use VOCs. Nonetheless, it is important to note that toxicity 

data on many ionic liquids is scarce, and they must therefore be handled carefully. Studies 



 

16 
 

have attributed increasing toxicity of ionic liquids containing long cation alkyl chains and 

those that are composed of imidazolium and pyridinium cations.11    

 The solubility of ionic liquids in water is an important property in determining 

their potential use in industry, as well as their possible cytotoxicity in the environment. 

Screening of ionic liquid properties is challenging due to the vast number of potential 

species. In saying that, many common ionic liquids have been experimentally tested for 

water solubility, and others have been predicted using computational methods.35,36 In 

general, the water solubility of a class of ionic liquids is strongly influenced by both the 

cation and anion hydrophobicities – that is, their hydrogen-bonding abilities. The cation 

can also be varied to influence the hydrophobicity of the resultant ionic liquid. For 

example, the alkyl chain lengths of the imidazolium and pyridinium cations can be tuned 

to promote water miscibility. In general, the hydrophobicity of the ionic liquid increases 

as alkyl chain increases.36 

1.3.3 Ionic Liquids in Biomass Processing 

 As charged species, ionic liquids exhibit appreciable polarity as solvents. Unlike 

most polar organic solvents, ionic liquids have the ability to dissolve both polar and non-

polar species due to their strong solvation abilities.37 The solvation ability of ionic liquids 

is attributed to various intermolecular solute-solvent interactions such as ionic 

interactions, dipole-dipole interactions, and hydrogen-bonding interactions. Due to their 

strong solvation ability, ionic liquids have been popular alternative solvents for biomass 

processing.26,28,38 As previously mentioned, one of the main challenges in cellulose 

processing is that the extensive hydrogen-bonding network within the polymer chains 



 

17 
 

inhibits dissolution by traditional organic solvents.11,28 Several ionic liquids, however, 

have shown superior dissolution of cellulose and other large biopolymers. In order to 

dissolve polymers such as cellulose and chitin, an ionic liquid must contain a cation or 

anion that is capable of disrupting the hydrogen-bonding network within the crystalline 

structure.39 In fact, in a recent study by Andanson, Padua, and Gomes, the enthalpy of 

dissolution of cellulose in IL 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) was 

experimentally determined to be an exothermic process.30 This implies that the interaction 

between cellulose and [EMIM]OAc solvent is energetically favorable, unlike most 

traditional solvents used for dissolution. 

There are several properties of an ionic liquid that lead to dissolution of large 

carbohydrates, specifically, cellulose.12,28,39 This list of key attributes throughout the 

literature include: 

 Solubility of cellulose increases with decreasing length of alkyl chains of 1-alkyl-

3-methylimidazolium ionic liquids. Furthermore, 1-alkyl-3-methylimidazolium-

based ionic liquids with even-numbered alkyl chains (ethyl, butyl) more readily 

dissolve cellulose than odd-numbered alkyl chains 

 Within halide containing ionic liquids (e.g. [BMIM]Cl), Cl- species dissolve 

cellulose better than the I-, and Br- analogues, which is can be related to the 

stronger hydrogen-bond ability of Cl-  

 Large non-coordinating anions lead to decreased solubility 

 Cellulose dissolution decreases from CH3COO- > Cl- > HCOO- with a given 

cation 
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 Overall, the most effective ionic liquids for cellulose dissolution were those with 

anions which are strong hydrogen-bond acceptors. This is not surprising, as such anions 

are required to disrupt intermolecular hydrogen-bonding between polymer chains. 

Although many ionic liquids have cellulose dissolution ability, the most commonly 

studied ionic liquids in cellulosic biomass processing include 1-butyl-3-

methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium chloride 

([EMIM]Cl) and 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc). 

Ionic liquids have been employed for the dissolution of chitin and chitosan as 

well. Although the solubilities of both biopolymers are highly dependent on the degree of 

deacetylation, both generally dissolve more readily in [BMIM]OAc than [EMIM]OAc.26 

Furthermore, ionic liquids containing the Br- anion have been reported to efficiently 

solubilize polyamines and polyamides. Chitin, for example, has been shown to have 

appreciable solubility in 1-allyl-3-methylimidazolium bromide ([AMIM]Br).38 

1.3.4 Conversion of Biomass in Ionic Liquids 

 Since gaining in popularity, ILs have been utilized for a wide range of organic 

reactions and catalytic processes.32,40,41 The discovery that alternative IL solvents 

exhibited powerful solvation ability towards biomass components has resulted in 

tremendous research towards establishing transformation reactions of biomass in ILs. 

Although many ILs have been used for the dissolution of large biopolymers such as 

cellulose and chitin, not all are well-suited for catalytic conversion reactions.12 Hydrolysis 

of cellulose and chitin in water is generally accomplished using Brønsted acids. In ILs, 

however, these catalytic systems are less efficient. In IL media, on the other hand, these 
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reactions are particularly efficient using metal chloride catalysts.10,12,21 Upon 

depolymerization of cellulose (or chitin), sugars can be upgraded to platform chemicals, 

using a variety of catalysts, but most often using mineral acids or metal chlorides in 1,3-

dialkylimidazolium chloride ILs. Examples include the CrCl3-catalyzed dehydration of 

glucose, fructose, sucrose and cellulose to yield HMF,10,42,43 as well as the hydrolysis of 

chitin/chitosan to NAG and glucosamine using mineral acids H2SO4 or HCl in ILs such as 

[EMIM]Cl and [BMIM]Cl.44 In some cases, the IL not only facilitates dissolution for 

mass transfer, but may also participate in the reaction. The ability of IL solvents to 

facilitate the deconstruction of large biopolymers and subsequently dehydrate the 

resulting sugar monomers has also led to the development of several one-pot reactions for 

the production of HMF.43,45-47  

1.3.5 Synthesis of Ionic Liquids 

Ionic liquids have been tailor-made to suit a variety of chemical applications. The 

combinations of different cations and anions are nearly limitless. Generally, ionic liquids 

are synthesized by salt metathesis, via different routes (Figure 1-7) depending on the 

water solubility of the target ionic liquid product.48  
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Figure 1-7: General Routes of Ionic Liquid Metathesis (adapted from Ref. 48) 

The most common synthetic routes for the generation of water-immiscible ionic 

liquids utilize the corresponding halide salt of the desired cation with the free acid or 

Group I salt of the anion.48 The simplicity of this reaction, and often ease of separation 

from the acid or salt by-product renders this the most favorable route. The reagents can be 

dissolved or suspended into minimal solvent, refluxed, and subsequently concentrated. 

The acid or salt by-product generated from the reaction with the free acid or salt of the 

anion, can often be easily washed away with water. Alternatively, the ionic liquid product 

can be extracted into CH2Cl2 (or other appropriate organic solvent), and isolated by 

evaporation of the solvent. However, this method is only useful for those ionic liquids 

that are not miscible with the aqueous phase, and have appreciable solubility in an 

organic phase, which may not always be the case. 

Methods for the synthesis of water-miscible ionic liquids are also well explored, 

but are often more complex, due to the difficulties in removing by-products.48 Several 

methods that currently exist involve the chloride or bromide salt of the desired cation, 

with the silver salt of the desired anion in order to precipitate the by-product silver halide 

salt. Although this method works well, silver-containing starting materials can be very 
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expensive, and the generation of silver halide waste is undesirable. Currently, several 

alternative avenues for the production of water-soluble ionic liquids have been developed, 

including the use of ion exchange materials, quaternization of cationic starting materials, 

and through the formation of N-heterocyclic carbene intermediates. The synthetic route of 

choice should consider both the relative water and organic solubility of the desired 

product, as well as the ease of isolation and purification.  

 Similarly, the synthesis of ionic liquid matrices (ILMs) for use in matrix-assisted 

laser desorption/ionization mass spectrometry (MALDI-MS) has been reported in several 

research papers (discussed in more detail in Section 1.5.4).49-51 Most commonly, the free 

acid matrix is dissolved in minimal organic solvent, to which equimolar organic base 

(aniline, pyridine, etc.) is added, and the solution is often heated for 30 min to promote 

product stability. The solvent is then either removed and the product dried using a high 

vacuum line, or the solution is used as is to spot the MALDI plate. In the latter case, the 

resulting mixture of ionic liquid matrix and by-product is used as is without subsequent 

purification.50 It is presumed that the additional acid by-product may be useful in the 

protonation of some analytes, and removal is deemed unnecessary. 

1.3.6 Purification of Ionic Liquids 

 A major concern with the synthesis of ionic liquids is purification of the final 

product. Common ionic liquid impurities include adventitious water, organics (residual 

solvent and unreacted starting materials), halide by-products, and metals.48 Water is the 

most common ionic liquid impurity, as many ionic liquids are extremely hygroscopic. It 

follows, that water is often a difficult impurity to remove during synthesis. Common 
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methods for the removal of residual solvent and water include evaporation under high 

vacuum. Unreacted volatile starting materials can also be removed this way, or similarly 

by washing with a low boiling organic solvent, which can then be readily removed by 

evaporation. Other methods of solvent and water removal include azeotropic distillation, 

molecular sieves, and drying agents. The method of purification chosen depends on the 

properties of the ionic liquid in question, and therefore should be used as appropriate. 

Acid and salt by-products of metathesis reactions are also often difficult to remove and 

their presence can greatly alter the properties of the ionic liquid. In the case of 

hydrophobic ionic liquids, these impurities can generally be easily removed through 

subsequent washings with water. Water-miscible ionic liquids, however, are much more 

difficult to purify this way. In such cases, the ionic liquid can be dissolved in a water-

immiscible organic solvent, and extracted using water, but this results in significant loss 

of product. Precipitation of by-product alkali salts can also be attempted using an 

appropriate organic solvent, however, the smallest traces of water can greatly influence 

the dissolution behaviour of the ionic liquid.48 Alternatively, alkali salts can be removed 

by passing an organic solution of the ionic liquid and impurity through a short silica 

column. Generally, the purification process will greatly depend on the ionic liquid in 

question, and therefore should be tailored to maximize yield and efficiency.  
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1.3.7 Ionic Liquids in Analytical Chemistry 

Within the past couple of decades, research into the use of ionic liquids as 

alternative solvents has grown substantially (Figure 1-8). Following suit, the use of ionic 

liquids in analytical chemistry has been increasingly investigated.  

 

Figure 1-8: Annual Growth of Publications Concerning Ionic Liquids and Ionic Liquids in 

Analytical Chemistry (Data received via SciFinder Aug. 2014) 

 

The unique, tuneable properties of ionic liquids make them useful media for many 

analytical applications. In recent literature, ionic liquids have been designed and used as 

extraction media, as gas and liquid chromatographic stationary phases and mobile phase 

additives, as capillary electrophoresis buffers, as complexing agents for mass 

spectrometric detection, and finally, as MALDI matrices, amongst others.34 However, the 

link between biomass processing in ionic liquids, and the applicability of existing 

analytical methods, has not yet been well established.  
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1.4     Analysis of Platform Chemicals in Ionic Liquid Media 

Unfortunately, the adoption of greener technologies in industry has been slowed 

by the inevitable costs of replacing existing technologies with facilities that are 

compatible with green processes. Furthermore, there are few analytical techniques that 

are used for the detection and analysis of biomass transformation products.52 Those that 

presently exist, are primarily chromatographic methods that suffer from extensive sample 

preparation, long analysis times, and must be carefully tailored for both analyte class and 

source. For example, the analysis of sugars generally require derivatization prior to GC or 

LC analyses. In an industrial setting, such methods are limited by low sample throughput 

and cost, resulting in a growing demand for cost-effective analytical techniques to 

accompany such analyses. The recent movement to use of environmentally-friendly ionic 

liquids as alternative solvents in synthesis and processing, introduces new complications 

into analysis, such as tedious extraction steps, and potential incompatibilities with 

traditional methods of analytical separation and detection. Therefore, typical reactions in 

ILs require the separation of the analyte(s) from the IL solvent, prior to analysis. This can 

be particularly difficult, as separation of the analytes may require extraction, precipitation 

and/or filtration, followed by purification. For example, the IL-mediated transformation 

of glucose to HMF typically requires solvent extraction of HMF from the IL using 

organic solvents (e.g. ethyl acetate), evaporation, and reconstitution in an appropriate 

solvent for GC or LC analyses. The untransformed carbohydrate (and possibly by-

products) are often left behind. In the case of imidazolium-ILs (which are commonly 

employed for such reactions) the common polarities of the solvent and carbohydrate (i.e. 



 

25 
 

glucose) result in difficulties in separation. Use of anti-solvents (to promote 

precipitation),53 as well as complexing agents54 have been employed to separate these, 

however, these additional steps render these processes uneconomical and time 

consuming.  

The high viscosities and ionic character of typical ILs also lead to 

incompatibilities with typical means of chemical monitoring. Specifically, NMR analyses 

of IL-containing systems often suffer due to high viscosities and interference of radio 

frequency pulses, which lead to poor resolution.55 Furthermore, depending on the 

structure of the IL, overlapping solvent peaks arise, leading to difficulties in analyte 

structure elucidation and subsequent quantification. Furthermore, free sugars are 

generally difficult to accurately analyze by NMR, as these compounds rapidly 

interconvert between straight-chain and cyclic forms in solution. Although the cyclic 

form predominates in aqueous solutions, the presence of ILs and other reaction 

components can have unpredictable effects on this equilibrium.  

Other methods for analysis of IL-containing systems include spectroscopic 

techniques such as UV-Vis and IR. HMF can be directly analyzed by UV-Vis (284 nm), 

and derivatization of reducing sugars such as glucose with 3,5-dinitrosalicylic acid (DNS) 

allows for detection by UV-Vis at 498 nm.47 However, spectra acquired using these 

methods can quickly become convoluted with substrate, catalyst and side-product peaks. 

Furthermore, colored impurities (which are often difficult to remove from ILs) can cause 

interference in the visible region of the spectrum.  
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A more recent investigation into the use of direct infusion-ESI analysis for 

monitoring chemical systems (specifically glucose conversion to HMF) in ILs has been 

proposed.56 This method offers much faster analysis times than traditional 

chromatography and allows simultaneous detection of reaction intermediates, but requires 

careful instrument tuning to avoid hardware damage and source contamination from 

abundant IL species. For reaction conditions whereby the IL is the major component (as 

is the case when it serves as the solvent), typical ESI-MS spectra suffer from dominant IL 

ions, and analyte ion suppression. Furthermore, at relatively higher concentrations of IL, 

carry-over between analyses is a potential problem. By tuning the ion gate to selectively 

acquire spectra in the range of the analyte (i.e. via tandem MS), detection of these ions 

can be avoided. Filtration of these interfering ions resulted in enhanced sensitivities for 

compounds of interest (e.g. glucose and HMF). 

It is clearly advantageous to develop novel, advanced analytical methods for the 

analysis of bio-derived compounds in IL media. Ideally, the methods will allow the 

simultaneous detection of starting materials and products (as well as by-products), 

without the need for prior separation from the IL, to be superior to current applications. 

Furthermore, the methods should have appreciable tolerance to impurities and other 

reaction components. Desorption/ionization mass spectrometric techniques have the 

potential to replace existing methods, offering high sample throughput, little to no sample 

preparation, and ease of data analysis. 
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1.5      Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass 

Spectrometry 

1.5.1 Overview of MALDI-TOF MS 

Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization method, 

which was developed from laser desorption/ionization (LDI) methods. The term MALDI, 

was first coined in 1985, by Franz Hillenkamp and Michael Karas, after showing 

enhanced ion yield of alanine (a non-absorbing amino acid) when mixed with the UV-

active amino acid, tryptophan.57 Following these findings, in 1987, Koichi Tanaka and 

co-workers combined cobalt nanoparticles in glycerol, for ionization with a nitrogen 

laser.58 This breakthrough method allowed the ionization of biomolecules with molecular 

weights greater than 30,000 Da. The introduction of an absorbing “matrix” into laser 

desorption mass spectrometry to promote ionization of high molecular weight analytes, 

regardless of individual absorption characteristics, offered new insight into the fields of 

proteomics, polymer chemistry and microbiology. 

The relatively simple sample preparation and low sample consumption that is 

required for MALDI-MS analysis, lead to its sudden popularity in analytical chemistry, as 

many samples could be analyzed over a short period of time. As a soft ionization 

technique, MALDI-MS is also known for the ease of spectral analysis, as generally the 

only ions observed are singly charged analyte ion peaks and adducts. MALDI-MS is, 

however, limited by the difficulties in achieving quantitative information. Spot 

inhomogeneity is the primary cause of increased sample analysis times and difficulty in 

attaining quantitative results, by contributing to poor reproducibility. Additionally, the 
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choice of MALDI matrix for a particular set of analytes is often not straightforward, and 

requires an extensive trial and error approach.  

Although MALDI-MS techniques were primarily used for the analysis of high 

molecular weight proteins, and synthetic polymers, recent advances in MALDI-MS have 

allowed the analysis of small molecules (<500 Da).59 Originally, MALDI analysis of 

small molecules was avoided, due to the inherent interference from low molecular weight 

matrix fragments and adducts. However, studies involving matrix suppression, and the 

use of novel matrices such as ionic liquid matrices, have made small molecule analysis by 

MALDI-MS much more achievable.59 

1.5.2 MALDI-TOF MS Instrumentation and Process 

In MALDI analysis, the analyte is first co-crystallized with a UV-absorbing 

matrix on a sample plate. Upon introduction to the instrument, the plate is placed under 

vacuum (10-6 – 10-7 torr) and the sample is irradiated by a pulsed laser, promoting 

desorption and ionization. The matrix serves to absorb incoming laser energy, and 

encourage ablation of the sample, while protecting the analytes from decomposition. 

Ionization and ion transfer in the hot plume due to this process results in the ionization of 

both matrix and analyte which are then accelerated into a mass analyzer.   

 Several mechanisms of ion formation in MALDI exist, but a single mechanism 

cannot explain all of the ions that are observed in a typical MALDI spectrum.60 It is 

important, however, to consider the different ion formation mechanisms, as they apply to 

a group of analytes to improve ion abundance, and control fragmentation. Several 
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possible ion formation mechanisms exist, which can generally be divided into two main 

categories: primary and secondary ionization. Primary ionization refers to the initial 

ionization of neutral molecules in the sample, which are often the matrix species (M), as a 

result of interaction with incoming photons: 

M + hv  [M+H]+, [M+Na]+, M+•, etc. 

Secondary ionization includes the ionization of molecules in the MALDI plume, 

including ionization of the analyte (A), and generally occurs by one of three reactions: 

(1) Proton transfer: [M+H]+ + A  M + [A+H]+  (or [M-H]- + A  MH + A-) 

(2) Electron transfer: M+• + A  M + A+•  (or M-• + A  M + A-•) 

(3) Cation transfer: [M+Na]+ + A  M + [A+Na]+  

The ions that are observed in the resulting mass spectrum are highly dependent on the 

matrix used, dopant (if present), and the intrinsic properties of the analyte class. 

 MALDI-MS instruments are commonly equipped with linear or reflector time-of-

flight (TOF) mass spectrometers, the latter which offers high resolution with 

(theoretically) no mass limitation. A TOF mass analyzer separates and detects ions based 

on differences in travel time to the detector which is inversely proportional to the mass-

to-charge (m/z) ratio. All ions are accelerated using the same potential, which imparts all 

ions with the same kinetic energy when reaching the flight tube. Therefore, smaller ions 

travel at higher velocities through the flight tube and reach the detector before larger ions. 

The detector calculates the m/z ratio based upon the time of ion flight, resulting in a mass 

spectrum corresponding to the abundance of ions at particular time intervals. Often, TOF 



 

30 
 

analyzers are equipped with an ion mirror (reflectron) which reflects ions via an electric 

field (Figure 1-9). This essentially doubles the ion path distance, and compensates for 

small differences in kinetic energy, leading to increased resolution. The use of an ion 

mirror is particularly useful for the analysis of small molecular weight molecules. 

 

Figure 1-9: MALDI-TOF MS Schematic 

1.5.3 Traditional MALDI Matrices 

The key to designing an effective MALDI-MS experiment, is often the choice of 

matrix used to co-crystallize with the analyte of interest. Generally, MALDI matrices 

serve two primary purposes: to absorb incoming laser irradiation so that the matrix can 

promote ionization and prevent decomposition of the analyte, and to isolate analyte 

molecules from one another to prevent analyte-analyte association.61 In saying that, the 

matrix is often selected by its ability to embed and isolate the analyte, having similar 

solubility in compatible MALDI preparation solvents, and to promote desorption and 
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ionization of the analyte of interest. Furthermore, the matrix must be compatible with 

MALDI instrumentation, in that it must be able to absorb the wavelength of laser 

irradiation, be resistant to thermal degradation, and have appreciable vacuum stability 

(depicted in Figure 1-10).50 

 

 

Figure 1-10: Co-crystallization of Matrix and Analyte 
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Figure 1-11: Structures of Common MALDI Matrices CHCA and DHB 

Typically, MALDI matrices are substituted aromatic organic compounds. The most 

commonly employed commercially available MALDI matrices are carboxylic acids: 

sinapinic acid (SA), 2,5-dihydroxybenzoic acid (DHB), and α-cyano-4-hydroxycinnamic 

acid (CHCA) (Figure 1-11).  Carboxylic acid matrices work particularly well when 

operating the MS in positive mode, as the labile acidic protons readily protonate neutral 

analyte species.50 For analytes that require a more acidic environment, a strong acid 

additive such as trifluoroacetic acid (TFA) is often used along with the matrix, to ensure 

protonation. In cases where acidic conditions are unfavorable (such as in the analysis of 

neutral carbohydrates), a cationization agent may be used to promote adduct formation.62 

The choice of matrix for the analysis of a particular analyte can be quite intricate, as 

matrices that work well for a group of compounds may not necessarily be suitable for 

others. Therefore, selecting an appropriate matrix is often accomplished through trial and 

error. The major setback with most of these commonly employed MALDI matrices is that 

they are solids. The difficulty in controlling the crystallization and segregation of analyte 

molecules throughout the spot leads to both poor shot-to-shot and spot-to-spot 

homogeneity, and thus poor reproducibility which is a major limitation for quantitative 

analysis.  
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1.5.4 Ionic Liquid Matrices 

Ionic liquid matrices (ILMs) were first introduced to MALDI-MS analyses by 

Armstrong et al. in 2001,49 as potential replacement matrices for solid matrices. 

Traditional solid matrices such as DHB and CHCA rely on co-crystallization of matrix 

and analyte, which can lead to sample spot heterogeneity and poor reproducibility in 

MALDI-MS analyses. Furthermore, use of such matrices can cause longer analysis times, 

through searching for “hot spots” where the analyte is most concentrated. Although liquid 

matrices (which are characteristically more homogeneous) are available to account for 

spot heterogeneity, many of these matrices suffer due to excessive volatilities, and often 

do not have desirable UV chromophores. Armstrong proposed that by incorporating 

common solid UV-active matrix anions into ionic liquids, novel matrices with negligible 

volatilities could be designed to enhance spot-to-spot and shot-to-shot reproducibility. 

Armstrong et al. synthesized several UV-active ILMs from cinnamic acid 

derivatives and common organic bases such as alkylamines and substituted imidazoles 

and pyridines. The resulting ILMs were tested for their solubilizing ability of test analytes 

and subsequently used in MALDI-MS for the analysis of peptides and proteins.49 Several 

of the novel ILMs were successful in promoting ionization of test analytes such as 

bradykinin (high molecular weight peptide) and PEG-2000 (polyether), with substantially 

better reproducibility than traditional MALDI matrices. For example, the ILM 1-

methylimidazolium CHCA, outperformed solid CHCA, having relative standard 

deviations (RSDs) of 16 %, as compared to 150 %. Furthermore, for many of the ILMs 

tested, analyte signal intensities were slightly better than those obtained using the 
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analogous solid matrix. Other observations of this study, included the conclusion that 

solid matrices that preferentially ionize a particular class of analytes retain this property 

as an ILM. Armstrong et al. also concluded that ILMs designed from room temperature 

ionic liquids (RTILs) such as 1,3-dialkylimidazolium ILs (e.g. [BMIM][CHCA]) were 

deemed unsuitable as matrices, likely due to poor laser absorption and lack of transferable 

protons. In a follow-up study by Crank and Armstrong, the effect of the ILM cation was 

further investigated with a series of CHCA derivatives. Several cationic amines were 

tested, and those that performed well as matrices generally had pKa values ≥ 11 and gas 

phase proton affinities ≥ 930 kJ/mol.51  

After their introduction to MALDI-MS, ILMs have been designed for many 

classes of analytes, including small molecules (< 500 Da). The use of ILMs for small 

molecule analysis also had particular advantages over using traditional solid matrices, 

beyond increased sample homogeneity. Matrix signals were often suppressed, and less 

fragmentation of both matrix and analyte was observed.63 This translates to less matrix 

interference in the low-mass region, as well as ease in spectra interpretation. 

The discovery that ILMs could not only increase reproducibility of MALDI 

analyses, with similar or lower detection limits than traditional matrices, but also be 

tailored to a particular class of analytes, prompted further investigation by other 

researchers into the potential of ionic liquid matrices in MALDI-MS. Although a number 

of UV-active ILs have been designed for these purposes, these novel matrices have not 

been investigated for their ability to monitor chemical reactions in ILs.  
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1.5.5 Analysis of Small Neutral Carbohydrates by MALDI-MS 

 Upon the expansion of MALDI-MS analyses to small molecule classes, there was 

renewed interest in the rapid analysis of smaller biologically relevant oligo- and mono-

saccharides. Through matrix screening, DHB was found to be superior to most commonly 

used organic acid matrices for the analysis of small neutral carbohydrates.64 However, it 

was determined that smaller sugars were rarely protonated in the process, and [M+H]+ 

ions were seldom observed. Rather, sugars such as glucose and sucrose, primarily form 

alkali metal adducts. This observation is consistent with the lack of basic sites within 

sugars that would bind protons. Therefore, the analysis of sugars by MALDI-MS is 

generally performed with the use of a cationization agent, often sodium- or potassium-

based, but still suffers from low binding efficiency.65 Despite these conditions, glucose 

and sucrose analysis by MALDI-MS has been reported using a variety of supporting 

materials in matrices including DHB,66 carbon nanotubes,65 wood charcoal,62 and DHB-

pyridine ionic liquids67 with LODs in the pmol range. 

 Due to the inherently low ionization efficiency of sugars, derivatization of the 

analytes is often desirable. This may be deemed unnecessary when analyzing systems 

with relatively high sugar concentrations,66 but for those systems with wide, or low 

concentration ranges, derivatization by introduction of a more “ionizable” functional 

group should overcome sensitivity problems.68 A variety of derivatizing agents for sugars 

have been employed for this purpose, including reductive amination, silylation, as well as 

introduction of quaternary ammonium centers. Introducing functional groups that are 

more readily ionized have been reported to give increases of sensitivity over several 
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orders of magnitude. Other limitations of MALDI-MS analyses of sugars, include spot 

inhomogeneity, which can limit quantitative analyses. The choice of matrix, use of an 

internal standard, and a greater number of replicate analyses, however, can significantly 

improve reproducibility.   

1.6      Desorption Electrospray Ionization Mass Spectrometry 

1.6.1 Overview 

Amongst the most recent advances in mass spectrometry, desorption electrospray 

ionization (DESI) has become a popular tool in analytical chemistry. DESI-MS was 

developed in 2004 by Professor R. Graham Cooks’ research group from Purdue 

University.69 DESI is applicable to a variety of analyte classes with high sensitivities, and 

rapid analysis times. Since its commercialization, DESI has become a popular, versatile 

instrument for chemical analysis under ambient conditions in chemistry, biology and 

forensics.69-72  

DESI couples desorption ionization with traditional electrospray ionization (ESI) 

methods. Unlike ESI, DESI allows ionization to be accomplished at ambient temperature 

and pressure, rather than under vacuum or within an enclosed source.69 Ionization is 

achieved by first spraying electrically charged droplets at the sample surface. Interaction 

between charged spray droplets and the analyte results in ion transfer, while the 

pneumatic pressure of the incoming spray causes projection of secondary analyte ions 

into the gas phase. The secondary analyte ions travel a short distance through air into the 

mass spectrometer via an atmospheric ion-transfer line (Figure 1-12).71  
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Figure 1-12: DESI-MS Process  

1.6.2 Instrumentation and Process 

The DESI source consists of a moveable pneumatic electrospray source and 

sample stage, which can be mounted to interface any atmospheric pressure mass 

spectrometer. The sprayer is mounted on a vertical stage which can then be mounted to a 

3D movable sample stage. The flexibility of the source components allow for tuning 

sprayer-to-MS and sprayer-to-surface distances, which is critical in achieving a high ion 

signal. The sample chamber contains a coated aluminum block which contains a heater 

that can withstand temperatures between room temperature and 300 °C.71  

Preparation for DESI-MS analysis consists of very little to no sample 

pretreatment. Many samples can be analyzed directly under the spray, and others are 

simply spotted as is onto a DESI sample plate and inserted into the sample chamber. Like 
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MALDI-MS, DESI-MS requires very little sample, and can achieve qualitative results 

with only 5 – 10 μL of sample within approximately 5 seconds.71 A major advantage of 

DESI-MS over MALDI-MS is that no matrix is required to promote analyte ionization, 

and samples can often be directly analyzed in their native form.  

 

Figure 1-13: Tuneable Geometric Parameters in DESI-MS Source (adapted from Ref. 71) 

The most influential geometric parameters of the DESI (Figure 1-13) include the 

incident angle of solvent spray (α), the collection angle (β), the spray-to-tip distance (d1), 

the surface-to-inlet distance (d2), the solvent composition and flow rate, gas flow rate and 

applied potential.71 These parameters can be sequentially tested in preliminary work to 

determine optimal signal intensity for a particular set of analytes. Parameters α and d1 

directly affect the ionization process, while β and d2 affect collection efficiency. The 

optimal settings for each of the aforementioned parameters can be determined and 
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tailored to suit a particular class of analytes for optimal signal-to-noise or signal 

intensity.71  

 The spray solvent of choice can also be optimized for DESI-MS. Typically, spray 

solvents are aqueous solutions containing organic solvent fractions of desired polarity. 

Ideal spray solvents will dissolve the analytes of interest upon impact, resulting in 

selective desorption of the target compounds. Additives such as acids or bases to promote 

protonation or deprotonation are also commonly added to the spray solvent. Similarly, 

cationization agents (e.g. NaCl, KCl, etc.) can be used to increase sensitivity of neutral 

compounds such as sugars, and other analytes with poor ionizability, which prefer 

adduction. The spray solvent can also be altered to contain complexing agents, or 

reagents that selectively react with the analyte of interest upon impact. This technique is 

collectively referred to as reactive DESI-MS. Doping the spray solvent allows for a range 

of reaction types such as redox reactions, metal complexation, and functional group 

modification, which enhance the selectivity of the method towards particular analyte 

classes.70 For example, reactive DESI has been employed for the analysis of glucose with 

the addition of benzeneboronate anions to the DESI spray solvent. This allows the 

formation of glucose phenylboronate complexes which selectively react with cis-diol 

compounds.73 Applications such as this allow for selective ionization of glucose with less 

background noise and higher sensitivity.   

The spray flow and gas flow rates are also important parameters in a DESI 

experiment, as these control the size of incoming droplets and the overall area of the 

sample which is impacted. Solvent flow rates typically vary from 1 – 5 µL/min. The flow 
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rate influences the fluctuation of incoming droplets, as well as the size of the impact area 

(Figure 1-14).74  

 

Figure 1-14: Effect of Solvent and Gas Flow Rates of Sample Impact Area in a Typical 
DESI-MS Experiment (adapted from Ref. 74) 

High solvent flow rates lead to increased sample impact area, but excessive flow 

can lead to sample dilution, or redistribution of the analyte within the sample. Similarly, 

the gas flow (typically 100 – 150 psi) affects solvent droplet formation. Lower pressures 

lead to larger incoming solvent droplets, which may also lead to analyte dilution. 

Optimization and validation of these parameters should be determined before quantitative 

analysis is attempted as other parameters such as solvent composition and flow rate, gas 

flow rate and potential can alter signal intensity. 

1.6.3 Ionization Mechanisms 

Mechanistic studies of the DESI ionization process suggest that a droplet-pick-up 

process is occurring.72 Upon spraying the sample, wetting of the sample surface likely 

results in a pooled solvent layer into which analyte may partition or collect. With 
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subsequent spraying, newly arriving droplets transfer momentum to this layer, and 

secondary droplets are expelled from the sample surface.  

Ionization by DESI occurs by two mechanisms depending on the relative mass of 

the analyte.71 For low molecular weight molecules, ionization occurs via charge transfer 

by an electron or a proton, resulting in primary ion formation. Charge transfer can occur 

between a solvent ion and an analyte molecule on the sample surface, or in the gas phase 

(at high vapor pressure). Additionally, when the spray to surface distance is large, charge 

transfer can occur between a gas phase solvent ion and an analyte molecule on the 

surface.  

Mass spectra of high molecular weight analytes, such as proteins, show multiply 

charged ions, which suggests desorption of the analyte followed by multiple charge 

transfer from the solvent. The now ionized and solvated analyte (charged droplet) enters 

the mass analyzer inlet, and is subsequently desolvated. DESI-MS spectra are analogous 

to ESI-MS spectra, featuring multiply charged ions, alkali metal adducts, and ions of 

noncovalent complexes. DESI is therefore a useful technique for the analys is of peptides 

and proteins. Furthermore, the DESI source is superior for ionizing nonpolar compounds, 

which are not easily ionized by ESI. 

1.6.4 Applications of DESI-MS 

Since its introduction, DESI-MS has been employed for numerous applications in 

chemistry, biology and forensics. The applications range from biological sampling of 

plant and animal tissues, explosive detection, and environmental analysis. The number of 
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applications for DESI-MS is continuously growing, as more and more analytes can be 

detected under mild DESI conditions.  

Neutral carbohydrates, including glucose, have also been previously analyzed using 

DESI-MS.73,75-77 Much like the ESI spectra of these compounds, salt adducts were the 

primary ions observed (most often sodium adducts in positive ion mode). Apart from the 

biological applications for analyzing glucose, and other small sugars, DESI-MS has been 

used to monitor cellulose degradation in paper.76 In reported cases, glucose could be 

detected at as low as 25 pmol. Similar desorption methods exist for the analysis of HMF, 

including differential mobility DESI-MS,78 and direct analysis in real-time (DART)-MS79 

for the analysis of HMF in foods (i.e. honey, caramel, etc.), and interestingly, extractive 

electrospray ionization (EESI) for qualitative monitoring of HMF production from 

fructose in [EMIM]Cl ionic liquid.80 In the latter case, quantitation was not attempted, 

and fructose detection was not reported, however increasing HMF intensities were 

monitored as the reaction progressed. It follows that there is significant research to be 

conducted for the analysis of platform chemicals in ILs, an application that may be well 

suited for DESI-MS. 

1.7      Project Aims 

The aim of this research is to develop novel analytical methods for the rapid, 

qualitative/quantitative analysis of bio-derived platform chemicals and to monitor 

chemical transformation reactions of bio-derived sugars in ionic liquid media. By 

incorporating previous research in the fields of analytical chemistry and carbohydrate 
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processing, novel methods for the in situ analysis of small platform chemicals have been 

proposed, using desorption/ionization mass spectrometric techniques. The use of these 

MS techniques is complementary to industrial processes: there is little to no sample 

preparation necessary, sample analyses are rapid (seconds) leading to high sample 

throughput, and data analysis is very straightforward. 

 Selected bio-derived sugars and platform chemicals have been chosen as target 

analytes for this study: glucose, fructose, sucrose, N-acetyl-D-glucosamine, 5-

hydroxymethylfurfural and levulinic acid. These compounds will be analyzed in ILs that 

are commonly used for catalytic biomass transformation, specifically, 1-butyl-3-

methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium chloride 

([EMIM]Cl) and 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc). The goal of this 

work is to be able to remove an aliquot of a reaction mixture (containing both analyte and 

ionic liquid), and analyze directly using MALDI-TOF MS and/or DESI-MS. 

 For MALDI-TOF MS analyses, the applicability of selected MALDI matrices and 

ILs will be investigated for their ability to promote ionization of the analytes of interest. 

Studies will be conducted to optimize sample preparation procedures, as well as operating 

parameters to afford the highest sensitivity and selectivity. Finally, properties of the IL-

matrix mixtures will be investigated to aid in rational experimental design. DESI-MS will 

be similarly conducted to analyze mixtures of analytes in ILs under ambient ionization 

conditions. Operating parameters will be optimized to develop an efficient means of 

chemical monitoring. The proposed methods will be applied to monitor chemical 

transformation reactions in ILs, and compared to existing methods. Finally, figures of 
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merit will be determined to define applicability and limitations of the methods towards 

the systems of interest. 
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Chapter 2: : Preparation and Characterization of 

Imidazolium-Based Ionic Liquid Matrices  

2.1  Introduction 

Matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS) is a 

versatile analytical tool for the analysis of a variety of molecule classes. The numerous 

matrix choices allow MALDI-MS methods to be developed that are specific to a 

particular class of analytes, and these methods can be tailored to enhance analyte 

selectivity and sensitivity.1 MALDI-MS is an attractive analytical technique for industrial 

processes, as sample preparation is often minimal, and samples can be analyzed rapidly 

and efficiently. Matrices for MALDI-MS analyses are continually designed to optimize 

ionization efficiency, as well as to minimize sample inhomogeneity, a characteristic 

drawback of MALDI-MS analysis. More recently, ionic liquid matrices (ILMs) have been 

introduced, which incorporate UV-active MALDI matrices with bulky organic cations, 

forming liquid matrices with increased uniformity.2 Since the introduction of ILMs, many 

classes of these liquid matrices have been developed for specific analyte classes, from 

large biomolecules to small analytes (< 500 Da).2-4  

 Ionic liquids (ILs) have not only found applications in analytical chemistry, but 

across almost all disciplines of chemistry.5 Specifically, green chemistry applications use 

ILs as alternative solvents, and there has been significant progress in using ILs for 

biomass transformations for the production of bio-derived platform chemicals, as well as 

for upgrading these bio-feedstocks to usable materials such as biofuels, plastics, and a 
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variety of other consumer goods.6-8 Although the prospects of such bio-based 

technologies are attractive, analytical methods to complement such progress are often a 

major limiting factor.9,10 Therefore, there is an ample opportunity to combine the recent 

progress in ILM development of MALDI-MS methods with IL-containing reaction 

systems, such as those employed for biomass conversion. 

 In this work, traditional MALDI matrices were incorporated with common ILs 

used in biomass processing with the intention of forming ionic liquid matrices (ILMs) for 

the analysis of common bio-derived platform chemicals. The goal of this work is to 

develop analytical methods which require minimal sample preparation and allow rapid 

analyses for the acquisition of qualitative and quantitative information. Although many 

methods exist for the synthesis of task-specific ILs,11 including ILMs,2,3,12 simple 

combinations of matrix and IL were employed as a means of reducing the time required 

for sample preparation. It is hypothesized that for MALDI-TOF MS analyses, solutions of 

both matrix and IL (and analyte) could be mixed and directly spotted onto a MALDI 

substrate for analysis, without the need for solvent separation or further purification. For 

the purposes of characterization, however, the matrices were isolated in solid (or liquid) 

form to determine some of the physicochemical properties of the new matrices, and to 

determine whether a new ionic liquid matrix (ILM) is formed in situ. 

 The matrices of interest in this study are 2,5-dihydroxybenzoic acid (DHB) and α-

cyano-4-hydroxycinnamic acid (CHCA), which are commonly employed matrices for 

carbohydrates and small molecule classes.1,13 ILs that are commonly used in biomass 

processing, specifically those used in carbohydrate dissolution and transformation7,8,14 
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were employed as the IL-counterpart in these studies. Three representative imidazolium-

based ILs were chosen to be included in this work: 1-butyl-3-methylimidazolium chloride 

([BMIM]Cl), 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) and 1-ethyl-3-

methylimidazolium acetate ([EMIM]OAc).  

 

 

Figure 2-1: Matrices and Ionic Liquids Employed for Matrix Design 

The resulting matrix systems were characterized using spectroscopic techniques to 

determine some physicochemical properties of the products and to aid in further 

experimental design. These methods allow differentiation between mixtures of parent 

acid and IL and newly formed ILMs which incorporate the conjugate base of the matrix 

species. As previously mentioned, the ideal sample preparation methods for the proposed 

work should be relatively quick and simple. Therefore, mixtures of matrix acid and IL 

were to be mixed in an appropriate solvent and spotted as is onto the MALDI plate. It is 
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important to note that a new IL ion pair is not necessarily formed in this manner. To 

establish whether or not the mixtures of matrix and IL formed a new ion pair, the 

products (or mixtures of products) were isolated and analyzed by NMR, UV-Vis and IR 

spectroscopies. The sodium salts of each matrix acid were prepared and used as standards 

for the formation of the matrix anion. In each case, the parent acid and anionic matrix 

were analyzed to serve as an indicator of reaction completion and the successful 

formation of a new ion pair (i.e. a new ILM). 

2.2  Materials 

 2,5-Dihydroxybenzoic acid (DHB) (98 %), α-cyano-4-hydroxycinnamic acid 

(CHCA) (≥ 98 %), and 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) (98 %) were 

obtained from Sigma-Aldrich (St. Louis, MO). The 1-butyl-3-methylimidazolium 

chloride ([BMIM]Cl) (96 %) was purchased from Alfa Aesar (Ward Hill, MA), and 1-

ethyl-3-methylimidazolium acetate ([EMIM]OAc) (> 95 %) was purchased from Io-Li-

Tec (Tuscaloosa, AL). Deuterated dimethyl sulfoxide-d6 (99.9 % + 0.05 % TMS v/v) and 

methanol-d4 (99.8 %) were purchased from Cambridge Isotopes (Androver, MA). Water, 

methanol and acetonitrile (HPLC grade, 99.9 %) were obtained from Fisher Scientific 

(Fair Lawn, NJ). All chemicals were used without further purification. 

2.3  Instrumentation 

2.3.1  
1H and 13C NMR Spectroscopy 

 1H NMR and 13C NMR spectra were acquired at room temperature using a Bruker 

AVANCE III 300 MHz NMR spectrometer. Samples were dissolved in DMSO-d6 or 
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MeOH-d4 at concentrations of ~ 10 - 20 mg/mL. Chemical shifts are reported in parts per 

million (ppm) from TMS reference. Data was analyzed using MestreNova 9.0.1 (licenced 

software through Memorial University). 

2.3.2  UV-Vis Spectroscopy 

 Solutions of varying concentrations were transferred to clean quartz cuvettes (1 

cm path length), and inserted into a fiber-optic cell connected to an Ocean Optics DH-

2000-BAL deuterium halogen lamp source and an Ocean Optics USB4000 UV-Vis 

spectrometer. The spectrometer was operated with an integration time of 5 ms, spectra 

were measured over a range of 200 – 800 nm and all acquired spectra were averaged over 

50 scans. Raw data was exported to Microsoft Excel for processing. 

2.3.3  IR Spectroscopy 

IR spectra of solid samples were obtained using an ALPHA FT-IR Spectrometer 

(Bruker) equipped with an ALPHA Platinum ATR single reflection diamond ATR 

module. Spectra were recorded in the spectral range of 400 – 4000 cm-1 with spectral 

resolution of 4 cm-1. Data was exported to Microsoft Excel for processing. 

2.4  Methods 

2.4.1  UV-Vis Solution Preparation 

Stock solutions of 2 mM ILMs and starting materials were prepared in acetonitrile 

for UV-Vis analysis. The stock solutions were diluted in the appropriate solvent to yield 

working standards of 25, 50, 75 and 100 µM. Acetonitrile was used as the method blank. 
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For those mixtures resulting in colored species, UV-Vis analysis was carried out using 

methanol as the solvent, at specified concentrations. In these cases, methanol was 

employed as the method blank. 

2.4.2  Preparation of ILM-Matrix Mixtures 

The ionic liquid matrices (ILMs) were prepared and used as is for MALDI 

analyses, without removal of solvents or by-products, and without further purification. 

However, for the purposes of characterization, products (or mixture of products) were 

isolated. All following procedures were carried out at 1-2 g scale. ILMs were synthesized 

by modified procedures of previously reported methods,2 based on salt metathesis (Figure 

2-2).  

 

Figure 2-2: General Reaction Scheme for ILM Preparation from Imidazolium-Based ILs 

Simply, equimolar amounts of organic solutions of both the free acid and a 

commercially available imidazolium ionic liquid (as a cation donor) were combined, and 

heated to promote dissolution. The following procedure represents the general 

methodology for the preparation (more detailed procedures specific to each product can 
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be found in Appendix I). Approximately 10 mmol of ionic liquid ([EMIM]Cl, 

[EMIM]OAc, or [BMIM]Cl) was weighed into a round bottom flask with a magnetic stir 

bar. An equivalent of matrix acid (DHB or CHCA) was dissolved in minimal organic 

solvent (MeOH or ACN) and quantitatively transferred to the reaction flask. The mixture 

was stirred (or sonicated if necessary) to fully dissolve the reagents, and heated over a hot 

water bath for 30 min. Upon cooling, the bulk of the solvent was removed by rotary 

evaporation, followed by evaporation under a gentle stream of N2 gas for 30 min. All 

products were isolated in yields >100 %, indicating presence of impurities such as the by-

product acid and residual solvent, which was difficult to remove. In the case of mixtures 

containing matrix and [EMIM]OAc which produced AcOH by-product, the AcOH was 

removed by multiple azeotropic distillations with toluene (as described in Section 2.4.4). 

All products were transferred to vials, purged with N2 gas, tightly sealed and stored at 

room temperature. The products were used as MALDI matrices without further 

purification for preliminary screening of potential analytes (as described in Chapter 3). 

There was little emphasis placed on the purity of these matrices at this point, as the 

overall goal of this research is to simplify sample preparation as much as possible. If the 

matrices worked reasonably well while impure, it was hypothesized that a reaction 

mixture in ionic liquid media could then be mixed with an appropriate MALDI matrix 

acid to form the ILM in situ, and subsequently analyzed by MALDI-MS. 

(1): 1-butyl-3-methylimidazolium chloride/2,5-dihydroxybenzoic acid [BMIM]Cl-

DHB (mixture): Thick, clear brown liquid (104 %). 1H NMR (300 MHz, DMSO, 298 K) 

δ 9.29 (s, 1H), 7.81 (dd, J = 1.8 Hz, 1H), 7.74 (dd, J = 1.8 Hz, 1H), 7.19 (d, J = 2.9 Hz, 

1H), 6.99 (dd, J = 8.8, 3.1 Hz, 1H), 6.78 (d, J = 8.8 Hz, 1H), 4.18 (t, J = 7.2 Hz, 2H), 3.87 
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(s, 3H), 1.88 – 1.62 (m, 2H), 1.40 – 1.14 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H); 13C NMR (75 

MHz, DMSO, 298 K) δ 171.7, 154.0, 149.5, 136.6, 123.7, 123.6, 122.2, 117.6, 114.6, 

112.6, 48.4, 35.7, 31.3, 18.7, 13.2. 

 (2): 1-ethyl-3-methylimidazolium chloride/2,5-dihydroxybenzoic acid [EMIM]Cl-

DHB (mixture): Pale yellow crystalline solid (106 %). 1H NMR (300 MHz, DMSO, 298 

K) δ 9.31 (s, 1H), 7.83 (dd, J = 1.8 Hz, 1H), 7.74 (dd, J = 1.8 Hz, 1H), 7.19 (d, J = 3.0 Hz, 

1H), 7.00 (dd, J = 8.9, 3.1 Hz, 1H), 6.78 (d, J = 8.9 Hz, 1H), 4.21 (q, J = 7.3 Hz, 2H), 3.87 

(s, 3H), 1.42 (t, J = 7.3 Hz, 3H); 13C NMR (75 MHz, DMSO, 298 K) δ 171.7, 154.0, 

149.5, 136.3, 123.7, 123.5, 122.0, 117.6, 114.5, 112.6, 44.1, 35.7, 15.1. 

(3): 1-ethyl-3-methylimidazolium 2,5-dihydroxybenzoate ([EMIM][DHB]): Thick, 

brown liquid with acetic acid by-product (121 %), brown waxy solid (purified, 101 %).1H 

NMR (300 MHz, DMSO, 298 K) δ 13.79 (s, 1H), 9.20 (s, 1H), 7.78 (dd, J = 1.8 Hz, 1H), 

7.70 (dd, J = 1.8 Hz, 1H), 7.12 (d, J = 3.0 Hz, 1H), 6.59 (dd, J = 8.6, 3.2 Hz, 1H), 6.43 (d, 

J = 8.5 Hz, 1H), 4.19 (q, J = 7.3 Hz, 2H), 3.85 (d, J = 0.5 Hz, 3H), 1.41 (t, J = 7.3 Hz, 

3H); 13C NMR (75 MHz, DMSO, 298 K) δ 171.2, 155.0, 147.4, 136.3, 123.5, 121.9, 

120.8, 118.6, 115.7, 115.5, 44.1, 35.6, 15.1. Presence of AcOH confirmed by 1H NMR δ 

1.90 (s, 3H); 13C NMR δ 172.0, 21.2. 

(4): 1-butyl-3-methylimidazolium chloride/α-cyano-4-hydroxycinnamic acid 

[BMIM]Cl-CHCA (mixture): Large yellow crystals (106 %). 1H NMR (300 MHz, 

DMSO, 298 K) δ 10.99 (s, 1H), 9.25 (s, 1H), 8.18 (s, 1H), 7.97 (d, J = 8.8 Hz, 3H), 7.80 

(dd, J = 1.8 Hz, 1H), 7.73 (dd, J = 1.8 Hz, 1H), 6.99 (d, J = 8.8 Hz, 2H), 4.18 (t, J = 7.2 

Hz, 3H), 3.86 (s, 4H), 1.86 – 1.67 (m, 2H), 1.42 – 1.11 (m, 3H), 0.90 (t, J = 7.3 Hz, 4H); 
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13C NMR (75 MHz, DMSO, 298 K) δ 164.0, 162.7, 154.1, 136.6, 133.6, 123.6, 122.5, 

122.2, 116.9, 116.3, 98.2, 48.4, 35.7, 31.3, 18.8, 13.3. 

(5): 1-ethyl-3-methylimidazolium chloride/α-cyano-4-hydroxycinnamic acid 

[EMIM]Cl-CHCA (mixture): Orange/tan crystalline solid (103 %). 1H NMR (300 MHz, 

DMSO, 298 K) δ 10.82 (s, 1H), 9.16 (s, 1H), 8.18 (s, 1H), 7.97 (d, J = 8.8 Hz, 3H), 7.79 

(dd, J = 1.7 Hz, 1H), 7.70 (dd, J = 1.7 Hz, 1H), 6.96 (d, J = 8.8 Hz, 3H), 4.19 (q, J = 7.3 

Hz, 2H), 3.85 (s, 3H), 1.41 (t, J = 7.3 Hz, 3H); 13C NMR (75 MHz, DMSO, 298 K) δ 

162.8, 154.0, 136.3, 133.6, 123.5, 122.5, 122.0, 116.9, 116.4, 48.5, 44.1, 35.7, 15.1. 

 (6): 1-ethyl-3-methylimidazolium α-cyano-4-hydroxycinnamate [EMIM][CHCA]: 

Thick viscous yellow liquid (116 %). 1H NMR (300 MHz, DMSO, 298 K) δ 11.30 (s, 

1H), 9.24 (s, 1H), 7.82 (s, 1H), 7.79 (dd, J = 1.8 Hz, 1H), 7.76 (d, 2H), 7.71 (dd, J = 1.8 

Hz, 1H), 6.89 (d, 2H), 4.20 (q, J = 7.3 Hz, 2H), 3.85 (s, 3H), 1.41 (t, J = 7.3 Hz, 3H); 13C 

NMR (75 MHz, DMSO, 298 K) δ 163.4, 160.5, 147.3, 136.4, 131.5, 123.9, 123.6, 122.0, 

120.0, 115.9, 109.1, 44.1, 35.7, 15.1. Presence of AcOH confirmed by 1H NMR δ 1.91 (s, 

3H); 13C NMR δ 172.2, 21.5. 

2.4.3  Preparation of Sodium Salts of Matrices 

The sodium salts of DHB and CHCA were prepared as controls for the 

characterization of matrices in the presence of IL. These salts were prepared by mild 

neutralization of the acid with equimolar amounts of aqueous NaHCO3. Approximately 5 

mmol of NaHCO3 was dissolved in ~ 20 mL of water to form a clear, colorless solution. 

An equimolar amount of DHB or CHCA was weighed into a round bottom flask. 
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Aqueous NaHCO3 was added in small increments with swirling which liberated CO2 gas, 

and formed a clear, light brown solution in the case of DHB, and a clear yellow solution 

in the case of CHCA (pH 7 by universal pH indicator). The solutions were gently refluxed 

in an oil bath at ~130 °C for 30 min, followed by the removal of bulk water by simple 

distillation. Products were dried under a gentle stream of N2 for 30 min, yielding solid 

products. The resulting salts were suspended in 10 mL of cold ethyl acetate, sonicated, 

and suction filtered to remove excess starting material. Upon drying, NaDHB was a pale 

off-white powder and NaCHCA was a yellow powder, both obtained in quantitative yield 

with traces of water present. 

(7) Sodium 2,5-Dihydroxybenzoate (NaDHB): Beige solid (110 %). 1H NMR (300 

MHz, DMSO, 298 K): δ 14.93 (s, 1 H), 8.43 (s, 1H), 7.13 (d, J = 3.1 Hz, 1H), 6.59 (dd, J 

= 8.6, 3.2 Hz, 1H), 6.44 (d, J = 8.6 Hz, 1H); 13C NMR (75 MHz, DMSO-d6, 298 K): δ 

171.69, 154.90, 147.49, 120.62, 118.69, 115.72, 115.52.  

(8) Sodium α-cyano-4-hydroxycinnamate (NaCHCA): Bright yellow solid (102 %). 1H 

NMR (300 MHz, DMSO, 298 K): δ 7.81 (s, 1H), 7.75 (d, 2H), 6.84 (d, 2H); 13C NMR 

(75 MHz, DMSO-d6, 298 K): δ 164.10, 162.00, 147.47, 131.58, 123.38, 120.11, 116.09, 

108.35. 

2.4.4 Purification of Acetic Acid-Containing Products 

As previously mentioned, the ILMs in this study were used without further 

purification as MALDI matrices. It is evident, however, by the high yields and NMR data 

that the ILMs contain some impurities. Most notably, evidence for acetic acid was seen in 



 

61 
 

the [EMIM]-containing ILMs that were synthesized using [EMIM]OAc. To assess 

whether the presence of acetic acid has a considerable effect on the MALDI analysis (i.e. 

matrix interference) particularly of [EMIM][DHB], several attempts were made to purify 

the ILM.  

Since these synthesized ILMs are water-miscible (at least the ILM-by-product 

mixture was water-miscible) it was expected that purification would be difficult. The 

apparent solubilities of these ILMs in various organic solvents (at room temperature) 

were screened to find potential solvents for washing and/or recrystallization. Several 

attempts were made to purify the acetic acid-containing [EMIM][DHB] by washing it 

with various immiscible organic solvents, but to no avail. Washing with water, and 

subsequent distillation and rotary evaporation did lead to acidic distillate, but very little 

acetic acid was removed according to 1H NMR analysis. The difficulty in removing the 

acetic acid is due to its high boiling point (118.5 °C). Use of a Schlenk link (for 5 h) also 

did not remove significant amounts of the acid. Finally, a modified azeotropic distillation 

using toluene (boiling point: 110.6 °C) was employed. A 78% (by weight) mixture of 

toluene and acetic acid forms an azeotrope with a boiling point of 105 °C, which 

successfully removed 93 % of the acetic acid after seven consecutive washings and 

distillations. This method of washing and removing the solvent/acetic acid was also 

attempted using rotary evaporation, but this procedure only removed very small amounts 

of acid. This is due to the fact that the azeotrope of toluene/acetic acid is pressure-

sensitive, so simple distillation was employed for all subsequent experiments. Although 

the use of toluene in purification is undesirable, the acidic distillate can be extracted with 
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water to remove the acid, and recycled throughout the process. Upon removal of the bulk 

of the acetic acid, [EMIM][DHB] solidified to form a light brown, waxy solid.  

2.5  Results and Discussion 

2.5.1  Ionic Liquid-Matrix Crystals 

 Upon preparation of the IL-matrix mixtures, it was noted that the chloride-

containing ILs and each matrix form block crystals from saturated solutions of the 

starting materials. Upon separation and dissolution in DMSO-d6, it was determined that 

each type of crystal contained a stoichiometric 1:1 ratio of IL:acid. Although 

deprotonation of the matrix acid is not evident, it seems as though weaker interactions 

may be responsible for such crystallization. Imidazole and its derivatives have become 

popular in crystal engineering, for the formation of hydrogen-bonded synthons (co-

crystals or molecular salts) for a variety of applications such as organic molecular 

switches and pharmaceuticals.15,16 Such interactions of heterocyclic compounds such as 

imidazole,17 theophylline,18 and caffeine19 are often paired with organic carboxylic acids, 

as the pair can be stabilized through a donor-acceptor relationship via hydrogen-bonding 

(i.e. N•••H-O). Proton transfer between imidazole and acid can also lead to N-H•••O 

interactions with the carboxylate anion. Through extensive molecular arrangement, the 

solvent of crystallization can also be incorporated into the structure (specifically those 

solvents capable of hydrogen-bonding). The inclusion of protic solvents such as H2O and 

MeOH can also serve as bridges for hydrogen-bonds.20 In cases where the imidazolium IL 

of interest is disubstituted, the C(2)-H proton (as well as C(4,5)-H protons) are capable of 
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hydrogen-bonding. Inductive withdrawal of electrons by neighboring nitrogen atoms, 

allows the C(2)-H to act as an H donor with appreciable acidity.17  

Previous studies indicate that this proton can hydrogen-bond to carboxylate 

oxygen, carbonyl oxygen, as well as hydroxyl groups.16 Given the structures of the acids 

used in this study, there is ample opportunity to form stable interactions through 

hydrogen-bonding. Other potential interactions of imidazolium cations and aromatic acids 

include π-π stacking and van der Waals interactions. 

The formation of an ionic-neutral co-crystal should be evident by NMR and IR 

spectroscopies.16 However, NMR studies in this work were accomplished in solution, 

whereby the introduction of hydrogen-bonding solvents can lead to the formation of new 

hydrogen bonds and the weakening of existing hydrogen bonds between IL cation and 

anion. IR spectroscopy (in solid phase), however, may offer evidence of co-crystal 

formation. Since this work mainly focuses on the mass spectrometric applications of these 

materials, little focus was placed on solid characterization. Future work could include 

more in depth characterization of these compounds, including confirmation of co-crystal 

formation (by X-ray powder diffraction) and molecular structure analysis by single 

crystal X-ray crystallography. Such techniques could offer insight into the interactions 

between the IL moiety and the carboxylic acid, and the formation of crystalline materials. 
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2.5.2  Characterization by NMR 

 The 1H and 13C NMR spectra of both parent matrix acids DHB and CHCA, as 

well as the sodium salts, NaDHB and NaCHCA were acquired (Figures 2-4 (a), (b) and 2-

5 (a), (b)).1 The peaks were assigned to the appropriate protons (or carbon atoms) 

according to relative chemical shift, integrated area and splitting patterns (See Figure 2-3 

for proton and carbon assignments, noting that matrix protons are assigned with prime 

(′)). There are notable differences between each pair of compounds that are a result of 

deprotonation of the acidic -COOH moiety. Specifically, the chemical shifts of the 

aromatic protons were distinct between the parent acid and analogous sodium salt.   

Figure 2-3: Proton and Carbon Assignment of Imidazolium Cation and Matrix Acids 

The 1H NMR spectra of DHB and NaDHB can easily be differentiated by 

examination of the aromatic proton region (6.5 – 7.5 ppm). In parent acid form, the 

aromatic region clearly shows three peaks, corresponding to each of the three aromatic 

protons. The peak at 7.16 ppm corresponds to He′, and appears as a doublet with relatively 

small J-coupling value, due to ortho-coupling to Hc′. Similarly, Hc′ (6.97 ppm) appears as 

a doublet of doublets due to neighboring Hb′ and ortho-coupling to Hd′. Finally, another 

                                                 
1 Note that 1H and 13C NMR spectra for all starting materials and ILMs can be found in Appendices II and 

III. 
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doublet appears at 6.79 ppm corresponding to Hb′. The hydroxyl protons (Hd′ and Ha′) 

appear at 9.15 ppm and 10.82 ppm, respectively. 

 

Figure 2-4: 1H NMR Spectra of DHB Aromatic Proton Chemical Shifts: (a) DHB; (b) 

NaDHB; (c) [BMIM]Cl/DHB; (d) [EMIM]Cl/DHB; (e) [EMIM]OAc/DHB 
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Figure 2-5: 1H NMR Spectra of CHCA Aromatic Proton Chemical Shifts: (a) CHCA; (b) 

NaCHCA; (c) [BMIM]Cl/CHCA; (d) [EMIM]Cl/CHCA; (e) [EMIM]OAc/CHCA 
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 Upon deprotonation of the acid to yield the sodium salt, NaDHB, the most 

obvious differences in the 1H NMR spectrum are the chemical shifts of the aromatic 

protons. All three aromatic protons shift upfield (are more shielded) upon deprotonation. 

This can be explained by a combination of inductive effects from the hydroxyl and 

carboxylate groups. Other notable differences include the acidic carboxylic acid proton of 

DHB (Hf′, 13.4 ppm, broad singlet), which is no longer visible in the spectrum of 

NaDHB, and noticeable shifts of hydroxyl protons (Hd′ and Ha′) is evident. The upfield 

shift from 9.15 ppm to 8.43 ppm of Ha′ is the most prominent of these differences. Upon 

deprotonation, the electron withdrawing carboxylic acid group (-COOH) is effectively 

removed. Carboxylic acid groups (-COOH) are electron-withdrawing groups by 

resonance. This means that electrons in the aromatic ring are pulled towards the acid 

group, leaving partially positive charges on the ortho- and para- positions. Therefore, any 

protons residing at these carbon atoms are less shielded by magnetic field, and therefore 

will exhibit a downfield shift in NMR spectra. Unlike the -COOH group, -COO- does not 

have appreciable resonance throughout the ring, due to the stabilization of electron 

density across two electronegative oxygen atoms. This delocalization of electrons 

effectively removes the electron-withdrawing by resonance effect. The -COO- group is 

however, a moderate electron-donator by induction. The donation of electrons into the 

ring produce small partially negative charges on the ortho- and para- positions. A 

combination of the resonance stabilized delocalization of electrons throughout the 

aromatic ring, along with existing inductive effects and electron contribution from -OH 

substituents can explain these differences.  
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 In the case of CHCA and NaCHCA (Figure 2-5 (a) and (b)), a similar observation 

can be made regarding the aromatic protons. The aromatic protons of CHCA (Hc′ and Hb′) 

appear at 7.98 ppm and 6.95 ppm, respectively. Deprotonation causes these peaks to shift 

to 7.75 ppm and 6.84 ppm. Again, this is a result of the resonance stabilization of the 

carboxylate ion. The formation of the electron donating carboxylate group inductively 

pushes electron density into the conjugated system. This is evident in the upfield shifts of 

aromatic protons Hc′ and Hb′, as well as Hd′, due to increased concentration of electron 

density due to the absence of resonance withdrawal by -COOH. Furthermore, the acidic 

carboxylic acid proton is no longer evident in NaCHCA, as expected. These findings are 

consistent with the 13C NMR data, which shows a significant shielding effect of C5 (from 

155 to 147.5 ppm) and a deshielding effect of C6 (from 98.5 to 108 ppm) upon 

deprotonation. 

 The distinct differences in NMR spectra between the protonated and deprotonated 

matrices can be used to indicate whether or not a reaction between the IL and matrix 

occurs. The deprotonation of the matrix implies the formation of a new ion pair between 

the IL cation and the anion of the matrix, resulting in a new ionic liquid matrix. 

Examination of the aromatic region of the NMR spectra of each proposed product 

indicates that not all of the mixtures result in the formation of a new ILM. Specifically, 

the mixtures of chloride-containing ILs ([BMIM]Cl and [EMIM]Cl) and each matrix 

exhibit NMR spectra that are most similar to the parent matrix (Figure 2-4 (a), (c), (d) and 

Figure 2-5 (a), (c), (d)). The mixtures of acetate-containing IL ([EMIM]OAc), however, 

are strikingly similar to the corresponding sodium salt of the matrix (i.e. the deprotonated 
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matrix) as shown in Figure 2-4 (b), (d) and Figure 2-5 (b), (d). This suggests that only two 

of the proposed products are true ILMs resulting from the reaction of each corresponding 

matrix with [EMIM]OAc. Further evidence of this includes the shift of methyl protons of 

the acetate ion downfield upon formation of acetic acid, the by-product of the metathesis 

reaction (peak at ~1.9 ppm as shown in Figures A2-10 and A2-13 in Appendix II). Note 

that in both sets of spectra, the apparent triplets (actually doublet of doublets) at ~7.7 and 

7.8 ppm arise from the imidazolium cation (Hb and Hc) in Figures 2-4 and 2-5 (c)-(e). All 

other peaks shown belong to the corresponding matrix.  

Table 2-1: Chemical Shift of Imidazolium C(2)-H Proton in ILs and IL-Matrix Mixtures 

Species/Mixture Chemical Shift (ppm) of Imidazolium Proton  

C(2)-H (Ha) C(4,5)-H (Hb, Hc) 

[BMIM]Cl 9.42 7.85, 7.78 

[EMIM]Cl 9.45  7.87, 7.77 

[EMIM]OAc 9.86 7.84, 7.75 

[BMIM]Cl/DHB 9.29 7.81, 7.74 

[EMIM]Cl/DHB 9.31 7.83, 7.74 

[EMIM]OAc/DHB (deprotonated) 9.20 7.78, 7.70 

[BMIM]Cl/CHCA 9.25 7.80, 7.73 

[EMIM]Cl/CHCA 9.16 7.79, 7.70 

[EMIM]OAc/CHCA 

(deprotonated) 

9.24 7.79, 7.71 
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Also notable are the chemical shifts of the acidic C(2)-H proton of the 

imidazolium cation (Ha) (refer to Table 2-1). In all cases, the mixture of matrix and IL 

results in a chemical shift of this proton. In the native ILs, the chemical shift of the C(2)-

H proton is more upfield in the case of chloride-containing ILs than the acetate-

containing IL. In the literature, the chemical shift of this acidic proton has been correlated 

with the hydrogen-bond strength between cation and anion.21 Interaction of this proton 

with a stronger hydrogen-bond acceptor leads to deshielding of this proton and a 

subsequent downfield shift, as is observed with in the presence of the acetate ion in 

[EMIM]OAc (as compared to [EMIM]Cl). This is consistent with literature results, 

whereby the hydrogen-bond between acetate and imidazolium cations was shown to be 

significantly stronger than that of chloride.21  

In this case, the presence of another compound (i.e. the matrix), regardless of the 

formation of a new ion-pair results in a shift of this proton. Therefore, for those mixtures 

that do not react (i.e. chloride-containing ILs), the C(2)-H proton shift was used as a 

standard. For [BMIM]Cl and [EMIM]Cl, the change in chemical shift of this proton from 

the pure IL to when DHB is added is 0.13 ppm and 0.14 ppm (upfield), respectively. The 

mixture of [EMIM]OAc and DHB, however, the difference in chemical shift is 0.66 ppm 

(shifted upfield) from [EMIM]OAc and ~ 0.1 ppm (shifted upfield) as compared to 

chloride-containing mixtures of DHB. This implies that the interaction between the 

imidazolium cation and the DHB anion is weaker than with the acetate ion. This is likely 

a result of steric effects, as DHB is significantly larger and bulkier than the acetate anion. 
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The relatively large chemical shift of this proton also implies that the interaction between 

the acetate anion and the imidazolium cation has been altered. 

Similarly, the CHCA-containing mixtures show a larger C(2)-H chemical shift 

(0.62 ppm) between the [EMIM]OAc and the [EMIM]OAc-CHCA mixture, than that of 

either of the chloride-containing mixtures. Interestingly, the C(2)-H chemical shift of the 

imidazolium cation in the presence of either DHB or CHCA does not show a significant 

difference between the parent and deprotonated matrix (i.e. mixtures of [EMIM]Cl-matrix 

and [EMIM]OAc-matrix). In both cases, however, the shift is less than the observed shift 

for both acetate and chloride ions, indicating that the hydrogen-bond may be weakened. 

Furthermore, the presence of CHCA in both chloride-containing ILs results in a slightly 

more upfield shift of the acidic proton than DHB. However, it is important to note that 

since the C(2)-H proton is capable of hydrogen bonding, it may therefore shift due to 

changes in solvent polarity, as well as due to the presence of water (which is a common 

impurity in DMSO-d6), which may solvate and/or stabilize the cation. Therefore, it is not 

conclusive that the presence of the matrix is directly affecting the chemical environment 

of the acidic imidazolium proton. 

 Overall, the chemical shifts of the aromatic protons of the matrix component of 

these IL-matrix mixtures are the best indicator of the formation of a new ion-pair. Of the 

mixtures that were studied in this work, only those containing the [EMIM]OAc IL reacted 

and formed a new ILM, which is evident in the similarities between the matrix 

component of the mixture and the sodium salts of the matrices. Therefore, it is 

appropriate to refer to those matrices that react as new ion pairs. Using IL nomenclature, 
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these ILMs will be further referred to as [EMIM][DHB] and [EMIM][CHCA], whereby 

the matrix component in parentheses actually refers to the conjugate base of the matrix. 

2.5.3  Characterization by UV-Vis Spectroscopy 

Deprotonation of the parent matrix can alternatively be determined using UV-Vis 

spectroscopy. Upon deprotonation of the carboxylic acid matrix, the extent of conjugation 

of the molecule is disrupted, due to the resonance stabilization of the -COO- moiety. In 

polar (aprotic) solvents, this effect can be observed through a significant hypsochromic 

shift (decreased λmax). The delocalization of electrons and resonance stabilization of the 

carboxylate group leads to a more stable ground state than the parent acid, disrupting the 

extent of conjugation throughout the molecule. This leads to an apparent hypsochromic 

(blue) shift of UV bands. (Conjugation of aromatic acids generally lead to red shifts). 

This apparent blue shift of carboxylate ions can therefore be used as an indicator of 

deprotonation. Again, as a control, NaDHB and NaCHCA were employed as standards 

for the carboxylate anion. It is important to note, however, that the synthesized matrices 

have not been purified before analysis. This can explain the slight variations in 

absorbance intensity in all matrices as compared to the corresponding parent matrix, as 

the molar fraction of matrix may be artificially high or low in solid/liquid ILMs and IL-

matrix mixtures. These differences are more readily evident in the UV spectra of CHCA 

matrices, which have higher molar absorptivity than DHB matrices. Thus small changes 

in concentration result in apparently large discrepancies between absorbance intensities.
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Figure 2-6: UV-Vis Spectra of DHB and DHB-Containing ILMs in ACN (75 μM)

Figure 2-7: UV-Vis Spectra of CHCA and CHCA-Containing ILMs in ACN (25 μM) 
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As shown in Figures 2-6 and 2-7, there are significant hypsochromic shifts from 

the parent matrix acid to the analogous sodium carboxylate salt, (i.e. from DHB to 

NaDHB and CHCA to NaCHCA), as well as a slight hypochromic effect, evident through 

the decreased intensity of absorbance at the same molar concentration. This decrease in 

peak absorbance is indicative of the stabilization of non-bonding electrons, which occurs 

by delocalization of electrons across the carboxylate group. Also evident in the UV-vis 

spectra are the loss of fine structure of DHB, and now visible fine structure associated 

with CHCA upon deprotonation. Analysis of the acquired spectra show that the only IL-

matrix mixture to exhibit similar characteristics to the sodium salt matrices (NaDHB and 

NaCHCA) are [EMIM][DHB] and [EMIM][CHCA], which result when the matrix is 

combined with [EMIM]OAc as the cation-donor. These findings are consistent with the 

NMR data, and indicate that of the proposed combinations of matrix and IL, only two true 

ILMs are formed. 

2.5.4  Colored Solutions of Matrices and [EMIM]Cl 

Initially, characterization of the matrix acids and corresponding solutions with ILs 

was carried out using acetonitrile as the solvent. When the solvent was switched to 

methanol, however, mixtures of [EMIM]Cl and the matrices resulted in unexpected color 

changes that were not observed in acetonitrile solutions. For example, when dissolved in 

methanol, [EMIM]Cl forms a light yellow/green solution, while DHB forms a clear, beige 

solution. When these are combined however, the resulting solution gives rise to a deep 

blue color. Similarly, methanolic solutions of [EMIM]Cl and NaDHB unexpectedly turn 

dark purple. Interestingly, solutions of [EMIM]Cl and CHCA (both clear, yellow 



 

75 
 

solutions) form a bright orange solution, but [EMIM]Cl and NaCHCA mixtures do not 

result in any unpredicted color change. To investigate these color changes, experiments 

were carried out using UV-Vis. 

Despite the intense color changes, analysis by UV-Vis reveal that the absorbance 

band for each corresponding matrix-IL mixture is only present at relatively high 

concentrations. Typical concentrations of matrices in this work were 25 – 100 μM, 

whereas the observed absorbance peaks in the visible region of [EMIM]Cl/DHB and 

[EMIM]Cl/NaDHB were 200 mM and 25 mM respectively (Figure 2-8), whereby 

corresponding matrix peaks are saturated (not shown). This indicates that the band is 

relatively weak (the chromophore has a low molar extinction value). Notably, methanolic 

solutions of [EMIM]Cl with DHB and NaDHB both result in well-defined bands, which 

are not present in either of the individual components. 

As can be seen in Figure 2-8, the solution of [EMIM]Cl and DHB has a λmax value 

of ~ 616 nm and that of [EMIM]Cl and NaDHB has a λmax value of ~ 540 nm, 

corresponding to the complementary colors blue and purple, respectively. Furthermore, as 

the concentration of [EMIM]Cl increases, the intensity of each corresponding peak 

increases (Figure 2.9).  
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Figure 2-8: UV-Vis Spectra of Colored Complexes of [EMIM]Cl and DHB Matrices (in 

MeOH) 

 

Figure 2-9: UV-Vis Spectra of Varying Ratios of [EMIM]Cl:DHB (100 mM DHB in 

MeOH) 
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Interestingly, the intensity of the peak is dependent on the species of the matrix 

present. The data shown in Figure 2-9 displays the spectra of each matrix with varying 

amounts of [EMIM]Cl. The concentration of DHB and NaDHB (~ 6 mM) is held 

constant, and though the peaks are relatively similar in intensity, there is eight times as 

much [EMIM]Cl in the DHB solution (~ 200 mM) than in the NaDHB solution (~25 

mM). At such high concentrations, band broadening, light scattering and possible 

dimerization can occur in solution, which limit true quantitation of such solutions. 

Nonetheless, the solution of [EMIM]Cl and NaDHB produces a much more intense band 

in the visible region than that of [EMIM]Cl and DHB. 

When the IL counterpart is replaced by [BMIM]Cl or [EMIM]OAc, no 

unexpected color changes are observed, so it appears that [EMIM]Cl is a major 

contributor to the apparent color change. Furthermore, even at high concentrations of 

[EMIM]Cl, no absorbance was observed between 500 – 800 nm. This suggests that the 

interaction between the IL and the matrix is responsible for a change in electronic 

properties. To confirm this, the same experiment was carried out using CHCA. 

Interestingly, [EMIM]Cl and CHCA (both clear yellow solutions) form a bright orange 

solution in methanol but [EMIM]Cl and NaCHCA solutions do not exhibit an apparent 

color change, but form a cloudy light brown suspension. The color change of [EMIM]Cl 

and CHCA, does not show obvious absorbance bands in the visible region of the 

spectrum, however (Figure 2-10).  
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Figure 2-10: UV-Vis Spectra of [EMIM]Cl and CHCA in MeOH 
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 The solvent in these cases is obviously a crucial parameter, as the color is 

dependent on the solvent properties. No color change was observed for IL-matrix 

mixtures in acetonitrile, or DMSO, but it was readily apparent in solution of methanol or 

water. This suggests that polar protic solvents are involved in the formation (or 

stabilization) of the chromophore. Solvents have a significant influence on the electronic 

properties of organic compounds. Specifically, hydrogen-bond formation in protic, polar 

solvents (e.g. methanol or water) can occur between the solvent and solute(s) and 

stabilize or destabilize the ground state or excited state molecular orbitals. This, however, 

typically results in shifts of existing absorbance peaks, rather than the formation of new 

absorbance bands.  

Ratios of IL to each matrix (or salt) were varied from 1:2 to 1:1 to 2:1 in 

deuterated methanol and analyzed by 1H NMR to examine whether or not differences in 

the chemical environments of imidazolium protons exist based on the relative amount of 

matrix. Very subtle differences were noticed, however. Slight shifts in the C(2)-H peak 

were noted, however the shifts seem to correlate with [EMIM]Cl concentration, rather 

than with the other species in solution. As the concentration of [EMIM]Cl increases in 

each solution from 50 mM to 100 mM to 200 mM, the acidic imidazolium proton shifts 

more downfield (by approximately 0.1 ppm increments). This is likely due to increased 

polarity of the solution and therefore, more significant hydrogen-bonding (deshielding). 

In each of the [EMIM]Cl:matrix mixtures that resulted in color change, there were no 

observed differences between the 1H NMR of the mixtures and the corresponding 

individual components in the solvents tested (methanol-d4 and DMSO-d6). 
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 Finally, electron paramagnetic resonance (EPR) experiments were attempted, to 

identify possible unpaired electron species. Unfortunately, after several attempts, no 

peaks were observed and therefore no spectra were collected. It appears that the colored 

species are not likely the result of radical species in solution.  

 Unfortunately, the cause of the color change of solutions of [EMIM]Cl and 

matrices was not determined. Spectroscopic evidence does not indicate any significant 

molecular changes in polar, protic solvents with the exception of the color change. It is 

possible that the color arises due to the presence of an impurity in the [EMIM]Cl starting 

material. Imidazolium ILs are most often colorless, but are subject to colored impurities 

throughout commercial production. In particular, the [EMIM]Cl used in this study was a 

green solid, however, other manufacturers supply the same IL as a brown solid. 

Furthermore, the relatively low absorptivity of the newly formed absorbance bands 

suggests that the species giving rise to the color may be quite dilute, compared to the 

matrix (assuming similar electronic transitions give rise to the bands), which may explain 

why impurities are not detected by 1H NMR (i.e. they may be below the detection limit). 

Further characterization of these solutions would be required to conclusively determine 

whether or not an impurity is the cause of these observations. 

2.5.5  Characterization by IR Spectroscopy 

IR spectroscopy is another useful technique to obtain structural information about 

molecules. This technique can be readily used to identify deprotonation of a carboxylic 

acid by examining differences in C=O frequencies. Furthermore, IR studies of 

imidazolium-based ILs can yield information about the interactions between cation and 
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anion through hydrogen-bonding. Specifically, the stretching frequency of C(2)-H (the 

acidic site between ring nitrogen atoms) can offer insight into the strength of the 

hydrogen-bond between cation and anion (C(2)-H ••• anion).21 

The IR spectra were obtained by ATR FT-IR spectroscopy of the products in the 

solid state. IR spectra of parent acid matrices DHB and CHCA, along with the sodium 

salts of the two matrices were again used as standards for deprotonation.2 The IR spectra 

are shown (staggered) in Figures 2-11 and 2-12. Identifiable peaks of DHB and NaDHB 

agree well with previously published literature.22  

Deprotonation of an aromatic acid can be identified in IR spectra by various 

characteristic vibrational stretching and bending modes. These include the shift of the 

carbonyl stretching frequency from -COOH to -COO-, the disappearance of -OH (-

COOH) in plane bending mode, and the appearance of asymmetric bending of -COO-, 

amongst others.22 Upon addition of the IL-counterpart in these studies, however, the IR 

spectra can quickly become convoluted with many peaks corresponding to both matrix 

acid and imidazolium cation. Therefore, deprotonation was determined by the frequency 

of the carbonyl stretch.  

 

                                                 
2 FT-IR spectra of all starting materials and ILMs can be found in Appendix IV 
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Figure 2-11: IR Spectra of DHB and DHB-Containing ILMs 
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Figure 2-12: IR Spectra of CHCA and CHCA-Containing ILMs 
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The carbonyl C=O stretch of aromatic carboxylic acids can generally be found 

between 1690 – 1760 cm-1 (as labelled in Figures 2-11 and 2-12). Visual inspection of the 

acquired spectra of both DHB and CHCA reveal C=O stretches of 1662 and 1670 cm-1
, 

respectively. Upon deprotonation of the acid, and therefore delocalization of the non-

bonding electrons across the -COO- group, the C=O stretch lessens in energy (generally  

< 1600 cm-1). However, it should be noted that for those ILs that were produced from 

[EMIM]OAc (i.e. [EMIM][DHB] and [EMIM][CHCA]), the acetate anion will also 

produce a signal in the same region as the expected carboxylate ion of the matrix acid. 

Therefore, the formation of the IL can be inferred from the absence of the carboxylic acid 

C=O(COOH) stretch (> 1600 cm-1), but not from the presence of the -COO- carbonyl stretch, 

as this could refer to unreacted acetate. Furthermore, if these ILs are analyzed before 

purification, the presence of acetic acid C=O (which appears at a slightly higher 

frequency than aromatic carboxylic acids) can indicate that a reaction has occurred. For 

instance, the IR spectra of [EMIM][DHB] and [EMIM][CHCA] both show peaks at ~ 

1709 cm-1, corresponding to the carbonyl stretch of acetic acid.  

Due to the various stretching and bending modes of these compounds, as a result 

of their conjugated systems, it is difficult to assign the peaks with great certainty. It is 

evident, however, in all cases that the energy of the C=O stretch is changing upon 

deprotonation. It is important to note that peak identification was based on literature, as 

well as by comparison with the starting materials. [EMIM]Cl-DHB, for example, appears 

to have a significant C=O stretch at 1572 cm-1 which suggests deprotonation of the acid. 
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However, this peak appears in the IR spectrum of pure [EMIM]Cl. Therefore, it is 

important to carefully analyze the spectra. 

As expected, the ILMs [EMIM][DHB] and [EMIM][CHCA] have C=O stretches 

similar to that of NaDHB and NaCHCA, respectively, and more notably, do not show 

aromatic C=O stretches above 1600 cm-1 (Table 2-2). The IL-matrix mixtures also have 

expected carbonyl stretches, similar to that of the parent acid. One anomaly that should be 

noted, however, was that [BMIM]Cl-CHCA had a slightly higher carbonyl stretching 

frequency, the reason for which is unclear. 

Table 2-2: Carbonyl Stretching Frequency of ILMs and Standards 

Compound ν C=O (cm-1) 

DHB 1662 

NaDHB 1592 

[BMIM]Cl-DHB 1666 

[EMIM]Cl-DHB 1639 

[EMIM][DHB] 1568 

CHCA 1670 

NaCHCA 1564 

[BMIM]Cl-CHCA 1721 

[EMIM]Cl-CHCA 1686 

[EMIM][CHCA] 1566 

[EMIM]OAc 1562 
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The region between 3100 – 3200 cm-1 of [EMIM]-containing ILs (Figure 2-13) 

can be attributed to the C-H stretching modes involving ring C atoms.23 The stretches of 

C(4,5)-H are expected at ~3150 cm-1 and the C(2)-H stretch is expected at ~ 3105 cm-1.24 

Specifically, the frequency of the C(2)-H (acidic) stretch has been correlated with 

hydrogen-bond strength to the anion. Red-shifted peaks suggest stronger hydrogen-

bonding interactions. Therefore this region of the spectra of ILMs [EMIM][DHB] and 

[EMIM][CHCA] was analyzed. 

 

             

Figure 2-13: IR Characterization of Imidazolium C(2)-H Stretch in Novel [EMIM]+-

Containing ILMs 
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The C(4,5)-H stretches are evident in each species between 3136 and 3150 cm-1. 

Both [EMIM]+-containing ILMs have slightly higher frequency peaks. Poor resolution of 

the obtained IR spectra, as well as likely interference from the presence of water, 

however, limits the ability to assign the C(2)-H peak with certainty. Removal of water, 

and further studies to deconvolute these spectra would be required to make accurate 

conclusions. The C(4,5)-H peaks in each IL are much more evident, however, these peaks 

have not been correlated with specific cation-anion interactions. 

Figure 2-14: Schematic Representation of Formation of ILMs and IL-Matrix Mixtures 

In general, ILMs refer to ion pairs of a cation and an anion of a traditional 

MALDI matrix. In this case, however, only two “true” ILMs were prepared in situ 

resulting from the reaction of each matrix acid with [EMIM]OAc. In the case of chloride-

containing ionic liquids, [BMIM]Cl and [EMIM]Cl, a new ion pair was not formed with 

either of the tested matrices, and the resulting solution consisted of dissolved ionic liquid 

and parent acid. These observations are as expected, since these metathesis reactions are 
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primarily driven by proton transfer (as the formation of a gas, water or precipitate are not 

likely). It follows that the weaker acid (and the more stable conjugate base) will be 

favored. In the case of chloride-containing ILs, the corresponding acid upon formation of 

a new ion pair would be HCl (pKa -8), which is a much stronger acid than both DHB and 

CHCA (pKa 2.95 and 1.17, respectively). Therefore, a mixture of parent acid and IL 

remains in solution. However, acetic acid (pKa 4.75) is preferentially formed in solutions 

of [EMIM]OAc and matrix acid, as the conjugate bases of DHB and CHCA are 

significantly more stabilized by resonance than the acetate ion. Therefore, the “true” 

ILMs are herein denoted by conventional IL nomenclature: [EMIM][DHB] (3) and 

[EMIM][CHCA] (6), and those co-existing IL-matrix mixtures denoted as [BMIM]Cl-

DHB, [BMIM]Cl-CHCA, etc. to differentiate.

Figure 2-15: Structures of IL-Matrix Mixtures and Novel ILMs (shown in bold) 
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In conclusion, the evidence from the NMR, UV-vis and IR data suggest that the 

attempted metathesis reactions using [BMIM]Cl and [EMIM]Cl did not go to completion, 

and that the isolated products are most similar to their respective parent acids. The 

strength of the by-product acid is the factor that is hindering these reactions. [EMIM]OAc 

mixtures of each matrix, however, do show evidence of the formation of new ion-pair and 

therefore are true ILMs. Although methods exist to synthesize ILMs using chloride-

containing IL starting materials, the formation of IL-matrix mixtures and analogous ILMs 

allows for comparison between the two with respect to their ability to ionize analytes of 

interest by MALDI-MS, which will be examined in following chapters. 
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Chapter 3: Optimization of IL-Containing Matrices for the 

Qualitative Analysis of Bio-Derived Platform Chemicals 

3.1  Introduction 

Biomass energy is an attractive source of alternative energy for reducing our 

current reliance on non-renewable fossil fuels. Biomass can serve as a renewable 

feedstock for the generation of liquid fuels and chemicals to supplement fossil fuel use, 

and to supply future global demands.1 Furthermore, the introduction of alternative ionic 

liquid (IL) solvents has allowed significant advances in the extraction and production of 

valuable chemicals from biomass.2,3  

ILs are non-molecular salts, generally consisting of a bulky organic cation with an 

organic or inorganic anion. ILs have attractive properties such as low/negligible vapor 

pressures, great dissolution abilities, and are both tuneable and recyclable.4,5 Specifically, 

1,3-dialkylimidazolium ILs containing anions of appreciable hydrogen-bond basicities 

have been employed for the dissolution of large bio-derived carbohydrates.3,6,7 Further 

processing of carbohydrates in these ILs yield energy-dense sugars, which can then be 

transformed into other valuable platform chemicals. For example, the depolymerization of 

cellulose to yield glucose, can be followed by catalytic transformation of glucose to 5-

hydroxymethylfurfural (HMF) in ILs.8-10 HMF is a versatile precursor for the 

development of fuels and plastics, or can be further transformed to yield other valuable 

compounds. 
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Currently, few analytical methods exist for the direct analysis of bio-derived 

compounds in IL media.11 Those that do exist are primarily chromatographic and require 

tedious separation of the analytes from the IL media prior to analysis. Rather than 

separating the analyte from the IL, a method of analysis based on matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI-MS) has been proposed, allowing the 

detection of analytes in IL reaction mixtures with the addition of a common MALDI 

matrix. 

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was 

originally developed in the 1980s as an effective tool for the analysis of large non-volatile 

compounds such as proteins, carbohydrates, and polymers.12,13 Since its introduction, 

MALDI-MS has become a useful tool for the analysis of small molecule classes as well. 

As a soft ionization technique, with the ability to rapidly analyze samples, MALDI-MS is 

a desirable tool for analytical chemistry, biology, and forensics.  

MALDI affords ionization through laser ablation of a substrate containing co-

crystallized analyte and matrix. Subsequent vaporization of matrix and analyte molecules 

result in ionization of analytes through a variety of proposed mechanisms such as charge 

transfer, photoionization, or through desorption of preformed ions.14 The matrix also 

serves to embed and protect the analyte from incoming laser irradiation. A wide range of 

compounds have been employed as MALDI matrices which vary depending on the 

application. Common MALDI matrices are conjugated organic acids such as derivatives 

of cinnamic acids and substituted benzoic acids, which absorb UV energy at the energy of 

common MALDI lasers.15 The choice of matrix in a MALDI experiment is crucial, as the 



 

94 
 

matrix plays an important role in promoting ionization of the target analytes.16,17 The 

choice of matrix can have significant effects on the ability to obtain analyte signals, as 

some matrices are well-suited to particular analyte classes, and perform poorly for others. 

Further care must be taken when analyzing small molecule classes (< 500 Da), as 

interferences from matrix adduct peaks and fragments may mask analyte signals, and 

cause deterioration of the quality of acquired mass spectra.  

 Substituted benzoic acids are popular matrices for carbohydrate and sugar 

analyses, as they absorb energy at the wavelength of common MALDI lasers (as is 

required by any MALDI matrix), and promote cation or alkali metal adduct formation, 

which is often required for analyte detection. In fact, DHB is often the most popular 

matrix for carbohydrate analysis.17 Other organic acids such as CHCA have also been 

employed, but suffer from increased matrix interference in the low mass region. Due to 

their popularity in MALDI analyses, DHB and CHCA were chosen as model matrices for 

designing new matrices for carbohydrate analysis in ILs. Quantitative applications of 

MALDI-MS, however, are limited by the commonly used solid MALDI matrices, due to 

non-uniform crystallization which causes poor shot-to-shot and spot-to-spot 

reproducibility.16,18 

In 2001, Armstrong and coworkers introduced a new class of UV-active liquid 

matrices based on ionic liquids.18 These ionic liquid matrices (ILMs) were designed from 

amines and the anions of common matrices, α-cyano-4-hydroxycinnamic acid (CHCA) 

and sinapinic acid (SA). The resulting ILMs successfully enhanced reproducibility of 

analyte signals of test analytes, and their success prompted the design of many new ILMs 
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for the analysis of various molecule classes. Despite several attempts, few successful 

ILMs based on 1,3-alkylimidazolium ILs have been reported.  

In this research, novel IL-containing matrices were designed using ILs that are 

commonly used in biomass transformation reactions. Of particular interest to this work is 

the analysis of sugars and small platform chemicals that can be produced using IL solvent 

systems. Specifically, test analytes were chosen as glucose and fructose (products and 

intermediates in cellulose processing), sucrose, N-acetyl-D-glucosamine (as produced 

from chitin/chitosan processing), and two valuable platform chemicals which can further 

be derived from the aforementioned sugars: 5-hydroxymethylfurfural and levulinic acid. 

Sample preparation techniques were optimized and the IL-containing matrices were 

screened for their use in the detection of bio-derived analytes by MALDI-MS.  

3.2  Materials 

D-(+)-Glucose (≥ 99.5 %) , D-(-)-fructose (≥ 99.9 %), sucrose (≥ 99.5 %), 2,5-

dihydroxybenzoic acid (DHB) (98 %), α-cyano-4-hydroxycinnamic acid (CHCA) (≥ 98 

%), and 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) (98 %) were obtained from 

Sigma-Aldrich (St. Louis, MO). The 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) 

(> 95 %) was purchased from Io-Li-Tec (Tuscaloosa, AL. The 1-butyl-3-

methylimidazolium chloride ([BMIM]Cl) (96 %), 5-hydroxymethylfurfural (HMF) (98 

%) and N-acetyl-D-glucosamine (NAG) (98 %) were obtained from AK Scientific (Union 

City, CA), and levulinic acid (98 %) was purchased from Alfa Aesar. Deuterated 

dimethyl sulfoxide-d6 (99.9 % + 0.05 % TMS v/v) was purchased from Cambridge 
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Isotopes (Androver, MA). Water, methanol and acetonitrile (HPLC grade, 99.9 %) were 

obtained from Fisher Scientific (Fair Lawn, NJ). All chemicals were used without further 

purification. 

3.3  Instrumentation 

3.3.1  MALDI-TOF MS 

MALDI-MS analyses were carried out using an Applied Biosystems MDS SCIEX 

4800 MALDI TOF/TOF mass spectrometer equipped with a 355-nm Nd:YAG laser (200 

Hz). Ions were accelerated into the mass analyzer at a voltage of 1.796 kV. Spectra, 

acquired in positive reflectron ion mode, resulted from 16 sub-spectra from each from 

each laser shot for an average of 25 laser shots or a total of 400 sub-spectra. Laser 

intensity was varied per sample as appropriate. Data was exported to mMass (open source 

software) for processing.  

3.3.2  Scanning Electron Microscopy 

Scanning electron micrographs were obtained using a FEI MLA 650F scanning 

electron microscope equipped with a field emission gun (FEG). 1 μL of solutions 

containing 50 mM matrix and 50 mM IL (1:1 ratio) in 2:1 methanol:water solution were 

spotted onto an aluminum substrate and allowed to dry. 1 μL of 10 mM NaCl solution (in 

the same solvent system) was spotted on top, and the spots allowed to dry for 

approximately 20 min before introduction into the SEM chamber (no coating was 

necessary). The microscope was operated in secondary electron mode with an 

accelerating voltage of 15 kV. 
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3.4  Methods 

3.4.1 Matrix/Sample Preparation 

  Solutions of 200 mM DHB or CHCA were prepared daily using 2:1 MeOH:H2O 

(v:v) as the solvent (unless otherwise specified). Similarly, 200 mM solutions of ionic 

liquids [BMIM]Cl, [EMIM]Cl and [EMIM]OAc, and 10 mM solution of NaCl were 

similarly prepared using the same solvent system. Equal volumes of matrix and ionic 

liquid solutions were combined to yield 100 mM solutions with 1:1 molar ratio of 

matrix:ionic liquid. 200 mM stock solutions of glucose, fructose, sucrose, NAG, HMF 

and levulinic acid were prepared in 2:1 MeOH:H2O (v:v). Stock solutions were serially 

diluted in the same solvent system to yield working standards of 100 mM, 10 mM, and 1 

mM.  Equal volumes (typically 100 μL) of 100 mM matrix/ionic liquid solution and 

analyte solution were mixed in a small vial resulting in final solution concentrations of 50 

mM matrix/IL. 1 μL spots were deposited onto a stainless steel 384 well stainless steel 

Opti-TOF MALDI plate and allowed to air-dry (~ 15 min) before analysis. 

3.5  Results and Discussion 

The prepared matrices were screened by MALDI-TOF MS to assess relative 

matrix interferences in the low mass region (m/z 50 – 400), and compared to the parent 

matrix acid. The goal of using MALDI methods for small molecule analysis in ionic 

liquids is to be able to remove an aliquot of a reaction mixture, mix it with an appropriate 

MALDI matrix and analyze the sample directly. With this in mind, a solution containing 
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IL and analyte could be directly mixed with a solution of an appropriate matrix, spotted, 

and analyzed in a similar manner. 

 In this study, traditional MALDI matrices DHB and CHCA were compared to the 

prepared IL-containing matrices and screened for matrix ion peaks and relative 

fragmentation/adduct formation in the low mass region (m/z 50 – 400). All matrices were 

prepared as outlined in the Methods section of this chapter. All of the following MALDI 

mass spectra (unless otherwise specified) were subject to post-acquisition acceptance 

criteria for data analysis. Peaks exceeding S/N ratio of 3 and relative intensity threshold 

of 10 % were labelled. Labelled peaks represent the monoisotopic masses of each ion. No 

further deconvolution was required. Note that spectra shown represent a single analysis, 

which was selected based on signal intensity and the presence of analyte signal (where 

applicable). 

3.5.1  MALDI-TOF MS Analysis of DHB and DHB-IL Matrices 

 DHB is the most popular MALDI matrix for the analysis of carbohydrates.17 

Unfortunately, for low mass analytes, spectra acquired using DHB suffer from matrix 

peak interference resulting from fragmentation and adduct formation, and therefore 

analysis is often limited to qualitative analysis. To assess whether IL-containing systems 

could be alternatively used for such analysis, solutions of DHB and selected imidazolium-

based ILs ([BMIM]Cl, [EMIM]Cl and [EMIM]OAc) were mixed, and analyzed by 

MALDI-TOF MS to evaluate relative matrix interferences. It is important to note that in 

the case of DHB-[EMIM]OAc mixtures, a new ILM is formed in situ ([EMIM][DHB]), 
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and is therefore differentiated from the other chloride-containing IL-mixtures, which do 

not form a new ion pair (as described in Chapter 2). 

From the resulting mass spectrum of DHB (Figure 3-1 (a)), the difficulties in 

small molecule analysis in positive ion mode become clear, as there are considerable 

matrix peaks over the range of detected m/z values. Fortunately, there is no significant 

matrix interference between m/z 200-260, which is where cation adducts of glucose, 

fructose and NAG peaks are expected to appear. However, there are significant peaks in 

the m/z > 300 range, which may cause interferences with the analysis of larger sugars 

Figure 3-1: Representative Mass Spectra of (a) DHB, (b) [BMIM]Cl-DHB, (c) [EMIM]Cl-

DHB, (d) [EMIM][DHB] 

(a) 

(c) (d) 

(b) 
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such as sucrose, as well as in the m/z < 200 range where small platform chemicals are 

expected to appear. Figure 3-1 displays a typical mass spectrum of each DHB and IL-

containing DHB matrices. Several characteristic fragments and adduct peaks that are 

typical of DHB have been identified,19 as well as characteristic ions of each ILM 

according to their isotopic distribution patterns. As can be seen in Figure 3-1, the matrices 

containing IL have practically no matrix interference over the entire range of 50 - 400 Da. 

For matrices used with chloride-containing ILs (i.e. [BMIM]Cl-DHB and [EMIM]Cl-

DHB), the spectra are dominated by two major ions: the ionic liquid cation, and a 

chloride-adduct of two cations (identified in Table 3-1), each of which were confirmed by 

isotopic distribution patterns. 

Table 3-1: Identified Adducts and Fragments of DHB and DHB-IL Matrices (in Positive 

Ion Mode) 

DHB [BMIM[Cl-DHB [EMIM]Cl-DHB [EMIM][DHB] 

m/z Ion m/z Ion m/z Ion m/z Ion 

137 [DHB+H-

H2O]+ 

139 [BMIM]+ 111 [EMIM]+ 111 [EMIM]+ 

154 DHB+• 313 [BMIM2Cl]+ 257 [EMIM2Cl]+   

155 [DHB+H]+       

177 [DHB+Na]+       

199 [DHB+2Na-

H]+ 

      

273 [2DHB+H-

2H2O]+ 
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Similarly, the ILM [EMIM][DHB] has only one characteristic [EMIM]+ ion. The 

presence of these ions is reasonable, as the IL counterpart in these cases is already 

ionized, and would likely be desorbed from the substrate surface. Interestingly, there are 

no significant ions of DHB adducts in the mass spectra of either IL-containing matrix, 

which may be a result of matrix peak suppression by the presence of the IL. Overall, the 

IL-containing matrices show very minimal matrix interference in the absence of analyte, 

which appears promising for small molecule analysis. 

3.5.2  MALDI-TOF MS Analysis of CHCA and CHCA-IL Matrices 

Similarly, the CHCA matrices with and without IL were compared as potential 

MALDI matrices for the sugar analytes of interest, and screened for potential matrix 

interferences before analysis. As seen in Figure 3-2, the fragment ion and adduct ion 

formation of CHCA is much different than that of each of the mixtures of IL and CHCA. 

The ionization of CHCA leads to few intense matrix peaks, most of which do not appear 

as if they will directly interfere with the analysis of the target analytes. [EMIM][CHCA], 

on the other hand, has an abundance of matrix ions formed, as well as significant noise 

along the baseline in the m/z range of 200 – 250. Although the peak corresponding to 

[EMIM]+ is evident, there are a number of unidentified peaks that arise (m/z 88, 125, 205, 

221, 233). Remarkably, none of these peaks could be identified as common CHCA 

adducts or fragments. This is also strikingly different from the matrix spectrum of 

[EMIM][DHB] (Figure 3-1 (d)). The mixtures of [BMIM]Cl-CHCA and [EMIM]Cl-

CHCA, however appear identical in nature to [BMIM]Cl-DHB and [EMIM]Cl-DHB, 
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showing the two matrix peaks corresponding to the [BMIM]+/[EMIM]+ cations and 

corresponding chloride adducts, with no appreciable ions from the matrix acid. 

 It was first unclear why the ILM [EMIM][CHCA] exhibits a much more complex 

spectrum than [EMIM][DHB]. However, closer inspection of the spectra of each matrix, 

show some similarities. Although they appear at much lower intensities with respect to 

the base peak ([EMIM+]), many of the unidentified matrix ions generated by 

[EMIM][CHCA] are present in [EMIM][DHB] as well. Specifically, m/z 88, 125, 139, 

191, 205, 221 and 233 are common between the two upon enlarging the corresponding 

(a) (b) 

(c) (d) 

Figure 3-2: Representative Mass Spectra of (a) CHCA, (b) [BMIM]Cl-CHCA, (c) [EMIM]Cl-

CHCA, (d) [EMIM][CHCA] 
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spectra (not shown). Additionally, these peaks do not correspond with typical matrix 

peaks formed from the stainless steel plate, and also do not appear in the [BMIM]+-

containing analogues. This implies that these peaks are likely a result of the [EMIM]+ 

cation. Furthermore, upon mixing [EMIM]OAc and each of the tested matrices, acetic 

acid is formed as a by-product. This may be a factor in generating some of these matrix 

ions, by adduct-formation or acidic decomposition. Notably, some of these ions exhibit 

peak differences of 14 amu, which suggests alkyl chains may be present (-CH2-). (Note 

that the nitrogen-rule does not apply to many of these peaks, as the [EMIM]+ ion is 

charged prior to analysis). Despite several attempts, these ions have yet to be identified.  

Table 3-2: Identified Adducts and Fragments of CHCA and CHCA-IL Matrices (in 

Positive Ion Mode) 

CHCA [BMIM]Cl-CHCA [EMIM]Cl-CHCA [EMIM][CHCA] 

m/z Ion m/z Ion m/z Ion m/z Ion 

172 [CHCA-

H2O+H]+ 

139 [BMIM]+ 111      [EMIM]+ 111 [EMIM]+ 

190 [CHCA+H]+ 313 [BMIM2Cl]+ 257 [EMIM2Cl]+   

212 [CHCA+Na]+      

234 [CHCA-

H+2Na]+ 

     

335 [2CHCA-

CO2+H]+ 

     

379 [2CHCA+H]+      
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Overall, it was interesting to observe the suppression of matrix peaks in most of 

the IL-containing matrix spectra. If the DHB and CHCA peaks remain suppressed in the 

presence of analyte, the presence of the IL may lead to reduced matrix interference, and 

prove to be beneficial for small molecule analysis. 

3.5.3  Physical Appearance 

 The major limiting factor of quantitative MALDI-MS analyses is due to the use of 

solid matrices which crystallize non-uniformly on the MALDI plate, and lead to poor 

shot-to-shot and spot-to-spot reproducibility. On the other hand, liquid matrices afford a 

more uniform sample spot, leading to increased spot homogeneity, and have been 

employed for quantitative MALDI applications. ILMs are often liquids, but may also 

crystallize upon spotting, depending on physicochemical characteristics such as melting 

point and hygroscopicity.18  

 Of the isolated IL-containing matrices in this study, those that were produced 

from chloride-containing IL starting materials were all isolated as solids which 

precipitated from solutions containing IL and matrix upon solvent evaporation. In the 

case of reactions of each matrix with [EMIM]OAc, however, the product ILMs were 

viscous solutions, containing acetic acid by-product (as confirmed by 1H NMR). 

Purification of [EMIM][DHB] (by azeotropic distillation with toluene) yielded a brown, 

waxy solid (purification of [EMIM][CHCA] was not attempted). However, upon 

reconstitution in solvent and spotting on the MALDI plate, all IL-containing matrices 

appeared as glassy liquid spots, with the exception of mixtures of [BMIM]Cl and 

[EMIM]Cl with CHCA which crystallized upon solvent evaporation. 
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 To further investigate the physical properties and homogeneity of the synthesized 

IL-matrix compounds, the DHB-containing IL mixtures were analyzed by scanning 

electron microscopy (SEM). Matrix solutions were prepared as outlined above, and 1 μL 

volumes were spotted onto an aluminum substrate, allowed to dry, and then spotted with 

1 µL 10 mM NaCl solution. Magnification of the sample spots showed significant 

differences in spot topography upon addition of the IL. 

 

  

Figure 3-3: SEM Images of (a) DHB Matrix; (b) 1:1 DHB:[BMIM]Cl; (c) 1:1 

DHB:[EMIM]Cl; (d) 1:1 DHB:[EMIM]OAc (all spots with 1 μL 10 mM NaCl) 

(a) (b) 

(c) (d) 
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 As can be seen in Figure 3-3 (a), upon drying DHB crystallizes forming “needles” 

at the edge of the sample spot. (Note that striations within sample spots correspond to 

imperfections in the aluminum substrate and that the absence of sample wells lead to 

imperfect circular spots). This crystallization behavior is responsible for the inconsistency 

in replicate analyses using this matrix. The IL-containing matrices, however, form glassy, 

liquid spots upon drying. There are identifiable solid aggregates in the IL-containing 

spots, however, overall, the consistency of the topography is significantly improved from 

that of DHB. In the case of each IL-matrix, a noticeable inner ring is observed, which 

may be a result of spotting NaCl on each spot after initial matrix/IL spotting.   

3.5.4  Optimization of Sample Preparation for MALDI Analysis with DHB and CHCA 

One of the aspects of MALDI-MS that lead to its popularity with small molecule 

classes is that sample preparation is relatively quick and easy. It is important to optimize 

sample preparation techniques to suit both matrix and analyte, and enhance analyte 

ionization. Such preparation techniques include the solvent system, additives, spotting 

technique, and acquisition mode (linear/reflectron). In the interest of quantitative work, 

spot homogeneity is also crucial, as mentioned previously. In the case of IL-containing 

samples, the critical parameters must also be tailored to be compatible with IL 

compounds which have high ionic character, viscosities, and hygroscopicities. In this 

work, several parameters including the use of additives, solvent systems and relative 

concentrations of sample components were optimized by systematic trial and error. The 

optimized conditions were based on compatibility with matrix, IL, and analyte, as well as 

overall analyte signal intensities and signal-to-noise.  
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3.5.5  Cationization of Sugar Analytes 

 Preliminary analysis by MALDI-MS using DHB and CHCA matrices (in the 

absence of IL) yielded no detectable protonated molecular ion ([M+H]+) of the target 

analytes, even at relatively high analyte loading (M:A 1:1). Often, in the case where these 

protonated ions are desirable, small amounts of strong acids such as trifluoroacetic acid 

(TFA) are added to the MALDI matrix solution to promote analyte protonation. Addition 

of TFA, however, did not prove to be useful for the protonation of the sugar analytes in 

this study, as significant amounts of the protonated analyte signals were not detected.  

  The poor tendency of sugars to form protonated molecular ions in MALDI-MS 

can be attributed to their weak basicities. It follows that in the gas phase, these analytes 

have low proton affinities, as compared to more highly functionalized compounds. 

Sugars, however, are polyalcohols, and have a tendency to form adducts with small 

cations, such as sodium, potassium and ammonium ions.3,19 It is notable that in the 

absence of additives, the sodium and potassium adducts of each sugar analyte are often 

easily identifiable in the mass spectra. In the absence of additives, these adducts 

commonly result from adventitious ions in solvents, reagents, and from glassware 

leaching. To enhance the signal of these adducts and increase analyte sensitivity, it is 

common to add additional cations to the sample by using a cationization agent. In this 

study, NaOH, NaCl, KCl, and NH4Cl (1 µL of 10 mM solution, unless otherwise 

specified) were employed as potential cationization agents to increase analyte sensitivity. 
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Table 3-3: Relative Masses of Cation Adducts of Sugar Analytes 

Sugar Analyte m/z Na+ Adduct 

m/z ( +23 amu) 

K+ Adduct  

m/z (+ 39 amu) 

NH4
+ Adduct 

m/z (+ 19 amu) 

Glucose 180 203 219 199 

Fructose 180 203 219 199 

Sucrose 342 365 381 361 

NAG 221 244 260 240 

 

 Addition of NaOH to the analyte did increase the abundance of [M+Na]+ ions of 

sugars when analyzed using DHB as the matrix. However, the overall intensities of the 

mass spectra were low, with increased baseline noise (data not shown). This may be a 

result of deprotonation of the matrix acid which may lead to shifts in the electronic 

behavior of the matrix (Chapter 2). Therefore, the use of NaOH as a cationization agent 

was avoided, due to its higher reactivity versus other dopants such as salts. 

 The use of salts as cationization agents was particularly useful when analyzing 

sugars with DHB. Addition of NaCl or KCl lead to a significant increase of [M+Na]+ and 

[M+K]+ adducts of glucose, fructose, sucrose and NAG (corresponding m/z values of 

adducts shown in Table 3-3). In all cases, the addition of NaCl led to higher abundance of 

the sodium adduct and addition of KCl led to higher abundances of the potassium adduct 

(as demonstrated with glucose shown in Figure 3-4). The use of NH4Cl as a cationization 
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agent did not result in any detectable amounts of ammonium-adducted sugars, but did 

resemble spectra obtained without the use of cationization agent (spectra not shown).  

  Adducts corresponding to HMF and levulinic acid were not detected using either 

of the tested cationization agents. Furthermore, the addition of the salt improved the 

overall quality of mass spectra. Specifically, many DHB-matrix peaks were suppressed 

upon addition of the salts (Figure 3-5). Similar analysis of CHCA, however, did not result 

in an apparent benefit. As shown in Figure 3-5, glucose peaks can be seen at m/z 203 (Na+ 

adduct) and m/z 219 (K+ adduct) in the absence of a cationization agent when analyzed 

with DHB (Figure 3-5 (a)), but is not apparent in the corresponding spectrum when the 

same analyte is analyzed using CHCA (Figure 3-5 (c)). Upon addition of NaCl dopant, 

the sodiated glucose peak is readily apparent with DHB (Figure 3-5 (b)) with an overall 

reduction in matrix peaks, with the exception of sodiated DHB adducts (m/z 177). The 

addition of NaCl to glucose when analyzed using CHCA, however do not give rise to 

appreciable sodiated glucose peaks. 

Figure 3-4: MALDI-MS Spectra of Glucose with DHB (1:1): (a) with 1 μL 10 mM 

NaCl; (b) with 1 μL 10 mM KCl 

(a) (b) 

[Glu+K]+ 

[Glu+Na]+ 
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 The cationization agents NaCl, KCl and NH4Cl were screened with each sugar 

analyte using each DHB and CHCA. Overall, the cationization agents employed in this 

study yielded very low intensity analyte adducts (< 1 % relative intensity) when analyzed 

with CHCA under the same conditions as those analyzed with DHB. Glucose and fructose 

were seldom detected at all, and HMF and levulinic acid were not detected. Sodium 

adducts of both sucrose and NAG (m/z 365 and 244, respectively) and potassium adducts 

of NAG (m/z 260) were generally easily identifiable. The potassium adduct of sucrose 

Figure 3-5: Effect of Cationization of Glucose with DHB and CHCA Matrices (1:1 

Matrix:Glucose): (a) DHB matrix without additive; (b) DHB matrix with 1μL 10 mM NaCl 

dopant; (c) CHCA matrix without additive; (d) CHCA matrix with 1μL 10 mM NaCl dopant 

 

(a) (b) 

(c) (d) 

[Glu+Na]+ [Glu+Na]+ 
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(m/z 381) was also observed, but suffered from matrix interference from the isotopic 

abundances of the CHCA dimer (m/z 379). Similar to the observations of the DHB matrix 

with NH4Cl dopant, no ammonium-adducted sugars were observed.  

The formation of adducts (in positive ion) MALDI-MS depends on the affinity of 

the cation towards the analyte and the size of the cation. In the case of NH4Cl, no 

ammonium adducts of either analyte were detected, whereas sodium and potassium 

adducts of the sugars were easily identified (especially when analyzed with DHB). 

Sodium is a smaller cation and can more easily associate within the hydroxyl groups of 

the sugars. Potassium adducts seem to be preferentially formed with larger sugars such as 

NAG and sucrose in the presence of CHCA. Finally, these results suggest that DHB is 

better suited for the analysis of sugars than CHCA, and tends to promote cationization, as 

adducts of all tested analytes were easily identifiable. Sodium and potassium cationization 

agents prove to be the most useful of those tested for enhancing analyte signal. The 

absence of signals for HMF and levulinic acid is likely attributable to their higher 

volatilities, which may allow evaporation from the plate upon entering the instrument and 

prevent detection. This may not be the case when the matrix is combined with IL, which 

will be discussed further. 

Finally, these experiments were repeated in the presence of each IL. Interestingly, 

the formation of adducts is retained upon the addition of the IL. DHB-IL mixtures 

allowed detection of sodium and potassium adducts of sugar analytes, whereas CHCA-IL 

mixtures suffered from low analyte ion intensities and appreciable matrix interference. 

The relative abundances of the Na+ and K+ ions were not determined however, due to 
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high variability between spots. Regardless of the cationization agent used (i.e. NaCl vs. 

KCl), adducts of both sodium and potassium of each glucose, fructose, sucrose and NAG 

were identified, in varying amounts. Notably, potassium adducts of glucose and fructose 

(m/z 219) were often overlapping with an unidentified matrix peak in [EMIM]+-

containing matrices. Therefore, NaCl was chosen as an appropriate cationization agent for 

further analysis. 

Addition of equal molar amounts of NaCl (to the analyte) did not result in 

increased analyte signal in the case of either matrix and also lead to poor spot quality. It is 

speculated that the high concentration of salt may have had a salting out effect, and 

evaporation of the solvent led to inhomogeneous spots. Furthermore, cationization is 

known to have low efficiency, and an excess of Na+ appears to be unhelpful. Therefore, 1 

µL of 10 mM NaCl solution (5:1 matrix:salt molar ratio) was prepared in the same 

solvent system and spotted on top of the deposited matrix/analyte/IL solution before 

analysis. 

3.5.6  Laser Intensity 

By analyzing the matrices, it became evident that the ILMs required higher laser 

intensities than their analogous solid matrices. This finding has been previously described 

in ILM studies.3 To determine the relative laser intensity required for each matrix, the 

laser intensity that afforded a base peak ion count above 10000 (arbitrary units) was 

monitored. The laser intensity is given both as the absolute value (arbitrary units as 

shown on the mass spectrometer software), as well as a percentage of the maximum laser 

power. Note that this was the intensity needed to form appreciable matrix ions, and that 
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the presence of analyte meant that slightly higher laser power would be required. 

Additionally, laser intensity was variable between analyses. Therefore, before analysis of 

a given sample set, the optimum laser intensity was determined, and recorded. 

Table 3-4: Relative Laser Intensity for Studied Matrices 

Matrix Laser Intensity Laser Intensity (%) 

(relative to the maximum) 

DHB 5800 73 % 

[BMIM]Cl-DHB 7200 91 % 

[EMIM]Cl-DHB  6500 82 % 

[EMIM][DHB] 7200 91 % 

CHCA 4200 53 % 

[BMIM]Cl-CHCA 6200 78 % 

[EMIM]Cl-CHCA 6000 76 % 

[EMIM][CHCA] 5800 73 % 

 

 Generally, all IL-containing matrices require significantly higher laser intensity to 

produce spectra of similar base peak intensities, and DHB-matrices require higher laser 

intensities than the corresponding CHCA-matrices. It is notable that both [BMIM]Cl-

CHCA and [EMIM]Cl-CHCA crystallize on the MALDI plate. The slightly lower laser 

intensities required to promote ionization may be a result of easier ablation from the 

surface. In the case of these ILs in combination with DHB, the spots appear glassy, as the 
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IL seems to entirely cover/dissolve the matrix. Therefore, a higher laser intensity may be 

required to reach the UV-active matrix. Finally, [BMIM]+-containing matrices tend to 

require higher laser intensities to form similar ion abundances to [EMIM]+-containing 

matrices. This may be correlated with the size of the cation, as larger cations such as 

[BMIM]+ will likely require more energy to become desorbed from the surface. Further 

studies of a homologous series of imidazolium cations could be conducted in future work 

to confirm these findings.  

Since the laser intensities required to produce good ion signals is very high, the 

laser intensity was adjusted to yield reasonable ion signal (i.e. > 1000 A.U.) to avoid 

detector saturation by the most abundant ions (IL cations). Upon addition of analytes, the 

laser intensity would require readjustment to achieve reasonable ion intensities. Although 

variable, notably higher laser intensities were recorded for analyses of NAG and sucrose 

containing samples than for those samples containing equal amounts of glucose and 

fructose. This may also be correlated to the size of the analyte or to the degree of 

cationization. 

3.5.7  Solvent System 

The role of the solvent system used for MALDI sample preparation is to dissolve 

both the matrix and analyte, so that upon solvent evaporation, the matrix and analyte will 

co-crystallize on the MALDI substrate. In choosing the solvent, the relative surface 

tension and viscosity should also be considered, as these properties can affect sample spot 

quality upon deposition. In this case, the optimal solvent should be compatible with the 

matrix and analyte, as well as the IL, and result in uniform sample spots upon drying. 
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Generally, aqueous solutions of organic solvents are used as solvent systems for MALDI 

analysis. The ratio of water to organic solvent can be tailored to allow the dissolution of 

matrix and analyte, as well as to control the rate of solvent evaporation. 

Acetonitrile:water mixtures are commonly used to dissolve CHCA matrices, and 

methanol/ethanol:water solutions are employed for DHB matrices. Sugar analytes 

typically have low solubilities in ethanol, and so, methanol:water solutions were tested 

with DHB matrices. The ILs of interest are very water-soluble, and easily dissolve in 

aqueous solutions of both acetonitrile and methanol. Water, methanol and acetonitrile 

were chosen as potential solvents, and the solvent systems were first tested in different 

ratios, to determine the best spot integrity (i.e. how easily spots could be deposited onto 

the plate and held in the sample wells). Using only water as the solvent, the surface 

tension of spots was very high, forming beads on the stainless steel substrate. Drying 

times of these spots were very long, and resulting spots appeared much thicker than those 

spotted using organic solvents. This is likely due to the low volatility of water, in addition 

to the hygroscopic-nature of the ILs. Upon introduction into the mass spectrometer, much 

more time was needed to reach low pressures in the vacuum chamber when these thicker 

spots were present, due to high moisture levels. Using 100 % acetonitrile or methanol as 

the spotting solvent resulted in very poor sample spots, as the low surface tension and 

high volatilities resulted in smearing across many sample wells. Finally, 1:1 and 2:1 

solutions of acetonitrile/methanol:water were tested. Each solvent system resulted in good 

quality spots which appeared uniform across the sample well, with no distinguishable 

differences. Ultimately a 2:1 ratio of organic solvent to water was selected, due to faster 

drying times.  
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The solvent system was also tested for compatibility with sample additives. In the 

case of the neutral sugar analytes, a cationization agent was required to promote 

ionization. Upon addition of NaCl to sugar solutions in ACN:H2O, however, phase 

separation occurs. This phenomenon known as “sugaring-out” has been previously 

reported for aqueous acetonitrile solutions.20 Since this was not the case for aqueous 

methanol solutions, this supports the choice of 2:1 MeOH:H2O as the solvent system for 

further experimentation.  

3.5.8  Sample Spotting Technique 

There are several spotting techniques that can be used for MALDI analysis.21,22 

Commonly, samples are deposited onto the plate via the dried-droplet method, which is 

the simplest preparation technique.13 This technique involves pre-mixing solutions of 

analyte and matrix, and pipetting onto the substrate. Other techniques include thin-layer 

spotting, and sandwich methods (matrix, analyte, matrix). Both the dried-droplet and 

sandwich methods were tested in this study, leading to no obvious differences in the 

resulting mass spectra. Since the goal of these analyses is to be able to remove an aliquot 

of a bio-transformation reaction in IL media, and mix it with a MALDI matrix before 

directly spotting the sample, the dried-droplet method was employed for subsequent 

analysis for simplicity. Furthermore, addition of a cationization agent after drying results 

in re-dissolution of the matrix and analyte. 
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3.5.9  Matrix/IL Spotting Concentration 

The concentration of the matrix is an important parameter in any MALDI 

analysis, as it dictates how well the sample spot will deposit upon drying, and can affect 

ionization behavior, and the formation of adducts.3,15 Generally, solid MALDI matrices 

are used at a concentration of 10 – 20 mg/mL for sample spot volumes of 0.5 – 1 µL. 

ILMs may also crystallize depending on the relative melting point and hygroscopicity of 

the substance, but are often observed as liquid or glassy spots.18 Therefore it is important 

to determine the optimal matrix concentration for ILMs that cover the entire sample well.  

Throughout preliminary studies, it was observed that the amount of IL deposited 

per spot had a drastic effect on the resulting mass spectra. At relatively low amounts of 

IL, the IL (and dissolved matrix and analyte) form small concentrated spots at the edge of 

the sample well. Upon spectra acquisition, the amount of interference throughout the m/z 

300 - 400 region was significantly increased. It is likely that this additional interference is 

a result of laser ablation of the stainless steel surface. In a previous study, similar 

interfering ions were identified as benzylalkylmethylammonium salts, which originate 

from the stainless steel MALDI substrate.23 Since the MALDI process acquires many 

sub-spectra by multiple laser shots of a single spot to generate the average response, a 

much higher abundance of these stainless steel interference peaks arise when little sample 

covers the well. At relatively high IL loading (> 50 mM IL in the spotted solution or ~ 10 

μg/spot), samples resulted in thick, glassy liquids.  

As previously mentioned, high water content in the sample spots can lead to 

instrumental problems when attempting to reach low pressures in the vacuum chamber. 
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The thick sample spots, containing hygroscopic imidazolium ILs likely have high water 

contents, causing a similar effect. Therefore, the optimized amount of IL per spot (50 mM 

IL in spotting solution) was determined by the formation of thin, uniform spots that 

completely covered the sample well. Since the final concentration of the matrix when 

spotted is half that of the stock solution (upon mixing equal volumes of matrix solution 

and analyte solution), stock concentrations of 100 mM were selected as the optimal 

matrix concentration. The matrix was also spotted in 0.5-µL or 1-µL aliquots. For all 

spots containing 0.5 µL of the matrix solution, fewer good quality spots were observed 

with poor reproducibility of spots. This is likely a result of difficulties in pipetting small 

volumes of viscous solutions. Therefore, all subsequent analyses used 1 µL spotting 

volumes. 

3.6  Qualitative Sugar Analysis 

The synthesized ILMs were employed as MALDI matrices for the analysis of 

glucose, fructose, sucrose, NAG, HMF and levulinic acid. Optimized MALDI sample 

preparation and acquisition techniques were employed, using a matrix:IL:analyte ratio of 

1:1:1 for qualitative screening purposes. Initial screening of the matrices was performed 

with all test analytes: glucose, fructose, sucrose, NAG, HMF and levulinic acid. It is 

important to emphasize that the following spectra each represent one analysis, and 

variations between spots and sets of samples were inevitable. In each case, the spectrum 

chosen is one from optimized analyses, and where the analyte signal is visible. 

Furthermore, comparison of matrix performance was done within a sample set (i.e. from 

the same sample plate and date of analysis). In all cases, the [M+Na]+ peak was 
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monitored to determine the intensity of each analyte, and spectra were normalized with 

respect to the base peak. 

Table 3-5: Masses of Analytes of Interest 

Analyte Chemical 

Formula 

Monoisotopic 

Mass (amu) 

Sodium Adduct 

(M+Na)+ (amu) 

 
Glucose 

 

C6H12O6 

 

180.06  

 

203.05 
 

 
Fructose 

 

C6H12O6 

 

180.06 
 

 

203.05 
 

 
Sucrose 

 
C12H22O11 

 
342.12 

 

 
365.11 

 

 
N-acetyl-D-glucosamine 

 
 

C8H15NO6 

 
 

221.09 
 

 
 

244.08 

 
5-hydroxymethylfurfural 

 

C6H6O3 

 

126.03 
 

 

149.02 
 

 
Levulinic Acid 

 

C5H8O3 

 

116.05 

 

139.04 

3.6.1  Sugar Analysis using DHB-Based Ionic Liquid Matrices  

 As suggested by the initial matrix screening, DHB and the DHB-IL matrices may 

be suitable matrices for small sugar analysis, as little matrix interference is observed in 
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the appropriate mass regions for the analytes of interest. To compare the novel ILMs to 

their parent solid matrix, all analytes were also tested with DHB (Figure 3-6). It appears 

that the addition of the analyte results in suppression of some DHB matrix peaks, and in 

all cases the sodiated analyte (M+23)+ is readily apparent for all of the sugar analytes 

(glucose, fructose, sucrose and NAG). 

Use of DHB as a matrix yielded good results for the analysis of glucose, fructose, 

sucrose and NAG. All peaks were readily identifiable (the sodiated peak is labelled on 

corresponding spectra) with no apparent matrix interferences, and in several cases, the 

analyte peak could be identified as the base peak. For both glucose and fructose analysis 

with DHB (m/z 203), the spectra show little matrix overlap in the analyte region, making 

DHB a feasible matrix for MALDI-MS analysis of these sugars. Additionally, DHB 

appears to be a suitable matrix for sucrose (m/z 365), as there is a significant suppression 

of matrix peaks. NAG was also identifiable as the sodium adduct at m/z 244. The 

presence of NAG, however, does not appear to have as much of a matrix suppression 

effect on DHB, as the signal compared to the matrix ions is much smaller than that of the 

other sugar analytes. 
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Figure 3-6: Analysis of Sugar Analytes with DHB Matrix (1:1 M:A + NaCl cationization 

agent): (a) Glucose, (b) Fructose, (c) Sucrose, (d) NAG  

Base peak: 8606 

Base peak: 9553 

Base peak: 2818 

Base peak: 23684 

(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

(d) 

[Glu+Na]+ 

[Fru+Na]+ 

[Suc+Na]+ 

[NAG+Na]+ 
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Since this matrix appeared to work well with the test analytes, HMF and levulinic 

acid were also tested to determine the applicability of these novel matrices for small, 

volatile platform chemicals. Unfortunately however, the two platform chemicals HMF 

and levulinic acid were not detected. It is speculated that the high volatilities of these 

compounds result in evaporation from the sample plate upon introduction into the low-

pressure atmosphere of the instrument. Even relatively high concentrations of each of 

these analytes did not result in any identifiable ion signals. 

Analysis of the same sugar analytes using the [BMIM]Cl-DHB matrix reveal 

much less matrix interference. Specifically, almost all of the ions and adducts formed by 

DHB are suppressed in the presence of the IL, yet the sodiated analyte peaks are still 

easily detected (Figure 3-7). The analytes were detected at varying abundances, and it 

was noted that reproducibility between shots (within a single spot) and between spots was 

poor. For the purposes of qualitative screening, however, the analytes could be identified 

with minimal interference from DHB. In some cases sodiated DHB (m/z 177) is visible, 

and in all cases the base peak of the spectra is [BMIM]+ (m/z 139). Glucose, fructose, 

sucrose and NAG were all detected using this matrix, but again HMF and levulinic acid 

were not detected.  
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  Figure 3-7: Analysis of Sugar Analytes with [BMIM]Cl-DHB Matrix (1:1 M:A + NaCl 

cationization agent): (a) Glucose, (b) Fructose, (c) Sucrose, (d) NAG  

 

Base peak: 4093 

Base peak: 11560 

Base peak: 10214 

Base peak: 4764 

(a) 

 

 

 

 

(b) 
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(d) 

[Glu+Na]+ 
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Base peak: 8950 

Base peak: 15083 

Base peak: 752 

Base peak: 3298 

Figure 3-8: Analysis of Sugar Analytes with [EMIM]Cl-DHB Matrix (1:1 M:A + NaCl 

cationization agent): (a) Glucose, (b) Fructose, (c) Sucrose, (d) NAG 

(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

(d) 

[Glu+Na]+ 

[Fru+Na]+ 

[Suc+Na]+ 

[NAG+Na]+ 
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Similar experiments were carried out using the [EMIM]Cl-DHB matrix (Figure 3-

8). There are many similarities between the spectra obtained using [BMIM]Cl-DHB and 

[EMIM]Cl-DHB. Again, the base peak is most often the [EMIM]+ cation, with very few 

observable DHB ions. Each analyte is observed as the sodium adduct, at appreciable (but 

variable) intensities. One anomaly was noted, however. When analyzed using [EMIM]Cl-

DHB, NAG was easily detected, but the base peak was identified at m/z 107.5 rather than 

m/z 111 which is expected for the [EMIM]+ ion. However, the peak at m/z 111 was 

observed at lower intensity than in the spectra of the other test analytes. In other cases, 

this ion is apparent at lower relative intensities, as well as [BMIM]+ minus 3.5 amu for 

analysis using [BMIM]Cl-DHB. It is speculated that these peaks correspond to the IL 

cation, but suffer from loss of mass accuracy from ion detection (the instrument was 

calibrated using high mass standards), or may be resultant fragments due to the high laser 

energy employed. Either way, the sodiated analyte adducts of glucose, fructose, sucrose 

and NAG are easily seen with both chloride-containing ILs tested in this study. This was 

expected, as these matrices contain DHB (in parent form) and differ only by the cation of 

the IL employed.  

Finally, the analytes were tested using the true ILM formed from the reaction of 

[EMIM]OAc and DHB (Figure 3-9). Analysis of the same analytes using [EMIM][DHB] 

yielded significantly different results from what was observed using DHB with either 

[BMIM]Cl or [EMIM]Cl. Although this matrix did allow the cationization of each analyte 

with the added sodium, there were significantly more matrix interferences observed than 

with either of the chloride-containing IL-matrix mixtures. In fact, analysis using 
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[EMIM][DHB] resulted in more ions in the spectra than analyses using DHB alone. The 

formation of these unknown ions was also noted in preliminary matrix screening of the 

ILM [EMIM][CHCA] (Figure 3-2(d)), and to a lesser extent with [EMIM][DHB]. As 

mentioned previously, these ions do not appear to be adducts of DHB, and were not 

identified. The abundance of matrix interference may be due to the presence of acetic acid 

in this matrix, or may be explained by changes in the electronic structure from the parent 

acid. In order for a compound to be suitable as a MALDI matrix, it must absorb UV 

radiation at the wavelength of the instrument laser. In this case, a 355 nm Nd:YAG laser 

was employed for all analysis. Referring to Figures 2-6 and 2-7, it is interesting to note 

that the true ILMs that formed (both [EMIM][DHB] and [EMIM][CHCA]) exhibited 

characteristic blue shifts, that result in the relative absorbance at 355 nm being much 

lower than their parent matrices. The IL-mixtures however, do not exhibit a loss in 

absorbance at the wavelength of the laser. Therefore, it is speculated that the mixtures 

containing the protonated acid can absorb more of the incoming energy, and subsequently 

ionize the analyte more efficiently. The unidentified ions that are formed during the 

ionization process of analyte and [EMIM][DHB] matrix may be a result of higher laser 

intensity required to promote analyte ionization, and therefore increased ionization of 

matrix components, or ions generated from the stainless steel substrate.  
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Base peak: 4718 

Base peak: 2703 

Base peak: 9592 

Base peak: 3953 

Figure 3-9: Analysis of Sugar Analytes with [EMIM][DHB] Matrix (1:1 M:A + NaCl 

cationization agent): (a) Glucose, (b) Fructose, (c) Sucrose, (d) NAG 

[Glu+Na]+ 

[Fru+Na]+ 

[Suc+Na]+ 

[NAG+Na]+ 
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 Overall, each of the (sodiated) sugar analytes could be readily detected using each 

of IL-DHB matrices employed in this study, despite the notable differences between the 

IL-matrix mixtures (whereby DHB is present in parent acid form) and the true ILM. For 

the mixtures of the chloride-containing ILs and DHB, there was significantly less matrix 

interference observed than with DHB alone. It appears that these systems could prove to 

be useful alternatives for the qualitative analysis of these analytes in various applications, 

as well as for the analysis of IL-solvated systems. 

3.6.2  Matrix Interference 

Although direct matrix interference with analyte ions is not readily apparent 

(despite the formation of new ions), a peak at m/z 203 in the matrix was sometimes 

identified during analysis with [EMIM]Cl-DHB and [EMIM][DHB] matrices. Upon 

closer inspection, it appears that at high laser intensities and by hitting the same spot 

multiple times (depth profiling), a peak does appear at m/z 203 in these DHB containing 

matrices in the absence of analyte. Furthermore, the isotopic distribution immediately 

surrounding this peak does not match that of glucose/fructose (Figure 3-10). The 

abundance of this peak at m/z 203 increases as laser intensity increases and when 

repetitively analyzing a single spot within a sample spot. Furthermore, it is not observed 

in DHB (alone) or [BMIM]Cl-DHB, which suggests that this peak is an 

adduct/contaminant of [EMIM]+. 
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Figure 3-10: Isotopic Distribution Patterns of Glucose (lower) and Interfering [EMIM]+ 

Ion/Adduct (upper) 

The identity of this peak has not been determined however, as the isotope pattern 

does not match well with logical adducts (i.e. adducts of [EMIM]+ and common 

contaminants, adducts of metals that occur in stainless steel, etc.). Careful control of the 

laser intensity, as well as isotopic distribution patterns, however, can limit the 

interference caused by this peak when analyzing glucose and/or fructose. 

Overall, the DHB-based ILMs were suitable matrices for qualitative analysis of 

the studied sugars. Although it is apparent that the isomeric relationship between glucose 

and fructose will not allow differentiation between the two in MALDI-MS analysis, both 

analytes were separately detected, indicating that the presence of a peak in a sample 

analysis could refer to either sugar or a combination of both sugars. It appears that 

unreacted mixtures of IL and acid matrix out-perform both DHB and the ILM 

[EMIM][DHB]. There are potential advantages associated with this finding. For analytes 

in chloride-containing ionic liquid media, the direct addition of DHB may afford better 
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quality MALDI-MS spectra than if samples were extracted and analyzed by DHB alone. 

In other words, the addition of an IL medium seems to enhance the DHB performance 

with respect to sugar analysis. Further investigation of these matrices is required to 

broaden the class of applicable analytes. 

3.6.3  Sugar Analysis using CHCA-Based Ionic Liquid Matrices 

As previously mentioned, it was observed that the sugar analytes glucose, fructose 

and sucrose were not easily identifiable when analyzed using CHCA, regardless of the 

cationization agent employed. The [Glu+Na]+ peak at m/z 203 was rarely detected and 

when observed, suffered from very low intensity (< 0.1 % relative intensity). Increasing 

the laser power did afford a larger [Glu+Na]+ peak, however, at a cost of much more 

matrix interference (spectrum not shown). Similar observations were made with the 

analysis of fructose and NAG. Although these peaks can be seen without the interference 

from the matrix, they suffer from extremely low intensities when analyzed with CHCA 

(Figure 3-11 (a)). Sucrose analysis using CHCA, however, was much more 

straightforward. The sodiated sugar was easily identifiable at m/z 365, with fewer 

surrounding ion peaks (Figure 3-11 (b)). 
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 [BMIM]Cl-CHCA and [EMIM]Cl-CHCA showed similar analyte responses to 

that of CHCA for both glucose, fructose and NAG (data not shown). Although the 

addition of IL had considerably less matrix peak interference, [Glu+Na]+ and [Fru+Na]+ 

(m/z 203) and [NAG+Na]+ (m/z 244) were only seldom identified and at extremely low 

intensities. Both [BMIM]Cl-CHCA and [EMIM]Cl-CHCA also showed distinguishable 

peaks at m/z 365 corresponding to [Suc+Na]+, however at lower overall intensities than 

were achieved using CHCA alone. 

 

 

Figure 3-11: MALDI-MS Spectra of (a) CHCA + Glucose; (b) CHCA + Sucrose (1:1 

M:A, + NaCl Dopant) 

(a) 

(b) 

[Glu+Na]+ 

[Suc+Na]+ 
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Of the synthesized ILMs, [EMIM][CHCA] exhibited the largest amount of matrix 

peaks. This matrix also has a very noisy baseline between m/z 125 – 225 (Figure 3-12), 

which is where sodiated glucose and fructose peaks are expected. Analysis of these 

analytes did not afford any of the expected sodium adducts. Furthermore, analysis of 

sucrose also did not show analyte peaks (spectra not shown). Similar to the DHB series IL 

matrices, neither HMF or levulinic acid were detected using either of the CHCA matrices.  

Of the CHCA-based matrices studied, CHCA (without IL) provided better analyte 

signals for all of the tested analytes. Signals corresponding to glucose, fructose and NAG 

adducts, however, were of very low intensity. [BMIM]Cl-CHCA and [EMIM]Cl-CHCA 

appear to suppress the sucrose analyte signal when compared to CHCA alone. To 

conclude, the synthesized CHCA-based ILMs were not suitable matrices for the analysis 

of either of the sugar analytes, and were therefore not used for any subsequent analysis. 

Interestingly, one of the first ILMs that was developed was very similar to the 

aforementioned CHCA-IL systems. Armstrong et al. designed the ILM [BMIM][CHCA] 

Figure 3-12: MALDI-MS Spectrum of [EMIM][CHCA] 
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using CHCA and [BMIM]+. Similarly, test analytes bradykinin and polyethylene glycol 

(PEG) were not detected using this matrix. Armstrong concluded that imidazolium-based 

ILMs were not feasible for MALDI analysis due to poor laser absorption and lack of 

proton transfer from the imidazolium cation (as compared to quaternary amine salts).18,24 

Although similar matrices in this study ([EMIM][CHCA] and both IL-CHCA mixtures) 

also failed to produce analyte signal, the DHB matrices were successful in producing 

cationized analyte signals. Of course, in this study the protonated analyte is not of 

interest, but this could signify the usefulness of imidazolium-based ILMs for cationization 

studies, whereby proton transfer is not required, and the absence of proton transfer may 

be desirable. 

3.6.4  Sample Spot Homogeneity 

One of the desired properties of ILMs (and liquid matrices, in general) is that 

there is a potential to increase spot homogeneity which may lead to better reproducibility 

in analysis. Solid matrices such as DHB and CHCA limit quantitative MALDI analyses, 

as both matrices crystallize non-uniformly across the sample well, leading to poor shot-

to-shot and spot-to-spot homogeneity. In fact, Armstrong et al. first introduced ILMs as a 

means of increasing spot homogeneity, as liquids are inherently more uniform.18   

To demonstrate this, images of DHB and DHB-containing ILMs in this study 

were obtained by scanning electron microscopy (SEM). Upon solvent evaporation, DHB 

crystallizes forming irregular “needles” along the edge of the spot. The samples 

containing ILs, however, appear as uniform glassy liquids (refer to Figure 3-3). However, 

MALDI analyses of these samples exhibited noticeable hot spots. From spot to spot there 
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was a strong variation in the intensity of the analyte peak. Additionally, multiple analyses 

of a single sample spot did not always afford analyte peaks.  

To determine whether the analyte was evenly distributed within the spot, a simple 

test was performed. In manual laser firing mode, a series of spectra were acquired at 

different locations within a single spot. Starting at the far left edge, a spectrum was 

acquired, before moving across the center of the spot and ending at the right edge of the 

spot. It was apparent that the analyte was much more easily detected along the edge of the 

sample spot rather than the center. To confirm this, a series of spectra were acquired to 

directly compare the analyte peak intensity of shots along the edge of the sample well 

with shots throughout the center of the spot.  

It appears that the analyte was most concentrated at the edges of the sample well, 

and analyses of the center of the spot seldom yielded appreciable analyte signal (Figure 3-

13). Analyses of the center of the spot, however, did often result in IL cation peaks of low 

Figure 3-13: Comparison of Spectra Acquired from the (a) Center and (b) Edge of MALDI 

Spot Containing 1:1:1 DHB:[BMIM]Cl:Glucose 

(a) (b) 

[Glu+Na]+ 
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intensity, which suggests that small amounts of matrix acid is present at the center that 

absorb the laser intensity, or that the IL is simply desorbed from the surface upon 

irradiation by the laser. Interestingly, these peaks (noted for [EMIM]+ ions as well), suffer 

from poor resolution, lower intensity, as well as poor mass accuracy. Changes in solvent 

composition and spotting technique were attempted, however, there did not seem to be 

any improvement. Such phenomena have been previously described, wherein the 

presence of salts causes separation of the analyte from the bulk matrix to the outer edge of 

the well, while salts were concentrated within the center.21,22 Since a significant 

component of these samples are ionic in nature, it is not surprising that the crystallization 

behavior of these samples was affected, causing separation of neutral molecules and ionic 

compounds due to differences in polarity. Other parameters including the matrix and 

solvent composition (and hence rate of evaporation) can also effect the segregation of 

analyte from the matrix and may also play a role in these findings. 

This analyte separation was not readily apparent with CHCA or the CHCA-IL 

matrices (for identifiable analytes such as sucrose). It is well-established that CHCA 

crystallizes much more homogeneously that DHB, forming crystals over the entire sample 

spot.25 This suggests that the matrix (even in the presence of IL) may be crystallizing in a 

similar manner. In the case of DHB, if most of the matrix crystallizes along the edge of 

the sample spot in the presence of IL (as it does in its absence), there would be minimal 

matrix throughout the center of the spot. This could explain why few matrix/analyte ions 

are detected in the center of the spot, as there is insufficient matrix to promote 

ionization/cationization of the components. Furthermore, the presence of IL likely 
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suffocates the small amount of matrix that might be present in the center. The low 

intensity IL ions that are detected, however, can be explained by desorption of the 

preformed ions (which do not necessarily require the matrix for ionization). Therefore, for 

all subsequent analysis using DHB (or the IL-containing DHB matrices), a laser pattern 

(Figure 3-14) was programmed to introduce an edge-biased data acquisition pattern. 

 

Figure 3-14: Acqusition Patterns Employed in MALDI-MS Analysis: (a) Random and (b) 

Edge-Biased 

By introducing such an acquisition pattern, collecting information from the center of the 

spot (where analytes are rarely detected) can be avoided, and overall higher average 

analyte signal intensities can be obtained. 

3.6.5  Matrix:IL:Analyte Ratio 

 All of the previous analyses were conducted at high analyte loadings using a 

matrix-to-ionic liquid-to-analyte ratio (M:IL:A) of 1:1:1. To enhance signal intensity, 

other ratios were also employed, by varying the concentration of one or more the 

components. 

 Decreasing the analyte concentration (keeping matrix and IL concentrations 

constant) to yield an overall M:IL:A of 100:100:1 and 10:10:1 were employed, however 

analysis of these systems seldom yielded analyte signal. It appears that the analyte was 

(a) (b) 
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only detectable at very high analyte loading (which is typical for ILM systems).24 Since 

the IL ions are the most abundant ions in the spectra, it was assumed that the IL caused 

suppression of the analyte. Therefore, the amount of IL was varied. As previously 

mentioned, the amount of IL per spot was optimized based on spot integrity. Therefore, a 

small range of IL concentrations were tested that would not compromise the sample spot. 

Specifically, IL:M ratios were varied from 1:1 to 2:1 and 1:2 for the chloride-containing 

ILs. Unfortunately, [BMIM]Cl-DHB did not yield high enough analyte intensities to 

make a reasonable comparison between each ratio. Therefore, the following data refers to 

[EMIM]Cl-DHB whereby the ratio of [EMIM]Cl to DHB was varied while the analyte 

concentration remained constant. Furthermore, [EMIM][DHB] was similarly analyzed to 

compare the ability of the true ILM and the mixture of IL and matrix. Scatterplots were 

constructed comparing the signal intensity of the IL cation ([EMIM]+) and the sodiated 

analyte signal (Figures 3-15 – 3-18).  

 For each of the analytes, the highest analyte signal intensity was obtained using a 

1:2 ratio of [EMIM]Cl to DHB. It is also notable that this ratio also afforded the largest 

[EMIM]+ peak, despite the fact that the 2:1 [EMIM]Cl:DHB matrix contained an excess 

of IL. This suggests that the presence of excess matrix more easily allows desorption of 

the IL from the surface. Generally, the overall signal intensity of each analyte was similar 

using [EMIM][DHB], 2:1 [EMIM]Cl:DHB, or 1:1 [EMIM]Cl:DHB, with the 1:2 

[EMIM]Cl:DHB yielding higher analyte signals most of the time. Furthermore, there is a 

significant spread of data within each sample set (as data was collected as the absolute 

intensity, rather than a peak height ratio). 
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Figure 3-15: Scatterplot of Glucose and [EMIM]+ Signals with Varying [EMIM]Cl:DHB 

Ratio 

 

Figure 3-16: Scatterplot of Fructose and [EMIM]+ Signals with Varying [EMIM]Cl:DHB 

Ratio 
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Figure 3-17: Scatterplot of Sucrose and [EMIM]+ Signals with Varying [EMIM]Cl:DHB 

Ratio 

   

Figure 3-18: Scatterplot of NAG and [EMIM]+ Signals with Varying [EMIM]Cl:DHB 
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 Interestingly, the differing ratios of the tested matrices seems to have a larger 

effect on the intensity of the [EMIM]+ cation than on the analyte intensity. As the molar 

amount of DHB increases, it appears that the amount of IL cation intensity similarly 

increases. In general, the 1:2 [EMIM]Cl:DHB does yield higher analyte signals than the 

other tested matrices, but the 1:1 and 2:1 ratios, as well as [EMIM][DHB] have similar 

intensities. It appears that varying the ratio seems to have less of an effect on the analyte 

signal, and a more pronounced effect on the IL ion signal. 

 The overall intensity of the [EMIM]+ peak also appears to be affected by the 

analyte that is present. Lower overall intensity signals were observed when each matrix 

was analyzed in the presence of sucrose and NAG, than either glucose or fructose. This 

was also noted throughout preliminary analyte screening, whereby the overall spectrum 

intensity was less when analyzing sucrose and NAG. 

3.6.6  Matrix/Analyte Suppression 

 To further investigate the previous findings, studies on matrix and analyte 

suppression by each of the ILs was studied, using glucose as the test analyte. All of these 

analyses used a 1:1 ratio of DHB:glucose (containing 50 mM of each matrix and analyte) 

and the concentration of IL in the spot was varied. For consistency, the laser intensity was 

held constant, and the resulting absolute intensities of [DHB+Na]+, [Glu+Na]+ and 

[BMIM]+/[EMIM]+ (n = 5, error bars represent standard deviation of the mean) were 

plotted (Figures 3-19 – 3-21) against the IL concentration (expressed as an equivalent of 

the DHB/glucose concentration). 
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Figure 3-19: Absolute Intensities of DHB, Glucose and [BMIM]+ Ions with Increasing 

[BMIM]Cl Concentration 

 

Figure 3-20: Absolute Intensities of DHB, Glucose and [EMIM]+ Ions with Increasing 

[EMIM]Cl Concentration 
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Figure 3-21: Absolute Intensities of DHB, Glucose and [EMIM]+ Ions with Increasing 

[EMIM]Cl Concentration 

 At even extremely low amounts of IL relative to the matrix and analyte, (i.e. 

50000 times lower), the IL cation is still the base peak in all acquired spectra, but matrix 

peaks, as well as sodiated glucose peaks are readily identifiable. As the amount of IL 

increases, the IL cation peak eventually levels out indicating saturation of the detector. 

Meanwhile, the sodiated peaks of glucose and DHB steadily decrease in all cases. When 

the IL reaches saturation, both matrix and analyte peaks are minute in comparison. Upon 

reaching the previously optimized concentration of IL per sample spot (50 mM, 1 molar 

equivalent), all peaks, including the IL peak suffer from very low ion intensities.  
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(e) (f) 

(a) (b) 

(c) (d) 

Figure 3-22: MALDI-MS Spectra of Varying DHB:Glucose:[EMIM]Cl Ratios (based on 

50 mM DHB and 50 mM Glucose + NaCl Dopant): (a) 50,000:50,000:1; (b) 5000:5000:1; 

(c) 500:500:1; (d) 5:5:1; (e) 2:2:1; (f) 1:1:1 

[Glu+Na]+ 
[DHB+Na]+ 

[EMIM]+ 
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Matrix and analyte suppression effects (MSE and ASE, respectively) are 

commonly observed in the analysis of small molecule classes. This leads to less matrix 

interference peaks, but also to low abundances of analyte signal. Suppression of a 

particular type of compound due to the presence of another can be explained by 

secondary gas-phase reactions (i.e. proton, electron or cation transfer). For example, 

matrix ions can be suppressed by an analyte (if enough analyte is present) if secondary 

reactions of the matrix with the analyte are favorable (i.e. the charge is placed on the 

more favored species).26 Similarly, ASE are observed when the presence of one analyte 

suppresses another, due to differences in ionization efficiency (i.e. analytes which are 

more easily ionized will suppress those that are less easily ionized). In this study, 

however, the IL component is a pre-charged species in the sample, and therefore is not 

formed by secondary gas-phase reactions, and cannot be explained using the previous 

model. Similar MSE and ASE observations have been made, however, when employing 

quaternary ammonium salts (QASs).26 Much like ILs, QASs are pre-formed ions which 

simply require desorption from the substrate to be detected via MALDI-MS. In a previous 

study by Lou et al., such MSE were observed even at matrix:QAS ratios of 1000:1. The 

apparent suppression by QASs were explained using the cluster ionization model.27 This 

model suggests that the final ions observed in a MALDI experiment are the result of 

desolvation of a cluster of ions (containing matrix, analyte, residues). There are a limited 

number of charges in a particular cluster, and those species that have the greatest stability 

(with respect to the MALDI instrumentation and process) upon obtaining charge are those 

that prevail. A similar model can be used to explain the MSE and ASE of DHB and 

glucose that are observed in the presence of ILs. It is important to note that the ions 
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observed in a particular spectrum are the result of a combination of ionization models, 

and all ions cannot often be explained using one model.14  

Similar to findings of Lou et al., even small amounts of IL have a significant 

deleterious effect on matrix and analyte ions (Figure 3-22). It is interesting to note that at 

extremely low IL loading (i.e. Figure 3-22 (a)) the sodiated DHB and glucose peaks are 

readily apparent, yet all other matrix adducts are suppressed. This suggests that the IL has 

a much stronger MSE effect on protonated peaks than the sodiated peaks. In this case, a 

small amount of IL added to the sample is advantageous, as matrix interferences are 

effectively removed.  

 It was previously mentioned that low ion intensities of IL resulted when spectra 

were acquired at the center of the sample spot (with or without matrix). It was speculated 

that little of the DHB crystallizes in the center, and the sample in the center of the well is 

mainly IL. This would also suggest that a selective desorption process is occurring, 

whereby the pre-ionized IL cation is simply desorbed from the surface by a thermal 

process. The similarities of the spectra obtained in this study, suggest that the IL may 

effectively be smothering the matrix, and again, a desorption mechanism is mainly 

responsible for the resulting ion signal. Either way, it is clear through these findings, that 

even at high analyte loading, the presence of IL is a major limiting factor in the ion 

abundance. It is apparent that quantitation of these analytes will be difficult. 

 Also notable, is that the [Glu+Na]+ signal is higher than the [DHB+Na]+ signal as 

the concentration of IL increases for [BMIM]Cl, and not for either of the [EMIM]+-

containing ILs. The overall intensity of the analyte peak (at constant laser intensity) is 
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also higher at comparable concentrations in the presence of [BMIM]Cl than [EMIM]Cl 

and [EMIM]OAc. This may suggest more significant analyte suppression by the [EMIM]+ 

cation than the [BMIM]+. Finally, the overall quality of the spectrum is compromised at 

high IL concentrations. Peak broadening and poor resolution result at high IL loading, 

along with suppressed analyte peaks. This becomes problematic for potential quantitative 

analyses under these conditions.  

3.7  Conclusions 

To conclude, mixtures of imidazolium ILs with the traditional MALDI matrix 

DHB were very useful for the qualitative detection of small sugars glucose, fructose, 

sucrose, and NAG. The formation of a true ILM (new ion-pair) does not appear to be 

necessary for analyte ionization, and in fact suffers from increased matrix suppression as 

compared to chloride-containing ionic liquid-matrix mixtures. Analogous matrices 

containing CHCA did not result in appreciable analyte signals under similar conditions. 

Through trial and error, several parameters including the solvent system, cationization 

agent, IL concentration and M:IL:A ratios were tested and optimized. Unfortunately, 

these systems were not useful for the detection of HMF and levulinic acid, likely due to 

their relative volatilities. As is typical with ILM systems, high analyte loadings were 

required to yield appreciable analyte signals in the presence of the pre-ionized IL cation. 

It appears that this is due to matrix and analyte suppression by the IL. Although the 

suppression of matrix components is desirable for qualitative analyte screening, analyte 

suppression limits the proposed methods to high analyte concentrations. This restricts 
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quantitative analyses, as lower concentrations of analyte could not be reliably detected in 

the presence of the ILs.  

Overall, the addition of ILs such as [BMIM]Cl, [EMIM]Cl and [EMIM]OAc can 

be employed to lessen matrix peaks for qualitative analysis of small sugar analytes. For 

the purposes of reaction monitoring, however, this method will likely suffer from poor 

limits of detection and reproducibility. Further investigation into the uses of these IL-

matrix systems will be presented in the following chapters. 
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Chapter 4: Derivatization of Bio-Derived Platform Chemicals 

in Ionic Liquids for Quantitative MALDI-TOF MS Analysis 

4.1  Introduction 

 ILs are very useful solvents for biomass transformation reactions, as they are non-

volatile, have great dissolution ability, and can be modified to exhibit desirable 

properties.1 In applications whereby an IL is used as a solvent, the IL is generally in 

excess of the analytes by a factor of 10 – 1000 times. Despite the many advantages of ILs 

over traditional volatile organic compounds, unlike VOCs, ILs are often difficult and 

energy-intensive to remove from chemical systems. This can lead to potential 

incompatibilities with traditional means of analytical separation and detection. Therefore, 

it is ideal to develop analytical methods that are capable of in situ monitoring. The ability 

to analyze reaction mixtures without prior separation of the IL leads to significant cost 

and time savings.  

MALDI-MS is an attractive alternative to traditional chromatographic analyses as 

sample preparation and data acquisition are rapid, and consume very little sample. 

Unfortunately, as demonstrated in Chapter 3 of this thesis, the presence of ILs leads to 

significant analyte suppression in MALDI-TOF MS analyses. It is speculated that the 

ease of desorption of a pre-formed ion (i.e. the IL ion) from the MALDI substrate, along 

with the poor ionization behavior of sugars are responsible for these observations. 

Therefore, this chapter investigates the use of chemical modification (i.e. derivatization) 
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of the analytes of interest by introducing a cationic center into the analyte to compete 

with the IL for desorption/ionization during the MALDI process. Further work describes 

quantitative analysis of sugars and small platform chemicals in IL solutions and 

applications of the proposed methods to real systems.  

4.2  Materials 

 D-(+)-Glucose (≥ 99.5 %) , D-(-)-fructose (≥ 99.9 %), sucrose (≥ 99.5 %), 2,5-

dihydroxybenzoic acid (DHB) (98 %), α-cyano-4-hydroxycinnamic acid (CHCA) (≥ 98 

%), glycidyltrimethylammonium chloride (GTMA) (≥ 90 %), L-ascorbic acid and 1-

ethyl-3-methylimidazolium chloride ([EMIM]Cl) (98 %) were obtained from Sigma-

Aldrich (St. Louis, MO). The 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) (96 %) 

was purchased from Alfa Aesar (Ward Hill, MA), and 1-ethyl-3-methylimidazolium 

acetate ([EMIM]OAc) (> 95 %) was purchased from Io-Li-Tec (Tuscaloosa, AL). 5-

hydroxymethylfurfural (HMF) (98 %) and N-acetyl-D-glucosamine (NAG) (98 %) were 

obtained from AK Scientific (Union City, CA). Sodium hydroxide pellets (97 %) were 

obtained from Caledon Laboratories (Georgetown, ON). Levulinic acid (98 %), (±)-β-

hydroxy-γ-butyrolactone (96 %), benzyl alcohol (99 %) and chromium (III) chloride 

hexahydrate (98 %) were purchased from Alfa Aesar (Shore Road, Heysham, Lancs.). 

Isotopically-labeled glucose-d7 (97 – 98 %), dimethyl sulfoxide-d6 (99.9 % + 0.05 % 

TMS v/v) and deuterated water (99.9 %) were all purchased from Cambridge Isotopes 

(Androver, MA). Water, methanol and acetonitrile (HPLC grade, 99.9 %) were obtained 
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from Fisher Scientific (Fair Lawn, NJ). All chemicals were used without further 

purification. 

4.3  Instrumentation 

4.3.1  MALDI-TOF MS 

Mass spectrometric analyses were carried out using an Applied Biosystems MDS 

SCIEX 4800 MALDI TOF/TOF mass spectrometer equipped with a 355-nm Nd:YAG 

laser (200 Hz). Ions were accelerated into the mass analyzer at an accelerating voltage of 

1.796 kV. Spectra were acquired in positive reflectron ion mode, resulting from 16 sub-

spectra comprised of an average of 25 laser shots or a total of 400 sub-spectra. Laser 

intensity was varied per sample as appropriate. Data was exported to mMass (open source 

software) for processing.  

 Data was collected using a laser acquisition pattern with an edge-bias (as 

described in Chapter 3). At the beginning of a sample set, practice shots were taken to 

ensure adequate analyte signal. If the analyte signal was weak, the MALDI plate was re-

aligned as necessary. Before samples were spotted onto the plate, the plate was wiped 

with methanol. This seemed to promote the formation of better quality sample spots (less 

spreading of spots across the plate). For quantitative analyses, test spots were used to 

obtain an appropriate S/N ratio of the analyte of interest, and these parameters 

(specifically, plate alignment) were used to acquire further spectra. For quantitative 

analyses, acceptance criteria were used to select for appropriate data points for 

calibration. Normally, 5 replicate analyses were used and the mean response plotted vs. 
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concentration/mass. During data acquisition, normally > 5 replicates were acquired but 

only those which generated an internal standard response with a S/N ratio > 10 were used 

in the construction of calibration curves. In cases where > 5 analyses met this criteria, the 

first 5 replicates were used to generate the mean response to limit personal bias.  

4.3.2  1H NMR Spectroscopy 

 1H NMR spectra were acquired at room temperature using a Bruker AVANCE III 

300 MHz NMR spectrometer. Chemical shifts are reported in parts per million (ppm) 

from the TMS reference peak. Data was analyzed using MestreNova Version 9.0.1. 

4.4  Methods 

4.4.1  MALDI-TOF MS Sample Preparation 

 Aqueous 200 mM stock solutions of each IL and analyte were prepared in 2:1 

methanol:water (v:v). Analyte solutions were further diluted to yield working solutions of 

100 mM, 75 mM, 50 mM, 25 mM, 10 mM, 5 mM and 1 mM. 100 mM DHB solution and 

100 mM NaCl solution were similarly prepared by dissolution in 2:1 methanol:water 

(v:v). The 100 mM stock solution of NaCl was further diluted to yield a 10 mM solution. 

Equal volumes of IL and analyte solutions were mixed to yield 100 mM IL containing 

varying amounts of analyte. Equal volumes (typically 200 μL) of the DHB solution and 

the IL/analyte solution were mixed to afford a solution containing 50 mM DHB, 50 mM 

IL and corresponding concentration of analyte. The solutions were thoroughly mixed 

before 1 μL aliquots were spotted onto a stainless steel MALDI plate and allowed to dry 
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completely. Finally, 1 μL of 10 mM NaCl solution was spotted on top of each sample and 

the spots were allowed to dry before inserting into the mass spectrometer.  

4.4.2  Standard Preparation for Derivatization Studies 

 Stock solutions (200 mM) of glucose, fructose, sucrose, N-acetyl-D-glucosamine 

(NAG), 5-hydroxymethylfurfural (HMF) and levulinic acid were prepared in HPLC grade 

H2O. Serial dilutions of the stock solution yielded working standards of 100 mM, 75 mM, 

50 mM, 25 mM, 10 mM, 5 mM, and 1 mM. Similarly, 420 mM glucose-d7 solution and 

210 mM benzyl alcohol (BnOH) were prepared by dissolution in HPLC grade H2O. 1 M 

stock solutions of [BMIM]Cl, [EMIM]Cl, and [EMIM]OAc were prepared in HPLC 

grade H2O and further diluted to yield 0.5 M solutions. HPLC grade H2O was used as the 

method blank.  

4.4.3  Derivatization of Analyte Standards 

 To 2-mL vials, 250 μL of solvent (H2O or 0.5 M aqueous IL solution), 250 μL of 

analyte solution (or blank), 20 μL of glucose-d7 (420 mM) or 40 μL of BnOH (210 mM), 

25 μL of 1 M NaOH, and 3.5 μL glycidyltrimethylammonium chloride (GTMA) solution 

were added. The vials were capped and inverted before being suspended in a hot water 

bath at 55 °C for 2 h. Finally, vials were removed from heat, thoroughly mixed, and 

allowed to cool to room temperature. 
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4.4.4  Reaction Conditions for Dehydration Reaction of Sugar to HMF 

 Approximately 500 mg of IL was weighed into a 2-mL vial, followed by 

approximately 50 mg of starting material (fructose). Where applicable, 6 mol % of 

CrCl3•6H2O catalyst was added and the vial heated and stirred using a magnetic stir bar 

for ~ 10 min to allow dissolution of all reaction components. Vials were suspended and 

heated in a hot water bath (80 °C) for the specified time.  

4.4.5  Derivatization of Reaction Aliquots 

At timed intervals, small amounts (~ 50 mg) of the reaction mixture were 

transferred to a pre-weighed 2-mL vial. A known amount of water was added to afford a 

0.5 M solution based on the estimated mass fraction of IL in the removed sample. This 

solution was stored in the refrigerator at 4 °C until all remaining aliquots were collected. 

A 400 μL aliquot of the prepared 0.5 M IL (reaction aliquot) solution was transferred to a 

vial containing 20 μL 210 mM BnOH, 40 μL 420 mM glucose-d7, 25 μL NaOH, and 3.5 

μL GTMA. The resulting solution was inverted and heated in a hot water bath at 55 °C 

for 2 h (as in Section 4.3.3). 

4.4.6  MALDI-MS Sample Preparation of Derivatized Samples 

 To 2-mL vials, 450 μL of H2O and 500 μL of 100 mM methanolic DHB solution 

were added. A 50 μL aliquot of the derivatized standards (Section 4.3.3) or 0.5 M IL 

reaction aliquot of the derivatized reaction mixture (Section 4.3.5) was added to the above 

solution. The final solution containing 50 mM DHB, was inverted several times, and 1 μL 
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volumes were deposited onto a stainless steel MALDI plate. Spots were allowed to dry at 

room temperature (~20 min) before being introduced into the instrument sample chamber. 

4.5  Results and Discussion 

4.5.1  Sugar Quantitation by MALDI-TOF MS  

 In a model dehydration reaction of glucose to HMF in IL, glucose is present at 

approximately 10 times less than the IL solvent. As the reaction proceeds, the glucose 

will decrease as it is converted to HMF, while the concentration of HMF increases. Upon 

reaction completion, the concentration of glucose, for example, may be between 10 – 

1000 times less than the IL (i.e. 0 – 99 % conversion). Therefore, it is desirable to design 

analytical methods with wide dynamic ranges that can detect the target analytes in the 

presence of an excess of IL. Previous quantitative and semi-quantitative analysis of 

glucose by MALDI-MS have been reported with varying degrees of sensitivity depending 

on experimental parameters and matrices.2-4 However, at the current time, quantitative 

glucose analysis by MALDI-MS in imidazolium-based IL media has not been reported. 

 The LODs of target sugar analytes glucose, fructose, sucrose and NAG were 

determined using DHB as the matrix, in the absence of IL to determine instrument 

detection limits, assuming these conditions result in optimum ion intensities. In all cases, 

the sodium adduct of the sugar was selected as the quantitative ion. The analyte response 

ratios with respect to glucose-d7 (internal standard) were plotted against the mass of 

analyte per sample spot to construct calibration curves. Due to the high variability of 

noise in the blank (and the significant differences in spectra that were obtained when the 
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analyte was present), the LOD and LOQ were calculated based on the standard error of 

the curve (𝑆𝑦/𝑥) using Equations 4-1 and 4-2.  

𝐿𝑂𝐷 = 3 × 
𝑆𝑦 /𝑥

𝑚
                           Equation 4-1 

𝐿𝑂𝑄 = 10 × 
𝑆𝑦/𝑥

𝑚
                        Equation 4-2 

The resulting LODs and LOQs were compared to the average S/N ratios of the 

analyte at the nearest corresponding concentrations and all agreed with accepted criteria 

(i.e. LOD and LOQ correspond to S/N ~ 3 and ~ 10, respectively). In the absence of IL, 

each of the target sugars could be detected at the low ng-level with varying sensitivities 

(Table 4-1) and are similar to previously published MALDI-MS methods.2-4 As 

mentioned in Chapter 3, neither HMF nor levulinic acid could be detected, even at 

relatively high concentrations per spot (i.e. µg-level).  

Table 4-1: Calibration Data for Selected Sugar Analytes as Analyzed by MALDI-TOF 

MS using DHB Matrix 

Analyte LOD (ng 

analyte/spot) 

LOQ (ng 

analyte/spot) 

R2 Slope (m) 

Glucose 0.9 3.1 0.9983 0.0501 

Fructose 0.7 2.4 0.9989 0.0992 

Sucrose 0.9 2.9 0.9922 0.4540 

NAG 0.3 0.9 0.9996 0.3664 
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As mentioned, in this study, the LODs were calculated by taking into 

consideration the standard error of the curve. The calculated LODs and LOQs agreed well 

with experimental values of standards of the same concentration (i.e. S/N ~ 3 and S/N ~ 

10). Therefore, despite the apparent higher sensitivity of this method to sucrose, the LOD 

of sucrose was similar to that of glucose due to the greater error associated with the 

regression (see Table A5-1 in Appendix V). The smaller sugars exhibited similar errors of 

the standard curves and the LODs can be more reasonably compared. NAG exhibited the 

lowest LOD and LOQ, followed by fructose, then glucose.    

 

Figure 4-1: Calibration Curve of Selected Sugars Analyzed by MALDI-MS using DHB 

Matrix (Error bars represent standard deviation of the mean, n = 5) 
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 From the constructed calibration curves, it is apparent that sucrose and NAG are 

detected at higher sensitivities (m = 0.4540 and 0.3664, respectively) than both glucose 

and fructose, but also have notably higher standard deviations (as depicted by error bars 

on corresponding calibration data points). The associated error within the calibration 

points can be attributed to differences in ionization efficiency of these sugars as compared 

to glucose-d7. As expected, the smallest errors are observed with the glucose and fructose 

calibrations, as these sugars are of nearly equal mass and size, with similar functionality 

(i.e. they are isomeric). Sucrose exhibits the highest amount of error, possibly due to the 

fact that is a disaccharide, and has more available sites for cationization as compared to 

the smaller monosaccharides tested in this study. The error associated with each analyte is 

a reflection of the advantage of using isotopically- labeled internal standards for MALDI 

analyses. 

 Since the analytes of interest could be detected at ng-level concentrations, it seems 

plausible that IL-systems containing similar concentration ranges of analytes are feasible 

candidates for MALDI-MS analyses. The addition of an excess of IL, however has 

significant effects on the analyte signals. As was seen in Chapter 3, the ILs in this work 

resulted in significant matrix and analyte suppression. In fact, analytes could only be 

reliably detected at high analyte loading (M:IL:A 1:1:1). 

 To enhance analyte sensitivity in the presence of the IL, the analyte must be able 

to compete with the IL to become ionized in the plume. To demonstrate this, a quaternary 

ammonium salt (QAS), triethylammonium chloride (Et3N•HCl) was added to the sample 

in place of the analyte to examine whether the IL would suppress a preformed ion. The 
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Et3N•HCl was added at one-fiftieth concentration of both the ionic liquid and matrix (i.e. 

M:IL:A 50:50:1). 

 As can be seen in Figure 4-2, the triethylammonium cation (Et3NH+) can be easily 

identified at m/z 130, along with the [EMIM]+ cation (m/z 111). In this case, the 

concentration of Et3NH+ is 50 times lower than typical sugar analyte concentrations that 

were screened in Chapter 3. 

 The much higher sensitivity observed with Et3NH+ as compared to neutral sugars 

can be explained by the charge of the species in the sample spot. In the case of the IL 

cations and QASs such as triethylammonium chloride, the species are already in charged 

form in solution (as they are a part of an ion pair), and therefore likely require little 

assistance from the matrix to achieve ionization. The ionization of neutral sugars, 

specifically glucose, fructose and sucrose, as demonstrated previously, is often difficult to 

achieve by MALDI-MS. In general, these sugars have low proton affinities, and require 

the addition of a cationization agent (e.g. NaCl, or KCl).3,5 Unfortunately, cationization is 

Figure 4-2: MALDI-MS Spectrum of Triethylammonium chloride and [EMIM]Cl with 
DHB Matrix (M:IL:A = 50:50:1) 
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often hard to control and shows relatively low efficiencies. Furthermore, in the presence 

of ILs, significant analyte suppression is observed in MALDI-MS analysis. However, 

resulting MALDI-MS spectra of pre-formed ions (i.e. IL cations and Et3NH+ are much 

more straightforward. Therefore, by introducing a pre-ionized species into the analyte via 

chemical modification, sensitivity of the method can be drastically improved, by allowing 

competitive ionization with the IL species. Therefore, derivatization was employed to 

enhance analyte sensitivity in the presence of the ILs. 

4.5.2  Derivatization of Sugar Analytes  

 There are several derivatizing reagents that can be employed for enhancing 

sensitivity of neutral carbohydrates in analytical applications.6,7 Often, suitable 

derivatives offer advantages such as increased sensitivity and selectivity as compared to 

the native analyte. Sugars such as glucose can be chemically modified to include 

chromophores for optical analyses, to disrupt hydrogen-bonding to promote volatility, or 

to introduce charged centers for improved mass spectrometric analyses. It was 

demonstrated that charged species (such as Et3NH+) could be much more easily detected 

in the presence of IL by MALDI-MS than the neutral sugar analytes. Therefore, it was 

speculated that by introducing a charged center into the analyte structure, analyte 

sensitivity could be increased to allow quantitative analyses in IL-containing reaction 

systems by MALDI-MS. Fortunately, such derivatizing reagents currently exist and are 

commercially available.8 Examples include glycidyltrimethylammonium chloride 

(GTMA) and Girard’s reagent T ((carboxymethyl)trimethylammonium chloride 

hydrazide).  
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Figure 4-3: Structures of Cationic Derivatizating Reagents for Sugar Modification: (a) 

GTMA; (b) Girard’s reagent T 

 Such compounds can react with sugars to form larger derivatives containing a 

cationic center via etherification with GTMA or by hydrazone formation with Girard’s 

reagent T. In fact, both of these compounds have been previously employed specifically 

for enhancing the sensitivity of carbohydrate analysis by MALDI-MS. The resulting mass 

spectra can show abundant analyte ions, with increases in sensitivity of up to 2000 times 

(compared to traditional MALDI-MS of sugars).8,9  

 Although both of the aforementioned compounds could be employed in this work, 

GTMA was chosen as the derivatizing reagent due to its reactivity towards hydroxyl 

groups (as compared to the aldehyde/ketone functional groups). This allows 

derivatization of both reducing and non-reducing sugars, which is applicable to a variety 

of biomass transformation studies including sugars, as well as sugar alcohols such as 

HMF. 

The etherification reaction of GTMA with each sugar likely occurs through the 

primary alcohol group which is less hindered than other hydroxyl groups. Epoxide 

opening under basic conditions follows an SN2-like mechanism, whereby the nucleophile 

(usually an anion) will attack the less substituted side of the epoxide. Although sugars are 

very weak acids (with pKa values close to that of water), the addition of a strong base 

(a)                                                                  (b) 
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such as NaOH can deprotonate the hydroxyl groups to form the corresponding alkoxide. 

Nucleophilic attack by the deprotonated sugar towards the epoxide results in 

etherification and introduction of the charged center into the analyte (Figure 4-4).  

Figure 4-4: Reaction Scheme of Derivatization of Glucose with GTMA 

In this work, a similar procedure was carried out for the derivatization as was 

proposed by Gouw et al.8, with some modifications. Firstly, 0.5 M IL (aqueous) solutions 

containing the analytes of interest were employed, rather than pure aqueous standards. 

Solutions of ILs were employed, rather than ILs in their natural form, for ease of 

quantitative transfer. Since IL-analyte mixtures of standards and test samples are 

generally viscous, solutions of these were prepared based on the amount of IL, and 

volumetrically transferred.  

As previously reported by Gouw et al., the reaction efficiency of this procedure is 

~50 % (after 2 h) when carried out in water. The effects of IL on this procedure were 

studied to determine whether the reaction efficiency is affected. The reactions were 

monitored by 1H NMR using D2O in place of H2O. The reaction components were added 

to an NMR tube, and analyzed after the initial addition of GTMA (t = 0) and again upon 

reaction completion. The glucose conversion after heating at 55 °C for 2 h was 

determined by the relative integration of selected glucose peaks (marked with * in Figure 
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4-5) with respect to an IL peak (which is assumed to remain constant throughout the 

duration of the reaction).  

 

Figure 4-5: 1H NMR Spectra of Glucose-GTMA Derivatization Reaction in [BMIM]Cl: 

(a) at t = 0, (b) at t = 2 h 

Although the NMR spectrum of GTMA was not fully characterized (due to 

abundant, overlapping peaks), specific peaks belonging to GTMA have been identified. 

The peak at 3.22 ppm which results from GTMA (the N-methyl protons) decreases in 

intensity after the reaction (with respect to the IL peak) and the formation of a new peak 

at ~ 3.19 ppm was observed. The changes in intensity correspond to ~ 50 % conversion of 

GTMA, and could represent glucose-GTMA. Note, however, that the glucose conversion 

was monitored (by observation of glucose peaks labelled *) rather than the yield of 

* 

* 

GTMA 

(a) 

(b) 
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glucose-GTMA. The amount of derivatized sugar was not determined by NMR, as the 

presence of many overlapping peaks in the relevant region led to difficulties in 

interpretation. Furthermore, throughout the reaction GTMA can alternatively be attacked 

by hydroxyl ions in solution leading to the hydrolyzed side-product, which would exhibit 

similar chemical shifts to glucose-GTMA. The percent conversion of the other analytes 

was attempted, however, lack of clear peaks for integration rendered this a difficult task. 

The same reaction was carried out in water, however without an appropriate reference 

peak, the conversion could not be accurately calculated. The determined percentage of 

glucose conversion in the ILs is consistent with literature reports of the same reaction in 

water (~ 50 %).8 The seemingly lower conversion of glucose in [EMIM]Cl may be the 

result of the poor resolution of glucose NMR peaks that were obtained in [EMIM]Cl at t = 

0 (data not shown).  

Table 4-2: Glucose Conversion by GTMA in Selected Ionic Liquids 

Solvent % Glucose Conversion (n = 1) 

0.5 M [BMIM]Cl 48.4 

0.5 M [EMIM]Cl 36.9 

0.5 M [EMIM]OAc 47.7 

 

4.5.3  Derivatization of Sugar Analytes with GTMA 

 Although the derivatization of glucose, fructose and sucrose with GTMA has been 

previously demonstrated,8 all test analytes were subjected to the cationization reaction in 
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the presence of each of the ILs (rather than purely aqueous systems). As expected, each of 

the sugar analytes react with the GTMA under alkaline conditions, in both water and 

highly concentrated IL systems. The presence of GTMA-sugar ethers was demonstrated 

by MALDI-MS, whereby target analytes are present at m/z values of [M+116]+.  

Other identified peaks in these mass spectra include unreacted GTMA (m/z 116), 

and hydrolyzed GTMA (m/z 134). These ions do not directly interfere with analysis, and 

therefore purification of the reaction solutions was deemed unnecessary. Note that 

unreacted sugars were not detected in the presence charged IL and GTMA ions. 

Figure 4-6: MALDI-MS Spectra of Sugar Analytes after Derivatization with GTMA in 

[EMIM]Cl, M:IL:A = 10:10:1: (a) Glucose-GTMA; (b) Fructose-GTMA; (c) Sucrose-
GTMA; (d) NAG-GTMA 

(a) (b) 

(c) (d) 

[Glu-GTMA]+ 

[Fru-GTMA]+ 

[Suc-GTMA]+ 

[NAG-GTMA]+ 



 

167 
 

Other identified peaks in these mass spectra include unreacted GTMA (m/z 116), 

and hydrolyzed GTMA (m/z 134). These ions do not directly interfere with analysis, and 

therefore purification of the reaction solutions was deemed unnecessary. It is notable that 

unreacted sugars were not detected in the presence of the highly charged IL and GTMA 

components. 

Each of the tested sugar analytes are readily detected in each of the three IL 

systems studied with no obvious interferences from the matrix components or ILs. In the 

above spectra, the analyte (as spiked in natural form) is present at 10 times less than the 

IL. Considering that it is unlikely that all of the sugar has reacted to form sugar-GTMA 

(as demonstrated with glucose), the presence of these peaks at this IL:A ratio proves to be 

much more sensitive than without derivatization in IL media. To demonstrate this, a 

system containing a 10:1 [BMIM]Cl:glucose (molar) ratio was analyzed by MALDI-MS 

before and after derivatization. As can be seen in Figure 4-7 (a), before derivatization 

with GTMA, no peak was detected belonging to glucose at m/z 203 (as was previously 

demonstrated in Chapter 3). However, after derivatization (Figure 4-7 (b)), glucose-

GTMA (m/z 296) is readily apparent. This demonstrates that introducing a cation center 

into the analyte is a feasible means of detecting these analytes at lower concentrations in 

the presence of IL. 
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Further experimentation was conducted using both HMF and levulinic acid 

analytes. Though these analytes could not be detected by traditional MALDI (with or 

without IL present), derivatization with GTMA readily affords cationized analyte peaks 

belonging to each compound (Figure 4-8). 

Figure 4-8: MALDI-MS Spectra of (a) HMF-GTMA; (b) Levulinic Acid-GTMA (ester) 
with DHB Matrix (reaction carried out in H2O) 

(b) (a) 

[HMF+GTMA]+ 

[LA+GTMA]+ 

(a) (b) 

[Glu-GTMA]+ 

Figure 4-7: MALDI-MS Spectra of 10:1 [BMIM]Cl:Glucose with DHB Matrix (a) Before 

derivatization with GTMA; (b) After derivatization with GTMA 
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Although GTMA is often used specifically with mono- and polysaccharides, it 

appears that it can also be used to chemically modify the platform chemicals of interest in 

this study. It is not surprising that HMF reacts with GTMA since it is chemically similar 

to fructose, and has an available primary alcohol group which can react with GTMA. It 

was also observed that levulinic acid and GTMA react, hence, it appears that ester 

formation is another reasonable means of using GTMA to enhance ionization for 

MALDI-MS analysis. It is speculated that under alkaline conditions, levulinic acid is 

deprotonated and acts as the nucleophile in the epoxide ring-opening. This reaction may 

suffer compared to the sugar-ether formation however, due to reversible base-catalyzed 

hydrolysis which is commonly observed with esters in alkaline conditions. Either way, 

GTMA was shown to successfully react with each of the target analytes in this study, 

allowing enhanced detection of biomass transformation reaction components in IL-

containing systems by MALDI-MS.  

4.5.4  Selection of Appropriate Internal Standards for Quantitation 

 The ideal internal standard (IS) for quantitative analysis should be as chemically-

similar to the analytes of interest as possible, without causing interferences with the 

analysis. In this case, the ideal IS must not only have similar ionization efficiency to the 

target analytes, but also react similarly (competitively) to the derivatizing agent.    

For the analysis of glucose, fructose, sucrose and NAG, isotopically-labeled 

glucose (glucose-d7) was employed as an appropriate internal standard. It is assumed that 



 

170 
 

the ionization efficiencies of each sugar analyte will be proportional to the ionization of 

the IS, and therefore quantitative information can be obtained. In fact, the use of this IS 

seems feasible, given the reasonable error associated with each of these analytes in 

previously constructed calibration curves. Furthermore, since the reaction yields cationic 

derivatives with similar mass and charge, it is expected that these ions will interact 

similarly with incoming laser irradiation. 

The analysis of HMF may be limited by use of glucose-d7 as the IS, however. Due 

to the much higher sensitivity of the derivatized HMF ion than the derivatized glucose 

ion, the range of calibration of HMF is affected, as well as the reproducibility. At high 

concentrations, the calibration curve also begins to plateau, which is observed upon 

detector saturation. In these cases, dilution could be attempted, but this would 

simultaneously dilute other, less sensitive compounds in the reaction mixture. The laser 

intensity could also be adjusted (lowered) to yield less intense ion peaks. However, this 

would require an IS that would similarly adjust to changes in laser irradiation.  
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Figure 4-9: Calibration Curve of HMF-GTMA/Glucose-d7-GTMA in [EMIM]Cl; Error 

bars represent standard deviation of the mean, n = 5 

At first glance, this problem appears to be a matter of ionization efficiency, 

whereby HMF is more easily ionized, so similar concentrations of sugar (e.g. glucose) 

and HMF yield much more intense HMF peaks. However, upon derivatization with 

GTMA, each analyte is pre-ionized in the sample, and the ionization efficiencies should 

be much more similar to one another than the non-derivatized analogues. Therefore, it is 

important to consider the reaction efficiency of the derivatization reaction with each 

analyte. Ideally, the resulting sugar ether would be quantified by NMR to determine the 

reaction yield, however, poorly resolved peaks, and overlap of reagent peaks make this a 

difficult task. Therefore, the percent conversion of HMF to HMF-GTMA was not 

determined. 
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 A more appropriate IS for the quantitation of HMF is an isotopically- labeled HMF 

standard, which could be prepared from the deuterated glucose standard. This process 

would require the preparation, separation and external calibration of the isotopically-

labeled HMF. Due to costs and time restraints, similar compounds were screened as 

potential ISs instead. The compounds used as potential ISs were originally chosen based 

on structural similarity to HMF and availability. The list of compounds was reduced by 

eliminating compounds that upon derivatization yield interfering ions with reagents and 

expected reaction products (with respect to m/z ratio) resulting in a shortened list 

presented in Figure 4-10.  

 The first potential ISs that screened for analysis were furfural, ascorbic acid and β-

hydroxy-γ-butyrolactone, due to their structural similarity to HMF. Furfural, however, 

does not have an available hydroxyl group, through which the GTMA can react. Furfural 

 

Figure 4-10: Structural Similarity of Potential Internal Standards for the Quantitative 
Analysis of HMF 



 

173 
 

is also a dehydration product of HMF and may occur in the reaction systems of interest, 

and is therefore not useful. Ascorbic acid and β-hydroxy-γ-butyrolactone, however, have 

hydroxyl substituents. Therefore, these compounds were subjected to the derivatization 

procedure.  

 Upon derivatization of each compound with GTMA, the resulting solutions were 

analyzed by MALDI-MS using DHB as the matrix. Unfortunately, analysis of the β-

hydroxy-γ-butyrolactone did not result in any observable GTMA-ether peaks (expected 

m/z 218). The reaction of ascorbic acid did result in detectable derivatized ions (m/z 292), 

however, the intensities of similar concentration standards were very low as compared to 

HMF. The data suggests that the GTMA does not react very efficiently with each of these 

chosen compounds. Despite containing hydroxyl substituents, β-hydroxy-γ-butyrolactone 

likely suffers in this reaction, as the hydroxyl group is a secondary alcohol and will be 

less reactive. Ascorbic acid has a primary alcohol group, however, there is significant 

steric hindrance that may slow the reaction.  

 Therefore, it appears that the presence of a primary alcohol group is more 

representative of the reaction efficiency of HMF with GTMA.  Unfortunately, many of 

the furan alcohols that are available, are bio-derived compounds from similar sugars and 

may occur in the reaction medium as side products. To avoid this, benzyl alcohol (BnOH) 

was employed as a potential IS. Much like HMF, BnOH is an aromatic primary alcohol. 

Therefore, it is speculated that the two compounds will likely react similarly with GTMA.  
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Figure 4-11: MALDI-MS Spectrum of HMF-GTMA and BnOH-GTMA in [BMIM]Cl 

using DHB Matrix 

 Preliminary reaction of BnOH with GTMA and subsequent analysis by MALDI 

yielded significant derivatized ion intensity (m/z 224), which does not appear to cause 

interference with the analysis of other test analytes. HMF does appear to have a higher 

response factor than BnOH, but BnOH appears to be more representative of HMF than 

glucose-d7. Therefore, BnOH was employed as an IS for subsequent HMF analysis. 

4.5.5  Quantitative Analysis of GTMA-Derivatized Analytes in ILs 

 For quantitative purposes, calibration curves of derivatized glucose (glucose-

GTMA) were constructed (Figure 4-12). Glucose was derivatized in water, as well as in 

each of the ILs in this study ([BMIM]Cl, [EMIM]Cl and [EMIM]OAc). As expected, the 

sensitivity of glucose was similar regardless of the solvent system (as isotopically- labeled 

glucose was used as the IS without the presence of significant interferences of either m/z 

ratio). In all cases, the calibration curves exhibited linear behavior over a wide dynamic 

range (LOD – 400 ng) which is appropriate for quantitation of analytes in IL systems 

(Table 4-3). 

[HMF+GTMA]+ [BnOH+GTMA]+ 
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Table 4-3: Calculated LODs and LOQs of Glucose-GTMA in Various Solvent Systems 

by MALDI-MS 

System LOD 

(ng/spot) 

LOQ 

(ng/spot) 

% RSDs* 

Glucose-GTMA in Water 14.0 46.6 4.2 – 8.7 % 

Glucose-GTMA in 

[BMIM]Cl 

8.3 27.6 2.0 – 5.8 % 

Glucose-GTMA in 
[EMIM]Cl 

3.1 10.3 1.2 – 6.4 % 

Glucose-GTMA in 
[EMIM]OAc 

7.4 24.7 2.8 – 7.2 % 

*of standards in working range of the curve 
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Figure 4-12: Glucose-GTMA/Glucose-d7-GTMA Response by MALDI-MS using DHB 

Matrix in the Presence of ILs 
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 LODs of derivatized analytes vary depending on the solvent (H2O or IL), but in all 

cases are comparable to the LODs of the native analytes determined in the absence of IL 

(refer to Table 4-1). In the presence of IL (prior to derivatization), the analyte could only 

be reproducibly identified at relatively high analyte loading (μg/spot), whereas upon 

derivatization, ng-level concentrations were observed with minimal matrix interference or 

suppression. Interestingly, the LODs of glucose-GTMA were lower when analyzed in 

each IL than in water. Since the LOD is based on the standard error of the regression, it 

appears that more error is associated with the calibration standards in water than the ILs. 

Furthermore, lower % RSDs were obtained when glucose was analyzed in the ILs. This 

may be a result of the glassy liquid sample spots which are more homogeneous than the 

crystalline sample spots which were observed upon spotting derivatized reaction mixtures 

in purely aqueous systems.  

 Since the IS in this case is isotopically- labeled glucose, it is difficult to make 

comparisons between the calibration curves constructed in the different IL systems, since 

the IS will theoretically react and ionize by the same means as glucose. This leads to very 

small differences in the analyte/IS response ratio. The absolute analyte intensity within 

each system should give more information, however the large error associated with 

external calibration make this a difficult task. The absolute intensities of the IS (constant 

concentration in all standards/solvent systems) can, however, give an indication of overall 

analyte sensitivity.  
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Table 4-4: Absolute Intensity of Glucose-d7 in Water and IL Solvent Systems 

Solvent Average Absolute Intensity 

Glucose-d7 (IS) (all 

standards, n = 40)* 

% RSD 

Water 4367.0 52.3 % 

[BMIM]Cl 6513.2 57.0 % 

[EMIM]Cl 7505.0 47.4 % 

[EMIM]OAc 2639.6 52.2 % 

*values for individual standards can be seen in Table A5-2  

The high % RSDs represent the variation in the absolute intensities of IS from 

spot-to-spot as well as variation arising from different analyte concentrations, reiterating 

the difficulty in achieving quantitative information by MALDI-MS in the absence of a 

reference peak. Although the average absolute intensities of the IS in both [BMIM]Cl and 

[EMIM]Cl are not statistically different, these values are statistically greater than those 

intensities in water and [EMIM]OAc. This indicates that the chloride-containing ILs 

afford higher sensitivity of glucose-d7 and hence, is a good indication of the overall 

intensities expected for similar sugar analytes. The apparent decrease in overall IS 

intensity in [EMIM]OAc solvent may be a result of matrix deprotonation which impacts 

the electronic behavior of the matrix and effects the ability of the matrix to absorb laser 

radiation and promote desorption/ionization (as discussed in Chapter 2). 

Overall, each solvent allows a linear response with increasing glucose 

concentration from 4 to 414 ng glucose/spot standards (as calculated after dilution). This 

dynamic range allows for the detection and quantification of a range of analyte 
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concentrations that would be expected in a typical biotransformation reaction system (i.e. 

1 – 100 % consumption).  

4.5.6  Application of MALDI-MS for the Analysis of GTMA-Sugar Ethers in IL 

Systems 

 Upon constructing appropriate calibration curves, the proposed MALDI-MS 

method of derivatizing analytes prior to analysis was used to monitor a model biomass 

transformation reaction. Specifically, the CrCl3-catalyzed dehydration of fructose to HMF 

in [BMIM]Cl was monitored.  

At timed intervals, (after allowing ~ 10 minutes for mixing and complete 

dissolution of reaction components), ~ 50 mg aliquots of the reaction mixture (containing 

IL, analyte, products, and catalyst) were removed, diluted, and subsequently derivatized 

according to the procedure as listed in the Methods section of this chapter. Finally, a 

portion of the derivatized reaction mixture was mixed with DHB for MALDI-MS 

analysis. Single-component standards were prepared to represent the reaction systems. 

Equal volumes of 1 M aqueous IL solution and solutions of varying analyte concentration 

(100, 75, 50, 25, 10, 5, 1 mM) were prepared to yield 0.5 M IL solutions containing 50, 

37.5, 25, 12.5, 5, 2.5, and 0.5 mM analyte. Further dilution upon derivatization, and 

+ 3 H
2
O 

6 mol % CrCl
3
•6H

2
O 

80°C, [BMIM]Cl 

Figure 4-13: Reaction Scheme of CrCl3•6H2O-catalyzed Dehydration of Fructose to HMF 
in [BMIM]Cl  



 

180 
 

subsequent MALDI analysis afforded calibration curves with a range of approximately 1 

– 100 ng fructose/μg [BMIM]Cl and 1 – 75 ng HMF/μg [BMIM]Cl. 

 

Figure 4-14: Calibration Curve of Fructose-GTMA/Glucose-d7-GTMA vs. Concentration; 

Error bars represent standard deviations of the mean response, n = 5 

Fructose was calibrated using glucose-d7 as the IS. The calibration curve exhibits 

good linearity (R2 = 0.9973) over the range of concentrations used. Note that the standard 

at ~ 75 ng/µg [BMIM]Cl was excluded from the curve, as it was deemed an outlier. The 
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LOD and LOQ were calculated using the standard error of the curve, and were 

determined to be 7.2 and 23.9 ng fructose/μg [BMIM]Cl, respectively. In the case of 

fructose calibration, the % RSDs ranged from 6.0-24.6 % in the working range of the 

curve (i.e. above the LOD). 

 

Figure 4-15: Calibration Curve of HMF-GTMA/BnOH-GTMA vs. Concentration; Error 

bars represent standard deviations of the mean response, n = 5 

y = 0.2689x - 0.6342
R² = 0.9931

0

2

4

6

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 P
ea

k
 H

ei
gh

t 
R

at
io

 (
H

M
F

/B
nO

H
)

Concentration (ng HMF/μg [BMIM]Cl)



 

182 
 

 HMF was calibrated using BnOH as the IS rather than glucose-d7 (as described 

previously). Again, the calibration (Figure 4-15) exhibits good linearity (R2 = 0.9931) 

over the range of calibration standards. The HMF/BnOH response is relatively high, as 

HMF appears to be much more sensitive to the derivatization/ionization process. The 

limits of detection and quantitation were determined to be 7.5 and 25.2 ng HMF/μg 

[BMIM]Cl, respectively. The % RSDs of calibration standards in the working range were 

between 15.1 – 30.1 %. Though the error associated with the HMF calibration is larger 

than that of fructose, these % RSDs are reasonable for MALDI-MS quantitation. 

 It is important to note that the LOD and LOQ in each case was calculated based 

on the standard error of the regression line. In these cases, whereby the analyte and IS are 

not as closely related as glucose and deuterated glucose, for example, the standard error 

of the curve increases significantly. Therefore, the resulting LODs and LOQs are over-

estimated, and do not reflect analyte concentrations with approximate S/N ratios of 3 and 

10, respectively. For example, the lowest HMF standard (~0.7 ng HMF/µg [BMIM]Cl), 

has a mean S/N ratio of 56, which is much higher than the criteria set by the LOQ (i.e. 

S/N ~10). Furthermore, all fructose standards > 5 ng fructose/µg [BMIM]Cl (i.e. all 

except the lowest standard) have a mean S/N > 10. Therefore, it seems that this method is 

not ideal for calculating LOD and LOQ. Furthermore, the S/N ratio is dependent on all 

components in the sample spot. In the case of reaction mixture samples, the presence of 

catalyst, by-products, etc., as well as the overall intensity of the mass spectrum can 

adversely affect the S/N ratio. This means that the prepared standards are not necessarily 

representative for the purposes of calculating LOD and LOQ. Therefore, for all reported 
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data, the mean S/N ratio was determined to ensure that the peak was quantifiable (i.e. S/N 

> 10). This finding reinforces the need of isotopically- labeled ISs in MALDI-MS 

analyses. 

In this experiment, two reactions were monitored; one without catalyst and the 

other with 6 mol % CrCl3 catalyst. At 60 min intervals from the time of dissolution until 

the reaction was ceased, aliquots were removed and quenched with water (to yield 0.5 M 

IL solutions based on the mass fraction of reaction mixture) and stored in the refrigerator 

at 4 °C to effectively halt the reaction. All aliquots were derivatized simultaneously to 

account for potential changes in temperature and time of reaction. It is assumed that 

through reaction quenching with water, the dehydration reaction of glucose is stopped and 

that throughout the derivatization procedure no further HMF is formed from glucose (as 

no sign of HMF formed from glucose-d7 is evident). The catalyst is effectively diluted 

and the amount of water present should act to disrupt the dehydration procedure. The 

resulting peak height ratios of fructose/glucose-d7 and HMF/BnOH were compared to the 

constructed calibration curves and tabulated (Tables 4-5 and 4-6). 

The % RSDs of the calculated fructose and HMF concentrations are all < 30 %, 

with the majority of errors between 10 – 15 %. These % RSDs are reasonable considering 

that each analyte was quantified based on a chemically different compound (IS). This can 

be attributed to the differences in either the ionization efficiencies of each analyte, or the 

degree of derivatization with GTMA. 
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Table 4-5: Concentration of Fructose and HMF as a Function of Reaction Time in the 

Non-Catalyzed Dehydration Reaction in [BMIM]Cl at 80 °C 

 

Table 4-6: Concentration of Fructose and HMF as a Function of Reaction Time in the 

CrCl3-Catalyzed Dehydration Reaction in [BMIM]Cl at 80 °C 

† As weighed directly into reaction vial; * First aliquot taken after ~10 min to allow 

melting and dissolution of reaction components  

 

Note that the mean S/N ratio for each peak was calculated to ensure that the peak 

was above the LOQ. In all cases, the HMF peaks were well above S/N ~ 10. The aliquots 

taken at 130 and 190 min from the catalyzed reaction (vials 2-3 and 2-4), however, each 

Vial Time (min) [Fructose] 

(μg/mg 

[BMIM]Cl) 

%RSD [HMF] (μg/mg 

[BMIM]Cl) 

% RSD 

 0 96.4† --- --- --- 

1-1 10* 91.3 ± 10.5 11.5 % 4.43 ± 0.65 14.6 % 

1-2 70 42.3 ± 2.2 5.2 % 3.44 ± 0.06 1.7 % 

1-3 130 19.2 ± 0.9 4.5 % 9.16 ± 1.07 11.7 % 

1-4 190 8.28 ± 0.57 6.9 % 13.9 ± 1.2 8.6 % 

Vial Time (min) [Fructose] 

(μg/mg 

[BMIM]Cl) 

%RSD [HMF] (μg/mg 

[BMIM]Cl) 

% RSD 

 0 96.0† --- --- --- 

2-1 10* 57.4 ± 8.8 15.4 % 12.1 ± 2.7 22.1 % 

2-2 70 32.9 ± 5.3 16.2 % 47.1 ± 7.5 16.0 % 

2-3 130 8.27 ± 2.30  27.8 % 41.7 ± 5.5 13.3 % 

2-4 190 6.00 ± 0.77 12.8 % 31.8 ± 3.7 11.6 % 
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had fructose peaks with S/N ratios of ~ 5. Therefore, these peaks are below the LOQ 

criteria (but above the LOD criteria). These peaks were included in the following figures 

for informational purposes only. Interestingly, vials 1-4 and 2-3 had similar calculated 

concentrations. The mean S/N ratio of the peaks in the mass spectra belonging to vial 1-4, 

however, is 18. This shows that the limits of detection can vary greatly depending on the 

reaction matrix, and should be carefully examined before data is reported.  

Comparison of the initial reaction mixtures (after dissolution of analyte, in the 

presence of catalyst) in Figure 4-16 (a), shows easily identifiable peaks for fructose-

GTMA (m/z 296) and glucose-d7-GTMA (m/z 303), as well as peaks corresponding to 

HMF-GTMA (m/z 242) and BnOH-GTMA (m/z 224). After 190 min when the reaction 

was ceased (Figure 4-16 (b)), the fructose-GTMA peak has decreased with respect to the 

glucose-d7 IS peak, while the HMF-GTMA peak has significantly increased (relative to 

BnOH-GTMA). It is important to note that due to the differences in the relative 

sensitivities of each of the analytes to this method, the peak heights for fructose and HMF 

will not necessarily change proportionally (i.e. the HMF-GTMA peak will not increase by 

the same amount as the fructose-GTMA peak decreases). It can also be noted that there is 

minimal interference from other ion peaks. 
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Graphically, this reactions can be monitored by the steady decrease in fructose 

concentration, accompanied by an increase in the HMF concentration. Comparison of the 

non-catalyzed (Figure 4-17) and catalyzed reactions (Figure 4-18) show much faster 

fructose conversion with the catalyst, as well as higher overall yield of HMF. 

Alternatively, this data can be used to monitor the fructose conversion rate, or the percent 

yield of HMF as a function of time (as shown in Figure 4-19). Corresponding data can be 

seen in Table A5-4. 

 

 

Figure 4-16: MALDI-TOF MS Spectra of the Catalyzed Dehydration Reaction of 
Fructose to HMF in [BMIM]Cl: (a) at t = 10 min, (b) at t = 190 min 

[HMF+GTMA]+ 

[Fru+GTMA]+ 

[BnOH+GTMA]+ 

[Glu-d7+GTMA]+ 
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Figure 4-17: Reaction Monitoring of the Dehydration of Fructose to HMF (without 

catalyst) in [BMIM]Cl as a Function of Reaction Time by MALDI-MS 

 

Figure 4-18: Reaction Monitoring of the Dehydration of Fructose to HMF (catalyzed by 

CrCl3) in [BMIM]Cl as a Function of Reaction Time by MALDI-MS 
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Figure 4-19: Comparison of HMF Yield as a Function of Reaction Time with and without 

Catalyst 

 This experiment is consistent with literature reports of the dehydration of fructose, 

whereby the addition of a catalyst promotes faster fructose conversion.10,11 By monitoring 

the reaction by MALDI-MS as a function of time, it can be noted that the yield of HMF in 

the catalyzed reaction actually decreases after reaching a maximum at 70 min. This may 

indicate the formation of side products in the reaction. Typical side products in the 

dehydration of fructose to HMF include levulinic acid, formic acid and the formation of 

insoluble polymeric humins. Specifically, levulinic acid and formic acid can react with 

GTMA (m/z 232 and 162, respectively), however, neither of these products were 

identified in either of the resulting spectra (possibly below analyte detection limits which 

were not determined in this study). By removing additional aliquots in a future 

experiment, the yield can be more accurately demonstrated to give a better understanding 

of the reaction kinetics. 
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The ability of this method to monitor reactions at various points during the 

experiment allows for the accumulation of many data points (depending on the intervals 

at which aliquots are removed). Aliquots can then be simultaneously derivatized and 

analyzed by MALDI-MS. The effect of a catalyst, for example, on a reaction system 

(whereby temperature and reaction time are equal) can be effectively monitored using the 

proposed method.  

4.5.7  Conclusions and Future Work 

 In conclusion, the proposed method allows for the quantitation of biomass 

components such as sugars and platform chemicals (containing accessible hydroxyl 

functional groups) in ILs by MALDI-TOF MS. This is accomplished by introducing a 

charged functional group into compounds which allows sugars to be pre-ionized and 

allow for analyte suppression by IL ions to be overcome. LODs of derivatized glucose 

and fructose are comparable to typical MALDI analyses in the absence of ILs. This 

procedure also allows for the simultaneous detection of more volatile compounds such as 

HMF and levulinic acid, which were not detected by traditional MALDI methods. With 

the use of an appropriate IS to account for ionization efficiency, these analytes can readily 

be quantified by comparing to representative standards, and do not require prior 

separation from the IL solvent.  

 Further experimentation is required to validate the proposed method with existing 

methods for the analysis of sugars and platform chemicals (i.e. by GC-MS, LC-MS). 

Other cationic derivatizing agents could be screened for the potential to react with other 

functional groups, to allow more rapid conversion or for the analysis of dehydration 
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products that do not contain hydroxyl groups. Calibration curves for the other analytes 

could be constructed and similarly applied to reaction systems containing NAG, sucrose 

and levulinic acid, as well as biopolymers such as cellulose and chitin, to monitor 

depolymerization of raw feedstocks into sugars, followed by further transformation into 

platform chemicals. Finally, the reaction efficiency of the derivatization could be more 

accurately determined to determine the reproducibility of the derivatization, as well as to 

enhance the reaction and thereby increase overall method sensitivity.  
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Chapter 5: Qualitative Analysis of Small Molecule Platform 

Chemicals in Ionic Liquids by Desorption Electrospray 

Ionization Mass Spectrometry 

5.1  Introduction 

Desorption electrospray ionization mass spectrometry (DESI-MS) is a novel 

means of achieving ionization under ambient conditions. This allows for the acquisition 

of chemical information from samples in their native state. By combining surface 

desorption ionization with traditional electrospray, DESI-MS can be tailored to a huge 

range of applications from surface analysis, imaging, biological and forensic analyses, 

and many more.  

DESI-MS has grown significantly in popularity due to rapid data acquisition and 

minimal sample preparation. The ability of the source to ionize analytes of interest from 

their native state allows a more accurate depiction of complex chemical systems.1 

Previous studies have employed DESI-MS for the analysis of carbohydrates and a variety 

of small compounds.2,3 Until now, however, DESI-MS has not been used to analyze such 

analytes in ionic liquid media. 

In this chapter, DESI-MS is employed for the qualitative screening of target 

platform chemicals glucose, 5-hydroxymethylfurfural (HMF) and levulinic acid in ILs, as 

an alternative means of monitoring biomass transformation processes without the need of 

derivatization. Unlike MALDI-MS, where analytes are ionized in a low pressure 

atmosphere, DESI-MS can be used to promote ionization at ambient pressure. Since HMF 



 

193 
 

and levulinic acid were not detected by traditional MALDI-MS experiments, it was 

proposed that DESI-MS could provide a means of detection of the analytes without the 

need for chemical modification. 

5.2  Materials 

D-(+)-Glucose (≥ 99.5 %) and 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) 

(98 %) were obtained from Sigma-Aldrich (St. Louis, MO). The 1-butyl-3-

methylimidazolium chloride ([BMIM]Cl) (96 %) was purchased from Alfa Aesar (Ward 

Hill, MA), and 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) (> 95 %) was 

purchased from Io-Li-Tec (Tuscaloosa, AL). 5-Hydroxymethylfurfural (HMF) (98 %) 

was obtained from AK Scientific (Union City, CA) and levulinic acid (98 %), (±)-β-

hydroxy-γ-butyrolactone (96 %), and chromium (III) chloride hexahydrate (98 %) were 

purchased from Alfa Aesar (Shore Road, Heysham, Lancs.). Water, methanol and 

acetonitrile (HPLC grade, 99.9 %) were obtained from Fisher Scientific (Fair Lawn, NJ). 

All chemicals were used without further purification. 

5.3  Instrumentation 

5.3.1  DESI-MS 

 All mass spectrometric analyses were carried out using a Xevo T-QS mass 

spectrometer (Waters) equipped with a 2-D DESI ion source (Prosolia). The spray solvent 

(1:1 methanol:water or 1:1 methanol:water + 0.1 % formic acid) was delivered using a 

syringe pump at a flow rate of 2 µL/min, with a N2 gas nebulizer pressure of 100 psi. The 

source temperature was set as 100 °C. For analyses in positive ion mode, the capillary 
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voltage was set to + 3 kV, while in negative ion mode the capillary voltage was set to - 4 

kV. 

The spray tip was positioned at an incident angle of 55 °, the distance between the 

spray tip and the Omni-slide surface was 2 mm, and the distance between the ion transfer 

line and the surface was ~ 0.5 mm (refer to Figure 1-13 for schematic). 

Data was acquired as the total ion current (TIC) over 0.5 min of sampling (manual 

dwell oscillating over the sample spot surface to avoid analyte depletion). All reported 

mass spectra are the combined total of the TIC over the entire sampling time. Data was 

exported to mMass for processing.  

5.4  Methods 

5.4.1  Standard Preparation 

 Stock solutions of HMF and levulinic acid were prepared in 2:1 acetonitrile/water 

at a concentration of 20 mM. These stock solutions were used to prepare working 

standards containing 20 µM, 200 µM and 2 mM of each analyte. Stock solutions of 100 

mM [BMIM]Cl, [EMIM]Cl and [EMIM]OAc were similarly prepared in 2:1 ACN:H2O 

(v:v). These solutions were then used to prepare 20 mM working solutions. Equal 

volumes (500 µL) of each analyte and each IL were separately mixed in 2-mL vials to 

yield solutions containing 10 mM IL and 100 µM or 1 mM analyte. The method blank 

was composed of 10 mM IL in 2:1 ACN:H2O. 
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5.4.2  Sample Deposition 

 Sample volumes of 1 µL of each solution were spotted onto a 66-well Teflon-

coated Omni slide DESI substrate (via dried droplet method). The solvent was allowed to 

evaporate at room temperature (~ 15 min) before the slide was manually loaded into the 

sample chamber at atmospheric pressure. 

5.5  Results and Discussion 

5.5.1  Sample Preparation 

The spray solvent serves to provide an electrically charged mist directed at the 

sample, as well as a solvation and extraction medium upon sample wetting.4 Typical 

spray solvents for a particular analysis are based on compatibility with instrumentation 

and ability to dissolve (often, selectively) the analyte of interest. Additives are often 

employed to promote protonation or cationization as required by the analyte class.5 In this 

study, the spray solvent was chosen as 1:1 methanol:water, in which each of the analytes 

are readily soluble. For the analysis of glucose, NaCl (10 µM) was added to the spray 

solvent to promote cationization, while for HMF analysis, 0.1 % formic acid was added to 

promote protonation.  

 Similar to MALDI analyses, the sample spotting technique can be tailored to 

promote homogeneous sample spots. In this case, the dried droplet method was used, 

whereby standards containing the analyte of interest in solutions of IL were spotted onto a 

Teflon-coated Omni slide and allowed to dry. Initially, 1:1 methanol:water solution was 

employed for this purpose, as the solution provided dissolution of both IL and analyte 
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with relatively quick drying times. For the analysis of HMF, however, the presence of 

methanol resulted in an abundant ion with m/z 141. MS/MS studies indicate that this ion 

is likely the methyl ester of HMF (formed through acid-catalyzed esterification). 

Interestingly, this ion was not identified in resulting mass spectra when methanol was 

employed as the spray solvent. The spotting solvent was therefore changed to 2:1 

ACN:H2O, which did not result in appreciable amounts of these ions. 

5.5.2  Instrument Parameters 

 The capillary voltage was optimized by increasing the voltage while monitoring 

the peak intensity of the molecular ion of the highest concentration standard. The 

capillary voltage was set to avoid detector saturation and to minimize unwanted 

interference from other ions. Increasing the voltage generally resulted in increased analyte 

signal, however, at the cost of increased noise and interfering ions.  Through trial and 

error, the near optimum capillary voltage was found to be + 3 kV for analysis of HMF in 

positive mode and - 4 kV for analysis of levulinic acid in negative mode.  

 The DESI spray and collection process is highly dependent on the geometric 

parameters of the spray tip and ion transfer line.3 The angle and distance from which the 

spray contacts the sample affect the ionization process, whereas the angle and distance of 

the ion transfer line from the sample affect the ion collection efficiency. By manually 

changing these parameters, generally an optimized ion signal can be obtained for a 

particular set of analytes. These parameters have been arbitrarily set by previous 

experimentation for the analyses of carbohydrates (i.e. glucose).3 Although glucose was 

not detected in this work, the geometric parameters were set to mimic previous analyses 
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of sugars. Therefore, the methodology could be tailored to suit an abundance of bio-

derived compounds, specifically those of poorer ionizability and volatility.  

5.5.3  Initial Analyte Screening by DESI-MS 

In previous work by Khemchyan et al., IL reaction systems of biomass 

components have been analyzed using a modified ESI-MS method.6 As pre-ionized 

species, the IL ions overwhelmed and saturated resulting spectra. To combat this, 

Khemchyan et al. employed MS gating, to allow only analyte ions to be detected, which 

resulted in improved sensitivity. In this work, a similar experiment was carried out, 

however, IL ions could be detected after the sample was depleted. This carry-over can be 

harmful to the instrument and result in contamination. Since DESI-MS ionizes analytes 

by a similar mechanism, it was speculated that DESI could be tailored to ionize analytes 

of interest while avoiding detector saturation by less volatile IL ions. 

Glucose and other small carbohydrates have been successfully ionized via DESI-

MS in previous work.2,3,7-9 Using similar operating parameters, however, resulted in no 

detectable ions for glucose using the available instrumentation. The capillary voltage, 

spray solvent (and additives), source temperature, as well as geometric parameters were 

systematically altered to enhance ion signal, but these attempts were unsuccessful. At 

relatively high concentrations of analyte (µg/spot), parameters were adjusted and the 

resulting mass spectrum monitored in real-time. The solvent spray, in particular, was also 

tailored to include varying concentrations of cationization agents (NaCl, NH4Cl and KCl 

in aqueous methanol or acetonitrile). Unfortunately, despite many efforts, glucose was not 

detected by DESI-MS. Therefore, the focus of this work was shifted to the analysis of 
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volatile platform chemicals HMF and levulinic acid which could not be directly analyzed 

by MALDI-MS (in vacuum).  

The other test analytes HMF and levulinic acid are much more easily ionized by 

DESI, and also have appreciable volatilities at room temperature. Initial screening of 

aqueous standards of HMF and levulinic acid generated abundant [HMF+H]+ and [LA-

H]- ions (in positive and negative ion modes, respectively). Therefore, these analytes were 

analyzed in IL solvents to determine the applicability of DESI-MS for reaction 

monitoring. Operating parameters were adjusted in real-time to yield appreciable ion 

signal without causing spectrum saturation by the IL ions. In each case, parameters were 

not fully optimized, rather set to achieve reproducible spectra and validate the potential of 

DESI-MS for such applications. 

5.5.4  DESI-MS of IL Media 

 Analysis of ILs using MALDI-MS generates high intensity ion peaks leading to 

detector saturation and analyte ion suppression. Unlike MALDI, however, DESI can be 

tailored to selectively ionize a particular compound based on its chemical properties and 

adjustment of operating parameters. The spray solvent acts an extractive medium, and 

secondary ions are formed due to sample “jetting” and are projected towards the MS.5 

During initial IL screening by DESI, it was noted that to achieve ion signal (for the IL 

cation), operating parameters often needed to be adjusted, which could be advantageous 

in the analysis of more volatile compounds. 
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 To determine the applicability of ILs in DESI-MS analyses, three ILs of interest 

([BMIM]Cl, [EMIM]Cl, and [EMIM]OAc) were screened as matrix blanks. A spectrum 

of 2:1 ACN:H2O on the Omni-slide was collected as the background (Figure 5-1 (a)), and 

compared to the resulting positive ion spectra of ILs (Figure 5-1 (b)-(d)).  
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Figure 5-1: DESI-MS Spectra of Method Blanks in Positive Ion Mode: (a) 2:1 ACN:H2O, 

(b) 10 nmol [BMIM]Cl, (c) 10 nmol [EMIM]Cl, (d) 10 nmol [EMIM]OAc 

(a) 

(b) 

(c) 

(d) 

Base peak: 8.26 x 106 

Base peak: 4.32 x 107 

Base peak: 1.49 x 107 

Base peak: 5.37 x 106 
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As can be seen in Figure 5-1 (a), the Omni-slide blank has few ions present, 

despite the high sensitivity of the DESI source and the TQ-S mass analyzer. The most 

abundant ions present are those that appear at m/z values of 79, 106, 135, and 201 

(unidentified). Upon addition of IL (Figure 5-1 (b), (c), (d)), the IL cation is readily 

apparent ([BMIM]+ at m/z 139, and [EMIM]+ at m/z 111). The ions in the blank can also 

be observed, with the addition of ions with m/z 83, which likely belong to protonated 1-

methylimidazole, a decomposition product of 1,3-dialkylimidazolium ILs. In general, the 

spectra are relatively clean (as compared to MALDI-MS, for example) as there is no need 

for added matrices to promote ionization. There is ample opportunity for small molecule 

analysis with minimal interference, such as for the analysis of small platform chemicals. 

In negative mode, spectra were acquired of the same spots to determine potential 

interferences for the analysis of levulinic acid. Unlike the acquired spectra in positive 

mode, there are very few differences between each of the IL substrates in negative ion 

mode (Figure 5-2). Many of the ions that appear in the ILs, also appear in the method 

blank (2:1 ACN:H2O). In fact, none of the resultant ions in the spectra of the ILs could be 

identified as 1,3-dialkylimidazolium ions. Since the ILs of interest are composed of large, 

bulky cations and small anions, it is not surprising to see few negatively charged species 

in the low mass region. This is potentially beneficial for the analysis of of low mass 

negatively charged ions. 
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Figure 5-2: DESI-MS Spectra of Method Blanks in Negative Ion Mode: (a) 2:1 

ACN:H2O, (b) 10 nmol [BMIM]Cl, (c) 10 nmol [EMIM]Cl, (d) 10 nmol [EMIM]OAc 

(a) 

(b) 

(c) 

(d) 

Base peak: 2.93 x 107 

Base peak: 1.58 x 107 

Base peak: 9.56 x 106 

Base peak:  

7.77 x 105 
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5.5.5  Qualitative DESI-MS Analysis of HMF in IL Media 

 Through preliminary screening, HMF could easily be detected by DESI-MS as the 

protonated molecular ion [M+H]+ at m/z 126.8. Other fragment ions at m/z 108.8 

corresponding to dehydrated HMF (i.e. [HMF-H2O+H]+) are also observed (refer to 

Figure 5-3). In this study, HMF was analyzed by DESI-MS in the presence of an excess 

of IL (10 – 100-fold) to determine whether DESI-MS is a viable analytical technique for 

the analysis of small volatile compounds in ILs.  

 Standards were prepared as per the Methods section in this chapter. The resulting 

sample spots contain 10 nmol of IL and either 1 nmol HMF (10:1 IL:A ratio) or 100 pmol 

HMF (100:1 IL:A ratio). At the 10:1 ratio, HMF ions (m/z 126.8 and 108.8) can be easily 

identified along with the corresponding IL cation (Figure 5-3). In all cases, the protonated 

molecular ion (m/z 126.8) was detected with a S/N ratio of ~ 10. Furthermore, at lower 

concentrations (i.e. 100:1 IL:A), [HMF+H]+ can still be easily detected in the presence of 

each IL with a S/N ratio of ~ 3 (data not shown). Further optimization of operating 

parameters could allow enhanced sensitivity and a viable means of quantitation. 

 

  

 

 

 



 

204 
 

 

 

 

 

Figure 5-3: DESI-MS Spectra of 10:1 IL:HMF in Positive Ion Mode: (a) [BMIM]Cl, (b) 

[EMIM]Cl, (c) [EMIM]OAc 

(a) 

(b) 

(c) 

[HMF+H]+ 

[HMF-H2O+H]+ 

[BMIM]+ 

[EMIM]+ 

[EMIM]+ 

Base peak: 3.38 x 107 

Base peak: 1.67 x 107 

Base peak: 1.86 x 106 
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5.5.6  Qualitative DESI-MS Analysis of Levulinic Acid in IL Media 

Similarly, levulinic acid could be readily detected using DESI-MS during 

preliminary studies. In negative mode, the deprotonated ion at m/z 114.8 is easily 

distinguishable from background ions (see Figure 5-4). In the presence of ILs, similar 

results were obtained. As shown previously, in negative mode, the IL causes very few 

interfering ions, and the analyte is a prominent ion in the resulting mass spectra. At an 

IL:A ratio of 10:1, levulinic acid can be detected at S/N ratios > 23, showing a higher 

sensitivity than HMF in positive mode. At 100:1 IL:A, the analyte can be detected at S/N 

ratios > 7 (data not shown). With very little noise (as compared to HMF analyses in 

positive mode), there is ample opportunity to develop methodology for the analysis of 

levulinic acid in IL media.  

Although not specifically studied, it appears that the presence of IL does not have 

a significant suppression effect on the analytes. One of the issues that was observed 

during initial analyte screening was that the analyte ion signal (especially for HMF) 

would decrease substantially over time during spectra acquisition. This is likely due to the 

high volatility of the target analytes. When spotted with IL, however, this finding was less 

pronounced. The IL may serve as a medium in which the analyte can partition, and 

effectively minimizing analyte depletion and uncontrolled volatilization. Further studies 

are required to confirm these observations.  
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Figure 5-4: DESI-MS Spectra of 10:1 IL:LA in Negative Ion Mode: (a) [BMIM]Cl, (b) 

[EMIM]Cl, (c) [EMIM]OAc 

(a) 

(b) 

(c) 

[LA-H]- 

Base peak: 5.79 x 107 

Base peak: 7.73 x 106 

Base peak: 1.10 x 107 
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5.6  Conclusions  

 DESI-MS was employed for the qualitative screening of HMF and levulinic acid, 

two versatile platform chemicals produced from biomass feedstocks, in IL solvents. This 

novel technique shows good potential for the rapid quantitative analyses of these 

chemicals in IL media, without the need of chemical modification. Analytes of interest 

can be detected without interferences from IL solvents within seconds. Although glucose 

was not detected in this study, there is potential to further optimize and develop DESI-MS 

methods to include a wide variety of biomass-relevant analytes, to provide an alternative 

means of reaction monitoring compared to traditional chromatographic methods. 
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Chapter 6: Conclusions and Future Work 

 

In this work, MALDI-TOF MS and DESI-MS were employed as alternative 

analytical methods to traditional chromatographic methods for the analysis of platform 

chemicals in IL solvents. Specifically, this work focused on the analysis of small sugars, 

glucose, fructose, sucrose and NAG, as well as two versatile value-added chemicals HMF 

and levulinic acid. Currently, analysis of these compounds in IL-mediated reaction 

systems require energy-intensive extraction and separation before chromatographic 

analyses. By developing methods that allow rapid analysis with minimal to no sample 

preparation, the overall cost of biomass transformation reactions in green solvents such as 

ILs can be minimized, and results from experimental reactions can be obtained much 

more quickly. 

In Chapter 2 of this thesis, ionic liquid matrices (ILMs) were designed using 

common MALDI-MS matrices and 1,3-dialkylimidazolium ILs that have been previously 

used as solvents for biomass transformation of carbohydrates into value-added platform 

chemicals. By incorporating a UV-active matrix, it was speculated that a portion of an IL-

reaction mixture containing analytes could be removed and mixed with an appropriate 

matrix to form an ILM in situ for MALDI-MS analysis. Six ILMs were designed, using 

matrices 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid 

(CHCA) with 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-

methylimidazolium chloride ([EMIM]Cl) and 1-ethyl-3-methylimidazolium acetate 

([EMIM]OAc). Through NMR, UV-Vis and IR studies, it was determined that only two 
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of the six designed matrices resulted in true ILMs, where the matrix component was 

incorporated into a new IL as the anion counterpart (i.e. matrix and [EMIM]OAc). 

Interestingly, it appears that the mixture of IL and matrix out-performed the true ILMs, 

and that the formation of a new ion pair is not necessary for analyte detection. 

 In Chapter 3, the ILMs were screened as MALDI matrices for the analysis of the 

target analytes (sugars and platform chemicals). Sample preparation was optimized with 

respect to solvent systems, cationization agents, matrix:analyte ratios and sample 

deposition. Each of the sugar analytes were readily detected using each DHB-based 

matrix, but were not detected at appreciable quantities using the analogous CHCA-based 

ILMs. Unfortunately, neither matrix employed in this study allowed for the detection of 

HMF or levulinic acid using MALDI-TOF MS. Throughout this research it was observed 

that MALDI analysis of DHB-based ILMs resulted in significant analyte and matrix 

suppression by the IL cation in each matrix. Analytes could only be reliably detected at 

high analyte loading (M:IL:A = 1:1:1). It was determined that quantitative analysis of 

these systems using the aforementioned MALDI-MS method would be difficult. 

 To achieve quantitative analysis, further studies were designed to promote analyte 

competition in the presence of excess IL. To compete with pre-charged IL ions in sample 

spots, the target analytes were chemically modified by introducing a cationic center 

through etherfication with commercially available glycidyltrimethylammonium chloride 

(GTMA). LODs of derivatized analytes were similar to those that were determined in the 

absence of IL (ng-level). Quantitative analyses were carried out by constructing 

appropriate calibration curves, and the methods applied to model dehydration reactions of 
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fructose to HMF in ILs. Calibration curves exhibited excellent linearity, with reasonable 

standard deviations within calibration points. 

 Finally, DESI-MS was employed in Chapter 5 as an alternative means of analyte 

ionization without the need for derivatization. Although the method did not allow for the 

analysis of sugars despite previously reported examples in scientific literature, it has 

shown potential for the analysis of small volatile platform chemicals. HMF and levulinic 

acid were easily detected in the presence of each IL by DESI-MS at ratios of 10:1 and 

100:1 IL:A.  

 There is considerable opportunity to continue this work in future studies. ILMs 

could be fully characterized to determine optimized sample preparation techniques, and 

screened for their potential with various other analytes. The homogeneity of sample spots 

could be accurately determined and compared to traditional solid matrices. The formation 

of colored complexes of [EMIM]Cl in the presence of DHB and CHCA could also be 

further investigated for potential uses in optical and electronic applications. 

 In Chapter 4, the derivatization procedure employed could be optimized to reduce 

the reaction time thus decreasing the overall analysis time. The reaction efficiencies of 

each analyte could be accurately determined and optimized to enhance the overall method 

sensitivity. MS/MS studies could also be incorporated to analyze complex reaction 

systems of several analytes. 

 From the preliminary work done in Chapter 5, it can be concluded that there is 

substantial opportunity to develop DESI-MS methods for the analysis of semi-volatile 
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compounds in IL media. Operating parameters could be optimized by experimental 

design to enhance analyte signal while avoiding detector saturation by IL ions (i.e. 

selective analyses). For analytes such as glucose which were not easily detected using 

DESI-MS in this study, investigation of reaction mechanisms by DESI-MS could offer 

insight into analyte sensitivity. Similar derivatization as was employed in Chapter 4 could 

also be employed to simultaneously analyze a variety of biomass transformation 

intermediates prior to analysis. Use of an appropriate internal standard in this method 

would also be beneficial, to allow rapid quantitation of reaction systems. 

 Although the proposed methods offer a significant reduction in analysis time as 

compared to chromatographic methods, there are several other figures of merit that can be 

assessed. Each of these desorption/ionization methods require validation against existing 

chromatographic methods such as GC- and LC-MS for sensitivity, selectivity, and cost 

effectiveness. The finalized methods could then be applied to a variety of complementary 

IL-mediated biomass transformation reactions.  

 Development of novel analytical techniques such as those proposed in this work 

for green applications represents an emergent field in analytical chemistry. It is believed 

that mass spectrometric methods, in particular, can provide cost-friendly alternatives to 

traditional means of analytical separation and detection while providing compatible 

techniques for analysis in alternative solvents. This work represents a step towards 

achieving this goal, however future research is required to fully develop sustainable 

analytical methods that are complementary to rapidly-growing green technologies. 
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Appendix I: Preparation of Ionic Liquid Matrices 
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(1) 1-butyl-3-methylimidazolium chloride/2,5-dihydroxybenzoic acid ([BMIM]Cl-

DHB):  1.4965 g (8.57 mmol) of [BMIM]Cl (white crystalline solid) was weighed into a 

round-bottom flask. 1.3791 g (8.95 mmol) of DHB (pale beige solid) was weighed into a 

vial, and dissolved in minimal acetonitrile (~40 mL). The DHB solution was 

quantitatively transferred to the RBF resulting in a clear, pale yellow solution. The 

solution was heated to 80 - 85 ° C in a hot water bath for 30 min. The solvent was 

removed by rotary evaporation (226 mbar, 40 ° C) followed by drying under N2 gas for 

30 min. 2.9877 g of thick, brown solution was recovered (104 % yield based on mass 

balance).  

(2) 1-ethyl-3-methylimidazolium chloride/2,5-dihydroxybenzoic acid ([EMIM]Cl-

DHB): 1.6935 g (11.55 mmol) of [EMIM]Cl (bright, green solid) was weighed into a 

round-bottom flask containing a magnetic stir bar. 1.8448 g (11.97 mmol) of DHB was 

weighed into a vial and dissolved in minimal acetonitrile (~40 mL) and quantitatively 

transferred to the flask. The mixture was heated in a hot water bath at 85 °C for 30 min. 

The resulting solution was clear, light green. The bulk of the solvent was evaporated by 

rotary evaporation (220 mbar, 45 °C), followed by further drying under a gentle stream of 

N2 gas for 30 min. 3.7506 g of pale yellow solid was recovered (106 % yield based on 

mass balance).   

(3) 1-ethyl-3-methylimidazolium 2,5-dihydroxybenzoate ([EMIM][DHB]): 1.6378 g 

(9.62 mmol) [EMIM]OAc (viscous, brown liquid) was transferred to a round-bottom 

flask with a magnetic stir bar. 1.4672 g (9.52 mmol) DHB was dissolved in ~ 40 mL 
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acetonitrile and transferred to the round bottom flask. The mixture was heated for 30 min 

in a hot water bath (80 – 85 °C) resulting in a clear, brown solution. The solvent was 

evaporated by rotary evaporation, leaving 3.0403 g brown, viscous solution (121 % 

yield). To this product, 10 mL of toluene was added. The resulting mixture was heated in 

an oil bath (175 °C) and the toluene and acetic acid (azeotrope) distilled at 110 ° C by 

simple distillation. This procedure was repeated seven times until 91 % of the acetic acid 

was removed (as determined by 1H NMR). The resulting product was a brown, waxy 

solid obtained in 101 % yield. 

(4) 1-butyl-3-methylimidazolium chloride/α-cyano-4-hydroxycinnamic acid 

([BMIM]Cl-CHCA): 1.3363 g (7.65 mmol) [BMIM]Cl was added to a round-bottom 

flask. 1.4691 g (7.77 mmol) CHCA was dissolved in ~ 40 mL acetonitrile and transferred 

to the flask with a magnetic stir bar. The resulting mixture was heated in a hot water bath 

for 30 min forming a clear, light yellow solution (some undissolved material). Upon 

removal of the solvent (via rotary evaporation and drying under N2), 2.7899 g of yellow 

block crystals were obtained (106 % yield based on mass balance). 

(5) 1-ethyl-3-methylimidazolium chloride/α-cyano-4-hydroxycinnamic acid 

([EMIM]Cl-CHCA): 0.4399 g (3.00 mmol) of [EMIM]Cl was transferred to a round-

bottom flask along with a magnetic stir bar. 0.5680 g (3.00 mmol) of CHCA was weighed 

into a vial and transferred to the flask with ~ 20 mL of acetonitrile. The resulting solution 

was clear yellow. The solvent was removed by rotary evaporation and dried under a 

gentle stream of N2. 1.0381 g of the final yellow solid was obtained in 103 % yield (based 

on the mass balance). 
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(6) 1-ethyl-3-methylimidazolium α-cyano-4-hydroxycinnamate ([EMIM][CHCA]): 

1.4276 g (8.36 mmol) [EMIM]OAc was added to round-bottom flask with a magnetic stir 

bar. 1.5807 g (8.35 mmol) CHCA was dissolved in 40 mL acetonitrile and transferred to 

the flask. The mixture was heated in a hot water bath at 80 °C for 30 min resulting in a 

clear yellow solution. Rotary evaporation was employed to remove the bulk of the 

solvent, followed by drying under a gentle stream of N2 gas. 2.9096 g of viscous, yellow 

solution was obtained in 116 % yield (as per the mass balance). 

(7) Sodium 2,5-Dihydroxybenzoate (NaDHB): NaHCO3 (0.4989 g, 5.9 mmol) was 

dissolved in ~20 mL of water to form a clear, colourless solution. An equimolar amount 

of DHB (0.8910 g, 5.78 mmol) was weighed into a round bottom flask. Aqueous 

NaHCO3 was added in small increments with swirling which liberated CO2 gas, and 

formed a clear, light brown solution (pH 7 by universal pH indicator). The solution was 

gently refluxed in an oil bath at ~130 °C for 30 min, followed by the removal of bulk 

water by simple distillation. The product was dried under a gentle stream of N2 for 30 

min, yielding a beige solid. The solid was suspended in 10 mL of ethyl acetate, sonicated, 

and suction filtered to remove excess starting material. Upon drying, NaDHB was a pale 

off-white powder obtained in quantitative yield (1.1408 g). 

 (8) Sodium α-cyano-4-hydroxycinnamate (NaCHCA): A 20 mL aqueous solution of 

NaHCO3 (0.3987 g, 4.74 mmol) was prepared forming a clear, colourless solution. A 

molar equivalent of CHCA (0.8973 g, 4.74 mmol) was weighed into a round bottom 

flask. The aqueous NaHCO3 solution was slowly added with swirling, liberating CO2 gas 

and forming a clear, yellow solution (pH 7 by universal pH paper). This solution was 
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gently refluxed in an oil bath at ~140 °C, and the bulk solvent was removed by simple 

distillation. The remaining thick yellow solution was dried for 30 min under N2 gas 

resulting in a yellow powder. The powder was washed with small amounts of ethyl 

acetate and allowed to dry yielding 1.2633 g of NaCHCA.  
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Appendix II: 1H NMR Spectra 
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Figure A2-1: 1H NMR Spectrum of 2,5-dihydroxybenzoic acid (DHB) 

 

 

 

Figure A2-2: 1H NMR Spectrum of Sodium 2,5-dihydroxybenzoate 
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Figure A2-3: 1H NMR Spectrum of α-cyano-4-hydroxycinnamic acid (CHCA) 

 

 

Figure A2-4: 1H NMR Spectrum of Sodium α-cyano-4-hydroxycinnamate (NaCHCA) 
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Figure A2-5: 1H NMR Spectrum of 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) 

 

 

Figure A2-6: 1H NMR Spectrum of 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) 
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Figure A2-7: 1H NMR Spectrum of 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) 

 

 

Figure A2-8: 1H NMR Spectrum of 1-butyl-3-methylimidazolium chloride/2,5-

dihydroxybenzoic acid ([BMIM]Cl-DHB) 
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Figure A2-9: 1H NMR Spectrum of 1-ethyl-3-methylimidazolium chloride/2,5-

dihydroxybenzoic acid ([EMIM]Cl-DHB) 

 

Figure A2-10: 1H NMR Spectrum of 1-ethyl-3-methylimidazolium 2,5-

dihydroxybenzoate ([EMIM][DHB]) 
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Figure A2-11: 1H NMR Spectrum of 1-butyl-3-methylimidazolium chloride/α-cyano-4-

hydroxycinnamic acid ([BMIM]Cl-CHCA) 

 

Figure A2-12: 1H NMR Spectrum of 1-ethyl-3-methylimidazolium chloride/α-cyano-4-

hydroxycinnamic acid ([EMIM]Cl-CHCA) 
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Figure A2-13: 1H NMR Spectrum of 1-ethyl-3-methylimidazolium α-cyano-4-

hydroxycinnamate ([EMIM][CHCA]) 
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Appendix III: 13C NMR Spectra 
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Figure A3-1: 13C NMR Spectrum of 2,5-dihydroxybenzoic acid (DHB) 

 

Figure A3-2: 13C NMR Spectrum of Sodium 2,5-dihydroxybenzoate (NaDHB) 
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Figure A3-3: 13C NMR Spectrum of α-cyano-4-hydroxycinnamic acid (CHCA) 

 

Figure A3-4: 13C NMR Spectrum of Sodium α-cyano-4-hydroxycinnamate (NaCHCA) 
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Figure A3-5: 13C NMR Spectrum of 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) 

 

Figure A3-6: 13C NMR Spectrum of 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) 
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Figure A3-7: 13C NMR Spectrum of 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) 

 

Figure A3-8: 13C NMR Spectrum of 1-butyl-3-methylimidazolium chloride/2,5-

dihydroxybenzoic acid  ([BMIM]Cl-DHB) 
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Figure A3-9: 13C NMR Spectrum of 1-ethyl-3-methylimidazolium chloride/2,5-

dihydroxybenzoic acid  ([EMIM]Cl-DHB) 

 

Figure A3-10: 13C NMR Spectrum of 1-ethyl-3-methylimidazolium 2,5-

dihydroxybenzoate ([EMIM][DHB])
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Figure A3-11: 13C NMR Spectrum of 1-butyl-3-methylimidazolium chloride/ α-cyano-4-

hydroxycinnamic acid ([BMIM]Cl-CHCA) 

 

Figure A3-12: 13C NMR Spectrum of 1-ethyl-3-methylimidazolium chloride/ α-cyano-4-

hydroxycinnamic acid ([EMIM]Cl-CHCA) 
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Figure A3-13: 13C NMR Spectrum of 1-ethyl-3-methylimidazolium α-cyano-4-

hydroxycinnamate ([EMIM][CHCA]) 
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Appendix IV: FT-IR Spectra 
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Figure A4-1: FT-IR Spectrum of Sodium 2,5-dihydroxybenzoic acid (DHB) 

 

Figure A4-2: FT-IR Spectrum Sodium of 2,5-dihydroxybenzoate (NaDHB) 
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Figure A4-3: FT-IR Spectrum of α-cyano-4-hydroxycinnamic acid (CHCA) 

 

Figure A4-4: FT-IR Spectrum of Sodium α-cyano-4-hydroxycinnamate (NaCHCA) 
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Figure A4-5: FT-IR Spectrum of 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) 

 

Figure A4-6: FT-IR Spectrum of 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) 
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Figure A4-7: FT-IR Spectrum of 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc)

 
Figure A4-8: FT-IR Spectrum of 1-butyl-3-methylimidazolium chloride/2,5-

dihydroxybenzoic acid ([BMIM]Cl-DHB) 
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Figure A4-9: FT-IR Spectrum of 1-ethyl-3-methylimidazolium chloride/2,5-

dihydroxybenzoic acid ([EMIM[Cl-DHB)

 
Figure A4-10: FT-IR Spectrum of 1-ethyl-3-methylimidazolium 2,5-dihydroxybenzoate 

([EMIM][DHB]) 
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Figure A4-11: FT-IR Spectrum of 1-butyl-3-methylimidazolium chloride/ α-cyano-4-

hydroxycinnamic acid ([BMIM]Cl-CHCA)

 
Figure A4-12: FT-IR Spectrum of 1-ethyl-3-methylimidazolium chloride/α-cyano-4-

hydroxycinnamic acid ([EMIM]Cl-CHCA) 
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Figure A4-13: FT-IR Spectrum of 1-ethyl-3-methylimidazolium α-cyano-4-

hydroxycinnamate ([EMIM][CHCA]) 
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Appendix V: Chapter 4 Supplementary Material 
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Table A5-1: Regression Statistics for Sugar Calibration Curves Constructed using 

MALDI-TOF MS (DHB Matrix); n = 5; 4-point calibration  

 m Sm  b Sb Sy/x R2 

Glucose  0.0501 0.0015 0.0899 0.0154 0.0183 0.9983 

Fructose  0.0992 0.0023 0.1170 0.0239 0.0284 0.9989 

Sucrose  0.4540 0.0284 -0.1966 0.1333 0.1770 0.9922 

NAG  0.3664 0.0053 0.0137 0.0337 0.0413 0.9996 

 

Table A5-2: Average Absolute Peak Heights for Glucose 

Standard 

(initial 

concentration 

of stock 

solution) 

 

 

Glucose Average Absolute Peak Heights ± SD (% RSD) 

 H2O [BMIM]Cl [EMIM]Cl [EMIM]OAc 

1 mM 73.9 ± 27.9  

(37.8 %) 

247.4 ± 89.8 

(36.3 %) 

259.0 ± 149.0 

(57.5 %) 

70.8 ± 34.6 (48.9 

%) 

5 mM 549.9 ± 305.8  

(55.6 %) 

1256.4 ± 671.8 

(53.5 %) 

1590.1 ± 593.9 

(37.4 %) 

412.2 ± 110.7 

(26.9 %) 

10 mM 1409.8 ± 407.3 

(28.9 %) 

2461.0 ± 334.3 

(13.6 %) 

3527.4 ± 593.2 

(16.8 %) 

1142.2 ± 481.3 

(42.1 %) 

25 mM 3238.9 ± 1300.4 

(40.2 %) 

4135.0 ± 1111.4 

(26.9 %) 

5972.5 ± 3425.3 

(57.4 %) 

2194.1 ± 859.2 

(39.2 %) 

50 mM 9274.7 ± 1719.1 

(18.5 %) 

8999.2 ± 1833.3 

(20.4 %) 

9937.4 ± 3866.8 

(38.9 %) 

4739.5 ± 1214.4 

(25.6 %) 

75 mM 16549.0 ± 

5245.5 (31.7 %) 

7776.4 ± 2803.0 

(36.0 %) 

15895.5 ± 4823.3 

(30.3 %) 

3910.6 ± 1854.4 

(47.4 %) 

100 mM 21866.1 ± 

10117.1 (46.3 

%) 

10888.5 ± 3337.2 

(30.6 %) 

23275.8 ± 8346.4 

(35.9 %) 

6030.9 ± 2197.1 

(36.4 %) 
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Table A5-3: Average Peak Height Ratios of Glucose/Glucose-d7 used for Calibration 

Standard (initial 

concentration of 

stock solution) 

 

Glucose/Glucose-d7 Average Peak Height Ratio ± SD (% RSD) 

 H2O [BMIM]Cl [EMIM]Cl [EMIM]OAc 

1 mM 0.038 ± 0.016 

(40.6 %) 

0.021 ± 0.003 

(15.7 %) 

0.026 ± 0.002 

(8.80 %) 

0.022 ± 0.005 

(24.3 %) 

5 mM 0.154 ± 0.006 

(4.19 %) 

0.140 ± 0.008 

(5.80 %) 

0.159 ± 0.007 

(4.43 %) 

0.130 ± 0.009 

(7.19 %) 

10 mM 0.355 ± 0.031 

(8.67 %) 

0.328 ± 0.010 

(3.04 %) 

0.351 ± 0.013 

(3.67 %) 

0.298 ± 0.019 

(6.48 %) 

25 mM 0.950 ± 0.053 

(5.55 %) 

0.848 ± 0.032 

(3.82 %) 

0.920 ± 0.011 

(1.20 %) 

0.856 ± 0.031 

(3.60 %) 

50 mM 1.800 ± 0.088 

(4.89 %) 

1.732 ± 0.038 

(2.22 %) 

1.779 ± 0.041 

(2.33 %) 

1.822 ± 0.051 

(2.81 %) 

75 mM 2.558 ± 0.209 

(8.17 %) 

2.804 ± 0.057 

(2.04 %) 

2.660 ± 0.169 

(6.36 %) 

2.878 ± 0.160 

(5.57 %) 

100 mM 3.242 ± 0.346 

(10.7 %) 

3.707 ± 0.342 

(9.23 %) 

3.596 ± 0.119 

(3.32 %) 

3.774 ± 0.137 

(3.63 %) 

 

Table A5-4: Calculated Fructose Conversion and HMF Yield as a Function of Reaction 

Time 

Time Mean Fructose Conversion (%) Mean HMF Yield (%) 

No catalyst Catalyst No catalyst Catalyst 

10 5.3 40.2 6.6 18.0 

70 56.1 65.7 5.1 70.1 

130 80.1 91.4 13.6 62.0 

190 91.4 93.7 20.6 47.3 
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Appendix VI: Statistical Analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

246 
 

Statistical analysis was performed using Microsoft Excel’s LINEST function. 

The calculated x-values (in ng) of analyte were used to construct an array of x-values and 

average y-values. Using Excel, the LINEST function was used to generate the 

corresponding values: slope (m), intercept (b), standard error of the slope (Sm), standard 

error of the intercept (Sb), correlation coefficient (R2), and standard error of the regression 

(Sy/x) as pertaining to the slope of the regression line: y = mx + b. 

Equations 

Standard Error of Regression: 

𝑆𝑦/𝑥 =  √
∑(𝑦𝑖 −𝑦𝑖 )2

𝑛−2
   Equation A6-1 

Standard Error of the Slope: 

𝑆𝑚 =
𝑆𝑦 /𝑥

√∑ (𝑥𝑖−𝑥̅)2    Equation A6-2 

Standard Error of the Intercept: 

𝑆𝑏 =  𝑆𝑦/𝑥 √
∑ 𝑥𝑖

2

𝑛 ∑(𝑥𝑖−𝑥̅)2  Equation A6-3 

Definitions: 

𝑆𝑦/𝑥 = standard error of the regression 

𝑦𝑖 = measure y value 

𝑦𝑜 = mean of measured y values 

𝑦̂𝑖 = predicted y value from regression 

𝑛 − 2 = degrees of freedom 

𝑥𝑖 = measured x value 

𝑥̅ = mean x of calibration points (centroid) 

𝑦̅ = mean y of calibration points (centroid) 
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𝑆𝑚 = standard error of the slope 

𝑆𝑏 = standard error of the intercept 

𝑛 = number of replicate measurements 

𝑁 = number of calibration points 

 

For quantitative analyses, to determine the concentration of an unknown sample, the 

individual y values were interpolated from the regression line. 

𝑥 =  
𝑦−𝑏

𝑚
   Equation A6-4 

The standard deviation in x was determined from the mean x value from individual y 

values. 

 

 

 


