
A PHR System With Policy-Based Fine-Grained

Access Control And Revocation Mechanism

by

c© Mitu Kumar Debnath

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

October 2015

St. John’s Newfoundland

Abstract

Collaborative sharing of information is becoming much more needed technique to

achieve complex goals in today’s fast-paced tech-dominant world. Personal Health

Record (PHR) system has become a popular research area for sharing patients informa-

tion very quickly among health professionals. PHR systems store and process sensitive

information, which should have proper security mechanisms to protect patients’ private

data. Thus, access control mechanisms of the PHR should be well-defined. Secondly,

PHRs should be stored in encrypted form. Cryptographic schemes offering a more

suitable solution for enforcing access policies based on user attributes are needed for

this purpose. Attribute-based encryption can resolve these problems, we propose a

patient-centric framework that protects PHRs against untrusted service providers and

malicious users. In this framework, we have used Ciphertext Policy Attribute Based

Encryption scheme as an efficient cryptographic technique, enhancing security and

privacy of the system, as well as enabling access revocation. Patients can encrypt their

PHRs and store them on untrusted storage servers. They also maintain full control

over access to their PHR data by assigning attribute-based access control to selected

data users, and revoking unauthorized users instantly. In order to evaluate our system,

we implemented CP-ABE library and web services as part of our framework. We also

developed an android application based on the framework that allows users to register

into the system, encrypt their PHR data and upload to the server, and at the same

time authorized users can download PHR data and decrypt it. Finally, we present

experimental results and performance analysis. It shows that the deployment of the

proposed system would be practical and can be applied into practice.

ii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Dr.

Krishnamurthy Vidyasankar for his guidance, understanding, patience, and most im-

portantly, his continuous support and valuable advice during my graduate studies. I

have been fortunate to have him as my advisor who gave me the freedom to explore

on my own, and at the same time the guidance to keep myself on the right track. Dr.

Vidyasankar taught me how to think independently and I think very few students get

the opportunity to develop their individuality and self-sufficiency by being allowed to

work with such independence. His patience and support helped me overcome many

crisis situations and finish this dissertation.

Second, I would like to gratefully thank my co-advisor, Dr. Saeed Samet, who has

been always there to listen to my problems and give advice. He helped me to sort

out all kinds of technical details of our work and guided me throughout the research

work. His insightful comments and constructive criticisms at different level of the

research helped me to keep focus on my ideas. I am indebted to him for his continuous

encouragement and guidance.

Finally, It would not be possible for me to come this far without the unconditional

love and support from my parents, Monuranjan Debnath and Depali Debnath. They

always encouraged me all the way of my life and never stopped believing in me. I

thank them from the core of my heart for all their sacrifices to achieve my goals.

Last and most importantly, I owe my gratitude to my younger brother, Titu Kumar

Debnath, who took care of all the responsibilities on behalf of me and allowed me to

concentrate on my studies. His mental support gave me the strength to go forward

iii

and stay focused.

I am also grateful to all those people who have helped and encouraged me all the

way to complete this thesis.

iv

Contents

Abstract ii

Acknowledgements iii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 3

1.3 Research outline . 4

2 Personal Health Record Systems And Related Work 5

2.1 What is PHR? . 5

2.2 Attributes of a PHR . 6

2.3 Benefits of a PHR system . 7

2.4 Data security and privacy issues of a PHR system 7

2.5 Related work . 8

v

3 Preliminaries And Definitions 11

3.1 Pairing-Based Cryptography . 11

3.1.1 Elliptic curves . 12

3.1.2 Type A curves . 13

3.1.3 Cyclic groups . 13

3.1.4 Bilinear maps . 14

3.1.5 What is pairing? . 15

3.2 Cryptographic techniques . 16

3.2.1 Attribute-Based Encryption 17

3.2.1.1 Definition . 17

3.2.1.2 Overview . 17

3.2.2 Access policy structure . 20

3.2.3 Ciphertext Policy Attribute-Based Encryption (CP-ABE) . . . 22

4 Proposed System 24

4.1 Models, assumptions, and requirements 24

4.1.1 System models . 24

4.1.2 Security models . 26

4.1.3 Security requirements . 27

4.1.4 Design goals . 28

4.1.5 Problem definition . 28

4.1.6 Mediated Ciphertext-Policy Attribute-Based Encryption (mCP-

ABE) . 29

4.1.6.1 Attribute and its hierarchy 30

vi

4.1.6.2 mCP-ABE implementation 31

4.1.7 Complexity assumptions for security 32

4.1.8 Proposed PHR framework . 32

4.1.8.1 System setup and key distribution 33

4.1.8.2 PHR encryption and access 34

4.1.8.3 Revocation mechanism 35

5 Design And Implementation 38

5.1 Architecture . 39

5.2 Implementation . 40

5.2.1 Java implementation of CP-ABE library 40

5.2.2 Web services for the framework 45

5.2.3 Database design . 47

5.2.4 Android application (PHR Client) 50

6 Experimental Results And Analysis 56

6.1 Experimental results . 56

6.2 Performance analysis . 59

7 Conclusions And Future Work 65

7.1 Summary . 65

7.2 Future work . 66

Bibliography 67

A UML Diagrams 72

vii

B Programming Languages And Tools 85

C CP-ABE Library : JAVA Source Code 87

viii

List of Tables

3.1 Notations for pairings . 12

3.2 Notations for access tree . 19

3.3 Notations used in our PHR framework 21

4.1 Terminologies . 25

5.1 Pairing operation in milliseconds . 41

ix

List of Figures

3.1 A structure of access policy . 20

4.1 A hierarchy of attributes in PHR system 30

4.2 An overview of the PHR framework 33

5.1 An overview of PHR system design 38

5.2 Initialization of pairing . 41

5.3 Pairing parameter generator . 42

5.4 Setup algorithm for CP-ABE library 43

5.5 Key generation for CP-ABE library 44

5.6 Encryption algorithm for CP-ABE library 44

5.7 Generates decrpyt token with revocation check 45

5.8 Decryption algorithm . 45

5.9 Request format of registration web service 46

5.10 Response format of registration web service 47

5.11 A database schema for users credentials 48

5.12 A database schema for revocation server 48

5.13 A database schema for TA server . 49

x

5.14 Client application with login screen 50

5.15 Registration form . 51

5.16 Selecting regions and respective organizations 52

5.17 Selecting departments and health professions 52

5.18 Selecting health professionals . 53

5.19 Secure upload and secure access . 54

5.20 User logout screen . 55

6.1 Two different attribute sets . 56

6.2 Access policy . 57

6.3 Access policy is not satisfied . 58

6.4 Attributes are revoked . 58

6.5 Setup time . 59

6.6 Secret key generation time . 60

6.7 Encryption time based on different file sizes 61

6.8 Decryption time based on different file sizes 62

6.9 Decryption token generation time in revocation server 62

6.10 Public and master key sizes . 63

6.11 Secret key size based on number of attributes 64

A.1 Use case description: Registration . 73

A.2 Use case description: Login . 74

A.3 Use case description: Logout . 75

A.4 Use case description: Setup . 76

A.5 Use case description: Key Generation 77

xi

A.6 Use case description: Encryption . 78

A.7 Use case description: Decryption . 79

A.8 Use case description: Revocation . 80

A.9 Use case description: Update User Account 81

A.10 System initialization by generating public and master keys 82

A.11 Generates user secret key based on an attribute set. 82

A.12 Encryption process of PHR data . 83

A.13 Requesting decryption token . 83

A.14 Decryption process of PHR data . 84

A.15 Attribute revocation based on ARL 84

xii

Chapter 1

Introduction

1.1 Overview

Cloud computing has transformed our traditional information technology (IT) industry

in terms of hardware and software systems. In recent years, cloud computing has started

emerging to fulfill a long-held dream of computing as a utility. It has introduced every

component of IT system as a service such as Software as a Service (SaaS), Platform as

a Service (PaaS), Infrastructure as a Service (IaaS), etc. It has minimized the cost and

improved the efficiency of resource management as well as satisfying business needs

on demand. One of the biggest challenges for utilizing cloud computing is ensuring

data security and privacy.

The internet has increasingly become popular and widely available in last few years

and the next wave of technology shift has come in the form of Internet of Things

(IoT) [21] and virtual infrastructure is provided by cloud computing. According to

Cisco [24], We are entering into the era of Internet of Everything (IoE) which goes

1

beyond Internet of Things (IoT). All these technological paradigm shifts are to provide

seamless experience in collaborative sharing of information. Again, security and privacy

issues remain as a challenge.

Currently health sector is gaining huge momentum in adoption of technology in

order to accomplish complicated tasks such as identifying diseases and finding cure

for some rare diseases. Moreover, it helps doctors and caregivers to provide better

treatment and improved patient care. Healthcare providers can easily reach patients

and share valuable information with them. Patients can also reach doctors when

they need. Technology has enabled doctors to use email, voice and video conference

facilities to consult with other doctors from all over the world which is known as

telemedicine [9].

Every patient has a health record where information related to the care of a patient

is stored. It is known as Personal Health Record (PHR). Personal Health Records

(PHRs) are moving from paper-based PHRs to electronic PHRs [20]. It brings numer-

ous benefits in terms of reduced healthcare cost, ease of use, rapid detection and cure

of complex diseases, collaborative sharing and exchange of health information, better

quality of care, etc. Patient-centric electronic PHRs are being adopted by many health-

care systems. These electronic PHRs are owned and managed by patients themselves

and linked with caregivers and doctors in various ways. Data security and privacy

issues are very critical, because healthcare data are highly sensitive information. In

this thesis, we focus on how patients can share their personal health data securely

among doctors and caregivers.

2

1.2 Motivation

Patients want to get proper care and best treatment available for their health conditions

and patient-centric PHR system can help to achieve this goal. PHR system helps

providing necessary tools to access, manage, process and share health information in

such a way that doctors and caregivers can easily provide treatment and health services

to the patients and it specifically helps patients who need long-term treatments, for

example patients with chronic diseases. To realize these benefits we have to make sure

that data security and privacy issues are resolved in terms of data confidentiality and

integrity.

Secure management and sharing a PHR data require proper access control mecha-

nism in place. PHR data must be encrypted before storing with a third party cloud

service provider. It should be available only to the users who are given the autho-

rization to access it. Furthermore, patients (owners of the PHR) will hold the right

to grant access as well as right to revoke access privileges any time when they feel

it is necessary [32]. Therefore, a fine-grained access control along with an efficient

revocation mechanism is necessary to protect confidentiality and integrity of patient’s

health data in an untrusted cloud environment. Key management is a big concern

while employing fine-grained access control with revocation mechanism.

In this thesis, we present a practical framework for a PHR system to realize the fine-

grained access control with efficient revocation mechanism. To accomplish this goal we

use Attribute-Based Encryption (ABE) [40] scheme as our encryption primitive. ABE

is a generalization of identity based encryption system that uses attributes to encrypt

3

data for a specific group of users. We implemented the Java library of mCP-ABE [23]

scheme, a derivation of ABE, to support our framework design.

1.3 Research outline

We first give a comprehensive overview of PHR system. Next, we examine security and

privacy related issues of PHR system. The rest of this thesis is organized as follows:

In chapter 2, we provide background knowledge about PHR systems and discuss

in detail one-to-many cryptography schemes such as ABE. We shall see that ABE

is quite practical and compares well to other cryptography schemes when addressing

PHR related issue. We also discuss related work and compare our work with them in

this chapter.

In chapter 3, we provide preliminaries and definitions related to our work.

In chapter 4 and 5, we present our proposed PHR system model and its design

framework, and implementation of the PHR framework along with architecture and

database design, respectively.

In chapter 6, we present experimental results in order to analyze and validate the

practicality of our system. We evaluate the performance of various operations of the

CP-ABE library in our PHR system.

Finally, in chapter 7, we summarize our work and discuss the open problems and

future work.

4

Chapter 2

Personal Health Record Systems

And Related Work

In this chapter, we define Personal Health Record (PHR), and its properties. We

also discuss security and privacy issues related to PHR data sharing among different

health professionals. At the end, we present some related work in the area of PHR

data sharing and discuss their limitations.

2.1 What is PHR?

According to Markle Foundation [13],

“Personal health record (PHR) is a widely used but loosely defined term
for a variety of emerging technologies that enable people to manage their
health information and health care transactions electronically.”

In other words, PHR allows its owner to store, manage, and share personal health

information.

5

In a PHR system, individuals have full control of their own PHR data. This is

the major distinguishing factor that separates PHRs from EHRs (Electronic Health

Records). An EHR is the composition of many individual records which are stored in

an electronic records system and controlled by the specific health care providers or

caregivers. Sometimes, a PHR can be integrated with EHR system and this type of

PHR is called patient portal. Here, Our focus is only on PHR systems.

2.2 Attributes of a PHR

According to Markle Connecting for Health [13], an ideal PHR should have the fol-

lowing seven attributes:

• Each person controls their own PHR.

• PHRs contain health information from one’s entire lifetime.

• PHRs contain information from all health care providers.

• PHRs are accessible from any place at any time.

• PHRs are private and secure.

• PHRs are transparent. Individuals can see who has entered each piece of data,

where it has been transferred from, and who has viewed it.

• PHRs permit easy exchange of information across health care systems.

6

2.3 Benefits of a PHR system

PHR systems provide several benefits to their users. An individual can store all

kinds of health records in one place instead of paper-based files in various doctors’

offices. Moreover, patients can share their PHRs with physicians and other health

care professionals, which will help them by making better treatment decisions. It also

helps analyze an individual’s health profile to identify health threats based on their

medical history.

2.4 Data security and privacy issues of a PHR sys-

tem

Despite the benefits and needs of PHR systems, adoption has been low. There might

be several reasons for low adoption, but privacy and security issues are one of the

biggest concerns [26]. Security is a critical component of a PHR system. People are

reluctant to store their sensitive health information into the cloud services owned

by, untrusted, third parties, because according to HIPAA, these third parties are

not covered entities [36]. Besides, users lose full control of their information once

it gets uploaded into the cloud and eventually it violates the first attribute of an

aforementioned ideal PHR system.

Moreover, IoT penetrates healthcare sector and it offers greater promises in this field,

providing improved access to care, increasing the quality of care and most importantly

reduced cost of care [35]. Along with these opportunities a group of brand new security

7

breaches are showing up. According to iHealthBeat.org [37], hackers are directly

targeting healthcare organizations. FBI reportedly said that the agency

“has observed malicious actors targeting health care-related systems, per-
haps for the purpose of obtaining protected health care information and/or
Personally Identifiable Information (PII).”

In a separate incident of massive data breach, an employee from the US Department

of Veterans Affairs had stolen personal electronic information of 26.5 million military

veterans including their social security numbers, birth dates, and personal health

information without authorization [12].

Therefore, a natural way to keep sensitive health data confidential against any

untrusted cloud service providers or malicious attackers, is to store only the encrypted

data in the cloud. The idea is that PHR system will relinquish full control of data to its

owner to encrypt, decrypt and decide with whom to share these sensitive information.

2.5 Related work

Several schemes have been proposed related to data security and privacy of patient

health records. Among them Patient Controlled Encryption (PCE) scheme has been

proposed by Chase et al. in [4]. This scheme allows patients both to share partial

access rights with others, and to perform searches over their encrypted records. The

scheme uses public key and symmetric key as cryptographic techniques along with

their inherent advantages and disadvantages. For example, if the user’s secret key is

compromised then instant revocation is not available.

8

Another patient-centric access control (PEACE) scheme has been proposed by

Barua et al. in [3]. This scheme assures the privacy of patient personal health infor-

mation (PHI) by defining different access privileges to data requesters and assigning

different attribute sets to them. This scheme provides PHI integrity and confiden-

tiality by adopting digital signature and pseudo-identity techniques. It encompasses

identity based cryptography to aggregate remote patient PHI securely. However, ex-

isting schemes have several limitations, such as lack of fine grained access control and

efficient revocation mechanisms.

There are other PHR systems, which use role-based access control (RBAC) scheme

to manage access to the user PHR data. Users need to trust these systems for the

security of their PHR data. If servers are compromised then users’ data will be

at risk. Indivo [1] PHR system is a platform, which lets its user to control and

manage their data but the access control system is enforced by the Indivo servers.

Moreover, commercial cloud-based health record systems such as Practice Fusion

[14] and CareCloud [7] are also based on access control decisions defined by their

respective cloud storage providers. Microsoft’s HealthVault [22] and discontinued

Google Health are both cloud-based PHR services providing end-to-end encryption

during data transmission from patient to the storage server and vice versa. They also

rely on access control mechanism instead of full encryption of PHR data.

iHealthEMR [2] uses Attribute-Based Encryption scheme for a self-protecting

Electronic Medical Records (EMRs). Medical records are XML-based files. So, each

node of the XML-based file is evaluated by a policy engine to determine if encryption

is necessary. patient can encrypt XML-based EMR file with an automatic generated

access policy before uploading to cloud storage server. Attributes within the private

9

key defines user’s access to the file. However, key management and effective revocation

remain as a critical issue.

Attribute Based Encryption (ABE) is first introduced by Sahai et al. in [40] as

fuzzy Identity-Based Encryption (IBE), a new type of IBE. In this encryption scheme,

an identity is a set of descriptive attributes. A private key with a set of attributes, ω

can decrypt a ciphertext encrypted with an identity, ω0, if and only if |ω ∩ ω0| ≥ d,

where d is the error-tolerance in terms of minimal set overlap. After that two variants

of ABE scheme are introduced, Key-Policy Attribute-Based Encryption (KP-ABE),

and Ciphertext-Policy Attribute-Based Encryption (CP-ABE) in [19]. Waters et al.

in [5] proposed the construction of CP-ABE scheme under the generic group model

and it was the first construction under this model.

Key management is a real problem in cryptographic solutions and attribute revo-

cation is one of the biggest issues in designing an effective CP-ABE scheme, addressed

in [38]. This paper proposed to use an expiration time for attributes so that they are

valid until time gets expired. The problem of this type of approach is that attributes

are not revoked until time expires.

10

Chapter 3

Preliminaries And Definitions

In this chapter, we will describe the terminologies, techniques, and concepts used in

our system to make sure that reader will have basic understanding of our system

design.

3.1 Pairing-Based Cryptography

At the very beginning pairings were used as cryptanalytic tools to study and analyze

cryptographic systems in order to understand how they work and find flaws that

will allow them to be broken with or without the key. Pairings were first used in

cryptography to reduce the complexity of the discrete logarithm problem on some

elliptic curves. After that cryptographers have seen a revolutionized use of pairings

through the works of Antoine Joux [25]. In 2000, Joux has shown that Weil and

Tate pairings can be used to build a tripartite generalization of the Diffie-Hellman

protocol. The world of cryptography spurred with huge potential of pairing-based

cryptosystems. After that pairings have started their journey as a building block for

11

various cryptographic schemes such as identity-based schemes, key agreement protocols,

attribute-based schemes, and various signature schemes.

Table 3.1: Notations for pairings

Notations Description

G A finite cyclic group on elliptic curve.

g g is a generator of cyclic group, G.

〈g〉 g is a generator of cyclic group, G with prime order r. Here r denotes the

size of the group.

Fq F is the finite field of order q. q denotes the size of the field.

G1, G2 These are two cyclic groups of points on the curve.

GT It is a subgroup of the multiplicative group of a related finite field, F∗
qk

.

Here k is a parameter called the embedding degree in pairing-based cryp-

tography.

3.1.1 Elliptic curves

Elliptic curves have brought great advantages in the field of cryptography in terms

of smaller key size, higher computational speed, lower bandwidth consumption, etc.

Elliptic Curve Cryptography (ECC) [6,27,34] is well-suited for resource constrained

systems such as smart cards, smartphones, tablets, notebooks, and so on. ECC is

gaining popularity as a public key cryptography especially for resource constrained

wireless systems. But this is another topic of discussion and one can get a glimpse of

12

this idea from [42].

In 1985, Koblitz [27] and Miller [34] separately suggested that discrete logarithm-

based cryptosystems can provide better security by using the group of points on an

elliptic curve over a finite field rather than the conventional multiplicative group of a

finite field. The reason for better security over systems based on multiplicative group

of a finite field and systems based on the intractability of integer factorization is the

absense of a subexponential-time algorithm that could find discrete logarithms in

these groups [28].

3.1.2 Type A curves

There are six types of supersingular curves, Type A, Type A1, Type D, Type E, Type

F, and Type G [30]. In our case, we select Type A curves to build pairings.

Definition 3.1.1. Type A curves are supersingular curves constructed on the curve

y2 = x3 + ax over the finite field Fq, for any a ∈ Fq and for some prime q = 3 mod 4,

with embedding degree of 2.

3.1.3 Cyclic groups

Cyclic groups are of two kinds: finite and infinite. We are more interested in finite

groups because pairings are based on finite cyclic groups. More about groups and

fields can be found in [18].

Definition 3.1.2. A finite group G is cyclic if there is g ∈ G so that 〈g〉 = G. And

such a g is a generator of G, and G is said to be generated by g.

13

Finite cyclic groups are suitable for cryptosystems because of their easy group

operations and the intractability of discrete log problem. Cyclic groups have several

properties:

• Subgroups of cyclic groups are cyclic.

• A cyclic group has a single generator.

• All cyclic groups are abelian.

• Every finite group of prime order is cyclic.

3.1.4 Bilinear maps

Generally, two types of pairings are used in pairing-based cryptosystems. One is called

asymmetric pairing :

ê : G1 ×G2 → GT (3.1)

In this eq. (3.1) G1, G2 and GT are cyclic groups of prime order n. Another type

is the special case which is called symmetric pairing where G1 = G2.

ê : G1 ×G1 → GT (3.2)

However, G1 and G2 are additive groups whereas GT is a multiplicative group. Let

g be the generator of group G1. Now we will give a formal definition of (symmetric)

bilinear pairing or mapping in the context of pairing-based cryptography.

14

Definition 3.1.3. A bilinear mapping or pairing on cyclic groups G1 and GT is a

map, ê : G1 ×G1 → GT which satisfies the following conditions:

1. Bilinearity : ê(ga, gb) = ê(g, g)ab for all a, b ∈ Z.

2. Nondegeneracy : ê(g, g) 6= 1.

3.1.5 What is pairing?

Pairing in cryptography is the mapping of one group to another with some special

properties. In other words, a pairing on two cyclic groups, G1 and G2, based on an

elliptic curve is simply a special function ê which takes pairs of elements from G1 as

inputs and produces an element of group G2. Pairing among G1 and G2 is denoted as:

ê : G1 ×G1 → G2 (3.3)

The pairing has some special properties and bi-linearity is the most important of them.

However, all of the pairings are based on either Weil or Tate pairing on elliptic curves

over finite fields [17]. In our system design Pairing-Based Cryptography (PBC) [31]

library uses Tate pairing. Tate pairing is well defined and its actual computation is

simple and easier [30,33].

Tate pairing [16, 30] Let E be an elliptic curve containing n points over a field

Fq. Let G be a cyclic subgroup of E(Fq) of order r with r, q co-prime. Let k be the

smallest positive integer such that the field K (For brevity, K = Fqk), the smallest

extension of Fq, contains the rth roots of unity (in other words, r|qk − 1). E[r] is the

subgroup of points of order r and E(K)/rE(K) is the quotient group. Then the Tate

15

pairing is a mapping:

e : E[r] ∩ E(K)× E(K)/rE(K)→ K∗/K∗r (3.4)

The quotient group on the right hand side of Equation (3.4) can be thought of as

the set of equivalence classes of F∗
qk

under the equivalence relation a ≡ b if and only

if there exists c ∈ F∗
qk

such that a = bcr. This relation is called ‘equivalence modulo

rth powers’.

Tate pairing is non-degenerate and bilinear. In cryptography, pairings are built

using cyclic groups on elliptic curves and Tate pairing on supersingular elliptic curve

is desired in pairing-based cryptosystems [15].

3.2 Cryptographic techniques

There are well established and efficient traditional cryptographic systems available

for data encryption and decryption but none of them quite fit in the context of PHR

systems. In a PHR system, a user can encrypt data to share selectively with a group

of users and at the same time authorization to access data for a particular user can

be revoked by the owner.

Symmetric-Key Encryption (SKE) such as Advanced Encryption Standard (AES)

[41] and Public-Key Encryption (PKE) such as RSA [39] are secure encryption schemes

but they do not provide fine-grained access control mechanism for secure PHR systems.

The reason is that they use one-to-one encryption methods which cause low scalability

in the presence of large user base of PHR systems. Key management is also a big

issue. On the other hand, attribute-based encryption scheme follows one-to-many

16

encryption method which is suitable for PHR systems. It provides fine-grained access

control mechanism in terms of attributes and access policy [5]. One important feature

of ABE is that it is collusion-resistant [40].

3.2.1 Attribute-Based Encryption

3.2.1.1 Definition

Attribute-Based Encryption (ABE) is a public-key encryption scheme where each

encrypted item is associated with a policy. In this system, a user’s keys and ciphertexts

are labelled with sets of descriptive attributes and a particular key can decrypt a

particular ciphertext only if there is a match between the attributes of the ciphertext

and the user’s key.

3.2.1.2 Overview

Attribute-based encryption is the generalization of Identity-Based Encryption (IBE)

system [40] and it has potential for providing data security in the context of distributed

environment.

To provide data security and privacy traditional Public Key Infrastructure (PKI)

is very useful but it has several drawbacks which are not suitable for some particular

environments. For example, if a user wants to send a message to a group of recipients

then she needs to encrypt the same message again and again with different public keys

in order to send it to the respective different recipients and this becomes impractical

when the number of recipients increases. Moreover, every public key needs to be

verified against a Certificate Authority (CA) to check the authenticity of its owner.

17

Identity-based encryption system resolves the problem of verifying public keys. In

IBE a user’s identity is a string which could be her email address, for example, Alice’s

email address is “alice@mun.ca” and this identity becomes her public key. Whoever

wants to send her message can use her email address as a public key and no need to

access CA for public key verification. But scalability issues remain the same because

IBE uses one-to-one communication method similar to traditional PKI system. There

are some application areas where data will be encrypted with a specific policy and

will be shared without prior knowledge of recipients’ identities. For this particular

type of setting, attribute-based encryption scheme comes into the picture.

Pirretti et al. in [38] clearly describe the structure of attribute-based encryption

scheme. In attribute-based encryption a user’s identity is composed of a set, S, of

strings which serve as descriptive attributes of the user. For example, a user’s identity

could consist of attributes describing their organisation, department, expertise, and

job function. A user in the system can then specify another set of attributes S ′ such

that a recipient can only decrypt a message if her identity S has at least k attributes

in common with the set S ′, where k is a threshold parameter set by the system.

So the user’s description, a set of attributes, becomes the public key. However, the

expressiveness of attribute-based encryption system is much more powerful because

several different recipients could possess k attributes in common who are able to

decrypt a message encrypted for a set S ′.

Attribute-based encryption has two flavours: Cipher Policy Attribute-Based En-

cryption (CP-ABE) and Key Policy Attribute-Based Encryption (KP-ABE).

18

KP-ABE In this encryption scheme, private keys are associated with access pol-

icy and ciphertexts are labelled with sets of attributes. In this scheme private keys

determine which ciphertexts are to be decrypted.

CP-ABE This scheme is quite opposite of what KP-ABE scheme does. In this

scheme ciphertexts are associated with access policy and private keys are associated

with sets of attributes.

In our setting, we will use CP-ABE scheme as encryption scheme because data

owner wants to have control over her sensitive data and wants to decide who can

access that PHR data. In contrast, encryptor in KP-ABE scheme has no control over

who can access her encrypted data. She has to trust the authority who generates keys,

this is not suitable for our patient-centric PHR system.

Table 3.2: Notations for access tree

Notations Description

T Representing access policy structure as access tree with root r

Tx Subtree of T rooted at node x

numx The number of children of a node x

kx Defines threshold value at node x

parent(x) Parent of the node x in the access tree T

attr(x) Denotes attribute associated with the leaf node x in the access tree

index(x) Index of the x’s child nodes

S Defines a set of attributes

19

3.2.2 Access policy structure

Access policy structure [5] in ABE is a tree based on a boolean function consisting

of (OR, AND) gates between attributes. A user can decrypt a ciphertext successfully

provided that the attribute set of his secret key satisfies the access policy associated

with the ciphertext.

Figure 3.1: A structure of access policy

Figure 3.1 shows an access policy with three attributes “cardio surgeon”, “car-

dio vascular”, and “heart institute”. If a user’s secret key holds either “cardio surgeon”

attribute or a combination of “cardio vascular” and “heart institute” attributes then

this access policy will be satisfied and decryption process can take place.

Access tree [5] Let T be a tree representing an access structure. Each non-leaf

node of the tree represents a threshold gate, described by its children and a threshold

value. If numx is the number of children of a node x and kx is its threshold value,

then 0 < kx ≤ numx. When kx = 1, the threshold gate is an OR gate and when kx =

20

numx , it is an AND gate. Each leaf node x of the tree is described by an attribute

and a threshold value kx = 1.

Table 3.3: Notations used in our PHR framework

Notations Description

U The universal or system attribute set

PK Public key or public key parameters

MK Master key, which is kept secret by Trusted Authority (TA)

Iu It denotes each registered user of the system with a unique identifier.

SK Secret key generated based on a set of user attributes, S.

SKIu,1 First part of the secret key generated for a specific user Iu.

SKIu,2 Second part of the secret key generated for a specific user Iu.

CT It denotes any ciphertext generated by encryption algorithm of our

system.

ĈT It denotes an intermediary ciphertext or a decryption token gener-

ated by revocation server.

M It denotes the plaintext before the encryption and after the decryp-

tion operation.

Satisfying an access tree [5] Let T be an access tree with root r. Tx is the subtree

of T rooted at the node x. Hence T is the same as Tr . If a set of attributes S satisfies

the access tree Tx , we denote it as Tx(S) = 1. We compute Tx(S) recursively as follows.

If x is a non-leaf node, evaluate Tx′(S) for all children x′ of node x. Tx(S) returns 1

21

if and only if at least kx children return 1. If x is a leaf node, then Tx(S) returns 1 if

and only if attr(x) ∈ S.

3.2.3 Ciphertext Policy Attribute-Based Encryption (CP-ABE)

In our attribute-based encryption scheme we choose Ciphertext Policy Attribute-Based

Encryption (CP-ABE) [5]. In this scheme, user’s secret keys are associated with a sets

of attributes, whereas ciphertexts are associated with the policies. Generally, CP-ABE

consists of four procedures: Setup, Encrypt, KeyGen, and Decrypt.

• Setup: The setup algorithm doesn’t take any input other than the implicit

security parameter.1 It outputs the public key PK and a master key MK.

• Encrypt(PK,M, T): The encryption algorithm takes as input the public pa-

rameters PK, a message M , and an access structure T over the universe of

attributes. The algorithm will encrypt M and produce a ciphertext CT such

that only a user that possesses a set of attributes, S that satisfies the access

structure will be able to decrypt the message.

• Key Generation(MK,S): The key generation algorithm takes as input the

master key MK and a set of attributes S that defines the key and outputs a

private key SK.

• Decrypt(PK,CT , SK): The decryption algorithm takes as input the public

parameters PK, a ciphertext CT , which contains an access policy T , and a

private key SK, which is a private key for a set S of attributes. If the set S of

1Security parameter is a Type A curve parameter, which is used to create pairings in CP-ABE
scheme to generate master key and public key.

22

attributes satisfies the access structure T then the algorithm will decrypt the

ciphertext and return a message M .

Discussion We discussed Pairing-Based Cryptography and its different elements.

We also described different types of pairings and their properties. We use Attribute-

Based Encryption (ABE) scheme in our PHR framework and it is based on Pairing-

Based Cryptography. We also discussed about other traditional encryption schemes

and argued that Attribute-Based Encryption scheme is suitable in the context of PHR

framework. At the end, we describe CP-ABE scheme, a variant of ABE scheme, as

the encryption scheme for our framework.

23

Chapter 4

Proposed System

4.1 Models, assumptions, and requirements

We will first describe general system structure and security model of our PHR frame-

work and then we will discuss security requirements of the system followed by design

goals. Moreover, all the terminologies and notations used in our system design are

described in table 4.1 and table 3.3, respectively.

4.1.1 System models

Our PHR framework consists of six entities, as follows:

• Authorization Server (AS): An entity which is responsible for handling the

registration, login, and logout process to the system. It authorizes the access of

users to the PHR system.

• Trusted Authority (TA): An entity which is trusted by all other participating

entities in this system. It is trusted in the sense that it securely generates and

24

Table 4.1: Terminologies

Terms Description

PHR Data We also mention it as data file, PHR information, PHR

file, or simply data. The internal structure of PHR data

is somewhat abstract in our our context.

Storage Provider We also mention it in this thesis as cloud provider, service

provider, cloud service provider, or simply as cloud, etc.

as untrusted storage providers.

Data Owner It refers to patient, caregiver, doctor, etc. who own data.

User User could be anyone who is authorized in the system

and can access and consume data.

stores master key and users’ secret keys and securely transmits those secret keys

to the users upon valid requests.

• Revocation Server (RS): A semi-trusted entity which will issue decryption

tokens to the users. It also maintains an Attribute Revocation List (ARL) based

on revoked users and attributes. It is semi-trusted in the sense that it correctly

follows the protocol, but might also try to learn the intermediate information.

• Data Owner: The entity who owns data and encrypts those data (e.g., pa-

tients).

• User: The entity who would like to access encrypted data with proper autho-

rization. Users are based on hierarchical structure. Basically, we divide our users

25

into two groups; patients and health professionals. Patients are not in the hier-

archy but health professionals come from different levels of hierarchy such as a

surgeon can come from the surgery department of health science centre in St.

John’s area. We will describe the details of hierarchical structure of attributes

in next chapter.

• Storage Provider: The entity who will provide storage service to store en-

crypted data.

The data owner encrypts their PHR data first and then uploads them to the cloud

servers. The appropriate user can download desired data file from cloud and decrypt

them with proper key before accessing the content of that file. The data owner also

creates access policy based on the universal set of attributes. We assume that storage

providers, i.e. cloud servers, are always online and have adequate storage capacity

along with high computing power. We also assume that revocation server will be always

online and will not provide any decryption token to the revoked attributes based on

revocation list. TA will also be online to revoke the system and user attributes, to

generate and distribute secret keys to users. TA is also responsible to maintain the

secrecy of the master key.

4.1.2 Security models

We consider cloud servers (most of them) are not trustworthy in the sense that they

will try to access the content of PHR data files. In some cases they will also try

to collude with malicious users to get access to the content of data file. Moreover,

some users might try to get unauthorized access to those encrypted data files. These

26

malicious or unauthorized users can work independently or together to gain access to

these sensitive contents. Each user of the system will have a secret key based on her

designated attribute set and public parameters will be available to everybody.

End-to-end encryption Communication between users and cloud providers are

assumed to be secured under existing security protocols such as HTTPS/TLS [11].

The idea behind this end-to-end encryption is to maintain data integrity along with

data confidentiality during communication process.

4.1.3 Security requirements

The security requirements of our PHR system are:

• Data Confidentiality: Preserving the confidentiality of user data is a key

requirement for a PHR system. Data should be accessible to only those who are

explicitly authorized by the data owner.

• Data Integrity: Integrity of the data must be ensured so that PHR users can

be certain that content posted to a third party storage server is authentic.

• Instant Revocation: If a user’s attribute is expired or revoked, then immedi-

ately the user should not be able to decrypt and access any PHR data using

that attribute, known as attribute revocation.

• Collusion-resistance: Multiple users (cloud providers also) will try to collab-

orate with each other but they should not be able to decrypt the ciphertext by

combining their secret keys. This is one of the strongest security requirements

for our system.

27

Data availability is another requirement for privacy aware PHR system which means

data should remain available despite any disaster unless explicitly deleted by its owner,

and despite potential malicious attempts to destroy data. However, this security

requirement relies more on the nature of network infrastructure which is out of the

scope of our work for now.

4.1.4 Design goals

The main goal of our framework is to provide secure PHR systems with fine grained

access control and efficient key management at the same time. We also want to enable

data owner and TA to revoke users/attributes instantly with the help of revocation

server. In this section, we describe our patient-centric secure data sharing framework

for cloud-based PHR systems.

4.1.5 Problem definition

We consider a PHR system with multiple data owners and users. The data owners

refer to the patients who have full control over their own PHR data, i.e. they can

create, manage, update, and delete it anytime. Any third party cloud service provider

can store the owners’ encrypted PHRs. The users may come from various aspects;

for example, a caregiver, a doctor or a nurse. Users may access the PHR documents

through the server in order to read someone’s PHR, and a user can simultaneously

have access to multiple owners’ data provided that the user has sufficient secret keys

to access those data.

28

We will describe briefly the CP-ABE scheme that we will use in our system design.

We will also mention about the security assumptions for that scheme.

4.1.6 Mediated Ciphertext-Policy Attribute-Based Encryp-

tion (mCP-ABE)

The mCP-ABE [23] scheme consists of five algorithms: Setup, Keygen, Encrypt, m-

Decrypt, and Decrypt. However, Setup and Encrypt algorithms are the same as original

CP-ABE scheme. So here we will only describe three other algorithms.

• Keygen(MK,S, Iu): TA runs this algorithm by taking master key MK, user

attribute set S, and user identifier Iu as input and generates two secret key

shares associated with user attribute set S, and user identifier Iu as output. The

first share of the secret key SKIu,1 is delivered to the revocation server, and the

second share of the secret key SKIu,2 is delivered to the user. The secret key

shares are delivered through a secure channel to the revocation server and to

the user.

• m-Decrypt(CT, SKIu,1, Iu): Revocation server runs this algorithm by taking

ciphertext CT , user identifier Iu, and secret key part SKIu,1 as input and gen-

erates intermediate message ĈT as output. If non-revoked attributes from the

set S do not satisfy the access tree T then it generates error symbol ⊥.

• Decrypt(ĈT , SKIu,2, CT): User’s client machine runs this algorithm by taking

intermediate ciphertext ĈT which is sent from revocation server, secret key part

SKIu,2, and original ciphertext CT as input and generates original plaintext

29

message M as output. Again if non-revoked attributes from the set S do not

satisfy the access tree T then it generates error symbol ⊥. We explain in Sec-

tion 4.1.8.3 the reason for checking again if access policy is satisfied in client

side decryption.

4.1.6.1 Attribute and its hierarchy

Attributes define and classify data, enable efficient identification and classification

of similar objects. For example, a group of health professionals with some common

interest or responsibilities in a health organization can be segregated based on a set

of attributes, such as organization, department, profession, etc. These attributes are

then used to build access permission to the specified individuals.

Figure 4.1: A hierarchy of attributes in PHR system

Attribute-based systems have huge potential for providing data security in health

sector. For example, a patient Alice with heart problems wants to share her PHR data

30

with appropriate personnel to get proper advise can encrypt her PHR data with the

attributes “cardio surgeon” and “heart institute”. Only health professionals satisfying

these attributes would be able to decrypt this information and can provide health

support.

In our system, we created hierarchy-based attributes. Figure 4.1 illustrates the

hierarchy of our system attributes. The attribute hierarchy is extendable. In this

hierarchy we have five levels of attributes to define, classify, and identify the data.

Patients can encrypt their data combining various levels of attributes which enhances

flexibility and expressiveness of access policy for any PHR data. For example, a patient

can define access policy for her PHR data such that any cardiac surgeon of the surgery

department from the heart institute in St. John’s can access PHR data. In this case,

four level of attributes are being used to identify authorized health professionals namely

region, organisation, department, and health profession attributes.

4.1.6.2 mCP-ABE implementation

We have implemented the Java library for mCP-ABE scheme as a part of our framework

design. We used jPBC [10] library for the underlying pairings and other pairing-

based operations. This is the Java porting of original Pairing-Based Cryptography

(PBC)1 [31] library which is designed and written in C by Ben Lynn. The original

CP-ABE scheme which is designed by Waters et al. in [5] is written in C language also.

We have implemented our own Java implementation of mCP-ABE library. To the best

of our knowledge, this is the first mCP-ABE library implementation based on the work

1Pairing-based cryptography is the use of a pairing between elements of two cyclic groups to a
third group. The detail description about PBC can be found in Chapter 3.

31

of Ibraimi et al. in [23]. We will describe the details of this library implementation

in chapter 5.

4.1.7 Complexity assumptions for security

We already know that all the Identity-Based Encryption (IBE) and Attribute-Based

Encryption (ABE) schemes are based on PBC and the security of PBC scheme along

with other cryptosystems that use pairings hugely depends on the intractability of

(Bilinear) Diffie-Hellman problem, discrete logarithm problem, or other related prob-

lems. This mCP-ABE scheme is also based on the fact that the discrete logarithm

and the Diffie-Hellman problem are hard to solve as long as the order of the group is

a large prime number.

Definition 4.1.1. Let ê be a bilinear pairing on (G1,G2). The bilinear Diffie-Hellman

problem (BDHP) is the following: Given P, aP , bP , and cP compute ê(P, P)abc.

4.1.8 Proposed PHR framework

We are using CP-ABE as the building block of our PHR system to gain fine-grained

access control with providing data confidentiality.

The user secret key in our framework gets divided into two parts. One part of the

secret key goes to the user and another part goes to the revocation server. To decrypt

the PHR data, the user has to get the decryption token from the revocation server,

which is depicted in Chapter 5. The revocation server keeps an Attribute Revocation

List (ARL) and refuses issuing the decryption token for any revoked attribute. When a

user wants to decrypt a ciphertext, if user’s attributes are in ARL then the revocation

32

server will not produce any token and decryption will not take place, which implies

instant revocation of user attributes.

We consider our framework in three different parts. These are:

• System setup and key distribution

• PHR encryption and access

• Revocation mechanism

We show the overview of the framework design in Figure 4.2 and the details of the

system design and implementation are presented in Chapter 5.

Figure 4.2: An overview of the PHR framework

4.1.8.1 System setup and key distribution

It is crucial to define a proper set of attributes for the PHR system. The system

first defines a common universe of attributes U , such as “surgeon,” “Health Science

33

Center,” “allergies,” “prescriptions,” “nurses from surgery,” “ICU doctors,” etc. The

system defines attributes, and users of the system obtain secret keys from TA, which

binds the users to their claimed attributes. There would be a process in the TA to

map an authorized personnel with a subset of attribute set based on her designated

role. For example, a doctor might receive “emergency center, cardiac surgeon, internal

medicine” as her attribute set from the TA. So if a nurse requests for a secret key based

on this attribute set then she might get refused by the TA, because her designation

doesn’t allow her to request a secret key based on the attribute set which are only

allowed for doctors.

4.1.8.2 PHR encryption and access

A data owner, i.e. a patient, who wants to encrypt PHR data using a particular access

policy, first checks for all valid attributes from the universal set U and creates access

policy based on those valid attributes. The owner then encrypts her PHR data with

this access policy and stores it to the server. Figure 4.2 shows that owner machine

encrypts the data and uploads it to the cloud. Only authorized users can decrypt

these PHR documents. An authorized user, i.e. a health professional, downloads PHR

documents from the server to the user machine (Figure 4.2) in order to access the

content of the document. The user must request her secret key part, SK2 before the

decryption process takes place. The user can decrypt PHR document if and only if she

has suitable secret key part which would satisfy the corresponding access policy of the

encrypted file and for which attributes are not in the revocation list of the revocation

server. However, the owner can change her access policy for a particular PHR data

and re-encrypt that file again with a new policy.

34

4.1.8.3 Revocation mechanism

The revocation server is assigned to filter out all revoked attributes and users from

being served with their decryption requests. To accomplish this task the revocation

server maintains an Attribute Revocation List (ARL). When an attribute gets revoked

from the universal set U , TA removes it from the universal attribute set and requests

revocation server to list up that attribute in the revocation list and not to serve further

requests based on this attribute. When an attribute is revoked from a particular user’s

attribute set, which is mapped against each user ID Iu, TA requests revocation server

to enlist that attribute against user Iu into the revocation list and not to perform

any request for that attribute, which comes from that particular user Iu. In this

way, revocation gets enforced instantly. However, as we mentioned before, either data

owner or TA holds the authorization to decide which attribute to be revoked. These

operations are done by the TA or revocation server. From above description we can

identify several possible cases for revocation:

• Revocation of one or more attributes from the universal set U which will affect

the entire system.

• Revocation of one or more attributes from a user attribute set S which affects

only that particular user.

• Revocation of a user which is equivalent to revoking all requests from that user.

In our scheme, decryption of the ciphertext is not fully performed on revocation server

rather decryption is performed in two levels instead of one level. As it is a patient-

oriented system, in almost all steps that are directly related to data access, we want

35

to involve the patient’s permission and involvement. Although the revocation server

is a semi-trusted party, i.e. it correctly follows the protocol steps, it might curiously

misuse the intermediate information. If the complete control is given to the this server,

the patient’s private data might be compromised. As the revocation server keeps the

Attribute Revocation List (ARL), data users do not need to contact data owners every

time they want to get access to the data they are authorized to.

Usually, data owners do not have high computation power on their devices to do

extra tasks related to data access through the network. Therefore, revocation server

will partially handle some tasks on behalf of the data owners. Data owners are not

online all the time, while revocation server is. This feature will make the system more

practical in real-world applications. Having all of the above items, although the system

might need to have some redundant and extra tasks and components, it will be robust,

secure and applicable.

Discussion To sum up, we point out some key features that our framework achieves

to provide data security and privacy in the context of PHR system. These are:

1. It provides data confidentiality by encrypting data before uploading to the cloud.

In this way, unauthorized users including storage service providers cannot access

the content of PHR files.

2. Fine-grained access control is achieved using our specific CP-ABE scheme and

data integrity is preserved by end-to-end encryption system.

3. It is collusion-resistant meaning that malicious users cannot decrypt a particular

encrypted file combining their attributes and secret keys as well. To prevent

36

collusion, the Keygen algorithm of CP-ABE scheme generates a random value

uid for each user Iu. This random value is embedded in each component of the

user secret key. Users cannot combine components of the secret key to increase

decryption power since different users have different random value in their secret

keys.

4. The sizes of the ciphertext and secret key do not increase linearly with the total

number of attributes in the system. The size of the secret keys depends on the

number of the user’s attributes and the size of the ciphertext depends roughly

on the size of the access policy.

5. Instant revocations of users or attributes are achieved through our framework.

We also point out some limitations of our framework. These are:

1. System needs to generate different secret keys for each user based on user’s

attribute set.

2. Data owner may not know the attributes of a specific user. Owner needs to know

attributes of the intended users before encrypting data for them.

37

Chapter 5

Design And Implementation

At first we describe the whole system and its functional overview using UML diagram

and then gradually we go in details of the system design. Figure 5.1 describes the

overview of PHR system.

Figure 5.1: An overview of PHR system design

38

5.1 Architecture

The proposed framework would have a Cloud Provider (CP) for third party storage,

a Private Secured Server (PSS) for TA and/or mediator, and users’ own devices. We

will use a server instance, e.g. PSS, to run the PHR system. An instance of Windows

or LINUX server can be used to run the application. For the purpose of this project

we have deployed the system on LINUX instance. We have used MySQL relational

database model to store application related data. The client application has been used

to encrypt and decrypt PHR data and then stored on a cloud Storage Service.

The PSS is initialized by running the setup function of CP-ABE. The function

creates the Master Key (MK) and the Public Key (PK). The MK will be saved

privately in the PSS without revealing it to other users. On the other hand, the PK

will be available for users to be able to encrypt and decrypt data. Here PSS can work

as a TA to create private keys for each registered user with identifiable and valid

attributes.

The PHR system has been built on RESTful1 web services and is residing in

instance of a server. Using Java web services, CP-ABE libraries are accessed and

encryption and decryption tasks take place. Web services are platform independent

and thus different types of client application can be developed based on those web

services. All encrypted PHR files will be stored on the cloud server. MySQL database

would store all the metadata and references related to PHR files, user credentials, and

attributes assigned to users. Each user will have a different set of attributes. Whenever

a user demands a file, using the attributes assigned to the user, decryption will take

1Representational State Transfer (REST) is an architectural style for web services, where data and
functionality are considered resources and are accessed using Uniform Resource Identifiers (URIs).

39

place.

5.2 Implementation

Our implementation has four different parts, as follows

• CP-ABE library implementation

• Web services for framework

• Database system of the framework

• Android client application

5.2.1 Java implementation of CP-ABE library

All variants of ABE schemes are based on pairing-based cryptography. Our CP-ABE

library implementation is also supported by Java porting of PBC library named jPBC.

PBC library is the only complete implementation of bilinear maps in cryptography.

Java programming language is widely used language for developing any type of systems

ranging from enterprise levels to mobile devices. We have chosen Java to implement

our CP-ABE library.

jPBC supports different types of elliptic curves. These are Type A, Type A1, Type

D, Type E, Type F, Type G. We used Type A curves in our implementation. Type

A pairing is symmetric, with bilinear pairings and our CP-ABE scheme is based on

bilinear mapping. That’s why, we used Type A pairing as the building block for our

library implementation. Table 5.1 shows the pairing time and other pairing-based

40

operations in milliseconds. The test has been done in Google Nexus 4 with Android

OS 5.1.1 and Qualcomm Snapdragon S4 Quad-core 1500 MHz Processor. The run

time is including the system time.

Table 5.1: Pairing operation in milliseconds

Pairing Type Average pairing time Average preprocessed pairing time

a 853.0 340.0

d159 7265.0 6707.0

d201 7743.0 7763.0

d224 9821.0 9764.0

Creation of pairings Type A pairings are constructed on the curve y2=x3+x over

the field Fq for some prime q= 3 mod 4. Both G1 and G2 are the group of points

E(Fq), so this pairing is symmetric.

import it.unisa.dia.gas.jpbc.*;

import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

Pairing pairing = PairingFactory.getPairing("a.properties");

Figure 5.2: Initialization of pairing

The Pairing interface from jPBC library provides access to the algebraic structures

41

underlying the pairing computation and the pairing function. It takes Type A pair-

ing parameters and generates pairings. Pairing parameters could be stored in a file

called a.properties. Figure 5.2 shows how pairings are generated. Approximately fifty

percent time can be saved by preprocessing if a value is known to be paired several

times. Table 5.1 shows that use of preprocessing can save almost half of the pairing

generation time. Pairing parameters can be generated using the code from Figure 5.3.

import it.unisa.dia.gas.plaf.jpbc.pairing.a.TypeACurveGenerator;

import it.unisa.dia.gas.plaf.jpbc.pbc.curve.PBCTypeACurveGenerator;

int rBits = 160;

int qBits = 512;

// JPBC Type A pairing generator...

ParametersGenerator pg = new TypeACurveGenerator(rBits, qBits);

Figure 5.3: Pairing parameter generator

Setup The setup algorithm takes type A pairing parameters and generates pairings.

Based on the newly generated pairings it generates a group G1 of prime order p with

a generator g and a bilinear map

ê : G1 ×G1 → G2 (5.1)

After that the algorithm generates random elements, tj ∈ Zp for each attribute, aj ∈ Ω

from the system attribute set Ω. Let y = ê(g, g)α, where α is chosen at random from

42

Zp, and {Tj = gtj}nj=1. Now, the public key is published as:

PK = (g, y, {Tj}nj=1) (5.2)

and the master secret key is published as:

MK = (α, {tj}nj=1) (5.3)

Cpabe cpabe = new Cpabe();

/*setup method initializes the system by generating and storing public key and

master key in pubfile and mskfile, respectively. It also takes all

authorized attributes as input.*/

cpabe.setup(pubfile, mskfile, universe_of_authorized_attributes);

Figure 5.4: Setup algorithm for CP-ABE library

Key generation The secret key is generated based on a user’s authorized set of

attributes, S. Two parts of the secret key is generated from the key generation algo-

rithm. One goes to the user and another to the revocation server. To avoid collusion

attack each secret key gets a random value, uid ∈ Zp, generated from user’s unique

ID, Iu. For each attribute aj ∈ S from the user’s attribute set S a random component

uj ∈ Zp will be generated. Library method keygen in Figure 5.5 generates the secret

keys for the users.

43

/*keygen method is responsible for generating users’ secret keys based

on their attribute set. one part of the secret key goes to the user

and other part to the revocation server*/

cpabe.keygen(pubfile, mskfile, secret_key_part1, secret_key_part2, user_attribute_set);

Figure 5.5: Key generation for CP-ABE library

Encryption This algorithm takes public key parameters along with plaintext file

and an access policy as an input, and outputs the encrypted file, which will be stored

in the server. Figure 5.6 describes the enc method for encryption process.

/*enc method takes plain data as inputfile, encrypts it with an access

policy and stores it in a file as encrypted data*/

cpabe.enc(pubfile, access_policy, inputfile, encryptedfile);

Figure 5.6: Encryption algorithm for CP-ABE library

Revocation check This is the first step of decryption process and revocation check

is done here. When a user requests for the decryption of a file, it goes to the revocation

server and if the access policy is satisfied then the server checks for the revoked

attributes. A decryption token is generated if and only if no attribute from user’s

attribute set S is in the Attribute Revocation List (ARL). Decryption token is sent

to user for decrypting the encrypted file.

44

/*m_dec_with_revocation_check method requests for decryption token

from revocation server*/

cpabe.m_dec_with_revocation_check(pubfile, secret_key_part1,

encryptedfile, decryption_token_file, user_id);

Figure 5.7: Generates decrpyt token with revocation check

Decryption This algorithm takes decryption token along with encrypted file and

user’s secret key. Once again secret key is checked against access policy of the encrypted

file. If access policy is satisfied then final decryption process takes place for that specific

encrypted PHR file.

/*after getting valid decryption token from revocation server dec

method decrypts plaintext data*/

cpabe.dec(pubfile, prvfile1part2, encfile, mdecfile, decfile,

user_id);

Figure 5.8: Decryption algorithm

5.2.2 Web services for the framework

We have implemented web services for different functionalities of the system. However,

all the communications with the system should be encrypted using the TLS protocol.

Here we list up the core web services:

• Registration

• Login

45

• Get Public Key

• Get Secret Key

• Secure Upload

• Secure Access

• Delete A User

• Update An Account

There are other web services which will help any health organization to implement

PHR system on their own premises. Using these web services we have also developed

an android client application for encrypting, decrypting, and storing PHR data into

the cloud. The UML diagrams of the system design are listed in Appendix A.

we describe some of our web services here :

• Registration: Using this interface user registers herself into the system.

Figure 5.9: Request format of registration web service

46

Figure 5.10: Response format of registration web service

5.2.3 Database design

PHRs are composed of several data records, which are identified by a unique positive

integer number. All data records have an author, which is the user who added the

record to the database. However, the record also has an owner represented by the

person to whom the data refers (e.g. patients). The actual contents of the health

record are encrypted and stored in the form of a blob, i.e. a sequence of bytes. The

following figures describe the database design of the PHR system.

47

Figure 5.11: A database schema for users credentials

Figure 5.12: A database schema for revocation server

48

Hibernate framework Hibernate facilitates the storage and retrieval of Java ob-

jects. It defines a proprietary query language, Hibernate Query Language (HQL), that

prevents SQL injection. Our System employs hibernate framework to execute all kind

of operations with database system.

Figure 5.13: A database schema for TA server

49

5.2.4 Android application (PHR Client)

Here we describe the functionality of our client application. Application starts with a

pop-up window to identify the user as a patient or health professional (Figure 5.14).

Figure 5.14: Client application with login screen

If the user tries to login as a patient using a health professional’s user credentials,

she would be denied access to the system. This user type-based selection process

brings the users with their designated feature-based interface. We describe the client

application in three different steps, user registration and login, secure upload, and

secure access.

User registration and login In this interface user will register herself to use the

system (Figure 5.15). Only patients will be able to register to the system. Health

50

professionals will not be able to register themselves using this PHR Client. They will

be registered to the system by the system administrator and later will be provided

with their access credentials.

Figure 5.15: Registration form

When patients register themselves, they can indicate the users who can see them

and their files based on attribute hierarchy list. This accessibility option will allow only

those health professionals who are authorized to access their designated patient’s files.

This authorization prevents health professionals to see all other unrelated patient’s

PHR files. Figures 5.16, 5.17 and 5.18 describe the steps of registration process. User

login is fairly straightforward interface to login to the PHR system (Figure 5.15).

51

Figure 5.16: Selecting regions and respective organizations

Figure 5.17: Selecting departments and health professions

52

Figure 5.18: Selecting health professionals

Secure upload User selects a file from her device to encrypt. Then she defines an

access policy based on system attributes. “Secure Upload” button performs two steps

of operation. First, encrypts the file with defined access policy and then uploads it to

the server (Figure 5.19).

53

Figure 5.19: Secure upload and secure access

Secure access A health professional gets the list of patients and selects a particular

patient from the list. Another list of PHR files is generated based on the selected

user. Then health professional can select whichever file she wants to access and press

“Access Selected File” button. This also does two step operations. First it gets the

encrypted file and then decrypts it. After that file is stored to the file system of the

device from where user can access decrypted file (Figure 5.19).

Figure 5.20 describes user logout screen to terminate current user session.

54

Figure 5.20: User logout screen

55

Chapter 6

Experimental Results And

Analysis

6.1 Experimental results

We run some test cases on our CP-ABE library of the PHR system. We also use

dummy PHR data to run the test in the system. We used 65 attributes as system

attributes. Public key and master key are created based on those attributes.

/** The attribute set 1. */

static String attr1 = "doc@cardiologist.ca nurse@mentalhealth.ca anesthesiologist

nurse_anesthetist emergency_physician_assistant";

/** The attribute set 2. */

static String attr2 = "cardiovascular_medicine pediatric_medicine primary_care_medicine

neurologist";

Figure 6.1: Two different attribute sets

56

/** The access policy. */

static String policy = "((cardiovascular_medicine AND pediatric_medicine) OR

(primary_care_medicine AND doc@cardiologist.ca))";

Figure 6.2: Access policy

A set of secret keys are generated based on two sets of user attributes (Figure 6.1).

An access policy (Figure 6.2) is used to encrypt PHR data files. Our test has been

conducted under three scenarios:

• We encrypt PHR file with the access policy from Figure 6.2 and try to decrypt

it using the user’s secret keys created from attribute set 1 (Figure 6.1). It

must be noted that whenever we talk about secret keys we actually identify two

parts of the user secret key. From the access policy we can see that only those

secret keys can decrypt the PHR file which have “cardiovascular medicine” and

“pediatric medicine” or “primary care medicine” and “doc@cardiologist.ca” in

their attribute set. Secret keys created from attribute set 1 do not satisfy this

access policy. The reason is that first two attributes from access policy do not

exist in set 1 and only one attribute from second two attributes exists in set 1

which clearly does not satisfy the access policy either. That’s why we received

AttributesNotSatisfiedException (Figure 6.3) while trying to decrypt.

57

//cannot decrypt, attributes in key do not satisfy policy.

Exception in thread "main"

com.mitu.utils.exceptions.AttributesNotSatisfiedException: Attributes

are not satisfied.

Figure 6.3: Access policy is not satisfied

• Next, we tried to decrypt the PHR file using secret keys created from attribute

set 2 (Figure 6.1). The secret keys clearly satisfy the access policy because both

“cardiovascular medicine” and “pediatric medicine” attributes are in the secret

keys. So the PHR file is decrypted successfully.

• In the last scenario, we also tried to decrypt the PHR file using secret keys based

on attribute set 2. But this time we added “cardiovascular medicine” and “pri-

mary care medicine” in the Attribute Revocation List (ARL) from attribute set

2 and revocation server denied to serve with an exception called NoSuchDecryp-

tionTokenFoundException (Figure 6.4). Server generates this type of exception

when attributes are revoked and no decryption token is generated.

//Attribute has been revoked!!

Exception in thread "main"

com.mitu.utils.exceptions.NoSuchDecryptionTokenFoundException:

Attributes have been revoked.

Figure 6.4: Attributes are revoked

58

6.2 Performance analysis

In this section, we provide the experimental results to evaluate the performance and

feasibility of our proposed PHR system. The experiment is performed on:

• 64-bit Linux workstation with AMD Athlon(tm) Dual-core 2.1 GHz Processor

and 3GB RAM.

• Google Nexus 4 with Android OS 5.1.1 and Qualcomm Snapdragon S4 Quad-core

1500 MHz Processor.

Our CP-ABE library implementation is based on Type A pairings, which uses a

160-bit elliptic curve group on the curve y2 = x3 +x over a 512-bit finite field [10]. Our

scheme is based on the Java porting of Pairing-Based Cryptography (jPBC) library

version 2.0.0. All the experimental results are mostly the average of 4/5 trials to obtain

a consistent output because CPU clock time may provide different results based on

other processes running on the current machine. All the run time includes system

time as well.

Figure 6.5: Setup time

59

We analyze overall performance of the system based on CP-ABE library. We

performed encryption and decryption in the same user device for the analysis purpose.

Practical testing can be done with different user devices. Figure 6.5 describes the

public key and master key generation time based on different number of attributes.

From this graph we can see that key generation time increases almost linearly with

number of attributes in the system. Key generation time with 45 attributes takes 1.99

seconds, which is only 1 second more than the key generation time with 10 attributes.

Figure 6.6: Secret key generation time

User secret key generation doesn’t depend on the entire system attribute set. It

only depends on the user attribute set. In our system, secret keys are generated in

two parts and both of them take almost same time to be created. Figure 6.6 describes

secret key generation time based on different sets of user attributes. The time also

increases linearly as the number of attributes increases.

We encrypt six different PHR files (1.2MB, 3.8MB, 8.2MB, 12.2MB, 16.7MB, 20MB)

with eight different numbers of attributes in the access policy to measure performance

60

of the encryption operations. Access policy complexity plays important role in the

speed of encryption operations. Here the speed of encryption (Figure 6.7) decreases,

while the size of the access policy increases and this is almost linear with the number

of attributes in the access policy.

Figure 6.7: Encryption time based on different file sizes

However, decryption time (Figure 6.8) tends to be almost constant regardless of

different attribute sizes in access policy as we are decrypting files using a single secret

key.

61

Figure 6.8: Decryption time based on different file sizes

During the attribute revocation, revocation server only needs to check Attribute

Revocation List (ARL) for the revoked attributes in the access policy, which doesn’t

add any extra overhead for decryption token generation time. From Figure 6.9 we can

see that decryption token generation is the same as decryption operation.

Figure 6.9: Decryption token generation time in revocation server

In our system, PHR files around 1MB are encrypted in less than 0.8 seconds

depending on the number of attributes in the access policy. Files ranging from 1MB

62

to 20MB take time from 0.7 to 1.7 seconds to encrypt, as shown in Figure 6.7. On

the other hand, decryption time (Figure 6.8) for files ranging from 12MB to 20MB

are from 0.63 to 0.69 seconds. It is obvious that lower size files will take less than

0.6 seconds to decrypt. These results indicate that the time for these operations is

feasible for PHR systems.

Figure 6.10: Public and master key sizes

From Figure 6.10, the size of public key increases linearly with the number of

attributes. But master key size doesn’t increase like public key. Public key size increases

up to 10KB for 65 attributes whereas master key size grows only to around 3KB.

Secret key size also increases linearly with the number of user attributes. Key size for

4 attributes is around 700 bytes, and for 36 attributes is 5.5KB. These key sizes are

negligible in terms of storage overhead.

63

Figure 6.11: Secret key size based on number of attributes

The size of the ciphertext depends on the size of the access policy. we measured

the difference between ciphertext and plaintext across various numbers of attributes

in the access policy. The difference is almost identical for all the files. The difference

is around 5KB for access policy with 22 attributes and around 4KB for access policy

with 18 attributes.

64

Chapter 7

Conclusions And Future Work

7.1 Summary

PHR system is an essential part of any healthcare organization, because PHR consists

of all the medical information of a particular patient. PHR system helps users to get

best and yet faster treatments for their health problems. At the same time, users also

want to keep their sensitive PHR data secured so that only authorized personnel can

get access to them.

In this thesis, we proposed a framework to share PHR data effectively and securely.

We also implemented this framework for sharing personal health records in a secured

way by using a variation of generic CP-ABE encryption scheme named mCP-ABE [23].

To accomplish our goal we implemented the Java library of this CP-ABE scheme

with the help of jPBC library, which is the first implementation of this kind to our

best knowledge. This framework would allow users to share, manage, and process

PHR data with fine grained access control mechanism. In this framework, patients

65

have full control on their PHR data. Moreover, this framework efficiently handles the

fundamental challenge of key management, which is introduced by multiple PHR users

and owners.

Furthermore, it handles efficient and on-demand attribute revocation. Revocation

can happen due to the following reasons: i) User attributes are invalid, or ii) User

attributes have been compromised. Our framework handles this revocation process

effectively. Revocation server maintains an Attribute Revocation List (ARL) for this

purpose. When an attribute is revoked from the system attribute list, Ω, TA removes it

and notifies revocation server to put it in revocation list right away, which instantiates

instant revocation. TA can revoke system and user attributes, but attribute owner

can also put request to revoke attribute if she thinks it is compromised.

7.2 Future work

As a future direction of this work system attribute set can be made flexible by support-

ing new attribute definitions after the initialization of the system. MySQL RDBMS

can be replaced by NoSQL database system (e.g., MongoDB, Oracle NoSQL Database,

etc.). NoSQL database is suitable for PHR applications, because it is easier to manage

and it provides a higher level of flexibility. Also, to make the system more robust, and

to overcome the issue of single point of failure, single Trusted Authority (TA) can be

replaced by a (k, n) threshold scheme [29], such that at least k TAs should participate

to generate the user secret keys.

66

Bibliography

[1] Ben Adida, Arjun Sanyal, Steve Zabak, Isaac S. Kohane, and Kenneth D. Mandl.

Indivo X: developing a fully substitutable personally controlled health record plat-

form. In AMIA Annual Symposium Proceedings, volume 2010, page 6. American

Medical Informatics Association, 2010.

[2] Joseph A. Akinyele, Christoph U. Lehmann, Matthew D. Green, Matthew W.

Pagano, Zachary NJ Peterson, and Aviel D. Rubin. Self-protecting electronic

medical records using attribute-based encryption. 2010.

[3] Mrinmoy Barua, Xiaohui Liang, Rongxing Lu, and Xuemin Shen. Peace: An

efficient and secure patient-centric access control scheme for ehealth care system.

In Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE

Conference on, pages 970–975. IEEE, 2011.

[4] Josh Benaloh, Melissa Chase, Eric Horvitz, and Kristin Lauter. Patient controlled

encryption: ensuring privacy of electronic medical records. In Proceedings of the

2009 ACM workshop on Cloud computing security, pages 103–114. ACM, 2009.

[5] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-

based encryption. In Security and Privacy, 2007. SP’07. IEEE Symposium on,

67

pages 321–334. IEEE, 2007.

[6] Ian F. Blake, Gadiel Seroussi, and Nigel Smart. Elliptic curves in cryptography,

volume 265. Cambridge university press, 1999.

[7] CareCloud. Healthcare and medical billing software, http://www.carecloud.com/,

2015.

[8] Ling Cheung, Joseph A. Cooley, Roger Khazan, and Calvin Newport. Collusion-

resistant group key management using attribute-based encryption. Group-

Oriented Cryptographic Protocols, page 23, 2007.

[9] John Craig and Victor Patterson. Introduction to the practice of telemedicine.

Journal of Telemedicine and Telecare, 11(1):3–9, 2005.

[10] Angelo De Caro and Vincenzo Iovino. jPBC: Java pairing based cryptography.

In Computers and Communications (ISCC), 2011 IEEE Symposium on, pages

850–855. IEEE, 2011.

[11] Tim Dierks. The transport layer security (TLS) protocol (version 1.2), 2008.

[12] Judy Foreman. At risk of exposure : In the push for electronic medical records,

concern is growing about how well privacy can be safeguarded. Los Angeles

Times, June 2006.

[13] Markle Foundation. The common framework: Overview and principles. Connect-

ing for health, 2006.

[14] Practice Fusion. Free electronic health records, http://www.practicefusion.com/,

2015.

68

[15] Martin Gagne. Applications of bilinear maps in cryptography. 2002.

[16] Steven D. Galbraith, Keith Harrison, and David Soldera. Implementing the tate

pairing. In Algorithmic number theory, pages 324–337. Springer, 2002.

[17] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for

cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[18] Paul Garrett. Intro abstract algebra, 1997.

[19] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based

encryption for fine-grained access control of encrypted data. In Proceedings of the

13th ACM conference on Computer and communications security, pages 89–98.

Acm, 2006.

[20] Trisha Greenhalgh, Susan Hinder, Katja Stramer, Tanja Bratan, and Jill Russell.

Adoption, non-adoption, and abandonment of a personal electronic health record:

case study of HealthSpace. Bmj, 341, 2010.

[21] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of things (IoT): A vision, architectural elements, and

future directions. Future Generation Computer Systems, 29(7):1645–1660, 2013.

[22] Microsoft HealthVault. http://www.healthvault.com, 2015.

[23] Luan Ibraimi, Milan Petkovic, Svetla Nikova, Pieter Hartel, and Willem Jonker.

Mediated ciphertext-policy attribute-based encryption and its application. In

Information Security Applications, pages 309–323. Springer, 2009.

[24] Cisco inc. Internet of everything. http://ioeassessment.cisco.com/, 2015.

69

[25] Antoine Joux. A one round protocol for tripartite Diffie–Hellman. In Algorithmic

number theory, pages 385–393. Springer, 2000.

[26] David C. Kaelber, Ashish K. Jha, Douglas Johnston, Blackford Middleton, and

David W. Bates. A research agenda for personal health records (PHRs). Journal

of the American Medical Informatics Association, 15(6):729–736, 2008.

[27] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,

48(177):203–209, 1987.

[28] Neal Koblitz, Alfred Menezes, and Scott Vanstone. The state of elliptic curve

cryptography. In Towards a Quarter-Century of Public Key Cryptography, pages

103–123. Springer, 2000.

[29] Jun Kurihara, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki Tanaka.

A new (k, n)-threshold secret sharing scheme and its extension. In Information

Security, pages 455–470. Springer, 2008.

[30] Ben Lynn. On the implementation of pairing-based cryptosystems. Stanford

University, 2007.

[31] Ben Lynn. The pairing-based cryptography (PBC) library. 2010.

[32] Kenneth D. Mandl, Peter Szolovits, Isaac S. Kohane, David Markwell, Rhona

MacDonald, and others. Public standards and patients’ control: how to keep

electronic medical records accessible but private. Bmj, 322(7281):283–287, 2001.

[33] Alfred Menezes. An introduction to pairing-based cryptography. volume 477,

pages 47–65, 2005.

70

[34] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptol-

ogy—CRYPTO’85 Proceedings, pages 417–426. Springer, 1986.

[35] David Niewolny. How the internet of things is revolutionizing healthcare. White

paper, Oct, 2013.

[36] iHealthBeat org. Google, microsoft say HIPAA stimulus rule doesn’t apply to

them, April 2009.

[37] iHealthBeat org. Hackers directly targeting health care organizations, FBI warns,

August 2014.

[38] Matthew Pirretti, Patrick Traynor, Patrick McDaniel, and Brent Waters. Secure

attribute-based systems. In Proceedings of the 13th ACM conference on Computer

and communications security, pages 99–112. ACM, 2006.

[39] Ronald L. Rivest, Adi Shamir, and Len Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–

126, 1978.

[40] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in

Cryptology–EUROCRYPT 2005, pages 457–473. Springer, 2005.

[41] William Stallings. The advanced encryption standard. Cryptologia, 26(3):165–188,

2002.

[42] Scott A. Vanstone. Next generation security for wireless: elliptic curve cryptog-

raphy. Computers & Security, 22(5):412–415, 2003.

71

Appendix A

UML Diagrams

Here we list up all the use case descriptions.

72

Figure A.1: Use case description: Registration

73

Figure A.2: Use case description: Login

74

Figure A.3: Use case description: Logout

75

Figure A.4: Use case description: Setup

76

Figure A.5: Use case description: Key Generation

77

Figure A.6: Use case description: Encryption

78

Figure A.7: Use case description: Decryption

79

Figure A.8: Use case description: Revocation

80

Figure A.9: Use case description: Update User Account

These are the activity diagram of the framework design:

81

Figure A.10: System initialization by generating public and master keys

Figure A.11: Generates user secret key based on an attribute set.

82

Figure A.12: Encryption process of PHR data

Figure A.13: Requesting decryption token

83

Figure A.14: Decryption process of PHR data

Figure A.15: Attribute revocation based on ARL

84

Appendix B

Programming Languages And

Tools

Technologies and programming tools, which we have used for implementation, are

listed below:

• Web Server/Application Server: Any Java Application Server (JAS) such

as, Jboss, Glassfish, etc. or any web server such as, tomcat or jetty can be used.

We used Apache Tomcat 8.

• Database Server: We have used MySQL Server 5.6 for database system.

• Editor (IDE): Both netbeans and eclipse IDE can be used for web service

development. Specifically, we used Eclipse Mars for web service development

and ADT for android client development.

• Programming Language: We used JAVA for web service development (server

side). For client application development we used Android Platform (client side).

85

• Web Service Framework: We used RESTlet 2.2.2 framework for designing

RESTful web services.

• Persistence Framework: We used Hibernate 4.3 framework for persisting data

to backend database system (In our case, it is MySQL DBMS).

• Project Build: For maintaining project structure and building automatically

along with dependencies we used Maven 2, a project building tool.

86

Appendix C

CP-ABE Library : JAVA Source

Code

This is the Cpabe.java class file of our CP-ABE library. Setup, key generation, en-

cryption, and decryption operations are invoked from this class. We present only this

main class of our library here.

package com.mitu.cpabe;

import it.unisa.dia.gas.jpbc.Element;

import java.io.IOException;

import java.security.NoSuchAlgorithmException;

import java.util.logging.Level;

import java.util.logging.Logger;

import com.mitu.abe.Abe;

import com.mitu.abe.AbeCph;

import com.mitu.abe.AbeCphKey;

import com.mitu.abe.AbeMDec;

import com.mitu.abe.AbeMsk;

import com.mitu.abe.AbePrv;

import com.mitu.abe.AbePrvPart1;

87

import com.mitu.abe.AbePrvPart2;

import com.mitu.abe.AbePub;

import com.mitu.abe.SerializeUtils;

import com.mitu.cpabe.policy.LangPolicy;

import com.mitu.utils.exceptions.AttributesNotSatisfiedException;

import com.mitu.utils.exceptions.NoSuchDecryptionTokenFoundException;

// TODO: Auto-generated Javadoc

/**

* The Class Cpabe.

*/

public class Cpabe {

/**

* Setup.

*

* @author Mitu Kumar Debnath

* @param pubfile

* the pubfile

* @param mskfile

* the mskfile

* @param attrs

* the attrs

* @throws IOException

* Signals that an I/O exception has occurred.

* @throws ClassNotFoundException

* the class not found exception

*/

public void setup(String pubfile, String mskfile, String[] attrs) throws IOException {

byte[] pub_byte, msk_byte;

AbePub pub = new AbePub();

AbeMsk msk = new AbeMsk();

Abe.setup(pub, msk, attrs);

88

/* store AbePub into pubfile */

pub_byte = SerializeUtils.serializeBswabePub(pub);

Common.spitFile(pubfile, pub_byte);

/* store AbeMsk into mskfile */

msk_byte = SerializeUtils.serializeBswabeMsk(msk);

Common.spitFile(mskfile, msk_byte);

}

/**

* Keygen.

*

* @param pubfile

* the pubfile

* @param prvfilePart1

* the prvfile part1

* @param prvfilePart2

* the prvfile part2

* @param mskfile

* the mskfile

* @param attr_str

* the attr_str

* @throws NoSuchAlgorithmException

* the no such algorithm exception

* @throws IOException

* Signals that an I/O exception has occurred.

* @throws ClassNotFoundException

*/

public void keygen(String pubfile, String prvfilePart1, String prvfilePart2, String mskfile,

String attr_str)

throws NoSuchAlgorithmException, IOException {

AbePub pub;

AbeMsk msk;

89

byte[] pub_byte, msk_byte, prv_bytePart1, prv_bytePart2;

/* get AbePub from pubfile */

pub_byte = Common.suckFile(pubfile);

pub = SerializeUtils.unserializeBswabePub(pub_byte);

// ObjectInputStream inputStream = Utility.deSerializeObject(pubfile);

// pub = (AbePub) inputStream.readObject();

/* get AbeMsk from mskfile */

msk_byte = Common.suckFile(mskfile);

msk = SerializeUtils.unserializeBswabeMsk(pub, msk_byte);

// ObjectInputStream inputStream2 = Utility.deSerializeObject(mskfile);

// msk = (AbeMsk) inputStream2.readObject();

String[] attr_arr = null;

try {

attr_arr = LangPolicy.parseAttribute(attr_str);

} catch (Exception ex) {

Logger.getLogger(Cpabe.class.getName()).log(Level.SEVERE, null, ex);

}

AbePrv prv = Abe.keygen(pub, msk, attr_arr);

/* store AbePrv into prvfile */

prv_bytePart1 = SerializeUtils.serializeBswabePrvPart1(prv.prv1);

prv_bytePart2 = SerializeUtils.serializeBswabePrvPart2(prv.prv2);

Common.spitFile(prvfilePart1, prv_bytePart1);

Common.spitFile(prvfilePart2, prv_bytePart2);

// Utility.serializeObject(prvfilePart1, prv.prv1);

// Utility.serializeObject(prvfilePart2, prv.prv2);

}

/**

90

* Enc.

*

* @param pubfile

* the pubfile

* @param policy

* the policy

* @param inputfile

* the inputfile

* @param encfile

* the encfile

* @throws Exception

* the exception

*/

public void enc(String pubfile, String policy, String inputfile, String encfile) throws

Exception {

AbePub pub;

AbeCph cph;

AbeCphKey keyCph;

byte[] plt;

byte[] cphBuf;

byte[] aesBuf;

byte[] pub_byte;

Element m;

/* get AbePub from pubfile */

pub_byte = Common.suckFile(pubfile);

pub = SerializeUtils.unserializeBswabePub(pub_byte);

// ObjectInputStream inputStream = Utility.deSerializeObject(pubfile);

// pub = (AbePub) inputStream.readObject();

keyCph = Abe.enc(pub, policy);

cph = keyCph.cph;

m = pub.p.getGT().newElement();

91

m = keyCph.key.duplicate();

System.err.println("m = " + m.toString());

if (cph == null) {

System.out.println("Error happened in enc");

System.exit(0);

}

cphBuf = SerializeUtils.bswabeCphSerialize(cph);

// cphBuf = Utility.objectToByteArray(cph);

/* read file to encrypted */

plt = Common.suckFile(inputfile);

// ObjectInputStream inputStream2 =

// Utility.deSerializeObject(inputfile);

// inputStream2.readFully(plt);

aesBuf = AESCoder.encrypt(m.toBytes(), plt);

Common.writeCpabeFile(encfile, cphBuf, aesBuf);

}

/**

* dec_with_revocation_check.

*

* @param pubfile

* the pubfile

* @param prvfilePart1

* the prvfile part1

* @param encfile

* the encfile

* @param m_decfile

* the m_decfile

* @param user_id

* the user_id

* @throws NoSuchDecryptionTokenFoundException

92

* @throws AttributesNotSatisfiedException

* @throws IOException

* @throws ClassNotFoundException

* @throws Exception

* the exception

*/

public void dec_with_revocation_check(String pubfile, String prvfilePart1, String encfile,

String m_decfile,

String user_id) throws AttributesNotSatisfiedException,

NoSuchDecryptionTokenFoundException, IOException {

byte[] cphBuf;

byte[] prv_1_byte;

byte[] pub_byte, m_dec_byte;

byte[][] tmp;

AbeCph cph;

AbePub pub;

AbePrvPart1 prvPart1;

AbeMDec mDec;

/* get AbePub from pubfile */

pub_byte = Common.suckFile(pubfile);

pub = SerializeUtils.unserializeBswabePub(pub_byte);

// ObjectInputStream inputStream = Utility.deSerializeObject(pubfile);

// pub = (AbePub) inputStream.readObject();

/* read ciphertext */

tmp = Common.readCpabeFile(encfile);

cphBuf = tmp[1];

cph = SerializeUtils.bswabeCphUnserialize(pub, cphBuf);

/* get AbePrvPart1 form prvfilePart1 */

prv_1_byte = Common.suckFile(prvfilePart1);

prvPart1 = SerializeUtils.unserializeBswabePrvPart1(pub, prv_1_byte);

93

// ObjectInputStream inputStream2 =

// Utility.deSerializeObject(prvfilePart1);

// prvPart1 = (AbePrvPart1) inputStream2.readObject();

mDec = Abe.m_dec(pub, prvPart1, cph);

m_dec_byte = SerializeUtils.serializeBswabeMDec(mDec);

Common.spitFile(m_decfile, m_dec_byte);

// Utility.serializeObject(m_decfile, mDec);

}

/**

* Dec.

*

* @param pubfile

* the pubfile

* @param prvfilePart2

* the prvfile part2

* @param encfile

* the encfile

* @param m_decfile

* the m_decfile

* @param decfile

* the decfile

* @param user_id

* the user_id

* @throws Exception

* the exception

*/

public void dec(String pubfile, String prvfilePart2, String encfile, String m_decfile, String

decfile,

String user_id) throws Exception {

byte[] aesBuf, cphBuf;

94

byte[] plt;

byte[] prv_2_byte;

byte[] pub_byte, m_dec_byte;

byte[][] tmp;

AbeCph cph;

AbePub pub;

AbePrvPart2 prvPart2;

AbeMDec mDec;

/* get AbePub from pubfile */

pub_byte = Common.suckFile(pubfile);

pub = SerializeUtils.unserializeBswabePub(pub_byte);

// ObjectInputStream inputStream = Utility.deSerializeObject(pubfile);

// pub = (AbePub) inputStream.readObject();

/* read ciphertext */

tmp = Common.readCpabeFile(encfile);

aesBuf = tmp[0];

cphBuf = tmp[1];

cph = SerializeUtils.bswabeCphUnserialize(pub, cphBuf);

/* get AbePrvPart2 form prvfilePart2 */

prv_2_byte = Common.suckFile(prvfilePart2);

prvPart2 = SerializeUtils.unserializeBswabePrvPart2(pub, prv_2_byte);

// ObjectInputStream inputStream2 =

// Utility.deSerializeObject(prvfilePart2);

// prvPart2 = (AbePrvPart2) inputStream2.readObject();

m_dec_byte = Common.suckFile(m_decfile);

mDec = SerializeUtils.unserializeBswabeMDec(pub, m_dec_byte);

// ObjectInputStream inputStream3 =

// Utility.deSerializeObject(m_decfile);

95

// mDec = (AbeMDec) inputStream3.readObject();

if (mDec != null) {

Element m = pub.p.getGT().newElement();

m = Abe.dec(pub, prvPart2, cph, mDec).duplicate();

plt = AESCoder.decrypt(m.toBytes(), aesBuf);

Common.spitFile(decfile, plt);

} else {

System.exit(0);

}

}

}

96

