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Abstract

In this thesis, a numerical program has been developed to simulate the wave-induced

ship motions in the time domain. Wave-body interactions have been studied for

various ships and floating bodies through forced motion and free motion simulations

in a wide range of wave frequencies.

A three-dimensional Rankine panel method is applied to solve the boundary value

problem for the wave-body interactions. The velocity potentials and normal velocities

on the boundaries are obtained in the time domain by solving the mixed boundary in-

tegral equations in relation to the source and dipole distributions. The hydrodynamic

forces are calculated by the integration of the instantaneous hydrodynamic pressures

over the body surface. The equations of ship motion are solved simultaneously with

the boundary value problem for each time step.

The wave elevation is computed by applying the linear free surface conditions. A

numerical damping zone is adopted to absorb the outgoing waves in order to satisfy

the radiation condition for the truncated free surface. A numerical filter is applied on

the free surface for the smoothing of the wave elevation.

Good convergence has been reached for both forced motion simulations and free mo-

tion simulations. The computed added-mass and damping coefficients, wave exciting

forces, and motion responses for ships and floating bodies are in good agreement with

the numerical results from other programs and experimental data.
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∆t Time step length

∇ Displacement of ship

ν Damping strength

ν0 Damping strength constant

φ Velocity potential with respect to ~x

φB Double body basis flow velocity potential

φd Disturbed wave velocity potential in ~x

φD Diffraction wave velocity potential in ~x

φI Incident wave velocity potential in ~x

φk Velocity potential for the k-th problem in ~x

φR Radiation wave velocity potential in ~x

Φ Total velocity potential with respect to ~x0

ψ global unknowns on the panel

ψj Spline coefficients

ρ Density of fluid

ξ0 Amplitude of forced motion

ξk Vector of ship displacement in ~x

xvi



~ξR Rotational displacement of ~xs with respect to ~x
~ξT Translational displacement of ~xs with respect to ~x

ζ Wave elevation in ~x

ζ0 Wave elevation in ~x0

ζd Disturbed wave elevation in ~x

ζD Diffraction wave elevation in ~x

ζI Incident wave elevation in ~x

ζk Wave elevation for the k-th problem in ~x

ζR Radiation wave elevation in ~x

xvii



Chapter 1

Introduction

1.1 Background

It is important to predict the wave-induced motions and hydrodynamic loads on

ships and floating structures to provide guidance for the design. Compared with

approaches using semi-empirical rules or model test, computational hydrodynamics

has the advantages of greater accuracy and less cost, for which it has become a

powerful numerical tool for designers in naval architecture and ocean engineering to

evaluate the seakeeping performance of ships and floating structures.

In marine hydrodynamics, the physical problem of a floating body in waves can be

mathematically described as the boundary value problem with the assumption of

potential flow, in which the fluid domain is governed by Laplace’s equation with

boundary conditions enforced on the free surface, body surface, bottom, and far field.

The boundary value problem can be solved numerically by solving the corresponding

boundary integral equations derived from Green’s theorem.

1
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1.1.1 Early Approaches

Early studies on ship motions from hydrodynamic aspects began in the late 19th

century with the works of Froude (1861) and Krylov (1896), in which only mass,

restoring forces and the Froude-Krylov force were considered in attempting to solve

the equation of motion. In their work, the disturbance of the wave flow due to

the presence of the ship was not considered. The thin ship theory developed by

Michell (1898) first accounted for the hydrodynamic effects to solve for the steady

wave resistance problem. Peters and Stoker (1957) extended this theory to compute

unsteady ship motions followed by improvements by Newman (1960). Lewis (1929)

also included the hydrodynamic effects by deriving a strip theory for slender ships

at higher wave frequencies, which was further developed by Korvin-Kroukovsky and

Jacobs (1957) to compute the motions for realistic ships and by Ogilvie and Tuck

(1969) to include the effects of forward speed on the solutions at small Froude number.

The slender body theory was adopted to study ship motions at lower wave frequencies

in the work of Ursell (1962), Newman and Tuck (1964), and Maruo (1970). A unified

theory was then developed by Newman (1978) and Sclavounos (1985) to combine the

slender body theory and strip theory.

These early approaches were limited to solving two-dimensional boundary value prob-

lems at each cross section and were only valid for simple and slender hull forms at low

speed. The three-dimensional boundary value problem needs to be solved for wider

ranges of frequency and speed and general form ship hulls.

1.1.2 Panel Method

Originated from the work of Hess and Smith (1967), the panel method has become a

popular approach for solving the three-dimensional flows around the ship in both fre-
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quency domain and time domain due to its accurate prediction of hydrodynamic pres-

sure on the hull surface and flexibility in the computations for general body shapes.

In the panel method, the body surface was discretized into panels with the body

boundary conditions enforced at the center of each panel. The source strengths were

distributed over each panel as unknowns which were solved numerically from the

boundary integral equations.

Two major approaches have been widely used to solve the free surface flows around

the ship in terms of the type of singularity for the boundary integral equation. The

first one employs the free surface Green function as the singularity to distribute on

the body surface, which satisfies the free surface conditions and far field conditions by

itself. Three-dimensional problems have been solved by many researchers using the

free surface Green function. For zero forward speed, commercial programs have been

developed to solve the hydrodynamic forces and wave-induced motions by Taylor

and Jefferys (1986), Korsmeyer et al. (1988), and Newman and Sclavounos (1988).

Computations with forward speed have been carried out by Chang (1977), Inglis and

Price (1981), and Guevel and Bougis (1982) using the zero-speed Green function with

corrections to include the effect of forward speed. The forward-speed Green function

has been computed by Hoff (1990), Iwashita and Ohkusu (1992), Chen and Noblesse

(1998), and Chen et al. (2001). Recently, Peng and Qiu (2014) investigated the effects

of zero/forward-speed Green functions on the solutions of ship motion for two Wigley

hulls with the panel-free method in the frequency domain.

Instead of using the free surface Green function as the singularity, the other major

approach uses the Rankine source as the singularity to distribute on both the body

boundary and truncated free surface around the body to solve the boundary value

problem for seakeeping analysis. In this approach, both body surface and truncated

free surface are discretized into panels over which the source and dipole strengths are
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distributed as unknowns. The collocation points of the boundary integral equations

are coincident with the centroids of the panel where the body boundary conditions

and free surface boundary conditions are satisfied. The unknowns are obtained by

solving a system of linear equations derived from the boundary integral equations.

Since the free surface is truncated, special numerical treatment has to be adopted to

satisfy the radiation condition in the far field for the free surface. This approach is also

referred to as the Rankine panel method. Significant work has been done by Nakos

(1990) in the frequency domain, and Kring (1994), Huang (1997), and Kim (1999) in

the time domain and so forth. The development of the Rankine panel method will be

discussed in detail in the following section.

1.1.3 Time-Domain Simulation

The time-domain approach has been used in the work of Finkelstein (1957), Stoker

(1957), and Wehausen and Laitone (1960) to obtain direct solutions of the wave flow.

Cummins (1962) studied unsteady ship motions using the impulse response function

to take into account the "memory effect" by convolution integrals over the previous

time steps. Further studies have been carried out by Ogilvie (1964) and Wehausen

(1967).

Since the computation of forward speed Green function is easier and faster in the time

domain than it is in the frequency domain, time-domain simulations became popular

and have been carried out by many researchers to solve three-dimensional ship motions

with advance speed. Significant work has been done by Liapis (1986), Beck and Liapis

(1987), King (1987), King et al. (1988), Beck and King (1989), Korsmeyer (1991), and

Bingham (1994) based on Neunman-Kelvin linearization.

The linear problem can be solved using the frequency-domain approach because it

can be described as a linear system with a body boundary condition enforced on the
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mean position of the exact body surface and the application of linearized free surface

boundary conditions. However, the linear system is no longer valid when nonlinearity

is introduced by, for example, the evaluation of nonlinear Froude-Krylov force, the

use of an instantaneous wetted body surface, and/or a nonlinear free surface. For

such cases, only the time-domain approach can be used.

Different levels of nonlinearity have been included in the computation of seakeeping

problems in the time domain. The nonlinear effect of incident waves was studied in the

work of Cong et al. (1998) and Qiu et al. (2001) with the Froude-Krylov and restoring

forces calculated on the instantaneous wetted body surface, while the radiation and

diffraction forces were still calculated on the mean wetted body surface.

A further step was to solve the so-called body-exact problem for large amplitude ship

motions which considers the nonlinear effect introduced by the instantaneous wetted

body surface on the solutions. The body-exact problem has been solved by Beck and

Magee (1990), Lin and Yue (1990), and Danmeier (1999) using the free surface Green

function. Recently, Qiu and Peng (2013) solved the body-exact problem for floating

bodies with the panel-free method in the time domain. For the body-exact problem,

the free surface boundary condition is still linear; therefore, the use of the free surface

Green function is still valid.

The fully nonlinear problem considers the nonlinearity introduced by the instanta-

neous free surface. Computations have been performed by Raven (1996) and Scullen

(1998) for steady ship wave problems and by Cao et al. (1991), Scorpio (1997), and

Subramani (2000) for unsteady problems of wave-induced ship motions.

1.1.4 Rankine Panel Method

The Rankine panel method was first introduced by Gadd (1976) and Dawson (1977)

to solve the wave patterns around a steadily advancing ship in calm water. In their
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work, an image body was employed along with the original body to calculate the

steady wave flow, based on which the free surface boundary condition was linearized.

This linearization is also referred to as Double-Body linearization or Dawson lin-

earization. Unlike the Neumann-Kelvin flow which is uniform, the Double-Body flow

is determined by the shape of the geometry, which cannot be solved by only one free

surface Green function (Beck, 1994). Thus, the distribution of the Rankine source on

the free surface is required to solve the corresponding boundary value problem. In

Gadd and Dawson’s work, flat quadrilateral panels were used with constant distribu-

tions of source and dipole strengths over each panel. The Double-Body flow gives a

more realistic description of the wave flow around the hull than the Neumann-Kelvin

flow.

The employment of the Rankine panel method in solutions of seakeeping problems was

not popular until Sclavounos and Nakos (1988) and Nakos and Sclavounos (1990a)

studied the wave propagation on a discrete free surface and introduced a new dis-

cretization scheme for the free surface based on a B-spline representation, which

brings no numerical damping and small numerical dispersion. In this scheme, the

flat quadrilateral panels were retained; however, instead of being constant, the distri-

butions of source and dipole strengths over the panels followed a bi-quadratic basis

function based on the B-spline. Good representations of the unsteady wave flows and

hydrodynamic forces were achieved. The B-spline Rankine panel method has been

applied to solve ship motions in waves with forward speed in the frequency domain by

Nakos and Sclavounos (1990b) and Sclavounos et al. (1994). In their work, the body

boundary condition was enforced on the mean position of the wetted body surface and

the free surface boundary conditions were linearized on the basis of Double-Body flow.

Nakos et al. (1993) successfully extended the frequency domain formulation into the

time domain. In their work, fully linear free surface and body boundary conditions
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were used. The hydrodynamic forces were calculated directly by the integration of

pressures over the hull surface. The equation of motions was solved simultaneously

with the wave flow at each time step. Validity has been demonstrated for various

ship hulls, Froude numbers, and wave frequencies. By using the same method, the

second-order hydrodynamic forces for floating structures were calculated in the time

domain by Kim et al. (1997).

The use of a simple Rankine source on the free surface allows a flexible choice in the

linearization of the free surface boundary conditions. Based on the work of Nakos et al.

(1993), Kring (1994) proposed a generalized linearization that can include Neumann-

Kelvin, Double-Body, or displacement thickness boundary layer models. Kutta condi-

tions were also proposed for ships with transom sterns. Based on the Weak-Scatterer

hypothesis proposed by Pawlowski (1992), Huang (1997) studied the nonlinear ship

motions with the free surface boundary condition linearized on the incident wave

profile and the body boundary condition on the instantaneous wetted surface. The

panels were regenerated at each time step on the submerged hull surface under the

instantaneous incident wave profile. A predictor-corrector scheme was employed to

solve the equations of motion. Recently, based on the Weak-Scatterer formulation,

Kim et al. (2011) developed a program suite, WISH, to predict the motion responses

and structural loads with different levels of nonlinearity. The use of the B-spline

based Rankine panel method allows the continuity of the potential and its derivatives

across panels and enables the analytical evaluation of first/second-order derivatives

of potential over the free surface and body boundaries.

Different from the constant or the B-spline Rankine panel method, the higher-order

boundary element method (HOBEM) uses higher-order elements as the panels. The

panel geometry and the distributions of physical variables are described through shape

functions. It is flexible to use the HOBEM for problems with complex geometries and
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multiple bodies. Compared to the constant Rankine panel method, a smaller number

of panels can be used in the HOBEM to reach the same level of accuracy for the

results. The time-domain HOBEM has been applied in Kim and Kim (1997) to

solve the problems of wave-body interactions, in Bai and Taylor (2006) to calculate

the radiation problem of vertical cylinders, and in Kim and Kim (2011), Shao and

Faltinsen (2012), and He and Kashiwagi (2014) to calculate the problems of seakeeping

and added resistance.

In the Rankine panel method, the finite depth problem can be solved by the distribu-

tion of the Rankine sources on the bottom of the computational domain. Kim (1999)

calculated the first/second-order hydrodynamic forces on a bottom-mounted cylinder

with the B-spline Rankine panel method in the time domain. Kim and Kim (2013)

computed the floating body motions in arbitrary bathymetry. In their work, the

numerical wave tank approach was applied for the generation of the incident waves.

One common feature involved in the Rankine panel method is the use of the truncated

free surface instead of the infinite one. Once the free surface is truncated, the radiation

condition for infinite free surface cannot be satisfied. A numerical treatment originated

from Israeli and Orszag (1981) was performed to absorb the outgoing waves through

the absorption zone, so that the radiation condition in the far field can be satisfied.

This treatment is widely used in zero forward speed cases.

Spatial filtering has been widely used as a smoothing technique in the time-domain

simulation of free surface waves to suppress the growth of saw-tooth waves (Longuet-

Higgins and Cokelet, 1976). For the Rankine panel method, the growth of saw-tooth

waves on the truncated free surface brings instability into the solution. It is important

to use low-pass filters to eliminate these very short waves. Since the wavelengths are

very short, the energy loss caused by the filtering can be neglected. Different types

of numerical filters were used in the work of Nakos et al. (1993), Kim et al. (1997),
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Shao and Faltinsen (2012) and so forth.

1.1.5 Fully Nonlinear Free Surface

Besides the fully linear and the Weak-Scatterer formulations, a third alternative is the

use of fully nonlinear free surface boundary conditions. Longuet-Higgins and Cokelet

(1976) first proposed the so-called Mixed-Eulerian-Lagrangian (MEL) method to sim-

ulate the two-dimensional fully nonlinear free surface wave in the time domain. For

each time step, the boundary value problem is first solved in an Eulerian frame.

Then, in the Lagrangian phase, the wave elevations and potentials on the free surface

are updated by the integration of fully nonlinear free surface boundary conditions.

The equations of motion are then solved to update the position of the body and the

normal velocity on the body surface. By applying this method, the calculation of

wave-body interactions has been carried out by Faltinsen (1977). Cao et al. (1991)

proposed a desingularized source method to solve the boundary integral equation for

the three-dimensional unsteady ship wave problem. The isolated Rankine sources

were distributed on the truncated free surface through a desingularized approach,

which involves raising the sources above the collocation point, rather than the use of

flat quadrilateral panels. Beck (1994) and Beck et al. (2001) gave detailed reviews

on the use of fully nonlinear free surface for wave-body interaction problems using

MEL methods in the time domain. Significant work has been done by Scorpio (1997),

Finn (2003), Bandyk (2009), Yan (2010) and so forth. Kara et al. (2007) studied

the steady ship-wave problem using fully nonlinear free surface boundary conditions

with isolated Rankine sources. The large-amplitude two-dimensional body motions

and three-dimensional seakeeping problem have been solved by Zhang et al. (2007),

Zhang and Beck (2008), and Zhang et al. (2010) using the desingularized source

method. Feng et al. (2015) solved the two-dimensional nonlinear wave-body interac-
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tion problem using a continuous desingularized source distribution method with free

surface Rankine sources placed on continuous panels rather than isolated points.

1.2 Overview

The objective of this thesis is to conduct three-dimensional time-domain simulations

of wave-induced motions of ships and floating bodies. A numerical program has been

developed to simulate the ship and floating body motions at zero forward speed.

The time-domain Rankine panel method with constant distributions of source/dipole

strengths has been applied to solve the boundary value problem with linear free surface

and body boundary conditions. Simulations have been performed in both deep water

and finite water depths.

Chapter 2 derives the mathematical formulations for the boundary value problem

associated with wave-induced ship motions. A fully nonlinear formulation with a

steady forward speed is first derived. Linearizations of the free surface and body

boundary conditions are performed at different levels to obtain the Weak-Scatterer

formulation and the linear formulation. The boundary integral equations is derived

from Green’s theorem. The equations of ship motion are also presented.

Chapter 3 presents the numerical method to solve the boundary value problem. The

B-spline Rankine panel method is described in detail. The constant Rankine panel

method used in this thesis is a degradation of the B-spline Rankine panel method.

The typical computational domain is presented as well as the spatial and temporal

discretization of the boundary integral equation. The numerical scheme for the wave

absorbing beach and the numerical filter are presented. The explicit Euler scheme is

applied for the time integration of the equations of motion. The numerical implemen-

tation for the program is described and a flow chart for the program is presented.
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Chapter 4 presents the time-domain simulation results for various geometries, in-

cluding a hemisphere, a truncated cylinder, the Wigley I hull, a Series 60 ship, and a

two-body side-by-side moored scenario. The hydrodynamic forces and ship motions

are studied through forced motion simulations and free motion simulations. For the

forced motion simulations, the wave absorbing beach is verified at first. The added

mass and damping coefficients of ships and floating bodies are calculated through

forced periodical oscillations. The wave exciting forces are calculated on fixed bodies

with the presence of incident monochromatic waves at head sea condition. For the

free motion simulations, the total hydrodynamic forces and equations of ship motion

are solved simultaneously at each time step. The motion response amplitude opera-

tors (RAOs) are obtained from the time series of ship motions. The numerical results

from the present method are compared with the numerical results from MASP0 and

WAMIT as well as experimental data.

Chapter 5 concludes the applications of the current work and provides promising

future topics based on the present method.



Chapter 2

Mathematical Formulation

2.1 Boundary Value Problem

2.1.1 The Coordinate Systems

x

y

z

Bottom

Free Surface

Body

SBot

SF SB

S∞

Figure 2.1: Coordinate system.

Figure 2.1 considers a freely floating ship in the presence of water waves with a steady

advance speed U in a finite water depth.

Three Cartesian systems, ~x0 = (x0, y0, z0), ~x = (x, y, z), and ~xs = (xs, ys, zs) are used

12



13

as the reference systems to describe the problem of wave-body interactions. Frame ~x0

is fixed in space, while frame ~x travels along with the ship at a steady advance speed

U . Frame ~xs is fixed on the ship. The unsteady motion of the ship is defined as the

oscillation of frame ~xs in the frame ~x. The positive x-axis of all frames are pointing

upstream and the positive z-axis are pointing upwards. The boundary value problem

are formulated in frame ~x and the equations of ship motion are solved in frame ~xs.

2.1.2 The Fully Nonlinear Formulation

Assuming the fluid is ideal and irrotational, which means the fluid is inviscid and in-

compressable and there is no fluid separation or lifting effect, a total velocity potential

Φ(~x0, t) in the space-fixed reference system satisfies the mass conservation principle,

∇2Φ(~x0, t) = 0 in the fluid domain (2.1)

As a result, the velocity field ~V (~x0, t) in the fluid domain is obtained by taking the

gradient of the velocity potential Φ(~x0, t). Φ(~x0, t) and ~V (~x0, t) are expressed as Φ

and ~V hereinafter.

~V = ∇Φ = ∂Φ
∂x0

~i0 + ∂Φ
∂y0

~j0 + ∂Φ
∂z0

~k0 = Vx0
~i0 + Vy0

~j0 + Vz0
~k0, (2.2)

where ~i0, ~j0, and ~k0 are the unit vectors in the fixed reference system ~x0. Vx0 , Vy0 ,

and Vz0 are the velocity components in the fluid domain.

The pressure field p(~x0, t) is defined through Bernoulli’s equation by applying the

principle of conservation of momentum in the space-fixed reference system as follows,

p(~x0, t)− pa = −ρ(∂Φ
∂t

+ 1
2∇Φ · ∇Φ + gz0), (2.3)
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where pa is the atmospheric pressure, ρ is the density of the fluid, z0 is the coordinate

of the water particle in the z0 direction of the space-fixed reference system, and g is

the acceleration of gravity.

The no-flux boundary conditions are applied on the submerged body surface SB and

bottom surface SBot.

The velocity component of the fluid which is normal to the submerged body surface

SB is equal to the normal velocity of the body.

∂Φ
∂nB

= ~VSB
· ~nB on SB, (2.4)

where ~nB is the normal vector on the body surface pointing out from the fluid domain

and into the body, and ~VSB
is the instantaneous velocity of the body surface SB in

the space-fixed reference system.

For the bottom surface SBot, the velocity component of the fluid in the normal direc-

tion of the surface is equal to zero.

∂Φ
∂nBot

= 0 on SBot, (2.5)

where ~nBot is the normal vector on the bottom surface pointing out from the fluid

domain and into the sea floor.

The free surface boundary satisfies both the kinematic boundary condition and dy-

namic boundary condition in the space-fixed reference system ~x0.

The free surface is defined as z0−ζ0(x0, y0, t) = 0, ζ0(x0, y0, t) being the instantaneous

total wave elevation with respect to the space-fixed reference system ~x0. With the

assumption that the fluid particle will remain on the free surface at all times, a
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kinematic boundary condition is imposed on the free surface,

D

Dt
[z0 − ζ0(x0, y0, t)] = 0, (2.6)

or,

( ∂
∂t

+∇Φ · ∇)[z0 − ζ0(x0, y0, t)] = 0. (2.7)

The dynamic free surface boundary condition is that the fluid pressure p(~x0, t) is equal

to the atmospheric pressure pa on free surface z0 − ζ0(x0, y0, t) = 0. From equation

(2.3), the condition is as follows,

∂Φ
∂t

+ 1
2∇Φ · ∇Φ + gz0 = 0. (2.8)

On z0 = ζ0(x0, y0, t), equation (2.8) has the form as follows,

ζ0(x0, y0, t) = −1
g

(∂Φ
∂t

+ 1
2∇Φ · ∇Φ). (2.9)

Substituting equation (2.9) into equation (2.7), one can find,

( ∂
∂t

+∇Φ · ∇)[z0 + 1
g

(∂Φ
∂t

+ 1
2∇Φ · ∇Φ)] = 0 on z0 = ζ0, (2.10)

or,

∂2Φ
∂t2

+ 2∇Φ · ∇(∂Φ
∂t

) + 1
2∇Φ · ∇(∇Φ · ∇Φ) + g

∂Φ
∂t

= 0 on z0 = ζ0. (2.11)

In the far field, a radiation condition is imposed so that the outgoing waves do not
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reflect back into the fluid domain.

∇Φ→ 0 at spatial infinity. (2.12)

The initial condition in the time domain for this boundary value problem is given

that at the starting time t0 the fluid is at rest.

Φ = 0 in fluid domain, (2.13)
∂Φ
∂t

= 0 on z0 = 0. (2.14)

More detailed derivations of the fully nonlinear formulation of boundary problem

above can be found in Nakos (1990) and Huang (1997).

2.1.3 The Coordinate System Transformation

The formulations of the fully nonlinear boundary value problem in section 2.1.2 are

defined in the space-fixed reference system ~x0. In this frame, the fluid flow is unsteady

and the body surface boundary and free surface boundary are moving. A transforma-

tion from the space-fixed reference system to the steadily advancing reference system

~x will facilitate the solution since the unsteady motion of the ship can be solved based

on a steady flow after the transformation. The velocity potential is redefined in frame

~x as follows,

Φ(~x0, t) = Φ(~x+ ~Ut, t) ≡ φ(~x, t), (2.15)

where ~U = U~i+ 0 ·~j + 0 · ~k is the velocity of the steadily advancing reference system

~x with ~i, ~j, and ~k being the unit vectors in frame ~x, and φ(~x, t) is the redefined total

velocity potential in frame ~x.

As a result, the partial time derivative of Φ(~x0, t) taken in frame ~x0 will be transformed
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as follows,
∂Φ(~x0, t)

∂t
= ( ∂

∂t
− ~U · ∇)φ(~x, t) (2.16)

via a Galilean transformation. Thus, the kinematic and dynamic free surface bound-

ary conditions equation (2.6) and (2.8) are transformed to frame ~x as follows,

[ ∂
∂t
− (~U −∇φ) · ∇]ζ = ∂φ

∂z
on z = ζ, (2.17)

[ ∂
∂t
− (~U −∇φ) · ∇]φ = 1

2∇φ · ∇φ− gζ on z = ζ, (2.18)

where ζ is the total wave elevation in frame ~x. Both conditions are imposed on z = ζ.

After the coordinate system transformation, the physical problem is formulated in

frame ~x.

2.1.4 The Weak-Scatterer Formulation

In the fully nonlinear formulation derived in the previous section, the free surface

conditions are highly nonlinear. Furthermore, they are enforced on a surface which is

not known in advance. As a linearization scheme of the fully nonlinear problem, the

Weak-Scatterer formulation, which was first proposed by Pawlowski (1992), allows

the free surface boundary conditions to be linearized on the instantaneous incident

wave surface ζI under the assumption that the radiation and diffraction wave are

much smaller than the incident wave. The decomposition of velocity potential and

wave elevation for Weak-Scatterer formulation is as follows,

φ = φB + φI + φd, (2.19)

ζ = ζI + ζd, (2.20)
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where φd and ζd are the disturbance wave velocity potential and elevation, respectively,

containing both the radiation wave induced by the unsteady ship motion and the

diffraction of incoming waves due to the presence of the ship hull. Among the velocity

potential and wave elevation components, the basis flow φB and the incident wave

(φI , ζI) are assumed to be much larger than the disturbance wave (φd, ζd). Thus, the

order of the basis, incident, and disturbed wave components are as follows,

φB ∼ O(1); φI ∼ O(1); φd ∼ O(ε), (2.21)

ζI ∼ O(1); ζd ∼ O(ε). (2.22)

where ε � 1. Substituting the decompositions (2.19,2.20) into the free surface con-

ditions (2.17,2.18), and applying Taylor’s expansion about the incident wave surface,

one will find the kinematic and dynamic Weak-Scatterer free surface boundary con-
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ditions as follows,

[ ∂
∂t
− (~U −∇φB −∇φI) · ∇]ζd =

− [ ∂
∂t
− (~U −∇φB −∇φI −∇φd) · ∇]ζI

+ ∂φB

∂z
+ ∂φI

∂z
+ ∂φd

∂z

+ ζd[∂
2φB

∂z2 −∇(∂φ
B

∂z
+ ∂φI

∂z
) · ∇ζI ]

on z = ζI ,

(2.23)

[ ∂
∂t
− (~U −∇φB −∇φI) · ∇]φd =

− [ ∂
∂t
− (~U −∇φB −∇φI) · ∇]φI + 1

2∇φ
I · φI

− [ ∂
∂t
− (~U −∇φB) · ∇]φB + 1

2∇φ
B · φB

− g(ζI + ζd)

− ζd[ ∂
∂t
− (~U −∇φB −∇φI ]∂φ

I

∂z

− ζd[ ∂
∂t
− (~U −∇φB −∇φI ]∂φ

B

∂z

on z = ζI .

(2.24)

The body boundary conditions in the Weak-Scatterer formulation are imposed on the

exact body surface SB. SB is the actual submerged part of the ship body under the

instantaneous incident wave profile. With the fluid velocity equal to the velocity of

the body at the same location, the body boundary condition is written as follows,

∂φ

∂n
= ~U · ~n+ ∂~δ

∂t
· ~n on SB, (2.25)
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where ~δ is the displacement of the ship about its equilibrium position in the steadily

advancing reference system ~x and is defined as follows,

~δ = ~ξT + ~ξR × ~r, (2.26)

where ~ξT and ~ξR are the translational and rotational displacement of the ship-fixed

frame with respect to the steadily advancing frame ~x. ~r is the position of a point on

the body surface in the ship-fixed frame ~xs.

The conditions for each components of the total velocity potential are defined as

follows,

∂φB

∂n
= ~U · ~n on SB, (2.27)

∂φd

∂n
= ∂~δ

∂t
· ~n− ∂φI

∂n
on SB. (2.28)

There is no need to include the so-called m-terms, which accounts for the interaction

effect between the steady and the unsteady flows, in the body boundary of the Weak-

Scatterer formulation, because the interaction effect is already included by applying

the exact body surface boundary condition.

More detailed derivations of the Weak-Scatterer formulation can be found in Huang

(1997) and Kim et al. (2011).

2.1.5 The Linear Formulation

In the linear formulation, the free surface boundary conditions are linearized on the

undisturbed surface z = 0. Both the incoming wave (φI ,ζI) and the disturbance wave

(φd,ζd) are assumed to be much smaller than the basis flow φB. Thus, the order of the
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basis, incident, and disturbed wave components for the linear problem are as follows,

φB ∼ O(1); φI ∼ O(ε); φd ∼ O(ε), (2.29)

ζI ∼ O(ε); ζd ∼ O(ε). (2.30)

where ε � 1. The linear kinematic and dynamic free surface boundary conditions

are degraded from equation (2.23,2.24) by transferring the condition from z = ζI to

z = 0 and omitting the higher order term O(ε2).

[ ∂
∂t
− (~U −∇φB) · ∇]ζd =

+ (~U −∇φB) · ∇ζI

+ ∂φd

∂z

+ ζd
∂2φB

∂z2

on z = 0,

(2.31)

[ ∂
∂t
− (~U −∇φB) · ∇]φd =

+ (~U −∇φB) · ∇φI

− [ ∂
∂t
− (~U −∇φB) · ∇]φB + 1

2∇φ
B · φB

− gζd

on z = 0.

(2.32)

The body boundary conditions in the linear formulation are imposed on the mean

surface of the submerged ship body S̄B. Therefore, the m-terms have to be included

in the body boundary condition to account for the interaction effect between the
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steady and unsteady waves.

∂φ

∂n
= ~U · ~n+ ∂~δ

∂t
· ~n+ ~δ · ~m on S̄B, (2.33)

The ship displacement ~δ is defined in equation (2.26). The translational and rotational

displacement ~ξT and ~ξR, the normal vector ~n, and the m-terms are as follows,

(ξ1, ξ2, ξ3) = ~ξT , (ξ4, ξ5, ξ6) = ~ξR, (2.34)

(n1, n2, n3) = ~n, (n4, n5, n6) = ~r × ~n, (2.35)

(m1,m2,m3) = (~n · ∇)(~U −∇φB),

(m4,m5,m6) = (~n · ∇)[~r × (~U −∇φB)].
(2.36)

The conditions for each component of the total velocity potential are defined as follows,

∂φB

∂n
= ~U · ~n on S̄B, (2.37)

∂φd

∂n
= ∂~δ

∂t
· ~n+ ~δ · ~m− ∂φI

∂n
on S̄B. (2.38)

The linear formulation for the zero speed scenario is degraded from the non-zero speed

formulation by setting ~U = 0 and φB = 0 as follows,

-Linear Formulation (zero speed)

In the fluid domain,

∇2φ = 0. (2.39)

On the free surface, z = 0,

∂ζd

∂t
= ∂φd

∂z
, (2.40)

∂φd

∂t
= −gζd. (2.41)
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On the body surface, S̄B,
∂φd

∂n
= ∂~δ

∂t
· ~n− ∂φI

∂n
. (2.42)

On the bottom surface, SBot(z = −h),

∂φd

∂z
= 0. (2.43)

where ~δ is the vector of ship displacement with respect to frame ~x. h is the water

depth.

The disturbance velocity potential φd and wave elevation ξd are further decomposed

into radiation and diffraction velocity potentials and wave elevations based on the

superposition principle as follows,

φd = φR + φD, (2.44)

ζd = ζR + ζD. (2.45)

The formulation for radiation and diffraction problems are as follows,

-Radiation Problem

In the fluid domain,

∇2φ = 0. (2.46)

On the free surface, z = 0,

∂ζR

∂t
= ∂φR

∂z
, (2.47)

∂φR

∂t
= −gζR. (2.48)

On the body surface, S̄B,
∂φR

∂n
= ∂~δ

∂t
· ~n. (2.49)
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On the bottom surface, SBot(z = −h),

∂φR

∂z
= 0. (2.50)

-Diffraction Problem

In the fluid domain,

∇2φ = 0. (2.51)

On the free surface, z = 0,

∂ζD

∂t
= ∂φD

∂z
, (2.52)

∂φD

∂t
= −gζD. (2.53)

On the body surface, S̄B,
∂φD

∂n
= −∂φ

I

∂n
. (2.54)

On the bottom surface, SBot(z = −h),

∂φD

∂z
= 0. (2.55)

For the diffraction problem, a small-amplitude water wave is imposed as the incident

wave as follows,

φI = −H2
g

ω

cosh k(h+ z)
cosh kh sin(kx− ωt). (2.56)

The hydrodynamic pressure p can be decomposed into three parts as follows,

p = pI + pR + pD, (2.57)

where pI , pR, and pD are the pressure induced by incident, radiation, and diffraction
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wave components, respectively. The pressures are computed as follows,

pI = −ρ∂φ
I

∂t
, (2.58)

pR = −ρ∂φ
R

∂t
, (2.59)

pD = −ρ∂φ
D

∂t
. (2.60)

The hydrodynamic force Fj, including three force components , F1, F2, F3 along

(x, y, z) axis and three moment components, F4, F5, F6 about (x, y, z) axis, acting

on the body is obtained by the integration of the hydrodynamic pressure p over the

submerged body surface.

Fj = ρ
∫∫
SB

p · njds for j = 1, 2, ..., 6, (2.61)

with the generalized normal, nj defined in equation (2.35).

2.2 Boundary Integral Equation

The boundary value problems above can be transformed into boundary integral equa-

tions by adopting Green’s Theorem.

2.2.1 Green’s Theorem

In applying the divergence theorem to a continuously differentiable vector field ~A =

(A1, A2, A3) in a fluid domain, v, bounded by a closed surface, s, one can find,

∫∫∫
v

(∇ · ~A)dv =
∫∫
s

( ~A · ~n)ds, (2.62)
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where ~n is the normal vector of points on s pointing to the exterior of fluid domain v.

Let ~A = φ∇ϕ, ∫∫∫
v

(φ∇2ϕ+∇φ · ∇ϕ)dv =
∫∫
s

φ
∂ϕ

∂n
ds, (2.63)

where both φ and ϕ satisfy the Laplace equation. Again, let ~A = ϕ∇φ,

∫∫∫
v

(ϕ∇2φ+∇ϕ · ∇φ)dv =
∫∫
s

ϕ
∂φ

∂n
ds. (2.64)

From equation (2.63,2.64), one can find,

∫∫
s

(φ∂ϕ
∂n
− ϕ∂φ

∂n
)ds =

∫∫∫
v

(φ∇2ϕ+∇φ · ∇ϕ− ϕ∇2φ−∇ϕ · ∇φ)dv = 0. (2.65)

2.2.2 Distribution of Singularities

Since the shape of a body surface in the fluid domain can be represented by distribut-

ing source and sink or dipoles on the geometry of the body surface, ϕ is replaced by

the velocity potential created by a source as follows,

ϕ = 1
4π

1
‖~xP − ~xQ‖

= 1
4π

1
rPQ

, (2.66)

where P is the field point in fluid domain, Q is the source point on the domain

boundaries, ~xP and ~xQ are the coordinates where P and Q are located, and rPQ is

the distance between P and Q.

Since ϕ does not satisfy the Laplace equation at the singular point rPQ = 0 when

the source point is located in the fluid domain, a small sphere surface sε with radius

rPQ = ε is introduced to surround the source point. Thus, the integral equation (2.65)
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is valid in the volume exterior sε and interior s with replaced ϕ as follows,

1
4π

∫∫
s+sε

[φ ∂

∂n
( 1
rPQ

)− 1
rPQ

∂φ

∂n
]ds = 0, (2.67)

or,

1
4π

∫∫
s

[φ ∂

∂n
( 1
rPQ

)− 1
rPQ

∂φ

∂n
]ds = − 1

4π

∫∫
sε

[φ ∂

∂n
( 1
rPQ

)− 1
rPQ

∂φ

∂n
]ds. (2.68)

The area of sphere surface sε is 4πr2
PQ. Since the normal vector and the vector of rPQ

are in the opposite direction, the normal derivative of 1
rP Q

is ∂
∂n

( 1
rP Q

) = −(− 1
r2

P Q
) =

1
r2

P Q
, the right hand side of equation (2.68) becomes,

− 1
4π

∫∫
sε

[φ ∂

∂n
( 1
rPQ

)− 1
rPQ

∂φ

∂n
]ds

= − 1
4π [φ( 1

r2
PQ

)− 1
rPQ

∂φ

∂n
]4πr2

PQ

= −φ+ rPQ
∂φ

∂n
.

(2.69)

As ε → 0, rPQ ∂φ
∂n
→ 0. The right hand side of equation (2.68) is equal to −φ(P )

which is the velocity potential of field point P . Thus, when the field point is located

inside s as follows,

φ(P ) = − 1
4π

∫∫
s

[φ(Q) ∂
∂n

( 1
rPQ

)− 1
rPQ

∂φ(Q)
∂n

]ds. (2.70)

If the field point P is located on s, the surface sε is chosen to be a hemisphere.

Similarly, the potential at P is as follows,

φ(P ) = − 1
2π

∫∫
s

[φ(Q) ∂
∂n

( 1
rPQ

)− 1
rPQ

∂φ(Q)
∂n

]ds. (2.71)
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If the field point P is located outside s,

0 =
∫∫
s

[φ(Q) ∂
∂n

( 1
rPQ

)− 1
rPQ

∂φ(Q)
∂n

]ds. (2.72)

2.2.3 Boundary Integral Equations for Radiation and Diffrac-

tion Problems

The Rankine source is distributed on the body surface SB, free surface SF , and bottom

surface SBot. The formulation of the boundary integral equation for radiation and

diffraction problems is shown below,

2πφk(P ) +
∫∫
S

φk(Q) ∂

∂nQ
G(P ;Q)dSQ −

∫∫
S

∂φk(Q)
∂nQ

G(P ;Q)dSQ = 0 (2.73)

where G(P ;Q) is the Rankine source potential,

G(P ;Q) = 1
‖~xP − ~xQ‖

(2.74)

S = SB∪SF ∪SBot, P is the field point which is approaching the domain boundary, Q

is the source point on the domain boundaries. ~xP and ~xQ are the coordinates where

P and Q are located. nQ is the normal vector at Q. φk(P ) and φk(Q) are potential

velocity at P and Q, where k = 1 for the radiation problem, k = 2 for the diffraction

problem, and k = 3 for the free motion problem. The integral equation is enforced

at P , which relates the velocity potential to its normal derivative over the domain

boundaries.
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2.3 Equations of Ship Motion

Governed by Newton’s second law, the linear equations of ship motion are written as

follows,

Mjk ξ̈k(t) + Cjk ξk(t) = Fj(t) + FEX
j (t), (2.75)

where Mjk is the inertia matrix, Cjk is the restoring coefficient matrix, Fj(t) is the

hydrodynamic forces calculated in equation (2.61), and ξk(k = 1, 2, ..., 6) is the vector

of ship displacement in 6-DOF. FEX
j (t) accounts for the external forces. For a vessel

with port-starboard symmetry, the inertia matrix is written as follows,

Mjk =



m 0 0 0 mzGs 0

0 m 0 −mzGs 0 mxGs

0 0 m 0 −mxGs 0

0 −mzGs 0 I44 0 −I46

mzGs 0 −mxGs 0 I55 0

0 mxGs 0 −I64 0 I66



, (2.76)

where (xGs , 0, zGs ) are the coordinates of the center of gravity of the ship in the ship-

fixed frame ~xs, m is the total mass of the ship, I44, I55, and I66 are moments of inertia

around the xs, ys, and zs axes, respectively, I46 is roll - yaw product of inertia, which

equals I64.

There is no distinction between frame ~x = (x, y, z) and frame ~xs = (xs, ys, zs) for

the linearized equations of ship motion. Since the formulation of the boundary value

problem is written with respect to frame ~x = (x, y, z), it is more convenient to solve

the equations of motion in frame ~x = (x, y, z). Therefore, the equations of ship motion

in this thesis are solved in frame ~x = (x, y, z).

The restoring coefficient matrix Cjk describes the restoring force/moment in the j-th
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direction due to a unit motion in the k-th mode. The restoring coefficients about

the origin ~x = (0, 0, 0) include the hydrostatic restoring coefficients due to the change

of hydrostatic force/moment and the gravitational restoring coefficients caused by

the change of the relative position of center of gravity to the origin ~x = (0, 0, 0).

The hydrostatic restoring coefficient matrix CH
jk are calculated following the approach

for generalized modes in the work of Newman (1994). The shape function ~Sk(~x) is

introduced to describe the displacement of an arbitrary point ~x = (x, y, z) on the body

due to motion in the k-th mode. The shape function is defined by ~Sk(~x) = (uk, vk, wk)

for the k-th mode, where,

~S1 = (1, 0, 0), ~S2 = (0, 1, 0), ~S3 = (0, 0, 1),

~S4 = ~S1 × ~x, ~S5 = ~S2 × ~x, ~S6 = ~S3 × ~x.
(2.77)

The component of ~Sk on the normal direction of the body surface SB is defined as nk

as follows,

nk = ~Sk · ~n = uknx + vkny + wknz. (2.78)

The generalized hydrostatic restoring coefficients takes the form,

CH
jk = ρg

∫∫
SB

nkwjds. (2.79)

The gravitational restoring matrix CG
jk about the origin ~x = (0, 0, 0) is calculated

separately based on the change of the relative position of the center of gravity ~xg.

The shape function of the center of gravity ~Gk(~xg) for the k-th mode takes the form,

~G1 = (1, 0, 0), ~G2 = (0, 1, 0), ~G3 = (0, 0, 1),

~G4 = ~G1 × ~xg, ~G5 = ~G2 × ~xg, ~G6 = ~G3 × ~xg.
(2.80)
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The change of gravitational restoring moments in the j-th direction due to a unit

motion in the k-th mode takes the form,

(CG
1k, C

G
2k, C

G
3k) = (0, 0, 0),

(CG
4k, C

G
5k, C

G
6k) = ρg∇ ~Gk × ~ng.

(2.81)

where ∇ is the displacement of the ship, ~ng = (0, 0,−1) is the direction of the gravi-

tational force.

The restoring coefficient matrix takes the form,

Cjk = CH
jk + CG

jk. (2.82)

In this thesis, the roll moment F ∗4 cause by the viscous roll damping is considered and

included in the hydrodynamic force F4, which takes the form,

F ∗4 (t) = −β bc ξ̇4(t), (2.83)

where bc is the critical roll damping with the expression bc = 2
√
C44 I44, β is the ratio

of the viscous roll damping to the critical roll damping. In this thesis, the value of β

is obtained experimentally from the roll decay test.



Chapter 3

Numerical Method

3.1 Time Domain Rankine Panel Method

In this thesis, the Rankine panel method is applied in the time domain to solve the

boundary value problem for seakeeping. The B-spline Rankine panel method devel-

oped in Sclavounos and Nakos (1988) and Nakos (1990) is described in detail. The

constant Rankine panel method, which is degraded from the B-spline Rankine panel

method, is used as the numerical method to solve the boundary value problem. The

continuous boundary value problem formulated in Chapter 2 can be solved numeri-

cally in the time domain by the discretization of the computational domain spatially

and temporally.

3.1.1 Spatial Discretization

Basis Functions

Since the boundary value problem only solves for the unknown physical quantities

on the domain boundaries, including the body boundary, the truncated free surface

boundary, and the bottom boundary, only these boundary surfaces need to be dis-

32
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cretized. In the B-spline Rankine panel method proposed in Sclavounos and Nakos

(1988), the body surface and truncated free surface is discretized into flat quadrilateral

panels. The unknowns of the physical quantities ψ(x̂, ŷ) on the panels are represented

by B-spline basis functions Bj(x̂, ŷ) with a finite number of spline coefficients ψj with

respect to the local coordinate system (x̂, ŷ), as follows,

ψ(x̂, ŷ) '
+∞∑
j=−∞

ψjB
(m,n)
j (x̂, ŷ) =

+∞∑
j=−∞

ψjb
(m)
j (x̂)b(n)

j (ŷ), (3.1)

where B(m,n)
j is the two-dimensional basis function of the (m,n)-th order, which is

the product of the one-dimensional basis functions of the m-th order b(m)
j (x̂) in x̂-

direction, and of the n-th order b(n)
j (ŷ) in ŷ-direction, ψj is the corresponding degrees

of freedom. The zero order basis function b(0)(x̂) is written as follows,

b(0)(x̂) =


1, ‖x̂‖ ≤ ∆x̂/2

0, ‖x̂‖ > ∆x̂/2
, (3.2)

where ∆x̂ is the size of panel in the local coordinate system. The basis function with

higher order b(m)(x̂) can be obtained by convolution as follows,

b(m)(x̂) = 1
∆x̂

∞∫
−∞

b(m−1)(ξ)b(0)(x̂− ξ), for m > 1. (3.3)

The advantage of using a basis function to represent the unknowns ψ(x̂, ŷ) is that the

derivatives of the unknowns can be calculated with much convenience and accuracy by

analytical differentiation rather than numerical interpolation. The basis function can

be differentiated in the x̂-direction and ŷ-direction. The higher the order of the basis

function, the higher the order of derivatives can be calculated. Since the second order

derivatives are important for seakeeping problems, the bi-quadratic basis function
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B(2,2)(x̂, ŷ)(m = 2, n = 2) is chosen as the approximation of unknowns in Sclavounos

and Nakos (1988), Nakos (1990), Kring (1994), Huang (1997), Kim (1999), and so

forth with the quadratic basis function b(2)(x̂) written as follows,

b(2)(x̂) =



1
2∆x̂2 (x̂+ 3∆x̂

2 )2, −3∆x̂
2 < x̂ ≤ −∆x̂

2

1
∆x̂2 (−x̂2 + 3∆x̂2

4 ), −−∆x̂
2 < x̂ ≤ ∆x̂

2

1
2∆x̂2 (−x̂+ 3∆x̂

2 )2, ∆x̂
2 < x̂ ≤ 3∆x̂

2

. (3.4)

In their work, the unknowns of velocity potential φ, normal velocity ∂φ
∂n
, and the free

surface wave elevation ζ are approximated at the centroid of each panel as follows,

φ(~x, t) '
9∑
j=1

(φ)j(t)B(2,2)
j (~x), (3.5)

∂φ

∂n
'

9∑
j=1

(∂φ
∂n

)j(t)B(2,2)
j (~x), (3.6)

ζ(~x, t) '
9∑
j=1

(ζ)j(t)B(2,2)
j (~x), (3.7)

where (φ)j(t), (∂φ
∂n

)j(t), and (ζ)j(t) are the time-dependent spline coefficients, B(2,2)
j (~x)

is the bi-quadratic B-spline basis function, and j is the summation index and j =

1, 2, ..., 9. ~x is the position vector of the centroid of each panel in the global coordinate

system. The velocity potential φ and normal velocity ∂φ
∂n

are distributed on the free

surface, body surface, and the bottom surface; while the free surface wave elevation

ζ is only for the free surface.

In the bi-quadratic B-spline Rankine panel method, the unknown on each panel sup-

ports nine panels including the panel itself and the eight panels surrounding it, which

is the area across −3∆x̂
2 →

3∆x̂
2 and −3∆ŷ

2 →
3∆ŷ

2 . For example, the velocity potential

φ on one panel centroid contributes to the velocity potential not only on the panel
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itself, but also the velocity potential on the other eight panels surrounding it. In the

other way, the velocity potential on an arbitrary point of a panel (except the cen-

troid) is the summation of the velocity potential contributed by the panel itself and

the surrounding eight panels. The overlapping of the supporting area of bi-quadratic

basis functions maintains the continuity of the unknowns and the first derivatives of

the unknowns on the panel.

In this thesis, since the linear formulation is applied at zero speed and the second

order terms are neglected, the zero-order basis function is accurate enough for the

simulation of the present problem and therefore used to approximate the unknowns

of (φ)j(t), (∂φ
∂n

)j(t), and (ζ)j(t). In this case, the distribution of unknown physical

quantities of the constant over the quadrilateral panels and the supporting area of

each panel is within itself.

Computational Domain

The computational domain consists of the computational grids on boundary surfaces

that represent the geometries of free surface, body surface, and bottom surface. Each

grid is discretizd into flat quadrilateral panels with the normal direction pointing out

of the fluid. The free surface radiation condition is satisfied by applying an artificial

damping zone on the outer rim of the truncated free surface grid, which will be

discussed in the following section.

A typical oval-type computational domain setup for the Series 60, Cb=0.7 hull is

shown in Figure 3.1. The submerged body surface, the truncated free surface, and

the bottom surface are discretized into quadrilateral panels. The size of the truncated

free surface is mainly determined by the wavelength of incident waves. The spacing

of the panels on the free surface and bottom surface are exponentially varied so that

the panel density near the ship is higher than that in the far field. The border of the
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artificial damping zone is shown in Figure 3.1 to specify the damped and undamped

region. The convergence studies on panel number and domain size will be presented

in the following chapter.

Free Surface

Bottom

Body

Damped Region
Undamped Region

Y
X

Z

Figure 3.1: Typical oval-type computational domain for Series 60, Cb=0.7 (half).

Spatial Discretization of the Boundary Integral Equation

With the discretization of the computational domain and the approximation of un-

knowns using basis functions, the continuous boundary integral equation (2.70) for

this boundary value problem is discretized at time t as follows,

2π(φk)j(t)BPj+(φk)j(t)
∫∫
S

BQj
∂

∂nQ
G(P ;Q)dSQ−( ∂φ

k

∂nQ
)j(t)

∫∫
S

BQjG(P ;Q)dSQ = 0,

(3.8)

where P = 1, 2, ..., N is the field point located at the centroid of the panel with a

total number of N , BPj = Bj(P ) = Bj(~xP ) and BQj = Bj(Q) = Bj(~xQ) are the j-th

basis functions of vector ~xP and ~xQ, respectively, j is the index for Einstein notation,

which means a summation of the value of basis functions is made at each P and Q
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over index j. The number of j varies with the order of basis functions. For the bi-

quadratic basis function B(2,2)
j (~x), j = 1, 2, ..., 9, while for the basis function with the

lowest order B(0,0)
j (~x), j = 1. φk denotes the velocity potential, where k = 1 for the

radiation problem, k = 2 for the diffraction problem, and k = 3 for the free motion

problem.

The free surface boundary conditions are also discretized spatially at time t as follows,

∂(ζk)j(t)
∂t

BPj = (∂φ
k

∂z
)j(t)BPj, (3.9)

∂(φk)j(t)
∂t

BPj = −g(ζk)j(t)BPj, (3.10)

where P is the field point on the free surface.

3.1.2 Temporal Discretization

The kinematic and dynamic free surface boundary conditions are discretized in time

with the explicit Euler scheme at time t = tn+1 respectively as follows,

(ζk)n+1
j − (ζk)nj

∆t BPj = (∂φ
k

∂z
)njBPj, (3.11)

(φk)n+1
j − (φk)nj

∆t BPj = −g(ζk)n+1
j BPj. (3.12)

The boundary integral equation is also discretized in time as follows,

2π(φk)n+1
j BPj +(φk)n+1

j

∫∫
S

BQj
∂

∂nQ
G(P ;Q)dSQ−( ∂φ

k

∂nQ
)n+1
j

∫∫
S

BQjG(P ;Q)dSQ = 0,

(3.13)

where the superscript n+1 denotes the value of the unknowns at (n+1)-th time step,

∆t is the time step. The kinematic free surface condition relates the wave elevation
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at the (n + 1)-th time step with the wave elevation and the normal velocity on the

free surface at the n-th time step explicitly, through which the wave elevation at the

(n + 1)-th time step is integrated over ∆t using the solution of normal velocity and

wave elevation at the n-th time step. With the wave elevation updated at the (n+1)-th

time step, the velocity potential on the free surface is then updated at the (n + 1)-

th time step through the dynamic free surface condition, which relates the velocity

potential and wave elevation at the (n + 1)-th time step with the wave potential at

the n-th time step explicit. Then, at the (n + 1)-th time step, the velocity potential

φk on the free surface is known and the normal velocity ∂φk

∂z
is unknown; while on the

submerged body surface, the normal velocity ∂φk

∂n
is known and the velocity potential

φk is unknown. The discrete form of the boundary integral equation is a system of

linear equations which relate the velocity potential φk and normal velocity ∂φk

∂n
(or

∂φk

∂z
) on the free submerged body surface with those on the free surface at the (n+ 1)-

th time step. The unknown velocity potential φk and the normal velocity ∂φk

∂z
are

then solved simultaneously as the solution of the system of linear equations at the

(n + 1)-th time step. The collocation points for the system of linear equations are

chosen to be at P = 1, 2, ..., N , which are the centroids of the panels.

Since the zero-order basis function is applied in this thesis, the discrete form of free

surface boundary equations and boundary integral equations are degraded into,

(ζk)n+1(P )− (ζk)n(P )
∆t = (∂φ

k

∂z
)n(P ), (3.14)

(φk)n+1(P )− (φk)n(P )
∆t = −g(ζk)n+1(P ), (3.15)

2π(φk)n+1(P ) + (φk)n+1(Q)
∫∫
S

∂

∂nQ
G(P ;Q)dSQ − ( ∂φ

k

∂nQ
)n+1(Q)

∫∫
S

G(P ;Q)dSQ = 0,

(3.16)
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where S = SB ∪ SF ∪ SBot, P = 1, 2, ..., N , Q = 1, 2, ..., N ,
∫∫
S
G(P ;Q)dSQ(Q 6= P )

and
∫∫
S

∂
∂nQ

G(P ;Q)dSQ(Q 6= P ) are the influence coefficients from the integration of

source and dipole over the boundaries, respectively. The calculation of the influence

coefficients follows the analytical method in Newman (1986). When Q is coincident

with P (Q = P ),
∫∫
S
G(P ;Q)dSQ = 2π. For a computational domain with infinite

depth, only the submerged body boundary SB and free surface boundary SF should

be included in the boundary integral equation.

3.1.3 Radiation Condition on a Truncated Free Surface

For the boundary value problem with an infinite free surface, the radiation condition

in the far field is automatically satisfied because the outgoing waves generated by the

ship will not reflect back into the computational domain. However, in the Rankine

panel method, the computational domain for the free surface has to be truncated. The

truncated part of the free surface is acting as a rigid lid covering on the z = 0 plane,

resulting in a reflection of the outgoing waves back to the computational domain at

the domain edge (Sclavounos and Nakos, 1988). Since the radiation condition has to

be satisfied, a numerical damping zone is used near the boundary of the truncated free

surface to absorb the outgoing wave components to minimize the reflection. The con-

cept of numerical beach was first proposed by Israeli and Orszag (1981). It functions

like a physical wave absorbing beach in a wave basin or towing tank that absorbs the

outgoing wave. The numerical scheme of the wave absorbing beach involves the use

of Newtonian cooling term and the Rayleigh viscosity term, which are applied to the

kinematic free surface condition within the damping zone. The linear kinematic free

surface condition is modified as follows,

∂ζk

∂t
= ∂φk

∂z
− 2νζk + ν2

g
φk, (3.17)
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where −2νζk is the Newtonian cooling term that is proportional to the wave elevation

with the damping strength ν > 0, and ν2

g
φk is the Rayleigh viscosity term. The damp-

ing is added through the cooling term which introduces an artificial mass flux through

the free surface. However, the cooling term also changes the dispersion relation which

causes a shift in wave frequency. The Rayleigh viscosity term is therefore introduced

to eliminate this effect. The wave absorbing zone is distributed at the outer rim of

the free surface. The distribution of cooling strength, ν, is an important issue for the

numerical damping zone. If the cooling strength is constantly distributed over the

damping zone, there will be an abrupt change of the free surface boundary condition

at the inner edge of the zone, which may cause a wave reflection. Therefore, it is

necessary for the cooling strength to vary along the radial distance over the damping

zone to minimize the wave reflection. A quadratic tamper is applied to the cooling

strength following the work of Israeli and Orszag (1981), with zero strength at the

inner edge of the zone and the strength gradually increasing to the outer edge,

ν(rD) = 3ν0
(rD − rD0 )2

L3 , 0 ≤ rD − rD0 ≤ L, (3.18)

where ν0 is a constant, rD is the radius of points in the damping zone on the truncated

free surface, rD0 is the radius where the damping zone starts, and L is the zone size.

3.1.4 Spatial Filtering for the Free Surface

In the present time-domain simulation, saw-tooth waves are found to emerge and

grow on the free surface as time goes on and eventually spoil the entire solution. It is

important to smooth the free surface by eliminating the saw-tooth waves to improve

the stability of the simulation. In this thesis, the three-point low-pass filter proposed

by Shao and Faltinsen (2012) is adopted to retain the growth of the saw-tooth waves



41

on the free surface with the form below,

ζ̄kj = cF ζ
k
j−1 + (1− 2cF )ζkj + cF ζ

k
j+1 (3.19)

where ζkj and ζ̄kj are the wave elevations before and after smoothing, j is the numbering

of the collocation points locally, and cF is the strength of the filter. The filter is applied

in the azimuth direction of the collocation points on the free surface every time step.

3.1.5 Time Integration of the Equations of Motion

The explicit Euler method is applied to the time integration of the equations of ship

motion. The second order ordinary differential equation (ODE) (2.72) is decomposed

into a system of linear equations.

d~y

dt
= ~f(t), (3.20)

where

~y(t) =


~y1(t)

~y2(t)

 =


~̇ξ(t)

~ξ(t)

 , (3.21)

and

~f(t) =


~f1(t)

~f2(t)

 =


[M ]−1(F (t)−C ~y2(t))

~y1(t)

 , (3.22)

~ξ is the vector of ship displacement in 6-DOF, M is the inertia matrix, C is the

restoring coefficient matrix, and F (t) is the hydrodynamic force matrix at time t.

The explicit Euler method is defined as follows,

~yn+1 = ~yn + h~f(tn, ~yn), (3.23)
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where h is denotes the time step size ∆t, the subscripts n and n+ 1 denote the value

of variables at n-th and (n+ 1)-th time steps respectively.

3.2 Numerical Implementation

A time-domain program based on the numerical method above was written in Fortran,

which is referred to as the present method. This version solves the linear time-

domain ship motions with the ship freely floating in a finite water depth at zero speed

undergoing incoming waves, in which case, the radiation and diffraction problems

are solved simultaneously. It can also solve the forced motion of the ship, which

corresponds to the radiation problem, and a fixed ship with the presence of incoming

waves, which corresponds to the diffraction problem, separately.

Figure 3.2 shows the detailed work process of the program. The geometry of the ship

(SB) is read in from a geometry file. Then, the computational grids for the free surface

(SF ) and bottom (SBot) are generated. For the linear problem, the incoming wave

amplitude and the ship motion are assumed to be small. There will be no significant

change in the value of influence coefficients. Therefore, for efficiency, the influence

coefficients are calculated only once for the entire simulation. For each time step,

the free surface boundary condition is solved explicitly to obtain the updated velocity

potential and wave elevation on the free surface. Then, a mixed boundary integral

equation is solved for the velocity potential on the body and bottom and the normal

velocity on the free surface. The equations of ship motion are then solved after the

calculation of the total forces acting on the body.

The solution of the mixed boundary integral equation involves the process of solving

a dense system of linear equations Ax=b, where A is an N by N matrix consisting of

influence coefficients with N being the total number of the panels on the boundaries,
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x is the matrix of unknowns, and b is the known values from the previous time step.

Since the influence coefficients will not change from time step to time step, the matrix

A will also stay unchanged. The LU decomposition method is applied to obtain the

inverse matrix A−1 of A. Then, the inverse matrix is stored and used for each time

step to solve for x with the updated b by simple multiplication x=A−1b.



44

 

Start 

Reading 𝑆𝐵 Geometry Geometry 
Data 

𝑆𝐹 and 𝑆𝐵𝑜𝑡 Grid Generation 

Hydrostatics Calculation 

Influence Coefficients Calculation 

Initialization 

𝑆𝐵:(𝜕𝜙𝑘

𝜕𝑛
)

0

, (𝜙𝑘)
0; 𝑆𝐵𝑜𝑡: (𝜕𝜙𝑘

𝜕𝑛
)

0

, (𝜙𝑘)
0; 𝑆𝐹: (𝜕𝜙𝑘

𝜕𝑛
)

0

, (𝜙𝑘)
0,(ζ𝑘)

0 

 

Solving Free Surface Boundary Condition 

𝑆𝐵:(𝜕𝜙𝑘

𝜕𝑛
)

𝑛+1

; 𝑆𝐵𝑜𝑡: (𝜕𝜙𝑘

𝜕𝑛
)

𝑛+1

; 𝑆𝐹: (𝜙𝑘)
𝑛+1,(ζ𝑘)

𝑛+1 

 

Solving Mixed Boundary Integral Equation 

𝑆𝐵: (𝜙𝑘)
𝑛+1; 𝑆𝐵𝑜𝑡: (𝜙𝑘)

𝑛+1; 𝑆𝐹: (𝜕𝜙𝑘

𝜕𝑛
)

𝑛+1

 

 

Force F𝑛+1 Calculation 

 

Solving Equation of Motion 

 

t < Tmax? 

Stop 

Yes
! 

No! 

Figure 3.2: Flow chart for the present method program.



Chapter 4

Numerical Results

4.1 Solution Grids

The numerical method has been applied to various floating bodies including a trun-

cated cylinder, a hemisphere, the Wigley I hull, a Series 60 ship, and the two-body

side-by-side moored scenario.

It is important to chose a proper solution grid for the numerical computation since

it may influence the computational result significantly. For the seakeeping problem

at zero speed with incident waves, the disturbance waves due to the presence of the

body and the body motion propagate circularly from the center of the fluid field to

the far field. Thus, a circular computational domain is ideal for the present numerical

computation and is adopted in all the computational cases.

Since the energy of the disturbed waves is more concentrated near the body than in

the far field, a finer mesh is generated near the body on the free surface grid for a more

accurate representation of the wave flow. The mesh far from the body is generated

with less density for computational efficiency.

Only one set of solution grids is used for different wave frequencies for the cases of

45



46

the truncated cylinder, hemisphere, Wigley hull, and Series 60 ship. The size of the

truncated free surface is determined by the longest wave length of the incident wave.

The domain size should cover the longest wave length, which allows the longest wave

to propagate and to be absorbed by the wave absorbing zone. The spacing size of

the grid is determined by the shortest wave length. The spacing size near the body

should be fine enough to allow the shortest wave to propagate. For the two-body

side-by-side moored scenario, a number of computational grids with different domain

sizes are used for different wave frequencies to improve the accuracy.

For a floating body which is symmetric along the x− axis in head sea condition, the

fluid field is also symmetric. For such a case, only half of the body and computational

domain is needed for the computation, which is more efficient than using the entire

domain.

Figure 4.1 shows the perspective view and top view of the oval-type grid for a hemi-

sphere. Only half of the circular computational domain is shown. The spacing size

of the grid increases exponentially from the body to the far field. The border of the

artificial damping zone is shown in the top view.

Figure 4.2 shows half of the circular computation domain with the oval-type grid for

the Wigley I hull in deep water.

Figure 4.3 shows the perspective view and the grid near the body of half of the circular

computational domain with an oval-type grid for a Series 60, Cb=0.7 ship in a finite

water depth. The bottom grid is generated to include the finite depth effect. The

domain size of the bottom grid is the same as the free surface grid.

Figure 4.4 shows the perspective view and the grid near the body of half of the

circular computational domain for the two-body side-by-side moored scenario. The

rectangular grid is used for the gap portion of the free surface and the oval-type grid

is used for the rest of the free surface.
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Figure 4.1: Oval-type grid for a hemisphere (half).
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Figure 4.2: Oval-type grid for the Wigley I hull (half).
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Figure 4.3: Oval-type grid for a Series 60, Cb=0.7 in finite water depth (half).
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Figure 4.4: Computational grid for the two-body side-by-side moored scenario (half).
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Table 4.1: Principal dimensions for different geometries.

Type of geometry Length/Diameter(m) Breadth/Diameter(m) Draft(m)
Truncated cylinder 200 200 100

Hemisphere 200 200 100
Wigley I hull 120 12 7.5

S60, Cb=0.7 ship 102 14.3 5.72
Two-body side-by-side 120 24 6.0

Table 4.2: List of the number of panels for different geometries.

Type of geometry Body surface Free surface Bottom surface Total
Truncated cylinder 1,500 3,600 N/A 5,100

Hemisphere 900 2,400 N/A 3,300
Wigley I hull 600 2,400 N/A 3,000

S60, Cb=0.7 ship 682 2,480 1,860 5,022
Two-body side-by-side 1,600 3,400 N/A 5,000

Table 4.1 presents the principal dimensions for the geometries.

Table 4.2 listed the number of panels used for each geometry.

4.2 Forced Motion Simulations

In the forced motion time-domain simulation, the radiation problem, which corre-

sponds to the forced oscillation of the body without incident waves, and the diffrac-

tion problem, which corresponds to the fixed body with the presence of only incident

waves, are studied separately.

4.2.1 Wave Absorbing Zone

The wave absorbing zone is designed to absorb the outgoing waves in order to satisfy

the radiation condition on the free surface. It is essential to examine the size of the

damping zone L and the damping strength ν to ensure that the outgoing waves are

absorbed properly. A quadratic tamper with damping constant ν0 is applied to the
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distribution of damping strength ν over the damping zone, which starts from rD0 and

ends at the edge of the computational domain rDmax.

The parameters of the damping zone are tested by computing the flow around a single

truncated cylinder of diameter D(D = 2a) and draft d with a/d = 1.0 undergoing

forced heave motion of radiant frequency ω which satisfiesKa = 0.1, whereK = ω2/g.

ξ0 denotes the amplitude of forced heave motion. λ denotes the wavelength of the

radiated wave.

The instantaneous wave elevations along the radial direction on the free surface with

different damping constant ν0 are compared with a Kim et al. (1997) in figure 4.5.

Damping constant ν0 = 20 is not sufficient to absorb the outgoing waves at the

boundary of the domain. The wave elevation at domain edge is still significant. There

is a significant change in the phase of the outgoing wave. The instantaneous wave

elevation ζ is in good agreement with Kim et al. (1997) for the whole range of r/D

when damping constant ν0 = 100. However, when the damping constant ν0 = 500, the

wave elevation near the domain edge is over damped, though it gives good agreement

with Kim et al. (1997) from r/D = 25 to r/D = 75. ν0 = 100 is used and proven to

be valid for all the computational cases in the present work. It may need to be tuned

for other computational cases with different geometries and wave frequencies.

Figure 4.6 compares the instantaneous wave elevations for different sizes of damping

zones. The results from the present method converged as the size of damping zone L

increased. L/λ = 2 and L/λ = 3 both give good agreement with Kim et al. (1997).
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4.2.2 Radiation Problem

The radiation problem has been solved for a truncated cylinder, a hemisphere, the

Wigley I hull, and a Series 60 ship in the time domain. For the radiation problem,

The body is doing a forced simple harmonic motion about its equilibrium position

(z = 0) without any incident wave. The radiated waves on the free surface propagate

from the center to the outer rim of the computational domain and are then absorbed

by the wave absorbing zone. The time series of hydrodynamic forces are calculated at

each time step by the integration of the hydrodynamic pressure over the body surface.

The added mass and damping coefficient associated with the radiation problem are

then calculated.

The hydrodynamic forces due to the forced heave and surge motions of a hemisphere

are calculated. Different domain sizes Rmax, time step sizes ∆t, filter strengths cF , and

number of panels on the free surface are used for the convergence studies which are

carried out at Ka = 0.1 where a is the radius of the hemisphere, K is the wavenumber

with K = ω2/g, and ω is the frequency of the forced harmonic motion.

Figure 4.7 shows the time series of heave force for different domain sizes Rmax. λ is

the wavelength of the radiated wave-induced by the forced harmonic motion. All time

series are stable after the transient stage. The heave force converges as the domain

size increases.

Figure 4.8 shows a good convergence of surge force as the number of panels on the

free surface increases. Free surface panels of over 1500 is ideal for the simulations

with the present method.

Figure 4.9 shows the temporal convergence of surge force. The surge force is studied

at time step size ∆t equals 1/100, 1/500, and 1/1000 of the period T of the forced

harmonic motion. The time series of surge force is stable when the time step size is

smaller than 1/500T , which is ideal for the present method.



55

-2e+07

-1e+07

 0

 1e+07

 2e+07

 0  200  400  600  800  1000  1200  1400

F z
(N

)

t(s)

Rmax/λ = 0.5
Rmax/λ =    1
Rmax/λ =    2

Figure 4.7: Comparison of the heave force of a hemisphere for different domain sizes,
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Figure 4.9: Comparison of the surge force of a hemisphere for different time step sizes,
Ka = 0.1.

Figure 4.10 shows that the numerical filter is important for the stability of the time

series of surge force. The surge force converges when the filter strength is larger than

0.001.
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Figure 4.10: Comparison of the surge force of a hemisphere for different filter
strengths, Ka = 0.1.

The added mass and damping coefficients of surge and heave motions of the hemi-

sphere are extracted from the converged time series of hydrodynamic forces at differ-

ent Ka. Table 4.3 and 4.4 show a comparison of the present numerical results with

analytical solutions by Hulme (1982). Both non-dimensional surge added mass and

damping from the present method are in good agreement with the analytical solu-

tions by Hulme (1982). For the forced heave motion, there is some discrepancy in the

non-dimensional damping parameter at higher Ka values where the absolute values

of damping are small. The results listed in the tables are also plotted in Figure 4.11

and 4.12.
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Table 4.3: The surge added mass and damping coefficient for a hemisphere.

Ka
A11/(ρ∇) B11/(ρ∇ω)

Analytical(Hulme) Present method Analytical(Hulme) Present method
0.1 0.5223 0.5230 0.0011 0.0033
0.2 0.5515 0.5522 0.0082 0.0104
0.3 0.5848 0.5855 0.0255 0.0258
0.4 0.6175 0.6179 0.0557 0.0584
0.5 0.6439 0.6440 0.0987 0.1020
0.6 0.6586 0.6592 0.1516 0.1517
0.7 0.6582 0.6587 0.2092 0.2095
0.8 0.6421 0.6415 0.2653 0.2681
0.9 0.6127 0.6121 0.3145 0.3167
1.0 0.5740 0.5740 0.3535 0.3542
1.2 0.4860 0.4867 0.3978 0.3975
1.4 0.4038 0.4026 0.4061 0.4077
1.6 0.3371 0.3376 0.3929 0.3928
1.8 0.2865 0.2867 0.3695 0.3696
2.0 0.2493 0.2491 0.3424 0.3429
2.5 0.1951 0.1960 0.2769 0.2770
3.0 0.1720 0.1735 0.2237 0.2237
3.5 0.1634 0.1653 0.1826 0.1828
4.0 0.1620 0.1638 0.1511 0.1519
4.5 0.1641 0.1663 0.1266 0.1273
5.0 0.1679 0.1703 0.1073 0.1081
6.0 0.1772 0.1798 0.0794 0.0805
7.0 0.1865 0.1889 0.0608 0.0627
8.0 0.1949 0.1975 0.0479 0.0494
9.0 0.2022 0.2047 0.0386 0.0404
10.0 0.2085 0.2107 0.0317 0.0347
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Table 4.4: The heave added mass and damping coefficient for a hemisphere.

Ka
A33/(ρ∇) B33/(ρ∇ω)

Analytical(Hulme) Present method Analytical(Hulme) Present method
0.1 0.8627 0.8610 0.1816 0.1868
0.2 0.7938 0.7933 0.2793 0.2800
0.3 0.7157 0.7153 0.3254 0.3258
0.4 0.6452 0.6437 0.3410 0.3434
0.5 0.5861 0.5848 0.3391 0.3409
0.6 0.5381 0.5378 0.3271 0.3273
0.7 0.4999 0.4984 0.3098 0.3119
0.8 0.4698 0.4697 0.2899 0.2899
0.9 0.4464 0.4452 0.2691 0.2709
1.0 0.4284 0.4278 0.2484 0.2494
1.2 0.4047 0.4035 0.2096 0.2120
1.4 0.3924 0.3924 0.1756 0.1757
1.6 0.3871 0.3870 0.1469 0.1476
1.8 0.3864 0.3858 0.1229 0.1253
2.0 0.3884 0.3881 0.1031 0.1049
2.5 0.3988 0.3988 0.0674 0.0683
3.0 0.4111 0.4110 0.0452 0.0467
4.0 0.4322 0.4320 0.0219 0.0245
5.0 0.4471 0.4469 0.0116 0.0140
6.0 0.4574 0.4571 0.0066 0.0086
7.0 0.4647 0.4643 0.0040 0.0058
8.0 0.4700 0.4696 0.0026 0.0030
9.0 0.4740 0.4736 0.0017 0.0030
10.0 0.4771 0.4767 0.0012 0.0030
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Figure 4.11: The surge added mass and damping coefficient of a hemisphere.
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The radiation problem of the Wigley I hull is studied through forced heave and pitch

harmonic motions at a wide range of frequencies with motion amplitudes of ξ0. Figure

4.13 and 4.14 present the instantaneous wave contours of the radiated wave induced

by the forced heave and pitch motions, respectively, where ζ denotes the free surface

wave elevation. The values in the contour are non-dimensionalized as m/m for heave

motion and m/rad for pitch motion. The heave and pitch added mass and damping

coefficients of the Wigley I hull in deep water are calculated and compared with

numerical results from the frequency-domain programs WAMIT and MAPS0. Figure

4.15 to 4.18 present the added mass and damping for both heave and pitch motions.

The results from the present method are in good agreement with numerical results

from WAMIT and MAPS0.
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Figure 4.13: Instantaneous radiated wave contour around the Wigley I hull with forced
heave motion, ω = 0.8rad/s.
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Figure 4.14: Instantaneous radiated wave contour around the Wigley I hull with forced
pitch motion, ω = 0.8rad/s.
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Figure 4.15: Comparison of the heave added mass of the Wigley I hull.
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Figure 4.16: Comparison of the heave damping of the Wigley I hull.
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Figure 4.17: Comparison of the pitch added mass of the Wigley I hull.
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Figure 4.18: Comparison of the pitch damping of the Wigley I hull.

For vessels and floating structures in finite water depth h, the solution grid is dis-

tributed on the bottom of the computational domain with z = −h. The forced heave

and pitch motion simulations are carried out for a Series 60, Cb=0.7 ship at a series

of forced motion frequencies with a 40m water depth. Since the linear free surface

boundary conditions are used for the present method, the water depth is restricted to

40m for radiated waves of ω = 0.4rad/s to remain as linear waves. The time series of

hydrodynamic forces are first calculated, through which the added mass and damp-

ing coefficients are obtained and compared with numerical results from MAPS0 and

WAMIT.

Various numbers of panels on the bottom are used in the convergence studies. Figure

4.19 and 4.20 illustrate the convergence of the heave radiation force and pitch radiation

moment for the Series 60, Cb=0.7 ship at ω = 0.4rad/s. Both the heave force and

pitch moment converge as the number of panels on the bottom surface increases.

Figure 4.21 to 4.24 show the comparisons of added mass and damping coefficients of
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Figure 4.19: Comparison of the heave force of a Series 60, Cb=0.7 ship with a forced
heave motion for different number of panels on the bottom surface, ω = 0.4rad/s.
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Series 60, Cb=0.7 ship with the numerical results from MAPS0 and WAMIT at water

depth h = 40m. The A33, B33, A55, and B55 computed with present method are in

good agreement with results from MAPS0 and WAMIT.
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Figure 4.21: Comparison of the heave added mass of a Series 60, Cb=0.7 ship, h =
40m.
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Figure 4.23: Comparison of the pitch added mass of a Series 60, Cb=0.7 ship, h =
40m.
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Figure 4.24: Comparison of the pitch damping of a Series 60, Cb=0.7 ship, h = 40m.

4.2.3 Diffraction Problem

The diffraction problem has been solved for a truncated cylinder, the Wigley I hull,

the Series 60, Cb=0.7 ship, and the two-body side-by-side moored scenario in the

time domain. For the diffraction problem the body is fixed in its equilibrium position

undergoing incoming sinusoidal incident waves. The wave exciting force acting on

the body associated with the diffraction problem includes the Froude–Krylov force,

which is due to the dynamic wave pressure from the undisturbed incident wave, and

the diffraction force, which is due to the change in diffracted wave potential over time.

In this thesis, the incident wave potentials are calculated at each centroid of the

panels on the body surface. The wave exciting forces are obtained at each time step

by the direct integration of hydrodynamic pressure, which is proportional to the time

derivative of incident wave and diffracted wave potentials, over the mean wetted body

surface.
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The wave exciting forces are calculated for a fixed truncated cylinder of diameter D

and draft d with D/d = 2/3. The amplitude of the incident wave is AI , which is half

of the incident wave height H. Figure 4.25 shows the comparison of time history for

the non-dimensional horizontal force acting on the cylinder calculated by the present

method with that of Kim (1999). The calculated horizontal force is in good agreement

with the result of Kim (1999). The calculation starts from t = 0 and after a transient

period (from non-dimensional time 0.0 to 5.0) the solution is stable.
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Figure 4.25: Horizontal force acting on a truncated cylinder, Ka = 0.1.

The wave exciting forces are calculated for the Wigley I hull at different wave frequen-

cies in head sea condition in deep water. Different time step sizes ∆t and different

number of panels on the free surface are used in the convergence studies, which are

carried out at incident wave frequency ω = 1.0rad/s. Figure 4.26 and 4.27 illustrate

the convergence of the heave exciting force and pitch exciting moment of the Wigley I

hull for different number of panels on the free surface. The results are stable after the

transient stage. Both the exciting force and moment converge as the number of panels

on the free surface increases. Figure 4.28 and 4.29 show the temporal convergence
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of the exciting force and moment. The convergence is reached very quickly for both

results.
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Figure 4.26: Comparison of the heave exciting force of the Wigley I hull for different
number of panels on the free surface, ω = 1.0rad/s.

Figure 4.30 illustrates the diffracted wave around the Wigley I hull at an incident wave

frequency ω = 0.8rad/s. The wave elevation in the contour is non-dimensionalized as

m/m.

The wave exciting force RAOs are extracted from the converged time series of exciting

forces and compared with the numerical results from MAPS0 and WAMIT. Figure

4.31 and 4.32 show that the RAOs of the heave wave exciting force and pitch wave

exciting moment acting on the Wigley I hull at selected frequencies agrees very well

with the numerical results from MAPS0 and WAMIT.

For the diffraction problem in a finite water depth, the convergence study is carried

out for the Series 60, Cb=0.7 ship in a 40m water depth using different number

of panels on the bottom surface. Figure 4.33 and 4.34 illustrate good convergence
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Figure 4.27: Comparison of the pitch exciting moment of the Wigley I hull for different
number of panels on the free surface, ω = 1.0rad/s.
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Figure 4.28: Comparison of the heave exciting force of the Wigley I hull for different
time step sizes, ω = 1.0rad/s.
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Figure 4.29: Comparison of the pitch exciting moment of the Wigley I hull for different
time step sizes, ω = 1.0rad/s.

of heave exciting force and pitch exciting moment for the incident wave frequency

ω = 0.4rad/s.

Figure 4.35 and 4.36 show the comparisons of the exciting force RAOs of a Series

60, Cb=0.7 ship from present method with the numerical results from MAPS0 and

WAMIT. The RAOs of exciting forces are obtained from the converged time series

of exciting forces. The present method results are in excellent agreement with the

MAPS0 and WAMIT results.
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Figure 4.30: Instantaneous diffracted wave contour around the fixed Wigley I hull in
an incident wave, ω = 0.8rad/s.
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Figure 4.31: Heave exciting force RAO of the Wigley I hull.
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Figure 4.32: Pitch exciting moment RAO of the Wigley I hull.
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Figure 4.33: Comparison of the heave exciting force of a Series 60, Cb=0.7 ship for
different number of panels on the bottom surface, ω = 0.4rad/s.
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Figure 4.34: Comparison of the pitch exciting moment of a Series 60, Cb=0.7 ship for
different number of panels on the bottom surface, ω = 0.4rad/s.
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Figure 4.35: Heave exciting force RAO of a Series 60, Cb=0.7 ship.
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Figure 4.36: Pitch exciting moment RAO of a Series 60, Cb=0.7 ship.

For the two-body side-by-side moored scenario, the exciting forces are calculated for

all 6-DOFs. Different number of panels on the gap portion of the free surface are

used in the convergence studies, which are carried out at ω = 1.0rad/s. Figure 4.37

and 4.38 illustrate the sway exciting force and roll exciting moment acting on the

body located in the y − axis positive position of the two-body side-by-side moored

scenario, respectively. The time series shown are in the stable stage of the simulations.

Convergence is reached very quickly for both sway force and roll moment.

Figure 4.39 illustrates the diffracted wave around the two-body side-by-side moored

scenario at the incident wave frequency ω = 0.8rad/s. The wave elevation in the

contour is non-dimensionalized as m/m. The instantaneous wave elevation in the gap

is about 1.8 times the incident wave elevation, which indicates that the wave elevation

between the gap is amplified by the side-by-side configuration of the two bodies.

The RAOs of the exciting forces are extracted from the converged time series and

compared with the numerical results from MAPS0 and WAMIT. Figures 4.61 to 4.44
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Figure 4.37: Comparison of the sway exciting force of the two-body side-by-side
moored scenario for different number of panels on the gap, ω = 1.0rad/s.
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Figure 4.38: Comparison of the roll exciting moment of the two-body side-by-side
moored scenario for different number of panels on the gap, ω = 1.0rad/s.
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Figure 4.39: Instantaneous diffracted wave contour around the fixed two-body side-
by-side moored scenario in incident wave, ω = 0.8rad/s.
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illustrate the good agreement of sway and heave exciting forces as well as roll, pitch,

and yaw exciting moments from the present method with the MAPS0 and WAMIT

results. The peak values of exciting forces/moments are predicted accurately.
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Figure 4.40: Sway exciting force RAO of the two-body side-by-side moored scenario.
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Figure 4.41: Heave exciting force RAO of the two-body side-by-side moored scenario.
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Figure 4.42: Roll exciting moment RAO of the two-body side-by-side moored scenario.
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Figure 4.43: Pitch exciting moment RAO of the two-body side-by-side moored sce-
nario.
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Figure 4.44: Yaw exciting moment RAO of two-body side-by-side moored scenario.
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4.3 Free Motion Simulations

The free motion simulation solves the boundary value problem for the computational

domain and the equations of ship motion simultaneously at each time step. In this

thesis, the total velocity potential, including the radiation and diffraction potentials,

is obtained by solving the boundary value problem for the free motion simulations,

through which the total hydrodynamic pressures are computed and the total hydro-

dynamic forces are calculated by the direct integration of hydrodynamic pressures

over the body surface. Then, the ship motions are obtained by solving equations of

motion.

The free motion simulations are solved for the free decay tests of the ship, which

refer to the transition of the ship from a prescribed state to its equilibrium position,

followed by the free motion of the ship with the presence of an incident sinusoidal

wave.

4.3.1 Free Decay Tests

The free decay tests are conducted for the Wigley I hull from the prescribed heave

displacement ξ0
3 and pitch displacement ξ0

5 , respectively. There is no incident wave

for the free decay tests. Convergence studies have been carried out for the heave and

pitch decay tests using different number of panels on the free surface and different

time step sizes. Figure 4.45 and 4.46 show the convergence of the heave motion for

the Wigley I hull in the heave decay test. The heave motion ξ3 decays quickly from ξ0
3

to zero in about eight natural periods of heave motion. The heave motion converges

as the number of panels on the free surface increase and the time step size decreases.

Figure 4.47 and 4.48 illustrate the convergence of the pitch motion for the Wigley I

hull in the pitch decay test. The pitch motion ξ5 also decays quickly in about seven
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Figure 4.45: Comparison of the heave decay of the Wigley I hull for different number
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natural pitch periods. Good convergence of the pitch motion with the number of

panels on the free surface and the time step size is also demonstrated in the figures.
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Figure 4.47: Comparison of the pitch decay of the Wigley I hull for different number
of panels on the free surface.
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Figure 4.48: Comparison of the pitch decay of the Wigley I hull for different time step
sizes.

4.3.2 Free Motion in Monochromatic Waves

The free motion simulations in monochromatic waves are solved for the Wigley I hull

in deep water, a Series 60, Cb=0.7 ship in a finite water depth, and the two-body

side-by-side moored scenario. Convergence studies of ship motions have been carried

out with different time step sizes and number of panels on the free surface and bottom

surface.

Figure 4.49 and 4.52 illustrate the heave and pitch motions of the freely floating

Wigley I hull with an incident wave in head sea condition. The time series of heave

and pitch motions are stable after the transient stage. Both the heave and pitch

motion converge as the number of panels on the free surface increases and the time

step size decreases.

Figure 4.53 shows the instantaneous disturbed wave contour around the Wigley I hull

during free motion. The disturbed wave includes the radiated wave and the diffracted
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Figure 4.49: Comparison of the heave motion of the Wigley I hull for different number
of panels on the free surface, ω = 1.0rad/s.
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Figure 4.50: Comparison of the heave motion of the Wigley I hull for different time
step sizes, ω = 1.0rad/s.
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Figure 4.51: Comparison of the pitch motion of the Wigley I hull for different number
of panels on the free surface, ω = 1.0rad/s.
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Figure 4.52: Comparison of the pitch motion of the Wigley I hull for different time
step sizes, ω = 1.0rad/s.
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wave which are induced by the motion of the ship and the presence of the ship in the

incident wave, respectively. The wave elevation in the contour is non-dimensionalized

as m/m.
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Figure 4.53: Instantaneous disturbed wave contour around the free floating Wigley I
hull with free motion, ω = 0.8rad/s.
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Figure 4.54: Comparison of the heave motion of a Series 60, Cb=0.7 ship for different
number of panels on the bottom surface, ω = 0.4rad/s.
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Figure 4.55: Comparison of the pitch motion of a Series 60, Cb=0.7 ship for different
number of panels on the bottom surface, ω = 0.4rad/s.
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4.3.3 Motion Response Amplitude Operators

The heave and pitch motion RAOs of the Wigley I hull in deep water and a Series

60, Cb=0.7 ship in finite water depth are extracted from the converged time series

of ship motions and compared with the numerical results from MAPS0 and WAMIT.

Figure 4.56 and Figure 4.57 show that the RAOs of wave-induced heave and pitch

motions at selected frequencies are in good agreement with the numerical results from

frequency-domain programs MAPS0 and WAMIT.
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Figure 4.56: Heave motion RAO of the Wigley I hull.



91

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

ξ 5
/A

I(d
eg

re
e/

m
)

ω(rad/s)

MAPS0
WAMIT

Present Method

Figure 4.57: Pitch motion RAO of the Wigley I hull.
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Figure 4.58: Heave motion RAO of a Series 60, Cb=0.7 ship.
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Figure 4.59: Pitch motion RAO of a Series 60, Cb=0.7 ship.

The sway, heave, roll, and pitch RAOs are calculated for the two-body side-by-side

moored scenario in head sea condition and compared with the numerical results from

the frequency-domain programs MAPS0 and WAMIT and the experimental data.

No artificial roll damping is applied for both the time-domain and frequency-domain

solutions. Figure 4.61 illustrates the sway motion RAO of the two-body scenario.

The sway motion is significant between incident wave frequency ω = 0.8rad/s and

ω = 1.0rad/s. The predicted sway motion is in good agreement with the frequency-

domain solutions at a wide frequency range. The peak value at ω = 0.92rad/s is well

predicted. The discrepancy between the present method result and the frequency-

domain result at the peak value may be caused by the numerical damping introduced

by the discretization of the free surface. There is a small peak for sway motion at

the natural frequency of roll motion ω = 0.6rad/s, which is also well captured. The

trend and value of sway motion from the present method and other frequency-domain

programs are in fair agreement with the experimental data.
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Figure 4.60: Instantaneous disturbed wave contour around the free floating two-body
side-by-side moored scenario in incident wave, ω = 0.8rad/s.
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Figure 4.61: Sway motion RAO of the two-body side-by-side moored scenario.
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Figure 4.62 illustrates the heave motion RAO of the two-body scenario. The peak

of the heave motion is located between frequency ω = 0.8rad/s and ω = 1.0rad/s

where the interaction between the two bodies is significant. The peak value at ω =

0.92rad/s is well predicted. The predicted heave motion is in good agreement with

the experimental data at a wide range of frequencies. The value at the peak agrees

well with the experimental measurement.
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Figure 4.62: Heave motion RAO of the two-body side-by-side moored scenario.

The roll decay test is conducted for a single hull of the two-body side-by-side scenario.

Figure 4.63 illustrates the time history of the roll angle in the roll decay test and the

peak values of each swing. The estimation of the ratio of roll damping β from the the

roll decay test follows the approach of constructing the extinction curve of the roll

decay test data. The amplitude of the roll angle at the n-th swing is defined as ξn4 .

The mean value of the amplitude of the n-th swing is defined as ξnmean and the n-th
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Figure 4.63: Time history of the roll decay test of a single hull.

decrement of amplitude between each swing is defined as δξn with

δξn = (ξn4 − ξn−1
4 ),

ξnmean = 1
2(ξn4 + ξn−1

4 ).
(4.1)

Figure 4.64 illustrates the extinction curve of δξ versus ξmean and its linear fitted curve

δξ = a0 ξmean, where a0 is the slope of the fitted curve. The ratio of roll damping β is

defined by β = a0/π = 0.0095.

Figure 4.65 illustrates the roll motion RAO of the two-body scenario. The resonance

frequency of the roll motion happens at the natural frequency of roll motion ω =

0.61rad/s. The predicted roll motion RAO without viscous roll damping is in good

agreement with the corresponding results from MAPS0 and WAMIT. The ratio of

viscous roll damping β = 0.0095 used for the roll motion simulation is obtained from

the roll decay test. There are significant decreases of the peak values of the roll motion

at the resonance frequency ω = 0.61rad/s and its vicinity ω = 0.60rad/s. No change

is observed at other frequencies. The trend and value of the predicted roll motion

are in fair agreement with the experimental data. The peak value near frequency

ω = 0.9rad/s is near 1.6 degree/m. There is no such value from present method or

other frequency-domain programs.
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Figure 4.64: Extinction curve of the roll decay test data.
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Figure 4.65: Roll motion RAO of the two-body side-by-side moored scenario.
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Figure 4.43 illustrates the pitch motion RAO of the two-body scenario. The predicted

pitch motion is in good agreement with the frequency domain solutions. The peak

value of the pitch motion is well predicted at frequency ω = 0.96rad/s. The pitch

motion from the present method and other frequency-domain programs are in good

agreement with the experimental data at all frequencies.
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Figure 4.66: Pitch motion RAO of the two-body side-by-side moored scenario.



Chapter 5

Conclusions and Future Work

In this thesis, a numerical program was developed to simulate the wave-induced mo-

tions of floating bodies in the time domain. It was validated through a wide range

of frequencies for various ship and floating body geometries in both the deep water

and finite water depth. It was also demonstrated to be valid for the simulation of the

two-body interaction condition. The program in this work solves the linear seakeeping

problem at zero forward speed with the constant Rankine panel method. It provides

a foundation that can be extended to solve nonlinear problems with advance speed.

A detailed literature review focused on the time-domain simulation of ship motion

and the development of the Rankine panel method has been provided. It is found

that the Rankine panel method has been widely used in the time-domain simulation

of ship motion and it has great potential to solve nonlinear seakeeping problems and

problems with arbitrary bathymetry in the time domain.

The mathematical formulation for the boundary value problem was derived. The lin-

ear formulation used in this thesis was degraded from the Weak-Scatterer formulation,

which was originally linearized from the fully nonlinear formulation. The boundary

integral equation was derived by applying Green’s theorem. The equations of ship
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motion were linearized by assuming the ship motions are small.

The original formulation of the B-spline Rankine panel method was described in

detail. The numerical method used in the present work is the constant Rankine panel

method which was degraded from the B-spline Rankine panel method. The numerical

damping zone was adopted to satisfy the radiation condition on the truncated free

surface. The numerical filter was used to retain the growth of the saw-tooth waves

on the free surface. Both the numerical damping zone and the numerical filter were

demonstrated to be important for the stability of the simulation.

The program has been validated against extensive numerical simulations. Conver-

gence studies have been carried out to examine the effect of the damping zone size,

damping strength, domain size, time step size, filter strength, and the number of

panels on the free surface and bottom surface on the solutions. Ideal values for the

variables have been found. A stepwise study of the wave-induced hydrodynamic forces

and motions has been carried for a truncated cylinder, a hemisphere, the Wigley I

hull, a Series 60, Cb=0.7 ship, and the two-body side-by-side moored scenario through

forced motion and free motion simulations. The time series of hydrodynamic forces

and ship motions were stable. The added mass and damping coefficients, as well as

RAOs of wave exciting forces and body motions, were extracted from the correspond-

ing time series and compared with the numerical results from the frequency-domain

programs MAPS0 and WAMIT. The results from the present method were demon-

strated to be accurate and robust.

The present method can be extended to many topics in marine hydrodynamics.

Oblique sea: An easy extension is the simulation in an oblique sea. The compu-

tations in an oblique sea require the whole computational domain because the wave

flow is no longer symmetric along the y = 0 plane.

Global wave load: The calculation of global wave load can be easily achieved by
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calculating the shear force and bending moment at ship sections.

Second-order forces: The second-order forces can be calculated in the future with

the second-order force terms derived from the boundary value problem formulation.

Arbitrary bathymetry: The seakeeping analysis can be extended to arbitrary

bathymetry by the flexible distribution of panels on the bottom surface.

Forward-speed computations: The Neumann-Kelvin flow or the Double-body flow

can be incorporated for the simulations with advance speed.

Body nonlinearity: Different levels of nonlinearity can be incorporated into the

present method. For the first step, the body nonlinearity can be added by considering

the instantaneous wetted surface of the ship hull.

Free surface nonlinearity: The free surface nonlinearity can be included. The

instantaneous incident wave profile can be included through the Weak-Scatterer for-

mulation. The fully nonlinear free surface can be solved by applying the MEL method.

In conclusion, the present program is stable and accurate in the simulation of wave-

induced ship motions. It is also a foundation with great potential that can be further

developed to solve seakeeping problems with high complexity.
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