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ABSTRACT 

 

The L-moments based index-flood procedure had been successfully applied for 

Regional Flood Frequency Analysis (RFFA) for the Island of Newfoundland in 2002 

using data up to 1998. This thesis, however, considered both Labrador and the Island 

of Newfoundland using the L-Moments index-flood method with flood data up to 

2013. For Labrador, the homogeneity test showed that Labrador can be treated as a 

single homogeneous region and the generalized extreme value (GEV) was found to 

be more robust than any other frequency distributions. The drainage area (DA) is the 

only significant variable for estimating the index-flood at ungauged sites in Labrador.  

 

In previous studies, the Island of Newfoundland has been considered as four 

homogeneous regions (A, B, C and D) as well as two Water Survey of Canada’s Y 

and Z sub-regions. Homogeneous regions based on Y and Z was found to provide 

more accurate quantile estimates than those based on four homogeneous regions. 

Goodness-of-fit test results showed that the generalized extreme value (GEV) 

distribution is most suitable for the sub-regions; however, the three-parameter 

lognormal (LN3) gave a better performance in terms of robustness. The best fitting 

regional frequency distribution from 2002 has now been updated with the latest flood 

data, but quantile estimates with the new data were not very different from the 

previous study.  

 

Overall, in terms of quantile estimation, in both Labrador and the Island of 

Newfoundland, the index-flood procedure based on L-moments is highly 

recommended as it provided consistent and more accurate results than other 

techniques such as the regression on quantile technique that is currently used by the 

government.  
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Accurate estimations of flood quantiles play a significant role in minimizing flood 

damage, specifically related to casualties, compensation related expenses and 

environmental damage, which are all caused by flooding. Furthermore, accurate 

estimations of flood frequencies can provide valuable information for designing and 

planning hydraulic structures and other flood protection schemes.  

 

Flood frequency analysis was traditionally based on fitting a frequency distribution 

or probability model to the observed flood data at a single site. However, insufficient 

data often create a challenge for hydrologists to provide an accurate flood quantile. A 

preferable approach is to use regional flood frequency analysis (RFFA) to deal with 

this problem. RFFA uses data at neighboring sites in a defined homogeneous region 

to develop a model. Flood quantiles at any site within this region can then be derived. 

Multiple regression models and the index-flood method (IFM) are the prime methods 

for RFFA. The regression on quantile approach uses regression analysis to develop 

equations to relate climate and physiographic characteristics to the flow quantiles 

estimated from single-station flood frequency analysis in a homogeneous region. The 

index-flood method (IFM) establishes a relationship (growth curve) between the 
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scaled quantiles and the return period in a homogeneous region. Regionalization, 

substituting space for time, is regarded as the fundamental premise of RFFA. The 

L-moments based index-flood method is an advanced approach which has been 

widely used for flood studies. Recent studies include the regional flood frequency 

analysis in Sicily, Italy by Noto (2009); the regional flood estimation for ungauged 

basins in Sarawak, Malaysia by Lim & Lye (2003); and the regional flood frequency 

analysis for West Mediterranean Region of Turkey by Saf (2009). L-moments are the 

linear combination of PWMs. Because its parameters are less biased, it has the ability 

to estimate site characteristics in a simple way; in particular, to estimate distribution 

parameters. Detailed information about L-moments is presented in Chapter 2.  

 

In general, the application of the IFM should satisfy two assumptions: 1) the data at 

each site are independent and identically distributed; 2) the frequency distribution at 

each site should be identical except for the scale factor. Based on Hosking and Wallis 

(1997), the index-flood method based on L-moments has the following steps: 

 

1) Screening the data: The objective is to check for gross errors of the data and to 

make sure the data is continuously available over time. That is, there is no gap or 

missing data.  

 

2) Identifying the homogeneous region: Deciding on which river basins can be 

grouped together as a homogeneous region. That is, flood data with approximate 

identical distribution except for scale. 
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3) Choosing a frequency distribution: Since the regional frequency distribution is 

essentially determined by the L-moment ratio diagram, a goodness-of-fit test will 

determine how well the selected distribution fit the data in the region. The 

application of robustness test can become necessary when there is more than one 

acceptable regional frequency distribution. 

 

4) Estimating the frequency distribution: This process is designed to compute the 

flood quantiles for certain return periods at ungauged sites derived from the regional 

growth curve.  

 

1.2 The application of RFFA for Newfoundland and Labrador 

The first regional flood frequency analysis for Newfoundland was performed by 

Poulin (1971). Subsequent to this, regular updates by the provincial government of 

Newfoundland were carried out in 1984, 1990, 1999 and 2014 (Government of 

Newfoundland and Labrador, 1984; Government of Newfoundland and Labrador, 

1990; Government of Newfoundland and Labrador, 1999 & AMEC, 2014). The 

regression method as described earlier, based on the observed data and sites 

characteristics, was the prime methodology used. However, this methodology, while 

easy to understand and apply often suffers from lack of consistent results and 

accuracy due to short historical data and other statistical issues.  

The first RFFA for Newfoundland based on the L-moments index-flood procedure 
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was proposed by Pokhrel (2002). The regional divisions in this analysis were based 

on two references: 1) the division of four sub regions (A, B, C and D) used in the 

provincial government analysis in 1989, and 2) the division of two sub regions Y and 

Z suggested by the Water Survey of Canada (WSC). This research concluded that the 

WSC sub regions obtained more accurate quantile estimations than sub regions 

suggested in 1989. The generalized extreme value (GEV) distribution was also found 

to have a superior performance compared to the lognormal (LN3) distribution for the 

regions of 1989. The comparison between the at-site and regional estimates showed 

that the L-moments based IFM has the ability to provide more accurate quantile 

estimation for the ungauged sites than conventional regression models, and it 

obtained more accurate results than the study in 1989.  

 

1.3 Rationale and objectives  

As introduced in Section 1.2, the L-moments based RFFA had been successfully 

applied in in Newfoundland and Labrador, therefore, in this thesis, due to the 

excellent performance and the worldwide application of the L-moments based 

index-flood approach, the regional flood frequency analysis for the Island of 

Newfoundland will be updated with the latest data up to 2013. For Labrador, a RFFA 

using the L-moments based index-flood approach will be used for the first time to 

obtain flood quantile estimates for ungauged basins. These results will be compared 
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to those based on the regression based approach recently completed by AMEC 

(2014). The two main objectives of this thesis can thus be summarized as follows: 

 

1) Update the quantile estimates at both gauged and ungauged sites for the Island of 

Newfoundland via the L-moments based index-flood procedure of RFFA. The 

updated results will be compared to those obtained by Pokhrel (2002) and those 

recently obtained by AMEC (2014). 

 

2) Develop the first regional flood frequency analysis for Labrador using the 

L-moments based index-flood method and compare the results with those obtained 

using the regression method developed by AMEC (2014).  

 

1.4 Outline  

This thesis has six chapters. Chapter 1 provides a general introduction to regional 

flood frequency analysis in Newfoundland and Labrador and the methodologies used. 

It also provides objectives for the study and an outline of the thesis. Chapter 2 

reviews recent and related research in the field of regional flood frequency analysis 

and application of RFFA in Newfoundland and Labrador. Popular methodologies 

used for RFFA, the application of index-flood procedure in hydrologic research, the 

commonly used methods of fitting frequency distribution models and methods for 

identifying homogeneous regions are also discussed. Chapter 3 describes the 
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methods used for the L-moments based index-flood procedure in a step by step 

manner. Chapter 4 presents the results of RFFA in Labrador and estimates the index 

flood at ungauged sites using a nonlinear regression model. A comparison with 

results from AMEC (2014) will also be presented. Updated results of the RFFA for 

the Island of Newfoundland will be shown in the Chapter 5, as well as the 

comparison of quantile results with those of Pokhrel (2002). Chapter 6 summarizes 

the results and provides conclusions and recommendations regarding the application 

of the L-moments based index-flood of RFFA in Newfoundland and Labrador. 

Limitations of this research are also discussed. A list of the references and 

programming codes used in this thesis are presented as appendices.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General  

This chapter first reviews some of the key steps in regional flood frequency analysis 

and some of the literature for each step. This is then followed by a brief review of 

RFFA that have been conducted in Newfoundland and Labrador. The estimation of 

regional flood frequency equations or curves has always been a popular topic among 

hydrologists and even among some statisticians. Two main methodologies in use 

today for RFFA are: 1) regional quantile regression approach which became popular 

with the advent of computers for performing multiple regression analysis; and 2) the 

index-flood approach which describes a regional quantile growth curve estimated 

graphically or by statistical methods. Since the development of the statistically 

sophisticated L-moments index-flood approach by Hosking and Wallis (1997), this 

approach is perhaps the most widely used worldwide today. Since the objectives of 

this thesis involve the use of the L-moments based index-flood procedure, the steps 

involved with this approach will be followed and literature pertaining to each step 

reviewed. RFFA using the L-moments based index-flood approach is carried out 

based on the following six steps:  

 

1) Screen the data; 



8 

 

2) Define a homogeneous region;  

 

3) Perform the homogeneity test for each proposed region; 

 

4) Select a regional frequency distribution for each region and check for robustness; 

 

5) Estimate flow quantiles for both gauged and ungauged sites; and 

 

6) Verify and assess accuracy of quantile estimation. 

 

In the next section, the literature review is based on the steps mentioned above.  

 

2.2 Screening the data  

Data screening is the first step to be taken in any data analysis. Before starting the 

work, one should ensure that the data is appropriate for the analysis. Questions to be 

asked include: 1) Are the environmental data of sufficient quality and quantity and do 

they follow the same frequency distribution? 2) Have the data changed over time? 

For example, the data used in this thesis may have been adjusted or corrected by the 

Water Survey of Canada (WSC). It is possible that the WSC did not just update the 

historical data to the year 2013; they may have also modified the record for every 

year at each station. For RFFA, Hosking and Wallis (1997) suggested three kinds of 

useful checks: 1) check the data individually to find gross errors (Wallis, et al. 1991); 

2) check the data at each site for outliers and repeated values; 3) check for trends and 
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abrupt changes and compare the data between sites.  

 

The existence of extreme values or outliers may bring bias to the estimation, but to 

simply discard the outliers may distort results (Kirby, 1974). Therefore, tests become 

necessary to screen out outliers and then to check whether they can be accepted 

within a homogeneous group. There are many tests for outliers. For example, the U.S. 

Water Resource Council (1981) used a statistical hypothesis test in flood frequency 

estimation, which compared the difference between the outliers and other values in a 

sample. A method based on a so-called “masking effect” was applied successfully by 

Barnett and Lewis (1994), which had an ability to distinguish multiple outliers. The 

sum of square statistics (Grubbs, 1950) and extreme-location statistics (e.g. Epstein, 

1960a & 1960b) are other tests for outliers. Hosking and Wallis (1997) reported that 

double-mass plots or quantile-quantile plots are also well-known methods for 

detecting outliers which are easy to apply. Boxplot, histogram plot and dot plot 

provided in some statistical software can also work well for detecting outliers. 

Another alternative method is the L-moment ratios (Hosking and Wallis, 1997), 

which is designed to detect unusual sites from a group of sites by comparing their 

individual L-moment ratios with the regional L-moment ratios of a group. The 

detailed principle and application of L-moments will be discussed later in Chapter 3.  
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2.3 Definition of a homogeneous region  

For RFFA it is common that the data of some sites are insufficient to provide reliable 

estimation. Therefore, identifying a homogenous region is a good way to transfer 

information from other available neighboring stations. Hosking and Wallis (1997) 

summarized some commonly used grouping methods to decide on a homogeneous 

region.  

 

2.3.1 Geographical convenience  

Delineating a homogeneous region based on geographical convenience is a direct and 

traditional method. The definition of geographical convenience usually means the 

administrative area (Natural Environment Research Council, 1975; Beable and 

McKerchar, 1982), political or physiographic boundaries. However, for larger areas 

the variability of physical or physiographic site characteristics may be large; 

therefore, the identification of a homogeneous region simply depending on 

geographical parameters is rarely used in recent studies. Attempts to define a 

homogeneous region based on geographical parameters are usually accompanied 

with a goodness-of-fit test or hypothesis test to make sure the defined sub-regions are 

reasonable and unbiased for RFFA.  
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2.3.2 Clustering techniques 

Cluster analysis can be hierarchical and non-hierarchical (Downs & Barnard, 1992). 

It is a very developed and widely used technique of dividing a data set into groups or 

to combine several data sets into a group based on similar data vectors (site 

characteristics or at-site statistics) (Hosking and Wallis, 1997). This technique has 

been used in many hydrological studies worldwide. For example, Jingyi and Hall 

(2004) used Ward Linkage clustering, in addition to Fuzzy C-Means and Kohonen 

neural network to successfully delineate homogenous regions in the southeast of 

China. Hierarchical clustering analysis was used for regional estimation in Mexico 

(Quarda, T et al. 2008); and Bharath (2015) completed the delineation of 

homogeneous regions in India using wavelet-based global fuzzy cluster analysis. 

Burn (1989) identified homogeneous regions by combining cluster analysis and basin 

similarity measures. The hybrid-cluster and K-means algorithm was recommended 

by Rao & Srinivas (2006) for regionalization in Indiana, USA; and a fuzzy clustering 

approach was applied by Srinivas et al. (2008) to identify the regions of watersheds 

for flood frequency analysis. Noto and Loggia (2009) divided five regions using 

cluster analysis in Sicily, Italy; and Luis-Perez et al. (2011) applied two kinds of 

clustering techniques to delineate homogeneous regions in the Mexican-Mixteca 

region while Basu, B. and Srinivas, V. V. (2014) used kernel-based fuzzy clustering 

analysis to identify the homogeneous groups of watersheds in the U.S. Other related 

studies that used cluster analysis include Shu and Burn (2004), Wiltshire (1986), 
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Bhaskar and O’Connor (1989), Mosley (1981), Tasker (1982), Nathan and McMahon 

(1990), Richman and Lamb (1985), Kalkstein et al. (1987), Burn and Goel (2000), 

Lim and Lye (2003), and Fovell & Fovell (1993). 

 

2.3.3 Subjective partitioning  

This method of delineating homogeneous regions requires the sites to have similar 

site characteristics. Similar site variables include the amount of rainfall, drainage 

area, timing of floods, forested areas, etc. Gingras, Adamowski and Pilon (1994) 

used the time of year when the largest flood occurred as the parameter to delineate 

sub regions in Ontario and Quebec. De Coursey (1972) formed groups of basins with 

similar flood responses in Oklahoma. For RFFA, a heterogeneity test is usually 

carried out after using a subjective partitioning method. But as Hosking and Wallis 

(1997) mentioned, when the at-site statistics are used as the basis for subjective 

partitioning, the validity of the use of the heterogeneity measure may be affected in 

validating the regions.  

 

2.3.4 Objective partitioning 

This method is designed to divide sites into groups depending on whether their site 

characteristics exceed one or more threshold values. Mailhot et al. (2013) applied the 
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approach of Peak-Over-Threshold (POT) to estimate intense rainfall in southern 

Quebec. Pearson (1991b) used this procedure and successfully analyzed small basins’ 

grouping in New Zealand. Similar to subjective partitioning, it is recommended that 

heterogeneity tests be carried out for the delineated regions when using this method 

of partitioning (Hosking and Wallis, 1997).  

 

2.3.5 Other grouping methods  

Other alternative methods of defining homogeneous regions include the method of 

residuals, canonical correlation analysis, and region-of-influence (ROI) (Basu, 2014), 

among others. For example, White (1975) grouped basins based on the factor 

analysis of the site characteristics in Pennsylvania; and Burn (1988) applied principal 

components analysis to group gauged sites, depending on which subjectively rotated 

set of principal components a site’s annual maximum streamflow most closely 

resembled.  

 

2.4 Homogeneity test for proposed regions 

A homogeneous region is a fundamental requirement for quantile estimation. Once 

the regions or sub-regions are identified, a homogeneity test is needed to make sure 

that the delineated regions and subsequent analysis are appropriate and meaningful. 
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Multiple methods have been used for testing the degree of homogeneity of a region. 

Dalrymple (1960) proposed the first test that fitted the Gumbel distribution as the 

underlying distribution to every studied site. Chow (1964) tested the homogeneity by 

analyzing the sample coefficients of variation (Cv) and /or skewness (Cs). Lu (1991) 

used the L-moment ratios and normalized 10-year flood estimate to conduct a 

regional homogeneity test. Lu and Stedinger (1992) carried out a homogeneity test 

based on the sample variance and normalized 10-year flood quantile estimators.  

Fill and Stedinger (1995) compared the power of the Dalrymple test, normalized 

quantile test and a method of moment Cv test. Scholz and Stephen (1987) proposed 

the Anderson-Darling test (Anderson and Darling, 1954) for testing the homogeneity 

of samples. However, the most popular method is the L-moment ratios based 

heterogeneity test proposed by Hosking and Wallis (1993, 1997), which has been 

widely used in hydrological studies. For example, Gabriele and Chiaravalloti (2012) 

used this method to test the degree of homogeneity based on the rainfall sample data 

within regions. Abolverdi and Khalili (2010) tested the degree of homogeneity in 

southwestern Iran based on the regional rainfall annual maxima, among many other 

studies. The detailed formulation of this test will be discussed in Chapter 3.  

  

2.5 Selection of regional frequency distribution  

The appropriate selection of a regional flood distribution has a direct impact on the 
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quantile estimation at gauged and ungauged sites. A regional frequency distribution 

is fitted from a single site to other sites within the homogeneous region. As Hosking 

and Wallis (1997) mentioned that there may be more than one acceptable candidate 

regional distributions, and the best fitting distribution is the one with the ability to 

reflect the “true” distribution. Therefore, rather than identifying a “true” distribution, 

the aim is to determine a distribution which will provide the most approximate fit to 

the observed data and yield a more accurate quantile estimation for each single site.  

 

Sveinsson (2001) compared the quantile estimation based on the population index 

flood fitted by the GEV distribution using Hosking and Wallis’s (1997) index flood 

regional PWM procedure. The Log Pearson Type (Ⅲ) was used for peak flood 

discharge based on Bulletin 17 B in the U.S. (Lim and Voeller, 2009). Ashkar and 

Quarda (1996) discussed the use of the generalized Pareto distribution for flood 

frequency analysis. Griffis and Stedinger (2007) fitted LN3 distribution to the flood 

quantile estimation using the weighted Bulletin 17B procedure. Peel et al. (2001) 

compared multiple distributions based on two graphical different methods and found 

that using graphical methods with an L-moment ratio diagram can distort the choice 

of regional distribution of observed data. In a regional flood frequency analysis of 

the west Mediterranean region of Turkey, Saf (2009) found that Pearson type Ⅲ 

distribution fitted well to the Antalya and lower-west Mediterranean, and that 

Generalized Logistic distribution was most suitable for the upper-west Mediterranean. 

In a Canada-wide study, Yue and Wang (2004a, b) fitted the generalized extreme 
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value (GEV) for the Pacific and southern British Columbia mountains, the 

3-parameter lognormal distribution to the northwestern forest area, the Wakeby 

distribution to the Arctic tundra, the Pearson type Ⅲ to the Prairies, Northeastern 

forest, Great Lakes, and regions in St. Lawrence, Atlantic and Mackenzie. Atiem and 

Harmancioglu (2006) fitted five different distributions---generalized Pareto (GPAR), 

generalized extreme value, generalized logistic, generalized normal and PE3 to the 

annual maximum flood data for 14 sites in the Nile River tributaries based on the 

index-flood method.  

 

The application of the moment-ratio diagram introduced by McCuen (1985) provides 

a quick and basic approach to judge how candidate distributions fit the data. Hosking 

(1990) recommended using L-moments which is a linear combination of the ranked 

observed data and exhibits less bias than the traditional moments. The L-moment 

ratio diagram is a simple plot of τ4 against τ3 (L-kurtosis and L-skewness) for 

commonly used distributions, and the at-site and regional average L-moment ratios 

can be plotted to compare with the population values of commonly used distributions 

(Hosking and Wallis, 1997). Since the use of the L-moment ratio diagram is a quick 

and basic approach to select a regional distribution, the final determination must rely 

on further goodness-of-fit and robustness tests. Goodness-of-fit tests include 

quantile-quantile plots, Kolmogorov-Smirnov, chi-squared and the most popular 

L-moments based tests introduced by Hosking and Wallis (1997).  

The L-moment ratios based goodness-of-fit test is designed to test whether a given 



17 

 

regional distribution can provide a close fit to the data using a simulation process. 

Using parts of the approaches mentioned above, Malekinezhad (2011) determined 

that the generalized extreme value distribution was the best fit for flood estimation in 

the Namak-Lake basin. Atiem and Harmancioglu, (2006) found that the generalized 

logistic distribution provided the best fit for the data in the River Nile. Mkhandi and 

Kachroo (1997) found that the Pearson type Ⅲ was the most suitable distribution 

for regional flood in southern Africa. In another study, the Generalized Normal 

distribution was identified as the best fit for the flood data in the Mahi-Sabarmati 

Basin (Parida, et al. 1998). If there is more than one acceptable distribution, the 

robustness test (to be described in Chapter 3) is suggested when the underlying 

distribution is different from the selected one.  

 

2.6 Quantile flow estimation for both gauged and ungauged sties 

The index-flood procedure plays a key role in the estimation of flow quantiles. Once 

the studied region is found to be homogeneous and the regional frequency 

distribution has been determined, and it is assumed that the frequency distribution of 

all sites in the region is identical except for the site-special scaling factor known as 

the index flood. The index flood is usually the mean annual flood or the median 

annual flood. The flow quantiles can be estimated as the product of the index flood 

and regional growth curve or regional frequency distribution function. Early 
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applications of the index-flood procedure include Dalrymple (1960) and NERC 

(1975), Hosking et al. (1985), Jin and Stedinger (1989), Wallis and Wood (1985), 

Letttenmaier and Potter (1985). Cunnane (1988) and Pitlick (1994) demonstrated 

successful applications of the index-flood procedure for regional flood frequency 

analysis. Madsen et al. (1997) illustrated the advantages of the use of index-flood 

procedure in terms of both annual flood series and partial duration series. Portela and 

Dias (2005) described six homogeneous regions and used the data of annual 

maximum flood series of 120 Portuguese stream gauging stations in mainland 

Portugal using the index-flood method. Later, Hosking and Wallis (1997) 

successfully introduced the use of L-moments in the index-flood procedure and it 

was shown to be robust in the presence of any extreme values and outliers. Recent 

regional flood studies based on index-flood procedure include studies in the U.S.A. 

(Vogel et al. 1993; Vogel and Wilson, 1996), Malaysia (Lim and Lye, 2003), 

Australia (Pearson et al. 1991), Southern Africa (Mkhandi and Kachroo, 2000), New 

Zealand (Pearson, 1991, 1995; Madsen et al, 1997) and Turkey (Saf et al. 2009).  

 

Estimation of flow quantiles at gauged sites with short records can be completed 

directly from an estimate of the index flood using the annual maximum or 

peaks-over-threshold values. For the ungauged sites where their index floods are not 

available, the most commonly used method is a regression model. The index flood of 

gauged sites is regressed against their respective catchment or site characteristics 

(e.g., basin area, length, basin slope, drainage density, etc.) to obtain a model relating 
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the index flood to basic characteristics. For example, IH (1999) developed regression 

models relating median flow to five different site characteristics. Brath et al (2001) 

reviewed different indirect methods of estimating the index flood at gauged sites and 

concluded that the regression method had a better performance than other approaches. 

The regression method was used for regional flood frequency analysis in Sicily 

(Noto and Loggia, 2009) and regional flood estimation for ungauged basins in 

Sarawak, Malaysia (Lim and Lye, 2003), among many others.  

 

2.7 Verification and assessment of accuracy of quantile estimation  

Accuracy of assessment is always needed for model evaluation. The factors that have 

an influence on accuracy of assessment are: 1) the regions are not adequately 

homogeneous, 2) the regional frequency distribution is not robust, and 3) the 

availability of data is limited. Assessment accuracy based on traditional statistics 

involves constructing confidence intervals for estimated parameters or quantiles on 

the assumption that all the statistical assumptions of the models are satisfactory. 

However, in practice, it is found that in most cases it is difficult to ensure that the 

models used are the “correct” ones (Hosking and Wallis, 1997). Although it is 

difficult to establish common criteria for model evaluation, the evaluation is still 

carried out in some studies based on some specific statistics such as sensitivity 

analysis and model calibration. For example, Gupta et al. (1999) calibrated 
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hydrological models using the shuffled complex evolution automatic procedure;  

Motovilov, et al. (1999) verified hydrological model ECOMAG with the use of 

standard meteorological and hydrological data in the NOPEX southern region; Van 

Liew et al. (2007) used two sub watersheds in the Little Washita River Experimental 

Watershed (LWREW) to calibrate the parameters of the Soil and Water Assessment 

Tool (SWAT) and Hydrologic Simulation Program-Fortran (HSPF) models in 

southwestern Oklahoma. Other similar research includes Santhi et al. (2001) and 

Singh et al. (2004). However, nobody used the acceptable ranges of values for each 

statistic until a review of the values for various statistics used was provided by Borah 

and Bera (2004).  

 

A good model evaluation entails satisfying the following conditions: 1) it must be 

robust and acceptable to various constituents and climatic conditions, 2) be 

commonly used and recommended by various studies, and 3) be robust in model 

evaluation (Moriasi et al. 2007). Boyle et al. (2000) recommended the estimation of 

residual variance (the difference between the measure and simulated values) which 

can be estimated by the residual mean square or root mean square error (RMSE). 

Hosking and Wallis (1997) suggested the Monte Carlo simulation approach to assess 

the accuracy by calculating the RMSE when the region is not homogeneous enough, 

the regional frequency distribution is misspecified or the observed data are 

statistically dependent. Chapter 3 provides detailed information of the Monte Carlo 

simulation approach based on L-moments. The assessment of RMSE has been 
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widely applied in various studies; for example, Fill and Stedinger (1998) showed that 

the empirical Bayes estimator had the same or a better performance than the simpler 

normalized quantile regression estimator for sites with shorter records based on the 

results of RMSE; Saf (2009) developed a Monte Carlo simulation and evaluated the 

accuracy of the quantile estimates based on the relative root-mean-square error and 

relative bias; and Atiem and Harmancioglu (2006) evaluated the results of quantile 

estimation by assessing the RMSE% which is also based on the Monte Carlo 

simulation approach.  

 

Other methods for example, the slope and y-intercept of the best-fit regression line, 

can indicate how the simulated data match the observed data on the assumption that 

the observed and simulated data are linearly related (Moriasi et al. 2007). The use of 

Pearson’s correlation coefficient (r) and coefficient of determination (R
2
) to measure 

the degree of linear collinearity between simulated and observed data are also 

popular; The index of agreement (d) (Willmott, 1984) that measures the degree of 

model prediction error and varies between 0 and 1 and Nash-Sutcliffe efficiency 

(NSE) that is designed to compare the relative magnitude of the residual variance 

(“noise”) to the measured data variance (“information”) (Nash and Sutcliffe, 1970) 

are also widely used ; Persistence model efficiency (PME)-a normalized model that 

evaluates the relative magnitude of the residual variance (“noise”) to the variance of 

the errors obtained using a simple persistence model (Gupta et al, 1999) and the 

Prediction efficiency (Pe) (Santhi et al. 2001) that can determine how well the 
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simulated data can fit the observed data are also possible.  

 

2.8 RFFA for Newfoundland 

RFFA for the Island of Newfoundland was conducted in 1971, 1984, 1989, 1999, 

2002 and 2014 by the Government of Canada, Newfoundland or its consultants 

(Poulin, 1971; Government of Newfoundland, 1984; Government of Newfoundland, 

1990, Government of Newfoundland and Labrador, 1999; Pokhrel, 2002 & AMEC, 

2014). The study in 2014 was the first to include the Labrador. The first provincial 

flood frequency research was by Poulin (Government of Canada, 1971) used the 

classical index-flood approach. In that study, the Island of Newfoundland was 

analyzed as one region with 17 gauged stations. The index flood which was the mean 

flows was used to develop a function relating the mean (Q) and the drainage area 

(DA).  

 

In a subsequent study (Government of Newfoundland, 1984), the Island of 

Newfoundland was sub-divided into two regions, a North and a South region. Twenty 

one gauged stations were analyzed based on the regression on quantiles approach. 

Single-site flood frequency was performed for each station to obtain estimates of 

several key quantiles. Then these were regressed against site characteristics such as 

drainage area (DA) and latitude for the North region, and drainage area (DA), area 

controlled by lakes and swamps (ACLS) and slope in the South region. However, 
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Lye and Moore (1991) noted that the log-transformed model and the use of mean 

flow as the predictor value were not properly carried out which would lead to bias, 

and the variable latitude was not suitable for North region given that it is a very small 

area.  

 

A new regional flood frequency analysis conducted by the provincial government in 

1989 increased the number of gauged stations up to thirty-nine. This study divided 

the Island of Newfoundland into four regions (A-Avalon and Burin Peninsula; 

B-central region of the Island; C-Humber valley and northern peninsula; and D-the 

southwestern region of the island) taking into account the availability of data, the 

timing of regional floods and physiographic factors such as flood characteristics, 

amount of precipitation and results of regression analysis. The average record length 

was 21 years and the record was extended in some stations with short records. The 

drainage area (DA), lakes and swamps factor (LSF), drainage density and slope were 

included for the regression on quantiles.  

 

In an updated study by the Government in 1999, the four sub regions of 1989 were 

renamed. The new names are -northwest (NW), northeast (NE), southeast (SE) and 

southwest (SW) and refer to the previous C, B, A, and D regions proposed in 1989. 

The drainage area (DA) and lake attenuation factor (LAF) were found to be 

significant predictors and the LSF was a significant variable only in the SW region.  

Instead of the regression on quantiles approach, Pokhrel (2002) conducted a regional 
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flood frequency analysis of the Island of Newfoundland using annual peak flow until 

1998 based on the L-moments index-flood procedure suggested by Hosking (1990). 

The Island of Newfoundland was sub-divided based on two kinds of regionalization 

-four regions as used by the Government of Newfoundland in 1989 and 1999, and the 

Y and Z regions suggested by the Water Survey of Canada (WSC). The 

determination of homogenous regions, selection of regional frequency distribution 

and quantile estimation were all based on the L-moments based index-flood method. 

It was found that for sub region Y, only the drainage area (DA) and drainage density 

(DRD) were significant at α=5% in terms of estimating the index flood. For sub 

region Z, in addition to DA and DRD, the lakes and swamps factor (LSF) was 

significant as well. The study also showed that the L-moments based index-flood 

approach with the Y and Z regions was superior to that of the regression on quantile 

approach and use of four sub-regions. 

 

The latest provincial RFFA (AMEC, 2014) was conducted for both Newfoundland 

and Labrador. This study also used the regression on quantile approach, but with data 

up to 2012. Hence newly updated regression models were obtained. Seventy-eight 

gauged stations in Newfoundland and twelve gauged stations in Labrador were used 

in the study. Regression equations were obtained considering the Island of 

Newfoundland as a single homogeneous region and considering it as four sub 

hydrological homogeneous regions as proposed in 1999. Drainage area (DA) and 

lake attenuation factor (LAF) were significant for the NW, SE and NE sub regions, 



25 

 

whereas the lakes and swamps factor (LSF) and DA were shown to be significant for 

the SW region. Labrador was analyzed as a single homogeneous region and only DA 

was significant for developing regression equations. The study did not compare 

results to those obtained by Pokhrel (2002) nor were any robustness tests conducted.  
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CHAPTER 3 

METHODOLOGY  

3.1 General  

The index-flood method (IFM), a widely used regression method for regional 

frequency flood analysis, was first proposed by the U.S. Geological Survey 

(Dalrymple, 1960). Many successful applications show that the IFM has the ability to 

define a more reliable homogeneous region in which the variability of the at-site data 

at gauged sites objectively exists. The quantile estimation at each gauged site can be 

derived directly from the regional flood quantile function, even for the ungauged 

sites. Hence determining the flood quantiles within a defined homogeneous region is 

possible.  

 

The detailed modern procedures of the IFM suggested by Hosking (1990) and 

Hosking and Wallis (1997) will be introduced in this chapter. The L-moments, a 

modern and advanced mathematical statistics approach are involved to determine the 

homogenous regions, selection of the regional flood frequency distribution and 

quantile flows for both gauged sites and ungauged sites.  
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3.2 Regional flood frequency analysis  

The development of a regional flood frequency analysis (RFFA) has proved to be an 

effective method for estimating flood quantiles at ungauged sites or sites with 

insufficient streamflow data using the flood information at neighboring sites within a 

homogeneous region. Compared to the traditional at-site estimations, the regional 

data can minimize the standard error of interest. Regional regression models and the 

index-flood procedure are commonly used for RFFA in previous and recent flooding 

studies. The regression approach develops regression equations to relate at-site 

climate and physiographic characteristics to flow quantiles from each single site 

within a homogeneous region. However, the regional regression approach sometimes 

has a limited ability to provide reliable estimations when the numbers of gauged 

stations are insufficient. Uncertainties and bias are inevitable. The modern 

index-flood procedure however successfully avoids these disadvantages. Instead, the 

flood quantiles at gauged sites can be achieved based on relationship between the 

quantile function of the regional frequency distribution and index flood at each site. 

Even for the ungauged sites, the quantiles estimation can be easily achieved using 

estimated index flood. According to Hosking and Wallis (1997) the quantile 

estimates can be obtained from:  

 

Qi(F)=ui*q(F)    i=1, 2, 3…N                [3.1] 

 

where ui is the index flood at sites i in a homogenous region with N sites and q(F) is 
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the regional growth curve. The index flood at ungauged sites can be obtained by 

establishing a linear or nonlinear regression relationship between sites characteristics 

and the index flood at gauged sites within a homogeneous region. The application of 

the index-flood procedure follows an important assumption that all the sites in a 

defined region are distributed ideally except for a scale factor. Multiple recent studies 

show that index-flood approach can produce a more accurate and reliable quantile 

estimation than the regression on quantile approach (e.g. Pokhrel, 2002; Noto, 2009; 

Lim & Lye, 2003; Saf, 2009).  

 

3.3 L-moments  

L-moments are the linear combination of probability weighted moments (PWMs) 

which is widely used in fitting frequency distribution, estimating distribution 

parameters and hypothesis testing in flood frequency analysis. Greenwood et al. 

(1979) defined the PWMs as: 

 

βr=E{X [F(x)
r
]}                         [3.2] 

 

where F(x) is the cumulative distribution function for X. X(F) is the inverse CDF of 

X evaluated at the probability F. βr equals to the mean stream flow when r=0.  

 

Later, Hosking (1990) modified the “probability weighted moments” as: 
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βr=
1

n
 ∑ [n−r

j=1

(n−j
r )

(n−1
r )

] x(j)         r=0, 1, … ,               [3.3] 

 

where x(j) is the ordered stream flow; r is the probability weighted moments; n is 

the sample size, and j is the order of the observed steam flow.  

 

The L-moments are generally defined as Eq. [3.4]. The first four L-moments are the 

mean of distribution, measure of scale, measures of skewness and kurtosis 

respectively, which are defined in Eq. [3.5].  

 

λr+1=∑ (−1)r
k=0  r-k(r

k
)(r+k

k
)βr        r=0, 1, … ,              [3.4] 

 

λ1=β0   λ2=2β1-β0   λ3=6β2-6β1+β0   λ4=20β3-30β2+12β1-β0       [3.5]  

 

Additionally, the dimensionless L-moments called L-moments ratios including L-CV, 

L-skewness and L-kurtosis shown in Eq. [3.6] also play key roles in the estimations 

of parameters of candidate distributions and the determination of the regional flood 

frequency distribution. In particular, the L-moment ratio diagram, plot of sample 

L-moment ratios, average L-moment ratios and theoretical L-moment ratios curves 

of candidate distributions on a single graph provides an essential visual tool to 

distinguish among the candidate distributions.  

 

L-CV=λ2/λ1    L-skewness(τ3)=λ3/λ2   L-kurtosis(τ4)=λ4/λ2           [3.6] 

 

The applications of L-moments show great advantages over conventional moments 
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(C-Moments). Hosking (1990) concluded that L-moments and L-moment ratios are 

nearly unbiased even for highly skewed observations. They have less sensitivity to 

the sample size and extreme observations and are more robust to outliers. The 

L-moment ratio diagram had been shown to be a useful tool to distinguish among 

candidate distributions by plotting sample L-moment ratios (L-skewness and 

L-kurtosis) and comparing them with theoretical L-moment ratios curves of 

candidate distributions. The theoretical L-moment ratios curves of commonly used 

candidate distributions on the L-moment ratio diagram are shown in Figure 3.1. 

GPA- generalized Pareto; GEV- generalized extreme-value; GLO- generalized 

logistic; LN3- lognormal; OLB- overall lower bound of τ4 as a function of τ3; 

and PE3- Pearson typeⅢ. 

 

 

 

 

Figure 3.1 L-moment ratio diagram (after Hosking and Wallis, 1997) 
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Compared to PWMs, the applications of L-moments are more convenient and 

simpler for measuring the shape and scale of the observations. As noted in the 

introductory chapter, the applications of L-moments for the index-flood procedure 

are represented by the following steps (Hosking and Wallis, 1997): 

 

1) Screening the data and use of discordancy measure; 

 

2) Plotting sample L-moment ratios on Figure 3.1 to select a tentative regional 

frequency distribution; 

 

3) Utilizing the regional homogeneity test based on Monte Carlo simulation to test 

the homogeneity of the region, and  

 

4) Applying the goodness-of-fit test and robustness tests to determine the final 

regional flood frequency distribution.  

 

3.4 Procedures for the index-flood based RFFA 

Hosking and Wallis (1997) suggested that the application of index-flood based RFFA 

should follow the key assumption that all of the observations within a defined 

homogenous region are ideally distributed except for a scale factor (index flood). The 

procedure of index flood estimation uses the following steps: 
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1) Screening the data and discordancy measure.  

 

2) Definition of a homogeneous region. 

 

3) Selection of a regional frequency distribution, and 

 

4) Quantile flow estimation for both gauged and ungauged sites.  

 

3.4.1 Screening the data and discordancy measure 

The data used for the RFFA is required to represent the true quantity being measured, 

and all of the observations should follow the same distribution. Basically, the 

purpose of screening the data is to satisfy three requirements: 1) the data collected 

for analysis are correct, 2) there are no extreme values or outliers, and 3) the data did 

not change over time. Hosking and Wallis (1993) first proposed the L-moments 

based discordancy measure (Eq. [3.7]) to identify unusual sites with different 

L-moment ratios from other sites within a region. The discordancy measure can be 

calculated using the Matlab program code (Appendix A-1).  

 

        Di= 
1

3
N(ui − u̅)T A−1(ui − u̅)                         [3.7]      

 

where Di is the discordancy measure, ui =[t
(i)

 t3
(i)

 t4
(i)

]
T 

is a vector of t, t3 and t4 for site 

i in a region with N sites and u̅ is the unweighted group average which can be 

defined as: 
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u̅ =N−1 ∑ ui
N
i=1                                  [3.8] 

 

And A is the covariance matrix ofui, given by  

 

A=∑ (ui − u̅)N
i=1 (ui − u̅)T                          [3.9] 

 

Applying this measure, the unusual sites with inconsistent L-moments ratios due to 

incorrect records or gross error can be screened out; then for the unusual sites, they 

might be removed or be included in another region based on the further investigation. 

Hosking and Wallis (1997) stated that the conclusion reached based on the 

discordancy measure largely depends on the number of sites in a region. Generally, 

the algebraic bound of Di should satisfy: 

 

Di ≤ (N-1)/3                                      [3.10] 

 

The sites can be regarded as discordant from the remaining sites if the Di value is 

larger than the critical value shown in Table 3.1. They also suggested that the Di ≥3 is 

only suitable for regions with 11 or more sites.  
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Table 3.1 Critical values of discordancy measure with N sites (Hosking and Wallis, 

1997)  

Number of sites in a 

region 
Critical value 

Number of sites in a 

region 
Critical value 

5 1.333 6 1.648 

7 1.917 8 2.140 

9 2.329 10 2.491 

11 2.632 12 2.757 

13 2.869 14 2.971 

>15 3  

 

3.4.2 Delineation of homogeneous regions 

The delineation of a homogeneous region is a prime step for regional flood frequency 

analysis. To determine whether a proposed region is homogeneous or not, Hosking 

and Wallis (1993) suggested a heterogeneity test which aims to assess the degree of 

homogeneity by comparing the between-site variations in sample L-moment ratios 

for the sites in a group with what the expected value would be in a definitely 

homogeneous region. The between-site variation of L-moment ratios is measured by 

calculating the standard deviation (Eq. [3.12]) of sample L-CVs.  

 

The principle of heterogeneity test (Hosking and Wallis, 1997) can be described as: 

assume a region has N sites. Each site has the record length of ni. t
(i)

, t3
(i) 

and t4
(i)

 

represent the sample L-moment ratios respectively, of which the weighted regional 

average L-moment ratios are defined as:  
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t
R
=∑ nN

i=1 i*t
(i)

/∑ nN
i=1 i                              [3.11] 

t3
R
=∑ nN

i=1 i*t3
(i)

/∑ nN
i=1 i 

t4
R
=∑ nN

i=1 i*t4
(i)

/∑ nN
i=1 i 

 

The standard deviation of the at-site sample L-CVs is given by: 

 

V= {∑ nN
i=1 i (t

(i)
-t

R
)
2
/∑ nN

i=1 i}
1/2                   

[3.12]
 

 

To calculate what would be expected in a homogeneous region, Hosking and Wallis 

(1997) recommended the use of the Monte Carlo simulation which is used to 

generate a large number of regions (Nsim=500). In the simulated regions each site is 

required to have the same record length as the sample sites. Then fit the four 

parameters kappa distribution to the simulated sites. Matlab program code (Appendix 

A-2) is employed to carry out the simulation process.  

 

Thus, the heterogeneity measure H can be calculated as: 

 

H= 
(V−μv)

σv
                                 [3.13] 

 

where µv and σv are the mean and standard deviation of simulated sites.  

 

To determine whether a region is homogeneous, Hosking and Wallis (1997) provided 

the critical value of H which indicated that the region can be declared as “acceptably 

homogeneous” if H<1; “possibly heterogeneous” if 1≤H<2, and “definitely 

heterogeneous” if H≥2.  
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3.4.3 Selection of regional frequency distribution 

After the homogeneous region is determined, the next step of the index-flood method 

is to select a regional frequency distribution based on the regional data. As proposed 

by Hosking and Wallis (1997) the delineation of regional frequency distribution can 

be completed with three steps: an L-moment ratio diagram, a goodness-of-fit test and 

a robustness test.  

 

3.4.3.1 L-moment ratio diagram  

The L-moment ratio diagram has the ability to provide an elementary visual 

judgement of a regional frequency distribution by plotting the sample L-moment 

ratios and average sample L-moment ratios (τ3 and τ4) or record length weighted 

average L-moment ratios (τ
R

3 and τ
R

4) as a scatterplot with theoretical curves of 

several candidate distributions in a L-skewness-L-kurtosis space. The selected 

distribution should give the closest approximation to the regional data. Compared to 

the two-parameter distribution with location and scale parameters, the 

three-parameter distribution curve is good at providing a more convenient and 

intuitive expression. The construction of a theoretical L-moments relationship for the 

common distributions is based on the polynomial approximations proposed by 

Hosking and Wallis (1991a), and can be summarized as: 
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τ4=∑ A8
k=0 kτ3

k
                                             [3.14] 

 

where Ak are the coefficients of polynomial approximations for several assumed 

distributions. Table 3.2 lists the Ak for key distributions:  

 

Table 3.2 Polynomial approximations of τ4 as a function of τ3 (Hosking and Wallis, 

1997) 

 GPA GEV GLO LN3 PE3 OLB 

A0 0 0.10701 0.16667 0.12282 0.12240 -0.25 

A1 0.20196 0.11090     

A2 0.95924 0.84838 0.83333 0.77518 0.30115 1.25 

A3 -0.20096 -0.06669     

A4 0.04061 0.00567  0.12279 0.95812  

A5  -0.04208     

A6  0.03763  -0.13638 -0.57488  

A7       

A8    0.11368 0.19383  

 

3.4.3.2 Goodness-of-fit test 

After determining the regional frequency distribution based on the L-moment ratio 

diagram, the next step is to use the goodness-of-fit measure to test whether a selected 

distribution give the closest fit to the observed data. This measure also can identify 

the most suitable distribution when the acceptable regional distribution is more than 

one.  

The goodness-of-fit test based on the L-moments (Hosking and Wallis, 1997) is 
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employed to measure how well the simulated L-moment ratios (τ3 and τ4) of a fitted 

distribution match the samples’ average L-moment ratios.  

The goodness-of-fit measure is then defined as: 

 

Z
DIST

= (τ4
DIST

-τ4
R
 +B4)/σ4                               [3.15] 

 

where τ4
DIST 

is the average L-kurtosis obtained from simulation of a fitted 

distribution; τ4
R 

is the average L-kurtosis calculated from observed data in a given 

region; B4 is the bias of τ4
R
 and σ4 is the standard deviation of L-kurtosis from 

simulation, and the B4 and σ4 are given by: 

 

B4=Nsim
−1  ∑ (Nsim

m=1 t4
m-t4

R)                       [3.16] 

 

σ4= [(Nsim-1)
-1

{∑ (Nsim
m=1 t4

m-t4
R)

2
-NsimB4

2}]
1/2         

[3.17]
 

 

As suggested by Hosking and Wallis (1997), the acceptable value of ∣Z
DIST∣for 

any candidate distributions should be less than 1.64 and the selected distribution is 

required to have the ∣Z
DIST∣closer to zero.  

 

To carry out the goodness-of-fit test, Hosking and Wallis (1997) suggested using the 

L-moments based Monte Carlo simulation. To simulate a large number of regions 

(Nsim=500) fitted by the kappa distribution. Each simulated region is designed to 

have the same number of sites. Each simulated site has the same record length as the 
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sample site in the real world. The simulated regions are required to have the same 

L-moment ratios as the regional average ones. The simulation process is summarized 

as: 

 

1) Assume there is a homogeneous region with N sites and each site has a record 

length of ni. The sample L-moment ratios are defined as t
(i)

, t3
(i) 

and t4
(i)

, and the 

regional weighted average L-moment ratios are t
R
, t3

R
 and t4

R
.  

 

2) Simulate a large number of regions with the same number of sites and record 

length as the sample data. Fit the four parameters kappa distribution to the simulated 

data in the simulated regions.  

 

3) Calculate the basis B4 of t4
R
 and standard deviation of L-kurtosis from 

simulation.  

 

The Matlab program code (Appendix A-3) is employed to complete this simulation.  

 

3.4.3.3 Robustness test  

Hosking and Wallis (1997) mentioned that even though the best fitted regional 

frequency distribution is determined, there is no guarantee that the chosen 

distribution can match to future data. A robust distribution should have the ability to 
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yield accurate quantile estimates when mis-specification of the distribution or the 

region is not homogeneous, even when the true at-site frequency distribution deviates 

from the chosen one.  

 

The robustness test for the candidate distribution is achieved by comparing the bias 

and root mean square error (RMSE) of the estimated extreme quantiles when 1) the 

chosen distribution is the same as the underlying distribution, 2) the chosen 

distribution differs from the underlying distribution.  

 

The bias, B and the RMSE are defined as: 

 

B=E(QTest-QT)                            [3.18] 

 

RMSE=[E(QTest-QT)
2
]

1/2                              
[3.19]

 

 

where QTest is the regional estimated quantiles by fitting with candidate distribution 

and QT is the true at-site quantiles. In practice, QT is unknown and it can only be 

obtained by fitting the underlying distribution to the observed data.  

 

Following Hosking and Wallis (1997), Pokhrel and Lye (2002) summarized the 

simulation procedures of calculating the B and the RMSE in the following steps: 

 

1) Assume there is a region having the same number of sites and record length as 

observed sites in a given homogeneous region;  
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2) Fit the underlying distribution to the observed data and calculate the at-site 

parameters of the underlying distribution by using the sample L-moments; and  

 

3) Calculate the at-site quantiles based on the at-site frequency distribution.  

 

Generate 1000 simulated regions.  

 

For each region:  

 

1) Generate a series of sample data having the same length of records as the 

observed data and fit them with underlying distribution; 

 

2) Calculate at-site and regional L-moment ratios for all of the sites in the 

simulated region; 

 

3) Fit the candidate distribution to the simulated data. Then describe the regional 

growth curve and calculate the at-site quantiles fitted by candidate distribution; 

  

4) Calculate the average relative bias and RMSE of the estimated at-site quantiles 

of all of the sites in the simulated region; and 

 

5) Calculate the regional average relative bias (ARB), average absolute relative 

bias (AARB) and relative root mean square error (RMSE) of the quantiles of all of 



42 

 

the sites in the region.  

 

The Matlab program code (Appendix A-4) is employed to complete this calculation. 

 

3.4.4 Quantile estimation 

Hosking and Wallis (1997) provided the definition of the quantile estimates based on 

the regional L-moment algorithm: Suppose that a homogeneous region has N sites. 

Each site i has the record length of ni and observed data Qij, j=1,…, nj. All of the sites 

in the homogeneous region are ideally distributed except for a site-specific scaling 

factor (index flood). Then, the estimates of quantile with non-exceedance probability 

F is  

 

Qi(F)=µi q(F)     i=1:N                 [3.20] 

 

where Qi(F) is the flood quantile with T return years. µi is the site-dependent scale 

factor known as the index flood and q(F) is the regional quantile of non-exceedance 

probability F which can be obtained from regional growth curve.  

 

The construction of the regional growth curve provides the values of the regional 

quantile of non-exceedance probability F for different return periods. Hosking and 

Wallis (1997) summarized the procedures in the following steps: 

 

1) Calculate the sample L-moments and L-moment ratios of each site in a given 
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homogeneous region; 

 

2) Calculate the regional record length weighted average L-moment ratios; 

 

3) Obtain the parameters of regional frequency distribution using the formula 

provided by Hosking and Wallis (1997) with the relationship with the weighted 

average L-moments; and  

 

4) Plot the regional frequency distribution function with the Gumbel variate of 

non-exceedance probability (-log (-log (F)), where F represents different return 

periods.  

 

The construction of regional growth curve can easily be carried out with the use of 

the Matlab program code (Appendix A-5).  

 

3.4.5 Index flood estimation at ungauged sites 

To estimate the quantile flow at ungauged sites, the index flood is required. However, 

in reality, it is impossible to obtain the index flood for ungauged sites, or it is not 

available to be estimated directly using the index flood at gauged sites. Therefore, 

under these circumstances the common approach used is to establish a linear or 

nonlinear regression model to relate the physiographic site characteristics to the 

index flood at gauged sites within a homogeneous region. In this thesis, the 
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development of a nonlinear regression model is based on the least-square approach 

which is defined as: 

 

Q̅ = α0A1
α1A2

α2…...An
αn+ε0                          [3.21] 

 

where Q̅ is the annual peak flow of each site; A1 is the site characteristics; α0, α1 are 

the model parameters; and ε0 is the error.  

 

3.4.6 Assessment of estimation accuracy  

The bias and error due to the uncertainties or other factors in hydrology studies are 

impossible to avoid. In this thesis, the assessment of accuracy is carried out by 

plotting the at-site and estimated regional quantiles to see how well the regional 

quantiles model match observed data. The procedures are summarized as follows: 

 

1) Select a number of gauged sites which are not used for the RFFA due to the short 

record length within a given homogeneous region;  

 

2) Calculate the L-moments and L-moment ratios of each site;  

 

3) Calculate the at-site parameters of regional frequency distribution using sample 

L-moment ratios and obtain the at-site quantiles at each site;  
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4) Obtain quantile estimates at each site using regional quantile estimates model; 

and  

5) Draw a straight line with y=x and plot the at-site quantiles and regional quantiles 

respectively to see how well the regional quantile model match the observed data.  

 

In the next chapter, the methodology described in this chapter will be applied to the 

flood data from Labrador and Newfoundland.  
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CHAPTER 4 

DATA ANALYSIS AND RESULTS FOR LABRADOR  

4.1 General  

Labrador is on the mainland in the northeastern part of Canada with an area of 

294,330 square kilometers. The only regional flood frequency analysis (RFFA) for 

Labrador was competed by AMEC (AMEC Environment & Infrastructure) in 2014 

using the regression on quantile approach authorized by the Government of 

Newfoundland and Labrador. Although there has been only one documented flood in 

Labrador, accurate RFFA will become more significant in the face of changing 

climate in the future (Flood Risk and Vulnerability Analysis Project, 2012). 

 

The RFFA based on the regression on quantile approach conducted by AMEC (2014) 

can be described as follows: 

 

1) Twelve gauged sites were selected with a record length of at least 10 years. 

Sample flood data were obtained from the HYDAT database updated in April, 2014 

with data up to 2012 from the Water Survey of Canada (WSC). 

 

2) Labrador was treated as a single hydrologically homogeneous region. 

 

3) A three parameter lognormal distribution (LN3) was fitted to each of the 12 sites. 
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Flood quantile regression equations relating site characteristics to selected flood 

quantiles for single stations and the entire region were developed respectively.  

 

4) One parameter-Drainage area (DA) and two parameters-Drainage area (DA) and 

Lake Attenuation Factor (LAF) were used to develop regression models and to 

estimate selected flood quantiles at ungauged sites respectively.  

 

The regression equations developed by AMEC (2014) are shown in Table 4.1.  

 

Table 4.1 Regression equations and goodness-of-fit developed by AMEC (2014) for 

Labrador 

One Parameter 

Equations 
SMR SEE Two Parameters Equations SMR SEE 

Q2=0.495*DA
0.837 

0.968 0.120 Q2=0.581*DA
0.845

*LAF
-0.053 

0.969 0.125 

Q5=0.617*DA
0.838 

0.965 0.127 Q5=0.685*DA
0.843

*LAF
-0.034 

0.965 0.133 

Q10=0.692*DA
0.839 

0.962 0.131 Q10=0.746*DA
0.842

*LAF
-0.025 

0.962 0.138 

Q20=0.761*DA
0.839 

0.960 0.135 Q20=0.800*DA
0.842

*LAF
-0.017 

0.960 0.142 

Q50=0.847*DA
0.840 

0.958 0.139 Q50=0.866*DA
0.841

*LAF
-0.008 

0.958 0.147 

Q100=0.909*DA
0.840 

0.956 0.142 Q100=0.914*DA
0.840

*LAF
-0.002 

0.956 0.150 

Q200=0.970*DA
0.840

 0.954 0.145 Q200=0.959*DA
0.840

*LAF
0.04 

0.954 0.153 

SMR: Regression correlation coefficient (R
2
) 

SEE: Standard error of the estimate  

Qn; Flood quantile with T return years 

 

Hosking and Wallis (1997) indicated that variability will be effectively reduced by 

using a set of sample or other related samples drawn from similar probability 
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distribution rather than using a single sample. Quantile estimates become more 

accurate by using regional data.  

 

In this thesis, the scope of work in Labrador is summarized as the follows: 

 

1) Choose gauged stations with the record length equal to or more than 15 years. 

Collect the annual peak flow at each site using the HYDAT database with the flood 

data available until 2013 from the Water Survey of Canada (WSC);  

 

2) Carry out the discordancy measure (Di) and heterogeneity test (H) to ensure that 

the region is homogeneous for quantile estimation; 

 

3) Determine the regional frequency distribution and develop the regional quantile 

function based on the best fitted regional frequency distribution; 

 

4) Estimate index flood at ungauged sites by developing a nonlinear regression 

relationship between index flood and site characteristics at gauged sites in a given 

homogeneous region; and 

 

5) Assess the accuracy of the estimations and compare the results to those based on 

AMEC (2014) equations.  
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4.2 Screening the data and discordancy measure  

Labrador was documented as having 32 gauged stations. Because 15 years of record 

is the basic requirement in this study, only 10 stations were finally selected. The 

annual peak flow at each gauged site is collected from the HYDAT CDROM 

database of the Water Survey of Canada (WSC) with record available from 1954 to 

2013. Figure 4.1 illustrates the locations of each station on the map.  

 

The discordancy measure (Di) proposed by Hosking and Wallis (1993) aims to 

screen out the unusual sites from other sites in a group by comparing their L-moment 

ratios. The definition of the discordancy measure is given in Chapter 3.  

 

Table 4.2 summarizes the statistics of each site including the station number, station 

name, drainage area, length of records, L-moment ratios and results of the 

discordancy measure.  

 

It is observed that site 03OC003 has a higher Di value than the critical value 

(Di=2.491). Figure 4.2 shows the boxplot of the flood data of site 03OC003. It can be 

seen that despite the data being positive skewed, neither outliers nor unusual data are 

detected. Therefore, the higher Di may be due to its higher L-sk and L-ku and shorter 

length of record. The positions of sample L-moment ratios in the region are scattered 

as expected (Figure 4.3), and the results of the discordancy measure for other sites 

are shown to be satisfactory.  



50 

 

 

 

 

Figure 4.1 Location of studied sites in Labrador (Cited and modified based on the 

report conducted by AMEC, 2014)  
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Figure 4.2 Boxplot of site 03OC003 
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Table 4.2 Summary statistics, L-moment ratios and discordancy measure (Di) for 10 sites in Labrador 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage Area 

(km
3
) 

Range of 

Year 
L-CV L-SK L-Ku Di 

02XA003 
Little Mecatine River above 

Lac Fourmont 
28 653.8 4540 1979-2013 0.148 0.097 0.164 0.148 

03NF001 
Ugjoktok River below Harp 

Lake 
23 1151.0 7570 1979-2013 0.186 0.165 0.018 1.736 

03OC003 
Atiktonak River above 

Panchia Lake 
15 1111.1 15100 1999-2013 0.099 0.264 0.157 2.807* 

03OE003 
Minipi River below Minipi 

Lake 
28 234.0 2330 1979-2013 0.154 0.132 0.135 0.175 

03PB002 
Naskaupi River below 

Naskaupi Lake 
25 467.6 4480 1978-2011 0.141 -0.057 -0.002 1.898 

03QC001 Eagle River above Falls 38 1834.0 10900 1967-2013 0.172 0.112 0.065 0.523 

03QC002 
Alexis River near Port Hope 

Simon 
32 524.6 2310 1978-2013 0.154 0.024 0.137 0.286 

03OB002 
Churchill River at Flour 

Lake 
16 2558 33900 1955-1970 0.136 0.064 0.279 1.622 

03OE010 
Big Pond Brook below Big 

Pond 
20 15.04 71.4 1994-2013 0.150 0.050 0.153 0.194 

03OE001 
Churchill River above upper 

Muskrat Falls 
54 4560 92500 1954-2012 0.135 0.019 0.068 0.612 

* The Di of this site is higher than the critical value of 2.491 
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Figure 4.3 L-moment ratios in Labrador 

 

 

After removing site 03OC003, the rest of sites within the region are shown to have 

lower Di value (Table 4.3) than the critical value (2.329). However, whether site 
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03OC003 should be kept or removed needs a further heterogeneity test.  

 

Table 4.3 Results of discordancy measure after removing site 03OC003 

Station 

Number 
Di Station Number Di 

Station 

Number 
Di 

02XA003 0.3526 03QC001 0.5086 03OB002 1.4265 

03NF001 1.5355 03QC002 1.0461 03OE010 0.2413 

03OE003 0.8360 03PB002 1.7367 03OE001 1.3166 

 

 

4.3 Delineation of homogeneous regions  

As discussed in Chapter 3, the completion of the index flood procedure must be 

premised on the basis that the supposed region is homogeneous except for the at-site 

scale factor. Hosking and Wallis (1993) proposed that the degree of heterogeneity can 

be derived by comparing the between-site variations in sample L-moment ratios for 

the sites in a group with the expected value that would be in a definitely homogeneous 

region.  

 

To determine the degree of heterogeneity of a region, Hosking and Wallis (1993) 

recommended Monte Carlo simulation based on the L-moments described in Chapter 

3.  

 

Table 4.4 shows the regional weighted average L-moment ratios, kappa parameters, 



55 

 

mean and standard deviation of simulated V and the result of the heterogeneity 

measure for 10 gauged sites in Labrador.   

 

Table 4.4 Weighted L-moment ratios, kappa parameters, μv, σv and H value of 

Labrador 

t
 R

 t3
R
 t 4

R
 V ξ 

0.14943 0.07448 0.10457 0.01936 0.86602 

α k h μv σv 

0.27823 0.22190 0.16578 0.0141 0.0108 

 

                         
 H=0.48   

 

 

Hosking and Wallis (1997) suggested that the region can be regarded as “acceptably 

homogeneous” if H<1, “possibly heterogeneous” if 1≤H≤2, and “definitely 

heterogeneous” if H>2. From Table 4.5 it can be observed that the degree of 

homogeneity has improved by removing site 03OC003, but in order to avoid to fit an 

outdated frequency distribution, therefore, it is decided to keep it for quantile 

estimation despite its discordancy measure being unsatisfactory. Thus, it can be 

concluded that the Labrador is homogenous and the next step of index flood 

estimation can proceed.  
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Table 4.5 Weighted L-moment ratios, kappa parameters, μv, σv and H value in the 

absence of site 03OC003 

t
 R

 t3
R
 t 4

R
 V ξ 

0.15227 0.06369 0.10157 0.01567 0.86464 

α k h μv σv 

0.28853 0.24371 0.16885 0.0149 0.011 

 

                         
 H=0.07   

4.4 Selection of regional frequency distribution  

4.4.1 L-moment ratio diagram  

The L-moment ratio diagram is usually used as the first visual inspection tool for 

selecting a regional frequency distribution from sample data of a region. As discussed 

in Section 3.4.3.1, sample L-moment ratios, regional average L-moment ratios and 

theoretical L-moment ratios curves of candidate distributions are plotted in an L-sk 

and L-ku space. The theoretical plotting positions of the candidate distributions are 

described based on the polynomial approximations (Hosking and Wallis, 1997). 

Figure 4.4 shows the L-moment ratio diagram in Labrador.  

 

It can be observed that the regional average L-moment ratios τ3-τ4 (the black square) 

is located on the GEV, LN3 and PE3 distributions. And most of the sample L-moment 

ratios follow along one of these three distributions. Therefore, it can be initially 

judged that a regional frequency distribution might be generated from those three 

distributions.  
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Figure 4.4 L-moment ratio diagram in Labrador 
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can be calculated using the Monte Carlo simulation method. Table 4.6 present the 

standard deviation of L-kurtosis for each candidate distribution and the results of their 

goodness-of-fit measure.  
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Table 4.6 Results of goodness-of-fit measure of five candidate distributions 

 GLO GEV LN3 PE3 GPA 

τ4
DIST

 0.0200 0.119949 0.127124 0.12410 0.020281 

Z
DIST

 3.349968 0.787433 1.145547 0.994625 -4.186857 

 

 

Hosking and Wallis (1997) declared that the reasonably critical value of | Z
DIST 

| 

should be less than 1.64. An adequate fit can be declared if | Z
DIST 

| is close to zero. 

Therefore, based on this standard, it can be said that the distributions of GEV, LN3 

and PE3 are satisfactory because of their | Z
DIST 

| being less than 1.64.  

 

4.4.3 Robustness test  

The purpose of robustness test is to select and verify the most robust regional 

frequency distribution when there is more than one distribution that provides an 

adequate fit. From the results of goodness-of-fit measure, the most robust regional 

frequency distribution will be generated among the GEV, LN3 and PE3 distribution. 

However, for the PE3 distribution, the distribution function cannot be defined and 

also it is inconvenient to be used by practitioners, hence only the LN3 distribution 

and GEV distribution will be used in the robustness test. A robustness test is carried 

out to compare the regional average relative bias (ARB) and relative root mean 

square error (RMSE) of the estimated extreme quantiles when 1) the chosen 

distribution is LN3 but the underlying distribution is GEV; 2) when the chosen 
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distribution is GEV but the underlying distribution LN3; 3) when the chosen 

distribution is the same as the underlying distribution. Table 4.7 shows the results of 

regional average relative bias (ARB), average absolute relative bias (AARB) and 

relative root mean square error (RMSE) of the estimated extreme quantiles based on 

the cases mentioned above.  

 

From the results shown in Table 4.7 it can be observed that when the chosen and 

underlying distributions are GEV, the values of ARB, AARB and RMSE are 

significantly lower than those when the chosen or underlying distribution is LN3. The 

differences of ARB, AARB and RMSE of estimated quantiles for 100-year quantiles 

are lower in LN3-GEV than in the case of GEV-LN3. Therefore, it can be concluded 

that the GEV distribution is the most robust regional frequency distribution for 

Labrador.  
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Table 4.7 Results of robustness test in Labrador  

 

Quantiles Difference 

for 

100-year 

event 

0.9 0.99 0.999 0.9 0.99 0.999 

GEV-GEV GEV-LN3 

ARB -2.86 -5.91 -8.34 16.62 71.27 8.59 77.18 

AARB 4.03 8.07 13.04 16.62 71.27 80.37 63.20 

RMSE 0.30 0.76 1.72 2.20 109.24 85.63 108.48 

 LN3-LN3 LN3-GEV  

ARB 17.80 75.73 13.30 2.01 2.08 3.85  -73.65 

AARB 17.80 75.73 87.08 3.57 7.61 14.37 -68.12 

RMSE 2.41 116.76 93.59 0.28 0.65 1.69 -116.11 

ARB: Average relative bias  

AARB: Average absolute relative bias  

RMSE: Relative root mean square error  

 

 

4.5 Quantile Estimation  

After the regional frequency distribution is determined, the flow quantiles at each site 

with T return periods within a homogeneous region can be estimated based on the 

equation [3.20] proposed by Hosking and Wallis (1997). It is repeated here for 

continuity as Eq. [4.1].  

 

Qi (F)=µi q(F)     i=1:N                        [4.1]  

 

where Qi(F) is the quantile function of fitted distribution at site i; µi is the 

site-dependent scale factor; and q(F) is the regional quantile of non-exceedance 

probability F which can be obtained from regional growth curve.  
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4.5.1 Regional growth curve  

The regional growth curve, or the regional frequency distribution function for 

Labrador is described by the quantile function of the GEV distribution (Eq. [4.2]) 

based on the L-moments provided by Hosking and Wallis (1997).  

 

ξ+α{1-(-logF)k}/k,  k≠0 

q(F)=x(F)=QT/Q mean=                                    [4.2] 

    ξ- αlog(-logF),      k=0 

 

where QT is the maximum flow quantile and Qmean is the at-site mean peak discharge; 

here, the F is replaced by 1/T. ξ, α and k are the parameters of GEV distribution.  

 

To describe the regional growth curve and confidence limits, Hosking and Wallis 

(1997) recommended a Monte Carlo simulation which can be carried out with Matlab 

program code (Appendix A-5) based on the following steps: 

 

1) Calculate sample L-moment ratios and regional L-moment ratios respectively.  

 

2) Compute the at-site and regional parameters of GEV distribution using the at-site 

and regional L-moment ratios.  

 

3) Simulate a large number of realizations (Nsim=1000). Each simulated region is 

required to have the same number of sites. The length of record at each site is required 
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to be the same as the observed sites. Then plot the regional growth curve with the 

relationship of q(F) and Gumbel variate of non-exceedance probability (-log (-log (F)), 

and  

 

4) Obtain the quantile estimation from Eq. [4.1].  

 

The regional parameters of the GEV distribution and regional GEV quantile function 

are shown in Table 4.8. Figure 4.5 describes the regional growth curve for Labrador 

with 90% confidence intervals.  

 

Table 4.8 Regional GEV parameters and GEV quantile function in Labrador 

ξ (location) α (scale) k (shape) 

0.8977 0.2229 0.1342 

GEV Quantile Function 

x(F)=0.8977+0.2229{1-(-logF)*0.1342}/0.1342 
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Figure 4.5 Regional GEV growth curve for Labrador with 90% confidence intervals 

 

 

Figure 4.6 shows the relationship between the at-site QT/Qmean and regional growth 

factor q(F) for T return years. The empirical distribution of the at-site data can be 

obtained from the Cunnane plotting position formula pi(j)=(j-0.4)/(ni+0.2) (Cunnane, 

1978). The observed peak flow is arranged in an ascending order starting from 1 to the 

number of records—n at each site. From Figure 4.6 it can be seen that there is a good 

agreement between the estimated regional quantile function and empirical at-site value. 

Table 4.9 list the values of q(F) for different return period (2, 10, 20, 50, 100 and 200) 

with 90% confidence intervals in Labrador.  
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Figure 4.6 Regional quantile function fit observed data with 90% confidence limits in 

Labrador  

Table 4.9 Return period growth factor with 90% confidence intervals in Labrador 

Return 

Period 

(Years)  

Annual 

Exceedence 

Probability 

(AEP) 

Reduced 

Gumbel 

Variate  

Observed 

growth 

factor  

Lower 90% 

Confidence 

Interval  

Upper 90% 

Confidence 

Interval  

2 0.5 0.367 0.997 0.952 1.011 

10 0.1 2.260 1.331 1.262 1.356 

20 0.05 2.963 1.444 1.346 1.477 

50 0.02 3.916 1.575 1.435 1.621 

100 0.01 4.6 1.663 1.488 1.720 

200 0.005 5.301 1.532 1.532 1.815 

 

4.5.2 Results of quantile estimation  

Table 4.10 compares the results of quantile estimates with the return periods of 50 and 

100 years between the at-site and regional quantile estimates.  
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Table 4.10 Results of comparison between at-site and regional quantile estimates in 

Labrador 

Station 

Number 

Years of 

record 

At-site Regional % Difference 

Q50 Q100 Q50 Q100 Q50 Q100 

02XA003 28 1063.59 1128.93 1029.73 1087.27 -3.29 -3.83 

03NF001 23 2308.56 2518.39 1812.83 1914.11 -27.35 -31.57 

03OC003 15 1725.38 1900.76 1749.98 1847.76 1.41 -2.87 

03OE003 28 395.92 425.45 368.55 389.14 -7.43 -9.33 

03PB002 25 678.07 694.48 736.47 777.62 7.93 10.69 

03QC001 38 3200.15 3431.05 2888.55 3049.94 -10.79 -12.50 

03QC002 32 823.88 858.72 826.25 872.41 0.29 1.57 

03OB002 16 3937.02 4128.36 4028.85 4253.95 2.28 2.95 

03OE010 20 23.78 24.92 23.69 25.01 -0.39 0.37 

03OE001 54 6819.02 7076.21 7182.00 7583.28 5.05 6.69 

Absolute average  6.62 8.24 

 

Site 03NF001 shows the biggest percentage of difference between at-site and regional 

analysis, these results may be as a results of its highest τ3 value.  

 

4.5.3 Comparison with the regression on quantile results  

As mentioned at the beginning of the thesis, the RFFA (AMEC, 2014) was conducted 
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based on the regression on quantile approach. Labrador was treated as a single 

homogeneous region. Each gauged site or the whole region was fitted by the 

three-parameter lognormal (LN3) distribution. The research (AMEC, 2014) compared 

results of quantile estimates between single site and regional regression models. Table 

4.11 represents the differences of quantile flows between at-site and regional 

estimation based on the index-flood procedure and regression on quantile approach 

when the return periods are 50 and 100 years. It can be seen that the percentage of 

difference between at-site and regional analysis based on the index-flood procedure 

are significantly less than those obtained from quantile on regression models. The 

regional quantile function provides a better fit to the observed data.  

 

Some studies (Kjeldsen and Jones, 2007; Robson & Reed, 1999; Institute of 

Hydrology, 1999 & Lim and Lye, 2003) stated that using the median as the index 

flood rather than the mean can result in a more accurate estimation; thus, in order to 

verify this suggestion the quantile flow in Labrador is calculated again using the 

annual median peak flow. Table 4.12 shows the results of the quantile estimation in 

Labrador based on index-flood procedure using the median and the mean respectively.  
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Table 4.11 Results of comparison between at-site and regional quantile estimations in 

Labrador 

Station 

Number 

L-moments-Current Study  

% Difference 

Regression-AMEC (2014) 

% Difference 

Q50 Q100 Q50 Q100 

02XA003 -3.29 -3.83 -3.19 -3.32 

03NF001 -27.35 -31.57 -34.24 -35.34 

03OC003 1.41 -2.87 44.23 45.71 

03OE003 -7.43 -9.33 26.41 26.43 

03PB002 7.93 10.69 23.54 23.64 

03QC001 -10.79 -12.50 NA NA 

03QC002 0.29 1.57 -53.17 -52.62 

03OB002 2.28 2.95 NA NA 

03OE010 -0.39 0.37 20.00 24.24 

03OE001 5.05 6.69 NA NA 

02XA004 NA NA -23.96 -25.23 

03NE001 NA NA 3.13 5.71 

03NG001 NA NA -18.97 -20.77 

03OD007 NA NA -38.74 -39.05 

03OE011 NA NA 1.33 1.23 

Absolute 

Average  
6.62 8.24 24.24 25.27 

*NA means the site is not available in the analysis.  

 

 

From Table 4.12 it can be seen that using the mean as the index flood results in a 

better performance than the median in terms of quantile estimation, at least in 

Labrador. 
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Table 4.12 Results of comparison of quantile estimation based on the median and 

mean  

Station 

Number 

Median 

(m
3
/s) 

% difference 

Median Mean 

Q50 Q100 Q50 Q100 

02XA003 631.5 -6.94 -7.51 -3.29 -3.83 

03NF001 1050.0 -31.17 -36.24 -27.35 -31.57 

03OC003 1040.0 -5.34 -9.92 1.41 -2.87 

03OE003 226.5 -10.99 -12.97 -7.43 -9.33 

03PB002 503.0 14.39 16.96 7.93 10.69 

03QC001 1840.0 -10.44 -12.14 -10.79 -12.50 

03QC002 549.0 1.42 2.69 0.29 1.57 

03OB002 2555.0 2.16 2.83 2.28 2.95 

03OE010 14.6 -22.24 -21.34 -0.39 0.37 

03OE001 4550 4.83 6.46 5.05 6.69 

Absolute average 10.99 12.91 6.62 8.24 

 

 

4.5.4 Index flood estimation at ungauged sites  

The index flood is required for estimating the quantile flows at ungauged sites. 

However, the observed data at ungauged sites cannot be obtained in a direct way; 

therefore, an indirect approach is used by developing a linear on nonlinear regression 

model between site characteristics and index flood at gauged sites, which worked 

successfully in the previous studies. The AMEC (2014) determined the drainage area 

(DA) to be the only significant parameter for the regression model. Zadeh (2012) 

successfully developed the regression equations using the drainage area (DA) in terms 

of the low flow quantiles estimation in Labrador. Therefore, in this study a nonlinear 
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least square regression equation relating the drainage area (DA) to the annual mean 

peak flow (Q) was used. Figure 4.7 illustrates the regression relationship between 

drainage area (DA) and annual peak flow (Q) in Labrador.  

 

The data is log-transformed, and the coefficient of regression equation R
2
=96.6%. The 

regression relationship between Q and DA is given by  

 

Qmean=0.6470*DA
0.8081   

               [4.3] 

 

 

Figure 4.7 Regression relationship of Drainage Area (DA) vs. Peak Flow (Q) 

 

4.6 Assessment of estimation accuracy  

As discussed in Section 3.4.5, to assess the estimation accuracy, the method used in 

this thesis is to plot the at-site and estimated regional quantiles to see how well the 
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regional quantiles model match sample data. Seven sites in Labrador are selected for 

testing whether the regional quantile model can provide a good agreement with 

observed data. The basic information from tested stations is listed in Table 4.13. The 

at-site and regional growth factors of each tested site are plotted in Figure 4.8.  

 

Table 4.13 Basic information of the stations for verification in Labrador  

Station Number Station Name 
Years of 

Records 

Drainage 

Area
 
(km

3
) 

02XA004 Riviere Joir Near Provincial Boundary 12 2060 

03NG001 Kanairiktok River Below Snegamook Lake 13 8930 

03OD007 East Metchin River 13 1750 

03OE011 Pinus River 14 779 

03NE001 Reid Brook at Outlet of Reid Pond 14 75.7 

03PB001 Nashaupi River at Fremont Lake 14 8990 

03NE002 Camp Pond Brook below Camp Pond 14 24.3 
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Figure 4.8 Regional growth factor has a good agreement with the observed data 

 

It can be seen that the regional quantile model agrees well with the observed data. 

 

Figures 4.9-4.10 show the comparison of quantile estimates between at-site and 

regional quantile estimates for Q50 and Q100 at tested sites based on the index-flood 

procedure and regression models (AMEC, 2014) in Labrador, respectively.  

 

For the approach of L-moments based index-flood procedure, the plot can be 

completed as the follows: 

 

1) Fit the LN3 distribution to at-site and regional data of studied sites. 

  

2) Obtain regional and at-site parameters of the LN3 distribution, respectively.  
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3) Develop regional and at-site quantile functions based on the LN3 distribution.  

 

4) Plot at-site and regional quantile flows of Q50 and Q100 respectively.  

 

Due to the regional quantile estimates at site 03PB001 and site 03NE002 are not 

available in the study of AMEC (2014), thus five sites are finally used to assess the 

accuracy of results.  
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(b) 

Figure 4.9 Comparison of quantile estimates for Q50 and Q100 between at-site and 

regional analysis based on the L-moments based index-flood procedure 
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(d) 

Figure 4.10 Comparison of quantile estimates for Q50 and Q100 between at-site and 

regional analysis based on the regression on quantiles method obtained from AMEC 

(2014) 

 

In Figures 4.11, the regional and at-site quantile estimates obtained from the 

index-flood procedure and the regional quantile estimates based on the regression 

models from AMEC (2014) are plotted for each single tested site with different return 

years (T).  
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Figure 4.11 Comparison of quantile estimates between L-moments based index-flood 

procedure and quantile regression models (AMEC, 2014) in Labrador 

 

 

From the figures shown above, it can be seen that for most of the tested sites the 

regional quantile estimates obtained from index-flood procedure show better 

agreement with the at-site flood quantiles. The estimation of quantile flows are based 

on the available gauged sites in a homogenous region, and the quantile models are 

limited due to the sample size, available observed flow and other factors, therefore, it 

is true that the quantile models cannot work perfectly on each sites such as the site 

03OE011. Although the LN3 distribution is not the best fitted regional frequency 

distribution to regional data, the comparisons of quantile estimates show that the 

method of index flood provide more accurate results than the approach of regression 

on quantile in Labrador. The quantile models will be improved in the future studies 

because of more available sites information.  
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CHAPTER 5 

 

DATA ANALYSIS AND RESULTS FOR THE ISLAND OF NEWFOUNDLAND 

5.1 General  

In the past 44 years, there were five editions of regression on quantile based RFFA for 

the Island of Newfoundland. The latest being by AMEC (2014). The first RFFA in 

Newfoundland using the L-moments based index-flood procedure was conducted by 

Pokhrel (2002) with the observed data until 1998. Pokhrel (2002) showed that the 

index-flood procedure provided more accurate quantile results than regression 

approach. Therefore, the objective of this chapter is to conduct the quantile estimates 

for rivers on the Island of Newfoundland with the latest data up to 2013 and to 

compare the results to those obtained from Pokhrel and the latest regression on 

quantile approach by AMEC (2014). Data used for the AMEC (2014) study were up to 

2012 only.  

 

Since the RFFA in 1989, the Island of Newfoundland was treated as four sub 

homogeneous regions (A, B, C and D) taking into account data availability and 

regional sites characteristics. See Figure 5.1. Later, two sub homogeneous regions (Y 

and Z) that were proposed by the Water Survey of Canada (WSC) were applied 

successfully in Pokhrel’s research. See Figure 5.2. Therefore, in this chapter, the RFFA 
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for the Island of Newfoundland will be conducted based on both regionalization 

schemes mentioned above, but using the latest data from HYDAT which is the 

Archived Hydrometric Database of the Water Survey of Canada (WSC). The quantile 

estimates will then be compared to those from Pokhrel’s research and AMEC (2014). 

This chapter is organized as follows: 

 

1) Conduct the RFFA for Newfoundland based on the index-flood procedure using 

L-moments. 

 

2) Obtain the regional quantile functions based on the best fitted regional frequency 

distribution. 

 

3) Determine the regionalization schemes by testing each scheme for homogeneity.  

 

4) Compare the results of the quantile estimates to those obtained from Pokhrel 

(2002) and AMEC (2014) respectively.  

 

5) Assess the accuracy of the estimations for each approach and regionalization 

scheme.  

 

5.2 RFFA for four sub regions  

5.2.1 Data screening and discordancy measure  
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The annual peak flow data are collected from HYDAT which is the Archived 

Hydrometric Database of Water Survey of Canada (WSC). In the latest update in 2014, 

the Water Survey of Canada not only updated the historical data up to 2013, but also 

modified many of the previous records that were used in AMEC (2014) and Pokhrel 

(2002).  

 

To consider the accuracy of the analysis, the sites studied are required to have at least 

15 years of records. In this work, 53 gauged sites in Newfoundland are selected and 

they are divided into the four sub regions (A, B, C and D). Tables 5.1-5.4 list their 

basic information including station number, station name, length of record, drainage 

area (DA) and L-moment ratios. Figure 5.1 illustrates the locations of selected sites on 

the map. The L-moment ratios L-CV vs. L-skewness and L-skewness vs. L-kurtosis 

for each sub region are plotted in Figure 5.3.   
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Figure 5.1 Locations of studied sites in Newfoundland (Cited and modified based on 

the research conducted by Zadeh , 2012) 
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Figure 5.2 Boundary of sub regions Y and Z in Newfoundland (Cited and modified 

based on the research conducted by Zadeh , 2012) 
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Figure 5.3 Boundaries of sub regions A, B, C and D in Newfoundland (Cited and 

modified based on the research conducted by Zadeh , 2012) 
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Table 5.1 Basic information and L-moment ratios for sub region A in Newfoundland  

Region A 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area 

(km
3
) 

Range of 

Year 
L-CV L-SK L-Ku 

02ZG001 Garnish River Near Garnish 49 66.64 205 1959-2013 0.275 0.403 0.265 

02ZG002 Tides Brook Below Freshwater Pond 19 50.01 166 1977-1996 0.233 0.259 0.289 

02ZG003 Salmonier River Near Lamaline 32 72.45 115 1980-2013 0.226 0.144 0.156 

02ZG004 Rattle Brook Near Boat Harbour 31 40.80 42.7 1981-2013 0.262 0.366 0.317 

02ZH002 Come By Chance River Near Goobies 41 32.76 43.3 1971-2013 0.214 0.041 0.090 

02ZK001 Rocky River Near Colinet 61 156.73 301 1948-2013 0.221 0.202 0.135 

02ZL004 Shearstown Brook At Shearstown 29 16.97 28.9 1983-2013 0.276 0.275 0.169 

02ZL005 Big Brook At Lead Cove 29 5.95 11.2 1985-2013 0.256 0.271 0.239 

02ZM006 Northeast Pond River At Northeast Pond 44 3.74 3.63 1970-2013 0.211 0.151 0.077 

02ZM009 Seal Cove Brook Near Cappahayden 35 29.52 53.6 1979-2013 0.128 0.243 0.243 

02ZM010 Waterford River At Mount Pearl 15 18.47 16.6 1981-1995 0.223 0.183 -0.071 

02ZM016 South River Near Holyrood 31 11.59 17.3 1983-2013 0.200 0.153 0.153 

02ZM017 Leary Brook At St. John’s 15 13.24 15.3 1983-1997 0.178 0.143 0.219 

02ZM018 Virginia River At Pleasantville 28 9.69 10.7 1984-2013 0.179 0.098 0.069 

02ZN001 Northwest Brook At Northwest Pond 28 38.85 53.3 1966-1996 0.167 0.024 0.022 

02ZN002 St. Shotts River Near Trepassey 18 10.79 15.5 1985-2013 0.223 0.130 0.079 
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Table 5.2 Basic information and L-moment ratios for sub region B in Newfoundland  

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area 

(km
3
) 

Range of 

Year 
L-CV L-SK L-Ku 

02YM001 India Brook At Indian Falls 40 147.62 974 1955-1995 0.150 0.050 0.200 

02YM003 South West Brook Near Baie Verte 31 41.04 93.2 1980-2013 0.247 0.213 0.133 

02YO006 Peters River Near Botwood 32 47.83 177 1981-2013 0.224 0.342 0.310 

02YO008 
Great Rattling Brook Above Tote River 

Cnfluence 
22 214.4 773 1985-2013 0.178 0.143 0.073 

02YO012 Southwest Brook At Lewisporte 24 16.25 58.7 1989-2013 0.215 0.188 0.197 

02YQ005 Salmon River Near Glenwood 21 40.06 80.8 1991-2013 0.280 0.242 0.116 

02YR001 Middle Brook Near Gambo 50 30.11 275 1961-2013 0.179 0.134 0.159 

02YR002 
Ragged Harbour River Near Musgrave  

Harbour 
17 67.38 399 1978-1997 0.160 0.310 0.237 

02YR003 Indian Bay Brook Near Northwest Arm 31 61.98 554 1981-2013 0.185 0.122 0.074 

02YS001 Terra Nova River At Eight Mile Bridges 30 182.7 1290 1953-1983 0.167 0.181 0.127 

02YS003 
Southwest Brook At Terra Nova National 

Park 
43 14.62 36.7 1968-2013 0.205 0.229 0.212 

02YS005 Terra Nova River At Glovertown 29 223.1 2000 1985-2013 0.183 0.023 0.076 

02ZH001 Pipers Hole River At Mothers Brook 57 241.6 764 1952-2013 0.245 0.167 0.151 

02ZJ001 Southern Bay River Near Southern Bay 32 26.63 67.4 1977-2011 0.306 0.444 0.382 

02ZJ002 Salmon Cove River Near Champneys 22 13.91 73.6 1983-2013 0.175 0.151 0.201 
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Table 5.3 Basic information and L-moment ratios for sub region C in Newfoundland  

Region C 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area 

(km
3
) 

Range of 

Year 
L-CV L-SK L-Ku 

02YA001 
Ste. Genevieve River Near Forresters 

Point 
25 33.15 306 1970-1996 0.186 0.251 0.080 

02YC001 Torrent River At Bristol’s Pool 53 184.77 624 1959-2013 0.189 0.195 0.171 

02YD001 Beaver Brook Near Roddickton 19 103.95 237 1960-1978 0.185 0.224 0.199 

02YD002 Northeast Brook Near Roddickton 33 40.32 200 1980-2013 0.128 0.120 0.175 

02YE001 
Greavett Brook Above Portland Creek 

Pond 
26 46.13 95.7 1985-2013 0.180 0.244 0.141 

02YG001 Main River At Paradise Pool 26 314.9 627 1986-2013 0.140 -0.023 -0.024 

02YK004 Hinds Brook Near Grand Lake 22 94.13 529 1957-1978 0.141 0.060 -0.006 

02YK008 Boot Brook At Trans-Canada Highway 28 10.35 20.4 1985-2013 0.266 0.273 0.179 

02YL001 Upper Humber River Near Reidville 85 595.1 2110 1929-2013 0.130 0.127 0.146 

02YL004 South Brook At Pasadena 29 44.89 58.5 1983-2013 0.264 0.500 0.364 

02YL008 
Upper Humber River Above Black 

Brook 
25 251.6 471 1988-2013 0.141 0.087 0.150 

02YM004 
Indian Brook Diversion Above Birchy 

Lake 
24 38.94 238 1990-2013 0.095 -0.080 0.104 
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Table 5.4 Basic information and L-moment ratios for sub region D in Newfoundland  

Region D 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area 

(km
3
) 

Range of 

Year 
L-CV L-SK L-Ku 

02YJ001 Harrys River Below Highway Bridge 42 311.9 640 1969-2013 0.206 0.187 0.153 

02YK002 
Lewaseechjeech Brook At Little Grand 

Lake 
50 111.15 470 1954-2013 0.176 0.143 0.150 

02YN002 
Lloyds River Below King George Iv 

Lake 
33 182 469 1981-2013 0.220 0.226 0.169 

02ZB001 
Isle Aux Morts River Below Highway 

Bridge 
51 373.7 205 1962-2013 0.261 0.224 0.102 

02ZC002 Grandy Brook Below Top Pond Brook 28 365.7 230 1984-2013 0.176 0.192 0.144 

02ZD002 Grey River Near Grey River 32 872.3 1340 1970-2013 0.242 0.153 0.073 

02ZE001 Salmon River At Long Pond 16 292.2 2640 1950-1965 0.157 -0.014 -0.112 

02ZE004 
Conne River At Outlet of Conne River 

Pond 
25 42.56 99.5 1989-2013 0.177 0.134 0.057 

02ZF001 Bay Du Nord River At Big Falls 61 210.2 1170 1951-2013 0.208 0.255 0.254 

02ZK004 
Little Salmonier River Near North 

Harbour 
31 89.06 104 1983-2013 0.237 0.241 0.129 
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(d) 

Figure 5.4 L-moment ratios plots in Newfoundland  
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concluded that all of the sites in sub region B, C and D are not discordant from the 

other sites. But in sub region A, site 02ZM009 has a slightly higher Di value than the 

critical value of 3. The positions of L-moment ratios of site 02ZM009 are well 

scattered, but the boxplot (Figure 5.4) shows that it still has one outlier after taking 

logarithms. For site 02ZM010, the flood data are well distributed (Figure 5.5), thus its 

high Di value may be as a result of low value of L-ku. Removing site 02ZM009, site 

02ZM010 still has a high Di value (2.9609) (Table 5.9). Removing 02ZM010, site 

02ZM009 also shows a high Di value (3.3551) (Table 5.10). Although all of the other 

sites in region A are shown to be not discordant in the absence of site 02ZM009 and 

site 02ZM010, whether sites 02ZM009 and 02ZM010 should be kept or removed 

needs to be further investigated.  
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Table 5.5 Results of discordancy measure (Di) of studied sites in sub region A in Newfoundland  

Region A 

ID Station Number Station Name 
Years of 

Record 

Mean Max 

Flow (m
3
/s) 

L-CV L-SK L-Ku Di 

1 02ZG001 Garnish River Near Garnish 49 66.64 0.275 0.403 0.265 1.5186 

2 02ZG002 Tides Brook Below Freshwater Pond 19 50.01 0.233 0.259 0.289 0.6856 

3 02ZG003 Salmonier River Near Lamaline 32 72.45 0.226 0.144 0.156 0.3987 

4 02ZG004 Rattle Brook Near Boat Harbour 31 40.80 0.262 0.366 0.317 1.0903 

5 02ZH002 Come By Chance River Near Goobies 41 32.76 0.214 0.041 0.090 1.4068 

6 02ZK001 Rocky River Near Colinet 61 156.73 0.221 0.202 0.135 0.0443 

7 02ZL004 Shearstown Brook At Shearstown 29 16.97 0.276 0.275 0.169 0.7942 

8 02ZL005 Big Brook At Lead Cove 29 5.951 0.256 0.271 0.239 0.4709 

9 02ZM006 Northeast Pond River At Northeast Pond 44 3.738 0.211 0.151 0.077 0.1974 

 10*  02ZM009* Seal Cove Brook Near Cappahayden* 35 29.52 0.128 0.243 0.243 3.5876* 

 11*  02ZM010* Waterford River At Mount Pearl 15 18.47 0.223 0.183 -0.071 3.1631* 

12 02ZM016 South River Near Holyrood 31 11.594 0.200 0.153 0.153 0.1115 

 13 02ZM017 Leary Brook At St. John’s 15 13.24 0.178 0.143 0.219 0.8388 

 14 02ZM018 Virginia River At Pleasantville 28 9.694 0.179 0.098 0.069 0.4227 

 15 02ZN001 Northwest Brook At Northwest Pond 28 38.85 0.167 0.024 0.022 0.9736 

 16 02ZN002 St. Shotts River Near Trepassey 18 10.794 0.223 0.130 0.079 0.2957 

*Means that the site has higher Di value than the critical value of 3. 
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Table 5.6 Results of discordancy measure (Di) of studied sites in sub region B in Newfoundland  

Region B 

ID Station Number Station Name 
Years of 

Record 

Mean Max 

Flow (m
3
/s) 

L-CV L-SK L-Ku Di 

1 02YM001 India Brook At Indian Falls 40 147.62 0.150 0.050 0.200 2.1822 

2 02YM003 South West Brook Near Baie Verte 31 41.04 0.247 0.213 0.133 0.5884 

3 02YO006 Peters River Mear Botwood 32 47.83 0.224 0.342 0.310 0.9255 

4 02YO008 
Great Rattling Brook Above Tote River 

Cnfluence 
22 214.4 0.178 0.143 0.073 0.8715 

5 02YO012 Southwest Brook At Lewisporte 24 16.25 0.215 0.188 0.197 0.1433 

6 02YQ005 Salmon River Near Glenwood 21 40.06 0.280 0.242 0.116 1.6723 

7 02YR001 Middle Brook Near Gambo 50 30.11 0.179 0.134 0.159 0.1814 

8 02YR002 Ragged Harbour River Near Musgrave Harbour 17 67.38 0.160 0.310 0.237 2.2374 

9 02YR003 Indian Bay Brook Near Northwest Arm 31 61.98 0.185 0.122 0.074 0.5764 

10 02YS001 Terra Nova River At Eight Mile Bridges 30 182.7 0.167 0.181 0.127 0.7295 

11 02YS003 Southwest Brook At Terra Nova National Park 43 14.62 0.205 0.229 0.212 0.0776 

12 02YS005 Terra Nova River At Glovertown 29 223.1 0.183 0.023 0.076 1.0723 

13 02ZH001 Pipers Hole River At Mothers Brook 57 241.6 0.245 0.167 0.151 0.6337 

14 02ZJ001 Southern Bay River Near Southern Bay 32 26.63 0.306 0.444 0.382 2.6801 
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Table 5.7 Results of discordancy measure (Di) of studied sites in sub region C in Newfoundland 

Region C 

ID Station Number Station Name 
Years of 

Record 

Mean Max 

Flow (m
3
/s) 

L-CV L-SK L-Ku Di 

1 02YA001 Ste. Genevieve River Near Forresters Point 25 33.15 0.186 0.251 0.080 1.3808 

2 02YC001 Torrent River At Bristol’s Pool 53 184.77 0.189 0.195 0.171 0.1034 

3 02YD001 Beaver Brook Near Roddickton 19 103.95 0.185 0.224 0.199 0.1317 

4 02YD002 Northeast Brook Near Roddickton 33 40.32 0.128 0.120 0.175 0.6755 

5 02YE001 Greavett Brook Above Portland Creek Pond 26 46.13 0.180 0.244 0.141 0.4630 

6 02YG001 Main River At Paradise Pool 26 314.9 0.140 -0.023 -0.024 1.2213 

7 02YK004 Hinds Brook Near Grand Lake 22 94.13 0.141 0.060 -0.006 0.9749 

8 02YK008 Boot Brook At Trans-Canada Highway 28 10.35 0.266 0.273 0.179 2.5440 

9 02YL001 Upper Humber River Near Reidville 85 595.1 0.130 0.127 0.146 0.5054 

10 02YL004 South Brook At Pasadena 29 44.89 0.264 0.500 0.364 1.9990 

11 02YL008 Upper Humber River Above Black Brook 25 251.6 0.141 0.087 0.150 0.3178 

12 02YM004 Indian Brook Diversion Above Birchy Lake 24 38.94 0.095 -0.080 0.104 1.6833 
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Table 5.8 Results of discordancy measure (Di) of studied sites in sub region D in Newfoundland  

Region D 

ID Station Number Station Name 
Years of 

Record 

Mean Max 

Flow (m
3
/s) 

L-CV L-SK L-Ku Di 

 1 02YJ001 Harrys River Below Highway Bridge 42 311.9 0.206 0.187 0.153 0.2312 

2 02YK002 Lewaseechjeech Brook At Little Grand Lake 50 111.15 0.176 0.143 0.150 1.1493 

3 02YN002 Lloyds River Below King George Iv Lake 33 182 0.220 0.226 0.169 0.1630 

4 02ZB001 Isle Aux Morts River Below Highway Bridge 51 373.7 0.261 0.224 0.102 1.1774 

5 02ZC002 Grandy Brook Below Top Pond Brook 28 365.7 0.176 0.192 0.144 0.9955 

6 02ZD002 Grey River Near Grey River 32 872.3 0.242 0.153 0.073 1.4245 

7 02ZE001 Salmon River At Long Pond 16 292.2 0.157 -0.014 -0.112 2.2177 

8 02ZE004 Conne River At Outlet of Conne River Pond 25 42.56 0.177 0.134 0.057 0.6588 

9 02ZF001 Bay Du Nord River At Big Falls 61 210.2 0.208 0.255 0.254 0.9552 

10 02ZK004 Little Salmonier River Near North Harbour 31 89.06 0.237 0.241 0.129 1.0275 
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Figure 5.5 Boxplot logged data of site 02ZM009  
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Figure 5.6 Boxplot of site 02ZM010 
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Table 5.9 Results of discordancy measure (Di) of 15 selected sites excluding 02ZM009 in sub region A 

ID 
Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

L-CV L-SK L-Ku Di 

1 02ZG001 Garnish River Near Garnish 49 66.64 0.275 0.403 0.265 1.5010 

2 02ZG002 Tides Brook Below Freshwater Pond 19 50.01 0.233 0.259 0.289 0.7133 

3 02ZG003 Salmonier River Near Lamaline 32 72.45 0.226 0.144 0.156 0.5115 

4 02ZG004 Rattle Brook Near Boat Harbour 31 40.80 0.262 0.366 0.317 1.1272 

5 02ZH002 Come By Chance River Near Goobies 41 32.76 0.214 0.041 0.090 2.0722 

6 02ZK001 Rocky River Near Colinet 61 156.73 0.221 0.202 0.135 0.0829 

7 02ZL004 Shearstown Brook At Shearstown 29 16.97 0.276 0.275 0.169 1.2916 

8 02ZL005 Big Brook At Lead Cove 29 5.951 0.256 0.271 0.239 0.4778 

9 02ZM006 Northeast Pond River At Northeast Pond 44 3.738 0.211 0.151 0.077 0.1832 

10 02ZM010* Waterford River At Mount Pearl 15 18.47 0.223 0.183 -0.071 2.9609* 

11 02ZM016 South River Near Holyrood 31 11.594 0.200 0.153 0.153 0.2697 

12 02ZM017 Leary Brook At St. John’s 15 13.24 0.178 0.143 0.219 1.6200 

13 02ZM018 Virginia River At Pleasantville 28 9.694 0.179 0.098 0.069 0.7526 

14 02ZN001 Northwest Brook At Northwest Pond 28 38.85 0.167 0.024 0.022 1.0229 

15 02ZN002 St. Shotts River Near Trepassey 18 10.794 0.223 0.130 0.079 0.4139 

*Means that the site has higher Di value than the critical value of 3. 



99 

 

Table 5.10 Results of discordancy measure (Di) of 15 selected sites excluding 02ZM010 in sub region A 

ID 
Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

L-CV L-SK L-Ku Di 

1 02ZG001 Garnish River Near Garnish 49 66.64 0.275 0.403 0.265 1.7158 

2 02ZG002 Tides Brook Below Freshwater Pond 19 50.01 0.233 0.259 0.289 1.1261 

3 02ZG003 Salmonier River Near Lamaline 32 72.45 0.226 0.144 0.156 0.4118 

4 02ZG004 Rattle Brook Near Boat Harbour 31 40.80 0.262 0.366 0.317 1.0579 

5 02ZH002 Come By Chance River Near Goobies 41 32.76 0.214 0.041 0.090 1.4276 

6 02ZK001 Rocky River Near Colinet 61 156.73 0.221 0.202 0.135 0.2652 

7 02ZL004 Shearstown Brook At Shearstown 29 16.97 0.276 0.275 0.169 0.9625 

8 02ZL005 Big Brook At Lead Cove 29 5.951 0.256 0.271 0.239 0.4568 

9 02ZM006 Northeast Pond River At Northeast Pond 44 3.738 0.211 0.151 0.077 0.6868 

10 02ZM009* Seal Cove Brook Near Cappahayden 35 29.52 0.128 0.243 0.243 3.3551* 

11 02ZM016 South River Near Holyrood 31 11.594 0.200 0.153 0.153 0.0840 

12 02ZM017 Leary Brook At St. John’s 15 13.24 0.178 0.143 0.219 1.2680 

13 02ZM018 Virginia River At Pleasantville 28 9.694 0.179 0.098 0.069 0.6326 

14 02ZN001 Northwest Brook At Northwest Pond 28 38.85 0.167 0.024 0.022 1.0783 

15 02ZN002 St. Shotts River Near Trepassey 18 10.794 0.223 0.130 0.079 0.4716 

*Means that the site has higher Di value than the critical value of 3. 
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5.2.2 Delineation of homogeneous regions  

The heterogeneity measure Eq. [3.13] for the Island of Newfoundland is carried out 

for four sub regions respectively using Matlab program code (Appendix A-2). Due to 

the uncertainty of sites 02ZM009 and 02ZM010, the tests in sub region A will be 

carried out based on 16 sites , 15 sites (without 02ZM009 or without 02ZM010) and 

14 sites (without sites 02ZM009 and 02ZM010), respectively. According to the 

simulation procedures discussed in Section 3.4.2, simulate 1000 regions, and then fit 

the kappa distribution to every regional L-moment ratios. Calculate mean and standard 

deviation of simulated sites. The results of the heterogeneity measure, the parameters 

of kappa distribution and regional weighted L-moments ratios are presented in Table 

5.11.  

 

The results of the heterogeneity measure indicate that sub regions A, B, C and D in the 

Newfoundland area are “possible homogeneous” as declared by Hosking and Wallis 

(1997). For sub region A, the region is shown to be more homogeneous in the 

presence of site 02ZM010, although the result of discordancy measure shows to be 

unsatisfactory. Therefore, in order to reach more accurate quantile estimations, site 

02ZM010 will be kept for the following analysis and site 02ZM009 is removed. 
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Table 5.11 Kappa parameters and results of the heterogeneity measure in 

Newfoundland  

 

Region A 

(Exclude 

site 

02ZM009) 

Region A 

(Exclude 

site 

02ZM010) 

Region A 

(16 sites) 

Region A 

(14 sites) 
Region B Region C Region D 

t
 R

 0.2257 0.2188 0.2189 0.22579 0.20768 0.16663 0.21056 

t3
R
 0.1968 0.2005 0.2000 0.19725 0.18930 0.16455 0.19052 

t4
R
 0.1517 0.1651 0.1581 0.15906 0.17780 0.14603 0.13602 

V 0.0324 0.0405 0.0399 0.04359 0.04332 0.04856 0.03085 

ξ 0.7812 0.8159 0.7994 0.79926 0.86743 0.85806 0.76440 

α 0.3386 0.2970 0.3141 0.31956 0.24787 0.2467 0.35487 

k -0.0063 -0.0539 -0.0292 -0.03269 -0.09953 0.01672 0.05239 

h 0.1277 -0.0272 0.0647 0.03565 -0.30416 0.02864 0.27108 

μv 0.0173 0.0184 0.0173 0.01860 0.02130 0.0200 0.01640 

σv 0.0133 0.0139 0.0132 0.01380 0.01600 0.0147 0.01240 

H 1.14 1.60 1.71 1.82 1.38 1.94 1.17 

 

 

5.2.3 Selection of regional frequency distribution for four sub regions  

5.2.3.1 L-moment ratio diagram  

In order to make a simple and intuitive judgment from candidate distributions, the 

sample L-moment ratios, regional average L-moment ratios (black squares) of four 

sub regions in Newfoundland and theoretical curves of candidate distributions based 

on L-moment ratios are plotted in Figure 5.6.  
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(c) 

 

(d) 

Figure 5.7 L-moment ratio diagram and regional L-moment ratios in Newfoundland  
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From the positions of regional average L-moment ratios it can be observed that in sub 

region A, B and C, the regional frequency distribution could be generated from the 

GEV distribution and lognormal distribution (LN3), and for region D the Pearson type

Ⅲdistribution is probably a good choice.  

 

5.2.3.2 Goodness-of-fit test 

As discussed in Section 3.4.3.2, the goodness-of-fit test determines the best fitted 

regional frequency distribution by comparing the regional weighted L-kurtosis with 

that of the candidate distributions. Follow the procedures discussed in Chapter 3, 

Matlab program code (Appendix A-3) is employed to complete the computation. Table 

5.12 provides the results of the goodness-of-fit measure of each sub region.  

 

The bias and standard deviation of regional L-kurtosis of four sub regions (from A to 

D) are -0.0012, 0.0195; 0.0043, 0.0208; 0, 0.0194; -0.0001, 0.0209, respectively. From 

Table 5.12 it can be seen that for region A, the distributions-GEV, LN3 and PE3 are 

acceptable; however, only LN3 can be accepted as a result of its minimum ∣Z
DIST∣. 

Equally, the GEV distribution is selected as the best fit regional frequency distribution 

for the sub regions A, B and C. In the sub region D the PE3 distribution is more 

acceptable than other distributions. However, the Pearson typeⅢis rarely applied in 

recent hydrological research and not convenient to use because of its mathematical 

complexity. In addition, the sample size in sub region D is small and the positions of 
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samples L-moment ratios of sub region D are scattered (Figure 5.2). Therefore, in 

order to achieve more accurate results the Pearson typeⅢwill not be considered to be 

the regional frequency distribution for sub region D. The next two with the best fit 

were used instead. These are the LN3 and GEV distributions.  

 

 

Table 5.12 Results of goodness-of-fit measure for sub regions in Newfoundland 

Region A  

 GLO GEV LN3* PE3 GPA 

τ4
DIST

 0.198945 0.161183 0.153019 0.135468 0.075427 

Z
DIST

 2.362758 0.424497 0.005473* -0.895420 -3.977241 

Region B  

 GLO GEV* LN3 PE3 GPA 

τ4
DIST

 0.196533 0.157953 0.150751 0.134396 0.071296 

Z
DIST

 1.104365 -0.74787* -1.093625 -1.878805 -4.908227 

Region C 

 GLO GEV* LN3 PE3 GPA 

τ4
DIST

 0.189234 0.147933 0.143897 0.131245 0.058340 

Z
DIST

 2.233141 0.099608* -0.108886 -0.762440 -4.528563 

Region D 

 GLO GEV LN3 PE3* GPA 

τ4
DIST

 0.196918 0.158471 0.151113 0.134566 0.071960 

Z
DIST

 2.911065 1.07139 0.719330 -0.072404* -3.068072 

*Represents the best fitted regional frequency distribution  
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5.2.3.3 Robustness test  

The purpose of the robustness test is to recognize the most robust distribution when 

the number of acceptable distributions is more than one (Pokhrel, 2002). 

Misspecification of distribution could cause a large bias in quantile estimation 

(Hosking and Walls, 1997). Therefore, the robustness test is designed to compute the 

regional average relative bias (ARB) and relative root mean square error (RMSE) of 

the extreme quantiles when the distribution is correct and when the distribution is 

mis-specified. The bias is defined as Eq. [3.18] and the RMSE can be calculated from 

Eq. [3.19].  

 

In sub regions A, B and C the robustness test is carried out between the best fitted 

distribution-GEV and the second best fitted distribution-LN3. In sub region D, as 

discussed in Section 5.2.3.2, the PE3 distribution will not be used for further analysis. 

Therefore, the robustness test is carried out between the GEV and LN3 distribution. 

Table 5.13 shows the results of ARB, RMSE and ARRB of extreme quantiles at each 

sub region when 1) The best fitted distribution is GEV but the underlying distribution 

is LN3; 2) The best fitted distribution is LN3 and the underlying distribution is GEV 

and 3) The best fitted and underlying distribution are the same.  
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Table 5.13 Results of robustness test for four sub regions in Newfoundland  

Region A 

 

Quantiles Difference 

for 

100-year 

event 

0.9 0.99 0.999 0.9 0.99 0.999 

GEV-GEV GEV-LN3 

ARB 2.45 4.19 7.53 2.20 5.36 9.37 1.17 

AARB 4.10 18.03 32.49 4.76 17.33 28.28 -0.70 

RMSE 0.66 3.10 9.01 0.65 2.75 6.73 -0.35 

 LN3-LN3 LN3-GEV  

ARB 2.48 -1.97 -3.15 2.02 4.92 8.71 6.89 

AARB 3.24 11.72 19.62 4.64 17.07 27.85 5.35 

RMSE 0.49 1.54 3.60 0.63 2.70 6.64 1.16 

Region B 

 

Quantiles Difference 

for 

100-year 

event 

0.9 0.99 0.999 0.9 0.99 0.999 

GEV-GEV GEV-LN3 

ARB 2.36 2.51 3.73 1.66 2.86 4.61 0.35 

AARB 5.84 16.81 29.18 6.10 15.84 24.21 -0.97 

RMSE 0.75 2.97 7.86 0.65 2.48 5.53 -0.49 

 LN3-LN3 LN3-GEV  

ARB 2.39 2.29 3.22 7.89 4.27 3.22 1.98 

AARB 5.81 16.70 29.07 8.68 17.32 29.21 0.62 

RMSE 0.68 2.82 7.49 1.01 2.80 6.96 -0.02 
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Table 5.13 Cont. 

Region C 

 

Quantiles Difference 

for 

100-year 

event 

0.9 0.99 0.999 0.9 0.99 0.999 

GEV-GEV GEV-LN3 

ARB -24.43 -29.74 -34.41 -0.02 -0.32 0.84 -29.42 

AARB 24.43 29.74 34.45 7.25 21.51 32.77 -8.23 

RMSE 3.29 5.39 8.19 0.68 3.64 8.14 -1.75 

 LN3-LN3 LN3-GEV  

ARB 5.23 3.87 5.26 5.42 3.38 5.05 -0.49 

AARB 8.43 22.33 34.10 7.65 23.66 39.30 1.33 

RMSE 0.84 3.87 8.54 0.90 4.23 10.82 0.36 

Region D 

 

Quantiles Difference 

for 

100-year 

event 

0.9 0.99 0.999 0.9 0.99 0.999 

GEV-GEV GEV-LN3 

ARB 100.90 166.70 234.48 2.33 6.56 10.85 -160.14 

AARB 100.90 166.70 234.48 5.23 12.83 20.10 -153.87 

RMSE 68.3257 252.61 862.69 0.56 2.21 5.46 -250.40 

 LN3-LN3 LN3-GEV  

ARB 7.74 7.89 9.39 63.84 53.92 40.69 46.03 

AARB 8.04 13.05 19.68 63.84 53.92 63.91 40.87 

RMSE 0.82 2.10 4.45 73.29 81.61 106.23 79.51 

ARB: Average relative bias 

AARB: Average absolute relative bias 

RMSE: Relative root mean square error 
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From the comparison of extreme quantiles for 100-year event, it can be seen that the 

LN3 distribution is more robust than the GEV distribution for all sub regions in 

Newfoundland. Therefore, the LN3 distribution is determined to be the regional 

frequency distribution for further quantile analysis.  

 

5.2.4 Quantile estimation for four sub regions 

As all of sub regions are tested to be homogeneous, the regional frequency 

distributions are determined, therefore, the estimation of quantile flow can take place. 

Based on the equation [3.20] discussed in Chapter 3, the quantile estimates are defined 

as the regional growth factor q(F) multiplied by the index flood, of which q(F) can be 

obtained from the regional growth curve fitted by the regional frequency distribution. 

For sub regions A, B, C and D, the quantile function fitted by the LN3 distribution is 

defined as equation [5.1]. The parameters of the LN3 distribution and regional 

quantile functions are presented in Table 5.14.  

 

ξ+αk
-1

[1-exp{-k.Ф
-1

(F)}]      k≠0 

q(F)=QT/Qmean=                                               [5.1] 

                ξ+α. Ф
-1

(F)                 k=0 
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Table 5.14 Regional parameters of the LN3 distribution and regional quantile 

functions for sub regions in Newfoundland 

Region A 

ξ (location) α (scale) k (shape) 

0.9215 0.3702 -0.4065 

LN3 Quantile Function 

x(F)=0.9215+0.3702/(-0.4065) {1-exp{0.4065Ф
-1

(F)}] 

Region B 

ξ (location) α (scale) k (shape) 

0.9289 0.3374 -0.4143 

LN3 Quantile Function 

x(F)=0.9289+0.3374/(-0.4046){1-exp{0.4046Ф
-1

(F)}] 

Region C 

ξ (location) α (scale) k (shape) 

0.9498 0.2879 -0.3390 

LN3 Quantile Function 

x(F)=0.9498+0.2879/(-0.3390){1-exp{0.3390Ф
-1

(F)}] 

Region D 

ξ (location) α (scale) k (shape) 

0.9349 0.3513 -0.3589 

LN3 Quantile Function 

x(F)=0.9349+0.3513/(-0.3589){1-exp{0.3589Ф
-1

(F)}] 

 

 

5.2.5 Comparison of quantile estimation  

In this Section, the results of quantile estimation are compared between at-site and 
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regional analysis. Tables 5.15-5.18 show the results of comparison of quantile 

estimation between at-site and regional analysis for four sub regions in 

Newfoundland.  

 

Table 5.15 Comparison of at-site and regional frequency estimation for sub region A 

Region A 

Station 

Number 

Years 

of 

record 

At-site Regional % Difference 

Q50 Q100 Q50 Q100 Q50 Q100 

02ZG001 49 188.31 231.02 140.54 156.94 -33.98 -47.20 

02ZG002 19 113.60 129.89 105.47 117.77 -7.71 -10.29 

02ZG003 32 147.29 161.89 152.80 170.62 3.61 5.12 

02ZG004 31 108.27 130.15 86.05 96.08 -25.83 -35.46 

02ZH002 41 59.65 63.65 69.09 77.15 13.67 17.50 

02ZK001 61 327.03 365.32 330.54 369.10 1.06 1.03 

02ZL004 29 43.35 50.35 35.79 39.96 -21.13 -25.98 

02ZL005 29 14.35 16.56 12.55 14.02 -14.36 -18.18 

02ZM006 44 7.37 8.10 7.88 8.80 6.54 8.12 

02ZM010 15 38.25 42.49 38.95 43.50 1.81 2.31 

02ZM016 31 22.43 24.59 24.45 27.30 8.26 9.93 

02ZM017 15 23.88 25.95 27.92 31.18 14.48 16.78 

02ZM018 28 17.21 18.51 20.45 22.83 15.85 18.92 

02ZN001 28 66.67 70.61 81.94 91.49 18.63 22.82 

02ZN002 18 21.51 23.53 22.77 25.42 5.50 7.43 

Average absolute %difference  12.83 16.47 
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Table 5.16 Comparison of at-site and regional frequency estimation for sub region B 

Region B 

Station 

Number 

Years 

of 

record 

At-site Regional % Difference 

Q50 Q100 Q50 Q100 Q50 Q100 

02YM001 40 237.52 251.25 396.72 329.19 19.95 23.68 

02YM003 31 93.01 104.98 82.49 91.52 -12.75 -14.70 

02YO006 32 113.42 133.63 96.14 106.66 -17.98 -25.29 

02YO008 22 386.82 420.35 430.94 478.11 10.24 12.08 

02YO012 24 33.59 37.35 32.66 36.24 -2.85 -3.08 

02YQ005 21 98.88 113.37 80.52 89.33 -22.80 -26.91 

02YR001 50 53.85 58.37 60.52 67.15 11.02 13.08 

02YR002 17 130.27 148.30 135.43 150.26 3.82 1.30 

02YR003 31 111.66 120.82 124.58 138.22 10.37 12.59 

02YS001 30 332.40 364.36 367.23 407.42 9.48 10.57 

02YS003 43 30.09 33.79 29.39 32.60 -2.39 -3.64 

02YS005 29 403.81 429.40 448.43 497.51 9.95 13.69 

02ZH001 57 525.14 583.61 485.62 538.77 -8.14 -8.32 

02ZJ001 32 83.50 105.24 53.53 59.39 -55.99 -77.22 

02ZJ002 22 25.09 27.31 27.96 31.02 10.26 11.97 

Average absolute %difference 13.87 17.21 
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Table 5.17 Comparison of at-site and regional frequency estimation for sub region C 

Region C 

Station 

Number 

Years 

of 

record 

At-site Regional % Difference 

Q50 Q100 Q50 Q100 Q50 Q100 

02YA001 25 66.27 74.60 59.80 65.27 -10.81 -14.30 

02YC001 53 359.77 398.38 333.33 363.81 -7.93 -9.50 

02YD001 19 202.95 226.36 187.53 204.68 -8.23 -10.59 

02YD002 33 63.50 67.75 72.74 79.39 12.71 14.67 

02YE001 26 90.06 100.94 83.22 90.83 -8.23 -11.13 

02YG001 26 484.73 505.82 568.08 620.04 14.67 18.42 

02YK004 22 145.61 153.70 169.81 185.34 14.25 17.07 

02YK008 28 25.77 29.85 18.67 20.38 -38.04 -46.49 

02YL001 85 948.35 1014.29 1073.56 1171.75 11.66 13.44 

02YL004 29 132.88 170.43 80.98 88.39 -64.09 -92.82 

02YL008 25 396.12 420.50 453.89 495.40 12.73 15.12 

02YM004 24 50.38 51.58 70.25 76.67 28.28 32.73 

Average absolute %difference 19.30 24.69 
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Table 5.18 Comparison of at-site and regional frequency estimation for sub region D 

Region D 

Station 

Number 

Years 

of 

record 

At-site Regional % Difference 

Q50 Q100 Q50 Q100 Q50 Q100 

02YJ001 42 629.35 698.09 623.80 689.30 -0.89 -1.28 

02YK002 50 199.37 216.52 222.30 245.64 10.32 11.86 

02YN002 33 390.44 439.93 364.00 402.22 -7.27 -9.38 

02ZB001 51 873.60 991.69 747.40 825.88 -16.89 -20.08 

02ZC002 28 683.60 752.54 731.40 808.20 6.61 6.89 

02ZD002 32 1860.05 2058.10 1744.60 1927.78 -6.67 -6.76 

02ZE001 16 458.05 479.21 584.40 645.76 21.62 25.79 

02ZE004 25 75.69 82.00 85.12 94.06 11.08 12.82 

02ZF001 61 444.45 503.95 420.40 464.54 -5.72 -8.48 

02ZK004 31 201.85 229.55 178.12 196.82 -64.09 -92.82 

Average absolute %difference 10.04 12.00 

 

 

Like the analysis in Labrador, AMEC (2014) estimated single site and regional 

quantile flows respectively in Newfoundland. Tables 5.20-5.23 provide the results of 

comparison of the quantile flows between current analysis and results obtained from 

AMEC (2014) and Pokhrel (2002). The regression equations and goodness-of-fit 

developed by AMEC (2014) for the Island of Newfoundland are shown in Table 5.19. 

In the study of AMEC (2014), the regions NE, SE, NW and SW represent the regions 

B, A, C and D used in this study respectively.  
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Table 5.19 Regression equations and goodness-of-fit developed by AMEC (2014) in 

Newfoundland  

Region A (SE) 

One Parameter 

Equations 
SMR SEE Two Parameters Equations SMR SEE 

Q2=1.464*DA
0.762

 0.901 0.145 Q2=3.820*DA
0.715

*LAF
-0.180

 0.938 0.120 

Q5=1.966*DA
0.768

 0.905 0.143 Q5=5.135*DA
0.721

*LAF
-0.181

 0.942 0.117 

Q10=2.293*DA
0.772

 0.904 0.144 Q10=5.993*DA
0.725

*LAF
-0.181

 0.941 0.118 

Q20=2.604*DA
0.775

 0.903 0.146 Q20=6.809*DA
0.728

*LAF
-0.181

 0.939 0.121 

Q50=3.005*DA
0.778

 0.900 0.149 Q50=7.861*DA
0.731

*LAF
-0.181

 0.936 0.125 

Q100=3.306*DA
0.780

 0.897 0.152 Q100=8.651*DA
0.733

*LAF
-0.181

 0.932 0.128 

Q200=3.608*DA
0.782

 0.894 0.155 Q200=9.443*DA
0.735

*LAF
-0.181

 0.929 0.132 

Region B(NE) 

One Parameter 

Equations 
SMR SEE Two Parameters Equations SMR SEE 

Q2=0.836*DA
0.755

 0.902 0.161 Q2=2.911*DA
0.767

*LAF
-0.285

 0.964 0.102 

Q5=1.271*DA
0.733

 0.882 0.173 Q5=4.746*DA
0.745

*LAF
-0.302

 0.954 0.112 

Q10=1.582*DA
0.722

 0.870 0.181 Q10=6.128*DA
0.734

*LAF
-0.310

 0.947 0.119 

Q20=1.895*DA
0.712

 0.858 0.187 Q20=7.568*DA
0.725

*LAF
-0.317

 0.940 0.126 

Q50=2.322*DA
0.702

 0.844 0.195 Q50=9.597*DA
0.715

*LAF
-0.325

 0.931 0.134 

Q100=2.658*DA
0.695

 0.834 0.200 Q100=11.243*DA
0.708

*LAF
-0.330

 0.925 0.140 

Q200=3.009*DA
0.688

 0.824 0.205 Q200=12.997*DA
0.702

*LAF
-0.335

 0.918 0.145 
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Table 5.19 Cont.  

Region C(NW) 

One Parameter 

Equations 
SMR SEE Two Parameters Equations SMR SEE 

Q2=0.611*DA
0.875

 0.778 0.241 Q2=3.959*DA
0.883

*LAF
-0.408

 0.952 0.117 

Q5=0.974*DA
0.834

 0.751 0.248 Q5=6.496*DA
0.842

*LAF
-0.415

 0.942 0.125 

Q10=1.242*DA
0.812

 0.734 0.253 Q10=8.416*DA
0.820

*LAF
-0.418

 0.934 0.131 

Q20=1.519*DA
0.795

 0.718 0.257 Q20=10.421*DA
0.803

*LAF
-0.421

 0.925 0.138 

Q50=1.905*DA
0.775

 0.699 0.262 Q50=13.256*DA
0.783

*LAF
-0.424

 0.915 0.145 

Q100=2.216*DA
0.761

 0.686 0.266 Q100=15.563*DA
0.770

*LAF
-0.426

 0.906 0.151 

Q200=2.544*DA
0.749

 0.673 0.270 Q200=18.024*DA
0.757

*LAF
-0.428

 0.898 0.157 

Region D(SW) 

One Parameter 

Equations 
SMR SEE Two Parameters Equations SMR SEE 

Q2=7.864*DA
0.497

 0.495 0.327 Q2=90.931*DA
0.523

*LAF
-4.825

 0.887 0.164 

Q5=10.853*DA
0.492

 0.462 0.346 Q5=141.407*DA
0.519

*LAF
-5.060

 0.871 0.179 

Q10=12.845*DA
0.490

 0.444 0.356 Q10=178.118*DA
0.517

*LAF
-5.183

 0.863 0.188 

Q20=14.762*DA
0.488

 0.430 0.365 Q20=215.518*DA
0.516

*LAF
-5.284

 0.855 0.195 

Q50=17.264*DA
0.485

 0.415 0.375 Q50=267.085*DA
0.514

*LAF
-5.399

 0.846 0.204 

Q100=19.163*DA
0.484

 0.405 0.382 Q100=308.149*DA
0.513

*LAF
-5.475

 0.840 0.210 

Q200=21.084*DA
0.482

 0.395 0.388 Q200=351.240*DA
0.512

*LAF
-5.544

 0.835 0.215 
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Table 5.20 Comparison of at-site and regional quantile flows for sub region A 

Region A  

Station 

Number 

Years 

of 

record 

% Difference  

Current Study 

% Difference  

AMEC (2014) 

% Difference  

Pokhrel (2002) 

Q50 Q100 Q50 Q100 Q50 Q100 

02ZG001 49 -33.98 -47.20 -3.00 -4.80 -14.05 -21.35 

02ZG002 19 -7.71 -10.29 NA NA -15.85 -23.53 

02ZG003 32 3.61 5.12 -15.20 -15.7 10.65 11.99 

02ZG004 31 -25.83 -35.46 -43.20 -44.20 -15.73 -20.71 

02ZH002 41 13.67 17.50 -21.70 -22.90 8.69 11.44 

02ZK001 61 1.06 1.03 4.8 5.1 -2.49 -4.31 

02ZL004 29 -21.13 -25.98 22.2 19.4 NA NA 

02ZL005 29 -14.36 -18.18 19.80 16.80 NA NA 

02ZM006 44 6.54 8.12 -1.70 -2.2 1.56 2.82 

02ZM010 35 1.81 2.31 -16.80 -17.00 NA NA 

02ZM016 31 8.26 9.93 5.70 5.70 NA NA 

02ZM017 15 14.48 16.78 -32.80 -31.90 NA NA 

02ZM018 28 15.85 18.92 57.60 59.60 NA NA 

02ZN001 28 18.63 22.82 29.50 32.80 12.64 14.94 

02ZN002 18 5.50 7.43 -6.10 -5.80 NA NA 

Average absolute 

%difference 

12.83 16.47 20.01 20.28 10.21 13.89 

NA means the site is not available in that research. 
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Table 5.21 Comparison of at-site and regional quantile flows for sub region B 

Region B 

Station 

Number 

Years 

of 

record 

% Difference  

Current Study 

% Difference  

AMEC (2014) 

% Difference  

Pokhrel (2002) 

Q50 Q100 Q50 Q100 Q50 Q100 

02YM001 40 19.95 23.68 69.00 73.10 NA NA 

02YM003 31 -12.75 -14.70 -23.40 -24.70 -28.92 -15.42 

02YO006 32 -17.98 -25.29 10.40 10.00 -75.48 -113.68 

02YO008 22 10.24 12.08 -16.50 -15.80 NA NA 

02YO012 24 -2.85 -3.08 22.70 23.50 NA NA 

02YQ005 21 -22.80 -26.91 -33.40 -34.20 NA NA 

02YR001 50 11.02 13.08 2.80 2.50 11.15 14.89 

02YR002 17 3.82 1.30 46.30 48.80 -17.61 -24.28 

02YR003 31 10.37 12.59 23.60 23.00 7.21 8.77 

02YS001 30 9.48 10.57 19.00 21.20 6.87 8.15 

02YS003 43 -2.39 -3.64 27.60 29.70 17.21 21.19 

02YS005 29 9.95 13.69 11.60 10.40 NA NA 

02ZH001 57 -8.14 -8.32 -24.20 -26.20 -0.42 1.13 

02ZJ001 32 -55.99 -77.22 -28.10 -29.90 0.1 1.27 

02ZJ002 22 10.26 11.97 -6.70 -7.60 NA NA 

Average absolute 

%difference 

13.87 17.21 24.35 25.37 18.33 23.20 

NA means the site is not available in that research.  
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Table 5.22 Comparison of at-site and regional quantile flows for sub region C 

Region C 

Station 

Number 

Years 

of 

record 

% Difference  

Current Study 

% Difference  

AMEC (2014) 

% Difference  

Pokhrel (2002) 

Q50 Q100 Q50 Q100 Q50 Q100 

02YA001 25 -10.81 -14.30 3.50 2.20 NA NA 

02YC001 53 -7.93 -9.50 -36.90 -38.70 NA NA 

02YD001 19 -8.23 -10.59 4.00 3.10 -13.04 -15.84 

02YD002 33 12.71 14.67 -5.50 -4.20 -7.89 -11.02 

02YE001 26 -8.23 -11.13 -21.60 -20.80 NA NA 

02YG001 26 14.67 18.42 24.80 25.20 NA NA 

02YK004 22 14.25 17.07 -9.40 -9.80 8.98 12.14 

02YK008 28 -38.04 -46.49 10.10 8.30 NA NA 

02YL001 85 11.66 13.44 9.20 7.90 5.10 5.82 

02YL004 29 -64.09 -92.82 -41.10 -42.40 NA NA 

02YL008 25 12.73 15.12 -22.00 -21.70 NA NA 

02YM004 24 28.28 32.73 79.60 84.80 NA NA 

Average absolute 

%difference 
19.30 24.69 22.31 22.43 8.75 11.21 

NA means the site is not available in that research.   
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Table 5.23 Comparison of at-site and regional quantile flows for sub region D 

Region D 

Station 

Number 

Years 

of 

record 

% Difference  

Current Study 

% Difference  

AMEC (2014) 

% Difference  

Pokhrel (2002) 

Q50 Q100 Q50 Q100 Q50 Q100 

02YJ001 42 -0.89 -1.28 -26.80 -27.10 -2.66 -5.01 

02YK002 50 10.32 11.86 -2.50 -0.50 -6.56 -6.08 

02YN002 33 -7.27 -9.38 -46.50 -47.30 -18.89 -25.34 

02ZB001 51 -16.89 -20.08 -51.80 -52.90 -4.39 -4.95 

02ZC002 28 6.61 6.89 54.00 57.20 8.94 7.89 

02ZD002 32 -6.67 -6.76 17.60 17.60 NA NA 

02ZE001 16 21.62 25.79 36.80 37.70 13.67 18.33 

02ZE004 25 11.08 12.82 52.70 54.00 NA NA 

02ZF001 61 -5.72 -8.48 -10.10 -11.10 -24.36 -33.56 

02ZK004 31 -64.09 -92.82 -2.20 -3.40 NA NA 

Average absolute 

%difference 
10.04 12.00 30.10 30.88 11.35 14.45 

NA means the site is not available in that research.  

 

 

The flood data used in Pokhrel (2002) had been changed. Therefore, it is difficult to 

determine which study has more accurate quantile estimates compared to the results 

from this study. However, it is seen that the index-flood procedure provide a better 

agreement with the observed data than the method of regression on quantile (AMEC, 

2014).  
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5.2.6 Quantile estimation at ungauged sites  

As the index flood at ungauged sites is not known, the estimation of quantile flow at 

ungauged sites largely depends on the development of a linear or nonlinear regression 

relationship between the index flood and sites characteristics at gauged sites within a 

homogeneous region. Based on the previous researches (AMEC, 2014 & Pokhrel, 

2002), the selections of parameters are not limited to the Drainage Area (DA) and 

Lake Attenuation Factor (LAF). Another parameter-Lakes and Swamps Factor (LSF) 

is selected in order to achieve a higher R
2
 value. The data is log transformed. The 

nonlinear least square regression equations and R
2 

are presented in Table 5.24.  

 

 

Table 5.24 Nonlinear regression equations and R
2
 for sub regions in Newfoundland  

Sub region Regression equation R
2 

A Q=2.517*DA
0.783

*LAF 
-0.117 

0.96 

B Q=0.3815*DA
0.708

*LAF
-0.336 

0.96 

C Q=0.2582*DA
0.845

*LAF
-0.393 

0.94 

D Q=8.1827*DA
0.509

*LSF
-3.62 

0.82 

 

 

5.3 RFFA for Y and Z Sub Regions  

The regionalization of sub regions Y and Z was proposed by the Water Survey of 
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Canada (WSC). Pokhrel (2002) achieved more accurate results of quantile estimates 

based on this regionalization. Therefore, in the following sections, the results of RFFA 

based on the index flood procedures for sub regions Y and Z will be presented in a 

step by step manner.  

 

5.3.1 Data screening and discordancy measure  

Tables 5.25-5.26 list the basic information, L-moment ratios and results of 

discordancy measure of sub region Y and Z. 27sites are involved in sub region Y, and 

sub region Z contains 26 sites.  

 

Hosking and Wallis (1997) suggested the critical value of Di for a group with more 

than 15 sites should be equal to or less than 3. Therefore, from Tables 5.25-5.26 it can 

be observed that all of the sites are not discordant from other sites in sub region Y. 

However, in sub region Z, sites 02ZM009 and 02ZM010 still show higher Di value 

which match the results obtained from the discordancy measure in sub region A. 

Tables 5.27-5.29 show the discordancy measure after removing site 02ZM009 or site 

02ZM010 and sites 02ZM009 and 02ZM010 respectively. After removing sites 

02ZM009 and 02ZM010, all of the sites in sub region Z are shown to be not 

discordant.  
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Table 5.25 Summary of statistics and discordancy measure of sub region Y 

Region Y 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area (km
3
) 

L-CV L-SK L-Ku Di 

02YM001 Indian Brook At Indian Falls 40 147.62 974 0.150 0.050 0.200 1.902 

02YM003 South West Brook Near Baie Verte 31 41.04 93.2 0.247 0.213 0.133 0.986 

02YO006 Peters River Mear Botwood 32 47.83 177 0.224 0.342 0.310 1.323 

02YO008 
Great Rattling Brook Above Tote River 

Confluence 
22 214.4 773 0.178 0.143 0.073 0.477 

02YO012 Southwest Brook At Lewisporte 24 16.25 58.7 0.215 0.188 0.197 0.559 

02YQ005 Salmon River Near Glenwood 21 40.06 80.8 0.280 0.242 0.116 2.305 

02YR001 Middle Brook Near Gambo 50 30.11 275 0.179 0.134 0.159 0.161 

02YR002 
Ragged Harbour River Near Musgrave 

Harbour 
17 67.38 399 0.160 0.310 0.237 1.945 

02YR003 Indian Bay Brook Near Northwest Arm 31 61.98 554 0.185 0.122 0.074 0.361 

02YS001 Terra Nova River At Eight Mile Bridges 30 182.7 1290 0.167 0.181 0.127 0.326 

02YS003 
Southwest Brook At Terra Nova National 

Park 
43 14.62 36.7 0.205 0.229 0.212 0.234 

02YS005 Terra Nova River At Glovertown 29 223.1 2000 0.183 0.023 0.076 1.179 

02YA001 Ste. Genevieve River Near Forresters Point 25 33.15 306 0.186 0.251 0.080 2.038 

02YC001 Torrent River At Bristol’s Pool 53 184.77 624 0.189 0.195 0.171 0.022 

02YD001 Beaver Brook Near Roddickton 19 103.95 237 0.185 0.224 0.199 0.173 
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Table 5.25 Cont. 

Region Y 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area (km
3
) 

L-CV L-SK L-Ku Di 

02YD002 Northeast Brook Near Roddickton 33 40.32 200 0.128 0.120 0.175 0.869 

02YE001 Greavett Brook Above Portland Creek Pond 26 46.13 95.7 0.180 0.244 0.141 0.752 

02YG001 Main River At Paradise Pool 26 314.9 627 0.140 -0.023 -0.024 1.597 

02YK004 Hinds Brook Near Grand Lake 22 94.13 529 0.141 0.060 -0.006 1.703 

02YK008 Boot Brook At Trans-Canada Highway 28 10.35 20.4 0.266 0.273 0.179 1.253 

02YL001 Upper Humber River Near Reidville 85 595.1 2110 0.130 0.127 0.146 0.705 

02YL004 South Brook At Pasadena 29 44.89 58.5 0.264 0.500 0.364 2.878 

02YL008 Upper Humber River Above Black Brook 25 251.6 471 0.141 0.087 0.150 0.481 

02YM004 Indian Brook Diversion Above Birchy Lake 24 38.94 238 0.095 -0.080 0.104 2.397 

02YJ001 Harrys River Below Highway Bridge 42 311.9 640 0.206 0.187 0.153 0.111 

02YK002 Lewaseechjeech Brook At Little Grand Lake 50 111.15 470 0.176 0.143 0.150 0.051 

02YN002 Lloyds River Below King George Iv Lake 33 182 469 0.220 0.226 0.169 0.213 
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Table 5.26 Summary of statistics and discordancy measure of sub region Z 

Region Z 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area (km
3
) 

L-CV L-SK L-Ku Di 

02ZG001 Garnish River Near Garnish 49 66.64 205 0.275 0.403 0.265 1.605 

02ZG002 Tides Brook Below Freshwater Pond 19 50.01 166 0.233 0.259 0.289 0.706 

02ZG003 Salmonier River Near Lamaline 32 72.45 115 0.226 0.144 0.156 0.575 

02ZG004 Rattle Brook Near Boat Harbour 31 40.80 42.7 0.262 0.366 0.317 0.941 

02ZH002 Come By Chance River Near Goobies 41 32.76 43.3 0.214 0.041 0.090 1.946 

02ZK001 Rocky River Near Colinet 61 156.73 301 0.221 0.202 0.135 0.033 

02ZL004 Shearstown Brook At Shearstown 29 16.97 28.9 0.276 0.275 0.169 0.740 

02ZL005 Big Brook At Lead Cove 29 5.951 11.2 0.256 0.271 0.239 0.402 

02ZM006 Northeast Pond River At Northeast Pond 44 3.738 3.63 0.211 0.151 0.077 0.145 

02ZM009* Seal Cove Brook Near Cappahayden 35 29.52 53.6 0.128 0.243 0.243 3.955* 

02ZM010* Waterford River At Mount Pearl 15 18.47 16.6 0.223 0.183 -0.071 3.386* 

02ZM016 South River Near Holyrood 31 11.594 17.3 0.200 0.153 0.153 0.170 

02ZM017 Leary Brook At St. John’s 15 13.24 15.3 0.178 0.143 0.219 1.105 

02ZM018 Virginia River At Pleasantville 28 9.694 10.7 0.179 0.098 0.069 0.336 

02ZN001 Northwest Brook At Northwest Pond 28 38.85 53.3 0.167 0.024 0.022 0.896 

02ZN002 St. Shotts River Near Trepassey 18 10.794 15.5 0.223 0.130 0.079 0.314 

*Means the site has a higher Di value than the critical one. 
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Table 5.26 Cont.  

Region Z 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area (km
3
) 

L-CV L-SK L-Ku Di 

02ZH001 Pipers Hole River At Mothers Brook 57 241.6 764 0.245 0.167 0.151 0.646 

02ZJ001 Southern Bay River Near Southern Bay 32 26.63 67.4 0.306 0.444 0.382 2.156 

02ZJ002 Salmon Cove River Near Champneys 22 13.91 73.6 0.175 0.151 0.201 0.813 

02ZB001 
Isle Aux Morts River Below Highway 

Bridge 
51 373.7 205 0.261 0.224 0.102 0.674 

02ZC002 Grandy Brook Below Top Pond Brook 28 365.7 230 0.176 0.192 0.144 0.661 

02ZD002 Grey River Near Grey River 32 872.3 1340 0.242 0.153 0.073 0.527 

02ZE001 Salmon River At Long Pond 16 292.2 2640 0.157 -0.014 -0.112 1.908 

02ZE004 Conne River At Outlet of Conne River Pond 25 42.56 99.5 0.177 0.134 0.057 0.564 

02ZF001 Bay Du Nord River At Big Falls 61 210.2 1170 0.208 0.255 0.254 0.478 

02ZK004 Little Salmonier River Near North Harbour 31 89.06 104 0.237 0.241 0.129 0.319 
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Table 5.27 Results of discordancy measure in sub region Z excluding site 02ZM009 

Region Z 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area (km
3
) 

L-CV L-SK L-Ku Di 

02ZG001 Garnish River Near Garnish 49 66.64 205 0.275 0.403 0.265 1.629 

02ZG002 Tides Brook Below Freshwater Pond 19 50.01 166 0.233 0.259 0.289 0.712 

02ZG003 Salmonier River Near Lamaline 32 72.45 115 0.226 0.144 0.156 0.623 

02ZG004 Rattle Brook Near Boat Harbour 31 40.80 42.7 0.262 0.366 0.317 0.991 

02ZH002 Come By Chance River Near Goobies 41 32.76 43.3 0.214 0.041 0.090 2.281 

02ZK001 Rocky River Near Colinet 61 156.73 301 0.221 0.202 0.135 0.042 

02ZL004 Shearstown Brook At Shearstown 29 16.97 28.9 0.276 0.275 0.169 0.882 

02ZL005 Big Brook At Lead Cove 29 5.951 11.2 0.256 0.271 0.239 0.386 

02ZM006 Northeast Pond River At Northeast Pond 44 3.738 3.63 0.211 0.151 0.077 0.129 

 02ZM010* Waterford River At Mount Pearl 15 18.47 16.6 0.223 0.183 -0.071  3.249* 

02ZM016 South River Near Holyrood 31 11.594 17.3 0.200 0.153 0.153 0.205 

02ZM017 Leary Brook At St. John’s 15 13.24 15.3 0.178 0.143 0.219 1.335 

02ZM018 Virginia River At Pleasantville 28 9.694 10.7 0.179 0.098 0.069 0.411 

02ZN001 Northwest Brook At Northwest Pond 28 38.85 53.3 0.167 0.024 0.022 0.862 

02ZN002 St. Shotts River Near Trepassey 18 10.794 15.5 0.223 0.130 0.079 0.375 

02ZH001 Pipers Hole River At Mothers Brook 57 241.6 764 0.245 0.167 0.151 0.850 

02ZJ001 Southern Bay River Near Southern Bay 32 26.63 67.4 0.306 0.444 0.382 2.062 
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Table 5.27 Cont.  

Region Z 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area (km
3
) 

L-CV L-SK L-Ku Di 

02ZJ002 Salmon Cove River Near Champneys 22 13.91 73.6 0.175 0.151 0.201 1.193 

02ZB001 
Isle Aux Morts River Below Highway 

Bridge 
51 373.7 205 0.261 0.224 0.102 0.813 

02ZC002 Grandy Brook Below Top Pond Brook 28 365.7 230 0.176 0.192 0.144 1.399 

02ZD002 Grey River Near Grey River 32 872.3 1340 0.242 0.153 0.073 0.730 

02ZE001 Salmon River At Long Pond 16 292.2 2640 0.157 -0.014 -0.112 1.835 

02ZE004 Conne River At Outlet of Conne River Pond 25 42.56 99.5 0.177 0.134 0.057 0.843 

02ZF001 Bay Du Nord River At Big Falls 61 210.2 1170 0.208 0.255 0.254 0.862 

02ZK004 Little Salmonier River Near North Harbour 31 89.06 104 0.237 0.241 0.129 0.303 

*Means the Di value is higher than the critical value of 3.  

 

 

 

 



129 

 

Table 5.28 Results of discordancy measure in sub region Z excluding site 02ZM010 

Region Z 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area (km
3
) 

L-CV L-SK L-Ku Di 

02ZG001 Garnish River Near Garnish 49 66.64 205 0.275 0.403 0.265 1.823 

02ZG002 Tides Brook Below Freshwater Pond 19 50.01 166 0.233 0.259 0.289 0.894 

02ZG003 Salmonier River Near Lamaline 32 72.45 115 0.226 0.144 0.156 0.618 

02ZG004 Rattle Brook Near Boat Harbour 31 40.80 42.7 0.262 0.366 0.317 0.894 

02ZH002 Come By Chance River Near Goobies 41 32.76 43.3 0.214 0.041 0.090 2.076 

02ZK001 Rocky River Near Colinet 61 156.73 301 0.221 0.202 0.135 0.102 

02ZL004 Shearstown Brook At Shearstown 29 16.97 28.9 0.276 0.275 0.169 0.828 

02ZL005 Big Brook At Lead Cove 29 5.951 11.2 0.256 0.271 0.239 0.385 

02ZM006 Northeast Pond River At Northeast Pond 44 3.738 3.63 0.211 0.151 0.077 0.278 

 02ZM009* Waterford River At Mount Pearl 15 18.47 16.6 0.223 0.183 -0.071  3.795* 

02ZM016 South River Near Holyrood 31 11.594 17.3 0.200 0.153 0.153 0.164 

02ZM017 Leary Brook At St. John’s 15 13.24 15.3 0.178 0.143 0.219 1.409 

02ZM018 Virginia River At Pleasantville 28 9.694 10.7 0.179 0.098 0.069 0.346 

02ZN001 Northwest Brook At Northwest Pond 28 38.85 53.3 0.167 0.024 0.022 0.852 

02ZN002 St. Shotts River Near Trepassey 18 10.794 15.5 0.223 0.130 0.079 0.326 

02ZH001 Pipers Hole River At Mothers Brook 57 241.6 764 0.245 0.167 0.151 0.630 

02ZJ001 Southern Bay River Near Southern Bay 32 26.63 67.4 0.306 0.444 0.382 2.075 
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Table 5.28 Cont.  

Region Z 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area (km
3
) 

L-CV L-SK L-Ku Di 

02ZJ002 Salmon Cove River Near Champneys 22 13.91 73.6 0.175 0.151 0.201 0.930 

02ZB001 
Isle Aux Morts River Below Highway 

Bridge 
51 373.7 205 0.261 0.224 0.102 0.937 

02ZC002 Grandy Brook Below Top Pond Brook 28 365.7 230 0.176 0.192 0.144 0.704 

02ZD002 Grey River Near Grey River 32 872.3 1340 0.242 0.153 0.073 0.6.4 

02ZE001 Salmon River At Long Pond 16 292.2 2640 0.157 -0.014 -0.112 2.461 

02ZE004 Conne River At Outlet of Conne River Pond 25 42.56 99.5 0.177 0.134 0.057 0.803 

02ZF001 Bay Du Nord River At Big Falls 61 210.2 1170 0.208 0.255 0.254 0.477 

02ZK004 Little Salmonier River Near North Harbour 31 89.06 104 0.237 0.241 0.129 0.588 

*Means the Di value is higher than the critical value of 3.  
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Table 5.29 Results of discordancy measure in sub region Z excluding sites 02ZM010 and 02ZM009 

Region Z 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area (km
3
) 

L-CV L-SK L-Ku Di 

02ZG001 Garnish River Near Garnish 49 66.64 205 0.275 0.403 0.265 1.845 

02ZG002 Tides Brook Below Freshwater Pond 19 50.01 166 0.233 0.259 0.289 0.883 

02ZG003 Salmonier River Near Lamaline 32 72.45 115 0.226 0.144 0.156 0.664 

02ZG004 Rattle Brook Near Boat Harbour 31 40.80 42.7 0.262 0.366 0.317 0.939 

02ZH002 Come By Chance River Near Goobies 41 32.76 43.3 0.214 0.041 0.090 2.405 

02ZK001 Rocky River Near Colinet 61 156.73 301 0.221 0.202 0.135 0.110 

02ZL004 Shearstown Brook At Shearstown 29 16.97 28.9 0.276 0.275 0.169 0.948 

02ZL005 Big Brook At Lead Cove 29 5.951 11.2 0.256 0.271 0.239 0.369 

02ZM006 Northeast Pond River At Northeast Pond 44 3.738 3.63 0.211 0.151 0.077 0.259 

02ZM016 South River Near Holyrood 31 11.594 17.3 0.200 0.153 0.153 0.195 

02ZM017 Leary Brook At St. John’s 15 13.24 15.3 0.178 0.143 0.219 1.593 

02ZM018 Virginia River At Pleasantville 28 9.694 10.7 0.179 0.098 0.069 0.419 

02ZN001 Northwest Brook At Northwest Pond 28 38.85 53.3 0.167 0.024 0.022 0.818 

02ZN002 St. Shotts River Near Trepassey 18 10.794 15.5 0.223 0.130 0.079 0.378 

02ZH001 Pipers Hole River At Mothers Brook 57 241.6 764 0.245 0.167 0.151 0.828 

02ZJ001 Southern Bay River Near Southern Bay 32 26.63 67.4 0.306 0.444 0.382 1.981 

02ZJ002 Salmon Cove River Near Champneys 22 13.91 73.6 0.175 0.151 0.201 1.271 
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Table 5.29 Cont.  

Region Z 

Station 

Number 
Station Name 

Years of 

Record 

Mean Max 

Flow (m
3
/s) 

Drainage 

Area (km
3
) 

L-CV L-SK L-Ku Di 

02ZB001 
Isle Aux Morts River Below Highway 

Bridge 
51 373.7 205 0.261 0.224 0.102 1.043 

02ZC002 Grandy Brook Below Top Pond Brook 28 365.7 230 0.176 0.192 0.144 1.425 

02ZD002 Grey River Near Grey River 32 872.3 1340 0.242 0.153 0.073 0.783 

02ZE001 Salmon River At Long Pond 16 292.2 2640 0.157 -0.014 -0.112 2.367 

02ZE004 Conne River At Outlet of Conne River Pond 25 42.56 99.5 0.177 0.134 0.057 1.077 

02ZF001 Bay Du Nord River At Big Falls 61 210.2 1170 0.208 0.255 0.254 0.836 

02ZK004 Little Salmonier River Near North Harbour 31 89.06 104 0.237 0.241 0.129 0.563 
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5.3.2 Heterogeneity rest  

In order to determine whether sites 02ZM009 and 02ZM010 should be removed or 

kept, the heterogeneity test will be carried out in region Z with 26sites, 25 sites and 24 

sites respectively. Table 5.30 shows the results of the heterogeneity test for regions Y 

and Z.  

 

Table 5.30 Results of heterogeneity measure for sub regions Y and Z 

Region Y 

H=2.0 

t
 R t3

R t 4
R V ξ 

0.18297 0.17019 0.15444 0.04238 0.85536 

α k h μv σv 

0.25558 -0.01484 -0.05241 0.0165 0.0130 

Region Z 

(25sites, 

exclude site 

02ZM009 

H=1.26 

t
 R t3

R t 4
R V ξ 

0.22624 0.20289 0.15425 0.0360802 0.77904 

α k h μv σv 

0.33663 -0.01536 0.13081 0.0184 0.014 

Region Z 

(25sites, 

exclude site 

02ZM010 

H=1.59 

t
 R t3

R t 4
R V ξ 

0.22223 0.20489 0.16194 0.0406556 0.79959 

α k h μv σv 

0.31209 -0.04262 0.042925 0.0188 0.0138 

Region Z 

(24 sites) 

H=1.29 

t
 R t3

R t 4
R V ξ 

0.22629 0.20325 0.15842 0.0364104 0.78915 

α k h μv σv 

0.32584 -0.030251 0.079516 0.0187 0.0138 

Region Z 

(26 sites) 

H=1.57 

t
 R t3

R t 4
R V ξ 

0.22225 0.20452 0.15788 0.0402997 0.78994 

α k h μv σv 

0.32224 -0.028276 0.094096 0.0183 0.014 
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From the results shown in Table 5.30, it can be concluded that sub region Y is 

“possible homogeneous” and that four tests in sub region Z with a different number of 

sites are found to be “possible homogeneous” as well. Although the result of the 

discordancy measure indicates that site 02ZM010 is discordant from other sites, the 

region Z shows more homogeneous when site 02ZM010 is included. Therefore, it is 

reasonable to keep site 02ZM010 for the further estimation. Site 02ZM009 is 

removed.  

 

5.3.3 Selection of regional frequency distribution  

As discussed in Chapter 3, in this thesis, the determination of regional frequency 

distribution is based on the results of the L-moment ratio diagram, the 

goodness-of-test and the robustness test.  

 

5.3.3.1 L-moment ratio diagram  

Figures 5.7-5.8 plot the sample L-moment ratios, regional average L-moment ratios 

and theoretical curves based on the L-moments of candidate distributions for regions 

Y and Z.  
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Figure 5.8 L-moment ratio diagram for sub region Y  

 

 

 

 

Figure 5.9 L-moment ratio diagram for sub region Z 
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From the Figures 5.7-5.8 it can be observed that in sub region Y the position of 

regional average L-moment ratios and most of the sample L-moment ratios are close 

to the GEV and LN3 distribution. In sub region Z the position of regional average 

L-moment ratios are closer to the LN3 distribution.  

 

5.3.3.2 Goodness-of-fit test  

The goodness-of-fit test is carried out for sub regions Y and Z respectively. The results 

shown in Table 5.31 illustrate that the three parameters lognormal distribution has a 

strong ability to provide a better fit frequency distribution to sample data for sub 

regions Y and Z, which supported the conclusions from the L-moment ratio diagrams. 

The bias and standard deviation of region L-Kurtosis for sub regions Y and Z are: 

0.0022, 0.0132; 0.0035, 0.0147, respectively.  

 

Table 5.31 Results of goodness-of-fit test for candidate distributions in sub regions Y 

and Z  

Region Y 

 GLO GEV LN3 PE3 GPA 

τ4
DIST

 0.192016 0.151801 0.146507 0.132430 0.063369 

Z
DIST

 3.298398 0.258057 -0.142121 -1.206381 -6.427466 

Region Z 

 GLO GEV LN3 PE3 GPA 

τ4
DIST

 0.200973 0.163874 0.154929 0.136381 0.078853 

Z
DIST

 3.109469 0.527723 -0.094806 -1.38557 -5.388966 
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5.3.3.3 Robustness test  

The robustness test for sub region Y and Z are carried out to realize the more robust 

regional distribution between the generalized extreme value and three-parameter 

lognormal distribution. The test is organized to compare the bias and the root mean 

square (RMSE) of the extreme quantiles between these two distributions from the 

following aspects: 1) the underlying distribution is LN3 when the chosen distribution 

is GEV (GEV-LN3)-the underlying and chosen are GEV distribution (GEV-GEV); 2) 

the underlying distribution is GEV when the chosen distribution is LN3 

(LN3-GEV)-the underlying and chosen are LN3 distribution (LN3-LN3). The results 

of average relative bias (ARB), average absolute relative bias (AARB) and relative 

root mean square error (RMSE) of extreme quantiles in sub regions Y and Z are 

presented in Table 5.32.  

 

From the results shown in Table 5.32 it can be seen that in sub region Y the percentage 

of difference of bias and RMSE of extreme quantiles of GEV-LN3 for 100-year event 

is lower than those of GEV-GEV. Similarly, in sub region Z, the bias and RMSE of 

extreme quantiles of GEV-GEV is higher than in the GEV-LN3 case. Therefore, it can 

be conclude that the LN3 is the most robust regional frequency distribution for both Y 

and Z region, which matches the results obtained from the goodness-of-fit test. 
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Table 5.32 Results of robustness test for sub regions Y and Z 

Region Y 

 

Quantiles Difference 

for 100-year 

event  
0.9 0.99 0.999 0.9 0.99 0.999 

GEV-GEV GEV-LN3 

ARB 0.32 -0.83 -0.64 0.12 -0.22 0.07 0.61 

AARB 5.30 17.98 30.61 5.83 16.76 26.02 -1.22 

RMSE 0.59 2.86 7.54 0.56 2.55 5.74 -0.31 

 LN3-LN3 LN3-GEV  

ARB 5.49 -0.22 0.07 5.68 2.74 2.61 2.96 

AARB 5.83 16.76 26.02 7.41 18.55 31.54 1.79 

RMSE 0.56 2.55 5.74 0.75 3.01 7.84 0.46 

Region Z 

 

0.9 0.99 0.999 0.9 0.99 0.999 Difference 

for 100-year 

event GEV-GEV GEV-LN3 

ARB 3.61 6.71 11.26 3.15 7.48 12.66 1.01 

AARB 5.07 18.75 33.59 5.73 18.09 29.12 -0.65 

RMSE 0.69 3.41 9.88 0.66 3.06 7.55 -0.30 

 LN3-LN3 LN3-GEV  

ARB 9.03 8.27 9.84 9.53 7.60 8.69 -0.93 

AARB 9.20 18.44 27.69 9.53 19.27 32.25 0.67 

RMSE 1.04 2.99 6.44 1.12 3.37 8.75 0.28 

ARB: Average relative bias  

AARB: Average absolute relative bias  

RMSE: Relative root mean square error  
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5.3.4 Quantile estimation  

The regional parameters of the LN3 distribution and its quantile functions for sub 

regions Y and Z are shown in Table 5.33. Tables 5.34-5.35 present the results of 

comparison between at-site and regional analysis in regions Y and Z respectively.    

 

Table 5.33 Regional parameters of LN3 distribution and LN3 quantile functions in sub 

regions Y and Z  

Region Y 

ξ (location) α (scale) k (shape) 

0.9411 0.3175 -0.3595 

LN3 Quantile Function 

x(F)=0.9411+0.3175/(-0.3595){1-exp{0.3595Ф
-1

(F)}]
 

Region Z  

ξ (location) α (scale) k (shape) 

0.9192 0.3684 -0.4193 

LN3 Quantile Function 

x(F)=0.9192+0.3684/(-0.4193){1-exp{0.4193Ф
-1

(F)}] 
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Table 5.34 Results of comparison between at-site and regional analysis in region Y 

Region Y 

Station 

Number 

Years 

of 

record 

At-site Regional % Difference 

Q50 Q100 Q50 Q100 Q50 Q100 

02YM001 40 237.54 251.26 281.36 309.41 15.57 18.79 

02YM003 31 93.00 104.98 78.22 86.02 -18.90 -22.04 

02YO006 32 113.42 133.63 91.16 100.25 -24.42 -33.30 

02YO008 22 386.80 420.35 408.65 449.38 53.47 6.46 

02YO012 24 33.59 37.35 30.97 34.06 -8.46 -9.66 

02YQ005 21 98.88 113.37 76.35 83.97 -29.51 -35.01 

02YR001 50 53.85 58.37 57.39 63.11 6.17 7.51 

02YR002 17 130.28 148.32 128.43 141.23 -1.44 -5.02 

02YR003 31 111.66 120.82 118.13 129.91 5.48 6.99 

02YS001 30 332.37 364.32 348.23 382.94 4.56 4.86 

02YS003 43 30.09 33.79 27.87 30.64 -7.97 -10.28 

02YS005 29 391.65 415.55 425.23 467.62 7.90 11.14 

02YA001 25 66.27 74.60 63.18 69.48 -4.89 -7.37 

02YC001 53 359.77 398.38 352.17 387.28 -2.16 -2.87 

02YD001 19 202.94 226.35 198.13 217.88 -2.43 -3.89 

02YD002 33 63.46 67.70 76.85 84.51 17.42 19.89 

02YE001 26 90.06 100.93 87.92 96.69 -2.43 -4.39 

02YG001 26 484.73 505.86 600.20 660.03 19.24 23.36 

02YK004 22 145.60 153.68 179.41 197.3 18.85 22.11 

02YK008 28 25.77 29.85 19.73 21.69 -30.61 -37.62 

02YL001 85 948.35 1014.35 1134.26 1247.33 16.39 18.68 

02YL004 29 132.88 170.44 85.56 94.09 -55.31 -81.15 

02YL008 25 396.12 420.50 459.52 527.10 13.80 20.22 

02YM004 24 50.39 51.58 74.22 81.62 32.11 36.80 

02YJ001 42 403.60 698.13 594.48 653.74 32.11 -6.79 

02YK002 50 199.35 216.50 211.85 232.97 5.90 7.07 

02YN002 33 390.44 439.93 346.89 381.47 -12.55 -15.32 

Average  15.02 17.73 
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Table 5.35 Results of comparison between at-site and regional analysis in region Z 

Region Y 

Station 

Number 

Years 

of 

record 

At-site Regional % Difference 

Q50 Q100 Q50 Q100 Q50 Q100 

02ZG001 49 188.59 231.24 141.21 158.00 -35.55 -46.35 

02ZG002 19 113.52 130.03 105.97 118.57 -7.13 -9.66 

02ZG003 32 147.07 161.56 153.52 171.78 4.20 5.95 

02ZG004 31 108.12 130.15 86.46 96.74 -25.06 -34.54 

02ZH002 41 59.62 63.55 69.42 77.67 14.11 18.18 

02ZK001 61 327.57 365.18 332.11 371.61 1.37 1.73 

02ZL004 29 43.27 50.40 35.96 40.24 -20.34 -25.26 

02ZL005 29 14.34 16.54 12.61 14.11 -13.73 -17.25 

02ZM006 44 7.36 8.07 7.92 8.86 7.03 8.90 

02ZM010 15 38.23 42.48 39.14 43.79 2.31 2.99 

02ZM016 31 22.38 24.58 24.57 27.49 8.92 10.59 

02ZM017 15 23.83 25.95 28.06 31.39 15.05 17.33 

02ZM018 28 17.16 18.52 20.54 22.98 16.47 19.44 

02ZN001 28 66.82 70.71 82.32 92.11 18.83 23.24 

02ZN002 18 21.48 23.53 22.87 25.59 6.09 8.06 

02ZH001 57 524.27 584.67 511.95 572.83 -2.41 -2.07 

02ZJ001 32 83.62 105.19 56.43 63.14 -48.18 -66.60 

02ZJ002 22 25.04 27.26 29.48 32.98 15.05 17.33 

02ZB001 51 874.46 990.30 791.87 886.04 -10.43 -11.77 

02ZC002 28 683.86 753.34 774.92 867.07 11.75 13.12 

02ZD002 32 1858.86 2058.63 1848.40 2068.22 -0.52 0.46 

02ZE001 16 455.83 476.29 619.17 692.81 26.38 31.25 

02ZE004 25 75.76 82.14 90.18 100.91 15.99 18.60 

02ZF001 61 443.52 504.48 445.41 498.38 0.42 -1.22 

02ZK004 31 202.17 229.77 188.72 211.16 -7.13 -8.81 

Average 13.30 16.83 

 

Tables 5.36-5.37 present the results of the comparison of quantile flows for 50 and 
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100 return years in regions Y and Z. 

Table 5.36 Comparison of at-site and regional frequency estimates between current 

research and Pokhrel’s research (2002) in sub region Y 

Region Y 

 % difference (Current Study) % difference (2002) 

Station 

Number 
Q50 Q100 Q50 Q100 

02YM001 15.57 18.79 NA NA 

02YM003 -18.90 -22.04 -15.96 -15.87 

02YO006 -24.42 -33.30 19.89 21.47 

02YO008 53.47 6.46 NA NA 

02YO012 -8.46 -9.66 NA NA 

02YQ005 -29.51 -35.01 NA NA 

02YR001 6.17 7.51 13.32 15.89 

02YR002 -1.44 -5.02 -15.36 -24.65 

02YR003 5.48 6.99 21.84 27.49 

02YS001 4.56 4.86 13.86 13.59 

02YS003 -7.97 -10.28 -3.47 -4.91 

02YS005 7.90 11.14 NA NA 

02YA001 -4.89 -7.37 NA NA 

02YC001 -2.16 -2.87 -6.50 -7.33 

02YD001 -2.43 -3.89 -6.08 -7.50 

02YD002 17.42 19.89 -1.86 -3.02 

02YE001 -2.43 -4.39 NA NA 

02YG001 19.24 23.36 NA NA 

02YK004 18.85 22.11 20.84 23.44 

02YK008 -30.61 -37.62 NA NA 

02YL001 16.39 18.68 14.82 17.70 

02YL004 -55.31 -81.15 NA NA 

02YL008 17.40 20.26 NA NA 

02YM004 32.11 36.80 NA NA 

02YJ001 32.11 -6.79 -1.72 -1.56 

02YK002 5.90 7.07 -1.15 -2.89 

02YN002 -12.55 -15.32 NA NA 

Average 15.02 17.73 11.20 13.38 
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Table 5.37 Comparison of at-site and regional frequency estimates between current 

research and Pokhrel’s research (2002) in sub region Z  

Region Z 

 % difference (Current Study) % difference (2002) 

Station 

Number 
Q50 Q100 Q50 Q100 

02ZG001 -35.55 -46.35 5.15 5.22 

02ZG002 -7.13 -9.66 -3.58 -4.44 

02ZG003 4.20 5.95 -9.61 -12.06 

02ZG004 -25.06 -34.54 -2.25 -1.54 

02ZH002 14.11 18.18 2.87 5.83 

02ZK001 1.37 1.73 -2.11 -3.21 

02ZL004 -20.34 -25.26 NA NA 

02ZL005 -13.73 -17.25 NA NA 

02ZM006 7.03 8.90 -5.07 -7.11 

02ZM010 2.31 2.99 NA NA 

02ZM016 8.92 10.59 NA NA 

02ZM017 15.05 17.33 NA NA 

02ZM018 16.47 19.44 NA NA 

02ZN001 18.83 23.24 20.05 23.83 

02ZN002 6.09 8.06 NA NA 

02ZH001 -2.41 -2.07 7.72 11.38 

02ZJ001 -48.18 -66.60 1.67 1.13 

02ZJ002 15.05 17.33 NA NA 

02ZB001 -10.43 -11.77 -20.78 -24.93 

02ZC002 11.75 13.12 -0.89 -1.70 

02ZD002 -0.52 0.46 NA NA 

02ZE001 26.38 31.25 25.68 30.05 

02ZE004 15.99 18.60 NA NA 

02ZF001 0.42 -1.22 -13.29 -15.55 

02ZK004 -7.13 -8.81 NA NA 

Average 13.30 16.83 9.28 11.38 

 

 

Compared to the research of 2002 this research involves more gauged sites. From the 
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results shown in Tables 5.36-5.37 it can be seen that the percentage of difference 

between the at-site frequency estimation and regional estimation in the 2002 study is 

less than the result obtained from this research. Table 5.38 presents comparison of 

quantile flows between the current study and Pokhrel’s research in 2002. However, the 

data used by Pokhrel had been changed by the Water Survey of Canada (WSC), so it is 

hard to compare the results of this study to those from Pokhrel (2002). 

 

Table 5.38 compares the percentage of difference between at-site and regional quantile 

estimates based on results from this study and those obtained from AMEC (2014). The 

at-site and regional quantiles in this study are obtained based on the regional quantile 

functions in regions Y and Z respectively. From the results of comparison it can be 

concluded that the regional quantile function has a better agreement to the observed 

data than the regression on quantile approach. The index-flood procedure can get more 

accurate quantile estimates than the regression models conducted by AMEC (2014).  
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Table 5.38 Comparison of regional frequency estimates for sub regions Y and Z  

 Regional Quantile Flow 

 Station 

Number 
Current Study Results of 2002 

 Q50 Q100 Q50 Q100 % d Q50 % d Q100 

02YM001 281.36 309.41 NA NA NA NA 

02YM003 78.22 86.02 78.30 86.30 0.10 0.12 

02YO006 91.16 100.25 95.00 104.80 4.04 4.34 

02YO008 408.65 449.38 NA NA NA NA 

02YO012 30.97 34.06 NA NA NA NA 

02YQ005 76.35 83.97 NA NA NA NA 

02YR001 57.39 63.11 54.80 60.40 -4.73 -4.49 

02YR002 128.43 141.23 130.90 144.40 1.89 2.20 

02YR003 118.13 129.91 107.60 118.60 -9.79 -9.54 

02YS001 348.23 382.94 339.00 373.80 -2.72 -2.45 

02YS003 27.87 30.64 25.90 28.50 -7.61 -7.51 

02YS005 425.23 467.62 NA NA NA NA 

02YA001 63.18 69.48 NA NA NA NA 

02YC001 352.17 387.28 370.90 409.00 5.05 5.31 

02YD001 198.13 217.88 192.30 212.10 -3.03 -2.73 

02YD002 76.85 84.51 75.20 82.90 -2.19 -1.94 

02YE001 87.92 96.69 NA NA NA NA 

02YG001 600.20 660.03 NA NA NA NA 

02YK004 179.41 197.3 171.80 189.40 -4.43 -4.17 

02YK008 19.73 21.69 NA NA NA NA 

02YL001 1134.26 1247.33 1112.90 1227.20 -1.92 -1.64 

02YL004 85.56 94.09 NA NA NA NA 

02YL008 479.55 527.35 NA NA NA NA 

02YM004 74.22 81.62 NA NA NA NA 

02YJ001 594.48 653.74 623.30 687.30 4.62 4.88 

02YK002 211.85 232.97 235.30 259.50 9.97 10.22 

02YN002 346.89 381.47 362.00 399.20 4.17 4.44 

02ZG001 141.21 158.00 122.30 136.10 -15.46 -16.09 

02ZG002 105.97 118.57 103.30 114.90 -2.58 -3.19 

02ZG003 153.52 171.78 125.90 140.10 -21.94 -22.61 

 



146 

 

Table 5.38 Cont.  

 Regional Quantile Flow  

Station 

Number 
Current Study Results of 2002 

 Q50 Q100 Q50 Q100 % d Q50 % d Q100 

02ZG004 86.46 96.74 75.70 84.20 -14.21 -14.89 

02ZH002 69.42 77.67 66.20 73.70 -4.86 -5.39 

02ZK001 332.11 371.61 322.20 358.50 -3.08 -3.66 

02ZL004 35.96 40.24 NA NA NA NA 

02ZL005 12.61 14.11 NA NA NA NA 

02ZM006 7.92 8.86 6.90 7.60 -14.78 -16.58 

02ZM010 39.14 43.79 NA NA NA NA 

02ZM016 24.57 27.49 NA NA NA NA 

02ZM017 28.06 31.39 NA NA NA NA 

02ZM018 20.54 22.98 NA NA NA NA 

02ZN001 82.32 92.11 78.80 87.70 -4.47 -5.03 

02ZN002 22.87 25.59 NA NA NA NA 

02ZH001 511.95 572.83 489.80 545.00 -4.52 -5.11 

02ZJ001 56.43 63.14 47.90 53.30 -17.81 -18.46 

02ZJ002 29.48 32.98 NA NA NA NA 

02ZB001 791.87 886.04 784.10 872.50 -0.99 -1.55 

02ZC002 774.92 867.07 783.00 871.20 1.03 0.47 

02ZD002 1848.40 2068.22 NA NA NA NA 

02ZE001 619.17 692.81 596.10 663.30 -3.87 -4.45 

02ZE004 90.18 100.91 NA NA NA NA 

02ZF001 445.41 498.38 438.70 488.10 -1.53 -2.11 

02ZK004 188.72 211.16 NA NA NA NA 

Average 6.12 6.41 
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Table 5.39 Comparison of regional frequency estimates of studied sites in 

Newfoundland  

 % difference (Current Study) % difference (2014) 

Station 

Number 
Q50 Q100 Q50 Q100 

02YM001 15.57 18.79 69.00 73.10 

02YM003 -18.90 -22.04 -23.40 -24.70 

02YO006 -24.42 -33.30 10.40 10.00 

02YO008 53.47 6.46 -16.50 -15.80 

02YO012 -8.46 -9.66 22.70 23.50 

02YQ005 -29.51 -35.01 -33.40 -34.20 

02YR001 6.17 7.51 2.80 2.50 

02YR002 -1.44 -5.02 46.30 48.80 

02YR003 5.48 6.99 23.60 23.00 

02YS001 4.56 4.86 19.00 21.20 

02YS003 -7.97 -10.28 27.60 29.70 

02YS005 7.90 11.14 11.60 10.40 

02YA001 -4.89 -7.37 3.50 2.20 

02YC001 -2.16 -2.87 -36.90 -38.70 

02YD001 -2.43 -3.89 4.00 3.10 

02YD002 17.42 19.89 -5.50 -4.20 

02YE001 -2.43 -4.39 -21.60 -20.80 

02YG001 19.24 23.36 24.80 25.20 

02YK004 18.85 22.11 -9.40 -9.80 

02YK008 -30.61 -37.62 10.10 8.30 

02YL001 16.39 18.68 9.20 7.90 

02YL004 -55.31 -81.15 -41.10 -42.40 

02YL008 17.40 20.26 -22.00 -21.70 

02YM004 32.11 36.80 79.60 84.80 

02YJ001 32.11 -6.79 -26.80 -27.10 

02YK002 5.90 7.07 -2.50 -0.50 

02YN002 -12.55 -15.32 -46.50 -47.30 

02ZG001 -35.55 -46.35 -3.00 -4.80 

02ZG002 -7.13 -9.66 NA NA 

02ZG003 4.20 5.95 -15.20 -15.70 
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Table 5.39 Cont.  

 % difference (Current Study) % difference (2014) 

Station 

Number 
Q50 Q100 Q50 Q100 

02ZG004 -25.06 -34.54 -43.20 -44.20 

02ZN002 6.09 8.06 -6.10 -5.80 

02ZH001 -2.41 -2.07 -24.20 -26.20 

02ZJ001 -48.18 -66.60 -28.10 -29.90 

02ZJ002 15.05 17.33 -6.70 -7.60 

02ZB001 -10.43 -11.77 -51.80 -52.90 

02ZC002 11.75 13.12 54.00 57.20 

02ZD002 -0.52 0.46 17.60 17.60 

02ZE001 26.38 31.25 36.80 37.70 

02ZE004 15.99 18.60 52.70 54.00 

02ZF001 0.42 -1.22 -10.10 -11.10 

02ZK004 -7.13 -8.81 -2.20 -3.40 

Absolute 

average  
15.16 17.29 23.81 24.36 

 

 

5.4 Verification of the results  

Similarly to the verification in Labrador, eight sites in sub region Y are selected to 

assess the accuracy of the regional flood frequency model. The basic information of 

the tested sites, including the station number, station name, length of record, drainage 

area and range of record is listed in Table 5.40. Figure 5.7 shows that the estimated 

regional quantiles agrees well with the observed data.  
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Table 5.40 Basic information of verification stations in sub region Y in Newfoundland  

Station 

Number 
Station Name 

Length 

of Years 

Drainage 

Area 

Range of 

Records(year) 

02YF001 Cat Arm River Above Great Cat Arm 14 611 1969-1982 

02YH001 Bottom Creek Near Rocky Harbour 12 33.4 1985-1997 

02YJ003 
Pinchgut Brook At Outlet Of Pinchgut 

Lake 
11 119 1986-1996 

02YK003 Sheffield River At Sheffield Lake 11 362 1956-1966 

02YK007 Glide Brook Below Glide Lake 11 112 1984-1996 

02YO007 Leech Brook Near Grand Falls 7 88.3 1987-1995 

02YP001 Shoal Arm Brook Near Badger Bay 13 63.8 1982-1996 

02YQ004 
Northwest Gander River Near Gander 

Lake 
10 2200 1985-1998 

 

 

 

Figure 5.10 Regional frequency model has a good agreement with observed value 
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The quantile estimates between at-site and regional analysis based on the index flood 

procedure and regression models (AMEC, 2014) are compared using the data at 

gauged sites which are not included in this study due to short flood data. Table 5.41 

lists the flood information of tested sites in four sub regions.  

 

Table 5.41 Flood information of gauged sites for verification 

Station 

Number 

Station Name 

Length 

of 

Years 

Drainage 

Area 

mean Region 

02ZM019 
Virginia River at Cartwright 

Place 
14 5.55 3.639 A 

02ZM021 South Brook at Pearl Town Road 13 9.21 10.809 A 

02ZG005 Little Barasway Brook near Molliers 6 28.2 24.03 A 

02YN004 Star Brook Above Star Lake 14 276 121.49 B 

02YO007 Leech Brook Near Grand Falls 7 88.3 29.81 B 

02YP001 Shoal Arm Brook Near Badger Bay 13 63.8 25.68 B 

02YQ004 
Northwest Gander River Near Gander 

Lake 

10 2200 647.4 B 

02YF001 Cat Arm River Above Great Cat Arm 13 611 272.8 C 

02YG002 Middle Arm Brook Below Flatwater Pond 10 224 49.77 C 

02YK003 Sheffield River At Sheffield Lake 11 362 65.45 C 

02YK007 Glide Brook Below Glide Lake 11 112 24.1 C 

02YJ003 
Pinchgut Brook At Outlet of Pinchgut 

Lake 

11 119 30.04 D 

02ZA003 Little Codroy River Near Doyles 14 139 161.9 D 
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Figures 5.8a-d show the comparison of quantile estimates between at-site and regional 

quantile estimates for Q50 and Q100 at tested sites in sub regions A, B, C and D based 

on the index-flood procedure and regression models (AMEC, 2014) in the Island of 

Newfoundland respectively. “L-Q50” and “L-Q100” mean the quantile estimates for 

Q50 and Q100 obtained based on the index-flood procedure. “A-Q50” and “A-Q100” 

mean quantile estimates for Q50 and Q100 obtained from the study conducted by 

AMEC (2014).  
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(b) 
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(d) 

Figure 5.11 Comparison of quantile estimates for Q50 and Q100 between at-site and 

regional analysis in four sub regions in Newfoundland  

 

 

The quantile estimates when the return years are 5, 10, 20, 50, 100 and 200 for 

regional and at-site analysis based on the index-flood procedure and the regional 

analysis based on the regression models obtained from AMEC(2014) at each tested 

sites are plotted in Figures 5.9. The blue lines, red lines and green lines represent the 

regional and at-site analysis based on the index-flood procedure and regional analysis 

based on the regression-on-quantile approach respectively.  
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Figure 5.12 Comparison of quantile estimates between the index-flood procedure and 

regression models for each tested site in Newfoundland  

 

 

The verification is also carried out in sub regions Y and Z. Fit regional and at-site LN3 

parameters to the flood data at tested sites, then calculate the quantile estimates for 

different return years based on the index-flood procedure. Plot and compare the 

quantile estimates with the results obtained from regression models developed by 

AMEC (2014). Figures 5.10-5.11 plot the relationship between at-site and regional 

quantile estimates based on the index-flood method and the regression models for Q50 

and Q100 respectively.  
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Figure 5.13 Comparison of quantile estimates for Q50 and Q100 between at-site and 

regional analysis in Region Y 

 

 

 

Figure 5.14 Comparison of quantile estimates for Q50 and Q100 between at-site and 

regional analysis in Region Z 

 

 

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000

L-Q50

L-Q100

A-Q50

A-Q100

R
eg

io
n

al
 a

n
al

ys
is

  

At-site analysis  

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

A-Q50

A-Q100

L-Q50

L-Q100R
eg

io
n

al
 a

n
al

ys
is

  

At-site analysis  



158 

 

The plots in Figure 5.12 show the relationship between regional and at-site quantile 

estimates based on the index-flood method and the regional analysis based on the 

regression equations developed by AMEC (2014) at each single tested site. The blue 

lines, red lines and green lines represent the regional and at-site analysis based on the 

index-flood procedure and regional analysis based on the regression-on-quantile 

approach respectively.  
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Figure 5.15 Comparison of quantile estimates between the index-flood procedure and 

regression models for each tested site in Newfoundland  

 

 

From most of the figures shown above, it can be seen that the method of index-flood 

can provide more accurate quantile estimates than the method of regression models. 

And the regional quantile functions obtained from regions Y and Z provide better fit to 

the observed data than those from regions A, B, C and D. 

 

For the estimation of index flood at ungauged sites, Table 5.41 gives the nonlinear 

regression equations relating the index flood and sites characteristics.  

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

0 100 200 300

Q
u

an
ti

le
 e

st
im

at
e

s 

Return Year (T) 

02ZM019 

0

5

10

15

20

25

30

0 100 200 300

Q
u

an
ti

le
 e

st
im

at
e

s 
 

Return Year (T) 

02ZM021 



162 

 

Table 5.42 Nonlinear regression equations and R
2
 for sub regions Y and Z in 

Newfoundland 

Sub 

Regions 
Regression Equations R2 

Y Q=2.76*DA
0.8351

LAF
-0.2379

DRD
0.553

 0.90 

Z Q=4.344*DA
0.8036

LAF
-0.1469

DRD
0.526

LSF
-0.921

 0.92 

 

 

5.5 Newfoundland region  

AMEC (2014) analyzed the regional quantile analysis when the Newfoundland was 

treated as a single homogeneous region. However, using L-moments based 

index-flood procedures the result of heterogeneity measure shows that the 

Newfoundland is definitely not a homogeneous region. Therefore, the quantile 

analysis when the Newfoundland is treated as a single region is not carried out based 

on the L-moments based index-flood procedure.  
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CHAPTER 6 

SUMMARY OF RESULTS 

6.1 General  

Although the method of regression on quantile is still being used for regional flood 

frequency analysis in Newfoundland and Labrador, the increase and world wide 

applications of the index-flood procedure based on L-moments highlight its significant 

advantages over the regression method in yielding robust quantile estimates. The 

successful application of the index-flood method for the Island of Newfoundland by 

Pokhrel (2002) motivated this study to include Labrador. Compared to the traditional 

regression on quantile method which fit a probability distribution to a single station or 

a series of stations in a region and develop quantile regression models with site 

characteristics, the index-flood procedure however focuses on describing a regional 

growth curve by multiplying the index flood with the regional growth factor---q(F) for 

all of the available sites in a homogeneous region. To calculate the regional quantile 

estimates using the index-flood procedure based on the L-moments, the data should 

first be screened to make sure that there are no outliers and that all of the data are not 

discordant and will become a homogeneous region, then to delineate the regional 

growth curve based on the regional frequency distribution.  

 

Pokhrel (2002) analyzed 39 gauged sites in Newfoundland and developed regional 
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frequency flood quantile functions based on two regionalization scheme using 

L-moments. The latest regional flood frequency by AMEC (2014) developed regional 

quantile regression models by fitting the LN3 distribution to the Island of 

Newfoundland and Labrador, respectively. The goal of this thesis is to develop 

regional flood frequency models and to obtain the quantile flows based on L-moments 

index-flood procedure using the latest flood data and to compare the quantile results 

with those obtained by Pokhrel (2002) and AMEC (2014). In summary, this thesis: 

 

1) Conducted a regional flood frequency analysis based the on L-moments 

index-flood procedure for Labrador and the Island of Newfoundland, respectively.  

 

2) Compared quantile floods with those from Pokhrel (2002) and AMEC (2014).  

 

3) Developed nonlinear regression equations relating the index flood and sites 

characteristics for estimating the index flood at ungauged sites for Labrador and 

Newfoundland.  

 

4) Confirmed and verified the accuracy of the results by testing the quantile 

estimates at gauged sites with flood records not used to develop the regional models.   
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6.2 Conclusions 

6.2.1 Labrador  

1) 10 gauged sites with at least 15 years of record are selected for the quantile 

estimates. Sites 03OC003 and 03OE010 were found to be discordant from other sites, 

but the results of heterogeneity test suggested that it was better to keep all of the sites 

for further study.  

 

2) The results of the goodness-of-fit test confirmed that the three-parameter 

generalized extreme-value (GEV) is the best fitting regional frequency distribution as 

a result of its lowest ∣Z
DIST∣value.  

 

3) Regional quantile estimates at each gauged sites were obtained using regional 

GEV quantile function.  

 

4) The estimated index flood at ungauged sites was calculated from a nonlinear 

regression relationship between the index flood and site characteristics at gauged sites 

in Labrador.   

 

5) The regional quantile functions were tested and found to agree well with the 

observed flood data.  

 

6) The index-flood procedure based on the L-moments proved to have a better 
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performance than the method of regression on quantile in terms of estimating regional 

flood frequency. The regional quantile function produced more accurate and 

reasonable quantile estimates than those obtained by AMEC (2014).  

 

 

6.2.2 Island of Newfoundland   

1) Except for site 02ZM009 in sub region A, all of the sites in sub regions A, B, C 

and D were tested to be not discordant. The results of the heterogeneity test showed 

that excluding site 02ZM009 in sub region A, all of the regions were found to be 

homogeneous for quantile estimates.  

 

2) The regional frequency distributions for each sub regions were selected according 

to the results of goodness-of-fit test, but the best fitted ones were determined based on 

the results of robustness test. The three-parameter LN3 distribution was better than the 

GEV distribution in sub regions A, B and C, and it worked well in sub region D which 

avoided the inconvenience of using the PE3 quantile function.  

 

3) The quantile flows estimated from the index-flood procedure were found to 

provide better fit to the observed data than the regression on quantile method. 

Although the quantile estimates obtained from this thesis could not be compared 

directly with those from Pokhrel (2002) due to the changed flood data, their results 
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were still similar.  

 

4) The nonlinear regression models relating the index flood and sites characteristics 

at gauged sites were used to estimate the index flood at ungauged sites in a 

homogeneous region. The Drainage Area (DA) and the Lake Attenuation Factor (LAF) 

were used to develop the regression models in sub regions A, B and C. In sub region 

D, the Drainage Area (DA) and the Lakes and Swamps Factor (LSF) were used. The 

lower R
2
 may be due to its small sample size.  

 

5) The sub regions Y and Z suggested by Water Survey of Canada were found to be 

homogeneous and results of the goodness-of-fit test and robustness test indicated that 

the three parameters lognormal (LN3) distribution was the best fitted regional 

distribution for regions Y and Z.  

 

6) Compared to the regionalization scheme of four sub regions proposed in 1999, 

regions Y and Z were found to provide better fit to the observed data. And they were 

tested to be more robust for quantile estimates.  

 

6.3 Recommendations  

1) The regionalization scheme of Y and Z regions from Water Survey of Canada 

(WSC) used for Newfoundland are recommended. Compared to the regionalization 
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scheme of using four sub regions, the regional quantile functions in regions Y and Z 

provide better fit to the observed data and the larger sample size per region provided a 

more robust regional frequency distribution. 

  

2) The use of gauged sites with shorter record that have not been used for model 

development for testing the accuracy of regional quantile models are recommended. 

AMEC (2014) estimated the regional quantile estimates based on the quantile 

estimates at single gauged sites. Verification of the accuracy of estimates using other 

gauged sites not used in model development was not attempted.  

 

3) Future updates of regional flood frequency analysis by the government should be 

based on the L-moments index-flood approach as it has a rich statistical basis, used 

worldwide and has been shown to produce more accurate flood quantile estimates that 

the outdated regression on quantile approach.  

 

 

 

 

 

 

 

 

 

  



169 

 

REFERENCES 

 

 

Abolverdi, J. and Khalili, D. (2010). Development of regional rainfall annual maxima 

for southwestern Iran by L-moments. Water Resources Management. Vol, 24, pp 

2501-2526.  

 

AMEC Environment & Infrastructure (2014). Regional flood frequency analysis for 

Newfoundland and Labrador 2014 update.  

 

Anderson, T. W. and Darling, D. A. (1954). A test of goodness-of-fit. Journal of the 

American Statistical Association. Vol 49., pp. 765-769.  

 

Ashkar, F. and Quarda, T.B.M.J. (1996). On some methods of fitting the generalized 

Pareto distribution. J. Hydrol., 177,117-141. 

 

Atiem, A. and Harmancioglu, N.B. (2006). Assessment of regional floods using 

L-moments approach: the case of the River Nile. Water Resour Manag. 20:723-747. 

 

Atiem, I.A. and Harmancioglu, N.B. (2006). Assessment of regional floods using 

L-moments approach: the case of the River Nile. Water Resources Management. 

20:723-747. 

 

Basu, B. and Srinivas, V. V. (2014). Regional flood frequency analysis using 

Kernel-based fuzzy clustering approach. Water Resour. Res. 50: 3295-3316. 

 

Barnett, V. and Lewis, T. (1994). Outliers in statistical data, 3
rd

 ed. Wiley, Chichester, 

U.K. 

 

Beable, M.E. and McKerchar, A.I. (1982). Regional flood estimation in New Zealand. 

Water and Soil Technical Publication 20, Ministry of Works and Development, 

Wellington, N.Z.  

 

Bharath, R. and Srinivas, V.V. (2015). Delineation of homogeneous 

hydrometeorological regions using wavelet based global fuzzy cluster analysis. 

International Journal of Climatology.  

 

Bhaskar, N. R., and O’Connor, C. A. (1989). Comparison of method of residuals and 



170 

 

cluster analysis for flood regionalization, J. Water Resour. Plann. Manage., 115(6), 

793–808. 

 

Borah, D.K. and Bera, M. (2004). Watershel-scale hydrologic and nonpoint-source 

pollution models: Review of applications. Trans. ASAE 47(3):789-803. 

 

Boyle, D.P., Gupta, H.V., and Sorooshian, S. (2000). Toward improved calibration of 

hydrologic models: Combining the strengths of manual and automatic methods. Water 

Resources Res. 36(12): 3663-3674. 

 

Brath, A., Castellarin, A., Franchini, M. and Galeati, G. (2001). Estimating the index 

flood using indirect methods. Hydrol. Sci. J. 46(3), 399-418. 

 

Burn, D. (1989). Cluster analysis as applied to regional flood frequency. J. Water 

Resour. Plann. Manage. 115(5), 567-582. 

 

Burn, D.H. (1988). Cluster analysis as applied to regional flood frequency. Journal of 

Water Resources Planning and Management, 115, 567-82. 

 

Burn, D.H. and Goel, N.K. (2000). The formation of groups for regional flood 

frequency analysis. Journal of Hydrology Science. 45(1):97-112. 

 

Chow, V.T. (Ed), (1964). Handbook of Hydrology. McGraw Hill, New York.  

 

Cunnane, C. (1978). Unbiased plotting positions—a review. Journal of Hydrology, 37, 

205-22.  

 

Cunnane, C. (1988). Methods and merits of regional flood frequency analysis. J 

Hydrol 100:.269-290. 

 

Epstein, B. (1960a). Tests for the validity of the assumption that the underlying 

distribution of life is exponential: Part I. Technometrics, 2:83-101.  

 

Epstein, B. (1960b). Tests for the validity of the assumption that the underlying 

distribution of life is exponential: Part II. Technometrics, 2:167-183. 

 

Dalrymple, T. (1960). Flood frequency analysis, US Geology Survey on Water Supply 

Paper 1543-A, Reston, VA.  

 

De Coursey, D.G. (1972). Objective regionalization by peak flow rates. Proc. Second 

Int. Symp, In Hydrology, Fort Collins, Colo, pp.385-405. 

 



171 

 

Downs, G.M. and Barnard, J.M. (1992). Clustering of Chemical Structures on the 

Basis of Two-Dimensional Similarity Measures. J. Chem. Inf. Comput. Sci. 1992, 32, 

644-649. 

 

Fill, H.D. and Stedinger, J.R. (1995). Homogeneity tests based upon Gumbel 

distribution and a critical appraisal of Dalrymple’s test. Journal of Hydrology 166, 

81-105.  

 

Fill, H.D.and Stedinger, J.R. (1998). Using regional regression within index flood 

procedures and an emporocal Bayesian estimator. Journal of Hydrology 210, 128-145. 

 

Flood Risk and Vulnerability Analysis Project (2012). AMEC Environment & 

Infrastructure a Division of AMEC Americas Limited  

 

Fovell, R. G. and Fovell, M.-Y.C. (1993). Climate zones of the conterminous United 

States defined using cluster anlaysis. Journal of Climate, 6, 2103-35. 

 

Gabriele, S. and Chiaravalloti, F. (2012). Searching regional rainfall homogeneity 

using atmospheric fields. Advances in Water Resources. Vol, 53, 163-174.  

 

Gingras, D., Adamowski, K., and Pilon, P.J. (1994). Regional flood equations for the 

provinces of Ontario and Quebec. Water Resources Bulletin, 30, 55-67. 

 

Griffis, V.W. and Stedinger, J.R. (2007). Evolution of flood frequency analysis with 

Bulletin 17. Journal of Hydrologic Engineering. pp, 283:297. 

 

Government of Newfoundland and Labrador (1984). Regional flood frequency 

analysis for the Island of Newfoundland. Newfoundland Flood Damage Reduction 

Program, Department of Environment and Lands.  

 

Government of Newfoundland and Labrador (1990). Regional flood frequency 

analysis for the Island of Newfoundland. Government of Newfoundland and Labrador, 

Department of Environment and Lands, Water Resources Division.  

 

Government of Newfoundland and Labrador (1999). Regional flood frequency 

analysis for the Island of Newfoundland. Government of Newfoundland and Labrador, 

Department of Environment and Lands, Water Resources Division.  

 

Grubbs, F. E. (1950). Sample criteria for testing outlying observations. Annals of 

Mathematical Statistics, 21:27-58. 

 

Gupta, H.V., Sorooshian, S. and Yapo, P.O. (1999). Status of automatic calibration for 



172 

 

hydrologic models: Comparison with multilevel expert calibration. J. Hydrologic Eng. 

4(2)135-143. 

 

Greenwood, J.A., Landwehr, J.M., Matalas, N.C., and Wallis, J.R. (1979). Probability 

weighted moments: Definition and relation to parameters of several distributions 

expressable in inverse form. Water Resources Research, 15, 1049-54. 

 

Hosking, J.R., Wallis, J.R. and Wood, E.F. (1985). Estimation of the generalized 

extreme-value distribution by the method of probability weighted moments. 

Technometrics 27(3), 251-261. 

 

Hosking, J.R.M. (1990). L-moments: Analysis and estimation of distributions using 

linear combinations of order statistics. Journal of the Royal Statistical Society Series 

B, 52, 105-24.  

 

Hosking, J.R.M. and Wallis, J.R. (1993). Some useful statistics in regional frequency 

analysis. Water Resources Research 29(2), 271-281.  

 

Hosking, J.R.M. and Wallis, J.R. (1997). Regional frequency analysis. An approach 

based on L-moments. Cambridge University Press. 

 

IH( Institute of Hydrology) (1999). Flood Estimation Handbook. IH, Wallingford, 

UK.  

 

Jingyi, Z. and Hall, M. (2004). Regional flood frequency analysis for the gan-ming 

river basin in China. Journal of Hydrology. 296: 98-117. 

 

Jin, M. and Stedinger, J.R. (1989). Flood frequency analysis with regional and 

historical information. Water Resour Res 25(5):925-936. 

 

Kalkstein, L.S; Tan, G. and Skindlov, J.A. (1987) An evaluation of three clustering 

procedures for use in synoptical climatological classification. J. Clim. Appl. Meteorpl. 

26,717-730. 

 

Kjeldsen, T.R. and Jones, D. (2007). Estimation of an index flood using data transfer 

in the UK. Hydrological Sciences. 52(1):86-98. 

 

Kirby, W. (1974). Flood estimation in the presence of outliers. Proc., Symp. Stat. 

Hydrol., Misc. Pub. 1275, U.S. Dep. Agric., Washington, D.C., pp.97-119. 

 

Lettenmaier, D.P. and Potter, K.W. (1985). Testing flood frequency estimation 

methods using a regional flood generation model. Water Resour. Res. 21(12), 

1903-1914. 



173 

 

Lewis, T. and Fieller, N. R. J. (1978). A recursive algorithm for null distribution for 

outliers: I Gamma samples. Technometrics, 21:371-376.  

 

Lim, Y.H. and Lye, L.M. (2003). Regional flood estimation for ungauged basins in 

Sarawak, Malaysia. Hydrological Sciences Journal 48(1), 79-94. 

 

Lim, Y.H. and Voeller, D.L. (2009). Regional flood estimations in Red River using 

L-moment-based index-flood and Bulletin 17B Procedures. Journal of Hydrologic 

Engineering. pp, 1002-1016. 

 

Lu, L.H. (1991). Statistical methods for regional flood frequency investigations. Ph.D. 

Dissertation, Cornell University, Ithace, NY.  

 

Lu, L.H. and Stedinger, J.R. (1992) Sampling variance of normalized GEV/PWM 

quantile estimators and a regional homogeneity test. Journal of Hydrology 138, 

223-245. 

 

Luis-Perez, F. E., Cruz-Barbosa, R., Alvarez-Olguin,G. (2011). Regional flood 

frequency estimation for the Mexican Mixteca Region by clustering techniques.  

 

Lye, L.M., and Moore, E. (1991). Discussion on "Instantaneous peak flow estimation 

procedures for Newfoundland streams. Water Resources Bulletin, 27(1): 125-127. 

 

Madsen, H., Pearson, C.P., and Rosbjerg, D. (1997). Comparison of annual maximum 

series and partial duration series index-flood modeling. Water Resour Res. 33(4), 

771-782. 

 

Mailhot, A., Lachiance-Cloutier, S., Talbot, G. and Favre, A-C. (2013). Regional 

estimates of intense based on the Peak-Over-Threshold (POT) approach. Journal of 

Hydrology 476, 188-199. 

 

Malekinezhad, H., Nachtnebel, H.P. and Klik, A. (2011). Comparing the index-flood 

and multiple-regression methods using L-moments. Physics and Chemistry of the 

Earth. 36:54-60. 

 

McCuen, R.H, (1985). Statistical Methods for Engineers. Prentice-Hall, Englewood 

Cliffs, N.J.  

 

Mkhandi, S. and Kachroo, S. (1997). Regional flood frequency analysis for Southern 

Afirca Southern African FRIEND. Technical Documents in Hydrology No. 15 

UNESCO, Paris, France  

 



174 

 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, 

T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in 

watershed simulations. American Society of Agricultural and Biological Engineers. 

Vol. 50(3):885-900. 

 

Mosley, M. P. (1981). Delimitation of New Zealand hydrologic regions, J. Hydrol., 49, 

173–192. 

 

Motovilov, Y.G., Gottschalk, L., England, K. and Rodhe, A. (1999). Validation of 

distributed hydrological model against spatial observations. Agric. Forest 

Meteorology, 98-99:257-277. 

 

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual mdels: 

Part 1. A discussin of principles. J. Hydrology 10(3):282-290. 

 

Nathan, R. J. and McMahon, T. A. (1990), Identification of homogeneous regions for 

the purposes of regionalization, J. Hydrol., 121, 217–238. 

 

Natural Environment Research Council (1975). Flood Studies Report, vol. 1. Natural 

Environment Research Council, London.  

 

NERC (Natural Environment Research Council) (1975) Flood Studies Report. NERC, 

London, UK.  

 

Noto, L. V. and Loggia, G. L. (2009). Use of L-moments approach for regional flood 

frequency analysis in Sicily, Italy. Water Resour Manage 23:2207-2229. 

 

Parida, B.P., Kachroo, R.K. and Shrestha, D.B. (1998). Regional flood frequency 

analysis of Mahi-Sabarmati Basin (Subzone 3-a) using index flood procedure with 

L-moments. Water Resources Management. 12:1-12. 

 

Pearson, C.P. (1991). New Zealand regional flood frequency analysis using 

L-moments. The New Zealand hydrological society. J. Hydrol 30(2):53-64. 

 

Pearson, C.P. (1991b). Regional flood frequency for small New Zealand basins, 2: 

Flood frequency groups. Journal of Hydrology (New Zealand), 30, pp.53-64. 

 

Pearson, C.P. (1995). Regional frequency analysis of low flows in New Zealand rivers. 

The New Zealand hydrological society. J Hydrol 33(2):94-122. 

 

Peel, M.C., Wang, O.J., Vogel, R.M. and McMahon, T.A.(2001). The utility of 

L-moment ratios diagram for selecting a regional probability distribution. 

Hydrological Sciences, 46(1). pp, 147-155. 



175 

 

Pitlick, J. (1994). Relation between peak flows, precipitation and physiography for 

five mountains regions in the Western USA. J Hydrol. 158, 219-240. 

 

Pokhrel, J. and Lye, L.M. (2002). Regional flood frequency analysis for the island of 

Newfoundland, Canada using L-moments.  

 

Portela, M.M. and Dias, A.T. (2005). Application of the index-flood method to the 

regionalization of flood peak discharges on the Portugal mainland. In: Brebbia CA. 

Antunes do Carmo JS(eds) River basin management Ⅲ. WIT. Southampton 

 

Poulin, R.Y. (1971). Flood frequency analysis for Newfoundland Streams, Water 

Planning and Operations Branch, Department of Environment, Ottawa.  

 

Quarda, T., Ba, K., Diza-Delgado, C., Carsteanu, A., Cholmani, K., Gingras, H.,  

Quentin, E., Trujillo, E. and Bobee, B. (2008). Intercomparison of regional flood 

frequency estimation methods at ungauged sites for a Mexican case study. Journal of 

Hydrology. 348:40-58. 

 

Rao, A. R. and Srinivas, V. V. (2006). Regionalization of watersheds by Hybrid cluster 

analysis. Journal of Hydrology 318(1-4), 37-56.  

 

Richman, M. B. and Lamb, P. J. (1985). Climatic pattern analysis of three-and 

seven-day summer rainfall in the central United States: Some methodological 

considerations and a regionalization. Journal of Climate and Applied Meteorology, 

24:1325-42. 

 

Robon, A.J. and Reed, D.W. (1999). Statistical procedures for flood frequency 

estimation. Flood estimation handbook. Vol. 3, Institute of Hydrology, Wallingford, 

U.K.  

 

Saf. B. (2009). Regional flood frequency analysis using L-moments for the West 

Mediterranean Region of Turkey. Water Resour Manage. 23:531-551. 

 

Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasam, R. and Hauck, L.M. 

(2001). Validation of the SWAT model on a large river basin with point and nonpoint 

sources. J. American Water Resources Assoc. 37(5):1169-1188. 

 

Scholz, F.W. and Stephens, M.A. (1987). K-sample Anderson-Darling tests. Journal 

of American Statistical Association 82, 918-924. 

 

Shu, C. and Burn, D. H. (2004). Homogeneous pooling group delineation for flood 

frequency analysis using a fuzzy expert system with genetic enhancement, J. Hydrol., 

291, 132–149. 



176 

 

Singh, J., Knapp, H.V. and Demissie, M. (2004). Hydrological modeling of the 

Iroquois River watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, 

III.: IIIinois State Water Survey. Available 

at:www.sws.uiuc.edu/pubdoc/CR/ISWSCR2004-08.pdf.  

 

Srinivas, V. V., Tripathi, S., Rao, A. R., and Govindaraju, R. S. (2008). Regional flood 

frequency analysis by combining self-organizing feature map and fuzzy clustering. 

Journal of Hydrology 348: 148-166. 

 

Sveinsson, O.G.B., Boes, D.C. and Salas, J.D. (2001). Population index flood method 

for regional frequency analysis. Water Resource Research, Vol. 37. 11, pp.2733-2748. 

 

Tasker, G. D. (1982). Comparing methods of hydrologic regionalization, Water 

Resour. Bull., 18(6), 965–970. 

 

U.S. Water Resources Council (1981). Guidelines for determining flood flow 

frequency. Bulletin 17B, Hydrology Committee, Washington, D.C. 

 

Vogel, R.M. and Fennessey, N.M. (1993). L-moments should replace product moment 

diagrams. Water Resour Res. 29(6):1745-1752. 

 

Van Liew, M.W., Veith, T.L., Bosch, D.D., and Arnold, J.G. (2007). Suitability of 

SWAT for the conservation effects assessment project: A comparison on USDA-ARS 

experimental watersheds. J. Hydrologic Eng. 12(2):173-189. 

 

Vogel, R.M. and Wilson, I. (1996). Probability distribution of annual maximum, mean, 

and minimum streamflows in the United State. ASCE J Hydrol Eng 1(2):69-76. 

 

Wallis, J.R. and Wood, E.F. (1985). Relative accuracy of log Pearson Ⅲ procedures. J 

Hydraul Div Am Soc Civ Eng 111(7):1043-1056. 

 

Wallis, J.R., Lettenmaier, D.P., and Wood, E.F. (1991). A daily hydroclimatological 

data set for the continental United States. Water Resources Research, 27, 1657-63. 

 

White, E.L. (1975). Factor analysis of drainage basin properties: classification of 

flood behavior in terms of basin geomorphology. Water Resour. Bull, 11(4):676-687. 

 

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. 

In Spatial Statistics and Mdels, 443-460.  

 

Wiltshire, S. E. (1986). Regional flood frequency analysis. II. Multivariate 

classification of drainage basins in Britain, Hydrol. Sci. J., 31(3), 335–346. 

 



177 

 

Yue, S. and Wang, C.Y. (2004a). Regional probability distribution type of Canadian 

annual streamflow by L-moments. J Hydrol 43(1):59-73.  

 

Yue, S and Wang, C.Y. (2004b). Possible regional probability distribution type of 

Canadian annual stramflow by L-moments. Water Resour Manag. 18:425-438. 

 

Zadeh, S.M. (2012). Low flow frequency study for Newfoundland and Labrador., M. 

Eng. Thesis, Memorial University of Newfoundland 

 

 

 

 

 

 

 

 

 

 

 

  



178 

 

APPENDICES 

 

A-1 

(Translated FORTRAN code provided by Hosking and Wallis, 1997) 

Matlab code for Discordancy Measure Di  

 

 

% File: Di_whole.m 

% This macro computes the discordancy measures of the individual  

% sites in the group 

clear; 

a=xlsread ('c:\users\lily\desktop\a.xlsx'); % File  

% ratios (t, t3, t4) of the sites in the group 

n=input('enter the number of sites in the group:'); 

ubar=[0;0;0]; 

for i=1:n 

    ubar=ubar+1/n*a(i,1:3)'; 

end 

A=zeros(3); 

for i=1:n, 

    A=A+(a(i,1:3)'-ubar)*(a(i,1:3)'-ubar)'; 

end 

for i=1:n, 

    Di(i)=1/3*n*(a(i,1:3)'-ubar)'*inv(A)*(a(i,1:3)'-ubar); 

end 

disp('==========='); 

disp('The Di Statistics follow'); 

disp('==========='); 

Di' 
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A-2 

(Translated FORTRAN code provided by Hosking and Wallis, 1997) 

Matlab code for Heterogenity Measure H  

 

 

clc; 

clear all; 

 

 

v=input(' Enter the weighted sd of sample L-CVs for the region: '); 

ns=input(' Enter the number of sites in this region: '); 

nrg=input(' Enter the number of regions to be simulated: '); 

eps=input(' Enter the location parameter of kappa distribution: '); 

alpha=input(' Enter the scale parameter of kappa distribution: '); 

k=input(' Enter the shape parameter of kappa distribution: '); 

h=input(' Enter the 4th parameter of kappa distribution: '); 

 

 

%open excel file with number of records at each site within the region in  

%it (it should be in the same folder as this M-file  

%sheet1 of this excel file contains the values 

% 

[type, sheets] = xlsfinfo('Sites_records.xlsx'); 

SitesMatrix = xlsread('Sites_records.xlsx', 'Sheet1'); 

disp ('simulating...please wait'); 

disp ('  '); 

for k1=1:nrg, 

    for k2=1:ns, 

        nrec=SitesMatrix(k2); 

        y=0; 

        for i=1:nrec, 

            y(i)=eps+alpha/k*(1-((1-(rand)^h)/h)^k); 

        end 

        %mode='descend'; 

        %y_sort=sort(y,mode); 
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        y_sort=sort(y); 

        x=y_sort/mean(y); 

        x1=0; 

        for j=1:nrec, 

            x1(j)=x(j)*(j-1); 

        end 

        x2=sum(x1)/(nrec*(nrec-1));  %b1 

        x3=2*x2-mean(x);             %l2=2*b1-b0 

        x4(k2)=x3/mean(x);           %l-CV=l2/l1 

    end 

    for k3=1:ns, 

        x5(k3)=x4(k3)*SitesMatrix(k3); 

    end 

    x6=sum(x5)/sum(SitesMatrix); 

    for l=1:ns, 

        x7(l)=SitesMatrix(l)*((x4(1)-x6)^2)/sum(SitesMatrix); 

    end 

    x8(k1)=sqrt(sum(x7)); 

    k1 

end 

H=(v-mean(x8))/std(x8); 

beep 

disp ('Results:'); 

disp ('==============================='); 

disp ('   ') 

if and(lt(H,1), ge(H,0)) 

    disp ('The region is homogeneous'); 

    disp ('  '); 

elseif H<0 

    disp ('The L-moments are correlated'); 

    disp ('  '); 

elseif and (ge(H,1), lt(H,2)) 

    disp('The region is possibly heterogeneous'); 

    disp('  '); 

else 

    disp('The region is definitely heterogeneous: '); 

    disp('  '); 
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end 

 

fprintf ('The heterogeneity measure, H=%6.2f\n', H); 

fprintf ('The meand of simulated regions is, mean=%6.4f\n', mean(x8)); 

fprintf( 'The standard deviation of simulated regions is, std=%6.4f\n', std(x8)); 
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A-3 

(Translated FORTRAN code provided by Hosking and Wallis, 1997) 

Matlab code for Goodness-of-fit Test  

 

 

clear all; 

clc; 

 

%this program calculates the goodness of fit measure 'z' 

%in the first part it computes the bias and standard deviation of the 

%sample regional L-Kurtosis. 

 

%In the next part this program computes one part of calculations needed in 

%goodness of fit test. (Calculating tau-4 for each candidate distribution) 

 

%the candidate distribution names are as follow: 

% GLO=Generalized Logistic Distribution 

% GEV=Generalized Exterme Value Distribution 

% LN3=Lognormal Distribution 

% PE3=Pearson type III Distribtuion 

% GPA=Generalized Pareto Distribuion 

 

ns=input(' Enter the number of sites in this region: '); 

nrg=input(' Enter the number of regions to be simulated: '); 

 

 

eps=input(' Enter the location parameter of kappa distribution: '); 

alpha=input(' Enter the scale parameter of kappa distribution: '); 

k=input(' Enter the shape parameter of kappa distribution: '); 

h=input(' Enter the 4th parameter of kappa distribution: '); 

%distr=input('Enter the candidate distribution name:', 's'); 

 

Tau3=input(' Enter regional average L-Skewness tau3 for this region: '); 

t4R=input(' Enter regional average L-Kurtosis for this region: '); 
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%open excel file with number of records at each site within the region in  

%it (it should be in the same folder as this M-file  

%sheet1 of this excel file contains the values 

% 

[type, sheets] = xlsfinfo('Sites_records.xlsx'); 

SitesMatrix = xlsread('Sites_records.xlsx', 'Sheet1'); 

disp ('simulating...please wait'); 

disp ('  '); 

for k1=1:nrg, 

    for k2=1:ns, 

        nrec=SitesMatrix(k2); 

        y=0; 

        for i=1:nrec, 

            y(i)=eps+alpha/k*(1-((1-(rand)^h)/h)^k); 

        end 

        mode='descend'; 

        y_sort=sort(y,mode); 

        x=y_sort/mean(y); 

        x1=0; 

        x2=0; 

        x3=0; 

        for j=1:nrec, 

            x1(j)=x(j)*(j-1); 

            x2(j)=x(j)*(j-1)*(j-2); 

            x3(j)=x(j)*(j-1)*(j-2)*(j-3); 

        end 

        b0=mean(x); 

        b1=sum(x1)/(nrec*(nrec-1)); 

        b2=sum(x2)/(nrec*(nrec-1)*(nrec-2)); 

        b3=sum(x3)/(nrec*(nrec-1)*(nrec-2)*(nrec-3)); 

         

        l1=b0; 

        l2=2*b1-b0; 

        l3=6*b2-6*b1+b0; 

        l4=20*b3-30*b2+12*b1-b0; 

         

        t(k2)=l2/l1; 
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        t3(k2)=l3/l2; 

        t4(k2)=l4/l2; 

    end 

     for i=1:k2, 

         t4r(i)=SitesMatrix(i)*t4(i)/sum(SitesMatrix); 

     end 

     

     T4(k1)=sum(t4r) 

end 

%calculate the bias of t4R 

for k1=1:nrg, 

   b4(k1)=(T4(k1)-t4R)/nrg; 

   b5(k1)=(T4(k1)-t4R)^2; 

end 

%bias for t4R 

B4=sum(b4); 

%standard deviation of t4R 

B5=sum(b5); 

sigma4=sqrt((B5-nrg*B4^2)/(nrg-1)); 

beep 

disp('======================================='); 

fprintf ('The Bias of regional L-Kurtosis, B4= %8.4f\n', B4); 

fprintf ('The Standard deviation of regional L-Kurtosis, Sigma4= %8.4f\n', sigma4); 

      

%if distr=='GLO' 

    %Tau4distr=0.16667*Tau3^0+0.83333*Tau3^2; 

%elseif distr=='GEV' 

    %Tau4distr=0.10701*Tau3^0+0.11090*Tau3^1+0.84838*Tau3^2-0.06669*Tau3

^3+0.00567*Tau3^4-0.04208*Tau3^5+0.03763*Tau3^6; 

%elseif distr=='LN3' 

    %Tau4distr=0.12282*Tau3^0+0.77518*Tau3^2+0.12279*Tau3^4-0.13638*Tau3

^6+0.11368*Tau3^8; 

%elseif distr=='PE3' 

    %Tau4distr=0.12240*Tau3^0+0.30115*Tau3^2+0.95812*Tau3^4-0.57488*Tau3

^6+0.19383*Tau3^8; 

%elseif distr=='GPA' 

    %Tau4distr=0.20196*Tau3^1+0.95924*Tau3^2-0.20096*Tau3^3+0.04061*Tau3
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^4; 

%else 

    %disp('wrong name was entered for candidate distribution'); 

%end 

 

Tau4distr(1)=0.16667*Tau3^0+0.83333*Tau3^2; 

Tau4distr(2)=0.10701*Tau3^0+0.11090*Tau3^1+0.84838*Tau3^2-0.06669*Tau3^3+

0.00567*Tau3^4-0.04208*Tau3^5+0.03763*Tau3^6; 

Tau4distr(3)=0.12282*Tau3^0+0.77518*Tau3^2+0.12279*Tau3^4-0.13638*Tau3^6+

0.11368*Tau3^8; 

Tau4distr(4)=0.12240*Tau3^0+0.30115*Tau3^2+0.95812*Tau3^4-0.57488*Tau3^6+

0.19383*Tau3^8; 

Tau4distr(5)=0.20196*Tau3^1+0.95924*Tau3^2-0.20096*Tau3^3+0.04061*Tau3^4; 

 

%distr(1)='GLO'; 

%distr(2)='GEV'; 

%distr(3)='LN3'; 

%distr(4)='PE3'; 

%distr(5)='GPA'; 

distr=['GLO';'GEV';'LN3';'PE3';'GPA']; 

 

for j=1:5, 

Zdist(j)=(Tau4distr(j)-t4R+B4)/sigma4; 

 fprintf ('The L-Kurtosis of candidate distribution is: %8.6f\n', Tau4distr(j)); 

 fprintf ('The goodness of fit measure, Zdist of candidate distribution %-5.10s', 

distr(j)), fprintf(' is: %8.6f\n', Zdist(j)); 

 %disp('The goodness of fit measure, Zdist of candidate distribution', distr(j), 'is=', 

Zdist(j)); 

 if abs(Zdist(j))<= 1.64 

     disp('The candidate distribution has accepted fit to the data'); 

 else 

     disp('The candidate distribution does not give an adequate fit to the data'); 

 end 

     disp('==============='); 

end 

  

       beep  
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A-4 

(Translated FORTRAN code provided by Hosking and Wallis, 1997) 

Matlab code for Robustness Test GEV-LN3 

 

 

% Test for robustness of GEV distribution when the underlying distribution 

% is LN3 

 

clear; 

AA=xlsread ('c:\users\A\desktop\AA.xlsx'); %contains the sites' record lengths in the 

region 

sum_nrec=sum(AA); 

ns=input('Enter no. of sites in the regions: '); 

Nsim=input('Desired no. of simulated regions: '); 

disp('AA'); 

% The parameters of the underlying distributin LN3 follow; 

% there are 25 sites in this region 

kp=[-0.859853864 -0.539058284 -0.29690173 -0.774778349 -0.083821874

 -0.41765089 -0.572114048 -0.563658075 -0.310502906 -0.504448466

 -0.314536617 -0.293502261 -0.201682941 -0.048388565

 -0.267193256 -0.343581688 -0.955814249 -0.310020389

 -0.46349257 -0.395871537 -0.315050575 0.028419262 -0.275899789

 -0.530709922 -0.499548854 

]; 

alphap=[0.356810964 0.366683934 0.385805653 0.359923246

 0.373261594 0.358354204 0.431733136 0.395900982

 0.357851848 0.20252824 0.343075544 0.30119624 0.317241618

 0.335405635 0.382015357 0.418186582 0.368373875

 0.296272946 0.419679787 0.292813199 0.415747263

 0.282508269 0.296924738 0.324460169 0.381774571 

]; 

epsp=[0.814463553 0.893649372 0.941409107 0.83748436 0.984211374

 0.92183467 0.865631313 0.879034406 0.943015155 0.945631441

 0.944714204 0.954838175 0.967684739 0.991789192

 0.947947692 0.925830772 0.777041154 0.952988277 0.897376406
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 0.939737085 0.932809107 1.003971733 0.958198202

 0.907446894 0.898459234 

]; 

indxfld=[66.64 50.01 72.45 40.8 32.76 156.73 16.97 5.951 3.738

 29.52 11.594 13.24 9.694 38.85 10.794 241.6 26.63 13.91

 373.7 365.7 872.3 292.2 42.56 210.2 89.06 

]; 

F=[0.9;0.99;0.999]; % The cumulative probabilities corresponding to 10, 100 and 

1000 yr-return periods 

 

xF=zeros(ns,length(F)); 

% estimate the true quantiles based on the underlying distribution at each 

% site 

for i=1:ns 

    for j=1:length(F) 

        xF(i,j)=epsp(i)+alphap(i)/kp(i)*(1-exp(-kp(i)*norminv(F(j)))); 

        qT(i,j)=1*xF(i,j); 

    end 

end 

 

% Beginning of the regional simulation based on the underlying distribution 

  

xF_SIM=zeros(ns,length(F)); 

XF_SIM=zeros(ns,length(F)); 

bias=zeros(ns,length(F)); 

Bias=zeros(ns,length(F)); 

BIAS=zeros(ns,length(F)); 

BIAS_SIM=zeros(ns,length(F)); 

relSE=zeros(ns,length(F)); 

relMSE=zeros(ns,length(F)); 

RELRMSE=zeros(ns,length(F)); 

RELMSE=zeros(ns,length(F)); 

for m=1:Nsim, 

    for i=1:ns, 

        nrec=AA(i); 

        y=0; 

        for i1=1:nrec 
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            y(i1)=epsp(i)+alphap(i)/kp(i)*(1-exp(-kp(i)*norminv(rand))); 

        end 

        x=sort(y); 

        b0=mean(x); 

        indxfld(i)=b0; 

        x1=0; x2=0; x3=0; x4=0; 

        for j=1:nrec, 

            x1(j)=x(j)*(j-1); 

            x2(j)=x(j)*(j-1)*(j-2); 

            x3(j)=x(j)*(j-1)*(j-2)*(j-3); 

            x4(j)=x(j)*(j-1)*(j-2)*(j-3)*(j-4); 

        end 

        b1=sum(x1)/(nrec*(nrec-1)); 

        b2=sum(x2)/(nrec*(nrec-1)*(nrec-2)); 

        b3=sum(x3)/(nrec*(nrec-1)*(nrec-2)*(nrec-3)); 

        b4=sum(x4)/(nrec*(nrec-1)*(nrec-2)*(nrec-3)*(nrec-4)); 

        l1(i)=b0; 

        l2(i)=2*b1-b0; 

        l3(i)=6*b2-6*b1+b0; 

        l4(i)=20*b3-30*b2+12*b1-b0; 

        l5(i)=70*b4-140*b3+90*b2-20*b1+b0; 

        t(i)=l2(i)/l1(i); 

        t3(i)=l3(i)/l2(i); 

        t4(i)=l4(i)/l2(i); 

    end 

     

    for i=1:ns, 

        l1r(i)=AA(i)*l1(i)/sum_nrec; 

        l2r(i)=AA(i)*l2(i)/sum_nrec; 

        l3r(i)=AA(i)*l3(i)/sum_nrec; 

        l4r(i)=AA(i)*l4(i)/sum_nrec; 

        tr(i)=AA(i)*t(i)/sum_nrec; 

        t3r(i)=AA(i)*t3(i)/sum_nrec; 

        t4r(i)=AA(i)*t4(i)/sum_nrec; 

    end 

     

   %regional average L-moments of the simulated series 
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   L1=sum(l1r); 

   L2=sum(l2r); 

   L3=sum(l3r); 

   L4=sum(l4r); 

   L5=sum(l4r); 

   T=sum(tr); 

   T3=sum(t3r); 

   T4=sum(t4r); 

    

   % regional GEV parameters (distribution under test) 

   C=2/(3+T3)-log(2)/log(3); 

   K=7.8590*C+2.9554*C^2; 

   ALPHA=L2*K/(1-2^-K)*gamma(1+K); 

   EPS=L1-ALPHA*(1-gamma(1+K))/K; 

    

   % quantile estimation and computation of accuracy measures 

   X_F=zeros(ns,length(F)); Bias=zeros(ns,length(F)); 

    

   for i=1:ns 

       XF=zeros(ns,length(F)); bias=zeros(ns,length(F)); relSE=zeros(ns,length(F)); 

       for j=1:length(F) 

           XF(i,j)=EPS+ALPHA/K*(1-(-log(F(j)))^K); 

           QT=indxfld(i)*XF(i,j); 

           bias(i,j)=(QT-qT(i,j))/qT(i,j)*100; 

           relSE(i,j)=((QT-qT(i,j))/qT(i,j)).^2; 

       end  

        

       X_F=X_F+XF; 

       Bias=Bias+bias; 

       relMSE=relMSE+relSE; 

   end 

   XF_SIM=XF_SIM+1/Nsim*X_F; 

   BIAS_SIM=BIAS_SIM+1/Nsim*Bias; 

   RELMSE_SIM=RELMSE+1/Nsim*relMSE; 

end 

disp('========================'); 

AV_BIAS=mean(BIAS_SIM); AAV_BIAS=mean(abs(BIAS_SIM)); 
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AV_RELRMSE=(mean(RELMSE_SIM)).^1/2*100; 

AV_XF=mean(XF_SIM); 

 

disp('robustness of LN3 when GEV is the parent'); 

disp('non-exceedence prob, absolute bias and RMSE follow in the columns in the 

order as shown:'); 

disp(' '); 

disp('============'); 

[F';AV_BIAS;AAV_BIAS;AV_RELRMSE] 
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A-5 

(Translated FORTRAN code provided by Hosking and Wallis, 1997) 

Matlab code for GEV Growth Curve  

 

 

% test for computing the GEV growth curves for Labrador region 

clear; 

Labrador=xlsread ('c:\users\Lily\desktop\Labrador.xlsx'); 

sum_nrec=sum(Labrador); 

ns=10;%input('enter no. of sites in the region: '); 

Nsim=1000; %input(Desired no. of simulated regions ：‘）； 

disp('region Labrador'); 

 

%GEV parameters  

kp=[-0.3346 -0.1349 0.0404 -0.2851 0.2124 -0.0497 -0.1572 -0.1515 0.0300 0.0269]; 

alphap=[0.2601 0.2917 0.3379 0.2680 0.3622 0.3035 0.3370 0.3143 0.3122 0.2951]; 

epsp=[0.7231 0.7871 0.8179 0.7415 0.8549 0.8092 0.7438 0.7636 0.8287 0.8374]; 

 

F=[0.01:.01:0.99 .991:.001:.999]; 

XF_sample=zeros(1,length(F)); 

k=-0.0312;alpha=0.3121;eps=0.8099; %Labrador region 

 

for j=1:length(F) 

XF_sample(j)=eps+alpha/k*(1-(-log(F(j)^k))); 

end  

 

u_L=zeros(length(F),1); %lower 95% conf. interval  

u_U=zeros(length(F),1);  

XF=zeros(Nsim, length(F)); 

 

%Beginning of the regional simulation 

 

for m=1:Nsim,  

for i=1:ns, 

nrec=Labrador(i); 
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y=0; 

for i1=1:nrec 

y(i1)=epsp(i)+alphap(i)/kp(i)*(1-(-log(rand))^kp(i)); 

end 

x=sort(y); 

b0=mean(x); 

indexfld(i)=b0; 

x1=0; 

x2=0; 

x3=0; 

x4=0; 

for j=1:nrec,  

x1(j)=x(j)*(j-1); 

x2(j)=x(j)*(j-1)*(j-2); 

x3(j)=x(j)*(j-1)*(j-2)*(j-3); 

x4(j)=x(j)*(j-1)*(j-2)*(j-3)*(j-4); 

end 

b1=sum(x1)/(nrec*(nrec-1)); 

b2=sum(x2)/(nrec*(nrec-1)*(nrec-2)); 

b3=sum(x3)/(nrec*(nrec-1)*(nrec-2)*(nrec-3)); 

b4=sum(x4)/(nrec*(nrec-1)*(nrec-2)*(nrec-3)*(nrec-4)); 

l1(i)=b0; 

l2(i)=2*b1-b0; 

l3(i)=6*b2-6*b1+b0; 

l4(i)=20*b3-30*b2+12*b1-b0; 

l5(i)=70*b4-140*b3+90*b2-20*b1+b0; 

t(i)=l2(i)/l1(i); 

t3(i)=l3(i)/l2(i); 

t4(i)=l4(i)/l2(i); 

end 

 

for i=1:ns, 

l1r(i)=Labrador(i)*l1(i)/sum_nrec; 

l2r(i)=Labrador(i)*l2(i)/sum_nrec; 

l3r(i)=Labrador(i)*l3(i)/sum_nrec; 

l4r(i)=Labrador(i)*l4(i)/sum_nrec; 
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tr(i)=Labrador(i)*t(i)/sum_nrec; 

t3r(i)=Labrador(i)*t3(i)/sum_nrec; 

t4r(i)=Labrador(i)*t4(i)/sum_nrec; 

end  

%regional average L-moments of the simulated seriers 

L1=sum(l1r); 

L2=sum(l2r); 

L3=sum(l3r); 

L4=sum(l4r); 

L5=sum(l4r); 

T=sum(tr); 

T3=sum(t3r); 

T4=sum(t4r); 

 

%regional GEV parameters and growth curve  

c=2/(3+T3)-log(2)/log(3); 

K=7.859*c+2.9554*c*c; 

ALPHA=L2*K/((1-2^-K)*exp(gamma(1+K))); 

EPS=L1-ALPHA/K*(1-exp(gamma(1+K))); 

 

 

%Quantile estimation 

for j=1:length(F) 

XF(m,j)=EPS+ALPHA/K*(1-(-log(F(j)^K))); 

end 

end 

disp('====================='); 

 

%plot of regional growth curve 

for i=1:length(F) 

gum_var(i)=-log(-log(F(i)));%Gumbel reduced variate for plotting growth curves 

end  

 

% 95% confidence interval computation and plotting of regional growth curve  

 

XF=sort(XF); 

index_L=round(0.05*Nsim); 
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index_U=round(0.95*Nsim); 

for j=1:length(F) 

    u_L(j)=XF(index_L,j); 

    u_U(j)=XF(index_U,j); 

end 

disp('Gumbel_Var Sample_growth curve for region Labrador:'); 

disp(' Growth Factor   Lower_5%  Upper_5%') 

table=[gum_var(1) XF_sample(1) u_L(1) u_U(1); 

   gum_var(41) XF_sample(41) u_L(41) u_U(41); 

   gum_var(46) XF_sample(46) u_L(46) u_U(46); 

   gum_var(49) XF_sample(49) u_L(49) u_U(49); 

   gum_var(50) XF_sample(50) u_L(50) u_U(50); 

   gum_var(55) XF_sample(55) u_L(55) u_U(55)] 

 

disp('====================='); 

plot(gum_var,XF_sample,'b'); 

hold on; 

plot(gum_var,u_L,'b:'); 

plot(gum_var,u_U,'b:'); 

hold off; 

xlabel('Gumbel Reduced Variate, -log(-log(F))'); 

ylabel('Growth factor'); 

Title('90% Confidence bands for sample GEV growth curve'); 

 

 

 

 

 

 


