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Abstract 

 

The three-dimensional reconstructions of Phoebichnus trochoides and 

Schaubcylindrichnus (Palaeophycus) heberti created as part of this thesis allow us to fully 

understand and characterize the three-dimensional morphology and palaeobiology of 

these common taxa. Three-dimensional reconstructions demonstrate that P. trochoides is 

a large stellate burrow composed of numerous long galleries produced by a deposit 

feeding organism. This study reports for the first time that the central zone is composed of 

stacked disk-shaped layers of highly bioturbated sediment, the radial burrows are 

composed of a sand-rich lining of pelleted annuli surrounding an active sand-rich fill, and 

the presence of subtle conical features above the radial galleries that are inferred to result 

from collapse cone feeding. Reconstructions of heberti demonstrate that the thick walled 

burrows are composed of sand-rich annular rings, are a broad U-shape, and may be either 

clustered or isolated. Our observations show that the morphology of heberti is 

inconsistent with the generic diagnosis of Palaeophycus, but is morphologically 

comparable to Schaubcylindrichnus, and is herein synonymised with 

Schaubcylindrichnus to create S. heberti comb. nov. The three-dimensional 

reconstructions have revealed a number of hitherto unknown morphological elements to 

both taxa which has facilitated new interpretations of the trace-makers behaviour. The 

data improves the taxonomic understanding of both P. trochoides and S. heberti which 

require significant taxonomic change and emendation of diagnoses at the species and 

genus level. 
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1.1 Introduction 

Understanding the morphology and ethology of trace fossils is at the root of 

reliable integration of ichnology into sedimentological and palaeoenvironmental analyses 

(McIlroy 2004a; McIlroy 2008). Determining the complete morphology and 

palaeobiology of trace fossils, and their interactions with host sediment provides us with 

knowledge of palaeoenvironmental conditions and nutrient distributions that can be 

incorporated into facies analysis, and will help in reservoir characterisation studies.   

This M.Sc. thesis aims to fully document the complete morphology, and 

organism-sediment interactions associated with two common Jurassic trace fossils, 

Phoebichnus trochoides Bromley and Asgaard 1972 and Palaeophycus heberti Saporta 

1872 (Figs. 1.1, 1.2). This work will build on the palaeobiological interpretations of these 

taxa and affect how they can be integrated into palaeoenvironmental analyses. This is 

achieved through the creation of three-dimensional reconstructions of elements of the 

trace fossils along with whole-rock models of the trace fossils based upon precise serially 

ground surfaces through the trace fossil bearing samples. The morphological elements of 

the burrows and their relationships to the host sediment are analysed to provide insights 

into the palaeobiological and ethological mode of burrow construction. Recent studies 

have shown that, without complete three-dimensional characterisation, the full 

morphology and palaeobiology of ichnofabric-forming trace fossils is seldom fully 

understood (e.g. Bednarz and McIlroy 2009; Boyd et al. 2012; Bednarz et al. 2015; 

Leaman et al. 2015).  
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Fig. 1.1. Sketch and field photograph of Phoebichnus trochoides. A: Sketch by Bromley 

(1996) illustrating the form of P. trochoides comprising a central zone and radiating 

burrows. B: Field photograph of bedding plane view of wave-rippled sandstone with P. 

trochoides. Radial burrows (r) extend out from the central zone (c) at a range of angles 

relative to the horizontal.  

 
Fig. 1.2. Sketch and field photographs of Palaeophycus heberti. A: Sketch by Frey and 

Howard (1990) illustrating the form of P. heberti comprising thickly lined burrows 

orientated horizontal and oblique to bedding. B and C: Field photographs of bedding 

plane view of sandstone with P. heberti burrows exhibiting a thick wall (w) and fill (f). 
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The highly similar burrow wall structure and common association of Phoebichnus 

trochoides and Palaeophycus heberti burrows lead us to consider that P. heberti may be 

the burrows of the juvenile form of the P. trochoides trace-maker. The three-dimensional 

reconstructions of P. trochoides and P. heberti will help us to fully understand burrow 

morphology, assess the mode of feeding of these taxa, and will provide an aid in their 

identification in cross-section since synthetic cross-sections can be created at any 

orientation through the model. The outcomes of this research will serve as part of the 

growing library of ichnological characterisation that is integral to both the ichnological 

and sedimentological communities. 

1.2 Methods 

The project involved creating three-dimensional models and whole rock models of 

the trace fossils Phoebichnus trochoides and Palaeophycus heberti. From the 

reconstructed models and detailed serially ground surfaces we were able to define the full 

morphology of the trace fossils and interpret the palaeobiology of the trace maker. 

Outcrop samples of P. trochoides and were collected from Cloughton Wyke, UK and P. 

heberti samples were collected from Staithes, UK (Figs. 1.3, 1.4). The collected samples 

were subjected to precision serial grinding, high-resolution digital photography, and 

tomographic reconstruction (see Bednarz et al. 2015 for full methodology). The hand-

samples were encased in plaster and serially ground, at precisely programmed increments, 

using a computer guided CNC milling machine. Each ground surface was consecutively 

labelled, wetted with oil to enhance contrast, and photographed under identical lighting 

conditions. This process enabled the collection of precisely spaced, high-resolution 
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images of consecutive ground surfaces through the trace fossils. Each surface was 

examined in detail to aid in understanding the subtle details of organism-sediment 

interactions and allowed a closer examination of the composition and structure of burrow 

linings and infilling sediment.  

In modelling Phoebichnus, the burrows and related features were digitally 

selected from the serially ground surfaces using image processing software. The selected 

features were extracted from each surface and the stack of images imported into VG 

Studio MAX for three-dimensional modelling. In modelling Palaeophycus a different 

approach was used because of the simplicity of the burrows. Stacks of images of serially 

ground surfaces were imported directly into VG Studio MAX without isolation of the 

burrow component to produce whole rock models of the samples. The modelling software 

enables both the reconstructed trace fossils and the whole rock models to be viewed at 

any angle and cut in any direction to create any number of cross sections through the trace 

fossil to aid in understanding relationships between the burrow elements and host 

sediment. 
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Fig. 1.3. Sample collection site of Phoebichnus trochoides and generalized stratigraphic 

column. A: Map of field location at Cloughton Wyke, UK. Arrow shows approximate 

collection location of the samples from the coastline of Cloughton. B: Stratigraphic 

column of the Scarborough Formation showing the stratigraphic level studied. 

 
Fig. 1.4. Sample collection site of Palaeophycus heberti and generalized stratigraphic 

column. A: Map of field location at Staithes, UK. Arrow shows approximate collection 

location of the samples from the coastline of Staithes. B: Stratigraphic column of the Lias 

Group showing the stratigraphic level studied.  
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1.3 Literature review  

This study comprises two linked components which will form the basis for two 

published papers. The study investigates the full morphology and palaeobiology of the 

similarly thickly-lined trace fossils Phoebichnus trochoides and Palaeophycus heberti. 

The study is motivated by the need to better understand the palaeobiology and 

palaeoecological/palaeoenvironmental context of these common shallow marine trace 

fossils that are present in many shallow marine hydrocarbon reservoirs, particularly those 

of Mesozoic age (Bromley and Asgaard 1972; Frey and Howard 1990; Bromley and 

Mørk 2000; McIlroy 2004b; Rajkonwar et al. 2013). 

1.3.1 Phoebichnus  

The ichnogenus Phoebichnus is recognized as a large, radiating trace fossil 

characterised by a complex burrow system which consists of a cylindrical, bioturbated 

central zone of unknown depth from which extends numerous, long, radiating burrows 

(Bromley and Asgaard 1972; Bromley and Mørk 2000; Fig. 1.1). Phoebichnus galleries 

originate at, and radiate out from, the central cylindrical zone at a range of depths and 

angles. Although the radials are predominantly straight, they have been observed as being 

curved or making sudden bends (Bromley and Mørk 2000). Phoebichnus is generally 

considered to be a deposit feeding trace produced by the bulk-sediment deposit feeding 

activity of an endobenthic organism that sought buried organic detritus in otherwise clean 

sandy sediments (Dam 1990). Although Phoebichnus has been described in some detail 

the complete three-dimensional morphology and palaeobiology remain unknown. 
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Three valid ichnospecies of Phoebichnus have been described: Phoebichnus 

trochoides Bromley and Asgaard 1972, P. minor Li et al. 1999, and P. bosoensis Kotake 

2003 (Figs. 1.1, 1.5, 1.6). Phoebichnus trochoides is defined as having a cylindrical, 

bioturbated central zone from which extend numerous radial burrows. The central zone 

has been described as having an irregular boundary with internal sediment grains showing 

no preferred orientation (Bromley and Asgaard 1972). Sediment grains at the boundary 

show a strong vertical orientation, tangential to boundary, sloping downwards and 

inwards (Bromley and Asgaard 1972). The radial burrows have a distinctive, thick sand-

lined outer wall structure composed of annuli surrounding an active sand-rich burrow fill 

of similar grain size to the host sediment (Bromley and Asgaard 1972; Bromley and Mørk 

2000). Previous descriptions of Phoebichnus have suggested that the trace-maker lived 

within the wide central zone and that the radial burrows, composed of a double meniscate 

structure, were produced by the trace-maker during two successive, opposed directions of 

movement into the surrounding sediment for deposit feeding purposes (Bromley and 

Asgaard 1972; Pemberton and Frey 1984; Dam 1989; Dam 1990; Bromley and Mørk 

2000).  
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Fig. 1.5. Sketch and field photograph of Phoebichnus minor. A: Sketch by Li et al. (1999) 

illustrating how P. minor formed, organisms within the sediment become startled by a 

lime-mud pellet that has fallen onto the seafloor and attempt to escape (Modified from Li 

et al. 1999). B: Field photograph of bedding plane view of P. minor with central zone (c) 

and radiating burrows (r) (Modified from Li et al. 1999).  

 
Fig. 1.6. Sketch and field photograph of Phoebichnus bosoensis. A: Sketch by Kotake 

(2003) illustrating how P. bosoensis formed, organism feeds on seafloor detritus and 

excretes faecal pellets into radials produced deep in the sediment (Modified from Kotake 
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2003). B: Field photograph of bedding plane view of P. bosoensis with central zone (c) 

and radiating burrows (r) (Modified from Kotake 2003).  

 

The Cambrian taxon Phoebichnus minor has been defined as having a yellow 

central zone from which numerous, calcite-filled, narrow, straight burrows radiate (Li et 

al. 1999). This description deviates significantly from the ichnogeneric diagnosis of P. 

trochoides with no description of an outer sand lining to the radials and significant 

differences in the fill of the central zone and radials. The current palaeobiological model 

for P. minor describes the trace as an escape structure, wherein the radials resulted from 

the producing organisms becoming startled and attempting to escape from a lime-mud 

pellet that had fallen onto the seafloor (Li et al. 1999). The poor quality of the 

photographic image makes it difficult to assess the validity of the taxon. The taxon has 

not been used since its original creation and may be considered a nomen nudum.  

Phoebichnus bosoensis is characterised as a large stellate structure, with a central 

vertical shaft from which long, horizontal structures radiate (Kotake 2003). P. bosoensis 

differs from P. trochoides in that the radials of P. bosoensis have no outer sand lining and 

are filled with elliptical pellets consistent with surface deposit feeding (Kotake 2003). 

Clay-rich menisci in the radial elements have regular 1 cm spacings, and are slightly 

concave towards the central shaft (Kotake 2003), and are considered to result from active 

fill produced by the trace-making organism (Kotake 2003). Existing palaeobiological 

models suggest the ingestion of seafloor detritus by the extension of an anterior feeding 

apparatus followed by excretion of faecal pellets at the distal end of radials deep in the 

sediment (Kotake 2003). After each period of faecal deposition the animal returned to the 
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central shaft—which is considered to be a dwelling structure—before repeating the 

feeding-defecation cycle (Kotake 2003). Repetition of such behaviour would lead to the 

radials eventually being packed with faecal pellets at which stage it is inferred that the 

producer would initiate a new radial (Kotake 2003). 

The ichnospecies Phoebichnus bosoensis Kotake and P. minor Li require careful 

reinvestigation of the type material as current descriptions do not include many 

morphological characteristics required by the current ichnogeneric diagnosis. Both 

ichnospecies lack the characteristic sand-linings of the radial burrows of Phoebichnus and 

the sand-rich burrow fill, instead being calcite-filled (P. minor) or filled with elliptical 

faecal pellets (P. bosoensis). These ichnospecies are also lacking thorough descriptions of 

the central zone making reliable comparisons to the ichnogenus difficult. The significant 

differences are cause to consider that these ichnospecies may not belong in the 

Phoebichnus ichnogenus.   

Phoebichnus is most commonly described from fine- to medium-grained 

sandstones deposited in low energy, mid to lower shoreface to offshore settings (Heinberg 

and Birkelund 1984; Pemberton and Frey 1984; Dam 1990; Goldring et al. 1991; 

Bromley and Mørk 2000; Wetzel and Uchman 2001; MacEachern and Gingras 2007; 

Pemberton et al. 2012). Long periods of slow sedimentation are inferred to be required 

for the construction of such large, complicated, structures as Phoebichnus (Bromley and 

Mørk 2000). Slight differences between Phoebichnus material, such as number of radials 

and diameter of the central zone, are possibly and likely due to palaeoenvironment and 

preservational factors (Bromley and Mørk 2000). 
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1.3.2 Palaeophycus versus Schaubcylindrichnus 

The ichnogenus Palaeophycus Saporta 1872 is currently used for sand- or mud-

lined, cylindrical, typically unbranched, predominantly horizontal burrows of variable 

diameter with a typically structureless passive fill that is of the same lithology as the host 

rock (Pemberton and Frey 1982). The primary ichnotaxobase used by most modern 

workers to diagnose Palaeophycus is the presence of a burrow lining (Pemberton and 

Frey 1982). Variations in the thickness and composition of the burrow lining, and 

differences in ornamentation are used to distinguish several ichnospecies of 

Palaeophycus. Of the currently described ichnospecies, Palaeophycus heberti is 

distinguished from all other ichnospecies by its characteristically thick sand-rich burrow 

lining (Pemberton and Frey 1982; Fig. 1.2). It is considered herein that the burrow lining 

is anomalous within the ichnogenus and requires careful consideration of the taxonomic 

status of P. heberti. 

In addition to Palaeophycus heberti there are six other valid ichnospecies of 

Palaeophycus currently recognized based upon the thickness of the burrow lining and 

burrow ornamentation: Palaeophycus tubularis Hall 1847 is has a thin clay-rich burrow 

lining without ornamentation; Palaeophycus striatus Hall 1852 is thinly lined with 

continuous, parallel striae; Palaeophycus sulcatus Miller and Dyer 1878 is a thinly lined 

burrow with irregularly anastomosing striae; Palaeophycus alternatus Pemberton and 

Frey 1982 is a thinly lined form with alternately striate and annulate ornament; 

Palaeophycus ferrovittatus Hofmann 1983 is a thickly lined species with a core composed 

of iron oxide and parallel striae on the interior surface of the burrow lining; and  



13 
 

Palaeophycus crenulatus Buckman 1995 has a distinctive thin-walled burrows that is 

continuously annulate (Fig. 1.7). 

Ichnospecies 
Characteristics 

Thinly 
lined 

Thickly 
lined 

No 
ornamentation 

Striae Annulate Other 

P. tubularis X  X    

P. striatus X   
X 

(continuous, 
parallel) 

  

P. heberti  X X    

P. sulcatus X   
X 

(irregularly 
anastomosing) 

  

P. alternatus X   
X 

(alternately) 
X 

(alternately) 
 

P. ferrovittatus  X  
X 

(internal) 
 

Fe 
core 

P. crenulatus X    
X 

(continuous) 
 

Fig. 1.7. Palaeophycus ichnospecies and their defining characteristics. 

 

Palaeophycus burrows are conventionally interpreted to be the dwelling structures 

of predaceous or suspension feeding organisms (Pemberton and Frey 1982; MacEachern 

et al. 2005; Gani et al. 2005). Palaeophycus has been reported from palaeoenvironments 

ranging from shallow marine to continental settings, but it is most typically associated 

with intensely bioturbated, heterolithic sand and mud rich facies deposited in shallow 

marine settings (Frey and Howard 1990; Buatois and Mángano 2011; Rajkonwar et al. 

2013).  

The ichnogenus Schaubcylindrichnus Frey and Howard 1981 is similar to 

Palaeophycus in being composed of thickly lined burrows that may be isolated or 

bundled, are gently curved in the vertical to oblique plane, and do not normally branch or 
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interconnect (Frey and Howard 1981; Nara 2006; Löwemark and Nara 2010; Fig. 1.8). 

The sandy burrow linings of Schaubcylindrichnus are lighter in color than the host 

sediment, and lack clays and other fine detritus (Miller 1995; Fig. 1.8). Various 

interpretations have been proposed for the complete morphology of Schaubcylindrichnus, 

the most current of which has the trace fossil consisting of three distinct parts: 1) a bundle 

of thickly lined tubes that were constructed in sequence by a solitary growing organism, 

2) a funnel at one end of the burrow system, and 3) a faecal mound at the other end of the 

burrow system (Nara 2006; Löwemark and Nara 2010). The funnel and mound at the 

opposite ends of the burrows led to the interpretation of funnel feeding as the most 

plausible feeding behaviour of the organism (Nara 2006; Löwemark and Nara 2010).  

 
Fig. 1.8. Field photographs of Schaubcylindrichnus. A: Vertical view of 

Schaubcylindrichnus tubes (Modified from Löwemark and Hong 2006). B: Vertical 

transverse view of tightly packed tubes (Modified from Nara 2006). 

 

The three ichnospecies of Schaubcylindrichnus are: Schaubcylindrichnus coronus 

Frey and Howard 1981, S. freyi Miller 1995, and S. formosus Löwemark and Hong 2006 

(Fig. 1.9). Schaubcylindrichnus coronus is defined by distinct, isolated groups or bundles 

of congruent, lined tubes (Frey and Howard 1981; Fig. 1.9A). S. freyi is differentiated 
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from S. coronus based on loose bundles of burrows as opposed to congruent, closely 

bunched burrows (Fig. 1.9B) and S. formosus has converging sheaves of burrows of a 

considerably larger diameter than S. coronus (Miller 1995; Löwemark and Hong 2006; 

Fig. 1.9C). Review of the type material of Schaubcylindrichnus suggests that all existing 

Schaubcylindrichnus species can be accommodated within Schaubcylindrichnus coronus 

(Nara 2006). The topotype material includes the morphological characteristics that were 

subsequently used as the basis for the creation of freyi and formosus (Löwemark and Nara 

2010) and as such are junior synonyms. Schaubcylindrichnus has been reported from 

most continents in a large variety of marine depositional settings, but is most commonly 

associated with shoreface strata (Löwemark and Hong 2006; Löwemark and Nara 2010). 

 
Fig. 1.9. Sketches illustrating the various ichnospecies of Schaubcylindrichnus which are 

considered synonymous with S. coronus (See Fig. 3.12). A: S. coronus. B: S. freyi. C: S. 

formosus. (Modified from Löwemark and Nara 2010). 

 

1.3.3 Gleaning behavioural information from trace fossils 

The classification of trace fossils is necessary to communicate ideas about them 

and maximizes their information potential (Goldring et al. 1997; Rindsberg 2012). 

Morphological features possessed by trace fossils, such as the general form, 
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constructional features of burrow walls, and the grain size and structure of the filling 

material, all serve as ichnotaxobases which are used to distinguish between trace fossils 

(Bromley 1996). Ichnologists rely on the careful observation and description of these 

ichnotaxobases to classify trace fossils. One such classification scheme involves the 

ethological classification of trace fossils. The ethological classification scheme is 

restricted to a small number of well-founded categories and includes only those concepts 

that have proven to be consistently most useful in the functional study of trace fossils 

(Frey 1973). The ethological classification of trace fossils was first proposed by Seilacher 

(1953a). Seilacher (1953a) recognized that trace fossils could be classified according to 

their ethological function because similar functions can result in similar morphologies. 

Aspects of the behaviour of the trace maker can be inferred from: 1) the overall shape of 

the trace fossil; 2) the orientation and position of the trace fossil within the substrate; 3) 

the burrow boundary or lack thereof and whether the boundary is a wall, lining, or mantle, 

is ornamented, and is produced actively or passively by the organism; and 4) the fill or 

internal structure and whether it is passively or actively formed (Bromley 1996; Bertling 

et al.2006).  

In this study I have been concerned exclusively with the traces of burrowing 

organisms. Burrows can be simple structures or complex systems composed of several 

components. Most trace fossils are initially recognized based on their distinct morphology 

and overall shape which is most readily recognized (Bertling et al. 2006). Much can be 

revealed about the trace from its overall form however, it is not necessarily the most 

relevant ichnotaxobase (Bertling et al. 2006). In addition to the overall form, burrows can 

be further characterised according to their wall and fill.  
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Constructed burrow walls imply certain constructional traits and can reveal 

significant information on the ethology, burrowing technique, and biological affinity of 

the trace-making organism (Bromley 1996; Buatois and Mángano 2011). A constructed 

wall has typically been considered to be built by the burrowing organism for structural 

reinforcement (Frey 1973). However, the purpose of a constructed burrow wall is 

potentially diverse (e.g. Gingras et al. 2011). Thick burrow walls can provide protection 

from predation as many modern organisms secrete toxins into burrow walls to deter 

predators (Woodin et al. 1987), they also provide temporary or permanent protection 

from the external pore water environment (Keighley and Pickerill 1994) and allow for 

more effective bioirrigation (Herringshaw and McIlroy 2013). While burrow walls can 

have diverse functions, substantial wall structures (e.g. walls composed of mucus-bound 

sediment or agglutinated pellets) are generally equated with more or less permanent, 

maintained structures and imply that burrows may have been inhabited for longer periods 

of time as open structures (Frey and Pemberton 1985; Bromley 1996). Therefore, burrows 

with substantial walls built for stability purposes are suggestive dwelling structures of 

suspension feeders or deposit feeding organisms (Frey 1973; Bromley 1996; Gingras et 

al. 2011). Burrows that lack a substantial wall structure are commonly produced by vagile 

bulk-sediment deposit feeding organisms (Gingras et al. 2011).  

The mineralogy and organization of burrow filling material can also provide 

information on the behaviour of the trace-making organism. Burrow fill can reveal 

information on burrow function and feeding strategies of the causative organism 

(Bromley 1996), and can be classified as being either passive or active. Passive burrow 

fill results from sediment entering a burrow gravitationally, for example during storm 
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events, the fill of the burrow may be lithologically similar to or different to the host 

sediment and may be structureless or display physical lamination; such fills generally 

betray an abandoned or open burrow system such as those of a dwelling or suspension 

feeder (Frey 1973; Pemberton and Frey 1985; Bromley 1996; Buatois and Mángano 

2011). Active burrow fill results from active manipulation and emplacement of material 

by the trace-maker; such fills typically contrast with the host sediment, may be 

structureless, or composed of faecal pellets, or display internal structures such as 

meniscate laminae (Frey and Pemberton 1985; Bromley 1996; Buatois and Mángano 

2011). Meniscate backfill structures are caused by the organism re-depositing sediment 

behind itself while burrowing (Keighley and Pickerill 1994). This may occur by material 

being transported externally around the organism or internally through the digestive tract 

(Keighley and Pickerill 1994). This type of fill is generally suggestive of a feeding trace 

of a vagile, infaunal, deposit feeding organism (Frey and Pemberton 1985; Bromley 1996; 

Buatois and Mángano 2011). Active burrow fill can also be produced by organisms that 

are capable of shovelling sediment within the burrow, filling burrows from a dwelling 

position, which can result in inclined or angle of repose laminae orientated in the 

direction of fill, towards the body position of the trace-maker. This type of fill suggests 

that the burrow was produced as the dwelling structure of a deposit feeding organism. 

Phoebichnus trochoides has been characterised as a complex feeding trace. 

Feeding traces are defined as more or less temporary burrows constructed by deposit 

feeding organisms (Osgood 1970; Frey 1973). The burrows may also provide shelter for 

the organism and may serve as permanent or semi-permanent dwelling structures 

(Osgood 1970; Frey and Seilacher 1980; Frey and Pemberton 1985). However, emphasis 
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of this ethological category is upon feeding and coverage of space is important (Frey and 

Pemberton 1985). Feeding traces can be characterised as single, branched or unbranched, 

cylindrical to sinuous shafts or U-shaped burrows, or spreiten structures, and may be 

oriented at various angles (Frey 1973; Frey and Seilacher 1980). Feeding traces that 

solely record the feeding activity of mobile organisms generally are not lined, unless by 

mucus, which may have been employed by the trace-maker to ease its passage (Gingras et 

al. 2011). Feeding traces that are also used for dwelling may be more complex structures 

with substantial walls built for structural reinforcement. Deposit feeding traces may be 

actively backfilled by the organism or left open and subsequently passively filled (Frey 

and Seilacher 1980).  

Palaeophycus heberti, unlike other species of the genus, has been characterised as 

a dwelling trace (Pemberton and Frey 1982; MacEachern et al. 2005; Gani et al. 2005). 

Dwelling traces are defined as burrows or dwelling tubes that serve as more or less 

permanent domiciles for hemisessile suspension feeding organisms or carnivores (Frey 

1973; Frey and Seilacher 1980; Frey and Pemberton 1985). Emphasis of this ethological 

category is upon habitation (Frey and Seilacher 1980). These traces may be simple or 

bifurcated burrows, vertical or curved shafts, sinuous or U-shaped structures orientated 

perpendicular or inclined to bedding, or complex burrow systems consisting of shafts, 

tunnels, and inclined burrows (Osgood 1970; Frey 1973). Most dwelling burrows are 

lined or walled which helps distinguish them from feeding traces (Frey 1973). The 

structures are maintained more or less permanently, and hence the burrow walls may be 

strengthened with mucus or agglutinated mud and sand pellets pressed into the margins to 

prevent collapse (Osgood 1970; Frey and Pemberton 1985). Most dwelling traces remain 
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open during occupation and are later passively filled with sediment (Frey and Pemberton 

1985).  

Trace fossils reflect the behaviour of the trace-making organism. These 

behaviours can be classified according to diagnostic morphologies because similar 

behaviours results in similar structures. Determining the full morphology associated with 

trace fossils can thus provide us with important information to help determine their 

ethological classification. The new information we will gain from the three-dimensional 

models of Phoebichnus trochoides and Palaeophycus heberti burrows will help lead to 

better interpretations of behaviour.  

1.4 Relevance of the study  

The outcomes of this research are relevant to the recognition and palaeobiological 

interpretation of the two taxa considered (Phoebichnus trochoides and Palaeophycus 

heberti). Both taxa are very common shallow marine trace fossils, but their morphology 

and palaeobiology are incompletely understood. The three-dimensional reconstructions of 

P. trochoides and P. heberti created as part of this thesis comprise the first full 

morphological understanding of both taxa, allowing us to fully understand the organism-

sediment interactions and their full three-dimensional morphology. Understanding the 

complete morphology of these two taxa will improve their identification in the field and 

in core-based cross sections. The palaeobiological interpretation of these trace fossils can 

additionally be used to inform their use as palaeoenvironmental indicators. Importantly, 

the three-dimensional models improve the taxonomic understanding of both P. trochoides 

and P. heberti which require significant taxonomic change and emendation of diagnoses 
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at the species and genus level. This approach has been gaining momentum of late 

(Bednarz and McIlroy 2009; Boyd et al. 2012; Bednarz et al. 2015; Leaman et al. 2015; 

Leaman and McIlroy 2015; Boyd and McIlroy 2016 (in review)), and is overturning our 

understanding of what trace-making organisms were actually doing, which is the 

underlying basis for applying ichnology to real-world problems (McIlroy 2004a, 2008). 
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Abstract 

Phoebichnus trochoides is a large, radiating trace fossil most commonly found in 

shallow marine siliciclastic deposits. The structure consists of a central boss from which 

extend numerous, lined, radiating burrows which have an active fill. Serial grinding and 

modelling techniques employed allow the full three-dimensional morphology of 

Phoebichnus trochoides to be constructed for the first time. Three-dimensional models of 

the trace fossil demonstrate that the central zone is composed of stacked disk-shaped 

layers. The structure is inferred to result from collapse of sediment below a surficial cone 

created by the trace-maker from excavated sediment produced during burrowing. The fill 

of the radial burrows is herein determined to be composed of angle of repose laminae that 

are inclined towards the central zone rather than the meniscate backfill documented in the 

ichnogeneric diagnosis and all subsequent descriptions. The structure of the fill resulted 

from the trace-making organism filling its burrows from a dwelling position close to the 

central boss, probably with material excavated from other parts of the burrow system. 

This study also reports for the first time subtle conical structures above the radial galleries 

that are inferred to result from collapse cone feeding. The new fully three-dimensional 

dataset created of the burrow and the near-burrow environment allows for a new 

palaeobiological understanding of the burrow, which suggests that a crustacean trace-

maker is most likely. 

 

Key words: Phoebichnus, trace fossil, serial grinding, three-dimensional, Helwath Beck 

Member. 
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2.1 Introduction 

The trace fossil Phoebichnus trochoides Bromley and Asgaard 1972 has received 

little palaeobiological attention since its discovery from the Jurassic Neill Klinter and 

Vardekløft Formations of Jameson Land, East Greenland (Bromley and Asgaard 1972; 

Bromley and Mørk 2000). P. trochoides is a large radiating trace fossil characterised by a 

complex burrow fill that has been difficult to interpret in terms of mode of life of the 

trace-maker (Bromley and Asgaard 1972; Bromley and Mørk 2000; Dam 1990). The 

burrow was originally considered to have a wide central zone from which numerous 

radial burrows extended for the purpose of bulk-sediment deposit feeding (Bromley and 

Asgaard 1972; Fig. 2.1). The trace fossil is known mostly from Mesozoic marine deposits 

including many un-published accounts in petroleum reservoirs of the North Sea (Bromley 

and Asgaard 1972; Bromley and Mørk 2000; McIlroy 2004, unpublished observations). 

P. trochoides is most commonly described from fine- to medium-grained sandstones 

deposited in low energy, mid to lower shoreface to offshore settings (Heinberg and 

Birkelund 1984; Pemberton and Frey 1984; Dam 1990; Goldring et al. 1991; Bromley 

and Mørk 2000; Wetzel and Uchman 2001; MacEachern and Gingras 2007; Pemberton et 

al. 2012). However, P. trochoides has also been described from: deltaic deposits 

(MacEachern et al. 2005; Sadeque et al. 2007; Gani et al. 2007); shelf and slope deposits 

(Parrish et al. 2001; Hubbard et al. 2012); lagoonal deposits (Harding 1988); and in 

mixed siliciclastic-carbonate successions (Joseph et al 2012). 
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Fig. 2.1. Field photographs of Phoebichnus trochoides. A: Bedding plane of wave-rippled 

sandstone with P. trochoides B: Oblique view of Phoebichnus trochoides in which the 

central boss (b) protrudes above the top of the bed. Radial burrows (r) extend out from the 

central boss at a range of angles relative to the horizontal. Scale bars 5 cm.  

 

In addition to the type ichnospecies Phoebichnus trochoides, two other 

ichnospecies of Phoebichnus have been described, P. bosoensis and P. minor. The type 

ichnospecies P. trochoides is characterised as having a cylindrical, bioturbated central 

zone from which extend numerous radial burrows that have distinctly thick, sand-lined 

outer walls composed of annuli which surround an active sand-rich burrow fill of similar 

grain size to the host sediment (Bromley and Asgaard 1972; Bromley and Mørk 2000). P. 

bosoensis is described as a large stellate structure that consists of a single central shaft 

with straight, long, unbranched elements radiating from the basal portion of the shaft 

(Kotake 2003). P. bosoensis differs from P. trochoides in a number of ways. P. bosoensis 

radials have no lining or mantle, are filled with elliptical pellets which are of lighter-

coloured and finer-grained sediment relative to the host rock and appear to be composed 

of surface detritus (Kotake 2003). The Cambrian taxon Phoebichnus minor has been 
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defined as having a central zone from which numerous, calcite-filled, narrow, straight 

burrows radiate (Li et al. 1999).  

This study focuses on samples of Phoebichnus trochoides that were collected 

from the Middle Jurassic, Helwath Beck Member of the Scarborough Formation at 

Cloughton Wyke, UK to allow us to investigate the full three-dimensional morphology of 

the trace fossil (Fig. 2.2). Pre-established precision serial grinding methods and three-

dimensional modelling techniques have been used to produce the first high-resolution, 

three-dimensional models of P. trochoides (see Bednarz et al. 2015 for detailed 

methodology). The current morphological understanding of P. trochoides is based on 

bedding plane and cross sectional views in core or natural cross-sections in the field. The 

advantage of the methodology employed herein is that the burrow is studied in the context 

of the host sediment, such that subtle details of organism-sediment interactions can be 

revealed from the ground surfaces. This is particularly true of highly laminated sediments 

such as those studied herein.   
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Fig. 2.2. Sample location of Phoebichnus trochoides and generalized stratigraphic 

column. A: Map of field location at Cloughton Wyke, UK. Arrow shows approximate 

collection location of the samples from the coastline of Cloughton. B: Stratigraphic 

column of the Scarborough Formation showing the stratigraphic level studied.  

 

 

2.2 Geological and palaeoenvironmental settings 

The Middle Jurassic, Helwath Beck Member at the base of the Scarborough 

Formation records a marine transgression located within the Ravenscar Group of the 

Cleveland Basin in Yorkshire, England (Gowland and Riding 1991; Powell 2010). The 

Helwath Beck Member consists of brackish to fully marine siliciclastic sediments 

deposited in subtidal settings above storm wave base, and unconformably overlies 

palaeosols of the topmost Gristhorpe Member of the Cloughton Formation (Gowland and 

Riding 1991). The ichnological assemblage of the Helwath Beck Member is fully marine 

in character, and includes the trace fossils: Phoebichnus trochoides; Diplocraterion 

parallelum (aff. D. yoyo); Asterosoma isp.; and Palaeophycus heberti (Gowland and 

Riding 1991; Leaman and McIlroy 2015). The Helwath Beck Member is comprised of: 1) 
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a lower succession of variably bioturbated heterolithic silty sandstones that coarsen 

upward and are capped by convolute-bedded micaceous sandstones with sauropod 

footprints; and 2) an upper, upward coarsening succession of fine-grained bioturbated 

sandstones with hummocky cross-stratification and Phoebichnus trochoides, which 

passes upwards into trough cross-bedding, and low angle planar cross-stratification 

towards the top (Gowland and Riding 1991; Rawson and Wright 1992). The upper part of 

the succession has been interpreted as a sheet-sand body deposited in a siliciclastic 

embayment during transgression and upward-shoaling under strong wave influence 

(Gowland and Riding 1991).  

2.3 Methods 

The collected samples were subjected to precision serial grinding, high-resolution 

digital photography, and tomographic reconstruction (see Bednarz et al. 2015 for full 

methodology). The hand-samples were encased in plaster and serially ground using a 

computer guided milling machine. The two samples presented herein were ground at 

different intervals (0.1 and 0.3 mm). Each ground surface was consecutively labelled, 

wetted with oil to enhance contrast, and photographed under identical conditions. The 

Phoebichnus burrows and related features were selected using image processing software, 

extracted from each surface and the stack of images imported into VG Studio MAX for 

three-dimensional modelling. The modelling software enables the reconstructed trace 

fossils to be viewed at any angle and cut in any direction to create any number of cross-

sections through the trace fossil to aid in understanding relationships between the burrow 

elements and host sediment. The three-dimensional reconstructions were also augmented 
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with conventional thin sections cut from specific burrow portions in order to study subtle 

sedimentary fabrics.  

2.4 Descriptive ichnology 

The serial grinding and modelling techniques employed during this study have 

enabled the full three-dimensional morphology of Phoebichnus trochoides to be 

constructed (Fig. 2.3). This work builds on previous descriptions of P. trochoides, its 

ichnogeneric and ichnospecific diagnoses, and provides new data for emending those 

diagnoses. The various components of Phoebichnus are discussed separately for 

convenience; however they may all occur in a single well preserved specimen. 
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Fig. 2.3. Three-dimensional reconstructions of Phoebichnus trochoides from the Middle 

Jurassic, Helwath Beck Member of the Scarborough Formation at Cloughton Wyke, UK. 

A: Phoebichnus trochoides Sample 1. B: Phoebichnus trochoides Sample 2. Radial 

burrows are approximately 1 cm in diameter.  
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2.4.1 Central boss component 

The central, broadly cylindrical, zone of Phoebichnus trochoides, termed the boss 

in outcrop expression, ranged from 4 to 8 cm in diameter, and 8 to 9 cm in depth, in the 

two specimens studied (Figs 2.3, 2.4). The central cylindrical portion of P. trochoides has 

been observed to be up to around 15 cm deep (Bromley and Asgaard 1972) though the 

internal morphology of this central zone has not hitherto been described in detail. 

Through serial grinding and three-dimensional reconstruction we demonstrate that the 

cylindrical burrow component is composed of a stack of disk-shaped layers of highly 

bioturbated sediment (Fig. 2.4B, C) that may be mistaken for Piscichnus ispp. (Pearson et 

al. 2007). The serial cross-sectional images reveal little systematic structure within much 

of the central zone, but when the distribution of dark laminae is mapped in three-

dimensions, the conical nature of the central zone is evident. Cross-sections through the 

lower portion of the central zone were, in both cases, found to consist of randomly 

oriented organic detritus (Fig. 2.4B-C, E-F). Close to the top of the bed, the organic 

detritus is concentrated in conical layers that slope downwards and inwards towards the 

centre of the central zone, which constitutes the central boss when seen in bedding plane 

expression in the field (Fig. 2.4B-D, F). Much of the organic detritus in the central boss 

was found to be coalified plant matter along with abundant black oval grains that are 

interpreted to be faecal pellets of the Phoebichnus trace-maker (Fig. 2.4E). The central 

boss is cut by a sub-vertical burrow shaft that is also attributed to the Phoebichnus trace-

maker (Fig. 2.4F). There is evidence that the central zone extended or protruded above 
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the sediment-water interface from direct observation of specimens in the field in which 

the boss protrudes above the top of the bed (Figs. 2.1, 2.4F).    
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Fig. 2.4. Three-dimensional models and serial grind surfaces of the central boss structure 

of Phoebichnus trochoides. A: Three-dimensional reconstruction of the exterior of the 

central boss. B and C: Three-dimensional reconstruction, in which the darker areas have 

higher densities of organic detritus. This model rendering reveals the convex-down 

conical to discoidal nature of the central boss (c). D and E: Horizontal cross sections 

through the central boss. Plane 1 shows conical layers of organic detritus (c), whereas 

Plane 2 displays randomly oriented organic detritus and oval grains are interpreted to be 

faecal pellets (f). F: Vertical cross section through the central boss with the sub-vertical 

burrow shaft (s) preserved and the protrusion (p) of the central boss above the top of the 

bed. Scale bars represent 1 cm. 

 

2.4.2 Radial gallery component 

The radial burrows of Phoebichnus trochoides form cylindrical, straight to curved 

galleries that have a thick lining and a complex fill that is diagnostic of the ichnogenus 

(Bromley and Mørk 2000). Each radial burrow is approximately 1-2 cm in diameter and 

was observed in the field to be up to a metre in length (Bromley and Mørk 2000). The 

burrow morphology of the radial gallery component of P. trochoides broadly resembles 

the ichnogenus Beaconites, a taxon that currently encapsulates all thickly lined, non-

stellate, meniscate trace fossils (Keighley and Pickerill 1994). Within a single sample of 

P. trochoides galleries can originate at, and radiate out from, the central cylindrical zone 

at a range of depths and angles. The radial galleries have hitherto been described as being 

straight, and have been considered to be oriented parallel to bedding (Bromley and 

Asgaard 1972; Bromley and Mørk 2000). Due to restrictions on the size of field 

specimens that can be serially ground, the natural end of a gallery could not be traced 

from a central boss to its natural termination. Therefore our understanding of the end of 

the radial galleries of P. trochoides galleries is mainly reliant upon reconstruction of 
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isolated burrow terminations that can be confidently attributed to P. trochoides based on 

burrow fill and architecture. The three dimensional reconstructions demonstrate that the 

terminations of the radial galleries were characterised by a steep upward curve from the 

horizontal to sub-vertical close to the sediment-water interface (Fig. 2.5).  

One of the most distinctive features of the radial galleries of Phoebichnus is that 

they consist of a thick sand-lined outer wall surrounding a sand-rich burrow fill of similar 

grain size to the host sediment (Bromley and Asgaard 1972). The outer wall in our 

reconstructed material is uniformly around 0.5 cm thick, and the burrow fill is about 1 cm 

in diameter giving each radial gallery an average diameter of approximately 2 cm. In field 

specimens the annular structure of the outer burrow wall is clearly seen where the burrow 

fill has been removed (Bromley and Asgaard 1972).  In our serial reconstruction, some 

heterolithic portions of the burrow wall allow the confirmation of this annular structure 

which is found to include sandy pellets with an arcuate outer edge that is comparable to 

that of the outer meniscus lining described previously (Bromley and Asgaard 1972; 

Fig.2.6). The structure of the outer wall is, however, not always easily discernible due to a 

lack of lithological contrast between the burrow wall and the host sediment. Along some 

portions of the radial galleries the roof is absent (Fig. 2.7). Some galleries have a thin 

patina of clay minerals at the boundary between the outer wall and burrow fill. The fill of 

the central part of the galleries does not have the meniscate backfill as previously 

described (Bromley and Asgaard 1972), but instead the galleries are filled with angle of 

repose laminae that are inclined toward the central zone (Fig. 2.8). The curved cross 

section of angle of repose laminae cut parallel to bedding can have the superficial 

appearance of meniscate backfill (Fig. 2.8A, C).      
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Fig. 2.5. Three-dimensional reconstruction of Phoebichnus trochoides showing a radial 

burrow rising sharply to become sub-vertical. Scale bar represents 1 cm. 

 
Fig. 2.6. Horizontal longitudinal cross sections through radial burrows of Phoebichnus 

trochoides. A and B: Horizontal longitudinal cross section through radiating limbs of P. 

trochoides showing the annular structure of the sandy burrow wall, that consists of curved 

clay-rich laminae, but also pellet-like structures (p). Scale bars represent 1 cm. 
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Fig. 2.7. Vertical transverse cross section through a radiating burrow of Phoebichnus 

trochoides showing collapse of the burrow roof, associated displacement of laminae (L) 

into the radial burrow (r), and the presence of a ‘collapse cone’ (c) above the burrow with 

down-warped sedimentary laminae. Scale bar represents 1 cm.  

 
Fig. 2.8. Cross sections through radial burrows of Phoebichnus trochoides showing 

internal structure of the fill and idealized sketch. A: Horizontal longitudinal cross section 

through a radiating burrow showing outer wall (w) and laminae (L) of the fill curved 

concave towards the central boss. B: Vertical longitudinal cross section through a 

radiating burrow showing outer wall (w) and inclined laminae (L). C: Idealized sketch of 
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internal structure of a radial burrow depicting the angle of repose laminae of the burrow 

fill through various cross-sectional views. Scale bars represent 1 cm. 

 

2.4.3 Collapse cone component      

Above several of the galleries there is evidence of small-scale conical sediment collapse 

that can be inferred by the presence of downwardly deflected sedimentary laminae that 

overlie unlined portions of the Phoebichnus radial galleries (Fig. 2.9). The collapse cones 

observed in the studied samples range from 0.5 to 2 cm in maximum diameter, are around 

2 cm in depth, and taper to a minimum diameter of 2 mm immediately above the 

Phoebichnus galleries. Several collapse cones may be present along a single radial gallery 

and at the termination of the vertically oriented burrows (Fig. 2.9). 
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Fig. 2.9. Idealized sketch and serial photographs of a radial burrow of Phoebichnus 

trochoides with collapse cones at various locals along its length. A: Idealized sketch of 

radiating burrow with multiple collapse cones along its length. B: Series of vertical 

transverse cross sections following a single radial burrow (r) shows the presence of 

collapse cones (c) above the radial burrow (positions i, ii, iiii), including a portion with no 

collapse cone (iii). This radial burrow highlights the presence of zones with poor 

lithological contrast between the burrow wall and host sediment, making the outer wall 

hard to discern. Scale bars represent 1 cm.  
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2.5 Palaeobiological interpretations  

2.5.1 Central zone component 

The original, highly detailed, descriptions of Phoebichnus trochoides (Bromley 

and Asgaard 1972) were based on surface expressions and cross-sectional views but were 

undertaken without the benefit of serial grinding. The complex nature of the burrow has 

previously been explained as being the product of bulk-sediment deposit feeding by an 

organism that lived in the central region of the structure that made excursions into the 

surrounding sediment for food, thereby producing the radial component of the burrow 

(Bromley and Asgaard 1972; Kotake 2003).  

2.5.2 Discussion of the central zone component 

The central zone of Phoebichnus trochoides is several times the diameter of the 

radiating burrows, suggesting that it was much larger than the trace-maker (Bromley and 

Asgaard 1972; Bromley and Mørk 2000). There is, however, no clear modern analogue in 

which a large, open, cylindrical burrow is used by a bulk-sediment deposit-feeding 

organism. Shallow pit dwelling shrimp such as Alpheus bellulus make transient surficial 

pits, but commonly either have a central shell to hide beneath, or have a single dwelling 

burrow at the centre made by a commensal fish, and is not produced as a product of bulk-

sediment deposit feeding (e.g. McIlroy 2010). It is considered that the existing models of 

Phoebichnus palaeobiology that have the trace-maker living in an open cylindrical pit 

would leave the trace-maker open to predation and as such require careful re-assessment. 

Our modelling of Phoebichnus central shafts in three-dimensions demonstrates that the 
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central zone was not an open structure (contra Bromley and Asgaard 1972; Kotake 2003), 

but was much more comparable to the surface detritus cones of many crustaceans (cf. 

Leaman et al. 2015; Fig. 2.11B). 

2.5.3 Radial burrow component 

The structure of the radial burrows led Bromley and Asgaard (1972) to infer that 

the trace-making organism made the burrows during two separate phases of burrowing. 

On the outward journey the organism produced a burrow with a ringed wall structure 

surrounding a central meniscate backfill as a result of outwardly directed deposit feeding 

(i.e. with the interface between successive rings and menisci oriented such that they were 

convex toward the central cylinder) (Fig. 2.10A). The final central burrow fill—that was 

considered by Bromley and Asgaard (1972) to be meniscate—was inferred to be 

produced by the returning organism re-burrowing the outgoing burrow, producing new 

menisci oriented with the convex surface directed away from the centre of the trace (i.e. 

opposite to the orientation of the first formed menisci) (Bromley and Asgaard 1972; 

Bromley and Mørk 2000; Fig. 2.10B). 
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Fig. 2.10. Idealized sketch of Bromley and Asgaard’s (1972) interpretation of how the 

structure of the radial galleries was formed. A: On the outward journey the organism 

produced a ringed wall structure (w) and meniscate backfill (m) convex toward the 

central zone (c). B: On the inward journey the organism re-burrowed the initial meniscate 

backfill with new meniscate (m) oriented convex away from the central zone. The model 

fails to explain several of the burrow features which were unknown at the time of 

interpretation including why there is no incidental lining produced by the returning 

organism, or whether the meniscate backfill is faecal or transported by peristaltic waves 

around the organism.  
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2.5.4 Discussion of radial burrow components 

The burrowing hypothesis for the creation of the radial burrows, while 

architecturally and behaviourally possible, is considered to have a number of flaws. The 

final burrow fill in Phoebichnus is always perfectly centrally positioned within the 

horizontal burrow, which we find to be unlikely by way of the existing hypothesis. We 

have examined many specimens of Phoebichnus and have never found any exception to 

this rule. In addition, the authors fail to produce a hypothesis to explain why the trace-

maker would re-burrow all of its radial burrows. The complex interpretation used to try to 

explain the structure of the radial burrows of Phoebichnus was driven by the assumption 

that the trace-making organism was producing meniscate backfill. Since meniscate 

backfill is by definition always convex in the direction from which the organism moved 

(d’Alessandro and Bromley 1987), it was logical to infer that—since the meniscae 

indicated the trace-maker returning to the centre of the structure—the trace-maker must 

also have first burrowed away from the central shaft. Our observations and careful cross 

sectioning show that the inference of meniscate backfill was erroneous, or at least does 

not apply to our material. We also note that convincing photographs of meniscate backfill 

have not been published from the type material. The angle of repose laminae that fill the 

central portion of the radial burrows is inconsistent with the re-burrowing model proposed 

(Bromley and Asgaard 1972), and therefore requires re-assessment.  

The term mantle has been used by some authors to describe the outer structure of 

the radial burrows of Phoebichnus trochoides (e.g. Bromley 1996; Bromley and Mørk 

2000), though the term wall is used in the original diagnosis (Bromley and Asgaard 
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1972). A lining and a mantle differ in that linings are actively produced by trace-making 

organisms, whereas mantles are passively formed during movement through sediment 

(Bromley 1996; Knaust 2015). Our interpretation agrees with the original diagnosis and 

considers that the outer structure of the radials is a wall, which was actively produced by 

the trace-maker.  

2.6 Revised palaeobiological interpretation  

The existing models for the formation of Phoebichnus (Bromley and Asgaard 

1972; Kotake 2003) are based on flawed appreciation of the full three-dimensional nature 

of the burrow architecture. Such limitations in understanding the full three-dimensional 

morphology are common to many hand-specimen or field-based descriptions of trace 

fossils, especially where the organism-sediment interactions in the near-burrow 

environment have not been considered. This revised palaeobiological model is based 

upon our new observations and morphological characterisation of Phoebichnus 

trochoides. The ichnospecies P. bosoensis Kotake  and P. minor Li also require careful 

reinvestigation of the type material as they appears to lack many of the key diagnostic 

features of the ichnogenus.  

2.6.1 Central zone  

The central zone of Phoebichnus trochoides is composed of irregularly stacked 

disk-shaped layers of sediment that are cut by a shaft-like burrow that is typically filled 

with sandstone (Fig. 2.11A). The layers of the central zone are clearly not the fill of an 

open shaft, and instead bear close resemblance to structures produced by the progressive 
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sinking of the sediment-water interface when covered by the surface cones of the modern 

crustacean Neotrypea californiensis in aquaria (Fig. 2.11B). The weight of the surficial 

mound of material excavated from the subsurface, and the active removal of sediment 

from below the surficial cone by Neotrypea, has been observed to cause the progressive 

sinking of the surface cone (Leaman et al. 2015).  This collapse of the surface cone to 

deeper levels of the sediment is inferred to bring nutrient-rich sediment containing 

previously ejected faecal matter down into the subsurface portion of the burrow system 

(Leaman et al. 2015). Evidence for the presence of a surficial cone in Phoebichnus, above 

the central zone, comes from direct observation of specimens in the field that have a 

central boss protruding above the top of the bed (Figs. 2.4A-B, 2.11A).   

 
Fig. 2.11. Serial grind surface of Phoebichnus trochoides central boss and a central shaft 

built by Neotrypea californiensis in aquarium. A: Vertical transverse cross section 

through Phoebichnus trochoides central boss collapse cone structure with sub-vertical 
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central shaft (s), surface cone (sc), and faecal pellets (f). B: Sediment cone with sub-

vertical central shaft (s), surface cone (sc), and faecal pellets (f) produced by Neotrypea 

californiensis in aquarium. Scale bars represent 1 cm. 

 

2.6.2 Radial burrows 

The sand-lined outer portion of the Phoebichnus galleries is inferred to be a sandy 

burrow lining comparable to that of Palaeophycus heberti and Siphonichnus (Stanistreet 

et al. 1980). Our direct observations of the ghost shrimp Neotrypea in sand-filled glass 

aquaria without clay demonstrate that crustaceans do create sandy linings to burrows (Fig. 

2.12). Sand pellets about 2 mm in diameter have been observed to be produced by the 

mandibles of Neotrypea. In aquarium conditions without clay a burrow lining was created 

by Neotrypea by excavating a cavity which was then filled with sand grains, probably 

bound with mucus secreted by the shrimp (Fig. 2.12). Similar sandy pellets and sand rich 

linings have recently been documented in association with the inferred crustacean 

burrows Thalassinoides and Ophiomorpha (Tonkin et al. 2010; Boyd et al. 2012; Leaman 

et al. 2015). In the case of Phoebichnus, the pellets appear to have been organised as 

annuli around the open burrow, maintaining its circular form (compare to the muddy 

annuli of pellets characteristic of Ophiomorpha annulata). The curvature annuli described 

by several authors (Bromley and Asgaard 1972, Bromley and Mørk 2000) may be due to 

the progressive excavation of the distal portion of the previous pellet ring during the 

excavation that precedes the production of the subsequent—more distal—ring. The 

evidence for this mode of formation of annuli comes from the relatively common 

instances where the first formed—more proximal—pellets have not been cut during 
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excavation of the cavity into which the subsequent—more distal—ring of pellets was 

emplaced (Fig. 2.6B). We consider therefore that the outer sand-pellet lining of the radial 

burrows of Phoebichnus was probably structural in nature, and allowed the radiating 

galleries to be maintained as open burrows. 

 
Fig. 2.12. Neotrypea californiensis creating a pelleted sand-lining to a burrow in a sand-

dominated aquarium. Sand pellets (p) line the burrow walls; a collapse cone (c) is also 

visible. Scale bar represents 1 cm. 

 

The creation of open galleries does however mean that the trace-maker requires 

somewhere to put the sediment excavated from the burrow. Burrowers that produce 

extensive open galleries—such as the makers of Thalassinoides and Ophiomorpha—must 
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dispose of sediment above the sediment-water interface in surface mounds. An alternative 

solution to sediment disposal exploited by the trace-makers of several common taxa 

involves sequestration of excess sediment in burrow galleries (Ophiomorpha rudis- 

Callow et al. 2013; Ophiomorpha irregulaire- Leaman et al. 2015; Fig. 2.13). The 

presence of angle of repose fill requires the burrow to have taken the form of an open 

gallery prior to filling by sediment grains. The fill of subsurface galleries is probably 

more energetically efficient than expelling sediment grains to the overlying sediment-

water interface, but has the effect of rendering the filled portions of the burrow 

inoperative with regard to their original function. In this model the sediment grains filling 

the galleries are likely to have come from excavation of galleries in the same sediment 

horizon and explains the similarity of burrow fill to that of the host medium. This is 

unlike the case of Phoebichnus bosoensis that mainly fills its galleries with faecal pellets 

lithologically similar to the sediment at the contemporaneous seafloor, and requires 

reconsideration of the inclusion of that taxon within Phoebichnus. 
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Fig. 2.13. Idealized sketches of a shrimp filling a sand-lined radial burrow (w) with 

inclined fill and angle of repose laminae (L). 

 

2.6.3 Collapse cones  

The presence of collapse cones above the radial galleries of Phoebichnus 

trochoides is taken to infer that the trace-maker engaged in collapse cone feeding in a 

manner similar to that observed in aquarium studies of the crustacean Neotrypea (Fig. 

2.14). Periodically Neotrypea and other callianassid shrimp will destroy the pellets that 

line the gallery roof to allow sediment to collapse into gallery, thereby producing a funnel 

shaped disturbance (collapse cone) in the overlying sediment (cf. Thompson and Pritchard 

1969; Leaman et al. 2015; Fig. 2.14). The sediment that falls into the galleries is typically 

moved, using the chelae, to other parts of the burrow, filling galleries with angle of repose 

laminae. This type of feeding has the advantage to an infaunal organism that it need not 

leave the burrow and search the seafloor in order to collect food, instead—following the 

creation of a collapse feature—the trace-maker can sift through the collapsed material in 

the safety of its burrow. The absence of a clear burrow lining in regions of the 
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Phoebichnus galleries with collapse cones is strongly suggestive of destruction of the 

burrow roof by the Phoebichnus trace-maker in order to feed using the collapse cone 

mechanism of modern Neotrypea. By comparison to the deliberate actions of Neotrypea 

in aquaria we are confident that as least most collapse cone of Phoebichnus are 

deliberately created in this way. Evidence from this study also suggests the end of the 

radial burrows may be distinguished by a steep curve up towards the bedding surface 

where the organism exhibited collapse cone feeding, perhaps comparable to the 

mechanism employed by various marine polychaetes which bioirrigate sediment cones to 

culture microbes before ingesting the same sediment (Rijken 1979; Bromley 1996; 

Herringshaw and McIlroy, 2013). In callianassid shrimp burrows, the creation of the 

collapse cones is inferred to be purely for deposit feeding without bioirrigation (e.g. 

Thompson and Pritchard 1969; Leaman and McIlroy 2015; Leaman et al. 2015).   
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Fig. 2.14. Neotrypea californiensis burrow gallery showing destruction of the pellet-lined 

roof (r) and sediment collapse (c) into the gallery. The right side of the photograph shows 

a previous collapse cone (c) under which the pellet-lined roof has been re-built. Scale bar 

represents 1 cm. 

  

2.7 Palaeobiology   

2.7.1 Full palaeobiological model for the formation of Phoebichnus trochoides  

The new interpretation for the morphology of Phoebichnus trochoides arising 

from this work describes a central zone, which is defined by the progressive sinking of a 

surficial sediment cone. From this central zone many radial galleries radiate in an 

irregular manner (Fig. 2.15). The radial galleries have a sand-lined outer wall composed 

of concentric annuli of sand pellets that allowed the galleries to be maintained as open 

structures. After extending horizontally for a distance of 10-50 cm the burrows are found 

to curve sharply towards the bedding surface (Fig. 2.15). From this vertical shaft the 

organism is inferred to have exhibited collapse cone feeding behaviour (Fig. 2.15). 

Deliberate destruction of the burrow roof at intervals along the length of the gallery 
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allowed overlying sediment to collapse into the open burrow, creating conical “collapse 

cone” structures in the sediment overlying the radii of P. trochoides (Fig. 2.15). This 

sediment-collapse activity explains the localised lack of a sand-lining/wall to some of the 

radial galleries, which can be attributed to destruction of the roof in order to collapse cone 

feed. The organism employed two mechanisms of dealing with sediment from its 

galleries: 1) material was ejected onto the sediment via the shaft onto the surface 

sediment cone (often including faecal material and undigested organic detritus); and 2) 

transferred into other abandoned galleries as angle of repose fill.  

 
Fig. 2.15. Idealized sketch representing the full three-dimensional burrow reconstruction 

of Phoebichnus trochoides showing cylindrical central zone with multiple radiating 

burrows with collapse cones above the radial burrows along the burrow length and at 

terminations.  

 

2.7.2 Possible communication between adjacent burrow systems  

The bosses that represent the surface expression of the central cones of 

Phoebichnus trochoides, and are inferred to be the remnants of sediment cones, are 

typically spaced 50 cm to 1 m apart on bedding planes. Radial galleries documented in 
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the field do not generally cross-cut the galleries of other Phoebichnus, and the inclined 

fill of most radial galleries is directed towards the central zone. In one radial gallery 

observed in the field however, neither of these observations hold true. The gallery in 

question connects two adjacent central zones and has inclined laminae in the burrow fill 

directed towards the adjacent central zone. This may be evidence of the trace-maker 

abandoning one burrow system and establishing a new Phoebichnus in fresh sediment 

adjacent to its previous location. This observation is based on field observation only, and 

further observation of well-exposed outcrop examples should be sought before this 

hypothesis can be established as normal behaviour for the Phoebichnus trace-maker.  

2.7.3 Possible biological affinity of the trace-maker 

Previous studies of Phoebichnus trochoides have not speculated with respect to 

the taxonomic affinity of the trace-maker. We propose herein that, owing to significant 

similarities in the construction and behaviour—as inferred from interpretation of the 

morphological elements—that the trace-maker is likely to be an axiid shrimp crustacean 

similar to the producers of Mesozoic Thalassinoides and Ophiomorpha. To date, no 

modern axiid shrimp are known to produce such systematic radial structures as 

documented in Phoebichnus. 

2.8 Ichnotaxonomy 

Ichnogenus PHOEBICHNUS Bromley and Asgaard, 1972 

Type ichnospecies: Phoebichnus trochoides Bromley and Asgaard 1972 
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Emended diagnosis: Large stellate structures up to 1.5m in diameter with a central 

zone of diffuse stacked dish-shaped structures 3-10cm wide that may be cut by both radial 

galleries and sub-vertical shafts. Radii are straight to slightly curved in vertical and lateral 

planes, have sand-rich linings of pelleted annuli, and a central tubular portion filled with 

angle of repose laminae typically inclined towards the central zone. 

Remarks: Phoebichnus is interpreted as being the product of a deposit-feeding 

organism that excavated the sediment for its contained nutrients. Previous descriptions 

have suggested that the trace-maker lived within the wide central zone and that the radial 

burrows were produced during deposit feeding (Pemberton and Frey 1984; Dam 1989). 

The thorough three-dimensional investigation presented herein suggests that the central 

zone resulted from collapse of a surficial mound, up to 15cm wide, surrounding a central 

vertical shaft approximately 2cm wide. The organism did not live within the central 

cavity, but repeatedly returned to the central zone to deposit sediment and faecal matter 

on the sediment surface and to create the numerous radii at various depths in the 

sediment. 

Global Distribution: Phoebichnus trochoides was first described from the Jurassic 

beds of the Neill Klinter and Vardekløft Formations of Jameson Land, East Greenland 

(Bromley and Asgaard 1972). From the Jameson Land, East Greenland locality it has 

since been described by Heinberg and Birkelund (1984), Dam (1990), and Bromley 

(1996). The Triassic Shublik Formation of Alaska (Parrish et al. 2001), the Triassic-

Jurassic Wilhelmoya subgroup of Festningen, Svalbard (Bromley and Mørk 2000), the 

Lower Jurassic Tilje Formation of the Mid Norwegian Continental Shelf (Taylor and 
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Goldring 1993), the Lower Jurassic Rør Formation of the Norwegian Continental Shelf 

(Goldring et al. 1991; Taylor and Goldring 1993), the Middle Jurassic Beryl Formation of 

the UK North Sea (Maxwell et al. 1999), the Middle Jurassic Lajas Formation of 

Argentina (McIlroy et al. 2005), the Middle Jurassic Kaladongar Formation of Western 

India (Joseph et al. 2012), the Upper Jurassic Nitron Member of west-central Alberta 

(Williams et al. 2013), the Lower Cretaceous Ben Nevis Formation of northeastern 

Newfoundland (Harding 1988), the Lower Cretaceous Viking Formation of Alberta 

(Coates and MacEachern 2007),  the Upper Cretaceous Cardium Formation of Alberta 

(Pemberton and Frey 1984), the Upper Cretaceous Blackhawk Formation of Utah (Frey 

and Howard 1990), the Upper Cretaceous Wall Creek Member and Upper Ferron 

Sandstone Member of Wyoming and Utah (Gani et al. 2007), and the Upper Cretaceous 

Nise Formation of offshore Norway (Hubbard et al. 2012).  

A second species of Phoebichnus (P. bosoensis) has recently been described from 

the Lower Pleistocene Otadai Formation of Japan, which differs from P. trochoides in a 

number of ways: 1) the radial burrows have no lining or mantle; 2) the radii are packed 

with elliptical pellets; 3) the pellets are composed of surface detritus; 4) the central zone 

is much narrower than it is deep; 5) the central zone was open throughout burrow 

construction; 6) the radii are composed of meniscate backfill; 7) there are no associated 

collapse cone features (see Kotake 2003). These morphological differences we consider 

to be sufficiently different to the type material of Phoebichnus that P. bosoensis would be 

better placed in its own genus (pending reconsideration of the type material).  

Phoebichnus trochoides Bromley and Asgaard 1972 
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Emended diagnosis: Central vertical zone composed of stacked disk-shaped layers 

of organic detritus and sediment, sometimes cut by a sub-vertical shaft, from which long, 

narrow, radial galleries emerge. Radial galleries are typically straight but may curve in 

the vertical and lateral planes. Radial galleries have a sand-rich lining composed of annuli 

of sand pellets and are sand-filled with angle of repose laminae. 

Studied Material: 3 specimens, 4 thin sections, and numerous field observations. 

Description: Vertically oriented central zone, 4-8 cm in diameter but of unknown 

maximum depth, upper portion comprised of stacked dish-shaped layers defined by 

concentrations of organic detritus. Extending from the central zone at various depths and 

angles are numerous radial galleries 1-2 cm in diameter and observed up to 1 m in length. 

The radial galleries are circular in cross-section, and possess a distinct sand-rich burrow 

lining comprised of annuli 0.5 cm thick, the upper portion of which is locally absent 

where the gallery underlies collapse cones. The fill of the radial galleries is composed of 

angle of repose laminae that are generally directed towards the central zone. The radial 

galleries may be straight and parallel in the horizontal plane, may bend laterally, curve 

oblique to bedding, or curve sharply towards sediment surface to become vertically 

oriented. Funnel shaped zones of disturbed or collapsed sediment may be present above 

both horizontal and vertically oriented radial galleries, at any point along the length of the 

galleries.  
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2.9 Conclusion  

The serial grinding and three-dimensional reconstruction techniques employed 

during this study have enabled the re-examination and revision of the morphology and 

palaeobiology of Phoebichnus trochoides. Several new discoveries have been presented 

herein: 

 The cylindrical central boss is composed of irregularly stacked disk-shaped layers 

of highly bioturbated sediment and is compared to the sinking of a surficial cone 

of sediment ejected from the burrow as seen in modern trace-makers of 

Ophiomorpha (e.g. Leaman et al. 2015). 

 The radial galleries have a thick outer wall of sandy pellets organised into 

concentric annuli that has previously been considered to be produced by 

meniscate backfill.  

 The fill of the radial galleries is demonstrated to be angle of repose laminae 

inclined towards the central zone, rather than meniscate backfill as suggested in 

the ichnogeneric diagnosis, implying that the trace-making organism filled its 

burrows from a dwelling position close to the central boss with material excavated 

from elsewhere in the burrow.  

 The presence of subtle small-scale conical sedimentary collapse structures above 

radial galleries demonstrate that the trace-maker engaged in collapse cone feeding 

through destruction of portions of the burrow roof. 

 The presence of a pelleted wall, the association of collapse cones above the 

burrow galleries, and the inclined fill of the radial galleries supports the inference 
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that the burrow was maintained as an open structure and subsequently passively 

filled. 

 Axiid crustaceans are possible trace-makers, based on ethological comparisons 

with the burrows of modern axiids (e.g. Leaman et al. 2015). 
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Abstract 

The distinctive species of Palaeophycus known as Palaeophycus heberti is 

characterised by its thick burrow wall and passive burrow fill. This species is typically 

associated with intensely bioturbated, heterolithic sandstones and mudstones deposited in 

shoreface to offshore marine palaeoenvironments. Three-dimensional analysis of 

specimens attributed to P. heberti based on closely-spaced serially ground surfaces have 

revealed a number of hitherto unknown morphological elements more comparable to the 

ichnogenus Schaubcylindrichnus, thereby creating S. heberti comb. nov. 

Schaubcylindrichnus burrows are typically passively filled, and have a thick burrow wall 

composed of sand-rich annular rings. The three-dimensional reconstructions importantly 

demonstrate that the gross morphology is a broad-open U-shape, which is inconsistent 

with the ichnogeneric diagnosis of Palaeophycus. Schaubcylindrichnus heberti differs 

from all other species of Schaubcylindrichnus in that the burrow wall is mineralogically 

heterogeneous rather than purely quartzose, the ichnogeneric diagnosis is thus emended to 

accommodate S. heberti. 

 

Key words: Palaeophycus heberti, Schaubcylindrichnus, trace fossil, burrow wall, 

palaeobiology, three-dimensional reconstruction. 
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3.1 Introduction 

The ichnogenus Palaeophycus, Hall 1847 is considered to be a sand- or mud-

lined, cylindrical—broadly bedding parallel—burrow with a passive fill. This 

morphologically simple ichnogenus has been the source of some confusion since its 

original description due to: 1) its similarity to other simple tubular burrows; 2) confusion 

surrounding its gross morphology; and 3) disagreement concerning which morphological 

characteristics should have greatest taxonomic importance (Fillion and Pickerill 1990; 

Keighley and Pickerill 1995). Palaeophycus, like many ichnogenera, was originally 

described as a plant genus, but has since been shown—by study of syntype material—to 

be a trace fossil (Osgood 1970; Keighley and Pickerill 1995). The primary ichnotaxobase 

used by most modern workers to diagnose Palaeophycus is the presence of a burrow wall 

(Pemberton and Frey 1982). Variations in the thickness and composition of the burrow 

wall, as well as differences in ornamentation, have led to the creation of several 

ichnospecies of Palaeophycus. Of the currently described ichnospecies Palaeophycus 

heberti, Saporta 1872 is distinguished from all other ichnospecies by its much thicker 

sand-rich wall. The type material of P. heberti was originally described as Siphonites 

heberti, but was subsequently synonymised with Palaeophycus (Saporta and Marion 

1883; see review in Knaust 2015). The mode of life of the P. heberti trace-maker is 

similarly in dispute, but most recently it has been considered to be the dwelling structure 

of a predaceous or suspension feeding worm (Pemberton and Frey 1982; MacEachern et 

al. 2005; Gani et al. 2005). The reported palaeoenvironmental range of P. heberti is from 

shallow marine to continental settings, but this ichnotaxon is most typically associated 
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with intensely bioturbated, heterolithic sands and muds of low to high-energy shoreface 

to offshore environments (Frey and Howard 1990; Buatois and Mángano 2011; 

Rajkonwar et al. 2013). Non-marine examples (Melchor et al. 2006; Tanner et al. 2006; 

Retallack 2009) are in need of careful assessment and comparison with Beaconites 

capronus (cf. Boyd & McIlroy 2016). 

This study aims to morphologically characterise well-preserved specimens of 

Palaeophycus heberti from hand-samples that originated in strata rich in Phoebichnus 

trochoides (cf. Evans and McIlroy 2016). Phoebichnus trochoides is a much larger trace 

fossil than Palaeophycus heberti with similarly thick sand-lined burrow walls but, unlike 

P. heberti, has a central boss from which numerous branches radiate. The similar wall 

architecture of the two associated burrows leads us to consider the possibility that 

Palaeophycus heberti might be burrows of the juvenile form of the Phoebichnus 

trochoides trace-maker. This is important since assemblages of P. trochoides always have 

radial burrows of the same diameter (approx. 1–2 cm), and no ontogenetic series has been 

documented (Evans and McIlroy 2016).    

The specimens selected for this study were collected in order to investigate the 

full three-dimensional morphology and palaeobiology of Palaeophycus heberti in P. 

trochoides-bearing strata. Three-dimensional reconstructions were undertaken through the 

creation of closely spaced serial surfaces that were precisely ground using a CNC milling 

machine, and the creation of digitally reconstructed whole-rock models (Bednarz et al. 

2015). Previous morphological descriptions of P. heberti have been based on the study of 

hand specimens without the benefit of a full three-dimensional dataset. The advantage of 

the methodology employed herein is that the burrow can be studied in the context of the 
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reconstructed host sediment, and subtle morphological details—that can be used to infer 

organism-sediment interactions—can be examined in three dimensions. The serial 

grinding method, while destructive, also allows a detailed and direct study of the 

composition and structure of burrow walls and burrow fill at a resolution that is not easily 

attained by non-destructive methods such as computed axial tomographic (CT) scanning 

(e.g. Dufour et al. 2005; Herringshaw et al. 2010), or magnetic resonance imaging (MRI) 

(e.g. Gingras et al. 2002). 

3.2 Geological and palaeoenvironmental settings 

The samples for this study were collected from the Lower Jurassic Staithes 

Sandstone Formation of the Lias Group of the Cleveland Basin in northeastern England 

(Fig. 3.1). The Staithes Sandstone Formation is a net-upward fining succession rich in 

bioturbated silty sandstones, planar laminated to low-angle or hummocky cross-stratified 

fine-grained sandstones, and silty mudstones (Howard 1985; Powell 2010). 

Unbioturbated beds also occur throughout the sequence (Howard 1985). The latter are 

most likely fluid mud deposits and suggest that the depositional setting may have been a 

storm-dominated delta, rather than a conventional shoreface (cf. Harazim and McIlroy 

2015). The presence of this sand-dominated succession between the Redcar Mudstone 

and the Cleveland Ironstone has been considered to be the result of relative sea-level fall, 

and concomitant increase in sand-supply (Hesslebo and Jenkyns 1995; Powell 2010).  
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Fig. 3.1. Sample collection site and generalized stratigraphic column. A: Map of field 

location at Staithes, UK. Arrow shows approximate collection location of the samples. B: 

Stratigraphic column of the Lias Group showing the stratigraphic level studied. 

 

3.3 Materials and methods 

The collected samples were subjected to precision serial grinding and high-

resolution digital photography. The hand-samples were encased in plaster and serially 

ground using a computer guided CNC milling machine. The two samples presented 

herein were ground at 0.1 mm increments. Each ground surface was consecutively 

labelled, wetted with oil to enhance contrast, and photographed under identical lighting 

conditions. The collection of precisely spaced, high-resolution, photographic images 

allows closer examination of the composition and structure of the wall and infilling 

sediment and, thus, more detailed interpretation of organism-sediment interactions. The 

successions of images were imported into VG Studio MAX producing whole rock models 
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of the samples (see Bednarz et al. 2015 for full methodology). The modelling software 

enables the whole-rock models to be viewed at any angle and cut in any direction to 

create any number of cross-sections through the trace fossil to aid in understanding 

relationships between the burrows and their host sediment.   

3.4 Descriptive ichnology 

The cylindrical, sub-horizontal burrows characterised herein are typified by their 

thick sand-rich burrow wall, and would by convention be considered to be Palaeophycus 

heberti (Fig. 3.2; cf. Saporta 1872; Pemberton and Frey 1982, Fillion and Pickerill 1990). 

Burrow diameters range from 5 to 10 mm, of which the outer wall takes up a large portion 

of the total diameter of the burrows, being between 1 and 2.5 mm in thickness (Fig. 3.2). 

The thickness of the wall and the diameter of the central fill may vary along the length of 

any given burrow. Digital cross-sectioning shows that bedding-parallel portions of 

burrows can be compacted to produce an elliptical cross-section from the originally 

circular form (Fig. 3.2C–D). The sand-lined burrows in the studied samples show no 

preferential orientation. Perfect longitudinal cross-sections of long segments of burrows, 

created by digital cross-sectioning of the reconstructed rock volume, show that the gross 

morphology of the longest preserved burrow lengths is a very broad U-shape that curves 

downwards in a bedding perpendicular or oblique plane (Fig. 3.3). The longest, but still 

incomplete, burrow sampled was about 16 cm in length and up to 3.6 cm deep.  
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Fig. 3.2. Cross-sections through sand-walled burrows showing the thick wall (w) and 

passive fill (f). A and B: Horizontal longitudinal cross-sections with lithologically 

variable passive burrow fills (f). C and D: Transverse cross-sections of the same burrows 

showing the variability in cross-section shape from largely uncompressed circular in C, to 

elliptical and compacted in D. 

 
Fig. 3.3. Bedding perpendicular, longitudinal cross-sections showing the typical broad U-

shaped morphology of the burrows. A and B: Longitudinal (digitally sliced) cross-

sections of burrows curving from sub-horizontal in the centre of the U to nearly to sub-

vertical close to the inferred sediment-water interface. A and B show laminated (passive) 

fill of inclined laminae (i), and demonstrate the variable proportions of sand to clay in the 

burrow wall along its length from sand-rich (s) to clay-rich (c) portions. C: Longitudinal 

(digitally sliced) cross-section showing physically laminated burrow fill with irregularly 

inclined laminae (i) and a burrow wall that is irregular in thickness (t). 

 

The distinctively thick sand-rich wall in the studied material is directly 

comparable to Palaeophycus heberti. The wall makes up approximately half of the total 

burrow diameter and is lithologically similar to, but better sorted than the surrounding 
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sediment, containing a mixture of quartz, feldspar, clay minerals and micas (Fig. 3.2). 

Along the length of some burrows the darkness of the wall is variable, becoming darker 

where the proportion of clay and mica to quartzose sand increases (Fig. 3.3A). The 

thickness of the wall may change along the length of a burrow. This is demonstrable 

through direct observation of wall thickness variability along the length of burrows with 

unchanging diameter of the central burrow fill (Fig. 3.3). The wall has a finely laminated 

annular structure that is most prominent in the darker, clay-rich, portions of the wall (Fig. 

3.4). In sections of burrows rich in clays and micas, the boundary between successive 

annular rings is curved in a consistent direction along the full length of the burrow (Fig. 

3.4). Some burrows also have a thin patina of clay minerals at the boundary between the 

wall and fill (Fig. 3.4). Burrow walls may contain radial, clay-filled, cracks that extend 1–

3 mm from the inner margin of the wall (Fig. 3.5).  
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Fig. 3.4. Bedding-parallel longitudinal cross-section showing the annular structure of the 

sandy burrow wall with curved laminae (a) implying construction from left to right. Thin 

patina (p) of clay minerals is present between the burrow wall and fill. 

 
Fig. 3.5. Cross-sections showing clay-filled cracks extending from the inner surface of the 

burrow wall. A: Oblique cross-section and B: Vertical transverse (digitally sliced) cross-

section showing cracks (c) in the burrow wall due to collapse or compaction of the 

burrow.  

 

None of the reconstructed burrows show true branching, and most are isolated 

though some burrows are closely adjacent to one another (Fig. 3.6A), and may either re-

burrow adjacent burrows, or share part of the wall (Fig. 3.6B–C) in a manner reminiscent 

of Schaubcylindrichnus coronus (Howard 1966; Chamberlain 1976; Nara 2006). This 

morphology is comparable to secondary successive branching wherein an organism 

followed an earlier burrow for some distance before deviating its course at an angle from 

the original burrow to produce a side branch that superficially resembles true branching 

(D’Alessandro and Bromley 1987).  
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Fig. 3.6. Bedding perpendicular and transverse (digitally sliced) cross-sections of sand-

lined burrows. A: Close vertical stacking of burrows. B: Re-burrowing. C: Burrow wall 

sharing which may be due to re-burrowing. The burrows in B and C are labelled in the 

order of successive creation.   

 

The burrow fill may be massive or laminated and can contain variable proportions 

of clay and sand-grade material, which can vary along the length of a single burrow, and 

is not necessarily lithologically comparable to the host sediment (Fig. 3.7). Where the 

burrow fill is laminated, the laminae are typically either regularly spaced and gutter 

shaped, or irregular in morphology and discontinuous in distribution (Figs. 3.3C, and 3.8). 

This is dissimilar to the consistently high “angle of repose” laminae seen in the burrow 

fill of the burrow Phoebichnus trochoides (Evans and McIlroy 2016). A single burrow 

from the dozens of otherwise identical sand-lined burrows studied shows a well-

developed meniscate backfill, in which the meniscae of the burrow fill are curved in the 

same direction as the curvature of the annular burrow wall (Fig. 3.9). This meniscate 

burrow does not have a stellate morphology or a central boss, which would have made it 
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more comparable with the associated (but much larger) Phoebichnus trochoides (Evans 

and McIlroy 2016). 

 
Fig. 3.7. Longitudinal cross-sections through burrows showing the variability of the 

burrow fill. A: Massive and lithologically similar to the host rock. B: Massive and more 

clay rich than the host rock. C: Irregularly, discontinuously laminated and laterally 

variable burrow fill broadly similar to the host rock in lithology.  

 
Fig. 3.8. Cross-sections of a burrow with inclined trough-like passive burrow fill. A: 

Bedding perpendicular longitudinal (digitally sliced) cross-section through a burrow with 

thick wall (w) with a fill composed of inclined laminae (i). B: Transverse (digitally 

sliced) cross-section of the same burrow showing the U-shaped cross section of the 

laminae (i) demonstrating that they are trough-like in three-dimensions.  
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Fig. 3.9. Cross-sections through burrows with meniscate backfill. A and B: Vertical 

longitudinal (digitally sliced) cross-sections showing meniscate laminae (m) 

demonstrating backfilling behaviour of an organism moving from left to right. C: 

Bedding parallel cross-section in which the curved annular rings of the burrow wall are 

curved in the same direction as the meniscate backfill (m).  

 

3.5 Taxonomic considerations 

Palaeophycus has, in general, been considered to be simple passageways 

produced by bulk sediment, non-selective, vagile deposit feeders or the semi-permanent 

burrows of predacious endobenthic organisms (Osgood 1970: Pemberton and Frey 1982). 

The standard model for the production of all Palaeophycus is that as the trace-maker 

moved through the sediment it pushed the sediment around it such that the burrow would 

collapse behind it, except in cases where mucus was applied to the walls, which confers 

temporary rigidity prior to collapse (Osgood 1970). The material that fills Palaeophycus 

is typically the same as the host sediment, probably because vagile infaunal organisms, if 

they are not grain-selective deposit feeders (cf. Bednarz and McIlroy 2012), simply pass 

the majority of grains around their bodies, except those grains that are ingested and re-
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deposited as faeces (Osgood 1970). The fact that the burrows studied herein do not have a 

consistent lithological fill suggests that they are unlike Palaeophycus in terms of mode of 

formation. Passively filled burrows are, by implication, those that are maintained as open 

burrows, and as such cannot be produced by the actions of vagile deposit-feeding 

organisms, since they largely live independently of the overlying water column and have 

no reason to maintain a connection to it. Organisms that live in open burrows can be 

predaceous, suspension feeding, surface deposit feeding, reverse conveyors, bioirrigators 

or microbial farmers (Pemberton and Frey 1982; Bromley 1996; Herringshaw et al. 

2010). We note that most of these modes of feeding are at odds with the inferred mode of 

formation of most other species of Palaeophycus, and call into question the attribution of 

both the present material, and indeed all Palaeophycus heberti, to the ichnogenus 

Palaeophycus. If we accept that the material studied herein is typical of the species 

heberti then a number of key observations of taxonomic importance follow: 

1) The annulate structure of the burrow wall and the broad U-shaped burrow 

morphology when seen in longitudinal cross section is inconsistent with the placement of 

heberti in Palaeophycus;  

2) The bow-shaped morphology of the burrow (Fig. 3.3), along with the local vertical 

clustering of burrows (Fig. 3.6A) is highly comparable to the ichnogenus 

Schaubcylindrichnus Frey and Howard 1981;  

3) Schaubcylindrichnus, as currently defined is reserved for burrows with thick, 

sandy walls composed of pure quartz, and thus have a distinctive white appearance in the 

field (Frey and Howard 1981; Miller 1995; Nara 2006; Löwemark and Hong 2006; 

Löwemark and Nara 2010). Otherwise, no component of the existing diagnosis is 
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incompatible with the newly revealed morphology of the Staithes Formation heberti 

described herein; 

4) The recent description of S. coronus as a broad U-shaped burrow with associated 

collapse feeding cone at one end (Nara 2006; Löwemark and Nara 2010) is entirely 

consistent with our morphological reconstructions. Though we note that this observation 

has not hitherto been formally incorporated into the ichnogeneric diagnosis of 

Schaubcylindrichnus.  

We propose that the ichnogeneric diagnosis of Schaubcylindrichnus could be usefully 

emended and broadened to include taxa with slightly thicker, less clean burrow walls, but 

that are otherwise morphologically identical, such as the ichnospecies heberti. Since 

Schaubcylindrichnus coronus and heberti commonly occur in the same successions, and 

even the same beds (e.g. Frey 1990; Frey and Howard 1990; Bann and Fielding 2004; 

McIlroy 2004; McIlroy 2007; Pervesler et al. 2011; Olivero and López Cabrera 2013), the 

difference in clay content of the wall would be better expressed at the level of 

ichnospecies rather than ichnogenus. We suggest therefore that heberti should be 

considered as a species of Schaubcylindrichnus that has a thick wall constructed of more 

diverse mineral grains than the other valid ichnospecies of Schaubcylindrichnus (i.e. S. 

coronus; see systematic treatment below). 

We find no evidence in our material of Schaubcylindrichnus (Palaeophycus) 

heberti for the characteristic stellate structure and central boss associated with 

Phoebichnus trochoides. The passive burrow fill of S. heberti is dissimilar to the actively 

created angle of repose laminae characteristic of P. trochoides (Evans and McIlroy 2016). 

The only other remaining gross similarity is in that both taxa have thick, annulate, sand-
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rich burrow walls that are composed of curved annuli. We consider that the annuli of the 

S. heberti walls were created as successive laminae (Fig. 3.10A-B) rather than by 

adjacent, slightly cross cutting, rings of pellets as is seen in P. trochoides (Evans and 

McIlroy 2016). The new data presented herein leads us to conclude that 

Schaubcylindrichnus  heberti is not the burrow of the juvenile trace-makers of 

Phoebichnus trochoides, which leaves us with the ongoing issue of a lack of evidence for 

the activity of juvenile Phoebichnus trace-makers; a question that we cannot at present 

answer.  

 
Fig. 3.10. Idealized sketch of how the structure of the burrow wall of 

Schaubcylindrichnus (Palaeophycus) heberti was formed. A: The trace-maker excavated 

sediment ahead of the burrow creating a cavity. B: Excavated sediment was packed into 

the burrow wall with mucus to produce a consecutive series of thin annuli. Variability in 
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the shape of the excavation in front of the burrow causes the local differences in burrow 

wall thickness (B). 

 

3.6 Palaeobiology of Schaubcylindrichnus heberti comb. nov. 

The burrow wall of Schaubcylindrichnus heberti was probably created by the 

active packing of sediment, excavated from ahead of the constructed burrow, into the wall 

to produce a series of thin annuli in the wall (Figs. 3.4, 3.10). We consider that the trace-

maker excavated sediment ahead of the burrow to create a cavity (Fig 3.10A), possibly 

during the initial deposit-feeding phase, during which the open U-burrow was created (cf. 

Nara 2006). Since the laminae of the wall are convex towards one end of the burrow 

system (Fig. 3.11), and are typically slightly sandier than the host sediment it is likely that 

there was a component of grain-selective deposit feeding during initial burrow 

excavation. Any ingested material was likely excreted as faeces on the seafloor since no 

faecal pellets have been discovered in the burrow fill. During this deposit feeding/burrow 

excavation phase, at least some sediment must have been removed to create the open 

burrow. This was probably ejected onto the seafloor at one end of the burrow, probably as 

a sediment cone (Fig. 3.11; cf. Nara 2006). This is consistent with the conical subsidence 

feature documented around one end of some Schaubcylindrichnus coronus (Fig. 3.12A; 

Löwemark & Nara 2010).  
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Fig. 3.11. Idealized sketch of the sediment cone and subsidence of the sediment cone into 

underlying strata at the tail end of a Schaubcylindrichnus heberti burrow. 

 
Fig. 3.12. Idealized sketch representing the full burrow reconstruction of 

Schaubcylindrichnus heberti based on our reconstruction of Schaubcylindrichnus heberti 

and inferred sediment surface and feeding cones following Nara (2006). A: Burrows 

contain a sediment cone at the tail end and collapse feeding cones at the head end. The 

burrows are labelled in the order of successive creation showing how the organism uses 

the previous burrows wall when constructing a new burrow. B: Lateral shifting of the 

position of the feeding cones. 

 

The widespread paradigm that walls are constructed for structural reinforcement 

of burrows in loose sediments (e.g. Bromley 1996; Buatois and Mángano 2011), while 

true in some cases, is not universally applicable. Mucus applied to the burrow margin 
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alone is commonly enough to hold a burrow open, even in loosely consolidated sediments 

(Leaman et al. 2015). It may be that, in long-lived burrows, the thick walls provide 

protection from predation since many modern organisms secrete toxins into burrow walls 

to deter predators (e.g. Woodin et al. 1987). Building a thick wall of low clay and organic 

matter content may discourage accidental re-burrowing by deposit feeders seeking fine-

grained sediment, thereby helping the Schaubcylindrichnus trace-maker avoid the 

metabolic cost of burrow-repair. Thick burrow walls can also provide temporary or 

permanent protection from the external pore-water environment (Keighley and Pickerill 

1994) and allow for more effective bioirrigation (Herringshaw and McIlroy 2013).  

The passive sediment fill typical of most Schaubcylindrichnus heberti burrows 

(Figs. 3.2, 3.3, 3.7, and 3.8) implies that the burrow was maintained as an open structure 

during the life of the trace-maker. This is consistent with the observation that S. heberti 

was an open U-shape structure. Clay patinas observed in some burrows also indicate that 

they were maintained as open structures (Fig. 3.4). Our material does not show the 

terminations of the U-burrow of S. heberti, though we would suggest that a collapse-cone 

typical of funnel feeding mode of life—as seen in S. coronus (Nara 2006; Löwemark and 

Nara 2010)—is likely (see Fig. 3.12A). The meniscate structure observed in the fill of a 

single burrow in this study is atypical of both Palaeophycus and Schaubcylindrichnus. 

We struggle to explain such a form during the normal inferred mode of life of the 

Schaubcylindrichnus trace-maker. Such meniscate backfill might, however, be created as 

part of an escape response to sediment inundation of the burrow in which the trace-maker 

abandoned the lined burrow by excavating a tunnel through one end to re-establish 

connection with the newly created—stratigraphically higher—seafloor. Instances where 
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burrows are observed to be adjacent to one another or have been re-burrowed may be the 

result of the Schaubcylindrichnus-producing organism utilizing the wall of an abandoned 

burrow when building a new burrow (Figs. 3.6, 3.12A). By using a pre-existing burrow 

wall the trace-maker would save on the metabolic energy needed to construct that part of 

the wall anew (Nara 2006).  

 The pattern of lateral shifting of the position of the feeding cones (Fig. 3.12B) is 

likely to account for the different burrow positions that have previously been used as a 

species defining characteristic (i.e. Schaubcylindrichnus freyi and S. formosus). This, 

however, has been rejected and the two species, S. freyi and S. formosus, informally 

considered to be junior synonyms of S. coronus (Nara 2006; Löwemark and Nara 2010). 

Our recognition of these same burrow distributions in association with the less clean 

walls of S. heberti supports the rejection of burrow distribution as a useful ichnotaxobase 

in Schaubcylindrichnus. 

3.6.1. Full palaeobiological model for the formation of Schaubcylindrichnus 

heberti comb. nov. 

 We consider that the trace-maker created the U-burrow by excavating the 

sediment and then packing sediment around itself progressively as rings, creating a thick 

wall, with a curved heterolithic annular structure (Figs. 3.10, 3.11). The trace-maker lived 

within the open burrow and from one end exhibited funnel-feeding behaviour (Fig. 3.12). 

Faeces and excess sediment produced from burrowing was expelled onto the sediment 

surface at the opposite end of the burrow system (Fig. 3.12). Ultimately, the trace-maker 

would abandon the burrow and build a new one, sometimes using the abandoned burrows 
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wall when constructing the new burrow. This resulted in closely adjacent burrows that in 

some cases shared a burrow wall or re-burrowed the adjacent burrow (Fig. 3.13). The 

abandoned open burrow was passively filled with sediment. 

3.7 Ichnotaxonomy     

Ichnogenus SCHAUBCYLINDRICHNUS, Frey and Howard 1981 

Type ichnospecies: Schaubcylindrichnus coronus, Frey and Howard 1981 

Emended diagnosis: Wide U-burrows curved in the vertical plane, with thick 

sand-rich burrow lining that may contain some proportion of clay-grade material. May be 

either isolated or clustered, an inverted sediment cone may be associated with the upper 

terminations in some material. 

Remarks: Schaubcylindrichnus is emended to accommodate taxa with similar wall 

architecture and gross-morphology as the type species, but containing variable amounts of 

dark clay or mica in the wall. Schaubcylindrichnus has hitherto been reserved for burrows 

with walls composed of pure quartz. 

Schaubcylindrichnus (Palaeophycus) heberti comb. nov.  

Emended diagnosis: Schaubcylindrichnus with sand-rich, finely laminated burrow 

lining containing dark clay minerals and micas. Burrow fill usually passive, rarely 

meniscate. 
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1872   Siphonites heberti Saporta, p. 110, pl. 22, fig. 1, 2. 

1883   Palaeophycus heberti Saporta; Saporta and Marion, p. 97, text-fig. 23. 

1925   Palaeophycus heberti Saporta; Fritel, p. 40. 

1955   Siphonites heberti Saporta; Andrews, p. 238.  

1955   ?worm tubes; Danner, p. 451, text-figs. 1-4. 

1957   Siphonites heberti Saporta; Gardet et al., p. 997, text-figs. 1, 2. 

1962   Siphonites heberti Saporta; Häntzschel, p. W215, text-fig. 135-4. 

1962   Palaeophycus heberti Saporta; Häntzschel, p. W215. 

1963 Siphonites (?) Häntzschel, 1962; MacKenzie, pl. 2, figs. c-e, text-figs. 3, 4 

[white-walled burrows] (see below). 

1970   Siphonites heberti Saporta; Andrews, p. 197. 

1971 white-walled burrows; MacKenzie, pl. 3, figs. c-e.  

p1973    Siphonites heberti Saporta; Heinberg, p. 232, text-figs. 3c-d, 8, 9. 

1975   Siphonites heberti Saporta; Häntzschel, p. W106, text-fig. 65-2. 

1975   Palaeophycus heberti (Saporta); Häntzschel, p. W106. 

1975 Palaeophycus heberti Saporta; Alpert, p. 518.  
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p1976 Siphonites heberti Saporta; Pollard and Lovell, p. 217, pl. 2, fig. A, text-figs. 4, 

5. 

1982 Palaeophycus heberti Saporta; Pemberton and Frey, p. 861, pl. 1, figs. 4, 9; pl. 4, 

fig. 4.  

1984   Palaeophycus heberti Saporta; Howard and Frey, p. 206, fig. 12. 

p. 1985  Palaeophycus isp. Hall; Frey and Bromley, p. 811, fig. 13A, C.  

1985a   Palaeophycus heberti Saporta; Frey and Howard, p. 382, figs. 5.5, 5.9, 12, 16.10 

1985b   Palaeophycus heberti Saporta; Frey and Howard, p.133, fig. 11A. 

1985   Palaeophycus heberti Saporta; Frey and Pemberton, fig. 3. 

1987   Palaeophycus heberti Saporta; Badve, p. 117, pl. 4, fig. 1.  

1988   Palaeophycus heberti Saporta; Vossler and Pemberton, p. 252. 

.1989   Palaeophycus isp. Hall; Dam, p. 137, fig. 11C.  

1990   Palaeophycus heberti Saporta; Fillion and Pickerill, p. 43, pl. 10, figs. 14, 16. 

1990   Palaeophycus heberti Saporta; Frey, fig. 4c. 

1990   Palaeophycus heberti Saporta; Frey and Howard, p. 812, fig. 13.4, 16.5, 20.2. 

1990   Palaeophycus heberti Saporta; Maples and Suttner, p. 872, fig. 12.8. 

1996   Palaeophycus heberti Saporta; Bromley, p. 163, figs. 11.3, 11.16, 11.17. 
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1998 Palaeophycus heberti Saporta; Kundal and Sanganwar, p. 625, pl. 3, figs. 4, 5. 

2000   Palaeophycus heberti Saporta; MacEachern and Burton, fig. 6, 7. 

2001   Palaeophycus heberti Saporta; Tchoumatchenco and Uchman, p. 89, fig. 6b.  

2004   Palaeophycus heberti Saporta; McIlroy, p. 243, figs. 4d, 5ai 

2006    Palaeophycus heberti Saporta; Fernandes and Carvalho, p. 215, fig. 7. 

2006   Palaeophycus heberti Saporta; Fürsich et al., p. 603, fig. 4G, H. 

2006      Palaeophycus heberti Saporta; Löwemark and Hong, fig. 8.   

2006   Palaeophycus heberti Saporta; Melchor et al., p. 262, fig. 6E. 

2006     Palaeophycus heberti Saporta; Nara, p. 451. 

2006   Palaeophycus heberti Saporta; Tanner et al., p. 24, fig. 4A, B. 

2007   Palaeophycus heberti Saporta; McIlroy, fig. 6d. 

2008   Palaeophycus heberti Saporta; Uchman et al., p. 64, fig. 4B, C. 

2008   Palaeophycus heberti Saporta; Zhang et al., p. 55, fig. 7b. 

2009a   Palaeophycus heberti Saporta; Rodríguez-Tovar et al., p. 410, fig. 3C, D. 

2009b   Palaeophycus heberti Saporta; Rodríguez-Tovar et al., p. 88, fig. 6. 

2009   Palaeophycus heberti Saporta; Retallack, p. 373, fig. 9C, E. 

2010   Palaeophycus heberti Saporta; Rodríguez-Tovar and Uchman, p. 580, fig. 6E. 
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2010   Palaeophycus heberti Saporta; Nagendra et al., p. 527, fig. 3d. 

2010   Palaeophycus heberti Saporta; Zonneveld et al., fig. 10E 

2011 Palaeophycus cf. heberti Saporta; Pervesler et al., p. 584, fig. 2J.  

2011 Palaeophycus heberti Saporta; Tiwari et al., p. 1134, pl. 2b. 

2012   Palaeophycus heberti Saporta; Desai and Saklani, fig. 3i 

2012a   Palaeophycus heberti Saporta: Mude et al., p. 27, pl. 1, fig. 6. 

2012b   Palaeophycus heberti Saporta; Mude et al., p. 160, pl. 1, fig. 5, pl. 2, fig. 4  

2012   Palaeophycus heberti Saporta; Witts et al., fig. 7b-E. 

2013   Palaeophycus heberti Saporta; Šimo and Tomašovỳch, p. 266, figs. 6A, C, 11A, 

C. 

2014   Palaeophycus heberti Saporta; Bayet-Goll et al., p. 16. 

2015     Palaeophycus cf. heberti Saporta; Song et al., p. 5, fig. 4b. 

2015   Palaeophycus heberti Saporta; Wang et al., p. 7, fig. 3e. 

2015    Palaeophycus heberti Saporta Zhang and Zhao, p. 334, fig. 5n 

2015   Palaeophycus heberti Saporta; Zhao et al., p. 110, fig. 7E 

Studied material: 2 rock samples each containing numerous burrow specimens 

(available only as digital data) and numerous field observations. 
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Description: Burrow diameters range from 5–10 mm, the outer wall takes up a 

large portion of the total diameter of the burrows, ranging from 1–2.5 mm thick, and 

surrounds a fill 2.5–5 mm in diameter. Burrows are circular in cross-section except where 

they are compressed into an elliptical cross-section. The gross morphology is interpreted 

to be a broad U-shape in the vertical to oblique plane. Burrows may be isolated or occur 

as closely clustered adjacent burrows. Cross-sectional dimensions constant within 

individual burrows but vary between different burrows. The finely laminated wall has a 

curved annular structure defined by dark clay minerals and micas. The burrow fill is 

passive (either massive or laminated), or rarely meniscate. 

Discussion: Schaubcylindrichnus heberti differs from other species of 

Schaubcylindrichnus in having clay and mica in the wall, which, in the only other 

currently valid ichnospecies, S. coronus, is composed of clean quartzose sand. S. heberti 

differs from other species of Palaeophycus in having a broad-open U-shaped burrow that 

in some cases may follow  adjacent burrows or share portions of their burrow wall. 

Burrows of the similar, but much larger, Phoebichnus are radially arranged with an 

actively produced angle-of-repose burrow fill (Evans & McIlroy 2016) that is not seen in 

S. heberti. Short segments of S. heberti with meniscate backfill, considered herein to be 

an escape response, can look similar to Beaconites capronus, though the latter is much 

more continuous, commonly bedding parallel, vermiform, and never an open U-shape.  

It is noted that Schaubcylindrichnus is most commonly found in highly 

bioturbated offshore facies, in which the collapse cones and sediment cones have low 

preservation potential. As such, these difficult-to-preserve features should not be used as 

a defining taxonomic feature of any species of this genus. 
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3.8 Conclusions  

1. The studied thick-walled Palaeophycus heberti are determined herein to be a broadly 

U shaped, which requires their inclusion within the ichnogenus Schaubcylindrichnus 

to create Schaubcylindrichnus heberti comb. nov. 

2. The burrows may be closely clustered or isolated in a manner comparable to S. 

coronus (sensu Löwemark & Nara 2010) from which it only differs in the 

mineralogical immaturity of the burrow wall in S. heberti (Fig. 3.6A). 

3. The wall is composed of clay and sand-rich annular rings that are inferred to result 

from progressive accretion of a wall adjacent to the cavity excavated by the trace 

maker during initial creation of the open burrow (Fig. 3.10). 

4. During initial burrow creation, grain-selective deposit feeding is likely to have 

affected the mineralogical composition of the wall due to ingestion of finer-grained 

material and the ejection of faeces at the seafloor. 

5. The passive fill of the open burrows—either post-mortem, or following burrow 

abandonment—may be lithologically different to the host sediment, and may contain 

sedimentary laminae (Figs. 3.2, 3.3, 3.7, and 3.8). 

6. Rare meniscate backfill of S. heberti is considered to record escape behaviour 

following the burrow being filled with sediment while occupied and escape through 

one end of the burrow (Fig. 3.9).  

7. There is no behavioural/ichnological evidence to suggest that S. heberti was formed 

by juveniles of the commonly associated—but much larger—stellate burrow 
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Phoebichnus trochoides. The main morphological similarity—the thickly sand-lined 

wall—is considered to be behavioural convergence. 
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4.1 Introduction 

This study explores the full three-dimensional morphology and palaeobiology of 

the similarly thickly lined trace fossils Phoebichnus trochoides and Schaubcylindrichnus 

(Palaeophycus) heberti through the tomographic creation of three-dimensional models of 

the trace fossils and whole rock models of trace fossil bearing samples. The study was 

motivated by the need to better understand the morphology, palaeobiology, and 

palaeoecological/palaeoenvironmental context of these common shallow marine trace 

fossils that are present in many shallow marine hydrocarbon reservoirs worldwide, 

particularly those of Mesozoic age (Bromley and Asgaard 1972; Frey and Howard 1990; 

Bromley and Mørk 2000; McIlroy 2004b; Rajkonwar et al. 2013). The three-dimensional 

reconstructions produced were essential to fully characterizing these structures and have 

significantly improved the understanding of these two taxa. 

The outcomes of this research are relevant to the recognition and palaeobiological 

interpretation of the two taxa considered (Phoebichnus trochoides and 

Schaubcylindrichnus (Palaeophycus) heberti). The data collected has enabled us to 

determine the full three-dimensional morphology, fully understand the organism-

sediment interactions, and assess the mode of life of the trace-making taxa. 

Understanding the complete morphology of these two taxa will additionally improve their 

identification in the field and in core-based cross sections since the models can be sliced 

in an infinite number of planes. The palaeobiological and ethological interpretations of 

these trace fossils can additionally be used to inform their use as palaeoenvironmental 

indicators. Importantly, the three-dimensional models improve the taxonomic 
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understanding of both Phoebichnus trochoides and Schaubcylindrichnus (Palaeophycus) 

heberti, which require significant taxonomic change and emendation of diagnoses at both 

the species and genus level.  

4.2 Phoebichnus trochoides 

The three-dimensional reconstructions of Phoebichnus trochoides created as part 

of this study have enabled the identification of the full morphology of the trace fossil 

which has facilitated new interpretations of the trace-makers behaviour. The broadly 

cylindrical, central zone of P. trochoides is revealed to be composed of irregularly 

stacked disk-shaped layers of highly bioturbated sediment surrounding a central vertical 

shaft rather than an open cylinder as has been previously implied (Evans and McIlroy 

2016). The structure is comparable to structures produced by the modern crustacean 

Neotrypea californiensis in aquaria (Leaman et al. 2015). By analogy with the activities 

of the modern N. californiensis, the central zone is herein interpreted to be the product of 

the progressive sinking of a surficial sediment cone created by the trace-maker from 

excavated sediment produced during burrowing. The trace-making organism is inferred to 

have ejected displaced sediment and faecal matter onto the sediment surface surrounding 

the central shaft creating a mound (Evans and McIlroy 2016). The mound eventually 

sinks under its weight into the sediment below creating the conical structures around the 

central shaft (Evans and McIlroy 2016).  

Radial galleries emanate from the central shaft, and are inferred to have been 

produced during the deposit feeding activity of the trace-maker (Evans and McIlroy 

2016). The radial galleries have been found in this study to be composed of a thick outer 
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wall of sandy pellets organised into concentric annuli rather than the simple constructed 

wall inferred by previous work (Bromley and Asgaard 1972; Bromley and Mørk 2000). 

Observations of Neotrypea californiensis in sand-filled glass aquaria demonstrate that the 

crustacean creates sandy linings that result in similar burrow morphologies to 

Phoebichnus trochoides (Leaman et al. 2015). By analogy with the activities of N. 

californiensis, the P. trochoides trace-maker is inferred to have excavated a cavity which 

was then filled with sand grains probably bound with mucus (Evans and McIlroy 2016). 

In the case of Phoebichnus, the sand pellets appear to have been organised as annuli 

around the open burrow (Evans and McIlroy 2016). The curvature or arcuate outer edge 

of the annuli, that is comparable to that of the outer meniscus lining described previously 

(Bromley and Asgaard 1972), may be due to the progressive excavation of the distal 

portion of the previous pellet ring during the excavation that precedes the production of 

the subsequent—more distal—ring. The thick constructed wall allowed the galleries to be 

maintained as open structures. The outer wall surrounds a sand-rich burrow fill that is 

demonstrated, through study of digitally created cross-sections, to be composed of angle 

of repose laminae that are inclined toward the central zone rather than meniscate backfill 

which has been assumed to date, and forms an integral part of the original diagnosis of 

the ichnogenus (Evans and McIlroy 2016). The angle of repose laminae are inferred to 

have been actively produced by the trace-maker during the filling of open galleries 

(Evans and McIlroy 2016). It is considered likely that, when the trace-making organism 

had finished using a radial gallery, the open space in the centre of the radial element was 
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filled with sediment excavated during the creation of a new radial burrow associated with 

the same central shaft. 

Whole rock models of Phoebichnus trochoides enabled the identification of 

organism-sediment interactions in the near burrow environment for the first time. Above 

several of the galleries there is evidence of small-scale conical sediment collapse that can 

be determined by the presence of downwardly deflected sedimentary laminae overlying 

unlined portions of the radial galleries (Evans and McIlroy 2016). These structures are 

comparable to collapse structures produced by Neotrypea californiensis in aquaria 

(Leaman et al. 2015). These structures are interpreted to be the result of the deliberate 

destruction and collapse of portions of the burrow roof at intervals along the length of the 

gallery. This caused overlying sediment to collapse into the open burrow, forming conical 

‘collapse cone’ structures in the sediment overlying the radii (cf. Leaman et al. 2015). By 

analogy with the activities of N. californiensis, it is considered likely that after the trace-

making organism had sifted through the collapsed sediment in the gallery for food the 

material was either ejected onto the sediment surface via the central shaft or transferred 

into other abandoned galleries as angle of repose fill (Evans and McIlroy 2016).  

Several aspects of the morphology of Phoebichnus trochoides are comparable to 

features seen in studies of modern crustaceans (Leaman et al. 2015). While there is no 

known modern trace-maker that creates a stellate structure, this does not rule out the 

possibility of a similarly behaving organism.  
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4.3 Schaubcylindrichnus heberti comb. nov. 

The three-dimensional analysis of specimens attributed to Palaeophycus heberti 

has revealed a number of hitherto unknown morphological elements that are more 

comparable to the ichnogenus Schaubcylindrichnus. Longitudinal cross-sections of long 

segments of burrows created by digital cross-sectioning of the reconstructed rock volume, 

demonstrate that the gross morphology of heberti is a broad open U-shape that curves 

downwards in a bedding perpendicular or oblique plane. This morphology is inconsistent 

with the ichnogeneric diagnosis of Palaeophycus as sub-horizontal burrows, and more 

comparable to Schaubcylindrichnus. The burrows are typified by their thick sand-rich 

wall which makes up approximately half of the total diameter of the burrow and is 

lithologically similar to, but better sorted than the surrounding sediment. Through the 

examination of precisely ground serial surfaces the burrow wall was found to have a 

finely laminated annular structure, which is inconsistent with the placement of heberti in 

Palaeophycus. The walls of heberti are herein considered anomalous within the 

ichnogenus Palaeophycus and differ only in mineralogical immaturity from the walls of 

Schaubcylindrichnus. The walls of Schaubcylindrichnus are currently defined as being 

composed of pure quartz, and thus has a distinctive white appearance, while the walls of 

heberti are lithologically similar to the surrounding sediment, and may contain a mixture 

of quartz, feldspar, clay minerals, and micas (Frey and Howard 1981; Miller 1995; Nara 

2006; Löwemark and Hong 2006; Löwemark and Nara 2010). The burrow fill was 

demonstrated to be passive and may contain variable proportions of clay and sand-grade 

material and sedimentary laminae also comparable to Schaubcylindrichnus. Some 
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burrows were observed to be closely adjacent to one another, and in some cases to either 

re-burrow adjacent burrows, or share their burrow wall in a manner analogous to 

Schaubcylindrichnus (cf. Löwemark & Nara 2010). 

The newly identified morphological elements of heberti have led to a new 

interpretation of the trace-makers behaviour. The U-shaped morphology of the burrows 

and the passive sediment fill typical of most heberti burrows implies that the burrow was 

maintained as an open structure during the life of the trace-maker. The modes of feeding 

associated with passively filled, open burrows (e.g. suspension feeding, surface deposit 

feeding, reverse conveyor feeding, bioirrigation or microbial farming) are at odds with the 

inferred mode of formation of most other ichnospecies of Palaeophycus as being 

produced by vagile deposit feeders. However, recent descriptions of Schaubcylindrichnus, 

as a broad U-shaped burrow with a collapse feeding cone at one end (Nara 2006; 

Löwemark and Nara 2010), is consistent with our morphological reconstructions of 

heberti. Though our material does not show the distal termination of the U-burrow of 

heberti, we would suggest that a collapse-cone typical of funnel feeding mode of life is 

likely. The annular structure of the burrow walls is interpreted as being produced by the 

trace-maker excavating sediment ahead of the burrow to create a cavity. The trace-maker 

then progressively packed mucus-bound host sediment into the burrow wall in 

consecutive annular rings to produce a series of thin annuli. The fact that the walls are 

typically slightly sandier than the host sediment suggests that there was a component of 

grain-selective deposit feeding during initial burrow excavation. Some of the excavated 

sediment was likely ejected onto the seafloor at the tail end of the burrow, probably as a 

sediment cone as has been recently inferred for Schaubcylindrichnus by Nara (2006). 
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Instances of re-burrowing or clustering of burrows may be the result of the producing 

organism utilizing an abandoned burrows wall when building a new burrow as inferred 

for Schaubcylindrichnus (cf. Nara 2006). The different burrow positions that have 

previously been used as species defining characteristic (i.e. Schaubcylindrichnus freyi and 

S. formosus) are likely a result of lateral shifting of the position of the feeding cones. 

These same burrow distributions have been observed in association with heberti. 

A review of the ichnospecies Palaeophycus heberti was undertaken and on the 

basis of its morphological characteristics the species is herein synonymised with 

Schaubcylindrichnus to create S. heberti comb. nov., which differs from all other species 

of Schaubcylindrichnus in that the constructed burrow wall is mineralogically 

heterogeneous rather than being purely quartzose. We herein propose the emendation and 

broadening of the ichnogeneric diagnosis of Schaubcylindrichnus to include taxa with 

less clean burrow walls. Since Schaubcylindrichnus and heberti commonly occur in the 

same successions, and even the same beds (e.g. Frey 1990; Frey and Howard 1990; Bann 

and Fielding 2004; McIlroy 2004b; McIlroy 2007; Pervesler et al 2011; Olivero and 

López Cabrera 2013), the difference in clay content of the burrow wall would be better 

expressed at the level of species rather than genus. We suggest therefore that heberti 

should be considered as a species of Schaubcylindrichnus that has a thick burrow wall 

constructed of more diverse mineral grains than the other valid ichnospecies of 

Schaubcylindrichnus. 
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4.4 Concluding statement 

The proper morphological description and palaeobiological understanding of trace 

fossils is at the root of reliable integration of ichnology into sedimentological and 

palaeoenvironmental analyses (McIlroy 2004a; McIlroy 2008). This thesis highlights how 

three-dimensional morphological reconstructions are essential to fully characterizing and 

understanding these structures (Bednarz and McIlroy 2009; Bednarz and McIlroy 2012; 

Boyd et al. 2012; Bednarz et al. 2015; Leaman et al. 2015; Leaman and McIlroy 2015; 

Boyd and McIlroy 2016 (in review)). As ichnology continues to develop, the need for a 

complete understanding of the three-dimensional morphology of a trace fossil is 

becoming more important. It is suggested that slowly all ichnotaxa should receive a 

similar treatment to that undertaken herein. 
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