
Labeling Large Scale Social Media Data using

Budget-driven One-class SVM classification

by

© Hao Yuan

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

May 2016

St. John’s Newfoundland

Abstract

The social media classification problems draw more and more attention in the

past few years. With the rapid development of Internet and the popularity of com-

puters, there is astronomical amount of information in the social network (social

media platforms). The datasets are generally large scale and are often corrupted by

noise. The presence of noise in training set has strong impact on the performance

of supervised learning (classification) techniques. A budget-driven One-class SVM

approach is presented in this thesis that is suitable for large scale social media data

classification.

Our approach is based on an existing online One-class SVM learning algorithm,

referred as STOCS (Self-Tuning One-Class SVM) algorithm. To justify our choice,

we first analyze the noise-resilient ability of STOCS using synthetic data. The ex-

periments suggest that STOCS is more robust against label noise than several other

existing approaches. Next, to handle big data classification problem for social media

data, we introduce several budget driven features, which allow the algorithm to be

trained within limited time and under limited memory requirement. Besides, the

resulting algorithm can be easily adapted to changes in dynamic data with minimal

computational cost. Compared with two state-of-the-art approaches, Lib-Linear and

kNN, our approach is shown to be competitive with lower requirements of memory

and time.

ii

Acknowledgements

First, I want to thank my supervisors, Dr.Minglun Gong and Dr.Jian Tang for

their help in our study and research in the last two years. Without their help, it

would be impossible for me to finsih my thesis successfully. They helped me to learn

how to do research, how to face the difficulties and how to be confident, which will

influence my whole life. I really appreciate their care, help and tolerant. Then I want

to thank my friends Yiming Qian, Shibai Yin, Wenbin Zhang, Yinghan Zhang for

their help and encouragement in my life. I would like to thank the faculty and staff

members in our department as well who are friendly and helpful. At last, I thank

my parents for their care and support, they making my dream come true to study

abroad.

iii

Contents

Abstract ii

Acknowledgements iii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Contributions . 4

2 Background and Related Work 9

2.1 Well-Known Classification Algorithms 9

2.2 Label Noise . 11

2.3 Budget-Driven Classification . 13

2.4 Large-scale Flickr-tag Image Classification Grand Challenge 14

3 Prerequisites: SVM, One-Class SVM, and STOCS 18

3.1 Support Vector Machine . 18

3.2 One-Class SVM . 22

iv

3.3 Self-Tuning One-Class SVM . 24

3.3.1 Online Learning . 24

3.3.2 Adjustable Kernel Functions 28

4 Noise-Resilient Ability Study 32

4.1 Selected Algorithms . 33

4.1.1 Näıve Bayes . 33

4.1.2 Decision Tree . 34

4.1.3 K-Nearest Neighbor Algorithm 38

4.1.4 Support Vector Machine . 40

4.2 Label Noise Models . 41

4.3 Experiments and Results . 44

4.3.1 Binary Classification . 44

4.3.2 Multi-Class Classification . 48

4.4 Robustness Analysis . 52

4.5 Conclusions . 54

5 Budget-Driven Big Data Classification 56

5.1 Budget-Driven Online Learning Model 57

5.1.1 Online Learning Framework 57

5.1.2 Redundancy in big data . 58

5.1.3 Impact of Support Vector Number 59

5.2 The Training Algorithm . 60

5.3 Evaluation of Proposed Budget-Driven Features 63

5.4 Budget-based Selective Labeling . 66

v

5.5 Conclusion . 68

6 Application to Real Social Media Data 70

6.1 Flickr-tag Image Datasets . 70

6.2 Parameter Tuning . 72

6.3 Kernel Selection . 73

6.3.1 Linear Kernel . 74

6.3.2 Histogram Kernel . 75

6.4 Evaluation of Proposed Budget-Driven Features 75

6.5 Comparisons with Existing Approaches 78

6.6 Budget-driven Selective Labeling . 80

6.7 Discussions . 82

7 Conclusions 83

Bibliography 86

vi

List of Tables

4.1 Datasets used for comparison . 45

6.1 The Fickr-tag Image Datasets . 71

6.2 Comparison between linear kernel and histogram kernel 74

vii

List of Figures

3.1 Given two classes of data points shown in graph, two possible sepa-

rating planes are presented. It is clear that the black straight line is

the optimal separating choice. Margins are shown in the graph and

support vectors are the examples on the margins. 19

3.2 An example of a non-separable case, where a separating plane does not

exist. In this case, SVMs try to find the hyperplane that split examples

as best as possible, and this is still a quadratic problem. 20

3.3 An example of polynomial mapping. In the left figure, the two classes

cannot be separated by a plane. After mapping these two dimensional

examples into three dimensional space, we find that the examples can

be separated by a hyperplane. Mapping to higher dimensional space

is a common way to solve non-separable cases. 21

viii

3.4 Examples of STOCS in (a),(b) and traditional One-Class SVM in(c).

The classification results clearly show the difference in underlying mo-

tivation between these two methods. Each support vector in STOCS

is accompanied with a circle showing its influence sphere by employing

the idea of online learning and adaptive weighting. The collection of

all circles jointly forms the separating hyperplane. When an exam-

ple is in only one of these circles, it belongs to the same class as the

corresponding support vector. 27

3.5 Define an adjustable kernel k(x, y, σ) based on a normalized kernel

k(x, y). 31

4.1 An example for decision tree that given three attributes: parents vis-

iting, weather, and money, classify the activity. If an input example

has ”no parents visiting”, ”windy”, ”rich”, the decision tree will follow

the path ”No → Windy → Rich”, then classify this example as class

shopping. 35

ix

4.2 Example of k-NN classification, where the red triangles and blue squares

represent the training examples. When we try to classify a new ex-

ample, shown as the green circle in the graph, the prediction result

depends on the value of k. If k = 3, the situation is shown as the solid

line circle, in which there are 2 red triangles and 1 blue square, then

the new example is classified to class red. If the k is set to 5 (dashed

line circle), the classification result will be class blue. However, when

considering weights of neighbors and k = 5, the new example may be

classified to class red, because the two red triangles training examples

are much closer to the green circle, but still depends on the definition

of the weights. 39

4.3 Statistical taxonomy of label noise proposed: (a) noise completely at

random (NCAR), (b) noisy at random (NAR), (c) noisy not at random

(NNAR). X, Y , E and Ỹ are random variables and the arrows indicate

statistical dependencies. Note that from left to right, the complexity of

statistical dependencies in the label noise generation models increases.

The statistical link between X and Y is not shown for clarity. 42

4.4 Evaluation of noise handling ability of STOCS under binary datasets(1).

Note that different axis ranges are used for different datasets, so that

the performance differences can be better illustrated. 46

4.5 Evaluation of noise handling ability of STOCS under binary datasets(2). 47

4.6 Evaluation of noise handling ability of STOCS under multi-class datasets

with NCAR type of label noise. 49

x

4.7 Evaluation of noise handling ability of STOCS under multi-class datasets

with NAR type of label noise. 50

4.8 Statistical evaluation on the results obtained under multi-class datasets

with NCAR type of label noise. Only 4 out of the total 60 cases have

p > 0.05. 51

5.1 Evaluation of support vector number on data set of 60K training ex-

amples from the “MNIST” data. Figure (a)-(b) show the classification

accuracy, training time used under different α values, respectively. Fig-

ure (c) shows the relation between accuracy and time cost. 64

5.2 The performance of partial training. We compare our approach with

STOCS where we evaluate the training models every 200 iterations and

then every 500 iterations. 66

5.3 The accuracy as a function of the number of classified examples. . . . 68

6.1 The accuracy as a function of the adjustable kernel function parameter

T with 10K training set. The choice of parameter T has high influence

on the prediction performance. 72

6.2 The accuracy as a function of cut-off values. 73

6.3 Evaluation of support vector number on three sets of 300K, 500K

and 1000K training examples from the Flickr-tag data. Figure (a)-(c)

show the classification accuracy, memory usage of support vectors and

training time used under different α values, respectively. 76

6.4 Analysis of only training a portion of examples. We evalute the model

every 1000 iterations. 77

xi

6.5 Comparisons between the proposed approach and LibLinear, KNN

classifier. As the training set increases, KNN classifier and LibLin-

ear can handle 200K and 300K examples at most because of memory

limitation, respectively. In contrast, our approach can achieves supe-

rior performance than the extension of LibLinear in large sets. 79

6.6 Processing seconds and memory usage on large training datasets. Left

and right side show comparisons on training time and memory usage,

respectively. The processing time of LibLinear extension consists of

data splitting and training. 80

6.7 The accuracy as a function of the proportion of classified examples. . 81

xii

Chapter 1

Introduction

Data mining and machine learning are two research areas in computer science and

statistics, and have been widely studied in recent years (e.g. [30], [46]). Both of them

deal with the construction and study of algorithms that can learn from data. Machine

learning tasks can be of several forms, such as supervised learning, unsupervised

learning, and semi-supervised learning. All of them are learning from data examples.

Supervised learning learns from labeled training data, then analyzes the internal

relation between examples and builds classifiers with feedbacks, whereas unsupervised

learning tries to find the hidden structure from unlabeled data and does not have any

error or reward signal to evaluate a potential solution. The semi-supervised learning

is a combination of supervised learning and unsupervised learning, which makes use

of both labeled and unlabeled data examples, generally, a small amount of labeled

data with much more unlabeled data.

Supervised learning which is also known as data classification in machine learning,

plays an important role in data mining and machine learning. There are many well-

1

known classification algorithms, such as Näıve Bayes Classifier, Decision Tree, k-

Nearest Neighbor Algorithm, and Adaptive Boosting Algorithm.

These classification methods are used to support many applications in different

areas, e.g. economics, geography, finance, medical science, etc. Most of the existing

approaches only address small or median scale problems; however, we are in the era

of social media and big data. Social media is defined as a group of Internet-based

applications that build on the ideological and technological foundations of Web 2.0,

and that allow the creation and exchange of user-generated content [29]. Big data

is high-volume, high-velocity and high-variety information assets that demand cost-

effective, innovative forms of information processing that enable enhanced insight,

decision making, and process automation. Even social media and big data are two

different concepts, social media problems are usually big data problems.

Social media problems draw a lot of attention in recent years because of the rapid

development of Internet and information technology. The classification of social media

problem introduces new challenges, because the data sets of social media problems

are often different from other problems due to their dynamic, noisy, and large scale

features.

The focus of this thesis is to solve the big data classification problem for social

media data under limited budget environment, where there are three main challenges

[3]: (1) volume, which corresponds to the ever increasing amount of data. The rapid

expansion of social network services (SNSs) results in billions of users, astronomical

information. Not only the size of classification data sets becomes larger and larger, but

also the number of features in each example. For example, Facebook reports about

6 billion new photos every month and 72 hours of video are uploaded to YouTube

2

every minute [37]. It leads to the problem that the excessive data volume cannot fit

in computer memory, especially for commodity machines, whereas most of existing

methods assume data can be stored in memory. (2) velocity, which means data is

streaming in at unprecedented speed. Users all around the world are using the social

media platforms all the time. To cope with that, online learning model is proposed

to provide immediate response to the newly generated data, e.g. [49] [13] [32]. (3)

variety, which refers to data diversity. Information in social media is provided by the

users and different providers have different judgments and criteria. As a result, real

data is often heterogeneous, coming in different types of formats and from different

sources. Some users may even provide fake information intentionally, which leads to

large amount of noise. However, many classification methods are sensitive to noise

such that their performance decreases significantly with the presence of noise.

In social media classification problems, there are two types of noise: feature noise

and label noise. Feature noise is represented by errors that are introduced to attribute

values, whereas label noise alters the observed labels assigned to instances. To my

knowledge, a lot research work focuses on how to handle feature noise, but there is

little literature on how label noise shall be dealt with. Label noise is an important

issue in classification, with many potential negative consequences. For example, the

accuracy of predictions may decrease, whereas the complexity of inferred models and

the number of necessary training examples may increase. In the recent survey paper

of Benot Frenay [18], a new taxonomy of label noise has been proposed based on

whether the noise is related to any class information. There are three types of label

noise in this taxonomy: the noise completely at random (NCAR) model , the noise

at random (NAR) model and the noise not at random (NNAR) model . There are

3

four random variables depicted to model the label noise: X is the vector of features,

Y represents the true class for the an example, whereas Ỹ means the observed label

of the example. E is a boolean value that reflects whether the observed label of a

example is incorrect (Y 6= Ỹ). The NCAR model is defined as that the occurrence

of an error E is independent of the other random variables, including the true class

itself, whereas the NAR model means that E is still independent of X but depending

on the true class Y . The NNAR model reflects that E depends on both variables X

and Y .

This thesis focuses on the classification of social media problem, which is always

large scale, multi-class and with label noise. The Yahoo! Large-scale Flickr-tag Image

data set is selected as the social media problem, which is one of the multimedia grand

challenges in ACM Multimedia 2013 [2]. In this challenge, there are 2,000,000 images

and 10 image classes: nature, food, people, wedding, music, sky, london, beach, 2012,

travel. By using bag of word model, each example has 400 features, which means the

problem is high dimensional. Meanwhile, all the images, annotations are provided by

Flickr users, and hence they are not accurate and consistent since they are reflections

of their tagging behavior. These facts reflect that this dataset exhibits the three

challenges mentioned above.

1.1 Contributions

Motivated by the above challenges, this thesis proposes a practical budget-driven

One-Class Support Vector Machine (SVM), which is specifically designed for big data

classification. We call an approach budget-driven when the approach is required to

4

solve problems with limited budget, which means low time cost and memory require-

ment. One-Class SVM is a variant of SVM to determine whether new test examples

are members of a specific class, when there is only training data of one class. The

proposed approach is extended from existing algorithm, called Self-Tuning One-Class

SVM (STOCS) [13] [40]. We choose to extend based on STOCS algorithm for two

main reasons: (1) STOCS is developed from Support Vector Machine (SVM) and

hence inherits the flexibility of using kernels, which helps to address the issue of

heterogeneous data; (2) STOCS incorporates online learning framework which could

address the issue of velocity in big data problem. However, STOCS algorithm requires

long training time and expensive memory storage, making it not suitable for big data

problems. Hence, the main contributions made in this thesis are the following:

Noise-resilient ability study: In Chapter 4, we study the noise handling ability

of STOCS by comparing STOCS with five well-known classification methods: Näıve

Bayes, Decision Tree C4.5, Classification and Regression Tree, K-Nearst Neighbors

Algorithm and Support Vector Machine. We first give a brief description about heuris-

tics of these methods and analyze their robustness against noise. Second, based on

the new proposed taxonomy [18], we conduct the comparisons using synthetic bench-

mark datasets, under both binary classification cases and multi-class classification

cases with different types of noise and different noise percentages. From our exper-

iments, the results show that STOCS performs better under multi-class cases than

binary cases. For most benchmark datasets, STOCS could achieve competitive, even

better performance compared with other well-known algorithms. It is also concluded

that STOCS is the most robust method against label noise among all methods in

experiment. These encouraging facts motivate us to extend STOCS and design our

5

approach specifically for social media classification under a limited-budget environ-

ment.

Budget-driven big data classification: In Chapter 5, we extend STOCS algo-

rithm and design our approach specifically for the social media big data classification

problem. The most important challenge of big data problems is huge computational

resource requirements in both memory and time cost. To alleviate these bottlenecks

on big data, we propose to extend STOCS in the directions described below.

First, all examples are trained repetitively in STOCS online learner and it re-

quires a large number of iterations to converge, which leads to long execution time.

However, redundancies exist in social media data, and it is unnecessary to train on

these redundant data. In contrast, we believe that for big data problem, competitive

prediction accuracy can be achieved by training on only a portion of the training

examples. In our approach, we relax the convergence condition so that the time cost

will be reduced.

Second, notice that the algorithm in the paper of STOCS [40] [13] stores all data

in the memory since training examples are used in multiple rounds of training. In

contrast, our approach randomly reads and trains only one example in each iteration,

allowing to only store one training example instead of the whole training set. Hence,

the memory requirement is also reduced, showing that our approach is particularly

useful on big data classification when data cannot fit in memory.

Finally, as the training set becomes larger, the number of support vectors increases

significantly, especially when training multiple Competing One-Class SVM for a big

data problem. We propose to reduce the number of support vectors to further reduce

the computational cost. Our approach assumes that if the support vectors with higher

6

weights, referred as dominant support vectors, are stored, the prediction result will

remain competitive. By only keeping dominant support vectors, the model refinement

in each iteration would be more efficient.

Experimental results show that the performance of our approach is competitive

while our approach requires much less memory and is much more efficient than

STOCS. The result reflects that it is promising to apply our approach for social

media problems.

Social Media Application: In Chapter 6, we apply our approach for social me-

dia problems and conduct comparison with the state-of-the-art approaches, such as

LibLinear and kNN algorithm. We choose the Yahoo! Large-scale Flickr-tag Image

Classification Grand Challenge [2] as the social media problem to be solved. Quan-

titative evaluations are performed on different problem size levels. The proposed

approach achieves superior classification performance on extremely large data, com-

pared with two state-of-the-art methods, with faster convergence and lower memory

usage.

We also employ the concept of confidence to make our approach more suitable to

industry areas, such as advertisement and promotion, where the core idea is to only

classify an example when we have high confidence. The incorporation of confidence

will help to solve the ”low-budget” promotion problems in the real world. For exam-

ple, when a small company is trying to do promotion and the budget is not enough

to cover the whole group of potential clients, then it will be promising to only cover

the group of people with higher chance to buy its products.

In summary, this thesis addresses the big data classification problem for social me-

dia data under limited budget environment by extending and improving the existing

7

STOCS online learner. In the next chapter, the background and related work of our

approach will be introduced. Chapter 3 presents the details of the foundation of our

approach: STOCS. Chapter 4 shows the study of noise-resilient ability of STOCS.

Our improvement and the specific design for social media classification are presented

in Chapter 5. Experimental results and comparisons to existing methods are provided

in Chapter 6. Finally, Chapter 7 concludes the thesis and suggests future research

directions.

8

Chapter 2

Background and Related Work

In this chapter, we present the background and some related work of our approach

and STOCS. Starting with the introduction of traditional classification algorithms.

In section 2.2, some related work on label noise are discussed. Then the existing work

of budget-driven classification is presented. At the end of this chapter, we provide

some existing related work on the Large-scale Flickr-tag Image Classification Grand

Challenge [2].

2.1 Well-Known Classification Algorithms

In this section, several well-known classification approaches are introduced: Näıve

Bayes Classifier [15], Decision Tree [42] [43], k-Nearest Neighbor Algorithm [52],

Adaptive Boosting Algorithm [20].

The Näıve Bayes Classifier is one of simplest classification methods, which is based

on Bayes rule with the probabilistic knowledge about the data. As the Näıve Bayes

Classifier has a simple model and does not need any complicated iterative parameter

9

estimation schemes, it can be applied to huge data sets. Related research shows

that the Näıve Bayes often performs surprisingly well: maybe not the best possible

classifier in any particular application, but it can usually be relied on to be robust

and effective [59].

Decision Tree is a popular classification method, which builds a tree system to

classify a data example based on the different attributes of that example. Starting

from the root, an example will pass the internal levels through the branches and finally

reach one of the leaves. Here the leaves mean different classes, branches represent

different value ranges of one attribute, and different levels mean different attributes.

There are two types of decision tree widely applied, C4.5 and Classification and

regression tree (CART). They both developed from the idea of decision tree but still

are different in several respects: CART always produces binary tree, but C4.5 grows

with multiway splitting; CART uses the Gini diversity index to select attribute where

C4.5 employs the concept of entropy and information-based criteria.

Another traditional classification algorithm is k-Nearest Neighbor (k-NN) method,

which is also among the simplest machine learning algorithms. The parameter k is

used in the algorithm to classify an unlabeled example by assigning the most frequent

label among the k nearest training examples. Euclidean distance is a commonly used

distance measurement for k-NN. In the common cases, weights are added into k-NN

to control the influence of different neighbors.

Ensemble learning deals with methods which employ multiple learners to solve

a problem, and the generalization ability of an ensemble algorithm is usually much

better than that of a single learner. The AdaBoost proposed by [20] is one of the

most important ensemble learning methods with a solid theoretical foundation, very

10

accurate prediction, great simplicity, and wide and successful applications. AdaBoost

algorithm works with multiple learners and combines the weights to improve the

performance. Boosted classifier is less susceptible to the overfitting problem than

other learning algorithms, however, is more sensitive to noisy data and outliers.

2.2 Label Noise

When people are trying to solve real-world classification problems, they find that

real-world datasets always contain noise, which is defined as anything that obscures

the relationship between the features of an instance and its class. The ubiquity of

noise becomes an important issue for practical machine learning. In the literature, two

types of noise are distinguished: feature (or attribute) noise and label (or class) noise.

Research shows that label noise is potentially more harmful than feature noise, which

highlights the importance of dealing with this type of noise [63] [9]. The harmful

impact of label noise is explained by the fact that there are many features in an

example, whereas there is only one label. Besides, the importance of each feature for

learning may vary, whereas labels always have a large impact on learning.

There are three main sources of label noise: first, the information which is provided

to the expert may be insufficient to perform reliable labelling; second, errors can occur

in the expert labelling itself; finally, when the labelling task is subjective, there may

exist an important variability in the labelling by different experts. A new taxonomy of

label noise is proposed by Benot Frenay [18]: the noise completely at random model

(NCAR), the noise at random model (NAR), and the noise not at random model

(NNAR).

11

In the literature, there exist three main approaches to take care of label noise

[38] [35] [54] [55] [60]. The first approach relies on algorithms which are naturally

robust to label noise, which means the learning of the classifier is assumed to be not

too sensitive to the presence of label noise. Several studies have shown that some

algorithms are less influenced than others by label noise even though label noise is

not really taken into account in this type of approach. Some examples are ensemble

methods like LogitBoost [21], BrownBoost [19] and split criteria for decision trees like

the imprecise info-gain [1]. STOCS algorithm and our proposed extension belong to

this first approach.

The second approach tries to improve the quality of training data using filtering

methods, where noisy labels are typically identified and eliminated before training

phase occurs. Filter methods are cheap and easy to implement, however, some of

them tend to remove a substantial amount of data. Here are some examples of this

approach: model predictions-based filtering [56], k nearest neighbors-based methods

[58], neighborhood graph-based methods [45].

In the third approach, algorithms directly model label noise during learning or

have been modified to take label noise into account in an embedded fashion. The

advantage of this approach is to separate the classification model and the label noise

model, which allows using information about the nature of label noise. Some examples

are Bayesian approaches [39], frequentist methods [16], clustering-based methods [7]

and model-based methods [44].

12

2.3 Budget-Driven Classification

Linear classification models have been shown to handle big data classification well [61]

[12] [27]. The computational cost in big data is a great challenge, in both memory re-

quirement and time cost. One solution for this challenge is to design the classification

technique under limited budget environment. Existing work on training linear models

under a limited-budget environment can be categorized into memory-driven [61] [12]

[5] [62] and time-driven [27] [49] [37] approaches. Memory-driven approaches focus

on solving the problem when data cannot fit in memory. LibLinear [17] is the most

popular solver for linear SVM. Yu et al. [61] proposed a block optimization framework

to handle the memory limitations of LibLinear. They split data into blocks and store

them in compressed files. By training on one block of examples at a time, the required

training memory is reduced. Following the idea of Yu [61], various block-optimization

based approaches are also proposed [12] [5] [62].

Time-driven approaches try to solve the problem in linear time. Joachims [27]

proposed SVMPerf by reformulating the original SVM function to a structural SVM,

achieving linear time complexity for sparse training features. Unlike SVMPerf and

many other methods, which formulate SVM as a constrained optimization problem,

Shalev-Shwartz et al. [49] relied on an unconstrained optimization formulation of

linear SVM and achieved liner training time. Very recently, Nie et al. [37] proposed

a new primal SVM solver with linear computational cost for big data classification.

Another way to scale up big data classification is through parallelism [23]. How-

ever, the development of parallel classification is limited by not only parallel program

implementation difficulties but also by data synchronization and communication over-

13

heads on distributed systems. More recent advances of big data classification are

surveyed in paper [3].

Different from most existing approaches that focus on solving linear SVM, our

approach relies on a competing One-Class SVMs model, and is designed specifically

for social media classification that runs on a commodity PC with limited memory

and processing power. In addition, our approach is not constrained to linear kernel,

making it easily customizable for handling a variety of data.

2.4 Large-scale Flickr-tag Image Classification Grand

Challenge

The 21st ACM International Conference on Multimedia 2013 [2] provides an image

classification challenge called Large-scale Flickr-tag Image Classification Grand Chal-

lenge. The challenge is trying to solve large scale social media image classification

problem, where images are collected from Flickr.com. In this challenge, there are

hundreds of thousands of training images per class, much larger than any existing

image classification challenge. Besides, each class is composed of visually diverse sub-

classes, however, some of these sub-classes could be visually unrelated to the root

class. Additionally, high amount of label noise is present in the data.

The conference provides both original images datasets and precomputed sets of

features. The precomputed features are generated by employing the bag of word

model, where there are 400 features in an example. There are two ways of entering

the contest: one is using the provided feature vectors, and the other is to use source

14

images. Two solutions have been provided for this chanllenge and they are both using

source images. In this section, we will briefly describe both solutions [51] [34].

Flickr-tag Prediction using Multi-modal Fusion and Meta Information

This solution [51] conducts experiments by combining multi-features and different

classification models based on the original images datasets. In this approach, four

feature combinations are adopted: Hessian Affine SIFT with Vector of Locally Ag-

gregated Descriptors (VLAD), Grid Color Moment with VLAD, Dense SIFT with

Locality constraint Linear Coding (LLC), Local Binary Patterns (LBP) with LLC.

The authors first apply linear SVM and k-Nearest Neighbors classifier to deal with

the classification problem separately and then integrate these two methods together.

When integrating these two methods, the authors chose to use the late fusion strat-

egy by simply adding the decision score of different classifiers. By combining multi-

features and classifiers, the prediction accuracy is improved from approximately 35%

to 58%, which demonstrates that combining multi-features and classifiers can notice-

ably improve the tag prediction performance.

Beside features and models fusion, the authors proposed to adopt meta informa-

tion for tag-prediction, because of the observation that some tags are given mainly

based on the meta information rather than the visual content. Without meta infor-

mation, some tags are doomed to be ill predicted by visual content. For example,

label 2012, is not tagged based on the visual information but based on the uploading

time. Based on this observation we eliminated the class ”2012” from the data set,

because for such tags, visual content along cannot yield satisfactory performance and

we choose to use the provided visual features only.

15

In summary, this approach integrates multi-features and different classification

models and obtains promising results. However, this method is based on batch learn-

ing, which means it has high memory requirement and expensive time cost. When

even only one new example is added into training set, this approach needs to re-train

the whole dataset again. Hence, it is difficult to apply this approach for dynamic

datasets.

Scalable Training with Approximate Incremental Laplacian Eigenmaps

and PCA The main contribution of this solution [34] is the use of fast and efficient

features with a highly scalable semi-supervised learning approach, the Approximate

Laplacian Eigenmaps (ALEs) and its extension, by computing the test set incremen-

tally for learning concepts in time linear to the number of images (both labelled and

unlabeled) [34]. A combination of two local visual features, Scale-Invariant Feature

Transform (SIFT) and RGB-SIFT, together with the Vectors of Locally Aggregated

Descriptors (VLAD) feature aggregation method and Principal Component Analysis

(PCA) are used to improve the efficiency and time complexity.

The proposed approach is based on Semi-Supervised Learning (SSL) by construct-

ing Laplacian Eigenmaps (LEs) approximately and incrementally. The authors use

a scalable manifold learning framework on top of ALE, called SMaL. The time com-

plexity of SMaL is linear to the number of images, making it possible to use the graph

Laplacian in large-scale problems. Results show that this methodology achieves com-

petitive accuracy compared to the baseline (linear SVM) in small training sets, and

the performance improves quickly as the size of training data increases. For instance,

if 1K training images are used, the SMal yields an accuracy of 35.37% while linear

16

SVM achieves 35.43%, but if 100K images are used, the accuracy of SMal is 38.42%,

higher than the linear SVM, which is 38.31%.

In summary, this method significantly decreases the computational requirements

of training in view of large amounts of data by an approximate incremental semi-

supervised learning approach, leveraging VLAD vectors that when 150K training

images are used, the training time of SMaL is 3 mins, whereas it takes 71 mins for

linear SVM. However, from the details of results, this approach is more sensitive to

the presence of label noise. For the more noisy class, such as ”2012” and ”nature”,

the performance of the SMaL is about 5% less accurate than the linear SVM.

17

Chapter 3

Prerequisites: SVM, One-Class

SVM, and STOCS

In this chapter, the concepts of SVM and One-class SVM are presented, followed by

STOCS algorithm, which the proposed approach is built upon. Besides, the properties

of STOCS will be discussed to show its potential to solve the big data classification

problem under limited budget environment by extending STOCS.

3.1 Support Vector Machine

Support Vector Machine (SVM) is one of the most important supervised learning

methods, which was proposed by Boser, Guyon and Vapnik in 1992. The underlying

motivation of SVMs is to construct a hyperplane or a set of hyperplanes in a high-

dimensional or an infinite-dimensional space, which can be used for classification,

regression, and other tasks. There are many possible separating hyperplanes in one

problem, where SVM is trying to find out the optimal hyperplane, which means the

18

one that has the largest distance to the nearest training data examples of any class

(known as separating distance).

Figure 3.1: Given two classes of data points shown in graph, two possible separating

planes are presented. It is clear that the black straight line is the optimal separating

choice. Margins are shown in the graph and support vectors are the examples on the

margins.

How the SVM uses a hyperplane to separate data examples is shown in Figure 3.1.

Assuming that the training set is {(X1, y1), (X2, y2), · · · , (Xn, yn)}, where the class

label is yi = +1 or −1 and Xi is a p-dimensional vector. Any plane in a p-dimensional

space can be expressed by equation W ·X = b, where b is a constant value, X, W is a

p-dimensional vector. As shown in Figure 3.1, each solid plane showing the possible

separating hyperplane is accompanied by two dashed planes, which represent the

margins. By selecting appropriate values for W and b, two margins can be expressed

as: W ·X = b+ 1 and W ·X = b− 1. Then the separating distance becomes 2/ |W |2,

where SVMs try to minimize |W |2. Then the classification problem can be converted

19

to the following optimization problem by SVMs:

min
||W ||2

2

subject to yi(w · xi + b) ≥ 1, i = 1, · · ·n.
(3.1)

However, there are many cases where the examples are not separable and a sep-

arating hyperplane does not exist. An example of a non-separable case is shown in

Figure 3.2. In this case, SVMs try to find the hyperplane that split examples as well

as possible. Then the problem is converted to:

min
||w||2

2
+ C

m∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · ,m.

(3.2)

where ξi is non-negative slack variable, which measures the degree of misclassification

of the data and C is a constant value.

Figure 3.2: An example of a non-separable case, where a separating plane does not

exist. In this case, SVMs try to find the hyperplane that split examples as best as

possible, and this is still a quadratic problem.

20

For the non-separable cases, non-linear SVMs are proposed [48]. It is proposed

that the original finite-dimensional space be mapped into a higher-dimensional space,

presumably making the separation easier in that space. Formally, preprocess the data

with: x→ Φ(x), then learn the map from Φ(x) to y: f(x) = w ·Φ(x)+b. An example

of polynomial mapping is shown in Figure 3.3, from two dimensional space to three

dimensional space, with following rules:

Φ : R2 → R3 (3.3)

(x1, x2)→ (z1, z2, z3) := (x2
1,
√

2x1x2, x2
2) (3.4)

Figure 3.3: An example of polynomial mapping. In the left figure, the two classes

cannot be separated by a plane. After mapping these two dimensional examples into

three dimensional space, we find that the examples can be separated by a hyperplane.

Mapping to higher dimensional space is a common way to solve non-separable cases.

The dimensionality of Φ(x) can be very large, making w hard to represent explic-

21

itly in memory, and hard for the quadratic program to solve. To keep the computa-

tional load reasonable, the mappings used by SVM schemes are designed to ensure

that dot products may be computed easily in terms of the variables in the original

space, by defining them in terms of a kernel function k(x, y) selected to suit the

problem. With the represented theorem w =
∑m

i=1 αiΦ(xi), the decision function

becomes:

f(x) =
m∑
i=1

αiΦ(xi)Φ(x) + b (3.5)

With kernel function:

f(x) =
m∑
i=1

K(xi, x) + b (3.6)

3.2 One-Class SVM

Traditionally, many classification algorithms try to solve the binary or multi-class

classification situations. However, in some cases, problems have data examples for a

single class and try to classify new examples as in the class or out of the class. A

method for this task is the One-Class Support Vector Machine, which gained much

popularity in the last two decades. There are two main approaches of One-Class

SVM, the one proposed by Schölkopf [48] and that by Tax and Duin [53].

For the first approach, One-Class SVM basically separates all the examples from

the origin and maximizes the distance between the hyperplane and the origin point

in feature space [48]. This results in a binary function which captures the regions in

the input space where the probability density of the data lies. The function returns

+1 when a newly encountered example is in the class region, and -1 elsewhere.

The second approach takes a spherical boundary, instead of a planar approach,

22

which is very similar to the fundamental method of our approach. The algorithm

obtains a spherical boundary, in feature space, around the data, which means the

examples inside spherical boundary will be classified as in the class. Then the optimal

solution becomes the hypersphere with minimum volume containing all ”in-class”

training examples. The minimization problem can be expressed by the following

mathematical expression:

min
R,a

||R||2 + C

n∑
i=1

ξi

subject to ‖xi − a‖2 ≤ R2 + ξi,

and ξi ≥ 0, i = 1, · · · , n,

(3.7)

where C is the penalty parameter and controls the trade-off between the volume

and the errors, R means the radius of the hypersphere, a represents the center of

hypersphere, and ξi is non-negative slack variable. After solving Equation 3.7 using

Lagrange multipliers ωi, a new data point can be tested if it is in or out of class. It is

considered as in-class when the distance between data point and the center is smaller

than or equal to the radius. Then the score function with kernel function becomes:

f(x) =
n∑
i=1

ωik(x, xi) ≥ C −R2/2, (3.8)

where C only depends on support vectors xi but not on testing point x when using

Gaussian kernel.

Besides one class cases, One-Class SVM can also handle binary and multi-class

problems. The key idea is to train and maintain multiple One-Class SVM models,

where each model learns the data distribution of one class. Each model may label a

23

testing example as inlier or outlier independently, and hence competes with all other

One-Class SVM models. A testing example is jointly labeled by assigning it to the

model returning the highest score.

3.3 Self-Tuning One-Class SVM

3.3.1 Online Learning

In most machine learning research, batch learning is the standard learning strategy

for classification tasks. For batch learning, the training phase does not start until all

training examples are collected. However, in social media problems, as the datasets

become larger and larger, it becomes difficult to store all data into memory as the

size of training data could reach tens of Gigabytes.

Online learning strategy is a promising way to overcome this challenge. Previous

study by Bottou and Bousquet [6] demonstrated that a similar or even better gener-

alization performance can be achieved using online learning with less computational

cost than batch learning through minimizing a quadratic objective function. Gong

et al. [13] proposed a method which incorporates One-Class SVM and online learn-

ing strategy. It is not only simple and efficient, but also work well with large scale

datasets. Then Qian [40] improved the method by employing the idea of self-tuning

and adjustable kernel function, called STOCS.

Online learning is a powerful and popular way of dealing with sequential prediction

or classification problems, such as weather forecasting, predicting stock market trends,

and deciding which ads to present on a web page. An online learning algorithm

24

observes a stream of examples and data is processed for prediction (classification)

immediately while it is observed, thus the user usually only has to wait a short time

for the response. Online learning receives immediate feedback about each prediction

and uses this feedback to update the classification model to improve its accuracy on

subsequent predictions. Hence, it requires to only allocate memory for the current

training example and the already-selected support vectors, rather than storing all the

data.

When a new example is observed during training, only a simple score function

computation is required to update models, allowing STOCS to react quickly to deal

with data velocity. In contrast, batch learning requires to train on the whole new

dataset again which is time consuming. Besides, for online learning, users may sus-

pend the training process anytime by stop feeding data, and the partially trained

model can be used to perform classification while achieving reasonable accuracy.

Based on these facts, we follow the online learning learner proposed by Qian [40].

Assuming that ft(·) be a score function of example t, k(·, ·) be a kernel function, ωt

is a non-negative weight of example t and xi is the ith support vector. If an example

xt is collected to be trained, the score function is:

ft(xt) =
t−1∑
i=1

ωik(xi, xt), (3.9)

and the update rule for weights is:

ωt = clamp
(
γ−(1−τ)ft(xt)

k(xt,xt)
, 0, (1− τ)χ

)
,

ωi ← (1− τ)ωi ∀i = 1, . . . , t− 1, (3.10)

in which γ := 1 is the margin, τ ∈ (0, 1) is the decay parameter, and χ > 0 the cut-

off value which is used to handle noisy training data. clamp(·, A,B) is an identical

25

function of the first argument bounded by A and B.

This approach builds One-Class SVM model for each class and keeps different

support vectors lists for each class. When there is a newly encountered example, it

will firstly calculate the scores of this example for each One-Class SVM model by

using the score Equation 3.9 using the existing support vectors and weights. If the

score of a new example calculated from the model of its corresponding class is high

enough, we believe the existing models are good enough to represent this example,

and this example will not be selected as a support vector; otherwise, it will be added

into the corresponding support vectors list with a computed weight.

However, there are several parameters that need to be tuned well to achieve

promising results, especially the parameter τ . The parameter τ has to be large

enough to control the weights of support vectors, because at first, the support vectors

lists are empty and each example receives score zero from the score function, then

the first selected support vectors tend to have greater weights, which are affected by

the parameter τ and need to be reduced in later iterations. On the other hand, the

parameter τ requires to be close enough to zero to make the training phase converge.

One solution for τ is proposed that τ = exp(− t
ξ
), where parameter ξ controls how

fast the decay parameter τ is decreasing.

In order to make Online learning One-Class SVM simpler and easier, Qian [40]

propose to employ the concept of self-tuning and remove some parameters, such as

τ . After the removal of parameter τ , the new score function and weight updating

26

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Result of our method with

σ = 0.1, χ = 0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Result of our method with

σ = 0.25, χ = 0.5

(c) Example of conventional

One-Class SVM

Figure 3.4: Examples of STOCS in (a),(b) and traditional One-Class SVM in(c).

The classification results clearly show the difference in underlying motivation be-

tween these two methods. Each support vector in STOCS is accompanied with a

circle showing its influence sphere by employing the idea of online learning and adap-

tive weighting. The collection of all circles jointly forms the separating hyperplane.

When an example is in only one of these circles, it belongs to the same class as the

corresponding support vector.

formula becomes:

ft(xt) =
t−1∑
i=1

ωiδ(xi 6= xt)k(xi, xt, σi),

ωt = clamp (γ − ft(xt), 0, χt) , (3.11)

where δ(·) is an indicator function with δ(true) = 1 and δ(false) = 0.

The proposed approach is quite different from the traditional One-Class SVM,

that it can use both positive and negative examples, which could make it better

understanding the data structure. Figure 3.4 shows the difference between STOCS

and conventional One-SVM.

27

3.3.2 Adjustable Kernel Functions

Kernel functions are of great importance in machine learning and have received a lot of

attention, particularly due to the increased popularity of Support Vector Machines in

recent years. Kernel functions provide a simple bridge from linearity to non-linearity

for algorithms which can be expressed in terms of dot products. Kernel functions must

be continuous, symmetric, and most preferably should have a positive (semi) definite

Gram matrix [50]. In One-Class SVM, kernel reflects how much one example can

support another example as a support vector. Choosing the most appropriate kernel

highly depends on the problem at hand; for particular datasets, an appropriate kernel

will output relatively higher score between two similar examples, and lower scores for

those less similar examples.

In order to make the model of STOCS simpler, Qian [40] proposes to eliminate

the denominator in the function of ωt in Equation 3.10. The denominator is a kernel

function and it is equal to 1 when the kernel function is normalized. A normalized

kernel function satisfies the following properties:
k(xt, xt) = 1, ∀xt

0 ≤ k(xt, xs) ≤ 1, ∀xt, xs.

where xt, xs are two examples.

Linear kernel (Eq. 3.12), Gaussian kernel (Eq. 3.13) and Histogram intersection

kernel (Eq. 3.14) are three widely applied kernel functions in Support Vector Ma-

chines.

k(x, y) = xTy + c (3.12)

28

k(x, y) = exp(−‖x− y‖
2

2σ2
) (3.13)

k(x, y) =
n∑
i=1

min(xi, yi) (3.14)

where x, y are two n-dimensional vectors , c is a constant value, σ is an adjustable

parameter, and xi, yi means the ith dimensional value in x and y.

It is clear that in these definitions that the linear kernel is not a normalized

kernel, while the Gaussian kernel is normalized, as well as the histogram kernel when

examples are histogram data. When datasets are normalized and non-negative, the

linear kernel will also satisfy the normalized kernel properties, then it can be regarded

as a normalized kernel.

Employing these generally designed standard kernels may not be enough for a

particular problem. Sometimes it is required to control how strong the connections

are between two examples or limit how much one support vector supports examples

from different class. It is expected that each support vector has higher influence

on the examples belonging to the same class, and vice versa. The STOCS employs

the adjustable kernel function to meet these requirements. The adjustable kernel

function is a slightly modified normalized kernel. The adjustable kernel function is

a normalized kernel k(u, v, σ) with parameter σ adjustable, if and only if it possesses

the following two properties:

i) ∃σ, with which we can always satisfy k(xt, xs, σ) ≤ T, T ∈ (0, 1) for all xt, xs, xt 6=

xs;

ii) if k(xt, xs) ≥ k(xt, xl), then k(xt, xs, σ) ≥ k(xt, xl, σ) holds regardless σ value.

29

where xs is the closest negative example to xt that xs does not belong to the class of

xt . In this way, it is guaranteed that examples will not get kernel score greater than

T from the One-Class SVM model of different classes.

Gaussian kernel satisfies adjustable kernel properties as the first requirement

would be satisfied if we set σ =
√
−‖xt − xs‖2/ log T , and adjusting σ does not

alter the overall tendency of the Gaussian. If any normalized kernel function k(x, y)

does not satisfies the two properties, it can be modified to become adjustable by the

following formula:

k(x, y, σ) = max

(
1− (1− T)

1− k(x, y)

1− σ
, 0

)
(3.15)

where x, y are two examples, σ is the adjustable parameter.

As shown in Figure 3.5, for a given σ, k(x, y, σ) is a monotonically-increasing

piecewise-linear function with respect to k(x, y). Now we prove the k(x, y, σ) is ad-

justable: for the first property of adjustable kernel, we can set σ = k(xt, xs), then

k(xt, xs, σ) = T , regardless of how the original kernel function k(x, y) is defined; for

the second property, since k(x, y, σ) is a monotonic function, it does not change the

score tendency and monotonicity defined by k(x, y, σ).

As mentioned in the last section, STOCS is using self-tuning for its parameters,

such as σ, T , etc. Our approach only inherits part of the self-tuning idea since the

parameter T is tuned manually because the best choice of T is highly depending on

the dataset at hand.

In summary, by employing the idea of online learning, self-tuning and adjustable

kernel function, STOCS is simpler and easier than the traditional methods. Different

from the classic One-Class SVM training, STOCS is trained using both positive and

30

k(x,y,σ)

0

k(x,y)

1

1

σ

T

Figure 3.5: Define an adjustable kernel k(x, y, σ) based on a normalized kernel k(x, y).

negative examples in parameters tuning and could better learn the data structure.

These properties convince us that STOCS seems to be a great fundamental method-

ology for our goal: to solve the big data classification problems for social media data

under limited budget environment. In the next chapter, we present our study on the

noise-resilient ability of STOCS, which further convinces us to extend STOCS for

social media problem.

31

Chapter 4

Noise-Resilient Ability Study

In the last chapter, we discussed the details of STOCS: its online learning framework,

adjustable kernel function and self-tuning feature. Besides, existing work has shown

that One-Class SVM can better handle labeling ambiguities than conventional SVM

[24]. Nevertheless, how well STOCS can cope with label noise in social media data is

unknown. Hence, in this chapter, we study the noise-resilient ability of STOCS.

We first introduce the heuristics of chosen algorithms. Second, the recently pro-

posed label noise taxonomy is discussed [18]. We then evaluate the capability of

STOCS by conducting comparative experiments with selected well-known algorithms.

Finally, we present our analysis on the ability of STOCS to handle label noise.

Experiments were conducted with several benchmark datasets, considering both

binary problems and multi-class problems. Different types and amounts of label noise

were also taken into account in our experiments. Several widely-used methods were

included in our comparison: the Näıve Bayes Probabilistic Classifier [15], the C4.5

Decision Tree [42], the Classification and Regression Tree [8], kNN algorithm [52] and

32

Support Vector Machines (SVMs) [11], which are considered to be five of the top ten

algorithms in data mining [59].

4.1 Selected Algorithms

In this section, we briefly describe the selected well-known classification algorithms,

then go into a description of noise handling capabilities, if any, are inherent in each

technique.

4.1.1 Näıve Bayes

The Näıve Bayes classifier is a simple probabilistic classifier based on Bayes rule

with the probabilistic knowledge about the data. In simple terms, a Näıve Bayes

classifier assumes that the value of a particular feature is unrelated to the presence

or absence of any other features, given the class variable and there are no latent or

hidden attributes which have influence on the prediction process. For example, a fruit

may be considered to be an apple if it is red, round, and about 3” in diameter. A

Näıve Bayes classifier considers each of these features to contribute independently to

the probability that this fruit is an apple, regardless of the presence or absence of the

other features.

The Näıve Bayes estimates the parameters of a simplified Bayes probabilistic

model by considering the relative frequencies of each attribute and value per class

in the training data set [36]. In many practical situations, the parameters can be

estimated by maximum likelihood methods, which is an advantage of the Näıve Bayes

method as it only requires few training examples. Although the Näıve Bayes classifier

33

has apparently simple design and assumptions, it can achieve quite promising results

in many complex real-world applications. As a result, the Näıve Bayes is a useful and

popular method in data mining.

The version of Näıve Bayes we are employing is the ”Näıve Bayes” classifier im-

plemented in Weka 3.7 [25] [28]. Weka is a collection of machine learning algorithms

for data mining tasks and developed by Machine Learning Group at the University of

Waikato [25]. Parameters are tuned manually based on the recommended parameter

settings in related work [36]. We applied the default setting for parameters that do

not affect prediction results, such as debug, displayModelInOldFormat. For other

numeric and boolean parameters, we tuned one parameter at a time. For example, we

tried both ”true” and ”false” for parameter useKernelEstimator and the setting that

gives better performance (false in this case) is used. The Weka parameters are set as:

debug= false; useKernelEstimator= false; displayModelInOldFormat= false;

useSupervisedDiscretization= false; class= weka.classifiers.bayes.Naive

Bayes.

4.1.2 Decision Tree

Decision Tree is applied in machine learning as a predictive model which maps a

new example to a target value based on several attribute values of this example.

An example is shown in Figure 4.1, where each level represents an attribute of the

example, and each leaf represents a different target value.

There are many specific versions of decision tree, such as Iterative Dichotomiser

3 (ID3), C4.5, Classification And Regression Tree (CART), Conditional Inference

34

Figure 4.1: An example for decision tree that given three attributes: parents visiting,

weather, and money, classify the activity. If an input example has ”no parents visit-

ing”, ”windy”, ”rich”, the decision tree will follow the path ”No→ Windy → Rich”,

then classify this example as class shopping.

Trees (CIT). Our experiments employ C4.5 [42] and CART [8] as the decision tree

generators. C4.5 is one of the most popular methods in data mining, however, as

the version of C4.5 in Weka 3.7 does not support multi-class problem, then we chose

another method instead, CART, for the comparisons of multi-class problems.

Two concepts are introduced in C4.5 for test attribute selection: entropy and

information gain. The entropy of a random variable X measures the amount of

uncertainty of X, and a small entropy of X implies low uncertainty for this random

variable.

C4.5 is the successor of ID3, where the model is iteratively built. In each iteration

of this method, a sub-model is executed for the remaining examples, and the incor-

35

rectly classified cases are included in the next learning window. As indicated in the

paper of Fürnkranz [22], the C4.5 process incorporates all noisy examples into the

learning window, as all noisy training examples are ”misclassified by a good theory”

[36]. Also, after a few iterations, there is a situation that in the learning window, the

percentage of noisy data will rise to a relatively higher level, which makes learning

more difficult.

In general, the C4.5 system tries to decrease the training error by completely

fitting all the training examples. Therefore, the over-fitting should also be avoided.

One solution for these two problems is tree pruning. There are two cases for tree

prune: (1) prune while building the tree: stop growing the tree when the information

is less reliable; (2) post-prune: in the growing phase, let the tree grow to its full height,

then remove the leaves based on some criteria. C4.5 follows a standard Bernoulli-

process-based method for pruning.

The concepts of ”reliable” and ”unreliable” are decided by the training examples,

and the C4.5 algorithm is highly depending on the information gain calculation to

choose which attribute will be the next one added to the tree. GainY (X) measurement

is applied to calculate the correlation direction between X and Y , which is also called

mutual information between X and Y . The formula is shown in Equation 4.1:

GainY (X) = I(X;Y) =
∑
x

∑
y

P (x, y)log
P (x, y)

P (x)P (y)
(4.1)

where x,y is the attribute values of attributes X and Y , respectively.

The Classification and regression trees model is proposed by Breiman in 1984 [8],

which uses a generalization of the binomial variance called the Gini index instead of

entropy. CART is different from C4.5 that C4.5 is growing with multiway splitting

36

but CART only makes binary splitting, which means the CART allows to overcome

the bias of the splitting measure used and results in high depth decision tree. Both

of them are highly dependent on the information gain, but with different criterion.

Instead of using entropy, CART employs Gini index and conditional impurity, shown

as following respectively:

I(Y) = −
K∑
k=1

nk
n
× (1− nk

n
) (4.2)

I(Y/X) = −
L∑
l=1

nl
n

K∑
k=1

nkl
nl
× (1− nkl

nl
) (4.3)

where the nk, nkl represents the corresponding value in contingency table of X and

Y , which shows the cross tabulation between Y and X [43].

Then the information gain becomes:

GainY (X) = D(Y/X) = I(Y)− I(Y/X) (4.4)

The version of C4.5 and CART decision tree generator we are using is the classi-

fier implemented in Weka 3.7. Parameters are tuned manually based on the recom-

mended parameter settings in related work [36]. We applied the default settings for

parameters that do not affect prediction accuracy or are not related to current prob-

lems, such as debug, saveInstanceData, Seed. For other numeric and boolean

parameters, we tuned one parameter at a time. Parameter minNumObj means the min-

imum number of instances per leaf and is tested from 1 to 5 with step size 1. Parameter

reducedErrorPruning is set as ”false” since C.4.5 pruning is used. The Weka param-

eters for C4.5 are set as: binary splits = false, debug = false, minNumObj =

2, reducedErrorPruning = False, saveInstanceData = False, Seed = 1, sub-

37

treeRaising = True, unpruned = False, useLaplace= False, class is weka.

classifiers.trees.J48.

For the CART classifier, default settings are applied for some parameters since

they do not affect prediction performance, such as debug, doNotCheckCapabilities.

Parameter maxDepth is set equal to -1, which means there is no restriction for the

maximum tree depth. Parameter minNum means the minimum total weight of the in-

stances in a leaf and is tested from 0.5 to 3.0 with step size 0.5. Parameter numFolds

determines the amount of data used for pruning. One fold is used for pruning, the

rest for growing the rules. We test it from 3 to 7 with step size 1. The Weka param-

eters for CART are set as: debug = false, doNotCheckCapabilities = false,

initialCount=0, Seed = 1, maxDepth=-1, minNum=2.0, noPruning=false, num

Folds=3, spreadInitialCount=False, class is weka.classi fiers.trees.REP

tree.

4.1.3 K-Nearest Neighbor Algorithm

One of the well-known and simplest data mining classification methods is the k-

Nearest Neighbor Algorithm (kNN). Parameter k is used in the algorithm to classify

an unlabeled example by assigning the label which is most frequent among the k

nearest training examples. Euclidean distance is a commonly used distance measure-

ment for kNN. However, there is a drawback of the basic voting method where the

most frequent class tends to dominate the prediction of new examples, because it has

larger population and tend to be more common among the neighbors. A solution for

this drawback is that weights are taken into account to measure the contributions of

38

the neighbors. An example of the kNN method is shown in Figures 4.2.

Figure 4.2: Example of k-NN classification, where the red triangles and blue squares

represent the training examples. When we try to classify a new example, shown as

the green circle in the graph, the prediction result depends on the value of k. If

k = 3, the situation is shown as the solid line circle, in which there are 2 red triangles

and 1 blue square, then the new example is classified to class red. If the k is set

to 5 (dashed line circle), the classification result will be class blue. However, when

considering weights of neighbors and k = 5, the new example may be classified to

class red, because the two red triangles training examples are much closer to the green

circle, but still depends on the definition of the weights.

It is of great importance to choose a proper value for k, and generally, a larger

value of k can make kNN method more robust to noise; however, it can not solve

boundary ambiguity well. The best choice of k usually depends on the data, but

still, a good k can be selected by some heuristic methods, such as hyperparameter

optimization. In our experiment, the k is tuned to avoid the effect of some noise but

39

still keep boundary relatively distinct.

The kNN algorithm has some strong consistency results as well: with the number

of training data increasing to infinity, kNN algorithm guarantees to yield the classi-

fication error rate better than twice the Bayes error rate, which is a statistical lower

bound, on the achievable error rate for a given classification problem [57] [14] .

The version of k-NN algorithm we are using is the one implemented in Weka

3.7, which is also called ”IBK” (The Instance Based Learning algorithm) classifier.

Parameters are tuned manually based on the recommended parameter settings in

related work [36]. We applied the default setting for parameters that do not af-

fect prediction accuracy or are not related to current problems, such as debug,

doNotCheckCapabilities and meanSquared. A value of 0 for windowSize signi-

fies no limit to the number of training instances. For other numeric and boolean

parameters, we tuned one parameter at a time. The value of KNN depends on the

datasets, and we test it from 1 to 10 with step size 1. In the end, the parame-

ters are set as following: KNN=5; debug=false; distanceWeighting=no distance

weighting; meanSquared=false; nearestNeighborSearchAlgorithm = LinearNN-

weka.core.EuclideanDistance; windowSize = 0, class is weka.classifiers.

lazy.IBk.

4.1.4 Support Vector Machine

In Chapter 2, support vector machine (SVM) has been introduced. Support Vector

Machines (SVMs) represent a group of very popular supervised machine learning

algorithms. The motivation of SVMs is to build a hyperplane that separates examples

40

of different classes and maximizes the separating distance with the nearest data points

on the margin, which are defined as support vectors. When considering multiclass

classification, the dominant approach is to reduce the single multiclass problem into

multiple binary classification problems.

As SVMs classify new examples based on the support vectors from the training

set, then the hyperplane can be easily changed by the inclusion or exclusion of a single

noisy example. However,the presence of noise might disrupt the interrelations and

correlations between the training data attributes, and decrease classification perfor-

mance. Thus, SVM is sensitive to the presence of noisy data.

In our experiments, we are applying Lib-SVM, which is an integrated software for

support vector classification and also supports multi-class classification. Lib-SVM is a

very popular open source SVMs library, developed at the National Taiwan University

by Dr.Chih-Chung Chang and Dr.Chih-Jen Lin [11], and has become a benchmark

method in machine learning.Lib-SVM includes different SVM formulations, different

kernel functions, cross validation for model selection, and probability estimates. Our

experiment is using the default settings, Gaussian kernel with the multi-class classi-

fication function. In Lib-SVM software, the parameters are tuned automatically by

itself using the provided cross validation approach.

4.2 Label Noise Models

In the survey of classification with label noise [18], a new taxonomy of label noise

has been proposed based on the existing noise taxonomy provided by Schafer and

Graham [47]. The survey provides three possible models of label noise which are

41

shown in Figure 4.3. In order to model the label noise process, four random variables

are depicted in Figure 4.3: X is the vector of features, Y represents the true class for

an example, while Ỹ means the observed label of the example, and E is a boolean

value that reflects whether the observed label of a example is error (Y 6= Ỹ).

Figure 4.3: Statistical taxonomy of label noise proposed: (a) noise completely at

random (NCAR), (b) noisy at random (NAR), (c) noisy not at random (NNAR). X,

Y , E and Ỹ are random variables and the arrows indicate statistical dependencies.

Note that from left to right, the complexity of statistical dependencies in the label

noise generation models increases. The statistical link between X and Y is not shown

for clarity.

The Noise Completely at Random Model

The noise completely at random (NCAR) model is the relationship between Y

and Ỹ in which the occurrence of noise, or say the occurrence of an error E is in-

dependent from any other factors. In the condition of multi-class classification, it is

usually assumed that the incorrect label is chosen randomly, regardless of the class

distribution. For example, if there are four classes A, B, C, D and class A has 70%

42

population and B, C and D have 10% population each, then under the NCAR model

when there is a noisy example, each of the other three class has the same probability,

1/3, to be chosen as the observed label.

The Noise at Random Model

The noise at random (NAR) model assumes that the probability of error depends

on the true class Y . E is still independent of X, but the label noise is not equiprobable

any more, which means for certain class, the instances have higher chance to be

mislabeled or when mislabeling an example, certain class has higher chance to be

chosen. For example, assuming that the error rate is linearly related to the population

of class, if there are four classes A, B, C, D and class A has 70% population, and B,

C and D has 10% population each, then when there is one noisy example with true

label B, the probability ratio of the observed label is A : C : D = 7 : 1 : 1.

The Noise not at Random Model

The noise not at random (NNAR) model is more commonly existing in the real-

world datasets, where the error E depends on both X and Y ; for example, the

examples may be more likely mislabeled when they are similar to instances of another

class [31]. Although the NNAR model is the most general case of label noise, it is

difficult to simulate this type of label noise because the inner relationship is highly

dependent on the actual datasets. For this reason, we will only simulate the first two

types of label noise in our experiments and used them to evaluate different methods.

43

4.3 Experiments and Results

In this section, we describe the experiments performed to reveal the capability of

STOCS to handle label noise. Table 4.1 shows the datasets used in our experiments.

These data sets are provided by the LIBSVM data sets [10] and UCI Machine Learning

Repository [33], which are famous benchmark data sets for machine learning. We are

using these data sets to evaluate STOCS and the five popular methods mentioned

above. We first conducted experiment using the original datasets and then added 5%,

10%, 15% of label noise into the training set.

Both NCAR and NAR label noise models are considered in our experiment. For

the NCAR noise model, we randomly selected an example to become a mislabeled

example and then randomly assigned the observed label; while for the NAR noise

model, we assumed that the class with higher population has greater chance to have

mislabeled examples and to be selected as the observed label, which is linearly related.

We are using the implementation available in Weka 3.7 for Näıve Bayes, C4.5

decision tree, CART, and kNN algorithm and using Lib-SVM for the implementation

of SVMs. Note that the Näıve Bayes classifier and the C4.5 Tree generator in Weka

3.7 do not support multi-class problems. Hence in our experiments, we use Näıve

Bayes and C4.5 for binary datasets only.

4.3.1 Binary Classification

We first evaluated STOCS under binary classification situations. Note that the pre-

diction accuracy we present in the thesis is computed using: Number of correctly

classified examples divided by Number of testing examples. Figures 4.4 and 4.5 show

44

Dataset Classes Training Examples Testing Examples Features

optdigits 10 3823 1797 64

dna 3 2,000 1,186 180

monks-1 2 125 433 6

monks-2 2 170 433 6

monks-3 2 123 433 6

a1a 2 1,605 30,956 123

a2a 2 2,265 30,296 123

usps 10 7,291 2,007 256

vowel 11 528 462 10

letter 26 15,000 5000 16

Table 4.1: Datasets used for comparison

45

76

77

78

79

80

81

82

83

84

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(%
)

Outlier Ratio

Dataset a1a

STOCS Naive Bayes C4.5 KNN Lib-SVM

(a) Dataset a1a

72

74

76

78

80

82

84

86

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(%
)

Outlier Radio

Dataset a2a

STOCS Naive Bayes C4.5 KNN Lib-SVM

(b) Dataset a2a

Figure 4.4: Evaluation of noise handling ability of STOCS under binary datasets(1).

Note that different axis ranges are used for different datasets, so that the performance

differences can be better illustrated.

the results when conducting experiments using the binary datasets. For each dataset,

different amount of label noise is added, and we only consider the NCAR noise model

since there are only two classes in binary datasets. Note that to remove the impact

of noise generating on the evaluation, results in this chapter are averaged on 3 runs.

In each run, the noise is randomly generated and added into training sets.

We first analyzed the performance when label noise is not introduced, i.e., label

noise ratio is equal to 0%. It reflects the prediction accuracy under the original

datasets. It is easily concluded that the Lib-SVM performs best and wins 3 out of 5

predictions. Even though STOCS could not achieve the best accuracy in any of these

datasets and is shown to be slightly inferior to the Lib-SVM, it does perform better

than other traditional methods.

Generally speaking, as the amount of label noise increases, the prediction accuracy

tends to decrease. When using the original datasets, STOCS can not achieve the

46

60

65

70

75

80

85

90

95

100

0% 5% 10% 15%
P

re
d

ic
ti

o
n

 A
cc

u
ra

cy
(%

)

Outlier Ratio

Dataset monks-1

STOCS Naive Bayes C4.5 KNN Lib-SVM

(a) Dataset monks-1

60

65

70

75

80

85

90

0% 5% 10% 15%

P
re

d
it

io
n

 A
cc

u
ra

cy
(%

)

Outlier Ratio

Dataset monks-2

STOCS Naive Bayes C4.5 KNN Lib-SVM

(b) Dataset monks-2

70

75

80

85

90

95

100

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(%
)

Outlier Ratio

Dataset monks-3

STOCS Naive Bayes C4.5 KNN Lib-SVM

(c) Dataset monks-3

Figure 4.5: Evaluation of noise handling ability of STOCS under binary datasets(2).

best accuracy in any prediction, whereas when 10% or 15% label noise is added,

STOCS performs the best for some datasets. Even though there is a tendency that

the prediction accuracy becomes worse with the amount of label noise increasing,

STOCS turns out to be less sensitive to label noise as the performance of STOCS

drops less than that of all other methods.

47

4.3.2 Multi-Class Classification

In this sub-section, we present the results achieved when considering multi-class prob-

lems. The datasets we are using are shown in Table 4.1 and all these benchmark

datasets are obtained from UCI Repository. As we mentioned earlier, for the multi-

class problems, we compare the CART, K-nearest Neighbor algorithm and SVMs with

STOCS, using the Weka data mining software for the classifiers.

Figures 4.6 and 4.7 demonstrate that STOCS performs better in multi-class classi-

fication than binary cases since when using the original datasets, three out of five best

classification results are achieved by STOCS, while the other two by the Lib-SVM.

The figures also show that the CART obtains highly undesirable results with ”usps”

and ”letter” datasets because the binary tree grown by CART is not always suitable

and decision tree based methods can not handle large datasets very well [42] [8] [43].

When different amount of label noise is added into datasets, there is a general

tendency that prediction accuracy decreases with the increase of label noise. How-

ever, we conclude from the results that STOCS is the most robust one against label

noise among these four algorithms. For example, when 15% label noise is added, the

average accuracy loss for STOCS is 0.6045%, while the loss is 2.6931% for CART,

3.907% for KNN, and 1.1532% for LibSVM. When considering the impact of dif-

ferent type of label noise, it is shown that the NAR label noise is more harmful to

the prediction accuracy than the NCAR label noise: with the same amount of noise

generated, NAR label noise always leads to less accurate results. Besides, for the

”letter” dataset, which is the largest dataset among these ten datasets, STOCS out-

performs all algorithms in all cases no matter whether or how much label noise is

48

30

40

50

60

70

80

90

100

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Label Noise Ratio

Dataset letter

STOCS CART KNN Lib-SVM

(a) Dataset letter

91

92

93

94

95

96

97

98

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(%
)

Label Noise Ratio

Dataset optdigits

STOCS CART KNN Lib-SVM

(b) Dataset optdigits

50

60

70

80

90

100

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(%
)

Label Noise Ratio

Dataset dna

STOCS CART KNN Lib-SVM

(c) Dataset dna

35

40

45

50

55

60

0% 5% 10% 15%

P
re

d
it

io
n

 A
cc

u
ra

cy

Label Noise Ratio

Dataset vowel

STOCS CART KNN Lib-SVM

(d) Dataset vowel

65

70

75

80

85

90

95

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(%
)

Label Noise Ratio

Dataset usps

STOCS CART KNN Lib-SVM

(e) Dataset usps

Figure 4.6: Evaluation of noise handling ability of STOCS under multi-class datasets

with NCAR type of label noise.

49

30

40

50

60

70

80

90

100

0% 5% 10% 15%

P
re

d
it

io
n

 A
cc

u
ra

cy
(%

)

Label Noise Ratio

Dataset letter

STOCS CART KNN Lib-SVM

(a) Dataset letter

90

91

92

93

94

95

96

97

98

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(%
)

Label Noise Ratio

Dataset optdigits

STOCS CART KNN Lib-SVM

(b) Dataset optdigits

55

60

65

70

75

80

85

90

95

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Label Noise Ratio

Dataset dna

STOCS CART KNN Lib-SVM

(c) Dataset dna

40

45

50

55

60

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(%
)

Label Noise Ratio

Dataset vowel

STOCS CART KNN Lib-SVM

(d) Dataset vowel

70

75

80

85

90

95

0% 5% 10% 15%

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Label Noise Ratio

Dataset usps

STOCS CART KNN Lib-SVM

(e) Dataset usps

Figure 4.7: Evaluation of noise handling ability of STOCS under multi-class datasets

with NAR type of label noise.

50

0

0.025

0.05

0.075

0.1

0% 5% 10% 15%

p
 v

al
u

e

Label Noise Ratio

Dataset letter

STOCS and CART STOCS and KNN STOCS and Lib-SVM

(a) Dataset letter

0

0.025

0.05

0.075

0.1

0% 5% 10% 15%

p
 v

al
u

e

Label Noise Ratio

Dataset optdigits

STOCS and CART STOCS and KNN STOCS and Lib-SVM

(b) Dataset optdigits

0

0.025

0.05

0.075

0.1

0% 5% 10% 15%

p
 v

al
u

e

Label Noise Ratio

Dataset dna

STOCS and CART STOCS and KNN STOCS and Lib-SVM

(c) Dataset dna

0

0.025

0.05

0.075

0.1

0% 5% 10% 15%

p
 v

al
u

e

Label Noise Ratio

Dataset vowel

STOCS and CART STOCS and KNN STOCS and Lib-SVM

(d) Dataset vowel

0

0.025

0.05

0.075

0.1

0% 5% 10% 15%

p
 v

al
u

e

Label Noise Ratio

Dataset usps

STOCS and CART STOCS and KNN STOCS and Lib-SVM

(e) Dataset usps

Figure 4.8: Statistical evaluation on the results obtained under multi-class datasets

with NCAR type of label noise. Only 4 out of the total 60 cases have p > 0.05.

51

added, showing the ability of STOCS to handle large scale datasets with label noise.

In order to indicate whether the difference in accuracy is statistically significant,

we conducted statistical tests on the obtained prediction results by using the t-test

approach. We chose 5% as the significance level of the test and applied the paired t-

test model. Figure 4.8 shows the statistical evaluation for the results when considering

NCAR label noise. It reflects that most of the differences are statistically significant.

The above findings make us believe that STOCS could better handle classification

problems with the presence of label noise. As our goal is to solve the big data

classification problems for social media data which contain high amount of noise,

extending STOCS algorithm is a promising direction.

4.4 Robustness Analysis

As we are trying to solve the big data classification problems for social media data with

the existence of label noise by extending and improving STOCS algorithm, we needed

to analyze the robustness of STOCS against label noise. Experimental results in

Section 4.3 show that the STOCS could handle label noise better in comparison with

other well-known algorithms. We believe there are two main features contributing to

this promising performance.

First, the adaptive parameters help to reduce the impact of label noise. STOCS is

different from conventional One-Class SVM in that each support vector only affects

other examples inside its hypersphere by incorporating the online learning frame and

adaptive parameters, which is shown in Figure 3.4. The adaptive parameters will not

only limit the chance of a noisy example to be selected as support vectors, but also

52

reduce the harmful impact of a noisy example when it is in support vector sets.

Training examples can be corrupted by different label noises. Assigning a large

weight on the corrupted examples would increase the chance of adding them into

support vector sets, thus distorting the decision boundary. To address this, a cut-off

value χ is used to bound wt, thus limiting the effects of label noise. The adaptive

cutoff value in STOCS further helps to reduce the chance of a mislabeled example

to be added into support vector sets by guaranteeing that a support vector should

have higher χ if there are many positive examples within its support region and a

smaller χ if there are many negative examples surrounding it. Hence, STOCS tunes

the cutoff value χ for each individual support vector to better limit the impacts of

mislabeled examples.

In addition, by automatically selecting different Gaussian support (parameter σ)

for different support vectors, STOCS allows that 1) support vectors that are far away

from the decision boundaries having larger influence area; and 2) assigning small

influence areas to support vectors that are close to the decision boundaries help to

reduce the level of misclassification. In this way, even if a mislabeled example is

selected as a support vector, the adaptive σ will reduce the impact of the mislabeled

example in decision boundaries.

Secondly, STOCS employs the idea of adjustable kernel function, where the pa-

rameter T limits the kernel scores of examples from different classes. Even if a misla-

beled example is selected as a support vector, it is guaranteed that examples of other

classes in its neighborhood will not get kernel score greater than T from this misla-

beled example support vector. For example, assuming that there are two very similar

examples, A and B, where the example A is a mislabeled example and is selected

53

as a support vector, then when STOCS tries to classify example B, the kernel score

calculated with A is less than T . In this way, example B has relatively lower chance

to be mislabeled to the class of example A, compared with conventional methods.

4.5 Conclusions

In this chapter, we first presented the heuristics of the chosen algorithms and talked

about the details of how the Weka software was used to employ these methods, in-

cluding all parameters settings.

Second, we described a newly proposed taxonomy of label noise [18], where label

noise is divided into three types: Noise Completely at Random (NCAR), Noise at

Random (NAR), Noise not at Random (NNAR).

Then, we conducted comparison experiments for both binary and multi-class cases

under the benchmark datasets provided by Lib-SVM datasets and UCI Repository.

Several conclusions can be drawn from the results: (1) STOCS performs better in

multi-class problems than binary problems; (2) with the increasing of label noise,

prediction performance tends to become less accurate; (3) STOCS is the most robust

approach among all selected algorithms against label noise; (4) in most cases, the

results of STOCS are competitive with the best performance; (5) NAR label noise is

shown to be more harmful than NCAR label noise.

Finally, we analyzed the robustness of STOCS against label noise. There are

two main reasons contributing to the strong performance of STOCS: the adaptive

parameters and the adjustable kernel parameter. They can not only reduce the chance

of a mislabeled example to become a support vector, but also limit the harmful

54

influence of a mislabeled example support vector.

Our goal is to design an algorithm for solving large scale social media classification

problems under limited budget environment. The above-mentioned observations make

us believe that extending STOCS has great potential to achieve our goal. Besides, we

find out that Lib-SVM, and kNNs algorithm are the other two best performing meth-

ods considering both binary and multi-class cases, while decision tree based methods

can not handle large datasets well and the Näıve Bayes classifier is outperformed by

all other methods in binary cases. Based on these facts, we choose the Lib-SVM and

kNN algorithms as the baseline approaches and compare our approach with them in

our chosen social media big data challenge.

55

Chapter 5

Budget-Driven Big Data

Classification

In the previous chapter, the noise-resilient ability of STOCS is studied by conducting

several experiments between well-known algorithms. Experimental results show that

STOCS is the most robust method against label noise among all chosen methods for

multi-class problems, which convinces us to extend STOCS for our goal: the big data

classification problem for social media data under limited budget environment. In

this chapter, we first extend STOCS and discuss our specific design for social media

classification. Then we introduce the training algorithm in our approach and present

related experimental results. Finally, the confidence-driven classification is discussed,

which can be applied in real-world “low-budget” business promotion problem.

56

5.1 Budget-Driven Online Learning Model

Our approach is designed based on STOCS, inheriting the online learning strategy

and the advantages in dealing with label noise. In order to solve classification problem

under low budget environment, our approach is designed considering two important

aspects: the redundancy and duplication in big data and the impact of support

vectors.

5.1.1 Online Learning Framework

As an extension of STOCS, our approach inherits the following distinct advantages

of online learning for budget-driven problems. Examples are observed by the learner

one by one in a time sequence. The online learner is gradually refined based on

its current partial model and the newly observed example. The training process

terminates when the user stops presenting examples, and the partially trained model

can be used to perform classification. As a result, training time is controlled by the

user, which is promising when trying to classify big data under limited training time

while still aiming for good performance. Furthermore, our approach can easily handle

dynamic data such as video stream and online user generated webdata, etc. When a

new training example (e.g. a new image uploaded to social media) is observed, the

minimization function of the batch One-Class SVM is changed, and thus it should be

solved again to obtain the new solution. Hence, batch learning needs to start over,

which is time-consuming. In comparison, by extending from STOCS, our approach

refines the training model only using the newly observed example. The refinement

process only involves a simple computation of score function, as shown in Algorithm

57

1.

5.1.2 Redundancy in big data

Compared with our fundamental methodology, STOCS, our approach differs in several

ways to realize our specific goal: budget-driven big data classification. First, in

social media classification problem, the training sets are large scale and provided by

different users; as a result, we believe large amount of redundancy is existing in the

data set. Different users may upload the same or very similar images to social media.

However, in STOCS, all examples are trained repetitively by the online learner, which

requires a large number of iterations to converge. When it is a big data problem,

the converging time of STOCS is expensive. In contrast, our approach takes the

redundancy and duplication into account, and trains on only a portion of training

examples. We believe that the classification accuracy is still competitive. In each

iteration, a randomly selected example is read and then the Competing One-Class

SVM model is updated. Reading data and training classifier happen at the same time

in our approach, allowing to only store the training example and support vectors

in the memory during training. Notice that even though STOCS incorporates the

online learning framework, it requires to read all data into memory since all examples

are trained multiple times. Hence, our approach is particularly useful on big data

classification when data cannot fit in memory. Our approach not only reduces the

memory requirement for big data problem but also relaxes the convergence condition,

making large scale training more efficient. Convergence condition is defined as when

the preset condition is satisfied, the alogorithm is considered as converged. In our

58

approach, the convergence condition is defined as support vectors lists do not change

for at least β ∗ n iterations, where n is the number of examples in the training set.

It is shown that 0.001 will be a good choice for β, achieving promising accuracy and

fast convergence. Experimental results in Figure 5.2 also show that our approach can

converge after training a small portion of the training set when the problem size is

large, which further confirms our assumption of redundancies in big data.

5.1.3 Impact of Support Vector Number

As the training set becomes larger, the number of support vectors increase signif-

icantly, especially for a big data problem. As mentioned in last chapter, STOCS

approach results in more support vectors than classic One-Class SVM algorithm, so

storing all these support vectors in STOCS would require vast memory. To further

reduce memory requirement, our approach assumes that the classification decision

of STOCS is primarily determined by the dominant support vectors, i.e. those with

high supporting weights. In practice, we set the number of support vectors of each

class as a fixed value and store only the most dominant support vectors in memory,

which is also controlled by the user. Compared with the conventional One-Class SVM

algorithm that keeps all support vectors, our approach achieves competitive perfor-

mance as reported in Figure 6.3. Moreover, controlling the number of support vectors

helps reduce the converging time since the computational cost for evaluating the score

function is linearly dependent on the number of support vectors; see Equation 3.3.

By only keeping dominant support vectors, the model refinement in each iteration

would be more efficient. Besides, in most cases, algorithms can not effectively handle

59

both the noise and the overfitting problems at the same time, whereas our approach

avoids this issue since only dominant support vectors are stored.

We extend STOCS with these two main modifications. As a result, our approach

has lower computational requirements ; as demonstrated later in Chapter 6. Experi-

mental result shows that our approach could achieve promising classification accuracy

with limited computational budget. Moreover, our approach avoids the overfitting

problem by only keeping dominant support vectors, while being robust against label

noise.

5.2 The Training Algorithm

As an extension of STOCS, our approach inherits most formulae and functions from it.

When a new example and its label {xt, yt} is randomly observed/read, our approach

first evaluates the score of xt based on the existing dominant support vectors from the

same class and computes the weight of xt. Following the decision function of SVM,

the score function is defined as:

ft(xt) =
n∑
j=1

wjχ (Syt(j) 6= xt)K(Syt(j), xt), (5.1)

and its supporting weight:

wt = max

(
0,min

(
γ − ft(xt)
K(xt, xt)

, C

))
, (5.2)

where Syt is the support vector set of the class yt, wj is the weight of the jth support

vector in Syt , γ := 1 is the margin, C is the cut-off value, and χ(·) is an indicator

function with χ(true) = 1 and χ(false) = 0. K(·, ·) is the kernel function, and

different kernels can be used for different applications.

60

Algorithm 1 Budget-driven Competing One-Class SVM

Input: training examples with corresponding labels {xt, yt}, kernel function K(·, ·),

cut-off value C, support vector size n, convergence condition

Output: support vector set S

1: Initialize each Si as an empty set for each ith class

2: repeat

3: randomly read an example (xt, yt)

4: compute score ft(xt)←
∑n

j=1wjχ (Syt(j) 6= xt)K(Syt(j), xt)

5: wt ← max
(

0,min
(
γ−ft(xt)
K(xt,xt)

, C
))

6: if xt already exists in Syt then

7: update the weight of xt with wt

8: else if wt > the minimal weight in Syt then

9: replace the SV with minimal weight in Syt with {xt, wt}

10: end if

11: until User Termination or S convergence condition is satisfied

The training algorithm of our approach is presented in Algorithm 1, which is very

easy to implement. Note that our approach employs the idea of reweighting, which

is shown in the algorithm from line 6 to line 9. Reweighting is a popular approach to

deal with duplication, which is also applied in STOCS since STOCS may train the

examples over several rounds. However, our approach can converge after only training

a portion of examples and we are employing the idea of reweighting in a different way

from STOCS. We believe duplication is common in big data problem as people may

upload same or very similar pictures or videos. In the conventional online learning,

61

all duplicates are added into support vector sets as long as their supporting weights

are large enough. These duplicate support vectors come from the same example but

have different weights. In contrast, we define two examples are duplications if the

difference between the features of the examples is smaller than a threshold. Then

when observing a duplicate example xt that is already in the corresponding support

vector set, our approach computes the score with the duplicate xt excluded and the

original weight of xt is substituted by wt. By summing the supports of the remaining

support vectors, ft(xt) can better shows how well the current model can predict xt.

The supporting weight wt is computed by comparing the margin and the score. When

our approach tries to classify a newly encountered example, it just simply calculates

the scores for each class model and then selects the class whose model obtains the

highest score.

It is worth noting that in our approach, examples with high scores tend to be as-

signed with low weights and it always replaces the minimum-weighted support vector.

There are two main reasons: 1) if existing models return high scores for an example,

it means the current models/ support vectors are good enough for representing this

example. Then if this example is selected as a support vector, it does not need to

be assigned high weight; 2) if a support vector has the minimum weight, it means

other support vectors are already good enough to represent it and this support vector

is the least useful one among all support vectors. If an example is trained but the

returned scores are low, reflecting that current models are not good, then it is of great

importance for it to be added into the corresponding support vectors list with high

weight. If current support vector set is full, our approach will replace the one with

minimum weight.

62

With the benefits of online learning, the training process can be terminated by

stopping feeding training examples. Users can also selectively evaluate the partially

trained model using a validation dataset to check its effectiveness. Besides user con-

trollable termination, our algorithm itself can converge fast and achieve competitive

accuracy at the same time. The training procedure may terminate after a fix number

of iterations, after changes in the support vectors lists fall below a threshold, or after

the support vector lists stay constant for some number of iterations.

5.3 Evaluation of Proposed Budget-Driven Features

In this section, we present the experimental results of our two specific modifications

to STOCS. We are using the dataset “MNIST” from the Lib-SVM dataset, in which

there are 60K training examples, 10K testing examples, 10 classes and 780 features.

We compare our approach with the original STOCS approach that we got inspired

from, which is robust against label noise but has a high computational cost.

For the support vector buffer size, we observe that the optimal buffer size is related

to the number of examples in each class. Denote the ratio of examples selected as

support vectors as α. For the ith class, we set the support vector buffer ni = αNi

in our experiments, where Ni is the number of the observed examples belonging

to the ith class. Figure 5.1 plots the classification accuracy of our approach under

different α values on the dataset “MNIST”. We can conclude from the results that

1) support vectors help to capture complex data structure, hence, keeping only a

small number of support vector in the buffer produces lower accuracy; 2) as the α

value increases, the classification accuracy improves rapidly at first and then remains

63

0

10

20

30

40

50

60

70

80

90

100

0 0.01 0.02 0.03 0.04 0.05

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(%
)

Alpha

Accuracy as a function of Alpha value

Budget

STOCS

(a) Classification Accuracy

0

500

1000

1500

2000

2500

0 0.01 0.02 0.03 0.04 0.05

Ti
m

e(
s)

Alpha

Time as a function of Alpha value

Budget STOCS

(b) Training Time

70

72

74

76

78

80

82

84

86

88

90

0 500 1000 1500 2000 2500

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

(%
)

time(s)

Accuracy as a function of time

Budget

STOCS

(c) Accuracy as a Function of Training Time

Figure 5.1: Evaluation of support vector number on data set of 60K training examples

from the “MNIST” data. Figure (a)-(b) show the classification accuracy, training time

used under different α values, respectively. Figure (c) shows the relation between

accuracy and time cost.

stable. It is shown that our approach with a relatively smaller α value can achieve

competitive performance compared with the result obtained by larger α value, but has

lower memory requirement and faster converging time. The comparison between our

64

approach and STOCS reflects that STOCS could obtain higher prediction accuracy

but with much higher computational cost. Besides, the observations confirm our

assumption that the decision boundaries are mainly influenced by dominant support

vectors, while competitive performance can still be achieved no matter how large the

training size is. We observe that setting α = 0.02 provides a good trade-off for the

dataset “MNIST”.

We present the performance of our approach and STOCS when training on a

portion of examples. In each iteration, our approach trains one example. For our

approach, we trained on the original “MNIST” dataset and then evaluated our model

every 200 iterations at first and then every 500 iterations. However, for STOCS, we

generated different sizes of training set, and then STOCS trains those datasets multi-

rounds, until fully converged. As shown in Figure 5.2, as the number of examples

in training portion increases, the classification accuracy improves rapidly at first,

then stays relatively stable. STOCS could achieve better prediction accuracy but has

higher time cost since STOCS trains on all examples over rounds until fully converged

whereas our approach only trains on each example once. The result demonstrates that

for 60K size dataset “MNIST”, our approach could achieve a good trade-off when

training on 1K examples, approximate 1/60 of the training set. It is shown that our

approach can converge after training on only a portion data when the problem size

is large, which further confirms our assumption of redundancies in big data.

65

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000

P
re

d
ic

ti
o

n
 A

cc
ra

cy

Number of training examples

Prediction accuracy

budget STOCS

(a) Classification Accuracy

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000

ti
m

e(
s)

Number of training examples

Time cost

budget STOCS

(b) Training time

Figure 5.2: The performance of partial training. We compare our approach with

STOCS where we evaluate the training models every 200 iterations and then every

500 iterations.

5.4 Budget-based Selective Labeling

In many real-world applications, classification is used to identify the group of entities

that fit particular features. For example, social media data classification can be
66

used to identify the type of sport that people are most interested in, such as soccer,

basketball, etc. In many of these cases, the goal is not to classify each individual, but

rather to select the ones that fit the selection criteria the best.

The experimental result above shows that the best classification performance can

only achieve approximately 78% prediction accuracy. Hence, using the classification

results to guide tasks such as advertisement and marketing promotion may not be

very effective. To address this problem, we here explore the possibility of selective

labeling the examples for which the classifier is more confident about their class. We

argue that, in real-world cases, it is common that promotion activities are restricted

by 1 budget, i.e., the available funding. It is helpful to find out the group of potential

customers who are more likely to be persuaded by the promotion. We call it “budget-

driven” selective labeling problem and by incorporating the confidence, our approach

can be applied.

Employing the concept of confidence, our approach classifies one example if and

only if has high confidence in the classification. When classifying an example, con-

ventional Competing One-Class calculates the scores from different classes models,

and chooses the class returning the largest score as the prediction label. In contrast,

our approach will compute both the largest score and the second largest score, and

classify the example only if the difference between these two scores is greater than

the confidence value, i.e., the ambiguity of labeling the example is low. The suitable

confidence value is highly depending on the problem and the kernel selection.

After employing the confidence, we generated the accuracy and recall curve, which

is shown in Figure 5.3. We can conclude that, generally, the lower percentage of

examples we classify, the higher accuracy we achieve, where the highest the accuracy

67

70

75

80

85

90

95

100

0.1 0.3 0.5 0.7 0.9

A
cc

u
ra

cy
 f

o
r

cl
as

si
fi

ed
 e

xa
m

p
le

s

The percentage of classified examples

Budget

STOCS

Figure 5.3: The accuracy as a function of the number of classified examples.

we can reach is 99%, higher than the best performance of STOCS. At the highest the

accuracy, 27% of the examples are classified.

This experimental result shows that our approach could help the “budget-driven”

selective labeling problem by only classifying a part of the examples, and achieving

higher accuracy. We believe this property is useful in real-world problems.

5.5 Conclusion

In this Chapter, we introduce our approaches for our budget-driven classification and

the training algorithm. It is shown that by only keeping dominant support vectors and

training on a portion of data, our approach could handle the big data classification

problem with lower memory requirements and higher efficiency, achieving reasonable

classification accuracy. These facts confirm our assumption of the redundancies in

68

big data and that the decision boundaries are mainly influenced by dominant support

vectors. Finally, we propose to employ the idea of confidence to help solve real world

“budget-driven” selective labeling problems.

69

Chapter 6

Application to Real Social Media

Data

This chapter presents experiments performed to evaluate our approach when applied

to the social media problem Yahoo! Large-scale Flickr-tag Image Classification Grand

Challenge. We introduce the dataset first and then show the parameter tuning and

kernel function chosen. Finally, comparisons with existing approaches are presented.

We implemented the proposed approach in C++ and all experiments were run on a

Intel Core i5 (3.20GHz) machine with 4GB RAM.

6.1 Flickr-tag Image Datasets

The Flickr-tag image dataset used in our experiment is shown in Table 6.1, which is

provided by Yahoo! Multimedia Grand Challenge [2]. Most of the effort in current

image classification work has been dedicated to building systems that can scale up

when the number of classes is large. In this dataset, there are 2 million images, 200,000

70

Dataset Classes Training Examples Testing Examples Features

Fickr 10 1500000 500000 400

Table 6.1: The Fickr-tag Image Datasets

images per class. The ten images classes include nature, food, people, wedding, music,

sky, london, beach, 2012, and travel. These are amongst the most commonly used

tags by the Flickr users to annotate images. However, as the annotations are provided

by the users, the tags may not always be accurate, which will result in the existence

of label noise.

What makes the challenge more difficult is that each class is composed of visually

diverse sub-classes, for example, the class ”nature” contains images from sub-classes

such as ”Beach”, ”Mountains”, and ”Sky”. Moreover, some of these sub-classes could

be ”visually” unrelated to the root class; for example, the class ”Nature” may contain

some images of nature journals.

In summary, the Fickr-tag image datasets are collected from social media, with

large scale training and testing sets, containing relatively higher percentage of label

noise. This is what our approach tries to solve, the big data classification problem

for social media data. Besides, based on the contribution of Yu-Chuan Su et al

[51], instances tagged with “2012” are removed from the dataset before conducting

experiments since the tag “2012” is assigned based on the image uploading time and is

unrelated to visual information. Unlike previous works on the Flickr-tag dataset which

concentrate on extracting and exploring multiple image features, we are interested in

the classification technique itself. Hence, the provided bag-of-words features are used

in our implementation so that we can compare different classification techniques.

71

6.2 Parameter Tuning

As we mentioned in the previous chapter, our approach extends STOCS by reducing

memory and time requirements. Our approach limits the support vectors buffer size

to reduce computational cost and avoid overfitting. Besides, due to the redundancy

in big data, we believe competitive classification accuracy can be obtained by training

only on a portion of training examples. In this section, we describe how parameters,

the adjustable kernel function parameter T and cut-off value, were tuned for our

approach.

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Adjustable kernel parameter T

Figure 6.1: The accuracy as a function of the adjustable kernel function parameter T

with 10K training set. The choice of parameter T has high influence on the prediction

performance.

Training dataset of 10K is chosen for tuning, then dataset of 50K is used to verify

72

33

33.5

34

34.5

35

35.5

36

0 0.2 0.4 0.6 0.8 1

A
cc

u
ra

cy

cut-off value

Figure 6.2: The accuracy as a function of cut-off values.

the suitability of the value selected. As shown in Figure 6.1, the prediction accuracy

is sensitive to the value of T parameter. With increasing values of T parameter, the

accuracy reaches a peak at T = 0.2 and then has a pronounced drop. To confirm the

suitability of this value for T , we tested this setting with the 50K training set and

obtained good results as well.

Second, the cut-off value was also considered, as shown in Figure 6.2. Compared

with the impact of T parameter, the cut-off value affects accuracy very slightly. From

the figure, we find that the highest and the lowest accuracy is approximately 35.3%

, 34.8%, respectively. Then the cutoff = 0.5 is used in further experiments.

6.3 Kernel Selection

Kernel functions can be used in many applications as they provide a simple bridge

from linearity to non-linearity for algorithms which can be expressed in terms of dot

products. Choosing the most appropriate kernel highly depends on the problem at

73

Dataset size Linear Kernel Lib-Linear SVM Histogram Kernel

10K 26.7048% 34.2691% 34.2802%

50K 31.185% 36.7276% 36.5738%

Table 6.2: Comparison between linear kernel and histogram kernel

hand, and will highly affect the algorithm’s performance and time complexity. As our

approach is solving the budget-driven classification problem, the kernel function can

not be complex.

6.3.1 Linear Kernel

We would like to employ a simple kernel function to reduce the computational cost,

while the linear kernel is the simplest kernel function. It is given by the inner product

< x, y > plus an optional constant c. Kernel algorithms using a linear kernel are often

equivalent to their non-kernel counterparts, i.e. Kernel Principal Component Analysis

(KPCA) with linear kernel is the same as standard PCA [26]. The formula is :

k(x, y) = xTy + c (6.1)

By incorporating the linear kernel, our approach produces suboptimal result,

shown in Table 6.2, as compared with a benchmark approach, the Lib-Linear SVM [11].

We conduct the evaluation under training sets of 10K, and 50K. Experimental results

reflect that with linear kernel, our approach is outperformed by Lib-linear SVM.

Based on this results, we decided to look for another simple kernel function.

74

6.3.2 Histogram Kernel

The histogram intersection kernel function fulfills the mathematical requirements for

it to be used as a kernel for SVMs. Experiments show that it performs well, compared

with standard kernels and with other state-of-the-art color kernels [4]. It also has the

nice property of being easy to tune, since it only depends on fewer parameters, and

it has been proven useful in image classification. The formula of Histogram Kernel is

:

k(x, y) =
n∑
i=1

min(xi, yi) (6.2)

Experimental results of incorporating histogram kernel are shown in Table 6.2,

compared with linear kernel and Lib-Linear SVM. The dataset and parameters set-

ting are the same as previous experiments. The result reflects that by employing

histogram intersection kernel function, our approach achieves promising performance,

and is competitive with Lib-Linear SVM. Hence we incorporated histogram intersec-

tion kernel to solve this big data classification problem.

6.4 Evaluation of Proposed Budget-Driven Features

In this section, we present the evaluation of our approach in this particular social

media set. We first evaluate the impact of the number of support vectors on accuracy,

memory usage and training time. For the ith class, we set the support vector buffer

ni = αNi, where Ni is the number of the observed examples belonging to the ith class,

and α is the parameter that controls support vector buffer size. The classification

accuracy of our approach under different α values is shown in Figure 6.3. Keeping

only a small number of support vector in the buffer produces lower accuracy, since

75

0 0.01 0.02 0.03 0.04 0.05
22

24

26

28

30

32

34

36

38

Alpha

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

300K
500K
1000K

(a) Classification Accuracy

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

Alpha

M
em

o
ry

 U
sa

g
e

o
f

S
u

p
p

o
rt

 V
ec

to
rs

 (
M

B
)

300K
500K
1000K

(b) Memory Usage of SVs

0 0.01 0.02 0.03 0.04 0.05
0

500

1000

1500

2000

2500

3000

3500

4000

Alpha

T
ra

in
in

g
 T

im
e

(s
ec

o
n

d
s)

300K
500K
1000K

(c) Training Time

Figure 6.3: Evaluation of support vector number on three sets of 300K, 500K and

1000K training examples from the Flickr-tag data. Figure (a)-(c) show the classi-

fication accuracy, memory usage of support vectors and training time used under

different α values, respectively.

the limited number of support vectors cannot capture complex example distributions.

As the α value increases, the classification accuracy improves rapidly at first and then

levels off. It is worth noting that when using a large α value, e.g. 0.05, our approach

76

becomes the conventional Competing One-Class SVM training, because the support

vector buffers are large enough to store all support vectors. Our approach with a

smaller α value can achieve similar performance to the conventional One-Class SVM

training, while it only uses a fraction of support vectors and saves time and memory,

as shown in Figure 6.3. We observe that setting α = 0.01 provides a good trade-off

regardless of the training size. Hence, we use α = 0.01 for further comparisons.

25

27

29

31

33

35

37

39

0 5000 10000 15000 20000 25000 30000

P
re

d
ic

ti
o

n
 a

cc
u

ra
cy

Iteration number

Figure 6.4: Analysis of only training a portion of examples. We evalute the model

every 1000 iterations.

Then we present the performance of our approach when training on a portion of

examples to show the faster convergence of our approach. In this experiment, we are

using the dataset of 50K training examples from the Flickr-tag data. It is not feasible

to evaluate our model after every iteration to find out the exact convergence condition.

We apply our assumption about the convergence condition that support vectors lists

do not change for at least β∗n times, where n is the number of examples in the training

set and we evaluate our learner model every 1000 iterations. As shown in Figure 6.4,

77

with the number of training examples increasing, the classification accuracy improves

rapidly at first, then stays relatively stable. We find that our approach converges after

only training on a small portion of examples when the problem size is large, which

further confirms our assumption of redundancies and duplications in big data. From

our experiments, we find that 0.001 is a suitable choice for β to result in a promising

accuracy, which is very close to the peak accuracy value.

6.5 Comparisons with Existing Approaches

Finally we compare the performance of our approach using histogram kernels with

LIB-Linear SVM and kNN algorithm in this section. LibLinear [17] is the most

popular solver for large-scale data classification, and its extension [61] can handle data

that cannot fit in memory using a block optimization method. The KNN classifier is

used in recent work [51] [34] and is shown to be efficient on the Flick-tag prediction

task.

To evaluate budget-driven features of our approach, performance on different prob-

lem sizes is evaluated. The comparison among our approach, LibLinear, and KNN

classifier is shown in Figure 6.5. We use the original LibLinear for < 500K dataset.

When data cannot fit in memory, the extension of LibLinear is used for ≥ 500K

dataset. Our approach performs competitively with LibLinear on small datasets, and

outperforms LibLinear’s extension on large datasets.

The following budget-driven features of our approach are demonstrated in Figure

6.5 : First, the training process can be controlled by the user. Users can terminate

the training process anytime because of their time or memory limitations, and the

78

0 200 400 600 800 1000 1200 1400
20

22

24

26

28

30

32

34

36

38

40

Training Sample (K)

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Our Approach
LibLinear
LibLinear Ext.
KNN

Figure 6.5: Comparisons between the proposed approach and LibLinear, KNN clas-

sifier. As the training set increases, KNN classifier and LibLinear can handle 200K

and 300K examples at most because of memory limitation, respectively. In contrast,

our approach can achieves superior performance than the extension of LibLinear in

large sets.

partially trained model can still obtain competitive performance compared with Lib-

Linear. Second, the accuracy of our approach stabilizes after observing only 300K

examples. Reading and training with more examples does not significantly improve

performance. This confirms our assumption of redundancy of big data, and a fraction

of instances can produce encouraging results when training set is large enough. Note

that the performance of LibLinear Extension is quite poor, our hypothesis is that the

available version of LibLinear Extension is an experimental version and hence may

not fully optimized.

79

400 600 800 1000 1200 1400
100

200

300

400

500

600

700

Training Sample (K)

T
ra

in
in

g
 T

im
e

(s
ec

o
n

d
s)

Our Approach (Total)
LibLinear Ext. (Total)
LibLinear Ext. (Split)
LibLinear Ext. (Train)

400 600 800 1000 1200 1400
0

500

1000

1500

2000

Training Sample (K)

M
em

o
ry

 U
sa

g
e

(M
B

)

Our Approach
LibLinear Ext.

Figure 6.6: Processing seconds and memory usage on large training datasets. Left

and right side show comparisons on training time and memory usage, respectively.

The processing time of LibLinear extension consists of data splitting and training.

Besides achieving promising classification accuracy on large datasets, our approach

can converge fast and save vast memory. In Figure 6.6, we compare memory usage and

training time of our approach with that of LibLinear extension, where only ≥ 500K

datasets are used to illustrate the effectiveness of our budget-driven approach on

extreme large datasets. It is worth noting that LibLinear extension needs to split

training set into blocks, a process that is time-consuming itself. Default parameters

are used for LibLinear extension, where dataset is split into 8 blocks. These promising

results reflect the fact that our approach could handle well the big data social media

classification problem with limited budget.

6.6 Budget-driven Selective Labeling

From the experimental results, we found that even the best performance can only

achieve approximately 38% prediction accuracy. We believe this result is not sufficient

80

for real world applications. Hence, we applied the idea of “budget-driven” selective

labeling proposed in the previous chapter. For the example in Flickr dataset, our

approach calculates the largest score and the second largest score, if the difference is

greater than the confidence value, the example is classified. Here, after conducting

experiments, we find out that the range of the confidence value is 0 to 1.

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

A
cc

u
ra

cy
 f

o
r

cl
as

si
fi

ed
 e

xa
m

p
le

s

The percentage of classified examples

Budget Lib-SVM

Figure 6.7: The accuracy as a function of the proportion of classified examples.

After employing the confidence, we generated the accuracy and recall curve, which

is shown in Figure 6.7. We can conclude that, generally, the lower the percentage

of examples get classified, the higher the accuracy our approach can achieve, where

the highest accuracy we can reach is 63%. When our approach classifies 30% of the

testing examples, it can obtain 50% classification accuracy, which is better than the

original performance. Experimental results show that the proposed “budget-driven”

classification performs well in this large scale Flickr dataset, further convincing us

81

that the “budget-driven” classification will be useful in real world “limited-budget”

applications.

6.7 Discussions

In this chapter, our approach is applied to Yahoo! Large-scale Flickr-tag Image

Classification Grand Challenge and is shown to outperform other state-of-the-art ap-

proaches in term of accuracy, training time and memory requirement. We present our

experiments to show the parameter tuning and kernel function selection. Experimen-

tal result demonstrates that our approach possesses superior performance comparing

to the state-of-the-art approaches, such as LibLinear, especially on large-scale data,

with much lower memory requirement and faster convergence time. Encouraging

facts convince us that our approach could well handle the large scale social media

classification under a limited-budget environment.

82

Chapter 7

Conclusions

The challenges of large scale social media data classification problems are studied in

this thesis. To handle these challenges, this thesis proposes to extend the existing

STOCS so that big data corrupted by labeling noise can be processed under limited

budget environment. The proposed technique is finally evaluated using the real-world

dataset from the Large-scale Flickr-tag Image Classification Grand Challenge, who

has large scale, high dimensional, multiple classes with the existence of label noise.

We first present the underlying motivation of our fundamental method, STOCS,

which incorporates the online learning frame and adjustable kernel function. When a

new example is observed during training, only a simple score function computation is

required to update the One-Class SVM models, allowing STOCS to react quickly to

deal with data velocity. In contrast, batch learning requires to train the whole new

datasets again, which is time consuming. As an extension of STOCS, our approach

inherits properties of online learning framework, which are useful for budget-driven

problems. In our approach, reading and training data happen at the same time, and

83

we only need to store one training example and the support vectors.

Second, we study the noise-resilient ability of STOCS by conducting comparison

experiments with well-known algorithms, Näıve Bayes, Decision Tree C4.5, Classi-

fication and Regression Tree, K-Nearest Neighbor Algorithm and Support Vector

Machine. We concluded from experimental results that: (1) STOCS performs better

in multi-class problems than binary problems; (2) with the increasing of label noise,

prediction performance tends to become less accurate; (3) STOCS is the most robust

approach among all selected algorithms against label noise; (4) in most cases, the

results of STOCS are competitive with the best performance; (5) NAR label noise is

shown to be more harmful than NCAR label noise.

Then, based on STOCS, we present our specific modifications for limited-budget

classification. We consider the redundancies in the big data, where we believe compet-

itive classification accuracy can be obtained by training only on a portion of training

examples. In addition, we propose to only store the dominant support vectors to fur-

ther reduce memory requirement and the convergence time. Our approach assumes

the hyperspheres of STOCS are primarily determined by the dominant support vec-

tors, i.e. those with high supporting weights. Experimental results reflect that our

approach could achieve promising prediction accuracy with lower computational cost,

which also confirms our assumption of redundancies and dominant support vectors.

Finally, we apply our approach to the selected social media problem and conduct

comparison with state-of-the-art approaches, kNN algorithm and Lib-linear SVM.

We give a brief introduction to the chosen grand challenge and discuss about the

parameters tuning. Quantitative evaluations are performed on different problem size

levels. Our approach achieves superior classification performance on extremely large

84

data. In terms of computational resources needed, our approach only requires keeping

a fraction of examples in memory as support vectors, and the training can converge

in only a portion of training examples. In addition, only the most dominant support

vectors are used in our approach, further saving memory.

In summary, our approach can be applied to the big data classification problems

for social media data under limited budget environment by extending STOCS algo-

rithm. Experiment results show that our approach outperforms other state-of-the-art

approaches in term of accuracy, training time and memory requirement. It is worth

noting that our work has been accepted by the Canadian AI 2015 and wins the Best

Paper Award [41]. In the future, we would like to apply our approach to more social

media datasets and explore the possibility of implementing our technique on GPUs

to further reduce the training time needed.

85

Bibliography

[1] J. Abelln and A. Masegosa. Bagging decision trees on data sets with classifica-

tion noise. In S. Link and H. Prade, editors, Foundations of Information and

Knowledge Systems, volume 5956 of Lecture Notes in Computer Science, pages

248–265. Springer Berlin Heidelberg, 2010.

[2] ACM2013. Yahoo! large-scale flickr-tag image classification grand challenge.

http://webscope.sandbox.yahoo.com/catalog.php?datatype=i, 2013. [On-

line, accessed February-2015].

[3] Aggarwal and C. Charu. Data classification: algorithms and applications. CRC

Press, 2014.

[4] A. Barla, F. Odone, and A. Verri. Histogram intersection kernel for image classi-

fication. In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International

Conference on, volume 3, pages III–513–16 vol.2, Sept 2003.

[5] M. Blondel, K. Seki, and K. Uehara. Block coordinate descent algorithms for

large-scale sparse multiclass classification. Machine Learning, 93(1):31–52, 2013.

[6] O. Bousquet and L. Bottou. The tradeoffs of large scale learning. In Advances

in neural information processing systems, pages 161–168, 2008.

86

[7] C. Bouveyron and S. Girard. Robust supervised classification with mixture mod-

els: Learning from data with uncertain labels. Pattern Recognition, 42(11):2649

– 2658, 2009.

[8] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and

regression trees. CRC press, 1984.

[9] F. Breve, L. Zhao, and M. Quiles. Semi-supervised learning from imperfect data

through particle cooperation and competition. In Neural Networks (IJCNN),

The 2010 International Joint Conference on, pages 1–8, July 2010.

[10] Chang and Lin. LibSVM dataset. https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/. [Online; accessed July-2014].

[11] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.

ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27, May 2011.

[12] K.-W. Chang and D. Roth. Selective block minimization for faster convergence

of limited memory large-scale linear models. In Proceedings of the 17th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’11, pages 699–707, New York, NY, USA, 2011. ACM.

[13] L. Cheng, M. Gong, D. Schuurmans, and T. Caelli. Real-time discriminative

background subtraction. Image Processing, IEEE Transactions on, 20(5):1401–

1414, May 2011.

[14] T. Cover and P. Hart. Nearest neighbor pattern classification. Information

Theory, IEEE Transactions on, 13(1):21–27, January 1967.

87

[15] P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier

under zero-one loss. Machine Learning, 29(2-3):103–130, 1997.

[16] E. Eskin. Detecting errors within a corpus using anomaly detection. In Proceed-

ings of the 1st North American Chapter of the Association for Computational

Linguistics Conference, NAACL 2000, pages 148–153, Stroudsburg, PA, USA,

2000. Association for Computational Linguistics.

[17] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. Liblinear: A library for large

linear classification. J. Mach. Learn. Res., pages 1871–1874, 2008.

[18] B. Frenay and M. Verleysen. Classification in the presence of label noise: A

survey. Neural Networks and Learning Systems, IEEE Transactions on, pages

845 – 869, 2013.

[19] Y. Freund. An adaptive version of the boost by majority algorithm. Machine

Learning, 43(3):293–318, 2001.

[20] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139,

Aug. 1997.

[21] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statis-

tical view of boosting. Annals of Statistics, 28:2000, 1998.

[22] J. Fürnkranz. Noise-tolerant windowing. In Proceedings of the Fifteenth inter-

national joint conference on Artifical intelligence, pages 852–857. Citeseer, 1997.

88

[23] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,

S. Tatikonda, Y. Tian, and S. Vaithyanathan. Systemml: Declarative machine

learning on mapreduce. In Proceedings of the 2011 IEEE 27th International Con-

ference on Data Engineering, ICDE ’11, pages 231–242, Washington, DC, USA,

2011. IEEE Computer Society.

[24] K.-S. Goh, E. Chang, and B. Li. Using one-class and two-class SVMs for mul-

ticlass image annotation. Knowledge and Data Engineering, IEEE Transactions

on, 17(10):1333–1346, Oct 2005.

[25] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.

The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–

18, Nov. 2009.

[26] H. Hoffmann. Kernel PCA for novelty detection. Pattern Recognition, 40(3):863

– 874, 2007.

[27] T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’06, pages 217–226, New York, NY, USA, 2006. ACM.

[28] G. H. John and P. Langley. Estimating continuous distributions in Bayesian

classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial

Intelligence, UAI’95, pages 338–345, San Francisco, CA, USA, 1995. Morgan

Kaufmann Publishers Inc.

[29] A. M. Kaplan and M. Haenlein. Users of the world, unite! the challenges and

opportunities of social media. Business Horizons, 53(1):59 – 68, 2010.

89

[30] S. B. Kotsiantis. Supervised machine learning: A review of classification tech-

niques. In Proceedings of the 2007 Conference on Emerging Artificial Intelligence

Applications in Computer Engineering: Real Word AI Systems with Applications

in eHealth, HCI, Information Retrieval and Pervasive Technologies, pages 3–24,

Amsterdam, The Netherlands, The Netherlands, 2007. IOS Press.

[31] P. A. Lachenbruch. Discriminant analysis when the initial samples are misclassi-

fied ii: Non-random misclassification models. Technometrics, 16(3):pp. 419–424,

1974.

[32] J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient.

J. Mach. Learn. Res., 10:777–801, June 2009.

[33] M. Lichman. UCI machine learning repository. http://archive.ics.uci.edu/

ml, 2013.

[34] E. Mantziou, S. Papadopoulos, and Y. Kompatsiaris. Scalable training with

approximate incremental laplacian eigenmaps and PCA. In Proceedings of the

21st ACM International Conference on Multimedia, MM ’13, pages 381–384,

New York, NY, USA, 2013. ACM.

[35] N. Manwani and P. Sastry. Noise tolerance under risk minimization. Cybernetics,

IEEE Transactions on, 43(3):1146–1151, 2013.

[36] D. F. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different

types of noise on the precision of supervised learning techniques. Artif Intell Rev,

2010.

90

[37] F. Nie, Y. Huang, X. Wang, and H. Huang. New primal SVM solver with linear

computational cost for big data classifications. The 31st International Conference

on Machine Learning (ICML), 2014.

[38] M. Pechenizkiy, A. Tsymbal, S. Puuronen, and O. Pechenizkiy. Class noise and

supervised learning in medical domains: The effect of feature extraction. In

Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE International

Symposium on, pages 708–713, 2006.

[39] C. J. Pérez, F. J. G. González-Torre, J. Mart́ın, M. Ruiz, and C. Rojano. Mis-

classified multinomial data: a Bayesian approach. Revista de la Real Academia

de Ciencias Exactas, F́ısicas y Naturales. Serie A: Matemáticas (RACSAM),

101(1):71–80, 2007.

[40] Y. Qian, M. Gong, and L. Cheng. Stocs: An efficient self-tuning multiclass clas-

sification approach. In Advances in Artificial Intelligence, volume 9091 of Lecture

Notes in Computer Science, pages 291–306. Springer International Publishing,

2015.

[41] Y. Qian, H. Yuan, and M. Gong. Budget-driven big data classification. In

Advances in Artificial Intelligence, volume 9091 of Lecture Notes in Computer

Science, pages 71–83. Springer International Publishing, 2015.

[42] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1993.

[43] R. Rakotomalala. Decision tree learning algorithms. http://www.

data-mining-tutorials.blogspot.fr. [Online; accessed July-2014].

91

[44] M. Rantalainen and C. C. Holmes. Accounting for control mislabeling in case–

control biomarker studies. Journal of proteome research, 10(12):5562–5567, 2011.

[45] J. S. Sánchez, F. Pla, and F. J. Ferri. Prototype selection for the nearest neigh-

bour rule through proximity graphs. Pattern Recogn. Lett., 18(6):507–513, June

1997.

[46] N. V. Sawant, K. Shah, and V. A. Bharadi. Survey on data mining classifica-

tion techniques. In Proceedings of the International Conference ; Workshop on

Emerging Trends in Technology, ICWET ’11, pages 1380–1380, New York, NY,

USA, 2011. ACM.

[47] J. L. Schafer and J. W. Graham. Missing data: our view of the state of the art.

Psychological methods, 7(2):147, 2002.

[48] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt.

Support vector method for novelty detection. In Advances in Neural Information

Processing Systems 12, pages 582–588. 1999.

[49] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal es-

timated sub-gradient solver for svm. Mathematical programming, pages 3–30,

2011.

[50] C. R. Souza. Kernel functions for machine learning applications. Creative Com-

mons Attribution-Noncommercial-Share Alike, 3, 2010.

[51] Y.-C. Su, T.-H. Chiu, G.-L. Wu, C.-Y. Yeh, F. Wu, and W. Hsu. Flickr-tag

prediction using multi-modal fusion and meta information. In Proceedings of

92

the 21st ACM International Conference on Multimedia, MM ’13, pages 353–356,

New York, NY, USA, 2013. ACM.

[52] P. Tan. Introduction To Data Mining. Pearson Education, 2007.

[53] D. Tax and R. Duin. Support vector data description. Machine Learning,

54(1):45–66, 2004.

[54] C. Teng. Evaluating noise correction. In PRICAI 2000 Topics in Artificial

Intelligence, volume 1886 of Lecture Notes in Computer Science, pages 188–198.

Springer Berlin Heidelberg, 2000.

[55] C.-M. Teng. A comparison of noise handling techniques. In Proceedings of the

Fourteenth International Florida Artificial Intelligence Research Society Confer-

ence, pages 269–273. AAAI Press, 2001.

[56] J. Thongkam, G. Xu, Y. Zhang, and F. Huang. Support vector machine for

outlier detection in breast cancer survivability prediction. In Advanced Web

and Network Technologies, and Applications, volume 4977 of Lecture Notes in

Computer Science, pages 99–109. Springer Berlin Heidelberg, 2008.

[57] K. Tumer and J. Ghosh. Estimating the bayes error rate through classifier com-

bining. In Pattern Recognition, 1996., Proceedings of the 13th International

Conference on, volume 2, pages 695–699 vol.2, Aug 1996.

[58] D. R. Wilson and T. R. Martinez. Reduction techniques for instance-based

learning algorithms. Mach. Learn., 38(3):257–286, Mar. 2000.

93

[59] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.

McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and

D. Steinberg. Top 10 algorithms in data mining. Knowl. Inf. Syst., 14(1):1–37,

Dec. 2007.

[60] H. Yin and H. Dong. The problem of noise in classification: Past, current and

future work. In Communication Software and Networks (ICCSN), 2011 IEEE

3rd International Conference on, pages 412–416, May 2011.

[61] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large linear classification

when data cannot fit in memory. In Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’10,

pages 833–842, New York, NY, USA, 2010. ACM.

[62] K. Zhang, L. Lan, Z. Wang, and F. Moerchen. Scaling up kernel SVM on limited

resources: A low-rank linearization approach. In Proceedings of the Fifteenth

International Conference on Artificial Intelligence and Statistics (AISTATS-12),

volume 22, pages 1425–1434, 2012.

[63] X. Zhu and X. Wu. Class noise vs. attribute noise: A quantitative study. Artif.

Intell. Rev, 2004.

94

