

Dynamic Fault Tree Analysis with PEWMA Modeling of Event Rates and

Bayesian Updating of Material Balance Parameters using MCMC

By

Alf Christian Johansen

A Thesis submitted to the School of Graduate Studies

In partial fulfillment of the requirements for the degree of Master of Engineering

Faculty of Engineering and Applied Science

Department of Process Engineering

Memorial University of Newfoundland

St. John’s, Newfoundland and Labrador, Canada

May 2016

2

Abstract

This research explores Bayesian updating as a tool for estimating parameters probabilistically by

dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed.

The first approach focuses on Bayesian updating of failure rates for primary events in fault trees.

A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out

Bayesian updating of failure rates for individual primary events in the fault tree. To provide a

basis for testing of the PEWMA model, a fault tree is developed based on the Texas City

Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to

obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by

evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling

from posterior failure rate distributions. It is demonstrated that PEWMA modeling is

advantageous over conventional conjugate Poisson-Gamma updating techniques when failure

data is collected over long time spans. The second approach focuses on Bayesian updating of

parameters in non-linear forward models. Specifically, the technique is applied to the

hydrocarbon material balance equation. In order to test the accuracy of the implemented

Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir

simulator. Both structured grid and MCMC sampling based solution techniques are

implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a

graphical analysis shows that the implemented MCMC model displays good convergence

properties. A case study demonstrates that Likelihood variance affects the rate at which the

posterior assimilates information from the measured data sequence. Error in the measured data

significantly affects the accuracy of the posterior parameter distributions. Increasing the

3

likelihood variance mitigates random measurement errors, but casuses the overall variance of the

posterior to increase. Bayesian updating is shown to be advantageous over deterministic

regression techniques as it allows for incorporation of prior belief and full modeling uncertainty

over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the

material balance equation shows utility for incorporation into reservoir engineering workflows.

4

Acknowledgements

I would like to thank my supervisor Dr. Faisal Khan for sharing his enthusiasm for this reasearch

area and for providing guidance throughout my studies. I would also like to thank Selina Boland

and my dad Thormod Johansen for supporting me throughout this work.

5

Table of Contents

1 Thesis Overview .. 17

1.1 Organization of Thesis ... 17

1.2 Relevance of this Research .. 17

2 Dynamic fault tree analysis with PEWMA modeling of event rates 19

2.1 Introduction .. 19

2.2 Research Objectives ... 20

2.3 Literature Review and Background.. 21

2.3.1 Dynamic Risk Assessment ... 21

2.3.2 Fault Tree Analysis ... 23

2.3.3 Monte Carlo Integration of Top Event Probability ... 26

2.3.4 Poisson Process ... 27

2.3.5 Poisson Exponentially Moving Average Model ... 27

2.4 Model Implementation ... 32

2.4.1 PEWMA .. 32

2.4.2 Top-Event Integration ... 36

2.5 Case Study - Texas City Fault Tree Analysis .. 38

2.5.1 Development of Texas City Fault Tree ... 38

2.5.2 Qualitative Analysis of Texas City Fault Tree ... 43

2.5.3 PEWMA Updating using Texas City Failure Data ... 47

2.5.3.1 Blowdown drum vapour cloud release rate (N) ... 48

2.5.3.2 Unsafe Sewer Disposal Rate (S) .. 50

2.5.3.3 Insufficient Operator Training (O3) .. 52

2.5.3.4 Maintenance Failure Rate (M) ... 54

2.5.3.5 Regulations Non-Compliance rate (O1) .. 56

2.6 Probabilistic Analysis of Texas City Fault Tree .. 58

2.7 Conclusion .. 63

2.8 References .. 64

3 Bayesian updating of Material balance parameters using MCMC .. 68

6

3.1 Introduction .. 68

3.2 Research Objectives ... 69

3.3 Literature Review and Background.. 70

3.3.1 Bayesian Updating of Multivariable Forward Models ... 70

3.3.1.1 Prior Distribution ... 72

3.3.1.2 Likelihood Function .. 73

3.3.1.3 Posterior Distribution .. 76

3.3.1.4 Bayesian Updating on a Structured Grid ... 78

3.3.1.5 Bayesian Updating using Markov Chain Monte Carlo 79

3.3.1.6 Markov Chain Theory ... 79

3.3.1.7 Metropolis-Hastings Algorithm ... 82

3.3.1.8 MCMC Convergence Diagnostics ... 86

3.3.1.9 MCMC Output Analysis .. 88

3.3.1.10 Material Balance .. 90

3.3.1.11 Review of Material Balance Parameter Fitting ... 93

3.4 Model Implementation ... 94

3.4.1 Python Code Overview ... 94

3.4.2 Proposal Distribution .. 96

3.4.3 Time-Discretization of Material Balance Equation .. 97

3.5 Synthetic Data Set .. 99

3.5.1 Model Geometry and Grid Properties ... 99

3.5.2 PVT Data .. 102

3.5.3 Capillary Pressure and Relative Permeability Model ... 104

3.5.4 Synthetic Reservoir Parameters and Production Data .. 107

3.5.5 Material Balance Model Response to Synthetic Production Data 111

3.6 Bayesian Updating Case Study .. 116

3.6.1.1 Case 1 - Two-Variable Structured Grid Solution .. 117

3.6.1.2 Case 2 - Two-Variable MCMC Sampling Based Solution............................ 122

3.6.1.3 Case 3 – Three-variable MCMC Sampling Based Solution 132

3.6.1.4 Case 4 – Effect of Measurement Error .. 143

3.7 Conclusion .. 149

7

3.8 References .. 151

List of Tables

Table 1 - Generic Failure Rates from OREDA ... 31

Table 2 - Prior Gamma Parameters for PEWMA Analysis .. 47

Table 3 - Blowdown drum vapour cloud release incidents (B) .. 48

Table 4 - Insufficient Training incidences (O3) ... 52

Table 5 - Maintenance failure incidences (M) .. 54

Table 6 - Regulations non-compliance incidences (O1) ... 56

Table 7 - Summary of Gamma Parameters ... 60

Table 8 - Bayesian Updating Equation Summary... 71

Table 9 - Summary of Simulation Model Parameters .. 101

Table 10 - PVT/Reservoir Properties .. 102

Table 11 - PVT Data Table ... 103

Table 12 - Oil/Water Corey Parameters.. 106

Table 13 - Oil/Gas Corey Parameters ... 106

Table 14 - Logarithmic Capillary Pressure Parameters .. 106

Table 15 - Summary of Synthetic Model Parameters ... 107

Table 16 - Tank Model Parameters ... 112

Table 17 - Deterministic Sensitivities for Material Balance Model ... 114

Table 18 - Case Study Summary .. 116

Table 19 - Case 1 Parameters.. 118

Table 20 - Case 2 Parameters.. 123

8

Table 21 - Case 3 Parameters.. 132

Table 22 - Case 4 Main Parameters .. 144

List of Figures

Figure 1 - Fault Tree Gate Types .. 23

Figure 2 - Common Fault Tree Symbols .. 24

Figure 3 - AND/OR Gates .. 25

Figure 4 - Influence of PEWMA weighting factor ... 34

Figure 5 - PEWMA responsiveness .. 34

Figure 6 - Influence of omega factor .. 35

Figure 7 - Monte Carlo Sampling Procedure for Integration Top Event Probability 37

Figure 8 - Overview of the Texas City Refinery ISOM Unit (CSB 2007) 39

Figure 9 - Complete Texas City ISOM unit Fault Tree .. 42

Figure 10 - Simplified Fault Tree including improved alarm system (SA) 46

Figure 11 - PEWMA model ouput (N - Blowdown Drum) .. 49

Figure 12 - PEWMA Output (S - Sewer Release) .. 51

Figure 13 - PEWMA Output (O3 - Operator Training) .. 53

Figure 14 - PEWMA Output (M – Maintenance Failure)... 55

Figure 15 - PEWMA Output (O1 - Regulations Non-Compliance) ... 57

Figure 16 - Case 1 - Top Event Marginal Histograms .. 61

Figure 17 - Case 1 - Top Event Probability and 95th Percentile vs. Time 61

Figure 18 - Case 2 - Top Event Probability Marginal Histograms ... 62

9

Figure 19 - Case 2 - Top Event Probability Mean and 95th Percentiles 62

Figure 20 - Effect of standard deviation on Likelihood Distribution ... 74

Figure 21 - Prior, Likelihood and Posterior distributions vs. Bayesian Updating Steps 77

Figure 22 - Structured grid solution strategy .. 78

Figure 23 - Markov Chain... 80

Figure 24 - Burn-in ... 87

Figure 25 - Posterior Diagnostics Plot .. 89

Figure 26 - Mean and percentiles .. 89

Figure 27 - Hydrocarbon material balance summary ... 90

Figure 28 - Aquifer Model .. 92

Figure 29 - Overview of implemented Python functions.. 95

Figure 30 - Eclipse model overview 5x exaggerated in the vertical direction 100

Figure 31 - Log(Permeability) vs. Porosity Plot ... 101

Figure 32 - Drainage and Imbibition Capillary Pressure Curves .. 105

Figure 33 - Oil/Water Relative Permeability Curves .. 105

Figure 34 - Oil/Gas Relative Permeability Curves ... 106

Figure 35 - Production Rates from Synthetic Model .. 109

Figure 36 - Reservoir Pressure and BHP from Synthetic Model .. 109

Figure 37 - Ternary Plot of Synthetic Model .. 110

Figure 38 - Material Balance vs. Synthetic Data Reservoir Pressure ... 112

Figure 39 - Material Balance Aquifer Influx Prediction ... 113

Figure 40 - Material Balance Fluid Saturation Predictions vs. Time ... 113

Figure 41 - Material Balance Model Sensitivities .. 115

10

Figure 42 - Case 1, Prior Distribution ... 118

Figure 43 - Case 1, Likelihood Distribution ... 119

Figure 44 - Case 1, Posterior Distribution .. 119

Figure 45 - Case 1, Effect of Error on Likeihood and Posterior ... 120

Figure 46 - Case 1, Effect of Error on Marginal Posteriors .. 121

Figure 47 – Case 2, Grid vs. MCMC marginal posterior distributions at time = 1500 days 124

Figure 48 – Case 2, Posterior scatter plots .. 125

Figure 49 – Case 2, Posterior Marginal Histogram Outlines .. 126

Figure 50 – Case 2, Posterior Marginal Fitted Normal Distributions ... 127

Figure 51 – Case 2, Acceptance Ratios .. 128

Figure 52 – Case 2, Running Mean Plots ... 129

Figure 53 – Case 2, Time Series Plots .. 130

Figure 54 – Case 2, Autocorrelation Plots .. 131

Figure 55 - Case 3, Posterior Marginal Histograms ... 134

Figure 56 - Case 3, Posterior Fitted Normal Distributions ... 135

Figure 57 - Case 3, MCMC Summary Plot at time = 300 and 2600 days 136

Figure 58 - Case3, Running Mean Plots ... 137

Figure 59 - Case 3, Time Series Plots ... 138

Figure 60 - Case 3, Autocorrelation Plots ... 139

Figure 61 - Case3, Acceptance Ratios .. 140

Figure 62 - Case 3, Deviation From True Parameter Values .. 140

Figure 63 - Case 3, MCMC Posterior Means and 95
th

 Percentiles ... 141

Figure 64 - Case 3, Posterior Material Balance Realizations, t=300, 1500 and 3600 days 142

11

Figure 65 - Pressure data with constant shift and pressure data with random noise 145

Figure 66 - Effect of constant pressure shift on posterior means and 95th percentiles 146

Figure 67 - Effect of random noise on posterior means and 95th percentiles 147

Figure 68 - Effect of noise on posterior means and 95th percentiles.. 148

Figure 69 - Bayesian Material Balance in Reservoir Engineering Context 150

List of Algorithms

Algorithm 1 - PEWMA ... 33

Algorithm 2 - Monte Carlo Top Event Integration ... 36

Algorithm 3 - MCMC - Metropolis Algorithm .. 85

12

Chapter 2 - Symbols, Nomenclature and Abbreviations

PEWMA

yt

μ

n

α

β

г

ω

VC

B

N

S

R

O

O1

O2

O3

M

V

L

LS

Poisson Exponentially Weighted Moving Average

number of observed Poisson counts at time t

Expected number of Poisson counts

number of count data points

Gamma shape parameter

Gamma scale parameter

Gamma function

PEWMA discounting factor

Vapor cloud forms outside blowdown drum

Blowdown drum overfills

Release of vapor cloud from blowdown drum

Release of vapor cloud from sewer

Raffinate splitter tower overfills

Operator unaware of raffinate splitter tower liquid level

Operator not following regulations

Operator unaware of raffinate liquid level due to alarm failure

Operator unaware of raffinate liquid level due to lack of training

Maintenance failure (sight glass)

Raffinate splitter tower blowdown valve fails closed

Raffinate splitter tower level indicator fails to function

Raffinate splitter tower level indicator alarm system fails

13

A

A1

A2

SA

Raffinate splitter tower high level alarm system fails

Alarm associated with level indicator fails to function

Raffinate splitter tower hardwired alarm fails to function

Severe liquid level alarm failure

Chapter 3 - Symbols, Nomenclature and Abbreviations

We Aquifer influx

p
a
 Aquifer pressure

Wa Aquifer volume

Wi Initial aquifer volume

ct Total Compressibility

cw Water Compressibility

cr Rock Compressibility

no,nw,ng Corey Exponents (oil, water and gas)

kro,krw,krg Relative permabilities (oil, water and gas)

kro,max,krw,max,krg,max Maximum Relative permabilities (oil,water, gas)

So,Sw,Sg Phase saturations (oil, water, gas)

Swc,Sgc Connate phase saturations (water,gas)

Sgt Threshold gas saturation

14

Sor Residal oil saturation

x Parameters

y Observed data

f(y|x) Posterior distribution

f(y|x) Likelihood function

f(x) Prior distribution

f(y) Probability of observed data

Cx Gaussian prior covariance matrix

Cy Likelihood function covariance matrix

σ Standard deviation

g(x) Forward model

ϵ Likelihood error/variance

π(x) Markov Chain target distribution

Xt Markov Chain

T(a, b) Finite state space transition matrix

P(Xt+1|Xt) General state space transition kernel

S State Space

15

αij MCMC Acceptance Ratio

MCMC Markov Chain Monte Carlo

PVT Pressure Volume Temperature

GOR Gas Oil Ratio

ρXY Pearson′s correlation coefficient

PVi Initial Pore Volume

PV Pore Volume

Boi Initial Oil Formation Volume Factor

Bo Oil Formation Volume Factor

N Stock Tank Oil Originally in Place

Wres Stock tank water in place

Gp Incremental Gas produced

Rs Solution GOR

We Incremental Aquifer Influx

Np Incremental Oil Production

Bg Gas Formation Volume Factor

Bw Water Formation Volume Factor

16

cf Formation Compressibility

cw Water compressibility

pr Reservoir pressure

pa Aquifer pressure

Jw Aquifer index

Appendices

Appendix A - PEWMA Python Scripts

Appendix B – Bayesian Material Balance Python Scripts

Appendix C - PVT Correlations

Appendix D - Procedure for Generating Random Simulation Model Properties

Appendix E - Capillary Pressure Model

Appendix F - Corey Functions for Relative Permeability

Appendix G - Eclipse input file

17

1 THESIS OVERVIEW

1.1 Organization of Thesis

The Bayesian updating methodology is here applied to two distinct types of parameter estimation

problems. Chapter 2 presents an application of Bayesian updating to probabilistic Fault Tree

Analysis, while Chapter 3 explores Bayesian updating in the context of probabilistic parameter

fitting. Due to the uniqueness of each methodology, Chapter 2 and Chapter 3 are organized as

independent chapters with separate introductions, research objectives, literature reviews,

conclusions and reference lists.

1.2 Relevance of this Research

This research builds on previous work within the field of Bayesian updating and further

establishes this statistical techqniue as viable engineering tool for reducing uncertainty by

sequentially assimilating model parameters to measured data. Chapter 2 demonstrates how a

fault tree can be evaluated dynamically by incorporating accident precursor data into to a

Bayesian updating framework. Despite its utility in modeling long term failure data and

simplicity of implementation, PEWMA appears to be underutilized for dynamic risk

assessments. This work therefore seeks to further establish probabilistic fault tree analysis with

PEWMA updating for event rates as a viable technique for dynamic risk assessments.

18

Chapter 3 demonstrates a more general and non-linear/multivariate Bayesian updating technique,

which is applied to estimate parameters in the hydrocarbon material balance equation by

assimilating measured reservoir pressure data. Little work has been carried out to model material

balance parameters in a fully probabilistic manner. This work seeks to further establish Bayesian

material balance as a viable statistical technique for application in reservoir engineering

workflows.

19

2 DYNAMIC FAULT TREE ANALYSIS WITH PEWMA MODELING OF EVENT RATES

2.1 Introduction

In this section Bayesian updating is explored in the context of probabilistic fault tree analysis and

Bayesian updating of event failure rates. A review of relevant background theory on Quantitative

Risk Assessment (QRA), Fault Tree Analysis (FTA), Bayesian updating and Poisson

Exponentially Weighted Average (PEWMA) modeling of event rates is provided. A fault tree is

developed based on the ISOM unit at the Texas City refinery incident. The resulting fault tree is

evaluated qualitatively to generate a logic expression for the top event and is used identify safety

improvements. PEWMA is implemented to model event failure rates as it is preferable over

conventional conjugate Poisson-Gamma updating when accident precursor data is collected over

long time spans. Real accident precursor data obtained from the Texas City accident reports is

presented and used to model the event rates probabilistically with the PEWMA model. The fault

tree top event probability is integrated through time by Monte Carlo sampling from posterior

PEWMA event rates to provide a dynamic risk profile for the Texas City ISOM unit up until the

time of the refinery incident.

20

2.2 Research Objectives

 Implement a Poisson Exponentially Weighted Moving Average (PEWMA) model for

modeling Poisson event rates in a Bayesian framework.

 Develop a fault tree for the ISOM unit that caused the 2005 Texas City refinery incident.

 Evaluate the resulting fault tree qualitatively and analyze minimal cut sets to identity

potential safety improvements.

 Collect accident precursor data from the published reports on the Texas City refinery

incident and apply PEWMA to the resulting data set.

 Evaluate the developed fault tree probabilistically through time by Monte Carlo sampling

of the posterior distributions resulting from the PEWMA model.

21

2.3 Literature Review and Background

2.3.1 Dynamic Risk Assessment

Khan and Abbasi (1998) presents a review of the available Quantitative Risk Assessment (QRA)

tools. The most important techniques are Hazard and Operability Study (HAZOP), Failure Mode

and Effect Analysis (FMEA), Event Tree Analysis (ETA) and Fault Tree Analysis (FTA). In

recent years, several authors have studied Bayesian Networks (BN) as an alternative to Fault

Tree modeling. The advantages of BN models is that are they are able to model non-exponential

failure distributions, multi-state variables, noisy gates, common cause failures and simple

sequentially dependent failures. Examples of applications of BN can be found in Bobbio et. al.

(2001) and Marquez et. al. (2010). A more comprehensive analysis technique can be obtained by

combining Event Trees and Fault Tere using a Bow-Tie (BT) technqiue, thereby allowing

modeling accident scenarios from causes to effects. Examples of BT modeling are provided in

Dianous VD et. al. (2006) and Khakzad et.al (2013). Generic failure rate data from publicly

available data sources are often used to estimate static failure rates for primary events in a fault

tree. An example of such a source is the Offshore Reliability Data Handbook (OREDA, 2002),

which contains failure rates for valves and level indicators in terms of calendar time. Failure

rates can in turn be evaluated as failure probabilities by using a stochastic model such as the

Poisson process. QRA as a whole lacks the ability to model how risk levels are changing over

time (Kalantarnia, 2011) and the disadvantage associated with using a generic source is that the

resulting failure rates are static and not representative of the actual system. One of the first

attempts at bridging this gap was made in the nuclear industry, where (Bier and Mosleh, 1990)

22

carried out a dynamic risk assessment by modeling system specific failure rates in a Bayesian

updating framework. Bayesian updating is a technique that has later been re-visited by several

authors. Shafaghi (2008) demonstrates how Bayesian statistics can be used to model the Poisson

failure rate for individual process equipment units. Meel (2006) and Kalantarnia (2011) carry out

integrated Bayesian analyses by modeling multiple plant components simultaneously. Khakzad

et. al. (2013) shows that the BT technique combined with Bayesian updating using accident

precursor data can be used to facilitate a dynamic risk assessment. A problem associated with

incorporating plant specific accident precursor data into a Baysian updating framework is that

abnormal events are often overlooked or unnoticed by operators due to underestimation of their

adverse impacts (Meel, 2006). Another factor to consider is that the number of recorded

incidents depends on the quality and frequency of safety audits and inspections. Common to

most attempts at implementing Bayesian updating for dynamic risk assessments is that conjugate

probability distributions are used. When applicable, conjugate distributions are desirable because

they result in closed-form expressions that are not prone to the errors associated with sampling

based techniques. As an example, the conjugate prior to the Poisson likelihood function is the

gamma distribution. If a gamma prior distribution does not adequately characterize prior

knowledge for a particular component, sampling based techniques are required (Thodi, 2010).

Lindhe et. al. (2009) shows how probabilistic Fault Tree analysis can be used as part of risk-

based decision making and uses a Monte Carlo techqniue for top event integration with all

primary events modeled as random variables.

23

2.3.2 Fault Tree Analysis

Fault Tree Analysis (FTA) is a deductive, top-down technique used to determine the root causes

leading to a defined failure event, often called a top event. It is a standardized technique with

designated symbols for expressing events and logical interrelationships. The OR gate is used

when the output event requires one or more of the input events occur, while the AND gate is

used when the output event requires all input events to occur (Figure 1). A square box signifies

events that are consequences resulting from AND/OR gates.

Figure 1 - Fault Tree Gate Types

A circle indicates an independent primary failure event that does not require further

development. A diamond shape indicates an event that has not been fully developed because the

underlying causes are not fully known. An inhibit gate is used when a particular condition must

be satisfied in order to allow a fault to propagate. Finally, a house symbol denotes a normally

occurring event that is not a fault. The circle, diamond, inhibit gate and house symbols are all

illustrated in (Figure 2). A more comprehensive list of fault tree symbols can be found in

Atwood (2003).

24

Figure 2 - Common Fault Tree Symbols

Fault tree analysis does not account for all possible system failures, but rather focuses on a

particular failure mode. The development of the fault tree is a process where possible root causes

within the defined system boundary are mapped out by working backwards from the top event.

As a graphical aid, a Fault Tree allows system management and non-experts to visualize hazards.

A fault tree can also be evaluated in a probabilistic manner by incorporating component failure

data. A challenge with Fault Tree Analysis is that it does not easily allow for common-cause

modeling, but rather assumes all primary events to be independent. Failures can be classified as

primary, secondary or command faults. Primary faults occur in an environment the component

was qualified for. Secondary faults occur when component fails in an environment it was not

designed for. Finally a command fault occurs if a component operates correctly but at the wrong

time. A qualitative fault tree evaluation involves developing a logical expression for the top

event as a function of the primary fault events. A minimal cut-set requires all its associated

primary faults to occur for system failure to occur (Vesely et. al., 1981). Smaller fault trees can

25

be evaluated manually, but for more complex trees computer codes are required in order to

determine the minimal cut sets. By ordering the minimal cut-sets according to their size a

qualitative measure of realative importance can be established. Quantitative Fault Tree

evaluation requires estimation of the failure probabilities associated with the primary events in

the Fault Tree. A typical approach is to calculate the failure probability for each primary event in

the Fault Tree as the Poisson probability of observing at least one failure over the next time step

(Eq. 1). All events in the Fault Tree are assumed to be independent and the top event probability

is calculated by evaluating the associated logic expressions resulting from a series of AND/OR

gates (Figure 3). Sample logic expression for AND/OR gates are provided in (Eq. 2 and Eq. 3).

𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 1 − 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋 = 0) = 1 −
𝑒−𝜇𝜇0

0!
= 1 − 𝑒−𝜇 Eq. 1

.

Figure 3 - AND/OR Gates

𝑃(𝐸1 ∩ 𝐸2) = 𝑃(𝐸1) ∙ 𝑃(𝐸2) Eq. 2

𝑃(𝐸1 ∪ 𝐸2) = 𝑃(𝐸1) + 𝑃(𝐸2) − 𝑃(𝐸1) ∙ 𝑃(𝐸2) Eq. 3

26

2.3.3 Monte Carlo Integration of Top Event Probability

Because failure rates are modeled as random variables, each term in the expression for the top

event is associated with a probability distribution. Algebraic methods have been developed for

determining the probability distribution function for combinations of random variables, but exact

solutions are usually only possible for simple cases such as the sum of two independent

distributions, which is also known as a convolution (Vose, 2008). A more generally applicable

solution approach is to apply Monte Carlo sampling to integrate the top event numerically. A

classic example that is used to explain Monte Carlo sampling is the problem of evaluating the

expectation of a function (Eq. 4), where 𝑥 is a vector of random variables distributed according

to 𝑓(𝑥). This integral can be numerically approximated by drawing independent and identically

distributed (i.i.d.) random samples from 𝑓(𝑥) (Eq. 5). By the law large numbers, the accuracy of

the approximation will improve with the number of samples drawn (Eq. 6).

𝐸[ℎ(𝑥)] = ∫ℎ(𝑥)𝑓(𝑥)𝑑𝑥 Eq. 4

𝐸[ℎ(𝑥)] ≈ ℎ̅𝑁 =
1

𝑁
∑ℎ(𝑋𝑛)

𝑁

𝑖

 Eq. 5

ℎ̅𝑁 =
1

𝑁
∑ℎ(𝑋𝑖)

𝑁

𝑖

→ 𝐸[ℎ(𝑥)] 𝑎𝑠 𝑁 → ∞ Eq. 6

27

2.3.4 Poisson Process

The Poisson process (Vose, 2008) is a stochastic model that has been widely applied to count

processes, such as the number of calls arriving at a call center. The Poisson distribution is fully

characterized by a single variable, i.e., the expected number of event counts over a given time

period and yields the probability of observing a discrete number of counts given a rate and a

given length of exposure time (Eq. 7). It can be formulated as a likelihood function for use in

Bayesian Updating by setting 𝑦𝑡 equal to the observed number of counts and treating the

expected number of failures 𝜇 as a random variable.

𝑝𝑦𝑡 =
𝑒−𝜇𝜇𝑦𝑡

𝑦𝑡!
 𝑓𝑜𝑟 𝑦𝑡 = 0,1, … , 𝑛

Eq. 7

2.3.5 Poisson Exponentially Moving Average Model

The posterior distribution is closed-form if the prior and likelihood function fall in a conjugate

pair of probability distributions. Combining a gamma prior distribution (Eq. 8) with a Poisson

likelihood function (Eq. 9) results in a posterior gamma distribution (Eq. 10). The closed-form

update equations for the posterior Gamma shape 𝛼 and scale 𝛽 factors shown in Eq. 11 and Eq.

12.

𝑃𝑟𝑖𝑜𝑟 = 𝑃(μ𝑡; 𝛼, 𝛽) =
𝑒−𝛽𝜇𝜇𝑡

𝛼−1

г(𝛼)𝛽−𝛼

Eq. 8

28

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑃(𝑦𝑡|μ𝑡) = μ𝑡
𝑦𝑡𝑒−µ𝑡/𝑦𝑡! Eq. 9

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑃(𝑦𝑡|μ𝑡) ∙ 𝑃(μ𝑡; 𝛼, 𝛽) =
μ𝑡
𝑦𝑡𝑒−µ𝑡

𝑦𝑡!
∙
𝑒−𝛽𝜇𝜇𝑡

𝛼−1

г(𝛼)𝛽−𝛼

Eq. 10

𝛼𝑝𝑜𝑠𝑡 = 𝛼𝑡 = 𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑦𝑡 Eq. 11

𝛽𝑝𝑜𝑠𝑡 = 𝛽𝑡 = 𝛽𝑝𝑟𝑖𝑜𝑟 + 𝑡 Eq. 12

A drawback with the traditional conjugate Poisson-Gamma approach is that all events are given

equal weight. This is undesirable when modeling event counts over long time spans where the

underlying event rate is likely to be changing. To mitigate this problem, Harvey (1989)

introduced the Poisson Exponentially Weighted Moving Average (PEWMA), which models

Poisson time series count data using a state space solution similar to that of the Kalman filter.

The PEWMA model has been applied to count time series problems in political science (Brandt,

1998), disease control (Holloway, 2011) and nuclear risk analysis (Rangel, 2012). PEWMA

reduces the weight associated with past data points (Eq. 13 and Eq. 14) by means of a

discounting factor 𝜔 which controls the responsiveness of the model to measured data. Harvey

uses conjugate Gamma/Poisson distributions and thereby retains a closed form solution. The

mean is constant over the updating step, while the variance increases (Eq. 15 and Eq. 16). When

count observations 𝑦𝑡 become available, the updating step is applied and results in Eq. 17 and

Eq. 18.

29

𝛼𝑡|𝑡−1 = 𝜔𝛼𝑡−1 Eq. 13

𝛽𝑡|𝑡−1 = 𝜔𝛽𝑡−1 Eq. 14

𝐸(𝜇𝑡|𝑦𝑡−1) =
𝛼𝑡|𝑡−1

𝛽𝑡|𝑡−1
=
𝜔𝛼𝑡−1
𝜔𝛽𝑡−1

=
𝛼𝑡−1
𝛽𝑡−1

= 𝐸(𝜇𝑡−1|𝑦𝑡−1) Eq. 15

𝑉𝑎𝑟(𝜇𝑡|𝑦𝑡−1) =
𝛼𝑡|𝑡−1

𝛽𝑡|𝑡−1
2 =

𝜔𝛼𝑡−1
(𝜔𝛽𝑡−1)2

=
𝛼𝑡−1
𝜔𝛽𝑡−1

=
𝑉𝑎𝑟(𝜇𝑡−1|𝑦𝑡−1)

𝜔
 Eq. 16

𝛼𝑡 = 𝛼𝑡|𝑡−1 + 𝑦𝑡 = 𝜔𝛼𝑡−1 + 𝑦𝑡 Eq. 17

𝛽𝑡 = 𝛽𝑡|𝑡−1 + 𝑡 = 𝜔𝛽𝑡−1 + 𝑡 Eq. 18

From a Bayesian perspective, one could apply a distribution on 𝜔 as well, but this would remove

the natural conjugate form and prevent a closed-form solution. A common approach is therefore

to rather use maximum a posteriori or maximum likelihood techniques to estimate hyper-

parameters such as 𝜔 (Harvey, 1989). Here, the log is taken of the posterior predictive

distribution (Eq. 19). The function is then optimized with respect to 𝜔 to determine its optimal

value before moving to the next updating step. Note that the maximum likelihood solution for 𝜔

simply provides an optimal fit between observed data and model output. This is not necessarily a

conservative approach. The analyst may therefore want to experiment with different 𝜔 values

and assess how past values are weighted before deciding to optimize.

30

log(𝐿(𝜔)) = ∑ {log𝛤(𝑎𝑡|𝑡−1 + 𝑦𝑡) − log(𝑦𝑡!) − 𝑙𝑜𝑔𝛤(𝑎𝑡|𝑡−1)

𝑇

𝑡=𝜏+1

+ 𝑎𝑡|𝑡−1𝑙𝑜𝑔𝑏𝑡|𝑡−1 − (𝑎𝑡|𝑡−1 + 𝑦𝑡)log (1 + 𝑏𝑡|𝑡−1)}

Eq. 19

Prior data is most valuable initially before a significant amount failure data becomes available.

As an increasing amount of failure data is incorporated, the measured data will eventually

dominate the posterior. The prior information is overwhelmed by the likelihood function more

rapidly for smaller 𝜔 values, which are associated with heavier discounting of past data points.

The prior probability distribution can be developed based on expert opinion or historic data from

similar process installations. In cases where an uninformative prior is sought, Jeffrey’s prior is

often used (Atwood et. al., 2003). For the Gamma distribution, Jeffrey’s prior is obtained when

the shape and scale parameters of the gamma distribution are set to αprior = 0.5 and βprior = 0.

When plant specific data is not available, generic data from published sources can be used

instead. An example of generic failure rate data obtained from the Offshore Reliability Data

Handbook (OREDA, 2002) which contains failure rates for valves and level indicators in terms

of calendar time. Sample data from OREDA (2002) is provided in Table 1.

31

Table 1 - Generic Failure Rates from OREDA

Failure Mode Failure rate per (10^6 hours)

 Lower Mean Upper SD

Erratic output from level

indicator – Taxonomy No

4.2.2.3 0.05 3.8 12.22 4.42

Blowdown valve fail to open

on demand – Taxonomy No.

4.4.1 0 4.66 22.67 9.43

Alarm failure to function on

demand – Taxonomy No

4.2.2 0 0.46 1.72 0.63

32

2.4 Model Implementation

2.4.1 PEWMA

For this study, the PEWMA model is implemented using the Python scripting language. A

summary of the implemented code is provided in Algorithm 1. The complete set of Python

scripts used to carry out the PEWMA analysis is provided in Appendix A. The PEWMA code is

progressed through time and updates posterior Gamma parameters (𝛼, 𝛽) for all primary events

that have failure data available. For events that do not have failure data available the gamma

parameters retain prior distribution values (𝛼0, 𝛽0) throughout. Figure 4 and Figure 5 show how

the PEWMA filter responds to a generic step function. Smaller 𝜔 values discount older points

more heavily and lead to a faster response in the modeled failure rate. As such, 𝜔 models the

amount of noise associated with the process, which is demonstrated in Figure 6.

33

Algorithm 1 - PEWMA

1 𝐿𝑜𝑎𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑣𝑒𝑛𝑡 𝑖 − 𝑦𝑡(𝑖)

2 𝐿𝑜𝑎𝑑 𝑝𝑟𝑖𝑜𝑟 𝑔𝑎𝑚𝑚𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑣𝑒𝑛𝑡 𝑖 − 𝛼0
(𝑖)
 𝑎𝑛𝑑 𝛽0

(𝑖)

2 𝐼𝑓 (𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑜𝑚𝑒𝑔𝑎 = 𝐹𝑎𝑙𝑠𝑒)

3 𝑆𝑒𝑡 𝜔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 ~ (0,1]

4 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛𝑒𝑣𝑒𝑚𝑡𝑠

5 𝐹𝑜𝑟 𝑡 = 1 𝑡𝑜 𝑛𝑡𝑖𝑚𝑒(𝑖)

6 𝐼𝑓(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑜𝑚𝑒𝑔𝑎 = 𝑇𝑟𝑢𝑒)

7

𝜔 = 𝑠𝑐𝑖𝑝𝑦. 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒.𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(∑ {log𝛤(𝑎𝑡|𝑡−1
(𝑖) + 𝑦𝑡

(𝑖)) − log(𝑦𝑡
(𝑖)!)

𝑇

𝑡=𝜏+1

− 𝑙𝑜𝑔𝛤(𝑎𝑡|𝑡−1
(𝑖)) + 𝑎𝑡|𝑡−1

(𝑖)𝑙𝑜𝑔𝑏𝑡|𝑡−1
(𝑖) − (𝑎𝑡|𝑡−1

(𝑖) + 𝑦𝑡
(𝑖))log (1

+ 𝑏𝑡|𝑡−1
(𝑖))})

8 𝐸𝑙𝑠𝑒

9 𝛼𝑡
(𝑖)
= 𝜔𝛼𝑡−1

(𝑖)
+ 𝑦𝑡

(𝑖)

10 𝛽𝑡
(𝑖)
= 𝜔𝛽𝑡−1

(𝑖)
+ 𝑡

11 𝐸𝑁𝐷

34

Figure 4 - Influence of PEWMA weighting factor

Figure 5 - PEWMA responsiveness

35

Figure 6 - Influence of omega factor

36

2.4.2 Top-Event Integration

A visual overview of the procedure for integrating the Fault Tree top event probability at each

Bayesian updating step is provided in Figure 7. This figure emphasizes the fact that the process

starts with PEWMA modeling of failure rates associated with the primary events in the fault tree.

The posterior distributions for the primary events are then sampled and used to integrate the

probability for the top event. A summary of the Python script implemented to carry out Monte

Carlo integration of the top event probability is provided in Algorithm 2.

Algorithm 2 - Monte Carlo Top Event Integration

1 𝐿𝑜𝑎𝑑 𝐺𝑎𝑚𝑚𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝛼(𝑖, 𝑡) 𝑎𝑛𝑑 𝛽(𝑖, 𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑣𝑒𝑛𝑡𝑠

2 𝐹𝑜𝑟 𝑡 = 0 𝑡𝑜 𝑛𝑡𝑖𝑚𝑒

3 𝐹𝑜𝑟 𝑠 = 1 𝑡𝑜 𝑛𝑀𝐶 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

4 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛𝑒𝑣𝑒𝑛𝑡𝑠

5 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 𝑆𝑎𝑚𝑝𝑙𝑒(𝑠, 𝑖) ~ 𝐺𝑎𝑚𝑚𝑎 (𝛼(𝑖, 𝑡), 𝛽(𝑖, 𝑡))

6 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑠, 𝑖) = 1 − exp [𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 𝑆𝑎𝑚𝑝𝑙𝑒(𝑠, 𝑖)]

7 𝑇𝑜𝑝 𝐸𝑣𝑒𝑛𝑡 𝑃𝑟𝑜𝑏(𝑠) = 𝑓[𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑠, 𝑖)]

8 𝑀𝑒𝑎𝑛(𝑡) = 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠.𝑚𝑒𝑎𝑛(𝑃(𝑇𝑜𝑝 𝐸𝑣𝑒𝑛𝑡))

9 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑡) = 𝑛𝑢𝑚𝑝𝑦. 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑃(𝑇𝑜𝑝 𝐸𝑣𝑒𝑛𝑡 𝑃𝑟𝑜𝑏), 0.95)

10 𝐸𝑁𝐷

37

Figure 7 - Monte Carlo Sampling Procedure for Integration Top Event Probability

38

2.5 Case Study - Texas City Fault Tree Analysis

2.5.1 Development of Texas City Fault Tree

The BP Texas City Oil Refinery incident occurred on March 23 2005 in the isomerization unit

(ISOM) of the oil refinery, which converts linear molecules to higher-octane branched molecules

for blending into gasoline or feed to alkylation units (CSB, 2007). The incident was an explosion

caused by heavier–than-air hydrocarbon vapours combusting after coming into contact with an

ignition source (BP, 2005 and CSB, 2007). Hydrocarbon vapors were released due to overfilling

of liquids in the raffinate splitter tower, causing both hydrocarbon liquids and vapors to overflow

into the blowdown drum and discharge into the atmosphere (BP, 2005 and CSB, 2007). An

overview of the unit taken from the U.S. Chemical and Hazard Investigation Board (CSB, 2007)

is shown in Figure 8. Investigations carried out by BP and the U.S. Chemical Safety and Hazard

Investigation Board (BP, 2005 and CSB, 2007) revealed that the incident occurred due to a

complex series of events involving maintenance issues, lack of training of key personnel, lack of

safety culture, instrumentation and equipment failure and unsafe designs.

39

Figure 8 - Overview of the Texas City Refinery ISOM Unit (CSB 2007)

The top event for the Texas City refinery’s ISOM unit is defined as the formation of a flammable

vapor cloud outside the blowdown drum. The primary fault leading to the top event is defined as

the release of a flammable vapour cloud from the blowdown drum during normal operations. The

sewer release event is not developed further in this Fault Tree because the system boundary is

limited to the ISOM unit. The only fault which is developed further for this gate is the event

which caused the Texas City incident, namely the blowdown drum overfilling with hydrocarbon

liquids and vapours.

The raffinate splitter tower can potentially overflow with liquid hydrocarbons in two different

manners: 1.) The first scenario occurred during the Texas City incident and involved the

blowdown valve being closed while continuous feed was introduced to the tower from the

40

Aromatics Recovery Unit (ARU). At some point after the splitter tower was filled far beyond the

allowable limit, the operator deemed that the tower was likely to be overfilled and ordered

bottom hydrocarbons to be taken out of the tower. This caused overheated bottom hydrocarbons

to exchange heat with the incoming feed, which in turn vaporized on its way into the raffinate

splitter tower. The vaporization of the incoming feed caused the raffinate splitter tower to

overflow and a combination of liquids and vapours to flow into the tower’s overhead line and

consequently into the blowdown drum. 2.) The second scenario occurs if the liquid level is

allowed to rise continuously for a sufficient amount of time, eventually causing the tower to

overfill with single-phase liquids. These two scenarios are similar in that the former simply

represents an accelerated version of the latter, whereby heat exchange and vaporization of

incoming feed caused the raffinate splitter tower to overfill earlier than it would have had the

operators decided not to open the bottom valve late in the start-up of the raffinate splitter tower.

In this Fault Tree the second scenario is adopted.

The liquid level in the raffinate splitter tower will continuously rise if the inflow rate exceeds the

outflow rate from the tower and the operator does not take action to either stop the feed into the

raffinate splitter tower or to open the bottom valve. Continuous feed to the raffinate splitter tower

is not considered to be a fault, but rather an external event that occurs during normal operations

and it is therefore indicated with a house symbol. As a worst case scenario, it is assumed that

liquids can only leave the tower through the bottom valve, since a high liquid level would

effectively prevent vapor formation and subsequent flow of vapors into to the tower’s overhead

lines. It is also assumed that the operator will not take action to either stop feed into the raffinate

splitter tower or to open the bottom valve of the splitter tower if he/she is unaware of the rising

41

liquid level. The operator being unaware of the liquid level due to instrumentation failure is

considered an intermediate fault that can be attributed to the simultaneous occurrence of the

raffinate tower’s alarm system failing and the level sight glass associated with the raffinate

splitter tower being impossible to see through. The raffinate tower’s alarm system is assumed to

fail when both the alarm system associated with the level indicator fails and the redundant hard-

wired high level alarm fails. The operator being unaware of the rising liquid level can be

attributed to a lack of system understanding due to insufficient personnel training. The operator

being unaware of the liquid level due to being unconscious is an undeveloped fault which is

included for completeness, though is not developed further here. The bottom valve of the

raffinate splitter tower being closed during start-up is assumed to be an intermediate fault caused

by the operator not following start-up regulations or the bottom valve failing in the closed

position. The complete fault tree is shown in Figure 9.

42

Figure 9 - Complete Texas City ISOM unit Fault Tree

43

2.5.2 Qualitative Analysis of Texas City Fault Tree

For the purpose of developing a fault tree that can be evaluated qualitatively in terms of minimal

cut-sets, only the primary events are included here (Figure 10). Starting with the top event and

working downwards, the logical expressions are developed as follows from Eq. 20 to Eq. 25.

The final logical expression for the top event is provided in Eq. 26.

𝑉𝐶 = 𝐵 + 𝑁 + 𝑆 Eq. 20

𝑉𝐶 = (𝑅 ∙ 𝑂) + 𝑁 + 𝑆 Eq. 21

𝑉𝐶 = (𝑂1 + 𝑉) ∙ (𝑂2 + 𝑂3) + 𝑁 + 𝑆 Eq. 22

𝑉𝐶 = (𝑂1 + 𝑉) ∙ ((𝐴 ∙ 𝑀) + 𝑂3) + 𝑁 + 𝑆 Eq. 23

𝑉𝐶 = (𝑂1 + 𝑉) ∙ (((𝐴2 ∙ 𝐿𝑆) ∙ 𝑀) + 𝑂3) + 𝑁 + 𝑆 Eq. 24

𝑉𝐶 = (𝑂1 + 𝑉) ∙ (((𝐴2 ∙ (𝐿 + 𝐴1)) ∙ 𝑀) + 𝑂3) + 𝑁 + 𝑆 Eq. 25

𝑉𝐶 = (𝑂1 ∙ 𝐿 ∙ 𝐴2 ∙ 𝑀) + (𝑂1 ∙ 𝑂3) + (𝑂1 ∙ 𝐴1 ∙ 𝐴2 ∙ 𝑀) + (𝐿 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑉)

+ (𝐴1 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑉) + (𝑉 ∙ 𝑂3) + 𝑁 + 𝑆

Eq. 26

The failure probability often decreases by orders of magnitude as the size of the cut sets increase.

The ranking of the minimal cut sets according to size therefore provides an indication of relative

failure probabilities and the importance of each cut set. The smallest cut sets are placed at the top

of the list, and the larger cuts-sets follow accordingly below.

44

Minimal cut-sets:

𝑁

𝑆

(𝑉 ∙ 𝑂3)

(𝑂1 ∙ 𝑂3)

(𝐴1 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑉)

(𝐿 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑉)

(𝑂1 ∙ 𝐴1 ∙ 𝐴2 ∙ 𝑀)

 (𝑂1 ∙ 𝐿 ∙ 𝐴2 ∙ 𝑀)

From the above minimal cut-sets it is clear that the most important events are: 1) the release of a

flammable vapor cloud from the blowdown drum during normal operation (N) and 2) the release

of an excessive amount of flammable hydrocarbons from the blowdown drum through the sewer

system (S). As such, the reliability of the system can be improved by: 1) installing a pressure

vessel and flare to the blowdown drum to reduce the probability of vapor cloud release 2)

enhancing the sewer design system to prevent a vapor cloud from forming after dumping of

hydrocarbons.

The second order cut sets involve the operator being unaware of the rising liquid level in the

raffinate splitter tower due to a lack of training (O3) and understanding of the system. This can

be prevented by installing a severe overfilling alarm connected to an automatic shut-down

mechanism. The improved design is incorporated into the Fault Tree and is shown in (Figure 10).

The severe overfilling alarm affects all cut sets except for the events N (Vapour release from

45

blowdown drum) and S (vapour release from sewer system) and is expressed in (Eq. 27).

Overall, this case study demonstrates that a qualitative assessment of the cut sets can reveal

valuable design improvements prior to a quantitative assessment.

𝑉𝐶 = (𝑂1 ∙ 𝐿 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑆𝐴) + (𝑂1 ∙ 𝑂3 ∙ 𝑆𝐴) + (𝑂1 ∙ 𝐴1 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑆𝐴) + (𝐿 ∙ 𝐴2

∙ 𝑀 ∙ 𝑉 ∙ 𝑆𝐴) + (𝐴1 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑉 ∙ 𝑆𝐴) + (𝑉 ∙ 𝑂3 ∙ 𝑆𝐴) + 𝑁 + 𝑆
Eq. 27

46

Figure 10 - Simplified Fault Tree including improved alarm system (SA)

VC = Vapor cloud forms outside blowdown drum

B = Blowdown drum overfills

N = Release of vapor cloud from blowdown drum

S = Release of vapor cloud from sewer

R = Raffinate splitter tower overfills

O = Operator unaware of raffinate splitter tower liquid level

O1 = Operator not following regulations

O2 = Operator unaware of raffinate liquid level due to alarm failure

O3 = Operator unaware of raffinate liquid level due to lack of training

M = Maintenance failure (sight glass)

V = Raffinate splitter tower blowdown valve fails closed

L = Raffinate splitter tower level indicator fails to function

LS = Raffinate splitter tower level indicator alarm system fails

A = Raffinate splitter tower high level alarm system fails

A1 = Alarm associated with level indicator fails to function

A2 = Raffinate splitter tower hardwired alarm fails to function

SA = Severe liquid level alarm failure

47

2.5.3 PEWMA Updating using Texas City Failure Data

Here, the failure rates for primary events in the Texas City Fault Tree are modeled using

PEWMA with accident precursor data from the CSB (2007) report. The data set provided in CSB

(2007) is not likely to be complete, however, does illustrate how plant specific parameter

estimation can be used as part of dynamic risk assessments. The PEWMA model is applied to

model how the failure rate is changing over time for the individual primary events. For this case

study, a PEWMA omega value 𝜔 = 0.9 is used, which means that data points that are 5 years old

are discounted by about 40%, while data points 10 years old are discounted by about 70%. A

summary of the Gamma prior parameters used in the Texas City PEWMA model is shown in

Table 2.

Table 2 - Prior Gamma Parameters for PEWMA Analysis

𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝜶 𝜷 𝑴𝒆𝒂𝒏 = 𝜶 𝜷⁄ 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆 = 𝜶 𝜷𝟐⁄

N 2 1 2 2

S 1 1 1 1

O1 2 1 1 2

O3 2 1 2 2

M 2 1 2 2

48

2.5.3.1 Blowdown drum vapour cloud release rate (N)

Exposure time for the blowdown drum is counted from 1987 when the last major capacity

increase to the splitter tower was made. The incident data is summarized in Table 3. Shortly after

the capacity increase, safer alternatives to the blowdown drum was proposed by the Amoco

Refining and Planning Department (ARPD) and the Occupational Safety and Health

Administration (OSHA), however due to cost constraints the unsafe blowdown drum design

remained in place until the Texas City incident in 2005 (CSB report, 2007). Figure 11 shows the

mean and 95
th

 percentiles vs. time and the posterior gamma distributions through time.

Table 3 - Blowdown drum vapour cloud release incidents (B)

Incident Description Year t (years) 𝒚𝒕 (failures)

Vapours from blowdown drum 1994 7 1

Vapours from blowdown drum 1994 7 2

Relief valve discharge to blowdown drum 1994 7 3

Significant blowdown drum release 1995 8 4

Oil mist from blowdown drum 1995 8 5

Blowdown drum vapours disturbing workers 1995 8 6

Significant blowdown drum release 1999 12 7

Liquid hydrocarbon release to blowdown drum 2003 16 8

49

Figure 11 - PEWMA model ouput (N - Blowdown Drum)

50

2.5.3.2 Unsafe Sewer Disposal Rate (S)

The CSB report (2007) documents one incident of unsafe disposal of hydrocarbons into the

sewer occurring in 1999 and resulting in the formation of a dangerous vapour cloud. The total

exposure time is here counted from 1987 when the last major capacity increase of the splitter

tower was made. Figure 12 shows the mean and 95
th

 percentiles vs. time and the posterior

gamma distributions through time.

51

Figure 12 - PEWMA Output (S - Sewer Release)

52

2.5.3.3 Insufficient Operator Training (O3)

Non-compliance with training requirements and the inability of plant personnel to learn from

previous incidents is defined here as training insufficiency. Failure data is collected from CSB (

2007). The total exposure time is counted from 1997 when safety audit systems for behavioral

safety were implemented at the Texas City refinery (CSB report, 2007) and the incident data is

summarized in Table 4. Figure 13 shows the mean and 95
th

 percentiles vs. time and the posterior

gamma distributions through time.

Table 4 - Insufficient Training incidences (O3)

Incident Description Year t (yrs) 𝒚𝒕 (failures)

The ISOM unit's HAZOP revalidation does not address previous incidents 1998 1 1

The ISOM blowdown stack catches fire, no investigation to learn about causes 2000 3 2

BP's learning & development center unable to get training simulators for Texas City 2000 3 3

PSM audit finds a number of PHA items past due dates 2001 4 4

BP Group report reveals that root causes for accidents are not being investigated 2002 5 5

ISOM unit HAZOP revalidation again does not address previous incidents 2003 6 6

OCAM audit reveals no individual operator development plans in place 2003 6 7

GHSER audit determines that training and incident investigation are insufficient 2003 6 8

PSM audit reveals inadequate learning from previous incidents and lack of training 2004 7 9

GHSER assessment grades Texas City as "poor" due to lack of learning from incidents 2004 7 10

Telos survey finds serious safety issues related to inadequate training 2004 7 11

OCAM audit reveals deficencies in training of operators at Texas City 2004 7 12

Texas City incident - operator unaware of liquid levels due to lack of training 2005 8 13

53

Figure 13 - PEWMA Output (O3 - Operator Training)

54

2.5.3.4 Maintenance Failure Rate (M)

Maintenance failure is assessed based on audits and investigations made at the Texas City

refinery as documented in CSB (2007). Prevalent equipment corrosion problems, failure to

conform to maintenance standards, repair schedules and problems with mechanical integrity are

defined as failure. Total exposure time is counted from 2001, when the BP Group issued a

“Process Safety/Integrity Management” standard outlining the minimum requirements to prevent

catastrophic incidents. Incident data is summarized in Table 5. Figure 14 shows the mean and

95
th

 percentiles vs. time and the posterior gamma distributions through time.

Table 5 - Maintenance failure incidences (M)

Incident Description Date (year) t (yrs) 𝒚𝒕 (failures)

Gap assessment reveals maintenance/mechnical integrity problems at Texas City 2003 2 1

Inspection of blowdown drum reveals damage to trays - no repair recommended 2003 2 2

PSM requires review of ISOM relief valves - the study is never completed 2003 2 3

Major corrosion damage on the blowdown drum 2003 2 4

Significant corrosion detected on the raffinate splitter tower 2004 3 5

Texas city scores low on PSM metrics such as action item completion (maintenance) 2004 3 6

Texas City incident (alarms, sight glass, etc. Not properly maintained) 2005 4 7

55

Figure 14 - PEWMA Output (M – Maintenance Failure)

56

2.5.3.5 Regulations Non-Compliance rate (O1)

Analysis of the Texas City incident revealed that operational problems at the refinery were not

corrected over time. Operators were found to have deviated from established procedures, such as

leaving the bottom valve of the raffinate splitter tower in the closed position during start-up of

the ISOM unit. The operator failing to follow start-up regulations is assumed to be a primary

fault, with an occurrence rate that can be estimated based on historical safety audits at the plant

(BP report, 2005 and CSB report, 2007). The exposure time is counted from 1993 when the first

HAZOP was conducted at the Texas City Refinery and the incident data is summarized in Table

6. Figure 15 shows the mean and 95
th

 percentiles vs. time and the posterior gamma distributions

through time.

Table 6 - Regulations non-compliance incidences (O1)

Incident Description Year t (yrs) 𝒚𝒕 (failures)

DIH distillation tower in the ISOM unit is overfilled and results in a vapour cloud 1994 1 1

ISOM stabilizer tower emergency relief valves are open 5-6 times over 4 hours 1994 1 2

8-inch chain vent valve (raffinate splitter) is left open for 20 hours 1995 2 3

PSM audit reveals that operating procedures at Texas City are not current 2001 8 4

PSM requires review of ISOM relief valves, study is never completed 2003 10 5

Use of pressure relief valves against regulations in raffinate unit 2004 11 6

Poor PSM scores on items related to action item completion 2004 11 7

Texas City incident, splitter tower was filled beyond regulations, alarms ignored 2005 12 8

57

Figure 15 - PEWMA Output (O1 - Regulations Non-Compliance)

58

2.6 Probabilistic Analysis of Texas City Fault Tree

All primary events in the Texas City fault tree are modeled as random variables with individual

failure rate distributions resulting from the PEWMA analysis. The resulting gamma parameters

are summarized in Table 7. Grey fields indicate static parameters and white fields indicate

dynamic PEWMA parameters. Eq. 28 is the expression for the top event resulting from the

qualitative analysis. This expression is integrated using Monte Carlo sampling at each Bayesian

updating step. For each sample obtained from the posterior failure rate distributions, a

corresponding failure probability is calculated using the Poisson process by assuming at least one

failure over an exposure time of one year (Eq. 35).

𝑃(𝑉𝐶) = 𝑃(𝐵) + 𝑃(𝑁) + 𝑃(𝑆) − 𝑃(𝐵) ∙ 𝑃(𝑁) − 𝑃(𝐵) ∙ 𝑃(𝑆) − 𝑃(𝑁) ∙ 𝑃(𝑆)

+ 𝑃(𝐵) ∙ 𝑃(𝑁) ∙ 𝑃(𝑆)
Eq. 28

Where,

𝑃(𝐵) = 𝑃(𝑅) ∙ 𝑃(𝑂) Eq. 29

𝑃(𝑅) = 𝑃(𝑂1) + 𝑃(𝑉) − 𝑃(𝑂1) ∙ 𝑃(𝑉) Eq. 30

𝑃(𝑂) = 𝑃(𝑂2) + 𝑃(03) − 𝑃(𝑂2) ∙ 𝑃(𝑂3) Eq. 31

𝑃(𝑂2) = 𝑃(𝐴 ∩ 𝑀) = 𝑃(𝐴) ∙ 𝑃(𝑀) Eq. 32

59

𝑃(𝐴) = 𝑃(𝐿𝑆 ∩ 𝐴2) = 𝑃(𝐿𝑆) ∙ 𝑃(𝐴2) Eq. 33

𝑃(𝐿𝑆) = 𝑃(𝐿) + 𝑃(𝐴1) − 𝑃(𝐿) ∙ 𝑃(𝐴1) Eq. 34

𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 1 − 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋 = 0) = 1 −
𝑒−𝜇𝜇0

0!
= 1 − 𝑒−𝜇

Eq. 35

Figure 16 shows posterior histogram outlines through time and Figure 17 shows mean top event

failure probability and the associated 95
th

 percentiles, resulting from Monte Carlo sampling of

the top event probability. It is evident that the failure probability is cyclic, which demonstrates

the dynamic effects of incorporating plant-specific accident precursor data into the analysis. The

mean failure probability decreases initially because the collected data indicates a lower failure

probability than the prior data. This is also demonstrated in the variance, which initially increases

because the collected data conflicts with the prior information. Finally, the severe overfilling

alarm (SA), is incorporated into the expression for the top event by multiplying the expression

for P(B) by P(SA). The resulting mean failure probability and posterior histograms are shown in

Figure 18 and Figure 19. Compared to the failure probability calculated without the severe

overfilling alarm in place, the improvement in top-event failure probability is significant. This

analysis shows the value of carrying out a qualitative Fault Tree analysis for identifying safety

improvements and a quantitative fault tree analysis for quantifying the effect of the

improvements.

60

Table 7 - Summary of Gamma Parameters

Posterior Parameters from PEWMA model Static Parameters based on OREDA

N M O1 O3 S L V A

Year α β α β α β α β α β α β α β α β

1987 2.00 2.00 2.00 2.00 4.00 2.00 2.00 2.00 1.00 2.00 0.66 21.51 0.26 6.18 0.33 97.49

1988 1.80 2.80 2.00 2.00 4.00 2.00 2.00 2.00 0.90 2.80 0.66 21.51 0.26 6.18 0.33 97.49

1989 1.62 3.52 2.00 2.00 4.00 2.00 2.00 2.00 0.81 3.52 0.66 21.51 0.26 6.18 0.33 97.49

1990 1.46 4.17 2.00 2.00 4.00 2.00 2.00 2.00 0.73 4.17 0.66 21.51 0.26 6.18 0.33 97.49

1991 1.31 4.75 2.00 2.00 4.00 2.00 2.00 2.00 0.66 4.75 0.66 21.51 0.26 6.18 0.33 97.49

1992 1.18 5.28 2.00 2.00 4.00 2.00 2.00 2.00 0.59 5.28 0.66 21.51 0.26 6.18 0.33 97.49

1993 1.06 5.75 2.00 2.00 4.00 2.00 2.00 2.00 0.53 5.75 0.66 21.51 0.26 6.18 0.33 97.49

1994 3.96 6.17 2.00 2.00 4.00 2.00 2.00 2.00 0.48 6.17 0.66 21.51 0.26 6.18 0.33 97.49

1995 6.56 6.56 2.00 2.00 4.60 2.80 2.00 2.00 0.43 6.56 0.66 21.51 0.26 6.18 0.33 97.49

1996 5.90 6.90 2.00 2.00 4.14 3.52 2.00 2.00 0.39 6.90 0.66 21.51 0.26 6.18 0.33 97.49

1997 5.31 7.21 2.00 2.00 3.73 4.17 2.00 2.00 0.35 7.21 0.66 21.51 0.26 6.18 0.33 97.49

1998 4.78 7.49 2.00 2.00 3.35 4.75 2.80 2.80 0.31 7.49 0.66 21.51 0.26 6.18 0.33 97.49

1999 5.30 7.74 2.00 2.00 3.02 5.28 2.52 3.52 1.28 7.74 0.66 21.51 0.26 6.18 0.33 97.49

2000 4.77 7.97 2.00 2.00 2.72 5.75 4.27 4.17 1.15 7.97 0.66 21.51 0.26 6.18 0.33 97.49

2001 4.30 8.17 2.00 2.00 3.44 6.17 4.84 4.75 1.04 8.17 0.66 21.51 0.26 6.18 0.33 97.49

2002 3.87 8.35 1.80 2.80 3.10 6.56 5.36 5.28 0.93 8.35 0.66 21.51 0.26 6.18 0.33 97.49

2003 4.48 8.52 5.62 3.52 3.79 6.90 7.82 5.75 0.84 8.52 0.66 21.51 0.26 6.18 0.33 97.49

2004 4.03 8.67 7.06 4.17 5.41 7.21 11.04 6.17 0.76 8.67 0.66 21.51 0.26 6.18 0.33 97.49

2005 3.63 8.80 7.35 4.75 5.87 7.49 10.94 6.56 0.68 8.80 0.66 21.51 0.26 6.18 0.33 97.49

61

Figure 16 - Case 1 - Top Event Marginal Histograms

Figure 17 - Case 1 - Top Event Probability and 95th Percentile vs. Time

62

Figure 18 - Case 2 - Top Event Probability Marginal Histograms

Figure 19 - Case 2 - Top Event Probability Mean and 95th Percentiles

63

2.7 Conclusion

This chapter presents a Bayesian analysis of the fault tree developed based on the BP Texas City

ISOM unit, at which a catastrophic failure occurred in 2005. It is shown that fault tree analysis

combined with Bayesian updating can be used as part of dynamic risk assessments and ongoing

risk surveillance of plant processes. A summary of key findings is provided below.

 The process of developing the fault tree enables a safety analyst to learn about the system

and the potential root causes that may lead to the undesired top event.

 A qualitative analysis of the fault tree establishes the minimal cut-sets and allows the

analyst to determine the relative importance of the various parts of the fault tree from a

qualitative perspective.

 The quantitative analysis incorporates failure and occurrence rates for the primary faults

in the system and allows for an order of magnitude estimate of the top event probability.

This provides a basis for comparing incremental improvements in safety designs.

 Bayesian parameter estimation establishes how parameter uncertainty changes with time

as plant specific failure data is collected.

 Longer term failure data associated with processing plants can be modeled using

Bayesian state space models such as PEWMA, which allows discounting of older data

points.

 Qualitative and quantitative fault tree analysis can help establish a basis for continuous

monitoring of safety systems and design improvements.

64

2.8 References

Atwood, C.I, LaChance, J. L., Martz, H.F., Anderson, D.J., Englehardt, M., Whitehead, D.,

Wheeler, T. (2003). Handbook of Parameter Estimation for Probabilistic Risk Assessment,

NUREG/CR-6823. Sandia National Laboratories, U.S. Nuclear Regulatory Commission Office

of Nuclear Regulatory Research.

Bier, V.M. and Mosleh, A. (1990), The Analysis of Accident Precursors and Near Misses:

Implications for Risk Assessment and Risk Management, Relability Engineering and System

Safety, 27, 91-101

Bobbio, A., Portinale, L., Minichino, M., Ciancarmerla, E. (2001), Improving the analysis of

dependable systems by mapping fault trees into Bayesian networks, Elsevier Reliability

Engineering and System Safety 71 (2001) 249-260

Brandt, P. T., Williams, J.T., Fordham, B.O and Pollins, B. (2000). Dynamic Modelling For

Persistent Event Count Time Series. American Journal of Political Science 44(4): 823-843.

BP (2005). Fatal accident investigation report, final report. Texas City, TX,

www.bpresponse.org.

CSB (2007). Final Investigation Report: Refinery Explosion and Fire. U.S. Chemical and Hazard

Investigation Board, Paper No. ISOPE-2007-SBD-03, www.csb.gov.

65

Det Norske Veritas (2002). Offshore Reliability Data Handbook, Fourth Edition. Det Norske

Veritas.

Dianous VD, Fievez C. ARAMIS project: a more explicit demonstration of risk control through

the use of bow-tie diagrams and the evaluation of safety barrier performance. Journal of

Hazardous Materials 2006;130:220–233.

Holloway, J. P., (2011) Time series analysis of count data with an application to the incidence of

cholera, Master’s Thesis, Department of Statistical Sciences, University of Cape Town

Kalantarnia, M. (2011), Dynamic Risk Assessment Using Accident Precursor Data and Bayesian

Theory, Master’s Thesis, Faculty of Engineering & Applied Science, Memorial University of

Newfoundland

Khan, F.I, Amyotte, P.R. (2005). Modeling of BP Texas City refinery incident. Journal of Loss

Prevention in the Process Industries Volume 20, Issues 4-6, July-November 2007, Pages 387-

395.

Khan, F., and Abbasi, S. (1998), Techniques and Methodologies for Risk Analysis in Chemical

Process Industries, Journal of Loss Prevention in Process Industries, V. 11, 261-277.

66

Khakzad, N., Khan, F., Amyotte P. (2011), Safety analysis in process facilities: Comparison of

fault tree and Bayesian network approaches, Elsevier Reliability Engineering and System Safety

96 (2011) 925-932

Khakzad, N., Khan, F., Amyotte P. (2013), Dynamic safety analysis of process systems by

mapping bow-tie into Bayesian network, Elsevier Process Safety and Environmental Protection

Journal

Lindhe, A., Rosen, L., Norberg, T.,Bergstedt O (2009), Fault tree analysis for integrated and

probabilistic risk analysis of drinking water systems, Elsevier water research 43 (2009) 1641-

1653

Marquez D, Neil M, Fenton N. Improved reliability modeling using Bayesian networks and

dynamic discretization. Reliability Engineering and System Safety 2010;95:412–425.

Meel S., Seider, W.D. (2006). Plant-specific dynamic failure assessment using Bayesian theory.,

Chemical Engineering Science, Volume 61, Issue 21, 6 November 2006, Pages 7036–7056.

Rangel, L. E., Levesque, F., How did Fukushima-Daiichi core meltdown change the probability

of nuclear accidents? 2012, <hal-00740684>

Shafaghi, A. (2008), Equipment Failure Rate Updating – Bayesian Estimation. Elsevier, Journal

of Hazardous Materials, Volume 159, Issue 1, 15 November 2008, Pages 87–91.

67

P. N. Thodi, F. I. Khan, Mahmoud R. Haddara (2010). The Development of Posterior Probability

Models in Risk-Based Integrity Modeling. Risk Analysis, Vol. 30, No. 3, 2010.

Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F. (1981). Fault Tree Handbook,

NUREG-0492. Systems and Reliability Research Office of Nuclear Regulatory Research,

Washington D.C., 20555.

Vose, D., Risk Analysis – A Quantitative Guide, Wiley, 2008

68

3 BAYESIAN UPDATING OF MATERIAL BALANCE PARAMETERS USING MCMC

3.1 Introduction

In this Chapter, Bayesian updating is applied to estimate the uncertainty associated with the

parameters in the general hydrocarbon material balance equation. Gaussian distributions are

used to model prior information and likelihood error in the implemented Bayesian updating

models. Because the material balance equation is a non-linear forward model, the posterior

distribution is not closed-form and requires sampling based solution methods. A Markov Chain

Monte Carlo (MCMC) Metropolis algorithm is implemented to solve for the posterior

distribution at each time step. A structured grid approximation of the posterior is also

implemented to allow for calibration of the MCMC algorithm. Since a public data set is not

available for this study, a synthetic data set is developed using the Eclipse reservoir simulation

software. This provides the additional benefit that it provides the ability to directly assess the

accuracy of the Bayesian updating models. A case study is provided to present the results

obtained from running the structured grid model and the MCMC model on the synthetic data set.

69

3.2 Research Objectives

 Implement the general material balance equation as a forward model for use in a

Bayesian updating framework.

 Implement structured grid and MCMC based Bayesian updating models.

 Generate a synthetic data set using the Eclipse reservoir simulator, to which the Bayesian

updating models can be applied.

 Run both structured grid and MCMC Bayesian updating models on the synthetic data set

and assess accuracy of the Bayesian updating models for material balance parameter

estimation.

 Assess influence of Likelihood error on the rate of data assimilation of the posterior

distribution.

 Assess impact of both consistent and random measurement noise in measured data set.

 Assess convergence properties of the implemented MCMC model by comparison to the

structured grid approach and by carrying out a graphical convergence analysis.

70

3.3 Literature Review and Background

3.3.1 Bayesian Updating of Multivariable Forward Models

Bayesian updating is a recursive parameter estimation technique based on Bayes theorem (Eq.

36). A summary of the terms associated with Bayes theorem is provided in Table 8. Central to

Bayesian updating is the implementation of a likelihood function, which probabilistically

quantifies the goodness-of-fit associated of the parameters in a forward model. Comprehensive

reviews of the technique can be found in Tarantola (2001) and Oliver (2008). Bayesian updating

is an alternative to deterministic model fitting techniques such as linear regression, which simply

returns optimal point estimates based on minimizing a loss function. Tarantola (2001) focuses

mostly on linear inverse problems, but addresses both grid and sampling based solution strategies

to solve for the posterior distribution. If the forward model is non-linear or the prior and

likelihood distributions are non-conjugate, the posterior distribution is not be closed-form and

sampling based techniques such as Markov Chain Monte Carlo (MCMC) are required.

Traditional Bayesian updating techniques are practical for forward models involving a small

intermediate number of input variables. For forward models requiring assimilation on a very

large number of variables, such as the case of history matching of reservoir simulation or

weather prediction models, modified Bayesian techniques such as the Ensemble Kalman filter

are more suitable (Evensen, 2003).

𝑓(𝑥|𝑦) =
𝑓(𝑥)𝑓(𝑦|𝑥)

∫ 𝑓(𝑥) 𝑓(𝑦|𝑥)𝑑𝑥
 Eq. 36

71

Table 8 - Bayesian Updating Equation Summary

Component Bayesian Nomenclature Meaning

𝑓(𝑥|𝑦) Posterior Distribution Probability of model parameters conditional to data

𝑓(𝑦|𝑥) Likelihood Function Probability of the data given model parameters

𝑓(𝑥) Prior Distribution Prior probability of model parameters

∫𝑓(𝑥) 𝑓(𝑦|𝑥)𝑑𝑥 Normalizing Constant Probability of the data

72

3.3.1.1 Prior Distribution

The prior distribution quantifies prior belief of the model parameters and is ideally based on

expert opinion (Vose, 2008). In the case of material balance modeling, the expert can be a

reservoir engineer or a geologist with a few years of experience. Reservoir engineers and

geologists form prior opinions by analyzing information resulting from seismic surveys, core

sampling, PVT testing and pressure transient analyses (Kelkar, 2002). If field specific data is

sparse, it may also be necessary to rely on analog reservoir data. As such, prior information may

only be available in the form of rough parameter ranges such as maximums and minimums for

which uniform prior distributions are suitable. If belief about modal value(s) is also available,

standard probability distributions such as the Gaussian or Lognormal distributions can be used to

convey prior belief about parameters. The Gaussian prior distribution is expressed

mathematically in (Eq. 37), where 𝑥 is an array of mean model variables, 𝐶𝑥 is the covariance

matrix and 𝜇0 is the prior mean of the model variables.

𝑓(𝑥) = [
1

(2 ∙ 𝜋)𝑛/2(det (𝐶𝑥))
1/2
] ∙ 𝑒𝑥𝑝 [−

1

2
(𝑥 − 𝜇0)

𝑇𝐶𝑥
−1(𝑥 − 𝜇0)] Eq. 37

73

3.3.1.2 Likelihood Function

The likelihood function comprises of a mathematical forward model that produces measurable

output(s) and probabilistic loss function that quantifies the likelihood of forward model outputs

relative to the measured data points. The likelihood function is associated with variance due to

measurement and/or theoretical/model discrepancies. Measurement errors stem from inherent

randomness in the measurement equipment due to for instance voltage fluctuations or varying

instrumentation response to changing conditions. Theoretical errors, on the other hand, exist due

to simplifying assumptions associated with the forward model such as numerical discretization.

A common approach is to model the likelihood error as a combined measurement/theoretical

error (Oliver, 2008), which is expressed in Eq. 38.

𝑦 − 𝑔(𝑥) = 𝜖𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 + 𝜖𝑚𝑒𝑎𝑠𝑢𝑒𝑚𝑟𝑒𝑛𝑡 = 𝜖𝑡𝑜𝑡𝑎𝑙 Eq. 38

A Bayesian likelihood function can be viewed as a probabilistic loss function that produces

uncertainty ranges for the model parameters. If multiple data points are available for

assimilation, the likelihood function can be evaluated sequentially and can be expressed as (Eq.

39) provided each updating step 𝑖 is statistically independent.

𝑓(𝑦|𝑥) =∏𝑓(𝑦𝑖|𝑥𝑖)

𝑛

𝑖=1

 Eq. 39

74

A likelihood distribution is generated by evaluating the likelihood function over ranges of model

input parameters. Figure 20 illustrates how likelihood variance/error increases the spread of the

distribution. The peak of the likelihood distribution is referred to the Maximum Likelihood

Estimate (MLE). The variance of the likelihood function reduces with each Bayesian updating

step as long as each data point confirms the same model parameters. Data points conflicting with

previously inferred parameter values will, however, cause likelihood variance to increase.

Figure 20 - Effect of standard deviation on Likelihood Distribution

The Bayesian updating framework allows any type of probability distribution to be used as a

likelihood function, however, errors are commonly assumed to be Gaussian, which results in Eq.

40. If the variance associated with each Bayesian updating step is assumed to be uncorrelated

and constant, the covariance matrix 𝐶𝑦 with identical elements 𝜎𝑦 on the diagonal results (Eq.

41 and Eq. 42). Algebraically, the evaluation of the Gaussian likelihood up to updating step 𝑛

reduces to Eq. 43. For the case of Gaussian likelihood functions, the measured data is typically

set equal to the mean of the distribution. This is reasonable for situations where one believes the

measured data point to be associated with the highest likelihood. The reference point, however,

does not need to coincide with the mean of the likelihood function and can be offset to

75

accommodate a situation where the maximum likelihood is believed to occur for a value smaller

or larger than the measured data point.

𝑓(𝑦|𝑥) =
1

(2𝜋)𝑛 2⁄ (𝑑𝑒𝑡(𝐶𝑦))
1 2⁄
𝑒𝑥𝑝 (−

1

2
((𝑔(𝑥) − 𝑦)𝑇𝐶𝑦

−1(𝑔(𝑥) − 𝑦)))
Eq. 40

𝐶𝑦 =

[

𝜎𝑦,1

2 0

0 𝜎𝑦,2
2

0 0
0 0

0 0
0 0

… 0
0 𝜎𝑦,𝑛

2
]

 Eq. 41

𝜎𝑦,𝑖
2 = 𝜎𝑦,1

2
= 𝜎𝑦,2

2 = ⋯ = 𝜎𝑦
2 Eq. 42

𝑓(𝑦|𝑥) =
1

(2𝜋)𝑛 2⁄ (𝑑𝑒𝑡(𝐶𝑦))
1 2⁄

∙ exp (−
1

𝜎2
∑(𝑔(𝑥𝑖)− 𝑦𝑖)

2
𝑛

𝑖=1

 Eq. 43

76

3.3.1.3 Posterior Distribution

The posterior distribution 𝑓(𝑥|𝑦) is the solution to the Bayesian updating problem and

incorporates both prior and likelihood information (Tarantola, 2010). The Posterior distribution

is Gaussian and closed-form if the prior and likelihood functions are both Gaussian and the

forward model is linear (Oliver, 2008). The closed-form linear Gaussian solution to the inverse

problem has found great utility in for instance the Kalman filter, which is often used as part of

machine learning topics subjects such as signal processing and robotics (Särkkä, 2013). If the

forward model is non-linear or the prior and likelihood distributions are non-conjugate, the

posterior distribution is non-Gaussian and requires integration by sampling. An example of a

prior, likelihood and posterior distribution is shown as a two-variable contour plot in (Figure 21).

As demonstrated in this figure, the posterior behaves like a compromise between the prior and

the likelihood function. Provided the data that is incorporated into the analysis confirms the same

model parameter values, the variance of the likelihood function will decrease with each updating

step and eventually dominate the posterior distribution. The rate at which the posterior

assimilates the likelihood distribution depends on the relative variance between the likelihood

function and the prior. If the prior is associated with low variance relative to the likelihood

function, the posterior will be slow to incorporate information from the data. Conversely, if the

prior is associated with high variance relative to the likelihood function, the posterior will

incorporate information from the data faster.

77

Figure 21 - Prior, Likelihood and Posterior distributions vs. Bayesian Updating Steps

78

3.3.1.4 Bayesian Updating on a Structured Grid

The simplest approach for approximating the posterior distribution 𝑓(𝑥|𝑦) involves creating a

structured grid of input parameters and solving the forward model at each grid location (Figure

22). This approach is useful for two-variable problems, as it allows the resulting prior, likelihood

and posterior distributions to be visualized on three-dimensional surface and contour plots. A

drawback associated with the structured grid method is that it wastes computational effort and

array memory because it requires the forward model 𝑔(𝑥) to be evaluated in both low and high

probability regions. The structured grid approach also requires a sufficiently fine grid to capture

specific characteristics of the posterior distribution, such as multi-modal peaks. For problems

involving more than two variables, the structured grid solution becomes intractable because of

the associated computational cost.

Figure 22 - Structured grid solution strategy

79

3.3.1.5 Bayesian Updating using Markov Chain Monte Carlo

To solve higher-order problems, Monte Carlo based sampling techniques are required in order to

reduce the required number of forward model evaluations. A standard Monte Carlo algorithm

may end up spending significant number of iterations sampling regions of low probability, which

can in turn cause incorrect estimates of the posterior distribution. Markov Chain Monte Carlo

(MCMC) is a more generally applicable strategy because it preferably returns samples from high

probability regions and therefore samples the posterior more efficiently. When running an

MCMC algorithm the end result is a Markov chain of parameter states.

3.3.1.6 Markov Chain Theory

A Markov Chain is a sequence of random variables, where the probability of the state at time

𝑡 + 1 depends only the preceding state at time t (Figure 23). As such, Markov Chains are

dependent samples, compared to conventional Monte Carlo which draws independent samples.

In the context of Markov Chains, time refers to the sample number, where the chain is thought of

as being progressed forwards in time as the number of samples increases. Markov chain can be

stated mathematically as Eq. 44, where 𝑃(𝑋𝑖+1|𝑋𝑖) is known as a transition kernel and governs

the probability of transitioning from one state to the next throughout the possible states of the

system.

 𝑃(𝑋𝑡+1| 𝑋1, 𝑋2, … , 𝑋𝑡) = 𝑃(𝑋𝑡+1|𝑋𝑡) Eq. 44

80

Figure 23 - Markov Chain

The ergodic theorem is concerned with the asymptotic convergence properties of Markov Chains

as 𝑡 → ∞. For the purpose of outlining the concepts associated with the ergodic theorem, the

discussion is here based on finite state spaces. This is sufficient for understanding the underlying

properties and can be extended to general state spaces (Gamerman, 2002). For a finite state

space, the transition kernel 𝑃(𝑋𝑡+1|𝑋𝑡) is a stochastic matrix 𝑇𝑎𝑏, containing the probabilities of

transitioning between the discrete states of the system (Eq. 45).

 𝑇(𝑎, 𝑏) = 𝑃(𝑋𝑡+1 = 𝑏|𝑋𝑡 = 𝑎) 𝑓𝑜𝑟 ∀(𝑎, 𝑏) ∈ 𝑆 Eq. 45

The ergodic theorem states that if the Markov Chain is stationarity, irreducible and aperiodic,

then the resulting chain (𝑋1, 𝑋2, … , 𝑋𝑛) converges to the true mean of the dsitribution 𝐸[ℎ(𝑥)]

(Eq. 46 and Eq. 47) as the number of samples approaches infinity 𝑡 → ∞ (Gamerman, 2002).

 𝐸[ℎ(𝑥)] = ∫ℎ(𝑥)𝑓(𝑥)𝑑𝑥 Eq. 46

1

𝑁
∑ ℎ(𝑋𝑛) → 𝐸[ℎ(𝑥)] 𝑎𝑠 𝑡 → ∞
𝑛
𝑡 Eq. 47

81

The target distribution 𝜋 is stationary if Eq. 48 is satisfied (Gamerman, 2002). A stationary

distribution 𝜋 is time invariant, meaning that all samples in the Markov Chain are drawn from

the same distribution.

∑𝜋(𝑎)𝑇(𝑎, 𝑏)

𝑎

= 𝜋(𝑏) 𝑓𝑜𝑟 ∀(𝑎) ∈ 𝑆
Eq. 48

A Markov Chain is irreducibile if the probability of reaching any state 𝑏 from an arbitrary

starting state 𝑎 in a finite number of moves is greater than zero (Gamerman, 2002). This is

formally stated in Eq. 49 and implies that the entire state space 𝑆 can be reached by the Markov

Chain.

𝑃(𝑋𝑡 = 𝑏|𝑋0 = 𝑎) > 0 𝑓𝑜𝑟 ∀(𝑎, 𝑏) ∈ 𝑆 Eq. 49

An irreducible Markov Chain (𝑋𝑡) is aperiodic if for any state 𝑎 the greatest common divisor

(g.c.d.) of return times to any particular state 𝑎 is equal to one (Eq. 50). A value greater than one

implies that the Markov Chain gets stuck in cycles, which prevents exploration of the entire state

space.

𝑔𝑐𝑑{𝑡: 𝑃(𝑋𝑖 = 𝑎|𝑋0 = 𝑎) > 0} = 1 𝑓𝑜𝑟 ∀(𝑎) ∈ 𝑆 Eq. 50

82

3.3.1.7 Metropolis-Hastings Algorithm

The Metropolis algorithm (Metropolis, 1953) is a Markov Chain Monte Carlo algorithm that can

be used to sample from a probability mass function 𝜋 or to approximate the expected value of a

function 𝐸[ℎ(𝑥)]. The algorithm was generalized by Hastings (1970) and named Metropolis-

Hastings. The algorithm has been applied extensively in Bayesian Inference, because it only

requires the posterior distribution 𝜋(𝑥) to be known up to the normalizing constant 𝑧 (Eq. 51).

𝜋(𝑥) =
�̃�(𝑥)

𝑧
 𝑓𝑜𝑟 𝑧 > 0 Eq. 51

The first step of the Metropolis-Hastings algorithm is to initialize the Markov Chain to an initial

state 𝑋0 ∈ 𝑆. The next candidate sample 𝑋𝑡+1 is generated from a proposal distribution 𝑞 (Eq.

52), which is centered at the current state 𝑋𝑡. Knowing the current state 𝑋𝑡 and the candidate

state 𝑌𝑡+1, an acceptance ratio 𝛼 is calculated (Eq. 53). Next, a random number 𝑢~[0,1] is

sampled from the uniform distribution. If the acceptance ratio 𝛼 is greater than 𝑢, the candidate

state 𝑌𝑡+1 is accepted and appended to the Markov Chain as 𝑋𝑡+1. If the the acceptance ratio 𝛼 is

less than 𝑢, the candidate state 𝑌𝑡+1 is rejected, causing the Markov Chain to remain in the

current state, i.e., 𝑋𝑡+1 = 𝑋𝑡. A summary is provided in Algorithm 3.

𝑌𝑡+1 = 𝑞(𝑌𝑡+1|𝑋𝑡) Eq. 52

83

𝛼(𝑋𝑡, 𝑌𝑡+1) = 𝑚𝑖𝑛 {1,
�̃�(𝑌𝑡+1)𝑞(𝑋𝑡|𝑌𝑡+1)

�̃�(𝑋𝑡)𝑞(𝑌𝑡+1|𝑋𝑡)
} Eq. 53

In the original algorithm developed by Metropolis (1953), a symmetric proposal distribution is

assumed (𝑞𝑎𝑏 = 𝑞𝑏𝑎), such that the decision of accepting a state is based only on the ratio of the

probability of being in the two states (Eq. 54). An example of a symmetric proposal distribution

𝑞 is the Gaussian distribution.

𝛼(𝑋𝑡, 𝑌𝑡+1) = 𝑚𝑖𝑛 {1,
�̃�(𝑌𝑡+1)

�̃�(𝑋𝑡)
} Eq. 54

To ensure that the MCMC algorithm converges to the target distribution 𝜋 the requirements of

irreducibility, stationarity and aperiodicity must be satisfied. In particular, if detailed balance

(Eq. 55) is satisfied, then the Markov Chain converges asymptotically to the target distribution

𝜋(𝑥) as 𝑡 → ∞. In order to prove that detailed balance holds for the Metropolis algorithm, it is

necessary to consider two separate cases. For simplicity of proof, denote 𝑎 as the current state

and 𝑏 as the candidate state. Detailed balance can be expressed as Eq. 55, where 𝑇(𝑏, 𝑎)

represents the Markov Chain transition kernel which quantifies the probability of transitioning

from state 𝑎 to state 𝑏. For the Metropolis algorithm in particular, the transition kernel can be

expressed as Eq. 56.

𝜋(𝑎)𝑇(𝑎, 𝑏) = 𝜋(𝑏)𝑇(𝑏, 𝑎) 𝑓𝑜𝑟 ∀(𝑎, 𝑏) ∈ 𝑆 Eq. 55

84

𝑇(𝑏, 𝑎) = 𝑃(𝑋𝑡+1 = 𝑏|𝑋𝑡 = 𝑎) = 𝑞(𝑏, 𝑎)𝑚𝑖𝑛 {1,
𝜋(𝑏)

𝜋(𝑎)
} Eq. 56

For the case of a rejected candidate state 𝑎 = 𝑏, detailed balance is trivially satisfied. To prove

that detailed balance holds for the case of an accepted candidate sample 𝑎 ≠ 𝑏, the transition

probability equation is applied to the left hand side of the detailed balance equation (Eq. 57).

Next, the transition probability equation is applied to the right-hand side of the detailed balance

equation (Eq. 58). Because the min operator is symmetric and because a symmetric proposal

distribution 𝑞(𝑎, 𝑏) = 𝑞(𝑏, 𝑎) is used, detailed balance is satisfied (Eq. 59).

𝜋(𝑎)𝑇(𝑎, 𝑏) = 𝜋(𝑎)𝑞(𝑎, 𝑏)𝑚𝑖𝑛 {1,
𝜋(𝑏)

𝜋(𝑎)
} = 𝑞(𝑎, 𝑏)𝑚𝑖𝑛{𝜋(𝑎), 𝜋(𝑏)} Eq. 57

𝜋(𝑏)𝑇(𝑏, 𝑎) = 𝜋(𝑏)𝑞(𝑏, 𝑎)𝑚𝑖𝑛 {1,
𝜋(𝑎)

𝜋(𝑏)
} = 𝑞(𝑏, 𝑎)𝑚𝑖𝑛{𝜋(𝑏), 𝜋(𝑎)} Eq. 58

𝑞(𝑏, 𝑎)𝑚𝑖𝑛{𝜋(𝑏), 𝜋(𝑎)} = 𝑞(𝑎, 𝑏)𝑚𝑖𝑛{𝜋(𝑎), 𝜋(𝑏)} ∴ Eq. 59

Finally, it is necessary to assess whether irreducibility and aperiodicity criterions are satifisfied.

In terms of irreducbility, the proposal distribution must be able to draw samples from the entire

parameter space 𝑆 over which 𝜋 is defined. Practically speaking, this means that proposal

distribution must be defined over the entire parameter space 𝑆. The Metropolis algorithm is

Aperiodic because it allows for rejection of candidate samples.

85

Algorithm 3 - MCMC - Metropolis Algorithm

1 𝑆𝑒𝑙𝑒𝑐𝑡 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡: 𝑋0

2 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛max𝑠𝑎𝑚𝑝𝑙𝑒𝑠

3 𝑆𝑎𝑚𝑝𝑙𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑜𝑖𝑛𝑡, 𝑌𝑡+1 ~ 𝑞(𝑌𝑡+1|𝑋𝑡)

4 𝑆𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑢~[0,1]

5
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜, 𝛼(𝑋𝑡 , 𝑌𝑡+1) = 𝑚𝑖𝑛 {1,

�̃�(𝑌𝑡+1)

�̃�(𝑋𝑡)
}

6 𝑖𝑓(𝛼(𝑋𝑡 , 𝑌𝑡+1) > 𝑢)

7 𝐴𝑐𝑐𝑒𝑝𝑡: 𝑋𝑡+1 = 𝑌𝑡+1

8 𝐸𝑙𝑠𝑒

9 𝑅𝑒𝑗𝑒𝑐𝑡: 𝑋𝑡+1 = 𝑋𝑡

10 𝐸𝑁𝐷

86

3.3.1.8 MCMC Convergence Diagnostics

Convergence analysis is an important and necessary aspect of MCMC sampling. If the chain

does not properly sample from the posterior distribution, important quantities such as the mean,

mode and variance will be incorrectly estimated. A method for assessing whether the MCMC

chain is converging to the posterior distribution is to run several chains in parallel using different

initial values and comparing inter-chain results. If all chains provide the same posterior

quantities, convergence can be assumed with reasonable confidence. Commonly applied

graphical techniques for assessing mixing and convergence properties are time series, running

means and autocorrelation plots (Gamerman, 2002). Autocorrelation (Eq. 60) reveals ‘non-

randomness’ in data, such as trends or clustering and should for MCMC sampling ideally appear

as random noise around a value of zero. A time series plot of sample values vs. MCMC iteration

number should ideally show that the algorithm is thoroughly sampling the posterior region. A

running mean plot shows calculated sample mean .vs. MCMC iteration and should converge to a

stable value as the chain length increases. Quantitatively determining MCMC convergence is

challenging, however, advanced methods involving the assessment of inter-chain/between-chain

variance and spectral analysis have been published by for instance Geweke (1992). The number

of samples required before the Markov chain converges to the stationary distribution is referred

to the burn-in period. The burn-in samples should be removed before computing summary

statistics such as sample mean and variance (Eq. 61). In Figure 24, this would entail removing

samples 0 𝑡𝑜 𝑚 from the chain.

87

𝑟𝑘 =
∑ (𝑌𝑖 − �̅�)(𝑌𝑖+𝑘 − �̅�)
𝑁−𝑘
𝑖=1

∑ (𝑌𝑖 − �̅�)2
𝑁
𝑖=1

 Eq. 60

𝐸[𝑋] ≈
1

𝑛 −𝑚
∑ 𝑋𝑖

𝑛

𝑖=𝑚+1

 Eq. 61

Figure 24 - Burn-in

88

3.3.1.9 MCMC Output Analysis

For sampling based solutions involving three or more variables, the solution is usually

represented as marginal histograms with associated means and variances. A challenge with a

marginal histogram is that it represents an orthogonal projection into the solution space. As such,

correlation between variables is potentially masked in the marginal histograms and the variance

may therefore appear to be higher than it actually is. Pairwise scatter plots of the Markov chains

can be used to assess correlation effects and overcomes the limitation associated with marginal

histograms. A useful summary statistic that reveals linear correlation between variables is

Pearson’s correlation coefficient (Eq. 62). This coefficient can can be analyzed together with

marginal histograms and scatter plots as shown in Figure 25. For Bayesian updating problems, it

is also useful to plot the posterior sample mean (Eq. 63) and percentiles at each updating step 𝑡

to provide a basis for understanding how the collected data is affecting the posterior distribution

through time (Figure 26).

𝜌𝑋𝑌 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)2
𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2

𝑛
𝑖=1

 Eq. 62

𝐸[𝑋𝑡] ≈
1

𝑛
∑𝑋𝑡,𝑖

𝑛

𝑖=1

 Eq. 63

89

Figure 25 - Posterior Diagnostics Plot

Figure 26 - Mean and percentiles

90

3.3.1.10 Material Balance

Material balance is a standard reservoir engineering tool often used in conjunction with more

advanced techniques such as reservoir simulation to estimate original hydrocarbons in place and

to quantify drive mechanisms. It assumes that the reservoir can be modeled as a compressible

tank with average pressures and rock properties throughout (Dake, 2001), which is only

approximately true for any reservoir. For tight reservoirs with low permeability, large pressure

gradients will exist and prevents usage of the material balance technique. A visual representation

of the material balance technique is provided in (Figure 27).

Figure 27 - Hydrocarbon material balance summary

91

By combining the drive effects associated with single phase expansion of oil/water/gas,

liberation of solution gas, gas cap expansion, connate water expansion, pore compaction and

aquifer influx, Dake (2001) formulates the material balance equation in terms of cumulative

volumes as Eq. 64. Note that all volumetric terms are stated in terms of underground volumes,

which is why the aquifer influx term 𝑊𝑒 does not contain a water formation volume factor.

𝑁𝑝[𝐵𝑜 + (𝑅𝑝 − 𝑅𝑠)𝐵𝑔] + 𝑊𝑝𝐵𝑤 = 𝑁[(𝐵𝑜 − 𝐵𝑜𝑖) + (𝑅𝑠𝑖 − 𝑅𝑠)𝐵𝑔]

+𝑚𝑁𝐵𝑜𝑖 (
𝐵𝑔

𝐵𝑔𝑖
− 1) +

(1 +𝑚)𝑁𝐵𝑜𝑖(𝑐𝑤𝑆𝑤 + 𝑐𝑓)∆𝑝

1 − 𝑆𝑤𝑐
+𝑊𝑒

Eq. 64

Aquifer response cannot be directly measured and a model is therefore required to estimate the

influx. Several aquifer models have been published in literature, with varying levels of rigor in

terms of geometrical representation and transient behavior. Here, a Fektovich type analytical

aquifer model (Fektovich, 1971) is implemented because of its generality. The Fetkovich aquifer

model assumes that the reservoir-aquifer system behaves like a two-tank system (Figure 28) and

that the reservoir pressure remains constant over each time step while the aquifer pressure varies.

The derivation starts with defining the aquifer influx equation as a function of the aquifer index

and the drawdown between the aquifer and reservoir (Eq. 65). Next, the concepts of total

compressibility (Eq. 66) and isothermal compressibility (Eq. 67) are combined to obtain a

separable differential equation that can be integrated for pressure and time (Eq. 68). Algebraic

manipulation leads to closed form equations for aquifer pressure and aquifer influx as a function

of time (Eq. 69 and Eq. 70).

92

(𝑑𝑊 𝑑𝑡⁄) = 𝐽𝑤 ∙ (𝑝𝑎 − 𝑝𝑟) Eq. 65

𝑐𝑡 = 𝑐𝑤 + 𝑐𝑟 Eq. 66

𝑐𝑡 = −(1 𝑊⁄) ∙ (𝑑𝑊 𝑑𝑝⁄) Eq. 67

∫ 𝑑𝑝 (𝑝 − 𝑝𝑟)⁄
𝑝𝑎(𝑡)

𝑝𝑎(0)

= −∫ (𝐽𝑤 𝑐𝑡 ∙ 𝑊⁄) ∙ 𝑑𝜏
𝑡

0

 Eq. 68

𝑝𝑎(𝑡) = 𝑝𝑟 + (𝑝𝑎(0) − 𝑝𝑟) ∙ 𝑒𝑥𝑝 (−
𝐽𝑤

𝑐𝑡 ∙ 𝑊𝑖
∙ 𝑡) Eq. 69

∆𝑊(𝑡) = 𝑊𝑒 = 𝑐𝑡 ∙ 𝑊𝑖 ∙ (𝑝𝑎,𝑖 − 𝑝𝑟(𝑡)) ∙ (1 − 𝑒𝑥𝑝 (−
𝐽𝑤 ∙ 𝑡

𝑐𝑡 ∙ 𝑊𝑖
)) Eq. 70

Figure 28 - Aquifer Model

93

3.3.1.11 Review of Material Balance Parameter Fitting

Van Everdingen et. al. (1953) presents a regression based technique for estimating material

balance parameters. McEwen (1961) builds on the work by Van Everdingen et. al. (1953) and

develops a regression methodology that better handles noise in the pressure data, but does not

characterize uncertainty in the solution. Fair (1994) provides regression based material balance

modeling that includes summary statistics and confidence intervals for the estimated parameters.

Sills (1996) reports a regression based material balance regression technique similar to that of

McEwen (1961) that is less sensitive to pressure noise due to a reduction in the number of

regression parameters. Confidence intervals for resulting material parameters are, however, not

provided in the analysis. The first attempt at fully characterizing uncertainty of the material

balance parameters in a Bayesian framework is provided by Ogele (2006), who proposes a grid

based Bayesian inversion strategy for the hydrocarbon material balance equation using two

unknowns and Gaussian distributions. The structured grid solution presented in Ogele’s work

allows for three-dimensional visualization of the prior, likelihood and posterior, which is only

practical for material balance problems involving two unknown variables. Aprilla (2006)

presents a similar analysis to that of Ogele (2006), but introduces a third variable and thereby

demonstrates the challenge associated with calculating and summarizing grid solutions in higher

dimensions. Finally, Ottah (2015) presents a sampling based methodology for matching aquifer

size using particle swarms. The particle swarm method generates an ensemble of solutions

making it possible to estimate the uncertainty bandwidth and confidence intervals for the model

parameters.

94

3.4 Model Implementation

3.4.1 Python Code Overview

The following section provides an overview of the Bayesian updating models that are

implemented using the Python scripting language (Appendix B). Produced oil/gas/water

(𝑁𝑝, 𝐺𝑝,𝑊𝑝) volumes and PVT data (𝐵𝑜 , 𝐵𝑔, 𝐵𝑤, 𝑅𝑠) are treated as deterministic constants in the

material balance model. Subsurface reservoir quantities such as original oil/gas in place (𝑁, 𝐺)

and aquifer characteristics (𝑊𝑖, 𝐽𝑤) are treated as random variables. The first Bayesian model

evaluates prior, likelihood and posterior distributions on a structured grid. The second model

implements an MCMC-Metropolis algorithm. Figure 29 shows the overall flow of the code for

the grid based and MCMC based techniques. The grid based and MCMC based model have

separate main routines, where the required function calls are made and solution data is

summarized. Both the grid and MCMC based techniques share the same likelihood and material

balance functions. In order to calculate a likelihood value for each combination of material

balance parameters, the material balance model is reverse for pressure at each time step using a

Newton-Raphson algorithm.

95

Figure 29 - Overview of implemented Python functions

Grid Based Model - Maine Routine

Generate parameter grid with dimensions n
j
 x n

k

For Bayesian updating step i = 1 to n
step

:

 At each grid loation (j,k):

 Calculate Prior

 Call Likelihood Function → Likelihood

 Calculate Posterior ∝ Prior x Likelihood

 Normalize resulting distributions

MCMC Model - Main Routine

Set initial Markov Chain value X
0
 = μ0 for initial updating step

Set proposal distribution 𝑞(𝑋𝑡|𝑌𝑡+1) = 𝑁(𝑋𝑡, 𝜎0)

For Bayesian updating step i = 1 to n
step

:
 Call MCMC Metropolis → posterior chain {X

i
}

 Fit Normal distribution to {X
i
} → 𝑁(𝜇Xi, 𝜎Xi

)

 Set proposal distribution 𝑞(𝑋𝑡|𝑌𝑡+1) = 𝑁(𝑋𝑡, 𝜎𝑋𝑖)
 Set initial Markov Chain value X

0
 for step i+1 equal to 𝜇Xi

Likelihood Function

At state X = [N, Wi, Jw, G]:
Call MBAL inverse to obtain predicted
pressures {p

r
} at state X

Calculate Likelihood f(y│x):
Evaluate likelihood as a function of difference
between measured pressure y and predicted
pressures p

r
 at updating steps i = 1 to n:

 𝑓(𝑦|𝑥) ∝ exp(−
1

𝜎2
∑ (𝑔(𝑥𝑖) − 𝑦𝑖)

2𝑛
𝑖=1

Return Likelihood f(y│x)

MCMC Metropolis

At initial state X
0
:

 Calculate Prior(X
0
)

 Call Likelihood Function → Likelihood(X
0
)

 Calculate Posterior(X
0
) = Prior(X

0
) x Likelihood(X

0
)

For t = 1 to n
chain

 Propose candidate state Y
t+1

 from 𝑞(𝑋𝑡|𝑌𝑡+1) = 𝑁(𝑋𝑡, 𝜎Xi
)

 At candidate state Y
t+1

:

 Calculate Prior(Y
t+1

)

 Call Likelihood Function → Likelihood(Y
t+1

)

 Calculate Posterior(Y
t+1

) = Prior(Y
t+1

) x Likelihood(Y
t+1

)

 Sample random number u ~ [0,1)

 Calculate acceptance ratio α

 If(α > u):

 Accept candidate state, X
t+1

 = Y
t+1

 Else:

 Reject candidate state, X
t+1

 = X
t

Return Markov Chain {Xt}

MBAL Inverse

Set initial material balance volumes:

 V
0
 = [N, W

res
, G, W

i
, PV

i
]

For i = 1 to n
step

:
 Call MBAL_Newton to obtain:
 Predicted reservoir pressure p

r,i

 Updated Material balance volumes V
i

Return predicted reservoir pressures {p
r
}

MBAL Newton

Guess pressure, p
n
 = p

0

While(convergence = False) Do:
 Call MBAL_Objective_Function → f(p

n
)

 Call MBAL_Objective_Function → f(p
n
 + Δp)

 Call MBAL_Objective_Function → f(p
n
 - Δp)

 f’(p
n
) = f(p

n
 + Δp) – f(p

n
 – Δp)/2*Δp

 p
n+1

 = p
n
 – f(p

n
)/f’(p

n
)

 if(p
n+1

 – p
n
)/ p

n
 < tolerance:

 convergence = True
 p

n
 = p

n+1

 Else: p
n
 = p

n+1

Return predicted reservoir pressure, p
n

MBAL Objective Function

Calculate the following quantities at time t + Δt:
 Aquifer pressure p

a

Aquifer influx W

e

Volumes V = [N, W

res
, G, W

a
, PV, ΔPV]

Evaluate objective function value f at time t + Δt:
 f = N + G + W

res
 + ΔPV – PV

i
 = 0

Return f

96

3.4.2 Proposal Distribution

The proposal density is a multivariate Gaussian distribution centered at the current state 𝑋𝑡 (Eq.

71). At each assimilation step 𝑖, the standard deviation of the proposal distribution is obtained by

fiting a Gaussian distribution to the posterior output from the Metropolis algorithm at the

previous assimilation step 𝑖 − 1 (Eq. 72). This ensures that the proposal distribution adapts to

the variance of the posterior distribution throughout the Bayesian updating steps. The initial

Markov chain value at each updating step is set equal to the mean of the posterior distribution at

the previous updating step (Eq. 73).

𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑏𝑢𝑡𝑖𝑜𝑛, 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑠𝑡𝑒𝑝 𝑖 = 𝑞(𝑋𝑡|𝑌𝑡+1) = 𝑁(𝑋𝑡, 𝜎𝑋𝑖−1)

Eq. 71

 {𝑋𝑖}
𝑓𝑖𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
→ 𝑁(𝜇𝑋𝑖 , 𝜎𝑋𝑖)

Eq. 72

𝑀𝑎𝑟𝑘𝑜𝑣 𝐶ℎ𝑎𝑖𝑛 𝑠𝑡𝑎𝑟𝑡 𝑣𝑎𝑙𝑢𝑒, 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑠𝑡𝑒𝑝 𝑖 = 𝑋𝑜,𝑖 = 𝜇𝑋𝑖−1

Eq. 73

97

3.4.3 Time-Discretization of Material Balance Equation

For the purpose of applying the material balance equation as a forward model in the likelihood

function it is formulated as an incremental objective function (Eq. 74) and solved iteratively for

pressure at each time step by using a Newton-Raphson algorithm. Given that the objective

function is based on PVT tables, it is not a closed form equation and the pressure derivatives are

obtained by means of central difference approximation. The procedure is initialized by

calculating the initial pore volume in the tank (Eq. 75). The program then re-calculates the

amount of rock compaction as well as oil, gas and water volume in the pore space at each time

step (Eq. 76 - Eq. 79).

𝑓 = 𝑁(𝑡 + ∆𝑡) + 𝐺(𝑡 + ∆𝑡) +𝑊𝑟𝑒𝑠(𝑡 + ∆𝑡) + ∆𝑃𝑉(𝑡 + ∆𝑡) − 𝑃𝑉𝑖 = 0 Eq. 74

𝑃𝑉𝑖 = 𝑃𝑉(𝑡 = 0) = 𝑁 ∙ 𝐵𝑜𝑖 (1 − 𝑆𝑤𝑐)⁄ Eq. 75

𝑁(𝑡 + ∆𝑡) = 𝑁(𝑡) ∙ 𝐵𝑜(𝑡 + ∆𝑡) − 𝑁𝑝(𝑡 + ∆𝑡) ∙ 𝐵𝑜(𝑡 + ∆𝑡) Eq. 76

𝐺(𝑡 + ∆𝑡) = 𝐺(𝑡) ∙ 𝐵𝑔(𝑡 + ∆𝑡) − 𝐺𝑝 ∙ 𝐵𝑔(𝑡 + ∆𝑡) + 𝑁(𝑡) ∙ [𝑅𝑠(𝑡) − 𝑅𝑠(𝑡 + ∆𝑡)]

∙ 𝐵𝑔(𝑡 + ∆𝑡) − [𝑁(𝑡) − 𝑁𝑝(𝑡)] ∙ 𝑅𝑠(𝑡 + ∆𝑡) ∙ 𝐵𝑔(𝑡 + ∆𝑡)
Eq. 77

𝑊𝑟𝑒𝑠(𝑡 + ∆𝑡) = 𝑊𝑟𝑒𝑠(𝑡 + ∆𝑡) ∙ 𝐵𝑤(𝑡 + ∆𝑡) −𝑊𝑝(𝑡 + ∆𝑡) ∙ 𝐵𝑤(𝑡 + ∆𝑡) +𝑊𝑒(𝑡 + ∆𝑡) Eq. 78

∆𝑃𝑉(𝑡 + ∆𝑡) = 𝑃𝑉𝑖 ∙ 𝑐𝑓 ∙ (𝑝𝑟,𝑖 − 𝑝𝑟(𝑡 + ∆𝑡)) Eq. 79

The aquifer influx 𝑊𝑒(𝑡 + ∆𝑡) cannot be measured and must therefore be estimated with an

aquifer model. Time steps are therefore limited to 10 days in this implementation of the

98

Fetkovich aquifer model is chosen based on sensitivity analysis. A summary of the time-

discretized aquifer response equations is provided in Eq. 80 - Eq. 82.

𝑝𝑎(𝑡 + ∆𝑡) = 𝑝𝑟(𝑡) + (𝑝𝑎(𝑡) − 𝑝𝑟(𝑡)) ∙ 𝑒𝑥𝑝(− [𝐽𝑤 ∙ ∆𝑡] [𝑐𝑡 ∙ 𝑊𝑎(𝑡)]⁄) Eq. 80

𝑊𝑒(𝑡 + ∆𝑡) = 𝑐𝑡 ∙ 𝑊𝑎(𝑡) ∙ (𝑝𝑎(𝑡) − 𝑝𝑟(𝑡)) ∙ (1 − 𝑒𝑥𝑝(− [𝐽𝑤 ∙ ∆𝑡] [𝑐𝑡 ∙ 𝑊𝑎(𝑡)]⁄)) Eq. 81

𝑊𝑎(𝑡 + ∆𝑡) = 𝑊𝑎(𝑡) −𝑊𝑒(𝑡 + ∆𝑡) Eq. 82

99

3.5 Synthetic Data Set

In order to test the Bayesian updating model, a synthetic data set is required. Since real field

production data is not available for this study, a synthetic data set is generated using the Eclipse

reservoir simulation software. This comes with the additional benefit that it allows for direct

testing the accuracy of the Bayesian updating technique. The resulting Eclipse input file can be

found in Appendix G. The simulation model properties are based on correlations and typical

reservoir properties found in published works on commercial oil fields. A Python script is used

to populate the simulation grid with random properties in the standard Eclipse input file format.

3.5.1 Model Geometry and Grid Properties

A rectangular reservoir structure representative of a reservoir fault block with a small dip is

created and a corner point grid structure is applied. The overall simulation model geometry,

including distance to the oil-water contact is provided in (Figure 30). Grid block properties such

as porosity and absolute permeability are generated by random sampling to fit a linear log(k) vs.

porosity relationship; a trend which is commonly observed in commerical oil fields (Figure 31).

Details on the process associated with generating random grid properties are provided in

Appendix D. The total fluids in place and initial reservoir pressure is provided in Table 9.

100

Figure 30 - Eclipse model overview 5x exaggerated in the vertical direction

101

Figure 31 - Log(Permeability) vs. Porosity Plot

Table 9 - Summary of Simulation Model Parameters

Item Value Unit

Original Oil in Place 31.6 M Sm
3

Water in place in Aquifer 444.6 M Rm
3

Number of cells in i-direction 50 -

Number of cells in j-direction 90 -

Number of cells in k-direction 10 -

Total number of cells 45,000 -

Initial Reservoir Pressure 296.4 bar(a)

Initial Solution GOR 120 Sm
3
/Sm

3

Rock compressibility 5.0E-5 1/bar(a)

102

3.5.2 PVT Data

Fluid properties are generated by using Black Oil PVT correlations suitable for the chosen

pressure/temperature ranges and overall fluid properties (Table 10). The resulting PVT data set is

applied to both simulation model and material balance model (Table 11). The PVT correlations

used to generate the PVT table are provided in Appendix C.

Table 10 - PVT/Reservoir Properties

Property Metric Value Oil Field Value

Reservoir Temperature (T) 80 deg C 194 deg F

Formation Water Salinity (𝑤𝑠) 100,000 ppm 100,000 ppm

Gas Specific Gravity (𝛾𝑔) 0.7 0.7

Oil API Gravity (𝛾𝐴𝑃𝐼) 35 35

Formation GOR (𝑅𝑠) 120 Sm/Sm
3
 673.7 SCF/STB

103

Table 11 - PVT Data Table

P Rs co Bo mu_o Z Bg mu_g cw Bw mu_w

bar(a) Sm3/Sm3 1/bar Rm3/Sm3 mPa-s - Rm3/Sm3 mPa-s 1/bar Rm3/Sm3 mPa-s

500.0 120.000 9.157E-05 1.301 0.834 1.170 0.00291 0.054 2.557E-05 1.011 0.650

475.0 120.000 9.639E-05 1.303 0.804 1.137 0.00297 0.052 2.538E-05 1.013 0.637

450.0 120.000 1.017E-04 1.304 0.774 1.104 0.00305 0.051 2.518E-05 1.015 0.623

425.0 120.000 1.077E-04 1.306 0.745 1.071 0.00313 0.049 2.498E-05 1.016 0.610

400.0 120.000 1.145E-04 1.308 0.716 1.039 0.00323 0.047 2.478E-05 1.017 0.598

375.0 120.000 1.221E-04 1.310 0.689 1.007 0.00334 0.046 2.459E-05 1.019 0.586

350.0 120.000 1.308E-04 1.313 0.663 0.977 0.00347 0.044 2.439E-05 1.020 0.574

325.0 120.000 1.409E-04 1.316 0.638 0.948 0.00362 0.042 2.419E-05 1.021 0.562

300.0 120.000 1.526E-04 1.320 0.614 0.920 0.00381 0.040 2.399E-05 1.022 0.551

275.0 120.000 1.665E-04 1.324 0.592 0.896 0.00405 0.038 2.379E-05 1.023 0.541

250.0 120.000 1.831E-04 1.329 0.571 0.875 0.00435 0.036 2.360E-05 1.024 0.530

227.3* 120.000 2.014E-04 1.334 0.555 0.861 0.00470 0.034 2.342E-05 1.025 0.521

200.0 102.254 - 1.284 0.608 0.849 0.00527 0.031 2.320E-05 1.026 0.511

175.0 87.021 - 1.242 0.666 0.846 0.00600 0.029 2.300E-05 1.027 0.501

150.0 72.705 - 1.203 0.735 0.849 0.00703 0.027 2.281E-05 1.028 0.492

125.0 59.254 - 1.167 0.820 0.861 0.00855 0.025 2.261E-05 1.028 0.484

100.0 46.614 - 1.135 0.927 0.880 0.01093 0.024 2.241E-05 1.029 0.476

75.0 34.722 - 1.107 1.068 0.905 0.01499 0.022 2.221E-05 1.029 0.468

50.0 23.482 - 1.081 1.263 0.936 0.02325 0.021 2.202E-05 1.030 0.460

35.0 16.975 - 1.067 1.425 0.955 0.03390 0.021 2.190E-05 1.030 0.456

25.0 12.679 - 1.058 1.564 0.968 0.04811 0.021 2.182E-05 1.030 0.453

10.0 6.066 - 1.045 1.858 0.988 0.12268 0.020 2.170E-05 1.030 0.449

5.0 3.633 - 1.041 2.004 0.994 0.24692 0.020 2.166E-05 1.030 0.448

1.0 1.235 - 1.037 2.178 0.999 1.24075 0.020 2.163E-05 1.031 0.447

*Bubble point pressure, pb

104

3.5.3 Capillary Pressure and Relative Permeability Model

Generic logarithmic expressions are used to generate drainage and imbibition capillary pressure

curves. The drainage curve models the initial fluid distributions, while the imbibition curve

models capillary pressure behavior associated with water encroaching into the oil zone from the

aquifer. Because the surface tension between oil and gas is orders of magnitudes less than that of

water and oil, oil/gas capillary pressure is assumed to be zero. The resulting capillary pressure

curves are shown in Figure 32. The drainage curve corresponds to a transition zone about 60 m

thick. The capillary pressure drainage parameters are summarized in Table 14. Appendix E

contains details about the capillary pressure model used.

Two-phase relative permeability curves are modeled using Corey functions (Corey 1954), which

are power-law correlations for gas and oil relative permeability. Details about Corey functions

can be found in Appendix F. Reasonable Corey exponents are chosen for Oil/Water (Table 12)

and Oil/Gas (Table 13) based on published data on simulation of North Sea reservoirs (Tangen,

2012). The Eclipse default model is used to model three-phase relative permeability. The

resulting Oil/Water and Oil/Gas relative permeability curves are provided in Figure 33 and

Figure 34. Note that the oil-water relative permeability curve in Figure 33 is extrapolated to a

value of 1.0, which is necessary because the water saturation is equal to 1.0 at the free water

level and below. The default three-phase relative permeability model in Eclipse was

implemented (Eclipse manual, 2010). It assumes complete segregation of gas and water within

each cell, which is often a reasonable assumption because in most reservoir simulation studies

the number of grid blocks where three phase flows occurs is relatively small.

105

Figure 32 - Drainage and Imbibition Capillary Pressure Curves

Figure 33 - Oil/Water Relative Permeability Curves

106

Figure 34 - Oil/Gas Relative Permeability Curves

Table 12 - Oil/Water Corey Parameters

Process no nw Krow,max Krw, max

Oil/Water Drainage 1.5 3.5 1.0 1.0

Oil/Water Imbibition 4.5 3.8 1.0 0.75

Table 13 - Oil/Gas Corey Parameters

Process no ng Krog,max Krg, max

Oil/Gas Drainage 3.2 1.5 1.0 1.0

Oil/Gas Imbibition 3.8 1.7 1.0 1.0

Table 14 - Logarithmic Capillary Pressure Parameters

Process 𝜶𝟏 𝜶𝟐 𝑺𝒘𝒙 𝑷𝒕𝒉 (Bara)

Drainage -1.0 0.5 1.0 0.05

Imbibition -0.1 0.1 1.0 -

107

3.5.4 Synthetic Reservoir Parameters and Production Data

The intial oil in place 𝑁, gas in place 𝐺 and aquifer size 𝑊𝑖 are obtained from the initialization

report from the reservoir simulation model. The aquifer index cannot be extracted directly from

the simulation model because the grid properties are populated based on random sampling from

probability distributions. The true value of the aquifer index 𝐽𝑤 is therefore calculated based on

the average horizontal permeability below the oil-water contact. The geometry and viscosity

used for this 𝐽𝑤 calculation is taken from Figure 30 and Table 11 in Section 3.5.1, respectively. A

summary of the parameter values obtained from the simulation model are provided in Table 15.

𝐽𝑤 =
𝐾 ∙ 𝐻 ∙ 𝑊

𝜇 ∙ 𝐿
=
370 𝑚𝐷 ∙ 100 𝑚 ∙ 2000𝑚

0.55𝑐𝑝 ∙ 11550𝑚
= 100.68 ~ 100 R m3/bar(a) ∙ day

Table 15 - Summary of Synthetic Model Parameters

Parameter Value Unit

N 31.6 M Sm
3

Wi 444.6 M Sm
3

Jw 100 Rm
3
/bar(a)*day

G 0 N Sm
3

108

In terms of production data, the simulation model runs for 4,000 days with a maximum liquid

rate constraint of 1,750 Sm
3
/day. A reasonable minimum bottom hole pressure of 90 bar(a) is

specified. The resulting production rates can be viewed in Figure 35, while the average pressure

decline trend for the oil column is shown in Figure 36. Note that the average reservoir pressure is

extracted from the simulation model by averaging the pressure in the oil column at each time

step. In reality, it is necessary to apply pressure transient analysis techniques to determine the

average pressure in the reservoir. After about 2,000 days, oil production starts dropping below

1,750 Sm
3
 as water from the aquifer reaches the producer. It is also worth noting that the gas rate

increases as the reservoir pressure drops below the bubble point pressure and a secondary gas

gap is formed. The formation of the secondary gas cap and encroachment of water into the oil

zone can also be observed in the ternary plots provided in Figure 37. At about 3,000 days, the oil

rate drops rapidly as the bottom hole pressure reaches the minimum limit of 90 bar(a). At this

point, the rates drop because the bottom hole pressure cannot be lowered further to facilitate the

drawdown required to maintain a total liquid rate of 1,750 Sm
3
/day.

109

Figure 35 - Production Rates from Synthetic Model

Figure 36 - Reservoir Pressure and BHP from Synthetic Model

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500

D
a

ily
 P

ro
d
u

c
ti
o
n

 R
a

te
 (

S
m

3
/d

a
y
)

Days

Oil Rate

Water Rate

Gas Rate * 1000

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500

P
re

s
s
u

re
 (

b
a

r(
a

))

Days

Average reservoir pressure

Bottom hole pressure

110

Figure 37 - Ternary Plot of Synthetic Model

111

3.5.5 Material Balance Model Response to Synthetic Production Data

This section demonstrates how the material balance model responds to the synthetic production

data from the reservoir simulator (Figure 35). The material balance is run forward with the true

reservoir parameters, which are listed in Table 16. From Figure 38 it is clear that the material

balance model matches the simulation model pressure response very well and demonstrates that

the synthetic reservoir behaves like a perfect tank. This is despite the random grid properties and

overall complexity associated with the simulation model. The observed accuracy is attributed to

the fact that true parameter values from the simulation model are used. Furthermore, we observe

that there is a kink in the pressure predicted by the material balance model at 900 days. This

occurs because the bubble point is reached at this point, which causes solution gas drive to take

effect. The abrupt kink is not present in the pressure trend from the simulation model, as the

bubble point is not reached in all simulation cells simultaneously. The oneset of solution gas

drive causes the aquifer influx rate to drop quite significantly due to the back-pressure provided

by liberated gas (Figure 39). Finally, after 2,800 days the aquifer influx drops steadily due to

overall lower extraction rates from the reservoir. For reference, Figure 40 shows material balance

fluid saturations vs. time.

112

Table 16 - Tank Model Parameters

Parameter Value Unit

N 31.6 M Sm
3

Wi 444.6 M Sm
3

Jw 100 Rm
3
/bar(a)*day

G 0.0 M Sm
3

Swc 0.2 -

cw 2.8E-5 1/bar(a)

cf 5.0E-5 1/bar(a)

PVT Same as simulation model -

Figure 38 - Material Balance vs. Synthetic Data Reservoir Pressure

113

Figure 39 - Material Balance Aquifer Influx Prediction

Figure 40 - Material Balance Fluid Saturation Predictions vs. Time

114

Next, an ad-hoc sensitivity analysis is provided to show the material balance responds to changes

in input parameters in the vicinity of the true parameter values. Summaries of the sensitivity

cases are provided in Table 17 and Figure 41. For the parameter ranges tested, it is clear that 𝑁

and 𝑊𝑖 overall have more effect on the predicted pressure than does 𝐽𝑤. It is also worth noting

that the aquifer influx increases as 𝑁 decreases. This occurs because smaller values of 𝑁 are

associated with more rapid reservoir pressure decline, which in turn creates a larger pressure

differential between the oil tank and the aquifer tank, leading to larger aquifer influx rates.

Table 17 - Deterministic Sensitivities for Material Balance Model

Material Balance Sensitivity Case N Wi Jw

1

25 444.6 100

45 444.6 100

65 444.6 100

2

31.6 200 100

31.6 400 100

31.6 600 100

3

31.6 444.6 50

31.6 444.6 100

31.6 444.6 150

115

Figure 41 - Material Balance Model Sensitivities

116

3.6 Bayesian Updating Case Study

In this section Bayesian updating is applied to infer the material balance parameters by

assimilating measured data resulting from the synthetic data set. Four different cases are

evaluated and summarized in Table 18. The initial gas in place 𝐺 is kept as a deterministic

constant equal to zero for all cases. This is often a reasonable assumption for real reservoirs,

provided that PVT data and pressure transient analysis provide sufficient evidence to rule out the

existence of an initial gas cap.

Table 18 - Case Study Summary

Case Purpose

1 Demonstrate structured grid solution procedure for two-variable Bayesian updating

problems and examine 3D surface plots, 2D contour plots and marginal distributions

for the prior, likelihood and posterior distributions.

2 Demonstrate MCMC based solution by comparing to the two-variable structured grid

solution in Case 1.

3 Demonstrate the MCMC based solution strategy on a three-variable problem that

cannot be visualized in 3D surface plots. Provide a comprehensive set of diagnostic

plots that are useful for assessing model behavior and MCMC convergence properties.

4 Demonstrate the effect of both consistent and random measurement errors on the

posterior parameter estimates

117

3.6.1.1 Case 1 - Two-Variable Structured Grid Solution

In the first case, initial oil in place 𝑁 and aquifer index 𝐽𝑤 are treated as random variables, while

aquifer size 𝑊𝑖 is treated as a deterministic constant. The numerical value for 𝑊𝑖 is extracted

directly from the simulation model. This allows studying the structured grid solution with full

visualization of the prior, likelihood and posterior distributions in three-dimensional surface

plots. A summary of the input parameters associated with Case 1 is provided in (Table 19). A

100x100 grid is used to generate the prior, likelihood and posterior distributions. This involves

running the material balance model at 10,000 grid locations for all 12 time steps, running to

3,600 days. The resulting three-dimensional surface plots are shown in Figure 42, Figure 43 and

Figure 44. The effect of the likelihood variance is assessed by setting the variance to 10 and 50

bar(a)
2
 and the results are compared on contour plots shown in Figure 45. This figure shows that

the posterior assimilates the likelihood distribution faster for smaller likelihood variance values.

The same behavior can be observed in the marginal posterior histograms, shown in (Figure 46).

Furthermore, the peak of the likelihood distribution, also known as the Maximum Likelihood

(MLE), corresponds to the parameter values associated with the best overall fit to the measured

reservoir pressure decline trend. As such, the posterior is shown to be a compromise between

prior belief and an optimal parameter fit. As more data is incorporated into the analysis, the

posterior becomes increasingly similar to the likelihood distribution.

118

Table 19 - Case 1 Parameters

Item Value Unit

Grid size 100 x 100 -

Bayesian updating steps 12 -

Time steps 300*12 days

Likelihood variance 10 and 50 bar(a)
2

Aquifer Size (constant) 444.6 M Sm
3

Gas in place (constant) 0 M Sm
3

Prior - Oil in Place (N) [mean, standard deviation] [50, 100] M Sm
3

Prior - Aquifer Index (Jw) Prior [mean, standard deviation] [150, 1000] Rm
3
/bar(a)*day

Figure 42 - Case 1, Prior Distribution

119

Figure 43 - Case 1, Likelihood Distribution

Figure 44 - Case 1, Posterior Distribution

120

Figure 45 - Case 1, Effect of Error on Likeihood and Posterior

121

Figure 46 - Case 1, Effect of Error on Marginal Posteriors

122

3.6.1.2 Case 2 - Two-Variable MCMC Sampling Based Solution

The purpose of Case 2 is to provide a comparison between the MCMC sampling based algorithm

and the grid based solution. Case 2 parameters are summarized in Table 20. Figure 47 shows a

comparison between the marginal distributions and histograms resulting from the grid based

solution and the MCMC algorithm at time = 1500 days. Figure 48 shows a scatter plot of the

MCMC samples at times 300, 1500 and 3600 days plotted on top of prior/likelihood/posterior

contours resulting from the grid based solution. Both Figure 47 and Figure 48 display good

correspondence between the grid solution and the MCMC solution, thus providing confidence in

the convergence properties of the MCMC algorithm. Figure 49 displays posterior marginal

histogram outlines vs. time and shows how posterior variance decreases as the number of

Bayesian assimilation steps increases. The same behavior can be observed in Figure 50, which

shows posterior fitted normal distributions through time. Figure 51 displays acceptance ratios vs.

sample number for each Bayesian assimilation step. It is evident that reasonable acceptance

ratios ranging between 0.3 and 0.5 are achieved. Figure 52 displays running means for all time

steps and show that the Markov Chain converges quickly and that the burn-in is achieved after

about ~1,000 samples, thus showing the increased efficiency associated with the MCMC

algorithm vs. the grid based approach. Figure 53 displays time series plots at times 300, 1500

and 3600 days and shows that the posterior region is being adequately sampled. Finally, Figure

54 shows autocorrelation vs. sample number at times 300, 1500 and 3600 days. Autocorrelation

hovers around a value of zero, which indicates that the Markov Chains have good mixing

properties.

123

Table 20 - Case 2 Parameters

Item Value Unit

Number of MCMC samples 10,000 -

Bayesian updating steps 12 -

Time steps 300 x 12 days

Likelihood variance 10 bar(a)
2

Aquifer Size (deterministic constant) 444.6 M Sm
3

Initial gas in place (deterministic constant) 0 M Sm
3

Oil in Place (N) Prior [mean, standard deviation] [50, 10] M Sm
3

Aquifer Index (Jw) Prior [mean, standard deviation] [150, 31.68] Rm
3
/bar(a)*day

124

Figure 47 – Case 2, Grid vs. MCMC marginal posterior distributions at time = 1500 days

125

Figure 48 – Case 2, Posterior scatter plots

126

Figure 49 – Case 2, Posterior Marginal Histogram Outlines

127

Figure 50 – Case 2, Posterior Marginal Fitted Normal Distributions

128

Figure 51 – Case 2, Acceptance Ratios

129

Figure 52 – Case 2, Running Mean Plots

130

Figure 53 – Case 2, Time Series Plots

131

Figure 54 – Case 2, Autocorrelation Plots

132

3.6.1.3 Case 3 – Three-variable MCMC Sampling Based Solution

The purpose of Case 3, aquifer size 𝑊𝑖 is added as a third random variable, meaning that the

prior, likelihood and posterior cannot be visualized in three-dimensional plots. Instead,

diagnostic plots useful for analyzing MCMC outputs are provided. Case 3 parmeters are

summarized in Table 21.

Table 21 - Case 3 Parameters

Item Value Unit

Number of MCMC samples 10,000 -

Bayesian updating steps 12 -

Time steps 12 x 300 days

Likelihood variance 10 bar(a)
2

Aquifer Size Prior (Wi) - [mean, standard deviaton] [600, 10] M Sm
3

Oil in Place Prior (N) - [mean, standard deviation] [50, 100] M Sm
3

Aquifer Index Prior (Jw) Prior [mean, standard deviation] [50, 20] Rm
3
/bar(a)*day

Figure 55 shows marginal posterior histogram outlines vs. time. It is evident that posterior

variance decreases as data is assimilated. The same behavior is displayed in Figure 56, which

shows fitted normal distributions vs. Bayesian updating steps. Overall, it is evident that the

MCMC algorithm is correctly moving towards the true syntethic reservoir parameters as more

data is incorporated. Figure 57 summarizes marginal histograms, scatter plots and correlation

statistics at t = 300 days and t = 3600 days. The diagonal on these two 3x3 plots contanin the

133

marginal histograms. The plots above the diagonals show the calculated Pearson correlation

coefficients for each variable pair. Initially, all variable combinations show little correlation.

After about 12 updating steps (t = 3600 days), however, there is a exists strong linear correlation

of -0.92 between oil in place 𝑁 and aquifer size 𝑊𝑖. This occurs because a larger oil in place

must correspond to a small aquifer and vice versa from a pressure response perspective. The

scatter plots below the diagonal confirm the correlation between 𝑁 and 𝑊𝑖 as the samples fall on

nearly straight line with slope -0.92. Figure 58, Figure 59 and Figure 60 display running mean,

time series and autocorrelation vs. bayesian assimiliation step. All three plots show that the

resulting Markov Chains exhibit good convergence and mixing properties. It is evident from the

running mean plot (Figure 58) that burn-in is achieved after ~1,000 samples. Figure 61 shows

that the acceptance ratio is relatively stable around a value of 0.2-0.3. This is lower than in case

1, which is explained by the fact that an additional random variable was introduced in case 3,

thus causing the posterior region to grow in size and becoming more challenging for the MCMC

algorithm to explore. Figure 62 shows posterior mean deviation from the true parameter values

vs. time. The average deviation is over 40-60% initially, but after 12 updating steps the deviation

has reuduced to about 5-15% of the true parameter values. Figure 63 shows posterior sample

means and 95
th

 percentile vs. time. It is clear that variances reduces as data is incoroprated into

the analysis. Figure 64 shows 50 material balance realizations based on random 𝑁, 𝐽𝑤 and 𝑊𝑖

samples drawn from the posterior distributions at t = 300, 1500 and 3600 days. It is evident that

uncertainty reduces as data is incorporated. As such, the difference between the measured data

and the predicted data becomes increasingly smaller as the variance associated with the likelhood

function reduces and starts dominiating in the posterior distribution.

134

Figure 55 - Case 3, Posterior Marginal Histograms

135

Figure 56 - Case 3, Posterior Fitted Normal Distributions

136

Figure 57 - Case 3, MCMC Summary Plot at time = 300 and 2600 days

137

Figure 58 - Case3, Running Mean Plots

138

Figure 59 - Case 3, Time Series Plots

139

Figure 60 - Case 3, Autocorrelation Plots

140

Figure 61 - Case3, Acceptance Ratios

Figure 62 - Case 3, Deviation From True Parameter Values

141

Figure 63 - Case 3, MCMC Posterior Means and 95
th

 Percentiles

142

Figure 64 - Case 3, Posterior Material Balance Realizations, t=300, 1500 and 3600 days

143

3.6.1.4 Case 4 – Effect of Measurement Error

The purpose of this case is to demonstrate the effect of both consistent and random measurement

errors. The general case parameters are summarized in Table 22. In this section only the

posterior sample mean and associated 95
th

 percentile plots are included as the previous sections

have already demonstrated a full suite of MCMC convergence and diagnostic plots. First, a large

constant pressure differential of 30 bar(a) is added to the synthetic reservoir pressure. This

simulates consistent over-prediction of the measured pressure (Figure 65). It is clear that this

measurement error causes the Bayesian material balance model to infer values different from the

true parameter values (Figure 66). In particular, the oil in place 𝑁 is estimated to be about 10 M

Sm
3
 larger than the true value. The error associated with the posterior distribution, however, is

shown to somewhat mitigates this discrepancy by including the true parameter value in the

vicinity of the 95
th

 percentile of the posterior distribution. This demonstrates how Bayesian

updating is an improvement over deterministic regression analyses, in that it provides a range of

plausible parameters in addition to the parameters associated with maximum likelihood. To fully

mititgate consistent measurement errors one would either have to shift the measured data prior to

analysis with the Bayesian material balance model or apply a skewed likelihood function. To

simulate inference on a noisy data set, random errors are added to the measured pressure (Figure

65). The random noise causes the posterior distribution to vary as each data point contradicts the

parameters that were inferred in the previous time step (Figure 67). Next, the likelihood variance

is increased to 50 bar(a)
2
 to match the standard deviation of the random noise. This stabilizes the

posterior distributions and increases overall posterior variance, but does not change the inferred

mean values significantly (Figure 68). Overall, measurement noise has a significant effect on the

144

posterior parameter estimates. Since material balance is a longer-term analysis technique, it is

recommended that long term trends are fitted to measured pressure data to reduce noise prior to

incorporation into the Bayesian updating model.

Table 22 - Case 4 Main Parameters

Item Value Unit

Number of MCMC samples 10,000 -

Bayesian updating steps 12 -

Time steps 12 x 300 days

Aquifer Size Prior (Wi) - [mean, standard deviaton] [600, 100] M Sm
3

Oil in Place Prior (N) - [mean, standard deviation] [50, 10] M Sm
3

Aquifer Index Prior (Jw) Prior [mean, standard deviation] [50, 20] Rm
3
/bar(a)*day

145

Figure 65 - Pressure data with constant shift and pressure data with random noise

146

Figure 66 - Effect of constant pressure shift on posterior means and 95th percentiles

147

Figure 67 - Effect of random noise on posterior means and 95th percentiles

148

Figure 68 - Effect of noise on posterior means and 95th percentiles

149

3.7 Conclusion

This chapter presents a Bayesian analysis of the general material balance equation. Bayesian

updating is shown to be a useful for estimating material balance parameters because the

technique allows for full characterization of uncertainty. A summary of key findings is provided

below:

 The grid based approach to Bayesian updating is shown to only be practical for two

dimensions, due to the large number of additional forward model evaluations that are

required with each added grid dimension.

 The MCMC approach is more efficient than the grid based approach as it reduces the

number of required forward model evaluations.

 Good correspondence between the synthetic data set and the Bayesian updating models is

observed. The MCMC model shows good convergence properties and replicates the

posterior resulting from the grid based solution with high accuracy.

 Likelihood variance affects the rate at which the posterior assimilates information

contained in the data.

 Data noise can have a significant effect on parameter estimates. Increasing the likelihood

variance helps mitigate errors associated with random measurement noise.

 Material Balance with Bayesian updating can be placed into the broader reservoir

engineering workflow as a technique for validating drive mechanisms and volumes in

place probabilistically. The methodology represents an improvement over deterministic

material balance in that it allows for full characterization of uncertainty. A sample

150

application would be to reconcile simulation model inputs with results obtained from

Bayesian Material balance modeling (Figure 69).

Figure 69 - Bayesian Material Balance in Reservoir Engineering Context

151

3.8 References

Aprilla, A.W., Li, Z., McVay D.A., Lee, W.J. (2006), Quantifying Uncertainty in Original-Gas-

in-Place Estimates with Bayesian Integration of Volumetric and Material Balance Analyses, SPE

100575

Beggs , H.D. and Robinson, J.R. (1975), Esimtating the Viscosity of Crude Oil Systems, JPT, 27,

1140-1141

Brill, J. P. and Beggs, H. D. (1974) Two-Phase Flow in Pipes, INTERCOMP Course, The Hague

Brooks, S. (1998), Markov Chain Monte Carlo Method and Its Application, Journal of the Royal

Statistical Society

Dake, L.P., (2001) The Practice of Reservoir Engineering (Revised Edition), Developments in

Petroleum Science #36, Elsevier

Eclipse Reservoir Simulation Software (2010), Version 2010.2, Reference Manual

Fair, W.B. (1994), A Statistical Approach to Material Balance Methods, SPE 28629

Fetkovich, M. J. (1971), A Simplified Approach to Water Influx Calculations – Finite Aquifer

Systems, Journal of Petroleum Technology

152

Gamerman, D. (2002), Markov Chain Monte Carlo, Stochastic Simulation for Bayesian

Inference, Chapman & Hall/CRC

Geweke J. (1992), Evaluating the accuracy of sampling based approaches to the calculation of

posterior moments. Bayesian Statistics 4, pp. 169-193,

Glaso, O. (1980), Generalized Pressure-Volume-Temperature Correlations, JPT ,785-95.

Hastings, W.K (1970), Monte Carlo sampling methods using Markov Chains and their

applications, Biometrika, 57(1), 97-109

Kelkar, M., Perez G. (2002), Applied Geostatistics for Reservoir Characterization, SPE Book

Lee, A.M, Gonzalez, M.H. and Eakin, B.E. (1966), The Viscosity of Natural Gases, JPT, 997-

1000.

McEwen, C.R. (1962), Material Balance Calculations with Water Influx in the Presence of

Uncertainty in Pressures, SPE 225

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N, Teller, A.H & Teller, E. (1953), Equation

of state calculations by fast computing machines, The Journal of Chemical Physics 21(6), 1087

153

Ogele, C. (2005), Integration and Quantification of Uncertainty of Volumetric and Material

Balance Analyses Using a Bayesian Framework, SPE Conference Paper

Oliver, D.S., Reynolds, A.C., Liu, N. (2008), Inverse Theory for Petroleum Reservoir

Characterization and History Matching,Cambridge University Press

Ottah, D. G. (2015), Aquifer Matching with Material Balance Using Particle Swarm

Optimization Algorithm – PSO, SPE-178319-MS

Sills, S.R. (1996), Improved Material-Balance Regression Analysis for Waterdrive Oil and Gas

Reservoirs, SPE 28630

Sutton, R.P (1985), Compressibility Factors for High Molecular Weight Reservoir Gases, SPE

14265, Proc. Of 60
th

 Ann. Tech. conf

Tangen, M. (2012), Wettability Variations within the North Sea Oil Field Froy, Master’s Thesis,

Noregian University of Science and Technology, Earth Sciences and Petroleum Engineering

Department

Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter Estimation,

SIAM

154

Van Everdingen, A. F., Timmerman, E.H. (1953), Application of the Material Balance Equation

to a Partial Water-Drive Reservoir, SPE 229-G, vol, 198

Vasquez, M. and Beggs, H. D (1980), Correlations for Fluid Physical Property Prediction, JPT

968-970

S. Särkkä (2013), Bayesian Filtering and Smoothing, Cambridge University Press

G. Evensen (2003), The Ensemble Kalman Filter: Theoretical Formulation and Practical

Implementation , Ocean Dynamics, 53, 343-367

155

Appendix A – PEWMA Python Code

import argparse
import numpy as np
import scipy as sp
from scipy import special, optimize
import matplotlib.pyplot as plt
from scipy.special import gamma as Gamma
from pylab import *
import scipy.stats as ss
from scipy.stats import gamma
from scipy.stats import beta
from scipy.optimize import minimize
import scipy.misc
import pylab as pl
import statistics

plt.rc('font',family='Arial')

def PEWMA_filter(y,omega,a_prior,b_prior):

 a_predicted = np.zeros(len(y))
 b_predicted = np.zeros(len(y))
 a_updated = np.zeros(len(y))
 b_updated = np.zeros(len(y))
 return_array = []

 for t in range(0,len(y)):

 if(t == 0):
 a_predicted[t] = a_prior
 b_predicted[t] = b_prior
 a_updated[t] = a_predicted[t]+ y[t]
 b_updated[t] = b_predicted[t] + 1
 elif(t > 0):
 a_predicted[t] = a_updated[t-1]*omega
 b_predicted[t] = b_updated[t-1]*omega
 a_updated[t] = a_predicted[t] + y[t]
 b_updated[t] = b_predicted[t] + 1

 return_array = np.column_stack((a_predicted, b_predicted, a_updated,b_updated))

 return return_array

def omega_log_likelihood(w,y,a_prior,b_prior,index_non_zero):

 a_updated = np.zeros(len(y))
 b_updated = np.zeros(len(y))
 a_predicted = np.zeros(len(y))
 b_predicted = np.zeros(len(y))
 log_likelihood = 0
 for i in range(0,len(y)):

 if(i == 0):
 a_predicted[i] = a_prior
 b_predicted[i] = b_prior
 a_updated[i] = a_predicted[i] + y[i]

156

 b_updated[i] = b_predicted[i] + 1
 else:
 a_predicted[i] = a_updated[i-1]*w
 b_predicted[i] = b_updated[i-1]*w
 a_updated[i] = a_predicted[i] + y[i]
 b_updated[i] = b_predicted[i] + 1

 if i > index_non_zero:
 log_likelihood = log_likelihood + (math.log(math.gamma(a_predicted.item(i) + y[i])) - math.log(math.gamma(y[i] + 1)) - math.log(math.gamma(a_predicted.item(i))) +
a_predicted.item(i)*math.log(b_predicted.item(i)) - (a_predicted.item(i) + y[i])*math.log(1+b_predicted.item(i)))

 return -log_likelihood

def PEWMA(failure_data, a_prior, b_prior, optimize_omega, constant_omega):

 omega = np.zeros(len(failure_data))
 a_predicted = np.zeros(len(failure_data))
 b_predicted = np.zeros(len(failure_data))
 a_updated = np.zeros(len(failure_data))
 b_updated = np.zeros(len(failure_data))
 year = failure_data[:,0]
 y = failure_data[:,1]

 index_non_zero = 0
 #Finding the first zero in the array
 for t in range(0,len(y)):
 if(y[t] > 0.0):
 index_non_zero = t
 break

 for t in range(0,len(y)):

 if(optimize_omega == 1):
 if(t < index_non_zero):
 omega[t] = 1
 else:
 temp_optimal = scipy.optimize.minimize(omega_log_likelihood, [0.5],args=(y[0:t+1],a_prior,b_prior,index_non_zero),method='L-BFGS-B',bounds=((0.01,0.99),))
 omega[t] = temp_optimal.x
 else:
 omega[t] = constant_omega

 PEWMA_output = PEWMA_filter(y[0:t+1],omega[t],a_prior,b_prior)
 a_predicted[t] = PEWMA_output[t,0]
 b_predicted[t] = PEWMA_output[t,1]
 a_updated[t] = PEWMA_output[t,2]
 b_updated[t] = PEWMA_output[t,3]

 dist_type = np.zeros(len(y))
 return_array = np.column_stack((dist_type, year, a_updated, b_updated,a_predicted,b_predicted))
 return return_array

def generate_samples(input_data,num_samples):
 sample_array = []
 if(input_data[0] == 1):
 sample_array = np.random.uniform(input_data[2],input_data[3],num_samples)
 elif(input_data[0] == 0):
 sample_array = np.random.gamma(input_data[2],1/input_data[3],num_samples)
 return sample_array

157

def plot_PEWMA_mean_vs_time(PEWMA, failure_data, xlim, ylim, fignum, figname, title): #, title):

 PEWMA_mean = np.zeros(len(PEWMA))
 PEWMA_95 = np.zeros(len(PEWMA))
 PEWMA_5 = np.zeros(len(PEWMA))

 #Original dims, 10, 6
 fig = plt.figure(fignum, figsize=(11,12),dpi=1100)
 for t in range(0, len(PEWMA)):
 PEWMA_95[t] = gamma.ppf(0.95,PEWMA[t,2], 0, 1/PEWMA[t,3])
 PEWMA_5[t] = gamma.ppf(0.05,PEWMA[t,2], 0, 1/PEWMA[t,3])
 PEWMA_mean[t] = PEWMA[t,2]/PEWMA[t,3]

 plt.figure(fignum)
 ax = fig.add_subplot(211)
 ax.fill_between(PEWMA[:,1], PEWMA_5, PEWMA_95, color=str(0.7), alpha='0.5')
 ax.plot(PEWMA[:,1], PEWMA_mean, linewidth=2, color=str(0))
 ax2 = ax.twinx()
 ax2.plot(failure_data[:,0], failure_data[:,1], linestyle="None",marker="o",markersize=6,color='black')
 ax.set_xlim((xlim[0],xlim[1]))
 ax2.set_ylim((ylim[0],ylim[1]))
 ax.set_ylim((ylim[0],ylim[1]))

 ax.grid(color='gray',linestyle='dashed')
 plt.setp(ax.get_yticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial")
 plt.setp(ax2.get_yticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial")
 plt.setp(ax.get_xticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial")

 ax.set_ylabel("Posterior Mean Failure Rate (Failures/Year)", fontsize=15,family="Arial")
 ax.set_xlabel("Year", fontsize=15,family="Arial")
 ax.set_ylabel("Posterior Mean Failure Rate", fontsize=15,family="Arial")
 ax2.set_ylabel("Actual Failures", fontsize=15,family="Arial")
 plt.legend(fontsize=11)
 ax.set_title(title, fontsize=15,family="Arial")

 plt.savefig(figname,dpi=600)

def plot_PEWMA_mean_vs_omega(failure_data, a_prior, b_prior, omega_values, legend_loc, ylim, fignum, figname, title):

 fig = plt.figure(fignum, figsize=(10,10),dpi=1100)

 plt.figure(fignum)
 ax = fig.add_subplot(211)

 for i in range(1,len(omega_values)):

 PEWMA_output = PEWMA(failure_data,a_prior,b_prior,0,omega_values[i])

 plt.figure(fignum)
 ax = fig.add_subplot(111)
 ax.plot(PEWMA_output[:,1], PEWMA_output[:,2]/PEWMA_output[:,3], linewidth=2, color=str(0.9 - i/6), label="Omega = " + str(omega_values[i]))
 ax.set_xlim((1987,2005))
 ax.set_ylim((0,ylim))
 plt.setp(ax.get_yticklabels(), rotation='horizontal', fontsize=10, style='normal', Family="Arial")

 PEWMA_output = PEWMA(failure_data,a_prior,b_prior,1,1)

158

 plt.figure(fignum)
 ax = fig.add_subplot(111)
 ax.plot(PEWMA_output[:,1], PEWMA_output[:,2]/PEWMA_output[:,3], linewidth=1.5, color="black", linestyle="dashed",label="Optimized")
 ax2 = ax.twinx()
 ax2.plot(failure_data[:,0], failure_data[:,1], linestyle="None",marker="o",markersize=5,color='black')
 ax.set_xlim((1987,2005))
 ax2.set_ylim((0,ylim))
 ax.set_ylim((0,ylim))

 ax.grid(color=str(0.8),linestyle='dashed')
 plt.setp(ax.get_yticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial")
 plt.setp(ax2.get_yticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial")
 plt.setp(ax.get_xticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial")

 ax.set_ylabel("Posterior Mean Failure Rate (Failures/Year)", fontsize=15,family="Arial")
 ax2.set_ylabel("Actual Failures", fontsize=15,family="Arial")
 ax.legend(loc=legend_loc, shadow=False, fontsize='x-large')
 ax.set_title(title, fontsize=15,family="Arial")

 plt.savefig(figname,dpi=600)

def plot_gamma_updating(PEWMA, a_prior, b_prior, legend_loc, xlim, fignum, figname, title):

 fig = plt.figure(fignum, figsize=(9.5,10),dpi=1100)
 ax = fig.add_subplot(212)
 plt.tight_layout()

 years = np.linspace(0,len(PEWMA),len(PEWMA))

 x = np.arange(0,xlim,0.01)
 y = np.zeros(len(x))

 norm = matplotlib.colors.Normalize(vmin=np.min(years[0]), vmax=np.max(years[len(years)-1]))
 c_m = matplotlib.cm.Greys
 s_m = matplotlib.cm.ScalarMappable(cmap=c_m, norm=norm)
 s_m.set_array([])

 for t in range(0, len(PEWMA)):

 for i in range(0,len(x)):
 y[i] = gamma.pdf(x[i],PEWMA[t,2],0,1/PEWMA[t,3])
 plt.figure(fignum)

 #ax.plot(x,y, linewidth=1.5, color=s_m.to_rgba(t))
 ax.plot(x,y, linewidth=2, color=s_m.to_rgba(t), label="t = " + str(t))

 plt.figure(fignum)
 ax.set_xlim((0,xlim))
 ax.grid(color='gray',linestyle='dashed')
 ax.set_ylabel("Probability Density", fontsize=15,family="Arial")
 ax.set_xlabel("Failure Rate (Failures/Year)", fontsize=15,family="Arial")
 plt.setp(ax.get_yticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial")
 plt.setp(ax.get_xticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial")
 #ax.legend(loc=legend_loc, shadow=False, fontsize='small')
 plt.legend(fontsize=12)
 #plt.colorbar(s_m)
 ax.set_title(title, fontsize=15,family="Arial")

159

 plt.savefig(figname,dpi=600, figsize=(8,5))

def sample_exponential_failure_times(failure_rate):

 failure_times = []
 cum_time = 0
 integer_failure_time = 0
 failure_array = zeros(12)

 cum_time = 0

 while(cum_time < 12):

 random_number = np.random.uniform(0,1)
 temp = -np.log(1 - random_number)/failure_rate
 cum_time = cum_time + temp
 integer_failure_time = int(cum_time)
 failure_times.append(cum_time)
 if(cum_time <= 12):
 failure_array[integer_failure_time] = failure_array[integer_failure_time] + 1

 return failure_array

def OREDA_gamma_fit_parameters(x1, p1, x2, p2):

 # Standardize so that x1 < x2 and p1 < p2
 if p1 > p2:
 (p1, p2) = (p2, p1)
 (x1, x2) = (x2, x1)

 # function to find roots of for gamma distribution parameters
 def objective(alpha):
 return ss.gamma.ppf(p2, alpha) / ss.gamma.ppf(p1, alpha) - x2/x1

 # The objective function we're wanting to find a root of is decreasing.
 # We need to find an interval over which is goes from positive to negative.
 left = right = 1.0
 while objective(left) < 0.0:
 left /= 2
 while objective(right) > 0.0:
 right *= 2
 alpha = optimize.bisect(objective, left, right)
 beta = x1 / ss.gamma.ppf(p1, alpha)

 return (alpha, beta)

def main():

 optimize_omega = 0
 constant_omega = 0.9
 num_samples = 5000

 N_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\N_failure_data.txt", delimiter="\t")
 M_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\M_failure_data.TXT", delimiter="\t")
 O1_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\O1_failure_data.TXT", delimiter="\t")
 O3_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\O3_failure_data.TXT", delimiter="\t")
 S_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\S_failure_data.TXT", delimiter="\t")
 step_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\step_data.TXT", delimiter="\t")

160

 L_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\L_static_data.TXT", delimiter="\t")
 A1_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A1_static_data.TXT", delimiter="\t")
 A2_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A2_static_data.TXT", delimiter="\t")
 V_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\V_static_data.TXT", delimiter="\t")

 L_static_data_10x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\L_static_data10x.TXT", delimiter="\t")
 A1_static_data_10x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A1_static_data10x.TXT", delimiter="\t")
 A2_static_data_10x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A2_static_data10x.TXT", delimiter="\t")
 V_static_data_10x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\V_static_data10x.TXT", delimiter="\t")

 L_static_data_100x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\L_static_data100x.TXT", delimiter="\t")
 A1_static_data_100x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A1_static_data100x.TXT", delimiter="\t")
 A2_static_data_100x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A2_static_data100x.TXT", delimiter="\t")
 V_static_data_100x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\V_static_data100x.TXT", delimiter="\t")

 M_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\M_static_data.TXT", delimiter="\t")
 O1_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\O1_static_data.TXT", delimiter="\t")
 O3_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\O3_static_data.TXT", delimiter="\t")

 #L_static_data = L_static_data_10x
 #A1_static_data = L_static_data_10x
 #A2_static_data = L_static_data_10x
 #V_static_data = L_static_data_10x

 N_a_prior = 2
 N_b_prior = 1
 M_a_prior = 2
 M_b_prior = 1
 O1_a_prior = 2
 O1_b_prior = 1
 O3_a_prior = 2
 O3_b_prior = 1
 S_a_prior = 1
 S_b_prior = 1

 #step_a_prior = 1
 #step_b_prior = 1

 N_PEWMA = PEWMA(N_failure_data,N_a_prior,N_b_prior,optimize_omega,constant_omega)
 M_PEWMA = PEWMA(M_failure_data,M_a_prior,M_b_prior,optimize_omega,constant_omega)
 O1_PEWMA = PEWMA(O1_failure_data,O1_a_prior,O1_b_prior,optimize_omega,constant_omega)
 O3_PEWMA = PEWMA(O3_failure_data,O3_a_prior,O3_b_prior,optimize_omega,constant_omega)
 S_PEWMA = PEWMA(S_failure_data,S_a_prior,S_b_prior,optimize_omega,constant_omega)
 #step_PEWMA = PEWMA(step_failure_data,step_a_prior,step_b_prior,optimize_omega,constant_omega)

 #plot_PEWMA_mean_vs_time(N_PEWMA, N_failure_data, [1987,2005], [0,3.5], 1, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\N_mean_and_percentiles.png', "N - Mean and 95th Percentiles")
 #plot_PEWMA_mean_vs_time(M_PEWMA, M_failure_data, [1987,2005], [0,5], 2, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\M_mean_and_percentiles.png', "M, - Mean and 95th Percentiles")
 #plot_PEWMA_mean_vs_time(O1_PEWMA, O1_failure_data, [1987,2005], [0,5], 3, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\O1_mean_and_percentiles.png', "O1 - Mean and 95th Percentiles")
 #plot_PEWMA_mean_vs_time(O3_PEWMA, O3_failure_data, [1987,2005], [0,4.5], 4, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\O3_mean_and_percentiles.png', "O3 - Mean and 95th Percentiles")
 #plot_PEWMA_mean_vs_time(S_PEWMA, S_failure_data, [1987,2005], [0,1.5], 5, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\S_mean_and_percentiles.png', "S - Mean and 95th Percentiles")
 #plot_PEWMA_mean_vs_time(_PEWMA, step_failure_data, [1,26], [0,10], 999, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\step_mean_and_percentiles.png', "Omega=" + str(constant_omega))

161

 #plot_gamma_updating(N_PEWMA, N_a_prior, N_b_prior, "upper right", 2.0, 1, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\N_gamma_updating.png', "N - Posterior Distributions")
 #plot_gamma_updating(M_PEWMA, M_a_prior, M_b_prior, "upper right", 5, 2, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_FIGURES\M_gamma_updating.png',
"M - Posterior Distributions")
 #plot_gamma_updating(O1_PEWMA, O1_a_prior, O1_b_prior, "upper right", 2.5, 3, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\O1_gamma_updating.png', "O1 - Posterior Distributions")
 #plot_gamma_updating(O3_PEWMA, O3_a_prior, O3_b_prior, "upper right", 4.5, 4, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\O3_gamma_updating.png', "O3 - Posterior Distributions")
 #plot_gamma_updating(S_PEWMA, S_a_prior, M_b_prior, "upper right", 1.5, 5, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_FIGURES\S_gamma_updating.png',
"S - Posterior Distributions")

 #omega_values = [0.5,0.6,0.7,0.8,0.9,1]
 #plot_PEWMA_mean_vs_omega(N_failure_data, N_a_prior, N_b_prior, omega_values, "upper right", 3.5, 11, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\N_omega_value_sensitivity.png', "N, Omega Sensitivities")
 #plot_PEWMA_mean_vs_omega(M_failure_data, M_a_prior, M_b_prior, omega_values, "upper left", 5, 12, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\M_omega_value_sensitivity.png', "M, Omega Sensitivities")
 #plot_PEWMA_mean_vs_omega(O1_failure_data, O1_a_prior, O1_b_prior, omega_values, "upper left", 2.5, 13, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\O1_omega_value_sensitivity.png', "O1 Omega Sensitivities")
 #plot_PEWMA_mean_vs_omega(O3_failure_data, O3_a_prior, O3_b_prior, omega_values, "upper left", 4.5, 14, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\O3_omega_value_sensitivity.png', "O3 Omega Sensitivities")
 #plot_PEWMA_mean_vs_omega(S_failure_data, S_a_prior, S_b_prior, omega_values, "upper left", 1.5, 15, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python
Scripts\PART_A_FIGURES\S_omega_value_sensitivity.png', "S Omega Sensitivities")

 M_COMBINED = np.row_stack((M_static_data,M_PEWMA))
 O1_COMBINED = np.row_stack((O1_static_data,O1_PEWMA))
 O3_COMBINED = np.row_stack((O3_static_data,O3_PEWMA))
 N_COMBINED = N_PEWMA
 S_COMBINED = S_PEWMA
 L_COMBINED = L_static_data
 A1_COMBINED = A1_static_data
 A2_COMBINED = A2_static_data
 V_COMBINED = V_static_data

 p_N = np.zeros(num_samples)
 p_M = np.zeros(num_samples)
 p_O1 = np.zeros(num_samples)
 p_O3 = np.zeros(num_samples)
 p_S = np.zeros(num_samples)
 p_L = np.zeros(num_samples)
 p_A1 = np.zeros(num_samples)
 p_A2 = np.zeros(num_samples)
 p_V = np.zeros(num_samples)
 p_SA = np.zeros(num_samples)

 p_LS = np.zeros(num_samples)
 p_A = np.zeros(num_samples)
 p_O2 = np.zeros(num_samples)
 p_O = np.zeros(num_samples)
 p_R = np.zeros(num_samples)
 p_B = np.zeros(num_samples)
 p_VC = np.zeros(num_samples)

 VC_95_percentile = np.zeros(len(N_COMBINED))
 VC_5_percentile = np.zeros(len(N_COMBINED))
 VC_mean = np.zeros(len(N_COMBINED))
 VC_mode = np.zeros(len(N_COMBINED))

162

 p_VC_mean = np.zeros(num_samples)

 plt.figure(97,figsize=(10,6),dpi=600)
 plt.figure(98,figsize=(10,6),dpi=600)
 plt.figure(99,figsize=(10,6),dpi=600)

 #plt.figure(201,figsize=(11,4.6),dpi=600)
 plt.figure(202,figsize=(10,6),dpi=600)
 plt.figure(203,figsize=(10,6),dpi=600)

 iterations = np.arange(0,num_samples,1)

 cutset_1 = zeros(num_samples)
 cutset_2 = zeros(num_samples)
 cutset_3 = zeros(num_samples)
 cutset_4 = zeros(num_samples)
 cutset_5 = zeros(num_samples)
 cutset_6 = zeros(num_samples)
 cutset_7 = zeros(num_samples)
 cutset_8 = zeros(num_samples)

 cutset_1_mean = zeros(len(N_COMBINED))
 cutset_2_mean = zeros(len(N_COMBINED))
 cutset_3_mean = zeros(len(N_COMBINED))
 cutset_4_mean = zeros(len(N_COMBINED))
 cutset_5_mean = zeros(len(N_COMBINED))
 cutset_6_mean = zeros(len(N_COMBINED))
 cutset_7_mean = zeros(len(N_COMBINED))
 cutset_8_mean = zeros(len(N_COMBINED))

 for t in range(0,len(N_COMBINED)):

 N_samples = generate_samples(N_COMBINED[t,:],num_samples)
 M_samples = generate_samples(M_COMBINED[t,:],num_samples)
 O1_samples = generate_samples(O1_COMBINED[t,:],num_samples)
 O3_samples = generate_samples(O3_COMBINED[t,:],num_samples)
 S_samples = generate_samples(S_COMBINED[t,:],num_samples)
 V_samples = generate_samples(V_COMBINED[t,:],num_samples)
 A1_samples = generate_samples(A1_COMBINED[t,:],num_samples)
 A2_samples = generate_samples(A2_COMBINED[t,:],num_samples)
 SA_samples = generate_samples(A2_COMBINED[t,:],num_samples)
 L_samples = generate_samples(L_COMBINED[t,:],num_samples)

 temp_sum = 0

 for i in range(0,num_samples):

 p_N[i] = 1-np.exp(-N_samples[i])
 p_M[i] = 1-np.exp(-M_samples[i])
 p_O1[i] = 1-np.exp(-O1_samples[i])
 p_O3[i] = 1-np.exp(-O3_samples[i])
 p_S[i] = 1-np.exp(-S_samples[i])
 p_V[i] = 1-np.exp(-V_samples[i])
 p_A1[i] = 1-np.exp(-A1_samples[i])
 p_A2[i] = 1-np.exp(-A2_samples[i])
 p_L[i] = 1-np.exp(-L_samples[i])
 p_SA[i] = 1-np.exp(-SA_samples[i])

163

 p_LS[i] = p_L[i] + p_A1[i] - p_L[i]*p_A1[i]
 p_A[i] = p_LS[i]*p_A2[i]
 p_O2[i] = p_A[i]*p_M[i]
 p_O[i] = p_O2[i] + p_O3[i] - p_O2[i]*p_O3[i]
 p_R[i] = p_O1[i] + p_V[i] - p_O1[i]*p_V[i]
 p_B[i] = p_R[i]*p_O[i] #*p_SA[i]

 cutset_1[i] = p_O1[i]*p_L[i]*p_A2[i]*p_M[i]*p_SA[i]
 cutset_2[i] = p_O1[i]*p_A1[i]*p_A2[i]*p_M[i]*p_SA[i]
 cutset_3[i] = p_L[i]*p_A2[i]*p_M[i]*p_V[i]*p_SA[i]
 cutset_4[i] = p_A1[i]*p_A2[i]*p_M[i]*p_V[i]*p_SA[i]
 cutset_5[i] = p_O1[i]*p_O3[i]*p_SA[i]
 cutset_6[i] = p_V[i]*p_O3[i]*p_SA[i]
 cutset_7[i] = p_N[i]
 cutset_8[i] = p_S[i]

 p_VC[i] = p_B[i] + p_N[i] + p_S[i] - p_B[i]*p_N[i] - p_B[i]*p_S[i] - p_N[i]*p_S[i] + p_B[i]*p_N[i]*p_S[i]

 temp_sum = temp_sum + p_VC[i]
 p_VC_mean[i] = temp_sum/i

 if(t == len(N_COMBINED)-1):
 plt.figure(9999,figsize=(10,6),dpi=600)
 plt.hist(p_VC, color="gray", bins=20)

 if(t == len(N_COMBINED)-1):
 plt.figure(97)
 plt.hist(p_VC, bins = 50, histtype='step', normed=True,linewidth=3.5,color='black', cumulative=False)
 else:
 plt.figure(97)
 plt.hist(p_VC, bins = 50, histtype='step', normed=True,linewidth=1.5,color=str(0.95 - t/20), cumulative=False)

 VC_mean[t] = statistics.mean(p_VC)
 VC_95_percentile[t] = np.percentile(p_VC,95)
 VC_5_percentile[t] = np.percentile(p_VC,5)

 plt.figure(98)
 plt.plot(iterations,p_VC_mean,color=str(0.95 - t/20),label="Time = " + str(t) + " years")
 plt.ylim((0.4,1))
 plt.legend(fontsize=10)

 cutset_1_mean[t] = statistics.mean(cutset_1)
 cutset_2_mean[t] = statistics.mean(cutset_2)
 cutset_3_mean[t] = statistics.mean(cutset_3)

 cutset_4_mean[t] = statistics.mean(cutset_4)
 cutset_5_mean[t] = statistics.mean(cutset_5)
 cutset_6_mean[t] = statistics.mean(cutset_6)
 cutset_7_mean[t] = statistics.mean(cutset_7)
 cutset_8_mean[t] = statistics.mean(cutset_8)

164

Appendix B – Python code for Bayesian Updating of Material Balance Equation

B.1 Functions

def interpolate_PVT(PVT_data,p,index):

 return_value = 0
 slope = 0

 if(p < PVT_data[0,0]): #interpolate

 slope = (PVT_data[1,index] - PVT_data[0,index])/(PVT_data[1,0] - PVT_data[0,0])
 return_value = PVT_data[0,index] + (p-PVT_data[0,0]*slope)

 elif(p > PVT_data[len(PVT_data)-1,0]): #extrapolate

 slope = (PVT_data[len(PVT_data)-1,index] - PVT_data[len(PVT_data)-2,index])/(PVT_data[len(PVT_data)-1,0] - PVT_data[len(PVT_data)-2,0])
 return_value = PVT_data[len(PVT_data)-1,index] + (p-PVT_data[len(PVT_data)-1,0]*slope)

 else:

 for i in range(0,len(PVT_data)-1):

 if(p >= PVT_data[i,0] and p <= PVT_data[i+1,0]):

 slope = (PVT_data[i+1,index] - PVT_data[i,index])/(PVT_data[i+1,0] - PVT_data[i,0])
 return_value = PVT_data[i,index] + (p-PVT_data[i,0])*slope

 return return_value

def MBAL_objective_function(pres_iteration, initial_pore_volume, initial_pressure, initial_water, MBAL_variables_prev_time_step, MBAL_production_data, PVT_data):

 pres = MBAL_variables_prev_time_step[1]
 N = MBAL_variables_prev_time_step[2]
 G = MBAL_variables_prev_time_step[3]
 W_res = MBAL_variables_prev_time_step[4]
 W_Aq = MBAL_variables_prev_time_step[6]
 pa = MBAL_variables_prev_time_step[7]
 Jw = MBAL_variables_prev_time_step[8]

 delta_t = MBAL_production_data[0]
 Np = MBAL_production_data[1]
 Gp = MBAL_production_data[2]
 Wp = MBAL_production_data[3]

 Bo2 = interpolate_PVT(PVT_data,pres_iteration,1)
 Bg2 = interpolate_PVT(PVT_data,pres_iteration,2)
 Bw2 = interpolate_PVT(PVT_data,pres_iteration,3)
 Rs2 = interpolate_PVT(PVT_data,pres_iteration,4)
 Rs1 = interpolate_PVT(PVT_data,pres,4)

 cf = 5E-5
 cw = 2.77182E-05
 ct = cf + cw

165

 aquifer_pressure = pres + (pa - pres)*exp(-Jw*(delta_t)/(ct*W_Aq))
 aquifer_influx = ct*W_Aq*(pa - pres)*(1-np.exp(-Jw*(delta_t)/(ct*W_Aq)))
 We = aquifer_influx
 delta_PV = initial_pore_volume*cf*(initial_pressure - pres_iteration)

 N_updated = N*Bo2 - Np*Bo2
 G_updated = G*Bg2 - Gp*Bg2 + N*Rs1*Bg2 - (N-Np)*Rs2*Bg2
 W_Aq_updated = W_Aq - aquifer_influx
 W_res_updated = W_res*Bw2 - Wp*Bw2 + We
 Vp_updated = initial_pore_volume - delta_PV

 if(N_updated < 0):
 N_updated = 0
 if(G_updated < 0):
 G_updated = 0
 if(W_res_updated < initial_water*Bw2):
 W_res_updated = initial_water*Bw2

 f = N_updated + G_updated + W_res_updated + delta_PV - initial_pore_volume

 return_variable = [f, pres_iteration, N_updated/Bo2, G_updated/Bg2, W_res_updated/Bw2, Vp_updated, W_Aq_updated, aquifer_pressure, Jw]

 return return_variable

def MBAL_Newton(MBAL_variables_prev_time_step, p_guess, initial_pore_volume, initial_pressure, initial_water, production_data, PVT_data):

 flag = True
 x_old = p_guess
 return_value = 0
 derivative_delta_p = 0.01
 tolerance = 0.0001
 max_count = 5
 temp_count = 0

 while (flag == True):

 p_delta_1 = x_old - derivative_delta_p
 p_delta_2 = x_old + derivative_delta_p

 f_delta_1 = MBAL_objective_function(p_delta_1, initial_pore_volume, initial_pressure, initial_water, MBAL_variables_prev_time_step, production_data, PVT_data)
 f_delta_2 = MBAL_objective_function(p_delta_2, initial_pore_volume, initial_pressure, initial_water, MBAL_variables_prev_time_step, production_data, PVT_data)
 f_x_old = MBAL_objective_function(x_old, initial_pore_volume, initial_pressure, initial_water, MBAL_variables_prev_time_step, production_data, PVT_data)

 derivative = ((f_x_old[0] - f_delta_1[0])/derivative_delta_p + (f_delta_2[0] - f_x_old[0])/derivative_delta_p)/2

 x_new = x_old - f_x_old[0]/derivative

 if(x_new < 1):
 x_new = 1
 elif(x_new > 1000):
 x_new = 1000

 if(np.abs((x_new-x_old)/x_old) < tolerance):

 return_value = f_x_old
 flag = False
 else:
 x_old = x_new

166

 temp_count = temp_count + 1

 if(temp_count > max_count):
 flag = False
 return_value = f_x_old

 return return_value

def MBAL_inverse(model_variables, production_data, PVT_data, end_time_index, Swc, return_all_data_flag):

 MBAL_variables = np.zeros((int(end_time_index/10 + 1),11))
 MBAL_production_data = np.zeros(4)

 initial_oil_volume = model_variables[0]
 initial_aquifer_volume = model_variables[1]
 initial_aquifer_index = model_variables[2]
 initial_gas_volume = model_variables[3]
 initial_reservoir_pressure = production_data[0,1]
 initial_water_volume = ((initial_oil_volume*interpolate_PVT(PVT_data, initial_reservoir_pressure, 1)/(1-Swc))*Swc)/interpolate_PVT(PVT_data, initial_reservoir_pressure, 3)
 initial_aquifer_pressure = initial_reservoir_pressure
 initial_pore_volume = initial_oil_volume*interpolate_PVT(PVT_data, initial_reservoir_pressure, 1)/(1-Swc)

 MBAL_variables[0][0] = 0
 MBAL_variables[0][1] = initial_reservoir_pressure
 MBAL_variables[0][2] = initial_oil_volume
 MBAL_variables[0][3] = initial_gas_volume
 MBAL_variables[0][4] = initial_water_volume
 MBAL_variables[0][5] = initial_pore_volume
 MBAL_variables[0][6] = initial_aquifer_volume
 MBAL_variables[0][7] = initial_aquifer_pressure
 MBAL_variables[0][8] = initial_aquifer_index
 MBAL_variables[0][9] = 0 #time
 MBAL_variables[0][10] = initial_reservoir_pressure

 p_guess = 300

 for t in range(1,int(end_time_index/10)+1):

 MBAL_production_data[0] = production_data[t,0] - production_data[t-1,0]
 MBAL_production_data[1] = (production_data[t,2] - production_data[t-1,2])
 MBAL_production_data[2] = (production_data[t,3] - production_data[t-1,3])
 MBAL_production_data[3] = production_data[t,4] - production_data[t-1,4]

 MBAL_output = MBAL_Newton(MBAL_variables[t-1,:], p_guess, initial_pore_volume, initial_reservoir_pressure, initial_water_volume, MBAL_production_data, PVT_data)

 if(isnan(MBAL_output[1]) == True):

 p_guess = 200
 elif(MBAL_output[1] < 0):
 p_guess = 200
 else:
 p_guess = MBAL_output[1]

 MBAL_variables[t][0] = MBAL_output[0]
 MBAL_variables[t][1] = MBAL_output[1]
 MBAL_variables[t][2] = MBAL_output[2]
 MBAL_variables[t][3] = MBAL_output[3]
 MBAL_variables[t][4] = MBAL_output[4]
 MBAL_variables[t][5] = MBAL_output[5]

167

 MBAL_variables[t][6] = MBAL_output[6]
 MBAL_variables[t][7] = MBAL_output[7]
 MBAL_variables[t][8] = MBAL_output[8]
 MBAL_variables[t][9] = production_data[t,0]
 MBAL_variables[t][10] = production_data[t,1]

 if(return_all_data_flag == False):
 return_variable = MBAL_variables[0,:]
 temp_count = 0
 for i in range(0,len(MBAL_variables)):
 if(temp_count == 30):
 return_variable = np.vstack((return_variable, MBAL_variables[i,:]))
 temp_count = 0
 temp_count = temp_count + 1
 else:
 return_variable = MBAL_variables

 return return_variable

def likelihood_function(production_data, PVT_data, model_variables, error, big_end_time_index, production_data_end_time, Swc):

 #Gaussian Likelihood
 n = big_end_time_index
 temp_exp_sum = 0
 const = 1/(pow(2*np.pi,n/2)*pow(error,n/2))
 MBAL_output = MBAL_inverse(model_variables, production_data, PVT_data, production_data_end_time, Swc, False)

 for t in range(1, len(MBAL_output)):

 if(isnan(MBAL_output[t,1]) == True):
 temp_exp_sum = temp_exp_sum
 elif(MBAL_output[t,1] < 0):
 temp_exp_sum = temp_exp_sum
 else:
 temp_exp_sum = temp_exp_sum + pow((MBAL_output[t,10]-MBAL_output[t,1]),2)/error

 likelihood = const*np.exp(-0.5*temp_exp_sum)

 return likelihood

def MCMC_Metropolis(Swc, model_variables, proposal_parameters, production_data, PVT_data, error, t, big_time_step, chain_length, proposal_type=0):

 markov_chain = np.zeros((chain_length,4))
 markov_mean = np.zeros((chain_length,4))
 markov_acceptance = np.zeros((chain_length,1))
 N_temp_sum = 0
 Wi_temp_sum = 0
 Jw_temp_sum = 0
 G_temp_sum = 0
 acceptance_sum = 0
 acceptance_ratio = 0

 #Proposal parameters
 N_proposal_mean = proposal_parameters[0]
 N_proposal_std = proposal_parameters[1]
 Wi_proposal_mean = proposal_parameters[2]

168

 Wi_proposal_std = proposal_parameters[3]
 Jw_proposal_mean = proposal_parameters[4]
 Jw_proposal_std = proposal_parameters[5]
 G_proposal_mean = proposal_parameters[6]
 G_proposal_std = proposal_parameters[7]

 if(model_variables[0][0] == 0):
 N = model_variables[0][1]
 N_prior_probability = 1
 elif(model_variables[0][0] == 1):
 N_prior_mean = model_variables[0][1]
 N_prior_std = model_variables[0][2]
 N = N_proposal_mean
 if(N < 0):
 N = N_prior_mean
 N_prior_probability = ss.norm.pdf(N, loc=N_prior_mean, scale=N_prior_std)

 if(model_variables[1][0] == 0):
 Wi = model_variables[1][1]
 Wi_prior_probability = 1
 elif(model_variables[1][0] == 1):
 Wi_prior_mean = model_variables[1][1]
 Wi_prior_std = model_variables[1][2]
 Wi = Wi_proposal_mean
 if(Wi < 0):
 Wi = Wi_prior_mean
 Wi_prior_probability = ss.norm.pdf(Wi, loc=Wi_prior_mean, scale=Wi_prior_std)

 if(model_variables[2][0] == 0):
 Jw = model_variables[2][1]
 Jw_prior_probability = 1
 elif(model_variables[2][0] == 1):
 Jw_prior_mean = model_variables[2][1]
 Jw_prior_std = model_variables[2][2]
 Jw = Jw_proposal_mean
 if(Jw < 0):
 Jw = Jw_prior_mean
 Jw_prior_probability = ss.norm.pdf(Jw, loc=Jw_prior_mean, scale=Jw_prior_std)

 if(model_variables[3][0] == 0):
 G = model_variables[3][1]
 G_prior_probability = 1
 elif(model_variables[3][0] == 1):
 G_prior_mean = model_variables[3][1]
 G_prior_std = model_variables[3][2]
 G = G_proposal_mean

 if(G < 0):
 G = G_prior_mean
 G_prior_probability = ss.norm.pdf(G, loc=G_prior_mean, scale=G_prior_std)

 prior = N_prior_probability*Wi_prior_probability*Jw_prior_probability*G_prior_probability
 likelihood = likelihood_function(production_data, PVT_data, [N*1000000, Wi*1000000, Jw, G*1000000], error, t, big_time_step, Swc)

 if(isnan(likelihood) == True):
 likelihood = 0

 p_x_old = likelihood*prior
 x_old = [N, Wi, Jw, G]

169

 markov_chain[0,0] = x_old[0]
 markov_chain[0,1] = x_old[1]
 markov_chain[0,2] = x_old[2]
 markov_chain[0,3] = x_old[3]

 N_temp_sum = x_old[0]
 Wi_temp_sum = x_old[1]
 Jw_temp_sum = x_old[2]
 G_temp_sum = x_old[3]

 markov_mean[0,0] = N_temp_sum
 markov_mean[0,1] = Wi_temp_sum
 markov_mean[0,2] = Jw_temp_sum
 markov_mean[0,3] = G_temp_sum

 acceptance_sum = 1
 markov_acceptance[0] = acceptance_sum

 for i in range(1,chain_length):

 if(model_variables[0][0] == 0):
 N = model_variables[0][1]
 N_prior_probability = 1
 elif(model_variables[0][0] == 1):
 N_prior_mean = model_variables[0][1]
 N_prior_std = model_variables[0][2]
 N = np.random.normal(loc=markov_chain[i-1,0], scale=N_proposal_std)
 N_prior_probability = ss.norm.pdf(N, loc=N_prior_mean, scale=N_prior_std)

 if(model_variables[1][0] == 0):
 Wi = model_variables[1][1]
 Wi_prior_probability = 1
 elif(model_variables[1][0] == 1):
 Wi_prior_mean = model_variables[1][1]
 Wi_prior_std = model_variables[1][2]
 Wi = np.random.normal(loc=markov_chain[i-1,1], scale=Wi_proposal_std)
 Wi_prior_probability = ss.norm.pdf(Wi, loc=Wi_prior_mean, scale=Wi_prior_std)

 if(model_variables[2][0] == 0):
 Jw = model_variables[2][1]
 Jw_prior_probability = 1
 elif(model_variables[2][0] == 1):
 Jw_prior_mean = model_variables[2][1]
 Jw_prior_std = model_variables[2][2]
 Jw = np.random.normal(loc=markov_chain[i-1,2], scale=Jw_proposal_std)

 Jw_prior_probability = ss.norm.pdf(Jw, loc=Jw_prior_mean, scale=Jw_prior_std)

 if(model_variables[3][0] == 0):
 G = model_variables[3][1]
 G_prior_probability = 1
 elif(model_variables[3][0] == 1):
 G_prior_mean = model_variables[3][1]
 G_prior_std = model_variables[3][2]
 G = np.random.normal(loc=markov_chain[i-1,3], scale=G_proposal_std)
 G_prior_probability = ss.norm.pdf(G, loc=G_prior_mean, scale=G_prior_std)

 x_j = [N, Wi, Jw, G]

170

 prior = N_prior_probability*Wi_prior_probability*Jw_prior_probability*G_prior_probability
 likelihood = likelihood_function(production_data, PVT_data, [N*1000000, Wi*1000000, Jw, G*1000000], error, t, big_time_step, Swc)

 if(isnan(likelihood) == True):
 likelihood = 0

 p_x_j = prior*likelihood
 if(p_x_old > 0):
 alpha = np.min((1,p_x_j/p_x_old))
 elif(p_x_old == 0):
 alpha = 0
 elif(isnan(p_x_old) == True):
 alpha = 0
 random_number = np.random.uniform(0,1)

 if(alpha >= random_number):
 x_new = x_j
 p_x_new = p_x_j
 acceptance_sum = acceptance_sum + 1
 acceptance_ratio = acceptance_sum/i
 else:
 x_new = x_old
 p_x_new = p_x_old
 acceptance_ratio = acceptance_sum/i

 markov_chain[i,0] = x_new[0]
 markov_chain[i,1] = x_new[1]
 markov_chain[i,2] = x_new[2]
 markov_chain[i,3] = x_new[3]

 N_temp_sum = N_temp_sum + x_old[0]
 Wi_temp_sum = Wi_temp_sum + x_old[1]
 Jw_temp_sum = Jw_temp_sum + x_old[2]
 G_temp_sum = G_temp_sum + x_old[3]

 markov_mean[i,0] = N_temp_sum/i
 markov_mean[i,1] = Wi_temp_sum/i
 markov_mean[i,2] = Jw_temp_sum/i
 markov_mean[i,3] = G_temp_sum/i

 markov_acceptance[i,0] = acceptance_ratio

 x_old = x_new
 p_x_old = p_x_new

 return_variable = np.hstack((markov_chain, markov_mean, markov_acceptance))

 return return_variable

def update_proposal_parameters(markov_output_incremental, spread_factor):

 N_mean, N_std = norm.fit(markov_output_incremental[:,0])
 Wi_mean, Wi_std = norm.fit(markov_output_incremental[:,1])
 Jw_mean, Jw_std = norm.fit(markov_output_incremental[:,2])
 G_mean, G_std = norm.fit(markov_output_incremental[:,3])

 N_std = N_std*spread_factor
 Wi_std = Wi_std*spread_factor

171

 Jw_std = Jw_std*spread_factor
 G_std = G_std*spread_factor

 if(N_std < 0.5):
 N_std = 1
 if(Wi_std < 0.5):
 Wi_std = 1
 if(Jw_std < 0.5):
 Jw_std = 1
 G_std = 1

 proposal_parameters = [N_mean, N_std, Wi_mean, Wi_std, Jw_mean, Jw_std, G_mean, G_std]

 return proposal_parameters

172

B.2 Main Python Routine for Grid Based Solution

def main():

 home = True

 uni_string = "C:/Users/alfchris/Google Drive/Masters/MASTERS_2015/01 - Python Scripts/"
 home_string = "C:/Users/Christian/Google Drive/Masters/MASTERS_2015/01 - Python Scripts/"

 noise = [10,20,50]

 if(home==True):
 file_dir_string = home_string
 else:
 file_dir_string = uni_string

 #Loading files
 PVT_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/PVT_data.txt", delimiter="\t")
 production_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/production_data.txt", delimiter="\t")
 end_time_index = len(production_data)
 big_time_steps = np.arange(0,4200,300)
 Swc = 0.2

 for k in range(0,3):

 if(home==True):
 file_dir_string = home_string
 else:
 file_dir_string = uni_string

 #Loading files
 PVT_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/PVT_data.txt", delimiter="\t")
 production_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/production_data.txt", delimiter="\t")

 Swc = 0.2
 #error = 20
 error = noise[k]
 end_time_index = len(production_data)
 big_time_steps = np.arange(0,4200,300)
 Wi = 444600000
 G = 0
 rho = 0
 grid_points = [100,100]
 N_bounds = [0,2,100]
 Jw_bounds = [0,25,250]
 deltas = [((N_bounds[2]-N_bounds[0])/(grid_points[0]-1)),((Jw_bounds[2]-Jw_bounds[0])/(grid_points[1]-1))]

 N_grid = np.arange(N_bounds[0],N_bounds[2],deltas[0])
 Jw_grid = np.arange(Jw_bounds[0],Jw_bounds[2],deltas[1])

 prior = np.zeros((len(N_grid),len(Jw_grid),13))
 likelihood = np.zeros((len(N_grid),len(Jw_grid), 13))
 posterior = np.zeros((len(N_grid),len(Jw_grid),13))

 likelihood_sum = 0
 posterior_sum = 0
 prior_sum = 0

173

 N_prior = 50
 Jw_prior = 150

 N_prior_std = 100
 Jw_prior_std = 1000

 const = pow((1/sqrt(2*np.pi)),2)
 C_prior = ([[N_prior_std,rho],[rho,Jw_prior_std]])
 const_prior = const/sqrt(det(C_prior))

 time = np.zeros(13)

 N_grid_mesh,Jw_grid_mesh = np.meshgrid(N_grid,Jw_grid)

 N_marginal_posterior = np.zeros((len(N_grid), len(time)))
 N_marginal_likelihood = np.zeros((len(N_grid), len(time)))
 N_marginal_prior = np.zeros((len(N_grid), len(time)))
 Jw_marginal_posterior = np.zeros((len(Jw_grid), len(time)))
 Jw_marginal_likelihood = np.zeros((len(Jw_grid), len(time)))
 Jw_marginal_prior = np.zeros((len(Jw_grid), len(time)))

 time_index = [1,13]

 for t in range(time_index[0],time_index[1]):

 time[t] = t
 #print(t)

 for i in range(0,len(N_grid)):

 for j in range(0,len(Jw_grid)):

 prior[j,i,t] = const_prior*exp(-0.5*np.dot(np.dot([N_grid[i]-N_prior,Jw_grid[j]-Jw_prior],linalg.inv(C_prior)),[N_grid[i]-N_prior,Jw_grid[j]-Jw_prior]))

 temp = likelihood_function(production_data, PVT_data, [N_grid[i]*1000000, Wi, Jw_grid[j], G], error, t, big_time_steps[t], Swc)
 if(np.isnan(temp) == True):
 likelihood[j,i,t] = 0
 else:
 likelihood[j,i,t] = temp

 posterior[j,i,t] = prior[j,i,t]*likelihood[j,i,t]

 N_marginal_posterior[i,t] = N_marginal_posterior[i,t] + posterior[j,i,t]
 N_marginal_likelihood[i,t] = N_marginal_likelihood[i,t] + likelihood[j,i,t]
 N_marginal_prior[i,t] = N_marginal_prior[i,t] + prior[j,i,t]

 Jw_marginal_posterior[j,t] = Jw_marginal_posterior[j,t] + posterior[j,i,t]
 Jw_marginal_likelihood[j,t] = Jw_marginal_likelihood[j,t] + likelihood[j,i,t]
 Jw_marginal_prior[j,t] = Jw_marginal_prior[j,t] + prior[j,i,t]

 if(likelihood[j,i,t] >= 0):
 likelihood_sum = likelihood_sum + likelihood[j,i,t]

 if(posterior[j,i,t] >= 0):
 posterior_sum = posterior_sum + posterior[j,i,t]

 if(prior[j,i,t] >= 0):

174

 prior_sum = prior_sum + prior[j,i,t]

 likelihood_normalized = likelihood/likelihood_sum
 prior_normalized = prior/prior_sum
 posterior_normalized = posterior/posterior_sum

 print(k)

 #Saving calculations to file:
 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_likelihood.npy", likelihood_normalized)
 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_prior.npy", prior_normalized)
 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_posterior.npy", posterior_normalized)

 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_N_marginal_posterior.npy", N_marginal_posterior)
 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_N_marginal_prior.npy", N_marginal_prior)
 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_N_marginal_likelihood.npy", N_marginal_likelihood)

 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_Jw_marginal_posterior.npy", Jw_marginal_posterior)
 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_Jw_marginal_prior.npy", Jw_marginal_prior)
 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_Jw_marginal_likelihood.npy", Jw_marginal_likelihood)

 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_N_grid.npy", N_grid)
 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_Jw_grid.npy", Jw_grid)

 np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_time_index.npy", time_index)

175

B.3 Main Python Routine for MCMC Based Solution

def main():

 home = True

 uni_string = "C:/Users/alfchris/Google Drive/Masters/MASTERS_2015/01 - Python Scripts/"
 home_string = "C:/Users/Christian/Google Drive/Masters/MASTERS_2015/01 - Python Scripts/"

 if(home==True):
 file_dir_string = home_string
 else:
 file_dir_string = uni_string

 #Loading files
 PVT_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/PVT_data.txt", delimiter="\t")
 production_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/production_data.txt", delimiter="\t")

 Swc = 0.2
 error = 10 #this is a variance, not a standard deviation
 chain_length = 10000
 proposal_spread_factor = 1
 num_forward_model_samples = 50

 end_time_index = len(production_data)
 big_time_steps = np.arange(0,4800,300)

 N_initial = [1,50,10] #50
 Wi_initial = [0,444.6,100] #600, 100
 Jw_initial = [1,150,31.6228] #150,31.6228 50,20
 G_initial = [0,0,0.01]

 total_markov_output = zeros((chain_length*end_time_index,4))
 model_variables = [N_initial,Wi_initial,Jw_initial,G_initial]

 N_mean_proposal = N_initial[1]
 N_std_proposal = N_initial[2]*proposal_spread_factor
 Wi_mean_proposal = Wi_initial[1]
 Wi_std_proposal = Wi_initial[2]*proposal_spread_factor
 Jw_mean_proposal = Jw_initial[1]
 Jw_std_proposal = Jw_initial[2]*proposal_spread_factor
 G_mean_proposal = G_initial[1]
 G_std_proposal = G_initial[2]*proposal_spread_factor

 proposal_parameters_incremental = [N_mean_proposal, N_std_proposal, Wi_mean_proposal, Wi_std_proposal, Jw_mean_proposal, Jw_std_proposal, G_mean_proposal, G_std_proposal]
 total_proposal_parameters = proposal_parameters_incremental

 time_index = [1,13]
 temp_count = 0

 for t in range(1,13):

 print(t)

 if(t == 1):

176

 markov_output_incremental = MCMC_Metropolis(Swc, model_variables, proposal_parameters_incremental, production_data, PVT_data, error, t, big_time_steps[t], chain_length, 0)
 total_markov_output = markov_output_incremental
 proposal_parameters_incremental = update_proposal_parameters(markov_output_incremental, proposal_spread_factor)
 total_proposal_parameters = np.vstack((total_proposal_parameters,proposal_parameters_incremental))

 else:

 markov_output_incremental = MCMC_Metropolis(Swc, model_variables, proposal_parameters_incremental, production_data, PVT_data, error, t, big_time_steps[t], chain_length, 0)
 total_markov_output = np.vstack((total_markov_output,markov_output_incremental))
 proposal_parameters_incremental = update_proposal_parameters(markov_output_incremental, proposal_spread_factor)
 total_proposal_parameters = np.vstack((total_proposal_parameters,proposal_parameters_incremental))

 if (t == 1 or t==7 or t==12):
 N_mu,N_std = norm.fit(markov_output_incremental[:,0])
 Wi_mu,Wi_std = norm.fit(markov_output_incremental[:,1])
 Jw_mu,Jw_std = norm.fit(markov_output_incremental[:,2])
 N_samples = np.random.normal(N_mu, N_std, num_forward_model_samples)
 Wi_samples = np.random.normal(Wi_mu,Wi_std,num_forward_model_samples)
 Jw_samples = np.random.normal(Jw_mu, Jw_std, num_forward_model_samples)

 for i in range(0,len(N_samples)):
 incremental_MBAL_output = MBAL_inverse([N_samples[i]*1000000,Wi_samples[i]*1000000,Jw_samples[i],0], production_data, PVT_data, big_time_steps[time_index[1]], Swc, True)
 #print(shape(incremental_MBAL_output[0:360,1]))
 #plt.figure(444)
 #plt.plot(production_data[0:360,0], incremental_MBAL_output[0:360,1])
 #print(shape(incremental_MBAL_output))
 if(temp_count == 0):
 total_MBAL_output = incremental_MBAL_output[0:360,1]
 else:
 total_MBAL_output = np.vstack((total_MBAL_output,incremental_MBAL_output[0:360,1]))
 temp_count = temp_count + 1

 #Save the output to binary files
 np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/total_markov_output.npy", total_markov_output)
 np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/total_proposal_parameters.npy", total_proposal_parameters)
 np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/chain_length.npy", chain_length)
 np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/big_time_steps.npy", big_time_steps)
 np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/time_index.npy", time_index)
 np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/num_forward_model_samples.npy", num_forward_model_samples)
 np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/total_MBAL_output.npy", total_MBAL_output)

177

Appendix C – PVT Correlations

Bubble-point pressure (Glaso 1980):

pb=10
1.7669+1.7447log(𝑝𝑏

∗)-0.30218(log(𝑝𝑏
∗))

2

𝑝𝑏
∗ = (

𝑅𝑠𝑏

𝛾𝑔
)
0.816

∙
𝑇0.172

𝛾𝐴𝑃𝐼0.989

Solution GOR (Glaso 1980):

𝑅𝑠 = 𝛾𝑔 [𝑁𝑝𝑏 (
𝛾𝐴𝑃𝐼

0.989

𝑇0.172
)]
1.2255

𝑁𝑝𝑏 = 10
[2.8869−[14.1811−3.3093𝑙𝑜𝑔(𝑝𝑏)]

0.5]

Oil Formation Volume Factor p< pbub (Glaso 1980):

𝐵𝑜𝑏 = 1 + 10
[−6.58511+2.91329𝑙𝑜𝑔(𝐵𝑜𝑏

∗)−0.27683[𝑙𝑜𝑔(𝐵𝑜𝑏
∗)]2]

𝐵𝑜𝑏
∗ = 𝑅𝑠𝑏 (

𝛾𝑔

𝛾𝑜
)
0.526

+ 0.986𝑇

Oil compressibility factor & Formation Volume Factor, p > p_bub:

𝑐𝑜 = (−1433 + 5𝑅𝑠 − 17.2𝑇 − 1180.0𝛾𝑔 + 12.61𝛾𝐴𝑃𝐼) (𝑝 ∙ 10
5)⁄

𝐵𝑜 = 𝐵𝑜𝑏𝑒𝑥𝑝(−𝑐𝑜 ∙ (𝑝 − 𝑝𝑏𝑢𝑏))

178

Dead Oil Viscosity:

𝜇𝑜𝑑 = 10
𝐴 − 1

𝑙𝑜𝑔(𝐴) = 3.0324 − 0.02023𝛾𝐴𝑃𝐼 − 1.163𝑇

Oil with dissolved gas viscosity below bubble point:

𝜇𝑜𝑏 = 𝐶𝜇𝑜𝑑
𝐵

𝐶 = 10.715(𝑅𝑠 + 100)
−0.515

𝐵 = 5.44(𝑅𝑠 + 150)
−0.338

Oil viscosity above bubble-point:

𝜇𝑜 = 𝜇𝑜𝑏(𝑝 𝑝𝑏⁄)𝐷

𝐷 = 2.6𝑝1.187𝑒𝑥𝑝(−11.513 − 8.98 ∙ 10−5𝑝)

Gas Critical Pressure and Temperature (Sutton 1985):

𝑝𝑐 = 756.8 − 131𝛾𝑔 − 3.6𝛾𝑔
2

𝑇𝑐 = 169.2 + 349.5𝛾𝑔 − 74𝛾𝑔
2

179

Gas Compressibility Factor, Z (Brill & Beggs 1974):

𝐴 = 1.39(𝑇𝑟 − 0.92)
0.5 − 0.36𝑇𝑟 − 0.10

𝐵 = (0.62 − 0.23𝑇𝑟)𝑝𝑟 + (
0.066

𝑇𝑟−0.86
− 0.037) 𝑝𝑟

2 +
0.32𝑝𝑟

6

10𝐸

𝐶 = 0.132 − 0.32𝑙𝑜𝑔(𝑇𝑟)

𝐷 = 10𝐹

𝐸 = 9(𝑇𝑟 − 1)

𝐹 = 0.3106 − 0.49𝑇𝑟 + 0.1824𝑇𝑟
2

𝑍 = 𝐴 +
1−𝐴

𝑒𝐵
+ 𝐶𝑝𝑟

𝐷

𝑝𝑟 = 𝑝 𝑝𝑐⁄ 𝑇𝑟 = 𝑇 𝑇𝑐⁄

Gas Formation Volume Factor (Real Gas Law):

𝐵𝑔 = 0.0283 ∗ 𝑍 ∗
𝑇

𝑃
 , where T = Rankine

Gas Viscosity (Lee et. al. 1966):

𝜇𝑔 = 10
−4𝑎 exp(𝑏 (𝜌𝑔 62.43⁄)

𝑐
)

𝜌𝑔 = 𝑝𝑀𝑔 (𝑍𝑅𝑇)⁄

180

𝑀𝑔 = 𝛾𝑔𝑀𝑎𝑖𝑟

Water Density (McCain 1990):

𝜌𝑤 = 62.328 + 0.438603 𝑤𝑠 + 1.60074 ∙ 10
−3 𝑤𝑠

2

Water Viscosity:

𝜇𝑤 = 𝜇𝑤𝑇 (0.9994 + 4.0295 ∙ 10
−5 𝑝 + 3.1062 ∙ 10−9 𝑝2)

𝜇𝑤𝑇 = 109.574 − 2.63951 ∙ 10
−2 𝑤𝑠 + 6.79461 ∙ 𝑤𝑠

2 + 5.47119 ∙ 10−5 𝑤𝑠
3 − 1.55586 ∙

10−6 𝑤𝑠
4

𝐷 = 1.12166 − 2.63951 ∙ 10−2 𝑤𝑠 + 6.79461 ∙ 10
−4 𝑤𝑠

2 + 5.47119 ∙ 10−5𝑤𝑠
3 − 1.55586 ∙

10−6𝑤𝑠
4

Water Compressibility (Meehan 1980):

𝐶𝑤 = 10
−6 (𝐶0 + 𝐶1𝑇 + 𝐶2𝑇

2) 𝜓𝑠

𝐶0 = 3.8546 − 0.000134 𝑝

𝐶1 = −0.01052 + 4.77 ∙ 10
−7 𝑝

𝐶2 = 3.9267 ∙ 10
−5 − 8.8 ∙ 10−10 𝑝

𝜓𝑠 = 1 + (−0.052 + 2.7 ∙ 10
−4𝑇 − 1.14 ∙ 10−6𝑇2 + 1.121 ∙ 10−9𝑇3)𝑤𝑠

181

Water Formation Volume Factor (McCain 1990):

𝐵𝑤 = (1 + ∆𝑉𝑤𝑝) ∙ (1 + ∆𝑉𝑤𝑇)

∆𝑉𝑤𝑝 = −(3.58922 ∙ 10
−7 + 1.95301 ∙ 10−9 𝑇)𝑝 − (2.25341 ∙ 10−10 + 1.72834 ∙ 10−13 𝑇)𝑝2

∆𝑉𝑤𝑝 = −1.0001 ∙ 10
−2 + 1.33391 ∙ 10−4𝑇 + 5.50654 ∙ 10−7𝑇2

𝐵𝑤 = 𝐵𝑤
𝑟𝑒𝑓𝑒𝑥𝑝 (−𝐶𝑤(𝑝 − 𝑝

𝑟𝑒𝑓))

182

Appendix D – Procedure for Generating Random Simulation Model Properties

The Weibull distribution is used to generate the porosities for the reservoir simulation grid. The

Weibull Probability density function (pdf) and cumulative density function (cdf) are defined as

shown in equation 1 and 2. To characterize Porosity variability in the synthetic model, Weibull

parameters of 𝜆 = 0.2 and 𝑘 = 12 are used. The resulting Porosity distribution is shown in

Figure E1.

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑃𝐷𝐹: 𝑓(𝑥) =
𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(𝑥 𝜆⁄)
𝑘
 𝑥 ≥ 0

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝐶𝐷𝐹: 𝑓(𝑥) = 1 − 𝑒−(
𝑥
𝜆
)
𝑘

 𝑥 ≥ 0

Porosity is often assumed to be a principal geologic parameter that permeability co-varies with.

As such, the sampling strategy employed here, starts by drawing Monte Carlo samples for

Porosity using the Weibull CDF. Once a set of Porosity samples have been obtained a second

loop is started, where for each Porosity sample a random noise component is sampled from a

Gaussian distribution (mean = 0, std=0.017) , before a corresponding permeabiltiy is calculated

by using a log K vs. Porosity characteristic line. Figure X shows the resulting Porosity vs. log K

line.

183

Figure E1 – Porosity/Permeability Sampling Process

184

185

Appendix E – Capillary Pressure Model

In general, the shape of the capillary pressure curve will depend mostly on the permeability of

the reservoir. Highly permeable reservoirs will be associated with sharper transition zones, while

less permeable reservoirs will have longer transition zones. The following logarithmic

expressions were used to generate capillary pressure curves for the simulation model in this

study.

𝑃𝑐𝑤𝑜(𝑆𝑤) = 𝛼1𝑙𝑛 (
1 − 𝑆𝑤𝑥 − 𝑆𝑤𝑐
1 − 𝑆𝑤 − 𝑆𝑜𝑟𝑤

) 𝑆𝑤 > 𝑆𝑤𝑥 𝑎𝑛𝑑 𝑆𝑤 ≤ 1 − 𝑆𝑜𝑟𝑤

𝑃𝑐𝑜𝑤(𝑆𝑤) = 𝛼2𝑙𝑛 (
1 − 𝑆𝑤𝑥 − 𝑆𝑤𝑐
𝑆𝑤 − 𝑆𝑤𝑐

) 𝑆𝑤 > 𝑆𝑤𝑐 𝑎𝑛𝑑 𝑆𝑤 ≤ 𝑆𝑤𝑥

𝛼1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝛼2 = −(
𝑆𝑤𝑥 − 𝑆𝑤𝑐

1 − 𝑆𝑤𝑥 − 𝑆𝑜𝑟𝑤
)

186

Appendix F – Corey Functions for Relative Permeability

The Corey exponents 𝑛𝑜 , 𝑛𝑤 , 𝑛𝑔 range in values from 1 to 6 and depend on the wettability

characteristics of the rock and direction of change of the wetting phase saturation. A drainage

process occurs when the wetting phase is decreasing and an imbibition process occurs when the

wetting phase increases. In this study, the reservoir is assumed to be water-wet initially, meaning

that the drainage process for the oil-water system is associated with decreasing oil saturation.

Similarly, the imbibition process for a water wet oil-water system is associated with increasing

water saturation due to either water injection or aquifer influx. If the pressure drops below the

bubble point, gas will come out of solution. For a gas-oil system that occurs after dropping below

the bubble point, the oil is assumed to be the wetting phase in the presence of connate water. The

drainage process for the oil-gas system is therefore associated with decreasing oil saturation and

the imbibition process associated with increasing oil saturation. Practically, speaking the

drainage process for an oil-gas system can be visualized as a primary or secondary gas cap

moving into the oil zone. Likewise, the imbibition process for an oil-gas system can be

visualized as the gap cap moving upwards due to pressurization of the oil column during down-

dip water injection or aquifer influx. The upwards gas gap movement is undesirable because it

leaves behind trapped gas and reduces recoverable oil (also referred to as ‘smearing’ of oil zone).

187

Oil-Water Drainage (water saturation decreasing):

𝑘𝑟𝑜(𝑆𝑤) = 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥,𝑑 ∙ (
1 − 𝑆𝑤
1 − 𝑆𝑤𝑐

)
𝑛𝑜,𝑑

 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥,𝑑 = 1.0

𝑘𝑟𝑤(𝑆𝑤) = 𝑘𝑟𝑤,𝑚𝑎𝑥,𝑑 ∙ (
𝑆𝑤 − 𝑆𝑤𝑐
1 − 𝑆𝑤𝑐

)
𝑛𝑤,𝑑

 𝑘𝑟𝑤,𝑚𝑎𝑥,𝑑 = 1.0

Oil-Water Imbibition (water saturation increasing):

𝑘𝑟𝑜(𝑆𝑤) = 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥,𝑖 ∙ (
1 − 𝑆𝑤 − 𝑆𝑜𝑟𝑤
1 − 𝑆𝑜𝑟𝑤 − 𝑆𝑤𝑐

)
𝑛𝑜𝑤,𝑖

 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥,𝑖 = 1.0

𝑘𝑟𝑤(𝑆𝑤) = 𝑘𝑟𝑤,𝑚𝑎𝑥,𝑖 ∙ (
𝑆𝑤 − 𝑆𝑜𝑟𝑤

1 − 𝑆𝑜𝑟𝑤 − 𝑆𝑤𝑐
)
𝑛𝑤,𝑖

 𝑘𝑟𝑤,𝑚𝑎𝑥 < 1.0

Oil-Gas Drainage (oil saturation decreasing):

𝑘𝑟𝑜𝑔(𝑆𝑔) = 𝑘𝑟𝑜𝑔,𝑚𝑎𝑥,𝑑 ∙ (
1 − 𝑆𝑔 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑔

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑔
)

𝑛𝑜𝑔,𝑑

 𝑘𝑟𝑜𝑔,𝑚𝑎𝑥 = 1.0

𝑘𝑟𝑔(𝑆𝑔) = 𝑘𝑟𝑔,𝑚𝑎𝑥,𝑑 ∙ (
𝑆𝑔 − 𝑆𝑔𝑐

1 − 𝑆𝑤𝑐 − 𝑆𝑔𝑐
)

𝑛𝑔,𝑑

 𝑘𝑟𝑔,𝑚𝑎𝑥 = 1.0

Oil-Gas Imbibition (oil saturation increasing):

𝑘𝑟𝑜𝑔(𝑆𝑔) = 𝑘𝑟𝑜𝑔,𝑚𝑎𝑥,𝑖 ∙ (
1 − 𝑆𝑔 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑔

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑔
)

𝑛𝑜𝑔,𝑖

 𝑘𝑟𝑜𝑔,𝑚𝑎𝑥 = 1.0

𝑘𝑟𝑔(𝑆𝑔) = 𝑘𝑟𝑔,𝑚𝑎𝑥,𝑖 ∙ (
𝑆𝑔 − 𝑆𝑔𝑡

1 − 𝑆𝑤𝑐 − 𝑆𝑔𝑡
)

𝑛𝑔,𝑑

 𝑘𝑟𝑔,𝑚𝑎𝑥 = 1.0

188

Appendix G – Eclipse Input File

RUNSPEC

TITLE

MODEL FOR ACJ MASTERS SYNTHETIC DATA

INCLUDE

DIMENS.INC /

UNIFOUT

OIL

GAS

WATER

DISGAS

METRIC

EQLDIMS

1 100 /

-- #wells #cell connections

WELLDIMS

1 10 1 1 /

START

1 'APR' 2011 /

TABDIMS

2 1 30 30 1* 30/

SATOPTS

'HYSTER' /

GRID

ECHO

GRIDFILE

 1 /

INCLUDE

COORD.INC /

INCLUDE

ZCORN.INC /

189

INCLUDE

PORO.INC /

INCLUDE

PERMX.INC /

INCLUDE

PERMY.INC /

INCLUDE

PERMZ.INC /

INIT

PROPS

PVTO

1.234771169 1 1.036596191 2.177904133 /

3.633249464 5 1.040876084 2.003647206 /

6.066287279 10 1.045363114 1.857590312 /

12.67882075 25 1.058227986 1.56361029 /

16.97507028 35 1.067055875 1.425068732 /

23.48203042 50 1.081038623 1.263476231 /

34.72165746 75 1.106665652 1.068075371 /

46.61378097 100 1.135429946 0.927375103 /

59.25354089 125 1.167465161 0.82007224 /

72.70470983 150 1.202855793 0.735005819 /

87.02103867 175 1.241669255 0.665624204 /

102.2536347 200 1.283966774 0.607781132 /

120 227.3493064 1.334219525 0.554545083

 250 1.328696557 0.571395807

 275 1.323676955 0.591791657

 300 1.319508442 0.613894154

 325 1.315991494 0.637538502

 350 1.312984429 0.662573523

 375 1.310383864 0.688856576

 400 1.308112596 0.716250111

 425 1.306111805 0.744619359

 450 1.304335894 0.773830867

 475 1.302748967 0.803751663

 500 1.301322384 0.834248875 /

/

PVDG

1 1.24075 0.01261

5 0.24692 0.01264

190

10 0.12268 0.01269

25 0.04811 0.01289

35 0.0339 0.01306

50 0.02325 0.01337

75 0.01499 0.01402

100 0.01093 0.01484

125 0.00855 0.01583

150 0.00703 0.01697

175 0.006 0.01822

200 0.00527 0.01956

227.34931 0.0047 0.02107

250 0.00435 0.02231

275 0.00405 0.02366

300 0.00381 0.02497

325 0.00362 0.02622

350 0.00347 0.02742

375 0.00334 0.02858

400 0.00323 0.0297

425 0.00313 0.03078

450 0.00305 0.03183

475 0.00297 0.03285

500 0.00291 0.03384

/

PVTW

-- Pref Bw Cw ViscW

300 1.02239 2.77182E-05 0.551284 0.00E+00 /

/

DENSITY

849.010 1071.864 0.7 /

ROCK

300 5E-05 /

SWOF

0.2 2.45986277400839E-58 1 2

0.200000005 1.9301011073869E-29 0.999999990625 1.93906843737245

0.201 6.90533966002491E-11 0.998125586059627 0.718461172766793

0.21 2.18366013427717E-07 0.981308716396119 0.488202663467388

0.22 2.47052942200657E-06 0.96273536083391 0.418887945411393

0.23 1.02119678073829E-05 0.944280686885525 0.378341434600577

0.24 2.79508497187475E-05 0.925945462756851 0.349573227355399

0.29 0.000477566471366412 0.836089063362869 0.268480205733766

0.34 0.00224198741485303 0.749343462639129 0.224296930505862

0.39 0.00652863890732859 0.665824500619345 0.193758765550744

191

0.44 0.0147885090526395 0.585662018573853 0.170397280432594

0.49 0.0286799267756021 0.509002931597648 0.151473080468741

0.54 0.0500450647136885 0.436015338032964 0.135566611005772

0.59 0.0808930424957353 0.366894164746456 0.121846498854424

0.64 0.123387002329054 0.301869176962472 0.109783700075562

0.69 0.1798338017963 0.241216804711031 0.0990206336563255

0.74 0.252675541391583 0.18527850657861 0.0893042588109607

0.79 0.34448243812698 0.134491228803219 0.0804489190768162

0.84 0.457946721791958 0.0894427190999913 0.0723143551314209

0.89 0.595877329988409 0.0509863645987824 0.0647920130076622

0.94 0.76119524130925 0.0205395959064435 0.0577961541469711

1 1 0 0.05

/

0.200000000000005 4.71782331762052E-54 0.999999999999955 2

0.200000005 2.98580377317919E-31 0.999999955000001 1.79098551207127

0.201 4.1588690589309E-11 0.991031447539367 0.57037824746562

0.210000000000005 2.62406897746886E-07 0.91309789296114 0.340119738166166

0.220000000000005 3.65501556233797E-06 0.832186274715232 0.270805020110196

0.230000000000005 1.70622387560118E-05 0.756964201418113 0.230258509299388

0.240000000000005 5.09100137063666E-05 0.687139988129428 0.201490302054214

0.290000000000005 0.0011094220230758 0.409413666613231 0.120397280432588

0.340000000000005 0.00594650491928197 0.228032229770755 0.0762140052046861

0.390000000000005 0.0189774969603207 0.116348986013036 0.0456758402495689

0.440000000000005 0.0461081784607557 0.0527248127890013 0.0223143551314189

0.490000000000005 0.0946428127598162 0.0201660949082708 0.00339015516756642

0.540000000000005 0.173218842295269 0.00593164160151488 -0.0223143551314241

0.590000000000005 0.291756643231723 0.00109875803423297 -0.0597837000755667

0.640000000000005 0.46141894042188 7.18316110914689E-05 -0.120397280432602

0.660000000000005 0.546329947435499 1.15852375029537E-05 -0.160943791243423

0.680000000000005 0.642232011705081 5.11999999999408E-07 -0.23025850929943

0.690000000000005 0.694576924669561 2.26274169979171E-08 -0.299573227355451

0.695000000000005 0.721896610789948 9.99999999995357E-10 -0.368887945411497

0.699000000000005 0.744315940855691 7.15541752783312E-13 -0.52983173665532

0.699600000000005 0.747722552374498 1.15852375022818E-14 -0.621460809843521

1 1 0 -2

/

SGOF

0 0 1 0

0.035 0 0.792766765644481 0

0.085 0.0167094768812063 0.550870981716026 0

0.135 0.0472615376511234 0.365286104871042 0

0.185 0.0868249887784407 0.227976330113399 0

0.235 0.133675815049651 0.131124179221773 0

0.285 0.186817630874193 0.0671582016022023 0

0.335 0.245578153366725 0.0287901950785023 0

192

0.385 0.309463842559586 0.00906836673681601 0

0.435 0.378092301208987 0.00146089407393082 0

0.485 0.451155875792571 0.000013390229330315 0

0.535 0.528400054545388 0 0

0.585 0.609609717838873 0 0

0.635 0.694599910227526 0 0

0.685 0.783209383857804 0 0

0.735 0.875295926423717 0 0

0.785 0.97073288527125 0 0

0.8 1 0 0

/

0 0 1 0

0.035 0 0.758988515516814 0

0.085 0 0.492602658159541 0

0.135 0 0.302431392045342 0

0.185 0 0.172780245967101 0

0.235 0 0.0895876829741821 0

0.285 0 0.0404743731401657 0

0.335 0.0108809463266352 0.0148031101771948 0

0.385 0.0491771285083817 0.00375461816423567 0

0.435 0.10797380322933 0.000429521332995507 0

0.485 0.184477298822442 1.63328046596546E-06 0

0.535 0.277055233633678 0 0

0.585 0.384580495492682 0 0

0.635 0.506205855581335 0 0

0.685 0.641260121229155 0 0

0.735 0.789192100436947 0 0

0.785 0.949537122383164 0 0

0.8 1 0 0

/

EHYSTR

1* 0 /

RPTPROPS

'PVTO' 'PVTW' 'PVDG' /

REGIONS

SATNUM

45000*1 /

IMBNUM

45000*2 /

SOLUTION

193

EQUIL

1500 250 2250 1.5 1500 0 1 0 1* /

RSVD

1500 120

9000 120

/

RPTSOL

 -- Initialisation Print Output

 --

'SWAT' 'RESTART=2' 'FIP=1' /

SUMMARY

FPR

FOPT

FGPT

FWPT

FGOR

FWCT

FOPR

FGPR

FWPR

WBHP

'OP' /

EXCEL

SCHEDULE

--

-- WELSPECS and COMPDAT define well information in both

-- standard and LGC models.

--

DEBUG

194

20* 1 /

EXTRAPMS

4 /

WELSPECS

--wname group i j BHP prefphase

'OP' 'GROUP' 20 30 2159 'OIL' /

/

COMPDAT

-- ic jc k_hi l_lo

'OP' 20 30 1 10 'OPEN' 1* 1* 0.2 1* 1* 1* /

/

WCONPROD

'OP','OPEN','LRAT' 1* 1* 1* 1750 1* 90 /

/

RPTSCHED

 'RESTART=1' 'FIP=1' 'WELLS=5' 'SUMMARY=3' 'CPU=2' 'WELSPECS' 'NEWTON=1' /

/

RPTRST

BASIC=3 FREQ=30 PBPD /

TSTEP

 400*10

/

RPTONLY

--WELTARG

--'OP' 'LRAT' 0 /

--/

RPTSCHED

 'RESTART=2' 'FIP=1' 'WELLS=1' 'SUMMARY=1' 'CPU=2' 'WELSPECS' 'NEWTON=1'

/

END

