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Abstract 

 

This research explores Bayesian updating as a tool for estimating parameters probabilistically by 

dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed. 

The first approach focuses on Bayesian updating of failure rates for primary events in fault trees. 

A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out 

Bayesian updating of failure rates for individual primary events in the fault tree. To provide a 

basis for testing of the PEWMA model, a fault tree is developed based on the Texas City 

Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to 

obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by 

evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling 

from posterior failure rate distributions. It is demonstrated that PEWMA modeling is 

advantageous over conventional conjugate Poisson-Gamma updating techniques when failure 

data is collected over long time spans.  The second approach focuses on Bayesian updating of 

parameters in non-linear forward models. Specifically, the technique is applied to the 

hydrocarbon material balance equation. In order to test the accuracy of the implemented 

Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir 

simulator.  Both structured grid and MCMC sampling based solution techniques are 

implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a 

graphical analysis shows that the implemented MCMC model displays good convergence 

properties.  A case study demonstrates that Likelihood variance affects the rate at which the 

posterior assimilates information from the measured data sequence. Error in the measured data 

significantly affects the accuracy of the posterior parameter distributions. Increasing the 
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likelihood variance mitigates random measurement errors, but casuses the overall variance of the 

posterior to increase. Bayesian updating is shown to be advantageous over deterministic 

regression techniques as it allows for incorporation of prior belief and full modeling uncertainty 

over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the 

material balance equation shows utility for incorporation into reservoir engineering workflows.  
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Chapter 2 - Symbols, Nomenclature and Abbreviations 

 

PEWMA 

yt 

μ 

n 

α 

β 

г 

ω 

VC 

B 

N 

S 

R 

O 

O1 

O2 

O3 

M 

V 

L 

LS 

Poisson Exponentially Weighted Moving Average 

number of observed Poisson counts at time t 

Expected number of Poisson counts 

number of count data points 

Gamma shape parameter 

Gamma scale parameter 

Gamma function 

PEWMA discounting factor 

Vapor cloud forms outside blowdown drum 

Blowdown drum overfills 

Release of vapor cloud from blowdown drum 

Release of vapor cloud from sewer 

Raffinate splitter tower overfills 

Operator unaware  of  raffinate splitter tower liquid level 

Operator not following regulations 

Operator unaware of raffinate liquid level due to alarm failure 

Operator unaware of raffinate liquid level due to lack of training 

Maintenance failure (sight glass) 

Raffinate splitter tower blowdown valve fails closed 

Raffinate splitter tower level indicator fails to function 

Raffinate splitter tower level indicator alarm system fails 
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A 

A1 

A2 

SA 

Raffinate splitter tower high level alarm system fails 

Alarm associated with level indicator fails to function 

Raffinate splitter tower hardwired alarm fails to function 

Severe liquid level alarm failure 

 

Chapter 3 - Symbols, Nomenclature and Abbreviations 

 

We  Aquifer influx 

p
a
  Aquifer pressure 

Wa  Aquifer volume 

Wi  Initial aquifer volume 

ct  Total Compressibility 

cw  Water Compressibility 

cr  Rock Compressibility 

no,nw,ng Corey Exponents (oil, water and gas) 

kro,krw,krg   Relative permabilities (oil, water and gas) 

kro,max,krw,max,krg,max  Maximum Relative permabilities (oil,water, gas) 

So,Sw,Sg Phase saturations (oil, water, gas) 

Swc,Sgc Connate phase saturations (water,gas) 

Sgt  Threshold gas saturation 
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Sor   Residal oil saturation 

x Parameters 

y Observed data 

f(y|x) Posterior distribution 

f(y|x) Likelihood function 

f(x) Prior distribution 

f(y)  Probability of observed data 

Cx Gaussian prior covariance matrix 

Cy Likelihood function covariance matrix 

σ Standard deviation 

g(x) Forward model 

ϵ Likelihood error/variance 

π(x) Markov Chain target distribution 

Xt Markov Chain  

T(a, b) Finite state space transition matrix 

P(Xt+1|Xt)  General state space transition kernel 

S  State Space 
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αij MCMC Acceptance Ratio 

MCMC   Markov Chain Monte Carlo 

PVT  Pressure Volume Temperature 

GOR  Gas Oil Ratio 

ρXY  Pearson′s correlation coefficient 

PVi Initial Pore Volume 

PV Pore Volume 

Boi Initial Oil Formation Volume Factor 

Bo Oil Formation Volume Factor 

N  Stock Tank Oil Originally in Place 

Wres  Stock tank water in place 

Gp  Incremental Gas produced 

Rs  Solution GOR 

We  Incremental Aquifer Influx 

Np  Incremental Oil Production 

Bg  Gas Formation Volume Factor 

Bw  Water Formation Volume Factor 
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cf  Formation Compressibility 

cw  Water compressibility 

pr  Reservoir pressure 

pa  Aquifer pressure 

Jw  Aquifer index 
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1 THESIS OVERVIEW 

 

1.1 Organization of Thesis 

 

The Bayesian updating methodology is here applied to two distinct types of parameter estimation 

problems. Chapter 2 presents an application of Bayesian updating to probabilistic Fault Tree 

Analysis, while Chapter 3 explores Bayesian updating in the context of probabilistic parameter 

fitting. Due to the uniqueness of each methodology, Chapter 2 and Chapter 3 are organized as 

independent chapters with separate introductions, research objectives, literature reviews, 

conclusions and reference lists.  

 

1.2 Relevance of this Research 

 

This research builds on previous work within the field of Bayesian updating and further 

establishes this statistical techqniue as viable engineering tool for reducing uncertainty by 

sequentially assimilating model parameters to measured data.  Chapter 2 demonstrates how a 

fault tree can be evaluated dynamically by incorporating accident precursor data into to a 

Bayesian updating framework. Despite its utility in modeling long term failure data and 

simplicity of implementation, PEWMA appears to be underutilized for dynamic risk 

assessments. This work therefore seeks to further establish probabilistic fault tree analysis with 

PEWMA updating for event rates as a viable technique for dynamic risk assessments. 
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Chapter 3 demonstrates a more general and non-linear/multivariate Bayesian updating technique, 

which is applied to estimate parameters in the hydrocarbon material balance equation by 

assimilating measured reservoir pressure data. Little work has been carried out to model material 

balance parameters in a fully probabilistic manner. This work seeks to further establish Bayesian 

material balance as a viable statistical technique for application in reservoir engineering 

workflows.  
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2 DYNAMIC FAULT TREE ANALYSIS WITH PEWMA MODELING OF EVENT RATES 

 

2.1 Introduction 

 

In this section Bayesian updating is explored in the context of probabilistic fault tree analysis and 

Bayesian updating of event failure rates. A review of relevant background theory on Quantitative 

Risk Assessment (QRA), Fault Tree Analysis (FTA), Bayesian updating and Poisson 

Exponentially Weighted Average (PEWMA) modeling of event rates is provided. A fault tree is 

developed based on the ISOM unit at the Texas City refinery incident. The resulting fault tree is 

evaluated qualitatively to generate a logic expression for the top event and is used identify safety 

improvements. PEWMA is implemented to model event failure rates as it is preferable over 

conventional conjugate Poisson-Gamma updating when accident precursor data is collected over 

long time spans. Real accident precursor data obtained from the Texas City accident reports is 

presented and used to model the event rates probabilistically with the PEWMA model. The fault 

tree top event probability is integrated through time by Monte Carlo sampling from posterior 

PEWMA event rates to provide a dynamic risk profile for the Texas City ISOM unit up until the 

time of the refinery incident.  
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2.2 Research Objectives 

 

 Implement a Poisson Exponentially Weighted Moving Average (PEWMA) model for 

modeling Poisson event rates in a Bayesian framework. 

 Develop a fault tree for the ISOM unit that caused the 2005 Texas City refinery incident.  

 Evaluate the resulting fault tree qualitatively and analyze minimal cut sets to identity 

potential safety improvements. 

 Collect accident precursor data from the published reports on the Texas City refinery 

incident and apply PEWMA to the resulting data set. 

 Evaluate the developed fault tree probabilistically through time by Monte Carlo sampling 

of the posterior distributions resulting from the PEWMA model. 
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2.3 Literature Review and Background 

 

2.3.1 Dynamic  Risk Assessment 

 

Khan and Abbasi (1998) presents a review of the available Quantitative Risk Assessment (QRA) 

tools. The most important techniques are Hazard and Operability Study (HAZOP), Failure Mode 

and Effect Analysis (FMEA), Event Tree Analysis (ETA) and Fault Tree Analysis (FTA). In 

recent years, several authors have studied Bayesian Networks (BN) as an alternative to Fault 

Tree modeling. The advantages of BN models is that are they are able to model non-exponential 

failure distributions, multi-state variables, noisy gates, common cause failures and simple 

sequentially dependent failures. Examples of applications of BN can be found in Bobbio et. al. 

(2001) and  Marquez et. al. (2010). A more comprehensive analysis technique can be obtained by 

combining Event Trees and Fault Tere using a Bow-Tie (BT) technqiue, thereby allowing 

modeling accident scenarios from causes to effects. Examples of BT modeling are provided in 

Dianous VD et. al. (2006) and Khakzad et.al (2013). Generic failure rate data from publicly 

available data sources are often used to estimate static failure rates for primary events in a fault 

tree. An example of such a source is the Offshore Reliability Data Handbook (OREDA, 2002), 

which contains failure rates for valves and level indicators in terms of calendar time. Failure 

rates can in turn be evaluated as failure probabilities by using a stochastic model such as the 

Poisson process. QRA as a whole lacks the ability to model how risk levels are changing over 

time (Kalantarnia, 2011) and the disadvantage associated with using a generic source is that the 

resulting failure rates are static and not representative of the actual system.  One of the first 

attempts at bridging this gap was made in the nuclear industry, where (Bier and Mosleh, 1990) 
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carried out a dynamic risk assessment by modeling system specific failure rates in a Bayesian 

updating framework.  Bayesian updating is a technique that has later been re-visited by several 

authors. Shafaghi (2008) demonstrates how Bayesian statistics can be used to model the Poisson 

failure rate for individual process equipment units. Meel (2006) and Kalantarnia (2011) carry out 

integrated Bayesian analyses by modeling multiple plant components simultaneously. Khakzad 

et. al. (2013) shows that the BT technique combined with Bayesian updating using accident 

precursor data can be used to facilitate a dynamic risk assessment. A problem associated with 

incorporating plant specific accident precursor data into a Baysian updating framework is that 

abnormal events are often overlooked or unnoticed by operators due to underestimation of their 

adverse impacts (Meel, 2006). Another factor to consider is that the number of recorded 

incidents depends on the quality and frequency of safety audits and inspections. Common to 

most attempts at implementing Bayesian updating for dynamic risk assessments is that conjugate 

probability distributions are used. When applicable, conjugate distributions are desirable because 

they result in closed-form expressions that are not prone to the errors associated with sampling 

based techniques. As an example, the conjugate prior to the Poisson likelihood function is the 

gamma distribution. If a gamma prior distribution does not adequately characterize prior 

knowledge for a particular component, sampling based techniques are required (Thodi, 2010).  

Lindhe et. al. (2009) shows how probabilistic Fault Tree analysis can be used as part of risk-

based decision making and uses a Monte Carlo techqniue for top event integration with all 

primary events modeled as random variables.  
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2.3.2 Fault Tree Analysis 

 

Fault Tree Analysis (FTA) is a deductive, top-down technique used to determine the root causes 

leading to a defined failure event, often called a top event. It is a standardized technique with 

designated symbols for expressing events and logical interrelationships. The OR gate is used 

when the output event requires one or more of the input events occur, while the AND gate is 

used when the output event requires all input events to occur (Figure 1). A square box signifies 

events that are consequences resulting from AND/OR gates. 

 

 

Figure 1 - Fault Tree Gate Types 

 

A circle indicates an independent primary failure event that does not require further 

development. A diamond shape indicates an event that has not been fully developed because the 

underlying causes are not fully known. An inhibit gate is used when a particular condition must 

be satisfied in order to allow a fault to propagate. Finally, a house symbol denotes a normally 

occurring event that is not a fault. The circle, diamond, inhibit gate and house symbols are all 

illustrated in (Figure 2). A more comprehensive list of fault tree symbols can be found in 

Atwood (2003). 



24 

 

 

Figure 2 - Common Fault Tree Symbols 

 

Fault tree analysis does not account for all possible system failures, but rather focuses on a 

particular failure mode. The development of the fault tree is a process where possible root causes 

within the defined system boundary are mapped out by working backwards from the top event. 

As a graphical aid, a Fault Tree allows system management and non-experts to visualize hazards. 

A fault tree can also be evaluated in a probabilistic manner by incorporating component failure 

data. A challenge with Fault Tree Analysis is that it does not easily allow for common-cause 

modeling, but rather assumes all primary events to be independent. Failures can be classified as 

primary, secondary or command faults. Primary faults occur in an environment the component 

was qualified for. Secondary faults occur when component fails in an environment it was not 

designed for. Finally a command fault occurs if a component operates correctly but at the wrong 

time. A qualitative fault tree evaluation involves developing a logical expression for the top 

event as a function of the primary fault events. A minimal cut-set requires all its associated 

primary faults to occur for system failure to occur (Vesely et. al., 1981). Smaller fault trees can 
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be evaluated manually, but for more complex trees computer codes are required in order to 

determine the minimal cut sets. By ordering the minimal cut-sets according to their size a 

qualitative measure of realative importance can be established.  Quantitative Fault Tree 

evaluation requires estimation of the failure probabilities associated with the primary events in 

the Fault Tree. A typical approach is to calculate the failure probability for each primary event in 

the Fault Tree as the Poisson probability of observing at least one failure over the next time step 

(Eq.  1). All events in the Fault Tree are assumed to be independent and the top event probability 

is calculated by evaluating the associated logic expressions resulting from a series of AND/OR 

gates (Figure 3). Sample logic expression for AND/OR gates are provided in (Eq.  2 and Eq.  3). 

 

𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 1 −  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋 = 0) = 1 −
𝑒−𝜇𝜇0

0!
= 1 − 𝑒−𝜇 Eq.  1 

.  

Figure 3 - AND/OR Gates 

 

𝑃(𝐸1 ∩ 𝐸2) = 𝑃(𝐸1) ∙ 𝑃(𝐸2) Eq.  2 

 

𝑃(𝐸1 ∪ 𝐸2) = 𝑃(𝐸1) + 𝑃(𝐸2) − 𝑃(𝐸1) ∙ 𝑃(𝐸2) Eq.  3 
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2.3.3 Monte Carlo Integration of Top Event Probability 

 

Because failure rates are modeled as random variables, each term in the expression for the top 

event is associated with a probability distribution. Algebraic methods have been developed for 

determining the probability distribution function for combinations of random variables, but exact 

solutions are usually only possible for simple cases such as the sum of two independent 

distributions, which is also known as a convolution (Vose, 2008). A more generally applicable 

solution approach is to apply Monte Carlo sampling to integrate the top event numerically. A 

classic example that is used to explain Monte Carlo sampling is the problem of evaluating the 

expectation of a function (Eq.  4), where 𝑥 is a vector of random variables distributed according 

to 𝑓(𝑥). This integral can be numerically approximated by drawing independent and identically 

distributed (i.i.d.) random samples from 𝑓(𝑥) (Eq.  5). By the law large numbers, the accuracy of 

the approximation will improve with the number of samples drawn (Eq.  6).  

 

𝐸[ℎ(𝑥)] = ∫ℎ(𝑥)𝑓(𝑥)𝑑𝑥 Eq.  4 

  

𝐸[ℎ(𝑥)] ≈ ℎ̅𝑁 =
1

𝑁
∑ℎ(𝑋𝑛)

𝑁

𝑖

 Eq.  5 

  

ℎ̅𝑁 =
1

𝑁
∑ℎ(𝑋𝑖)

𝑁

𝑖

→ 𝐸[ℎ(𝑥)]  𝑎𝑠 𝑁 → ∞ Eq.  6 
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2.3.4 Poisson Process 

 

The Poisson process (Vose, 2008) is a stochastic model that has been widely applied to count 

processes, such as the number of calls arriving at a call center. The Poisson distribution is fully 

characterized by a single variable, i.e., the expected number of event counts over a given time 

period and yields the probability of observing a discrete number of counts given a rate and a 

given length of exposure time (Eq.  7). It can be formulated as a likelihood function for use in 

Bayesian Updating by setting 𝑦𝑡 equal to the observed number of counts and treating the 

expected number of failures 𝜇 as a random variable. 

 

𝑝𝑦𝑡 =
𝑒−𝜇𝜇𝑦𝑡

𝑦𝑡!
    𝑓𝑜𝑟 𝑦𝑡 = 0,1, … , 𝑛                          

Eq.  7 

 

2.3.5 Poisson Exponentially Moving Average Model 

 

The posterior distribution is closed-form if the prior and likelihood function fall in a conjugate 

pair of probability distributions. Combining a gamma prior distribution (Eq.  8) with a Poisson 

likelihood function (Eq.  9) results in a posterior gamma distribution (Eq.  10). The closed-form 

update equations for the posterior Gamma shape 𝛼 and scale 𝛽 factors shown in Eq.  11 and Eq.  

12. 

 

𝑃𝑟𝑖𝑜𝑟 =  𝑃(μ𝑡; 𝛼, 𝛽) =  
𝑒−𝛽𝜇𝜇𝑡

𝛼−1

г(𝛼)𝛽−𝛼
 

Eq.  8 
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𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑃(𝑦𝑡|μ𝑡) = μ𝑡
𝑦𝑡𝑒−µ𝑡/𝑦𝑡! Eq.  9 

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  𝑃(𝑦𝑡|μ𝑡) ∙ 𝑃(μ𝑡; 𝛼, 𝛽) =
μ𝑡
𝑦𝑡𝑒−µ𝑡

𝑦𝑡!
∙
𝑒−𝛽𝜇𝜇𝑡

𝛼−1

г(𝛼)𝛽−𝛼
 

Eq.  10 

 

𝛼𝑝𝑜𝑠𝑡 = 𝛼𝑡 = 𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑦𝑡 Eq.  11 

 

𝛽𝑝𝑜𝑠𝑡 = 𝛽𝑡 = 𝛽𝑝𝑟𝑖𝑜𝑟 + 𝑡 Eq.  12 

 

A drawback with the traditional conjugate Poisson-Gamma approach is that all events are given 

equal weight. This is undesirable when modeling event counts over long time spans where the 

underlying event rate is likely to be changing.  To mitigate this problem, Harvey (1989) 

introduced the Poisson Exponentially Weighted Moving Average (PEWMA), which models 

Poisson time series count data using a state space solution similar to that of the Kalman filter. 

The PEWMA model has been applied to count time series problems in political science (Brandt, 

1998), disease control (Holloway, 2011) and nuclear risk analysis (Rangel, 2012).  PEWMA 

reduces the weight associated with past data points (Eq.  13 and Eq.  14) by means of a 

discounting factor 𝜔 which controls the responsiveness of the model to measured data. Harvey 

uses conjugate Gamma/Poisson distributions and thereby retains a closed form solution. The 

mean is constant over the updating step, while the variance increases (Eq.  15 and Eq.  16). When 

count observations 𝑦𝑡 become available, the updating step is applied and results in Eq.  17 and 

Eq.  18. 

 



29 

 

𝛼𝑡|𝑡−1 = 𝜔𝛼𝑡−1 Eq.  13 

  

𝛽𝑡|𝑡−1 = 𝜔𝛽𝑡−1 Eq.  14 

  

𝐸(𝜇𝑡|𝑦𝑡−1) =
𝛼𝑡|𝑡−1

𝛽𝑡|𝑡−1
=
𝜔𝛼𝑡−1
𝜔𝛽𝑡−1

=
𝛼𝑡−1
𝛽𝑡−1

= 𝐸(𝜇𝑡−1|𝑦𝑡−1) Eq.  15 

  

𝑉𝑎𝑟(𝜇𝑡|𝑦𝑡−1) =
𝛼𝑡|𝑡−1

𝛽𝑡|𝑡−1
2 =

𝜔𝛼𝑡−1
(𝜔𝛽𝑡−1)2

=
𝛼𝑡−1
𝜔𝛽𝑡−1

=
𝑉𝑎𝑟(𝜇𝑡−1|𝑦𝑡−1)

𝜔
 Eq.  16 

 

𝛼𝑡 = 𝛼𝑡|𝑡−1 + 𝑦𝑡 = 𝜔𝛼𝑡−1 + 𝑦𝑡 Eq.  17 

 

𝛽𝑡 = 𝛽𝑡|𝑡−1 + 𝑡 = 𝜔𝛽𝑡−1 + 𝑡 Eq.  18 

 

From a Bayesian perspective, one could apply a distribution on 𝜔 as well, but this would remove 

the natural conjugate form and prevent a closed-form solution. A common approach is therefore 

to rather use maximum a posteriori or maximum likelihood techniques to estimate hyper-

parameters such as 𝜔 (Harvey, 1989). Here, the log is taken of the posterior predictive 

distribution (Eq.  19). The function is then optimized with respect to 𝜔 to determine its optimal 

value before moving to the next updating step. Note that the maximum likelihood solution for 𝜔 

simply provides an optimal fit between observed data and model output. This is not necessarily a 

conservative approach. The analyst may therefore want to experiment with different 𝜔 values 

and assess how past values are weighted before deciding to optimize. 
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log(𝐿(𝜔)) = ∑ {log𝛤(𝑎𝑡|𝑡−1 + 𝑦𝑡) − log(𝑦𝑡!) − 𝑙𝑜𝑔𝛤(𝑎𝑡|𝑡−1)

𝑇

𝑡=𝜏+1

+ 𝑎𝑡|𝑡−1𝑙𝑜𝑔𝑏𝑡|𝑡−1 − (𝑎𝑡|𝑡−1 + 𝑦𝑡)log (1 + 𝑏𝑡|𝑡−1)} 

Eq.  19 

 

Prior data is most valuable initially before a significant amount failure data becomes available. 

As an increasing amount of failure data is incorporated, the measured data will eventually 

dominate the posterior. The prior information is overwhelmed by the likelihood function more 

rapidly for smaller 𝜔 values, which are associated with heavier discounting of past data points. 

The prior probability distribution can be developed based on expert opinion or historic data from 

similar process installations. In cases where an uninformative prior is sought, Jeffrey’s prior is 

often used (Atwood et. al., 2003). For the Gamma distribution, Jeffrey’s prior is obtained when 

the shape and scale parameters of the gamma distribution are set to αprior = 0.5 and βprior = 0. 

When plant specific data is not available, generic data from published sources can be used 

instead. An example of generic failure rate data obtained from the Offshore Reliability Data 

Handbook (OREDA, 2002) which contains failure rates for valves and level indicators in terms 

of calendar time. Sample data from OREDA (2002) is provided in Table 1. 
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Table 1 - Generic Failure Rates from OREDA 

Failure Mode Failure rate per (10^6 hours) 

  Lower Mean Upper  SD 

Erratic output from level 

indicator – Taxonomy No 

4.2.2.3 0.05 3.8 12.22 4.42 

Blowdown valve fail to open 

on demand – Taxonomy No. 

4.4.1 0 4.66 22.67 9.43 

Alarm failure to function on 

demand – Taxonomy No 

4.2.2 0 0.46 1.72 0.63 
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2.4 Model Implementation 

 

2.4.1 PEWMA 

 

For this study, the PEWMA model is implemented using the Python scripting language. A 

summary of the implemented code is provided in Algorithm 1. The complete set of Python 

scripts used to carry out the PEWMA analysis is provided in Appendix A. The PEWMA code is 

progressed through time and updates posterior Gamma parameters (𝛼, 𝛽) for all primary events 

that have failure data available. For events that do not have failure data available the gamma 

parameters retain prior distribution values (𝛼0, 𝛽0) throughout. Figure 4 and Figure 5 show how 

the PEWMA filter responds to a generic step function. Smaller 𝜔 values discount older points 

more heavily and lead to a faster response in the modeled failure rate.  As such, 𝜔 models the 

amount of noise associated with the process, which is demonstrated in Figure 6. 
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Algorithm 1 - PEWMA 

1 𝐿𝑜𝑎𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑣𝑒𝑛𝑡 𝑖 − 𝑦𝑡(𝑖) 

2 𝐿𝑜𝑎𝑑 𝑝𝑟𝑖𝑜𝑟 𝑔𝑎𝑚𝑚𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑣𝑒𝑛𝑡 𝑖 −  𝛼0
(𝑖)
 𝑎𝑛𝑑 𝛽0

(𝑖)
 

2 𝐼𝑓 (𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑜𝑚𝑒𝑔𝑎 = 𝐹𝑎𝑙𝑠𝑒) 

3  𝑆𝑒𝑡 𝜔 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 ~ (0,1] 

4 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛𝑒𝑣𝑒𝑚𝑡𝑠 

5  𝐹𝑜𝑟 𝑡 = 1 𝑡𝑜 𝑛𝑡𝑖𝑚𝑒(𝑖) 

6   𝐼𝑓(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑜𝑚𝑒𝑔𝑎 = 𝑇𝑟𝑢𝑒) 

7    

𝜔 = 𝑠𝑐𝑖𝑝𝑦. 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒.𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒( ∑ {log𝛤(𝑎𝑡|𝑡−1
(𝑖) + 𝑦𝑡

(𝑖)) − log(𝑦𝑡
(𝑖)!)

𝑇

𝑡=𝜏+1

− 𝑙𝑜𝑔𝛤(𝑎𝑡|𝑡−1
(𝑖)) + 𝑎𝑡|𝑡−1

(𝑖)𝑙𝑜𝑔𝑏𝑡|𝑡−1
(𝑖) − (𝑎𝑡|𝑡−1

(𝑖) + 𝑦𝑡
(𝑖))log (1

+ 𝑏𝑡|𝑡−1
(𝑖))}) 

8   𝐸𝑙𝑠𝑒 

9    𝛼𝑡
(𝑖)
= 𝜔𝛼𝑡−1

(𝑖)
+ 𝑦𝑡

(𝑖)
 

10    𝛽𝑡
(𝑖)
= 𝜔𝛽𝑡−1

(𝑖)
+ 𝑡 

11 𝐸𝑁𝐷 
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Figure 4 - Influence of PEWMA weighting factor 

 

Figure 5 - PEWMA responsiveness 
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Figure 6 - Influence of omega factor 
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2.4.2 Top-Event Integration 

 

A visual overview of the procedure for integrating the Fault Tree top event probability at each 

Bayesian updating step is provided in Figure 7. This figure emphasizes the fact that the process 

starts with PEWMA modeling of failure rates associated with the primary events in the fault tree. 

The posterior distributions for the primary events are then sampled and used to integrate the 

probability for the top event. A summary of the Python script implemented to carry out Monte 

Carlo integration of the top event probability is provided in Algorithm 2.  

 

Algorithm 2 - Monte Carlo Top Event Integration 

1 𝐿𝑜𝑎𝑑 𝐺𝑎𝑚𝑚𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝛼(𝑖, 𝑡) 𝑎𝑛𝑑 𝛽(𝑖, 𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑣𝑒𝑛𝑡𝑠 

2 𝐹𝑜𝑟 𝑡 = 0 𝑡𝑜 𝑛𝑡𝑖𝑚𝑒 

3  𝐹𝑜𝑟 𝑠 = 1 𝑡𝑜 𝑛𝑀𝐶 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

4   𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛𝑒𝑣𝑒𝑛𝑡𝑠 

5    𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 𝑆𝑎𝑚𝑝𝑙𝑒(𝑠, 𝑖) ~ 𝐺𝑎𝑚𝑚𝑎 (𝛼(𝑖, 𝑡), 𝛽(𝑖, 𝑡)) 

6    𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑠, 𝑖) = 1 − exp [𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 𝑆𝑎𝑚𝑝𝑙𝑒(𝑠, 𝑖)] 

7   𝑇𝑜𝑝 𝐸𝑣𝑒𝑛𝑡 𝑃𝑟𝑜𝑏(𝑠) = 𝑓[𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑠, 𝑖)] 

8  𝑀𝑒𝑎𝑛(𝑡) = 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠.𝑚𝑒𝑎𝑛(𝑃(𝑇𝑜𝑝 𝐸𝑣𝑒𝑛𝑡)) 

9  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑡) = 𝑛𝑢𝑚𝑝𝑦. 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑃(𝑇𝑜𝑝 𝐸𝑣𝑒𝑛𝑡 𝑃𝑟𝑜𝑏), 0.95)  

10 𝐸𝑁𝐷 
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Figure 7 - Monte Carlo Sampling Procedure for Integration Top Event Probability 
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2.5 Case Study - Texas City Fault Tree Analysis 

 

2.5.1 Development of Texas City Fault Tree 

 

The BP Texas City Oil Refinery incident occurred on March 23 2005 in the isomerization unit 

(ISOM) of the oil refinery, which converts linear molecules to higher-octane branched molecules 

for blending into gasoline or feed to alkylation units (CSB, 2007). The incident was an explosion 

caused by heavier–than-air hydrocarbon vapours combusting after coming into contact with an 

ignition source (BP, 2005 and CSB, 2007). Hydrocarbon vapors were released due to overfilling 

of liquids in the raffinate splitter tower, causing both hydrocarbon liquids and vapors to overflow 

into the blowdown drum and discharge into the atmosphere (BP, 2005 and CSB, 2007). An 

overview of the unit taken from the U.S. Chemical and Hazard Investigation Board (CSB, 2007) 

is shown in Figure 8. Investigations carried out by BP and the U.S. Chemical Safety and Hazard 

Investigation Board (BP, 2005 and CSB, 2007) revealed that the incident occurred due to a 

complex series of events involving maintenance issues, lack of training of key personnel, lack of 

safety culture, instrumentation and equipment failure and unsafe designs.  
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Figure 8 - Overview of the Texas City Refinery ISOM Unit (CSB 2007) 

 

The top event for the Texas City refinery’s ISOM unit is defined as the formation of a flammable 

vapor cloud outside the blowdown drum. The primary fault leading to the top event is defined as 

the release of a flammable vapour cloud from the blowdown drum during normal operations. The 

sewer release event is not developed further in this Fault Tree because the system boundary is 

limited to the ISOM unit. The only fault which is developed further for this gate is the event 

which caused the Texas City incident, namely the blowdown drum overfilling with hydrocarbon 

liquids and vapours.  

 

The raffinate splitter tower can potentially overflow with liquid hydrocarbons in two different 

manners: 1.) The first scenario occurred during the Texas City incident and involved the 

blowdown valve being closed while continuous feed was introduced to the tower from the 
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Aromatics Recovery Unit (ARU). At some point after the splitter tower was filled far beyond the 

allowable limit, the operator deemed that the tower was likely to be overfilled and ordered 

bottom hydrocarbons to be taken out of the tower. This caused overheated bottom hydrocarbons 

to exchange heat with the incoming feed, which in turn vaporized on its way into the raffinate 

splitter tower. The vaporization of the incoming feed caused the raffinate splitter tower to 

overflow and a combination of liquids and vapours to flow into the tower’s overhead line and 

consequently into the blowdown drum. 2.) The second scenario occurs if the liquid level is 

allowed to rise continuously for a sufficient amount of time, eventually causing the tower to 

overfill with single-phase liquids. These two scenarios are similar in that the former simply 

represents an accelerated version of the latter, whereby heat exchange and vaporization of 

incoming feed caused the raffinate splitter tower to overfill earlier than it would have had the 

operators decided not to open the bottom valve late in the start-up of the raffinate splitter tower. 

In this Fault Tree the second scenario is adopted. 

 

The liquid level in the raffinate splitter tower will continuously rise if the inflow rate exceeds the 

outflow rate from the tower and the operator does not take action to either stop the feed into the 

raffinate splitter tower or to open the bottom valve. Continuous feed to the raffinate splitter tower 

is not considered to be a fault, but rather an external event that occurs during normal operations 

and it is therefore indicated with a house symbol. As a worst case scenario, it is assumed that 

liquids can only leave the tower through the bottom valve, since a high liquid level would 

effectively prevent vapor formation and subsequent flow of vapors into to the tower’s overhead 

lines. It is also assumed that the operator will not take action to either stop feed into the raffinate 

splitter tower or to open the bottom valve of the splitter tower if he/she is unaware of the rising 
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liquid level. The operator being unaware of the liquid level due to instrumentation failure is 

considered an intermediate fault that can be attributed to the simultaneous occurrence of the 

raffinate tower’s alarm system failing and the level sight glass associated with the raffinate 

splitter tower being impossible to see through. The raffinate tower’s alarm system is assumed to 

fail when both the alarm system associated with the level indicator fails and the redundant hard-

wired high level alarm fails. The operator being unaware of the rising liquid level can be 

attributed to a lack of system understanding due to insufficient personnel training. The operator 

being unaware of the liquid level due to being unconscious is an undeveloped fault which is 

included for completeness, though is not developed further here.  The bottom valve of the 

raffinate splitter tower being closed during start-up is assumed to be an intermediate fault caused 

by the operator not following start-up regulations or the bottom valve failing in the closed 

position. The complete fault tree is shown in Figure 9. 
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Figure 9 - Complete Texas City ISOM unit Fault Tree 
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2.5.2 Qualitative Analysis of Texas City Fault Tree 

 

For the purpose of developing a fault tree that can be evaluated qualitatively in terms of minimal 

cut-sets, only the primary events are included here (Figure 10). Starting with the top event and 

working downwards, the logical expressions are developed as follows from Eq.  20 to Eq.  25. 

The final logical expression for the top event is provided in Eq.  26. 

 

𝑉𝐶 = 𝐵 + 𝑁 + 𝑆 Eq.  20 

𝑉𝐶 = (𝑅 ∙ 𝑂) + 𝑁 + 𝑆 Eq.  21 

𝑉𝐶 = (𝑂1 + 𝑉) ∙ (𝑂2 + 𝑂3) + 𝑁 + 𝑆 Eq.  22 

𝑉𝐶 = (𝑂1 + 𝑉) ∙ ((𝐴 ∙ 𝑀) + 𝑂3) + 𝑁 + 𝑆 Eq.  23 

𝑉𝐶 = (𝑂1 + 𝑉) ∙ (((𝐴2 ∙ 𝐿𝑆) ∙ 𝑀) + 𝑂3) + 𝑁 + 𝑆 Eq.  24 

𝑉𝐶 = (𝑂1 + 𝑉) ∙ (((𝐴2 ∙ (𝐿 + 𝐴1)) ∙ 𝑀) + 𝑂3) + 𝑁 + 𝑆 Eq.  25 

 

𝑉𝐶 = (𝑂1 ∙ 𝐿 ∙ 𝐴2 ∙ 𝑀) + (𝑂1 ∙ 𝑂3) + (𝑂1 ∙ 𝐴1 ∙ 𝐴2 ∙ 𝑀) + (𝐿 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑉)

+ (𝐴1 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑉)  + (𝑉 ∙ 𝑂3) + 𝑁 + 𝑆 

Eq.  26 

 

The failure probability often decreases by orders of magnitude as the size of the cut sets increase. 

The ranking of the minimal cut sets according to size therefore provides an indication of relative 

failure probabilities and the importance of each cut set. The smallest cut sets are placed at the top 

of the list, and the larger cuts-sets follow accordingly below. 
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Minimal cut-sets: 

 

𝑁 

𝑆 

(𝑉 ∙ 𝑂3) 

(𝑂1 ∙ 𝑂3) 

(𝐴1 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑉) 

(𝐿 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑉) 

(𝑂1 ∙ 𝐴1 ∙ 𝐴2 ∙ 𝑀) 

 (𝑂1 ∙ 𝐿 ∙ 𝐴2 ∙ 𝑀) 

 

From the above minimal cut-sets it is clear that the most important events are: 1) the release of a 

flammable vapor cloud from the blowdown drum during normal operation (N) and 2) the release 

of an excessive amount of flammable hydrocarbons from the blowdown drum through the sewer 

system (S). As such, the reliability of the system can be improved by: 1) installing a pressure 

vessel and flare to the blowdown drum to reduce the probability of vapor cloud release 2) 

enhancing the sewer design system to prevent a vapor cloud from forming after dumping of 

hydrocarbons.  

 

The second order cut sets involve the operator being unaware of the rising liquid level in the 

raffinate splitter tower due to a lack of training (O3) and understanding of the system. This can 

be prevented by installing a severe overfilling alarm connected to an automatic shut-down 

mechanism. The improved design is incorporated into the Fault Tree and is shown in (Figure 10). 

The severe overfilling alarm affects all cut sets except for the events N (Vapour release from 
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blowdown drum) and S (vapour release from sewer system) and is expressed in (Eq.  27). 

Overall, this case study demonstrates that a qualitative assessment of the cut sets can reveal 

valuable design improvements prior to a quantitative assessment. 

 

𝑉𝐶 =  (𝑂1 ∙ 𝐿 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑆𝐴)  + (𝑂1 ∙ 𝑂3 ∙ 𝑆𝐴)  + (𝑂1 ∙ 𝐴1 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑆𝐴)  + (𝐿 ∙ 𝐴2

∙ 𝑀 ∙ 𝑉 ∙ 𝑆𝐴)  + (𝐴1 ∙ 𝐴2 ∙ 𝑀 ∙ 𝑉 ∙ 𝑆𝐴)  + (𝑉 ∙ 𝑂3 ∙ 𝑆𝐴)  +  𝑁 +  𝑆 
Eq.  27 
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Figure 10 - Simplified Fault Tree including improved alarm system (SA) 

 

 

 

 

 

VC = Vapor cloud forms outside blowdown drum 

B = Blowdown drum overfills 

N = Release of vapor cloud from blowdown drum 

S = Release of vapor cloud from sewer 

R = Raffinate splitter tower overfills 

O = Operator unaware  of  raffinate splitter tower liquid level 

O1 = Operator not following regulations 

O2 = Operator unaware of raffinate liquid level due to alarm failure 

O3 = Operator unaware of raffinate liquid level due to lack of training 

M = Maintenance failure (sight glass) 

V = Raffinate splitter tower blowdown valve fails closed 

L = Raffinate splitter tower level indicator fails to function 

LS = Raffinate splitter tower level indicator alarm system fails 

A = Raffinate splitter tower high level alarm system fails 

A1 = Alarm associated with level indicator fails to function 

A2 = Raffinate splitter tower hardwired alarm fails to function 

SA = Severe liquid level alarm failure 
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2.5.3 PEWMA Updating using Texas City Failure Data 

 

Here, the failure rates for primary events in the Texas City Fault Tree are modeled using 

PEWMA with accident precursor data from the CSB (2007) report. The data set provided in CSB 

(2007) is not likely to be complete, however, does illustrate how plant specific parameter 

estimation can be used as part of dynamic risk assessments. The PEWMA model is applied to 

model how the failure rate is changing over time for the individual primary events. For this case 

study, a PEWMA omega value 𝜔 = 0.9 is used, which means that data points that are 5 years old 

are discounted by about 40%, while data points 10 years old are discounted by about 70%. A 

summary of the Gamma prior parameters used in the Texas City PEWMA model is shown in 

Table 2. 

 

Table 2 - Prior Gamma Parameters for PEWMA Analysis 

𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝜶 𝜷 𝑴𝒆𝒂𝒏 =  𝜶 𝜷⁄  𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆 = 𝜶 𝜷𝟐⁄  

N 2 1 2 2 

S  1 1 1 1 

O1 2 1 1 2 

O3 2 1 2 2 

M 2 1 2 2 
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2.5.3.1 Blowdown drum vapour cloud release rate (N) 

 

Exposure time for the blowdown drum is counted from 1987 when the last major capacity 

increase to the splitter tower was made. The incident data is summarized in Table 3. Shortly after 

the capacity increase, safer alternatives to the blowdown drum was proposed by the Amoco 

Refining and Planning Department (ARPD) and the Occupational Safety and Health 

Administration (OSHA), however due to cost constraints the unsafe blowdown drum design 

remained in place until the Texas City incident in 2005 (CSB report, 2007).  Figure 11 shows the 

mean and 95
th

 percentiles vs. time and the posterior gamma distributions through time. 

 

Table 3 - Blowdown drum vapour cloud release incidents (B) 

Incident Description Year t (years) 𝒚𝒕 (failures) 

Vapours from blowdown drum 1994 7 1 

Vapours from blowdown drum 1994 7 2 

Relief valve discharge to blowdown drum 1994 7 3 

Significant blowdown drum release 1995 8 4 

Oil mist from blowdown drum 1995 8 5 

Blowdown drum vapours disturbing workers 1995 8 6 

Significant blowdown drum release 1999 12 7 

Liquid hydrocarbon release to blowdown drum 2003 16 8 
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Figure 11 - PEWMA model ouput (N - Blowdown Drum) 
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2.5.3.2 Unsafe Sewer Disposal Rate (S) 

 

The CSB report (2007) documents one incident of unsafe disposal of hydrocarbons into the 

sewer occurring in 1999 and resulting in the formation of a dangerous vapour cloud. The total 

exposure time is here counted from 1987 when the last major capacity increase of the splitter 

tower was made. Figure 12 shows the mean and 95
th

 percentiles vs. time and the posterior 

gamma distributions through time. 
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Figure 12 - PEWMA Output (S - Sewer Release) 
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2.5.3.3 Insufficient Operator Training (O3) 

 

Non-compliance with training requirements and the inability of plant personnel to learn from 

previous incidents is defined here as training insufficiency. Failure data is collected from CSB ( 

2007). The total exposure time is counted from 1997 when safety audit systems for behavioral 

safety were implemented at the Texas City refinery (CSB report, 2007) and the incident data is 

summarized in Table 4. Figure 13 shows the mean and 95
th

 percentiles vs. time and the posterior 

gamma distributions through time. 

 

Table 4 - Insufficient Training incidences (O3) 

Incident Description Year t (yrs) 𝒚𝒕 (failures) 

The ISOM unit's HAZOP revalidation does not address previous incidents 1998 1 1 

The ISOM blowdown stack catches fire, no investigation to learn about causes 2000 3 2 

BP's learning & development center unable to get training simulators for Texas City 2000 3 3 

PSM audit finds a number of PHA items past due dates 2001 4 4 

BP Group report reveals that root causes for accidents are not being investigated 2002 5 5 

ISOM unit HAZOP revalidation again does not address previous incidents 2003 6 6 

OCAM audit reveals no individual operator development plans in place 2003 6 7 

GHSER audit determines that training and incident investigation are insufficient 2003 6 8 

PSM audit reveals inadequate learning from previous incidents and lack of training 2004 7 9 

GHSER assessment grades Texas City as "poor" due to lack of learning from incidents 2004 7 10 

Telos survey finds serious safety issues related to inadequate training 2004 7 11 

OCAM audit reveals deficencies in training of operators at Texas City 2004 7 12 

Texas City incident - operator unaware of liquid levels due to lack of training 2005 8 13 
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Figure 13 - PEWMA Output (O3 - Operator Training) 
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2.5.3.4 Maintenance Failure Rate (M) 

 

Maintenance failure is assessed based on audits and investigations made at the Texas City 

refinery as documented in CSB (2007). Prevalent equipment corrosion problems, failure to 

conform to maintenance standards, repair schedules and problems with mechanical integrity are 

defined as failure. Total exposure time is counted from 2001, when the BP Group issued a 

“Process Safety/Integrity Management” standard outlining the minimum requirements to prevent 

catastrophic incidents. Incident data is summarized in Table 5. Figure 14 shows the mean and 

95
th

 percentiles vs. time and the posterior gamma distributions through time. 

 

Table 5 - Maintenance failure incidences (M) 

Incident Description Date (year) t (yrs) 𝒚𝒕 (failures) 

Gap assessment reveals maintenance/mechnical integrity problems at Texas City 2003 2 1 

Inspection of blowdown drum reveals damage to trays - no repair recommended 2003 2 2 

PSM requires review of ISOM relief valves - the study is never completed 2003 2 3 

Major corrosion damage on the blowdown drum 2003 2 4 

Significant corrosion detected on the raffinate splitter tower 2004 3 5 

Texas city scores low on PSM metrics such as action item completion (maintenance) 2004 3 6 

Texas City incident (alarms, sight glass, etc. Not properly maintained) 2005 4 7 
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Figure 14 - PEWMA Output (M – Maintenance Failure) 
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2.5.3.5  Regulations Non-Compliance rate (O1) 

 

Analysis of the Texas City incident revealed that operational problems at the refinery were not 

corrected over time. Operators were found to have deviated from established procedures, such as 

leaving the bottom valve of the raffinate splitter tower in the closed position during start-up of 

the ISOM unit. The operator failing to follow start-up regulations is assumed to be a primary 

fault, with an occurrence rate that can be estimated based on historical safety audits at the plant 

(BP report, 2005 and CSB report, 2007). The exposure time is counted from 1993 when the first 

HAZOP was conducted at the Texas City Refinery and the incident data is summarized in Table 

6. Figure 15 shows the mean and 95
th

 percentiles vs. time and the posterior gamma distributions 

through time. 

 

Table 6 - Regulations non-compliance incidences (O1) 

Incident Description Year t (yrs) 𝒚𝒕 (failures) 

DIH distillation tower in the ISOM unit is overfilled and results in a vapour cloud 1994 1 1 

ISOM stabilizer tower emergency relief valves are open 5-6 times over 4 hours 1994 1 2 

8-inch chain vent valve (raffinate splitter) is left open for 20 hours 1995 2 3 

PSM audit reveals that operating procedures at Texas City are not current 2001 8 4 

PSM requires review of ISOM relief valves, study is never completed 2003 10 5 

Use of pressure relief valves against regulations in raffinate unit 2004 11 6 

Poor PSM scores on items related to action item completion 2004 11 7 

Texas City incident, splitter tower was filled beyond regulations, alarms ignored 2005 12 8 
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Figure 15 - PEWMA Output (O1 - Regulations Non-Compliance) 
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2.6 Probabilistic Analysis of Texas City Fault Tree 

 

All primary events in the Texas City fault tree are modeled as random variables with individual 

failure rate distributions resulting from the PEWMA analysis. The resulting gamma parameters 

are summarized in Table 7. Grey fields indicate static parameters and white fields indicate 

dynamic PEWMA parameters. Eq.  28 is the expression for the top event resulting from the 

qualitative analysis. This expression is integrated using Monte Carlo sampling at each Bayesian 

updating step.  For each sample obtained from the posterior failure rate distributions, a 

corresponding failure probability is calculated using the Poisson process by assuming at least one 

failure over an exposure time of one year (Eq.  35).  

 

𝑃(𝑉𝐶) = 𝑃(𝐵) + 𝑃(𝑁) + 𝑃(𝑆) − 𝑃(𝐵) ∙ 𝑃(𝑁) − 𝑃(𝐵) ∙ 𝑃(𝑆) − 𝑃(𝑁) ∙ 𝑃(𝑆)

+ 𝑃(𝐵) ∙ 𝑃(𝑁) ∙ 𝑃(𝑆) 
Eq.  28 

 

Where, 

 

𝑃(𝐵) = 𝑃(𝑅) ∙ 𝑃(𝑂) Eq.  29 

 

𝑃(𝑅) = 𝑃(𝑂1) + 𝑃(𝑉) − 𝑃(𝑂1) ∙ 𝑃(𝑉) Eq.  30 

 

𝑃(𝑂) = 𝑃(𝑂2) + 𝑃(03) − 𝑃(𝑂2) ∙ 𝑃(𝑂3) Eq.  31 

 

𝑃(𝑂2) = 𝑃(𝐴 ∩ 𝑀) = 𝑃(𝐴) ∙ 𝑃(𝑀) Eq.  32 
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𝑃(𝐴) = 𝑃(𝐿𝑆 ∩ 𝐴2) = 𝑃(𝐿𝑆) ∙ 𝑃(𝐴2) Eq.  33 

 

𝑃(𝐿𝑆) = 𝑃(𝐿) + 𝑃(𝐴1) − 𝑃(𝐿) ∙ 𝑃(𝐴1) Eq.  34 

 

𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 1 −  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋 = 0) = 1 −
𝑒−𝜇𝜇0

0!
= 1 − 𝑒−𝜇 

Eq.  35 

 

Figure 16 shows posterior histogram outlines through time and Figure 17 shows mean top event 

failure probability and the associated 95
th

 percentiles, resulting from Monte Carlo sampling of 

the top event probability. It is evident that the failure probability is cyclic, which demonstrates 

the dynamic effects of incorporating plant-specific accident precursor data into the analysis. The 

mean failure probability decreases initially because the collected data indicates a lower failure 

probability than the prior data. This is also demonstrated in the variance, which initially increases 

because the collected data conflicts with the prior information. Finally, the severe overfilling 

alarm (SA), is incorporated into the expression for the top event by multiplying the expression 

for P(B) by P(SA). The resulting mean failure probability and posterior histograms are shown in 

Figure 18 and Figure 19. Compared to the failure probability calculated without the severe 

overfilling alarm in place, the improvement in top-event failure probability is significant. This 

analysis shows the value of carrying out a qualitative Fault Tree analysis for identifying safety 

improvements and a quantitative fault tree analysis for quantifying the effect of the 

improvements. 
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Table 7 - Summary of Gamma Parameters 

  

Posterior Parameters from PEWMA model Static Parameters based on OREDA  

N M O1 O3 S L V A 

Year α β α β α β α β α β α β α β α β 

1987 2.00 2.00 2.00 2.00 4.00 2.00 2.00 2.00 1.00 2.00 0.66 21.51 0.26 6.18 0.33 97.49 

1988 1.80 2.80 2.00 2.00 4.00 2.00 2.00 2.00 0.90 2.80 0.66 21.51 0.26 6.18 0.33 97.49 

1989 1.62 3.52 2.00 2.00 4.00 2.00 2.00 2.00 0.81 3.52 0.66 21.51 0.26 6.18 0.33 97.49 

1990 1.46 4.17 2.00 2.00 4.00 2.00 2.00 2.00 0.73 4.17 0.66 21.51 0.26 6.18 0.33 97.49 

1991 1.31 4.75 2.00 2.00 4.00 2.00 2.00 2.00 0.66 4.75 0.66 21.51 0.26 6.18 0.33 97.49 

1992 1.18 5.28 2.00 2.00 4.00 2.00 2.00 2.00 0.59 5.28 0.66 21.51 0.26 6.18 0.33 97.49 

1993 1.06 5.75 2.00 2.00 4.00 2.00 2.00 2.00 0.53 5.75 0.66 21.51 0.26 6.18 0.33 97.49 

1994 3.96 6.17 2.00 2.00 4.00 2.00 2.00 2.00 0.48 6.17 0.66 21.51 0.26 6.18 0.33 97.49 

1995 6.56 6.56 2.00 2.00 4.60 2.80 2.00 2.00 0.43 6.56 0.66 21.51 0.26 6.18 0.33 97.49 

1996 5.90 6.90 2.00 2.00 4.14 3.52 2.00 2.00 0.39 6.90 0.66 21.51 0.26 6.18 0.33 97.49 

1997 5.31 7.21 2.00 2.00 3.73 4.17 2.00 2.00 0.35 7.21 0.66 21.51 0.26 6.18 0.33 97.49 

1998 4.78 7.49 2.00 2.00 3.35 4.75 2.80 2.80 0.31 7.49 0.66 21.51 0.26 6.18 0.33 97.49 

1999 5.30 7.74 2.00 2.00 3.02 5.28 2.52 3.52 1.28 7.74 0.66 21.51 0.26 6.18 0.33 97.49 

2000 4.77 7.97 2.00 2.00 2.72 5.75 4.27 4.17 1.15 7.97 0.66 21.51 0.26 6.18 0.33 97.49 

2001 4.30 8.17 2.00 2.00 3.44 6.17 4.84 4.75 1.04 8.17 0.66 21.51 0.26 6.18 0.33 97.49 

2002 3.87 8.35 1.80 2.80 3.10 6.56 5.36 5.28 0.93 8.35 0.66 21.51 0.26 6.18 0.33 97.49 

2003 4.48 8.52 5.62 3.52 3.79 6.90 7.82 5.75 0.84 8.52 0.66 21.51 0.26 6.18 0.33 97.49 

2004 4.03 8.67 7.06 4.17 5.41 7.21 11.04 6.17 0.76 8.67 0.66 21.51 0.26 6.18 0.33 97.49 

2005 3.63 8.80 7.35 4.75 5.87 7.49 10.94 6.56 0.68 8.80 0.66 21.51 0.26 6.18 0.33 97.49 
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Figure 16 - Case 1 - Top Event Marginal Histograms 

 

Figure 17 - Case 1 - Top Event Probability and 95th Percentile vs. Time 
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Figure 18 - Case 2 - Top Event Probability Marginal Histograms 

 

Figure 19 - Case 2 - Top Event Probability Mean and 95th Percentiles  
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2.7 Conclusion 

 

This chapter presents a Bayesian analysis of the fault tree developed based on the BP Texas City 

ISOM unit, at which a catastrophic failure occurred in 2005. It is shown that fault tree analysis 

combined with Bayesian updating can be used as part of dynamic risk assessments and ongoing 

risk surveillance of plant processes. A summary of key findings is provided below. 

 

 The process of developing the fault tree enables a safety analyst to learn about the system 

and the potential root causes that may lead to the undesired top event. 

 A qualitative analysis of the fault tree establishes the minimal cut-sets and allows the 

analyst to determine the relative importance of the various parts of the fault tree from a 

qualitative perspective. 

 The quantitative analysis incorporates failure and occurrence rates for the primary faults 

in the system and allows for an order of magnitude estimate of the top event probability.  

This provides a basis for comparing incremental improvements in safety designs. 

 Bayesian parameter estimation establishes how parameter uncertainty changes with time 

as plant specific failure data is collected. 

 Longer term failure data associated with processing plants can be modeled using 

Bayesian state space models such as PEWMA, which allows discounting of older data 

points. 

 Qualitative and quantitative fault tree analysis can help establish a basis for continuous 

monitoring of safety systems and design improvements. 
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3 BAYESIAN UPDATING OF MATERIAL BALANCE PARAMETERS USING MCMC 

 

3.1 Introduction 

 

In this Chapter, Bayesian updating is applied to estimate the uncertainty associated with the 

parameters in the general hydrocarbon material balance equation.  Gaussian distributions are 

used to model prior information and likelihood error in the implemented Bayesian updating 

models. Because the material balance equation is a non-linear forward model, the posterior 

distribution is not closed-form and requires sampling based solution methods. A Markov Chain 

Monte Carlo (MCMC) Metropolis algorithm is implemented to solve for the posterior 

distribution at each time step. A structured grid approximation of the posterior is also 

implemented to allow for calibration of the MCMC algorithm. Since a public data set is not 

available for this study, a synthetic data set is developed using the Eclipse reservoir simulation 

software. This provides the additional benefit that it provides the ability to directly assess the 

accuracy of the Bayesian updating models. A case study is provided to present the results 

obtained from running the structured grid model and the MCMC model on the synthetic data set. 
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3.2 Research Objectives 

 

 Implement the general material balance equation as a forward model for use in a 

Bayesian updating framework. 

 Implement structured grid and MCMC based Bayesian updating models. 

 Generate a synthetic data set using the Eclipse reservoir simulator, to which the Bayesian 

updating models can be applied. 

 Run both structured grid and MCMC Bayesian updating models on the synthetic data set 

and assess accuracy of the Bayesian updating models for material balance parameter 

estimation. 

 Assess influence of Likelihood error on the rate of data assimilation of the posterior 

distribution. 

 Assess impact of both consistent and random measurement noise in measured data set. 

 Assess convergence properties of the implemented MCMC model by comparison to the 

structured grid approach and by carrying out a graphical convergence analysis. 

 

 

 

 

 

 

 



70 

 

3.3 Literature Review and Background 

 

3.3.1 Bayesian Updating of Multivariable Forward Models 

 

Bayesian updating is a recursive parameter estimation technique based on Bayes theorem (Eq.  

36). A summary of the terms associated with Bayes theorem is provided in Table 8. Central to 

Bayesian updating is the implementation of a likelihood function, which probabilistically 

quantifies the goodness-of-fit associated of the parameters in a forward model.  Comprehensive 

reviews of the technique can be found in Tarantola (2001) and Oliver (2008). Bayesian updating 

is an alternative to deterministic model fitting techniques such as linear regression, which simply 

returns optimal point estimates based on minimizing a loss function.  Tarantola (2001) focuses 

mostly on linear inverse problems, but addresses both grid and sampling based solution strategies 

to solve for the posterior distribution. If the forward model is non-linear or the prior and 

likelihood distributions are non-conjugate, the posterior distribution is not be closed-form and 

sampling based techniques such as Markov Chain Monte Carlo (MCMC) are required. 

Traditional Bayesian updating techniques are practical for forward models involving a small 

intermediate number of input variables.  For forward models requiring assimilation on a very 

large number of variables, such as the case of history matching of reservoir simulation or 

weather prediction models, modified Bayesian techniques such as the Ensemble Kalman filter 

are more suitable (Evensen, 2003).  

 

𝑓(𝑥|𝑦) =
𝑓(𝑥)𝑓(𝑦|𝑥)

∫ 𝑓(𝑥) 𝑓(𝑦|𝑥)𝑑𝑥
 Eq.  36 
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Table 8 - Bayesian Updating Equation Summary 

Component Bayesian Nomenclature Meaning 

𝑓(𝑥|𝑦)  Posterior Distribution Probability of model parameters conditional to data 

𝑓(𝑦|𝑥)  Likelihood Function Probability of the data given model parameters 

𝑓(𝑥)  Prior Distribution Prior probability of model parameters 

∫𝑓(𝑥) 𝑓(𝑦|𝑥)𝑑𝑥 Normalizing Constant Probability of the data 
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3.3.1.1 Prior Distribution 

 

The prior distribution quantifies prior belief of the model parameters and is ideally based on 

expert opinion (Vose, 2008). In the case of material balance modeling, the expert can be a 

reservoir engineer or a geologist with a few years of experience. Reservoir engineers and 

geologists form prior opinions by analyzing information resulting from seismic surveys, core 

sampling, PVT testing and pressure transient analyses (Kelkar, 2002). If field specific data is 

sparse, it may also be necessary to rely on analog reservoir data. As such, prior information may 

only be available in the form of rough parameter ranges such as maximums and minimums for 

which uniform prior distributions are suitable. If belief about modal value(s) is also available, 

standard probability distributions such as the Gaussian or Lognormal distributions can be used to 

convey prior belief about parameters. The Gaussian prior distribution is expressed 

mathematically in (Eq.  37), where 𝑥 is an array of mean model variables, 𝐶𝑥 is the covariance 

matrix and 𝜇0 is the prior mean of the model variables. 

 

𝑓(𝑥) = [
1

(2 ∙ 𝜋)𝑛/2(det (𝐶𝑥))
1/2
] ∙ 𝑒𝑥𝑝 [−

1

2
(𝑥 − 𝜇0)

𝑇𝐶𝑥
−1(𝑥 − 𝜇0)] Eq.  37 
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3.3.1.2 Likelihood Function 

 

The likelihood function comprises of a mathematical forward model that produces measurable 

output(s) and probabilistic loss function that quantifies the likelihood of forward model outputs 

relative to the measured data points. The likelihood function is associated with variance due to 

measurement and/or theoretical/model discrepancies. Measurement errors stem from inherent 

randomness in the measurement equipment due to for instance voltage fluctuations or varying 

instrumentation response to changing conditions. Theoretical errors, on the other hand, exist due 

to simplifying assumptions associated with the forward model such as numerical discretization.  

A common approach is to model the likelihood error as a combined measurement/theoretical 

error (Oliver, 2008), which is expressed in Eq.  38.  

 

𝑦 − 𝑔(𝑥) = 𝜖𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 + 𝜖𝑚𝑒𝑎𝑠𝑢𝑒𝑚𝑟𝑒𝑛𝑡 = 𝜖𝑡𝑜𝑡𝑎𝑙 Eq.  38 

 

A Bayesian likelihood function can be viewed as a probabilistic loss function that produces 

uncertainty ranges for the model parameters. If multiple data points are available for 

assimilation, the likelihood function can be evaluated sequentially and can be expressed as (Eq.  

39) provided each updating step 𝑖 is statistically independent.  

 

𝑓(𝑦|𝑥) =∏𝑓(𝑦𝑖|𝑥𝑖)

𝑛

𝑖=1

 Eq.  39 
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A likelihood distribution is generated by evaluating the likelihood function over ranges of model 

input parameters. Figure 20 illustrates how likelihood variance/error increases the spread of the 

distribution. The peak of the likelihood distribution is referred to the Maximum Likelihood 

Estimate (MLE).   The variance of the likelihood function reduces with each Bayesian updating 

step as long as each data point confirms the same model parameters. Data points conflicting with 

previously inferred parameter values will, however, cause likelihood variance to increase. 

 

Figure 20 - Effect of standard deviation on Likelihood Distribution 

 

The Bayesian updating framework allows any type of probability distribution to be used as a 

likelihood function, however, errors are commonly assumed to be Gaussian, which results in Eq.  

40. If the variance associated with each Bayesian updating step is assumed to be uncorrelated 

and constant, the covariance matrix 𝐶𝑦 with identical elements 𝜎𝑦 on the diagonal results (Eq.  

41 and Eq.  42). Algebraically, the evaluation of the Gaussian likelihood up to updating step 𝑛 

reduces to Eq.  43. For the case of Gaussian likelihood functions, the measured data is typically 

set equal to the mean of the distribution. This is reasonable for situations where one believes the 

measured data point to be associated with the highest likelihood. The reference point, however, 

does not need to coincide with the mean of the likelihood function and can be offset to 
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accommodate a situation where the maximum likelihood is believed to occur for a value smaller 

or larger than the measured data point.  

  

𝑓(𝑦|𝑥) =
1

(2𝜋)𝑛 2⁄ (𝑑𝑒𝑡(𝐶𝑦))
1 2⁄
𝑒𝑥𝑝 (−

1

2
((𝑔(𝑥) − 𝑦)𝑇𝐶𝑦

−1(𝑔(𝑥) − 𝑦))) 
Eq.  40 

 

𝐶𝑦 =

[
 
 
 
 
𝜎𝑦,1

2 0

0 𝜎𝑦,2
2

0 0
0 0

0 0
0 0

… 0
0 𝜎𝑦,𝑛

2
]
 
 
 
 

 Eq.  41 

  

𝜎𝑦,𝑖
2 = 𝜎𝑦,1

2
= 𝜎𝑦,2

2 = ⋯ = 𝜎𝑦
2 Eq.  42 

 

𝑓(𝑦|𝑥) =
1

(2𝜋)𝑛 2⁄ (𝑑𝑒𝑡(𝐶𝑦))
1 2⁄

∙ exp (−
1

𝜎2
∑(𝑔(𝑥𝑖)− 𝑦𝑖)

2
𝑛

𝑖=1

 Eq.  43 
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3.3.1.3 Posterior Distribution 

 

The posterior distribution 𝑓(𝑥|𝑦) is the solution to the Bayesian updating problem and 

incorporates both prior and likelihood information (Tarantola, 2010). The Posterior distribution 

is Gaussian and closed-form if the prior and likelihood functions are both Gaussian and the 

forward model is linear (Oliver, 2008). The closed-form linear Gaussian solution to the inverse 

problem has found great utility in for instance the Kalman filter, which is often used as part of 

machine learning topics subjects such as signal processing and robotics (Särkkä, 2013). If the 

forward model is non-linear or the prior and likelihood distributions are non-conjugate, the 

posterior distribution is non-Gaussian and requires integration by sampling. An example of a 

prior, likelihood and posterior distribution is shown as a two-variable contour plot in (Figure 21). 

As demonstrated in this figure, the posterior behaves like a compromise between the prior and 

the likelihood function. Provided the data that is incorporated into the analysis confirms the same 

model parameter values, the variance of the likelihood function will decrease with each updating 

step and eventually dominate the posterior distribution. The rate at which the posterior 

assimilates the likelihood distribution depends on the relative variance between the likelihood 

function and the prior. If the prior is associated with low variance relative to the likelihood 

function, the posterior will be slow to incorporate information from the data. Conversely, if the 

prior is associated with high variance relative to the likelihood function, the posterior will 

incorporate information from the data faster.  
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Figure 21 - Prior, Likelihood and Posterior distributions vs. Bayesian Updating Steps 
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3.3.1.4 Bayesian Updating on a Structured Grid 

 

The simplest approach for approximating the posterior distribution 𝑓(𝑥|𝑦)  involves creating a 

structured grid of input parameters and solving the forward model at each grid location (Figure 

22). This approach is useful for two-variable problems, as it allows the resulting prior, likelihood 

and posterior distributions to be visualized on three-dimensional surface and contour plots. A 

drawback associated with the structured grid method is that it wastes computational effort and 

array memory because it requires the forward model 𝑔(𝑥) to be evaluated in both low and high 

probability regions. The structured grid approach also requires a sufficiently fine grid to capture 

specific characteristics of the posterior distribution, such as multi-modal peaks. For problems 

involving more than two variables, the structured grid solution becomes intractable because of 

the associated computational cost.  

 

Figure 22 - Structured grid solution strategy 
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3.3.1.5 Bayesian Updating using Markov Chain Monte Carlo 

 

To solve higher-order problems, Monte Carlo based sampling techniques are required in order to 

reduce the required number of forward model evaluations. A standard Monte Carlo algorithm 

may end up spending significant number of iterations sampling regions of low probability, which 

can in turn cause incorrect estimates of the posterior distribution. Markov Chain Monte Carlo 

(MCMC) is a more generally applicable strategy because it preferably returns samples from high 

probability regions and therefore samples the posterior more efficiently. When running an 

MCMC algorithm the end result is a Markov chain of parameter states.  

 

3.3.1.6 Markov Chain Theory 

 

A Markov Chain is a sequence of random variables, where the probability of the state at time 

𝑡 + 1 depends only the preceding state at time t (Figure 23). As such, Markov Chains are 

dependent samples, compared to conventional Monte Carlo which draws independent samples. 

In the context of Markov Chains, time refers to the sample number, where the chain is thought of 

as being progressed forwards in time as the number of samples increases. Markov chain can be 

stated mathematically as Eq.  44, where 𝑃(𝑋𝑖+1|𝑋𝑖) is known as a transition kernel and governs 

the probability of transitioning from one state to the next throughout the possible states of the 

system. 

 

 𝑃(𝑋𝑡+1| 𝑋1, 𝑋2, … , 𝑋𝑡) = 𝑃(𝑋𝑡+1|𝑋𝑡) Eq.  44 
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Figure 23 - Markov Chain 

 

The ergodic theorem is concerned with the asymptotic convergence properties of Markov Chains 

as 𝑡 → ∞. For the purpose of outlining the concepts associated with the ergodic theorem, the 

discussion is here based on finite state spaces. This is sufficient for understanding the underlying 

properties and can be extended to general state spaces (Gamerman, 2002). For a finite state 

space, the transition kernel 𝑃(𝑋𝑡+1|𝑋𝑡) is a stochastic matrix 𝑇𝑎𝑏, containing the probabilities of 

transitioning between the discrete states of the system (Eq.  45). 

 

 𝑇(𝑎, 𝑏) = 𝑃(𝑋𝑡+1 = 𝑏|𝑋𝑡 = 𝑎)   𝑓𝑜𝑟 ∀(𝑎, 𝑏) ∈ 𝑆 Eq.  45 

 

The ergodic theorem states that if the Markov Chain is stationarity, irreducible and aperiodic, 

then the resulting chain (𝑋1, 𝑋2, … , 𝑋𝑛) converges to the true mean of the dsitribution 𝐸[ℎ(𝑥)] 

(Eq.  46 and Eq.  47) as the number of samples approaches infinity 𝑡 → ∞ (Gamerman, 2002). 

 

 𝐸[ℎ(𝑥)] = ∫ℎ(𝑥)𝑓(𝑥)𝑑𝑥 Eq.  46 

  

 
1

𝑁
∑ ℎ(𝑋𝑛) → 𝐸[ℎ(𝑥)]    𝑎𝑠  𝑡 → ∞
𝑛
𝑡  Eq.  47 
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The target distribution 𝜋 is stationary if Eq.  48 is satisfied (Gamerman, 2002). A stationary 

distribution 𝜋 is time invariant, meaning that all samples in the Markov Chain are drawn from 

the same distribution.  

  

∑𝜋(𝑎)𝑇(𝑎, 𝑏)

𝑎

= 𝜋(𝑏)   𝑓𝑜𝑟 ∀(𝑎) ∈ 𝑆  
Eq.  48 

 

A Markov Chain is irreducibile if the probability of reaching any state 𝑏 from an arbitrary 

starting state 𝑎 in a finite number of moves is greater than zero (Gamerman, 2002). This is 

formally stated in Eq.  49 and implies that the entire state space 𝑆 can be reached by the Markov 

Chain. 

 

𝑃(𝑋𝑡 = 𝑏|𝑋0 = 𝑎) >  0    𝑓𝑜𝑟  ∀(𝑎, 𝑏) ∈ 𝑆 Eq.  49 

 

An irreducible Markov Chain (𝑋𝑡) is aperiodic if for any state 𝑎 the greatest common divisor 

(g.c.d.) of return times to any particular state 𝑎 is equal to one (Eq.  50). A value greater than one 

implies that the Markov Chain gets stuck in cycles, which prevents exploration of the entire state 

space. 

 

𝑔𝑐𝑑{𝑡: 𝑃(𝑋𝑖 = 𝑎|𝑋0 = 𝑎) > 0} = 1    𝑓𝑜𝑟  ∀(𝑎) ∈ 𝑆  Eq.  50 
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3.3.1.7 Metropolis-Hastings Algorithm 

 

The Metropolis algorithm (Metropolis, 1953) is a Markov Chain Monte Carlo algorithm that can 

be used to sample from a probability mass function 𝜋 or to approximate the expected value of a 

function 𝐸[ℎ(𝑥)]. The algorithm was generalized by Hastings (1970) and named Metropolis-

Hastings. The algorithm has been applied extensively in Bayesian Inference, because it only 

requires the posterior distribution 𝜋(𝑥) to be known up to the normalizing constant 𝑧 (Eq.  51).  

 

𝜋(𝑥) =
�̃�(𝑥)

𝑧
    𝑓𝑜𝑟 𝑧 > 0 Eq.  51 

 

The first step of the Metropolis-Hastings algorithm is to initialize the Markov Chain to an initial 

state 𝑋0 ∈ 𝑆.  The next candidate sample 𝑋𝑡+1 is generated from a proposal distribution 𝑞 (Eq.  

52), which is centered at the current state 𝑋𝑡. Knowing the current state 𝑋𝑡 and the candidate 

state 𝑌𝑡+1, an acceptance ratio 𝛼 is calculated (Eq.  53). Next, a random number 𝑢~[0,1] is 

sampled from the uniform distribution. If the acceptance ratio 𝛼 is greater than 𝑢, the candidate 

state 𝑌𝑡+1 is accepted and appended to the Markov Chain as 𝑋𝑡+1. If the the acceptance ratio 𝛼 is 

less than 𝑢, the candidate state 𝑌𝑡+1 is rejected, causing the Markov Chain to remain in the 

current state, i.e., 𝑋𝑡+1 = 𝑋𝑡. A summary is provided in Algorithm 3. 

 

𝑌𝑡+1 = 𝑞(𝑌𝑡+1|𝑋𝑡) Eq.  52 
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𝛼(𝑋𝑡, 𝑌𝑡+1) = 𝑚𝑖𝑛 {1,
�̃�(𝑌𝑡+1)𝑞(𝑋𝑡|𝑌𝑡+1)

�̃�(𝑋𝑡)𝑞(𝑌𝑡+1|𝑋𝑡)
} Eq.  53 

 

 

In the original algorithm developed by Metropolis (1953), a symmetric proposal distribution is 

assumed (𝑞𝑎𝑏 = 𝑞𝑏𝑎), such that the decision of accepting a state is based only on the ratio of the 

probability of being in the two states (Eq.  54). An example of a symmetric proposal distribution 

𝑞 is the Gaussian distribution. 

 

𝛼(𝑋𝑡, 𝑌𝑡+1) = 𝑚𝑖𝑛 {1,
�̃�(𝑌𝑡+1)

�̃�(𝑋𝑡)
} Eq.  54 

 

To ensure that the MCMC algorithm converges to the target distribution 𝜋 the requirements of 

irreducibility, stationarity and aperiodicity must be satisfied.  In particular, if detailed balance 

(Eq.  55) is satisfied, then the Markov Chain converges asymptotically to the target distribution 

𝜋(𝑥) as 𝑡 → ∞. In order to prove that detailed balance holds for the Metropolis algorithm, it is 

necessary to consider two separate cases. For simplicity of proof, denote 𝑎 as the current state 

and 𝑏 as the candidate state. Detailed balance can be expressed as Eq.  55, where 𝑇(𝑏, 𝑎) 

represents the Markov Chain transition kernel which quantifies the probability of transitioning 

from state 𝑎 to state 𝑏. For the Metropolis algorithm in particular, the transition kernel can be 

expressed as Eq.  56. 

 

𝜋(𝑎)𝑇(𝑎, 𝑏) = 𝜋(𝑏)𝑇(𝑏, 𝑎)   𝑓𝑜𝑟 ∀(𝑎, 𝑏) ∈ 𝑆  Eq.  55 
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𝑇(𝑏, 𝑎) = 𝑃(𝑋𝑡+1 = 𝑏|𝑋𝑡 = 𝑎) = 𝑞(𝑏, 𝑎)𝑚𝑖𝑛 {1,
𝜋(𝑏)

𝜋(𝑎)
} Eq.  56 

 

For the case of a rejected candidate state 𝑎 = 𝑏, detailed balance is trivially satisfied. To prove 

that detailed balance holds for the case of an accepted candidate sample 𝑎 ≠ 𝑏, the transition 

probability equation is applied to the left hand side of the detailed balance equation (Eq.  57). 

Next, the transition probability equation is applied to the right-hand side of the detailed balance 

equation (Eq.  58). Because the min operator is symmetric and because a symmetric proposal 

distribution 𝑞(𝑎, 𝑏) = 𝑞(𝑏, 𝑎) is used, detailed balance is satisfied (Eq.  59).  

 

𝜋(𝑎)𝑇(𝑎, 𝑏) = 𝜋(𝑎)𝑞(𝑎, 𝑏)𝑚𝑖𝑛 {1,
𝜋(𝑏)

𝜋(𝑎)
} = 𝑞(𝑎, 𝑏)𝑚𝑖𝑛{𝜋(𝑎), 𝜋(𝑏)} Eq.  57 

 

𝜋(𝑏)𝑇(𝑏, 𝑎) = 𝜋(𝑏)𝑞(𝑏, 𝑎)𝑚𝑖𝑛 {1,
𝜋(𝑎)

𝜋(𝑏)
} = 𝑞(𝑏, 𝑎)𝑚𝑖𝑛{𝜋(𝑏), 𝜋(𝑎)} Eq.  58 

  

𝑞(𝑏, 𝑎)𝑚𝑖𝑛{𝜋(𝑏), 𝜋(𝑎)} = 𝑞(𝑎, 𝑏)𝑚𝑖𝑛{𝜋(𝑎), 𝜋(𝑏)}      ∴ Eq.  59 

  

Finally, it is necessary to assess whether irreducibility and aperiodicity criterions are satifisfied. 

In terms of irreducbility, the proposal distribution must be able to draw samples from the entire 

parameter space 𝑆 over which 𝜋 is defined. Practically speaking, this means that proposal 

distribution must be defined over the entire parameter space 𝑆.  The Metropolis algorithm is 

Aperiodic because it allows for rejection of candidate samples.  
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Algorithm 3 - MCMC - Metropolis Algorithm 

1 𝑆𝑒𝑙𝑒𝑐𝑡 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡:  𝑋0 

2 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛max𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

3  𝑆𝑎𝑚𝑝𝑙𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑜𝑖𝑛𝑡, 𝑌𝑡+1 ~ 𝑞(𝑌𝑡+1|𝑋𝑡) 

4  𝑆𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑢~[0,1] 

5  
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜, 𝛼(𝑋𝑡 , 𝑌𝑡+1) = 𝑚𝑖𝑛 {1,

�̃�(𝑌𝑡+1)

�̃�(𝑋𝑡)
} 

6  𝑖𝑓(𝛼(𝑋𝑡 , 𝑌𝑡+1) > 𝑢) 

7   𝐴𝑐𝑐𝑒𝑝𝑡:  𝑋𝑡+1 = 𝑌𝑡+1 

8  𝐸𝑙𝑠𝑒 

9   𝑅𝑒𝑗𝑒𝑐𝑡:  𝑋𝑡+1 = 𝑋𝑡 

10 𝐸𝑁𝐷 
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3.3.1.8 MCMC Convergence Diagnostics 

 

Convergence analysis is an important and necessary aspect of MCMC sampling. If the chain 

does not properly sample from the posterior distribution, important quantities such as the mean, 

mode and variance will be incorrectly estimated. A method for assessing whether the MCMC 

chain is converging to the posterior distribution is to run several chains in parallel using different 

initial values and comparing inter-chain results. If all chains provide the same posterior 

quantities, convergence can be assumed with reasonable confidence. Commonly applied 

graphical techniques for assessing mixing and convergence properties are time series, running 

means and autocorrelation plots (Gamerman, 2002). Autocorrelation (Eq.  60) reveals ‘non-

randomness’ in data, such as trends or clustering and should for MCMC sampling ideally appear 

as random noise around a value of zero. A time series plot of sample values vs. MCMC iteration 

number should ideally show that the algorithm is thoroughly sampling the posterior region. A 

running mean plot shows calculated sample mean .vs. MCMC iteration and should converge to a 

stable value as the chain length increases. Quantitatively determining MCMC convergence is 

challenging, however, advanced methods involving the assessment of inter-chain/between-chain 

variance and spectral analysis have been published by for instance Geweke (1992). The number 

of samples required before the Markov chain converges to the stationary distribution is referred 

to the burn-in period. The burn-in samples should be removed before computing summary 

statistics such as sample mean and variance (Eq.  61). In Figure 24, this would entail removing 

samples 0 𝑡𝑜 𝑚 from the chain.  
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𝑟𝑘 =
∑ (𝑌𝑖 − �̅�)(𝑌𝑖+𝑘 − �̅�)
𝑁−𝑘
𝑖=1

∑ (𝑌𝑖 − �̅�)2
𝑁
𝑖=1

 Eq.  60 

 

𝐸[𝑋] ≈
1

𝑛 −𝑚
∑ 𝑋𝑖

𝑛

𝑖=𝑚+1

 Eq.  61 

 

 

Figure 24 - Burn-in 
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3.3.1.9 MCMC Output Analysis 

 

For sampling based solutions involving three or more variables, the solution is usually 

represented as marginal histograms with associated means and variances. A challenge with a 

marginal histogram is that it represents an orthogonal projection into the solution space. As such, 

correlation between variables is potentially masked in the marginal histograms and the variance 

may therefore appear to be higher than it actually is. Pairwise scatter plots of the Markov chains 

can be used to assess correlation effects and overcomes the limitation associated with marginal 

histograms. A useful summary statistic that reveals linear correlation between variables is 

Pearson’s correlation coefficient (Eq.  62). This coefficient can can be analyzed together with 

marginal histograms and scatter plots as shown in Figure 25.  For Bayesian updating problems, it 

is also useful to plot the posterior sample mean (Eq.  63) and percentiles at each updating step 𝑡 

to provide a basis for understanding how the collected data is affecting the posterior distribution 

through time (Figure 26). 

 

𝜌𝑋𝑌 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)2
𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2

𝑛
𝑖=1

 Eq.  62 

 

𝐸[𝑋𝑡] ≈
1

𝑛
∑𝑋𝑡,𝑖

𝑛

𝑖=1

 Eq.  63 
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Figure 25 - Posterior Diagnostics Plot 

 

 

Figure 26 - Mean and percentiles 
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3.3.1.10 Material Balance 

 

Material balance is a standard reservoir engineering tool often used in conjunction with more 

advanced techniques such as reservoir simulation to estimate original hydrocarbons in place and 

to quantify drive mechanisms.  It assumes that the reservoir can be modeled as a compressible 

tank with average pressures and rock properties throughout (Dake, 2001), which is only 

approximately true for any reservoir. For tight reservoirs with low permeability, large pressure 

gradients will exist and prevents usage of the material balance technique. A visual representation 

of the material balance technique is provided in (Figure 27).  

 

 

Figure 27 - Hydrocarbon material balance summary 
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By combining the drive effects associated with single phase expansion of oil/water/gas, 

liberation of solution gas, gas cap expansion, connate water expansion, pore compaction and 

aquifer influx, Dake (2001) formulates the material balance equation in terms of cumulative 

volumes as Eq.  64. Note that all volumetric terms are stated in terms of underground volumes, 

which is why the aquifer influx term 𝑊𝑒 does not contain a water formation volume factor. 

 

𝑁𝑝[𝐵𝑜 + (𝑅𝑝 − 𝑅𝑠)𝐵𝑔] + 𝑊𝑝𝐵𝑤 = 𝑁[(𝐵𝑜 − 𝐵𝑜𝑖) + (𝑅𝑠𝑖 − 𝑅𝑠)𝐵𝑔] 

+𝑚𝑁𝐵𝑜𝑖 (
𝐵𝑔

𝐵𝑔𝑖
− 1) +

(1 +𝑚)𝑁𝐵𝑜𝑖(𝑐𝑤𝑆𝑤 + 𝑐𝑓)∆𝑝

1 − 𝑆𝑤𝑐
+𝑊𝑒 

Eq.  64 

 

Aquifer response cannot be directly measured and a model is therefore required to estimate the 

influx. Several aquifer models have been published in literature, with varying levels of rigor in 

terms of geometrical representation and transient behavior. Here, a Fektovich type analytical 

aquifer model (Fektovich, 1971) is implemented because of its generality. The Fetkovich aquifer 

model assumes that the reservoir-aquifer system behaves like a two-tank system (Figure 28) and 

that the reservoir pressure remains constant over each time step while the aquifer pressure varies. 

The derivation starts with defining the aquifer influx equation as a function of the aquifer index 

and the drawdown between the aquifer and reservoir (Eq.  65). Next, the concepts of total 

compressibility (Eq.  66) and isothermal compressibility (Eq.  67) are combined to obtain a 

separable differential equation that can be integrated for pressure and time (Eq.  68). Algebraic 

manipulation leads to closed form equations for aquifer pressure and aquifer influx as a function 

of time (Eq.  69 and Eq.  70).  
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(𝑑𝑊 𝑑𝑡⁄ ) = 𝐽𝑤 ∙ (𝑝𝑎 − 𝑝𝑟) Eq.  65 

𝑐𝑡 = 𝑐𝑤 + 𝑐𝑟 Eq.  66 

𝑐𝑡 = −(1 𝑊⁄ ) ∙ (𝑑𝑊 𝑑𝑝⁄ ) Eq.  67 

∫ 𝑑𝑝 (𝑝 − 𝑝𝑟)⁄
𝑝𝑎(𝑡)

𝑝𝑎(0)

= −∫ (𝐽𝑤 𝑐𝑡 ∙ 𝑊⁄ ) ∙ 𝑑𝜏
𝑡

0

 Eq.  68 

𝑝𝑎(𝑡) = 𝑝𝑟 + (𝑝𝑎(0) − 𝑝𝑟) ∙ 𝑒𝑥𝑝 (−
𝐽𝑤

𝑐𝑡 ∙ 𝑊𝑖
∙ 𝑡) Eq.  69 

∆𝑊(𝑡) = 𝑊𝑒 = 𝑐𝑡 ∙ 𝑊𝑖 ∙ (𝑝𝑎,𝑖 − 𝑝𝑟(𝑡)) ∙ (1 − 𝑒𝑥𝑝 (−
𝐽𝑤 ∙ 𝑡

𝑐𝑡 ∙ 𝑊𝑖
)) Eq.  70 

 

 

Figure 28 - Aquifer Model 
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3.3.1.11 Review of Material Balance Parameter Fitting 

 

Van Everdingen et. al. (1953) presents a regression based technique for estimating material 

balance parameters. McEwen (1961) builds on the work by Van Everdingen et. al. (1953) and 

develops a regression methodology that better handles noise in the pressure data, but does not 

characterize uncertainty in the solution.  Fair (1994) provides regression based material balance 

modeling that includes summary statistics and confidence intervals for the estimated parameters.  

Sills (1996) reports a regression based material balance regression technique similar to that of 

McEwen (1961) that is less sensitive to pressure noise due to a reduction in the number of 

regression parameters. Confidence intervals for resulting material parameters are, however, not 

provided in the analysis. The first attempt at fully characterizing uncertainty of the material 

balance parameters in a Bayesian framework is provided by Ogele (2006), who proposes a grid 

based Bayesian inversion strategy for the hydrocarbon material balance equation using two 

unknowns and Gaussian distributions. The structured grid solution presented in Ogele’s work 

allows for three-dimensional visualization of the prior, likelihood and posterior, which is only 

practical for material balance problems involving two unknown variables. Aprilla (2006) 

presents a similar analysis to that of Ogele (2006), but introduces a third variable and thereby 

demonstrates the challenge associated with calculating and summarizing grid solutions in higher 

dimensions. Finally, Ottah (2015) presents a sampling based methodology for matching aquifer 

size using particle swarms. The particle swarm method generates an ensemble of solutions 

making it possible to estimate the uncertainty bandwidth and confidence intervals for the model 

parameters. 
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3.4 Model Implementation 

 

3.4.1 Python Code Overview 

 

The following section provides an overview of the Bayesian updating models that are 

implemented using the Python scripting language (Appendix B). Produced oil/gas/water 

(𝑁𝑝, 𝐺𝑝,𝑊𝑝) volumes and PVT data (𝐵𝑜 , 𝐵𝑔, 𝐵𝑤, 𝑅𝑠) are treated as deterministic constants in the 

material balance model. Subsurface reservoir quantities such as original oil/gas in place (𝑁, 𝐺) 

and aquifer characteristics (𝑊𝑖, 𝐽𝑤) are treated as random variables.  The first Bayesian model 

evaluates prior, likelihood and posterior distributions on a structured grid. The second model 

implements an MCMC-Metropolis algorithm. Figure 29 shows the overall flow of the code for 

the grid based and MCMC based techniques. The grid based and MCMC based model have 

separate main routines, where the required function calls are made and solution data is 

summarized. Both the grid and MCMC based techniques share the same likelihood and material 

balance functions. In order to calculate a likelihood value for each combination of material 

balance parameters, the material balance model is reverse for pressure at each time step using a 

Newton-Raphson algorithm.  
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Figure 29 - Overview of implemented Python functions 

Grid Based Model - Maine Routine 

Generate parameter grid with dimensions n
j
 x n

k
 

For Bayesian updating step i = 1 to n
step

: 

 At each grid loation (j,k): 

  Calculate Prior   

  Call Likelihood Function → Likelihood 

  Calculate Posterior ∝ Prior x Likelihood 

 Normalize resulting distributions 

MCMC Model - Main Routine 

Set initial Markov Chain value X
0
 = μ0 for initial  updating step  

Set proposal distribution 𝑞(𝑋𝑡|𝑌𝑡+1) = 𝑁(𝑋𝑡, 𝜎0) 

For Bayesian updating step i = 1 to n
step

: 
 Call MCMC Metropolis → posterior chain {X

i
} 

 Fit Normal distribution to {X
i
} → 𝑁(𝜇Xi, 𝜎Xi

) 

 Set proposal distribution 𝑞(𝑋𝑡|𝑌𝑡+1) = 𝑁(𝑋𝑡, 𝜎𝑋𝑖) 
 Set initial Markov Chain value X

0
 for step i+1 equal to 𝜇Xi 

Likelihood Function 

At state X = [N, Wi, Jw, G]: 
Call MBAL inverse to obtain predicted 
pressures {p

r
} at state X 

Calculate Likelihood f(y│x): 
Evaluate likelihood as a function of difference 
between measured pressure y and predicted 
pressures p

r
 at updating steps i = 1 to n: 

 𝑓(𝑦|𝑥) ∝ exp(−
1

𝜎2
∑ (𝑔(𝑥𝑖) − 𝑦𝑖)

2𝑛
𝑖=1  

Return Likelihood f(y│x) 

MCMC Metropolis 

At initial state X
0
:  

 Calculate Prior(X
0
) 

 Call Likelihood Function → Likelihood(X
0
) 

 Calculate Posterior(X
0
) = Prior(X

0
) x Likelihood(X

0
) 

For t = 1 to n
chain

 

 Propose candidate state Y
t+1

 from 𝑞(𝑋𝑡|𝑌𝑡+1) = 𝑁(𝑋𝑡, 𝜎Xi
) 

 At candidate state Y
t+1

: 

  Calculate Prior(Y
t+1

) 

  Call Likelihood Function → Likelihood(Y
t+1

) 

  Calculate Posterior(Y
t+1

) = Prior(Y
t+1

) x Likelihood(Y
t+1

) 

 Sample random number u ~ [0,1) 

 Calculate acceptance ratio α 

 If(α > u):  

  Accept candidate state, X
t+1

 = Y
t+1

 

 Else:  

  Reject candidate state, X
t+1

 = X
t 

Return Markov Chain {Xt} 

MBAL Inverse 

Set initial material balance volumes: 

 V
0
 = [N, W

res
, G, W

i
, PV

i
] 

For i = 1 to n
step 

: 
 Call MBAL_Newton to obtain: 
  Predicted reservoir pressure p

r,i
 

  Updated Material balance volumes V
i
 

Return predicted reservoir pressures {p
r
}  

MBAL Newton 

Guess pressure, p
n
 = p

0
 

While(convergence = False) Do: 
 Call MBAL_Objective_Function → f(p

n
) 

 Call MBAL_Objective_Function → f(p
n
 + Δp) 

 Call MBAL_Objective_Function → f(p
n
 - Δp) 

 f’(p
n
) = f(p

n
 + Δp) – f(p

n
 – Δp)/2*Δp  

 p
n+1

 = p
n
 – f(p

n
)/f’(p

n
) 

 if(p
n+1

 – p
n
)/ p

n
 < tolerance: 

  convergence = True 
  p

n
 = p

n+1
 

 Else: p
n
 = p

n+1
 

Return predicted reservoir pressure, p
n
  

MBAL Objective Function 

Calculate the following quantities at time t + Δt: 
 Aquifer pressure p

a
 

 
Aquifer influx W

e
 

 
Volumes V = [N, W

res
, G, W

a
, PV, ΔPV] 

Evaluate objective function value f at time t + Δt: 
 f = N + G + W

res
 + ΔPV – PV

i
 = 0 

Return f 
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3.4.2 Proposal Distribution 

 

The proposal density is a multivariate Gaussian distribution centered at the current state 𝑋𝑡 (Eq.  

71). At each assimilation step 𝑖, the standard deviation of the proposal distribution is obtained by 

fiting a Gaussian distribution to the posterior output from the Metropolis algorithm at the 

previous assimilation step 𝑖 − 1 (Eq.  72). This ensures that the proposal distribution adapts to 

the variance of the posterior distribution throughout the Bayesian updating steps. The initial 

Markov chain value at each updating step is set equal to the mean of the posterior distribution at 

the previous updating step (Eq.  73). 

 

𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑏𝑢𝑡𝑖𝑜𝑛, 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑠𝑡𝑒𝑝 𝑖 =  𝑞(𝑋𝑡|𝑌𝑡+1) = 𝑁(𝑋𝑡, 𝜎𝑋𝑖−1) 

 

Eq.  71 

 {𝑋𝑖}  
𝑓𝑖𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
→                  𝑁(𝜇𝑋𝑖 , 𝜎𝑋𝑖) 

Eq.  72 

 

𝑀𝑎𝑟𝑘𝑜𝑣 𝐶ℎ𝑎𝑖𝑛 𝑠𝑡𝑎𝑟𝑡 𝑣𝑎𝑙𝑢𝑒, 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑠𝑡𝑒𝑝 𝑖 =  𝑋𝑜,𝑖 = 𝜇𝑋𝑖−1 

 

Eq.  73 
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3.4.3 Time-Discretization of Material Balance Equation 

 

For the purpose of applying the material balance equation as a forward model in the likelihood 

function it is formulated as an incremental objective function (Eq.  74) and solved iteratively for 

pressure at each time step by using a Newton-Raphson algorithm. Given that the objective 

function is based on PVT tables, it is not a closed form equation and the pressure derivatives are 

obtained by means of central difference approximation. The procedure is initialized by 

calculating the initial pore volume in the tank (Eq.  75). The program then re-calculates the 

amount of rock compaction as well as oil, gas and water volume in the pore space at each time 

step (Eq.  76 - Eq.  79).  

 

𝑓 = 𝑁(𝑡 + ∆𝑡) + 𝐺(𝑡 + ∆𝑡) +𝑊𝑟𝑒𝑠(𝑡 + ∆𝑡) + ∆𝑃𝑉(𝑡 + ∆𝑡) − 𝑃𝑉𝑖 = 0 Eq.  74 

𝑃𝑉𝑖 = 𝑃𝑉(𝑡 = 0) = 𝑁 ∙ 𝐵𝑜𝑖 (1 − 𝑆𝑤𝑐)⁄  Eq.  75 

𝑁(𝑡 + ∆𝑡) = 𝑁(𝑡) ∙ 𝐵𝑜(𝑡 + ∆𝑡) − 𝑁𝑝(𝑡 + ∆𝑡) ∙ 𝐵𝑜(𝑡 + ∆𝑡) Eq.  76 

𝐺(𝑡 + ∆𝑡) = 𝐺(𝑡) ∙ 𝐵𝑔(𝑡 + ∆𝑡) − 𝐺𝑝 ∙ 𝐵𝑔(𝑡 + ∆𝑡) + 𝑁(𝑡) ∙ [𝑅𝑠(𝑡) − 𝑅𝑠(𝑡 + ∆𝑡)]

∙ 𝐵𝑔(𝑡 + ∆𝑡) − [𝑁(𝑡) − 𝑁𝑝(𝑡)] ∙ 𝑅𝑠(𝑡 + ∆𝑡) ∙ 𝐵𝑔(𝑡 + ∆𝑡) 
Eq.  77 

𝑊𝑟𝑒𝑠(𝑡 + ∆𝑡) = 𝑊𝑟𝑒𝑠(𝑡 + ∆𝑡) ∙ 𝐵𝑤(𝑡 + ∆𝑡) −𝑊𝑝(𝑡 + ∆𝑡) ∙ 𝐵𝑤(𝑡 + ∆𝑡) +𝑊𝑒(𝑡 + ∆𝑡) Eq.  78 

∆𝑃𝑉(𝑡 + ∆𝑡) = 𝑃𝑉𝑖 ∙ 𝑐𝑓 ∙ (𝑝𝑟,𝑖 − 𝑝𝑟(𝑡 + ∆𝑡)) Eq.  79 

 

The aquifer influx 𝑊𝑒(𝑡 + ∆𝑡) cannot be measured and must therefore be estimated with an 

aquifer model. Time steps are therefore limited to 10 days in this implementation of the 
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Fetkovich aquifer model is chosen based on sensitivity analysis. A summary of the time-

discretized aquifer response equations is provided in Eq.  80 - Eq.  82. 

  

𝑝𝑎(𝑡 + ∆𝑡) = 𝑝𝑟(𝑡) + (𝑝𝑎(𝑡) − 𝑝𝑟(𝑡)) ∙ 𝑒𝑥𝑝(− [𝐽𝑤 ∙ ∆𝑡] [𝑐𝑡 ∙ 𝑊𝑎(𝑡)]⁄ ) Eq.  80 

𝑊𝑒(𝑡 + ∆𝑡) = 𝑐𝑡 ∙ 𝑊𝑎(𝑡) ∙ (𝑝𝑎(𝑡) − 𝑝𝑟(𝑡)) ∙ (1 − 𝑒𝑥𝑝(− [𝐽𝑤 ∙ ∆𝑡] [𝑐𝑡 ∙ 𝑊𝑎(𝑡)]⁄ )) Eq.  81 

𝑊𝑎(𝑡 + ∆𝑡) = 𝑊𝑎(𝑡) −𝑊𝑒(𝑡 + ∆𝑡) Eq.  82 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 

 

3.5 Synthetic Data Set 

 

In order to test the Bayesian updating model, a synthetic data set is required.  Since real field 

production data is not available for this study, a synthetic data set is generated using the Eclipse 

reservoir simulation software. This comes with the additional benefit that it allows for direct 

testing the accuracy of the Bayesian updating technique. The resulting Eclipse input file can be 

found in Appendix G. The simulation model properties are based on correlations and typical 

reservoir properties found in published works on commercial oil fields. A Python script is used 

to populate the simulation grid with random properties in the standard Eclipse input file format.  

 

3.5.1 Model Geometry and Grid Properties 

 

A rectangular reservoir structure representative of a reservoir fault block with a small dip is 

created and a corner point grid structure is applied. The overall simulation model geometry, 

including distance to the oil-water contact is provided in (Figure 30). Grid block properties such 

as porosity and absolute permeability are generated by random sampling to fit a linear log(k) vs. 

porosity relationship; a trend which is commonly observed in commerical oil fields (Figure 31). 

Details on the process associated with generating random grid properties are provided in 

Appendix D. The total fluids in place and initial reservoir pressure is provided in Table 9. 



100 

 

 

Figure 30 - Eclipse model overview 5x exaggerated in the vertical direction 
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Figure 31 - Log(Permeability) vs. Porosity Plot 

Table 9 - Summary of Simulation Model Parameters 

Item Value Unit 

Original Oil in Place 31.6 M Sm
3
 

Water in place in Aquifer 444.6 M Rm
3
 

Number of cells in i-direction 50 - 

Number of cells in j-direction 90 - 

Number of cells in k-direction 10 - 

Total number of cells 45,000 - 

Initial Reservoir Pressure 296.4 bar(a) 

Initial Solution GOR 120 Sm
3
/Sm

3
 

Rock compressibility 5.0E-5 1/bar(a) 
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3.5.2 PVT Data 

 

Fluid properties are generated by using Black Oil PVT correlations suitable for the chosen 

pressure/temperature ranges and overall fluid properties (Table 10). The resulting PVT data set is 

applied to both simulation model and material balance model (Table 11). The PVT correlations 

used to generate the PVT table are provided in Appendix C. 

 

Table 10 - PVT/Reservoir Properties 

Property Metric Value Oil Field Value 

Reservoir Temperature (T) 80 deg C      194 deg F 

Formation Water Salinity (𝑤𝑠) 100,000 ppm 100,000 ppm 

Gas Specific Gravity (𝛾𝑔) 0.7 0.7 

Oil API Gravity (𝛾𝐴𝑃𝐼) 35 35 

Formation GOR (𝑅𝑠) 120 Sm/Sm
3
 673.7 SCF/STB 
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Table 11 - PVT Data Table 

P Rs co Bo mu_o Z Bg mu_g cw Bw mu_w 

bar(a ) Sm3/Sm3 1/bar Rm3/Sm3 mPa-s - Rm3/Sm3 mPa-s 1/bar Rm3/Sm3 mPa-s 

500.0 120.000 9.157E-05 1.301 0.834 1.170 0.00291 0.054 2.557E-05 1.011 0.650 

475.0 120.000 9.639E-05 1.303 0.804 1.137 0.00297 0.052 2.538E-05 1.013 0.637 

450.0 120.000 1.017E-04 1.304 0.774 1.104 0.00305 0.051 2.518E-05 1.015 0.623 

425.0 120.000 1.077E-04 1.306 0.745 1.071 0.00313 0.049 2.498E-05 1.016 0.610 

400.0 120.000 1.145E-04 1.308 0.716 1.039 0.00323 0.047 2.478E-05 1.017 0.598 

375.0 120.000 1.221E-04 1.310 0.689 1.007 0.00334 0.046 2.459E-05 1.019 0.586 

350.0 120.000 1.308E-04 1.313 0.663 0.977 0.00347 0.044 2.439E-05 1.020 0.574 

325.0 120.000 1.409E-04 1.316 0.638 0.948 0.00362 0.042 2.419E-05 1.021 0.562 

300.0 120.000 1.526E-04 1.320 0.614 0.920 0.00381 0.040 2.399E-05 1.022 0.551 

275.0 120.000 1.665E-04 1.324 0.592 0.896 0.00405 0.038 2.379E-05 1.023 0.541 

250.0 120.000 1.831E-04 1.329 0.571 0.875 0.00435 0.036 2.360E-05 1.024 0.530 

227.3* 120.000 2.014E-04 1.334 0.555 0.861 0.00470 0.034 2.342E-05 1.025 0.521 

200.0 102.254 - 1.284 0.608 0.849 0.00527 0.031 2.320E-05 1.026 0.511 

175.0 87.021 - 1.242 0.666 0.846 0.00600 0.029 2.300E-05 1.027 0.501 

150.0 72.705 - 1.203 0.735 0.849 0.00703 0.027 2.281E-05 1.028 0.492 

125.0 59.254 - 1.167 0.820 0.861 0.00855 0.025 2.261E-05 1.028 0.484 

100.0 46.614 - 1.135 0.927 0.880 0.01093 0.024 2.241E-05 1.029 0.476 

75.0 34.722 - 1.107 1.068 0.905 0.01499 0.022 2.221E-05 1.029 0.468 

50.0 23.482 - 1.081 1.263 0.936 0.02325 0.021 2.202E-05 1.030 0.460 

35.0 16.975 - 1.067 1.425 0.955 0.03390 0.021 2.190E-05 1.030 0.456 

25.0 12.679 - 1.058 1.564 0.968 0.04811 0.021 2.182E-05 1.030 0.453 

10.0 6.066 - 1.045 1.858 0.988 0.12268 0.020 2.170E-05 1.030 0.449 

5.0 3.633 - 1.041 2.004 0.994 0.24692 0.020 2.166E-05 1.030 0.448 

1.0 1.235 - 1.037 2.178 0.999 1.24075 0.020 2.163E-05 1.031 0.447 

*Bubble point pressure, pb 
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3.5.3 Capillary Pressure and Relative Permeability Model 

 

Generic logarithmic expressions are used to generate drainage and imbibition capillary pressure 

curves. The drainage curve models the initial fluid distributions, while the imbibition curve 

models capillary pressure behavior associated with water encroaching into the oil zone from the 

aquifer. Because the surface tension between oil and gas is orders of magnitudes less than that of 

water and oil, oil/gas capillary pressure is assumed to be zero. The resulting capillary pressure 

curves are shown in Figure 32. The drainage curve corresponds to a transition zone about 60 m 

thick. The capillary pressure drainage parameters are summarized in Table 14. Appendix E 

contains details about the capillary pressure model used.  

 

Two-phase relative permeability curves are modeled using Corey functions (Corey 1954), which 

are power-law correlations for gas and oil relative permeability. Details about Corey functions 

can be found in Appendix F. Reasonable Corey exponents are chosen for Oil/Water (Table 12) 

and Oil/Gas (Table 13) based on published data on simulation of North Sea reservoirs (Tangen, 

2012). The Eclipse default model is used to model three-phase relative permeability.  The 

resulting Oil/Water and Oil/Gas relative permeability curves are provided in Figure 33 and 

Figure 34. Note that the oil-water relative permeability curve in Figure 33 is extrapolated to a 

value of 1.0, which is necessary because the water saturation is equal to 1.0 at the free water 

level and below. The default three-phase relative permeability model in Eclipse was 

implemented (Eclipse manual, 2010). It assumes complete segregation of gas and water within 

each cell, which is often a reasonable assumption because in most reservoir simulation studies 

the number of grid blocks where three phase flows occurs is relatively small.  
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Figure 32 - Drainage and Imbibition Capillary Pressure Curves 

 

Figure 33 - Oil/Water Relative Permeability Curves 
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Figure 34 - Oil/Gas Relative Permeability Curves 

Table 12 - Oil/Water Corey Parameters 

Process no nw Krow,max Krw, max 

Oil/Water Drainage 1.5 3.5 1.0 1.0 

Oil/Water Imbibition 4.5 3.8 1.0 0.75 

 

Table 13 - Oil/Gas Corey Parameters 

Process no ng Krog,max Krg, max 

Oil/Gas Drainage 3.2 1.5 1.0 1.0 

Oil/Gas Imbibition 3.8 1.7 1.0 1.0 

 

Table 14 - Logarithmic Capillary Pressure Parameters 

Process 𝜶𝟏 𝜶𝟐 𝑺𝒘𝒙 𝑷𝒕𝒉 (Bara) 

Drainage -1.0 0.5 1.0 0.05 

Imbibition -0.1 0.1 1.0 - 
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3.5.4 Synthetic Reservoir Parameters and Production Data 

 

The intial oil in place 𝑁, gas in place 𝐺 and aquifer size 𝑊𝑖 are obtained from the initialization 

report from the reservoir simulation model. The aquifer index cannot be extracted directly from 

the simulation model because the grid properties are populated based on random sampling from 

probability distributions. The true value of the aquifer index 𝐽𝑤 is therefore calculated based on 

the average horizontal permeability below the oil-water contact. The geometry and viscosity 

used for this 𝐽𝑤 calculation is taken from Figure 30 and Table 11 in Section 3.5.1, respectively. A 

summary of the parameter values obtained from the simulation model are provided in Table 15.  

 

𝐽𝑤 =
𝐾 ∙ 𝐻 ∙ 𝑊

𝜇 ∙ 𝐿
=
370 𝑚𝐷 ∙ 100 𝑚 ∙ 2000𝑚

0.55𝑐𝑝 ∙ 11550𝑚
= 100.68 ~ 100 R m3/bar(a) ∙ day  

 

Table 15 - Summary of Synthetic Model Parameters 

Parameter Value Unit 

N 31.6 M Sm
3
 

Wi 444.6 M Sm
3
 

Jw 100 Rm
3
/bar(a)*day 

G 0 N Sm
3
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In terms of production data, the simulation model runs for 4,000 days with a maximum liquid 

rate constraint of 1,750 Sm
3
/day. A reasonable minimum bottom hole pressure of 90 bar(a) is 

specified. The resulting production rates can be viewed in Figure 35, while the average pressure 

decline trend for the oil column is shown in Figure 36. Note that the average reservoir pressure is 

extracted from the simulation model by averaging the pressure in the oil column at each time 

step. In reality, it is necessary to apply pressure transient analysis techniques to determine the 

average pressure in the reservoir.  After about 2,000 days, oil production starts dropping below 

1,750 Sm
3
 as water from the aquifer reaches the producer. It is also worth noting that the gas rate 

increases as the reservoir pressure drops below the bubble point pressure and a secondary gas 

gap is formed. The formation of the secondary gas cap and encroachment of water into the oil 

zone can also be observed in the ternary plots provided in Figure 37. At about 3,000 days, the oil 

rate drops rapidly as the bottom hole pressure reaches the minimum limit of 90 bar(a). At this 

point, the rates drop because the bottom hole pressure cannot be lowered further to facilitate the 

drawdown required to maintain a total liquid rate of 1,750 Sm
3
/day.  
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Figure 35 - Production Rates from Synthetic Model 

 

Figure 36 - Reservoir Pressure and BHP from Synthetic Model 
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Figure 37 - Ternary Plot of Synthetic Model 
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3.5.5 Material Balance Model Response to Synthetic Production Data 

 

This section demonstrates how the material balance model responds to the synthetic production 

data from the reservoir simulator (Figure 35). The material balance is run forward with the true 

reservoir parameters, which are listed in Table 16. From Figure 38 it is clear that the material 

balance model matches the simulation model pressure response very well and demonstrates that 

the synthetic reservoir behaves like a perfect tank. This is despite the random grid properties and 

overall complexity associated with the simulation model. The observed accuracy is attributed to 

the fact that true parameter values from the simulation model are used. Furthermore, we observe 

that there is a kink in the pressure predicted by the material balance model at 900 days. This 

occurs because the bubble point is reached at this point, which causes solution gas drive to take 

effect. The abrupt kink is not present in the pressure trend from the simulation model, as the 

bubble point is not reached in all simulation cells simultaneously. The oneset of solution gas 

drive causes the aquifer influx rate to drop quite significantly due to the back-pressure provided 

by liberated gas (Figure 39). Finally, after 2,800 days the aquifer influx drops steadily due to 

overall lower extraction rates from the reservoir. For reference, Figure 40 shows material balance 

fluid saturations vs. time. 
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Table 16 - Tank Model Parameters 

Parameter Value Unit 

N 31.6 M Sm
3
 

Wi 444.6 M Sm
3
 

Jw 100 Rm
3
/bar(a)*day 

G 0.0 M Sm
3
 

Swc 0.2 - 

cw 2.8E-5 1/bar(a) 

cf 5.0E-5 1/bar(a) 

PVT Same as simulation model - 

 

 

Figure 38 - Material Balance vs. Synthetic Data Reservoir Pressure 
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Figure 39 - Material Balance Aquifer Influx Prediction 

 

Figure 40 - Material Balance Fluid Saturation Predictions vs. Time 
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Next, an ad-hoc sensitivity analysis is provided to show the material balance responds to changes 

in input parameters in the vicinity of the true parameter values.  Summaries of the sensitivity 

cases are provided in Table 17 and Figure 41. For the parameter ranges tested, it is clear that 𝑁 

and 𝑊𝑖 overall have more effect on the predicted pressure than does 𝐽𝑤. It is also worth noting 

that the aquifer influx increases as 𝑁 decreases. This occurs because smaller values of 𝑁 are 

associated with more rapid reservoir pressure decline, which in turn creates a larger pressure 

differential between the oil tank and the aquifer tank, leading to larger aquifer influx rates. 

 

Table 17 - Deterministic Sensitivities for Material Balance Model 

Material Balance Sensitivity Case N Wi Jw 

1 

25 444.6 100 

45 444.6 100 

65 444.6 100 

2 

31.6 200 100 

31.6 400 100 

31.6 600 100 

3 

31.6 444.6 50 

31.6 444.6 100 

31.6 444.6 150 
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Figure 41 - Material Balance Model Sensitivities 
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3.6 Bayesian Updating Case Study 

 

In this section Bayesian updating is applied to infer the material balance parameters by 

assimilating measured data resulting from the synthetic data set. Four different cases are 

evaluated and summarized in Table 18. The initial gas in place 𝐺 is kept as a deterministic 

constant equal to zero for all cases. This is often a reasonable assumption for real reservoirs, 

provided that PVT data and pressure transient analysis provide sufficient evidence to rule out the 

existence of an initial gas cap. 

 

Table 18 - Case Study Summary 

Case Purpose 

1 Demonstrate structured grid solution procedure for two-variable Bayesian updating 

problems and examine 3D surface plots, 2D contour plots and marginal distributions 

for the prior, likelihood and posterior distributions. 

2 Demonstrate MCMC based solution by comparing to the two-variable structured grid 

solution in Case 1.  

3 Demonstrate the MCMC based solution strategy on a three-variable problem that 

cannot be visualized in 3D surface plots. Provide a comprehensive set of diagnostic 

plots that are useful for assessing model behavior and MCMC convergence properties.  

4 Demonstrate the effect of both consistent and random measurement errors on the 

posterior parameter estimates 
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3.6.1.1 Case 1 - Two-Variable Structured Grid Solution 

 

In the first case, initial oil in place 𝑁 and aquifer index 𝐽𝑤 are treated as random variables, while 

aquifer size 𝑊𝑖 is treated as a deterministic constant. The numerical value for 𝑊𝑖 is extracted 

directly from the simulation model.  This allows studying the structured grid solution with full 

visualization of the prior, likelihood and posterior distributions in three-dimensional surface 

plots. A summary of the input parameters associated with Case 1 is provided in (Table 19). A 

100x100 grid is used to generate the prior, likelihood and posterior distributions. This involves 

running the material balance model at 10,000 grid locations for all 12 time steps, running to 

3,600 days.  The resulting three-dimensional surface plots are shown in Figure 42, Figure 43 and 

Figure 44. The effect of the likelihood variance is assessed by setting the variance to 10 and 50 

bar(a)
2
 and the results are compared on contour plots shown in Figure 45. This figure shows that 

the posterior assimilates the likelihood distribution faster for smaller likelihood variance values. 

The same behavior can be observed in the marginal posterior histograms, shown in (Figure 46). 

Furthermore, the peak of the likelihood distribution, also known as the Maximum Likelihood 

(MLE), corresponds to the parameter values associated with the best overall fit to the measured 

reservoir pressure decline trend. As such, the posterior is shown to be a compromise between 

prior belief and an optimal parameter fit.  As more data is incorporated into the analysis, the 

posterior becomes increasingly similar to the likelihood distribution. 

 

 

 

 



118 

 

Table 19 - Case 1 Parameters 

Item Value Unit 

Grid size 100 x 100 - 

Bayesian updating steps 12 - 

Time steps 300*12 days 

Likelihood variance 10 and 50 bar(a)
2 

Aquifer Size (constant) 444.6 M Sm
3 

Gas in place (constant) 0 M Sm
3 

Prior - Oil in Place (N) [mean, standard deviation] [50, 100] M Sm
3 

Prior - Aquifer Index (Jw) Prior [mean, standard deviation] [150, 1000] Rm
3
/bar(a)*day 

 

 

Figure 42 - Case 1, Prior Distribution 
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Figure 43 - Case 1, Likelihood Distribution 

 

Figure 44 - Case 1, Posterior Distribution 
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Figure 45 - Case 1, Effect of Error on Likeihood and Posterior 
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Figure 46 - Case 1, Effect of Error on Marginal Posteriors 
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3.6.1.2 Case 2 - Two-Variable MCMC Sampling Based Solution 

 

The purpose of Case 2 is to provide a comparison between the MCMC sampling based algorithm 

and the grid based solution. Case 2 parameters are summarized in Table 20. Figure 47 shows a 

comparison between the marginal distributions and histograms resulting from the grid based 

solution and the MCMC algorithm at time = 1500 days. Figure 48 shows a scatter plot of the 

MCMC samples at times 300, 1500 and 3600 days plotted on top of prior/likelihood/posterior 

contours resulting from the grid based solution. Both Figure 47 and Figure 48 display good 

correspondence between the grid solution and the MCMC solution, thus providing confidence in 

the convergence properties of the MCMC algorithm. Figure 49 displays posterior marginal 

histogram outlines vs. time and shows how posterior variance decreases as the number of 

Bayesian assimilation steps increases. The same behavior can be observed in Figure 50, which 

shows posterior fitted normal distributions through time. Figure 51 displays acceptance ratios vs. 

sample number for each Bayesian assimilation step. It is evident that reasonable acceptance 

ratios ranging between 0.3 and 0.5 are achieved. Figure 52 displays running means for all time 

steps and show that the Markov Chain converges quickly and that the burn-in is achieved after 

about ~1,000 samples, thus showing the increased efficiency associated with the MCMC 

algorithm vs. the grid based approach. Figure 53 displays time series plots at times 300, 1500 

and 3600 days and shows that the posterior region is being adequately sampled. Finally, Figure 

54 shows autocorrelation vs. sample number at times 300, 1500 and 3600 days. Autocorrelation 

hovers around a value of zero, which indicates that the Markov Chains have good mixing 

properties. 

 



123 

 

Table 20 - Case 2 Parameters 

Item Value Unit 

Number of MCMC samples 10,000 - 

Bayesian updating steps 12 - 

Time steps 300 x 12  days 

Likelihood variance 10 bar(a)
2
 

Aquifer Size (deterministic constant) 444.6 M Sm
3
 

Initial gas in place (deterministic constant) 0 M Sm
3
 

Oil in Place (N) Prior [mean, standard deviation] [50, 10] M Sm
3
 

Aquifer Index (Jw) Prior [mean, standard deviation] [150, 31.68] Rm
3
/bar(a)*day 
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Figure 47 – Case 2, Grid vs. MCMC marginal posterior distributions at time = 1500 days 
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Figure 48 – Case 2, Posterior scatter plots 
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Figure 49 – Case 2, Posterior Marginal Histogram Outlines 
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Figure 50 – Case 2, Posterior Marginal Fitted Normal Distributions 
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Figure 51 – Case 2, Acceptance Ratios 
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Figure 52 – Case 2, Running Mean Plots  
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Figure 53 – Case 2, Time Series Plots 
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Figure 54 – Case 2, Autocorrelation Plots 
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3.6.1.3 Case 3 – Three-variable MCMC Sampling Based Solution 

 

The purpose of Case 3, aquifer size 𝑊𝑖 is added as a third random variable, meaning that the 

prior, likelihood and posterior cannot be visualized in three-dimensional plots. Instead, 

diagnostic plots useful for analyzing MCMC outputs are provided. Case 3 parmeters are 

summarized in Table 21. 

 

Table 21 - Case 3 Parameters 

Item Value Unit 

Number of MCMC samples 10,000 - 

Bayesian updating steps 12 - 

Time steps 12 x 300 days 

Likelihood variance 10 bar(a)
2
 

Aquifer Size Prior (Wi) - [mean, standard deviaton] [600, 10] M Sm
3
 

Oil in Place Prior (N) - [mean, standard deviation] [50, 100] M Sm
3
 

Aquifer Index Prior (Jw) Prior [mean, standard deviation] [50, 20] Rm
3
/bar(a)*day 

 

Figure 55 shows marginal posterior histogram outlines vs. time. It is evident that posterior 

variance decreases as data is assimilated. The same behavior is displayed in Figure 56, which 

shows fitted normal distributions vs. Bayesian updating steps. Overall, it is evident that the 

MCMC algorithm is correctly moving towards the true syntethic reservoir parameters as more 

data is incorporated. Figure 57 summarizes marginal histograms, scatter plots and correlation 

statistics at t = 300 days and t = 3600 days. The diagonal on these two 3x3 plots contanin the 
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marginal histograms. The plots above the diagonals show the calculated Pearson correlation 

coefficients for each variable pair. Initially, all variable combinations show little correlation. 

After about 12 updating steps (t = 3600 days), however, there is a exists strong linear correlation 

of -0.92 between oil in place 𝑁 and aquifer size 𝑊𝑖. This occurs because a larger oil in place 

must correspond to a small aquifer and vice versa from a pressure response perspective. The 

scatter plots below the diagonal confirm the correlation between 𝑁 and 𝑊𝑖 as the samples fall on 

nearly straight line with slope -0.92.  Figure 58, Figure 59 and Figure 60 display running mean, 

time series and autocorrelation vs. bayesian assimiliation step. All three plots show that the 

resulting Markov Chains exhibit good convergence and mixing properties. It is evident from the 

running mean plot (Figure 58) that burn-in is achieved after ~1,000 samples. Figure 61 shows 

that the acceptance ratio is relatively stable around a value of 0.2-0.3. This is lower than in case 

1, which is explained by the fact that an additional random variable was introduced in case 3, 

thus causing the posterior region to grow in size and becoming more challenging for the MCMC 

algorithm to explore. Figure 62 shows posterior mean deviation from the true parameter values 

vs. time. The average deviation is over 40-60% initially, but after 12 updating steps the deviation 

has reuduced to about 5-15% of the true parameter values. Figure 63 shows posterior sample 

means and 95
th

 percentile vs. time. It is clear that variances reduces as data is incoroprated into 

the analysis. Figure 64 shows 50 material balance realizations based on random 𝑁, 𝐽𝑤 and 𝑊𝑖 

samples drawn from the posterior distributions at t = 300, 1500 and 3600 days. It is evident that 

uncertainty reduces as data is incorporated. As such, the difference between the measured data 

and the predicted data becomes increasingly smaller as the variance associated with the likelhood 

function reduces and starts dominiating in the posterior distribution.  
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Figure 55 - Case 3, Posterior Marginal Histograms 
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Figure 56 - Case 3, Posterior Fitted Normal Distributions 
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Figure 57 - Case 3, MCMC Summary Plot at time = 300 and 2600 days 
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Figure 58 - Case3, Running Mean Plots 
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Figure 59 - Case 3, Time Series Plots 
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Figure 60 - Case 3, Autocorrelation Plots 
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Figure 61 - Case3, Acceptance Ratios 

 

Figure 62 - Case 3, Deviation From True Parameter Values 
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Figure 63 - Case 3, MCMC Posterior Means and 95
th

 Percentiles 
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Figure 64 - Case 3, Posterior Material Balance Realizations, t=300, 1500 and 3600 days 
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3.6.1.4 Case 4 – Effect of Measurement Error 

 

The purpose of this case is to demonstrate the effect of both consistent and random measurement 

errors. The general case parameters are summarized in Table 22. In this section only the 

posterior sample mean and associated 95
th

 percentile plots are included as the previous sections 

have already demonstrated a full suite of MCMC convergence and diagnostic plots. First, a large 

constant pressure differential of 30 bar(a) is added to the synthetic reservoir pressure. This 

simulates consistent over-prediction of the measured pressure (Figure 65). It is clear that this 

measurement error causes the Bayesian material balance model to infer values different from the 

true parameter values (Figure 66). In particular, the oil in place 𝑁 is estimated to be about 10 M 

Sm
3
 larger than the true value. The error associated with the posterior distribution, however, is 

shown to somewhat mitigates this discrepancy by including the true parameter value in the 

vicinity of the 95
th

 percentile of the posterior distribution. This demonstrates how Bayesian 

updating is an improvement over deterministic regression analyses, in that it provides a range of 

plausible parameters in addition to the parameters associated with maximum likelihood. To fully 

mititgate consistent measurement errors one would either have to shift the measured data prior to 

analysis with the Bayesian material balance model or apply a skewed likelihood function.  To 

simulate inference on a noisy data set, random errors are added to the measured pressure (Figure 

65). The random noise causes the posterior distribution to vary as each data point contradicts the 

parameters that were inferred in the previous time step (Figure 67).  Next, the likelihood variance 

is increased to 50 bar(a)
2
 to match the standard deviation of the random noise. This stabilizes the 

posterior distributions and increases overall posterior variance, but does not change the inferred 

mean values significantly (Figure 68). Overall, measurement noise has a significant effect on the 
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posterior parameter estimates. Since material balance is a longer-term analysis technique, it is 

recommended that long term trends are fitted to measured pressure data to reduce noise prior to 

incorporation into the Bayesian updating model. 

 

Table 22 - Case 4 Main Parameters 

Item Value Unit 

Number of MCMC samples 10,000 - 

Bayesian updating steps 12 - 

Time steps 12 x 300 days 

Aquifer Size Prior (Wi) - [mean, standard deviaton] [600, 100] M Sm
3
 

Oil in Place Prior (N) - [mean, standard deviation] [50, 10] M Sm
3
 

Aquifer Index Prior (Jw) Prior [mean, standard deviation] [50, 20] Rm
3
/bar(a)*day 
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Figure 65 - Pressure data with constant shift and pressure data with random noise 
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Figure 66 - Effect of constant pressure shift on posterior means and 95th percentiles 
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Figure 67 - Effect of random noise on posterior means and 95th percentiles 
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Figure 68 - Effect of noise on posterior means and 95th percentiles 
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3.7 Conclusion 

 

This chapter presents a Bayesian analysis of the general material balance equation. Bayesian 

updating is shown to be a useful for estimating material balance parameters because the 

technique allows for full characterization of uncertainty. A summary of key findings is provided 

below: 

 

 The grid based approach to Bayesian updating is shown to only be practical for two 

dimensions, due to the large number of additional forward model evaluations that are 

required with each added grid dimension.  

 The MCMC approach is more efficient than the grid based approach as it reduces the 

number of required forward model evaluations. 

 Good correspondence between the synthetic data set and the Bayesian updating models is 

observed. The MCMC model shows good convergence properties and replicates the 

posterior resulting from the grid based solution with high accuracy. 

 Likelihood variance affects the rate at which the posterior assimilates information 

contained in the data.  

 Data noise can have a significant effect on parameter estimates. Increasing the likelihood 

variance helps mitigate errors associated with random measurement noise. 

 Material Balance with Bayesian updating can be placed into the broader reservoir 

engineering workflow as a technique for validating drive mechanisms and volumes in 

place probabilistically. The methodology represents an improvement over deterministic 

material balance in that it allows for full characterization of uncertainty. A sample 
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application would be to reconcile simulation model inputs with results obtained from 

Bayesian Material balance modeling (Figure 69). 

 

 

  

Figure 69 - Bayesian Material Balance in Reservoir Engineering Context 
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Appendix A – PEWMA Python Code 
 
import argparse 
import numpy as np 
import scipy as sp 
from scipy import special, optimize 
import matplotlib.pyplot as plt 
from scipy.special import gamma as Gamma 
from pylab import * 
import scipy.stats as ss 
from scipy.stats import gamma 
from scipy.stats import beta 
from scipy.optimize import minimize 
import scipy.misc 
import pylab as pl 
import statistics 
 
plt.rc('font',family='Arial') 
 
def PEWMA_filter(y,omega,a_prior,b_prior): 
     
    a_predicted = np.zeros(len(y)) 
    b_predicted = np.zeros(len(y)) 
    a_updated = np.zeros(len(y)) 
    b_updated = np.zeros(len(y)) 
    return_array = [] 
 
    for t in range(0,len(y)): 
                
        if(t == 0): 
            a_predicted[t] = a_prior 
            b_predicted[t] = b_prior 
            a_updated[t] = a_predicted[t]+ y[t] 
            b_updated[t] = b_predicted[t] + 1 
        elif(t > 0): 
            a_predicted[t] = a_updated[t-1]*omega 
            b_predicted[t] = b_updated[t-1]*omega 
            a_updated[t] = a_predicted[t] + y[t] 
            b_updated[t] = b_predicted[t] + 1 
         
    return_array = np.column_stack((a_predicted, b_predicted, a_updated,b_updated)) 
 
    return return_array 
 
def omega_log_likelihood(w,y,a_prior,b_prior,index_non_zero): 
 
    a_updated = np.zeros(len(y)) 
    b_updated = np.zeros(len(y)) 
    a_predicted = np.zeros(len(y)) 
    b_predicted = np.zeros(len(y)) 
    log_likelihood = 0                
    for i in range(0,len(y)): 
 
        if(i == 0): 
            a_predicted[i] = a_prior 
            b_predicted[i] = b_prior 
            a_updated[i] = a_predicted[i] + y[i] 
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            b_updated[i] = b_predicted[i] + 1 
        else: 
            a_predicted[i] = a_updated[i-1]*w 
            b_predicted[i] = b_updated[i-1]*w 
            a_updated[i] = a_predicted[i] + y[i] 
            b_updated[i] = b_predicted[i] + 1 
             
        if i > index_non_zero: 
            log_likelihood = log_likelihood + (math.log(math.gamma(a_predicted.item(i) + y[i])) - math.log(math.gamma(y[i] + 1)) - math.log(math.gamma(a_predicted.item(i))) + 
a_predicted.item(i)*math.log(b_predicted.item(i)) - (a_predicted.item(i) + y[i])*math.log(1+b_predicted.item(i))) 
     
    return -log_likelihood 
             
def PEWMA(failure_data, a_prior, b_prior, optimize_omega, constant_omega): 
 
    omega = np.zeros(len(failure_data)) 
    a_predicted = np.zeros(len(failure_data)) 
    b_predicted = np.zeros(len(failure_data)) 
    a_updated = np.zeros(len(failure_data))     
    b_updated = np.zeros(len(failure_data))     
    year = failure_data[:,0]    
    y = failure_data[:,1] 
        
    index_non_zero = 0 
    #Finding the first zero in the array 
    for t in range(0,len(y)): 
        if(y[t] > 0.0): 
            index_non_zero = t 
            break 
 
    for t in range(0,len(y)): 
 
        if(optimize_omega == 1): 
            if(t < index_non_zero): 
                omega[t] = 1 
            else: 
                temp_optimal = scipy.optimize.minimize(omega_log_likelihood, [0.5],args=(y[0:t+1],a_prior,b_prior,index_non_zero),method='L-BFGS-B',bounds=((0.01,0.99),)) 
                omega[t] = temp_optimal.x  
        else: 
            omega[t] = constant_omega 
 
        PEWMA_output = PEWMA_filter(y[0:t+1],omega[t],a_prior,b_prior) 
        a_predicted[t] = PEWMA_output[t,0] 
        b_predicted[t] = PEWMA_output[t,1] 
        a_updated[t] = PEWMA_output[t,2] 
        b_updated[t] = PEWMA_output[t,3]  

        
    dist_type = np.zeros(len(y))   
    return_array = np.column_stack((dist_type, year, a_updated, b_updated,a_predicted,b_predicted))      
    return return_array 
 
def generate_samples(input_data,num_samples):    
    sample_array = [] 
    if(input_data[0] == 1):  
        sample_array = np.random.uniform(input_data[2],input_data[3],num_samples) 
    elif(input_data[0] == 0):             
        sample_array = np.random.gamma(input_data[2],1/input_data[3],num_samples) 
    return sample_array 
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def plot_PEWMA_mean_vs_time(PEWMA, failure_data, xlim, ylim, fignum, figname, title): #, title): 
 
    PEWMA_mean = np.zeros(len(PEWMA))     
    PEWMA_95 = np.zeros(len(PEWMA)) 
    PEWMA_5 = np.zeros(len(PEWMA)) 
     
    #Original dims, 10, 6 
    fig = plt.figure(fignum, figsize=(11,12),dpi=1100)     
    for t in range(0, len(PEWMA)): 
        PEWMA_95[t] = gamma.ppf(0.95,PEWMA[t,2], 0, 1/PEWMA[t,3]) 
        PEWMA_5[t] = gamma.ppf(0.05,PEWMA[t,2], 0, 1/PEWMA[t,3]) 
        PEWMA_mean[t] = PEWMA[t,2]/PEWMA[t,3] 
     
    plt.figure(fignum) 
    ax = fig.add_subplot(211) 
    ax.fill_between(PEWMA[:,1], PEWMA_5, PEWMA_95, color=str(0.7), alpha='0.5') 
    ax.plot(PEWMA[:,1], PEWMA_mean, linewidth=2, color=str(0)) 
    ax2 = ax.twinx() 
    ax2.plot(failure_data[:,0], failure_data[:,1], linestyle="None",marker="o",markersize=6,color='black') 
    ax.set_xlim((xlim[0],xlim[1])) 
    ax2.set_ylim((ylim[0],ylim[1])) 
    ax.set_ylim((ylim[0],ylim[1])) 
     
    ax.grid(color='gray',linestyle='dashed') 
    plt.setp(ax.get_yticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial") 
    plt.setp(ax2.get_yticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial") 
    plt.setp(ax.get_xticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial") 
          
    ax.set_ylabel("Posterior Mean Failure Rate (Failures/Year)", fontsize=15,family="Arial") 
    ax.set_xlabel("Year", fontsize=15,family="Arial") 
    ax.set_ylabel("Posterior Mean Failure Rate", fontsize=15,family="Arial")              
    ax2.set_ylabel("Actual Failures", fontsize=15,family="Arial") 
    plt.legend(fontsize=11)  
    ax.set_title(title, fontsize=15,family="Arial")    
     
    plt.savefig(figname,dpi=600)     
 
def plot_PEWMA_mean_vs_omega(failure_data, a_prior, b_prior, omega_values, legend_loc, ylim, fignum, figname, title): 
 
    fig = plt.figure(fignum, figsize=(10,10),dpi=1100) 
 
    plt.figure(fignum) 
    ax = fig.add_subplot(211) 
 
    for i in range(1,len(omega_values)): 

     
        PEWMA_output = PEWMA(failure_data,a_prior,b_prior,0,omega_values[i]) 
 
        plt.figure(fignum) 
        ax = fig.add_subplot(111) 
        ax.plot(PEWMA_output[:,1], PEWMA_output[:,2]/PEWMA_output[:,3], linewidth=2, color=str(0.9 - i/6), label="Omega = " + str(omega_values[i])) 
        ax.set_xlim((1987,2005)) 
        ax.set_ylim((0,ylim))           
        plt.setp(ax.get_yticklabels(), rotation='horizontal', fontsize=10, style='normal', Family="Arial") 
 
    PEWMA_output = PEWMA(failure_data,a_prior,b_prior,1,1)     
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    plt.figure(fignum) 
    ax = fig.add_subplot(111) 
    ax.plot(PEWMA_output[:,1], PEWMA_output[:,2]/PEWMA_output[:,3], linewidth=1.5, color="black", linestyle="dashed",label="Optimized") 
    ax2 = ax.twinx() 
    ax2.plot(failure_data[:,0], failure_data[:,1], linestyle="None",marker="o",markersize=5,color='black') 
    ax.set_xlim((1987,2005)) 
    ax2.set_ylim((0,ylim)) 
    ax.set_ylim((0,ylim))   
     
    ax.grid(color=str(0.8),linestyle='dashed') 
    plt.setp(ax.get_yticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial") 
    plt.setp(ax2.get_yticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial") 
    plt.setp(ax.get_xticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial") 
          
    ax.set_ylabel("Posterior Mean Failure Rate (Failures/Year)", fontsize=15,family="Arial") 
    ax2.set_ylabel("Actual Failures", fontsize=15,family="Arial") 
    ax.legend(loc=legend_loc, shadow=False, fontsize='x-large')     
    ax.set_title(title, fontsize=15,family="Arial")  
     
    plt.savefig(figname,dpi=600) 
 
def plot_gamma_updating(PEWMA, a_prior, b_prior, legend_loc, xlim, fignum, figname, title): 
 
    fig = plt.figure(fignum, figsize=(9.5,10),dpi=1100) 
    ax = fig.add_subplot(212) 
    plt.tight_layout() 
     
    years = np.linspace(0,len(PEWMA),len(PEWMA))     
     
    x = np.arange(0,xlim,0.01) 
    y = np.zeros(len(x))  
 
    norm = matplotlib.colors.Normalize(vmin=np.min(years[0]), vmax=np.max(years[len(years)-1])) 
    c_m = matplotlib.cm.Greys 
    s_m = matplotlib.cm.ScalarMappable(cmap=c_m, norm=norm) 
    s_m.set_array([]) 
 
    for t in range(0, len(PEWMA)): 
         
        for i in range(0,len(x)):             
            y[i] = gamma.pdf(x[i],PEWMA[t,2],0,1/PEWMA[t,3]) 
        plt.figure(fignum)             
     
        #ax.plot(x,y, linewidth=1.5, color=s_m.to_rgba(t)) 
        ax.plot(x,y, linewidth=2, color=s_m.to_rgba(t), label="t = " + str(t)) 
             

    plt.figure(fignum) 
    ax.set_xlim((0,xlim)) 
    ax.grid(color='gray',linestyle='dashed') 
    ax.set_ylabel("Probability Density", fontsize=15,family="Arial") 
    ax.set_xlabel("Failure Rate (Failures/Year)", fontsize=15,family="Arial") 
    plt.setp(ax.get_yticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial") 
    plt.setp(ax.get_xticklabels(), rotation='horizontal', fontsize=15, style='normal', Family="Arial") 
    #ax.legend(loc=legend_loc, shadow=False, fontsize='small')   
    plt.legend(fontsize=12) 
    #plt.colorbar(s_m) 
    ax.set_title(title, fontsize=15,family="Arial")        
     



159 

 

    plt.savefig(figname,dpi=600, figsize=(8,5)) 
 
def sample_exponential_failure_times(failure_rate): 
     
    failure_times = [] 
    cum_time = 0 
    integer_failure_time = 0 
    failure_array = zeros(12) 
 
    cum_time = 0 
 
    while(cum_time < 12):   
     
        random_number = np.random.uniform(0,1) 
        temp = -np.log(1 - random_number)/failure_rate 
        cum_time = cum_time + temp 
        integer_failure_time = int(cum_time) 
        failure_times.append(cum_time)     
        if(cum_time <= 12): 
            failure_array[integer_failure_time] = failure_array[integer_failure_time] + 1 
 
    return failure_array 
 
def OREDA_gamma_fit_parameters(x1, p1, x2, p2): 
     
    # Standardize so that x1 < x2 and p1 < p2 
    if p1 > p2: 
        (p1, p2) = (p2, p1) 
        (x1, x2) = (x2, x1) 
     
    # function to find roots of for gamma distribution parameters 
    def objective(alpha): 
        return ss.gamma.ppf(p2, alpha) / ss.gamma.ppf(p1, alpha) - x2/x1 
     
    # The objective function we're wanting to find a root of is decreasing. 
    # We need to find an interval over which is goes from positive to negative. 
    left = right = 1.0 
    while objective(left) < 0.0: 
        left /= 2 
    while objective(right) > 0.0: 
        right *= 2 
    alpha = optimize.bisect(objective, left, right) 
    beta = x1 / ss.gamma.ppf(p1, alpha) 
     
    return (alpha, beta) 
 

def main(): 
 
    optimize_omega = 0 
    constant_omega = 0.9 
    num_samples = 5000 
 
    N_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\N_failure_data.txt", delimiter="\t") 
    M_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\M_failure_data.TXT", delimiter="\t") 
    O1_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\O1_failure_data.TXT", delimiter="\t") 
    O3_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\O3_failure_data.TXT", delimiter="\t") 
    S_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\S_failure_data.TXT", delimiter="\t") 
    step_failure_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\step_data.TXT", delimiter="\t") 
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    L_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\L_static_data.TXT", delimiter="\t") 
    A1_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A1_static_data.TXT", delimiter="\t") 
    A2_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A2_static_data.TXT", delimiter="\t") 
    V_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\V_static_data.TXT", delimiter="\t") 
 
    L_static_data_10x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\L_static_data10x.TXT", delimiter="\t") 
    A1_static_data_10x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A1_static_data10x.TXT", delimiter="\t") 
    A2_static_data_10x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A2_static_data10x.TXT", delimiter="\t") 
    V_static_data_10x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\V_static_data10x.TXT", delimiter="\t") 
 
    L_static_data_100x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\L_static_data100x.TXT", delimiter="\t") 
    A1_static_data_100x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A1_static_data100x.TXT", delimiter="\t") 
    A2_static_data_100x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\A2_static_data100x.TXT", delimiter="\t") 
    V_static_data_100x = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\V_static_data100x.TXT", delimiter="\t") 
 
    M_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\M_static_data.TXT", delimiter="\t") 
    O1_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\O1_static_data.TXT", delimiter="\t") 
    O3_static_data = np.loadtxt(r"C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_Data_Files\O3_static_data.TXT", delimiter="\t") 
 
    #L_static_data = L_static_data_10x 
    #A1_static_data = L_static_data_10x 
    #A2_static_data = L_static_data_10x 
    #V_static_data = L_static_data_10x 
 
    N_a_prior = 2 
    N_b_prior = 1 
    M_a_prior = 2 
    M_b_prior = 1 
    O1_a_prior = 2 
    O1_b_prior = 1 
    O3_a_prior = 2 
    O3_b_prior = 1 
    S_a_prior = 1 
    S_b_prior = 1 
 
    #step_a_prior = 1 
    #step_b_prior = 1 
 
    N_PEWMA = PEWMA(N_failure_data,N_a_prior,N_b_prior,optimize_omega,constant_omega)     
    M_PEWMA = PEWMA(M_failure_data,M_a_prior,M_b_prior,optimize_omega,constant_omega) 
    O1_PEWMA = PEWMA(O1_failure_data,O1_a_prior,O1_b_prior,optimize_omega,constant_omega) 
    O3_PEWMA = PEWMA(O3_failure_data,O3_a_prior,O3_b_prior,optimize_omega,constant_omega) 
    S_PEWMA = PEWMA(S_failure_data,S_a_prior,S_b_prior,optimize_omega,constant_omega) 
    #step_PEWMA = PEWMA(step_failure_data,step_a_prior,step_b_prior,optimize_omega,constant_omega) 
 
 

    #plot_PEWMA_mean_vs_time(N_PEWMA, N_failure_data, [1987,2005], [0,3.5], 1, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\N_mean_and_percentiles.png', "N - Mean and 95th Percentiles") 
    #plot_PEWMA_mean_vs_time(M_PEWMA, M_failure_data, [1987,2005], [0,5], 2, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\M_mean_and_percentiles.png', "M, - Mean and 95th Percentiles") 
    #plot_PEWMA_mean_vs_time(O1_PEWMA, O1_failure_data, [1987,2005], [0,5], 3, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\O1_mean_and_percentiles.png', "O1 - Mean and 95th Percentiles") 
    #plot_PEWMA_mean_vs_time(O3_PEWMA, O3_failure_data, [1987,2005], [0,4.5], 4, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\O3_mean_and_percentiles.png', "O3 - Mean and 95th Percentiles") 
    #plot_PEWMA_mean_vs_time(S_PEWMA, S_failure_data, [1987,2005], [0,1.5], 5, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\S_mean_and_percentiles.png', "S - Mean and 95th Percentiles") 
    #plot_PEWMA_mean_vs_time(_PEWMA, step_failure_data, [1,26], [0,10], 999, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\step_mean_and_percentiles.png', "Omega=" + str(constant_omega)) 
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    #plot_gamma_updating(N_PEWMA, N_a_prior, N_b_prior, "upper right", 2.0, 1, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\N_gamma_updating.png', "N - Posterior Distributions") 
    #plot_gamma_updating(M_PEWMA, M_a_prior, M_b_prior, "upper right", 5, 2, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_FIGURES\M_gamma_updating.png', 
"M - Posterior Distributions") 
    #plot_gamma_updating(O1_PEWMA, O1_a_prior, O1_b_prior, "upper right", 2.5, 3, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\O1_gamma_updating.png', "O1 - Posterior Distributions") 
    #plot_gamma_updating(O3_PEWMA, O3_a_prior, O3_b_prior, "upper right", 4.5, 4, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\O3_gamma_updating.png', "O3 - Posterior Distributions") 
    #plot_gamma_updating(S_PEWMA, S_a_prior, M_b_prior, "upper right", 1.5, 5, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python Scripts\PART_A_FIGURES\S_gamma_updating.png', 
"S - Posterior Distributions") 
 
    #omega_values = [0.5,0.6,0.7,0.8,0.9,1] 
    #plot_PEWMA_mean_vs_omega(N_failure_data, N_a_prior, N_b_prior, omega_values, "upper right", 3.5, 11, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\N_omega_value_sensitivity.png', "N, Omega Sensitivities") 
    #plot_PEWMA_mean_vs_omega(M_failure_data, M_a_prior, M_b_prior, omega_values, "upper left", 5, 12, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\M_omega_value_sensitivity.png', "M, Omega Sensitivities") 
    #plot_PEWMA_mean_vs_omega(O1_failure_data, O1_a_prior, O1_b_prior, omega_values, "upper left", 2.5, 13, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\O1_omega_value_sensitivity.png', "O1 Omega Sensitivities") 
    #plot_PEWMA_mean_vs_omega(O3_failure_data, O3_a_prior, O3_b_prior, omega_values, "upper left", 4.5, 14, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\O3_omega_value_sensitivity.png', "O3 Omega Sensitivities") 
    #plot_PEWMA_mean_vs_omega(S_failure_data, S_a_prior, S_b_prior, omega_values, "upper left", 1.5, 15, r'C:\Users\Christian\Google Drive\Masters\MASTERS_2015\01 - Python 
Scripts\PART_A_FIGURES\S_omega_value_sensitivity.png', "S Omega Sensitivities") 
  
     
    M_COMBINED = np.row_stack((M_static_data,M_PEWMA)) 
    O1_COMBINED = np.row_stack((O1_static_data,O1_PEWMA)) 
    O3_COMBINED = np.row_stack((O3_static_data,O3_PEWMA)) 
    N_COMBINED = N_PEWMA 
    S_COMBINED = S_PEWMA 
    L_COMBINED = L_static_data 
    A1_COMBINED = A1_static_data 
    A2_COMBINED = A2_static_data 
    V_COMBINED = V_static_data 
 
    p_N = np.zeros(num_samples) 
    p_M = np.zeros(num_samples) 
    p_O1 = np.zeros(num_samples) 
    p_O3 = np.zeros(num_samples) 
    p_S = np.zeros(num_samples) 
    p_L = np.zeros(num_samples) 
    p_A1 = np.zeros(num_samples) 
    p_A2 = np.zeros(num_samples) 
    p_V = np.zeros(num_samples) 
    p_SA = np.zeros(num_samples) 
 

    p_LS = np.zeros(num_samples) 
    p_A = np.zeros(num_samples) 
    p_O2 = np.zeros(num_samples) 
    p_O = np.zeros(num_samples) 
    p_R = np.zeros(num_samples) 
    p_B = np.zeros(num_samples) 
    p_VC = np.zeros(num_samples) 
 
    VC_95_percentile = np.zeros(len(N_COMBINED)) 
    VC_5_percentile  = np.zeros(len(N_COMBINED)) 
    VC_mean = np.zeros(len(N_COMBINED)) 
    VC_mode = np.zeros(len(N_COMBINED)) 
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    p_VC_mean = np.zeros(num_samples)     
 
    plt.figure(97,figsize=(10,6),dpi=600)      
    plt.figure(98,figsize=(10,6),dpi=600)  
    plt.figure(99,figsize=(10,6),dpi=600)  
 
    #plt.figure(201,figsize=(11,4.6),dpi=600) 
    plt.figure(202,figsize=(10,6),dpi=600) 
    plt.figure(203,figsize=(10,6),dpi=600) 
 
    iterations = np.arange(0,num_samples,1) 
    
    cutset_1 = zeros(num_samples) 
    cutset_2 = zeros(num_samples) 
    cutset_3 = zeros(num_samples) 
    cutset_4 = zeros(num_samples) 
    cutset_5 = zeros(num_samples) 
    cutset_6 = zeros(num_samples) 
    cutset_7 = zeros(num_samples) 
    cutset_8 = zeros(num_samples) 
     
    cutset_1_mean = zeros(len(N_COMBINED)) 
    cutset_2_mean = zeros(len(N_COMBINED)) 
    cutset_3_mean = zeros(len(N_COMBINED)) 
    cutset_4_mean = zeros(len(N_COMBINED)) 
    cutset_5_mean = zeros(len(N_COMBINED)) 
    cutset_6_mean = zeros(len(N_COMBINED)) 
    cutset_7_mean = zeros(len(N_COMBINED)) 
    cutset_8_mean = zeros(len(N_COMBINED)) 
 
 
    for t in range(0,len(N_COMBINED)):  
  
        N_samples = generate_samples(N_COMBINED[t,:],num_samples) 
        M_samples = generate_samples(M_COMBINED[t,:],num_samples) 
        O1_samples = generate_samples(O1_COMBINED[t,:],num_samples) 
        O3_samples = generate_samples(O3_COMBINED[t,:],num_samples) 
        S_samples = generate_samples(S_COMBINED[t,:],num_samples) 
        V_samples = generate_samples(V_COMBINED[t,:],num_samples) 
        A1_samples = generate_samples(A1_COMBINED[t,:],num_samples) 
        A2_samples = generate_samples(A2_COMBINED[t,:],num_samples) 
        SA_samples = generate_samples(A2_COMBINED[t,:],num_samples) 
        L_samples = generate_samples(L_COMBINED[t,:],num_samples) 
 
        temp_sum = 0 
 

        for i in range(0,num_samples): 
             
            p_N[i] = 1-np.exp(-N_samples[i]) 
            p_M[i] = 1-np.exp(-M_samples[i]) 
            p_O1[i] = 1-np.exp(-O1_samples[i]) 
            p_O3[i] = 1-np.exp(-O3_samples[i]) 
            p_S[i] = 1-np.exp(-S_samples[i]) 
            p_V[i] = 1-np.exp(-V_samples[i]) 
            p_A1[i] = 1-np.exp(-A1_samples[i]) 
            p_A2[i] = 1-np.exp(-A2_samples[i]) 
            p_L[i] = 1-np.exp(-L_samples[i]) 
            p_SA[i] = 1-np.exp(-SA_samples[i]) 
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            p_LS[i] = p_L[i] + p_A1[i] - p_L[i]*p_A1[i] 
            p_A[i] = p_LS[i]*p_A2[i] 
            p_O2[i] = p_A[i]*p_M[i] 
            p_O[i] = p_O2[i] + p_O3[i] - p_O2[i]*p_O3[i] 
            p_R[i] = p_O1[i] + p_V[i] - p_O1[i]*p_V[i] 
            p_B[i] = p_R[i]*p_O[i] #*p_SA[i] 
             
            cutset_1[i] = p_O1[i]*p_L[i]*p_A2[i]*p_M[i]*p_SA[i] 
            cutset_2[i] = p_O1[i]*p_A1[i]*p_A2[i]*p_M[i]*p_SA[i] 
            cutset_3[i] = p_L[i]*p_A2[i]*p_M[i]*p_V[i]*p_SA[i] 
            cutset_4[i] = p_A1[i]*p_A2[i]*p_M[i]*p_V[i]*p_SA[i] 
            cutset_5[i] = p_O1[i]*p_O3[i]*p_SA[i] 
            cutset_6[i] = p_V[i]*p_O3[i]*p_SA[i] 
            cutset_7[i] = p_N[i] 
            cutset_8[i] = p_S[i] 
                 
            p_VC[i] = p_B[i] + p_N[i] + p_S[i] - p_B[i]*p_N[i] - p_B[i]*p_S[i] - p_N[i]*p_S[i] + p_B[i]*p_N[i]*p_S[i] 
 
            temp_sum = temp_sum + p_VC[i]         
            p_VC_mean[i] = temp_sum/i 
          
        if(t == len(N_COMBINED)-1): 
            plt.figure(9999,figsize=(10,6),dpi=600)             
            plt.hist(p_VC, color="gray", bins=20) 
             
             
        if(t == len(N_COMBINED)-1): 
            plt.figure(97) 
            plt.hist(p_VC, bins = 50, histtype='step', normed=True,linewidth=3.5,color='black', cumulative=False)  
        else: 
            plt.figure(97) 
            plt.hist(p_VC, bins = 50, histtype='step', normed=True,linewidth=1.5,color=str(0.95 - t/20), cumulative=False)  
   
        VC_mean[t] = statistics.mean(p_VC) 
        VC_95_percentile[t] = np.percentile(p_VC,95) 
        VC_5_percentile[t] = np.percentile(p_VC,5) 
 
        plt.figure(98) 
        plt.plot(iterations,p_VC_mean,color=str(0.95 - t/20),label="Time = " + str(t) + " years") 
        plt.ylim((0.4,1)) 
        plt.legend(fontsize=10) 
 
        cutset_1_mean[t] = statistics.mean(cutset_1) 
        cutset_2_mean[t] = statistics.mean(cutset_2) 
        cutset_3_mean[t] = statistics.mean(cutset_3) 

        cutset_4_mean[t] = statistics.mean(cutset_4) 
        cutset_5_mean[t] = statistics.mean(cutset_5) 
        cutset_6_mean[t] = statistics.mean(cutset_6) 
        cutset_7_mean[t] = statistics.mean(cutset_7) 
        cutset_8_mean[t] = statistics.mean(cutset_8) 
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Appendix B – Python code for Bayesian Updating of Material Balance Equation 

 

B.1 Functions 

 
def interpolate_PVT(PVT_data,p,index): 
     
    return_value = 0 
    slope = 0 
       
    if(p < PVT_data[0,0]): #interpolate 
     
        slope = (PVT_data[1,index] - PVT_data[0,index])/(PVT_data[1,0] - PVT_data[0,0]) 
        return_value = PVT_data[0,index] + (p-PVT_data[0,0]*slope) 
              
    elif(p > PVT_data[len(PVT_data)-1,0]):  #extrapolate 
         
        slope = (PVT_data[len(PVT_data)-1,index] - PVT_data[len(PVT_data)-2,index])/(PVT_data[len(PVT_data)-1,0] - PVT_data[len(PVT_data)-2,0]) 
        return_value = PVT_data[len(PVT_data)-1,index] + (p-PVT_data[len(PVT_data)-1,0]*slope) 
     
    else: 
         
        for i in range(0,len(PVT_data)-1): 
             
            if(p >= PVT_data[i,0] and p <= PVT_data[i+1,0]): 
                 
                slope = (PVT_data[i+1,index] - PVT_data[i,index])/(PVT_data[i+1,0] - PVT_data[i,0]) 
                return_value = PVT_data[i,index] + (p-PVT_data[i,0])*slope 
         
    return return_value 
     
def MBAL_objective_function(pres_iteration, initial_pore_volume, initial_pressure, initial_water, MBAL_variables_prev_time_step, MBAL_production_data, PVT_data): 
 
    pres = MBAL_variables_prev_time_step[1] 
    N = MBAL_variables_prev_time_step[2]     
    G = MBAL_variables_prev_time_step[3]  
    W_res = MBAL_variables_prev_time_step[4] 
    W_Aq = MBAL_variables_prev_time_step[6] 
    pa = MBAL_variables_prev_time_step[7] 
    Jw = MBAL_variables_prev_time_step[8] 
 
    delta_t = MBAL_production_data[0]     
    Np = MBAL_production_data[1] 
    Gp = MBAL_production_data[2] 
    Wp = MBAL_production_data[3] 
 
    Bo2 = interpolate_PVT(PVT_data,pres_iteration,1) 
    Bg2 = interpolate_PVT(PVT_data,pres_iteration,2)     
    Bw2 = interpolate_PVT(PVT_data,pres_iteration,3)     
    Rs2 = interpolate_PVT(PVT_data,pres_iteration,4) 
    Rs1 = interpolate_PVT(PVT_data,pres,4) 
 
    cf = 5E-5 
    cw = 2.77182E-05 
    ct = cf + cw 
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    aquifer_pressure = pres + (pa - pres)*exp(-Jw*(delta_t)/(ct*W_Aq)) 
    aquifer_influx = ct*W_Aq*(pa - pres)*(1-np.exp(-Jw*(delta_t)/(ct*W_Aq))) 
    We = aquifer_influx 
    delta_PV = initial_pore_volume*cf*(initial_pressure - pres_iteration) 
 
    N_updated = N*Bo2 - Np*Bo2 
    G_updated = G*Bg2 - Gp*Bg2 + N*Rs1*Bg2 - (N-Np)*Rs2*Bg2 
    W_Aq_updated = W_Aq - aquifer_influx 
    W_res_updated = W_res*Bw2 - Wp*Bw2 + We 
    Vp_updated = initial_pore_volume - delta_PV 
 
    if(N_updated < 0): 
        N_updated = 0 
    if(G_updated < 0): 
        G_updated = 0 
    if(W_res_updated < initial_water*Bw2): 
        W_res_updated = initial_water*Bw2 
         
    f = N_updated + G_updated + W_res_updated + delta_PV - initial_pore_volume 
 
    return_variable = [f, pres_iteration, N_updated/Bo2, G_updated/Bg2, W_res_updated/Bw2, Vp_updated, W_Aq_updated, aquifer_pressure, Jw] 
       
    return return_variable 
   
def MBAL_Newton(MBAL_variables_prev_time_step, p_guess, initial_pore_volume, initial_pressure, initial_water, production_data, PVT_data): 
     
    flag = True 
    x_old = p_guess 
    return_value = 0 
    derivative_delta_p = 0.01 
    tolerance = 0.0001 
    max_count = 5 
    temp_count = 0 
           
    while (flag == True): 
 
        p_delta_1 = x_old - derivative_delta_p 
        p_delta_2 = x_old + derivative_delta_p 
    
        f_delta_1 = MBAL_objective_function(p_delta_1, initial_pore_volume, initial_pressure, initial_water, MBAL_variables_prev_time_step, production_data, PVT_data) 
        f_delta_2 = MBAL_objective_function(p_delta_2, initial_pore_volume, initial_pressure, initial_water, MBAL_variables_prev_time_step, production_data, PVT_data) 
        f_x_old = MBAL_objective_function(x_old, initial_pore_volume, initial_pressure, initial_water, MBAL_variables_prev_time_step, production_data, PVT_data)       
 
        derivative = ((f_x_old[0] - f_delta_1[0])/derivative_delta_p + (f_delta_2[0] - f_x_old[0])/derivative_delta_p)/2 
 
        x_new = x_old - f_x_old[0]/derivative 

 
        if(x_new < 1): 
            x_new = 1 
        elif(x_new > 1000): 
            x_new = 1000 
 
        if(np.abs((x_new-x_old)/x_old) < tolerance): 
 
            return_value = f_x_old 
            flag = False 
        else: 
            x_old = x_new 
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            temp_count = temp_count + 1 
         
        if(temp_count > max_count): 
            flag = False 
            return_value = f_x_old 
             
    return return_value 
     
def MBAL_inverse(model_variables, production_data, PVT_data, end_time_index, Swc, return_all_data_flag): 
     
    MBAL_variables = np.zeros((int(end_time_index/10 + 1),11)) 
    MBAL_production_data = np.zeros(4)  
 
    initial_oil_volume = model_variables[0]     
    initial_aquifer_volume = model_variables[1] 
    initial_aquifer_index = model_variables[2] 
    initial_gas_volume = model_variables[3] 
    initial_reservoir_pressure = production_data[0,1] 
    initial_water_volume = ((initial_oil_volume*interpolate_PVT(PVT_data, initial_reservoir_pressure, 1)/(1-Swc))*Swc)/interpolate_PVT(PVT_data, initial_reservoir_pressure, 3) 
    initial_aquifer_pressure = initial_reservoir_pressure 
    initial_pore_volume = initial_oil_volume*interpolate_PVT(PVT_data, initial_reservoir_pressure, 1)/(1-Swc) 
     
    MBAL_variables[0][0] = 0 
    MBAL_variables[0][1] = initial_reservoir_pressure 
    MBAL_variables[0][2] = initial_oil_volume 
    MBAL_variables[0][3] = initial_gas_volume 
    MBAL_variables[0][4] = initial_water_volume 
    MBAL_variables[0][5] = initial_pore_volume 
    MBAL_variables[0][6] = initial_aquifer_volume 
    MBAL_variables[0][7] = initial_aquifer_pressure 
    MBAL_variables[0][8] = initial_aquifer_index 
    MBAL_variables[0][9] = 0 #time 
    MBAL_variables[0][10] = initial_reservoir_pressure 
 
    p_guess = 300    
            
    for t in range(1,int(end_time_index/10)+1): 
  
        MBAL_production_data[0] = production_data[t,0] - production_data[t-1,0] 
        MBAL_production_data[1] = (production_data[t,2] - production_data[t-1,2]) 
        MBAL_production_data[2] = (production_data[t,3] - production_data[t-1,3]) 
        MBAL_production_data[3] = production_data[t,4] - production_data[t-1,4] 
 
        MBAL_output = MBAL_Newton(MBAL_variables[t-1,:], p_guess, initial_pore_volume, initial_reservoir_pressure, initial_water_volume, MBAL_production_data, PVT_data) 
         
        if(isnan(MBAL_output[1]) == True): 

            p_guess = 200 
        elif(MBAL_output[1] < 0): 
            p_guess = 200 
        else: 
            p_guess = MBAL_output[1] 
          
        MBAL_variables[t][0] = MBAL_output[0] 
        MBAL_variables[t][1] = MBAL_output[1] 
        MBAL_variables[t][2] = MBAL_output[2] 
        MBAL_variables[t][3] = MBAL_output[3] 
        MBAL_variables[t][4] = MBAL_output[4] 
        MBAL_variables[t][5] = MBAL_output[5] 
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        MBAL_variables[t][6] = MBAL_output[6] 
        MBAL_variables[t][7] = MBAL_output[7] 
        MBAL_variables[t][8] = MBAL_output[8] 
        MBAL_variables[t][9] = production_data[t,0] 
        MBAL_variables[t][10] = production_data[t,1] 
 
   
    if(return_all_data_flag == False): 
        return_variable = MBAL_variables[0,:] 
        temp_count = 0 
        for i in range(0,len(MBAL_variables)): 
            if(temp_count == 30):  
                return_variable = np.vstack((return_variable, MBAL_variables[i,:])) 
                temp_count = 0 
            temp_count = temp_count + 1  
    else: 
        return_variable = MBAL_variables 
 
    return return_variable 
 
def likelihood_function(production_data, PVT_data, model_variables, error, big_end_time_index, production_data_end_time, Swc): 
 
    #Gaussian Likelihood   
    n = big_end_time_index  
    temp_exp_sum = 0 
    const = 1/(pow(2*np.pi,n/2)*pow(error,n/2))      
    MBAL_output = MBAL_inverse(model_variables, production_data, PVT_data, production_data_end_time, Swc, False)  
 
    for t in range(1, len(MBAL_output)):          
     
        if(isnan(MBAL_output[t,1]) == True): 
            temp_exp_sum = temp_exp_sum 
        elif(MBAL_output[t,1] < 0): 
            temp_exp_sum = temp_exp_sum 
        else: 
            temp_exp_sum = temp_exp_sum + pow((MBAL_output[t,10]-MBAL_output[t,1]),2)/error 
  
    likelihood = const*np.exp(-0.5*temp_exp_sum) 
     
    return likelihood 

 
def MCMC_Metropolis(Swc, model_variables, proposal_parameters, production_data, PVT_data, error, t, big_time_step, chain_length, proposal_type=0): 
 
    markov_chain = np.zeros((chain_length,4)) 
    markov_mean = np.zeros((chain_length,4)) 
    markov_acceptance = np.zeros((chain_length,1)) 
    N_temp_sum = 0 
    Wi_temp_sum = 0 
    Jw_temp_sum = 0 
    G_temp_sum = 0 
    acceptance_sum = 0 
    acceptance_ratio = 0 
 
    #Proposal parameters 
    N_proposal_mean = proposal_parameters[0] 
    N_proposal_std = proposal_parameters[1] 
    Wi_proposal_mean = proposal_parameters[2] 
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    Wi_proposal_std = proposal_parameters[3] 
    Jw_proposal_mean = proposal_parameters[4] 
    Jw_proposal_std = proposal_parameters[5] 
    G_proposal_mean = proposal_parameters[6] 
    G_proposal_std = proposal_parameters[7] 
 
    if(model_variables[0][0] == 0): 
        N = model_variables[0][1] 
        N_prior_probability = 1 
    elif(model_variables[0][0] == 1): 
        N_prior_mean = model_variables[0][1] 
        N_prior_std = model_variables[0][2] 
        N = N_proposal_mean 
        if(N < 0):  
            N = N_prior_mean 
        N_prior_probability = ss.norm.pdf(N, loc=N_prior_mean, scale=N_prior_std) 
 
    if(model_variables[1][0] == 0): 
        Wi = model_variables[1][1] 
        Wi_prior_probability = 1 
    elif(model_variables[1][0] == 1): 
        Wi_prior_mean = model_variables[1][1] 
        Wi_prior_std = model_variables[1][2] 
        Wi = Wi_proposal_mean            
        if(Wi < 0):  
            Wi = Wi_prior_mean 
        Wi_prior_probability = ss.norm.pdf(Wi, loc=Wi_prior_mean, scale=Wi_prior_std)     
 
    if(model_variables[2][0] == 0): 
        Jw = model_variables[2][1] 
        Jw_prior_probability = 1 
    elif(model_variables[2][0] == 1): 
        Jw_prior_mean = model_variables[2][1] 
        Jw_prior_std = model_variables[2][2] 
        Jw = Jw_proposal_mean       
        if(Jw < 0):  
            Jw = Jw_prior_mean 
        Jw_prior_probability = ss.norm.pdf(Jw, loc=Jw_prior_mean, scale=Jw_prior_std) 
 
    if(model_variables[3][0] == 0): 
        G = model_variables[3][1] 
        G_prior_probability = 1 
    elif(model_variables[3][0] == 1): 
        G_prior_mean = model_variables[3][1] 
        G_prior_std = model_variables[3][2] 
        G = G_proposal_mean           

        if(G < 0):  
            G = G_prior_mean 
        G_prior_probability = ss.norm.pdf(G, loc=G_prior_mean, scale=G_prior_std) 
 
    prior = N_prior_probability*Wi_prior_probability*Jw_prior_probability*G_prior_probability     
    likelihood = likelihood_function(production_data, PVT_data, [N*1000000, Wi*1000000, Jw, G*1000000], error, t, big_time_step, Swc) 
 
    if(isnan(likelihood) == True): 
        likelihood = 0 
     
    p_x_old = likelihood*prior 
    x_old = [N, Wi, Jw, G] 
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    markov_chain[0,0] = x_old[0] 
    markov_chain[0,1] = x_old[1] 
    markov_chain[0,2] = x_old[2] 
    markov_chain[0,3] = x_old[3] 
     
    N_temp_sum = x_old[0]     
    Wi_temp_sum = x_old[1] 
    Jw_temp_sum = x_old[2] 
    G_temp_sum = x_old[3] 
     
    markov_mean[0,0] = N_temp_sum 
    markov_mean[0,1] = Wi_temp_sum 
    markov_mean[0,2] = Jw_temp_sum 
    markov_mean[0,3] = G_temp_sum 
     
    acceptance_sum = 1 
    markov_acceptance[0] = acceptance_sum 
     
    for i in range(1,chain_length): 
     
        if(model_variables[0][0] == 0): 
            N = model_variables[0][1] 
            N_prior_probability = 1 
        elif(model_variables[0][0] == 1): 
            N_prior_mean = model_variables[0][1] 
            N_prior_std = model_variables[0][2] 
            N = np.random.normal(loc=markov_chain[i-1,0], scale=N_proposal_std) 
            N_prior_probability = ss.norm.pdf(N, loc=N_prior_mean, scale=N_prior_std) 
         
        if(model_variables[1][0] == 0): 
            Wi = model_variables[1][1] 
            Wi_prior_probability = 1 
        elif(model_variables[1][0] == 1): 
            Wi_prior_mean = model_variables[1][1] 
            Wi_prior_std = model_variables[1][2] 
            Wi = np.random.normal(loc=markov_chain[i-1,1], scale=Wi_proposal_std) 
            Wi_prior_probability = ss.norm.pdf(Wi, loc=Wi_prior_mean, scale=Wi_prior_std)     
         
        if(model_variables[2][0] == 0): 
            Jw = model_variables[2][1] 
            Jw_prior_probability = 1 
        elif(model_variables[2][0] == 1): 
            Jw_prior_mean = model_variables[2][1] 
            Jw_prior_std = model_variables[2][2] 
            Jw = np.random.normal(loc=markov_chain[i-1,2], scale=Jw_proposal_std) 

            Jw_prior_probability = ss.norm.pdf(Jw, loc=Jw_prior_mean, scale=Jw_prior_std) 
         
        if(model_variables[3][0] == 0): 
            G = model_variables[3][1] 
            G_prior_probability = 1 
        elif(model_variables[3][0] == 1): 
            G_prior_mean = model_variables[3][1] 
            G_prior_std = model_variables[3][2] 
            G = np.random.normal(loc=markov_chain[i-1,3], scale=G_proposal_std) 
            G_prior_probability = ss.norm.pdf(G, loc=G_prior_mean, scale=G_prior_std) 
 
        x_j = [N, Wi, Jw, G] 
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        prior = N_prior_probability*Wi_prior_probability*Jw_prior_probability*G_prior_probability 
        likelihood = likelihood_function(production_data, PVT_data, [N*1000000, Wi*1000000, Jw, G*1000000], error, t, big_time_step, Swc) 
 
        if(isnan(likelihood) == True): 
            likelihood = 0 
     
        p_x_j = prior*likelihood 
        if(p_x_old > 0): 
            alpha = np.min((1,p_x_j/p_x_old)) 
        elif(p_x_old == 0): 
            alpha = 0 
        elif(isnan(p_x_old) == True): 
            alpha = 0 
        random_number = np.random.uniform(0,1) 
 
        if(alpha >= random_number): 
            x_new = x_j 
            p_x_new = p_x_j 
            acceptance_sum = acceptance_sum + 1 
            acceptance_ratio = acceptance_sum/i 
        else: 
            x_new = x_old 
            p_x_new = p_x_old 
            acceptance_ratio = acceptance_sum/i 
 
        markov_chain[i,0] = x_new[0] 
        markov_chain[i,1] = x_new[1] 
        markov_chain[i,2] = x_new[2] 
        markov_chain[i,3] = x_new[3] 
 
        N_temp_sum = N_temp_sum + x_old[0]     
        Wi_temp_sum = Wi_temp_sum + x_old[1] 
        Jw_temp_sum = Jw_temp_sum + x_old[2] 
        G_temp_sum = G_temp_sum + x_old[3] 
     
        markov_mean[i,0] = N_temp_sum/i 
        markov_mean[i,1] = Wi_temp_sum/i 
        markov_mean[i,2] = Jw_temp_sum/i 
        markov_mean[i,3] = G_temp_sum/i 
         
        markov_acceptance[i,0] = acceptance_ratio 
 
        x_old = x_new 
        p_x_old = p_x_new 
 
    return_variable = np.hstack((markov_chain, markov_mean, markov_acceptance)) 

 
    return return_variable 
 
def update_proposal_parameters(markov_output_incremental, spread_factor): 
 
    N_mean, N_std = norm.fit(markov_output_incremental[:,0]) 
    Wi_mean, Wi_std = norm.fit(markov_output_incremental[:,1]) 
    Jw_mean, Jw_std = norm.fit(markov_output_incremental[:,2]) 
    G_mean, G_std = norm.fit(markov_output_incremental[:,3]) 
     
    N_std = N_std*spread_factor 
    Wi_std = Wi_std*spread_factor 
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    Jw_std = Jw_std*spread_factor 
    G_std = G_std*spread_factor     
     
    if(N_std < 0.5): 
        N_std = 1 
    if(Wi_std < 0.5): 
        Wi_std = 1 
    if(Jw_std < 0.5): 
        Jw_std = 1 
    G_std = 1 
 
    proposal_parameters = [N_mean, N_std, Wi_mean, Wi_std, Jw_mean, Jw_std, G_mean, G_std] 
            
    return proposal_parameters 
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B.2 Main Python Routine for Grid Based Solution 
 
def main(): 
 
    home = True 
     
    uni_string = "C:/Users/alfchris/Google Drive/Masters/MASTERS_2015/01 - Python Scripts/" 
    home_string = "C:/Users/Christian/Google Drive/Masters/MASTERS_2015/01 - Python Scripts/" 
              
    noise = [10,20,50]      
     
    if(home==True): 
        file_dir_string = home_string 
    else: 
        file_dir_string = uni_string 
 
    #Loading files 
    PVT_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/PVT_data.txt", delimiter="\t")      
    production_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/production_data.txt", delimiter="\t")     
    end_time_index = len(production_data) 
    big_time_steps = np.arange(0,4200,300) 
    Swc = 0.2 
 
    for k in range(0,3): 
         
        if(home==True): 
            file_dir_string = home_string 
        else: 
            file_dir_string = uni_string 
     
        #Loading files 
        PVT_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/PVT_data.txt", delimiter="\t")      
        production_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/production_data.txt", delimiter="\t")     
     
        Swc = 0.2 
        #error = 20 
        error = noise[k] 
        end_time_index = len(production_data) 
        big_time_steps = np.arange(0,4200,300) 
        Wi = 444600000 
        G = 0 
        rho = 0   
        grid_points = [100,100] 
        N_bounds = [0,2,100] 
        Jw_bounds = [0,25,250] 
        deltas = [((N_bounds[2]-N_bounds[0])/(grid_points[0]-1)),((Jw_bounds[2]-Jw_bounds[0])/(grid_points[1]-1))]      
             
        N_grid = np.arange(N_bounds[0],N_bounds[2],deltas[0]) 
        Jw_grid = np.arange(Jw_bounds[0],Jw_bounds[2],deltas[1])    
          
        prior = np.zeros((len(N_grid),len(Jw_grid),13)) 
        likelihood = np.zeros((len(N_grid),len(Jw_grid), 13)) 
        posterior = np.zeros((len(N_grid),len(Jw_grid),13)) 
     
        likelihood_sum = 0 
        posterior_sum = 0 
        prior_sum = 0 
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        N_prior = 50 
        Jw_prior = 150 
         
        N_prior_std = 100 
        Jw_prior_std = 1000 
         
        const = pow((1/sqrt(2*np.pi)),2)         
        C_prior = ([[N_prior_std,rho],[rho,Jw_prior_std]])   
        const_prior = const/sqrt(det(C_prior)) 
 
        time = np.zeros(13) 
     
        N_grid_mesh,Jw_grid_mesh = np.meshgrid(N_grid,Jw_grid) 
       
        N_marginal_posterior = np.zeros((len(N_grid), len(time))) 
        N_marginal_likelihood = np.zeros((len(N_grid), len(time))) 
        N_marginal_prior = np.zeros((len(N_grid), len(time)))       
        Jw_marginal_posterior = np.zeros((len(Jw_grid), len(time))) 
        Jw_marginal_likelihood = np.zeros((len(Jw_grid), len(time))) 
        Jw_marginal_prior = np.zeros((len(Jw_grid), len(time))) 
     
        time_index = [1,13] 
         
        for t in range(time_index[0],time_index[1]): 
     
            time[t] = t 
            #print(t) 
     
            for i in range(0,len(N_grid)): 
                 
                for j in range(0,len(Jw_grid)): 
                     
                    prior[j,i,t] = const_prior*exp(-0.5*np.dot(np.dot([N_grid[i]-N_prior,Jw_grid[j]-Jw_prior],linalg.inv(C_prior)),[N_grid[i]-N_prior,Jw_grid[j]-Jw_prior])) 
                            
                    temp = likelihood_function(production_data, PVT_data, [N_grid[i]*1000000, Wi, Jw_grid[j], G], error, t, big_time_steps[t], Swc)            
                    if(np.isnan(temp) == True):                 
                        likelihood[j,i,t] = 0     
                    else: 
                        likelihood[j,i,t] = temp 
                  
                    posterior[j,i,t] = prior[j,i,t]*likelihood[j,i,t] 
             
                    N_marginal_posterior[i,t] = N_marginal_posterior[i,t] + posterior[j,i,t] 
                    N_marginal_likelihood[i,t] = N_marginal_likelihood[i,t] + likelihood[j,i,t] 
                    N_marginal_prior[i,t] = N_marginal_prior[i,t] + prior[j,i,t] 

                                     
                    Jw_marginal_posterior[j,t] = Jw_marginal_posterior[j,t] + posterior[j,i,t] 
                    Jw_marginal_likelihood[j,t] = Jw_marginal_likelihood[j,t] + likelihood[j,i,t] 
                    Jw_marginal_prior[j,t] = Jw_marginal_prior[j,t] + prior[j,i,t] 
             
                    if(likelihood[j,i,t] >= 0): 
                        likelihood_sum = likelihood_sum + likelihood[j,i,t] 
                         
                    if(posterior[j,i,t] >= 0): 
                        posterior_sum = posterior_sum + posterior[j,i,t] 
                         
                    if(prior[j,i,t] >= 0): 
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                        prior_sum = prior_sum + prior[j,i,t] 
         
        likelihood_normalized = likelihood/likelihood_sum 
        prior_normalized = prior/prior_sum 
        posterior_normalized = posterior/posterior_sum 
      
        print(k)      
      
        #Saving calculations to file: 
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_likelihood.npy", likelihood_normalized) 
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_prior.npy", prior_normalized) 
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_posterior.npy", posterior_normalized) 
         
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_N_marginal_posterior.npy", N_marginal_posterior) 
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_N_marginal_prior.npy", N_marginal_prior) 
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_N_marginal_likelihood.npy", N_marginal_likelihood) 
     
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_Jw_marginal_posterior.npy", Jw_marginal_posterior) 
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_Jw_marginal_prior.npy", Jw_marginal_prior) 
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_Jw_marginal_likelihood.npy", Jw_marginal_likelihood) 
      
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_N_grid.npy", N_grid) 
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_Jw_grid.npy", Jw_grid) 
         
        np.save(file_dir_string + "GRID_BASED_2_VAR_OUTPUTS/" + str(noise[k]) + "_time_index.npy", time_index) 
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B.3 Main Python Routine for MCMC Based Solution 

 
def main(): 
     
    home = True   
     
    uni_string = "C:/Users/alfchris/Google Drive/Masters/MASTERS_2015/01 - Python Scripts/" 
    home_string = "C:/Users/Christian/Google Drive/Masters/MASTERS_2015/01 - Python Scripts/" 
         
    if(home==True): 
        file_dir_string = home_string 
    else: 
        file_dir_string = uni_string 
             
    #Loading files 
    PVT_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/PVT_data.txt", delimiter="\t")      
    production_data = np.loadtxt(file_dir_string + "PART_B_Data_Files/production_data.txt", delimiter="\t")     
 
    Swc = 0.2 
    error = 10  #this is a variance, not a standard deviation 
    chain_length = 10000 
    proposal_spread_factor = 1 
    num_forward_model_samples = 50 
     
    end_time_index = len(production_data) 
    big_time_steps = np.arange(0,4800,300) 
 
    N_initial = [1,50,10]   #50 
    Wi_initial = [0,444.6,100]    #600, 100 
    Jw_initial = [1,150,31.6228]   #150,31.6228          50,20 
    G_initial = [0,0,0.01] 
     
    total_markov_output = zeros((chain_length*end_time_index,4))     
    model_variables = [N_initial,Wi_initial,Jw_initial,G_initial]     
 
    N_mean_proposal = N_initial[1] 
    N_std_proposal = N_initial[2]*proposal_spread_factor 
    Wi_mean_proposal = Wi_initial[1] 
    Wi_std_proposal = Wi_initial[2]*proposal_spread_factor 
    Jw_mean_proposal = Jw_initial[1] 
    Jw_std_proposal = Jw_initial[2]*proposal_spread_factor 
    G_mean_proposal = G_initial[1] 
    G_std_proposal = G_initial[2]*proposal_spread_factor 
        
    proposal_parameters_incremental = [N_mean_proposal, N_std_proposal, Wi_mean_proposal, Wi_std_proposal, Jw_mean_proposal, Jw_std_proposal, G_mean_proposal, G_std_proposal] 
    total_proposal_parameters = proposal_parameters_incremental 
     
    time_index = [1,13]     
    temp_count = 0  
         
    for t in range(1,13): 
         
        print(t)         
         
        if(t == 1):    
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            markov_output_incremental =  MCMC_Metropolis(Swc, model_variables, proposal_parameters_incremental, production_data, PVT_data, error, t, big_time_steps[t], chain_length, 0) 
            total_markov_output = markov_output_incremental 
            proposal_parameters_incremental = update_proposal_parameters(markov_output_incremental, proposal_spread_factor) 
            total_proposal_parameters = np.vstack((total_proposal_parameters,proposal_parameters_incremental)) 
                                                    
        else: 
 
            markov_output_incremental =  MCMC_Metropolis(Swc, model_variables, proposal_parameters_incremental, production_data, PVT_data, error, t, big_time_steps[t], chain_length, 0) 
            total_markov_output = np.vstack((total_markov_output,markov_output_incremental)) 
            proposal_parameters_incremental = update_proposal_parameters(markov_output_incremental, proposal_spread_factor)       
            total_proposal_parameters = np.vstack((total_proposal_parameters,proposal_parameters_incremental)) 
             
         
        if (t == 1 or t==7 or t==12): 
            N_mu,N_std = norm.fit(markov_output_incremental[:,0]) 
            Wi_mu,Wi_std = norm.fit(markov_output_incremental[:,1]) 
            Jw_mu,Jw_std = norm.fit(markov_output_incremental[:,2])     
            N_samples = np.random.normal(N_mu, N_std, num_forward_model_samples) 
            Wi_samples = np.random.normal(Wi_mu,Wi_std,num_forward_model_samples) 
            Jw_samples = np.random.normal(Jw_mu, Jw_std, num_forward_model_samples) 
                 
            for i in range(0,len(N_samples)): 
                incremental_MBAL_output = MBAL_inverse([N_samples[i]*1000000,Wi_samples[i]*1000000,Jw_samples[i],0], production_data, PVT_data, big_time_steps[time_index[1]], Swc, True) 
                #print(shape(incremental_MBAL_output[0:360,1])) 
                #plt.figure(444) 
                #plt.plot(production_data[0:360,0], incremental_MBAL_output[0:360,1])                 
                #print(shape(incremental_MBAL_output))                 
                if(temp_count == 0): 
                    total_MBAL_output = incremental_MBAL_output[0:360,1] 
                else: 
                    total_MBAL_output = np.vstack((total_MBAL_output,incremental_MBAL_output[0:360,1])) 
                temp_count = temp_count + 1 
         
     
     
    #Save the output to binary files 
    np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/total_markov_output.npy", total_markov_output) 
    np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/total_proposal_parameters.npy", total_proposal_parameters) 
    np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/chain_length.npy", chain_length) 
    np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/big_time_steps.npy", big_time_steps) 
    np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/time_index.npy", time_index)    
    np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/num_forward_model_samples.npy", num_forward_model_samples) 
    np.save(file_dir_string + "SAMPLING_BASED_OUTPUTS/total_MBAL_output.npy", total_MBAL_output) 
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Appendix C – PVT Correlations 

Bubble-point pressure (Glaso 1980): 

pb=10
1.7669+1.7447log(𝑝𝑏

∗)-0.30218(log(𝑝𝑏
∗))

2

  

𝑝𝑏
∗ = (

𝑅𝑠𝑏

𝛾𝑔
)
0.816

∙
𝑇0.172

𝛾𝐴𝑃𝐼0.989
  

 

Solution GOR (Glaso 1980): 

𝑅𝑠 = 𝛾𝑔 [𝑁𝑝𝑏 (
𝛾𝐴𝑃𝐼

0.989

𝑇0.172
)]
1.2255

  

𝑁𝑝𝑏 = 10
[2.8869−[14.1811−3.3093𝑙𝑜𝑔(𝑝𝑏)]

0.5]  

 

Oil Formation Volume Factor p< pbub (Glaso 1980): 

𝐵𝑜𝑏 = 1 + 10
[−6.58511+2.91329𝑙𝑜𝑔(𝐵𝑜𝑏

∗)−0.27683[𝑙𝑜𝑔(𝐵𝑜𝑏
∗)]2]  

𝐵𝑜𝑏
∗ = 𝑅𝑠𝑏 (

𝛾𝑔

𝛾𝑜
)
0.526

+ 0.986𝑇  

 

Oil compressibility factor & Formation Volume Factor, p > p_bub: 

𝑐𝑜 = (−1433 + 5𝑅𝑠 − 17.2𝑇 − 1180.0𝛾𝑔 + 12.61𝛾𝐴𝑃𝐼) (𝑝 ∙ 10
5)⁄   

𝐵𝑜 = 𝐵𝑜𝑏𝑒𝑥𝑝(−𝑐𝑜 ∙ (𝑝 − 𝑝𝑏𝑢𝑏))  
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Dead Oil Viscosity: 

𝜇𝑜𝑑 = 10
𝐴 − 1  

𝑙𝑜𝑔(𝐴) = 3.0324 − 0.02023𝛾𝐴𝑃𝐼 − 1.163𝑇  

 

Oil with dissolved gas viscosity below bubble point: 

𝜇𝑜𝑏 = 𝐶𝜇𝑜𝑑
𝐵  

𝐶 = 10.715(𝑅𝑠 + 100)
−0.515  

𝐵 = 5.44(𝑅𝑠 + 150)
−0.338  

 

Oil viscosity above bubble-point: 

𝜇𝑜 = 𝜇𝑜𝑏(𝑝 𝑝𝑏⁄ )𝐷  

𝐷 = 2.6𝑝1.187𝑒𝑥𝑝(−11.513 − 8.98 ∙ 10−5𝑝)  

 

Gas Critical Pressure and Temperature (Sutton 1985): 

𝑝𝑐 = 756.8 − 131𝛾𝑔 − 3.6𝛾𝑔
2  

𝑇𝑐 = 169.2 + 349.5𝛾𝑔 − 74𝛾𝑔
2  
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Gas Compressibility Factor, Z (Brill & Beggs 1974): 

𝐴 = 1.39(𝑇𝑟 − 0.92)
0.5 − 0.36𝑇𝑟 − 0.10  

𝐵 = (0.62 − 0.23𝑇𝑟)𝑝𝑟 + (
0.066

𝑇𝑟−0.86
− 0.037) 𝑝𝑟

2 +
0.32𝑝𝑟

6

10𝐸
  

𝐶 = 0.132 − 0.32𝑙𝑜𝑔(𝑇𝑟)  

𝐷 = 10𝐹   

𝐸 = 9(𝑇𝑟 − 1) 

𝐹 = 0.3106 − 0.49𝑇𝑟 + 0.1824𝑇𝑟
2  

𝑍 = 𝐴 +
1−𝐴

𝑒𝐵
+ 𝐶𝑝𝑟

𝐷  

𝑝𝑟 = 𝑝 𝑝𝑐⁄         𝑇𝑟 = 𝑇 𝑇𝑐⁄   

 

Gas Formation Volume Factor (Real Gas Law): 

𝐵𝑔 = 0.0283 ∗ 𝑍 ∗
𝑇

𝑃
    , where T = Rankine  

 

Gas Viscosity (Lee et. al. 1966): 

𝜇𝑔 = 10
−4𝑎 exp(𝑏 (𝜌𝑔 62.43⁄ )

𝑐
)  

𝜌𝑔 = 𝑝𝑀𝑔 (𝑍𝑅𝑇)⁄   
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𝑀𝑔 = 𝛾𝑔𝑀𝑎𝑖𝑟  

 

Water Density (McCain 1990): 

𝜌𝑤 = 62.328 + 0.438603 𝑤𝑠 + 1.60074 ∙ 10
−3 𝑤𝑠

2  

 

Water Viscosity: 

𝜇𝑤 = 𝜇𝑤𝑇 (0.9994 + 4.0295 ∙ 10
−5 𝑝 + 3.1062 ∙ 10−9 𝑝2)  

𝜇𝑤𝑇 = 109.574 − 2.63951 ∙ 10
−2 𝑤𝑠 + 6.79461 ∙ 𝑤𝑠

2 + 5.47119 ∙ 10−5 𝑤𝑠
3 − 1.55586 ∙

10−6 𝑤𝑠
4  

𝐷 = 1.12166 − 2.63951 ∙ 10−2 𝑤𝑠 + 6.79461 ∙ 10
−4 𝑤𝑠

2 + 5.47119 ∙ 10−5𝑤𝑠
3 − 1.55586 ∙

10−6𝑤𝑠
4  

 

Water Compressibility (Meehan 1980): 

𝐶𝑤 = 10
−6 (𝐶0 + 𝐶1𝑇 + 𝐶2𝑇

2) 𝜓𝑠   

𝐶0 = 3.8546 − 0.000134 𝑝  

𝐶1 = −0.01052 + 4.77 ∙ 10
−7 𝑝 

𝐶2 = 3.9267 ∙ 10
−5 − 8.8 ∙ 10−10 𝑝 

𝜓𝑠 = 1 + (−0.052 + 2.7 ∙ 10
−4𝑇 − 1.14 ∙ 10−6𝑇2 + 1.121 ∙ 10−9𝑇3)𝑤𝑠 
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Water Formation Volume Factor (McCain 1990): 

𝐵𝑤 = (1 + ∆𝑉𝑤𝑝) ∙ (1 + ∆𝑉𝑤𝑇) 

∆𝑉𝑤𝑝 = −(3.58922 ∙ 10
−7 + 1.95301 ∙ 10−9 𝑇)𝑝 − (2.25341 ∙ 10−10 + 1.72834 ∙ 10−13 𝑇)𝑝2 

∆𝑉𝑤𝑝 = −1.0001 ∙ 10
−2 + 1.33391 ∙ 10−4𝑇 + 5.50654 ∙ 10−7𝑇2 

𝐵𝑤 = 𝐵𝑤
𝑟𝑒𝑓𝑒𝑥𝑝 (−𝐶𝑤(𝑝 − 𝑝

𝑟𝑒𝑓)) 
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Appendix D – Procedure for Generating Random Simulation Model Properties 

 

The Weibull distribution is used to generate the porosities for the reservoir simulation grid. The 

Weibull Probability density function (pdf) and cumulative density function (cdf) are defined as 

shown in equation 1 and 2. To characterize Porosity variability in the synthetic model, Weibull 

parameters of 𝜆 = 0.2 and 𝑘 = 12 are used. The resulting Porosity distribution is shown in 

Figure E1. 

 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑃𝐷𝐹:      𝑓(𝑥) =
𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(𝑥 𝜆⁄ )
𝑘
            𝑥 ≥ 0 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝐶𝐷𝐹:   𝑓(𝑥) = 1 − 𝑒−(
𝑥
𝜆
)
𝑘

                            𝑥 ≥ 0 

 

Porosity is often assumed to be a principal geologic parameter that permeability co-varies with. 

As such, the sampling strategy employed here, starts by drawing Monte Carlo samples for 

Porosity using the Weibull CDF. Once a set of Porosity samples have been obtained a second 

loop is started, where for each Porosity sample a random noise component is sampled from a 

Gaussian distribution (mean = 0, std=0.017) , before a corresponding permeabiltiy is calculated 

by using a log K vs. Porosity characteristic line.  Figure X shows the resulting Porosity vs. log K 

line. 
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Figure E1 – Porosity/Permeability Sampling Process 
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Appendix E – Capillary Pressure Model 

 

 

 

In general, the shape of the capillary pressure curve will depend mostly on the permeability of 

the reservoir. Highly permeable reservoirs will be associated with sharper transition zones, while 

less permeable reservoirs will have longer transition zones. The following logarithmic 

expressions were used to generate capillary pressure curves for the simulation model in this 

study.  

 

𝑃𝑐𝑤𝑜(𝑆𝑤) = 𝛼1𝑙𝑛 (
1 − 𝑆𝑤𝑥 − 𝑆𝑤𝑐
1 − 𝑆𝑤 − 𝑆𝑜𝑟𝑤

)        𝑆𝑤 > 𝑆𝑤𝑥 𝑎𝑛𝑑 𝑆𝑤 ≤ 1 − 𝑆𝑜𝑟𝑤 

𝑃𝑐𝑜𝑤(𝑆𝑤) = 𝛼2𝑙𝑛 (
1 − 𝑆𝑤𝑥 − 𝑆𝑤𝑐
𝑆𝑤 − 𝑆𝑤𝑐

)        𝑆𝑤 > 𝑆𝑤𝑐 𝑎𝑛𝑑 𝑆𝑤 ≤ 𝑆𝑤𝑥 

𝛼1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝛼2 = −(
𝑆𝑤𝑥 − 𝑆𝑤𝑐

1 − 𝑆𝑤𝑥 − 𝑆𝑜𝑟𝑤
) 
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Appendix F – Corey Functions for Relative Permeability 

 

 

The Corey exponents  𝑛𝑜 , 𝑛𝑤 , 𝑛𝑔 range in values from 1 to 6 and depend on the wettability 

characteristics of the rock and direction of change of the wetting phase saturation. A drainage 

process occurs when the wetting phase is decreasing and an imbibition process occurs when the 

wetting phase increases. In this study, the reservoir is assumed to be water-wet initially, meaning 

that the drainage process for the oil-water system is associated with decreasing oil saturation. 

Similarly, the imbibition process for a water wet oil-water system is associated with increasing 

water saturation due to either water injection or aquifer influx. If the pressure drops below the 

bubble point, gas will come out of solution. For a gas-oil system that occurs after dropping below 

the bubble point, the oil is assumed to be the wetting phase in the presence of connate water. The 

drainage process for the oil-gas system is therefore associated with decreasing oil saturation and 

the imbibition process associated with increasing oil saturation. Practically, speaking the 

drainage process for an oil-gas system can be visualized as a primary or secondary gas cap 

moving into the oil zone. Likewise, the imbibition process for an oil-gas system can be 

visualized as the gap cap moving upwards due to pressurization of the oil column during down-

dip water injection or aquifer influx. The upwards gas gap movement is undesirable because it 

leaves behind trapped gas and reduces recoverable oil (also referred to as ‘smearing’ of oil zone). 
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Oil-Water Drainage (water saturation decreasing): 

𝑘𝑟𝑜(𝑆𝑤) = 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥,𝑑 ∙ (
1 − 𝑆𝑤
1 − 𝑆𝑤𝑐

)
𝑛𝑜,𝑑

                      𝑘𝑟𝑜𝑤,𝑚𝑎𝑥,𝑑 = 1.0 

𝑘𝑟𝑤(𝑆𝑤) = 𝑘𝑟𝑤,𝑚𝑎𝑥,𝑑 ∙ (
𝑆𝑤 − 𝑆𝑤𝑐
1 − 𝑆𝑤𝑐

)
𝑛𝑤,𝑑

                    𝑘𝑟𝑤,𝑚𝑎𝑥,𝑑 = 1.0 

Oil-Water Imbibition (water saturation increasing):  

𝑘𝑟𝑜(𝑆𝑤) = 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥,𝑖 ∙ (
1 − 𝑆𝑤 − 𝑆𝑜𝑟𝑤
1 − 𝑆𝑜𝑟𝑤 − 𝑆𝑤𝑐

)
𝑛𝑜𝑤,𝑖

          𝑘𝑟𝑜𝑤,𝑚𝑎𝑥,𝑖 = 1.0 

𝑘𝑟𝑤(𝑆𝑤) = 𝑘𝑟𝑤,𝑚𝑎𝑥,𝑖 ∙ (
𝑆𝑤 − 𝑆𝑜𝑟𝑤

1 − 𝑆𝑜𝑟𝑤 − 𝑆𝑤𝑐
)
𝑛𝑤,𝑖

             𝑘𝑟𝑤,𝑚𝑎𝑥 < 1.0 

Oil-Gas Drainage (oil saturation decreasing): 

𝑘𝑟𝑜𝑔(𝑆𝑔) = 𝑘𝑟𝑜𝑔,𝑚𝑎𝑥,𝑑 ∙ (
1 − 𝑆𝑔 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑔

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑔
)

𝑛𝑜𝑔,𝑑

      𝑘𝑟𝑜𝑔,𝑚𝑎𝑥 = 1.0 

𝑘𝑟𝑔(𝑆𝑔) = 𝑘𝑟𝑔,𝑚𝑎𝑥,𝑑 ∙ (
𝑆𝑔 − 𝑆𝑔𝑐

1 − 𝑆𝑤𝑐 − 𝑆𝑔𝑐
)

𝑛𝑔,𝑑

           𝑘𝑟𝑔,𝑚𝑎𝑥 = 1.0 

 

Oil-Gas Imbibition (oil saturation increasing): 

𝑘𝑟𝑜𝑔(𝑆𝑔) = 𝑘𝑟𝑜𝑔,𝑚𝑎𝑥,𝑖 ∙ (
1 − 𝑆𝑔 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑔

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑔
)

𝑛𝑜𝑔,𝑖

          𝑘𝑟𝑜𝑔,𝑚𝑎𝑥 = 1.0   

𝑘𝑟𝑔(𝑆𝑔) = 𝑘𝑟𝑔,𝑚𝑎𝑥,𝑖 ∙ (
𝑆𝑔 − 𝑆𝑔𝑡

1 − 𝑆𝑤𝑐 − 𝑆𝑔𝑡
)

𝑛𝑔,𝑑

             𝑘𝑟𝑔,𝑚𝑎𝑥 = 1.0 
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Appendix G – Eclipse Input File 

 

RUNSPEC 

TITLE 

MODEL FOR ACJ MASTERS SYNTHETIC DATA 

 

INCLUDE 

DIMENS.INC / 

 

UNIFOUT 

 

OIL 

GAS 

WATER 

DISGAS 

 

METRIC 

 

EQLDIMS 

1 100 / 

 

-- #wells #cell connections 

WELLDIMS 

1 10 1 1 / 

 

START 

1 'APR' 2011 / 

 

TABDIMS 

2 1 30 30 1* 30/ 

 

SATOPTS 

'HYSTER' / 

 

GRID 

ECHO 

 

GRIDFILE 

    1    / 

 

INCLUDE 

COORD.INC / 

 

INCLUDE 

ZCORN.INC / 
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INCLUDE 

PORO.INC / 

 

INCLUDE 

PERMX.INC / 

 

INCLUDE 

PERMY.INC / 

 

INCLUDE 

PERMZ.INC / 

 

INIT 

 

PROPS 

 

PVTO 

1.234771169 1 1.036596191 2.177904133 / 

3.633249464 5 1.040876084 2.003647206 / 

6.066287279 10 1.045363114 1.857590312 / 

12.67882075 25 1.058227986 1.56361029 / 

16.97507028 35 1.067055875 1.425068732 / 

23.48203042 50 1.081038623 1.263476231 / 

34.72165746 75 1.106665652 1.068075371 / 

46.61378097 100 1.135429946 0.927375103 / 

59.25354089 125 1.167465161 0.82007224 / 

72.70470983 150 1.202855793 0.735005819 / 

87.02103867 175 1.241669255 0.665624204 / 

102.2536347 200 1.283966774 0.607781132 / 

120 227.3493064 1.334219525 0.554545083 

 250 1.328696557 0.571395807 

 275 1.323676955 0.591791657 

 300 1.319508442 0.613894154 

 325 1.315991494 0.637538502 

 350 1.312984429 0.662573523 

 375 1.310383864 0.688856576 

 400 1.308112596 0.716250111 

 425 1.306111805 0.744619359 

 450 1.304335894 0.773830867 

 475 1.302748967 0.803751663 

 500 1.301322384 0.834248875 / 

/ 

 

PVDG 

1 1.24075 0.01261 

5 0.24692 0.01264 
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10 0.12268 0.01269 

25 0.04811 0.01289 

35 0.0339 0.01306 

50 0.02325 0.01337 

75 0.01499 0.01402 

100 0.01093 0.01484 

125 0.00855 0.01583 

150 0.00703 0.01697 

175 0.006 0.01822 

200 0.00527 0.01956 

227.34931 0.0047 0.02107 

250 0.00435 0.02231 

275 0.00405 0.02366 

300 0.00381 0.02497 

325 0.00362 0.02622 

350 0.00347 0.02742 

375 0.00334 0.02858 

400 0.00323 0.0297 

425 0.00313 0.03078 

450 0.00305 0.03183 

475 0.00297 0.03285 

500 0.00291 0.03384 

/ 

  

PVTW 

-- Pref   Bw   Cw   ViscW 

300 1.02239 2.77182E-05 0.551284 0.00E+00 / 

/ 

 

DENSITY 

849.010 1071.864 0.7 / 

 

ROCK 

300 5E-05 / 

 

SWOF 

0.2 2.45986277400839E-58 1 2 

0.200000005 1.9301011073869E-29 0.999999990625 1.93906843737245 

0.201 6.90533966002491E-11 0.998125586059627 0.718461172766793 

0.21 2.18366013427717E-07 0.981308716396119 0.488202663467388 

0.22 2.47052942200657E-06 0.96273536083391 0.418887945411393 

0.23 1.02119678073829E-05 0.944280686885525 0.378341434600577 

0.24 2.79508497187475E-05 0.925945462756851 0.349573227355399 

0.29 0.000477566471366412 0.836089063362869 0.268480205733766 

0.34 0.00224198741485303 0.749343462639129 0.224296930505862 

0.39 0.00652863890732859 0.665824500619345 0.193758765550744 
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0.44 0.0147885090526395 0.585662018573853 0.170397280432594 

0.49 0.0286799267756021 0.509002931597648 0.151473080468741 

0.54 0.0500450647136885 0.436015338032964 0.135566611005772 

0.59 0.0808930424957353 0.366894164746456 0.121846498854424 

0.64 0.123387002329054 0.301869176962472 0.109783700075562 

0.69 0.1798338017963 0.241216804711031 0.0990206336563255 

0.74 0.252675541391583 0.18527850657861 0.0893042588109607 

0.79 0.34448243812698 0.134491228803219 0.0804489190768162 

0.84 0.457946721791958 0.0894427190999913 0.0723143551314209 

0.89 0.595877329988409 0.0509863645987824 0.0647920130076622 

0.94 0.76119524130925 0.0205395959064435 0.0577961541469711 

1 1 0 0.05 

/ 

0.200000000000005 4.71782331762052E-54 0.999999999999955 2 

0.200000005 2.98580377317919E-31 0.999999955000001 1.79098551207127 

0.201 4.1588690589309E-11 0.991031447539367 0.57037824746562 

0.210000000000005 2.62406897746886E-07 0.91309789296114 0.340119738166166 

0.220000000000005 3.65501556233797E-06 0.832186274715232 0.270805020110196 

0.230000000000005 1.70622387560118E-05 0.756964201418113 0.230258509299388 

0.240000000000005 5.09100137063666E-05 0.687139988129428 0.201490302054214 

0.290000000000005 0.0011094220230758 0.409413666613231 0.120397280432588 

0.340000000000005 0.00594650491928197 0.228032229770755 0.0762140052046861 

0.390000000000005 0.0189774969603207 0.116348986013036 0.0456758402495689 

0.440000000000005 0.0461081784607557 0.0527248127890013 0.0223143551314189 

0.490000000000005 0.0946428127598162 0.0201660949082708 0.00339015516756642 

0.540000000000005 0.173218842295269 0.00593164160151488 -0.0223143551314241 

0.590000000000005 0.291756643231723 0.00109875803423297 -0.0597837000755667 

0.640000000000005 0.46141894042188 7.18316110914689E-05 -0.120397280432602 

0.660000000000005 0.546329947435499 1.15852375029537E-05 -0.160943791243423 

0.680000000000005 0.642232011705081 5.11999999999408E-07 -0.23025850929943 

0.690000000000005 0.694576924669561 2.26274169979171E-08 -0.299573227355451 

0.695000000000005 0.721896610789948 9.99999999995357E-10 -0.368887945411497 

0.699000000000005 0.744315940855691 7.15541752783312E-13 -0.52983173665532 

0.699600000000005 0.747722552374498 1.15852375022818E-14 -0.621460809843521 

1 1 0 -2 

/ 

 

SGOF 

0 0 1 0 

0.035 0 0.792766765644481 0 

0.085 0.0167094768812063 0.550870981716026 0 

0.135 0.0472615376511234 0.365286104871042 0 

0.185 0.0868249887784407 0.227976330113399 0 

0.235 0.133675815049651 0.131124179221773 0 

0.285 0.186817630874193 0.0671582016022023 0 

0.335 0.245578153366725 0.0287901950785023 0 
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0.385 0.309463842559586 0.00906836673681601 0 

0.435 0.378092301208987 0.00146089407393082 0 

0.485 0.451155875792571 0.000013390229330315 0 

0.535 0.528400054545388 0 0 

0.585 0.609609717838873 0 0 

0.635 0.694599910227526 0 0 

0.685 0.783209383857804 0 0 

0.735 0.875295926423717 0 0 

0.785 0.97073288527125 0 0 

0.8 1 0 0 

/ 

0 0 1 0 

0.035 0 0.758988515516814 0 

0.085 0 0.492602658159541 0 

0.135 0 0.302431392045342 0 

0.185 0 0.172780245967101 0 

0.235 0 0.0895876829741821 0 

0.285 0 0.0404743731401657 0 

0.335 0.0108809463266352 0.0148031101771948 0 

0.385 0.0491771285083817 0.00375461816423567 0 

0.435 0.10797380322933 0.000429521332995507 0 

0.485 0.184477298822442 1.63328046596546E-06 0 

0.535 0.277055233633678 0 0 

0.585 0.384580495492682 0 0 

0.635 0.506205855581335 0 0 

0.685 0.641260121229155 0 0 

0.735 0.789192100436947 0 0 

0.785 0.949537122383164 0 0 

0.8 1 0 0 

/ 

 

EHYSTR 

1* 0 / 

 

RPTPROPS 

'PVTO' 'PVTW' 'PVDG' / 

 

REGIONS 

 

SATNUM 

45000*1 / 

 

IMBNUM 

45000*2 / 

 

SOLUTION 
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EQUIL 

1500 250 2250 1.5 1500 0 1 0 1* / 

 

RSVD 

1500 120 

9000 120 

/ 

 

RPTSOL 

  -- Initialisation Print Output 

  --  

'SWAT' 'RESTART=2' 'FIP=1' / 

 

SUMMARY 

 

FPR 

 

FOPT 

 

FGPT 

 

FWPT 

 

FGOR 

 

FWCT 

 

FOPR 

 

FGPR 

 

FWPR 

 

WBHP 

'OP' / 

 

EXCEL 

 

SCHEDULE 

-- 

--  WELSPECS and COMPDAT define well information in both 

--  standard and LGC models. 

-- 

 

DEBUG  
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20* 1 / 

 

EXTRAPMS  

4 / 

 

WELSPECS 

--wname group i j BHP prefphase 

'OP' 'GROUP' 20 30 2159 'OIL' / 

/ 

 

COMPDAT  

-- ic  jc  k_hi  l_lo   

'OP'   20   30   1   10 'OPEN'  1*    1*    0.2   1*      1*      1* / 

/ 

 

WCONPROD 

'OP','OPEN','LRAT'  1* 1* 1* 1750  1* 90  / 

/ 

RPTSCHED 

   'RESTART=1' 'FIP=1' 'WELLS=5' 'SUMMARY=3' 'CPU=2' 'WELSPECS' 'NEWTON=1' / 

/ 

 

RPTRST 

BASIC=3 FREQ=30 PBPD / 

 

TSTEP 

    400*10 

/ 

 

RPTONLY 

 

--WELTARG 

--'OP' 'LRAT' 0 / 

--/ 

RPTSCHED 

   'RESTART=2' 'FIP=1' 'WELLS=1' 'SUMMARY=1' 'CPU=2' 'WELSPECS' 'NEWTON=1'  

/ 

 

 

END 

 

 


