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ABSTRACT 

Successful dispersal and establishment of invasive anurans (frogs and toads) may be 

influenced by competitive exclusion and/or niche differentiation with competing species. 

I investigated the dispersal of anurans in western Newfoundland using anuran calling 

surveys and pond-edge visual encounter surveys. The Mink Frog, Lithobates 

septentrionalis, had dispersed ~50 km northeast from the original (2001) discovery 

location and ~34 km southwest; displaying spatial separation from Green Frogs, 

Lithobates clamitans, at landscape and local scales. Visual encounter surveys did not 

reveal any correlation between adult Mink Frogs and odonate competitors. Additionally, I 

assessed the impact of varying tadpole densities on removal of epilithic periphyton by 

providing epilithon covered substrates for American Toad, Anaxyrus americanus, 

tadpoles raised in laboratory or field enclosures. Higher tadpole densities resulted in 

smaller tadpoles that removed more periphyton from substrates. As anuran population 

ranges expand, there may be effects on ecological resources for vertebrate and 

invertebrate competitors. 
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1. Introduction and Overview 

1.1. Invasive Species 

Non-indigenous species enter new ecosystems and establish viable populations 

either naturally or through human-assisted migration. While the majority of non-

indigenous species fail to persist or may have no major effect following introduction, the 

term invasive is normally used to indicate circumstances where there is a noticeable 

negative effect of a non-indigenous species in the novel ecosystem (Kraus 2008). 

Introduced species are becoming a frequent consequence of human-mediated linkages 

across small to large spatial scales around the globe and, regardless of terminology, the 

introduction of any non-indigenous species may have either a positive (enhancing 

ecosystem biodiversity) or negative (causing biodiversity loss, as is more often the case) 

effect on the target ecosystem (Knight et al. 2005, Colautti et al. 2006, Paolucci et al. 

2013). Although not all invasive species create negative ecological effects, invasive 

species have been identified as a substantial threat to ecosystem biodiversity (Kolar and 

Lodge 2001, Catford et al. 2012, Simberloff et al. 2012), particularly for insular 

ecosystems which are often characterized by simpler trophic webs (Chapuis 1995) and 

lack either coevolved predators or strong competitive influences (Stone et al. 1994). 

Successful invasion is a three stage process whereby the species is first transported 

to a new location where it may establish a viable population from which individuals 

subsequently disperse to other similar habitats (Shigesada and Kawasaki 1997, Mack et 

al. 2000, Sakai et al. 2001). The transportation or dispersal of non-indigenous species 

across a landscape is dependent on factors such as species perceptual range, capacity to 

identify suitable habitat, organism size, motility, life history traits, behavioural 
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characteristics (Zollner & Lima 1997, Sakai et al. 2001; Baldwin et al. 2006,) as well as 

the level of landscape connectivity (Stevens et al. 2006). Anthropogenic activities also 

contribute to the accidental/intentional introduction of non-indigenous species through 

human-mediated species transportation or sufficient disturbance of ecosystems to 

facilitate trans-boundary movement of non-indigenous species (Kolar & Lodge 2001; 

Chytrý et al. 2008).  

While most individuals of these non-indigenous species will perish during dispersal 

(Mack et al. 2000), Kolar & Lodge (2001) estimated that more than 10% survive this 

phase and establish populations in a new location at some distance from the original point 

of introduction. Aspects which contribute to the establishment of a non-indigenous 

species include the nature of introduction (natural dispersal or human mediated 

introductions), the invasability of the habitat and characteristics of the invader such as 

propagule pressure, population age structure and abundance (Sakai et al. 2001, Catford et 

al. 2012, Kohler et al. 2012). Successful non-indigenous species also are more likely to be 

generalists, exhibiting wide habitat preferences and either utilizing untapped resources or 

out-competing native/established species for shared resources (Marvier et al., 2004). 

Once established, non-indigenous species may begin exploiting niche opportunities (Shea 

and Chesson 2002) which contribute to greater fitness, increased population size, and an 

expanded range. The most worrisome stage of the invasion process to managers 

responsible for ecological integrity is that associated with the post-establishment dispersal 

of viable invasive populations (Sakai et al. 2001, Shea and Chesson 2002). Dispersal can 

be enhanced or inhibited by abiotic and biotic conditions that combine to influence the 

availability of habitat suitable for breeding, as well as through the provision of movement 
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corridors that link habitats, or landscape barriers that block dispersal (Blomquist and 

Hunter Jr 2009, Li et al. 2009). The abundance of predators and interactions with 

competitive resident species are biotic factors which also influence invader dispersal rate. 

The introduction and continued expansion of the Cane Toad (Rhinella marina, formerly 

Bufo marinus; Pramuk 2006, Frost et al. 2008) in Australia is an example of an 

introduced species of anuran (frogs and toads) that has affected both resident vertebrate 

and invertebrate species (Crossland et al. 2009, Shine 2010). In places where the 

reproductive timing of the native Ornate Burrowing Frog, Opisthodon ornatus followed 

that of the Cane Toad, the size and survival of the Ornate Burrowing Frog tadpoles has 

been negatively impacted by competitive interactions with Cane Toad tadpoles 

(Crossland et al. 2009). Native predators, such as Hoplocephalus and Acanthophis snakes, 

are susceptible to Cane Toad toxins (Phillips et al. 2003) which act through changes to the 

locomotion and survival of the snakes as influenced by the proportion of Cane Toads in 

their diet. 

 

1.2. Anuran Ecological Effects 

Anurans with dimorphic life stages have the capacity to act as links between trophic 

levels (Whiles et al. 2006). At the larval stage, tadpoles of many species consume 

periphyton (a biofilm mixture of bacteria, algae, protozoa and detritus) attached to 

substrates in freshwater systems. Hence, tadpoles can act as transitory consumers that 

regulate periphyton productivity and facilitate energy transfer to higher tertiary trophic 

levels when preyed upon or when they metamorphose (Ranvestel et al. 2004, Hopkins 

2007) or are consumed by terrestrial or semi-aquatic predators. Consumption of 
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periphyton biomass can potentially limit food resources for conspecifics and other 

herbivores. Tadpoles exhibit growth plasticity or variation in time to, and size at, 

metamorphosis in response to environmental stressors such as high conspecific density 

(Brockelman 1969, Semlitsch and Caldwell 1982), pond drying (Crump 1989), and 

temperature and food quality (Alvarez and Nicieza 2002). In several studies high 

conspecific density has increased tadpole development rate (Cohen and Alford 1993, 

Hensley 1993, Kehr et al. 2014), leading to metamorphosis at an earlier Gosner stage 

(Gosner 1960) or slowed growth rate (change in size), resulting in metamorphosis at 

smaller sizes. Similar results have been noted for growth after tadpoles metamorphosed 

into adults (Dodd 2010, Wells 2010). 

For adult frogs and toads, competitive interactions may also arise between 

conspecifics and congeners for foraging and breeding habitats in ecosystems with limited 

resources. The effects of competition can extend to other taxa, for example between 

Anura and Odonata (dragonflies and damselflies) species which live in similar habitats 

(Werner et al. 1995, Hammond 2007) and exhibit similar diets that include, for example, 

small invertebrates from the Order Diptera (Werner et al. 1995, Saha et al. 2012). Similar 

anuran and odonate larval habitat requirements as well as adult interspecific competition 

for food resources, will directly and indirectly affect populations within communities 

through trophic cascading, particularly where predators metamorphose (Knight et al. 

2005). The extent of competition between species depends on the level of overlap for 

spatial and/or resource requirements (Hairston 1980, Shea and Chesson 2002). Variation 

in species’ resource use contributes to competitive interactions between sympatric 

invaders and established species (da Silva Lima et al. 2014) which consequently 
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influences species’ distributions (Connell 1983). Assessing the co-occurrence of species 

and availability of limiting resources (Hairston 1980) provides the opportunity to infer 

potential competitive interference between species.  

 

1.3. Invasive Anurans in Newfoundland 

Class Amphibia (which includes frogs, toads, salamanders and caecilians) is 

considered to be one of the most endangered taxa globally; populations of amphibians are 

declining or going extinct at alarming rates due to habitat destruction, climate change, 

disease and overexploitation (Stuart 2004, Sodhi et al. 2008, Alford 2011, Blaustein et al. 

2011). Up to 43% of amphibians are threatened with extinction (Vredenburg et al. 2010, 

Barnosky et al. 2011) while close to 30% of anuran species (frogs and toads) are 

considered threatened (Sodhi et al. 2008). In Canada, at least 20 amphibian species are at 

risk of extinction or extirpation (Lesbarrères et al. 2014). While countries worldwide are 

experiencing declines in anuran populations and species richness, some North American 

species in the genera Anaxyrus and Lithobates are listed as “Least Concern” by the IUCN 

(2013a, 2013b, 2013c) because of their wide spread distribution, diverse habitat tolerance, 

low probability of rapid population decline, and continued range expansion.  

There are no native anurans on insular Newfoundland (Maunder 1983). The most 

probable theory for the absence of anurans is the salt water isolation of Newfoundland 

which acts as a barrier to the natural dispersal of anuran species from mainland Canada. 

Salt water affects osmoregulation in anurans and only a few species can tolerate saline or 

brackish conditions for temporary periods (Freda and Dunson, 1984; Pierce et al., 1984; 

Wells, 2010). Human mediated dispersal across such a barrier is therefore the only means 
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of anuran introductions to insular Newfoundland and indeed six anuran species have been 

introduced (Buckle 1971, Maunder 1997, Warkentin et al. 2003): the Western Chorus 

Frog (Pseudacris triseriata), Northern Leopard Frog (Lithobates pipiens), Wood Frog 

(Lithobates sylvaticus), Green Frog (Lithobates clamitans), Eastern American Toad 

(Anaxyrus americanus americanus) and the Mink Frog (Lithobates septentrionalis). The 

Green Frog was likely first introduced to the eastern parts of insular Newfoundland circa 

1850 (Maret 1867, Johansen 1926, Maunder 1983). The Wood Frog and American Toad 

populations originated from locations in southern Ontario, Canada and were successfully 

translocated during the early 1960s to the Corner Brook area by James Buckle (Buckle 

1971). The Mink Frog was first identified in the vicinity of Corner Brook in 2001 but its 

origins are unknown (Powell 2002, Warkentin et al. 2003). Although additional 

translocations to the Northern Peninsula occurred in the late 1970s, both the Northern 

Leopard Frog and Western Chorus Frog failed to establish populations and appear to have 

been extirpated since neither has been detected during numerous surveys since 1989 

(Maunder 1997, Campbell et al. 2004, Stapleton 2011). 

Despite general declines of amphibians globally, populations of some anurans 

introduced to western Newfoundland over the past 50 years are expanding their range and 

population density (Maunder 1997, Campbell et al. 2004). Anecdotal evidence suggests 

increasing ranges for Mink Frog and American Toad in the Humber Valley - including 

Corner Brook, the purported initial site of introduction – but there have been no 

indications of expanding Green Frog populations. As with the introductions of the Cane 

Toad to Australia or the Cuban Tree Frog Osteopilus septentrionalis to Florida (Smith 

2005, Crossland et al. 2009, Shine 2010), the resource exploitation patterns of the Mink 
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Frog likely have enhanced its distribution since initial identification on the island in 2001. 

Surveys conducted along the west coast of Newfoundland (from the Northern Peninsular 

to the Codroy Valley in the southwest) identified the Mink Frog in ponds between 

Stephenville and Corner Brook (Powell 2002, Warkentin et al. 2003, Stapleton 2011). It 

seems unlikely that temperature would be a limiting factor for distribution of Mink Frogs 

since the Mink Frog is endemic to places with colder climates such as Labrador (Maunder 

1997, Desroches et al. 2006). The Green Frog, a closely related species to the Mink Frog 

(Shirose and Brooks 1995), predominantly inhabits warmer climates (Conant and Collins 

1998) but is widely distributed across insular Newfoundland (Maunder 1983, 1997), with 

the exception of the Northern Peninsula which Maunder (1983) suggested would be the 

case due to climatic conditions. A knowledge gap exists regarding the current distribution 

of anurans in western Newfoundland, the factors which influence their dispersal and the 

effects dispersing populations have on ecosystem resources and structure. 

Based on previous surveys (Powell 2002, Stapleton 2011), American Toads are the 

one of the most abundant and widely distributed anuran species in western 

Newfoundland. Stapleton (2011) identified the species at twenty-seven of thirty 

monitoring locations between Stephenville and Deer Lake. Unlike Mink and Green Frogs, 

the American Toad has expanded its range to the Northern Peninsula since its 

introduction (Maunder 1983, Stapleton 2011). Although Hecnar and M’Closkey (1996) 

Hecnar 1997 and Sanzo (2005) did not find that water chemistry was a useful indicator of 

species richness or abundance, Campbell et al. (2004) and Stapleton (2011) identified 

dissolved oxygen concentration as the main predictor of toad dispersal in western 
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Newfoundland. The species has high fecundity, being capable of breeding in temporary 

and permanent aquatic systems (Conant and Collins 1998). 

 

1.4. Thesis Objectives and Outline 

My aim was to document changes to the distributions of anurans (specifically Mink 

Frog, Green Frog and American Toad) in areas around Corner Brook, and then to 

evaluate two aspects of the potential ecological impact of these species on the ponds they 

occupy. First, having identified the current range of the recently introduced Mink Frog, I 

assessed the habitat and water quality factors which may potentially be affecting the 

species’ distribution. These data were collected during the peak of the 2014 Mink Frog 

breeding season, June 27 - July 6 (Stapleton, 2011), using established protocols for 

manual calling surveys, the North American Amphibian Monitoring Protocol (NAAMP). 

The manual calling surveys, coupled with visual encounter surveys, provided relative 

abundance and distribution data for the Mink Frog and the closely related Green Frog, the 

results of which are presented in Chapter 2. Visual encounter surveys also included the 

recording of odonate species diversity and abundance information, to determine if 

populations of these potentially competing insects might exhibit habitat use patterns 

correlated with adult frog abundance. These data are reported in the Appendix. The Mink 

Frog and Green Frog were selected as target species for this research as they are closely 

related (Shirose and Brooks 1995; Conant and Collins 1998) and have similar breeding 

periods, from late June to early July (Stapleton 2011), in western Newfoundland. This 

timing permitted the simultaneous determination of relative abundances and comparison 
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of the most recent introduction, the Mink Frog (Warkentin et al. 2003), with that of the 

oldest invasive anuran, the Green Frog (Maunder 1983).  

The second aspect of my project was to determine the level of impact that varying 

densities of invasive anurans have on the invaded ecosystem during their larval stage of 

development. Effects on freshwater habitats could be stronger in the Corner Brook region 

when compared to other parts of American Toad distribution on the island as population 

densities of toads will likely be greater in this region given the prolonged time since 

initial colonization (approximately 50 years). American Toad tadpoles are aquatic 

herbivores that feed largely on algae by scraping surfaces (Kupferberg 1997, Altig et al. 

2007) thereby having the potential to affect epilithic biomass accumulation and nutrient 

cycling (Seale 1980, Pryor 2003). The impact of tadpoles on the ecosystem can be 

measured through the removal of algae from toad breeding habitat. I evaluated the effect 

of introduced anurans on epilithic biomass accumulation in ponds by providing epilithon-

covered substrates upon which different controlled densities of American Toad tadpoles 

could feed. These tadpoles were taken from local sources and raised in laboratory or field 

enclosures at varying densities relative to that of local populations. American Toad 

tadpoles were well-suited to these experiments due to the early availability of the larvae 

and the ease with which the species can be identified relative to the other species in 

western Newfoundland. The results of these experiments are presented in Chapter 3. 

American Toads and Mink Frogs do not breed at the same time (toads usually breed 

earlier in the spring); nonetheless survey data collected during the 2014 Mink Frog 

breeding season also allowed for a rough estimate of American Toad distribution in the 
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region, as presented in Chapter 4, which also summarizes the major findings from my 

research study. 

 

1.5. Co-authorship Statement 

This study was conducted independently but with input from my supervisor, Dr. Ian 

Warkentin, and other members of my supervisory committee, Dr. Christine Campbell and 

Dr. Robert Scott. With their guidance I designed the research experiments and surveys. 

Data collection was aided by two field/laboratory assistants, Jasmine Pinksen and Lindsay 

Batt. Data analyses were performed with advice from Dr. Warkentin and Dr. Scott. The 

thesis is structured in a manuscript format with two chapters (2 and 3) representing 

individual projects within the study; these chapters have been submitted to journals. I 

wrote the manuscripts and made revisions based on comments and advice from the co-

authors, Dr. Warkentin, Dr. Campbell and Dr. Scott. The first manuscript (Chapter 2), 

“Initial dispersal and habitat use of newly introduced Mink Frogs in western 

Newfoundland, Canada” was submitted as a manuscript to Copeia in January 2016. The 

second manuscript (Chapter 3), “Impact of Invasive Eastern American Toad Tadpole 

Populations on Pond Epilithon in Western Newfoundland” was submitted to Food Webs 

in December 2015. Due to the submission to different journals, there are differences in 

formatting between the chapters, and with the remainder of the thesis. The results of the 

third aspect of the research, a measure of competition between adult Mink Frogs and 

adult Odonata (dragonflies and damselflies) were not submitted as a manuscript but 

recorded in the appendices of this thesis. 
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2.1. Abstract 

Insular Newfoundland has no native amphibians. While global amphibian 

populations are declining at alarming rates, populations of introduced anurans (frogs and 

toads) continue to expand in western Newfoundland, Canada. However we expected the 

establishment and dispersal of the most recently introduced species, Mink Frog 

(Lithobates septentrionalis), to be influenced by competitive exclusion and/or niche 

differentiation with the previously introduced and ecologically similar Green Frog 

(Lithobates clamitans). We used a combination of anuran calling surveys and pond-edge 

surveys to assess the relative regional distribution, local habitat use, and ongoing 

dispersal for these two species in western Newfoundland. The recently established Mink 

Frog has dispersed ~3.8 km/year northeast from the original (2001) discovery location 

and ~2.6 km/year southwest; binary logistic and co-occurrence analyses revealed that this 

population displayed an unexpected spatial separation from long-established Green Frog 

populations, at landscape and local scales. This niche differentiation appears to be 

exacerbated by the additional influence of pH on species presence; acidic environments 

negatively affect Mink Frog presence while favouring Green Frogs.  

 

2.2. Introduction 

Anurans (frogs and toads) often excel as invasive species due to their r-selective life 

history, growth plasticity, and ability to tolerate a range of environmental conditions 

(Sakai et al., 2001; Shine, 2010). As ectotherms and generalists that occupy various 

trophic niches, anurans can quickly become important components of terrestrial and 

aquatic ecosystems (Shea and Chesson, 2002; Hopkins, 2007). As such, they are present 
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in nearly every habitat except oceans and locations with either extremely cold climates or 

extremely dry conditions (Wells, 2010) making them one of the most ecologically diverse 

and widely dispersed Orders among vertebrates. The range of environments occupied by 

even a single species may be extensive; the American Bullfrog (Lithobates catesbeianus) 

can be found inhabiting tropical coastal wetlands as well as temperate freshwater systems 

(Conant and Collins, 1998). But basic habitat requirements remain vital determinants of 

establishment success and population expansion by any invasive species. For those 

species with aquatic larval stages that require suitable ephemeral/permanent systems, 

breeding sites are one such resource that affects their distribution and abundance (Gómez-

Rodríguez et al., 2009). 

Habitat fragmentation and reduced landscape connectivity, caused by geographic 

barriers such as mountains, deserts and rivers, further limit opportunities for anuran 

dispersal (Li et al., 2009). While generally tolerant of a range of environmental 

conditions, anurans do exhibit species-specific responses to human-mediated habitat 

alterations such as habitat fragmentation caused by road construction and clear-cut 

logging (Blomquist and Hunter Jr, 2009; Deguise and Richardson, 2009). Mazerolle & 

Desroches (2005) noted that dispersal of the Green Frog (Lithobates clamitans) and the 

Northern Leopard Frog (Lithobates pipiens) was restricted in disturbed areas. By contrast, 

Western Toads (Anayxyrus boreas) utilize roads for dispersal and are unaffected by clear-

cuts (Deguise and Richardson, 2009). Some introduced anuran species, such as those with 

high dispersal ability and motility can spread quickly across fragmented landscapes 

(Sakai et al., 2001). Introduced species may also interact with and exhibit an advantage 

over native species, exploiting niche opportunities (Shea and Chesson, 2002) either by 
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utilizing untapped resources or out-competing native and other previously established 

invasive species for shared resources (Marvier et al., 2004). These competitive abilities 

contribute to greater success in establishment, as well as enhancing fitness and increasing 

population size for some newly arrived invasive species. The classic example of this is 

the widespread and ongoing dispersal of the Cane Toad (Rhinella marinus) across 

Australia, a species which has out-competed or affected native species such as the Ornate 

Burrowing Frog (Lymnodynastes ornatum) as well as many other invertebrate and 

vertebrate predators (Urban et al., 2007; Shine, 2010). However, the extent of competition 

between any two species depends on the level of overlap in spatial and resource 

requirements (Hairston, 1980; Shea and Chesson, 2002). Habitat selection is therefore 

important to the distribution and competitive interactions among species. 

Habitats, such as some in Canada’s eastern boreal zone, may offer greater resistance 

to invaders due to the extreme weather conditions, acidic soils and low productivity of the 

ecosystem and so might be expected to support fewer successful invasive species (Langor 

et al., 2014). Within this boreal zone, the island of Newfoundland was originally devoid 

of anurans (Maunder, 1983) but has seen the introduction of six species with populations 

of four species currently extant (Warkentin et al., 2003; Stapleton, 2011): the Eastern 

American Toad (Anaxyrus americanus americanus, formerly Bufo americanus 

americanus) and three species of the Lithobates (formerly Rana). Of the four, the Green 

Frog is the longest established species, having been introduced to the eastern portion of 

the island as early as the 1860s (Cameron and Tomlinson, 1962) and having extended its 

range to western Newfoundland by the 1960s (Maunder, 1997). The Mink Frog 

(Lithobates septentrionalis) was first identified in insular Newfoundland in 2001 and is 
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the most recently introduced (Warkentin et al., 2003). Besides the Eastern American 

Toad, the Wood Frog (Lithobates sylvaticus) is the other extant anuran. Introductions of 

Northern Leopard Frog and Western Chorus Frog (Pseudacris triseriata) were 

unsuccessful (Maunder, 1997; Warkentin et al., 2003). 

We found no reports assessing the influence of one introduced anuran on another 

introduced anuran, and efforts to understand the impact of non-indigenous anurans in 

western Newfoundland have been limited. Here we attempted to identify the primary 

factors influencing the dispersal and population expansion of one introduced species in 

the context of another introduced anuran. Specifically we i) examined the establishment 

and dispersal of Mink Frogs away from their initial areas of introduction through areas 

where Green Frogs are already established, ii) assessed habitat use by both species and 

iii) identified predictors of occurrence and co-occurrence along with natural and 

anthropogenic factors known to influence anuran presence.  

 

2.3. Materials and Methods 

2.3.1. Study Species  

Mink and Green Frogs have similar habitat requirements: both are primarily 

aquatic, occupying and remaining close to permanent freshwater systems such as ponds 

and lakes throughout their life span (Martof, 1953; Hedeen, 1986; Shirose and Brooks, 

1995). However, Mink Frogs are adapted to cold-water ecosystems (Desroches et al., 

2006; Popescu and Gibbs, 2009). Hedeen (1986) suggested that water temperatures 

>20°C limited the southern distribution of the species; warmer waters did not supply 

adequate oxygen to the submerged spherical egg mass of Mink Frogs. The northern edge 
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of the Mink Frog range largely coincides with the northern extent of the boreal forest in 

regions of eastern Canada from Labrador to Manitoba (Hedeen, 1986; Desroches et al., 

2006) and extends south to approximately the 43rd parallel N, incorporating the northern 

tier of states of the United States from Minnesota through Maine (Hedeen, 1986; Popescu 

and Gibbs, 2009; Green et al., 2014). Mink Frog microhabitat selection suggests a general 

reliance on floating or emergent vegetation in deeper water (Stewart and Sandison, 1972; 

Shirose and Brooks, 1995). 

The northern extent of the Green Frog range also includes Atlantic Canada and 

southern portions of Quebec as far north as the mouth of the St. Lawrence River, and 

across eastern Canada to the northern shores of Lake Superior and the Ontario-Manitoba 

border (Conant and Collins, 1998). The species has also been introduced to British 

Columbia in western North America (IUCN, 2016). In contrast to the Mink Frog, the 

Green Frog’s range extends southwards to the Gulf of Mexico from eastern Texas across 

to northern Florida (Hamilton, 1948; Gibbs et al., 2007). Green Frogs are able to tolerate 

warmer climates (Conant and Collins, 1998) and more acidic environments (Wells, 2010). 

The egg masses of Green Frogs are often found along the water’s surface (Parmelee et al., 

2002), allowing for more oxygenation. In contrast to Mink Frogs, Green Frogs primarily 

occupy grassy or shrubby open pond shoreline with emergent vegetation such as 

Ericaceous spp. (Courtois et al., 1995; Shirose and Brooks, 1995).  

 

2.3.2. Study Sites 

The majority of intentional anuran introductions documented for insular 

Newfoundland were in the vicinity of Corner Brook in the western part of the island 
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(Buckle, 1971; Maunder, 1997; Warkentin et al., 2003), therefore we focused on this 

region. We sampled ponds west of the Long Range Mountains, between Deer Lake and 

Stephenville which are located approximately 50 km northeast and southwest of Corner 

Brook, respectively (see Fig. 2-1). The aquatic ecosystems of this region are characterized 

primarily by oligotrophic ponds and streams (Campbell, 2002). The terrestrial landscape 

of the study area (approximately 6 to 183 m above sea level) features extensive boreal 

conifer forests dominated by Balsam Fir, Abies balsamea (Thompson et al., 2003). The 

southern portion of the study area (approximately 12 to 49 m above sea level), around 

Stephenville, possesses more acidic Sphagnum bogs than found in the north.  

 

2.3.3. Sampling Anuran Distribution  

Initial site selection was based on replicating data collection protocols from prior 

studies (Campbell et al., 2004; Stapleton, 2011), but augmenting this set of study sites to 

increase the sampling intensity (total of 40 locations chosen for surveys) and provide 

more detailed information on species’ distributions. Anuran species can be identified by 

the calls of the breeding males and surveyed using nighttime manual calling survey 

(MCS) protocols developed for the North American Amphibian Monitoring Program, 

USGS Patuxent Wildlife Research Center [https://www.pwrc.usgs.gov/naamp/]. Our 

survey period and sites were chosen to coincide with local breeding periods for the two 

target species. Calling surveys were conducted during two periods, including June 18 - 24 

and June 29 - July 1, 2014 with each site being visited twice. Surveys were standardized 

with respect to time and factors that affect frog calling behaviour/call recognition by the 

observer, such as air temperature (°C), wind speed (kph), noise index, precipitation and % 
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cloud cover. MCS provided confirmation of Mink and/or Green Frog presence and an 

estimate of abundance (Anuran Calling Index). 

In addition, (following Crump and Scott Jr, 1994), daytime visual encounter 

surveys (VES) were conducted at 77 sites between the hours of 10 a.m. and 3 p.m. from 

July 9 - 31, 2014. Sixteen of these sites were from the nighttime MCS; due to their ease of 

access and proximity to the southern leading edge of the population dispersal, the 

remainder were unique to this dataset (see Fig. 2-2). VES were run to i) provide better 

data on local spatial utilization of pond systems by each species, ii) identify the leading 

edge of Mink Frog population dispersal more precisely, and iii) provide an additional 

measure of relative abundance. The VES protocol included walking 30 m of shoreline 

where emergent vegetation was prominent and noting the frog species seen within 2 m, 

either side of the pond margin, as well as those individuals greater than 2 m away from 

the shoreline on land and in the water. The presence and relative abundance of both Mink 

and Green Frogs encountered were recorded and expressed as number of frogs/m.  

 

2.3.4. Habitat Classification 

For both MCS (Fig. 2-1) and VES (Fig. 2-2), we recorded general habitat 

characteristics (Table I) and physiochemical water-quality parameters known to influence 

the distribution of anuran species. These included variables that aid dispersal and habitat 

connectivity, such as beaver dams which create movement corridors (Anderson et al., 

2014) and the presence of roads (Deguise and Richardson, 2009). Courtois et al. (1995) 

identified favourable microhabitat for Mink Frogs within ponds, such as emergent 

vegetation. Mean air temperature was determined using alcohol-in-glass thermometers 
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accurate to 0.5 °C. Wind speed (m/s) was measured using a digital handheld anemometer. 

Water temperature (TP), dissolved oxygen (DO) and conductivity (COND) were 

measured using YSI Model 30 & 55 meters (YSI 1700/1725 Brannum Lane, Yellow 

Springs, Ohio 45387-1107, USA). The acidity/alkalinity of the pond was measured using 

a pHep Model HI 98107 pH meter (HANNA Instruments, 584 Park East Drive, 

Woonsocket, RI 02895, United States). Each meter was calibrated on a daily basis prior 

to use in the field.  

 

2.3.5. Statistical Analyses 

Data from the manual calling surveys and visual encounter surveys were analyzed 

separately. Correlation was used to identify significant associations between habitat 

characteristics and anuran presence. The presence of anuran species was also assessed 

using binomial logistic regression (logit transformation) against water quality and habitat 

classifications; the residuals were assessed for normality and homogeneity of variance. 

Kruskal-Wallis non-parametric tests followed by post-hoc procedures were conducted to 

identify differences in the water quality of those ponds that had only Mink Frogs, those 

with Green Frogs only, those that contained both species and those in which neither 

species were present. The correlation matrix was examined for significant associations 

based on variable pairings with correlation values > 0.5 being considered to be collinear 

(Dormann et al., 2013). Test statistics with α ≤ 0.05 were considered statistically 

significant. Analyses were performed using the statistical package R version 3.1.1 (R 

Foundation for Statistical Computing). The co-occurrence of Mink Frogs and Green 

Frogs, was quantified as a checkerboard or C-score (Stone and Roberts, 1990; Gotelli, 
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2000), and assessed against a random null model using EcoSim Version 7.0 (Gotelli and 

Entsminger, 2001). Nearest neighbour analysis using ESRI ArcGIS (Version 10.2) was 

also used to assess the spatial distribution and clustering of known Mink Frog populations 

across the study area.  

 

2.4. Results 

Through manual calling surveys (MCS), we identified Mink Frogs at 19 of 40 sites 

with the majority of male Mink Frog choruses heard within 15 km of Corner Brook. 

Based on these locations, Mink Frogs range expanded from the 2001 point of original 

discovery at a rate of 3.8 km/year northeast along the Humber River and Deer Lake to the 

town of Deer Lake. The south-western leading edge of the dispersal was approximately 

34 km from the original discovery location, a dispersal rate of 2.6 km/year. Mink Frogs 

were also identified north of the Humber River in the town of Hughes Brook (dispersal 

rate of 1.1 km/year) and in Humber Village as well as Gillams on the northern shore of 

the Bay of Islands (Fig. 2-1). Mink Frogs were first noticed outside of Corner Brook in a 

man-made pond at the Humber Village site in 2011 (Andrew May, personal 

communication, 30 June 2015). The Humber Village site is ~16 km from the original 

discovery site.  

The results of the VES were similar to those obtained by the MCS (Mink Frogs 

present at 42 of 77 sites surveyed) and indicated that the highest densities of Mink Frogs 

were present in the vicinity of Corner Brook (Fig. 2-2). Nearest neighbour analysis of 

MCS data indicated that Mink Frogs were widely dispersed throughout the study area (z 

score = 4.1841, p < 0.001; < 1% chance the dispersal pattern was random). However, the 
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VES was more effective in identifying the southern leading edge of the population 

expansion of the Mink Frog as being Moose Pond ~34 km from the initial discovery 

location (Fig. 2-2). Using VES techniques we identified Mink Frogs in Deer Lake to the 

north-east (similar to the MCS findings), but also found Mink Frogs in Mount Moriah to 

the west. Both MCS and VES failed to identify any Mink Frogs in the southern portions 

of the study area, near Stephenville, which contrasts with the presence of Mink Frogs at a 

single location there during the 2011 surveys (Stapleton 2011). 

Green Frogs were identified at 19 of 40 MCS monitoring sites, primarily in the 

vicinity of Stephenville, the southern portion of the research area (Fig 2-1). Green Frogs 

were also heard in the vicinity of Pynn’s Brook and near Hughes Brook, on the northern 

shore of the Bay of Islands. There was little overlap of Green Frog and Mink Frog 

populations (Fig. 2-1), and at sites where both species occurred in the same pond, they 

appeared to occupy opposite ends of the water body based on both MCS and VES results. 

Both species were simultaneously identified at only 5 of 105 locations in total using MCS 

and VES methods. 

The assessment of patterns of co-occurrence of the Mink Frog-Green Frog species 

pair revealed a C-score of 225. When tested against a random null model of independent 

species presence (10,000 simulations), the observed C-score of 225 was well within the 

highest 5% of the simulated values (p = 0.002), criteria which Beaudrot et al. (2013) 

suggest are indicative of a checkerboard distribution by two species which is not likely 

due to chance alone.  

The model for the binary logistic regression of Mink Frog Presence against water 

quality parameters was: 
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 𝑙𝑜𝑔𝑖𝑡(𝑀𝐹) = 𝑒𝛽0+𝛽1𝐷𝑂+𝛽2𝑇𝐸𝑀𝑃+𝛽3𝐶𝑂𝑁𝐷+𝛽4𝑝𝐻 + 𝜀, 

where MF is the probability of Mink Frog Presence (dichotomous data: 0/1, 

absence/presence), β0 = the overall mean, DO = dissolved oxygen (mg/L), TEMP = water 

temperature (°C), COND = conductivity in (µS/cm), ε = binomial error. The binary 

logistic model for geographic predictors was:  

𝑙𝑜𝑔𝑖𝑡(𝑀𝐹) = 𝑒𝛽0+𝛽1𝐿𝐴𝑇+𝛽2𝐿𝑂𝑁 +𝛽3𝑇𝐸𝑅+𝛽4𝐸𝐿𝐸𝑉 + 𝜀, 

where LAT = latitude, LON = longitude and TER = terrain, ELEV = elevation, 

(sloping/undulating or flat). The binary logistic equation for other habitat predictors 

(Table I) was:  

 𝑙𝑜𝑔𝑖𝑡(𝑀𝐹) = 𝑒𝛽0+𝛽1𝐻𝐴𝐵+𝛽2𝐴𝑇𝑇𝑍+𝛽3𝑊𝐵+𝛽4𝑅𝑆+𝛽5𝑅𝐷+𝛽6𝑉𝐸𝐺+𝛽7𝐵𝑉) + 𝜀,  

where β0 = the overall mean, HAB = dominant habitat type, ATTZ = aquatic terrestrial 

transition zone, WB = water body type, RS = human residence (100 m range), RD = road 

(100 m range), VEG = emergent vegetation, TER = terrain and BV = beaver dam. All 

three binary logistic models were also replicated for the analysis of Green Frog presence.  

Further inspection of binary logistic regression analyses indicated that Mink Frog 

presence potentially was influenced by pH (z value = 1.787, p = 0.074; significant – 

avoidance of Type II error), while all other predictor variables were not significant (p-

values exceeding 0.210). When pH was included as the only predictor variable in a 

univariate analysis, Mink Frog presence was clearly associated with increasing pH values 

(z value = 2.584, p = 0.010). There was no influence of dissolved oxygen (z value = -

0.729, p = 0.466), conductivity (z value = 0.537, p = 0.591) or water temperature (z value 

-1.237, p = 0.216), when all water quality variables were modelled together as predictors 
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of Mink Frog presence. Green Frog presence was related to elevation (z value = -2.215, p 

= 0.028), temperature (z value = 2.163, p = 0.031) and water conductivity (z value = -

2.154, p = 0.032).  

The pH of ponds in the southern regions of the study area, near Stephenville, were 

generally more acidic than those in the vicinity and north of Corner Brook (Fig. 2-3). 

Sites of Mink and Green Frog co-occurrence were located north-east of Corner Brook, 

varied in pond size and had an average pH of 7.13 ± 0.50 SD (Table II). For all ponds 

where they occurred, the density of Mink Frogs observed within 2 m of the shoreline 

(0.167 frogs/m) was significantly greater (t = 6.08, p < 0.001) than those observed >2 m 

away (0.043 frogs/m). In ponds where the Green Frog was present, the density 0.018 

frogs/m within 2 m of the shoreline was also significantly greater (t = 2.421, p = 0.021) 

than beyond 2 m (0.005 frogs/m).  

Notably, pond pH (Fig.2-4) differed significantly among habitats in which only 

Mink Frogs were found, in comparison with those where only Green Frogs were present, 

those where both species were found or ponds in which neither species was present 

(Kruskal-Wallis non-parametric tests; chi-squared = 16.697, df = 3, p = 0.001). Post hoc 

comparisons identified pairwise pH differences between Green Frog only-Mink Frog only 

ponds (calculated observed difference between pH average ranks = 15.878; calculated 

critical difference = 10.895) as well as between Green Frog only-neither species ponds 

(calculated observed difference between pH average ranks = 14.450, calculated critical 

difference = 14.162).  

There were also significant differences in the DO concentrations recorded in 2014 

among the ponds occupied by Mink Frogs, Green Frogs, both species or neither species 
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(Kruskal-Wallis non-parametric tests; chi-squared = 11.043, df = 3, p = 0.012). Post- hoc 

tests however failed to conclude which pond types differed statistically. Note, for 

comparison of the Green Frog-only and Mink Frog-only occupied ponds, calculated 

observed difference between average ranks was 10.567 while the calculated critical 

difference was 10.984.  

 

2.5. Discussion 

Mink Frogs are clearly in the dispersal stage of the invasion process, having 

established a successful breeding population at the point of introduction and dispersed at 

least 50 km along two aquatic corridors, populating the intervening available freshwater 

habitats. From its location of first identification in 2001 at a pond on the outskirts of 

Corner Brook (Warkentin et al., 2003), the Mink Frog dispersed 1.0 km/year to the 

northeast and 6.5 km/year to the south over the next 10 years (Stapleton, 2011). Our 

manual calling surveys and visual encounter surveys confirmed that the Mink Frogs were 

continuing to disperse and had extended their range further from the point of initial 

discovery in Corner Brook at rates which suggest faster expansion to the northeast at 3.8 

km/year. Movement through the Humber River-Deer Lake corridor was particularly 

rapid, having covered an apparent 48 km during 3 years from 2011 to 2014. No Mink 

Frogs were identified at 20 monitoring sites in the Stephenville area during our 2014 

surveys. It is possible that Mink Frogs identified in Stephenville during 2011 were there 

due to human assisted transportation and by 2014 had been locally extirpated. The next 

furthest south that Stapleton (2011) identified Mink Frogs was at Blue Pond which is 19 

km southwest from the point of origin. In 2014 however, we identified Mink Frogs at 
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Moose Pond (Fig. 2-2.), suggesting further movement of the main southern boundary of 

Mink Frog distribution by about 15 km southwest. Mink Frogs were also reported in the 

Cook’s Brook drainage at the time of initial discovery on the island (Warkentin et al., 

2003) and during our current surveys were detected in a pond near Mount Moriah which 

is 6 km northwest of the original discovery point in this drainage at Little Cook’s Pond 

(Fig. 2-2).  

In contrast to widespread Mink Frog dispersal, MCS and VES in 2014 identified the 

existence of Green Frog at just one locale near Stephenville and at Pynn’s Brook (Fig. 2-

1). During 2001 (Powell, 2002) and 2011 (Stapleton, 2011), Green Frogs were identified 

using MCS at six sites around Stephenville and at only one site in Corner Brook 

(Stapleton, 2011). Amphibian calling indices using MCS have confirmed the presence 

and abundance of Mink Frog and Green Frog populations in other Canadian Provinces, 

such as New Brunswick (Green et al., 2014) and Ontario (Sanzo, 2005). Gilhen et al. 

(1984) also identified both species in Nova Scotia. However there were no reports of 

Mink Frog density using visual encounter surveys with which to compare our values.  

Habitat variables assessed were not adequate predictors of Mink Frog presence and 

did not appear to influence the dispersal patterns observed. Water chemistry in general is 

not always useful in predicting anuran species richness and abundance (Hecnar and 

M’Closkey, 1996; Hecnar, 1997; Sanzo, 2005). Studies by Campbell et al. (2004) and 

Stapleton (2011) however identified dissolved oxygen concentration as the main predictor 

of toad dispersal in western Newfoundland. Dissolved oxygen, thought to be a limiting 

factor for Mink Frog breeding (Hedeen, 1986; Gibbs and Breisch, 2001; Desroches et al., 

2006; Popescu and Gibbs, 2009), had no detectable influence on Mink Frog dispersal in 
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western Newfoundland. However, observed water temperature and dissolved oxygen 

values did not vary widely within the relatively small geographic region we monitored, 

with oxygen levels apparently not sufficiently low enough to affect the survival of eggs 

and larvae. It was therefore not surprising that dissolved oxygen was not identified as a 

significant predictor for Mink Frog presence.  

The co-occurrence analyses confirmed that Mink Frogs and Green Frogs were 

currently segregated. Mink Frogs were primarily found in ponds with circumneutral pH. 

Green Frogs were mainly found in the acidic bog ponds in the lowland southern portion 

of the study region (Fig. 2-4), which consisted mostly of Sphagnum bogs and less 

limestone bedrock than in the northern areas (Burzynski, 2011). Sphagnum bogs aid in 

creating acidic pond water through the exchange of H+ ions for Ca2+ ions (Clymo and 

Hayward, 1982; Dodd, 2010). The apparent influence of pH on Mink Frog dispersal may 

indicate a physiological relationship between distribution and intolerance to acidic 

environments over extended periods, particularly as it influences survival and 

development of eggs. Freda and Dunson (1986) reported similar findings in their study on 

Fowler’s Toads (Anaxyrus fowleri) where the species was generally absent from acidic 

environments. Low pH can affect osmoregulation in some anuran species, for example, 

exposure to breeding ponds with pH < 4 decreases total body sodium by at least 50% in 

Northern Leopard Frog (Freda and Dunson, 1984; Pierce et al., 1984; Wells, 2010). 

However, species such as the Green Frog are more tolerant of low pH, retaining more 

sodium ions than either Leopard Frogs or Bullfrogs (Wells, 2010). Therefore Green Frogs 

are capable of surviving in acidic bogs which may not be suitable for other, closely 

related species. 
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Many frog species exhibit syntopic occurrence with congeners through resource 

partitioning (Gorman and Haas, 2011). For example, the Florida Bog Frog (Lithobates 

okaloosae) and a subspecies of the Green Frog (Lithobates clamitans clamitans) have 

coexisted within their ranges through variation in microhabitat selection. Green Frogs and 

Mink Frogs are also closely related, highly territorial, exhibiting sympatric population 

overlap in other parts of its range (Shirose and Brooks, 1995; Bevier et al., 2006). They 

have similar feeding strategies and habitats, living in permanent ponds with emergent 

vegetation and prolonged breeding periods during summer. Unlike Shirose and Brooks 

(1995), we found that Mink and Green Frogs used similar pond margin (< 2 m from 

shoreline) habitat. Because ponds in western Newfoundland are oligotrophic (Campbell, 

2002) and have limited floating aquatic or emergent vegetation, it may be that Mink 

Frogs are occupying what little preferred habitat is available to them at the margins of 

ponds, and consequently must either co-exist with Green Frogs, or maintain spatial 

separation. During our 2014 MCS, we heard Mink Frogs and Green Frogs at different 

ends of the same ponds with no evident habitat differences, suggesting at least some 

spatial separation of breeding sites.  

In northern Ontario, Canada there are historic and/or recent sightings for both Mink 

and Green Frogs that extend into the boreal forest (ORAA, 2016a; 2016b). This contrasts 

with known occurrences of the Green Frog in Newfoundland. Maunder (1983) noted that 

the Green Frog did not appear within forested habitat in Newfoundland’s boreal zone and 

was unlikely to do so or to establish viable populations on the Northern Peninsula of 

Newfoundland. Thus far this prediction has held true. The Northern Peninsula generally 

has higher pH than other regions of western Newfoundland (Stapleton, 2011) and there is 
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no evidence that Green Frogs can tolerate the climatic conditions of the Northern 

Peninsula. We identified Green Frog existence in predominantly lowland acidic bogs. For 

Mink Frogs, pond habitat pH appears to be the predominant limiting factor influencing 

their dispersal patterns. As such, we expect that the Mink Frog population in western 

Newfoundland will continue the trend of expanding towards suitable northern and north-

eastern habitats where pH in aquatic habitat is higher (Powell, 2002; Stapleton, 2011). In 

areas where Mink and Green Frog populations co-exist, there is the potential to limit the 

intensity of competition through spatial segregation within ponds. 
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2.8. Figures 

  

Fig. 2-1. Distribution of Mink Frogs and Green Frogs based on Manual Calling 

Surveys [NAAMP Protocol]. Surveys conducted at 40 sites between June 18 - July 1, 

2014. Sites: 1 – Gillams, 2 – Town of Hughes Brook, 3 – Steady Brook 4 – Humber 

Village, 5 - Rapid Pond, 6 – Pasadena Beach 7 – Pynn’s Brook, 8 – Blue Pond and 9 – 

Moose Pond. 
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Fig. 2-2. Population densities (frogs/m) of Mink Frog and Green Frog observed during 

visual encounter surveys of pond shorelines in western Newfoundland. Surveys were 

conducted at 77 sites between July 9 - 31, 2014. 
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Fig. 2-3. Pond pH for sites surveyed during Manual Calling Survey in 2014 in western 

Newfoundland. Surveys conducted at 40 sites between June 18 - July 1, 2014. 
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Fig. 2-4. Pond pH for sites occupied by Green Frogs and Mink Frogs during manual 

calling surveys between June 18 - July 1, 2014. The black horizontal lines represent the 

median values, the boxes represent the 1st and 3rd quartiles while the error bars represent 

the minimum and maximum values excluding outliers.  
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2.9. Tables 

2.9.1. Table 2-1. Habitat Variables Recorded at Monitoring Sites 

Abbreviation   Variable    Values 

HAB   Dominant habitat type   pasture, fen, forest, other 

(within 100 m of wetland  

edge)  

ATTZ   Aquatic Terrestrial Transition Zone  

(substrate at aquatic transition) sand, rocks, trees, grass, other 

WB   Water Body Type   Ditch, lake, pond-large,  

pond-medium, pond-small,  

fen, marsh, other 

TE   General Terrain (100 m range) Flat, Undulating/Sloping 

ELEV   Elevation (m)    Value Recorded 

PM   Permanence    Permanent/Temporary 

RS   Human residence (100 m range) Presence/ Absence 

RD   Road (100 m range)   Presence/ Absence 

VEG   Emergent Vegetation   0%, 1 – 10%, 11-25%,  

26-50%, 50+% 

BEV   Beaver Dam    Presence/ Absence 
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2.9.2. Table 2-2. Water Quality Data – Manual Calling Surveys (2014). Average values 

obtained during 4-week study. 

 

Species  pH  DO  TP  COND 

Identified     (mg/L)  (˚C)  (µS/cm) 

Neither  7.54 ± 0.68 8.83 ± 1.42 17.30 ± 2.94 262.48 ± 198.81 

Mink Frog only 7.73 ± 0.56 9.19 ± 2.07 18.68 ± 4.02 289.09 ± 149.47 

Both Mink Frog &  

Green Frog 7.13 ± 0.50 7.06 ± 0.89 19.10 ± 2.71 101.93 ± 56.97 

Green Frog only 6.13 ± 1.16 7.62± 1.01 23.07 ± 3.01 116.08 ±103.99 
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3.1. Abstract 

The effect of invasive species on ecosystem resources is often more pronounced for 

islands. For insular Newfoundland which was originally devoid of anurans, tadpoles of 

introduced American Toads, Anaxyrus americanus, may be reshaping aquatic ecosystem 

structure by modifying epilithon biomass accumulation. To evaluate the effect of this 

introduced species on biomass accumulation in ponds, we provided epilithon-covered 

substrates for American Toad tadpoles taken from local sources and raised in laboratory 

or field enclosures at varying densities relative to that of local populations. Larger 

population densities resulted in smaller tadpoles that removed more epilithon biomass 

from substrates. However, the short term effect on organic resources appears to be 

influenced primarily by the presence of anurans rather than by population density. With 

greater dispersal of anurans in Newfoundland, greater reduction of pond epilithic layers 

may result in changes to freshwater community structure.  

 

Keywords 

tadpoles, epilithon, growth, density dependence  
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3.2. Introduction 

Understanding changes in community dynamics of epilithic biofilm layers is 

important to assessing the trophic shifts that can occur in freshwater ecosystems. The 

biofilm growing on or attached to substrates in these ecosystems is a mixture of bacteria, 

algae, protozoa, extracellular exudates and detritus that comprise the periphyton. The 

epilithon component refers specifically to periphyton that is attached to submerged rocks 

(Azim et al. 2005, Kohler et al. 2012), of which the algal element is particularly important 

in the littoral zones of oligotrophic systems because it represents the majority of primary 

production occurring there (Loeb et al. 1983). As periphyton is a food resource for a wide 

range of vertebrate and invertebrate aquatic organisms, it consequently plays a vital role 

in the community dynamics of such systems. But equally, primary consumers such as 

aquatic insect larvae and anuran tadpoles can regulate rates of primary productivity, 

decomposition and nutrient cycling in epilithic communities (Mokany 2007, Bellmore et 

al. 2014) through both the removal of periphyton and the associated increase in the 

heterogeneity of periphyton distribution. Periphyton growth is also influenced by nutrient 

supply (Kupferberg 1997, Bellmore et al. 2014), light (Gjerløv and Richardson 2010), and 

hydrology (Kohler et al. 2012). Periphyton is therefore subject to both top-down and 

bottom-up biomass control with the top-down effects of grazing often exceeding that of 

bottom-up influences (Hillebrand et al. 2009). Continuous removal of epilithic biofilm 

can lead to changes in the biomass of algal periphyton components such as diatoms, 

chlorophytes and cyanophytes (Kupferberg 1997), and decrease the availability of food 

resources for grazers such as snails (Class Gastropoda), mayfly nymphs and caddisfly 

larvae (Class Insecta) and tadpoles (Class Amphibia).  
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Trophic shifts across food webs can result from grazing pressure on periphyton; the 

magnitude of which will vary depending on habitat type, hydrology, the productivity of 

the system, the morphology of the grazer, and whether the primary consumer is an 

invasive or introduced species. The extent to which invasive species drive ecological 

change is particularly important for insular ecosystems (Paolucci et al. 2013), where 

altered competition and changes in habitat structure and quality can lead to greater 

biological effects (Knight et al. 2005, Colautti et al. 2006). Insular ecosystems are 

typically characterized by simpler trophic food webs (Chapuis 1995) and often lack either 

the coevolved predators of invasive species or strong competitive influences (Stone et al. 

1994). As a consequence, such ecosystems are particularly sensitive to invasion, with the 

outcome frequently being a reduction in local biodiversity (Courchamp et al. 2003). The 

introduction of anurans to Florida, for example the Cane Toad, Rhinella marina, and 

Cuban Tree Frog, Osteopilus septentrionalis, to Florida has affected the survival and 

larval development of native anuran species such as the Southern Toad, Anaxyrus 

terrestris, and the American Green Tree Frog, Hyla cinerea (Smith 2005). Crossland 

(2009) also found that, depending on the timing of emergence, introduced Cane Toads in 

Australia can affect the survival of the Ornate Burrowing Frog, Platyplectrum ornatum, 

through larval competition when both are tadpoles or through adult Cane Toad predation 

of tadpole and adult Ornate Burrowing Frogs. However, the effect of invasive anurans is 

not limited to competitive interactions with native species at the same or similar trophic 

levels. Wider community effects include facilitating shifts in algal periphyton structure 

(Kupferberg 1997), affecting invertebrate species abundance through predation, as well as 

spatial or resource competition (Feminella and Hawkins 1995, Mokany and Shine 2002), 
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and the potential introduction of pathogens and diseases to the ecosystem, which are then 

transmitted to species at varying trophic levels (Mokany and Shine 2002, Shine 2010).  

Algal periphyton is a basal food resource low in protein and high in carbohydrates, 

commonly identified in the gut contents of anuran larvae such as American Toad, 

Anaxyrus americanus (Baffico and Ubeda 2006, Altig et al. 2007). Herbivorous tadpole 

populations at high conspecific densities and competition for food resources require 

greater periphyton ingestion rates to increase protein intake so that the minimum growth 

size for metamorphosis can be achieved. An increase in conspecific competition or 

reduction in resource quality or quantity can increase developmental rate (change in 

stage; Gosner 1960) or slow growth rate (change in size), resulting in metamorphosis at 

smaller sizes. Monitoring tadpole growth and ingestion rates enables quantification of the 

effect of conspecific density on algal food resources.  

For insular Newfoundland, all extant anuran species including the American Toad, 

Wood Frog (Lithobates sylvaticus), Green Frog (Lithobates clamitans) and Mink Frog 

(Lithobates septentrionalis) were introduced (Buckle 1971, Maunder 1997, Warkentin et 

al. 2003). American Toads in particular have been successful in establishing and 

expanding their populations from the initial sites of introduction in western 

Newfoundland (Powell 2002, Stapleton 2011). Amphibians have the capacity to influence 

ecosystem structure in both terrestrial and aquatic environments because of their high 

fecundity and dimorphic life stages (Whiles et al. 2006). While all of these effects have 

the potential to influence ecosystem function, we focus here on examining the effect of 

introduced tadpoles on epilithon biomass. We examined the growth of American Toad 

tadpoles in field and laboratory settings at varying densities to quantify the density-
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dependent ecological effects of anuran populations on basal food resources in pond 

communities in western Newfoundland, Canada. We report on the i) short-term removal 

of epilithon biomass, through the assessment of ash free dry mass and ii) overall tadpole 

growth represented by weight (mg) and length (mm). We expected that at higher 

population densities, tadpoles would have a slower growth rate but also collectively 

remove more biomass from the grazing substrates provided. If this is so, then in our 

oligotrophic system where resources may be limited, it is likely that these introduced 

anuran populations are having community-wide impacts.  

  

3.3. Methods 

3.3.1. Study Sites and Experimental Setup 

The 4-week study occurred during June and July of 2014 and included a field site 

near Corner Brook in western Newfoundland, Canada (Muskrat Pond; 432618m E, 

5410993m N, UTM 21) which was paired with a laboratory component. Tadpole 

enclosures were constructed from 12-L plastic buckets which, in the field setting, had two 

windows (12 cm x 16 cm) cut into opposite sides that were covered with 1.0 mm mesh 

(Kupferberg 1997) to allow for water flow through the bucket; these buckets were placed 

in suitable shoreline habitat where water depths were ~15 cm. For the laboratory 

experiment, 12-L plastic buckets were filled to ~15 cm deep (~2.5 L) with water taken 

from a nearby water body (Tippings Pond; 435325m E, 5420322m N, UTM 21). Water in 

the latter buckets was aerated via air stones and maintained at ~20°C through control of 

room temperature (Anaxyrus feeding behaviour is maximized at ~20°C; Wells 2010). 

Laboratory enclosures were placed near windows to allow for natural light exposure. 
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Approximately 80% of the bucket water volume was exchanged each week with water 

from the same source pond. Prior to experimental set up, unglazed ceramic tiles (15 cm x 

15 cm) were submerged in Tippings Pond and Muskrat Pond to allow for natural 

accumulation of epilithon. After 5 weeks, the tiles were retrieved, macroinvertebrates 

were removed and the tiles randomly placed in each enclosure to provide food resources 

for American Toad tadpoles. Tiles from Muskrat Pond were used in enclosures at that site 

while those from Tippings Pond were placed in laboratory enclosures. To provide a 

supplementary food source for tadpoles, epilithon covered rocks with an exposed surface 

area ~76 cm2 were taken from Tippings Pond and added to the laboratory and field 

enclosures during week 2 (Rock 1) and week 3 (Rock 2) of the experiment. 

Experimental stocking densities of tadpoles were determined based on observed 

natural densities at Muskrat Pond and nearby Abel Pond (430713m E, 5412561m N, 

UTM 21; where a second field experimental site failed due to stormy conditions). We 

used 2500 cm2 quadrats to assess the naturally occurring densities of free-swimming 

feeding tadpoles (following Dodd 2010) at stage 25 of development (Gosner 1960); ~10 

mm in total length (TL). Field enclosures in Muskrat Pond were stocked on 12 June 2014 

and maintained in seven replicates of three density treatments: natural densities of 13 

tadpoles per enclosure (1x), double natural densities of 26 tadpoles (2x) and control 

densities of 0 tadpoles. Tadpoles collected on 13 June 2014 from Abel Pond were used to 

stock laboratory buckets in seven replicates of four population treatments: naturally 

occurring densities of 12 tadpoles per enclosure (1x), 24 tadpoles (2x), 6 tadpoles (0.5x) 

and 0 tadpoles [control]. Two 1x treatments in the laboratory were abandoned after week 

2 due to the death of all tadpoles in those enclosures and measurements omitted from 
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analyses. At both sites, if the population numbers fell below 80% of the original density, 

the enclosures were restocked from original source ponds with tadpoles of appropriately 

the same age and size. All tadpoles were handled in accordance with protocols approved 

by the Institutional Animal Care Committee - Memorial University of Newfoundland. 

 

3.3.2. Growth Rate Assessment 

Growth rate of tadpoles was estimated by averaging weekly length (mm) and 

weight (mg) measurements across all individuals per enclosure. For the 4-week study 

tadpoles were weighed, following the protocol of Browne and Antwis (2009) and 

photographed. Length measurements (total length (TL), body length (BL) [snout-to-tail-

base] and approximate dorsal surface area) were estimated using ImageJ programme 

(Davis et al. 2008). Water quality parameters (conductivity, pH, dissolved oxygen and 

temperature) known to affect tadpole growth and development (Wells 2010) were also 

measured weekly for both lab and field enclosures (Table 3-1).  

 

3.3.3. Periphyton Removal 

The ash free dry mass (AFDM) method (APHA 1995) was used to assess the 

periphyton remaining after 4 weeks. Tiles and rocks were collected at the end of the 

experiment and stored separately by bucket in Ziploc bags at 4°C until processed. The 

entire exposed surface of each tile was scraped (area of 225 cm2) with a brush and all 

materials rinsed into a beaker with the sample volume made up to 100 ml with distilled 

water and stored at 4°C until analysis. Our approach was modified for assessing the 

remaining population of epilithon present on rocks using the “Top Rock Scrape” method 



57 
 

(Moulton et al. 2002). For rocks, only a section of the top (exposed) surface of the rocks 

containing the periphyton was scraped, with the area scraped then estimated using 

techniques described by Moulton et al. (2002). For both substrate types, subsamples of 5-

10 ml were filtered onto pre-ashed and weighed glass microfiber filters (dia 25 mm). 

AFDM was then obtained by ashing and reweighing filters (Ranvestel et al. 2004, 

Mallory and Richardson 2005). Calculations for AFDM were conducted as described by 

APHA (1995). 

 

3.3.4. Statistical Analysis 

 

All response variables were square root transformed to meet assumptions of 

linearity. Average outliers that would significantly affect linear models were removed 

using the Bonferroni p-value method. One way Analysis of Variance (ANOVA) with 

Tukey’s HSD post hoc tests applied for >2 factor levels, were used to identify overall 

differences for AFDM samples remaining on substrates after exposure to varying 

population densities. Differences in tadpole growth were assessed using Analysis of 

Covariance (ANCOVA); identifying the effects of treatment (population density) and 

week (Time) as covariates and week*treatment interactive effects (Cohen and Alford 

1993). Cumulative degrees days (CDD) of larval development above a standard base 

temperature (T0) of 5˚C (Chezik et al. 2013) was also assessed. All analyses were 

conducted using the statistical package R version 3.1.1 (R Foundation for Statistical 

Computing); significance was determined at α = 0.05. 
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3.4. Results 

3.4.1. Growth Rate Analysis 

The average survival rates of tadpoles raised at Muskrat Field Pond were 87.7% 

(1x) and 87.8% (2x) while in the laboratory tadpoles survival rates were 89.1% (0.5x), 

87.3% (1x) and 86.4% (2x). Tadpoles raised at lower population densities in field 

enclosures attained greater mean weight than those raised at higher population densities 

(Fig. 3-1) and there was a steady increase in weight over time for both treatment levels. 

At the Muskrat field site, both treatment (F1,66 = 16.085, p < 0.001) and week (F1,66 = 

57.624, p < 0.001) were significant factors, and there was no interactive effect (F1,66 = 

1.613, p = 0.209). Tadpoles raised in the field experienced wider temperature ranges than 

those maintained at approx. 19.8˚C in the laboratory (Table 3-1). Field-raised tadpoles 

increased in size faster than those maintained at approximately similar densities in the 

laboratory; mean increase in weight was greater for field 1x tadpoles (5.7 mg/wk ± 16.3 

SD) than for laboratory 1x tadpoles (3.2 mg/wk ± 4.8 SD) (Table 3-2). While attaining 

smaller sizes, laboratory tadpoles progressed through Gosner developmental stages 

(Gosner 1960) more rapidly than individuals in the field. Analysis of the effect of 

treatment regression slopes on weight of laboratory tadpoles, controlling for week, 

revealed a significant week*treatment interaction term (ANCOVA; F2,86 = 7.254, p < 

0.001). The regression slopes for natural (1x) and twice natural (2x) densities crossed 

during Week 1 of the study, thus the response variable depended on treatment as well as 

time and suggested different growth rates among treatments; those in the 2x treatment 

ultimately had the lowest mass and those in the 0.5x treatment had the highest.  
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At Muskrat Pond, tadpoles raised at lower (1x) population densities also had higher 

growth rates in total length (0.8 mm/wk ± 0.9 SD) than those raised at higher (2x) 

population densities (0.5 mm/wk ± 0.9 SD) (Table 3-2). Analysis of field tadpole total 

length showed that the interactive term week*treatment was significant (F1, 66 = 15.572, p 

< 0.001), indicating that the growth rates were different within treatment level. Analyses 

of body length revealed similar results and a significant interactive term (F1, 66 = 18.008, p 

< 0.001).  

In the laboratory, increases in length per week were greater for tadpoles at 0.5x 

densities (0.8 mm/wk ± 0.9) than for 1x (0.4 mm/wk ± 0.9) or 2x (0.4 mm/wk ± 0.7) 

densities (Table 3-2). The regression lines for total length of laboratory tadpoles also 

crossed, reflecting differences in growth rates. Analysis revealed a significant interaction 

term week*treatment (ANCOVA; F2,86 = 10.477, p<0.001). Consequently, the effect of 

the main treatment variable (density) could not be interpreted. The week*treatment 

interaction for body length response in laboratory tadpoles was not statistically significant 

(F2,85 = 2.921, p = 0.059). However, effects of both week (F2,85 = 113.151, p < 0.001) and 

treatment (F1,85 = 11.462, p < 0.001) were significant. Rapid increases in total length and 

body length of laboratory tadpoles appeared to slow after the second measurement; that 

is, lower mm/week increases were observed (Fig. 3-2 and 3-3). Total length continued to 

exhibit a gradual increase (Fig. 3-2) while body length levelled off (Fig. 3-3); indicating 

growth of the tail. Tadpoles from field sites had accelerated growth during the last weeks 

of the study. 

 Mean ratio of body length to total length for field density treatments varied from 

0.437 (1x) to 0.441 (2x) while laboratory ratios were 0.444 (0.5x), 0.443(1x) and 
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0.441(2x). Dorsal area increase mirrored increases in weight of the tadpoles but there 

were significant week*treatment interactions for both the laboratory (ANCOVA; F2,83 = 

13.010, p < 0.001) and field samples (ANCOVA; F1,56 = 8.035, p = 0.006). Growth 

measurements were assessed in relation to time and expressed in experimental weeks. 

Cumulative degrees days (CDD) of larval development above a standard base 

temperature (T0) of 5˚C (Chezik et al. 2013) was also assessed as an explanatory variable 

but yielded similar results to week as the predictor variable, and thus was not included in 

the results presented.  

 

3.4.2. Periphyton Removal 

The presence and varying densities of American Toad tadpoles resulted in a notable 

contrast between values in AFDM for treatment versus control enclosures at field sites 

after 4 weeks (Fig. 3-4). Tiles taken from Muskrat Pond that were exposed to 1x and 2x 

tadpole population densities had significantly less periphyton remaining compared to the 

control (0x) tiles (F2,15 = 34.65, p < 0.001), but were not different from each other in the 

amount of AFDM (p=0.817). There were no differences in AFDM among the treatments 

for Rock#1 (F2,17 = 2.939, p= 0.0801) or Rock#2 (F2,17 = 0.646, p = 0.536) which had 

been placed in the Muskrat enclosures. By contrast, substrate grazing by laboratory 

tadpoles (Fig. 3-5.) revealed no differences among treatments: Tile (F3, 21 = 0.46, p = 

0.713), Rock #1 (F3, 21 = 2.064, p = 0.136) and Rock # 2 (F3, 19 = 3.003, p = 0.0561). 
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3.5. Discussion 

3.5.1. Density-Dependent Effects on Tadpole Growth 

Although the substrate AFDM remaining did not differ with increased tadpole 

density, tadpole growth patterns were similar to those found in other studies (Browne et 

al. 2003, Kehr et al. 2014) in that tadpoles raised at lower densities (0.5x/1x) had higher 

growth rates than those raised at higher densities (2x). Semlitsch and Caldwell (1982) 

noted in laboratory experiments on Eastern Spadefoot Toad, Scaphiopus holbrookii, that 

tadpole body size was negatively affected by tadpole density. More recently, Kehr et al. 

(2014) indicated that in addition to the noted density dependent effects on growth, faster 

tadpole development of the Red-spotted Argentina Frog, Argenteohyla siemersi pederseni 

was also influenced by combinations of low density and low water volume.  

Our study showed that American Toad tadpoles raised in field enclosures also had 

higher growth rates for mass, body length and total length than those raised in the 

laboratory at similar densities. A constant ratio of body length to total length seen in the 

growth rate of tadpoles is reflective of the linear relationship between snout-vent-length 

[synonymous with BL measured in this study] and tadpole tail length (di Cerbo and 

Biancardi 2010); as snout vent length increases, so does tail length. The body length to 

total length ratio in our study was approximately 0.44 for both treatments with field and 

laboratory settings. Increase in both the body length and tail length of laboratory tadpoles 

in each treatment appeared to plateau after the second series of measurements. In contrast, 

field tadpoles were still in the exponential tail-growth phase until the end of the 

experiment.  
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While the water for the laboratory enclosures came from natural sources and was 

replaced on a regular basis, the enclosures in the field would have been exposed to more 

natural light thereby facilitating continued growth of the phototrophic content of the 

epilithon on tile and rock substrates to provide more food resources for tadpoles. Limited 

food resources in the laboratory enclosures were reflected in the slowing of tadpole 

growth rate over the duration of the experiment. This finding was not unexpected. 

Feminella and Hawkins (1995) also reported loss of periphyton biomass reducing the 

growth rate of periphyton grazers. In our study, despite epilithon visually present on the 

tile substrate, tadpoles generally began foraging immediately on supplementary rocks 

when the rocks were added to enclosures. As well, upon the occasional injury/death of a 

tadpole, conspecifics were observed feeding on the remains. Saprophagous or carnivorous 

behaviour by tadpoles has been observed in previous studies (Semlitsch and Caldwell 

1982, Smith 2005). Such feeding behaviour can reduce the density-dependent effects on 

growth and survival (Alvarez and Nicieza 2002) particularly if food resources are 

limiting.  

Anuran embryonic development and growth is temperature dependent (Morrison 

and Hero 2003, Wells 2010) with the transition between Gosner stages (Gosner 1960) 

delayed at lower temperatures. This growth plasticity itself is also often influenced by 

biotic factors, such as conspecific density (Semlitsch and Caldwell 1982, Dodd 2010, 

Kehr et al. 2014) as well as by abiotic factors such as temperature (Alvarez and Nicieza 

2002, Wells 2010), pH (Relyea 2006), and nutrient availability (Kupferberg 1997). For 

example, Berven and Gill (1983) found in field experiments that Wood Frog tadpoles 

taken from cooler, higher elevations of Virginia, USA grew more slowly but transformed 
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at larger sizes than individuals taken from populations in warmer, lower-elevation coastal 

areas of Maryland. Interestingly, they also noted in laboratory experiments that 

populations from colder Canadian lowland climates were less sensitive to temperature 

than those from Virginia or Maryland. Individuals from the northern populations had 

shorter larval periods and metamorphosed at smaller sizes, an example of adaptation to 

shortened growing seasons influencing development. In our study, American Toad 

tadpoles raised at relatively similar densities but generally colder temperatures in the field 

grew larger than those in the laboratory. This could be the result of the combined 

influences of temperature variation, along with food availability and quality (Alvarez and 

Nicieza 2002).  

 

3.5.2. Periphyton Biomass Removal by American Toad Tadpoles 

Tadpoles are primarily herbivorous (Kupferberg 1997, Ranvestel et al. 2004, 

Mokany 2007) potentially exerting top-down biotic control of pond epilithon by depleting 

biomass. The difference in AFDM among treatments and control samples at the Muskrat 

Pond field site indicates that American Toad tadpoles do remove measureable amounts of 

epilithon biomass from aquatic systems in western Newfoundland. Ponds in western 

Newfoundland are typically classified as oligotrophic (Campbell 2002) with high oxygen 

levels and low algal biomass. Aquatic, particularly oligotrophic, systems may vulnerable 

to top down grazing pressure, and further affected by additional grazing pressure from 

resident and invasive species (McQueen et al. 1989, Brown 2012). However, the similar 

levels of epilithon removal by tadpole populations at 1x and 2x natural pond density 

suggests that the impact on the pond ecosystem is likely due more to the presence and/or 
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timing of emergence of tadpoles (Mokany 2007), rather than by the specific tadpole 

densities tested. In our study, natural stocking densities for enclosures were 12 tadpoles 

(equivalent to 182 tadpoles m-2) in the laboratory and 13 tadpoles (equivalent to 197 

tadpoles m-2) in field enclosures. Comparable studies using stocking densities at 25 

tadpoles m-2 (Kupferberg 1997) and densities ranging from 10 to 86 tadpoles m-2 (Mallory 

and Richardson 2005) demonstrated similar negative linear relationships between tadpole 

density and AFDM on substrates.  

The general effect of tadpole presence and density on periphyton biomass is not 

clear-cut. Although some anuran species have the expected negative effect on epilithon 

biomass (Ranvestel et al. 2004, Altig et al. 2007), others appear to promote the long term 

growth of algae through bioturbation - a feeding activity that disturbs/removes inorganic 

content and alters nutrient cycling to favour algal populations. Osborne and McLachlan 

(1985) found that bioturbation by Plain Grass Frog, Ptychadera anchietae, tadpoles in 

vernal pools and the presence of tadpole remains promoted the long-term growth of 

periphyton by contributing to the nutrient cycling within the sediments inhabited by the 

algae. In contrast, Kiffeney and Richardson (2001) found that tadpoles of the Coastal 

Tailed-Frog, Ascaphus truei, had no effect on periphyton biomass, although they did 

appear to limit the abundance of small invertebrates. It is therefore difficult to predict the 

effect of a given species in an ecosystem since the periphyton-herbivore dynamic is not 

only influenced by consumer species but also by stream hydrology (Kohler et al. 2012) 

and nutrient flux (Hillebrand 2002, Mallory and Richardson 2005, Bellmore et al. 2014).  
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3.5.3. Conclusion 

Our findings suggest that invasive anurans can reduce periphyton biomass in ponds 

of western Newfoundland. American Toad tadpoles in 1x and 2x density treatments had 

different growth rates but similar negative effects on periphyton biomass. The continuous 

removal of this food resource by benthic grazers, such as tadpoles, affects algal 

periphyton abundance and availability. An increase in anuran populations will likely have 

both short-term and long-term effects on food resources. Variations in food resource 

levels may subsequently lead to further trophic shifts in consumer species abundances and 

richness within the ecological community. A more complete measure of the long-term 

impact will be gained through continued monitoring of resources and the dispersal of 

breeding anurans.  
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3.8. Figures 
 

  

Fig. 3-1. Square root of mean weight (mg) of tadpoles raised in laboratory and field 

enclosures at one-half (0.5x), naturally occurring densities (1x) and two times (2x) 

naturally occurring densities. There were seven replicates of each density treatment. Error 

bars represent 95% confidence intervals.  
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Fig. 3-2. Square root of mean total length (TL; mm) of tadpoles in laboratory and field 

enclosures at one-half (0.5x), naturally occurring densities (1x) and two times (2x) 

naturally occurring densities. There were seven replicates of each density treatment. Error 

bars represent 95% confidence intervals.  
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Fig. 3-3. Square root of mean body length (BL; mm) of tadpoles in laboratory and field 

enclosures at one-half (0.5x), naturally occurring densities (1x) and two times (2x) 

naturally occurring densities. There were seven replicates of each density treatment. Error 

bars represent 95% confidence intervals. 
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Fig. 3-4. Square root of mean ash free dry mass (AFDM; mg) of epilithon covered 

substrates exposed to no tadpoles (0x), naturally occurring densities (1x) and two times 

(2x) naturally occurring densities at the Muskrat Pond field site. There were seven 

replicates of each density treatment. Error bars represent 95% confidence intervals. The 

horizontal lines of the box plots represent the median values, the boxes represent the 1st 

and 3rd quartiles while the error bars represent the minimum and maximum values 

excluding outliers. 
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Fig. 3-5. Square root of mean ash free dry mass (AFDM; mg) of epilithon covered 

substrates exposed to no tadpoles (0x), one-half (0.5x), naturally occurring densities (1x) 

and two times (2x) naturally occurring densities in the laboratory. There were seven 

replicates of each density treatment. Error bars represent 95% confidence intervals.  
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3.9. Tables 
 

Table 3-1. Weekly Water Quality - pH, Dissolved Oxygen (mg/l), Conductivity (µS/cm) 

and Water Temperature (°C) for Water in Laboratory and Field (Muskrat) Enclosures. 

Measurements were taken during the four week study.  

 

Location pH  Conductivity  Dissolved Oxygen Temperature 

    (µS/cm)  (mg/l)   (°C) 

Muskrat   

     Range     7.57 – 7.92      120.90 – 142.0 5.92 – 9.45  17.85 – 22.30 

     Average 7.75        130.3   8.12   19.8^ 

Laboratory 

(sourced from  

Tippings Pond) 

     Range 8.15 – 8.24 235.0 – 256.5  9.40 – 9.80  12.4 – 20.3 

     Average 8.20        249.5   9.58   17.2* 

 

* Temperature readings taken upon collection of pond water. Average room temperature 

in laboratory was 19.6°C. 

 

^Temperatures measured at ~10:00. Maximum and minimum field temperatures during 

the study were 31.6°C and 1.7°C, respectively (Environment Canada 2014).  

 

 

Table 3-2. Average Growth Rate (weight ± SD and length ± SD) of Tadpoles Raised for 

Four Weeks in the Laboratory and at Muskrat Pond. There were seven replicates of each 

density treatment.  

          

Growth Response  Treatment  Laboratory  Muskrat 

Weight (mg/wk) 

    0.5x  5.5 ± 9.4  - 

    1x  3.2 ± 4.8  5.7 ± 16.3 

    2x  2.2 ± 3.7  3. 7 ± 8.1 

Total Length (mm/wk)  

    0.5x  0.8 ± 0.9  - 

    1x  0.4 ± 0.9  0.8 ± 0.9 

    2x  0.4 ± 0.7  0.5 ± 0.9 
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4. Summary 

4.1. Anuran Distribution and Ecological Impact 

After introduction and establishment, dispersal remains the third and arguably, for 

wildlife managers, the most troublesome stage in the invasion of a non-indigenous 

species (Sakai et al. 2001, Shea and Chesson 2002). The effects on the species richness, 

relative abundance of species and ecological functioning of the invaded community 

become important and long-term, particularly for insular systems (Knight et al. 2005, 

Colautti et al. 2006). For insular Newfoundland, there is much evidence indicating 

continued dispersal of introduced anurans. Equally, the extant introduced anurans, the 

Mink Frog, Green Frog, Wood Frog and American Toad all have dimorphic life stages 

and consequently their presence can impact both aquatic and terrestrial systems (Whiles 

et al. 2006). 

My research has uncovered an interesting and unexpected dispersal pattern in the 

newly introduced Mink Frog population. Since 2001, when the species was identified at 

two sites (Powell 2002, Warkentin et al. 2003), the Mink Frog range has expanded with 

chemical aspects of the aquatic environment clearly a prominent influencing force. But in 

contrast to what previous research might suggest, the distribution of the species has been 

influenced primarily by habitat pH rather than dissolved oxygen. During 2011 manual 

calling surveys, Mink Frogs were detected at five sites extending primarily southwards 

from their point of original detection on the edge of Corner Brook (Stapleton 2011). 

Three years later, the population has continued to spread throughout the aquatic habitats 

of western Newfoundland, predominantly in a north-eastern direction. In 2014, the 

species was identified at 19 sites using similar monitoring locations and survey protocols 
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to the 2011 study. Visual encounter surveys confirmed the southern leading edge of the 

dispersing Mink Frog population in the vicinity of Moose Pond, north of Stephenville 

(Fig. 2-2). By contrast, Green Frog distribution has remained static in the region to the 

south of Corner Brook, primarily inhabiting lowland acidic Sphagnum bog ponds in 

Stephenville. As well, Green Frogs now appear to be occupying more habitat to the 

northeast along the Humber River valley, occurring at three sites during my surveys 

where they had not previously been detected. However, there was little overlap between 

the Mink and Green Frogs in terms of occupying the same water body (only at five 

locations based on both MCS and VES methods) and at those sites the two species 

appeared to occupy opposite ends of the water body based on visual observations and 

detection of calling activity. Green Frog presence was best predicted by temperature and 

water conductivity. However, the probability of finding the Green Frog also decreased 

with increasing alkalinity (Fig. 4-1). By contrast, Mink Frog presence was associated with 

increasing alkalinity (Fig. 4-2), which highlights potential physiological differences 

between the species with implications for both potential competition and resource 

utilization.  

Sphagnum bogs aid in creating acidic pond water through the exchange of H+ ions 

for Ca2+ ions (Clymo and Hayward 1982, Dodd 2010). This acidity affects the H+ transfer 

and osmoregulation in frogs resulting in low survival rates (Freda 1986, Wells 2010). 

However, Green Frogs are among those species which can tolerate acidic environments 

(<4 pH; Freda et al. 1991). Mink Frogs are intolerant of such acidity and thus the initial 

dispersal of the species has been northeast towards circumneutral habitats. Conversely, 

elevated pH (8.0-10.4) and temperature can also be toxic to anurans (Boyer and Grue 
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1995). The absence of the Green Frog from the Northern Peninsula where elevated pH 

habitats occur could be due to this factor (Powell 2002, Stapleton 2011). Maunder (1983) 

also speculated on the absence of the Green Frog from the Northern Peninsula, suggesting 

that climate may be influential in limiting their northern dispersal on the island. Several 

studies have cited the varying effects of water chemistry on anuran distribution (Freda 

and Dunson 1986, Freda et al. 1991, Campbell et al. 2004, Sanzo 2005). However, my 

results contrast with similar studies in mainland Canada, where studies on anuran species 

richness and distribution did not identify pH as the most influential variable in Mink Frog 

species presence (Hecnar 1997, Sanzo 2005). Hecnar and M’Closkey (1996) noted that in 

southwestern Ontario, water chemistry was generally a weak indicator of amphibian 

presence and species richness.  

No other habitat characteristic suitably predicted the presence of the Mink Frog. 

Studies by Powell (2002) and Stapleton (2011) in western Newfoundland similarly did 

not identify landscape geographical variables nor habitat variables as significant 

predictors of Mink Frogs in Newfoundland. It can therefore be inferred that the species 

assessed, Mink Frog, has the capacity to invade various habitats on the Island of 

Newfoundland through tolerance to a range of environmental conditions.  

The second implication of the distribution patterns identified is the potential for 

competition between Mink and Green Frogs. In other regions where there could be 

resource overlap between Mink and Green Frogs, there has been reported syntopic 

existence, the co-occurrence of species without interference of each other. Green Frogs 

principally occupy pond margins with emergent vegetation while Mink Frogs occupy 

microhabitat with deeper water and floating vegetation (Stewart and Sandison 1972, 



80 
 

Courtois et al. 1995, Shirose and Brooks 1995). However, aquatic habitats in western 

Newfoundland tend to be oligotrophic (Campbell 2002), with low nutrient levels 

potentially leading to less floating aquatic vegetation. As expected from the absence of 

floating vegetation, and confirmed through the visual encounter surveys, Mink Frogs 

selected microhabitat similar to that of Green Frogs. There is the potential for competitive 

interactions between these two species in habitats where they co-exist since they are 

closely related and have similar habitat and food resource requirements. (Shirose and 

Brooks 1995, Bevier et al. 2006). Thus far ponds where they co-occur have been few, as 

confirmed by C-score statistics, and the species have exhibited at least some spatial 

separation of breeding habitat as determined during visual and auditory surveys.  

The American Toad population is increasingly well distributed across the landscape 

in western Newfoundland, based on a number of surveys (Campbell et al. 2004, Stapleton 

2011, this research; Fig. 4-3). Using manual calling surveys, toads were identified at 17 of 

40 sites, inhabiting ponds that ranged from acidic bogs near Stephenville to more 

circumneutral habitats in Deer Lake and on the north shore of the Humber Arm (Fig. 4-3). 

The widespread distribution of the adults and larvae potentially affect food resources in 

these aquatic systems. I used American Toad tadpoles to assess the impact of tadpole 

density on periphyton removal, but given the aquatic nature of all four species of 

introduced anurans on the island, there is the potential for all of them to influence 

ecosystem structure and function where they occur. In the density-dependent study using 

American Toad tadpoles, I found that higher density populations resulted in tadpoles that 

were smaller in mass, dorsal area and total length, but also higher density populations also 

led to the removal of more periphyton from both laboratory and field aquatic systems. 



81 
 

The display of plasticity in growth rates of tadpoles that I observed has been documented 

in several studies (Cohen and Alford 1993, Browne et al. 2003, Kehr et al. 2014) and has 

been proven to be a response to environmental and biotic stressors (Semlitsch and 

Caldwell 1982, Alvarez and Nicieza 2002, Dodd 2010). The most revealing statistics 

from the tadpole field research were: i) a significant difference in epilithon biomass 

remaining on the tile substrates exposed to no tadpoles (control) versus those exposed to 

1x and 2x natural tadpole population density treatments, and ii) the lack of differences 

between 1x and 2x treatments in epilithon biomass remaining on tile substrates. These 

findings suggest that the tadpole populations could have a negative effect through the 

removal of periphyton which is a food resource for many other aquatic invertebrate and 

vertebrate larvae such as snails (Class Gastropoda), mayfly nymphs and caddisfly larvae 

(Class Insecta) including other anuran species (Class Amphibia). Additionally, the 

absence of any difference in epilithon biomass between 1x and 2x treatments suggests 

that the effects of those densities are similar and that the ecosystem may already be at 

carrying capacity at natural densities. This is worrisome within insular oligotrophic 

aquatic systems, such as we have in western Newfoundland, because top-down grazing 

effects of tadpoles in low productivity systems can be influential in decreasing the 

accumulation of epilithon biomass (McQueen et al. 1986). The increasing dispersal of r-

selected anuran species and the subsequent continued removal of epilithic resources at 

rates faster than they are replenished, could affect species abundance, triggering trophic 

shifts in the food web, through competitive interactions and reduction of limiting 

resources (Feminella et al. 1995, Kupferberg 1997, Mokany 2007).  
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This study has been an important initial assessment of the potential impacts that the 

current distribution of anurans and their larvae are having on aquatic systems of western 

Newfoundland. Also uncovered were a myriad of questions regarding the conservation of 

insular ecosystems. Areas for further research include: what are the competitive 

interactions in areas of overlap between Mink Frogs and Green Frogs, why do Green 

Frogs appear to be avoiding waterbodies with high pH, what are the long-term effects of 

these anurans on periphyton resources, and what potential changes are occurring in the 

anuran and invertebrate populations in response to variations in resources. The effect that 

climate change will have on Mink and Green Frog populations is also particularly 

interesting considering that the Green Frog’s range appears currently to be restricted by 

colder temperatures on the Northern Peninsula, and the Mink Frog’s range could continue 

to expand northwards to colder habitats with greater dissolved oxygen concentrations. I 

expect that the Mink Frog population will, through natural and human-assisted means, 

continue to disperse in a generally northward direction. Newfoundland therefore 

represents the ideal location to study the Mink Frog, the potential competitive interactions 

between Lithobates species occupying similar microhabitats, as well as the impending 

effects of climate change on the dispersal of anuran species.  
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4.3. Figures 

 

Fig. 4-1. Probability of Green Frog Absence or Presence in relation to pond pH. Surveys 

conducted at 40 ponds between June 18 - July 1, 2014 in western Newfoundland. 

 
Fig. 4-2. Probability of Mink Frog Absence or Presence in relation to pond pH. Surveys 

conducted at 40 ponds between June 18 - July 1, 2014 in western Newfoundland. 
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Fig. 4-3. American Toad Distribution in western Newfoundland. Data obtained from 

manual calling surveys conducted by Powell (2002), Stapleton (2011) and from this 2014 

project. 
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5.1. Appendix I – Anuran-Odonate Surveys 

5.1.1. Introduction 

For competition to occur between two species, they must co-exist and there must be 

an overlap of limiting spatial and/or food resource requirements (Connell 1980, Hairston 

1980, Shea and Chesson 2002). Anurans and odonates have similar larval habitat 

requirements and exhibit adult interspecific competition for food resources such as small 

invertebrates from the Order Diptera (Werner et al. 1995, Saha et al. 2012). Knight et al. 

(2005) suggested that strong interspecific competition can result in trophic cascades of 

prey populations. The manipulation and monitoring of predator and prey population 

fluctuations is therefore an ideal method for examining the effects of competition for 

limiting resources (Hairston 1980, Connell 1983). However it is prudent to first determine 

if there is sufficient co-occurrence of competing species which could possibly lead to 

competing interactions. This project was therefore designed to first identify if adult 

dragonflies and damselflies significantly co-exist with adult Mink Frogs. 

Mink Frogs generally occupy the microhabitat of floating or emergent vegetation of 

permanent freshwater ponds (Shirose and Brooks 1995). In Newfoundland where the 

aquatic system is predominantly oligotrophic (Campbell 2002) the species occurs along 

the margins of ponds (this study). Odonates are also reliant on freshwater systems for 

larval development and survival (Kalkman 2008). Some factors affecting the distribution 

of odonate species include salinity, water pH, pond openness, habitat type and fish 

presence (Kadoya et al. 2004, Knight et al. 2005, Oppel 2005, Kalkman et al. 2008, 

Rychla et al. 2011).  
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5.1.2. Methods 

Daytime visual encounter surveys (VES) (Crump, Scott Jr 1994) were conducted at 

77 sites between July 9 - 31 July 2014. The VES protocol included walking 30 m of 

shoreline where emergent vegetation was prominent and noting any frog species seen 

within 2 m, either side of the pond margin, as well as those individuals greater than 2 m 

away from the shoreline on land and in the water. The presence and relative abundance of 

dragonflies and damselflies observed along this transect were also recorded. Where 

possible the dragonflies and damselflies seen were identified to genus level. Factors 

known to affect the distribution and detection of both taxa were included in the data 

collection. VES were conducted between 10 a.m. and 3 p.m. each day. Mean air 

temperature was determined using alcohol-in-glass thermometers accurate to 0.5 °C. 

Wind speed (m/s) was measured using a digital handheld anemometer. Water temperature 

(TP), dissolved oxygen (DO) and conductivity (COND) were measured using YSI Model 

30 & 55 meters (YSI 1700/1725 Brannum Lane, Yellow Springs, Ohio 45387-1107, 

USA). The acidity/alkalinity of ponds was measured using a pHep Model HI 98107 pH 

meter (HANNA Instruments, 584 Park East Drive, Woonsocket, RI 02895, United 

States). Each meter was calibrated on a daily basis prior to its use for field sampling. 

Graphs of dragonfly abundance versus Mink Frog abundance, and also damselfly 

abundance versus Mink Frog abundance were created. The correlation matrix of data 

collected was examined for significant associations based on variable pairings, with 

correlation values > 0.5 being considered to be collinear (Dormann et al. 2013). Test 

statistics with α ≤ 0.05 were considered statistically significant. 
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5.1.3. Results 

Only the results at the broad levels of the damselfly (Nehalenia sp. Ischnura sp., 

Lestes sp., and Bluets) and dragonfly (Aeshna sp., Cordulia sp., Leucorrhinia sp., 

Libellula sp., Stomatochlora sp., and Sympetrum sp.) were analyzed in the context of 

Mink Frog census data. Examination of visual encounter survey data indicated that as 

Mink Frog density (number of frogs per m of transect) increased, there was a general 

decrease in damselfly (Fig. 5-1) and dragonfly densities (Fig. 5-2). However, there was 

no significant correlation between the density of Mink Frog with either group of odonates 

(Table 5-1), and only Mink Frog presence was associated with damselfly density. 

Damselfly density and dragonfly density were both weakly negatively correlated with 

Mink Frog Density: r = -0.182 and r = -0.113) respectively. 

 

5.1.4. Discussion 

There was no evidence to suggest that the damselflies and dragonflies significantly 

co-occurred with Mink Frogs. There is a notable difference between the foraging tactics 

employed by the Mink Frogs and odonates. Mink Frogs are generalist predators that may 

employ a “sit-and-wait” tactic in hunting prey (Kramek 1976). However adult odonates 

are winged active predators which will tend to have a wider range for foraging. The 

amount of overlap in the foraging habitat may therefore be too limited to be detectable. 

The weak negative correlations between Mink Frogs density and odonate density 

could be explained by intraguild predation. During the larval stages, odonate larvae are 

carnivorous and predators of tadpoles (Semlitsch 1990). As such, odonates potentially 

influence tadpole abundance, the number of tadpoles that metamorphose and thus adult 
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frog abundances. It is also quite likely that intraguild predation exists between adult frogs 

and adult odonates (Werner et al. 1995). So while there may also be limited competitive 

interactions for food resources, the effects of predator avoidance may also have be 

prevalent.  
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5.1.6. Figures 

 

Fig. 5-1. Scatterplot of Mink Frog and Damselfly Co-occurrence in 77 Ponds in western 

Newfoundland. Visual Encounter Surveys were conducted between the hours of 10 a.m. 

and 3 pm between July 9 - 31, 2014. p value = 0.077 at α = 0.05. 
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Fig. 5-2. Scatterplot of Dragonfly and Mink Frog Co-occurrence in 77 Ponds in western 

Newfoundland. Visual Encounter Surveys were conducted between the hours of 10 a.m. 

and 3 pm between July 9 - 31, 2014. p value = 0.275 at α = 0.05. 
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5.1.7. Table 

Table 5.1-1. Indicating the Correlation Coefficients (r) for the Mink Frog and Odonate Abundance Variables 

 

 

Longitude 

(UTM E, 

m) 

Latitude 

(UTM N, 

m) 

Mink Frog 

Density 

(Individuals/m) 

Mink 

Frog 

Presence 

Dragonfly 

Density 

(Individuals/m) 

Damselfly 

Density 

(Individuals/m) 

Emergent 

Vegetation 

in 

Transect 

Longitude 

(UTM E, m) 
1 0.887** 0.104 0.105 -0.145 0.356** -.343** 

Latitude (UTM 

N, m) 
0.887** 1 0.148 0.236* -0.136 0.281** -.329** 

Mink Frog 

Density 

(Individuals/m) 

0.104 0.148 1 0.619** -0.113 -0.182 -0.017 

Mink Frog 

Presence 
0.105 0.236* 0.619** 1 -0.124 -0.304** -0.146 

Dragonfly 

Density 

(Individuals/m) 

-.145 -.136 -0.113 -.124 1 0.090 0.356** 

Damselfly 

Density 

(Individuals/m) 

0.356** 0.281** -0.182 -.304** .090 1 0.031 

Emergent 

Vegetation in 

Transect 

-0.343** -0.329** -0.017 -0.146 .356** 0.031 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

Correlation coefficients reveal a significant association between Mink Frog Presence and a decrease in Damselfly Density 

(Individuals/m). 
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5.2.  Appendix II - Tables  

Table 5.2-1. Habitat Variables Assessed 

Abbreviation   Variable    Values 

HAB  Dominant habitat type   pasture, fen, forest, other 

(within 100 m of wetland edge)  

ATTZ  Aquatic Terrestrial Transition Zone   sand, rocks, trees, grass, other 

(substrate at aquatic transition) 

WB  Water Body Type   Ditch, lake, pond-large, pond- 

medium, pond-small, fen, 

marsh, other 

TE  General Terrain (100 m range) Flat, Undulating/Sloping 

ELEV  Elevation (m)    Value Recorded 

PM  Permanence    Permanent/Temporary 

RS  Human residence (100 m range) Presence/ Absence 

RD  Road (100 m range)   Presence/ Absence 

VEG  Emergent Vegetation   0%, 1 – 10%, 11-25%,  

26-50%, 50+% 

BEV  Beaver Dam    Presence/ Absence 
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Table 5.2-2. Monitoring Sites and Habitat Variables Recorded conducted between June 18 and July 1, 2014 in Ponds in Western 

Newfoundland. 

 

Date Location 

Latitude 

(UTM N, 

m) 

Longitude 

(UTM  

E, m) 

HAB ATTZ WB TER ELEV PM RS RD VEG BEV 

18-Jun-14 

Humber 

Village 5426810 444377 forest grass 

pond-

small flat 122 YES YES YES 26-50% NO 

18-Jun-14 

Sewage 

Lagoon 5448953 469652 fen 

trees-

grass stream flat 79 YES NO YES 26-50% NO 

18-Jun-14 South Brook 5429169 453468 forest trees 

pond-

large sloping 89 YES YES YES 11-25% NO 

18-Jun-14 

Steady 

Brook 5424260 441448 fen grass fen flat 27 YES YES YES 50-75% NO 

23-Jun-14 Abel 5412794 430819 forest 

trees-

grass 

pond-

large flat 1025 YES NO NO 11-25% NO 

23-Jun-14 

Bottom of 

Dump Hill 5424934 435345 fen 

trees-

grass 

pond-

small flat 45 YES NO YES 11-25% YES 

23-Jun-14 Gillams 5429819 421956 forest 

trees-

grass stream flat 29 YES NO NO 11-25% NO 

23-Jun-14 

Hughes 

Brook 5427688 434666 fen trees 

pond-

small sloping 39 YES YES YES 11-25% NO 

23-Jun-14 

Parson's 

Pond 5418847 435588 forest trees 

pond-

large sloping 816 YES NO YES 0% NO 

23-Jun-14 

Tippings 

Lake 5420282 435181 forest trees 

pond-

medium flat 849 YES NO YES 1-10% NO 

29-Jun-14 

800m from 

461 5378858 395847 fen grass 

pond-

large flat 116 YES NO YES 1-10% YES 

29-Jun-14 

Black Duck 

Siding 5380252 397604 forest 

trees-

grass 

pond-

large flat 123 YES NO YES 1-10% NO 

29-Jun-14 CONA Pond 5380017 386115 forest 

trees-

grass 

pond-

large 

undulat

ing 166 YES YES YES 1-10% YES 

29-Jun-14 First Pond 5374663 406423 forest 

trees-

grass 

pond-

large flat 119 YES NO YES 26-50% NO 
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29-Jun-14 Goose Pond 5363962 393608 forest 

trees-

grass 

pond-

large flat 374 YES NO YES 1-10% NO 

29-Jun-14 JNC 460/490 5379018 387766 forest 

trees-

grass 

pond-

large flat 100 YES NO YES 26-50% NO 

29-Jun-14 

JNC 461 

West 5378852 393588 fen 

trees-

grass 

pond-

large flat 143 YES NO YES 11-25% YES 

29-Jun-14 

Long Gull 

Pond 5380509 383738 fen grass 

pond-

small flat 149 YES NO YES 1-10% NO 

29-Jun-14 Ned's Pond 5380229 384085 forest 

trees-

grass 

pond-

large 

undulat

ing 123 YES YES YES 11-25% NO 

29-Jun-14 Noels Pond 5380174 389292 forest 

trees-

grass 

pond-

large 

undulat

ing 95 YES YES YES 11-25% YES 

29-Jun-14 

Stephenville 

Warning 

Lights 5378172 388067 fen 

trees-

grass 

pond-

large flat 113 YES NO YES 1-10% YES 

29-Jun-14 TCH 1 5379799 406976 fen grass 

pond-

large flat 441 YES NO NO 26-50% NO 

29-Jun-14 TCH 2 5367575 397941 forest 

trees-

grass 

pond-

large 

undulat

ing 78 YES NO YES 1-10% NO 

29-Jun-14 TCH 3 5361785 393497 fen 

trees-

grass 

pond-

medium flat 350 YES NO YES 11-25% NO 

30-Jun-14 

Deer Lake 

Airport 5449532 469932 other grass stream flat 26 YES NO YES 26-50% NO 

30-Jun-14 Insectarium 5449317 468441 fen grass 

pond-

small flat 38 YES NO NO 50-75% YES 

30-Jun-14 

Marble Mtn. 

Pond 5422221 439052 other grass 

pond-

small flat 40 YES YES YES 11-25% NO 

30-Jun-14 McIvers 5434233 419380 fen 

trees-

grass stream flat 146 YES YES YES 50-75% NO 

30-Jun-14 

Pasadena 

Beach 5429802 455416 other other stream sloping 10 YES NO NO 0% YES 

30-Jun-14 Pynn's Brook 5437567 460714 other grass 

pond-

small sloping 139 YES NO NO 50-75% NO 

30-Jun-14 Rapid Pond 5427550 448790 forest 

trees-

grass 

pond-

large sloping 67 YES NO YES 11-25% NO 
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30-Jun-14 

Town of 

Hughes 

Brook 5428179 436408 forest trees 

pond-

large flat 211 YES NO YES 11-25% YES 

1-Jul-14 Blue Pond 5403856 420184 forest rocks 

pond-

medium 

undulat

ing 625 YES YES YES 1-10% YES 

1-Jul-14 

CB Ring 

Road 5419768 430287 fen grass 

pond-

small flat 797 YES NO YES 50-75% NO 

1-Jul-14 

Dozer Pond 

2 5402132 417709 forest 

trees-

grass 

pond-

medium sloping 654 YES NO YES 26-50% NO 

1-Jul-14 

Ducks unlim. 

Marsh 5422206 431196 fen grass 

pond-

small flat 46 YES NO NO 50-75% NO 

1-Jul-14 Link Pond 5420838 434357 forest 

trees-

grass 

pond-

medium sloping 786 YES YES YES 11-25% NO 

1-Jul-14 

Near 

Watson's 

Pond 5416829 433578 forest 

trees-

grass 

pond-

small sloping 902 YES YES YES 1-10% NO 

1-Jul-14 Pinchgut 5402132 417709 other rocks lake flat 655 YES YES YES 0% NO 

1-Jul-14 SWGC Fen 5421195 431619 fen 

trees-

grass ditch sloping 290 YES YES YES 26-50% NO 

 

 

 

 

 

 

 



101 
 

Table 5.2-3. Amphibian Calling Index (NAAMP Protocol) 

Index and Code Definitions Amphibian Calling Index  

0 None Calling  

1  Individuals can be counted; there is space between calls  

2  Calls of individuals can be distinguished but there is some overlapping of calls  

3  Full chorus, calls are constant, continuous and overlapping  

 

Table 5.2-4. Beaufort Wind Codes 

Beaufort Wind Codes  

0  Calm (<1mph) ( < 1.6 kph) Smoke rises vertically  

1  Light Air (1-3 mph) (6 - 4.8 kph) smoke drifts, weather vane inactive  

2  Light Breeze (4-7 mph) (6.4 – 11.3 kph) leaves rustle, can feel wind on face  

3  Gentle Breeze (8-12 mph) (12.9 – 19.3 kph) leaves and twigs move around, small 

flags extend  

4*  Moderate Breeze (13-18 mph) (20.9 – 28.9 kph) moves thin branches, raises 

loose papers * Do not conduct survey at Level 4, unless in Great Plains  

5**  Fresh Breeze (19 mph or greater) (30.6 kph) small trees begin to sway ** Do not 

conduct survey at Level 5 in ALL REGIONS  

 

Table 5.2-5. Sky Codes 

Sky Codes (numbers 3 and 6 are not used)  

0  Few clouds  

1  Partly cloudy (scattered) or variable sky  

2  Cloudy or overcast  

4  Fog or smoke  

5  Drizzle or light rain (not affecting hearing ability)  

7  Snow  

8*  Showers (is affecting hearing ability). *Do not conduct survey.  
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Table 5.2-6. Noise Index 

Noise Index*  

Massachusetts  

Noise Index  

Yes/No  

System  

Definition  

0  No  No appreciable effect (e.g. owl calling)  

1  No  Slightly affecting sampling (e.g. distant traffic, dog barking, 

one car passing)  

2  Yes  Moderately affecting sampling (e.g. nearby traffic, 2-5 cars 

passing)  

3  Yes  Seriously affecting sampling (e.g. continuous traffic nearby, 

6-10 cars passing)  

4  Yes  Profoundly affecting sampling (e.g. continuous traffic 

passing, construction noise)  
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Table 5.2-7. Manual Calling Survey Results Conducted between June 18 - July 1, 2014 in Ponds in Western Newfoundland. 

Date Location 
Time 

(24hr) 

Green 

Frog 

ACI 

Mink 

Frog 

ACI 

American 

Toad  

ACI 

Wood 

Frog 

ACI 

Dissolved 

Oxygen 

(mg/L) 

Dissolved 

Oxygen 

Temp. 

(°C)  

Conductivity 

(µS/cm) 

Temperature 

(°C) 
pH 

18-Jun-14 
Humber 

Village 
1:44 1 3 2 0 7.47 15.7 38.2 16.0 6.64 

18-Jun-14 
Sewage 

Lagoon 
23:00 0 1 1 0 6.19 18.4 266.9 18.4 6.68 

18-Jun-14 South Brook 1:06 0 1 1 0 11.15 15.4 242.0 15.4 NA 

18-Jun-14 Steady Brook 2:02 3 3 3 0 NA NA NA NA NA 

23-Jun-14 Abel 23:00 0 2 2 0 8.03 24.4 142.4 24.4 7.76 

23-Jun-14 
Bottom of 

Dump Hill 
1:13 0 1 1 0 9.70 14.2 135.6 14.1 7.87 

23-Jun-14 Gillams 2:04 0 2 2 0 9.81 14.2 148.7 14.0 7.55 

23-Jun-14 
Hughes 

Brook 
1:40 0 1 0 0 14.47 17.2 320.5 17.5 8.03 

23-Jun-14 Parson's Pond 23:28 0 1 1 0 10.38 16.0 149.5 15.8 8.01 

23-Jun-14 
Tippings 

Lake 
23:48 0 1 2 0 8.64 13.6 143.3 13.5 8.40 

29-Jun-14 
800m from 

461 
23:43 3 0 1 0 8.00 24.4 36.9 24.4 4.19 

29-Jun-14 
Black Duck 

Siding 
23:30 2 0 1 0 8.56 25.4 31.8 25.4 4.33 

29-Jun-14 CONA Pond 1:03 2 0 0 0 8.78 23.1 279.7 23.2 7.92 

29-Jun-14 First Pond 22:51 3 0 0 0 7.53 21.0 140.0 20.9 6.22 

29-Jun-14 Goose Pond 22:17 2 0 0 0 5.69 23.6 45.1 23.6 5.38 

29-Jun-14 JNC 460/490 0:49 3 0 0 0 7.51 26.6 84.5 25.6 7.24 

29-Jun-14 
JNC 461 

West 
23:55 3 0 0 0 6.75 25.8 68.6 25.9 6.18 
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29-Jun-14 
Long Gull 

Pond 
0:08 3 0 1 0 7.52 24.3 412.2 24.4 6.74 

29-Jun-14 Ned's Pond 1:19 3 0 0 0 7.25 24.7 168.3 24.4 7.54 

29-Jun-14 Noels Pond 0:21 3 0 0 0 7.49 24.0 83.1 24.1 6.60 

29-Jun-14 

Stephenville 

Warning 

Lights 

0:36 3 0 0 0 8.61 20.7 50.1 20.7 4.96 

29-Jun-14 TCH 1 23:04 3 0 0 0 5.70 22.7 67.8 22.9 6.10 

29-Jun-14 TCH 2 22:31 2 0 0 0 7.63 25.4 60.9 25.5 4.80 

29-Jun-14 TCH 3 22:05 3 0 0 0 9.11 20.7 84.2 20.8 6.69 

30-Jun-14 
Deer Lake 

Airport 
22:00 0 1 0 0 8.26 14.2 167.0 14.2 7.38 

30-Jun-14 Insectarium 22:32 0 0 1 0 6.32 20.1 299.0 20.1 7.14 

30-Jun-14 
Marble Mtn. 

Pond 
0:55 0 2 0 0 8.52 21.2 325.1 21.1 7.47 

30-Jun-14 McIvers 2:22 0 0 0 0 8.42 16.7 63.5 16.6 6.34 

30-Jun-14 
Pasadena 

Beach 
23:32 2 0 3 0 8.14 14.2 128.0 14.2 7.08 

30-Jun-14 Pynn's Brook 23:10 0 0 1 0 9.28 14.2 285.0 14.2 7.77 

30-Jun-14 Rapid Pond 0:10 2 1 0 0 7.67 21.0 119.7 21.0 7.11 

30-Jun-14 

Town of 

Hughes 

Brook 

1:30 1 1 0 0 6.03 19.8 147.9 20.3 7.63 

1-Jul-14 Blue Pond 22:07 0 2 0 1 8.39 20.6 371.1 21.2 8.17 

1-Jul-14 
CB Ring 

Road 
0:16 0 2 0 0 9.78 23.8 422.0 23.1 8.26 

1-Jul-14 Dozer Pond 2 21:51 0 1 0 0 8.37 23.2 706.0 23.2 7.98 

1-Jul-14 
Ducks unlim. 

Marsh 
23:58 0 1 0 0 6.25 23.1 362.6 22.4 7.06 

1-Jul-14 Link Pond 23:41 0 3 1 0 11.50 22.4 331.6 22.4 8.55 
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1-Jul-14 

Near 

Watson's 

Pond 

23:03 0 0 1 0 8.78 21.7 625.0 21.7 8.00 

1-Jul-14 Pinchgut 22:20 0 0 0 0 9.82 15.6 152.9 15.4 8.03 

1-Jul-14 SWGC Fen 0:30 0 1 0 0 8.79 15.3 251.6 15.3 7.01 
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Table 5.2-8. Atmospheric Data Collected during Manual Calling Surveys conducted between June 18 - July 1, 2014 in Ponds in 

Western Newfoundland. 

 

Date Location 
Time 

(24hr) 

Sky 

Code  

Wind 

Speed 

(kph)  

Wind 

Code 

Noise 

Index 

Air 

Temp. 

(°C)  

18-Jun-14 Humber Village 1:44 5 0.9 0 0 17 

18-Jun-14 Sewage Lagoon 23:00 2 0.6 0 3 19 

18-Jun-14 South Brook 1:06 2 1.0 0 3 16 

18-Jun-14 Steady Brook 2:02 5 0.0 0 2 17 

23-Jun-14 Abel 23:00 0 2.0 1 2 14 

23-Jun-14 Bottom of Dump Hill 1:13 0 2.6 1 1 12 

23-Jun-14 Gillams 2:04 0 1.5 0 0 14 

23-Jun-14 Hughes Brook 1:40 0 0.0 0 1 14 

23-Jun-14 Parson's Pond 23:28 0 0.4 0 3 14 

23-Jun-14 Tippings Lake 23:48 0 1.8 1 2 12 

29-Jun-14 800m from 461 23:43 0 1.4 0 0 14 

29-Jun-14 Black Duck Siding 23:30 0 0.8 0 2 15 

29-Jun-14 CONA Pond 1:03 0 0.6 0 0 16 

29-Jun-14 First Pond 22:51 1 0.4 0 1 18 

29-Jun-14 Goose Pond 22:17 1 3.7 1 1 20 

29-Jun-14 JNC 460/490 0:49 0 1.3 0 0 14 

29-Jun-14 JNC 461 West 23:55 0 0.5 0 1 16 

29-Jun-14 Long Gull Pond 0:08 0 0.8 0 1 15 

29-Jun-14 Ned's Pond 1:19 0 1.1 0 0 12 

29-Jun-14 Noels Pond 0:21 0 1.5 0 0 14 
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29-Jun-14 Stephenville Warning Lights 0:36 0 0.4 0 0 16 

29-Jun-14 TCH 1 23:04 1 0.0 0 1 16 

29-Jun-14 TCH 2 22:31 1 2.0 1 3 19 

29-Jun-14 TCH 3 22:05 1 2.9 1 2 19 

30-Jun-14 Deer Lake Airport 22:00 2 0.0 0 2 22 

30-Jun-14 Insectarium 22:32 2 0.0 0 2 23 

30-Jun-14 Marble Mtn. Pond 0:55 2 1.8 1 2 20 

30-Jun-14 McIvers 2:22 2 4.7 1 0 20 

30-Jun-14 Pasadena Beach 23:32 2 0.0 0 1 18 

30-Jun-14 Pynn's Brook 23:10 2 1.8 1 3 19 

30-Jun-14 Rapid Pond 0:10 2 0.9 0 1 23 

30-Jun-14 Town of hughes brook 1:30 2 0.4 0 0 19 

1-Jul-14 Blue Pond 22:07 1 2.4 1 1 21 

1-Jul-14 CB Ring Road 0:16 2 6.5 2 2 20 

1-Jul-14 Dozer Pond 2 21:51 1 9.0 2 2 21 

1-Jul-14 Ducks unlim. Marsh 23:58 2 3.4 1 1 20 

1-Jul-14 Link Pond 23:41 2 6.4 2 3 20 

1-Jul-14 Near Watson's Pond 23:03 2 6.8 2 3 20 

1-Jul-14 Pinchgut 22:20 2 5.0 2 1 21 

1-Jul-14 SWGC Fen 0:30 2 0.6 0 1 20 
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Table 5.2-9. Visual Encounter Surveys for Mink Frogs, Green Frogs, Damselflies and Dragonflies. 95 Surveys were conducted 

along the Pond Margins of 77 Ponds in Western Newfoundland between July 9 - 31, 2014. 

 

Transe

ct ID Date Region 

Longitude 

(UTM 21 

E, m) 

Latitude 

(UTM21 

N, m) 

Total MF 

Density 

(Frogs/m) 

Total GF 

Density 

(Frogs/m)  

Damselfly 

Density 

(Individuals/m) 

Dragonfly 

Density 

(Individuals/m) 

1 12-Jul-14 Stephenville 394316 5378760 0.000 0.033 0.200 0.067 

2 12-Jul-14 Stephenville 394316 5378760 0.000 0.067 0.033 0.133 

3 12-Jul-14 Stephenville 394316 5378760 0.000 0.000 0.033 0.000 

4 12-Jul-14 Stephenville 394444 5378694 0.000 0.100 0.100 0.033 

5 12-Jul-14 Stephenville 393709 5378791 0.000 0.000 0.300 0.033 

6 12-Jul-14 Stephenville 393709 5378791 0.000 0.033 0.233 0.067 

7 12-Jul-14 Stephenville 393845 5378886 0.000 0.000 0.233 0.533 

8 12-Jul-14 Stephenville 393845 5378861 0.000 0.000 0.133 0.200 

9 12-Jul-14 Stephenville 393596 5378831 0.000 0.000 0.267 0.433 

10 12-Jul-14 Stephenville 393596 5378831 0.000 0.033 0.233 0.600 

11 12-Jul-14 Stephenville 393497 5361785 0.000 0.000 0.200 0.333 

12 12-Jul-14 Stephenville 393497 5361785 0.000 0.067 0.033 0.567 

13 12-Jul-14 Stephenville 406983 5379639 0.000 0.037 0.185 0.074 

14 12-Jul-14 Stephenville 407073 5379542 0.000 0.000 0.467 0.133 

15 12-Jul-14 Stephenville 407073 5379542 0.000 0.000 0.533 0.100 

16 12-Jul-14 Stephenville 406966 5379516 0.000 0.000 0.300 0.067 

17 12-Jul-14 Stephenville 391324 5360214 0.000 0.000 0.350 0.000 

18 12-Jul-14 Stephenville 391324 5360214 0.000 0.000 0.000 0.200 

19 12-Jul-14 Stephenville 393667 5364039 0.000 0.267 0.500 0.267 

20 12-Jul-14 Stephenville 393667 5364039 0.000 0.000 0.433 0.167 

21 14-Jul-14 Pynn's Brook 462778 5431789 0.000 0.000 0.600 0.167 

22 14-Jul-14 Pynn's Brook 462778 5431759 0.000 0.000 0.333 0.300 
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23 14-Jul-14 Pynn's Brook 464667 5429893 0.000 0.000 0.600 0.067 

24 14-Jul-14 Pynn's Brook 467712 5430170 0.000 0.000 0.500 0.100 

25 14-Jul-14 Pynn's Brook 465218 5429983 0.000 0.033 0.333 0.100 

26 14-Jul-14 Pynn's Brook 463042 5431189 0.000 0.067 0.900 0.067 

27 14-Jul-14 Pynn's Brook 462883 5431989 0.000 0.000 0.500 0.067 

28 14-Jul-14 Pynn's Brook 463116 5432330 0.000 0.000 0.800 0.033 

29 14-Jul-14 Pynn's Brook 463086 5432215 0.000 0.000 0.067 0.000 

30 15-Jul-14 Pynn's Brook 467021 5435074 0.000 0.000 1.033 0.267 

31 15-Jul-14 Pynn's Brook 467021 5435074 0.000 0.000 0.867 0.033 

32 15-Jul-14 Pynn's Brook 465797 5435686 0.000 0.056 0.944 0.278 

33 15-Jul-14 Pynn's Brook 462510 5430912 0.000 0.000 1.300 0.367 

34 15-Jul-14 Little Rapids 448780 5427546 0.000 0.000 0.900 0.267 

35 18-Jul-14 Corner Brook 434453 5413512 0.000 0.000 0.200 0.067 

36 18-Jul-14 Corner Brook 432626 5410994 0.133 0.000 0.033 0.000 

37 18-Jul-14 Corner Brook 432626 5410994 0.267 0.000 0.500 0.100 

38 18-Jul-14 Corner Brook 432626 5410994 0.033 0.000 0.133 0.000 

39 18-Jul-14 Corner Brook 432084 5409033 0.533 0.000 0.000 0.000 

40 18-Jul-14 Corner Brook 432084 5409033 0.800 0.000 0.800 0.033 

41 18-Jul-14 Corner Brook 432873 5410134 0.000 0.000 0.200 0.067 

42 21-Jul-14 Corner Brook 435162 5415454 0.100 0.000 0.000 0.033 

43 21-Jul-14 Corner Brook 435162 5415454 0.033 0.000 0.167 0.067 

44 21-Jul-14 Corner Brook 435309 5415494 0.733 0.000 0.167 0.333 

45 21-Jul-14 Corner Brook 435224 5411034 0.200 0.000 0.033 0.000 

46 21-Jul-14 Corner Brook 435224 5411034 0.100 0.000 0.100 0.033 

47 22-Jul-14 Corner Brook 433612 5410161 0.067 0.000 0.067 0.033 

48 21-Jul-14 Corner Brook 433750 5417199 0.233 0.000 0.233 0.000 

49 21-Jul-14 Corner Brook 433576 5417001 1.367 0.000 0.067 0.033 
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50 21-Jul-14 Corner Brook 435668 5418856 0.600 0.000 0.033 0.133 

51 22-Jul-14 Corner Brook 433689 5410447 0.033 0.000 0.033 0.100 

52 22-Jul-14 Corner Brook 432279 5409120 0.800 0.000 0.167 0.267 

53 22-Jul-14 Corner Brook 431587 5411382 0.567 0.000 0.033 0.000 

54 22-Jul-14 Corner Brook 431558 5411448 0.033 0.000 0.200 0.000 

55 22-Jul-14 Corner Brook 431169 5408844 0.400 0.000 0.300 0.333 

56 22-Jul-14 Corner Brook 434370 5420882 0.067 0.000 0.267 0.267 

57 23-Jul-14 Corner Brook 430346 5412370 0.067 0.000 0.067 0.300 

58 23-Jul-14 Corner Brook 428345 5411895 0.000 0.000 0.067 0.100 

59 23-Jul-14 Corner Brook 422361 5410465 0.000 0.000 0.033 0.067 

60 23-Jul-14 Corner Brook 420636 5410723 0.067 0.000 0.033 0.600 

61 23-Jul-14 Corner Brook 420884 5412606 0.000 0.000 0.333 0.167 

62 23-Jul-14 Corner Brook 422173 5415946 0.000 0.000 1.233 0.033 

63 26-Jul-14 Corner Brook 430309 5419793 0.267 0.000 0.067 0.100 

64 26-Jul-14 Corner Brook 428803 5419966 0.100 0.000 0.300 0.150 

65 26-Jul-14 Corner Brook 428662 5419936 0.267 0.000 0.067 0.400 

66 26-Jul-14 Corner Brook 434219 5417758 0.067 0.000 0.433 0.200 

67 26-Jul-14 Corner Brook 430840 5412127 0.320 0.000 0.400 0.440 

68 26-Jul-14 Corner Brook 430571 5411710 0.400 0.000 0.200 0.300 

69 26-Jul-14 Corner Brook 425542 5405828 0.160 0.000 0.160 0.080 

70 26-Jul-14 Corner Brook 426092 5402944 0.300 0.000 1.067 0.000 

71 26-Jul-14 Corner Brook 426577 5399298 0.567 0.000 0.000 0.100 

72 26-Jul-14 Corner Brook 420307 5403786 0.000 0.000 0.000 0.000 

73 26-Jul-14 Corner Brook 417721 5402061 0.233 0.000 0.300 0.067 

74 27-Jul-14 Corner Brook 417246 5401123 0.267 0.000 0.300 0.067 

75 27-Jul-14 Corner Brook 417242 5401103 0.667 0.000 0.000 0.000 

76 27-Jul-14 Corner Brook 410543 5391914 0.033 0.000 0.133 0.000 

77 28-Jul-14 Corner Brook 431821 5416643 0.000 0.000 0.033 0.133 
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78 28-Jul-14 Corner Brook 430742 5412586 0.033 0.000 0.833 0.067 

79 28-Jul-14 Corner Brook 416960 5411599 0.067 0.000 0.067 0.100 

80 30-Jul-14 Corner Brook 438247 5406421 0.167 0.000 0.000 0.100 

81 30-Jul-14 Corner Brook 437351 5403129 1.133 0.000 0.000 0.000 

82 30-Jul-14 Corner Brook 433983 5399393 0.367 0.000 0.033 0.000 

83 30-Jul-14 Corner Brook 434333 5398173 0.000 0.000 0.067 0.000 

84 30-Jul-14 Corner Brook 418625 5411203 0.267 0.000 0.033 0.133 

85 30-Jul-14 Corner Brook 428634 5412236 0.200 0.000 0.233 0.100 

86 30-Jul-14 Corner Brook 433754 5417014 0.000 0.000 0.040 0.120 

87 30-Jul-14 Corner Brook 434160 5417573 0.067 0.000 0.067 0.133 

88 31-Jul-14 Corner Brook 436591 5428197 0.360 0.000 0.920 0.240 

89 31-Jul-14 Corner Brook 443626 5431189 0.000 0.000 0.000 0.200 

90 31-Jul-14 Corner Brook 440341 5429032 0.000 0.000 0.133 0.000 

91 31-Jul-14 Corner Brook 438999 5422167 0.867 0.067 0.133 0.033 

92 1-Aug-14 Corner Brook 420466 5416508 0.367 0.000 0.000 0.033 

93 1-Aug-14 Corner Brook 418574 5419682 0.400 0.000 0.333 0.100 

94 1-Aug-14 Corner Brook 418479 5421174 0.167 0.000 0.433 0.000 

95 1-Aug-14 Corner Brook 418441 5424856 0.400 0.000 0.233 0.167 

 

 

 


