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Abstract

Automation of managed pressure drilling (MPD) enhances the safety and increases

efficiency of drilling and that drives the development of controllers and observers

for MPD. The objective is to maintain the bottom hole pressure (BHP) within the

pressure window formed by the reservoir pressure and fracture pressure and also to

reject kicks. Practical MPD automation solutions must address the nonlinearities

and uncertainties caused by the variations in mud flow rate, choke opening, friction

factor, mud density, etc. It is also desired that if pressure constraints are violated the

controller must take appropriate actions to reject the ensuing kick. The objectives

are addressed by developing two controllers: a gain switching robust controller and a

nonlinear model predictive controller (NMPC). The robust gain switching controller

is designed using H∞ loop shaping technique, which was implemented using high gain

bumpless transfer and 2D look up table. Six candidate controllers were designed in

such a way they preserve robustness and performance for different choke openings and

flow rates. It is demonstrated that uniform performance is maintained under different

operating conditions and the controllers are able to reject kicks using pressure control

and maintain BHP during drill pipe extension. The NMPC was designed to regulate

the BHP and contain the outlet flow rate within certain tunable threshold. The

important feature of that controller is that it can reject kicks without requiring any

switching and thus there is no scope for shattering due to switching between pressure

and flow control. That is achieved by exploiting the constraint handling capability of

NMPC. Active set method was used for computing control inputs. It is demonstrated

that NMPC is able to contain kicks and maintain BHP during drill pipe extension.
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Chapter 1

Introduction

1.1 Motivation

In the coming decades, the voracious appetite for oil and the concern for energy se-

curity will drive hydrocarbon exploration in pristine environments like the Arctic and

ultra deep waters. Safety enhancements in drilling are essential to protect those frag-

ile environments from contamination, as there is an ever-present danger of reservoir

influxes called kicks while drilling. For an event free drilling, the bottom hole pressure

BHP must be maintained within the pressure window between reservoir and fracture

pressures. If the reservoir pressure exceeds the BHP, a kick will be encountered and

on the other hand if the BHP exceeds the fracture pressure, drilling fluid will be lost

to the formation. During pipe extension operations there is an enhanced danger of

encountering a kick because of the loss of pressure in the well. An unmitigated kick

may lead to a blow-out which can be catastrophic for example, the Macondo incident

in the Gulf of Mexico where valuable lives were lost and cost British Petroleum Plc

41 billion USD (Forbes), and resulted in massive degradation of the environment.

The reduction of non-productive time (NPT) spent on handling kicks is also crucial

because projects in remote locations will be cost intensive.

Precise and fast control of the BHP can be achieved through MPD as it uses back

pressure devices like choke to actively manage the BHP. In MPD, kick rejection is

performed by increasing the back pressure and during pipe extension operations the
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variations in BHP are mitigated through appropriate manipulation of back pressure.

In a manually controlled MPD system, the outcomes are highly dependent on the

skill and dexterity of the operator. In recent years there is a drive to apply automatic

control techniques to drilling for BHP regulation and kick rejection with the aim of

making MPD safer and efficient. The MPD process is nonlinear and has many uncer-

tainities in the system due to variations in mud density, viscosity, frictional loss, flow

rate, and choke opening. Practical control systems must be robust and tolerant to

variations in operating conditions and system uncertainities to attenuate the kick by

steering the BHP back into the pressure window. Also in MPD systems, certain states

like the bottom hole flow rate and disturbances like kick flow rate and reservoir pres-

sure are not measured, which requires estimation of these states and disturbances.

In the recent years researchers have developed many different controllers for MPD

systems. Thse controllers vary in control strategy, for example, pressure control God-

havn et al. 2011 for BHP tracking vs flow control Hauge et al. 2012, 2013 for kick

attenuation. Controllers ranging from proportional-integral-derivative (PID), inter-

nal model control (IMC), model predictive control (MPC), nonlinear model predictive

control (NMPC) have been developed for MPD. Those controllers were shown to be

effective under different situations. A detailed review of these controllers is provided

in Chapter 2. It will be clear from the review that the robustness of the controller

has received less focus for this system with many uncertainities. Also the potential

of NMPC was not fully exploited. In this thesis the focus is on those issues and two

controllers are proposed for the MPD system.
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1.2 Objective

The goal of the research is to develop controllers that deliver consistent performance

irrespective of the operating conditions, robust to parametric variations in mud den-

sity, frictional factor etc. The controller should also deliver superior performance

during normal drilling operations and during drilling pipe extension. Kicks must be

quickly attenuated and BHP must be maintained within the pressure window. We

propose a robust gain switching controller and a nonlinear model predictive controller

(NMPC) to achieve the above mentioned goals.

1.3 Structure of the thesis

The rest of the thesis is organized as follows: Chapter 2 provides a review of literature

on drilling automation and estimation; major contributions to this field are summa-

rized and the gaps in research are identified. Chapter 3 presents the development of

robust gain switching controller for pressure regulation and the results of simulation

studies are presented. A new design of NMPC for BHP regulation and reservoir in-

flux mitigation is presented in Chapter 4. Finally, Chapter 5 concludes this thesis by

highlighting the contributions of this thesis and few recommendations are made for

future work.
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Chapter 2

Literature Review

In this chapter the major contributions towards the control and automation of drilling

are reviewed and gaps in research are identified. But first a brief overview of conven-

tional drilling and MPD are provided. The bibliography of articles referred in this

chapter is presented at the end of this thesis.

2.1 Conventional drilling

The hydrocarbons trapped in rocks hundreds of meters below the sea level is extracted

by drilling wells using a rotating bit. To assist the removal of cuttings a drilling

fluid often referred as mud is pumped into the well at a pressure pp and a flow rate

qp. The mud flows through the drill sting, passes through the nozzles of the bit,

then flows through the annulus and then passes through a shaker where impurities

are removed before flowing back to the mud pit which is open to the atmosphere.

Bourgoyne Jr et al. (1986) gives a comprehensive account of conventional drilling. A

schematic depiction of conventional drilling is shown in Figure 2.1. In overbalanced

drilling techniques a positive pressure difference is maintained in the well to prevent

kicks which occur when well pressure is less than the reservoir pressure pres. The

drilling mud helps in maintaining overbalanced conditions. In conventional drilling,

the bottom hole pressure pbh is the sum of frictional pressure in annulus pf and

hydrostatic head ph, given by Equation (2.1). Frictional pressure will be absent when

there is no mud flow hence to maintain overbalanced conditions during pipe extension

4
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Figure 2.1: Schematic depiction of conventional drilling

(during which the mud flow rate will be ramped down to zero) mud density must be

chosen such that the hydrostatic pressure is higher than the formation pressure, given

by Condition (2.2).

pbh = ph + pf , (2.1)

ph > pres, (2.2)

ph = ρgh (2.3)

where ρ is mud density, g is acceleration due to gravity, and h is true vertical depth

at bottom hole.
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In conventional drilling when a kick is encountered drilling has to be stopped and

a heavier mud is pumped into the well to re-establish Condition (2.2) and that is a

major drawback of conventional drilling as stopping of drilling contributes to non-

productive time (NPT). It is hard to drill reservoirs with narrow pressure windows

Pressure

Reservoir section

D
ep

th
ppres
pfrac

 pbh = ph+ pf  pbh = ph       

Figure 2.2: Limitations of conventional drilling

using conventional drilling technique as frictional loss has large uncertainty and the

sum of hydrostatic pressure and frictional pressure can easily exceed the fracture

pressure pfrac, shown in Figure 2.2. In order to overcome these drawbacks MPD was

introduced.

2.2 Managed pressure drilling

MPD is a closed-path drilling technique in which the mud flowing out of the annulus

passes through a choke which provides a back pressure pc as opposed to flowing to

the atmospheric pressure po as is the case in conventional drilling. In MPD the
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bottom hole pressure pbh is the sum of back pressure pb, hydrostatic pressure ph, and

frictional pressure pf given by Equation (2.4). The BHP can be controlled with ease

by manipulating the mud flow rate or back pressure and thereby greatly improving

the efficacy of well pressure management.

pbh = ph + pf + pb (2.4)

The International Association of Drilling Contractors (IADC) defines MPD as follows:

“Managed Pressure Drilling (MPD) is an adaptive drilling process used to precisely

control the annular pressure profile throughout the wellbore. The objectives are to

ascertain the downhole pressure environment limits and to manage the annular hy-

draulic pressure profile accordingly”. Some variants of MPD are as follows:

i. Constant bottom hole pressure drilling (CBHP)

ii. Pressurized mud cap drilling

iii. Dual gradient drilling

Typically, back pressure in MPD is controlled manually. In order to improve safety

and precision of the process, automation of MPD has been considered. This thesis is

focused on automation of constant bottom hole pressure drilling (CBHP).

2.2.1 Constant bottom hole pressure drilling

In CBHP, the BHP tracks a target which is marginally greater than the reservoir

pressure and lesser than the fracture pressure, also often referred to as “walking the

line”. In CBHP the sum of three pressure components (back pressure, hydrostatic

pressure, and frictional pressure) is maintained marginally higher than the reservoir

pressure. Usually the mud density is chosen in such a way that the hydrostatic pressure
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is less than reservoir pressure, (ph < pres), and the back pressure (pb) is manipulated

to bring the BHP above the reservoir pressure.

ph < pres (2.5)

In an abnormal situation, when the drill enters a pressurized zone the reservoir pres-

Pressure

Reservoir section

D
ep

th

ppres
pfrac

 pbh = ph+ pf  + pb pbh = ph       

Figure 2.3: Constant bottom hole pressure drilling

sure becomes greater than the BHP. This situation is known as kick. A kick can be

rejected by commanding a higher back pressure as that will directly translate into

higher BHP. This can be done easily by manipulating the choke valve without stop-

ping the drilling. An ideal kick attenuation in MPD system is shown in Figure 2.4

During drilling pipe extension, the effect of the loss in the frictional pressure can be

compensated by an appropriate increase in the back pressure, ideal pressure manage-

ment during pipe extension is shown in Figure 2.5. Typically, mature reservoirs have

narrow pressure windows and they are often called undrillable wells. Such reservoirs
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Figure 2.4: Ideal kick attenuation in managed pressure drilling
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Figure 2.5: Ideal bottom hole pressure tracking during pipe extension

can be drilled using CBHP drilling because in this technique hydrostatic pressure is

deliberately chosen in a way the sum of hydrostatic pressure and frictional pressure

is less than reservoir pressure and back pressure “the third component” is manipu-

lated nimbly so that the BHP always remains within the pressure window, schematic

depiction of pressure trajectories in CBHP is shown in Figure 2.3.
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Figure 2.6: Multi-level control of MPD

2.2.2 Control layers in managed pressure drilling

Control of MPD is hierarchical in nature. Control layers as suggested by (Breyholtz

et al., 2010b) are shown in Figure 2.6. The rate of penetration of the drill, energy

consumed by the actuators, mud flow rate, and the pressure profile of the well are

some of the parameters which have to be optimized with the goal of performing event

free drilling. The optimizer forms the topmost layer and it generates pressure and

flow rate setpoints for the MPD system. A dynamic controller manipulates the actu-

ators to achieve the target pressures and flow rates. At the lowest level, controllers
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realize actuator outcomes by manipulating valve opening and pump rpm in choke

and mud pump respectively. In most of the MPD systems real-time measurements

of BHP is not available. Some of the recent MPD systems are equipped with BHP

measurements. Typically these measurements are transmitted by tele-metry, which is

highly unreliable, noisy, and adds delay to the measurements. In the absence of BHP

measurements or when they have significant delay, using the topside measurements

(such as pump pressure, choke pressure, and choke flow rate) the BHP must be es-

timated. In state-feedback controllers, the bit flow rate has to be estimated as it is

an unmeasured state. The heave induced movement of the drilling rig also produces

considerable fluctuations in the well pressures which was addressed in (Mahdianfar

et al., 2012), (Landet et al., 2013), (Nikoofard et al., 2013), and (Albert et al., 2015).

The focus of this thesis is on developing robust, high performance solutions for pres-

sure control during drilling and pipe extension as well as kick mitigation. Faults

such as kicks, leaks, and blocked nozzles have to be detected and diagnosed using

the measurements of the outputs and the estimates of the unmeasured states. The

optimizer takes corrective actions with the help of measurements, estimated states,

and the knowledge of the faults. All these layers together achieve the overarching goal

of automated pressure management in a drilling well.

2.3 Automatic control of drilling

There are broadly two approaches to automatic control of MPD systems, namely flow

control and pressure control; each has its own merits and demerits. In flow control,

the difference in the in/out flow rates is regulated. The objective is to achieve zero

flux as that translates into zero kick. Flow control offers the best solution for kick

mitigation but when there is no kick a flow controller will simply be tracking the
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reservoir pressure; it is often desired that BHP tracks a setpoint which is greater than

reservoir pressure. On the other hand, a pressure controller tracks a BHP setpoint

which is the prime objective of CBHP type drilling but when a kick occurs it manages

it by expanding the valve opening to relieve pressure and thereby bringing the reservoir

fluids to the surface. Below we provide a detailed review of literature on pressure and

flow control.

2.3.1 Pressure control

In pressure regulated MPD, either the BHP or the choke pressure is regulated by

manipulating choke opening and/or mud flow. MPD pressure controllers track BHP

when reliable real-time measurements of BHP are available otherwise they track choke

pressure and in that case choke pressure setpoint is deduced from BHP estimates. The

pressure controllers which have been developed for MPD fall under three broad cate-

gories: Proportional-Integral-Derivative (PID) controllers, nonlinear controllers, and

model predictive controllers (MPC).

Godhavn et al. (2010) designed a PID controller for choke pressure tracking. The

PID tuning parameters were obtained from first order transfer function models which

were derived from ordinary differential equations (ODE). Controller was tested for

pressure regulation during drill pipe extension sequence as well as during surge and

swab scenarios. During the pipe extension sequence, the variations in the annular fric-

tional loss was compensated by dynamically manipulating the choke pressure. They

suggested gain scheduling for dealing with nonlinearity, and high integral gain to min-

imize offset during severe variations in mud pump flow rate.

Siahaan et al. (2012) designed an adaptive PID controller using the unfalsified proce-

dure for MPD. In unfalsified procedure, the adaptive controller chooses PID tuning

parameters from a set of candidate parameters by using the measurement data and
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a cost function. The candidate parameter which gives best performance and stability

is automatically chosen. Knowledge of the system model is not required for designing

this kind of controller. The stability and performance can be improved by expanding

the parameter set but at the expense of computational power. The controller was

tested for rejecting a ramp disturbance on mud flow rate which typically occurs dur-

ing drilling pipe extension. This controller offers desirable properties such as stability,

performance, and independence from tuning. However, implementing this controller

can prove to be difficult. Also, this is a non-standard controller, most control engi-

neers might not have the requisite skills to design and maintain this kind of controller.

Carlsen et al. (2013) devised an automatic well control sequence which is similar to

the conventional pressure management. In this method, when a kick is encountered

drilling is stopped, pressure is stabilized, and reservoir fluid is circulated out. A PID

controller, an internal model controller (IMC) controller, and an MPC were designed

and tested for handling large gas kicks. The PID controller manipulated the choke

opening to control either the choke pressure or the BHP depending on the control ob-

jective. The IMC and MPC controllers were configured as a multiple input – multiple

output (MIMO) controllers, they controlled pump pressure, choke pressure or bottom

hole pressure by manipulating the mud pumping rate and the choke opening. All

the controllers were implemented using first order process models. It was found that

MIMO IMC and MPC controllers deliver superior performance and stability. The

MPC cost function was formulated to follow an output target and to minimize input

usage. The robustness of MPC improved with increase in prediction horizon. Since

single phase models were used the efficacy of the controllers in handling gas kicks was

rather limited.

Nygaard and Nævdal (2006) pioneered the application of nonlinear model predictive

control (NMPC) to drilling. The key contributions were the development of a control
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relevant model for a 2-phase flow drilling well and the development of an NMPC for

underbalanced drilling (UBD) well. The objective of NMPC was to minimize the de-

viation of BHP from its target by manipulating the choke opening. The mud pumping

rate and the rate of drilling were treated as disturbances. Levenberg–Marquardt al-

gorithm was used for control input optimization. A PI controller was also designed

for the sake of evaluating the performance of NMPC. The controllers were tested for

pressure regulation during drilling pipe extension operation – on a 2-phase simulation

model – during which the mud pump is ramped down, held at no flow condition for

some time before being ramped up. It was shown that both NMPC and PI were supe-

rior to manual choke control but PI requires retuning if operating conditions change.

NMPC handled nonlinearity effortlessly and also achieved superior BHP regulation

owing to the fairly detailed model of UBD well and input optimization. The designed

controller was not tested for kick rejection.

Breyholtz et al. (2009) focused on regulating BHP during pipe connection sequence

and downlinking. The process of activating the directional drilling unit is called

downlinking. During downlinking operations mud pulses are sent, resulting in BHP

fluctuations. An NMPC was designed for rejecting the fluctuations in BHP by co-

ordinating the use of choke opening, back pump flow rate, and main mud pump flow

rate. The NMPC used single shooting multi-step quasi-Newton method. The opti-

mization was performed in a hierarchical fashion. The objective was not only to track

a BHP setpoint but also choke opening, mud pump flow rate or back pump flow rate

targets. If holistic optimization is infeasible, tracking of BHP will be given priority

over input targets. For evaluating the performance of NMPC, a PI controller was also

designed. One of the strengths of NMPC is its ability to work with more than one

degree of freedom and it was exploited in this work. The BHP was estimated by using

an adaptive model based nonlinear observer developed by (Stamnes et al., 2008). In
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order to obtain accurate estimates of BHP, real-time parametric estimation of the

frictional model and the mud density were also performed. This work significantly

advanced the technique of handling BHP fluctuations during drilling pipe connection

and downlinking but it did not address the handling of kicks.

Godhavn et al. (2011) summarized the core objective of MPD control as BHP set-

point tracking. The control objective was to regulate the choke pressure in such a

way the error in BHP was minimized. The BHP was regulated by using a nonlinear

controller and a BHP estimator which also estimates frictional loss. The observer

developed by (Stamnes et al., 2008) was also used in this work as well. A model

based choke pressure regulator was designed using feedback linearization technique

which computes the choke opening by inverting the nonlinear model of the choke.

The designed controller and BHP estimator were tested on a test rig called Ullrigg in

Stavanger, Norway. Through this work the disadvantages of simple PID controllers

were addressed. However, implementation of nonlinear controllers might prove to be

difficult as they are incompatible with most industrial control setups. This work again

focused only on drill pipe extension, kick rejection was not addressed.

(Breyholtz et al., 2010a, 2011) developed a MPC for regulating BHP in a dual-gradient

drilling (DGD) system. The control objectives were regulation of BHP and hook posi-

tion by manipulating mud pump, subsea pump, and drill string velocity. A nonlinear

MPC model was used and control inputs were computed using single-shooting multi-

step quasi-Newton method. Control was tested on a detailed model of drilling called

WeMod. A simple model for MPC design was fitted using data generated from the

detailed model, and it was suggested that such a fitting can be performed in real case

by using rich measurement data. The performance of the controller in regulating the

BHP during drill string movement was tested and it delivered good performance. The

focus of the work was on rejecting disturbances due to drill string movement on BHP,
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problems like kicks and drilling pipe extension were not considered.

As a drilling program progresses, intermittently casings will be run into the well. Cas-

ings are essential to prevent reservoir influxes and well collapse. The uncased section

is called open well and the point where casing meets the open well is called shoe.

With objective of controlling the well pressure profile, sometimes it is desired that

one controls both the BHP and pressure at the shoe. Møgster et al. (2013) developed

a linear MPC for controlling the pressure at the BHP and at the casing shoe. The

MPC manipulated the pump flow rate and the choke opening in order to control both

the pressures. Controller was developed by using linear first order transfer function

models of the system and implemented using Statoil’s SEPTIC software. The inno-

vation of this work was in controlling pressure at two points but its effectiveness in

dealing with kicks and pipe extension was not demonstrated.

2.3.2 Flow control

A nonlinear flow controller which utilizes feedback linearization technique was de-

veloped in (Hauge et al., 2012, 2013). In feedback linearization the control input

is computed from the inverse of the nonlinear model. The controller minimizes the

in/out flux flow rate in the annular control volume by minimizing the error between

the outlet flow rate and bit flow. In order to realize that controller, bit flow rate was

estimated along with kick flow rate and kick location. The controller was tested on

a multi-phase simulation model called OLGA. The controller was able to attenuate

kicks, and the estimator was able to estimate the magnitude of the kicks and their

locations. As a consequence of flow control, the controller tracks the reservoir pressure

as that is the only way to achieve zero in/out flux. During pipe extension BHP must

be regulated and flow controllers are unsuitable for that.

Zhou et al. (2011) developed a control solution which acts as a pressure controller dur-
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ing normal drilling operations is switched to flow control during kick handling using a

switching logic, this switching strategy overcomes the above mentioned limitation of

flow controllers. During kick handling, the controller tracks the estimate of bit flow

rate and to accomplish that a passivity based nonlinear observer for bit flow rate was

developed. Passivity based nonlinear observers are developed by injecting the error

innovation term into the dynamic equations of the system. For example, bit flow rate

is estimated by injecting the error in pump pressure into the dynamic equation of bit

flow rate. While the controller handles a kick, simultaneously the reservoir pressure

and kick flow rate are estimated using passivity based nonlinear observers. Using the

estimate of reservoir pressure, a BHP setpoint is chosen to resume pressure control.

After a dwell time, controller switches from flow control mode to pressure control

mode. When another kick is encountered — if the magnitude of the kick is greater

than a threshold — the controller automatically switches to kick handling mode (i.e.

flow control mode). Zhou and Nygaard (2011a) developed a similar pressure-flow

switching type controller for dual-gradient drilling system.

Pedersen et al. (2013) developed an MPC for regulating the BHP and exit flow rate

of an underbalanced drilling (UBD) well. In UBD, hydrocarbons are produced while

drilling because of negative pressure difference between the BHP and the reservoir

pressure. In UBD it is desirable to regulate the BHP and also the exit flow rate to

prevent large amounts of reservoir fluids from gushing out. The simultaneous control

of BHP and exit flow rate is achieved by manipulating the choke opening and pump

flow rate. MPC was developed by using first order with time delay (FOTD) models of

the 2× 2 system. Controller was implemented using Statoil’s SEPTIC software and

tested using WeMod simulation package. Simulations for pipe extension scenario and

handling of a large gas bubble were shown and the controller was able to track the

BHP and flow rate setpoints. It was suggested that the controller can be improved if
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better models which account for 2-phase nature of the system is used.

2.4 Estimators and observers

In MPD systems, typically the topside pressures such as pump pressure and choke

pressure, and flow rates such as pump flow rate and choke flow rate are measured.

In sophisticated MPD systems the BHP is measured but its measurements generally

have a time-delay and prone to be noisy hence its estimation might be necessary. The

bit flow rate is typically an unmeasured state and kick flow rate is an unmeasured

disturbance. For successful MPD operation the knowledge of BHP is essential to

enable appropriate BHP setpoint selection hence reservoir pressure must be estimated.

Parameters like frictional factors and geometry of the well are uncertain and their

estimation will help in improving robustness of MPD control and will improve BHP

estimates. Several observers to address some or several of the above mentioned issues

have been developed and some of them were discussed in conjunction with controllers

in previous subsections. Here, few other contributions to MPD state and parameter

observation are reviewed.

2.4.1 Kalman type observers

Lorentzen et al. (2003) developed an ensemble of extended Kalman filter (EKF) for

tuning first principles based 2-phase flow model and it was applied to drilling. This

work is an early example of applying Kalman type filters to drilling. A detailed

2-phase model of drilling was developed and using ensemble EKF the model was

tuned for better pressure prediction. Ensemble EKF was preferred over least squares

methodology because the former is better suited for online tuning while the latter is

suitable for offline post-processing. Despite the advantages of ensemble EKF, rou-
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tinely applying this observer to real systems will be difficult because of difficulties in

linearizing complex nonlinear model.

A new kind of Kalman filter called Unscented Kalman filter (UKF) does not require

linearization of model, has fast computational times, and is very well suited for non-

linear systems Wan et al. (2000). A kalman filter for MPD which uses a simpler model

with superior convergence properties will be more practical. Gravdal et al. 2010 de-

veloped an UKF for MPD model calibration. Since the frictional pressure drop is time

varying and uncertain because of it dependency of viscosity, density, well geometry

etc., continuous update of MPD flow models will lead to robust control of BHP. An

UKF based on 2-phase drilling model was developed and was tested against synthetic

measurements which were intentionally corrupted by adding noise, real data obtained

from pressure while drilling (PWD) data from a North Sea high pressure (HP)-high

temperature (HT) well, and a two-phase case involving a gas kick. The frictional

factors in drill string and annulus, pump pressure, and bottom hole pressure were

estimated in each of the case while ramping up and ramping down the mud flow rate.

It was shown that the calibrated model improved pressure prediction considerably.

Mahdianfar et al. (2013) developed an UKF for joint estimation of states and un-

known parameters. The filter requires only topside measurements like pump pressure

and choke pressure. The frictional flow model and geometry terms were augmented

with unknown parameters. The unmeasured bit flow rate was estimated along with

the unknown parameters. The filter was tested on a detailed simulation model, it

was able to estimate frictional factors, well geometry, and bit flow rate by only us-

ing topside measurements. This filter has the potential to improve the precision and

performance of model based state feedback MPD controllers.
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2.4.2 Nonlinear observers and moving horizon estimators

Any uncertainty in hydrostatic pressure due to mud density variations or uncertainty

in frictional pressure due to frictional factor variations will directly affect the BHP

estimates, as BHP is a sum of hydrostatic pressure, frictional pressure and back pres-

sure. BHP can be estimated robustly by using adaptive estimators in which the

model parameters are updated continuously. Hasan (2014, 2015) designed an explicit

feedback law by using backstepping method which relies on change of variables using

Voltera operator to deduce the transformation kernel. The MPD system was mod-

elled using hyperbolic partial differential equations (PDE). In order to implement the

control law estimates of the unknown parameters and states are required which are

obtained using backstepping observers. A salient feature of this observer is its ability

to estimate bottom hole pressure by using only topside measurements. The observers

adapts to the system by using parameter update laws. The observer was validated

using a field scale experimental flow loop.

Hasan and Imsland (2014) developed a moving horizon estimator (MHE) for MPD.

The MPD system was described using an infinite dimensional partial differential equa-

tions (PDE) model. The PDE model was converted into high dimensional ordinary

differential equations (ODE) model using early lumping approach in which the infinite

dimensional system is discretized along a geometric dimension using a non-uniform

grid. The resulting ODE model can be represented in state space. In MHE, states

are estimated by solving a least squares minimization problem. The optimization was

implemented using gradients and line search. The estimator was tested on a field

scale flow loop.

Zhou and Nygaard (2011b) designed an adaptive nonlinear observer for estimating

friction factor and mud density in the annulus as well as the flow rate through the
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drill bit. In order to develop the observer simple first principles based model of MPD

was developed. Using the topside pressure measurements and models of drill string

and annulus the flow rate at the bit, mud density, and frictional loss were estimated

using parameter update laws. The exponential stability of the observers was estab-

lished using Lyapunov analysis. The observer was tested on a horizontal flow loop.

Stamnes et al. (2011a,b) developed a nonlinear adaptive observer which uses sev-

eral delayed observers to get robust estimates of unknown parameters and hence im-

proved state estimates but at the expense of computational load. The uncertainties

in frictional loss and hydrostatic pressure were modelled as multiplicative uncertain-

ties which were estimated online using parameter update laws. The estimator takes

present measurements and past measurements into account which greatly improve the

convergence properties. The observer was tested on offshore well data and observer

gains were tuned for fast estimation of unknown parameters.

Li et al. (2012, 2011) developed a method for fast estimation of BHP. The observer

consists of three components: a state predictor, an update law, and a low pass filter

for smoothing the updates. The drill string pressure dynamics is used for BHP es-

timation as the knowledge of drill string parameters is more reliable. Using topside

pressure measurements the bit flow rate is estimated using a predictor and update

law and its estimates are filtered using a low pass filtered before ultimately estimating

the BHP. The error in BHP estimate can be reduced by increasing the adaptive gain

but drill string parameters are assumed to be known, if there is strong parametric

uncertainty the BHP estimates might not be reliable. Observer was tested through

simulations using a nonlinear model of the well.
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2.4.3 Fault detection

Drilling is prone to several faults which can compromise the integrity of the equipment

or of the well and ultimately leading to loss of lives and environmental degradation.

Therefore, it is important to detect faults so that corrective measures can be taken.

Apart from kicks, some of the other faults that can occur are: leaks in which the

drilling fluid flows into the reservoir and thereby rupturing the walls of the well; plug-

ging of the bit nozzles; pack offs in which cuttings accumulate around the drill string;

ruptured drill string (drill string washout) in which mud flow into the annulus with-

out reaching the bit this could lead to loss of drill string (Willersrud et al., 2015a).

Zhou et al. 2011 developed a nonlinear observer for kick detection and quantification.

The observer was designed by exploiting the passivity of the MPD system, error in

topside pressure measurements were injected into system equations to estimate the

unknown kick flow rate. Hauge et al. 2013 developed a model based nonlinear ob-

server which based on the excitation provided by the in/out flux in flow rate detects

kicks, quantifies kick flow rate and isolates the kick location. Willersrud et al. 2015b,c

developed a model based fault detection and isolation method for detecting the above

mentioned faults. Model based observers using the excitation provided by measured

errors estimate states and parameters. The signal generated by model is compared

with measurements to generate residuals. Statistical changes are detected using gen-

eralized likelihood ratio test (GLRT) to generate alarms when faults are detected.

GLRT with multivariate t-distribution first isolates the type of incident and then its

location. A drawback of this method is that it requires a stable adaptive observer

for residual generation and that is overcome by using analytical redundancy relations

(ARR) in Willersrud et al. 2015a. ARR can be formed directly using system equa-

tions and they also have the capacity to detect faulty actuators and sensors. The fault
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detection and isolation methods developed in Willersrud et al. 2015a,b,c were tested

on an field scale experimental flow loop.

2.5 Conclusions

From the discussion in the previous section we see that MPD is higly nonlinear sys-

tem with many uncertainties. Parameters like choke opening and mud flow rate also

contribute to nonlinearity of the MPD process. The MPD process has many sources

of uncertainties, variations in well geometry, mud density, mud viscosity, frictional

factor, etc. System uncertainties must be addressed thoroughly to ensure stability

and uniform performance. Easily implementable control structures are desired for

rapid propagation of automation technologies in the drilling industry.

Therefore, there is need for developing a robust nonlinear controllers with easily imple-

mentable structure for addressing uncertainties and nonlinearities of the MPD system.

The two principal approaches to controlling MPD are pressure control and flow con-

trol. Pressure control offers the ability to track an overbalanced BHP but it lets

reservoir fluids to flow to the surface. On the other hand flow control is effective in

containing kicks but is not capable of tracking BHP. Comprehensive MPD control

solutions will harness the benefits of both pressure and flow control. A pressure-flow

switching controller which relies on a switching logic had been developed in the past

(Zhou et al., 2011) but there is potential to develop controller which avoids explicit

switching.

In this thesis we propose to address these issues through implementation of two con-

trollers: robust gain switching controller and nonlinear model predictive controller

(NMPC). In robust gain switching controller we develop multiple mathrmH∞ loop

shaping controllers for maintaining uniform tracking performance and stability for va-
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riety of operating conditions. In NMPC we exploit the constraint handling capability

of NMPC in a way that the controller tracks BHP during normal drilling and contains

kick within certain threshold when it occurs.
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Abstract

Automation of managed pressure drilling is crucial in order to enhance safety. This

process is highly nonlinear and the system varies considerably with changes in drilling

conditions. In this work we have analysed the effect of various operating conditions

on plant parameters and designed a controller which will deliver consistent perfor-

mance for different working conditions and will also be robustly stable. The control

objectives of robustness and good performance are achieved by using multiple robust

loop shaping controllers. Based on choke opening and mud flow rate, an appropriate

controller is selected by utilizing a gain schedule. An observer for estimation of the

reservoir pressure is also implemented so that an appropriate bottom hole pressure

setpoint can be selected to maintain overbalanced conditions.

3.1 Introduction

Managed pressure drilling (MPD) is being used increasingly due to strict safety regu-

lations and also to drill wells with narrow pressure window. According to Malloy et al.

(2009), if the pressure in the well is either actively or passively managed, it can be

called MPD and in such systems over balanced condition is maintained at all times.

Effective control of an MPD system can be achieved by using automatic controllers.

In Hauge et al. (2013) a flow controller was developed to regulate the outlet flow rate

and thereby regulating the bottom hole pressure. Flow controllers are very effective

in preventing reservoir fluids from reaching the surface as they regulate in/out flow

difference. Under normal conditions, the control objective is to track the bottom

hole pressure setpoint and a pressure controller is suitable for that purpose. The

pressure controllers developed for drilling which are available in the literature range
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from simple PI/PID controllers to advanced nonlinear model predictive (NMPC) con-

trollers. In Godhavn et al. (2010) a simple PID to control drilling system pressures

was discussed. Controller performance was demonstrated for a single operating condi-

tion. A nonlinear model predictive controller was developed in Nygaard and Nævdal

(2006) to maintain bottom hole pressure under fluctuating pump flow rates and re-

sults were compared to a simple PI controller with feed forward. It was shown that

the performance of the PI controller deteriorated when working conditions deviated.

In Breyholtz et al. (2010, 2011) MPCs were designed to manipulate flow rates and

hook position in order to achieve certain bottom hole pressure targets. An L1 adaptive

pressure controller which works in conjunction with an estimator was presented in Li

et al. (2009, 2011). A mixed pressure and flow control approach was taken in Zhou

et al. (2011). The controller acts as a pressure regulator during normal operation but

switches to a flow regulator when a kick is underway. Similar switching strategy was

used to control dual-gradient drilling, a variant of MPD in Zhou and Nygaard (2011).

Constant bottom hole pressure drilling (CBHP) is another variant of MPD in which

the down hole pressure is maintained near a target. Constant pressure is achieved by

the use of dynamic annular pressure in addition to the hydrostatic pressure offered

by the mud. There have been few successful implementations of closed loop CBHP

drilling systems which are presented in Roes et al. (2006); Fredericks et al. (2008).

For a nonlinear system, nonlinear controllers can deliver optimal performance but im-

plementation of such controllers require additional customization and control experts

on site for uninterrupted operation. Also the performance of nonlinear controllers

can degrade drastically under parametric uncertainty. Our objective is to exploit the

available SISO control loop structure in most MPD systems and develop a simple

controller. If a simple controller can deliever consistent performance for a wide range

of operating conditions, there will be wide spread adoption of automatic control in
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drilling. Hence we propose

• a gain switching controller in which gain is selected based on two parameters

by using appropriate gain schedule,

• the controller ensures H∞ stability for various parametric uncertainty in the

system.
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Figure 3.1: Schematic depiction of CBHP drilling

3.2 System description

The drill string and annulus form the two prominent control volumes of the drilling

system as shown in Figure 3.1. The system consists of a main pump which supplies
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the drilling mud at a pressure pp and volumetric flow rate qp and an additional back

pressure pump which discharges mud at a lower volumetric flow rate qb. The pump

pressure pp is given by (3.1). A choke at the exit of the annulus control volume

provides a back pressure pc and mud flows through it at a volumetric flow rate qc.

The choke pressure pc is given by (3.2). The drilling model which we have considered is

based on the detailed model presented in Kaasa et al. (2012). It was utilized in Hauge

et al. (2013) to design an observer to estimate in/out flux and unknown states, and

in Imsland and Kaasa (2012) to design an observer to estimate the BHP.

ṗp = βd
Vd

(qp − qbit) (3.1)

ṗc = βa
Va

(qbit − qc + qb + qk) (3.2)

q̇bit = 1
M

(pp − pc − pf d − pf a − (ρa − ρd)ght) (3.3)

pbh = pc + pf a + ρa ght (3.4)

pbh = pp − pf d + ρd ght (3.5)

qk = Kpi(pres − pbh) (3.6)

qc = ucCdAo

√
2(pc − po)

ρa
(3.7)

pf d = 32ρfd|qp|qpLd
π2Dd

5 (3.8)

pf a = 32ρfa|qbit|qbitLa
π2(Da −Dd)(D2

a −D2
d)

2 (3.9)

The bottom hole pressure pbh is the sum of choke pressure, annular frictional pres-

sure, and the hydrostatic pressure given by (3.4). Alternatively, pbh can be measured

through the drill string control volume given by (3.5). Due to inaccuracies in fric-

tional loss models, both the derived measurements might be unequal. In this paper,

pbh will always be measured through the annulus. The frictional losses are a function

of the actual length of control volumes (measured depth), the mud flow rates, mud
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density and viscosity while the hydrostatic pressure is a function of the true vertical

depth ht and mud density. The frictional pressure drops in drill string and annulus

are modelled using Equations (3.8) & (3.9) respectively, as in (Hauge et al., 2012). In

this work, we assume a steady state reservoir model as described by Equation (3.6).

The choke model is given by Equation (3.7) and a comprehensive discussion on chokes

can be found in Merritt (1967). uc ∈ [0, 1] is the choke opening, Vd and Va are the

volumes of drill string and annulus control volumes, βd and βa are their respective

bulk moduli, and qbit is the mud flow rate at the bit given by Equation (3.3).

3.3 Models for multiple linear controller design

The nonlinearity of the MPD system is addressed by developing multiple linear con-

trollers. Within each operating range uncertainties in mud density and flow rate are

addressed by developing a robust controller. In this section, the effect of flow rate,

choke opening, and mud density on the variation of plant gains and time constants

will be discussed. Eventually, a suitable gain envelope will be formed in order to

search for appropriate controller gains. The following assumptions are made while

deriving simple first order process models:

• Mud density remains constant (ρd = ρa)

• There is no kick (qk = 0)

The first order transfer function models of MPD are obtained by using the method

presented in (Godhavn et al., 2010). The MPD system is written as a linearized first

order process between the choke pressure and choke opening, given by (3.10).

∆pc = a∆uc
Tps+ 1 , (3.10)
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where a and Tp are the gain and time constants of the process respectively. The gain

of the process is obtained by partially differentiating the steady state equation for the

choke pressure and the time constant is obtained from the dynamic equation for the

choke pressure. The steady state choke pressure is given by (3.11) which obtained by

rearranging (3.7).

pc = ρaq
2
c

2u2
cC

2
dA

2
o

+ po (3.11)

At an operating point ‘0’, the gain a and the time constant Tp can be computed using

Equations (3.12) and (3.13).

a = ∂pc
∂uc

∣∣∣∣∣
0

= −ρa0qc
2
0

C2
dA

2
ouc

3
0

(3.12)

Tp = −1
∂ṗc

∂pc

∣∣∣∣∣
0

= Vaρa0qc0
βauc20C

2
dA

2
o

(3.13)

3.3.1 Effect of choke opening and flow rate
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Figure 3.2: Effect of choke opening when ρa = 1000 kg/m3, qc = 350gpm

During the course of a drilling program choke and mud pump must be operated at

different operating points in the range [0, 1] and [0, qpn] respectively, where qpn is the
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nominal resting value of the mud flow rate. An appropriate nominal flow rate is chosen

by the operator for facilitating the transport of cuttings, providing lubrication etc.

The process between the choke opening and the choke pressure is inversely acting

hence a decrease in choke opening will result in an increase in the choke pressure.

According to Equation (3.12) gain is linearly dependent on the mud density and is

nonlinearly dependent on the choke opening and the mud flow rate. According to

Equation (3.13) the time constant is nonlinearly dependent on the choke opening

and is linearly dependent on the mud density and mud flow rate. At steady state

qc = qp + qb hence the gain of the process depends only on the total in flow rate

Qs = qp + qb.
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Figure 3.3: Effect of flow rate when ρa = 1000 kg/m3, uc = 30%

3.3.2 Parameter envelope

It is clear from the earlier discussions that choke opening and flow rate are the princi-

pal contributors of nonlinearity in the plant gain, therefore we will tackle nonlinearity

by developing a gain schedule dependent on those two parameters and these schedul-

ing variables can be measured with relative ease. On the other hand, mud density

changes are hard to measure hence it will be treated as an uncertain parameter. It will
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Figure 3.4: Effect of choke opening, flow rate, and mud density on plant parameters

be shown that the developed robust controller is able to handle uncertainty in mud

density. In Figure 3.4, the plant gain is plotted as a function of main pump flow rate

and choke opening for various mud densities. The top most surface (first surface) cor-

responds to the plant with mud density 1000 kg/m3. The second to fifth gain surfaces

correspond to plants with mud densities of 1100 kg/m3, 1200 kg/m3, 1300 kg/m3, and

1400 kg/m3 respectively. The controller will be designed for the following conditions:

mud density of 1300 kg/m3, mud flow rates ∈ [200 gpm, 450 gpm], and choke opening

∈ [25%, 60%].

3.4 Controller design

The objective is to use as few linear controllers as possible to robustly stabilize all the

plants of the class given by Equation (3.14) and to always have a closed loop settling

time of 10s or better:

G(s) = K(uc, qs, ρ)
τ(uc, qs, ρ) s + 1 (3.14)

where uc ∈ [25%, 60%], qs ∈ [200 gpm, 450 gpm], ρ ∈ [1000 kg/m3, 1600 kg/m3] are

the choke opening, total mud flow rate, and mud density respectively. A single H∞

loop shaping controller will be designed and the pre-compensator will be switched,
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according to operating conditions, in order to prevent performance deterioration. The

transfer function models given by (3.14) relate the choke opening and choke pressure.

The choke pressure setpoint will be derived from the BHP model given by (3.5) and

frictional loss model will be treated as known in this work.

3.4.1 Robust controller design
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Figure 3.5: A particular partition of gain surface

Let GN be the nominal plant of an arbitrary gain partition shown in Figure 3.5 with

gain KN and time constant τN . WN is a pre-compensator given by Equation (3.15):

WN = 1.256
s(s+ 1.256)GN

−1 (3.15)

MPD is an open loop stable process and so are its first order models. We develop the

robust controller following the loop shaping procedure proposed by McFarlane and

Glover Glover and McFarlane (1989). The methodology is also described in Skoges-

tad and Postlethwaite (2007). Here we describe the theory for completeness. The

pre-compensator incorporates the inverse of the nominal plant, a low pass filter for

good noise attenuation, and an integrator. The shaped nominal plant is given by

Equation (3.16):

GS = GNWN (3.16)
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The shaped nominal plant GS has a left co-prime factorization (LFT) as follows:

GS = M̃−1Ñ (3.17)

The robust controller Gr must stabilize a class of perturbed plants given by Equa-

tion (3.18):

GP = {(M + ∆M)−1(N + ∆N) : ||[∆N∆M ]||∞ < ε} (3.18)

where ε > 0 is the stability margin, γmin is the minimum achievable H∞ norm from

the perturbation to the input and output, εmax is the maximum achievable stability

margin and is given by Equation (3.19):

γmin = εmax
−1 = {1− ||[N M ]||2H}

−1/2 = (1 + ρ (XZ))1/2 (3.19)

where ρ is the maximum eigenvalue.

If A,B,C, and D are the minimal state space realization of GS, then Z and X

are unique positive definite solutions of the algebraic Riccati Equation. According to

Glover and McFarlane (1989), the robust controller Gr can be obtained for a γ > γmin

using Equation (3.20):

Gr =

 A+BF + γ2(LT )−1
ZCT (C +DF ) γ2(LT )−1

ZCT

BTX −DT

 (3.20)

where F = −S−1(DTC +BTX) and L = (1− γ2)I +XZ.

Using γ = 2.2373 > γmin = 1.7210 we obtain the robust controller given by Equa-

tion (3.21) with ε = 0.4470. The following controller was obtained by using MATLAB
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function coprimeunc presented in Skogestad and Postlethwaite (2007):

Gr = −2.332 s − 3.14
s2 + 3.802 s + 5.76 (3.21)

3.4.2 Gain surface partitioning

In Section 3.4.1, a robust controller was designed for the nominal plant GN of an

arbitrary gain surface partition. The plant parameters of that nominal plant are

given by Equations (3.22) and (3.23):

KN = K1 +K2

2 ; |K1| > |KN | > |K2| (3.22)

τN = τ1 + τ2

2 ; τ1 > τN > τ2 (3.23)

where K1, K2 and τ1, τ2 are the extreme gains and time constants of the considered

arbitrary gain partition. KN and τN are mean gain and time constant. Writing K1

and K2 in terms of KN we get:

K1 = a1KN ; a1 > 1 (3.24)

K2 = a2KN ; 0 < a2 < 1 (3.25)

From Equations (3.22), (3.24), and (3.25) the following relation is derived:

a1 + a2 = 2 (3.26)

The ratio between the extreme case gains K1 and K2 is given by:

RK = a1

a2
(3.27)
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where RK is inversely proportional to the required number of gain partitions and

hence the number of controllers. Assuming that τ1 ≈ τ2 and using Equations (3.24)

and (3.25), the complementary transfer functions of GN , G1 and G2 are as follows:

TN = ||Gr||0GNWN

1−GrGNWN

= 0.6847s2 + 2.603s+ 3.944
s4 + 5.058s3 + 10.54s2 + 10.16s+ 3.944 (3.28)

T1 = ||Gr||0G1WN

1−GrG1WN

= a1(0.6847s2 + 2.603s+ 3.944)
s4 + 5.058s3 + 10.54s2 + 7.21s+ a1(2.95s+ 3.944) (3.29)

T2 = ||Gr||0G2WN

1−GrG2WN

= a2(0.6847s2 + 2.603s+ 3.944)
s4 + 5.058s3 + 10.54s2 + 7.21s+ a2(2.95s+ 3.944) (3.30)

From the above equations we get the following condition

σ̄(T1) ≥ σ̄(TN) ≥ σ̄(T2) (3.31)

where σ̄ is the maximum amplitude ratio in the frequency domain.

If 0 < a2 << 1 and consequently a1 >> 1 and RK >> 1, only a few controllers will

be required but the closed loop performance of G2 will be very poor and σ̄(T1) will be

large. If a2 ≈ 1 and consequently a1 ≈ 1 and RK ≈ 1, numerous controllers will be

required but the response of T2 will be fast and σ̄(T1) will be small. Hence optimal a1

and a2 must be found which will minimize the required number of controllers, subject

to the following constraints:

i. settling time of T1, T2 < 10s

ii. ||T1||∞ = 1 and ||T2||∞ = 1

The optimal a2 is likely to result in a T2 response just satisfying the constraint (i).

It can be seen in Table 3.1 when a2 = 0.715, H∞ norm of T1 is 1 and settling time

(98% of steady state) of T2 is 9.6s, both the constraints are just met but results in 8

partitions. In order to reduce the number of required controllers, we soften the con-
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straints. When a2 = 0.656 we get 6 partitions, which results in a negligible increase

in ||T1||∞ and the performance constraint is violated by 1s which is acceptable. The

response of GN , G1, G2 for a step change in reference using WN and Gr is shown

in Figure 3.6. The magnitude of TN , T1, T2 in the frequency domain is shown in

Figure 3.7. Nominal plants for every gain surface partition were computed and their

respective pre-compensators were designed and are presented in Table 3.2. The gain

surface was partitioned in such a way that the worst case gain ratio in each of the
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partition is always RK = 2.049 and it was shown in that case all plants contained in

such partions will be robustly stable and meet the performance criteria. Controllers

were designed for a mud density of 1300 kg/m3, according to (3.12) for an increase of

300 kg/m3 in density the gain will increase by a1 = 1.2308 times and for a decrease

of 300 kg/m3 in density the gain will decrease by a2 = 0.7692 times (when other

parameters remain constant). Then the worst case gain ratio possible due to density

variations is RK = 1.6 which is less than the maximum allowed ratio of 2.049. There-

fore all plants of the class given by Equation (3.14) have been robustly stabilized. In

order to perform the search, the gain surface was descretized. The choke value was

incremented by 1% and the flow rate was incremented by 10 gpm. The algorithm

used to partition the gain surface is presented in Appendix A.

Table 3.1: Finding the optimal a2 value

a1 a2 RK ||T1||∞ T2 settling T2 settling No. of
time (95%) time (98%) partitions

abs. s s
1.285 0.715 1.797 1.00 7.54 9.60 8
1.330 0.670 1.985 1.02 8.32 10.66 7
1.340 0.660 2.030 1.02 8.50 10.90 7
1.344 0.656 2.049 1.02 8.56 11.00 6
1.350 0.650 2.077 1.03 8.69 11.16 6
1.403 0.597 2.350 1.06 9.80 12.62 5

3.4.3 Implementing the gain schedule controller

The proposed gain scheduling scheme is based upon two parameters. At every con-

trol cycle, the controller needs to evaluate its operating region based upon what it

selects as the appropriate pre-compensator. The gain schedule is implemented using

a lookup table. Every combination of choke opening and mud flow rate has an ap-

propriate pre-compensator associated with it. The resulting gain schedule is shown
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Table 3.2: Gain surface partitions and corresponding nominal plants and pre-
compensators

Operating region Nominal plant Pre-compensator
1 G1 = −0.105626

2s+1 W1 = −23.782(s+0.5000)
s(s+1.256)

2 G2 = −0.216270
4s+1 W2 = −23.23(s+0.2500)

s(s+1.256)
3 G3 = −0.442096

6s+1 W3 = −17.046(s+0.1667)
s(s+1.256)

4 G4 = −0.902403
9s+1 W4 = −12.527(s+0.1111)

s(s+1.256)
5 G5 = −1.843644

16s+1 W5 = −10.9(s+0.0625)
s(s+1.256)

6 G6 = −3.664575
24s+1 W6 = −8.2258(s+0.0417)

s(s+1.256)

in Figure 3.8. Every operating region is assigned a number and their corresponding

pre-compensators are given in Table 3.2. For lower flow rates (Qs < 200 gpm) com-

pensator 5 is assigned and for lower choke openings (uc < 25%) compensator 6 is

assigned. While ramping down the choke has to close as quickly as possible, good

tracking performance is not required hence only one compensator is used for low flow

rate conditions. To facilitate the smooth transfer from one pre-compensator to an-

other we make use of a bumpless transfer technique. At a given time, only one of

the six pre-compensators will be active and the other pre-compensators will be track-
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ing the output of the active pre-compensator. A high gain proportional controller

given by Equation (3.32) tracks the output of the active controller and the error in

bottom hole pressure acts as an input disturbance. The control structure is shown

in Figure 3.9. This method was suggested in Levine (2011) which is a special case

of a broader method to design dynamic tracking controllers proposed in Graebe and

Ahlen (1996):

k = k0 >> 1 (3.32)

3.5 Observer design

The required overbalanced pressure ∆bh given by:

pbh
set = p̂res + ∆bh (3.33)
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where p̂res is the reservoir pressure estimate. According to Equation (3.2), when there

is a kick there will be a change in choke pressure. The proposed observer is based on a

modified version of the observer designed in Zhou et al. (2011). The original observer

was designed for an MPD system which had a flow controller to handle kicks. In the

present case, we implement a CBHP controller. Therefore, the proposed modification

was necessary. Let us consider variable V1 which is dimensionally equal to volume but

based on pressure dynamics:

V1 = Va
βa
pc + Vd

βd
pp, (3.34)

Then the derivative of V1 obtained using (3.1) and (3.2)

V̇1 = qp + qb + qk − qc. (3.35)

Using (3.6) we get:

V̇1 = qp + qb +Kpi(pres − pbh)− qc, (3.36)

but the productivity index might not be known so we use Ko. Then the observer is:

˙̂
V1 = qp + qb +Ko(p̂res − pbh)− qc + l(V1 − V̂1). (3.37)

The update law for reservoir pressure is given by:

˙̂pres = γ(V1 − V̂1), (3.38)
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where γ is a positive adaptation gain. In order to understand error dynamic the

following variable are introduced as in Zhou et al. (2011):

Ṽ2 = V1 − V̂2, (3.39)

p̃res = pres − p̂res. (3.40)

From Equations (3.2) and (3.6) we get:

˙̃V1 = −lṼ1 +Kop̃res + (Kpi −Ko)(pres − pbh) (3.41)

˙̃pres = −γṼ1. (3.42)

The error Ṽ1 is driven by (Kpi −Ko) and (pres − pbh). In Zhou et al. (2011) the error

converged to 0 because (pres − pbh) → 0 due to flow control during a kick. But in

our case, due to continued pressure control, the error Ṽ1 is driven by (Kpi − Ko).

Therefore the operator must use a Ko value which is higher than the estimate of Kpi

in order to get a slightly higher estimate of pres during a kick and use that value to

revise the setpoint and reject the kick quickly. It will be shown in simulations that

this strategy is quicker than relying on flow control to reject a kick. The details on

kick flow estimator is not provided here and can be found in Zhou et al. (2011).

3.6 Simulations

Simulation studies were carried out to demonstrate performance and compare it with

another existing MPD controllers. The ability of the controller to track a slow ramp

on the setpoint and its capability to deliver consistent performance for different op-

erating conditions is demonstrated. The designed controller is compared with a PI

controller. The performance of the controller for pressure regulation during pipe ex-
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tension sequence is demonstrated and a method to reject kicks using pressure control

is demonstrated. The values of the parameters used in simulations are presented in

Table 3.3. Physical properties of mud like density and normally used mud flow rates

can be found in Bourgoyne Jr et al. (1986).

3.6.1 Setpoint tracking and robustness
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Figure 3.10: Bottom hole pressure during ramp setpoint tracking

A case of active drilling is simulated in this section. The initial measured depth of

the well is 3000 m and the TVD is 3000 m. A vertical well is drilled at the rate of

6 m/hr. A mud flow rate of 400 gpm was chosen and the mud density was 1227 kg/m3.

The bottom hole pressure is shown in Figure 3.10. The density of reservoir fluid is

1382 kg/m3. Till 3092 m Controller 3 was active and then Controller 4 became

active because the operating conditions moved from Region 3 to Region 4 of the gain

schedule. The switching of controllers did not induce any transients or instability

because of the high gain bumpless transfer. The bottom hole pressure setpoint was

pore pressure plus 1 bar overbalance.

Next we show the setpoint tracking performance of the controller under parametric
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uncertainty. Mud density was kept constant at 1300 kg/m3(≈ 10.85 ppg) and the flow

rate was varied from 350 gpm to 450 gpm in increments of 50 gpm. The BHP setpoint

was revised from 490 bar to 493 bar and Figures 3.11 and 3.12 show that the controller

delivered consistent performance for all the cases. Next simulations were performed

under three different conditions: 1350 kg/m3 and 370 gpm; 1300 kg/m3 and 370 gpm;

1250 kg/m3 and 450 gpm. Figures 3.13 and 3.14 show that the controller delivered
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Figure 3.14: Choke pressure tracking under different mud densities

consistent performance for all the cases.

A PI controller was designed for good performance at mid range choke pressure

(10 bar − 20 bar) and reasonable performance at lower choke pressures using IMC

tuning relations presented in Seborg et al. (2006). Keeping the mud density constant

at 1300 kg/m3 and flow rate at 350 gpm, the choke pressure setpoint was progres-

sively increased by steps of 4 bar from 4 bar to 32 bar. As shown in Figures 3.15
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and 3.16, the robust gain switching controller delivers consistent performance while

the PI controller is considerably sluggish at lower choke pressures and at higher pres-

sure response is quicker however there is considerable overshoot.

47



Time [s]
1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

Pr
es

su
re

 [
ba

r]

487

488

489

490

491

492

493

494

495

496

p
bh

p
bh

 setpoint

P
res

p
frac

Figure 3.17: Bottom hole pressure during pipe extension sequence
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Figure 3.18: Pump flow rate during pipe extension sequence

3.6.2 Pressure regulation during pipe extension sequence

Here the pipe extension sequence is simulated. The controller has to trap the pressure

by closing down the choke when there is loss of frictional pressure due to ramping

down of pump flow rate during pipe extension sequence. In this case a mud density of

1300 kg/m3 was used and the mud pump was ramped down from 400 gpm to 0 gpm

in 120s. The controller had to track a BHP setpoint of 490 bar and it responds by
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closing the choke. After a dwell period of 60s, the mud pump is ramped back to

400 gpm in 120s. The maximum offset was 1 bar and maximum over shot was 3 bar.

The BHP was well within the pressure window at all times.

3.6.3 Kick attenuation
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Figure 3.20: Bottom hole pressure during kick attenuation

In order to reject a kick in CBHP drilling, the bottom hole setpoint has to be revised.
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In this simulation, we use a mud density of 1300 kg/m3 and a mud pump flow rate of

400 gpm. The initial pore pressure is 476 bar at a TVD of 3500 m and the MD of the

well is 3500 m. A kick is introduced at 1500s of the simulation. Using the reservoir

pressure estimate, the setpoint is revised at 3060 s to the new reservoir pressure of

484 bar plus an overbalance pressure of 4 bar. A noise of ±0.1 bar is introduced in

bottom hole pressure measurements and random process noise was also introduced.

Figure 3.20 shows that after revising the setpoint, the bottom hole pressure settles in

less than 40s and it can be seen that the pressure revision is faster than the method

proposed in Zhou et al. (2011) in which a simulation under similar pressure revision

conditions was shown. During the first 5 min of kick attenuation in Zhou et al. (2011)

the controller acts as a flow controller and that time window is a tunable parameter.

After 5 min the pressure setpoint is revised to a new overbalanced pressure and it is

during that time our proposed controller offers better performance. Flow control is

useful for accurate estimation of reservoir pressure but it is considerably slower than

a pressure controller. Figure 3.21 shows that the actual kick and the estimate kick

and it is rejected almost instantly after setpoint revision. The control input is shown

in Figure 3.22.

3.7 Conclusion

In this chapter, a gain switching H∞ robust controller is presented for a CBHP type

MPD process. The salient contributions of this work are as follow:

• Two parameter based gain switching is performed. The appropriate controller

will be selected based on a the total flow rate and choke opening.

• Due to controller switching and the H∞ robust controller, the closed loop re-

sponse is always robustly stable and the controller is able to deliever consistent

50



Time [s]
1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

q k [
gp

m
]

0

10

20

30

40

50

60

q
k

q
k
 estimate

Figure 3.21: Kick flow rate during kick attenuation
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performance.

When the operating conditions change, the controller is able to choose the appropriate

controller. Even though the controller was originally designed for a 1300 kg/m3

mud it was found that it was able to meet all control requirements even when mud

density was changed by ±50 kg/m3. The controller was able to meet performance

criteria consistently under severe parametric uncertainty introduced by variations in
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Table 3.3: Values of parameters used in simulations

Parameter Value Unit
Va 89.9456 m3

Vd 25.5960 m3

M 8.04× 108 kg/m3

βa 2.30× 109 Pa
βd 2.30× 109 Pa
fd 9.40× 10−3 −
fa 2.34× 10−2 −
Dd 9.65× 10−2 m
Da 2.16× 10−1 m
Cd 0.6 −
Ao 2.000× 10−3 m2

Kpi 6.133× 10−9 m3/(s Pa)
po 1.013× 105 Pa

mud flow rate and choke opening. The proposed controller is able to achieve the

revised bottom hole pressure setpoint in order to reject a kick in approximately 30s.

Faster kick attenuation can be achieved if a better observer designed specifically for

CBHP MPD is implemented. The controller is also found to operate well under noisy

measurements. The designed controller is also able to track a BHP setpoint during

pipe extension sequence with minimal offset. Thus the designed controller proves to

be very versatile for bottom hole pressure setpoint tracking purposes.
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Abstract

Mitigation of abnormal events like kicks while drilling is important not only to im-

prove safety but also to enhance efficiency of the drilling process. Managed pressure

drilling (MPD) is a closed loop drilling technology which enhances drilling safety

and enables fast mitigation of kicks. In constant bottomhole pressure (CBHP) MPD

it is required that the controller tracks bottomhole pressure (BHP) during normal

drilling and during drill pipe extension. The performance of kick mitigation can be

improved if the controller sacrifices BHP tracking for kick mitigation automatically.

We propose a new design of nonlinear model predictive controller (NMPC) for auto-

matic kick mitigation which tracks BHP when there is no kick and contains the outlet

flow rate within certain tunable threshold when a kick occurs. This is achieved by

exploiting constraint handling capability of NMPC. The NMPC is based on output

feedback control architecture and employs offset-free formulation proposed in (Morari

and Maeder, 2012). NMPC uses active set method for computing control inputs. We

demonstrate that the NMPC is able to track BHP with minimal offset during drill

pipe extension and contains kicks within a threshold when they occur.

4.1 Introduction

Managed pressure drilling (MPD) is an overbalanced drilling technique (Malloy et al.,

2009) in which the bottom hole pressure is regulated by employing an automated

choke manifold. The precise control of bottom hole pressure by MPD is enabling

drilling of so-called undrillable wells in which pressure window is very narrow and

ensuring the safer handling of reservoir influxes. One of the major safety issues in

drilling is when the bottom hole pressure pbh becomes less than the reservoir pressure
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pres there will be an influx of reservoir fluids, commonly referred as kick. If a kick is

unmitigated, large quantities of reservoir fluids may flow to the rig surface endanger-

ing the lives of rig workers and the environment. MPD can also recover the system

quickly from any abnormal situation, thus (Vieira et al., 2008) reported that without

MPD it took 65 days to drill a particular well but while using MPD it took only 45

days.

Automation of MPD has the potential to reduce NPT further and automation usually

leads to enhanced safety. Automated MPD solutions range from automating conven-

tional well control methods to model based control of pressure at different points and

drilling fluid flow rate. A review of computer control in managed pressure drilling can

be found in (Nikolaou, 2013). Godhavn et al. 2010 developed a simple PID controller

to track choke pressure setpoint. The controller demonstrated good performance

for pipe extension sequence. A nonlinear cntroller for BHP regulation was designed

in (Godhavn et al., 2011) using feedback linearization technique. These controllers,

however were not configured for kick mitigation. In order to improve safety during

such operations, in(Carlsen et al., 2013) PI, IMC, and MPC pressure controllers were

designed to automate kick handling sequence. In (Nandan et al., 2014), a robust

H∞ loop shaping controller was deigned for handling variations in mud density, well

length, and mud flow rate. For severe changes in the flow rate and choke opening,

gain switching robust controller was suggested. The advantage offered by pressure

control is its ability to track a BHP setpoint but during a kick, continued pressure

setpoint tracking will not attenuate a kick (Zhou et al., 2011). Flow controllers have

been designed for kick handling.

Feedback linearised flow controllers were presented in (Hauge et al., 2012) and (Hauge

et al., 2013). The choke opening was used to regulate the exit flow rate and thereby

the in/out flux. In/out flux and bit flow rate estimators were also presented in (Hauge
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et al., 2012, 2013). Santos et al. 2003 developed a well control method by compar-

ing the in/out flow rates for detecting kicks and subsequently kick was mitigated by

manipulating the back pressure. Flow control is an effective strategy for suppress-

ing kicks, but under normal condition the control objective is to track the bottom

hole pressure trajectory. Zhou et al. 2011 implemented a switching controller which

works as a pressure controller during normal operation and as a flow controller while

handling kicks. A nonlinear passivity based observer was developed to estimate kick

magnitude and reservoir pressure. A nonlinear pressure/flow switching controller was

designed for dual gradient drilling (DGD) in (Zhou and Nygaard, 2011). DGD is a

variant of MPD in which mud of varying density is used and as a result the hydrostatic

pressure is piece-wise linear.

Model predictive controller (MPC) and nonlinear MPC design have also been con-

sidered for MPD, they are well suited for MPD because of their ability to handle

constraints and nonlinearity. An NMPC scheme for control of underbalanced drilling

(UBD) was developed in (Nygaard and Nævdal, 2006). BHP was regulated by com-

puting optimal choke opening in receding horizon fashion. A two phase model of

drilling well was used to model UBD well drilling. Breyholtz et al. 2009 used NMPC

to coordinate pump flow rate and choke opening in order to control BHP. The con-

troller was evaluated for pressure regulation during pipe extension sequence, however

mitigation of kicks were not considered. Breyholtz et al. 2010, 2011 considered linear

MPC of DGD, the focus of the study was on optimal movement of drill string in

order to minimize pressure variations. The hook position and bottom hole pressure

were controlled by manipulating the drill string velocity and main pump and sub-

sea pump flow rates. Controller performance was demonstrated in presence of noise

and uncertainty. Møgster et al. 2013 implemented linear MPC to control the bottom

hole pressure and the pressure at the casing shoe by manipulating the mud flow rate
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and choke opening. The controller was implemented using Statoil’s in-house MPC

software SEPTIC. The controller regulated BHP and casing shoe pressure but its

effectiveness in dealing with kicks and severe drop in pumping rate was not studied.

Pedersen et al. 2013 implemented MPC on UBD system by using First Order Plus

Time Delay (FOPTD) models. The bottom hole pressure and return flow rate were

regulated by manipulating the choke opening and mud pump flow rate. Regulating

outlet flow is useful in UBD as it allows hydrocarbons to come to the surface during

drilling. Since MPD does not allow hydrocarbons to flow to the surface, regulating

the outflow is usually not an objective for MPD control. The above literature review

clearly shows MPC/NMPC have been used successfully to UBD and DGD systems.

The application of MPC/NMPC to MPD system is very limited. Moreover, NMPC

applications do not exploit its full potential (i.e., constraint handling capability).

In this paper, we present a new design of NMPC for MPD application which im-

plements the philosophy of switched pressure/flow control by cleverly employing the

constraints of NMPC. The NMPC operates as a pressure controller which tracks BHP

under normal drilling conditions. The controller acts more like a flow controller when

a kick occurs and contains the kick within a tunable threshold.

A brief description of MPD is furnished in Section 4.2 which is followed by the design

of the controller and optimization scheme in Section 4.3 which includes discussion

on constraint and cost function design. In Section 4.4 details on the implemented

observer to estimate bit flow rate, kick flow rate, and reservoir pressure are provided.

The simulation results are presented in Section 4.5. Finally, Section 4.6 concludes

this chapter.
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Figure 4.1: Schematic representation of managed pressure drilling

4.2 System Description

The MPD process consists of two control volumes, the drill string and the annulus.

The schematic representation of MPD process is shown in Figure 4.1. The drilling

mud is pumped into the drill string under pump pressure pp and at flow rate qp. The

mud exits the drill string through the drill bit at a flow rate qbit. The drilling mud

then flows through the annulus control volume and through a choke at pressure pc

and flow rate qc. The pump pressure, choke pressure, and bit flow rate are given

by Equations (4.1), (4.2), and (4.3) respectively; βd and βa are bulk moduli of mud

in drill string and annulus respectively; ρd and ρa are the mud densities in the drill
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string and annulus respectively; Vd and Va are the volumes of the drill string and

the annulus respectively; fd and fa are frictional loss coefficients in the drill string

and the annulus respectively; and M is a mass like property. The pressure at the

bottom hole pbh is given by Equation (4.4). The flow through the choke is given

by Equation (4.5) where uc ∈ [0, 1] is the choke opening. The kick flow rate qk is

given by Equation (4.6). Due to the addition of reservoir fluids and cuttings in the

annulus, generally mud density changes when mud flows from the drill string into the

annulus and that induces pressure changes equal to (ρa − ρd)ght. Frictional loss and

mud density are major sources of uncertainty and when there is a kick it acts as a

persistent disturbance. Detailed derivation of the model can be found in (Kaasa et al.,

2012).

ṗp = βd
Vd

(qp − qbit) (4.1)

ṗc = βa
Va

(qbit − qc + qb + qk) (4.2)

q̇bit = 1
M

(pp − pc − fdqp2 − faqbit2 − (ρa − ρd)ght) (4.3)

pbh = pc + pf a + ρa ght (4.4)

qc = ucCdAo

√
2(pc − po)

ρa
(4.5)

qk = Kpi(pres − pbh) (4.6)

4.3 Controller Design

The core elements of an NMPC are the cost function, prediction model, state con-

straints, and input constraints. In this section the design of each of those elements is

explained.
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4.3.1 Prediction model

The state space model f represents the nominal three state model of managed pressure

drilling described by the Equations (4.1), (4.2), and (4.3). The predicted states are

given by Equation (4.7).

x(k + T ) = x(k) +
∫ k+T

k
f(x(τ))dτ, (4.7)

where x(k) is the current state and T is the sampling time.

In order to design an offset free NMPC we utilize the results presented in (Morari

and Maeder, 2012) and (Rawlings and Mayne, 2009). As a first step, disturbance

model and a disturbance integrator is incorporated in the prediction model and the

resulting model is called an augmented model represented by f . The augmented state

space model consists of the state space faug along with the disturbance model d given

by Equation (4.8) and during state prediction the initial estimate of the disturbance

is held constant given by Equation (4.9), so it acts like a step disturbance. The

prediction model is numerically integrated using explicit Runge-Kutta 4,5 formula

also known as Dormand-Prince pair. The predicted state is given by Equation (4.8).

x(k + T ) = x(k) +
∫ k+T

k
faug(x(τ),d(k))dτ, (4.8)

d(k + T ) = d(k), (4.9)

where qk(k) is given by Equation (4.6). And the predicted output is given by

y(k + T ) = gaug(x(τ),d(k)), (4.10)

where gaug is the augmented output model.
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4.3.2 Optimization scheme

The cost function minimizes the error between the equilibrium state targets x̄ and

the system states x(k); the equilibrium input target ū and the current input u(k) to

achieve offset free tracking of the reference r(k) = pref .

J = min
u

k+m∑
κ=k

(x̂(κ)− x̄)Tλ1(x̂(κ)− x̄ + λ2(u(κ)− ū)2 (4.11)

where λ1 ∈ R3×3 and λ2 ∈ R are cost function weights andm is the prediction horizon.

The optimization problem is constrained by the following constraints

d̂(0) = q̂k, (4.12)

x̄ = faug(x̄, ū, d̂(k)), (4.13)

r(k) = gaug(x̄, d̂(k)). (4.14)

x̂ ∈ X, x̂ ∈ XNL,u(k) ∈ U, (4.15)

x̄ ∈ X, ū ∈ U, (4.16)

where the state and input constraint sets X and U are given by

X :=


pp
min ≤ pp ≤ pp

max

pc
min ≤ pc ≤ pc

max

qbit
min ≤ qbit ≤ qbit

max

 , (4.17)

U :=
[
uc
min ≤ uc ≤ uc

max

]
. (4.18)

The control objective is not only to track a bottom hole pressure setpoint but also to

contain the reservoir influx within certain threshold and in order to achieve that we
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include a nonlinear state constraint given by following equation

XNL =
[
0 ≤ (qc − q̄bit) ≤ ε

]
(4.19)

where q̄bit is the equilibrium state target for the bit flow rate. By adding this nonlinear

constraint the annular discharge is constrained within a tunable threshold ε.

To achieve offset free tracking mere incorporation of disturbance model is insufficient;

along with augmenting the model with disturbance, equilibrium state targets which

will reject the disturbance must be generated with the help of the augmented model

(Morari and Maeder, 2012). Moreover, our objective is to track an output reference

r(k) = pref and that requires the computation of relevant state and input targets

denoted by x̄ and ū respectively and they are computed by solving the equilibrium

Equations (4.13) and (4.14) which are implemented as equality constraints in the

optimization algorithm.

4.4 Observer

The proposed NMPC structure relies on unmeasured state qbit and disturbance qk

which is dependent on the reservoir pressure pres. We use an observer based on the

observers proposed by (Zhou et al., 2011) to estimate these parameters. We present

the observer for the sake of completeness.The bit flow rate is estimated using the

dynamic equation of the pump pressure and pump pressure measurements (pp). The

error in pump pressure is injected in Equation (4.1) to get the estimated pump pressure

(p̂p), Equation (4.20). The bit flow rate is estimated with the help of a parameter
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update law Equation (4.21).

˙̂pp = βd
Vd

(qp − q̂bit + l1(pp − p̂p)) (4.20)

˙̂qbit = −γ1(pp − p̂p) (4.21)

The reservoir flow (kick) can be estimated by detecting changes in the flow rates.

When there is no kick the in/out flux must be zero i.e. the difference between the

choke flow rate and the sum of pump flow rate and kick flow rate must be zero.

When there is a kick, during transience that quantity will not be equal to zero and

that error can be used for estimating kick flow rate. In order to estimate qres a new

variable q1 is introduced given by Equation (4.22). The time derivative of q1 is given

by Equation (4.23) obtained using Equations (4.1) and (4.2).

q1 = Va
βa
pc + Vd

βd
pp (4.22)

q̇1 = qp + qres − qc (4.23)

Using the derived measurement q1 reservoir flow estimator is formed and it is driven

by the dynamics in topside pressure measurements pp and pc and they are given by

Equations (4.24) and (4.25).

˙̂q1 = qp + q̂res − qc + l2(q1 − q̂1) (4.24)

˙̂qres = γ2(q1 − q̂1) (4.25)

The reservoir pressure can be estimated by using a parameter update law and as-

suming a reservoir model. In order to estimate pres Equation (4.23) is modified using

Equation (4.6) resulting in Equation (4.26) as in (Zhou et al., 2011). q2 is estimated
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by injecting error in the derived measurement q1 and given by Equation (4.27) and the

reservoir pressure pres is estimated using Equation (4.28). Generally, only inaccurate

estimates of the productivity index Kpi will be available and hence it is replaced by a

tuning parameter Ko.

q̇2 = qp +Kpi(p̂res − pbh)− qc (4.26)

˙̂q2 = qp +Ko(p̂res − pbh)− qc + l3(q1 − q̂2) (4.27)

˙̂pres = γ3(q1 − q̂2) (4.28)

4.5 Simulation Results

In this section, we present the results of simulations to test the designed controller on

the model described in Section 4.2. The NMPC controller was implemented in MAT-

LAB using the function provided in (Grüne and Pannek, 2011) as a template. The

developed NMPC scheme uses sequential discretization technique for solving finite

horizon optimization problem and active set method for computing optimal control

actions. The values of plant parameters used for simulation is given in Table 4.1. The

controller tuning parameters are given in Table 4.3. The state and input constraints

used for all simulations is provided in Table 4.4.

Even though the settling time for a step change in pressure setpoint is approximately

40s the dynamics of the system is significantly faster during kick rejection and pres-

sure regulation during pipe connection sequence. Hence, a prediction/control horizon

of less than 40s should be sufficient. Through trial and error, it was found that a hori-

zon of more than 24s did not improve performance. The required prediction/control

horizon of can be obtained either through fast sampling (say 1s) and many samples

(24 samples) or through slow sampling (say 6s) and fewer samples (4 samples). The
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first approach is impractical because if controller has to work with too many samples

the computation time will exceed sampling time (i.e. > 1s) due to large memory

usage. Hence in this work a sampling time of 6s and horizon of 4 samples was chosen.

The computation time was < 1s which is a fraction of the chosen sampling time (6s).

In the next sections we simulate different scenarios to demonstrate controller perfor-

mance and robustness under noise and plant uncertainty.
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Figure 4.2: Kick handling and pressure setpoint revision (nominal case)

68



4.5.1 Outlet flow constrained pressure regulation

The initial bottom hole pressure setpoint is pref = 480 bar. In this simulation mud

is pumped at the rate of 1200 LPM . A kick is encountered at 120s, and that leads

to violation of the flow constraint threshold of ε = 10, as shown in Figure 4.2d. The

controller responds by constricting the choke as shown in Figure 4.2b and that causes

an increase in pbh. Due to the increase in pressures, the reservoir pressure estimator is

able to estimate the new reservoir pressure as shown in Figure 4.2a. It is to be noted

that the controller is not tracking the reservoir pressure which can be possible only

by resorting to complete flow control, instead it gives up pressure tracking in order to

satisfy flow constraints. Using the new reservoir estimate, pref is revised to 475 bar

at 252s. Eventually due to overbalanced conditions the kick is completely rejected.

The parameters used for tuning the observer is provided in Table 4.2.

Table 4.1: Values of well parameters used in simulations

Parameter Value Unit
Va 89.9456 m3

Vd 25.5960 m3

TV D 3500 m
M 8.04× 108 kg/m3

βa 2.3× 109 Pa
βd 2.3× 109 Pa
ρa 1300 kg/m3

ρd 1300 kg/m3

fd 1.65× 1010 s2/m6

fa 2.08× 109 s2/m6

Cd 0.6 −
Ao 2× 10−3 m2

po 1.013× 105 Pa
Kpi 6.133× 10−9 m3/(s Pa)
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Figure 4.3: Kick handling and pressure setpoint revision with constraint softening

4.5.2 Effect of constraint softening: Outlet flow constrained

pressure regulation

Here we test the ability of the designed controller to track a bottom hole setpoint

and to contain the reservoir influx within a threshold. In this simulation the initial

bottom hole pressure setpoint is pref = 470 bar and mud is pumped at the rate of

1500 LPM . A kick is encountered at 120s, and that leads to violation of the flow

constraint as shown in Figure 4.3d, initially a threshold of ε = 10 LPM was chosen.
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Table 4.2: Values of observer parameters used in simulations

Parameter Value Unit
l1 1× 10−7 −
l2 0.2 −
l3 0.2 −
γ1 2× 10−6 −
γ2 0.005 −
γ3 5× 106 −
Ko 4.9066× 10−9 m3/(s Pa)

Table 4.3: Controller tuning parameters

Parameter Value Unit
λ1 diag[0,1,0] −
λ2 1000 −
m 4 −
T 6 s

The controller responds by closing down the choke as shown in Figure 4.3b and that

causes an increase in bottom hole pressure, pbh shown in Figure 4.3a. Using the new

reservoir estimate, pref is revised to 475 bar at 252s. The flow constraints are relaxed

(ε = 100) during the setpoint revision for faster revision as shown in Figure 4.3d. Due

to constraint softening, the setpoint is revised in under 30s.

Table 4.4: State and input constraints

Parameter Value Unit
pp
min 8× 105 Pa

pp
max 150× 105 Pa

pc
min 8× 105 Pa

pc
max 50× 105 Pa

qbit
min −0.002 m3/s

qbit
max 0.0283 m3/s

uc
min 0 %

uc
max 100 %
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Figure 4.4: Kick handling and pressure setpoint revision under plant-model mismatch
and measurement noise

4.5.3 Robustness under plant-model mismatch

A measurement noise of 0.1 bar is added to pressure measurements and plant-model

mismatch is introduced by augmenting state equations with random noise. The ro-

bustness of controller is tested by tracking a higher pressure setpoint with lower mud

flow rate, forcing the controller to work at lower choke opening. The initial bottom

hole pressure setpoint is pref = 480 bar and mud is pumped at the rate of 1200 LPM

leading to a lower choke opening. A kick is encountered at 120s, leading to viola-
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tion of flow constraint. Unlike the previous case the constraint does not settle at

that threshold value due to noise. It can be seen in Figure 4.4d the differential flow

(qc − q̂bit) occasionally violates the threshold during kick handling but the controller

acts to nudge it back to the acceptable region. Therefore, reasonable noise and plant

uncertainty does not affect the flow constraint handling considerably. During normal

setpoint tracking the noise and plant uncertainty does not affect the controller as

shown in (i.e., 0 − 120s) Figure 4.4d. With the help of the new reservoir pressure

estimate, the setpoint is revised. Flow constraint is again relaxed during setpoint re-

vision. Bottom hole pressure and drilling pressure window are shown in Figure 4.4a.

Choke opening is shown in Figure 4.4b. Kick flow rate is shown in Figure 4.4c. This

NMPC being a state feedback controller the estimate of the bit flow rate is required

and it is shown in Figure 4.5.

4.5.4 Controller performance during pipe extension sequence

We test the ability of the controller to track bottom hole pressure pbh set point pref

during pipe extension sequence. In order to get the best performance during pipe
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Figure 4.6: Bottom hole pressure tracking during pipe extension sequence

extension sequence the flow constraint must be switched off as the objective is solely

to regulate BHP. Typically in pipe extension sequence the mud pump flow rate is

ramped down from a nominal value to 0 LPM in approximately 60 s to 120 s. While

performing pipe extension there will be no mud flow, then mud pump is ramped up

from no flow to a nominal value. To test the NMPC we used a similar sequence as

shown in Figure 4.6d, the mud pump flow rate is ramped down at 60s from 1500 LPM

to 0 LPM in 60s; between 120 s and 180 s there is no flow in the system; starting at

180 s mud pump is ramped back to 1500 LPM in 60s. The setpoint to be tracked is
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pref = 470 bar. A measurement noise of 0.1 bar is added to topside pressure measure-

ments. The bottom hole pressure pbh is shown in Figure 4.6a. The controller responds

by closing down the choke in order to trap the pressure as shown in Figure 4.6b. The

initial overshoot is because of back flow, whenever there is a negative change in pump

flow rate there will be momentary increase in pressure but eventually pressure will

decrease. In order to maintain a constant pbh, the choke pressure pressure pc has to

increase (shown in Figure 4.6c) to compensate for the loss in frictional pressure drop.

4.6 Conclusion

In this article a nonlinear model predictive controller for pressure regulation and

reservoir flow containment was presented. The control objectives were achieved by

penalizing the deviation of BHP from the setpoint and enforcing hard constraints on

the in/out flow rate flux. The controller was designed as an output feedback controller

which regulates bottom hole pressure by manipulating the choke opening. Equilibrium

state references were generated by using the dynamic model of MPD and disturbance

model was incorporated in the prediction model for offset free output tracking. It

was shown that in the event of a kick, reservoir influx was contained by the controller

within the allowed threshold. It was also shown that the controller is able to perform

well in presence of measurement and model uncertainty. The flow constraint is not

severely affected due to measurement noise and it was shown constraint softening lead

to considerably improved performance. The controller is also able to regulate bottom

hole pressure during severe loss in mud flow rate which typically occurs during the

pipe extension sequence. The controller is able to work under different mud flow rates

and choke opening without any deterioration in performance. In the future we will

be treating frictional losses as uncertain parameters and utilize parameter estimation
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for updating the model of the plant and the proposed controller will be tested on an

experimental set up which is under construction.
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Chapter 5

Conclusion

5.1 Conclusion

The objective of thesis was to develop advanced controllers for constant bottomhole

pressure (CBHP) managed pressure drilling (MPD) systems that can deliver good

tracking performance during drilling and regulate the pressure during drill pipe ex-

tension. Also the controller should be able to successfully mitigate abnormal events

such as kicks to keep the process safe. We developed two controllers to attain these

objectives: (i) a robust gain switching H∞ loop shaping controller, (ii) a nonlinear

model predictive controller (NMPC).

The bottomhole pressure (BHP) of an MPD system is a highly nonlinear function of

mud flow rate and choke opening, and an MPD system has many sources of uncertain-

ties. In order to develop the robust gain switching controller, the nonlinearity of the

system was mapped for choke opening and mud flow rate. The resulting 2-dimensional

(2-D) map was partitioned into several regions so that individual controllers can be

designed for each of those regions. The partitioning of the map was performed with

the goal of using as few controllers as possible while maintaining certain performance

and robustness requirements. Choke pressure settling time of 10 s was the perfor-

mance requirement and H∞ norm of 1 was the stability requirement. This partition-

ing resulted in 6 compensators. To improve robustness in the presence of parametric

uncertainty arising out of mud density variations, an H∞ loop shaping controller was
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developed. To enable smooth switching between different compensators, high gain

bumpless transfer technique was used. A method for kick rejection using pressure

control was developed. The controller was tested for BHP tracking during drilling

and drill pipe extension; kick rejection was also tested. The controller is able to reject

kicks in approximately 1 minute and maintains a uniform closed loop choke pressure

settling time of 10 s.

Kicks are best rejected by flow control in which the exit mud flow rate is regulated

but during normal drilling operations and during drill pipe extension, a BHP setpoint

must be tracked. That leads to a situation where the controller has to be switched

from flow control to pressure control either manually or by using some switching logic.

Such switching is generally prone to shattering in the presence of noise. In the NMPC

a unique method for kick rejection has been developed. The controller tracks BHP

in the absence of kicks but sacrifices BHP tracking and contains kick flow rate when

a kick occurs. That is achieved by clever use of the constraint handling capability of

the NMPC. The NMPC uses active set method for computing inputs. The NMPC

was tested for maintaining BHP during drill pipe extension and kick rejection. The

controller was able to contain the outlet flow rate within a threshold of 10 LPM in

less than 1 minute. The controller performed well in the presence of plant and mea-

surement noise.

5.2 Future work

The controllers developed in the thesis were tested on a simple numerical model of

drilling which consists of two control volumes. The advantages and limitations of

the controllers can be better appreciated if they are tested on an experimental model

of drilling. A flow loop is under construction at Memorial University of Newfound-
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land which will be used for testing these controllers in the future. Real-time NMPC

computation is difficult and time consuming and that could be a potential implemen-

tation issue. Nonlinear observers were used for estimating kick flow rate, reservoir

pressure, and bit flow rate in this thesis. The performance of the nonlinear observers

can deteriorate in the presence of noise and plant model mismatch. The estimation

of unmeasured quantities like mud density, friction factor, area of choke opening, etc.

will lead to better control solutions. These limitations of nonlinear observers can be

addressed by developing an unscented Kalman filter (UKF) for state, parameter, and

unknown input estimation. UKF based unknown input observer (UIO) has the po-

tential for estimating the unknown kick inflow rate accurately in the presence of noise

and plant model mismatch. A UKF based UIO will be developed in the future.
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Appendix A

Gain surface partitioning algorithm

The gain surface was partitioned for computing nominal plants and to develop a gain

schedule, using the following algorithm

Load GF {the surface fit}

C = {20, 21, 22, ..., 60} {choke openings}

F = {200, 210, 220, ..., 450} {flow rates}

R {The ratio between highest and lowest gain in a partition}

for Ci = 0 to length(C) do

for Fj = 0 to length(F ) do

GFF (Ci, Fj) = GF (C(Ci), F (Fj))

end for

end for

cond = 1

n = 0

Gmin = min(abs(GFF ))

while cond == 1 do

n = n+ 1

for Ci = 0 to length(C) do

for Fj = 0 to length(F ) do

if Gmin ≤ abs(GF (Ci, Fj)) and abs(GF (Ci, Fj)) ≤ R×Gmin then

GFF (Ci, Fj) = GF (Ci, Fj)
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else

GFF (Ci, Fj) = 0

end if

end for

end for

KN = Gmin+max(abs(GFF ))
2

for Ci = 0 to length(C) do

for Fj = 0 to length(F ) do

if GFF (Ci, Fj) ! = 0 then

GN(Ci, Fj, n) = KN

else

GN(Ci, Fj, n) = 0

end if

end for

end for

Gmin = min(abs(GFF ))

if Gmin ≥ min(abs(GFF )) then

cond = 0

else

cond = 1

end if

end while

GNOM =
n∑
i=1

GN(Ci, Fj, i) {The resulting gain schedule}
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