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Abstract

In this practicum, we study the properties of a special case of the general bilinear
model. The general bilinear model was proposed by Granger and Andersen(1978)
and Subba Rao(1981) for studying non-linear time series. Simulation studies and
real life data sets are used to evaluate the performance of the theoretical results we
derived. The properties we study are the mean, covariance structures, third order
moments and cumulants. We find a pattern in the third-order cumulant which is
useful in identifying the order of the model. This work is an extension of the result
of Oyet(2001). The model is used to make forecasts on three real time series data.

Also considered are the mean and covariance structures of three other versions of

the bilinear model.
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Chapter 1

PRELIMINARIES

1.1 Introduction

A time series is a ion of tions ially over time. Ex-

amples of time series can be found in every area of human endeavor; from the daily
sales of a super market, yearly enrollment in schools, yearly population of a country,
to the annual gross national product of a country and so on. Due to the popular-
ity of the subject, time series has received lots of attention in the literature. A list
and discussion on recent developments in time series analysis can be found in Subba
Rao(1993).

However until recently, most work on time series analysis have been based on the
assumption that the series under consideration conforms to a linear model. Contrary
to this assumption, recent studies have shown that some data do not conform to
linear models. For example, by using tests for linearity proposed by Subba Rao and
Gabr(1981), Hinich(1982), Keenan(1985) and Tsay(1986), real time series such as the
lynx data and the sunspot numbers have been shown to be non-linear. Needless to
say, linear models will not be the best models for analyzing these(non-linear) time
series. In view of this, a number of non-linear time series models have been developed

1



to handle the situation when linear models are inadequate. One of such models is the
bilinear model proposed by Granger and Andersen(1978) and Subba Rao(1981).
This study is focussed on the first order bilinear model, which shall be called
Autoregressive Pure Bilinear Model of order (1,1) and denoted by APBL(1,1). This
model is the same as the first order bilinear model, BL(1,0, 1, 1) studied by Andersen
and Granger(1978) and a special case of the Subba Rao(1981) general bilinear model.
The name " Autoregressive Pure Bilinear” model reflects the fact that the model is
made up of both autoregressive and pure bilinear parts. The structure of the general
bilinear model, special cases and some specific bilinear models shall be given in Section
1.4. Our goal is to derive some properties of the first order bilinear model and use it
for identificati imation and ing. Some ies of special cases of the

general bilinear model have been studied extensively by different authors- examples
can be found in Oyet(2001), Subba Rao(1981), Subba Rao and Gabr(1984), Pham
Dinh(1985), Liu and Brockwell(1988), etc.

Specifically, the standardized third order cumulant for the APBL(1,1) model is
of great interest in this study. Oyet(2001) has studied patterns in the third order
cumulants of diagonal pure bilinear models and shown their usefulness in order iden-
tification. In this work we extend that result to the APBL(1, 1) model. The diagonal
pure bilinear, APBL(0, q) model is defined by

q
Xe=Y 60X je;+er (L1)
=1

A summary of the pattern in the cumulants of (1.1) is given in Chapter 2. Similarly,
we shall investigate if a pattern that can be used for model identification exist in the
APBL(1, q) model
]
Xi=6:1 X1+ Y 0 Xejej+ e
=
The case where ¢ = 1 is investigated in this study. It is our conjecture that the

2




cumulants of each of these models, with distinct ¢, have a unique pattern associated
with them.

Suppose we have a series which is steadily increasing over time( i.e, shows trend)
and another series which is a monthly data that is showing regular increase(peak)
in certain months and decrease(trough) in some other months of the year. In both
cases, it would be incorrect to assume that the observed values at each time period
is representative of the mean value. Also, if the variance is not constant but, say
increases as time goes on, it will be incorrect as well to believe that we can express
the uncertainty around a forecasted mean level with a variance calculated based on
all the data. Lastly, if the autocorrelation of one half of a series is different from
that of the other half, it will be wrong to make predictions for the future using the
autocorrelation of the first half. Thus, (see Vandaele(1983)) some restrictions have
to be placed on the mean, variance and autocorrelation of a time series process for
it to be used in making meaningful forecasts. These restrictions are summarized in
what is called stationarity. Another restriction on time series process for forecasting
is called invertibility. The concepts of stationarity and invertibility are discussed in
Section 1.2, In Section 1.3 we discuss some methods of linear time series analysis that
will be used in later chapters. Finally, the main object of this practicum, the bilinear
model is introduced in Section 1.4. The method of parameter estimation for the first
order bilinear model as well as the method of order selection shall also be considered
in Section 1.4.

The properties of some bilinear models are studied in Chapter 2. The performance
of the derived ies shall be eval d by sit ion studies in Chapter 3. Alsoin
Chapter 3, the APBL(1,1) model shall be used to make one-step-ahead forecasts for

three real data. We present our findings and summary of this practicum in Chapter
4.



1.2 Stationarity and Invertibility

According to the Box-Jenkins methodology, a good time series for forecasting has
to be stationary and invertible. A time series {X,} is said to be stationary if the
expected value of { X} is constant for all ¢ and the covariance matrix (Xy,,.-., Xi,) is
the same as the covariance matrix of (Xu,.,,.--» Xi,,, )for all nonempty finite sets of
indices (£,t2,. . .t,) and all h such that (,.ta,. . ..ta,ti4h,t25h. - - tnsn) are contained in
the index set. The time series is said to be strictly stationary if the joint distributions
of (Xy,..., Xe,) and (Xu,,,-.., Xs,,,) are the same for all the integers h, n and
titon - tn.

A model is said to be invertible if it is possible to estimate the e, sequence from
the given X, values together with an exact knowledge of the generating model. In
order words, if X, are known to obey a model and the values of the parameters of the
model are also known, the series is said to be invertible if good estimates of e, can be
derived from the knowledge of X, and some start up values.

It is interesting to observe that none of the series we have used in our examples
are stationary. We shall therefore discuss methods of transforming a non-stationary
time series to a stationary one, while emphasis is placed on the methods used in this
practicum.

By plotting the series against time, we will be able to observe if the series has a
trend, seasonality, discontinuity, outliers and so on. We may then be able to decom-

pose the data as a realization of the process as;
Xe=mi+si+u

where m, is the trend component, s, the seasonal component and y, the stationary

The d inisti m, and s, can then be estimated and

d leaving the i part for modeli it may not be possible




to decompose the series into these components, in which case other methods have to

be adopted to the i series to a i one. The methods of
i 'y data to stationary data described below are
of a few of the methods discussed in the literature. See Brockwell and Davis(1996),
and Vandaele(1983) for details.
a) Stabilization of Variance
A useful class of variance stabilizi ions is the Box-Cox fc
tion. The logarithm and sq t ions are two useful bers of this

class. To stabilize the variance across a series, we can take the logarithm or the
square-root of each of the observations. If the series contains non-positive observa-

tions, we need to add a number to each of the observations to make them positive

before taking logarithm.
b) Removal of the Trend and Seasonal Components
Some methods of removing trend and lity di d in the li used

in this study are;
i) Moving Average Filter: Let q be a non-negative integer, the trend in a series can
be estimated in the absence of seasonality using the following expression,

.
M= (2g+1)7" Y Xy, (1.2)
Jj=-q

g+1<t<n-g

It can be observed that this equation cannot be used for t < g or t > n — g, since
X, is not observed for t < 0 or t > n. To remedy this, it has been suggested to take
X, =X, fort <1and X, = X, for t > n. By using these values, we will have a
complete series which will make analysis much easier. However, the first ¢ and the
last ¢ trend estimates obtained from using these values may not be as good as the

remaining estimates.



ii) Regression Models: A regression model
9
Xe=h+Y Bt +Yi=m + Y,
=

can be used if the trend is assumed to be a polynomial of order ¢. The trend estimate
is the represented by the deterministic part,

- £ i
= o+ Bt
=t

iii) Differencing: This involves subtracting the values of the observations in a time
series from one another in some prescribed time-dependent order. Given the time

series {X.}, the first order difference is given by;
VX=X~ X1 = (1- B)X,

where B is the backward shift operator. B’X, = X,_j, i.e, BX, = X, and the

second order difference is defined as,
VX = v(vXe) = (1 - B)(1 - B)X; = X — 2Xi1 + Xi-2.
This can be extended to any order k. Suppose
Xe=m +Y,
where m; = 3y + S\t and Y, is stationary with mean zero. By applying the 7 operator
to the trend component the linear trend component(increasing or decreasing mean)

can be stabilized or made constant as follows:

Vmy=my —mey = fr.

6



In the same manner, a polynomial trend of order k can be reduced to a constant by
using the operator /.
To estimate the seasonal component, the trend has to be estimated first by using

appropriate moving average filter. For even period d, let d = 2q, then
My = (0.5X g + Xeeg + ... + Xppqo1 +0.5X14,) /d (1.3)

g<t<n-—gq.

For odd periods we take d = 2¢ + 1 and use the moving average filter given in equa-
tion(1.2). Next we estimate the seasonal component. For each of k = 1,2,...,d, we

compute the average wy of the deviations

Xitjd — Mksja, g <k +jd<n—gq.

In order for the average of the seasonal effect to be zero, the seasonal component is
estimated by, Sy = w; —d~' T4, w;, k=1,2,...,d and S; = Sg_g, k > d. We can
then define the deseasonalized data as, d; = X, — Sy, t = 1,2, ..., n. Finally the trend
of the deseasonalized data is estimated using any of the methods discussed earlier.

1.3 Linear Time Series Analysis

This section discusses briefly the three major linear models; autoregressive, moving
average and mixed autoregressive moving average models. We discuss here station-
arity and invertibility conditions and Box-Jenkins procedures for linear models.

a) Autoregressive(AR) Model



An autoregressive process of order p, denoted by AR(p) is given by;
»
Xi=Y ¢;Xej+e (1.4)
=t

where, ¢, is white noise distributed as N(0,0?), ¢; are the parameters of the autore-
gressive model that need to be estimated, and X, is uncorrelated with e, for s < t.
Finite order autoregressive processes are usually invertible by virtue of the expression
(1.4). The stationarity condition for (1.4) is obtained by writing (1.4) in terms of the
e's and seeking the condition under which the resulting infinite series will converge.

Suppose the AR(p) process is rewritten using the backward shift operator as
@,(B)X, = e,

where, ®,(B) = 1 - 6,B — 6;B* — ... — 6,B° and BIX, = Xi-;.

‘We now write X, in terms of ¢, as
X, = &;'(B)e.

The series ®;"(B)e, converges if the roots of ®;'(B) = 0 are less than 1. In other
words, the AR(p) process is said to be stationary if the roots of the equation ®,(B) =
0 lie outside of the unit circle.
For example given an AR(1), ®(B) = 1 — ¢, B, the AR(1) will be stationary if
|B| > 1, that is when |¢;] < 1.
b) Moving Average(MA) Model
A series is said to satisfy a moving average process of order ¢ if it can be represented
as;
]
Xe=) bje; (13)
i=0



where 6, = 1, 6;, j = 1,2,...,q are the parameters of the M A process, e, is white
noise distributed as N(0,0%) and ¥§_o6; < cc.

Similarly moving average processes are usually stationary by virtue of the expres-
sion (1.5). The condition for invertibility of the M A process is stated below. Using
the backward shift operator, we have,

X, =6(B)e.,

where ©(B) = 0 0;B’.

Similarly for an M A process to be invertible, the roots of ©(B) = 0, must lie
outside the unit circle. That is, for an MA(1), ©(B) = 6,B, the condition for
invertibility is that 6, < 1.

c) Mixed Autoregressive Moving Average(ARMA) Process

The ARM A(p, q), represents a process with an autoregressive term of order p and

moving average of order ¢. It can be written using the backward shift notations as
®,(B) X, = ©4(Be: (1.6)

where ®,(B) =1—¢,B—...— ¢,B” and ©,(B) =1-6,B—... - §,B°

For the process to be invertible, the roots of ©,(B) = 0 must lie outside of the
unit circle. Likewise for the process to be stationary, the roots of the ®,(B) = 0 must
lie outside of the unit circle.

To identify the AR(p) and M A(g) models presented above we use the autocor-
relation function(ACF) and partial autocorrelation function(PACF). Several studies
on linear time series analysis have shown that the PACF of an AR(p) model cuts off
after lag p while the ACF decays exponentially. On the other hand, the ACF of an
M A(q) model cuts off after lag ¢ and the PACF tails off. Therefore we can use the
PACF and ACF to identify AR(p) and M A(q) models respectively.

9



For detailed discussion of linear time series analysis, interested readers could
read one or more of the following books; Andersen(1971), Box and Jenkins(1970),
Billinger(1975), Chatfield(1975), Pankratz(1983), Priestley(1981) and Vandaele(1983).

1.4 Bilinear Time Series Models

A time series {X,} is said to be bilinear if it satisfies the difference equation.

] (] m k
X+ S 0Ky =Y ety + 53 by Xecieens (%)
j=1 j=0 ==t
where ¢ = 1, €, is a sequence of ind dently and i ically distri random

variables, with E(e,) = 0 and E(e?) = 0® < co. Using the notation Subba Rao(1981),
the model(1.7) can be denoted by BL(p,q,m, k).

If we set b;; =0, for all 4, j, then (1.7) reduces to ARM A(p. ). Thus the bilinear
model is an extension of the ARM A process and the ARM A process can be seen as
a special case of the bilinear model. Three other special cases of the bilinear model
are:

(i) If bij =0 for all i < j in (1.7) we have the super-diagonal model,

(ii) if b;; = 0 for all i > j, we have the sub-diagonal model and

(iiii) when b, ; = 0 for all i # j, the diagonal model is obtained.

Subba Rao and Gabr(1984) have studied some properties of these models in details.

This study shall examine cases of (1.7) when p = 1, = 0 and m(= k) = 1,2,3
and any nonnegative integer ¢. In what follows, a; shall be replaced by ¢;, c; shall
be ommitted and b;; shall be replaced by §;. Thus whenp=1,¢=0,m=k=1,
we obtain the first order bilinear model, BL(1,0,1,1), which shall be denoted by



APBL(1.1) in this study. The expression for the APBL(1,1) is given by;
Xe = 61 Xe-1 + 0. X801 + €0 (1.8)

This model is the object of this study. Some attention is also paid to cases, APBL(1,2).
APBL(1,3) and APBL(1,q) models, for arbitrary ¢ € Z. By using similar nomen-

clature as APBL(1, 1) these models are given below:

APBL(1.2):
Xe=61Xe1 + 01 XKoot + 02X 2e2 + €0 (1.9)
APBL(1,3):
Xe = 01 Xeor + 01 Xer€emy + 02 Xeaer 2 + O3 Xeser3 + e (1.10)
APBL(1,q):
.
Xe =6 X1 + Y0 Xejer; +er (1.11)
7=l

1.4.1 Conditions for Stationarity and Invertibility

Given the model (1.7), Pham and Tran(1981) used Markovian representation of the
model to show that the condition for stationarity of the process X, is given by af +
0%, < 1. This equivalent to ¢} + 0?6} in the APBL(1,1) model.

We state below the condition for the general time series (1.7) to be asymptotically
second-order stationary according to Subba Rao(1981). Consider the bilinear model
BL(p,0,1) i.e: R

Xt Faixes = +iAm.x‘_‘el.. (L12)
= =

Define the following matrices,



b by by

0 o0 . 0
By = .

0 0 0 0

where C,z; = (1,0,0,
Let z, = (X, Xee,
using the above matrices in the vector form denoted by VBL(p) as,

0)' and Hy, = (1,0,
Xie-p+1)- The bilinear model (1.12) can be re-written

7, = Azio + Brioje + Cey (1.13)

X.=Hz

Using the above notations, Subba Rao(1981) showed that the sufficient condition for
the time series X, generated from (1.13) to be asymptotically second-order stationary
is that

PAQA+BRBo) <1,

where @ is the kronecker product and p(.) is the spectral radius.

To obtain the condition for invertibility for the bilinear model, Subba Rao(1981)
made use of a more general definition of invertibility provided by Granger and Ander-
sen(1978). They defined invertibility as follows. Suppose X, is a time series satisfying

12



the model,

Xe= fl(Xe—jre-j), i = 1,2,....q} +e (1.14)

where {e,} are independent random variables. Since the random variables {e} are
not observable, they are "estimated” by €, by taking the initial values of ¢, to be zero.
The model (1.14) is said to be invertible if,

lim Ble— &) =0

when the model and the parameters are known completely. And by defining the model
(1.12) as VBL(p) given by (1.13), the condition for invertibility can be obtained as.
H'BE(z € z,)B'H < (H'C)? for the model (1.14)

1.4.2 Order Selection

To select the right order of the bilinear model to fit to a set of data, Subba Rao(1981)
provided an algorithm which involves using the Akaike’s criterion(AIC). Generally,
what this method suggests is that we set upper bounds to p, m, k and then search
over all combinations of p, m, k within these bounds. The combination with the
minimum AIC is chosen as the best model. The limitation of this method is that we
do not know when the minimum AIC will be obtained and thus do not know when
to stop. That makes the method quite tedious to implement.

In this study, we propose a simpler method of order selection for APBL(1,1) based
on the standardized third order cumulants j(1, k). First the data is made stationary
and then the plot of the j(1,k) is observed. The right model for the data is then
selected based on the pattern in the j(1, k) plot as compared to that of APBL(1,1).



1.4.3 Esti ion of the P: ters

In order to use the model for forecasting, we need to obtain the estimates of the
parameters of the model. We only state the method of estimating the parameters for
the APBL(1,1) model here. The method of parameters estimation for the general
bilinear model BL(p, g, m, k) can be found in Subba Rao(1981). We adapt the method

to the first order bilinear model;
X = 61Xie1 + 0, Xemrer1 + (1.15)

where {e,} are independent and each of e, is distributed N(0,0?). We assume the

series is invertible and we have a realization {X,X>,....X,} on the time series {X,}.
In obtaining the parameter estimates we used the method suggested by Subba

Rao(1981), with p = m = k = 1 and ¢ = 0 in (L.7). The likelihood function of

{X1,X2,...,X,} is the same as the joint density function of {ezes.....ex } and is given

by: JE

To obtain the parameter estimates we need to maximize the likelihood function,

which is equivalent to minimizing, Q(6") with respect to 6* where Q(8°) = L7, €}

and 6" = (¢1,6).

The values of §* are obtained using the Newton-Raphson iterative techniques. The

partial derivative of Q(6") are given by;

yQ(") e.ac, -
=23 Gt =23 X
6‘0(0' 2,6:,

22

n
=23 Xeieie
=1



We assumed e; = 0, thus ;

ey _ Oy _ e

36, ~ 06, 066,

Define
cn=[ g 2],

2Q(e7) Q)
H(E) = T en
FQer) FQ,
El

That is, H(6") is a matrix of second order partial derivatives. Expanding near 4

in a Taylor series, we have;
[G(E))gomg- =0 =G(8") + H(6") (6" — 7).
This implies;
b =6 - H'(6")G(6").

From above, we have the Newton-Raphson iterative equation,
(@) = (@) - HY(E")G(E)).

where (6%)* is the set of estimates obtained at the k* stage of iteration. It follows
that by starting with some initial values for the parameters to be estimated, we can
iterate to convergence using the equations above to obtain the parameters estimate
of the bilinear model. In obtaining the parameter estimates in each of our examples

we tried different values of initial and the i turned out

to be the same.



Chapter 2

PROPERTIES OF THE APBL
MODELS

2.1 Introduction

This chapter, can be split into two parts. In the first part which involves the model
of interest, we shall obtain expressions for the mean, the covariance structures, third
order moments and third order cumulants. This research work is devoted to the model
(1.8). Thus properties derived in this part form the core elements of this study. The
model shall be denoted by APBL(1,1) as in Chapter 1.

In the second part of this chapter, the expressions for the means and the covariance
structures of some other versions of the bilinear models denoted by APBL(1,2),
APBL(1,3) and APBL(1,q) are derived. These models were given by equations
(1.9) (1.10) and (1.11) respectively. The purpose of this second part is to investigate
whether some pattern found in the APBL(1, 1) model also exist in more complicated
versions of the bilinear model. For this reason, some of the results in this part are
only partially derived.

In obtaining the ions for the mean, and we shall use
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the following assumptions and conditions:
e Stationarity and invertibility are assumed. Thus for a unique ¢ and h, E(X,) =
E(X»), E(Xee)) = E(Xaen), E(X7) = E(X3),
E(XZ2e?) = E(X?e}), and so on.

@ The random variable ¢, is a series of ind and i
Gaussian random variables. It can be shown that E(e}) = 0, for u = 2j + 1,
j7=0,1,2,..., and for any t, E(e?) = 0?, E(e}) = 30", E(ef) = 150°, etc.

e And by expression (1.8) the random error, e, is independent of X; for h < t,
that is, E(Xye]) = E(X})E(e]), h < t.

Defining the third order cumulant C(ky, k;) of a process X, by C(ky, k2) = E[(X,—
1)(Xesk, — 1) (Xesr, — )], we shall also use some symmetric relationships derived by
Gabr(1988) in this chapter. Gabr(1988) has shown that the cumulants C(ky, k2) of a
real valued process X, has the following symmetric relationship;

Clki ka) = Clkz, k1) = C(—ky, kz — k1) = C(ky — k2, —k2)-

This shows that, once the value of C(k, k2) in the upper half of the quadrant is
known, we can extend to the entire Euclidean plane, using the symmetry property.
Thus, we shall derive the C(ky, k2) for ky = k» = k and k, > k; only. Oyet(2001)
shows that for the diagonal pure bilinear model(1.1),

C(ky, k) = 0 for k; < q, kx — ki > q, and C(ky, k,) is nonzero for k; > ¢ , and
kz — ky > q when k; > k;. The pattern exhibited by C(k;, k,) can be summarized as;

Table 2.1: C(ky, k») for arbitrary ¢
[ [1 2 38 .. q a+1 q+2 q+3 ...]
[ki=1]nz nz nz ..z nz 0 o |
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where nz denotes nonzero values. It is obvious from these patterns that C(ky, k)
cuts off after lag ¢+ 1. Thus the standardized cumulant p(k, k2) = C(ky, k2)/C(0,0)
can be used for diagonal pure bilinear model identification.

The expression for the mean and covariance structure of some bilinear models are
derived in Section 2.2 by taking ions and using the ions stated above.
In Section 2.3, expressions for the third order moments and third order cumulants of
the APBL(1,1) model are obtained.

2.2 Mean and Covariance Structure

2.2.1 Mean

For each of the four models examined, the expression for the means are presented
below. Given the APBL(1,1) model,

X =61 Xee1 + 0 X ey + ey (21)
we have

E(X,) = $:1E(Xem1) + 0, E(Xe-re-1)-

Now,

E(Xi-160-1) = E(1Xe-261-1) + 0. E(X-2ec2€e1) + E(e}_,)

which by assumptions in Section 2.1 yields;

E(Xeree1) = E(ef,) = 0%



Thus the mean of X, satisfying the APBL(1, 1) model is

(2.2)

Following the same procedure and using the fact that E(X,-se,3) = E(X,-3e,-3) =
o2, we find that the mean of X, satisfying APBL(1,2) model is

E(X) = %’—’ (2.3)

and the mean of X, satisfying APBL(1,3) model is

_ (6. +6; +63)0*
E(X,) = B e (2.4)

1

The technique can be extended to the more general model APBL(1,q),
q
Xe= 01X + ) 0 Xeieri + e (2:5)
=

to obtain E(X,_.e,—;) = E(e}_;) = 0% It follows that the mean of X, satisfying
APBL(1,q) is

E(Xy)=—===—. (2.6)

2.2.2 Covariance Structure

In what follows, we derive the second moment, m(k) = E(X,X::) for each of the four
models studied. The ion for the covari R(k) = m(k) - 2 can
then be obtained by making relevant substitution in R(k) for the model in question.
APBL(1,1) Model

To obtain the second moments of the APBL(1,1) model, we shall use the fol-

lowing expressions which can be derived easily by taking expectations and using the
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assumptions in Section 2.1.

4
E(XPe) = 227 o, @7
1-¢;

10°E(X2,) + 30* + 16,6,000°

2¢2) = $IZEXE) +30° + 46:16,600°
E(X2¢) = e ; (28)

where,
(29)
k=0

When k = 0, we have

m(0) = GEXL,)+OE(XLiel0) + Blef) + 260 E(XE e0-1)
+ 20,E(X,-1ec-1€) + 201 E(Xie).
By using the expressions above, the second moment for the APBL(1, 1) model when
k =0 can be expressed as,

20%0* + 0% + 46,6,600*

m(0) = =—— P (2.10)
Case2: k>0
When & = 1, the second moment is given by
E(XeXes1) = 6,B(X?) +6,E(X7e,).
It follows that
m(1) = ¢m(0) +26,0%u. (2.11)

One useful expression for obtaining the second moment of the APBL(1,1) model
when k > 0 is E(Xisx-1ee46-1Xe) = E(Xi€},x_;) = 800" = o?u , where 6 is given
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by (2.9). When k = 2. it is not too difficult to verify that m(2) = E(X,Xis2) =
01 E(Xi X141) + 61 E(Xis1€041X:). And by making relevant substitutions, we have

m(2) = ¢im(1) +6,800* = Gym(1) + B0 (212)

For general k, the structure of the second moment is given in the Lemma 2.1 below.

Lemma 2.1 For any nonnegative integer valued k > 1, the second moment of X,
satisfying the APBL(1,1) model is given by the difference equation,

m(k) = gim(k — 1) + 6y u0”. (2.13)

So that R(k) = m(k) — u? = 6, R(k — 1).

The proof follows directly from using the results above. Let (k) = é(k)/}i(o) be
the estimate of the autocorrelation function at lag k. One useful consequence of this
result is that an initial estimate of ¢; can be obtained from é; = j(k)/p(k — 1) for
iterative estimation of the parameters when dealing with a real time series. This can
be seen in the results of the simulation study in Chapter 3.
APBL(1,2) Model

Given the APBL(1,2) model, the expressions for the second moment of X, can
be derived by using the preliminary results below.

E(Xie X, 1€0-1) = O E(Xi-1e0) = 0. (2.14)
E(X?e) = w =20, (2.15)
==,

E(Xle}) = {610(1 - 1)m(0) +30*(1 - 61) + 4618{0° + 26:6,0,0°
+ 40%610,0° + 203630° + 26,630° + 26,6,0°}
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/(1= 6)(1 - 6i0® ~ 60" ~ 26:610%)). (2.16)

Casel: k=0
The second moment for the APBL(1,2) model, when k = 0 can be expressed as,

E(X]) = SE(XL)+ (6 + G)E(X]€}) +0” + 260, E(X] 1ei1)
+ 2010:E(X;-1 Xi—2€0-2) + 20102 E( X 1€0-1 X1—2€0-2)

where, E(X,X,_1e.—1) = 6, E(X? ec—1) + O E(XE €} ,) +6s0%.
By substituting in the preliminary results and using the assumptions in Section 2.1,
it can be verified that

m(0) = {2030 —26,6%0" + 46,6{0°® + 46,630,0° + 1263030,0° + 126363630°
+ 86,02030° + 2020* + 46,0,630° + 4610,630° + 462030° + 46,6,6,0"
~ 4670,0,0" + 86362620° + 8630:030° + 0° — 6,07 — 26230 + 26,0,0"
— 463630° - 2,6,6,0"}
/ A= &)(1 - 6o - 60" - 26:0,6:0° - 6})}. (217)

Case 2: k>0
When k =1, E(X;11 X)) = ¢ E(X?) + 0, E(X7e)) + 6, E(X. X(-1€0-1)
where E(X,X,-1€1-1) = i E(XZ e0-1) + O E(X2€2,) + B E(Xi 11 Xizer-2).
This implies that
m(1) = 6rm(0) + (8, + 610y E(X7er) + 6,6, E(X7e]) + 630*.

Thus an expression for the second moment when k = 1 is given by;

2630 + 260,0:0* + 26,6,0,0* + 26,630*

8o,
=y e

(218)

m(1) = $:m(0) + 6:6,E(X7e}) +
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Using similar procedure, as for the m(1), we obtained expressions for m(2) and
m(3).
m(2) = im(1) + (60" +30,8:0" +203*)/(1 - 61). (219)

m(3) = grm(2) + (6{0" + 201620" +630%)/(1 - 6u). (2.20)

The expression for the second order moment for any nonnegative integer valued k is

given in the lemma below.
Lemma 2.2 For any nonnegative integer valued k > 2, the difference equation for
the second moment of X, satisfying the APBL(1,2) model is

& B30 + 26,6,0* + 630"

et (221)

m(k) = gym(k — 1)

Also, R(k) = ¢, R(k —1).
Again the proof follows from the expression for E(X,X;;) and the preliminary results.
APBL(1,3) Model

In obtaining the expression for the second moment of the APBL(1,3) model, we

shall use the following preliminary results;

E(XeskerrrXerk-1€e0k-1)

E(Xle) =

20, +0,+6)5* .
=

and E(Xisx-i€sk-iXe) = E(Xe€l,x_;) = po? , for i < k. Also we shall denote the
moment of the model when k = 0 by m(0). When k = 1, the second moment is
obtained as follows;

E(Xer1 Xe) = 0.E(X?) + 0, B(XE &) + 62E(Xe Xeoreet) + 6 E(XeXozee2)

From the preliminary results, we have;

E(XXi1e1) = S E(XE &) + O E(X7e]) + (62 + 63)o* and
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E(XeXi-261-2) = 01E(Xe-1 Xe2e0-2) + 010" +B,E(X7 1€} 5) + 050"

And by making substitutions of previous results, we have

m(1) = Gim(0) +2(6, + 610, + 810:)u0” + (616; + 610,65 + 6260:) E(Xe})
+ (63 + 6205 + 610265 + 6,03 + 0,05 + 63)0". (222)

Similarly, an expression for m(2) and m(3) can be obtained as:
m(2) = $um(1) + (01 + 26, +2616)u0” + B85 E(X] €] ) + (6285 + 63)0*, (2.23)
and

m(3) = $m(2) + 61u0” + byuc® + Wsa® (2.24)

respectively. Using similar procedure as m(1) above, we obtained an expression for

the second moment of any nonnegative integer valued k in the lemma below.
Lemma 2.3 For any nonnegative integer valued k > 3 the ezpression of m(k) for X,
satisfying the APBL(1,3) model can be obtained as,

m(k) = gym(k — 1) + (B, + 6, + 63)uc”. (2.25)

The proof of the lemma follows easily from the results above.
APBL(1,q) Model

First we derive some of the preliminary results that will be used to obtain the
expression for the second moment of the APBL(1,q) when k = 0.

Xe-ier-iXe-jer-j = O XemiciXiojerjei

f
+ YO XeiserieXesorjeei + Xejer-s€iye
=1
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E(Xeier-iXe—ser-s) = E(Xe_jer sl ) = a* .
Also,

9 X 9
Xle, = OIXZ e+ O2X1 e} e+ €} +20. X1 Y O:Xiieriey + 261 X, €]
= =
PR T
+ 23 ) 00X, e i Xijerjer +23 0. X, ieri€f.
i< J =1
Thus, B(X{e:) = 20, E(X-1€}) + 2 T i E(Xeieie]) -
This can be simplified as;

E(X?e) = ”1%';:”‘ = 2u0®.

Also by using similar procedure as above the following expression can be easily ob-
tained.

=1 9 -1
BE(Xe1Xierni) = 200 w0 +0* T 67" 36, + 3 017 UG E(X7e]). (2.26)
= i =
Another useful expression is that of the X?e?. For the APBL(1,q) model, we have,
9 9
Xie} = $1Xia€} + 3 02X e e +ef +20: X001 Y O:Xeierie]
=t =
. W 9
+ 201X +23 3 06, X e Xejer_jel +23 X, ierse].
i< j i=1
And,
9
E(Xie}) = #10°B(XL,)+3 6i0°E(X]€f) +30*
=

T .3
+ 2610%) BE(X,_ieiXi1) +20°) Y 0.6,
=l < j
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This simplifies to,
E(XZ)) = {8o™m(0) +30* +20° 5 06, + 40 3 o6
i< j k=1
9
+ 2Y 0T T 0+ bt b T B)o%)
=2 k#L k#2 kE(i-1)
. «
/ (=360 -2 ¥ 6i76;).
= =1

Using the results above we can obtain an expression for m(0) as follows

q )
E(X}) = SEXL,)+Y GE(XZ )+ E(e]) +261 ) O.E(Xem1 Xe-irni)
=t i=t

L A
+ 233 00,E(XeieriXejer;)-
B3

£ 99
(1=00m(0) = Y OE(XLiel,)+0" +203306;
i=l i< j

.
+ 2003 0i{201 o + (ST O+ 61 Y O+
=2 k#L k22

int
+ Y 6oY)+ Y ¢ E(X D)}
k1) =

Thus an expression for the second moment of the APBL(1,q) model when k = 0 is

given by;
m0) = (842565 0)E(X2D) + 0 + 200 3° 306, + 4?3 616,
i=l =2 k=1 < g =1
+ 2 A T A+ 6 b+ 6 T 801 6. (227)
=2 k#l k#2 k#(i-1)
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Similarly, the second moment for the model APBL(1,q) when k = 1 is given below.

-t
m(1) = ¢m(0)+ z':v,(w;',m’) +3 603 6170 E(Xe})
i=l =2 k=1

.
+ YOG 0+ b+ + Y B)ot (2.28)
=2 k£l k#2 k#(i-1)

For any nonnegative integer valued k > 1, the expression for the second moment of

X satisfying APBL(1,q) can be summarized in the following lemma.

Lemma 2.4 If X, is a time series satisfying the APBL(1.q) model, then the second
order moment m(k) for any nonnegative integer valued k, can be obtained from the
ezpression (2.29).

k-1 q q ik
m(k) = gum(k—1)+ (L 6+23 6o’ + 3 03 67 GE(X]e)

= = Eret =i

+ @8+ YN0+ + Y 6)0') (2:29)
i 72 ik

The proof of the lemma can be obtained by using the preliminary results and following
similar procedure for m(1). Observe from (2.29) that for k > g, we have m(k) =
ém(k — 1) + %, 6,p0”. It follows that for APBL(1.q) model we have that R(k) =
¢ R(k — 1) for k > g. Thus, in general, an initial estimate of ¢, for the APBL(1.q)
model is ¢, = p(k)/p(k — 1), for any k > q. Where j(k) is an estimate of the

autocorrelation function at lag k.

2.3 Third Order Moment And Cumulants

In this section, we derive the third-order moments and cumulants for the APBL(1.1)
model only.
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2.3.1 Third Order Moments

By definition, the third-order moment of a ive integer valued process X, is

given by
m(ky, k2) = E(XeXesk, Xests)- (2.30)

To obtain m(k,. k;) of the model APBL(1,1), for any nonnegative integer valued k,

and k,, we shall use some of the previous results and the results below.
E(Xesk-1€046-1Xe) = E(Xi€d,p ) = 0*p. (2.31)

E(X2 Xiers1) = 26,0°m(0) + 46,0° . (2.32)

And for any k > 1 we have,
E(XZ e Xeees) = 2010°m(k — 1) + 20,0 . (2.33)
Also,
E(X%,Xi€l,) = 610°m(0,0) + B0 E(X}e?) + 3uc® + 201610 E(Xe,).  (2.34)
For k > 1 we have,
E(XZXiel) = di0* g(alo)ﬁm(k —r—1Lk~—r—1) +(B,0)*E(X}¢)

k2
+ 206% 0% E(X2e,) + 46010 Y (010)*m(k - - 2)
=0

+ Y03+ 30% + 86,650

k-3
+ 4610,0°u Y (610)". (2.35)
=
E(X?e)) = 30" + 3¢20°m(0) + 3020°E(X7€?) + 126,60, 0" (2.36)
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E(X3e) = 610°m(0,0) + 610’ E(XPe}) + 361010° E(XPer) +9610*p +9610°
i 1-36:670% .
(2.37)
E(X}€}) = 150° + 9¢70*m(0) + 960* E(X?_ €}_,) + 366,6,u0°. (2.38)

Case l: ky=ky =k
When k; = k, = k£ =0, it can be shown that

(1-B)EX]) = BEXLiel,) +3610. (XL ec-) + 36107 E(X i},
361E(X2 ) + E(€]) + 3 E(XL €} e) + 36 E(Xemr€])
30, E(Xe-re-16]) + 6610, E(XT e re0)-

+ o+

Thus by using the results above, the third order moment of the .X; when k = 0 is
given by;

m(0,0) = {BE(X}e}) + 3610, E(X}e,) + 1863670 + 186,6}0°
+ 3oiuo® +30i0°}/((1 - 6)(1 - 30:16%07) - 36{670%).  (2.39)

When k; = k, = 1, we have m(1,1) = E(X2,X)) = 62E(X?) + BE(X?e}) +
E(Xe€,1) +2610,E(XPer) + 201 E(XPews1) + 2ersa).
From above, it can be shown quite easily that;

m(1,1) = $im(0,0) + B E(X]e?) + o*u + 260, E(XPe.). (2.40)

For ky = k; =2, we find that

m(2,2) = GE(XZ\X) + 20 B(XerieisaX,) + B E(X] €8, X0) + E(Xiel,)
+ 200, E(XL 001 Xo) + 20, E(Xeneesieesa Xe)-



‘Which simplifies into,

m(2,2) = oim(L,1)+ ¢}620°m(0,0) + 8'c*E(X7e}) + 36} po*
+ 20,880%E(XPe)) + 0% + 46°0,0°m(0) + 84,830 . (2.41)

For k; = k; = 3, we obtained the third order moment, m(3,3) as;
m(3.3) = GE(X22 X)) + GE(X062,2X0) + E(Xeehya) + 2610, E(XEy 0002 X0)
By making relevant substitutions we have
m(3,3) = ¢im(2,2)+6}6io’m(1,1) + $}8{c*m(0,0) + 650" E(Xe})
+ 20:650°E(X7e,) + 4636}0"m(0) + 670 u{3 + 3670 + 86,6707}
+ o*u+4¢30,0°m(2) + 46,00 . (2.42)
Using similar procedure, the m(k, k) for any real k > 2 is presented in the lemma
below. The proof of the lemma follows accordingly.

Lemma 2.5 For any real-valued k > 2, the third moment of the of X, satisfying
APBL(1,1) model is given by
k-2
m(k.k) = oim(k—1,k—1)+6{6i0*Y (Oo)'m(k —r—2,k—r-2)
=
+ 0P IE(XY) + 2616 Vo™V B (Xer)
k-3
+ 463030' Y (810) m(k — r — 3) + 67* Vo=V u(3 + 3630 + 891610}
=
k-4
+ 46:030°u Y (010)% + o*u+ 4630,0°m(k — 2) + 46,6,0". (2.43)
=0
where E(X2,_i€.s_,X:) and E(X? ,_ ec+x-1Xe) are as in the preliminary results
above.
Case 2: ky >k



When k; =1 and k; = 2, we have;

E(XuaXenrXe) = m(1,2) = 61 E(X% X0) + B E(XE 00 Xo).

Simplifying this expression using previous results, we obtain,
m(1,2) = érm(1,1) +26,6:5°m(0) + 467 po*.

Also when k; = 1 and k; = 3;

m(1,3) = ¢ym(1,2) + 0, E(Xii2€042Xe41.Xe), which we simplify to obtain

m(1,3) = ¢1m(1,2) + 10°m(1).

(2.44)

(245)

Using similar procedures as for m(1,3), we obtained the following expressions for third

order moments:
m(1,4) = ¢m(1,3) + Bi0°m(1).

m(1,5) = é;m(1,4) + 6,0°m(1).
m(2,3) = 6im(2,2) + 26,0,0°m(1) + 26%po”.
m(2,4) = &im(2,3) + i0°m(2).
m(2,5) = eim(2,4) + 6:0°m(2).
m(3,4) = ¢ym(3,3) + 26,6,0°m(2) + 263 uc’.
m(3,5) = $m(3,4) + 6,0°m(3).

m(4,5) = ¢im(4,4) + 26:16,0°m(3) + 263 po*.

(2.46)
(247)
(2.48)
(2.49)
(2.50)
(2.51)
(2:52)

(2.33)

Below we present expressions for the third order moments of X, following APBL(1,1)

model for cases when k; — k; = 1 and when k; — k; > 1.

Lemma 2.6 For a time series {X,} that satisfies the APBL(1,1) model, the third
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order moment m(ky, k,), when ky — ky = 1 and when k, — ky > 1 are given by (2.54)
and (2.55) respectively for any real-valued ki, k, where k, > 2.

m(ky, kz) = g2m(ky, ki) + 26,0,0°m(k, — 1) + 20%0* (2.54)

m(ky, k2) = gm(ky, ky — 1) + 810*m(ky) (2.35)

The proof of lemma follows from above.

2.3.2 Third Order Cumulants
As stated earlier, the third order cumulant C(ky,k,) of a real-valued process X is
defined by C(ky, k2) = E[(X, — 8)(Xek, — #1)(Xeaks — 2)]. This can be simplified as
Cl(ki.k2) = E(X Xerk, Xesrs) — p[R(Ky) + R(k2) + R(kz — ky)) — 1%, where p = B(X,)
and R(k) = E(XXues) — 12
Casel: ky=ky=k

When k, = k, = k we have, C(k,k) = m(k, k) — p(R(0) + 2R(k)) — p°.
It follows that for k£ = 1, C(1,1) = m(1,1) — u[R(0) + 2R(1)] — 4%, which can be
simplified into,

C(1,1) = ¢1C(0,0) + BE(X}e]) + 2610, E(X]e,) + (36} ~ 1)uR(0) + 634°
— 2R(1) +c*u— 4t (2.36)

And when k = 2 the third order cumulant can be obtained as,

C(2,2) = ¢iC(1,1) + ¢}626°C(0,0) + 0{ 0> E(X}er) + 26,63 (X e,)
+ (361670% + 6] — )uR(0) + 26{uR(1) — 2uR(2) + 8163° + o1’
+ 36uo* + pot +4416:0°m(0) + 86,670y — 1. (2.57)
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We can obtain the third order cumulant, C(k,k) for £ > 1 as shown below. By
defining C(k, k) = m(k, k) = p[R(0) — 2R(k)] — p* we have,

Clk.k) = &m(k —1,k— 1)+ 262> E(Bm)"m(k —r=2k—r-2)
=
+ B VE(XYE) + 266 o™V E(Xe,)
+ 1600 SO0l — 7 —3) + D3 4 380 + 86,0
=

k=4
+ 4610{0°n Y (010)" + 0’ p+ 461010°m(k ~ 2) + dfi0”
r=0

- WlR(O) +2R(E)] - .
This can be simplified into
C(k.k) = $C(k — L.k — 1) + 626%0* ‘Z(O.aj"(;(k —r~2k—r—2)+SB (258)
where

SB

1670 E(o.n)”u(m(o) +2R(k-r—2)} +SB
=
w{2R(k) + 26TR(k — 1) + R(0) + 6{m(0) — u°}
Gt VE(X]e]) + 2600 o VE(Xe,)

k-3
163630 Y (010)" m(k - r — 3) + 6% D26~V (3 + 30307 + 86.070%}
=

2

s

=

*

16,63°u kf(o.a)” +0%u +46%0,0°m(k — 2) + 46,6,0%.
=

This is a form of Yuke-Walker type of difference equation for the cumulants of
APBL(1,1).
Case 2: ky > ky
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When k; =1 and k, = 2, the third order cumulant is derived as shown below;

c(1,2)

= m(1,2) - u(2R(1) + R(2)) -

= éim(1,1) +26:6:0°m(0) — p(2R(1) + R(2)) — i + 46{c*n

= éu{m(1,1) - u[R(0) +2R(1)] ~ 1’} + 614[R(0) + 2R(1)] + 61
26,0,06°m(0) + 46%0*u — p(2R(1) + R(2)) — 1i*

61C(1,1) + u{61R(0) +2(6, — )R(1) - R2)} + (61 — )i*
26,6,0°m(0) + 460

G1C(L,1) + dm(O)u — duis® + 28im(0)u + 6614° — 467y’

— 26im(0)u — 24° — Sim(0)u — bus® + 2674’ + 26:m(0)

— 20im(0)p + 4y — 8 p® + 467K + 6’ — i

$1C(1,1) + im(0) — 31 + 1 — Gm(0)s + 267 44°

$.C(1,1) + m(0)p(1 — 61) + (1 — 36y +267)

6:C(1,1) + orm(0)u(1 = 61) +*{(1 - 61)(1 - 261)}

61C(L,1) + u(1 = 61){1(m(0) - ) + u*(1 — ¢1)}

GiC(1,1) + p(1 — 61){¢1R(0) +610°u}

61C(1,1) + 6,0%(6, R(0) + 610%p). (2.59)

3

+

]

]

i

(]

Proceeding as for C(1,2), we obtained expressions for the third order cumulant when

k=3.

C(1,3) = 63C(1,1) + 6:8:0%(61 R(0) + 6,0%p) = 6:C(1,2). (2.60)

Similarly an expression for the third order cumulant for a real-valued k, when k, = 1

and k, = k can be shown to be;

C(1,k) = ¢§'C(1,1) + 6526,0* {1 R(0) + 8,0°u} = ¢572C(1,2) (2.61)
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USing similar procedures, it is easy to show that for a real-valued k, = k, the third
order cumulant of X, following the APBL(1,1) model when k; = 2 can be obtained

using the expression;

C(2,k) = 6{{C(2,2) + 6:0° (61 R(0) + 8,0°p)} = 6, °C(2,3) (2.62)

From these results we found that, if ¢, < 1 the C(1,k) and C(2, k) will decrease
exponentially, otherwise, it will increase exponentially. It is also observed that the
standardized cumulants p(ky, k»), follow the same pattern as the C(ky, k). We shall
use the exponential pattern observed in the C(1,k;) or alternatively p(ky, k) for
model identification



Chapter 3

MODEL APPLICATIONS

3.1 Introduction

In Chapter 2, we derived some basic properties of some versions of the bilinear model.
In Section 3.2 of this chapter we shall present the results of simulation studies used
to examine the performance of the derived properties of the APBL(1,1) and the
APBL(1,2) models.

One of the important uses of time series models is to provide forecasts for the
future. Therefore in Section 3.3 we shall investigate the usefulness of the APBL(1,1)
model, by using it to make one-step-forecasts on three real life data. For each of the
data, we use the C(1,k) derived in Chapter 2 to ensure that the APBL(1,1) is a
suitable model for the data before any estimation is done. We shall use the method
of parameter estimation described in Chapter 1 to estimate the parameters of the
bilinear models. The results of the forecasts shall then be compared to similar fore-

casts using appropriate linear models where i Linear model idk
procedures were discussed in Chapter 1.

In this chapter, firstly, we shall use simulated data to study the pattern in p(1, k;)
derived in Chapter 2 for the APBL(1,1) model. Secondly, we shall transform the
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three data sets studied to stationary forms, investigate the pattern of the p(1, k).
then fit the APBL(1,1) model to them. Thirdly. the ACF and PACF shall be used

to determine the order of appropriate linear models for comparison.

3.2 SIMULATION STUDIES

From the APBL(1,1) and APBL(1,2) models, we generated 1000 observations for
three distinct values of ¢y, 8y, #,, and o?. The simulated random variable e,, t € z,
are mutually ind dent and identi istril d as N(0,0%), for each generated

set of observations.
The sample mean, variance and autocorrelation were calculated for each of the

data in the 1000 simulations for the two models with fixed parameters. While the

third order plky, ky) for ky = 1,&2, and k; = 1,2,...,30 are
calculated for the APBL(1, 1) model only. The reported results are the averages of the
means, vari: ion values and the dized third order I

The p(ky, k2) will be used for model identification as we noted in Chapter 2.

The exp
APBL(1,1) and APBL(1,2) models and the cumulants of the APBL(1,1) model
were given in Chapter 2. The theoretical results in all our tables are computed from

for the th ical mean, the it structure for both the

these expressions.
According to Brockwell and Davis(1996), we can estimate the mean, autocovari-

ance and third order cumulant as follows. Suppose i, Zs, . . ., Z, are observations of

a time series. The sample mean of z,,z,,...,1, is estimated by;

The sample autocovariance function for the observed data z;,z,, ..., Z, is estimated
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by;
T (Xewk = 2)(Xe = 2)

n—k

R(k) =
and the sample autocorrelation function is;

R(k)

k) = 70)

The third order cumulants are estimated by;

et (Xe = 2)(Xerky — 2)( Kk — E)

Clkr ko) = ks (3.1)
while the ized third order Oyet(2001)) and the sample version
are given by;

_ Clknky)
ok ko) = C(0.0) (3.2)
¢ (k.,l:,)
ki, k) = 3.3
Ak ke) = 20.0) (3.3)
respectively.

3.2.1 Result of Simulation Studies

The parameters used for the APBL(1,1) models for the three simulations are given
below.

First Simulation; ¢, = 0.70, 6, = 0.50, 6, = 0.20, 0> = 1.0.

Second Simulation; ¢, = 0.50, 6, =0.20, 6, =0.05, o> = 1.1.

Third Simulation; ¢, = 0.40, 6; = 0.35, 6, = 0.20, o = L.15.

Table 3.1 presents the mean, variance and the C(0,0) for the APBL(1,1) model.
In all the tables TH and ET denotes i derived ies) and esti-
mated values respectively. The table shows that the estimated values of the mean,
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variance and C(0,0) are quite close to their theoretical values for the APBL(1.1)
model.

Table 3.1: Mean, Variance and C(0,0) Using APBL(1, 1)
tonl imulation 2 . ion 3
TH ET | TH ET | TH ET
Mean 1.6667 1.6552 | 0.4840 | 0.4840 | 0.7715 | 0.7706
Variance | 11.9658 | 11.6510 | 1.9912 | 1.9839 | 2.8302 | 2.8286
C(0,0) |390.8152 | 411.5872 | 1.3785 | 1.3950 | 5.4691 | 5.5987

Tables 3.2, 3.3 and 3.4 present ten values of the autocorrelation, standardized C(1, k)
and standardized C(2, k) respectively using the APBL(1,1) model. The theoretical
values compare perfectly well with the estimated values in each of the tables except for
k 2 8. These confirm the accuracy of the derived properties of the APBL(1, 1) model.
It is important to note that as k increases, R(k), C(1, k) and C(2, k) approaches zero
for the APBL(1,1) model. This behavior is a feature of the ACF of bilinear models.
In fact, for the diagonal pure bilinear model, the ACF cuts off after lag g + 1.
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Table 3.2:

1

Using APBL(1,1)

2

3

TH

ET

TH

ET

TH

ET

0.7696
0.5387
0.3771
0.2640
0.1848
0.1294
0.0905
0.0634
0.0444
10 |0.0311

cmqam»unv-:.-E

0.7657
0.5341
0.3699
0.2514
0.1662
0.1099
0.0722
0.0472
0.0307
0.0189

0.5588
0.2794
0.1397
0.0699
0.0349
0.0175
0.0087
0.0044
0.0022
0.0011

0.5556
0.2743
0.1336
0.0641
0.0304
0.0143
0.0046
-0.0006
-0.0023
-0.0030

0.5262
0.2105
0.0842
0.0337
0.0135
0.0054
0.0022
0.0009
0.0003
0.0001

0.5235
0.2068
0.0793
0.0290
0.0086
0.0011
-0.0011
-0.0024
-0.0035
-0.0036

We note that these results satisfy the property ¢, = p(k)/p(k —1) derived in Chapter
2 for all the ten values of k in the first 2 simulations and up to when k = 8 in all

the third simulation. In a real time series. we can use this result to obtain an initial

estimate of ¢;. All we need to do is to estimate j(k) from the data.
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APBL(1,1)

Table 3.3:

d C(1, k) Usi

1

2

3

TH

ET

TH

ET

TH

ET

-s!nnoumu-a.wnv—?rE

0.8152
0.5824
0.4077
0.2854
0.1998
0.1398
0.0979
0.0685
0.0480
0.0336

0.7897
0.5559
0.4128
0.2658
0.1565
0.0733
0.0334
0.0131
0.0028
-0.0013

1.1096
0.7501
0.3751
0.1875
0.0938
0.0469
0.0234
0.0117
0.0059
0.0029

1.0829
0.7249
0.3591
0.1780
0.0868
0.0403
0.0161
0.0017

-0.0089

0.9223
0.4950
0.1980
0.0792
0.0317
0.0127
0.0051
0.0020
0.0008
0.0003

0.8688
0.4591
0.1755
0.0673
0.0258
0.0092
0.0018
-0.0002

-0.0059
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Table 3.4: dardized C(2, k) Using APBL(1,1)
lation 1 i ion 2 imulation 3

TH ET | TH ET | TH ET
0.6259 | 0.5559 | 0.7501 | 0.7249 | 0.4950 | 0.4591
0.5012 | 0.6033 | 0.5437 | 0.5388 | 0.4525 | 0.4319
0.3225 | 0.4328 | 0.3695 | 0.3567 | 0.2314 | 0.2117
0.1612 | 0.2962 | 0.1848 | 0.1769 | 0.0926 | 0.0808
0.0806 | 0.1794 | 0.0924 | 0.0862 | 0.0370 | 0.0321
0.0403 | 0.1065 | 0.0462 | 0.0411 | 0.0148 | 0.0124
0.0202 | 0.0511 | 0.0231 | 0.0158 | 0.0059 | 0.0045
0.0101 | 0.0214 | 0.0115 | 0.0034 | 0.0024 | 0.0011
0.0050 | 0.0080 ( 0.0058 | -0.0029 | 0.0009 | -0.0007
0.0025 | 0.0012 | 0.0029 | -0.0078 | 0.0004 | -0.0040

swmﬂmmaam-—»g

Table 3.5 shows the mean and variance computed from the three simulations using the
APBL(1,2) model. Again we find that the theoretical values compare closely with
the estimated values. Table 3.6 is the table of the first ten autocorrelation using the
APBL(1,2) model. The theoretical results also compare closely with the estimated

values, except for when k > 4.

Table 3.5: Mean, Variance and C(0,0) Using APBL(1,2)

ion 1 i ion 2 imulation 3
TH ET |TH ET | TH ET
Mean 2.3333 | 2.3087 | 0.6050 | 0.6047 | 1.212 | 1.2122
Variance | 39.3787 | 49.5405 | 3.2623 | 2.1395 | 6.276 | 4.8375




Table 3.6: Autocorrelation Using APBL(1,2)

Lag | Simulation 1 imulation 2 3
k |TH ET | TH ET | TH ET
1 |09385 | 0.8222(0.6062 | 0.5946 | 0.7708 | 0.6839
2 | 06214 | 0.5733|0.2041 | 0.3108 | 0.3037 | 0.3351
3 04172 | 0.3803 | 0.1134 | 0.1517 | 0.0832 | 0.1301
4 |02742 | 0231400230 | 0.0729 | -0.0051 | 0.049

0.1742 | 0.1229 | -0.0221 | 0.0346 | -0.0403 | 0.0182
0.1042 | 0.0578 | -0.0447 | 0.0160 | -0.0545 | 0.0061
0.0551 | 0.0209 | -0.0560 | 0.0053 | -0.0601 | 0.0010
0.0208 | 0.0000 | -0.0617 | -0.0005 | -0.0624 | -0.0019
-0.0032 | -0.0081 | -0.0645 | -0.0024 | -0.0633 | -0.0039
10 |-0.0200 | -0.0116 | -0.0659 | -0.0031 | -0.0636 | -0.0048

© ® N o o

The plots of the estimated values of all the properties studied for both the APBL(1,1)
and the APBL(1,2) models are given below. For each of the plots, the theoretical
values are overlaid on the estimated for comparison. The pattern of exponential decay
derived in Chapter 2 is closely modeled by the plots in Figure 3.1. We note that the
A(1,k) in X; = T}, 0;X,—jec; + & cuts off after k = g + 1, a pattern which can
be used for identification of a diagonal pure bilinear model. Thus if 5(1, k) does not
cut off after k = g + 1, but decays exponentially, the model is most likely to be a
APBL(1,1). These distinct patterns in different versions of bilinear models can be
used to determine the order g of the model.

It is worth mentioning that in practice plots of standardized cumulants computed
from real data sets may not be as smooth as the plots in Figures 3.1 and 3.2 due to
presence of noise and other components in the data that may distort the behavior
slightly. The plot should however, exhibit the general pattern shown here. See for
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instance plots of the cumulants in Section 3.3.

Figure 3.1: Plots for First Simulation
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Figure 3.3: Plots
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3.3 APPLICATIONS TO REAL DATA

In order to investigate the performance of the APBL(1,1) models as compared to

“best” linear models, the mean absolute deviation(MAD) of each of the forecasts from

the original values are calculated using the equation,

wap = Zhulli=¥i

where Y} is original value at time ¢ and ¥ is the predicted value at time t.
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3.3.1 International Airline P:

Here, we modeled data on i ional airline The totals(in
of international airline passengers data from January 1949 to December 1960 is given
in Table 1 of the Appendix. The data was quoted by Brown(1962) and has been
analyzed by Box and Jenkins(1970) and many others.

A plot of the data and the ACF are given in Figures 3.4 and 3.5 respectively. The

series shows a marked seasonal pattern and a bit of an upward trend. The seasonal
pattern could be attributed to the fact that more people travel during late summer
months as reflected by the plot. Specifically, the plot reveals that the series exhibits
a periodic behavior with d = 12 months. We also note that the variability across
the time plot is not constant. These and the time plot features of the airline data

indicate the need for some transformation on the data.

Figure 3.4: Plot of Airline Passengers
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Figure 3.5: Plot ACF of Airline Passengers
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In analyzing this data, we took logarithm to reduce variability across the series.
The seasonal effect was estimated by a 12-month moving-average as described in
Chapter 1. Finally, the trend was estil d by linear ion. Thus
given the time series {X,}, with estimated seasonal component S, and trend compo-

nent M,, we can estimate the stationary component Y; by;

Yo=X.— M, -5

A plot of the i the ion, partial
and the j(1, k) are given in Figure 3.6. We note that the pattern in the 5(1, k) suggests
a general pattern of exponential decay. Based on the plots we fit a APBL(1. 1) model

to Y.
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Figure 3.6: Transformed Data, ACF, PACF and j(1, k) for Airline Data
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To judge the performance of the APBL(1,1) model(i.e validation of model), we
removed the last k, k£ = 1,2,..., 10 observations from the total observations n = 144,
then fitted the model to the first n — k observations and predicted the (n — k +1)th
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observation removed initially. That is, we obtained a one-step-ahead forecast.The
i were then d to the original values from the data. In

a similar fashion as for the APBL(1, 1) model above , we obtained a one-step-ahead
forecast using a linear model. Suppose Y'(t) is the series of interest, when at time
t = to, we want to forecast a future value Y (to + h) given {Y (h), —00 < h < to}. Let
this predicted values be denoted by Y, (k). We use the fact that ;
EIY (to + h) — Yy, (h)]? is minimum if and only if, Y, (k) = E[Y (to + h)[Y (h), h < to].
The Y,(1) values for the ten observations are obtained separately using both linear
and APBL(1,1) models. One of the ten fitted linear and APBL(1,1) models on the
Y, are given below.
Autoregressive Model(AR)

Using the PACF plot in Figure 3.7, we fitted AR(1) models to the stationary
component, Y; when k observations are removed. We fitted the following model when

the last observation was removed,
Y, = 0.7841Y,_, +e,.

APBL(1,1) Model
Similarly, the following bilinear model was fitted on Y;, with the last observation
removed,
Y, = 0.0561Y;_ + 2.657Y;_ e, + €.

The estimated X, are then obtained using the Y,(1)’s and re-transforming. The
original and re-transformed predicted values of X; at time ¢t = 135,135,...,144,
using both linear and APBL(1, 1) models are shown in Table 3.7. A Q-Q plot of the
€/'s is used to examine the assumption for normality. From the plot shown in Figure

3.7, the assumption of normality seems plausible.



Table 3.7: Original and Predicted Values for APBL(1,1

Original Values | Predicted Values

Bilinear | Linear
432 451 474
390 406 418
461 454 478
508 534 547
606 625 627
622 609 626
535 541 554
472 469 486
461 421 480
419 464 499

The mean absolute deviation of one-step-ahead forecast errors for the ten values of
the APBL(1,1) model is 19.4 and for the linear model is 28.3. This result shows that
the APBL(1,1) model is quite better for the airline passengers data than the linear

model.

and Linear Models

3.3.2 Annual Wolfer Sunspot Number{1700-1988)

The annual Wolfer sunspot numbers data is given in the Table 2 of the Appendix. It
is a series that measures the extent of the visible surface of the sun that covered by
sunspots. This series has been studied by several researchers using different methods.
A few of previous work on this data set can be found in Box and Jenkins(1970),
Granger and Andersen(1978) and Tong(1990) books. A plot of the data and the ACF

are given by Figures 3.8 and 3.9 respectively.



Figure 3.8: Plot of Sunspot Numbers
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From the plots of the data and the ACF, it is obvious that we need to transform
the data to be able to apply the APBL(1,1) model. To reduce variability across the
series, we took logarithm, while adding one to each of the observations as there are
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zeros in the data set. Next we differenced the data three times to make the series
stationary. The plot of the transformed data set, the ACF, PACF and the p(1, k) are
given by Figure 3.10. A normal plot of the e’s was used to investigate the assumption
of normality of the errors, e,. Figure 3.11 shows that the e,’s are approximately
normal.

Figure 3.10: Transformed Data, ACF, PACF and (1, k) for Sunspot Numbers
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Using similar as for the i ional airline data, we made
a one-step forecast using both APBL(1,1) and “best” linear models. Then predicted
values were re-transformed back, so that they could be compared to the original
observations and those obtained using linear models. One of the ten fitted linear and
APBL(1,1) models are given below.
Moving Average Model(MA)

Using the ACF plot in Figure 3.10, we fitted an M A(1) model to the stationary

component, Y; when the last observation is removed;
Y, =0.9571e,-; +e.

APBL(1,1) Model
The following bilinear model is fitted on V; with the last observation removed;

Y, = ~0.4611Y,_, — 0.095Y,_ e, + €.
The estimated X, are then obtained using the Y,(1)’s and re-transforming. The

original and re-transformed predicted values of X, at time ¢ = 280, 281, ..., 289 using
both linear and APBL(1, 1) models are shown in Table 3.8.



Table 3.8: Original and Predicted Values for APBL(1,1) and Linear Models

Original Values Predicted Values
Bilinear Linear
179 30.845427 38.038485
45.9 13.389178 26.362325
66.6 117.859525 | 86.793594
115.9 88.775325 | 116.392467
140.5 102.370354 | 91.250176
154.7 132.795550 | 132.389079
155.4 385.783023 | 479.218803
92.5 140.747714 | 150.845456
27.5 27.960497 18.878941
126 3.858637 2.915898

The mean absolute deviation of one-step-ahead forecast errors for the ten values using
the bilinear APBL(1,1) model, is 47.17 and for the linear model is 53.24. Although
the APBL(1,1) model seems to make better prediction than the MA(1,1) model,
from the predicted values we note that the difference between most of the predicted
values and the original values are large. Thus the APBL(1,1) and the MA(1,1) are

not suitable for analyzing this data.

3.3.3 IBM Common Stock Closing Prices

The daily IBM stock prices during a period of 18 May 1961 to 30 March 1962 is given
in Table 3 of the Appendix. Usually the stock market closes on weekends and holidays,
leading to missing observations. To avoid any complications that this may cause, we
treat partial observations as full. Other time series analysts who have analyzed this
data in a similar way are Box and Jenkins(1970) and Tong(1990). An alternative
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approach would be to use imputation techniques to estimate the missing observations
before modelling the data. We have not done that here because the emphasis of this
practicuum is on using the patterns in the third order cumulants for modeling. A
plot of the data and the ACF are given in Figures 3.12 and 3.13 respectively.

Figure 3.12: A Plot of IBM data
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In analyzing the data, we took the logarithm and differenced once in an attempt to
stabilize the mean and variance.The ACF plot does not decay very fast suggesting
some problem with the data arising from the trend. The plot of the transformed data
set, the ACF, PACF and the j(1,k) are given by Figure 3.14. A normality plot of
the random error e, (Figure 3.15) shows that the normality of the e, can be assumed.

Figure 3.14: Transformed Data, ACF, PACF and C(1, k) for IBM data
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Figure 3.15: Plot of Airline Passengers e,'s

The ACF and PACF plots appear to suggest that the series Y, is white noise. In order
to verify this, we obtained the ACF plot of Y2. It is well known that if Y is a white
noise then ¥;? should also be a white noise. However, the ACF plot of ¥;? which we
do not display here indicates that an ARMA model is more appropriate. This is a
typical behavior of a bilinear series which has a masking effect on the ACF. For this
reason we only fitted the bilinear model to the data and compared the result with
the original values in a similar fashion as was done for the international passengers
data. One of the fitted ten bilinear models is given below.
APBL(1,1) Model

The following APBL(1, 1) model is fitted to ¥; with the last observation removed;

Ye = 0.0561Y;-; + 2.657Y,—1€—1 + 1

The estimated X, are then obtained using the Y;,(1)'s and re-transforming. The
original, re-transformed predicted values of X, at time ¢ = 360,361, ...,369. using

the bilinear models are shown in Table 3.9.

58



Table 3.9: Original and Predicted Values for APBL(1, 1) and Linear Models
Original Values | Predicted Values
357 352.2045
352 346.3503
346 351.6824
352 345.4097
345 332.9585
331 338.6820
339 339.6675
340 331.0940
330 342.9945
343 347.5481
The mean absolute deviation of errors of p-ahead forecast errors for the ten

values of the APBL(1,1) model is 6.96. This value is quite small. This shows that
the predicted and original values are very close. The appropriateness of the bilinear

model is for the IBM data is evident in the predicted values.
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Chapter 4

CONCLUSION

The general bilinear model is a time series with a number of special cases which can
be studied. Several analysts have studied a variety of special cases of this model.
See for instance Granger and Andersen(1978), Gabr(1988), Subba Rao (1981). This
study is devoted to the APBL(1, 1) model with little extension to more complicated
versions of the bilinear model; APBL(1,2), APBL(1,3) and APBL(1,q).

We studied the mean, covariance structure, third order moments and third order
cumulants of the APBL(1, 1) model. Simulation studies to check the performance of
the derived properties yielded commendable results - see Tables 3.1-3.4. One major
goal of this study was to investigate the pattern in the third order cumulants of the
model in order to use it for bilinear model identification. In his study, Oyet showed
that the p(1, k) of the diagonal pure bilinear model DPBL(g)(1.1) cuts off after lag
g+ 1. This study showed that the p(l,k) of the APBL(1,1) decays exponentially
as the lags increase. This result was confirmed by simulation studies. Thus from the
foregoing, given a time series whose underlying model is unknown but is thought to
follow either the DPBL(g) or APBL(1,1) model, the methods outlined in this study
can be used to identify the right model depending on whether the (1, k) cuts off after
lag ¢ + 1 or decays exponentially.
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Another useful results of this work are the difference equations for the second
order moments and third order cumulants of X, satisfying the APBL(1,q) model for
any real valued g. As can be seen in Chapter 2, remarkable patterns can be observed
in the properties of the different versions of the bilinear model. We found that the
ACF estimates can be used to obtain an initial estimate of ¢,. Our results also show
that for an arbitrary ¢, the mean of a bilinear model APBL(1,q) can be expressed

as,
_PTLi6
T 1-6

For example, when ¢ = 1&2 the mean of X, satisfying APBL(1,1) and APBL(1,2)

I

models are given by,
610?
1-¢;

and
(61 +05)0*
1-¢

respectively. Similar patterns for the second and third order moments are given by
Lemmas (2.1-2.4) and Lemmas (2.5 & 2.6) respectively. Simulation studies using the
APBL(1,2) model showed that the results are influenced by the chosen ¢,, 8, and
8, values used. This may be due to the violation of the stationarity and invertibility
conditions for these models.

The APBL(1,1) was used to make one-step-ahead forecast on three real data.
This model was identified for these data based on the exponential decay observed
in the plot of their p(1, k) (see Figures 3.7,& 3.11). For the international passengers
data the APBL(1, 1) model produced better forecasts than their corresponding “best”
linear models (see Table 3.7). We found that both the APBL(1, 1) and M 4(1) models
were not appropriate for the sunspot numbers based on their forecasting ability. For
the IBM Prices data, no appropriate linear model could be identified from the ACF
and PACF plots(see Figure 3.18). Further work on the data revealed that it is non-
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linear in nature. And since the general pattern on the (1, k) plot of the data indicates
exponential decay, we fitted the APBL(1, 1) model to the data. The predicted result
on the IBM Prices also turned out to be very close to the original values(see Table
39).

This study and other studies in the literature have revealed that non-linear time
series exist in all fields; business, economics, science, etc. It is therefore hoped that
similar studies will be carried out on more complicated versions of the bilinear model.
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Appendix A

Data Sets

Table A.1: International Airline Passengers Data

112
115
145

129
135

348

396
461

121
125
172
183
229
234
270
318
355
363
420
472

135
149
178
218
243
264
315
374
422
435
472
535

148
170
199
230
264
302
364
413
465
491
548
622

148
170
199
242
72
293
347
405
467
505
559
606

259
312
355

463
508

278

8g

405
432




Table A.2: Sunspot Numbers Data

5.0
0.0
21.0
70.0
60.0
62.9
66.5
10.2
16.0
8.1
15.6
275
15.0
4.3
37.6
32.3
73.0
42.0
571
7.8
67.8
315
10.2
12.6
100.2

11.0
2.0
40.0
81.0
80.9
85.9
34.8
24.1
6.4
2.5
6.6
8.5
40.1
22.7
74.0
54.3
85.1
63.5
103.9
64.9
47.5
13.9
15.1
27.5

16.0
11.0
78.0
111.0
83.4
61.2
30.6
82.9
4.1
0.0
4.0
13.2
61.5
54.8
139.0
59.7
78.0
53.8
80.6
35.7
30.6
4.4
47.0
92.5

23.0
27.0
122.0
101.0
47.7
45.1
7.0
132.0
6.8
14
1.8
56.9
98.5
93.8
111.2
63.7
64.0
62.0
63.6
212
16.3
38.0
93.8
155.4

36.0
47.0
103.0
73.0
47.8
36.4
19.8
130.9
14.5
5.0
8.5
121.5
124.7
95.8
101.6
63.5
41.8
48.5
37.6
113
9.6
141.7
105.9
154.7

58.0
63.0
73.0
40.0
30.7
20.9
92.5
118.1
34.0
122
16.6
138.3
96.3
7.2
66.2
52.2
26.2
43.9
26.1
5.7
33.2
190.2
105.5
140.5

29.0
60.0
47.0
20.0
12.2
11.4
154.4
89.9
45.0
13.9
36.3
103.2
66.6
59.1
44.7
254
26.7
18.6
14.2
8.7
92.6
184.8
104.5
115.9

20.0
39.0
35.0
16.0
9.6
378
125.9
66.6
43.1
35.4
49.6
85.7
64.5
44.0
17.0
13.1
121
5.7
5.8
36.1
151.6
159.0
66.6
66.6

10.0
28.0
11.0
5.0
10.2
69.8
84.8
60.0
475
45.8
64.2
64.6
54.1
47.0
11.3
6.8
9.5
3.6
16.7
79.7
136.3
112.3
68.9
45.9

8.0
26.0

11.0
32.4
106.1
68.1
46.9
42.2
41.1
67.0
36.7
39.0
30.5
12.4
6.3
2.7
14
44.3
114.4
134.7
53.9
38.0
17.9

3.0
22.0
16.0
220
47.6
100.8
38.5
41.0
28.1
30.1
70.9
24.2
20.6
16.3

3.4

Tl

5.0

9.6
63.9
109.6
83.9
37.5
34.5
134

0.0
1zl
34.0
40.0
54.0
81.6
22.8
21.3
10.1
23.9
478
10.7

6.7

7.3

6.0
35.6
244
474
69.0
88.8
69.4
27.9
15.5
29.2
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Table A.3: IBM Prices Data

559
551
537
551
521
454
450
359
339
372
377
391

366
345

457

479
466
494
515
547
559
599
595
577
584
553
552
543
551
523
462
435
335
350
373
376
388
383
359
352

452
490
475
467
499
519
543
557
596
595
577
579
553
553
548
545
516
473
415
323
351
363
379
396
377
356

452
489
479
471
498
523
540
557
585
592
578
572
553
557
546
547
511
482
398
306
350
371
386
387
364
355
352

459
478
476
471
500
519
539
560
587
588
580
577
547
548
547
547
518
486
399
333
345
369
387
383
369
367
357

462
487
478
467
497
523
532
571
585
582
586
571
550
547
548
537
517
475
361
330
350
376
386
388
355
357

459
491
479
473
494

517
571
581
576
583
560
544
545
549
539
520
459
383
336
359
387
389
382
350
361

463
487
477
481
495
547
527
569
583
578
581
549
541
545
553
538
519
451
393
328
375
387
394
384
353
355

479
491
476
488
500
551
540
575
592
589
576
556
532
539
553
533
519
453
385
316
379
376
393
382

348

493
487
475
490
504
547
542
580
592
585
571
557
525
539
552
525
519
446
360
320
376
385
409
383
350
343

490
482
473
489
513
541
538

596
580
575
563
542
535
551
513
518
455
364
332
382
385
411
383
349
330

492
479
474
489
511
545
541
585
596
579
575
564
555
537
550
510
513
452
365
320
370
380
409
388
358
340

498
478
474
485
514
549
541
590
595
584
573
567
558
535
553
521
499
457
370

365
373
408
395
360
339

499
479
474
491
510
545
547
599
598
581
577
561
551
536
554
521
485
449
374
344
367
382
393
392

331
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