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Abstract

In this practicum, we study the properties of a special case of the general bilinear

model. The general bilinear model was proposed by Granger and Andersen(1978)

and Subba Rao(1981) Cor studying non-linear time series. Simulation studies and

real life data sets are used to evaluate the performance of the theoretical results we

derived. Tbe properties \\"e study are the mean, covariance structures, third order

moments and cumulants. We find a pattern in the third-order cumulant which is

userul in identifying the order of the model. This work is an extension of the result

of Oyet(2001). The model is used to make forecasts on three real time series data.

Also considered are the mean and covariance structures of three other versions of

the bilinear model.
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Chapter 1

PRELIMINARIES

1.1 Introduction

A time series is a collection of observatioDS generated sequentially O\1.!f time. Ex

amples of time series can be found in every area of human endeavor; from the daily

sales of a super market, yearly enrollment in schools, yearly population of a country,

to the annual gross national product of a country and so on. Due to the popular

ity of the subject, time series has recei\"ed lots of attention in tbe literature. A list

and discussion on recent developments in time series anaJysis can be found in Subba

Rao(l993).

However until recently, most work on time series analysis have been based on the

assumption that tbe series under consideration confonns to a linear model. Contrary

to thi! assumption, receot studies have shown that some data do not conform to

linear models. For example, by using tests for linearity proposed by Subba Ran and

Gabr(1981), Hinich(1982), Keenan(1985) and Tsay(I986), real time series such as the

lynx data and the sunspot numbers have been shown to be non-linear. Needless to

say, linear models will not be the best models ror analyzing these(non.linear) time

series. In view or this, a number of non-linear time series models have been de..-eloped



to handle tbe situation when linear models are inadequate. One of such mode4s is tbe

bilinear model proposed by Granger and Andersen(l978) and Subba Rao(1981).

This study is focussed on the first order bilinear model, which shall be called

AutongreMive Pure Bilinear Model of order (1,1) and denoted by APBL(I, 1). This

model is the same as tbe first order bilinear model, 8L(I, 0,1,1) studied by Andersen

and Granger(1978) and a special~ of the Subba Rao(I98I) general bilinear model.

The name" Autoregressive Pure Bilinear" model re8ects the fact that the model is

made up of both autoregressive and pure bilinear parts. The structure of the general

bilinear model, special cases and some specific bilinear models shall be gh'efl in Section

104. Our goal is to derive some properties of the first order bilinear model and use it

for identification, estimation and forecasting. Some properties of special cases of the

general bilinear model have been studied extensively by different authors- examples

can be found in Oyet(200I), Subba Rao(l98I), Subba Rao and Gabr(I984), Pharo

Dinh(I985), Liu and Brockwel:l(I988), etc.

Specifically, the standardized third order cumulant for the APBL(I,l) model is

of great interest in this study. Oyet(201)l) has studied patterns in the third order

cumulants of diagonal pure bilinear models and shown their usefulness in order iden

tification. In this ....,ork .....e extend that result to the .4PBL(I, 1) model. The diagonal

pure bilinear, APBL(O,q) model is defined by.
XI = L 9jX1_jel_j + el'

i-'
(1.1)

A summary of the pattern in the cumulants of (1.1) is given in Chapter 2. Similarly,

we shall investigate if a pattern that can be used for model identification exist in the

APBL(I,q) model .
Xl = q)IX1_1+ L 9jX,_jec_J + el

j.,1

The~ where q = 1 is investigated in this study. It is our conjecture that the



cumulants of each of these models, with distinct q, ha\-"e a unique pattern associated

with them.

Suppose we have a series which is steadily increasing over time( i.e, shows trend)

and another series which is a monthly data that is showing regular increase(peak)

in certain months and decrease{trough) in some other months of the }-ear. [n hoth

cases, it would be incorrect to assume that the observed values at each time period

is representative of the mean \--aJue. Also, if the variance is not constant hut, say

increases as time goes 00, it will be ioronect as well to be:lie\-e that .,,-e can express

the uncertainty around a forecasted mean level with a variance calculated based on

all the data. Lastly, if the autocorrelation of one half of a series is different from

that of the other half, it will be wrong to make predictions for the future using the

autocorrelation of the first half. Thus, (see Vandaele(l983)) some restrictions have

to be placed on the mean, variance and autocorrelation of a time series process for

it to be used in making meaningful forecasts. These restrictions are summarized in

what is called .!tationority. Another restriction on time series process for forecasting

is called intleTtibility. The concepts of stationarity and invertibility are discussed in

Section 1.2. In Section 1.3 we discuss some methods of linear time series analysis that

will be used in later chapters. Finally, the main object of this practicum, the bilinear

model is introduced in Section lA. The method of parameter estimation for the first

order bilinear model as ",-ell as the method of order selection shall also be considered

in Section lA.

The properties of some bilinear models are studied in Chapter 2. The perfonnance

of tbe derh-ed properties shall be evaluated by simulation studies in Chapter 3. Also in

Chapter 3, the APBL(l, 1) model shall be used to make one-step-ahead forecasts for

three real data. We present our findings and summary of this practicum in Chapter..



1.2 Stationarity and Invertibility

According to the Box-Jenkins methodology, a good time series for forecasting has

to be stationary and invertible. A time series {Xl} is said to be stationary if the

expected value of eXt} is constant for all t and the covariance matrix (X", .. " Xj .) is

the same as the covariance matrix of (Xl,.... ,..., Xl~..._)ror all nonempty finite selS of

indices (tl1~t•.. ,~n) and all h such that (t1,t.:I: •...,l.. ,t\+lo,t'+II,.. .,tlO+"') are contained in

the index set. The time series is said to be strictly stationary if the joint distributiolls

of (X", .. . ,Xl.)' and (X1,+., ... ,Xl.... )' are the same for all the integers h, nand

t l ,t1,···,t._

A model is said to be in\'ertible if it is possible to estimate the et sequence from

the given Xl values together with an exact knowledge of the generating model. In

order words, if Xl arc known to obey a model and the values of the parameters of the

model are also known, the series is said to be in\'ertihle if good estimates of er can be

derived from the knowledge of X, and some stan up values.

It is interesting to observe that none of the series we have used in our examples

are stationary. We shall therefore discuss methods of transforming a non-stationary

time series to a stationary one, while emphasis is placed on the methods used in this

practicum.

By plotting the series against time, "'e will be able to obscl'\'e if the series bas a

trend, seasonality, discontinuity, outliers and so on. We may then be able to decom

pose the data as a realization of the process as;

where ml is the trend component, &1 the seasonal component and YI the stationary

component. The deterministic components rn,. and &, can then be estimated and

extracted leaving the stationary part for modeling. Sometimes it may not be possible



to deeompose the series into these compooents, in which case other methods have to

be adopted to transform the non-stationary series to a stationary one. The methods of

transforming non-stationary data to stationary data described below are summaries

of a few of tbe methods discussed in the literature. See Brock..,.-ell and Davis(l996),

and Vandaele(1983) for details.

a) Stabilization of Varian~

A useful class of variance stabilizing transformations is the &X·Cox transforma

tion. The logarithm and square-root transformations are two useful members of this

class. To stabilize the variance across a series, we can take the logarithm or the

square-root of each of the observations. If the series contains non-positive observa

tions, we need to add a number to each of the observations to make them positi\-e

before taking logarithm.

b) Removal of tk Trend and Seuonal ComponenU

Some methods of removing trend and seasonality discussed in the literature used

in this study are;

i) Mouing Average FiJJ.er: Let q be a noo-negative integer, tbe tfeod in a series cao

be estimated io the absence of seasonaJity using the following upression,.
ml = (2q + I)-I L X l _ j ,

j .. -q

q+l ~ t S; n-q.

(1.2)

It can be observed that this equation caonot be used for l S; q or l > n - q, since

Xl is Dot observed for l S; 0 or t > n. To remedy this, it has been suggested to take

XI = XI for t ~ 1 and XI =Xn for t > n. By using these values, we will have a

complete series which will make analysis much easier. However, the first q and the

last q trend estimates obtained from using these values may not be as gOOli as the

remaining estimates.



ii) &gre.uion Modw: A regression model.
Xt ==fJo+ I: {Jjt j + 1"; == mt + 1";,

j:1

can be used if the trend is assumed to be a polynomial of order q. The trend estimate

is the represented by the detenninistic part,.
mt =Po+ I:Atj

.
jzl

iii) Differencing: This involves subtracting the values of the observations in a time

series from one another in some prescribed time-dependent order. GiV1!n the time

series {Xl}' the first order difference is given by;

where B is the backward shift operator. BjXI = X t - it i.e, BXt = Xt _ l and the

second order difference is defined as,

This can be extended to any order k. Suppose

where mt = fJo+fJ1t and 1"; is stationary with mean zero. By applying the \l operator

to the trend component the linear trend component(increasing or decreasing mean)

can be stabilized or made constant as follows:



In the same manner, a polynomial trend o( order Ie can be reduced to a const.ant by

using the operator 'VI<.

To estimate the seasonal component, the trend has to be estimated first by using

appropriate moving average filter. For e'.en period d, let d = 2q, then

q <t :5n-q.

For odd periods we take d = 2q + I and use the moving average filter given in equa

tion(1.2). Next we estimate the seasonal component. For each of Ie = 1,2, ... , d, we

compute the average WI< o( the deviations

Xi<+ill- mk+jll,q < Ie + jd:5 n -q.

In order for the a\-erage of the seasonal effect to be zero, the seasonal component is

estimated by, 51< = WI< - d- ' Et=l Wi, Ie = 1,2, .. . ,d and 51< = 51<_11, Ie > d. We can

then define the deseasonalized data as, d! = XI - Sh t = 1,2, .. , n. Finally the trend

of the deseasonalized data is estimated using any of the methods discussed earlier.

1.3 Linear Time Series Analysis

This section discusses briefly the three major linear models; autoregressive, moving

average and mixed autoregressive moving average models. We discuss here station

arity and invertibility conditions and &x·Jenkins procedures (or linear models.

a) Autoregressive(AR) Model



An autoregressive process of order p, denoted by AR(P) is gi\'en by;.
XI = L¢ljXI- i +el

j=1

(1.4)

where, el is wbite noise distributed as N(O,o'l), ¢lj are the parameters of the autore

gressive model that need to be estimated, and X. is uncorrelated witb t!t for s < t.

Finite order autoregressive processes are usually in\'enible by vinue of the expression

(1.4). The stationarity condition for (1.4) is obtained by writing (1.4) in terms of tbe

e, 's and seeking the condition under which the resulting infinite series will com'erge.

Suppose the AR(P) process is rewritten using the backward shift operator as

where, 4I,(B) = 1 - ¢lIB - ~B'l - . _- ¢,B' and Bi XI = XI - i 

We now write Xl in teons of el as

The series 4I;'(B)e, converges if the roots of 4J;'(B) = 0 are Jess than 1. [n other

words, tbe AR(p) process is said to be stationary if the roots of the equation 4>,(B) =
olie outside of the unit circle.

For example given an AR(I), 4J(B) = 1 - ¢IB, the .4.R(l) will be stationary if

IBI > I, tbat is wben [¢It! < I.

b) Moving Average{MA) Model

A series is said to satisfy a moving average process oforder q if it can be represented

(I.')



where 80 = 1, 8j , j = 1,2, ... ,q are the parameters of the AI.4 process, et is wbite

Do4se distributed as N(O,tr) and 1:1..o8j < 00.

Similarly moving average processes are usually stationary by virtue of tbe expres

sion (1.5). The condition for invertibility of tbe M A process is stated below. Using

the backward shift operator, we have,

where 9(B) = I:1=o9j Bj.

Similarly for an M A process to be invertible, the roots of 9(B) = 0, must lie

outside the unit circle. That is, for an M A(I), 9(B) = 91B, the condition for

in....ertibility is that 91 < 1.

c) Mixed Autoregressiw! Moving Average(ARMA) Process

The ARMA(p,q), represents a process with an autoregress:i~'e term of order p and

moving average of order q. It can be written using the backward shift notations as

(1.6)

where ~p(B) =1 - ¢tB - .. - ¢,B' and 9.(8) = I - 8,B - ... - 9.~

For the process to be invertible, the roots of eq(B) = 0 must lie outside of the

unit circle. Likewise for the process to be stationary, the roots of the ~,(B) =0 must

lie outside of tbe unit circle.

To identify tbe AR(P) and M A(q) models presented abo\'e \\'e use the autocor

relation function(ACF) and partial autocorrelation function(PACF). Several studies

on linear time series analysis have shown that the PACF of an AR(p) model cuts off

after lag p while the ACF decays exponentially. On the other hand, the ACF of an

MA(q) model cuts off after lag q and the PACF tails off. Therefore we can use the

PAGF and AGF to identify A.R(p) and MA(q) models respectively.



For detailed discussion of linear time series analysis, interested readers coukl

read one or more of the following books; Andersen(1971), 60...: and Jenkins(I9iO),

Billinger(1975), Chatfield(1975), Pankratz(1983), Priestley(1981) and Vandaele(1983).

1.4 Bilinear Time Series Models

A time series {Xl} is said to be bilinear if it satisfies the difference equation.

• , ... l:

Xl + LajXt _i = LCje,_j + LLbijXI_iel_j (Li)
j=1 j=O islj"'l

where Co =1, elt is a sequence of independently and identically distributed random

\'llriables. v.itb E(el) =°and E(~) =0" < 00. Using the notation Subba Rao(I981),

the model(!.7) can be denoted by BL(p,q,m,k).

Ir we set b;j = 0, for all i,i, then (1.7) reduces to .4RMA(p,q). Thus the bilinear

model is an extension of the AR..~IA process and the ARMA process can be seen as

a special case of the bilinear model. Three other special cases of the bilinear model

(i) If b;J = 0 for all i < i in (1.7) we have the super.diagonal model,

(ii) if b;"j =0 for all i 2: i, we have the sub-diagonal model and

(iii) when bi"j =0 for all i i- j, the diagonal model is obtained.

Subba Rao and Gabr(1984) have studied some properties of these models in details.

Tbis study sball examine cases of (1.7) when p = I,q == 0 and m(= k} =- 1,2,3

and any noonegati\'e integer q. In what follows, OJ sball be replaced by 6;. Cj shall

be ommitted and bij shall be replaced by 9j • Thus when p == I, q == 0, m = k == 1,

we obtain the first ord!!r bilinear model, BL(I,a, I, I), which shall be denoted by

10



·4PBL(I, 1) in this study. The expression for the .4PBL(1, 1) is gi\~n by;

(1.8)

This model is the object oftbis study. Some attention is also paid to cases, ..oIPBL(1,2),

APBL(I,3) and APBL(I,q) models, for arbitrary q E Z. By using similar nomen·

c1ature as APBL(I, 1) these models are given below:

APBL(l,2),

APBL(l,3)'

APBL(l,q), .
X, = tP1X,_1+ E 9jX,_jl~l_j + el',.,

1.4.1 Conditions for Stationarity and Invertibility

(1.11)

Given the model (1.7), Pham and Tran(1981) used Markovian representation of the

model to show that the condition for stationarity of the process Xl is gh-en by of +

u2~1 < 1. This equivalent to tPf + a29f in the APBL(l, 1) model.

We state below the condition for the general time series (1.7) to be asymptotically

second-order stationary according to Subba Rao(l981). Consider the bilinear model

BL(p,O, 1) i.e: , .
Xl + L aiXI_i = el +L bilXI_iel_1

pol i=l

Define the following matrices,

11

(1.12)



B,a,=

o ° ° °
where C~l = (1,0,0, .. ,0)' and HlzJ> = (1,0,0, ... ,0)'.

Let %1 = (X"XI_I» .,XI_,*I)" The bilinear model (1.12) can be re.written

using the abm-"t! matrices in tbe vector form denoted by VBL(p) as,

(1.\3)

Using the above notations, Subba Rao(l98l) showed that the sufficient condition for

the time series Xl generated from (1.13) to be asymptotically second-order stationary

is that

p(A (8) A + 8(8)8.:> < I,

where ® is the kronecker product and p(.) is tbe spectral radius.

To obtain the condition for iO\"t!rtibility for the bilinear model, Subba Rao(l98l)

made use of a more general ckfinition ofinvertibility provided by Grallger and Ander

sen(1978). They defined invertibility as follows. Suppose XI is a time series satisfying

12



the model,

(1.14)

where {el} are independent random variables. Sinee the random variables (ell are

not observable, they are "estimated" byel by taking the initial values of i, to be zero.

The model (1.14) is said to be invertible if,

when the model and the parameters are Irnown completely. And by de6ning the model

(1.12) as VBL{P) given by (1.13), the condition for invertibility can be obtained as,

H' BE(:r1 E .r;)B'H < (H'C)2 for the model (1.14)

1.4.2 Order Selection

To select the right order of the bilinear model to fit to a set of data., Subba Rao(1981)

provided an algorithm which invoh-es using the Akaike's eriterion(AIC). Generally,

what this method suggests is that we set upper bounds to p, m, k and then search

over all combinations of p, m, k \\'ithin tbese bounds. The combination with the

minimum AIC is chosen as the best model. The limitation of this method is that \\'C

do not know when the minimum AlC will be obtained and thlls do not know when

to stop. That makes the method quite tedious to implement.

In this study, we propose a simpler metbod of order selection for .4.PBL(I, 1) based

on the standardized tbird order cumulants p(1, k). Fint the data is made stationary

and then the plot of the P(1,k) is observed. The right model for the data is then

selected based on the pattern in the p(l, k) plot as compared to that of APBL(l, 1).

13



1.4.3 Estimation of the Parameters

In order to use the model for forecasting, we need to obtain the estimates of the

parameters of the model. We only state the method of estimating the parameters for

the .4PBL(I, I) model here. The method of parameters estimation for the general

bilinear model BL(p,q, m.k) can be found in Subba Rao(1981). We adapt the method

to the first order bilinear model;

(US)

where (e,l are independent and each of el is distributed N(O.u2 ). We assume the

series is im-ertible and we have a realization {XI ....y2•.. "X.. } on the time series {X,},

In obtaining the parameter estimates we used the method suggested by Subba

Rao(1981), with p ::: m ::: k ::: 1 and q ::: 0 in (1.7). The likelihood function of

{X ltX 2 , . .,X.. } is the same as the joint density function of {e2,C.1, ..,e.. } and is gh-eD

by;

(2'1ra~;("-IJ{2exp{-~ ~en.
To obtain the parameter estimates we need to maximize tbe likelihood function,

wbich is equivalent to minimizing, Q(8") with respect to'1' where Q{O") ::: :E~,",2e~

and 0" =: {"pltOd.

The values of (J' are obtained using the Newton-Raphson iterative techniques. The

partial derivative of Q((J') are ghoen by;

14



We assumed et =0, thus ;

De6ne

d(e')=[~ ~la., 811, '

H(eO)~[~ :!].
~ 0;;

That is, H((I") is a matrix of second order partial derivatives. Expanding near 0" = 9"

in a Taylor series, we ha\'e;

IG(e')li'=~ ~ 0 ~ G(e') + H(9")(Ii' - e').

This implies;

Ii- ~ e' - W'(e')G(e').

From above, \\'e have the Newton.Raphson iterative equation,

(60
)'" = (e')' - W'«e')')G«(e')'),

where ((I')" is the set of estimates obtained at the klh. stage of iteration. It follows

that by starting with some initial values for the parameters to be estimated, we can

iterate to convergen~ using the equations above to obtain the parameters tstimate

of the bilinear model. In obtaining the parameter estimates in each of our examples

we tried different values of initial parameters and the parameter estimates turned out

to be the same.

15



Chapter 2

PROPERTIES OF THE APBL

MODELS

2.1 Introduction

This chapter, can be split into two parts. In the first part wnicb involves the model

of interest, "'e shall obtain expressions for the mean, tbe covariance structures, third

order moments and third order cumulants. This research work is dc\ooted to tbe model

(l.8). Thus properties deri\~ in this part form the core elements of this study. The

model shall be denotoo. by ."-PEL(I, 1) as in Chapter 1.

In the second part of this chapter, the expressions for the means and the covariance

structures or some other versions of the bilinear models deooted by APBL(I,2),

.4.PBL(l,3) and APBL(l,q) are derived. These models were given by equations

(1.9) (1.10) and (l.ll) respectively. The purpose of this second part is to investigate

whether some pattern found in the APBL(l, 1) model also exist in more complicated

versions of the bilinear model. for this reason, some of the results in this part are

only partially derived..

In obtaining the expre5Ston5 for the mean, moments and cumuJants, we shall use
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the following assumptions and conditions:

• Stationarity and invertibility are assumed.. Thus for a unique t and h, S(XI ) :=

E(X1,J, E(XI~I) =S(X..~ ... ), E(Xl) = E(XI),

E(Xle~) = E(..'<1e~), and so on.

• The random \'llriable ~l is a series of independent and identically distributed

Gaussian random variables. It can be shown that E(en := 0, £or u = 2j + 1,

j = 0, 1, 2, ..., and for any t, E(~n = (7', E(e:) = 30~, E(e~) = 15a~, etc.

• And by expression (1.8) the random elTO£, ell is independent o£ XII £or h < t,

that is, E(X:eD = E(X;)E(eD, h < t.

Defining the th.ird order curonlant C(k l , k,) of a process Xl by C(k l , k,) = E[(XI 

p)(XI+t , - p)(XI+l-t - p)J. we shall also use some symmetric relationships deri\-oo by

Gabr(l988) in this chapter. Gabr(I988) has shown that the cumulants C(kl, k,) of a

real valued process Xl has the £ollowing symmetric relationship;

This shows that, once the value of C(kc, k,) in the upper half of the quadrant is

known, we can extend to the entire Euclidean plane, using the symmetry property.

Thus, we shall derive the C(k.. k,) £or kl =k, =k and k, > k l only. Oyet(2001)

shows that £or the diagonal pure bilinear model(l.l),

C(kh k,) = 0 £or k l 5: q, k, - k l > q, and C(k ll k,) is nonzero for k l > q , and

k,-k l ~ q when k, > k l . The pattern exhibited by C(kl'~) can be summarized as;

Table 2.1: C(k l , k,) £or arbitrary q

k, 1 2 3 q q+l q+2 q+3
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where nz denotes nonzero values. It is obvious from these patterns tbat C(k" k,)

cuts off after lag q + I. Thus the standardized cumulant p(kt. k2 ) =C(kl , k2)/C(O,O)

can be used for diagonal pure bilinear model identification.

Tbe expression (or the mean and covariance structure of some bilinear models are

derived in Section 2.2 by taking expectations and using the assumptions stated abo\-e.

In Section 2.3, expressions (or the third order moments and third order cumulants of

the ""PBL(I, I) model are obtained.

2.2 Mean and Covariance Structure

2.2.1 Mean

For each of the four models examined, the expression (or the means are presented

below. Given the APBLO, I) model,

(2.1)

we have

Now,

which by assumptions in Section 2.1 yields;
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Thus the mean of XI satisfying the APBL(l, I) model is

(2.2)

Following the same procedure and using the fact that £(XI_2el_2) =E(XI_Jel_3) =
q2, we find thattbe mean of Xl satisfying .4.PBL(I, 2) model is

(2.3)

and tbe mean of Xl satisfying APBL(I, 3) model is

The technique can be extended to the more general model .4.PBL(I,q),.
Xl = ¢IXI_1+~ 9i X I _;t!I_; + el

(2.4)

(2.5)

to obtain E(XI_;el_i) = E(e~_i) = 0"2. It follows that the mean of Xl satisfying

APBL(l,q) is

(2.6)

2.2.2 Covariance Structure

In what follows, M! derive the second moment, m(k) = £(XIXI+,,) for each ohhe four

models studied. The expression for the cm-ariance structure R(k) = m(k) - 1J2 can

then be obtained by making relevant substitution in R(A:) for the model in question.

APBL(l,l) Model

To obtain the second moments of the .4PBL(1, 1) model, ....oe shall use the fol·

lowing expressions which can be deri\'ed easily by taking expectations and using the
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assumptions in Section 2.1.

where.

9,= _8_,_.
l-¢l1

When k =0, woe ha~'e

m(O) ¢I~E(X,2_1) + 9~E(XL,e~_,) + E(e~) + 2¢10IE(X;_le,_d

+ 28\E{XI_lel_\e,) + 2~\E(X,_\e,),

(2.7)

(2.8)

(2.9)

By using the expressions abo~'e, the second moment ror tbe .4PBL(I, I) model when

k =0 can be expressed as,

(2.10)

When k = 1, the second moment is given by

It follows that

(2.11)

One useful expression for obtaining the second moment or the .4PBL(I, I) model

when k > 0 is E(X,+t_le,+t_1XI) = E(Xle~+t_l) = 8o(T~ = (T2JJ , where 00 is gi~'en
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by (2.9). When k = 2, it is not too difficult to ~'efify that m(2) = E(XI Xt +2 ) =
';IE(XIX,+d + 8\E(Xl+lel+IX, ), And by making relevant substitutions, we have

For general k, the structure of the second moment is given in the Lemma 2.1 below.

Lemma 2.1 For any nonnegative integer valued k > 1, the Sf'XOnd moment of Xl

sali4fying the .4PBL(I, I) model i4 gil1eJ\ by the diff~ equation,

(2.13)

So that R(k) = m(k) - p.2 = tP1R(k - 1).

The proof follows directly from using the results above. Let p(k) = R(k)! il(o) be

the estimate of the autocorrelation function at lag k. One useful consequence of this

result is that an initial estimate of 411 can be obtained from ~I = P(k)!P(k - I) for

iterative estimation of the parameters when dealing with a real time series. This can

be seen in the results of the simulation study in Chapter 3.

APBL(1,2) Model

Gil"en the .'lPBL(I,2) model, the expressions for the second moment of X, can

be derived by using the preliminary results below.

(2.1<)

(2.15)

{41~q2(1 - ¢1)m(O) + Jq4(l - 41d + 4411~0"' + 2411818,tT'

+ 4tP~81~0"1 + 2q,~~U6 + 24119~u' + 281B,U6}
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(2.16)

~

The second moment for the APBL(I, 2) model, when k = 0 can be e."pressed as,

E(X~) ,p~E(X;_I) + (Of + Bi)E(X;~n + c? + 2¢IB,E{X;_lec_d

+ 2ol9<zE(Xc_,XC_2el_2) + 28lfJ.,E(XC_lel_IXI_2e,_2)

where, E(XIXI_le,_d::: dllE(X;_,e,_d+9lE(Xl_l~_l)+8,,,4,

By substituting in the preliminary results and using the assumptions in Section 2.1,

it can be \-erified that

m(O) {2dfO'{ - 2¢18~q4 + 4I/Jletq G+ 4¢1~iJ.zC1S + 12¢~~~o6 + 12¢~8~~q5

+ &Pldf~q' + 2tP,0'· + 4¢181~q' + 49~81~0" + 4¢~~q6 + 4o,818:zq l

- 4¢~81820'4 + 8<6~df~o' + ~~el~o' +a' - ¢lIU' - 2¢1~~a4 + 2816,04

- 4df8~q' - 241,B l 8,u4
}

(2.17)

~

When k = I, E(XI+lXC) = ¢I,E(Xll +8 j E(Xlell +8:lE(X1XI_lel_l)

where E(X,X1_1el_.)::: tPlE(XLlel_tl + 8IE(Xl_le~_l) +8,E(XI_lel_IXI_2eH)'

This implies that

m(I) = ¢llm(O) + (8, +O.8:l)E(X[e,l + 81iJ.zE(Xf~) + ~0'4.

Thus an expression for the seeood moment when k ::: I is given by;

m(l) = q,lm(O) +81~E(X;e~) + 28'fC1~ + 281~(14 ; 2~~1~(14 + 24118~(14 + ~(14.

(2.18)
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Using similar procedure, as for the mel), \\'e obtained expressions for m(2) and

m(3).

The e.:cpression for the second oreler moment for any nonnegati\"e integer "alued k is

given in the lemma below.

Lemma 2.2 For any nonnegati~ integer tJ(1ltled k > 2, the difference equation lOT

the s«ond moment 01 XI satisfying the APBL(I, 2) rrwdeJ is

m(k) = 4l1m(k _ 1) + 9f(1~ +~~~4 + ~(1~. (2.21)

Again the proof follows from the expression for E(XIXI+1) and the preliminary results.

APBL(l,3) Model

In obtaining the expression for the second moment of the APBL(1,3) model, we

shall use the following preliminary results;

E(Xled = 2(81~ ~ ;183)~ 21J(12,

and E(Xl+t_iel+t_iXI) = E(Xt~+I:_i) = po2 , for i < k. Also "''e shall denote the

moment of the model when k = 0 by m(O). When k = 1, the second moment is

obtained as follows;

E(Xt+tXI) = 4lIE(xt) +8IE(X?_le,) +8,E(XIXI_1el_l) +8]E(X,XI_2el-2)

from the preliminary results, "'"e have;

E(XIXI_let_d = 6IE(xt_lel_l) + 8IE(Xte~) + (82+81)(14 and
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E(XtXt_ozet_,) = 4lIE(XI_.Xt _,t!I_,) + 8.aA + 8,E(Xl_,if_,) + f),ut
•

And by making substitutions of previous results, we ba~oe

m(l) ••m(O) + 2(9. + 6.9, + ¢~9,)pa' + (918, +619183 + 8,9,)£(Xle~)

+ (~+ 9,Ih, + 6 19,83 + 4l1~ + 8.93 + ~)u·. (2.22)

Similarly, an expression for m(2) and m(3) can be obtained as;

and

(2.24)

respectively. Using similar procedure as m(l) above, we obtained an expression for

tbe second moment of any nonnegative integ'lr valued k in the lemma below.

Lemma 2.3 For any nonneg~ive in~eger valued k > 3 the apres.rion ofm(A:) for X,

$atufying the APBL(1,3) model am be obtained 11$,

(2.20)

The proof of the lemma follows easily from the results abo~'e.

APBL(l,q) Model

First Vooe derhoe some of the prelimioasy results that. will be used to obtain the

expression for the second moment of the .4PBL(l,q) when A: = O.

Xt_iet_,XI_ie'_j tPIX,_i_IXt_iet_jet_;.
+ EBiXt_i_l-e,_i_l-Xt_Jet_jt!t_i + XI_ie,_jeL.·



E(XI_iel_iXt_jel_,) -= E(XI_jel_j~_,) -= cr· .

Also, . .
Xl2el ~~XI2_lel +~ 8?)(Le~_ie, + e~ + 2~lXI_l ~ 8IXI_iet_,el + 2¢IXI_le~.. .

+ 2L L: 6,8jXHel_.XI_jel_jel + 2 L 8i.YI_Iel_,e~.
i< j 1=1

Thus, E(Xlej) = 2tPlE(XI_len + 2I:1.l8iE(XI_,el_,en .

This can be simplified as;

E(Xlel ) =2/7; :r;; 9i -= 2JU12.

Also by using similar procedure as abo\'e the following expression can be easily ob

tained.

I-I ,I-I

E(XI_IXI_iel_i) = 2tb~-lj1.(12 + o· L tb~-{t+IJ L:9j + L 0:-U+l)8j£(..\:}e~). (2.26)
t ..1 jJl<I< j=l

Another useful expression is that of the X;~. For the APBL(I,q) model, we ha\'e,. .
Xle~ tP~XI_le~ + ~lifXl_ieL,e~ +e: + 2tPIXI_1 ~9iXt_iel_ie~.. .

+ 2tPIXI_le~ + 2L L (J,9jXI_,el_IXI_jel_je~ + 2L 9iXI_iej_ie~.
k J ~I

And, .
tP~o2E(Xl_l) + ~9?cr2E(Xl_ie~_i) + 30A

+ 2tPlcrt9,E(Xt_iel_iXI_l) + 2cr·tt,9i9j .
i.1 i< j
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This simplifies to, .
{rP~(12m{O) +30'~ + 20"I: I: 8,8; +40'~/1. I: (jl~8",< ; "=l

+ 2 t 8,(iP;-1 L: 8. + ,~-2 I: 8/c + .. + IPl L 8.)0'6}
j-2 t"'l t-;t2 t-;t(i-I)

, , i_I ..

(I - L sr.' - 20' L L ¢;-",).
i=l j=lj=l

Using the results above we can obtain an expression for m(O) as follows

. .
E(X~) iP~E(X~_,) + I: fif E(X:_ie~_i) + E(e~) + 2rPl E 8;E(X'_lX'_ie,_,)

i"'l b=l..
+ 2E L 8j 8j E(X,_;e,_iX,_;e,_;),

;< ;

(1-¢,)m(O)
. ..
L fif E{X~_,e?_i) + 0'2 + 20'4 E L 8;8;
;=l i< j.

+ 2';;1 L8.{2rP~-11JC2 + (~~-2 L 8/c + 9~-J L 8/c + ..
;:2 .qfl t'l'!2

i-I

+ E 8t)(1~) + L ,~-.-lStE(X(e?)}.
/cl'!(i-l) ."'l

Thus an expression for the second moment of the APBL(l, q) model when A: = 0 is

given by;

m(O) {('t~ +2tSi ~8t)E(X(e~)+(12 +2(14tt8;8; +4J.10'2t'~8;
;"'1 i ..2 .:1 .< } ;.. 1

+ 2t8i(6;-'L:8t +9\-2I:8t + .. +61 E 8t )dt )}/(1-6n·(2.27)
;:2 ""'1 /cf2 "~i-I)
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Similarly, the second moment for tbe model APBL(l,q) when It = 1 is Kh"en below.

m(l) ¢lm(O) + t8z(2I/li- IJl0'1) + L8i(~ 4J\-t-1et )E(X;!'!:)
;;1 i ..1 t=l

+ t8,(I/l;-1L8t+I/l~-3L9t+ .. + L 8t)0'~. (2.28)
.=2 "71 "71 tJt(;-I)

For any nonnegative integer valued k > I, the expression for the second moment of

X, satisfying .4.PBL(l,q) can he summarized in the following lemma,

LeIllDla 2.4 IJ Xl i.! a tim!'! .serie! Jalisfying the APBL(l,q) mood, thm tM "«ond

order moment m(k) JOT any nonnegative integer valued k, Cdn be obtained from the

upres.sion (2.29).

.t_l. • ;_t

m(k) ¢,m(k-I)+(L9;+2LI/l;-t)pa'+ L 9;{LtP~-j-*8jE(Xl!'!n
;=1;=.1: ,..*+1 ) .. 1

+ (¢i-*-'L8)+I/l~-*-1L8J+' .+ L 9j )0'·.}
#1 ji:1 JJt(,-t)

(2.29)

The proof of the lemma can be obtained by using the preliminary results and following

similar procedure for m(I). Obsen"e from (2.29) that for It > q, ""e ha\"e m(k) =
tPlm(k - 1) + L1.18.pa'l. It follows that for APBL(I.q) model we ba\"e that R(k) =
rP,R(k - I) for It > q. Thus, in general, an initial estimate of t/Jl for the APBL(l,q)

model is tPl = p(k)jp(k - 1), for any k > q. Where p(k) is an estimate of the

autocorrelation function at lag k.

2.3 Third Order Moment And Cumulants

In this section, \\"e deri\"e the third-order moments and cumulants for the ..tPBL(I.l)

model only.
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2.3.1 Third Order Moments

By definition, the tbird-order moment of a nonnegati ....e integer valued process Xl is

given by

(2.30)

To obtain m(kl , k2) of the model .4.PBL(l, 1), for any nonnegati~·e integer valued k1

and k2 , we shall use some of the previous results and the results below.

(2.31)

(2.32)

And for any Ie > 1 ....-e ha~-e,

Also,

For k > 1 ...-e have,

.-,
q,~C12?;(8lC1)7rm(k - r -1,k - r - 1) + (8lC1)2kE(X~e~)

'-'
+ 291~-l~E(X:e,) + 4~~81C14 ~(81C1)2km(k - r - 2)

+ ~{.t-2)C12k(3 + 382C12 + 8¢118~(T2)p

H
+ 49181C16p ~{81C1)2r. (2.35)
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E( X3~) _ 4>~a2m(O,O) + e?(J2E(Xl~) + 3¢~81(J2E(X;~I) + 9tP1a~1J +991a'
• t I - 1 3918?112 .

(2.37)

E{X;~:) = 150"' + 9I/>~l1~m(O) + 98~11~ E(Xl_l~?_I) + 36tP1811J11'. (2.38)

Case 1: k, - ka - k

\Vhen kl = k2 = k = 0, it can be shown that

(1 - 4>~)E{XI3) ~E(XLI~:_d +3q)~8IE(X;_I~t_1) + 3¢18~E{XLleLI)

+ 3¢~E(Xl_I~I) + E(~:) + 3dfE(Xi_\~~_I~d +34>IE(XI_I~?)

+ 38IE(Xt_l~t_l~) + &P18\E(Xl_'~I_I~r>.

Thus by using the results above, the third order moment of the Xl when k =0 is

given hy;

m(O, 0) {~E(X;e:) +3Q~81E(.\'}ed + 180~8?lJo4 + l&Pl~"

+ 3q)1p.t72 + 381(J4}/«1 - rP~)(1 - 3¢1~0":l) - 3¢tt9~(2). (2.39)

When k l = k, = 1, we have m{I,1) = E{Xl+1XI ) = q)'fE(X;) + e::E(X;~) +

E(X1eI+1) +24t181E(X}~I) + 2q)IE(X;el+l) + 2~el+l)'

From above, it can be shown quite easily that;

For k, = k, = 2, ....'C find that

m(2,2) q)~E(X't+IXI)+ 2q)\E(XI+ 1el+:lXt ) +8~E(X't+l~~+IXI) + E(Xle~+2)

+ 2;18IE(Xi+I~I+lXI) +28IE(Xt+lel+lel+2Xt ).
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Which simplifies into,

m(2, 2) lP~m(l, 1) + lP~8~rr2m(O,O) + B4rr2E(.X}e~) + 38~prr~

+ 2q,lfftrr2E(X:el) +q2p + 4q,~8\rr2m(O) + 8tPl8fq~p. (2.41)

for k l =~ -= 3, we obtained the third order momeot, m(3,3) as;

m(3,3) = ~E(X;+2XI) +B1E(X:+2e~+2XI) + E(X!e~+J) + 2~l8lE(X;+2eI+2XI)

By making relevant substitutions we have

m(3, 3) ¢~m(2, 2) + ~~B1q2m(l, 1) + tP~U:rr4m(O, 0) + ~rr~ E(XIJe~)

+ 2tP\~q~E(X:el) + 4tP~e:q~m(0) + Ufu4p{3 + JB:~ +&Pl~cr'}

(2.42)

Using similar procedure, the m(k, k) ror any real k > 2 is presented in the lemma

below. The proor or the lemma rallows accordingly.

Lemma 2.5 For any real-valued k > 2, the third moment of the of Xl satisfying

APBL(l, I) model u given by

.-,
m(k,k) l!I~m(k - l,k - L) +¢~O:0'2 ?;(8l O'f'm(k - r - 2,k - r - 2)

+ 8~.tq2(.t-l) E(X}e~) + 2tPI8~.t-l)0'2(.t-llE(X
1
2ed

.-,
+ 4¢~~0'· {;(8\0')2rm(k _ r _ 3) +~.t-2)O'2(.t-I'p{3 + 38:0'2 +8¢IB:q2}

'4
+ 4q,1~0"P{;(8 l O')2r +u2p + 4tP~8l~m(k - 2) + 44\l8\0'·. (2.43)

where E(X;+.t_le~+.t_\XJl and E(X;+.t_\el+.t_IX1) are a3 in tile preliminary re$Ult.s

abo",.



When .1:1 =1 and ~ =2, we ha\'e;

E(XI +2 X f+!XI ) = m(l, 2) = 6 I E(X;+,XI ) + 9,E(X'l+lef+IXI ),

Simplifying this expression using previous results, we obtain,

Also when k l = 1 and k, =3;

m{l,3) = tP,m(l, 2) + 8tE(Xf+2eI+2XI+lXf), which we simplify to obtain

m(1,3) = q),m(I,2)+8t~m(I). (2.45)

Using similar pr~uresas for m(1,3), we obtained the following expressions for third

order moments:

m(2,3) = rD,m{2,2) +26 l8lu
2m(l) + 2(Jtp.a~. (2.48)

m(3,4) = tP,m{3, 3) + 24J,8lu2m(2) + 28~p.t1~. (2.51)

m(3,5) = q),m(3,4) + 8Iu2m(3). (2.52)

Below we present expressions for the third order moments of Xl following APBL(I, I)

model for cases when .1:2 - it = 1 and when k, - i l > l.

Lemma 2.6 For a time series {Xtl that satisfies the APBL(I, I) TMdd, the third
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order moment m(k l , k,), uilen k, - kl = 1 and uilen k, - k l > 1 are given by (2.5.)

and (2.55) rupect.ivdy for any recl-~ kit ~, where ~ > 2.

The proof of lemma follows from above.

2.3.2 Third Order Cumulants

As stated earlier, the third order cumulant C(kll k,) of a real-valued process XI is

defined by G(kl, k,) = E[(Xt -1t)(XHi, - It)(X1+t2 - ,u)]. This can be simplified as

G(kj,k,) =£(X1X I +I:,XI +..2 ) -p{R(kL) + R(k,) + R(k, - kdl-,r, where,u =E(XI )

and R(k) =£(X,X1+..) - ,u',

Case I: kl-~-k

When kl = k2 = k we have, C(k,k) = m(k, k) -1t(R(D) + 2R(k)) - ,u3.

It follows that for k = I, C(I, I) =m(I, I) - p[R(O) + 2R(I)] - ,ul, which can be

simplified into,

C(I, 1) tP~C(O,O) + 9~E(X,Jt}) + 2¢>191E(X~el) + (341~ - l)pR(O) + ril~ltl

- 2R(I) + a'lt - pl, (2.56)

And when k = 2 the third order cumulant can be obtained as,

C(2,2) ¢>~C(I, 1) + ¢>~8~u'C(O,O) + etu'E(X}el) + 2r/Jte=fE(X1Jet)

+ (3¢~9~u' + ~~ -1),uR(O) + 2¢~pR(I) - 2pR(2) +.p~8~pJ + t/J~,uJ

(2.57)
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We can obtain the third order cumulant, C(k, k) for k > I as shown below. By

defining C(k,k) = m(k, k) = p[R(O) - 2R(k)l- p.3 we ha..'e,

.-,
C(k,k) ,p~m(k - I, k - I) +tP~O::a2 ?;(81a)2rm(k - r - 2, k ~ r - 2)

+ or02(I:-l)E(X:e~l + 26l~-IJa2(I:-1)E(X-;e,)
.-,

+ 41/l~~o~ ?;(91o)2Tm(k - r - 3) +~1:-2Jq2CI:-l)p.{3 +Jlifu2 + &;1~02}

.-,
+ 41/lltft06P. ~(81a)2' +02JJ + 4dl~8Io2m(k - 2) + 4,pl81a~

- "[R(O) + 2R(t)! - "'.

This can be simplified into

.-,
C(k,k) = t;6~C(k - l,k - 1) +t;6~~a2 ~(9Iar'rC(k - r - 2,k - r - 2) + S8 (2.58)

58
.-,

l/J~e:a2 ~(91(T)2'p.{m(O) + 2R(k - r - 2)} + S8

+ JJ{2R(k) + 26~R(k - 1) + R(O) +6~m(O) _ p2}

+ 8~0'7(1:-IJ E(X:t:~) + 2l/J19~-I'a2CI:-l) E(X;t:d
.-,

+ 4l/J~~u~ {;(8 l u)2'm(k - r - 3) +8~(.t-2)(T2(.t-l)J..l{3 + 38~a2 + 8,pl8~,,2}

H

+ 461~a'p. ~(91a)2r + 0'2JJ + 4l/J~8Ia2m(k - 2) + 4¢181a~.

This is a fonn of Yuke-Walker type of difference equation for the cumulants of

APBL(l,I).

Case 2: k2 > k,
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When kl = 1 and 10:2 =2, the third order cumulant is derived as sbO\\'"O below;

C(1,2) m(1,2) - "(2R(1) + R(2) -"'

t;Plm(l, 1) + 2t;P181a2m(O) - ~(2R(1) + R(2)) -~) + 4e=:t1~~

',(m(l, 1) - "[R(O) + 2R(1)J - "') + .,"[R(O) + 2R(1)1 +.,"'

+ 2iP l8l u
2m(O) + 48~u~Il-Il(2R(I) + R(2) -113

"Cl1, 1) + "{.,R(O) + 2(., -1)Rl1) - R(2)} + (,;, - I)"'

+ 2t;P,8Iu2m(O) + 4~u~1l

t;PlC(l, 1) + t;Plm(Olll- t;Pl1l3+ 2t;P~m(O)1l +&;&lIl3 - 4¢~1l3

- 2t;P~m(O),u - 21lJ - ,;~m(O)1l - ¢I[1l3+ 241~,u3 + 2!Pl m(O),u

- 29~m{O)1l + 4~' - &PIIlJ + 4tP~,uJ + ,;,,uJ _,u3

¢lC(I, 1) + 4>lm(O)1l - 3¢1J.l + Il' - 4>~m(O)J.l + 2¢~p3

¢,C(I, 1) +¢tm(O)Il{I- ¢d + J.l3(1 - 3¢1 +2t2>n

t2>,C(I,I) + 9Im(O)Il(1 - tfid + 1l3{(1- ¢l1)(1 - 2¢!l}

.,Cl1, I) + "(1 - ",)(",(m(O) - "'I + "'11- .,)

t;PlC(l, 1) + 11(1 - t2>1){¢IR(O) +8lu21l}

tPlC(I, 1) + 81u2(tP I R(O) + 8la2J.l). (2.59)

Proceeding as for C(1,2), we obtained expressions for the third order cumulant when

k = 3.

Similarly an expression for the third order cumulant for a real·va1ued k, when kl = 1

and .1;:2 = k can be shown to be;
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USing similar procedures, it is easy to show that for a real·vaIued ~ = I., the tbird

order cumulant of Xl following the APBL(I, 1) model when 1.1 = 2 can be obtained

USillg tbe expression;

From these results we found that, if tPl < 1 the C(t,k) and C(2,k) will decrease

exponentially, otherwise, it will increase exponentially. It is also obsen1!d that the

standardized cumulants p{kl,k-;z), follow the.same pattern as the C(kl,k:J). We shall

use the exponential pattern observed in the C(1,k2 ) or alternatively p(kll k2 l for

model identi6cation
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Chapter 3

MODEL APPLICATIONS

3.1 Introduction

In Chapter 2, we derived some basic properties of some versions of the bilinear model.

In Section 3.2 of this chapter we shall present the results of simulation studies used

to examine the performanCf: of the derived properties of the APBL(l, 1) and the

APBL(I,2) models.

Ooe of the important uses of time series models is to provide forecasts for the

future. Therefore in Section 3.3 we shall io\'eStigate the usefulness of the A.PBL(l, 1)

model, by using it to make one-step-forecasts on three real life data. For each of the

data, we use the C{I,k) deri\'ed in Chapter 2 to ensure that the APBL(I, 1) is a

suitable model for the data before any estimation is done. We shall use the method

of parameter estimation described in Chapter I to estimate the parameters of the

bilinear models. The results of the forecasts shall then be compared to similar fore

casts using appropriate linear models where applicable. Linear model identification

procedures ....'ere discUS5e<i in Chapter 1.

In this chapter, firstly, we shall use simulated data to study the pattern in p(1,.I;,)

deri\1'!d in Chapter 2 for the APBL(l, 1) model. Secondly, we shall transform the
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three data sets studied to stationary forms, in...-estigate the pattern of the p(1,k,),

then lit the .4PBL(I, I) model to them. Thirdly, the ACF and PACF shall be used

to determine the order of appropriate linear models for comparison.

3.2 SIMULATION STUDIES

from the APBL(I, 1) and APBL(l, 2) models, we generated 1000 observations for

three distinct values of CPt, 8t. 82 , and (12. The simulated random variable el, t E z,

are mutually independent and identically distributed as N(0,u2), for each generated

set of observations.

The sample mean, variance and autocorrelation were calculated for each of the

data in the 1000 simulations for the two models with fixed parameters. While the

standardized third order cumulants, P(kl,~) for k t = 1, &2, and k-z = 1,2, ... ,30 are

calculated for the APBL( 1, 1) model only. The reported results are the a\wages of the

means, variances, autocorrelation \'lllues and the standardized third order cumulants.

The p(k i , k2 ) ,,'ill be used for model identification as we noted in Chapter 2.

The expressions for the theoretical mean, the covariance structure for both the

APBL(l, l) and APBL(I,2) models and the cumulanlS of the .4PBL(l, I) model

were ghoen in Chapter 2. The theoretical results in all our tables are computed from

these expressions.

According to Brockwell and Davis(l996), we can estimate the mean, autocovari·

aoce and third order cumulant as follows. Suppose Zit Z2, .. , x .. are obsen'lltions of

a time series. The sample mean of ZI,X2, ... ,X.. is estimated by;

The sample autOCOvariance function for the observed data ZI, Z2, .. , Zit is estimated
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by;
R(k) "£::,;," (Xl'" - £)(.\', - z)

n-k

and the sample autocorrelation function is;

Plk) ~ li(k)
R(O)

The third order cumulants are estimated by;

while tbe standardized third order cumulant(See Oyet(2001)) and the sample version

are given by;

P(k"k,) ~ C~~~:~)

Plk k) ~ C(k",,)
I, '2 C{O, 0)

respectively.

3.2.1 Result of Simulation Studies

(3.2)

(3.3)

The parameters used for the APBL(l, 1) models for the three simulations are given

below.

First Simulation; tPl = 0.70, 6, =0.50, fh = 0.20, til = 1.0.

Second Simulation; ;, = 0.50, 8, = 0.20, 8, = 0.05, 17' = 1.1.

Third Simulation; 1Pl = 0.40, 8, =0.35, 8, = 0.20, u'J = 1.15.

Table 3.1 presents the mean, \'ariance and the C(O, 0) for the APBL(I, 1) model.

In all the tables TH and ET denotes theoretica.l(from derived properties) and esti·

mated values respe<:ti"''ely. The table shows that the estimated values of the mean,
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variance and C(O,O) are quite close to their theoretical values for the .4.PBL(l,I)

model.

Table 3.1: Mean, Variance and C(O,O) Using .4.PBL(I, 1)

Simulation 1 Simulation 2 Simulation 3

TH ET TH ET TH ET

Mean 1.6667 1.6552 0.4840 0.4840 0.7715 0.7706

Variance 11.9658 11.6510 1.9912 1.9839 2.8302 2.8286

C(O, 0) 390.8152 411.5872 1.3785 1.3950 5.4691 5.5987

Tables 3.2, 3.3 and 3.4 present ten values of the autocorrelation, standardized C(I.k)

and standardized C(2,k) respectively using the .4.PBL(I, 1) model. The theoretical

values compare perfectly well with the estimated values in each of the tables except for

k ~ 8. These conlinn the accuracy of the deri..'ed properties of the .4.PBL(I, I) modcl.

It is important to notc that as k increases, R(k), C(l, k) and C(2, k) approaches zero

for the APBL(l, 1) model. This behavior is a feature of the ACF of bilinear models.

In fact, for the diagonal pure bilinear model, the ACF' cuts off after lag q + 1.
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Table 3.2: Autocorrelation Using APBL(l, 1)

Log Simulation 1 Simulation 2 Simulation 3

TH ET TH ET TH ET

0.7696 0.7657 0.5588 0.5556 0.5262 0.5235

0.5387 0.5341 0.2794 0.2743 0.2105 0.2068

0.3nl 0.3699 0.1397 0.1336 0.0842 0.0793

0.2640 0.2514 0.0699 0.0641 0.0337 0.0290

0.1848 0.1662 0.0349 0.0J04 0.0135 0.0086

0.1294 0.1099 0.Ql75 0.0143 0.0054 0.001l

0.0905 o.om OJX)87 OJlJ46 0.0022 -0.0011

0.0634 0.0472 0.0044 -0.0006 0.0009 -0.0024

0.0.:144 0.0307 0.0022 -0.0023 0.0003 -OJXl35

10 0.0311 0.0189 0.0011 -0.0030 0.0001 -0.0036

We note that these results satisfy the property ~l =p(k)jP{k -1) derived in Chapter

2 for all the ten values of k in the first 2 simulations and up to when k =8 in all

the third simulation. In a real time series, we can use this result to obtain an initial

estimate of ~l. All I'o'e need to do is to estimate P(i) from the data.
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Table 3 3' Standardized C(l k) Using APBL(l 1)

Log Simulation 1 Simulation 2 Simulation 3

k TH ET TH ET TH ET

1 0.8152 0.7897 1.1096 1.0829 0.9223 0.8688

2 0.5824 0.5559 0.7501 0.7249 0.4950 0.4591

3 0.4077 0.4128 0.3751 0.3591 0.1980 0.1755

4 0.2854 0.2658 0.1875 0.1780 0.0792 0.0673

; 0.1998 0.1565 0.0938 0.0868 0.0317 0.0258

6 0.1398 0.0733 0.0469 0.0403 0.0127 0.0092

7 0.0979 0.0334 0.0234 0.0161 0.0051 0.0018

8 0.0685 0.0131 0.0117 0.0017 0.0020 -'U)Om

9 0.0480 0.0028 0.0059 -MOO; 0.0008 -0.0045

10 0.0336 -0.0013 0.0029 -0.0089 0.0003 -0.0059
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Table 34 Standardized C(2,k) Using APBL(I, I)

Lag Simulation I Simulation 2 Simulation 3

TH ET TH ET TH ET

0.6259 0.5559 0.7501 0.7249 0.4950 0.4591

0.5012 0.6033 0.5437 0.5388 0.4525 0.4319

0.3225 0.4328 0.3695 0.3567 0.2314 0.2117

0.1612 0.2962 0.1848 0.1769 0.0926 0.0B08

0.0806 0.1794 0.0924 0.0862 0.0370 0.0321

0.0403 0.1065 0.0462 0.0411 0.0148 0.0124

0.0202 0.0511 0.0231 0.0158 0.0059 0.0045

0.0101 0.0214 0.0115 0.0034 0.0024 O.OOll

0.0050 0.0080 0.0058 -0.0029 0.0009 -0.0007

10 0.0025 0.0012 0.0029 -0.0078 0.0004 -0.0040

Table 3.5 shows the mean and variance (omputed from the three simulations using the

.4PBL(I, 2) model. Again we find that the theoretical values compare closely with

the estimated values. Table 3.6 is the table of the first ten autocorrelation using the

A.PBL(I,2) model. The theoretical results also compare closely with the estimated

values, except for when k 2: 4.

Table 3.5: Mean. Variance and C(O, 0) Using .4PBL(I, 2)

Simulation I Simulation 2 Simulation 3

TH I ETTH I ETTH lET

Mean

Variance

2.3333 I 2.3087 0.6050 10.6047 1.21211.2122

39.3787149.5405 3.262312.1395 6.27614.8375
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Table 3.6: Autoeorrelatton Usinlt AP8L(I,2)

L.g Simulation 1 Simulation 2 Simulation 3

TH ET TH ET TH ET

0.9385 0.8222 0.6062 0.5946 0.n08 0.6839

0.6214 0.5733 0.2941 0.3108 0.3037 0.3351

0.4172 0.3803 0.1134 0.1517 0.0832 0.1301

0.2742 0.2314 0.0230 0.0729 -0.0051 0.0496

0.1742 0.1229 -0.0221 0.0346 -0.0403 0.0182

0.1042 0.0578 -0.0447 0.0160 ·0.0545 0.0061

0.0551 0.0209 ·0.0560 0.0053 -0.0601 0.0010

0.0208 0.0000 -0.0617 -0.0005 -0.0624 -0.0019

-0.0032 -0.0081 -0.0645 -0.0024 -0.0633 ·0.0039

10 -0.0200 -0.0116 -0.0659 -0.0031 -0.0636 -0.0048

The plots of the estimated values of all the properties studied for both the APBL( I, I)

and tbe A.PBL(I, 2) models are gi\"en below. For each of tbe plots, tbe theoretical

values are overlaid on the estimated for comparison. The pattern of exponential decay

derived in Chapter 2 is closely modeled by the plots in Figure 3.1. We note that tbe

p(l, k) in XI = E1",. 8jXI_jcl_j + CI cuts off after k = q + 1, a pattern which can

be used for identification of a diagonal pure bilinear model. Thus if ,0(1, k) does not

cut off after k = q + 1, but decays exponentially, the model is most likely to be a

APBL(l, 1). These distinct patterns in different \"ersions of bilinear models can be

used to determine the order q of the model.

It is worth mC!ntioning that in practice plots of standardized cumulants computed

from real data sets may not be as smooth as the plots in Figures 3.1 and 3.2 due to

presence of noise and other components in the data that may distort the behavior

slightly. The plot should however, exhibit the general pattern shown here. See for
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instance plots of the cumulants in Section 3.3.

Figure 3.1: Plots for First Simulation
Autoc:ovariance of APBL( 1,1) Model AulOCOl'Telation of AP8L(1,1) Model
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Third Order Cum. k.. 1 01 APBL(l,l) Model Third Order Cum. ka2 01 APBL(1, 1) Model
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lii'\2rnMC"m,., OIAPBLI"'IMOO'jIi'~"c"m"20IAPBLI"'IMOO'i

1°, 10 • 1 , 10

AU1ocovariance 01 APBl(1,21 Model AutooofTetation 01 APBL(1,2) Model

m~ .Ill\: I
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Figure 3.2: Plots £or Second Simulation
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~dAP84~tr..~.?·3: Plots ~~~~~rMoOll
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3.3 APPLICATIONS TO REAL DATA

tn order to investigate the performance of the APBL(l, I) models as compared to

"best" linear models, the mean absolute deviation(MAD) of each of the forecasts from

the original values are calculated using the equation,

MAD = L~"'II~ - ~l

where Yr is original value at time t and fI is the predicted value at time t.
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3.3.1 International Airline Passengers

Here, we modeled data on international airline passengers. The totals(in thousands)

of international airline passengers data from January 1949 to December 1960 is given

in Table I of the Appendix. The data was quoted hy Brown(I962) and has been

analyzed by Box and Jenkins(191O) and many others.

A plot of the data and the ACF are given in Figures 3.4 and 3.5 respectively. The

series shows a marked seasonal pattern and a bit of an upward trend. The seasonal

pattern could be attributed to the fact that more people travel during late summer

months as rell.ec::ted by the plot. Specifically, the plot rewals that the series exhibits

a periodic behavior -.-ith d = 12 months. We also note that the \wability across

the time plot is not constant. These and the time plot features of the airline data

indicate the need for some transfonnation on the data.

Figure 3.4: Plot of Airline Passengers
PIotol ....... P-..s
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Figure 3.5: Plot ACF of Airline Passengers

~~
'? 0 10 ~20 30

[n analyozing this data, we took logarithm to reduce variability across the series.

The seasonaJ effect ....-as estimated by a I2·month moving·average as described in

Chapter l. Finally, the trend component was estimated by linear regression. Thus

given the time series {Xl}' with estimated seasonal component Sl and trend compl)

nent Mit "'e can estimate the stationary component 1'; by;

A plot of the stationary component, the autocorrelation, partiaJ autocorrelation,

and the P(1,k) are given in figure 3.6. We note that the pattern in tbe P(I, k) suggesrs

a general pattern of exponential decay. Based on the plots ,..'e fit a .'lPBL(I, 1) model

to~.
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Figure 3.6: Transrormed Data, ACF, PACF and P(l,k) ror Airline Data
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Figure 3.7: Plot or Airline Passengers el's

To judge the performance or the APBL(I, 1) model(i.e validation or model), we

remm-oo the last k, k = 1,2, ... ,10 obsen-ations from the total observations n = 144,

then fitted the model to tbe first n - k observations and predicted tbe (n - k + 1)th
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observation removed initially. That is, \\'e obtained a ooe-step-ahead forecast.Tbe

predicted observations were then compared to the original \'&Iues from the data. In

a similar fasbion as for the APBL(I, I) model above, we obtained a one-step-ahead

forecast using a linear model. Suppose Y(t) is the series of interest, when at time

t = to, "''e want to forecast a future value Y(to +h) gi\'en {Y(h), -00 < h :S to). Let

this predicted \"3lues be denoted by Y,.(h). We use the fact that j

E[Y(to + h) - Y",(h)J2 is minimum if and only if, Y",(h) = E[Y(to + h)lY(h), h :S to].

The Y",(I) values for the ten observations are obtained separately using both linear

and APBL(I, 1) models. One of the ten fitted linear and APBL(I, I} models on the

Yj are given below.

Autoregressi\"e Model(AR)

Using the PACF plot in Figure 3.7, we fitted AR(l) models to the stationary

component, Yj when k observations are remo\"td. We fitted the following model wheo

the last observation was renlO\-ed,

APBL(I, I) Model

Similarly, the following bilinear model "''35 fitted on Yj, with the last observation

removed,

The estimated XI are then obtaioed using the YlI(l)'s and re-transforming. The

original and re-transformed predicted values of XI at time t = 135,135, ... ,144,

using both linear and APBL(I, I) models are shown in Table 3.7. A Q.Q plot of the

el's is used to e.umine the assumption for normality. From the plot shown in Figure

3.7, the assumption of normality seems plausible.
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Table 3.7: Original and Predicted Values for APBL(l, 1) and Linear Models

Original Values Predicted Values

Bilinear Linear

432 451 474

300 406 418

461 454 478

508 534 547

606 625 627

62'2 609 626

535 541 554

472 469 486

461 421 480

419 464 499

The mean absolute deviation of one-step-ahead forecast errors for the ten values of

the APBL{l, 1) model is 19.4 and for the! linear model is 28.3. This result shows that

the .4-PBL(l, 1) model is quite better for the airline passengers data than the linear

model.

3.3.2 Annual Wolfer Sunspot Number(170o-1988)

The annual Wolfer sunspot numbers data is given in the Table 2 of the Appendix. It

is a series that measures the extent of the visible surface of the sun that CO\"Cred by

sunspots. This series has been studied by sc\"Cral researchers using different methods.

A fe!w of previous work on this data set can be found in 8m( and Jenkins(1970),

Granger and Andersen(1978) and Tong(l990) books. A plot of the data and the ACF

are gh-en by Figures 3.8 and 3.9 respectively.
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Figure 3.8; Plot or Sunspot Numbers

Figure 3.9; Plot ACF or Sunspot Numbers

{~
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From the plots or the data and the ACF. it is obvious that we need to transrorm

the data to be able to apply the APBL(1, 1) model. To reduce variability across the

series, v,.e took logarithm, while adding one to each or the observattons as there are
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zeros in the data set. Next we differenced the data three times to make the series

stationary. The plot of the transformed data set, the ACF, PACF and the p(i, k) are

given by Figure 3.10. A normal plot oCthe e's was used to investigate the assumption

of normality of the errors, el' Figure 3.11 shows that the el's are approximately

Donnal.

Figure 3.10: Transformed Data, ACF, PACF and P(l,k) for Sunspot Numbers
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Figure 3.11: Plot of Sunspot Numbers er's
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Using similar procedure as for the international airline passengers data, we made

a one-step forecast using both APBL(I, l) and "best" linear models. Then predicted

vaJues were re-transfonned back, so that they could be compared to the original

observations and those obtained using linear models. One of the ten fitted linear and

APBL(I, I) models are gi\-en below.

Moving Average Model(MA)

Using the ACF plot in Figure 3.10, we fitted an MA(I) model to the stationary

component, 1'; when the last observation is removed;

.4PBL(I,lj Mod,!

The following bilinear model is fitted on 1'; with the Jast observation remo\'ed;

1'; = -0.46111';_1 - 0.0951';_le,_1 + e,.

The estimated X, are then obtained using the Y,.(l)'s and re-transfonning. The

original and re-transfonned predicted vaJues of XI at time t = 280,281,.. ,289 using

both linear and APBL(I, I) models are shown in Table 3.8.
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Table 3.8: Original and Predicted Values ror APEL(I, I) and [jnear Models

Original Values Predicted Values

Bilinear Linear

17.9 30.845427 38.038485

45.9 13.389178 26.362325

66.6 117.859525 86.793594

115.9 88.n5325 116.392467

140.5 102.370354 91.250176

154.7 132.795550 132.389079

155.4 385.783023 479.218803

92.5 140.747714 150.845456

27.5 27.960497 18.878941

12.6 3.858637 2.915898

The mean absolute deviation orone-SLe~aheadrorecast errors ror the ten \-lllues using

the bilinear APBL(l, 1) model, is 47.17 and ror the linear model is 53.24. Although

the APBL(l, 1) model seems to make better prediction than the AI.4(l,l) model,

rrom the predicted values 'A'e Dote that the difference bet",-een most or the predicted

values and the original values are large. Thus the APBUl, 1) and the MA,(I, 1) are

not suitable rOf analyzing this data.

3.3.3 mM Common Stock Closing Prices

The daily IBM stock prices during a period or 18 May 1961 to 30 March 1962 is gh-en

in Table 3 or the Appendix. Usually the stock market closes on weekends and holidays,

leading to missing observations. To avoid any complications that this may cause, we

treat partial obsen'ations as rull. Other time series analysts who haw analyzed this

data in a similar way are Box and Jenkins(1970) and Tong(l990). An alternative
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approach would be to use imputation techniques to estimate the missing observations

before modelling the data. We have not done that here because the emphasis of this

practicuum is on using the patterns in the third order cumulants for modeling. A

plot of the data and the ACF are gh-eD in Figures 3.12 and 3.13 respecth·-ely.

Figure 3.13; Plot .-\CF of IBM data
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In analyzing the data, we took the logarithm and differenced once in an attempt to

stabilize the mean and variance.The ACF plot does Dot decay very fast suggesting

some problem with the data arising from the trend. The plot of the transformed data

set, the ACF, PACF and the P(1,k) are given by Figure 3.14. A normality plot of

the random error ec (Figure 3.15) shows that the normality of the ec can be assumed.

Figure 3.14: Transformed Data, ACF, PACF and C(1, k) for IBM data

~.~
~ -. .
~ ~o,~ : --=- --c -C~~
q 0 100 200 300 q 0 10 20 30 40 50

..... Ug

~~l~~
o \0 20 30 40 50 0 S 10 15 20 25 30

Ug ..

57



Figure 3.15: Plot of Airline Passengers 1e,'S
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The ACF and PACF plots appear to suggest that the series Y, is white noise. In order

to veri£y this, "''e obtained the ACF plot of 11. It is "''ell known that if Y; is a white

noise then 11 should also be a white noise. HO\\'ever, the ACF plot of 11 which we

do Dot display here indicates that an ARMA model is more appropriate. This is a

typical behavior of a bilinear series which has a masking effect on the Acr. For this

reason we only fitted the bilinear model to the data and compared the result with

the original values in a similar fashion as was done for the international passengers

data. One of the fitted ten bilinear models is given below.

APBL(I, I) Model

The following APBL(I, I) model is fitted to 1'1 with the last obsen'ation removed;

The estimated X, are then obtained using the Y,.(l)'s and reo-transforming. The

original, re-transfonned predicted \-a1ues of Xl at time t = 360,361, .. ,369. using

the bilinear models are shown in Table 3.9.
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Table 3.9: Original and Predicted Values for APBL(I, 1) and Linear Models

Original Values Predicted Values

357 352.2045

352 346.3503

346 351.6824

352 345.4097

345 332.9585

331 336.6820

33. 339.6675

340 331.0940

330 342.9945

343 347.5481

The mean absolute deviation of errors or ol1@-ste~ahead forecast errors ror the ten

values or the APBL(I, 1) model is 6.96. This \'alue is quite smaiL This shows that

the predicted and original values are very close. The appropriateness or the bilinear

model is ror the raM data is evident in the predicted values.
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Chapter 4

CONCLUSION

The general bilinear model is a time series with a number of special cases which can

be studied. Several analysts have studied a variety of special cases of this model.

See for instance Granger and Andersen(1978), Gabr(1988), Subba Rao (1981). This

study is devoted to the APBL(l, 1) model'll.1th little extension to more complicated

versions of the bilinear model; APBL(1,2), APBL(I,3) and APBL(i,q).

We studied the mean, covariance structure, third order moments and third order

cumulants of the APBL(l, 1) model. Simulation studies to check the performance of

the derh-ed properties yielded commendable results - see Tables 3.1-3.4. ODe major

goal of this study was to iO\-"eStigate the pattern in the third order cumulants of the

model in order to use it for bilinear model identification. In his study, Oyet showed

that the P(I,k) of the diagonal pure bilinear model DPBL(q)(l.l) cuts off after lag

q + 1. This study shO'l''ed that the P(l,k) of the A.PBL(I, 1) deca}"S exponentially

as the lags increase. This result was confinned by simulation studies. Thus from the

foregoing, given a time series whose underlying model is unknown but is thought to

follow either the DPBL(q) or APBL(I, 1) model, the methods outlined in this study

can be used to identify the right model depending on whether the pcl, k) cuts off after

lag q + I or decays exponentially.
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Another useful results of this ~"O£k are the difference equations for the sec:ood

order moments and third order cumulantsof X, satisfying the APBL(I,q) model for

any real valued q. As can be seen in Chapter 2, remarkable patterns can be observed

in the properties or the different versions of the bilinear model. We found that the

ACF estimates can be used to obtain an initial estimate of ~l' Our results also show

that for an arbitrary q, the mean of a bilinear model .4PBL(l,q) can be expressed

os,
a'El., 9,

JJ=~.

For example, when q = 1&:2 the mean of Xl satisfying APBL(I, I) and .4PBL(I,2)

models are given by,

aod

respectirely. Similar patterns for the second and third order moments are ghi'en by

Lemmas (2.1·2.4) and Lemmas (2.5 &: 2.6) respectively. Simulation studies using the

APBL(I,2) model showed that the results are influenced by the chosen ~l, 81 and

B, vaJues used. This may be due to the violation of the stationarity and inrertibiJity

conditions for these models.

The APBL(I, 1) was used to make one-step-ahead forecast on three real data.

This model was identified for these data based on the exponential decay obsen-ed

in the plot of their p(l, k) (see Figures 3.7,&: 3.11). For the international passengers

data the APBL(I, 1) model produced better forecasts tban theircorrespondiog "best"

linear models (see Table 3.7). We found that both theAPBL(l, 1) and A.JA(I) models

were not appropriate for the sunspot numbers based. on their forecasting ability. For

the IBM Prices data, no appropriate linear model could be identified from the ACF

and PACF plots(see Figure 3.18). Further work on the data revealed that it is non-
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linear in nature. And since the general pattern on the pel, k) plot of the data indicates

exponential decay, we fitted the APBL(l,l) model to the data. The predicted result

on the IBM Prices also turned out to be very close to the original values(see Table

3.9).

This study and other studies in the literature have revealed that non-linear time

series exist in all fields; business, economics, science, etc. It is therefore hoped that

similar studies will be carried out on more complicated vtr.;ions of the bilinear model.
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Appendix A

Data Sets

Table :\..1; International Airline Passengers Data

112 118 132 129 12l 135 148 148 136 119 104 118

115 126 141 135 125 149 170 170 158 133 114 140

145 150 178 163 172 178 199 199 184 162 146 166

17l ISO 193 181 183 218 230 242 209 191 172 194

196 196 236 235 229 243 264 272 237 211 ISO 201

204 188 235 227 234 264 302 293 259 229 203 229

242 233 267 '69 270 315 364 347 312 274 '37 278

284 277 317 313 318 374 413 405 355 306 271 306

315 301 356 348 355 422 465 467 404 347 305 336

340 318 362 348 363 435 491 505 404 359 310 337

360 342 400 396 420 472 548 559 463 407 362 405

417 391 419 461 472 535 622 600 508 461 390 43'
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Table A.2: Sunspot Numbers Data

5.0 11.0 16.0 23.0 36.0 58.0 29.0 20.0 10.0 8.0 3.0 0.0

0.0 2.0 11.0 27.0 47.0 63.0 60.0 39.0 28.0 26.0 22.0 11.0

21.0 40.0 78.0 122.0 103.0 73.0 47.0 35.0 11.0 5.0 16.0 34.0

70.0 81.0 111.0 101.0 73.0 40.0 20.0 16.0 5.0 11.0 22.0 40.0

60.0 80.9 83.4 47.7 47.8 30.7 12.2 9.6 10.2 32.4 47.6 54.0

62.9 85.9 61.2 45.1 36.4 20.9 11.4 37.8 69.8 106.1 100.8 81.6

66.5 34.8 30.6 7.0 19.8 92.5 154.4 125.9 84.8 68.1 38.5 22.8

10.2 24.1 82.9 132.0 130.9 118.1 89.9 66.6 60.0 46.9 41.0 21.3

16.0 6.4 4.1 6.8 14.5 34.0 45.0 43.1 47.5 42.2 28.1 10.1

8.1 2.5 0.0 1.4 5.0 12.2 13.9 35.4 45.8 41.1 30.1 23.9

15.6 6.6 4.0 1.8 8.5 16.6 36.3 49.6 64.2 67.0 70.9 47.8

27.5 8.5 13.2 56.9 121.5 138.3 103.2 85.7 64.6 36.7 24.2 10.7

15.0 40.1 61.5 98.5 124.7 96.3 66.6 64.5 54.1 39.0 20.6 6.7

4.3 22.7 54.8 93.8 95.8 77.2 59.1 44.0 47.0 30.5 16.3 7.3

37.6 74.0 139.0 111.2 101.6 66.2 44.7 17.0 11.3 12.4 3.4 6.0

32.3 54.3 59.7 63.7 63.5 52.2 25.4 13.1 6.8 6.3 7.1 35.6

73.0 85.1 78.0 64.0 41.8 26.2 26.7 12.1 9.5 2.7 5.0 24.4

42.0 63.5 53.8 62.0 48.5 43.9 18.6 5.7 3.6 1.4 9.6 47.4

57.1 103.9 80.6 63.6 37.6 26.1 14.2 5.8 16.7 44.3 63.9 69.0

77.8 64.9 35.7 21.2 11.1 5.7 8.7 36.1 79.7 114.4 109.6 88.8

67.8 47.5 30.6 16.3 9.6 33.2 92.6 151.6 136.3 134.7 83.9 69.4

31.5 13.9 4.4 38.0 141.7 190.2 184.8 159.0 112.3 53.9 37.5 27.9

10.2 15.1 47.0 93.8 105.9 105.5 104.5 66.6 68.9 38.0 34.5 15.5

12.6 27.5 92.5 155.4 154.7 140.5 115.9 66.6 45.9 17.9 13.4 29.2

100.2
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Table A.3: IB~1 Prices Data

460 457 452 452 459 462 459 463 479 493 490 492 498 499

497 496 490 489 478 487 491 487 491 487 482 479 478 479

477 479 475 479 476 478 479 477 476 475 473 474 474 474

465 466 467 471 471 467 473 481 488 490 489 489 485 491

492 494 499 498 500 497 494 495 500 504 513 511 514 510

509 515 519 523 519 523 531 547 551 547 541 545 549 545

549 547 543 540 539 532 517 527 540 542 538 541 541 547

553 559 557 557 560 571 571 569 575 580 584 585 590 599

603 599 596 585 587 585 581 583 592 592 596 596 595 598

598 595 595 592 588 582 576 578 589 585 580 579 584 581

581 577 577 578 580 586 583 581 576 571 575 575 573 577

582 584 579 572 577 571 560 549 556 557 563 564 567 561

559 553 553 553 547 550 544 541 532 525 542 555 558 551

551 552 553 557 548 547 545 545 539 539 535 537 535 536

537 543 548 546 547 548 549 553 553 552 551 550 553 554

551 551 545 547 547 537 539 538 533 525 513 510 521 521

521 523 516 511 518 517 520 519 519 519 518 513 499 485

454 462 473 482 486 475 459 451 453 446 455 452 457 449

450 435 415 398 399 361 383 393 385 360 364 365 370 374

359 335 323 306 333 330 336 328 316 320 332 320 333 344

339 350 351 350 345 350 359 375 379 376 382 370 365 367

372 373 363 371 369 376 387 387 376 385 385 380 373 382

377 376 379 386 387 386 389 394 393 409 411 409 408 393

391 388 396 387 383 388 382 384 382 383 383 388 395 392

386 383 377 364 369 355 350 353 340 350 349 358 360 360

366 359 356 355 367 357 361 355 348 343 330 340 339 331

345 352 346 352 357
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