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ABSTRACT In analyzing single-channel synthetic aperture radar (SAR) imagery, three interrelated
questions often arise. First, should one use the detected or the complex-valued image? Second, what is the
‘best’ statistical model? Finally, what constitutes the ‘best’ signal processing methods? This paper addresses
these questions from the overarching perspective of the generalized central limit theorem, which underpins
nonlinear signal processing. A novel procedure for characterizing the nonlinear dynamics in SAR imagery is
proposed. To apply the procedure, three complementary 1-D abstractions for a 2-D SAR chip are introduced.
Our analysis is demonstrated on real-world datasets frommultiple SAR sensors. The nonlinear dynamics are
found to be resolution dependent. As the SAR chip is detected, nonlinear effects are found to be obliterated
(i.e., for magnitude-detection) or altered (i.e., for power-detection). In the presence of extended targets
(i.e., nonlinear scatterers), it is recommended to use the complex-valued chip rather than the detected one.
Furthermore, to exploit the intrinsic nonlinear statistics, it is advised to utilize relevant nonlinear signal
analysis techniques.

INDEX TERMS Generalized central limit theorem, nonlinear dynamics, SAR, complex-valued signal,
resolution theory, extended targets.

I. INTRODUCTION
Although we live in an inherently nonlinear world,
conventional signal processing is built on linear system
theory. This theory treats deviation from linearity as noise that
warrants removal. Much of the original interest in nonlinear
phenomena arose from the study of deterministic chaos,
and subsequent research has branched into an analysis of
nonlinearity in general [1]–[3]. Nonlinear-based research
efforts can be broadly classified into two main branches:
(1) the development of novel methods that seek to explicitly
exploit the nonlinear phenomenon, and (2) the advance-
ment of techniques that permit the harnessing of nonlinear
dynamics (i.e., so-called nonlinear artifacts) retained in the
signal after application of common linear signal processing
methods. This paper, concerned with the second branch,
is exclusively aimed at the focused single-channel and

complex-valued synthetic aperture radar (SAR) image out-
puts from SAR processors.

In SAR and its relatives, such as synthetic aperture
sonar (SAS), the signal processor focuses 1-D range profiles
into a complex-valued image. The underlying assumption
which underpins signal processing theory in general, and its
application to SAR imagery in particular, is linearity. Indeed,
the SAR image is often implicitly assumed to be linear. The
assumption of linearity leads to another implicit assumption,
that is second-order circularity (also known as propriety)
which implies that the phase in complex-valued SAR imagery
is non-informative (see [4] for details). This is a consequence
of the conventional resolution theory of point targets [5].
Consequently, most of the interest in analyzing the focused
single-channel SAR image has traditionally been based on
techniques motivated by linear system theory. As a result,
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many such linear techniques are associated with the detected
SAR image (i.e., image intensity) while the phase content
is entirely ignored [6]. With the advent of high-resolution
remote sensors, the insufficiency of this theory as applied
to both stationary and moving extended targets has been
reported in the literature [7]–[11]. This conclusion is based
on the empirical observation that extended targets, such as
vehicles and airplanes, produce dispersive scattering from
cavity-like reflectors. In effect, this induces a nonlinear phase
modulation in the radar return signal which causes a mis-
match in the correlator’s output. This phenomenon is referred
to as ‘sideband responses’, andmuch of the information about
it is preserved in the complex-valued image rather than the
detected one.

In the signal processing literature, there are two definitions
of linearity considered [12]–[17]: one is the definition of a
strictly linear signal, and the other is the commonly adopted
definition of a linear signal. In the former, the signal is
assumed to be generated by a linear time invariant (LTI) or
a linear space invariant (LSI) system with a white Gaussian
noise. The commonly adopted definition differs from the
former in that the magnitude distribution is allowed to devi-
ate from the Gaussian distribution. This implies that the
strictly defined linear signal is allowed to be characterized
by a nonlinear observation function, thereby justifying the
use of linear signal processing methods on the latter. The
main reason for the popularity of linear signal processing
techniques is their rich and well-defined linear system theory
and simplicity of implementation. However, if the complex-
valued SAR data is proven to be nonlinear, significant gains
are to be anticipated from applying relevant nonlinear tech-
niques. This is because the nonlinear methods provide for
the exploitation of the nonlinear statistics ignored by the
common linear signal processing methods. While the SAR
sensor is often modeled in the literature as a linear system [5],
this does not guarantee that the focused complex-valued
image output from the SAR processor is linear, as explained
earlier [7]–[11]. Further, in [4], the statistical significance
of second-order noncircularity (also known as impropriety)
for the case of extended target is clearly demonstrated.
This implies that unlike the common belief about the
non-informativeness of the phase, the phase is indeed useful.

Although our discussion here is presented in the
context of automatic target recognition in SAR
imagery (SAR-ATR), which includes both detection and
classification, it is straightforward to generalize this discus-
sion to any relevant context. In the detection stage, popular
linear statistical models include the Gaussian, exponential,
Rayleigh, Gamma,Weibull, andK distributions, etc. [6], [18].
All these linear models implicitly assume the underlying
(superimposed) random variables to have a finite variance.
Hence, such models are all motivated by the central limit
theorem (CLT). On the contrary, nonlinear statistical mod-
els are built on the premises that the underlying random
variables possess an infinite variance; thus, such models are
justified by the generalized central limit theorem (GCLT).

Examples of nonlinear statistical models include the
generalized Gaussian distribution (GGD) [17], the complex
GGD [19], the symmetric α-stable (SαS) distribution [17],
the Gaussian scale mixture (GSM) [20], and the wrapped
complex Gaussian scale mixture (WCGSM) [4], etc.

In the classification stage, suitable signal processing meth-
ods are often used to extract and/or select useful features
from the SAR data. These features are used for classifier
training and testing. Feature generation methods can be
broadly classified into linear and nonlinear/adaptive which
are motivated by the CLT theorem and the GCLT theorem,
respectively. Among others, popular linear signal processing
methods include the Fourier [21], [22], wavelet [23], and
Radon transforms [23], [24], and principal component anal-
ysis (PCA) [25], while nonlinear signal processing methods
similarity include the Hilbert-Huang transform (HHT) [26],
nonlinear independent component analysis (nICA) [27], and
the weighted myriad filter (WMF) [17]. While many linear
signal processing methods are designed to preserve the non-
linear statistics (i.e., in the linearly transformed signal, when
the nonlinear statistics are present in the original signal),
features generated solely based on the linear statistics will be
blind to the nonlinear dynamics.

Based on the preceding discussion, it is clear that a proper
understanding of the inherent nature of the complex-valued
SAR data in terms of linearity and nonlinearity will not only
allow for an informed choice pertaining to the most suitable
statistical models and signal processingmethods, but alsowill
provide for the extraction of as much information as possible
from the SAR data. The novel contributions presented in this
paper may be summarized as follows
• A procedure for empirically demonstrating the inappli-
cability of the CLT theorem and the applicability of the
GCLT theorem to extended targets in SAR imagery, and
the interrelationship with the spatial resolution of the
SAR sensor (see Sect. II-B and Sect. VII-A),

• A method for linearly transforming the real-valued
SAR chip from 2-D to 1-D space (see Sect. IV-B),

• A method for linearly transforming the complex-valued
SAR chip, in terms of the bivariate statistics, from
2-D to 1-D space (see Sect. IV-C),

• A method for linearly transforming the complex-valued
SAR chip, in terms of the complex-valued statistics,
from 2-D to 1-D space (see Sect. IV-D), and

• A procedure for detecting and characterizing the
statistical significance of nonlinearity in SAR
imagery (see Sect. V).

Throughout this paper, the term SAR is used to inclusively
imply all other signals that possess similar properties. More-
over, the term high-resolution is used to nominally refer to
a sensor with a spatial resolution greater than the size of
the imaged target (i.e., extended target) [28]. Further, the
term chip is used to refer to a smaller image, for a particular
target or clutter, extracted from a bigger scene. Finally, in the
present context the term non-Gaussian is used synonymously
with nonlinear.
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The remainder of this paper is organized as follows.
In Sect. II, the underlying motivations for this study are
presented. In Sect. III, the topic of nonlinearity detection in
SAR imagery through resampling and hypothesis testing is
approached. In Sect. IV, a procedure for linear transformation
of the real-valued, as well as the complex-valued, SAR chip
from 2-D to 1-D space is proposed. In Sect. V, a procedure
for testing the statistical significance of nonlinearity in SAR
imagery is outlined. In Sect. VI, the overall SAR datasets used
in this study are introduced. In Sect. VII, results are discussed.
Finally, a conclusion appears in Sect. VIII.

II. MOTIVATIONS
A. WHY NONLINEAR SIGNAL PROCESSING?
Nonlinear signal processing offers significant advantages
over traditional linear signal processing in applications where
the underlying random processes are non-Gaussian in nature
and/or when the system acting on the signal of interest is
inherently nonlinear [17], [19]. Given that the SAR sensor
is often modeled as a linear system [5], the former case is
of interest here. It is important to precisely explain what is
meant by linearity and nonlinearity. The following defini-
tions are used in the literature to characterize the signal’s
linearity/nonlinearity [12]–[16].

1) DEFINITION OF STRICTLY LINEAR SIGNAL
A signal generated by a linear time invariant (LTI) or a linear
space invariant (LSI) system with a white Gaussian noise.

2) COMMONLY ADOPTED DEFINITION OF LINEAR SIGNAL
Similar to the aforementioned definition but the magnitude
distribution is allowed to deviate from the Gaussian distri-
bution. This implies that, the strictly defined linear signal
is allowed to be characterized by a nonlinear observation
function.

3) DEFINITION OF NONLINEAR SIGNAL
Any signal that does not fulfill the definition of either the
strictly linear signal or the commonly adopted definition of
linear signal.

While much of the original interest in nonlinear
phenomena arose from the study of deterministic chaos,
subsequent research has branched into an analysis of nonlin-
earities generally [1]–[3]. In the remote sensing community,
this motivated the development of new techniques that are
deliberately designed to excite nonlinear scattering in the
imaged object, and to properly harness it using suitable
nonlinear signal processing methods [29]. One of the most
interesting recent studies on the superiority of nonlinear
signal processing for sonar is that reported in [29] and [30].
In that study, it is empirically demonstrated that while
conventional linear signal processing is not able to distin-
guish the targets from the bubble clutter, nonlinear signal
processing inspired by dolphin-like sonar pulses can both
detect and classify such targets. In [29] and [31], the extension

of this technique allowed the development of a new radar
which relies on the excitation of nonlinearities in the imaged
scene. Nonlinear signal processing was used to differentiate
between linear and nonlinear scatterers, thus, improving the
target recognition performance of the radar.

B. CENTRAL LIMIT THEOREM (CLT), GENERALIZED
CENTRAL LIMIT THEOREM (GCLT), AND SAR IMAGERY
It is intuitive to approach the abovementioned defini-
tions of linearity and nonlinearity from the perspective of
the CLT and the GCLT theorems, respectively. In Cases
(Sect. II-A1) and (Sect. II-A2) above, the signal is assumed to
be linear. For the two cases, this implies that the superposition
principle (i.e., additivity and homogeneity) either strictly or
approximately hold, respectively [21], [22], [32]. This is a
consequence of the CLT theorem. The classical CLT theorem
states that the properly normed sum of a set of independent
and identically distributed (iid) random variables, each with
a finite variance, will tend to Gaussian as the number of
variables increases [33]. In Case (Sect. II-A1), the CLT is
strictly applicable whichmeans that the statistical distribution
of the signal can be strictly modeled as Gaussian. However,
in many real-world systems the assumption of the strict
Gaussianity is impractical. In Case (Sect. II-A2), although a
distribution other than (strict) Gaussian can be used to model
the (power or magnitude-detected) signal, the applicability
of the CLT theorem is still assumed. This is because such
distributions (e.g., exponential, Rayleigh, Weibull, etc. [18]),
implicitly assume that the random variables they model
possess a finite variance. This implies that they lie in the
domain-of-attraction of the Gaussian distribution (i.e., are
asymptotically Gaussian). It transpires that this is the case
for any statistical distribution that employs the assumption
of finite variance in the random variables modeled. Here, we
demonstrate the applicability of this idea to SAR imagery.

In order for Case (Sect. II-A1) to be applicable to SAR
imagery, it is required that the complex-valued speckle
(i.e., Y = YI + jYQ; imaginary unit j =

√
−1,

subscripts I and Q denote the real and imaginary parts,
respectively), which is modeled as a multiplicative noise,
be bivariate Gaussian (i.e., YI is strictly Gaussian and
YQ is strictly Gaussian). Assuming a homogeneous clut-
ter and a single-look SAR processing, the complex-valued
backscatter X is constant (i.e.,C). Thus, the statistical
multiplicative model of the complex-valued SAR image
including speckle

(
i.e.,Z = X Y = ZI + jZQ

)
is bivariate

Gaussian
(
i.e.,Z = C

(
YI + jYQ

))
. This implies that the

power-detected SAR image
(
i.e.,ZP = Z2

I + Z
2
Q

)
is expo-

nentially distributed. Further, the magnitude-detected SAR
image

(
i.e.,ZM =

√
Z2
I + Z

2
Q

)
follows Rayleigh distribu-

tion. Hence, the phase image follows a uniform distribution.
This makes the assumption of linearity strictly applicable.
For Case (Sect. II-A2), the assumption that the distribution
of the complex-valued Y strictly abides by the bivariate
Gaussian is replaced with the properties that Y follows the
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Gamma distribution and the square-root Gamma distribution,
respectively, in the power-domain and the magnitude-
domain. It may be noted that the exponential distribution,
mentioned earlier under Case (Sect. II-A1), is a special
case of the Gamma distribution. Further, the assumption of
constant X is replacedwith a particular statistical model in the
power or themagnitude domain but not in the complex-valued
domain. For example, one of the generic distributions used
for modeling the SAR image in the magnitude-domain is
the G-distribution. The G-distribution uses the square-root
of the generalized inverse Gaussian distribution to model
XM =

√
X2
I + X

2
Q for both homogeneous and heterogeneous

backgrounds. The speckle model in the power or the
magnitude domain, still follows the Gamma distribution and
the square-root Gamma distribution, respectively. Some other
popular statistical distributions such as the Go-distribution
and the K-distribution are special cases of the G-distribution.
This shows the scope of Case (Sect. II-A2) in the context of
SAR imagery. It is clear that in all these cases the distribu-
tion of the power-detected or the magnitude-detected SAR
image is allowed to deviate from the Gaussian distribution,
in order for the non-strict assumption of linearity to hold. It is
interesting to note that the implicit assumption here is that
all these distributions are in the domain-of-attraction of the
Gaussian distribution. Further, in all such statistical models,
the complex-valued statistics are entirely ignored due to the
assumption that the phase follows a uniform distribution.
A detailed explanation on the interrelation between these
statistical models for SAR imagery is found in [18, Sec. 5.2].

In Case (Sect. II-A3), due to the infinite variance of
the signal’s distribution (i.e., when the signal is sampled
from a population with an infinite variance), the CLT can-
not hold. Thus, the CLT is replaced with the Generalized
CLT (GCLT). In the GCLT, the Gaussian distribution as a
domain-of-attraction is replaced with the so-called stable
distribution. The GCLT states that a sum of independent
random variables from the same distribution, when properly
centered and scaled, belongs to the domain-of-attraction of
a stable distribution. Further, the only distributions that arise
as limits from suitably scaled and centered sums of random
variables are the stable distributions [17], [34]. Of interest
in nonlinear signal processing are the stable Paretian distri-
butions which are strictly non-Gaussian. Note that statistical
distributions motivated by the CLT theorem can be viewed as
a special case of the GCLT theorem.

Case (Sect. II-A3) motivates the whole research on
nonlinear signal processing. The reasoning here is that if one
forces a signal sampled from a population which possesses
an infinite variance to be modeled, or more generally pro-
cessed, using a linear technique, one simply ignores some
valuable informationwhich can only be exploited through uti-
lizing nonlinear signal processing methods [17]. A practical
example is the statistical model often used in the front-end
stage (i.e., target detection) of an automatic target recogni-
tion (ATR) system. Other examples are the features generated

from the target chips for training and testing the intermediate
(i.e., low-level classifier) and the back-end (i.e., high-level
classifier) stages of the ATR system. The empirical applica-
bility of Case (Sect. II-A3) to high-resolution SAR imagery
is discussed in detail in Sect. VII-A.

C. ON THE ORIGIN OF THE NONLINEAR
PHENOMENON IN SAR IMAGERY
The baseband backscatter xBB from a single point target,
output from the quadrature demodulator and downlinked to
the SAR processor, is known as the phase history or the raw
signal given by [5]

xBB
(
τ , η

)
= A exp (jψ)

×

{
wr

(
τ − 2

R (η)
c

)
wa (η − ηc) exp(

−j4π fo
R (η)
c

)
exp

(
jπKr

(
τ − 2

R (η)
c

)2
)}

,

(1)

where A is the backscatter coefficient (i.e., σo), ψ is a phase
change in the received pulse due to the scattering process
from a surface, τ is the fast time, η is the slow time,
wr (τ ) = rect(τ/Tr ) is the transmitted pulse envelope,
Tr is the pulse duration, R (η) is the distance between the
radar and the point target, c is the speed of light in a vacuum,
wa (η) is the two-way azimuth beam pattern, ηc is the beam
center in the azimuth direction, fo is the center frequency, and
Kr is the frequency modulation (FM) rate of the range pulse.
The SAR raw signal is conventionally modeled as

xBB
(
τ , η

)
= g

(
τ , η

)
⊗ h

(
τ , η

)
+ n

(
τ , η

)
, (2)

where ⊗ denotes convolution, g
(
τ , η

)
is the ground

reflectivity, h
(
τ , η

)
is the impulse response of the SAR, and

n
(
τ , η

)
is a noise component mainly due to the front-end

receiver.
The SAR processor solves for g

(
τ , η

)
. Following the con-

ventional radar resolution theory, h
(
τ , η

)
, bounded by the

curly brackets in Eq. 1, is an impulse response of a point
target. For a given reflector within the radar illumination
time, ψ is assumed to be constant [5]. For the case of an
extended target, this assumption is retained. Hence, such a
target is modeled as the linear combination of its point reflec-
tors. However, the assumption of constant ψ is violated in
the presence of dispersive scattering from cavity-like reflec-
tors, typical in stationary and moving man-made (extended)
targets such as vehicles and airplanes. These reflectors trap
the incident wave before it is backscattered, thus, inducing a
phase modulation (PM). The problem arises when the PM is
nonlinear. Besides the PM, this phenomenon also introduces
amplitude modulation (AM) [7]–[10]. Thus, the backscatter
term in Eq. 1 is rewritten as

s
(
τ ( fτ ) , η

)
= A

(
τ ( fτ) , η

)
exp

(
jψ
(
τ ( fτ ) , η

))
, (3)
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where τ ( fτ ) is the time delay due to the PM, and fτ varies
over the spectral width of the chirp, B. In Eq. 3, it is
emphasized that the magnitude and phase of the backscatter
is frequency dependent. While AM is a linear process, this
is often not the case for PM. Indeed, based on the principle
of stationary phase (POSP), the time delay induced by a
dispersive scatterer is

τ ( fτ ) ∝
d
df
( fτ )O , (4)

where O is the order induced by the dispersive scatterer.
For O ∈ {0, 1, 2}, the PM is linear, and its effect is
either translation or smearing of the response in the corre-
lation filter.1 However, for O /∈ {0, 1, 2}, the phase center
possesses a nonlinear delay which introduces spurious effects
in the correlator’s output. This phenomenon is referred to
as ‘sideband response’, and the information about it is pre-
served in the complex-valued image rather than the detected
one. Further, in the presence of an extended target, it is
empirically observed that this effect dominates the focused
SAR imagery [7]–[10]. The sideband responses are radically
different from the range and Doppler sidelobes. One of the
reasons for this is that they are among the strongest responses.
Secondly, unlike the range and the Doppler sidelobes, they
are not restricted to the range and cross-range gates. Thirdly,
they are distributed over an area far larger than that occupied
by the target. As stressed in [7]–[9], these sideband responses
cannot be suppressed by the weighting methods because they
are target generated. It is clear, as a result of the effect, the
nonlinear PM violates the resolution theory of point targets.

III. NONLINEARITY DETECTION IN SAR IMAGERY
A. TESTING FOR NONLINEARITY THROUGH RESAMPLING
Themost commonmethod for nonlinearity detection in a 1-D
signal is that based on the so-called surrogate data test. In this
method, a surrogate signal {zt }nt=1 is resampled from an
original signal {xt }nt=1 to be tested. The resampled signal
should fulfill the following two conditions: (1) it should
preserve the linear correlation of the original signal, and
(2) it should retain the marginal distribution pertinent to
the original signal [35]–[37]. Thus, {xt }nt=1 is resampled in
accordance with a null hypothesisH0 (for linearity) such that
a surrogate signal {zt }nt=1 is generated as follows

H0 : zt = h (st) , {st } ∼ N (0, 1, ρs) , (5)

where H0 is a stochastic linear process, {st } is a stan-
dard Gaussian process, ρs is the autocorrelation of st ,
and h is a static instantaneous transform which can
be linear/nonlinear/monotonic/nonmonotonic. Note that
N (0, 1, ρs) accounts for the linear dynamics in the input
signal and h allows for deviations from the marginal
Gaussian distribution. Various relevant resampling methods
are reported in the literature. Of interest to this study is

1Note that smearing also occurs due to the variable Doppler processing
used for motion compensation.

the iterative amplitude adjusted Fourier transform (iAAFT)
method [38], [39], which is chosen mainly because it is found
to give acceptable results [40]. The iAAFT method approx-
imates the sample power spectrum, Sz( f ) ≈ Sx( f ), where
Sx( f ) is the periodogram of {xt }nt=1. Further, the iAAFT fol-
lows the constrained realization approach in a direct attempt
to generate surrogate data that fulfill the abovementioned
two conditions. Hence, the iAAFT is designed to be used
for testing H0 of a Gaussian process undergoing a static
transform (i.e., not only the monotonic, Case (Sect. II-A2)
as discussed earlier). The iAAFT surrogate approximates
the original autocorrelation (i.e., linear correlation) and pos-
sesses the exact original marginal distribution of the input
signal [38], [40], [41].

B. MEASURES FOR LINEARITY AND NONLINEARITY
In this study, two kinds of correlation measures are used
to account for the linear and nonlinear statistics, respec-
tively. Firstly, for capturing the linear correlation statis-
tics in the SAR chip, we use the Pearson product-moment
correlation (PPMC) given in [39] and [42] as

r (τ ) =

∑n−τ
t=1 (yt − ȳ) (yt+τ − ȳ)∑n−τ

t=1 (yt − ȳ)
2 , (6)

where τ is a lag and ȳ is the mean of {yt }nt=1. Secondly,
for capturing the nonlinear correlation statistics, we use the
mutual information (MI) defined as [43]

I (τ ) = I (Yt ,Yt−τ ) =
∑
Yt

∑
Yt+τ

pYtYt−τ (yt , yt−τ )

× log
pYtYt−τ (yt , yt−τ )
pYt (yt) pYt−τ (yt−τ )

, (7)

where pYtYt−τ (yt , yt−τ ) is the joint probability mass func-
tion (PMF), and pYt (yt) and pYt−τ (yt−τ ) are the marginal
PMFs for yt and yt−τ , respectively. MI is known to be a
powerful test statistic for nonlinearity, accounting for both
linear and nonlinear behaviors [44]–[46]. To estimate the
joint and marginal PMFs of Eq. 7 we use the equiprobable
bin histogram (EBH) procedure which partitions the domain
of Yt and Yt−τ into b intervals of similar occupancy and
different width [44], [47], [48]. The histogram bins are chosen
to have equal probability rather than equal width as is the
usual case. Thus, the width of the bins is allowed to varywhile
the height of each bin is constrained so that the area under the
PMF approximation is equal to one. The main advantage of
EBH over the traditional equidistant histogram (EDH) is that
it provides improved resolution in regions where there is a
large number of samples. Further, the number of bins b for
each histogram considered in this study is set, as suggested
in [44], to

b =

√
n
5
, (8)

where n is the total length of the 1-D vector.
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C. TESTING FOR STATISTICAL SIGNIFICANCE IN THE
LINEAR/NONLINEAR MEASURES
Testing for the statistical significance is of paramount impor-
tance in two scenarios pertaining to this study. Firstly, this
test is required to examine the validity of the surrogates
for nonlinearity testing (i.e., conformity of the surrogates
with H0). This is achieved through examining the statistical
significance of the linearity in the surrogates. If the surrogates
are confirmed linear, they are deemed suitable for nonlin-
earity analysis. Secondly, the statistical significance of the
nonlinearity in the original SAR data (i.e., deviation of the
original SAR data from H0) must be tested.

The procedure for testing the significance of the statistic
QS is formed by values of QS computed on an ensemble of
N surrogates {Q1, Q2, . . . ,QN }. Then, if the statistic com-
puted on the original signal, denoted Q0, is found to be in
the tails of the empirical null distribution, H0 is rejected.
This test may be implemented using parametric and nonpara-
metric methods. Both methods are considered in this study
to confirm the significance of the results. The parametric
test for linearity/nonlinearity is provided in Sect. III-C1, and
the nonparametric test for Gaussianity, required to validate
the parametric test, is given in Sect. III-C2. Finally, the
nonparametric test for linearity/nonlinearity is described
in Sect. III-C3.

1) PARAMETRIC TEST FOR LINEARITY/NONLINEARITY
Let Q0 denote the test statistic generated from the original
signal to be tested, Qi denote the test statistic for the ith

surrogate under H0, and µS and σS denote the sample mean
and standard deviation, respectively, of the test statistic per-
taining toQS ∼ {Q1, Q2, . . . ,QN }. The parametric measure
of statistical significance is defined as

L =
|Q0−µS |

σS
. (9)

If the distribution of L is Gaussian, then the P-Value is given
by [49] and [50] as

P = 1− erf
(

L
√
2

)
=

∫
∞

L
√
2

exp
(
−u2

)
du. (10)

The P-Value represents the probability of observing a signif-
icance L or larger if H0 is true. Hence, H0 is rejected if the
P-Value is less than or equal to a significance level α (i.e., the
alternative hypothesis H1 is favored). Typically, α is chosen
to be either 0.01 or 0.05 [49], [50].

2) NONPARAMETRIC TEST FOR GAUSSIANITY
In order for the parametric test of Sect. III-C1 to be valid,
the measure values from the surrogates are assumed to
follow the Gaussian distribution. Thus, the parametric test
is rendered invalid (or at least inaccurate) if the measure
values from the surrogates deviate from theGaussian distribu-
tion. The nonparametric Kolmogorov-Smirnov (KS) test for
Gaussianity is considered in this study to examine the confor-
mity of the surrogate statistic ensemble {Q1, Q2, . . . ,QN }

with the Gaussian distribution for a significance level α.
The KS test achieves this through quantifying the largest
vertical distance between the empirical distribution func-
tion (EDF) denoted by F̂ (x) of the sample and an esti-
mate of the cumulative distribution function (CDF) of the
Gaussian distribution denoted by G (x). The KS statistic is
given in [51] and [52] as

K = sup
x

∣∣∣F̂ (x)− G (x)∣∣∣ , (11)

where sup
x

is the supremum of the set of distances.

An approximation for the critical value pertaining to this test
is given by [39], [53]

Cα =
Kα

√
N + 0.12+ 0.11

√
N

, (12)

where Kα = 1.358 and Kα = 1.628 for a significance level
α = 0.05 and α = 0.01, respectively [39], [53]. For a
significance level α, Gaussianity is accepted if K < Cα , and
the parametric test in Sect. III-C1 is deemed valid. Otherwise,
Gaussianity is rejected and the parametric test in Sect. III-C1
is deemed invalid.

3) NONPARAMETRIC TEST FOR LINEARITY/NONLINEARITY
Being distribution-free, the nonparametric approach offers
a more robust way to define the statistical significance for
linearity/nonlinearity. In this work, a two-sided test is used
where H0 is rejected if Q0 is smaller than the α

2 quantile
or larger than the 1 − α

2 quantile of the surrogate statistic
ensemble {Q1, Q2, . . . ,QN }. For example, if N = 1000 and
α = 0.05,H0 is rejected ifQ0 is in the first or last 25 positions
of the rank ordered sequence {Q1, Q2, . . . ,QN }.

IV. LINEAR TRANSFORMATION OF SAR CHIPS
FROM 2-D TO 1-D SPACE
While the linear and nonlinear measures described in Sect. III
may be applied to a particular direction in the SAR chip
(e.g., vertical, horizontal, diagonal, etc.), it is desired that
such measures be designed to account for the neighborhoods
of each pixel. Under this section, we propose a method to
transform the 2-D SAR chip into an abstract 1-D vector that
accounts for the pixel neighborhoods. The method is inspired
by the Radon transform. One main advantage of the Radon
transform is that, being a linear transform in the spatial-
domain, it preserves the original statistics present in the SAR
image without introducing any nonlinear artifacts. A suc-
cinct description for the forward Radon transform is given
in Sect. IV-A. Then, a novel method for linear transformation
of the real-valued 2-D SAR chip into a 1-D vector is presented
in Sect. IV-B. This is followed, in Sect. IV-C, by a novel
method for linear transformation of the bivariate 2-D SAR
chip into a 1-D vector. Finally, Sect. IV-D describes a method
for linear transformation of the complex-valued 2-D SAR
chip into a 1-D vector.
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A. THE FORWARD RADON TRANSFORM
The Radon transform Rθ

(
x ′
)
for a 2-D function f (x, y) is the

line integral of f parallel to the y′ axis defined, for example
in [24], as

Rθ
(
x ′
)
=

∞∫
−∞

f
(
x ′ cos θ − y′ sin θ, x ′ sin θ + y′ cos θ

)
dy′,

(13)

where θ is the projection angle, and
(
x ′, y′

)
are the projection

coordinates which are related to the projection angle by[
x ′

y′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
. (14)

The geometry of the Radon transform is illustrated
in Fig. 1. Note that the

(
x ′, y′

)
coordinate is rotated (in the

spatial-domain) about the center of the image as shown in
Fig. 1. An important property of the Radon transform, which
is of interest to the study presented in this paper, is lin-
earity [24]. This implies that the Radon transform is both
additive and homogeneous. This guarantees that the Radon-
transformed signal retains the statistics of the original 2-D
SAR chip and does not include nonlinear artifacts due to the
transformation process.

FIGURE 1. Illustration of the Radon transform for a projection angle θ .
The random shape provided represents the 2-D function f

(
x, y

)
.

B. A METHOD FOR LINEAR TRANSFORMATION OF THE
REAL-VALUED 2-D SAR CHIP INTO A 1-D VECTOR
Under this section, a procedure for transforming the real-
valued 2-D SAR chip f (x, y) into a 1-D vector, utilizing
the Radon transform, is proposed. The proposed procedure
is illustrated in Fig. 2. First, the Radon transform of the

FIGURE 2. Proposed procedure for transforming a real-valued 2-D SAR
chip into a 1-D vector.

real-valued input SAR chip is computed for the angles in the
interval [0, π) as

F
(
θ, x ′

)
= Rθ {f (x, y)}|θ=[0,π), (15)

a representation known also as a sinogram. Note that angles
in the range [π, 2π ] are omitted because their corresponding
Radon transform provides identical values to the angles in
the range [0, π), and this redundancy is of no interest to
this study. This is followed by integrating out the projection
angles θ = [0, π) through applying the Radon transform
to the sinogram output at a projection angle φ = π

2 to
obtain

F
(
x ′
)
= Rφ

{
F
(
θ, x ′

)}∣∣
φ= π2

. (16)

The output given by Eq. 16 is an abstract 1-D vector
representative of the input 2-D SAR chip. The procedure
shown in Fig. 2 can be applied to any real-valued SAR
chip, including the detected SAR chips (i.e., the power and
the magnitude-detected chips) as well as the real and the
imaginary parts of the complex-valued SAR chip.

C. A METHOD FOR LINEAR TRANSFORMATION OF THE
BIVARIATE 2-D SAR CHIP INTO A 1-D VECTOR
Under this section, a procedure for transforming the bivariate
SAR chip into a real-valued 1-D vector is proposed. The term
bivariate is used here to denote that the real and the imaginary
parts of the complex-valued SAR chip are treated as two
separate real-valued chips. This is in analogy to the bivariate
distribution (e.g., bivariate Gaussian) which is used to model
the complex-valued data in such a manner (see [54, p. 20]).
The procedure proposed here is meant to account for the
bivariate statistics between the real and the imaginary parts
of the complex-valued SAR chip. Fig. 3 depicts the proposed
procedure.

FIGURE 3. Proposed procedure for transforming a bivariate SAR chip into
a 1-D vector.

The complex-valued SAR chip is available in the form

g (u, v) = i (x, y)+ j q (x, y) , (17)

where i (x, y) and q (x, y) are the real and the imaginary parts,
respectively, of the complex-valued SAR chip; and j =

√
−1.

Note that (x, y) represent the 2-D Cartesian coordinates of
the real-valued plane, while (u, v) represent the 2-DCartesian
coordinates in the complex-valued plane.
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The Radon transform is applied separately to the real and
the imaginary parts of the complex-valued SAR chip as

I
(
θ, x ′

)
= Rθ {i (x, y)}|θ=[0,π), (18)

Q
(
θ, x ′

)
= Rθ {q (x, y)}|θ=[0,π). (19)

Then, the two sinograms output from Eq. 18 and Eq. 19,
respectively, are combined together into a single sinogram as

IQ
(
θ, x ′

)
=
[
I
(
θ, x ′

)
Q
(
θ, x ′

)]
. (20)

Note that Matlab notation is used in Eq. 20 to denote
that the two sinograms are concatenated horizontally, along
the second dimension. Thus, the resultant sinogram has
the same number of rows as in the original sinogram
(i.e., I

(
θ, x ′

)
andQ

(
θ, x ′

)
have similar size), and the number

of columns is doubled. Following this, the projection angles
θ = [0, π) are integrated out. This is achieved through apply-
ing the Radon transform to the combined sinogram output
from Eq. 20 at a projection angle φ = π

2 as follows

IQ
(
x ′
)
= Rφ

{
IQ
(
θ, x ′

)}∣∣
φ= π2

. (21)

The output given by Eq. 21 is an abstract 1-D vector
representative of the bivariate statistics in the input 2-D
complex-valued SAR chip.

D. A METHOD FOR LINEAR TRANSFORMATION OF THE
COMPLEX-VALUED 2-D SAR CHIP INTO A 1-D VECTOR
The procedure described in Sect. IV-C accounts for the bivari-
ate statistics between the real and the imaginary parts of
the complex-valued SAR chip. However, the complex-valued
statistics [54] are not meant to be accounted for by this
procedure. Here, to account for such complex-valued statis-
tics, a simple procedure is proposed. First, the real and the
imaginary parts of the complex-valued SAR chip are suitably
amalgamated in the spatial-domain according to

fuiq (x, y) = furud (i (x, y) , q (x, y)) . (22)

This specific form of interleaving is referred to as furud’ing,
inspired by the spectroscopic binary in the constellation
Canis Major known by the traditional name Furud [55], [56].
Fig. 4 illustrates our proposed furud’ing procedure.

FIGURE 4. Our proposed furud’ing procedure. (a) Real-part of the
complex-valued SAR chip, i

(
x, y

)
. (b) Imaginary-part of the

complex-valued SAR chip, q
(
x, y

)
. (c) Furud’ed chip, fuiq

(
x, y

)
.

In the next step, the real-valued furud chip is transformed to
a 1-D vector through inputting it to the algorithm introduced

in Fig. 2, with the final output being given by

Fuiq
(
x ′
)
= Rφ

{
Rθ
{
fuiq (x, y)

}∣∣
θ=[0,π)

}∣∣∣
φ= π2

. (23)

V. PROPOSED PROCEDURE FOR NONLINEARITY
TESTING IN SAR IMAGERY
Our proposed procedure for nonlinearity testing in SAR
imagery is depicted in Fig. 5. Firstly, the 2-D SAR chip
is transformed into an abstract 1-D vector, to be used for
all subsequent operations, following the procedure described
in Sect. IV. Next, an N number of iAAFT surrogates is gen-
erated from the abstract 1-D SAR data based on the iAAFT
method described in Sect. III-A. Then, the surrogates are
tested for linearity. This step is crucial as it guarantees the
validity of the iAAFT surrogates for nonlinearity testing in
the subsequent stage. The test for linearity commences with
computing the PPMC coefficients, at a particular lag τ , for
both the input 1-D SAR data as well as for each surrogate, as
described by Eq. 6.

FIGURE 5. Hypothesis test procedure for nonlinearity/linearity proposed
in this paper.

Following this, to determine the statistical significance
of linearity in the resampled surrogates, the parametric and
the nonparametric tests are conducted following the meth-
ods described in Sect. III-C1 and Sect. III-C3. Furthermore,
in order to validate the parametric test for linearity, the
PPMC measure values for the surrogates are also tested for
Gaussianity following the KS test described in Sect. III-C2.
If the measure values for the surrogates are found to be not
strictly Gaussian, the parametric test for linearity is deemed
invalid and only the nonparametric test is considered in this
case. Otherwise, the P-Values for both the parametric and
the nonparametric tests are considered. This procedure is
repeated for different lags τ . It is reported in the literature
that an approximate optimal value, τopt , for τ can be chosen
such that it corresponds to the first local minimum of the
mutual information given by Eq. 7 [43]. However, it should
be noted that this value of τopt is not guaranteed to maximize
the linearity in the surrogates. Thus, we choose a value of τ ,
in the vicinity of τopt , such that the P-Value for the linearity
measures of the N surrogates is maximized and refer to this
lag as τmax . This validates the significance for the statistical
conformity of the surrogates withH0. The chosen lag τmax is
used in the next stage for testing the nonlinearity.
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Finally, to test for the nonlinearity, the MI coefficients,
described in Eq. 7, are computed both for the input abstract
1-D SAR data and for the N iAAFT surrogates at lag τmax .
Further, both the parametric and the nonparametric tests
are conducted to characterize the statistical significance of
nonlinearity/linearity (i.e., whichever the test finds to be
applicable) in the input abstract 1-D SAR data. The statis-
tical significance for all the results is presented in terms of
P-Values. The KS test is applied to the MI coefficients to
validate the parametric test as described above.

VI. REAL-WORLD SAR CHIPS
A. SAR CHIPS FROM RADARSAT-2 DATASETS
RS-2 is a spaceborne C-band radar. Two single-channel (HH)
single-look complex-valued (SLC) datasets from RS-2 are
considered in this study. SLC is the lowest-level product
commercially available from MDA Corporation. In the
first dataset, the imaging mode is Spotlight. In this mode,
RS-2 allows for improved spatial resolution in the azimuth
direction in which it delivers the highest nominal spatial res-
olution of 1.6×0.8m in range and azimuth, respectively [58].
The targets of interest considered in this dataset are six con-
struction vehicles (shown in red circles in Fig. 6a, and counted
from left to right) and one corner reflector (trihedral, shown
in red square in Fig. 6a) imaged in a site located in the former
Naval Station Argentia in Newfoundland, Canada [57]. The
phase image for this scene is provided in Fig. 6b. Ground-
truthing is conducted by C-CORE (see Fig. 6c). Note that the
size of these targets is comparable to the nominal spatial reso-
lution of the RS-2 sensor (i.e., these targets can be considered
as point targets).

In the second dataset, two single-channel SLC SAR
chips were extracted from a public-domain RS-2 scene,
i.e., Vancouver dataset in [59]. The imaging mode is
‘Polarimetric Fine’. Only the HH channel is utilized.
The nominal spatial resolution for this imaging mode is
5.2× 7.7 m in range and azimuth, respectively [58]. In the
first chip, the target is a ship occupies a rectangular area
of size 72 × 34 m in range and azimuth, respectively. Note
that this is an extended target. The magnitude-detected chip
and the phase chip for this target are provided in Fig. 7.
The second chip is pertinent to a target-free sea clutter.
The magnitude-detected chip and the phase chip are shown
in Fig. 8.

B. SAR CHIPS FROM THE MSTAR DATASET
MSTAR is a public-domain single-channel (HH) and
ground-truthed dataset acquired by an airborne SAR sensor.
MSTAR offers X-band SLC Spotlight chips for multiple
types of military targets (mostly vehicles) imaged under
various amounts of articulation, obscuration and camouflage.
The MSTAR dataset provides a nominal spatial resolution
of 0.3047 × 0.3047 m in range and azimuth [60]. A set
of MSTAR chips pertaining to extended target D7 (bull-
dozer) is arbitrarily chosen for this study. The chosen set

FIGURE 6. Spotlight RS-2 SLC image for a site in the former Naval Station
Argentia [57] in Newfoundland, Canada. Ground-truth image is provided
by C-CORE. RADARSAT-2 Data and Products
MacDonald, Dettwiler and
Associates Ltd. (2011). (a) Contrast-enhanced and magnitude-detected
RS-2 image. Vehicle targets are numbered 1 to 6, respectively, from
left to right. The corner reflector is referred to as CR. (b) Phase image.
(c) Ground-truth image (left to right: 1 dump truck, 1 loader, 2 dump
trucks, 2 pickup trucks).

FIGURE 7. RS-2 chip for ocean-based extended (ship) target (ET).
RADARSAT-2 Data and Products
MacDonald, Dettwiler and Associates
Ltd. (2008). (a) Magnitude-detected chip. (b) Phase chip.

is representative of different azimuth angles for this target.
Table 1 provides a list of the chosen MSTAR chip IDs
along with relevant azimuth angles. A ground-truth image
for the target is shown in Fig. 9. The magnitude-detected
images for all the MSTAR chips of target D7 considered
in this paper, are provided in Fig. 10. The corresponding
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FIGURE 8. RS-2 chip for ocean clutter (i.e., target-free (TF) chip).
RADARSAT-2 Data and Products
MacDonald, Dettwiler and Associates
Ltd. (2008). (a) Magnitude-detected chip. (b) Phase chip.

TABLE 1. List of the MSTAR chips of target D7 used in this paper.

FIGURE 9. Ground-truth image for target D7.

phase chips are depicted in Fig. 11. The numbers
shown on the chips represent the chip number provided
in Table 1.

C. SAR CHIPS FROM A VERY HIGH-RESOLUTION SENSOR
The final two SAR chips considered in this study are from
a very high-resolution single-channel X-band SAR sys-
tem, obtained from [61] and [62]. The imaging mode is
‘Stripmap’. The nominal spatial resolution of the SAR sensor
is 0.03 × 0.012 m in range and azimuth, respectively. The
first target is a bike. The magnitude-detected and phase chips
for this target are shown in Fig. 12. The second target is the
phrase GO STATE which is formed through using a group of
tiny pushpins. The magnitude-detected and phase chips for
this target are depicted in Fig. 13.

FIGURE 10. Magnitude-detected chips for a selected set from MSTAR
target D7.

FIGURE 11. Phase chips for a selected set from MSTAR target D7.

FIGURE 12. SAR chip for a bike from a very high-resolution X-band radar.
(a) Magnitude-detected chip for a bike. (b) Phase chip for a bike.

VII. RESULTS AND COMMENTS
A. APPLICABILITY OF THE GCLT THEOREM TO SAR
IMAGERY, AND THE INTERRELATIONSHIP WITH
THE SPATIAL RESOLUTION
This section aims at empirically demonstrating the inappli-
cability of the CLT theorem to the extended targets in SAR
imagery. Further, the effect of the spatial resolution for the
SAR sensor is also examined. Five complex-valued SAR
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FIGURE 13. SAR chip for GO STATE in pushpins from a very
high-resolution X-band radar. (a) Magnitude-detected chip for GO STATE
in pushpins. (b) Phase chip for GO STATE in pushpins.

chips containing a variety of target types and having differing
spatial resolutions are chosen. The first chip is for target-free
(i.e., TF) ocean clutter taken from the RS-2 dataset introduced
in Sect. VI-A. The second chip containing target #1 and
representing the case of a point target, is taken from the RS-2
dataset introduced in Sect. VI-A. The third chip is for target
ET taken from the RS-2 dataset introduced in Sect. VI-A.
This chip represents the case of an extended target. The
fourth chip is for target #11 taken from the MSTAR dataset
presented under Sect. VI-B. This chip also represents an
extended target. Finally, the fifth chip is for the phrase GO
STATE in pushpins given under Sect. VI-C. This case too
represents an extended target. For each of these chips, the
following procedure is applied. First, a normalized EDH
histogram is computed for both the real-part and the
imaginary-part, respectively. Then, the envelope of the resul-
tant histogram is fitted to the Gaussian distribution and the
GGD distribution, respectively. The Gaussian distribution
serves to demonstrate the applicability/inapplicability of the
CLT theorem. The GGD distribution is a non-Gaussian sta-
tistical model motivated by the GCLT theorem. GGD allows
the rate of tail decay to be varied and it is known to offer a
goodmodel for some impulsive phenomena. TheGGD family
is general in that it encompasses a wide array of distributions
with different tail characteristics from super-Gaussian to sub-
Gaussian with specific densities such as Laplacian and Gaus-
sian distributions [17], [63]. The GGD distribution is chosen
in this study because it is found to closely fit our SAR data.

Fitting with the Gaussian distribution is performed using
the minimum variance unbiased estimator (MVUE) [64].
Fitting with the GGD distribution is done through min-
imizing the symmetrized relative entropy, known as the
Jensen–Shannon (JS) divergence, between the envelope of
the histogram and the GGD’s PDF (see [4] and Eq. 30 in
Appendix for details). Goodness-of-fit measures between
the normalized histograms and both the Gaussian and the
GGD PDFs are presented in terms of the JS divergence (see
Eq. 30 in Appendix for details). Our results are presented
in Fig. 14-Fig. 18, respectively. Goodness-of-fit measures are
given in Table 2.

The following conclusions are drawn based on the results
obtained. First, for the target-free RS-2 chip considered, it is

FIGURE 14. Histogram and fitting with Gaussian and GGD distributions
for ocean clutter (i.e., target-free (TF) chip). (a) Histogram for real-part.
(b) GGD PDF and Gaussian PDF superimposed on histogram of real-part
in Fig. 14a. (c) Histogram for imaginary-part. (d) GGD PDF and Gaussian
PDF superimposed on histogram of imaginary-part in Fig. 14c.

FIGURE 15. Histogram and fitting with Gaussian and GGD distributions
for RS-2 target #1. (a) Histogram for real-part. (b) GGD PDF and Gaussian
PDF superimposed on histogram of real-part in Fig. 15a. (c) Histogram for
imaginary-part. (d) GGD PDF and Gaussian PDF superimposed on
histogram of imaginary-part in Fig. 15c.

evident that the goodness-of-fit for both the Gaussian and the
GGD PDFs are almost identical (see Fig. 14 and Table 2).
It is thus concluded that nonlinearity is negligible in the
absence of targets. Second, based on the fitting results for
the case of point target considered (see Fig. 15 and Table 2),
the Gaussian PDF and the GGD PDF are close to each other
(i.e., in terms of the JS divergence), despite the relatively bet-
ter fit achieved by the GGD PDF. It is observed that the GGD
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FIGURE 16. Histogram and fitting with Gaussian and GGD distributions
for RS2 extended (ship) target (ET). (a) Histogram for real-part. (b) GGD
PDF and Gaussian PDF superimposed on histogram of real-part
in Fig. 16a. (c) Histogram for imaginary-part. (d) GGD PDF and Gaussian
PDF superimposed on histogram of imaginary-part in Fig. 16c.
(e) Zoom-in into the right tail of Fig. 16b.

PDF gives more weight to the heavy tails and peakedness
of the histogram while the Gaussian PDF is restricted by
the sample variance. Note that the smaller the JS divergence
measure is, the better the fit. Thus, it is evident that the
point target considered also possesses minimum nonlinearity.
Third, for all the other chips considered, the GGD distribution
offers a much better fit than the Gaussian distribution. This is
evident through visually inspecting the fitting results depicted
in Fig. 16-Fig. 18, respectively. This is also confirmed from
Table 2 for the JS divergence measures. It is clear that the
Gaussian distribution cannot model pulsed phenomenon with
heavy tails (i.e., super-Gaussian) similar to those obtained in
the figures pertinent to the case of extended targets. However,
the GGD distribution accounts for this behavior. Further, it
is noted that the peakedness and the heavy tails get even
more pronounced with the increase in the spatial resolution
of the SAR sensor relative to the size of the imaged target.
This is clearly observed through comparing the histograms in
Fig. 18 with Fig. 16 and Fig. 17, respectively. This behavior
increases the goodness-of-fit between the histogram and the
GGD PDF, in contrast to the Gaussian PDF. This is con-
firmed by examining the JS divergence measures provided
in Table 2.

FIGURE 17. Histogram and fitting with Gaussian and GGD distributions
for MSTAR target #11. (a) Histogram for real-part. (b) GGD PDF and
Gaussian PDF superimposed on histogram of real-part in Fig. 17a.
(c) Histogram for imaginary-part. (d) GGD PDF and Gaussian PDF
superimposed on histogram of imaginary-part in Fig. 17c. (e) Zoom-in
into the right tail of Fig. 17b.

Since the Gaussian distribution motivates the CLT
theorem, this demonstrates the inapplicability of the CLT
theorem to the real-part and the imaginary-part of the SAR
chips containing the extended targets. Similarly, since the
GGD distribution is motivated by the GCLT theorem, it can
be said that in the presence of extended targets, the SAR
chips considered demonstrate some nonlinear behavior. This
nonlinear behavior becomes even more pronounced with the
increase in the spatial resolution of the SAR sensor, relative
to the size of the imaged target. The statistical significance of
the nonlinearity is investigated in the next section.

B. STATISTICAL ANALYSIS FOR NONLINEARITY
This section presents the statistical analysis results for the
nonlinear dynamics in the SAR datasets introduced under
Sect. VI. This analysis follows the procedure described under
Sect. V. The analysis utilizes a number of 1024 iAAFT
surrogates (i.e., N = 1024) for each 1-D vector
representation. The number 1024 is chosen as a tradeoff
between computational complexity and statistical signifi-
cance. Once the iAAFT surrogates are calculated, the spa-
tial lag τmax is found for each 1-D vector representation.
Then, the nonlinear measures in terms of MI, are calculated
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FIGURE 18. Histogram and fitting with Gaussian and GGD distributions
for the SAR chip of GO STATE in pushpins. (a) Histogram for real-part.
(b) GGD PDF and Gaussian PDF superimposed on histogram of real-part
in Fig. 18a. (c) Histogram for imaginary-part. (d) GGD PDF and Gaussian
PDF superimposed on histogram of imaginary-part in Fig. 18c.
(e) Zoom-in into the right tail of Fig. 18b.

TABLE 2. Goodness-of-fit measures for Fig. 14-Fig. 18, respectively.

at τmax for each 1-D representation and its corresponding
1024 iAAFT surrogates. Parametric and nonparametric tests
for the statistical significance pertinent to both the linearity
of the surrogates (i.e., in terms of PPMC) and the non-
linearity of the 1-D representations (i.e., in terms of MI)
are presented in terms of P-Values following the procedure
outlined in Sect. III-C1 and Sect. III-C3, respectively. The
applicability of the parametric test is validated following the
procedure presented in Sect. III-C2.

The statistical analysis results for the SAR chips from the
RS-2 dataset are presented in Table 3. The results pertaining
to the SAR chips from the MSTAR dataset are provided
in Table 4. Finally, Table 5 and Table 6 respectively present
the statistical analysis results for the two chips from the very
high-resolution SAR dataset.

TABLE 3. Nonlinearity analysis of the RS-2 chips. GR means Gaussianity
Rejected.

C. COMMENTS
Firstly, through inspecting the results for the RS-2 dataset
presented in Table 3, it is clear that the statistical significance
for the nonlinearity is dependent on the target size relative
to the spatial resolution of the SAR sensor. It is observed
that the nonlinearity is negligible for all the point targets
considered (i.e., construction vehicles and CR) as well as for
the target-free ocean clutter chip. This can be inferred through
examining the P-Values under the MI measures. To reiterate,

Linearity:H0 ∈ P-Value > 0.01, (24)

Nonlinearity:H1 ∈ P-Value ≤ 0.01. (25)

VOLUME 3, 2015 189



K. El-Darymli et al.: Unscrambling Nonlinear Dynamics in SAR Imagery

TABLE 4. Nonlinearity analysis of the MSTAR chips.

Moreover, when an extended target for a ship of size of
72 × 34 m is considered, the nonlinear dynamics are found
to become pronounced. This is expected since the ship size

TABLE 5. Nonlinearity analysis of the SAR chip for a bike.

TABLE 6. Nonlinearity analysis of the SAR chip for GO STATE in pushpins.

is orders of magnitude greater than the spatial resolution of
the RS-2 sensor. For all the RS-2 target chips analyzed it is
noted that the MI’s P-Value pertaining to the power-detection
is less than that of the magnitude-detection, and different
from that of the real and the imaginary parts. This indicates
that both the power and the magnitude detections alter the
statistics in the original SAR image with a more pronounced
effect observed for the magnitude detection. This is in agree-
ment with previous investigations into the effect of power
and magnitude detections on complex-valued SAR imagery
(see [5], [8], [9], [65] and [5, Sec. 2.82]).
Next, from Table 4 it is evident that the nonlinearity behav-

ior in the complex-valued MSTAR dataset is statistically
significant. This is to be expected since the imaged objects
are all extended targets. It can be seen that the smallest MI’s
P-Value alternates between the real and the imaginary parts
which indicates that the nonlinearity effect originates from
both of these parts. A close look at the effect of detection in
terms of P-Values reveals that magnitude-detection is worst
when it comes to either greatly diminishing or obliterating
the nonlinear dynamics originally present in the complex-
valued SAR chip. This is in agreement with the results for
the RS-2 dataset. The power-detected SAR chip retains some
of the nonlinear characteristics present in the real and the
imaginary parts. However, through visually comparing the
1-D representations for the undetected and the power-
detected SAR chips, it is postulated that the nonlinear dynam-
ics have been altered from their original form. Furthermore, it
is also suggested that although the 1-D representation for the
real-part, imaginary-part, bivariate and furud’ed representa-
tions, respectively, do possess some nonlinear behavior, the

2‘‘Power detection widens the signal bandwidth by a factor of two.
Magnitude detection involves a further square root operation. The magnitude
detection creates spectral components with a bandwidth wider than twice the
bandwidth of the original complex signal [5].’’
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nonlinear dynamics in these different representations are not
identical.

In addition to the foregoing observations, the results
obtained from the very high-resolution SAR dataset given
in Table 5 and Table 6, respectively, evidently reveal a sig-
nificant nonlinear trend. This can be attributed to the fact
that the imaged objects are extended targets. The nonlin-
ear effect is clearly manifested through noting that all the
MI’s P-Values for the real-part, imaginary-part, bivariate and
furud’ed representations, respectively, strongly favor H1 for
the nonlinearity. Similarly, it is observed that the magnitude-
detection greatly diminishes the nonlinear effects originally
present in the complex-valued SAR chip. While the power-
detection often retains some of the nonlinear characteristics
in an altered form, it is noted that this may not be the case at
very high-resolution and for the relatively small targets such
as that of GO STATE in pushpins (see Table 6).

Finally, several overall observations may be summarized.
The nonlinear effects in complex-valued SAR chips are pro-
portional to the spatial resolution and the size of the imaged
target. Magnitude-detection greatly diminishes or obliter-
ates the nonlinear effects. Power-detection either diminishes
or alters the nonlinear effects. Further, as reported in [4],
for the case of extended targets, the complex-valued SAR
chip is inherently noncircular (i.e., the phase is informa-
tive). This implies that full information about the nonlinear
dynamics is preserved in the complex-valued SAR chip and
not in the detected one. It may be noted that target recog-
nition in SAR imagery is an important application of the
nonlinear phenomenon. Previous research has empirically
observed that ‘nonlinear dynamics’ are dependent on the
target type and the operating conditions at which the tar-
get is imaged [4], [7]–[9]. Accordingly, through developing
suitable techniques to harness the ‘nonlinear dynamics’ in
complex-valued SAR imagery, relevant target recognition
applications are naturally expected to achieve improvement
in target discrimination accuracy. Hence, to take full advan-
tage of the nonlinear statistics for the extended targets, it is
advised to utilize the complex-valued SAR image rather than
the detected one. It may be useful to consider the real-part,
imaginary-part, bivariate and furud’ed 1-D representations as
complementary to each other. The 1-D representations for the
real and the imaginary parts capture the nonlinear dynamics
in the 2-D counterparts. The bivariate representation captures
the bivariate nonlinear dynamics between the real and the
imaginary parts. The furud’ed representation accounts for
the nonlinear dynamics both within and between the pixels
of the real and the imaginary parts.

VIII. CONCLUSIONS
This paper has introduced a systematic procedure to infer the
statistical significance of the nonlinear dynamics in complex-
valued SAR imagery. The applicability of the proposed
procedure is demonstrated on various real-world target chips
from multiple SAR sensors having a variety of spatial res-
olutions. The analysis confirms the statistical significance

of the nonlinear phenomenon in the complex-valued SAR
chip for the case of extended targets. Furthermore, as
the complex-valued SAR chip is magnitude-detected, the
nonlinear effect is either obliterated or greatly diminished.
The power-detected chip is found to retain some nonlinear
statistics, though altered from their original form present
in the complex-valued chip. Additionally, both power and
magnitude detections obliterate the information about non-
circularity present only in the complex-valued SAR chip [4].
Hence, for the case of extended targets, to take full advan-
tage of the nonlinear dynamics in applications such as target
recognition, it is recommended to utilize the complex-valued
SAR image rather than the detected one. This paper has
been extended in [66] where a new framework for feature
extraction, based on the 1-D representations developed in this
work, is presented. This provides for harnessing the nonlin-
ear dynamics embedded in the complex-valued SAR chip.
Features utilizing the nonlinear dynamics are compared with
baseline features extracted from the power-detected SAR
chip. The unique advantage of the nonlinear dynamics for
target classification SAR imagery is clearly demonstrated.

APPENDIX
In order to measure the goodness-of-fit between the empir-
ical histogram (i.e., p) and the PDF obtained based on the
estimation of parameters (i.e., q), a symmetrized version of
Kullback–Leibler (KL) divergence (also known as the rela-
tive entropy) is used. The KL divergence is an information-
theoretic approach that measures the information lost when
q(x) is used to estimate p(x). The KL divergence of q(x) from
p(x) is given by [67]

KLD (p||q) =
∑
x∈X

p (x) log2

(
p (x)
q (x)

)
. (26)

The KL divergence provides a means for comparing the
entropy of the two distributions over the same random vari-
able X . Intuitively, this allows for estimating the number of
additional bits required when encoding a random variable X
with a distribution p(x) using the alternative distribution q(x).
The properties of interest pertaining to the KL divergence are

KLD (p||q) ≥ 0, (27)

KLD (p||q) = 0 iff p (x) = q (x) for all x ∈ X , (28)

KLD (p||q) 6= KLD (q||p), (29)

Jensen–Shannon (JS) divergence is a symmetrized version of
KL divergence. It is calculated as [68], [69]

JSD =
KLD (p||q)+ KLD (q||p)

2
. (30)
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