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Abstract: A novel joint symbol timing and carrier frequency offset (CFO) 
estimation algorithm is proposed for reduced-guard-interval coherent 
optical orthogonal frequency-division multiplexing (RGI-CO-OFDM) 
systems. The proposed algorithm is based on a constant amplitude zero 
autocorrelation (CAZAC) sequence weighted by a pseudo-random noise 
(PN) sequence. The symbol timing is accomplished by using only one 
training symbol of two identical halves, with the weighting applied to the 
second half. The special structure of the training symbol is also utilized in 
estimating the CFO. The performance of the proposed algorithm is 
demonstrated by means of numerical simulations in a 115.8-Gb/s 16-QAM 
RGI-CO-OFDM system. 
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1. Introduction 

In recent years, orthogonal frequency division multiplexing (OFDM) has become an attractive 
technology for high-speed optical communication systems because it offers high spectral 
efficiency and high tolerance to both the fiber chromatic dispersion (CD) and polarization 
mode dispersion (PMD) [1–3]. Coherent optical OFDM (CO-OFDM) has demonstrated 
superior transmission performance in terms of spectral efficiency and receiver sensitivity than 
its direct-detection counterpart [1], making it more suitable for long-haul transmission. 
Conventional CO-OFDM systems utilize a cyclic prefix (CP) between adjacent OFDM 
symbols to accommodate the inter-symbol interference (ISI) arising from the fiber CD and 
PMD [4,5]. Given that CD increases quadratically with an increase in the data rate [6], the 
large CD-induced channel memory length poses a problem for long-haul, high-speed 
transmission, especially when there is no in-line optical dispersion compensation [7]. This is 
because a long CP duration would be required to compensate for the CD, resulting in a larger 
overhead and poorer spectral efficiency. To overcome this problem, reduced-guard-interval 
CO-OFDM (RGI-CO-OFDM) [7] has been proposed. RGI-CO-OFDM systems employ a 
reduced guard interval to accommodate only the PMD, while the CD is compensated using 
frequency-domain equalization (FDE) at the receiver similar to single-carrier (SC) systems. 

Despite its several advantages, OFDM systems suffer from a higher degree of sensitivity 
to frequency synchronization errors when compared with SC systems [8]. OFDM systems 
require timing and frequency synchronization before an accurate symbol decision can be 
made at the receiver. Timing synchronization entails finding an estimate of the correct 
position of the Discrete Fourier Transform (DFT) window at the receiver so as to avoid ISI, 
while frequency synchronization involves estimating and compensating for the carrier 
frequency offset (CFO) which may cause inter-carrier interference (ICI) between the OFDM 
subcarriers. In wireless communications, several algorithms for carrying out OFDM timing 
and frequency synchronization either jointly or individually have been proposed [9–12]. 
These algorithms can be classified into data-aided (DA) [9–11] and non-data-aided (NDA) 
[12] methods. In DA algorithms, which are the focus of this paper, the timing and frequency 
synchronization is usually based on exploiting the correlation property of specially-designed 
training symbols (typically with some sort of repetitive pattern). 

One of the most popular DA algorithms, proposed by Schmidl and Cox [9], uses a training 
symbol with two identical halves for the timing synchronization. However, the timing metric 
of the Schmidl and Cox’s algorithm has a plateau which results in a large timing offset 

#232158 - $15.00 USD Received 8 Jan 2015; revised 16 Feb 2015; accepted 17 Feb 2015; published 24 Feb 2015 
© 2015 OSA 9 Mar 2015 | Vol. 23, No. 5 | DOI:10.1364/OE.23.005777 | OPTICS EXPRESS 5778 



estimation variance. In order to eliminate the timing metric plateau of the Schmidl and Cox’s 
algorithm, Minn et al. [10] proposed a modified training symbol with four identical parts 
having specific sign changes for these parts. The resulting timing metric has a steeper rolloff, 
but has a large timing estimation variance in ISI channels. Park et al. [11] proposed an 
algorithm based on reverse autocorrelation, which uses a repeated-conjugated-symmetric 
sequence to improve the timing estimation variance of the Minn’s algorithm. Although the 
Park’s algorithm results in an impulse-shaped timing metric which yields a more accurate 
timing offset estimation, the timing metric has two large side lobes which can result in errors 
in the timing synchronization. Some of these algorithms have been considered for timing 
synchronization in coherent optical systems [13–16]. 

Unlike in conventional OFDM wireless systems, where the CFO is usually due to the 
Doppler effect, the CFO in CO-OFDM systems is brought about by the incoherence of the 
signal laser of the transmitter and the local oscillator (LO) laser of the receiver. Since 
commercially-available lasers are usually locked to an International Telecommunication 
Union (ITU) standard, but only with a frequency accuracy within ± 2.5 GHz over their 
lifetime [17], the CFOs in CO-OFDM systems is typically within the range [-5 GHz, + 5 
GHz]. Given that optical phase-locked loops are disadvantaged by high cost and complexity, 
frequency synchronization algorithms are essential to CO-OFDM receivers. The Schmidl and 
Cox’s algorithm can carry out frequency synchronization by computing the phase difference 
between the two halves of the training symbol. However, the CFO estimation range is limited 
to ± subcarrier spacing, making it unsuitable for use in CO-OFDM systems. The CFO 
estimation range can however be increased by employing a second training symbol, but at the 
cost of extra overhead [9]. 

In this paper, we propose and demonstrate, for the first time to our knowledge, a joint 
timing and frequency synchronization algorithm for RGI-CO-OFDM systems using only one 
training symbol based on a constant amplitude zero autocorrelation (CAZAC) sequence 
weighted by a pseudo-random noise (PN) sequence. CAZAC sequences, which are a type of 
polyphase codes, have constant amplitude elements and good periodic autocorrelation 
properties [18–20] and have been applied in wireless communications systems for various 
applications, including channel estimation [21] and synchronization [22–24]. The 
performance of the proposed technique is demonstrated by means of numerical simulations in 
a 115.8-Gb/s 16-QAM RGI-CO-OFDM system. The proposed algorithm is shown to have a 
wide CFO estimation range, as well as a more precise timing offset estimation and a better 
CFO estimation performance than popular existing synchronization methods. 

2. Principle of proposed synchronization algorithm 

The proposed synchronization algorithm makes use of a training symbol of two identical 
halves, with the second half weighted by a PN sequence. Each half of the training symbol has 
a length of 2M N= , and is generated by an -M point inverse fast Fourier transform (IFFT) of 

a CAZAC sequence of length 2scL N= , where ( )scN N≤ is the number of OFDM 

subcarriers, and N  is the IFFT size. 
The CAZAC sequence, ( )c m  can be expressed as: 

 ( )
2

exp 0,1, , 1,
j rm

c m m L
L

π
= = −

 
 
 

  (1) 

where r  is a positive integer which is relative-prime to L  [19]. The autocorrelation property 
of the CAZAC sequence is: 
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where the superscript * represents the complex conjugation operation and [ ]mod L
 is the 

modulo- L operator. The structure of the proposed training symbol is: 

 [ ] ,
M M

TS A B=  (3) 

where 
M

A  represents the -M point IFFT of ( )c m  and 
M

B  is obtained by multiplying 
M

A by a 

real-valued PN sequence, ( ) ( ]1,1p n ∈ − , where 0,1, , 1n M= − . Note that ( )p n  is introduced 
to scramble the samples in the second half of the training symbol so as to eliminate the timing 
metric plateau associated with the Schmidl and Cox’s algorithm. In this regard, a PN 
sequence of all “1s” or all “-1s” will not work in eliminating this plateau. The samples in the 
second half of the training symbol have to be later descrambled in the receiver. 

2.1 Timing synchronization 

The timing synchronization is based on the timing metric, ( )M d , which is defined as: 

 
( )
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where ( )r n  represents the discrete samples of the received OFDM signal, d  is the time index 

corresponding to the first received sample in a window of N  samples, ( )P d  represents the 

cross-correlation between the two halves of the window, and ( )R d  is the half-symbol energy 
in the N  samples of the window. The timing metric defined in Eq. (4) contains two 
modifications to the timing metric of the Schmidl and Cox’s algorithm. The first modification 
is the introduction of ( )p n  in Eq. (5) to descramble the samples in the second half of the 
training symbol. For the second modification, all samples over one symbol period are used in 
computing ( )R d  instead of using only the samples in the second half symbol period. The 
timing offset estimate is obtained as the time index at which ( )M d  has its peak value: 

 ( )( )[ ]ˆ arg max .dd M d=  (7) 

2.2 Frequency synchronization 

After transmission through the optical fiber, if the laser phase noise and amplified 
spontaneous emission (ASE) noise are both neglected, and it is assumed that the phase shift 
induced by the CD has been compensated for, the two halves of the training symbol will differ 
by ( )p n  and a phase shift induced by the CFO. 

The CFO fΔ  can be decomposed into a fractional part with a magnitude Nf≤ Δ , and an 

integer part, which is a multiple of 2 NfΔ , where NfΔ  is the OFDM subcarrier frequency 

spacing [9]. If we let 
N

f
fρ Δ

Δ=  be the normalized CFO, ρ  can be expressed as: 

 2 ,ρ α β= +  (8) 
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where α  is the normalized fractional CFO and 2β  is the normalized integer CFO, with 1α ≤  
and integer β  spanning the range of possible CFOs. It is straightforward to express the 
received samples in the second half of the training symbol as: 

 ( ) ( ) ( ) .j
r n M p n r n e πα+ =  (9) 

Equation (9) shows that the two halves of the training symbol differ only by the PN 
sequence and a phase shift of πα . Consequently, if timing synchronization has already been 
carried out, an estimate, α̂ , of α  can be obtained as: 

 ( ) ( ) ( )( )1

0

*1 ˆ ˆˆ .
M

n

angle r d n p n r d n Mα
π

−

=

−
= + + +  (10) 

Equation (10) indicates that the correct timing information is necessary to compute α̂ . In 
order to estimate the integer CFO, the samples of the training symbol have to be first counter-
rotated at an angular speed of ˆ2 Nf tπαΔ , where 0 t T≤ ≤  and T  is the useful OFDM symbol 
duration. By compensating for the fractional CFO, ICI is eliminated, and there is no loss of 
orthogonality among the OFDM subcarriers. However, because of the uncompensated integer 
CFO, the fast Fourier transform (FFT) outputs will be shifted by 2β . In order to obtain β , we 
compute the correlation in the frequency domain of the fractional CFO-compensated training 
symbol with the original transmitted training symbol. 

Let the FFT of the received training symbol with only integer CFO be ( )
f

R k  and let the 

FFT of the original training symbol be ( )
f

B k . We can define the normalized cross-correlation 

between ( )
f

R k  and ( )
f

B k  as: 
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The estimate, β̂ , of β  is obtained as the index that maximizes ( )βΨ : 

 ( )( )[ ]ˆ arg max .ββ β= Ψ  (12) 

The estimate of the combined normalized CFO would then be: 

 ˆˆ ˆ 2 .ρ α β= +  (13) 

From the above, it can be deduced that the CFO estimation range of the proposed algorithm is 
( )ˆ 1 NM M fρ− ≤ ≤ − Δ . 

3. Simulation setup 

The simulation schematic of the RGI-CO-OFDM system used to investigate the performance 
of the proposed synchronization algorithm is shown in Fig. 1(a). The digital signal processing 
(DSP) at the transmitter and receiver is performed in MATLAB while the optical system 
model is built using VPI TransmissionMaker. At the transmitter, a 219 deBruijn sequence is 
generated and then mapped onto the OFDM subcarriers with 16-ary quadrature amplitude 
modulation (16-QAM). The time-domain RGI-CO-OFDM signal is generated using a 512-
point IFFT with a CP length of 9% to accommodate the ISI induced by the fiber PMD and to 
increase the tolerance of the system to synchronization errors. Of the 512 channels, 412 are 
data subcarriers, 99 are zero-valued edge subcarriers for ~20% oversampling to combat 
aliasing, and one zero-valued subcarrier is reserved for the DC term. After CP insertion, the 
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training symbol used for synchronization is inserted at the beginning of the OFDM frame, and 
one training symbol is employed every 50 data symbols for channel estimation, resulting in a 
training symbol overhead of ~2% [25]. For the synchronization training symbol, r  is chosen 
to be 1L − . The structure of the OFDM frame is shown in Fig. 1(b). 

 

Fig. 1. (a) Simulation setup of the RGI-CO-OFDM system. (b) OFDM frame structure. S/P: 
serial-to-parallel conversion. P/S: parallel-to-serial conversion. LPF: low-pass filter. OBPF: 
optical band-pass filter. SYN: synchronization symbol. DS: data symbol. TS: training symbol. 

Although the schematic depicted in Fig. 1 is for a single polarization system, it can be 
extended for dual-polarization transmission. In such a case, an identical CAZAC training 
symbol would be inserted at the beginning of each OFDM frame for each polarization. The 
proposed algorithm would then be used for the synchronization of the OFDM frames in the 
two polarization branches as described in Section 2. 

Taking into account the overheads from the CP and the training symbols, the net data rate 
of the RGI-CO-OFDM signal is 115.8 Gb/s {40 GSa/s × 4 × (412/512) × [1/(1.02 × 1.09)]} 
and the OFDM subcarrier spacing is 78.125 MHz (40 GHz/512). The real and imaginary parts 
of the RGI-CO-OFDM signal are loaded to digital-to-analog converters (DACs) operating at 
40 GSa/s and then used to drive an I/Q modulator whose sub Mach-Zehnder modulators 
(MZMs) are biased at the transmission null. The I/Q modulator is used to modulate the signal 
laser to generate the optical RGI-CO-OFDM signal. The signal laser is a continuous wave 
(CW) laser with a linewidth of 100 kHz, center emission wavelength of 1550 nm and average 
output power of 0 dBm. 

The optical signal is launched into a recirculating loop consisting of 80-km standard single 
mode fiber (SSMF) and an erbium-doped fiber amplifier (EDFA). The gain and noise figure 
of the EDFA are 16 dB and 4 dB, respectively. The CD parameter, PMD coefficient, loss and 
nonlinearity of the fiber are 16 ps/nm/km, 0.1 ps/√km, 0.2 dB/km and 2.6 × 10−20 m2/W, 
respectively. An optical band-pass filter (OBPF) with bandwidth of 0.8 nm is used for ASE 
suppression. 

At the receiver, the RGI-CO-OFDM is mixed with the LO laser operating in CW mode 
with a linewidth of 100 kHz, and then detected by a coherent receiver comprising a 2 × 4 
quadrature optical hybrid and two pairs of balanced photodiodes. Next, the coherently-
detected signal is digitized by analog-to-digital converters (ADCs) at 40 GSa/s with 8-bit 
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resolution prior to CD compensation. A frequency-domain equalizer using the overlap-add 
method [26] is utilized for CD compensation. Time and frequency synchronization is 
accomplished by the proposed algorithm while the RF-pilot method [25] is used for phase 
noise compensation. The training symbols are utilized for channel estimation and a one-tap 
equalizer is employed after the FFT to compensate for the PMD and any residual CD. The 
OFDM symbols are then demapped and the bit error rate (BER) is obtained by direct error 
counting. 

4. Simulation results 

4.1 Timing synchronization performance 

Figure 2(a) shows the measured timing metric of the proposed algorithm for 800-km SSMF 
transmission (with CD compensation), without optical noise. There is also no CFO between 
the signal and LO lasers. At the receiver, a timing offset is modeled as a delay in the received 
signal. The correct timing instant, indexed 0 in the figure, is the start of the useful part of the 
training symbol. The timing metrics corresponding to the Schmidl and Cox’s and the Minn’s 
algorithms are also included for comparison. As can be seen in Fig. 2(a), the timing metric of 
the Schmidl and Cox’s method maintains a plateau for the entire CP length (46 samples). It is 
evident that this plateau results in some uncertainty as to the actual start of the DFT window. 
Unlike the Schmidl and Cox’s method, the timing metric of the Minn’s method has a 
triangular shape with no trajectory plateau. The timing metric obtained using the proposed 
algorithm is impulse-shaped with no sidelobes, and has a sharp peak at the correct timing 
instant while the values are almost zero at all other positions. 

Figure 2(b) shows the measured timing metrics of the three estimators in the absence of 
optical noise but with a CFO of 5 GHz. It can be seen that unlike the timing metrics of the 
other two estimators, in the presence of such a large CFO, the peak value of the timing metric 
of the proposed algorithm has reduced from its ideal value of 1. However, the timing metric 
of the proposed method still maintains its impulse shape, with the peak at the correct timing 
instant, implying that no timing uncertainty is brought about by the CFO. 

Figure 2 (c) shows the timing metrics of the three estimators when the optical signal-to-
noise ratio (OSNR) and CFO are 6 dB and 5 GHz, respectively. It can be seen that the timing 
metric of the Schmidl and Cox’s method has deteriorated significantly in the presence of the 
high level of optical noise. This would result in a large timing uncertainty. The timing metric 
of the Minn’s method is also affected by optical noise, but to a lesser degree than the Schmidl 
and Cox’s. Although the Minn’s timing metric still has a triangular shape, there is now a shift 
at the top of the triangle which would result in timing uncertainty. In contrast, the timing 
metric of the proposed method is still impulse-shaped, allowing it to achieve a more accurate 
timing offset estimation even at low OSNR levels. 
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Fig. 2. Comparison of timing metric of estimators for 800-km SSMF transmission. (a) without 
CFO and without optical noise. (b) with a CFO of 5 GHz and without optical noise. (c) with a 
CFO of 5 GHz and for an OSNR of 6 dB. 

Figures 3 and 4 show the means and variances of the timing estimators versus OSNR for 
800-km SSMF transmission and with a CFO of 5 GHz. It can be seen from Fig. 3 that even at 
high levels of OSNR, the mean value of the Schmidl and Cox’s method is within the CP, 
yielding a high timing estimation variance as illustrated in Fig. 4. Further reduction in the 
OSNR results in more errors in the mean timing offset estimation and consequently, a larger 
timing estimation variance. The Minn’s algorithm keeps the correct timing estimation with 
small timing estimation variance at high OSNR levels, but starts to yield inaccuracies at 
OSNR values less than 14 dB. The proposed method gives a more accurate timing estimation 
than the other methods over the range of considered OSNRs. In addition, since no timing 
offset variations are observed for the proposed method, the timing estimation variance is not 
included in the results of Fig. 4. 

 

Fig. 3. Timing estimation mean vs. OSNR for 800-km SSMF transmission with a CFO of 5 
GHz. 
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Fig. 4. Timing estimation variance vs. OSNR for 800-km SSMF transmission with a CFO of 5 
GHz (no timing offset variations are observed for the proposed method, hence, the 
corresponding results are not included in the figure). 

4.2 Frequency synchronization performance 

For the investigations on the frequency synchronization performance of the proposed method, 
the maximum CFO between the signal and LO lasers is limited to ± 5 GHz and the SSMF 
length is fixed at 800 km. In addition, the investigations are carried out in the presence of the 
original timing offset used in the simulations in Section 4.1. Figure 5 shows the mean of the 
estimated CFO as a function of the actual CFO for an OSNR of 18 dB. For comparison, we 
have also included the CFO estimation performances of the Schmidl and Cox’s algorithm, as 
well as the RF-pilot aided frequency offset estimation (RAFOE) scheme proposed by Zhou et 
al. [13]. 

 

Fig. 5. Mean of estimated CFO vs. actual CFO for 800-km SSMF transmission and an OSNR 
of 18 dB. 

Figure 6 shows a zoomed-in version of Fig. 5. The Schmidl and Cox’s algorithm utilizes 
the same training symbol employed for timing synchronization and for fractional CFO 
estimation. 
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Fig. 6. Zoomed-in version of Fig. 5, illustrating the CFO estimation range of the Schmidl and 
Cox’s algorithm when 1 TS is used. 

It can be observed from Fig. 6 that the CFO estimation range of the Schmidl and Cox’s 
algorithm when this training symbol is used is limited to ± 78.125 MHz. This would render it 
unsuitable for CFO estimation in high-speed CO-OFDM systems, unless a second training 
symbol is employed to measure integer CFOs and thus increase the CFO estimation range, as 
seen in Fig. 5. In contrast, the CFO estimation range of the proposed method is −20 GHz ≤ ρ 
≤ 19.92 GHz, allowing it to comfortably estimate CFOs within the maximum expected range 
of ± 5 GHz. The RAFOE algorithm also uses the first training symbol of the Schmidl and 
Cox’s method both for timing synchronization and for estimating the fractional CFO, while 
the integer CFO is estimated using an RF-pilot. The theoretical estimation range of the 
RAFOE algorithm is as wide as half of the sampling rate [13]. This also makes it suitable for 
estimating CFOs in CO-OFDM systems without requiring any extra training symbol 
overhead. 

In order to illustrate the accuracy of the CFO estimation of the three methods, the mean 
square error (MSE) of the CFO estimation in the presence of optical noise has been obtained 
as shown in Fig. 7 for a CFO of 5 GHz. The second training symbol has been employed for 
the Schmidl and Cox’s algorithm to increase its CFO estimation range to cover 5 GHz. It is 
clear from Fig. 7 that the proposed method has a smaller MSE and hence a more accurate 
CFO estimation than the other algorithms. The improvement in the MSE performance shown 
by the proposed algorithm can be attributed to the more accurate timing offset estimation it 
demonstrates, and the ample phase information contained in the two halves of the training 
symbol. A combination of these two factors would result in a more accurate fractional CFO 
estimation and consequently, a more accurate combined CFO estimate. Since the RAFOE 
algorithm uses the first training symbol of the Schmidl and Cox’s algorithm for joint timing 
synchronization and for fractional CFO estimation, it shows a similar MSE performance as 
the Schmidl and Cox’s method. 
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Fig. 7. MSE of the estimated CFO vs. OSNR for 800-km SSMF transmission and a CFO of 5 
GHz. 

Figure 8 shows the BER (post-CFO compensation) as a function of the given CFO using 
the proposed algorithm for OSNRs of 18 dB and 22 dB. It is important to state that the BER 
values are obtained without implementing forward error correction (FEC). The results of Fig. 
8 show that for the different levels of OSNR, the BER basically remains constant over the 
range of CFOs considered. 

 

Fig. 8. BER vs. CFO for 800-km SSMF transmission. 

Figure 9 shows the BER against the OSNR for the cases when there is no CFO, and when 
there is a CFO of 5 GHz compensated for by using the three methods. It can be seen that for 
all the OSNR values, the proposed method has virtually the same BER performance as the 
system with no CFO. In contrast, there is a noticeable OSNR penalty for the other methods. 
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Fig. 9. BER vs. OSNR for 800-km SSMF transmission. 

5. Conclusion 

A novel joint timing and frequency synchronization algorithm using only one training symbol 
based on a weighted CAZAC sequence has been proposed, and its performance numerically 
investigated in a 115.8-Gb/s 16-QAM RGI-CO-OFDM system. The proposed algorithm has a 
wide CFO estimation range and has demonstrated better timing and CFO estimation 
performance even at low OSNR values when compared with popular existing synchronization 
algorithms. 
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