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ABSTRACT 

Increased vascular permeability is the early physical manifestation of diseases 

such as diabetic retinopathy (PDR) and age-related macular degeneration (AMD), which 

are the leading causes of blindness. Previous studies in Drs. Gendron-Paradis lab have 

suggested that Tubedown (Tbdn) is an important regulator of endothelial permeability in 

the retina. Tbdn is a member of the Natl family of proteins that associate with the 

acetyltransferase Ardl. Tbdn protein expression is suppressed in eye specimens from 

patients with PDR and AMD. Moreover, the conditional endothelial specific Tbdn 

knockdown mouse model (TIE2/rtTA/Enh-TREIASTBDN-1) was found to mimic the 

pathological features of PDR and AMD and to have increased extravasation of Albumin. 

Previously, we found that Tbdn co-immunoprecipitated with the actin binding protein 

Cortactin and co-localized with Cortactin and F -actin in endothelial cytoplasmic and 

cortex regions. Cortactin plays an essential role in the Albumin permeability pathway and 

is a well-known substrate of c-Src. Tyrosine kinase c-Src not only phosphorylates 

Cortactin but also takes part in signaling to increase the permeability of endothelial cells. 

Based on this knowledge, we hypothesized that Tbdn knockdown would lead to 

an increase in phospho-Cortactin and phospho-Src. Tbdn knockdown in vitro by siRNA 

and stable transfection of an antisense Tbdn eDNA construct significantly increased 

phospho-Cortactin and phospho-Src levels. In vivo, using the Tbdn knockdown mouse 

model, we confirmed the increase in phospho-Src. Furthermore, human PD R specimens, 

known for downregulation of Tbdn, also revealed robust levels of phospho-Src. These 

results support the hypothesis that Tbdn regulates signaling pathways mediating retinal 

endothelial cell permeability to Albumin by influencing Cortactin and c-Src. Future 



therapies for neovascular retinopathies could target Tbdn with the hope of preventing, and 

not simply treating, these devastating causes of blindness. 
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1. INTRODUCTION 

1.1 The eye and the retina 

The eyes are wonderful sensory organs that give us vision, which is arguably the 

most used of the five senses and one of the primary means we use to gather information 

from our surroundings. Light waves reflected from an object enter the eye by passing 

through the cornea and the lens (Figure 1A). The cornea and the lens are the eye's primary 

refractive structures and both have two key optical properties to this end- refractive 

power (light refraction) and transparency (light transmission, Kaufman & Aim, 2011). 

Light rays then continue to traverse a dense, transparent gel-like substance, called the 

vitreous that fills the globe of the eyeball and helps the eye hold its spherical shape. 

Eventually, light comes to a sharp focusing point on the retina called the macula which 

provides the best vision of any location in the retina. 

The retina is the fundamental structure involved in visual perception. Retinal 

tissues line the back two-thirds of the eye and include the neural retina composed of eight 

distinct layers located between the vitreous body (V) and the retinal pigmented epithelium 

(RPE). These layers include: inner limiting membrane (INL), ganglion cell layer (GCL), 

inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer 

nuclear layer (ONL), and finally the outer segments photoreceptor cells (Figure 1B). 

Light stimuli arriving at the retina must travel through all these layers to get to the rods 

and cones of the photo receptors where photons are detected and converted into electrical 

impulses. These impulses, also known as retinal image, are then propagated until they 

reach the neurons in the optic nerve which carries that image to the brain to be processed. 
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Figure 1: (A) Structures of the human eye (Used with Artist's permission) (B) 
Hematoxylin & Eosin staining of the mouse retina. The retina comprises of eight 
distinct layers. Starting from the vitreous (V), these layers are: inner limiting membrane 
(ILM), ganglion cell layer ( GCL ), inner plexiform layer (IPL ), inner nuclear layer (INL ), 
outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptors and the retinal 
pigment epithelium (RPE). The IPL and OPL contain cell axons establishing synaptic 
connections while the INL and GCL contain cellular nuclei responsible for vertical 
propagation and modification of the stimuli. The ONL contains cell bodies of the 
photoreceptor cells. The choriocapillaries nourish the avascular regions of the outer 
retina. The choroid is separated from the RPE by Bruch's membrane which contributes to 
the blood retinal barrier and serves as a guard against vascular intrusion. The outermost 
structure that covers the eye is the sclera (S). Bruch's Membrane is between the RPE and 
the Choriocapillaries. Magnification: 400X. 
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In the brain, these impulses are recreated into the perception of the object (Kaufman & 

Aim, 2011). 

1.2 The vasculature of the retina 

The retina is supplied by two major vascular systems: the choroidal and the retinal 

vasculature. The retinal vessels which are arranged within the inner two thirds of the 

retina receive 20-30% of the blood flow through the central retinal artery but are vital for 

maintenance of the inner retinal layers (Henkind et al., 1979). Endothelial cells lining 

these blood vessels form a tight barrier junction making up the inner component of the 

blood-retinal barrier (Suburo & D 'Amore, 2006). The remaining 70-80% of the blood 

flow nourishes the outer avascular one third of the retina (particularly the photoreceptors ). 

This high-flow system, called choroidal circulation, is supplied by multiple long and short 

posterior ciliary arteries, all feeding into an extensive network of fenestrated capillaries 

called the choriocapillaris. The choriocapillaris are characteristically more permeable than 

retinal vessels and allow plasma to pool beneath the retinal pigmented epithelium (RPE). 

Within the RPE is a specialized transport system designed to remove waste from the 

photoreceptors while providing the cells with essential nutrients. RPE also has tight 

junctions that regulates the movement of fluids and solutes and constitutes the outer blood 

retinal barrier (Campochiaro and Hackett, 2003). 

In addition to endothelial cells, retinal capillaries also contain pericytes. While 

endothelial cells line the lumen, pericytes surround the exterior of blood vessels. Retinal 

vessels have the highest pericyte coverage in the body (Sims, 1986). Pericytes are 
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vascular mural cells of mesenchymal origin embedded in the basement membrane of 

micro vessels with multiple roles in angiogenesis, maintenance of blood vessel 

morphology and stability (Sims, 1986; Armulik et al., 20011 ). Several factors are thought 

to be involved in pericyte recruitment during vascular development and maintenance, 

including angiopoietin-1 and its receptor tyrosine kinase Tie-2, vascular endothelial 

growth factor (VEGF)-A and its receptor flk-1 , tissue factor, and platelet-derived growth 

factor PDGF-B/PDGF-receptor ~system and transforming growth factor~ (TGF- ~; 

Hammes et al., 2002; D'Amore, 1994). 

Under normal physiological conditions, the vasculature of the healthy adult retina 

is quiescent and vascular leakage is limited. However, some pathological conditions such 

as diabetes, accumulation of toxic products such as sorbitol or advanced glycation end 

products (AGEs) and disruption and/or upregulation ofVEGF-A and PDGF-B/PDGFR~ 

signaling pathways can lead to pericyte loss (Pong et al., 2004). Pericyte loss is 

considered a prerequisite of microaneurysm formation, by focal weakening of the 

capillary wall (Hammes et al. , 2002). This further disrupts the blood retinal barrier and 

results in angiogenesis. Angiogenesis is characterized by initial vasodilatation of 

activated blood vessels with increased vascular permeability and degradation of the 

surrounding matrix, allowing endothelial cell proliferation and migration forming new 

pathological vessels (Conway et al. , 2001 ). These blood vessels can also grow into other 

layers of the retina and further disrupt blood retinal barrier by leaking blood, serum, lipids 

etc. Ultimately, this can lead to neovascular retinopathy resulting in reduced vision and 

even blindness. 
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1.3 Neovascular Retinopathies and treatments 

As the population ages, vision loss is becoming an increasingly substantial public 

health problem as it contributes a great burden in terms of functional autonomy, mobility, 

quality of life and cost. Age-related macular degeneration (AMD) and diabetic 

retinopathy (DR) are the leading causes of blindness in people over the age of 60 in 

western populations and working-age patients worldwide (Resnikoff et al., 2004; Klein, 

2007; Pascolini et al. 2004). It is predicted that by 2030, there will be 429 million people 

with diabetes worldwide (Antonetti, 20 12). Nearly all patients with type-1 and more than 

60% of those with type-2 diabetes develop some degree of retinopathy after 20 years 

(Aiello et al. 1994; Mohamed et al. 2007). DR is the most frequent complication of 

diabetes, afflicting over 90% of persons with diabetes and often progressing to a 

proliferative disease (Frank, 2004; Yanai et al., 2012). The incidence and prevalence of 

AMD are more likely to increase with age constituting a very important risk factor along 

with a combination of environment and genetic factors (Edwards et al., 2007). 

Both AMD and proliferative DR (PDR) share the pathological processes of 

neovascularization and hyperpermeability in one or more of the two main levels of 

vasculature of the eye, the retinal and/or the choroidal vasculature. AMD is a 

degenerative disease that is initiated by the thickening of the Bruch's membrane (BM) 

partly due to accumulation of deposits, changes in retinal pigment and retinal pigment 

epithelial (RPE) cell loss. This phase of AMD can progress into a neovascular 'wet' form 

in which proliferative choroidal blood vessels may break through the BM and RPE to 

nearby layers of the eye. Leakage of blood, serum and lipid from these abnormal vessels 
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can eventually lead to scarring and detachment ofRPE and damage to the retina (Ambati 

et al., 2003; Bonnel et al., 2003). 

Early DR on the other hand, is characterized by increase vascular permeability. As 

DR advances, it results in closure of the retinal capillaries resulting from ischemia, 

thrombosis, and non-perfusion. In an effort to compensate for the lack of normal 

circulation, neovascularization occurs on the retina and optic disc resulting in PDR, which 

could eventually lead to retinal detachment. 

A wide spectrum of therapies ranging from laser photocoagulation to 

photodynamic therapy (Gehrs et al., 2006; Ambati et al., 2003) have been used to treat 

PDR and AMD. Although they are effective at slowing disease progression, they rarely 

result in improved vision (Fong, 2004). On the other hand, treatments with anti-VEGF 

drugs such as A vastin, Lucentis have seen an improved prognosis of many patients with 

AMD (Rosenfeld et al., 2006; Brown et al. 2006) and PDR (Nguyen et al., 2006; Chun et 

al., 2006). However, recent alarming observations raise concerns regarding the efficacy of 

these treatments beyond 2 years (Ford et al., 2011; Tao, 2010). Additionally, reports of 

RPE tears after administration of anti-VEGF drugs, with incidence of up to 17%, leading 

to the suspicion that the anti-VEGF therapy may have adverse effects and even be 

causative (Chang et al.,2007; Yeh, 2007; Nicolo, 2006). Both AMD and PDR are 

complex multi-factorial diseases. Thus, further knowledge of the biological mechanisms 

controlling the growth and permeability of retinal blood vessels is needed to develop 

either more effective single agents or to identify rational combinations of therapeutic 

targets that have synergistic effectiveness in preventing and treating neovascular 

retinopathies 
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1.4.4 Tubedown 

1.4.1 What is Tubedown? 

Tubedown (Tbdn, also referred to as Narg1, mNat1, NATH, Naa15) is a 100 kDa 

protein that was originally isolated from an embryonic endothelial cell line (IEM) as a 

protein that is significantly downregulated during the formation of capillary-like 

structures in vitro (Gendron et al., 2000). Tbdn protein sequence containing several 

tetratricopeptide (TPR) motifs, known to mediate protein-protein interactions, suggests 

that Tbdn might associate with other proteins (Gendron et al., 2002; Willis et al., 2002; 

Main et al., 2005). Tubedown is homologous to the yeast Nat1 protein (Gendron et al., 

2000). Mammalian homologues for Tbdn (mNat2, 70% identity) and Ard1 (Ard2, 81% 

identity) have also been described (Sugiura et al., 2003; Arnesen et al., 2006). In yeast, 

Nat1 forms a complex with the acetyltransferase Ard1 (Arrest Defect 1) to make up the 

essential subunits of the yeast N-terminal acetyltransferase NatA (Park and Szostak, 

1992; Gautschi et al., 2003). Additionally, Nat1 mediates stable interaction with the large 

ribosomal subunit while also contacting nascent polypeptides (when approximately 40 

amino acids have emerged from the exit tunnel) and likely directing the growing peptide 

towards Ardl. Ard1, a catalytic subunit, transfers an acetyl moiety from acetyl-coenzyme 

A to specific residues in the second position of theN-terminus upon cleavage of the 

initial methionine by methionine aminopeptidase (Gautschi et al., 2003; Polevoda and 

Sherman, 2003; Polevoda et al., 2008). While Tubedown has been found to be associated 

with an acetyl transferase activity (Gendron et al., 2000), acetylation of lysine residues has 

also been suggested as a function of Ardl and a wide variety of potential substrates for 
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NatA have been reported (Polevoda et al., 2003; Kimura et al ., 2003; Wang et al., 2004; 

Geissenhoner et al.. 2004; Lim et al., 2006). Acetylation is one of the most important 

post-translational modification and is crucial for protein regulation and function. In both 

yeast and non-human mammalian cell lines, Tbdn and Ard1 complex is involved in the 

regulation of a broad range of cellular processes varying from cell growth to cellular 

differentiation (Surgiura et al., 2003; Arnesen et al. , 2005; Arnesen et al. , 2006; Paradis et 

al. , 2002; Martin et al. , 2007, Gautschi et al. , 2003; Kimura et al. , 2003; Asaumi et al., 

2005, Park and Szosatak, 1992). However, in human, this remains to be explored. 

1.4.2 Tubedown expression 

Tubedown is highly expressed in developing vasculature, and neuronal tissues. 

However, high levels of Tbdn expression in adults are restricted to a few specific vascular 

beds, including the ocular endothelium, bone marrow capillaries, blood vessels of 

regressing ovarian follicles and the choroid plexus endothelium (Gendron et al., 2000; 

Gendron et al., 2001; Paradis et al., 2002; Paradis et al., 2008; Martin et al. , 2007). Tbdn 

high expression level in the above tissues perhaps suggests that it may play a unique role 

in these particular areas. 

1.4.3 Tubedown [unctions 

While more studies are being done to unveil Tbdn functions, there have been 

several lines of evidence supporting a crucial role for Tbdn in ocular blood vessels to 

maintain the homeostasis of the retina, in addition to its role in growth and differentiation. 

One earlier study, using IEM embryonic endothelial cells, found that Tbdn showed 
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significant downregulation during capillary growth suggesting a possible role in vascular 

remodelling (Paradis et al., 2002). In another study, knockdown of Tbdn expression in 

rhesus RF /6A choroid-retina endothelial cells over-expressing an antisense Tbdn eDNA 

construct (ASTbdn) exhibited a significant increase in the formation of capillary-like 

structures in comparison to controls, indicating an anti -angiogenic regulation mediated by 

Tbdn (Paradis et al., 2002). To further investigate the effect ofTbdn suppression in vivo, 

Drs. Paradis and Gendron have generated a binary antisense Tbdn (ASTbdn) transgenic 

mouse model (Tie2/rtTA/Enh-TREIASTbdn) that enables the conditional knockdown of 

Tbdn protein expression in endothelial cells (Wallet al., 2004). 

Endothelial specific Tbdn knockdown mice display pathological features such as 

retinal and choroidal neovascularization with intra- and pre-retinal fibrovascular lesions, 

thickening of the retinal tissues and retina-lens adhesions, all of which are characteristics 

observed in human retinopathies (Wallet al., 2004). The severity of retinal lesions 

correlated with prolonged Tbdn suppression. Examination of other tissues did not show 

pathology, perhaps due to the fact that adult Tbdn expression is highly specific to the 

retinal vasculature. In agreement with the mouse data, studies conducted on human 

specimens found Tbdn expression to be significantly downregulated in the blood vessels 

in the retinal lesions in patients with PDR, retinopathy of prematurity (ROP; Gendron et 

al. , 2001; Paradis et al., 2002; Gendron et al., 2006). Likewise, Tbdn expression was also 

found to be downregulated in older individuals and AMD patients compared to younger 

individuals. Tbdn expression in the choroidal vasculature was found to be even lower in 

the AMD specimens than in normal age-matched specimens (Gendron et al., 2010). 
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Taken together, these studies suggests that retinal and choroidal endothelial Tbdn protein 

expression is required to maintain retinal homeostasis. 

Recently, work from Drs Paradis and Gendron laboratories suggests that Tbdn 

may perform its homeostatic function by regulating endothelial cells permeability. By 

conducting permeability assays measuring the amount of FITC-Albumin transported 

across mono layers of RF /6A cells in which Tbdn levels can be manipulated, Tbdn 

knockdown in these cells resulted in an increase in transcellular permeability to FITC­

Albumin (Paradis et al., 2008). Similarly, Tbdn knockdown in bitransgenic mice results in 

a significant increase in extravasation of Albumin from abnormal blood vessels to the 

surrounding tissues in the neural retina (Paradis et al. 2008). These observations are in 

line with another study done by Asaumi et al. (2005), that found endocytosis of J3-­

amyloid precursor transmembrane protein can be inhibited by transient overexpression of 

active NatA complex. Furthermore, they noticed secretion of amyloid-~ may be 

dependent on endocytosis, also suppressed by overexpression of both Tbdn and Ard 1 

(Asaumi et al., 2005). Together, these studies indicate that Tbdn regulates the 

permeability of endothelial cells. 

1.4 Regulation of endothelial cell permeability 

By regulating tissue fluid and transporting essential nutrients across the vessel 

wall, endothelial cell permeability is very important for the maintenance of vascular 

homeostasis (Minshall et al., 2002; Malik & Mehta, 2006). Endothelial cell 

hyperpermeability is closely associated with angiogenesis and together, characterize the 

hallmark of proliferative neovascular retinopathy. Transport of plasma proteins and 
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solutes across the endothelium occurs via two different routes: transcellular and 

paracellular. The transcellular pathway takes place via caveolae-mediated vesicular 

transport. On the other hand, the paracellular pathway is mediated via interendothelial 

junctions. 

The paracellular permeability of the endothelial barrier is maintained by the 

interendothelial junctions which restrict the movement of plasma proteins, the size of 

Albumin and larger, from the vessel lumen by tightly connecting adjacent endothelial 

cells into a monolayer (Kaufman & Alm, 2003 ; Komarova and Malik, 201 0). Among the 

different types of interendothelial junction structures in the vascular endothelium, tight 

junctions and adherens junctions are the best characterised in respect to their function in 

mediating cell-cell adhesion and thus barrier properties. Adherens junctions composed of 

the vascular endothelial (VE)-cadherin complexes with catenins, are dominant in most 

vascular beds. Tight junctions are zipper-like structures formed at the cell-cell contact 

area by a group of transmembrane proteins including: claudins, occludins and zonular 

occludins (Z0-1 and Z0-2), all highly expressed in the blood- brain barrier and retinal 

microvasculature (Komarova and Malik, 2010; Kumar et al. , 2010). Several inflammatory 

mediators such as Thrombin, Bradykinin, Histamine and Vascular endothelial growth 

factor (VEGF) upon binding to their receptors, can disrupt the organization of 

interendothelial junctions and Integrin-ECM interactions, thereby causing endothelial 

hypermeability (Malik & Mehta, 2006; Kumar et al., 201 0). 

In contrast, the transcellular pathway allows for the transport of macromolecules 

such as Albumin and Albumin-bound ligands, insulin, lipids, and hormones from vessel 

lumen to interstitial space (Komarova and Malik, 2010). Transcytosis of Albumin is of 
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particular interest since transcytosis of Albumin has been shown to occur in the eye 

(Vinores et al., 1998). 

Albumin is the most abundant protein in the human plasma making up for 60o/o of 

the total protein content. As for its function in endothelial physiology, Albumin act as a 

circulating chaperone for hydrophobic substances, fatty acids, and hormones, and many 

molecules whose transport is crucial for cell functions (Mehta and Malik, 2006). The 

specific mechanism(s) by which endothelial cells internalize and transport Albumin from 

the luminal to abluminal cell surface are not completely understood. However, it is 

thought to be initiated by binding of Albumin to its cell surface binding glycoprotein 

gp60. This induces clustering of these receptors and recruitment of Caveolin-1 (Minshall 

et al., 2000). Interaction of gp60 with Caveolin-1 triggers activation of Gai, eventually 

leading to phosphorylation of c-Src at tyrosine 416 rendering c-Src active (Komarova & 

Malik, 201 0; Hu et al.,2008). Activated c-Src then tyrosine phosphorylates members of 

the internalization pathway such as Caveolin-1 , Dynamin (Shajahan et al. , 2004; 

Tiruppathi et al. , 1997) and Cortactin (Orth et al. , 2002). Together, these sequential 

phosphorylation dependent events facilitate caveolar scission and transcellular vesicular 

transport of Albumin (Hu et al. , 2008; Komarova & Malik., 2010). Given its important 

function in homeostasis, disruption of this pathway can cause imbalance in the nutrients 

that could render the endothelium prone to pathogenesis. For example, the presence of 

extravascular Albumin has been well-documented to associate with an increase in retinal 

vascular permeability and angiogenesis (Vinores et al. , 1998, Erickson et al., 2007; 

Paradis et al., 2008), all of which underlies the pathology of retinopathy of prematurity, 

diabetic retinopathy, and age-related macular degeneration 
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Figure 2: Proposed mechanism of caveolae-mediated albumin transport 
(A). Albumin binding to its cell surface receptor gp60 induces recruitment of Caveolin-1 

(Cav-1) and activation of G-protein which in turns activate Src. (B) Activated Src (P­
SRC) then phosphorylates other components of the pathway such as Cortactin at Tyr421 , 
Cav-1 at Tyr14, and Dynamin-2 (Dyn-2) at Tyr231 and Tyr597. These sequential 
phosphorylation facilitate vesicular scission and transcellular vesicular transport of 
Albumin. 
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(Schlingemann et al., 1999; Leto et al., 2001; Chronopoulos et al., 2011 ). Studies in Drs 

Paradis and Gendron laboratories have suggested that Tbdn plays a regulatory role in this 

pathway due to the fact that Tbdn knockdown both in vitro and in vivo leads to increased 

extravasation of Albumin (Paradis et al., 2008). To further elucidate Tbdn mechanism 

governing transcellular permeability pathway, it is important to look at Tbdn's 

relationship with other major players of the pathway (i.e., Cortactin and c-Src ). 

1.5 Cortactin 

Another piece of evidence that points to a possible link between Tbdn and 

regulation of endothelial cell permeability is the interaction of Tbdn with Cortactin. Tbdn 

was found to interact and co-localize with Cortactin at the cellular cortex (Paradis et al., 

2008). Cortactin is a 80-85 kDa filamentous cortical actin-binding protein initially 

characterized as a tyrosine phosphorylated substrate in v-Src transformed chick embryo 

fibroblasts (Wu et al., 1991). Since its discovery, Cortactin has emerged as a key protein 

involved in the coordination of membrane dynamics and cytoskeleton remodeling 

(Cosen-Binker and Kapus, 2006). Structurally, Cortactin consists of anN-terminal acidic 

domain (NT A), six-and-a-half tandem repeats (cortactin repeats) at its N-terminus, 

followed by an a-helix, a proline-rich region (PRR) and a Src Homology-3 (SH3) domain 

at its C-terminus (Figure 3). Through the NTA domain, Cortactin binds and activates 

actin-related protein (Arp) 2/3, enhancing N-WASP (Wiskott-Aldrich syndrome protein)­

mediated nucleation and actin polymerization steps necessary for dynamic remodeling of 

the actin cytoskeleton (Ammer and Weed, 2008). While investigation is undergoing to 

examine how Cortactin's interactions with the above binding partners could impact the 
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regulation and formation of actin-rich membrane-cytoskeleton structures, recent studies 

have examined the role of post-translational modifications of Cortactin such as 

phosphorylation (Lua and Low, 2005; Cao et al., 2010) .The majority of reports indicate 

that high levels of tyrosine phosphorylation correlate with elevated cell migration and 

cancer metastasis (Huang et al., 1998, 2003; Daly et al., 2004; Ammer and Weed; 2008). 

In the case of tyrosine phosphorylation, Cortactin can be phosphorylated by members of 

the Src family kinases v-Src, c-Src and Fyn on three sites (Tyr421, Tyr466 and Tyr482) 

with Tyr421 being the most important site, as previous studies have found that 

phosphorylation at Tyr421 by Src family kinases creates a binding site for the c-Src SH2 

domain (Weed and Parsons, 2001; Cosen-Binker and Kapus, 2006). This stable 

interaction then allows further c-Src phosphorylation at Tyr466 and Tyr481 respectively. 

Cortactin phosphorylation by c-Src has been implicated in a variety of functions, 

one of which is the regulation of endocytosis through actin polymerization (Ammer and 

Weed, 2008). Since transcellular permeability requires endocytosis as the initial step 

(Daly et al., 2004) and Cortactin is known to bind and co-localize with Tbdn at the cell 

cortex (Paradis et al., 2008), further investigation into the relationship between Tbdn and 

phospho-Cortactin is needed to explore how Tbdn may regulate the transcytosis of 

Albumin. 
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Figure 3: Diagrammatic representation of domain structure of Cortactin and its 
interacting partner. Binding of Arp2/3 complex occurs through the three amino acid 
DDW -motif within the NTA domain. The actin-binding domain is located within the 
repeats region, requiring the fourth repeat and possibly adjacent sequences. Tyrosine 
phosphorylation by Src family kinases occurs within the proline-rich domain at Y 421 , 
Y 466 and Y 482, creating putative binding sites for SH2 domains. 

1.6 Src Family Kinases 

The family of Src kinases (SFKs) are comprised of 52-62 kDa nine structurally 

related molecules: c-Src, Blk, Fyn, Yes, Lyn, Lck, Hck, Fgr, and Yrk, all of which have 

been recognized to contribute to cellular processes such as proliferation, survival, 

migration, and specifically in this study, transendothelial permeability (Frame et al. , 

2002; Summy and Gallick, 2003 ; Yeatman, 2004). Tyrosine kinases c-Src, Fyn, Yes and 

Y rk are widely co-expressed in many cell types, including vascular endothelial cells 

whereas Lyn, Lck, Hck, Fgr and Blk are found primarily in hematopoietic cells (Hu et al. , 

2008). 

From theN- terminus to the C-terminus, c-Src consists of eight functional regions 

including a myristylated N-terminal site, a Src homology (SH)4 domain, a unique region, 

a SH3 domain, a SH2 domain, a linker region, a kinase/catalytic domain (SHl domain), 
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and a regulatory domain (Figure 4 ). Myristylation of c-Src along with the SH4 domain, 

have been shown to be involved in membrane binding (Kim et al., 2009). The SH3 and 

SH2 domains mediate protein-protein interaction not only with other Src family kinases, 

but also with many other signaling proteins. The SH2 domain allows interaction with 

phosphotyrosine containing motifs on proteins, whereas the SH3 domain recognizes pro­

x-x-pro motifs, present on a variety of signaling molecules (Cohen et al., 1995; Moarefi et 

al., 1997; Birukov et al., 2001). The SH1 domain exhibits a tyrosine kinase activity. 

Tyrosine kinase c-Src can be phosphorylated at two different sites: one at Tyr416, in the 

catalytic domain, and at Tyr527, in the regulatory domain near the C-terminus. In its 

inactive state, c-Src assumes a "closed" confirmation stabilized by intramolecular 

interaction between phospho-Tyr527 and SH2 domain. Phosphorylation at Tyr416 allows 

c-Src to be in its "open" conformation rendering it active. Tyr416 can be auto­

phosphorylated whereas Tyr527 can be phosphorylated and dephosphorylated by Csk 

(carboxy-terminal Src kinase) and PTP 1 (protein tyrosine phosphatase 1) respectively 

(Martin, 2007). 

Regulation through distinct protein domains and post-translational modification 

accounts for multiple roles c-Src plays in signaling pathways (Kim et al., 2009). One of 

these roles is coordinating protein complexes that form and internalize caveolae, a 

process that transports macromolecules, such as Albumin across the endothelial 
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Src consists of eight functional regions including a myristylated site, Src homology (SH)4 
domain, unique region, SH3 domain, SH2 domain, linker, the kinase/catalytic domain 
(SH1 domain), and regulatory domain. The two important phosphorylation sites are 
Tyr416 and Tyr527located in the catalytic domain and regulatory domain respectively. 

monolayer (Kim et al., 2009). The tyrosine kinase of c-Src becomes activated upon the 

initial binding of Albumin to its receptor, gp60, at the endothelial surface. Activated c-Src 

then phosphorylates Caveolin-1 at Tyr14, initiating caveolae fission from the plasma 

membrane (Shajahan et al., 2004; Kim et al., 2009). Activated c-Src can also regulate the 

size of the caveolae by phosphorylation of Caveolin-2 through formation of hetero-

oligomers with Caveolin-1 (Li et al., 1998). Furthermore, activated c-Src phosphorylates 

Dynamin-2, a GTPase protein that binds Caveolin-1 and forms a spiral structure at the 

neck of the caveolae mediating scission from the plasma membrane. Through tyrosine 

phosphorylation of these proteins, c-Src becomes a major player in obligatory steps of 

caveolae fission and caveolae-mediated endocytosis. Previously, Tbdn is known to play 

an important role in this pathway (Paradis et al. , 2008). Taken together, the effect of Tbdn 

knockdown on c-Src activity levels needs to be closely examined as a first step towards 

further elucidating the mechanism by which Tbdn maintains vascular permeability. 
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1. 7 Rationale for Current Study 

Pathological neovascularization is a hallmark of late stage neovascular AMD, 

PDR, and ROP. There are multiple factors that can pre-dispose individuals to retinal 

neovascular eye diseases. One of these factors is alteration in the endothelial permeability 

pathway that induces microvascular leakage in the retinal capillaries. In recent studies, 

Tbdn has been shown to play a role in regulating endothelial permeability and 

maintaining homeostasis of retinal vasculature (Gendron et al. , 2000; Gendron et al. , 

2001 ; Asaumi et a1. ,2005; Gendron et al., 2006; Paradis et al. , 2008; Gendron et al. , 

201 0). The specific mechanism by which Tbdn regulates the transcellular transport of 

Albumin remains yet to be explored. Given that Cortactin and c-Src are major 

components of the pathway, this study was undertaken to test the hypothesis that 

Tubedown regulates the signaling pathway mediating retinal endothelial cell permeability 

to Albumin by influencing Cortactin and c-Src. In order to do so, this study investigates 

the effect of Tbdn knockdown on the expression of phospho-Tyr421 Cortactin and 

phospho-Tyr416 c-Src both in vitro and in vivo by different molecular techniques. Since 

Tbdn was found to be much downregulated in the PDR specimens compared to age­

matched control (Gendron et al. , 2001), this present study also seeks to closely examine 

the expression of phospho-Tyr416 c-Src when Tbdn is suppressed in human retinopathy. 

Elucidating Tbdn regulatory pathways is a step needed to better understand its role in 

retinal homeostasis and ultimately contributing to the discovery of a useful therapy that 

prevents and treats these devastating neovascular retinopathies causing blindness. 
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1.8 Overview of Methodology for Current study 

To assess the relationship between Tbdn and other known regulators of vascular 

endothelial permeability in the retina, major components of the Albumin permeability 

pathway were first investigated in the retinal endothelial cell line RF/6A in vitro. RF/6A 

cell clones stably knocked down for Tbdn expression by expression of an antisense Tbdn 

eDNA fragment [nucleotide sequences 1-1413 in an antisense orientation (ASTbdn); 

Paradis et al; 2002, 2008], as well as RF/6A cells transiently knocked down for Tbdn 

expression using siRNA, were used to examine the effect of Tbdn levels on components 

of the Albumin permeability pathway. The activation status of two key components of the 

Albumin permeability pathway, c-Src and Cortactin, was studied in the above Tbdn 

knockdown RF /6A cells. The activation status of c-Src was monitored by Western 

Blotting by using a specific phospho-Tyr416 Src antibody recognizing the activated form 

of c-Src while the activation status of Cortactin was examined by Western Blotting using 

a specific phospho-Tyr421 Cortactin antibody recognizing the activated form of 

Cortactin. In parallel, Tbdn level of expression was measured in all samples to ensure 

Tbdn downregulation. 

As previously mentioned, Tbdn knockdown RF /6A clones exhibit increase in 

endothelial permeability (Paradis et al., 2008). In order to determine in greater detail 

whether Tbdn regulation of endothelial permeability requires c-Src activation, we treated 

RF/6A Tbdn knockdown cell clones with Src inhibitor SKI-606 prior to examining 

transcellular permeability to FITC-Albumin. Western Blot analysis was done on these cell 

extracts to measure the level of expression of Tbdn, phospho-Src and phospho-Cortactin. 
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To describe the relationship between Tbdn and c-Src in vivo, an endothelial 

specific conditional Tbdn knockdown transgenic mouse model (Tie2/rtT A/Enh­

TREIASTbdn) was employed (Wallet al., 2004). This mouse system which enables 

conditional knockdown of endothelial derived Tbdn, utilizes two separate constructs 

driven by two distinct promoters: the Tie2 promoter and the tetracycline response element 

(TRE) promoter which drives the expression of the ASTbdn described above. Tie2 

promoter directs endothelial specific expression of the reverse tet transactivator protein 

(rtTA). Doxycycline (Dox), is introduced in the mouse diet, binds to rtTA and induces a 

conformational change that allows rtTA to activate the TRE promoter, directing the 

expression of the ASTbdn. As a result, endogenous Tbdn protein expression is suppressed. 

In the absence of Dox, rtT A does not bind the TRE promoter and endogenous Tbdn 

protein expression is not decreased. Analysis of phospho-Tyr416 Src level in vivo was 

accomplished by using histological and immunohistochemical techniques in addition to 

Western Blotting on mouse retinal extracts. 

Similarly we wished to determine if c-Src activation occurred in human PDR 

patients as part of the pathology of the disease. Therefore, we examined phospho-Tyr416 

Src levels by immunohistochemistry on paraffin-embedded human PDR samples 

compared to normal specimens. 
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Figure 5: Schematic diagram of the conditional Tbdn knockdown bitransgenic 
mouse model. Tie2 promoter directs endothelial specific expression of rtT A protein. In 
the presence of Dox from the mouse diet. Binding of Dox to rtT A allows it to bind TRE 
which in turns directs expression of ASTbdn eDNA construct and suppress the expression 
of Tbdn. When Dox is absent, rtT A cannot bind TRE; as a result, Tbdn is not suppressed. 
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2.2 ABSTRACT 

Vascular hyper-permeability is a well-known factor contributing to pathogenesis 

ofneovascular retinopathies. Tubedown (Tbdn) is anN- terminal acetyltransferase 

subunit which associates with Cortactin and plays a role in adult retinal blood vessel 

homeostasis by regulating vascular permeability. The purpose of this study is to describe 

how Tbdn regulates transcellular permeability through the tyrosine kinase c-Src and its 

substrate Cortactin. Tbdn knockdown in retinal endothelial cells by stable transfection or 

by siRNA lead to an increase in the levels of activated phospho-Tyr416 c- Src and 

phospho-Tyr421 Cortactin. In addition, inhibition of c-Src family of kinases and 

Cortactin phosphorylation in retinal endothelial cells in vitro inhibited the Tbdn 

knockdown-induced permeability to Albumin. Similarly, in vivo conditional endothelial 

specific knockdown of Tbdn, resulted in fibrovascular lesions characterized by retinal 

neovascularization and hyper-permeable vessels, increased levels of activated phospho-

Tyr416 c-Src were found, compared to normal retina. Previously we linked loss of 

retinal endothelial Tbdn with proliferative diabetic retinopathy (PDR). Herein, we show 

that activated phospho-Tyr416 c-Src is expressed at high levels in the vessels of retinal 

lesions of PDR. Taken together, these results implicate Tbdn as an important regulator of 

retinal endothelial permeability and homeostasis by mediating a signaling pathway 

involving c-Src and Cortactin. 
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2.3 INTRODUCTION 

The endothelial barrier is an important functional property of retinal endothelium 

that usually limits plasma Albumin to intravascular areas in normal retinas (Daly et al., 

2004; Vinores et al. , 1993, 1998). Neovascular retinopathies are known to involve 

breakdown of the endothelial barrier and changes in retinal endothelial cell permeability 

and integrity which associated with extravasation of Albumin (Pino et al., 1983). The 

neovascularization process is modulated by the combined action of pro-angiogenic 

growth factors (VEGF, bFGF and IGF-1; Das et al., 2003), integrins and extracellular 

matrix components (Paques et al., 1997; Campochiaro et al., 2003; Friedlander et al., 

1996; Ljubimov et al., 1996). Endothelial cell hyperpermeability has been widely linked 

to angiogenesis in various diseases including cancer and diabetic retinopathy (Enea et al., 

1989; Antonetti et al., 1998; Leto et al., 2001; Mousa et al.,20 1 0; Khamdhadia et al., 

2012). 

Tubedown (Tbdn, also referred to as Nargl, mNatl, NATH, Naal5) has been 

defined from previous research in our laboratories as a regulator of vascular permeability 

in adult retinal blood vessels (Paradis et al., 2008, Gendron et al., 201 0). Tbdn is highly 

homologous to Nat1 , an essential subunit of the yeast N-terminal acetyltransferase NatA 

complex (Park and Szostak, 1992; Gendron et al., 2000). In yeast, Tubedown mediates 

the stable interaction of NatA with the large ribosomal subunit and directing the 

polypeptide towards the acetytransferase Ard1. This allows acetylation of amino acid 

residues in the second position of theN -terminus following cleavage of the initial 

methionine (Gautschi et al., 2003; Polevoda and Sherman, 2003; Polevoda et al., 2008). 
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In both yeast and mammals, the Tbdn/Ard1 complex has been shown to play an important 

role in the regulation of a broad range of cellular processes varying from cell growth to 

cellular differentiation (Surgiura et al., 2003; Arnesen et al., 2005; Arnesen et al., 2006; 

Paradis et al., 2002; Martinet al., 2007, Gautschi et al., 2003; Kimura et al., 2003; 

Asaumi et al., 2005, Park and Szosatak, 1992). In adults, high levels ofTbdn expression 

are restricted to vascular beds of the eyes, blood vessels of regressing ovarian follicles 

and the choroid plexus endothelium (Gendron et al., 2000; Gendron et al., 2001; Paradis 

et al., 2002; Paradis et al. , 2008). Previous research has shown that Tbdn protein 

expression is suppressed in eyes from patients with proliferative diabetic retinopathy 

(PDR; Gendron et al., 2001). In addition, Tbdn knockdown in retinal endothelial cells in 

vitro and in animal models has been associated with increases in retinal angiogenesis and 

Albumin permeability, a hallmark to neovascular retinopathy (Paradis et al., 2002, Wallet 

al., 2004; Paradis et al., 2008). 

In addition to Tbdn interacting with Ard1 to form an acetyltransferase complex, 

Tbdn has also been shown to interact with the actin binding protein, Cortactin (Paradis et 

al., 2008). Cortactin regulates actin assembly, cytoskeletal remodeling, endothelial barrier 

integrity and was originally identified as a major substrate of the tyrosine kinase c-Src 

(Kanner et al., 1990; Wu et al., 1991; Wu et al., 1993; Weed & Parsons, 2001 ). Cortactin 

can be phosphorylated by c-Src at residues (Tyr-421, 466, and 482) in a sequential 

manner. The initial priming phosphorylation at Tyr421 appears to be the most critical for 

regulating the subsequent phosphorylation (Head et al., 2003). Phosphorylation of 

Cortactin at Tyr421 by c-Src regulates cytoskeleton remodeling and coordination of 

-27-



membrane dynamics such as vesicular endocytosis (Cosen-Binker & Kapus, 2006; 

Ammer & Weed, 2008). The activation of tyrosine kinase c-Src requires phosphorylation 

at Tyr416 in the catalytic domain, while inactivation requires phosphorylation at Tyr527 

in the regulatory domain by Csk (carboxy-terminal Src kinase; Hu et al., 2008). Active 

Src is known to regulate endothelial permeability to Albumin (Minshall et al. , 2000; 

Shajahan et al. , 2004; Tiruppathi et al., 1997; Li et al., 1996); however, the specific 

mechanism by which endothelial cells transport Albumin from luminal to abluminal sides 

is not completely understood. 

It is also known that binding of Albumin to its cell surface binding protein gp60 

induces clustering of these receptors and recruitment of Caveolin-1 (Minshall et al., 

2000). Interaction of gp60 with Caveolin-1 triggers activation of Gai. Activated Gai, 

through an as yet unknown mechanism promotes phosphorylation of c-Src at Tyr416 

(Komarova & Malik, 201 0; Hu et a1.,2008). Activated c-Src then tyrosine phosphorylates 

other members of the pathway such as Caveolin-1, Dynamin (Shajahan et al., 2004; 

Tiruppathi et al., 1997) and Cortactin (Orth et al., 2002). Studies have demonstrated that 

phosphorylation of Caveolin-1 by c-Src is a key switch initiating caveolar fission from 

the plasma membrane (Hu et al., 2008; Li et al. , 1996; Conner et al., 2003). Together, 

these sequential phosphorylation dependent events facilitate caveolar scission and 

transcellular vesicular transport of Albumin (Hu et al., 2008; Komarova & Malik., 201 0) 

demonstrating that c-Src is a central regulator of transendothelial permeability through its 

regulation of caveolae formation and endocytosis. 
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In this study, we tested the hypothesis that Tubedown regulates the signaling 

pathway mediating retinal endothelial cell permeability to Albumin by influencing 

Cortactin and/or c-Src. We demonstrate that Tbdn knockdown is associated with 

activation of c-Src and Cortactin pathways both in vitro and in vivo. Because c-Src and 

Cortactin have emerged as potentially crucial players regulating endothelial permeability 

(Komarova & Malik, 201 0; Schnoor et al., 2011 ), this work further implicates Tbdn as an 

important regulator of retinal endothelial permeability and is required for the normal 

maintenance of retinal homeostasis. 

2.4 MATERIAL AND METHODS 

Antibodies 

Purified rabbit anti-Tbdn C755-766 antibody and monoclonal mouse anti-Tbdn antibody 

(clone OE5) were derived as described previously (Martinet al., 2007; Paradis et al., 

2008). Other antibodies used in this study include mouse monoclonal anti-Cortactin 4F11 

(Upstate Biotechnology, Lake Placid, NY), mouse monoclonal anti-c-Src clone 327 

(Abeam, Cambridge, MA) and anti-a-Tubulin mouse monoclonal antibody (Sigma, St 

Louis, MO). Rabbit polyclonal anti-phospho-Cortactin Y 421 and anti-phospho-Src Y 416 

were purchased from Cell Signaling Technology (Danvers, MA). Mouse monoclonal anti­

Fyn (SC434), anti-Lyn (SC7274) and anti-ERK1 (SC94) were obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA). We also used affinity purified horseradish peroxidase 

(HRP) conjugated-anti-rabbit IgG and -anti-mouse IgG reagents (Promega, Madison, WI) 

and AP conjugated-goat-anti-mouse and -goat-anti-rabbit from Jackson ImmunoResearch 
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(West Grove, P A) as secondary antibodies for Western Blot analyses and 

immunohistochemistry staining, respectively. 

Cell culture 

RF /6A, rhesus macaque choroid-retina endothelial cell line (CRL-1780; American Type 

Culture Collection) were grown as previously described (Gendron et al., 2001). RF/6A 

clones in which Tbdn expression had been suppressed by stable expression of the 

antisense Tbdn eDNA construct ASTbdn (Tbdn knockdown) and negative control RF/6A 

clones have been described previously (Paradis et al., 2002). RF /6A Tbdn knockdown 

and parental cell clones were plated at 9.375X103 cells/cm2 in 6.5 mm wells for 

permeability assay and at either 9.375X103 cells/cm2 or 1.364X104 cells/cm2 in 100 mm 

tissue culture dishes for Western Blotting. For Albumin stimulation, RF/6A cells were 

grown in reduced Fetal Bovine Serum (FBS) (Invitrogen, Carlsbad, CA) concentration 

(0.5 %) for 48 hours followed by 2 hours in serum-free media. The cell monolayer was 

then treated for 5 and 10 minutes with either 20% FBS or 5 f.lg/ml of BSA to activate the 

Albumin permeability pathway. To stop the stimulation cells were washed twice in cold 

Tris-buffered saline (TBS). 

Animals 

Choroid-retinal endothelial Tbdn expression was conditionally knocked down in 

TIE2/rtTA/Enh-TREIASTBDNbi-transgenic middle age (7 months) mice as previously 

described (Wallet al., 2004). Conditional knockdown ofTbdn in endothelial cells was 

induced by feeding the mice with commercially prepared mouse chow containing 

Doxycycline (Dox; 600 mg/kg; Bio-Serv, New Jersey), whereas control age-matched 
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mice were fed with a regular diet not containing Dox. Additional controls included age­

matched single transgenic mice (TIE2/rtTA!Enh mice or TREIASTBDN mice) fed with 

Dox diet for the same length of time. Wild-type or control single transgenic mice aged for 

periods longer than 16 months were also used to demonstrate the effect of advanced aged. 

Mice were sacrificed after 1, 2 , and 6 weeks after induction by Dox. For each eye 

specimen, sections were prepared and analyzed by histology as described previously 

(Wallet al., 2004) to determine the extent and progression of choroid-retinal pathology. 

The care and use of animals in this study followed the guidelines set by the Canadian 

Council on Animal Care and were approved by the Institutional Animal Care Committee 

of Memorial University ofNewfoundland (Protocol11-0l-G). 

siRNA Transfections 

A pool of siRNA duplexes targeting RF/6A rhesus macaque TBDN (5'­

TGCGAGATCTTGAGGGTTA-3'), as well as a control non-silencing siRNA (5'­

GATCCGTTCATCGTCACTA-3') were purchased from Dharmacon (Thermo Fischer, 

Lafayette, CO). PmaxGFP negative control vector was obtained from Lonza (Basel, 

Switzerland). RF/6A cells were electroporated with 10 and 20nM siRNA using the Neon 

Transfection system (Invitrogen, Carlsbad, CA) following manufacturer's protocols. 

Electroporated RF/6A were cultured in DMEM at a density of9.375 X103 cells/cm2 for 

72 hrs before harvesting. 

Western Blot Analysis 
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Protein extraction was performed essentially as described previously (Gendron et 

al.,2000). Cellular monolayers were washed twice with 25 mM Tris-HCl pH 7.6, 150 mM 

NaCl, harvested and suspended in a cell lysis buffer (50 mM Tris-HCl pH 7.6,150 mM 

NaCl and 0.5% Brij 96) supplemented with protease inhibitors (1 mM 

phenylmethylsulfonyl fluoride, 0.3 U/ml aprotinin and 10 Jlg/mlleupeptin) 

andphosphatase inhibitors (1 mM sodium orthovanadate, 25 mM sodium fluoride and 10 

mM ~-glycerophosphate). Lysates were clarified by centrifugation, protein concentration 

was determined by Bio-Rad Protein Assay (Bio-Rad Laboratories, Hercules, CA) using 

BSA as the standard. Western Blots were performed by loading equal quantities of 

protein from each sample onto an SDS-P AGE and transfered to PVDF membrane (Bio­

Rad, Hercules, CA). Detection of phosphorylated and unphosphorylated proteins was 

performed by incubating with specific primary antibodies, horseradish peroxidase 

conjugated secondary antibody and visualized by using Chemiluminescence detection 

reagent (Amersham Biosciences, Piscataway, NJ) as previously described (Paradis et. al., 

2008). To determine relative protein levels, densitometry analyses were conducted using 

the Kodak Gel Logic 200 imaging system (Eastman Kodak Company, Rochester, NY) 

and intensities of each band was analyzed using Kodak Molecular imaging software 

(Version 4.0, Eastman Kodak Company, Rochester, NY). 

Human Eye Specimens 

Human eye specimens were obtained from The National Disease Research Interchange 

(Philadelphia, PA, USA) or from collaborator Dr. William V. Good of Smith Kettlewell 

- 32-



Eye Research Institute, San Francisco, CA. The Aged Normal specimens (n=6) were from 

patients with an age range of 60-80 years old. The PDR specimens (n=3), some with 

retinal detachment and developed pre-retinal membrane, were from patients with an age 

range of 71-91 years old. All research on human specimens followed the tenets of the 

Declaration of Helsinki and was performed under approval from the Human Investigation 

Committee of Memorial University. 

Immunohistochemistry 

Immunohistochemistry was performed on paraffin-embedded sections of eye specimens 

processed as previously described (Paradis et al., 2002). Paraffin-embedded sections ( 5 

~m thick) adhered to glasses slides were deparaffinized in xylene and graded ethanols, 

post-fixed in 4% paraformaldehyde and washed in Tris Buffered Saline (TBS). Samples 

were then blocked in 2% ECL Advance Blocking Agent (GE Healthcare, Buckinhamshire 

UK) for 1 hour at room temperature before incubation with appropriate primary antibody 

(1: 1 00) or negative control in blocking agent in TBS at room temperature overnight. After 

washing in TBS 3 times for 10 minutes, slides were incubated with either anti-mouse or 

anti-rabbit IgG Alkaline Phosphatase (AP). Sections were washed in TBS 3 times for 10 

minutes before development using Vector Red AP with Levamisole (Vector Laboratories, 

Burlingame, CA USA). Sections were then air dried and mounted with Permount (Fisher 

Scientific, Pittsburg, P A). 

Transcellular permeability Assay 
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For FITC-Alburnin transit assays, RF/6A stable ASTbdn clones were seeded onto 1%­

gelatin-coated polystyrene filter inserts (Costar Transwell, no. 3470, 6.5-mm diameter, 

0.4-Jlm pore size; Sigma, StLouis, MO) as previously described (Paradis et al., 2002). 

The cells were pre-treated daily with 0-35 f.!M of c-Src inhibitor SKI-606 (Bosutinib; 

Biovision, Mountain View, CA) for 48 hours prior to transcellular permeability assay. 

Transcellular permeability assay was performed and analyzed following previously 

published methodology (Paradis et al., 2008). 

Data and Statistical Analysis 

All immunohistochemically stained sections were viewed and photographed using a Leica 

DMIRE2 microscope system (Bannockburn, IL, USA) equipped with a Qlmaging (Surrey 

BC, Canada), RETIGA Exi camera and Improvision Openlab software (version 5; 

Coventry, UK) for quantitation of the staining. Tbdn and phospho-src levels in retinal and 

choroidal blood vessels were expressed as the average staining levels of at least three 

separate mouse eye specimens. Intensity of Tbdn and phospho-Src staining in blood 

vessels and background staining (from photoreceptors) were measured by determining the 

ratio of red color/ green color intensity using HIS Colourspy tool of Openlab software. 

Negative control antibody produced no background therefore final measurements were 

calculated by subtracting the background measurements from photoreceptors, which also 

serve as an internal control. Relative intensities were expressed as the average staining 

levels ± standard error (SEM). Images were prepared using Photoshop version 4.0 (Adobe 

Systems, Mountain View, CA). 
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All quantitative analyses were compared using the two-tailed Student's t-Test with 

Microsoft Excel (Mississauga, ON, Canada). The data was considered to be statistically 

significant if the P value was less than or equal to 0.05. 

2.5 RESULTS 

Tbdn knockdown in RF/6A retinal endothelial cells leads to upregulation of Phospho­

Tyr416 c-Src levels 

Since Tbdn was shown to regulate retinal endothelial permeability to Albumin (Paradis et 

al., 2008), we assessed the relationship between Tbdn and known regulators of vascular 

endothelial permeability in the retina. The activation of the tyrosine kinase c-Src plays 

key roles in the regulation of microvascular barrier function and various endothelial 

responses including permeability of Albumin (Yuan et al. ,2002; Shajahan et al., 2004; 

Kim et al. , 2009; Hu & Minshall, 2009). Moreover, Tbdn was previously found to bind 

Cortactin, a filamentous-actin binding protein and prominent substrate of c-Src (Wu et al., 

1993; Wu et al., 1991). As major components of the Albumin permeability pathway, c­

Src and Cortactin were first investigated in vitro in the retinal endothelial cell line RF /6A. 

Both RF /6A cell clones stably knocked down for Tbdn by expression of an antisense 

Tbdn eDNA fragment that exhibit increased transcellular permeability to Albumin 

(Paradis et al. , 2002; 2008) and RF /6A cells transiently knocked down for Tbdn 

expression using siRNA were used to examine the effect of Tbdn levels on components of 

the Albumin permeability pathway. The effects ofTbdn knockdown on the levels of 
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activated c-Src were studied by Western Blot using a phospho-specific (Tyr416) c-Src 

antibody. Three bands with relative molecular mass of 60 k, 56 k and 53 k were detected 

by Western Blot analysis of Tbdn knockdown RF /6A clones using the phospho-specific 

(Tyr416) c-Src antibody (Fig. 6A). To confirm the identity of these bands, 

immunoprecipitations with antibodies directed against individual Src family members c­

Src, Fyn and Lyn followed by Western Blot with activated phospho-Tyr416 c-Src Ab was 

performed. These analyses confirmed that the activated phospho-Tyr416 c-Src antibody 

detects c-Src, Fyn, and Lyn in Tbdn knockdown RF/6A clones (Figure 6C). Activated 

phospho-c-Src and activated phospho-Fyn co-migrated with each other on SDS-PAGE to 

form the 60 k band while phospho-Lyn corresponded to the two lower molecular weight 

bands of 53 and 56 k (Figure 6C). These observations are consistent with previously 

reported molecular weights ofFyn and Lyn (Lannuti et al., 2003; Thome et al., 2006). 

Steady state levels of activated phospho-Tyr416 c-Src family detected by Western Blot 

relative to loading control (Stat3, total c-Src or total Fyn) were upregulated in the Tbdn 

knockdown RF/6A cell clones, previously reported to exhibit increased transcellular 

permeability to Albumin (Paradis et al., 2008), compared to the parental and control 

cellular protein abstract (Fig. 6). Moreover, similar results were obtained when Tbdn was 

knocked down by siRNA (Fig. 7). 

To further evaluate the activation of c-Src in response to Tbdn knockdown, RF/6A 

endothelial cells were stimulated with serum Albumin (BSA) for 5 and 10 minutes to 

induce the Albumin permeability pathway. Albumin stimulation of Tbdn knockdown, 

parental and control clones resulted in a transient increase of activated-Src, with highest 
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increase of 7 fold activation of c-Src/Fyn observed in the Tbdn knockdown clones at 5 

minutes compared to parental cells (p < 0.01; Fig. 6). Densitometry analysis of Western 

Blots showed no significant changes in the levels of total c-Src or total Fyn relative to the 

loading control (Stat3) between the different clones (Fig.6 and Supplementary data). 
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Figure 6: Tbdn knockdown in retinal endothelial cells in vitro leads to activation of Src 
family kinases. Parental RF /6A retinal endothelial cells, Tbdn knockdown RF /6A and 
control RF /6A cell clones were grown in reduced serum conditions for 48hrs followed by 
no serum for 2 hours. Cells were next either left untreated (NT) or stimulated with serum 
Albumin for 5 (5') and 10 (10') minutes. (A) Western Blot analyses of activated Src 
family kinase and total c-Src kinase levels showed a higher constitutive activation of Src 
family kinase (identified as c-Src, Fyn and Lyn in Fig. 9A) in Tbdn knockdown clone 
(Knockdown) which expresses reduced levels of Tbdn compared to the parental and 
control cells. (B) Quantitation of WB analyses of phospho-Tyr416 Src for activated c­
Src/Fyn, total c-Src, total Fyn and loading control (Stat3) for which representatives are 
shown in previous panels and Supplementary Figure. Levels of activated c-Src/Fyn kinase 
( 60 k band) over loading control are expressed as fold relative to non-treated parental 
cells. Similar results were obtained for activated Src/Fyn over total c-Src or total Fyn 
(*P< 0.05, n=3). (C) Western blot analysis using phospho-Src antibody revealed the 
presence of three bands in the whole cell lysate (WCL) ofRF/6A clone. To determine 
exactly which Src family kinases are present in these bands IP were performed using 
antibodies against three Src kinase family members: Src, Fyn and Lyn. Subsequently, the 
IPs were analyzed by Western blot with both Src (right panel) and phospho-Src (left 
panel) antibodies. Representative experiments are shown. 
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Figure 7: Tbdn knockdown by siRNA in retinal endothelial cells in vitro leads to 
increased phospho-Tyr416 Src (A) Tbdn expression was knocked down by siRNA in 
RF/6A retinal endothelial cells in vitro. Cell extracts from control preparations (No 
siRNA, lOnM Ctrl siRNA, 20nM CTR siRNA) or Tbdn knockdown at different 
concentration ofsiRNA (lOnM Tbdn siRNA, 20nM Tbdn siRNA) were analyzed for 
levels of Tbdn, phospho-Tyr416 Src and total c-Src. Tubulin was also assessed for 
loading control and sample integrity. (B) Quantitative analysis of the Western Blots. 
Levels of phospho-Tyr416 Src over total c-Src and levels of Tbdn over loading control 
(Tubulin) were quantified in controls (CTR siRNA) or Tbdn knockdown (Tbdn siRNA) 
preparations. Data is expressed as mean+/- S.E.M. in each group. Representative 
experiments are shown (n=3). 
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Figure 8: Tbdn knockdown in retinal endothelial cells in vitro leads to increase in 
phosphorylation of Cortactin on Tyr421. (A) Tbdn expression was knocked down by 
either stable transfection (Stable) of an antisense Tbdn construct or siRNA (siRNA) in 
RF/6A retinal endothelial cells in vitro. Cell extracts from controls (CTR) or Tbdn 
knockdown (Stable KDl or siRNA Tbdn) were analyzed for levels ofphospho-Tyr421 
Cortactin versus total Cortactin by WB. Representative results are shown. Representative 
experiment is shown. (B) Levels of phospho-Cortactin over total Cortactin and levels of 
Tbdn over loading control were quantified in controls (CTR siRNA) or Tbdn knockdown 
(Tbdn siRNA). Data is expressed as mean+/- S.E.M. in each group (n=3). 
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Tbdn knockdown in retinal endothelial cells leads to increased levels of phospho­

Tyr421 Cortactin 

To further study the mechanism by which Tbdn regulates the Albumin 

transcellular pathway, we examined the effect ofTbdn knockdown on the levels of 

phospho-Tyr421 Cortactin. RF/6A cells were knocked down for Tbdn expression as 

above either transiently by siRNA or stably by transfection with an antisense Tbdn eDNA 

construct ASTbdn (Fig.6 and 7; Paradis et al. , 2002; 2008). Tbdn knockdown by either 

stable transfection or transient transfection was associated with an increase in phospho­

Cortactin at tyrosine 421 whereas the level of total Cortactin remained the same for both 

knockdown approaches (Fig. 8A). Tbdn when knockdowned by 90o/o (Fig. 7) resulted in a 

2 fold increase in phospho-Cortactin over the level of total Cortactin (Fig. 8B). 

c-Src inhibition in Tbdn knockdown RF/6A cell clones leads to decreases in Albumin 

permeability 

Tbdn loss has been previously shown to lead to an increase in permeability of 

retinal endothelial cells to Albumin (Paradis et al. , 2008). To determine in greater detail 

whether or not Tbdn regulates endothelial permeability through c-Src, we used the c-Src 

inhibitor SKI -606. As expected, Western Blot analysis of cell extracts of Tbdn 

knockdown RF /6A cells treated with 1.5 f..!M of SKI -606 showed a decrease of 

approximately 60% in phospho-Tyr416 c-Src/Fyn levels compared to non-treated cells. 

Moreover, this reduction in the levels of active c-Src/Fyn correlated with a decrease in 

phospho-Tyr421 Cortactin, while expression levels of both Cortactin or c-Src in the 
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treated versus non-treated RF/6A cells extracts were not different (Fig. 9 A, B). To 

further examine which Src family kinase was inhibited by the drug, immunoprecipitations 

with antibodies specific to c-Src, Fyn and Lyn were performed. We found that in RF/6A 

Tbdn knockdown cells, SKI-606 inhibited the activation of c-Src, Lyn and Fyn. However, 

Fyn kinase was less affected by the drug in comparison to the c-Src and Lyn kinases (Fig. 

9A). 

Next, the effect of SKI-606 on endothelial cell permeability to Albumin ofRF/6A 

Tbdn knockdown cells was examined. Cellular permeability assays performed on Tbdn 

knockdown RF/6A cells pre-treated with various concentrations of SKI-606 daily for 48 

hours revealed a decrease of approximately 10 and 20 % in the rate of FITC-Albumin 

transit across the cell monolayer at 1.5 uM and 3.6 uM of inhibitor, respectively (Fig. 

9C). However, at concentrations of 5 uM and above of SKI-606, the permeability of the 

endothelial cells knockdown for Tbdn was no longer inhibited by the c-Src inhibitor. 

Moreover, at concentration of35 uM ofSKI-606, the rate ofFITC-Albumin transit across 

the cell monolayer was significantly higher than non-treated control and independent of 

time suggesting that the cell monolayers had become leaky. Interestingly, when levels of 

inhibition of c-Src activation by SKI -606 were examined under the same culture 

conditions of the permeability assay, which requires a 7 fold higher cell density than 

normal culture conditions, approximately only 15% reduction of active c-Src/Fyn levels 

were observed at 1.5 J.!M of SKI-606 compared to control (Fig. 9D). Under these high cell 

density culture conditions, 5 J.!M and 10 J.!M of SKI-606 were necessary to reduce the 
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Figure 9: Phospho-Tyr 416 Src inhibitor SKI-606 (Bosutinib) decreases cellular 
permeability in Tbdn knockdown cell clones. (A) WB with a phospho-Tyr416 Src family 
antibody (activated Src family kinase) of whole cell lysate (WCL) ofRF/6A retinal 
endothelial cells knocked down for Tbdn revealed three bands. Immunoprecipitations (IP) 
were performed using antibodies against three Src kinase family members: c-Src, Fyn and 
Lyn and IPs were analyzed by WB with phospho-Tyr416 Src family antibody. Phospho­
Tyr416 Src inhibitor SKI-606 (Bosutinib, 1.5 JlM) inhibits c-Src Lyn and Fyn. Fyn and c­
Src antibodies used for IP produced a band at 55 k. (B) Inhibition of phospho-Src by 
Bosutinib results in decreases in levels of phospho-Tyr 421 Cortactin over total Cortactin. 
(C) Percentages of FITC-albumin transit across cellular monolayer of Tbdn-knockdown 
(ASTbdn) cells treated with various concentrations of SKI-606 as indicated or with 
vehicle only (NT= 0 JlM, n=3). (D) Western Blot and densitometry showing activated Src 
family kinases and Tbdn in RF/6A Tbdn knockdown cells treated with SKI-606 under 
optimal permeability assay conditions at high cell density (*P<0.05). Representative 
experiments are shown 
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levels of activated c-Src/Fyn significantly in contrast to the marked inhibition seen at 1.5 

f.lM under lower cell culture density described in panel A (Fig. 9A). 

Tbdn knockdown in blood vessels leads to increased levels of activated phospho-Tyr416 

Src. 

Using a conditional-endothelial specific bitransgenic Tbdn knockdown mouse 

model (Wall et al., 2004 ), we next examined the expression level of activated phospho­

Tyr416 c-Src to determine if it plays a role in the increase in permeability to Albumin 

previously observed in this mouse model (Paradis et al., 2008). In comparison to control 

age-matched mice, increased immunostaining for activated phospho-Tyr416 c-Src was 

observed in retinal lesions of both 2 and 6 week Tbdn knockdown bitransgenic mice (Fig. 

1 0). Quantitation of the immunostaining in retinal blood vessels revealed a maximal 10 

fold increase in activated phospho-Tyr416 c-Src at 6 weeks Tbdn knockdown compared 

to control (Fig. 1 OB). 

To confirm our immunohistochemical findings that blood vessels of retinal lesions 

of Tbdn knockdown mice show upregulation of activated c-Src levels, Western Blot 

analysis for activated phospho-Tyr416 c-Src was performed on isolated retinal tissues 

from 6 week Tbdn knockdown mice and control mice. As shown in Figure 11 A, retinal 

tissue from 6-week Tbdn knockdown mice showed a significant increase (3 .4 fold) in the 

60 k phospho-Tyr416 c-Src protein band (p < 0.01) while total c-Src remained unchanged 

in all extracts (Fig. 11). Interestingly, in comparison to RF/6A, phospho-Tyr416 specific 

c-Src antibody only detected one band at approximately 60 kin mouse retina (Fig. 11B) 
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Figure 10: Expression of activated phospho-Src in retinal lesions Tbdn knockdown mice 
compared to control. (A) Top panels, hematoxylin/eosin (H&E) staining shows abnormal 
blood vessels and retinal thickening observed in Dox-induced Tbdn knockdown mice (left 
panels, Knockdown) compared to control middle age mice (right panels, Control). Lower 
panels, Immunohistochemical analysis of phospho-Tyr416 Src (Activated c-Src) in retinal 
lesions ofDox-induced Tbdn knockdown versus age-matched middle age mice revealing 
intense staining in knockdown mice (red stain as shown by arrow). Retinal section stained 
with no primary antibody showed no staining (not shown). All images are oriented with 
the vitreous cavity of the eye at the bottom of the panels. 400X. Representative 
experiment is shown. (B) Quantitation of expression of activated phospho-Tyr416 Src 
(Activated Src) in retinal blood vessels of lesions Dox-induced Tbdn knockdown (2W 
KD, 6W KD) compared to normal retinal blood vessels of age-matched control (CTR). 
Data shown in B is expressed as mean+/- S.E.M. of at least 3 duplicate experiments in 
each group. (n=3) 
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Figure 11: Increased phospho-Tyr 416 Src expression in retinal lesions of Tbdn 
knockdown mouse model. (A, B) Western Blots of cell lysate from IEM embryonic 
endothelial cells, RF /6A retinal endothelial cells as well as retinallysates from controls 
(CTRl, CTR2, CTR3), Tbdn knockdown (KD) and aged mice (AGED) were performed 
using the antibodies indicated at right. Tubulin was used for loading control and sample 
integrity. (C) Quantitations were performed on WB analyses of phospho-Tyr416 Src and 
total c-Src for which representatives are shown in two previous panels. Levels of 
activated Src are expressed as percent of the maximal levels observed in Dox-induced 
Tbdn knockdown animals. Means+/- S.E.M. are indicated.Representative experiments 
are shown. (n=3) 
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instead of 3 bands as previously observed in RF/6A cells (Fig. 6A, 9A) indicating that 

Lyn is not detectable by Western Blot in mouse retinal tissues in vivo. We next asked if 

the increase in the 60 k phospho-Tyr416 c-Src protein band resulted solely from the 

increase in the levels of phospho-Tyr416 c-Src or included activated phospho-Fyn as 

well. Western Blot analysis using an antibody for Fyn revealed no detectable expression 

ofFyn in mouse retinal tissues as compared to RF/6A cells (Fig. llB). 

Immunoprecipitation of c-Src followed by Western Blot with phospho-Tyr416 c-Src 

antibody confirmed that the 60 k band detected in the mouse retina extract corresponded 

to c-Src (data not shown). 

Neovascular retinopathy specimens exhibit increased levels ofphospho-Tyr416 c-Src 

Since the retinal lesions of endothelial Tbdn knockdown mice display increases in 

retinal angiogenesis, hyperpermeability to Albumin and thickening of the retinal tissues, 

all of which are features observed in PDR (Wallet al., 2004; Paradis et al. , 2008), we next 

investigated if the levels of expression of activated phosphos-Tyr416 c-Src are altered in 

human eye specimens with PDR. Immunohistological analyses revealed increased levels 

in the blood vessels of fibrovascular lesions of human neovascular retinopathy specimens 

(Fig. 12 B,C) compared to a normal aged human specimen (Fig. 12A). Further 

quantitative analysis showed that neovascular retinopathy specimens had a significant 

increase (8 fold) in active Src family kinases in blood vessels of retinal lesions compared 

to age-matched normal specimens (p < 0.0001 ). 

- 48-



' 
c~ ., 

.... 
(' 

' . .. 
f Jk. 

+ 

~ 

D 

" \ 

-\~ 

~ 

10 

6 

4 

2 

0 

Phospho Src staining in 
Human Specimens 

Aged Normal PDR 

Figure 12: Immunohistochemical analysis of phospho-Tyr416 Src in retinal lesions in 
neovascular retinopathy in human. (A) shows stain for phospho-Tyr416 Src (Activated 
Src) revealing no staining in blood vessels (arrowed) of a normal aged human specimen 
(Aged Normal). (B) and (C) both represent human PDR specimens. (C) has more severe 
pathology than (B) and both show staining for phospho-Tyr416 Src revealing intense 
staining in blood vessels of fibrovascular lesion areas (red stain as shown by arrows) of 
PDR. Images are oriented with the vitreous cavity of the eye at the bottom of the panels 
although the fibrovascular lesional area in the neovascular retinopathy image (panel C) 
takes up the whole panel. 200X. Representative experiments shown. (D) Levels of 
activated Src family kinase in retinal blood vessels are expressed as fold of staining over 
a reference normal aged specimen. Values for age-matched normal are significantly 
different than the neovascular values (p<O.OOOl). Data shown in Dis expressed as mean 
+I- S.E.M. of 3 duplicate experiments in PDR group and 6 duplicates in the Aged Normal 
group. 
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Supplementary figure: RF /6A parental endothelial cells, Tbdn knockdown RF /6A cell 
clones and control cell clones were grown in reduced serum conditions for 48hrs followed 
by no serum for 2 hours. Next cells were either non-treated (NT) or stimulated with serum 
Albumin for 5 (5 ' ) and 10 (10') minutes. Samples were analyzed by WB for total Fyn 
levels in parental retinal endothelial cells (Parental), Tbdn knockdown (KD 1, KD 2) and 
control clones (CTR 1, CTR 2). STAT3 WB was performed for loading control and 
sample integrity. (C) Quantitative analysis showed no significant changes in the levels of 
total Fyn over Stat3 among the different clones. (n=3) 
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2.6 DISCUSSION 

Endothelial cell permeability, which regulates tissue fluid and the transport of 

essential nutrients across the vessel wall, is important for maintenance of tissue 

homeostasis (Minshall et al. , 2002; Malik & Mehta, 2006). Transport of plasma proteins 

and solutes across the endothelium occurs via two different routes: transcellular, via 

caveolae-mediated vesicular transport and paracellular, through interendothelial junctions 

(Komarova and Malik, 201 0). While both pathways contribute to the transport of 

molecules across the membrane, Albumin transport from the luminal to abluminal side is 

mediated strictly via the transellular pathway (Hu and Minshall, 2009). Endothelial cell 

hyperpermeability is closely associated with angiogenesis and both are hallmarks of 

neovascular retinopathy. Increased retinal vascular permeability is one of the early 

pathophysiological mechanisms underlying retinal neovascular diseases such as PDR 

(Leto et al., 2001; Kumar et al. , 201 0). Therefore, it is imperative to define in detail the 

mechanisms mediating vascular permeability and discover how these mechanisms are 

regulated. As previous studies in our lab have shown that Tbdn is an important regulator 

of endothelial permeability in the retina (Paradis et al., 2008; Paradis et al., 2002), in this 

study, we further investigated the interaction of Tbdn with other key components of 

endothelial permeability signalling pathway regulation. 

Our present results provide new evidence that Tbdn regulation of retinal 

endothelial function is dependent on the regulation of c-Src activation and Cortactin 

phosphorylation. Members of the Src family of tyrosine kinases [SFK (c-Src, Blk, Fgr, 

Fyn, Hck, Lck, Lyn, Yes and Yrk)] are involved in a wide variety of cellular processes 
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(Kim et al., 2009). Aberrant activation of c-Src leads to pathologies including cancer and 

leaky blood vessels (Kim et al., 2009). SFKs play an important role in mediating the 

phosphorylation of Cortactin and Dynamin and stimulating receptor-mediated 

endocytosis (Cao et al., 201 0). When Tbdn is knocked down in retinal endothelial cells, 

we observed an increase in the levels of phospho-Tyr416 c-Src and phospho-Tyr421 

Cortactin (Fig 6, 7, 8). Upon stimulation with Albumin for 5 minutes, the Tbdn 

knockdown cell clones exhibited an even greater and more significant increase in the 

levels of activated c-Src compared to the parental and control clones. It is known that 

once activated, c-Src interacts with Csk binding protein (Cbp) through its SH2 domain 

(lngley, 2008). Adaptor protein Cbp then recruits Csk (C-terminal Src kinase) to the 

plasma membrane to mediate phosphorylation of c-Src at Y527 rendering c-Src inactive 

(Ingley, 2008; Hu et al., 2008). This negative feedback loop might underline the return of 

c-Src activation levels to baseline at 10 minutes post Albumin treatment in RF /6A cells 

(Fig 6). 

Moreover, we showed that Tbdn regulation of endothelial permeability requires 

c-Src activation (Fig. 9). When inhibiting c-Src activation with SKI -606, we observed a 

decrease in transit ofFITC-Albumin across the RF/6A Tbdn knockdown cells monolayer 

at 1.5 J.!M and 3.6 J.!M (Fig. 9C). However, as the concentration of inhibitor was 

increased, a significant increase ofFITC-Albumin transit which was also independent of 

time was observed, suggesting that the cell monolayer might have become leaky as a 

result of the drug treatment. This may be due to c-Src involvement in actin assembly and 

focal adhesion formation through its phosphorylation of focal adhesion kinase (F AK) at 
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Y861 ( Kim et al., 2009). In fact, this is in line with another observation by Elliott and co­

workers who found that SKI-606 inhibition of c-Src activation lead to a decrease in 

adhesion of renal epithelial cells to extracellular matrix (Elliott et al., 2011 ). 

Activated c-Src phosphorylates other components of the pathway such as 

Cortactin, Caveolin-1 and Dynamin-2 to facilitate caveolar scission and transcellular 

vesicular transport of Albumin (Kim et al., 2009). Cortactin phosphorylation by c-Src has 

also been shown to be involved in a range of cellular processes including transmigration 

of leukocytes (Yang et al. , 2006) and endocytosis of Transferrin (Cao et al., 201 0). 

Phosphorylation of Cortactin by c-Src enhances Cortactin binding affinity to Dynamin by 

up to 5 fold (Zhu et al. , 2007) and this binding is essential for vesicle formation at the 

plasma membrane (Cao et al., 2003). Here we showed that phosphorylation of Cortactin 

is linked to c-Src activation in retinal endothelial cells (Fig. 9B). By inhibiting c-Src 

activation using inhibitor SKI-606, levels of phospho-Tyr421 Cortactin were found to be 

downregulated (Fig. 9B). More importantly, we showed that Tbdn knockdown leads to an 

increase in the levels of activated c-Src and Tyr421-phosphorylated Cortactin (Fig 6-8). 

There are two scenarios that may explain the increase in activated c-Src and 

phosphorylated Cortactin as a result of Tbdn knockdown. While it is unlikely that Tbdn 

itself can acetylate substrates directly, Tbdn associates with Ardl , which exhibits 

acetytransferase activity (Gendron et al. , 2000; Arnesen et al., 2005). The functional 

consequences of acetylation are diverse and include modification of protein-protein 

interactions and regulation of phosphorylation of proteins in both positive and negative 

manners. For example, acetylation of p53 by p300 and PCAF triggers p53 recruitment to 

DNA allowing it to activate or repress specific genes (Sakaguchi et al. , 1998). On the 
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other hand, acetylation ofFOXOl promotes its phosphorylation at Ser-253 through the 

PI3K-PKB signaling pathway (Matsuzaki et al., 2005). We speculate that Tbdn/Ardl 

complex might bind c-Src directly and promote its binding to Csk which phosphorylates 

c-Src at Y527 and inactivates it. Another possibility is that the Tbdn/Ardl complex binds 

c-Src and further promotes its dephosphorylation at Tyr416 to decrease its activity. As a 

result, Tbdn knockdown would lead to an increase in level of activated c-Src and 

subsequent increased phosphorylation of downstream proteins such as Cortactin. 

Cortactin itself can be acetylated by PCAF (Ammer and Weed, 2008). The fact that there 

are no significant differences in Cortactin acetylation in PCAF -I- compared to PCAF +I+ 

fibroblast cells may indicate that besides PCAF, additional acetyltransferase(s) may 

acetylate Cortactin (Zhang et al., 2007). We previously found that Tbdn interacts with 

Cortactin in vivo (Paradis et al., 2008). Though the effect of acetylation still remains 

unclear, it is tempting to speculate that Tbdn might bind and sequester Cortactin from 

phosphorylation of c-Src. Tbdn knockdown thus leads to more Cortactin being 

phosphorylated by activated c-Src. Phosphorylated Tyr421 on Cortactin has been shown 

to form a stable interaction with the SH2 domain of c-Src preventing c-Src from being 

inactivated resulting in an increase in c-Src activation (Weed and Parsons, 2001). 

In addition, our data provide evidence that loss of Tbdn expression leading to 

retinal hyperpermeability and retinopathy in mice in vivo involves c-Src activation. It is 

possible that increases in activation of c-Src in the retinal endothelium and surrounding 

tissues may be a contributing factor that predisposes healthy retina to the development of 

neovascularization and retinal pathology. Proliferative diabetic retinopathy is 
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characterized by neovascularization originating from the retina and/or optic disk in 

patients with diabetes mellitus (Gunduz and Bakri, 2007). Previously, Tbdn protein 

expression was found to be downregulated in PDR specimens compared to control 

(Gendron et al., 2001). Furthermore, Tbdn suppression in mouse endothelium resulted in 

similar pathological characteristics to those observed in human PDR (Wallet al. 2004). In 

this study, Western Blot and immunohistochemistry analyses of the conditional 

endothelial Tbdn knockdown mouse model confirmed the upregulation in activated c-Src 

which reaches levels up to 10 fold above control in blood vessels of retinal lesions (Fig 

10, 11 ). Interestingly, our results herein also indicate a significant increase in c-Src 

activation in PDR specimens (Fig. 12 B,C). These observations are consistent with our 

previous in vitro and in vivo studies. High level of c-Src activation has been widely linked 

to vascular hyperpermeability (Mehta and Malik, 2006). Increased endothelial 

permeability usually causes abnormal extravasation of blood components such as 

Albumin and accumulation of fluid in the extravascular space (Hu et al., 2008). 

Furthermore, all of these lead to inflammation and recruitment of stimuli such as 

cytokines and growth factors that bind their cognate receptors in the tissue (Kim et al., 

2009; Kumar et al., 2009). Such receptor binding results in activation of Src family 

kinases in the tissue (Kim et al., 2009). This may explain why in addition to elevated 

staining levels of phospho-Tyr416 c-Src in the blood vessels of retinal lesions, there is 

also light staining for activated c-Src in the surrounding retinal tissues supporting a 

hypothesis that leakiness of the vessels induced by c-Src activation would lead to 

collateral tissue damage and c-Src activation in bystander cells. 
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In summary, our present studies provide evidence that Tbdn regulation of retinal 

endothelial permeability is dependent on c-Src activation and Cortactin phosphorylation. 

Whether this regulation is dependent on c-Src activation in vivo is currently under 

investigation by our laboratory. 
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3.SUMMARY 

Worldwide, there are 194 million individuals who suffer from diabetes. This number is 

expected to more than double by 2030 due to the increasing frequency of obesity, life 

expectancy, and improved detection of the disease (Wild et al., 2004; Al-Rubeaan et al. , 

2010; Antonetti et al. , 2012). Approximately 70% of those who have diabetes for 10 years 

or more will develop some form of diabetic retinopathy, such as proliferative diabetic 

retinopathy (PDR). PDR is caused by neovascularization and hyperpermeability in the 

vasculature of the retina. Previous studies in the laboratory of Drs Paradis and Gendron 

have implicated Tbdn as an important regulator of endothelial permeability in the retina 

(Paradis et al., 2008). Further studies elucidating the Tbdn signaling pathway can provide 

us with insights into developing better molecular treatments targeting this cause of 

blindness. 

Previous studies have indicated that Tbdn is suppressed in neovascular areas of 

retinal endothelium in patients with diabetic retinopathy (Gendron et al., 2001). 

Additionally in a recent study, Tbdn has been implicated as a regulator of retinal 

endothelial permeability (Paradis et al., 2008). To examine the mechanisms by which 

Tbdn performs its regulatory role, we investigated the effect of Tbdn knockdown on 

components of the permeability pathway, Cortactin and c-Src. 

This study reinforces the hypothesis that Tbdn regulation of retinal endothelial 

permeability is dependent on c-Src activation and phosphorylation of Cortactin as Tbdn 

knockdown in both in vitro and in vivo systems lead to a significant increase in 

phosphorylation of c-Src at Tyr416 and Cortactin at Tyr421 . In addition to these findings, 
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we also found that human neovascular retinopathy is associated with the activation of Src 

family ofkinases. It is possible that Tbdn loss predisposes the retina to neovascularization 

and hyperpermeability through activation of a c-Src dependent pathway. While the 

specific mechanism by which Tbdn governs this pathway is unknown, it is appealing to 

speculate that Tbdn through its association with Ard 1 which has an acetyl transferase 

activity, binds to c-Src and either prevents its phosphorylation at Tyr416 or increases the 

rate binding to Csk which inactivates c-Src. Another speculation is that Tbdn might bind 

and sequester Cortactin from being phophosphorylated by c-Src and from forming a 

stable complex with c-Src SH2 domain. This complex would prevent c-Src from being 

dephosphorylated and becoming inactive. In both cases, Tbdn knockdown would result in 

an increase in c-Src activation and correspondingly, an increase in phosphorylation of 

Cortactin as observed. 

In conclusion, Tbdn displays a tremendous potential of being the central regulator 

in the development of ocular neovascular diseases. Nevertheless, Tbdn's involvement in 

the signaling pathway of retinal endothelial permeability involving c-Src and Cortactin 

warrants further investigation. While we have demonstrated here that Tbdn' s role in 

retinal permeability is mediated by regulating c-Src activation, we must further 

investigate if loss of Tbdn expression leading to retinal hyperpermeability and retinopathy 

in mice in vivo requires c-Src activity through the use of c-Src knockout mice. Early data 

using c-Src inhibitor showed that c-Src activation is required for transendothelial 

permeability of Albumin. Further study into c-Src regulated hypermeability in the 

Tbdn/c-Src regulation of retinal permeability is still required. However, preliminary data 
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on the Tbdn/c-Src regulation of retinal permeability provides evidence for a potential new 

target to treat and/ or prevent this detrimental disease. 
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