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ABSTRACT 

Potato and onion processing produces a large an1ount of discards, tnainly peels 

and skins. This study cotnpared the antioxidant activity of phenolic constituents of skin 

and flesh of di fferent coloured onions (pearl skin, red skin, yellow skin, white skin, red 

fl esh, sprouted red flesh) and potatoes (purple, russet, innovator, yellow). Phenolic 

constituents were separated into free, esterified and bond fractions. The bound fraction 

was extracted into diethyl ether after consecutive alkaline hydrolysis. The contribution 

of free phenolics toward total phenolic content was significantly (p<0.05) higher than the 

esterified and bound for onion skin extracts tested then those in the flesh. Phenolics were 

present n1ainly in the free fonn in both onion skin and fl esh. The content of flavonoids 

extracted from onion and potato skins was approxin1ately six titnes higher than that of 

their fl esh counterparts. An1ong onion varieties, pearl onion skin showed the highest 

phenolic content (26.4 mg quercetin equivalents/g freeze dried sample). Similarly, purple 

potato peels had the highest phenolic content (13.85 mg gallic acid equivalents/g freeze 

dried sample). The phenolic compounds in potatoes were predotninantly present in the 

bound fonn in the peels of both lnnovator and Russet varieties ( 45.95-51.07o/o) while free 

and esterified phenolics were predotninant in purple and yellow varieties. Red onion skin 

was most effective in inhibiting DNA strand scission at 94.45o/o, and that of purple potato 

peel was 91.02o/o. Sitnilar trends were observed for inhibition of LDL cholesterol 

oxidation and free radical scavenging activities of satnples tested. HPLC-MS analysis 

showed that quercetin, quercetin 3-glucoside, and kaempferol were the predominant 



phenolics in all onion extracts, while chlorogenic, caffeic, p-coumaric and ferulic acids 

were predotninant in potato peels. 
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CHAPTER 1 

INTRODUCTION 

Phenolic con1pounds are commonly found in both edible and nonedible plants and 

have been reported to possess multiple biological effects, including antioxidant activity. 

Crude extracts of vegetables, herbs, fruits, cereals, and other plant materials rich in 

phenolics are increasingly of interest in the food industry because they retard oxidative 

degradation of lipids and thereby improve the quality and nutritional value of food. The 

importance of the antioxidant constituents of plant materials in the maintenance of health 

and protection from coronary heart disease and cancer is also raising interest among 

scientists, food manufactures, and consumers as trend of the future is moving toward 

functional food with specific health effects (Kahkonen et a!., 1999). Polyphenol s are 

recognized as the most abundant antioxidants in hutnan diet (Manach et al., 2004). As 

antioxidants, phenolic cotnpounds prevent the formation of free radicals with deleterious 

health effects and are therefore important in disease risk reduction (Shahidi, 2000). They 

have been demonstrated to have positive effects on certain types of cancer (Birt, 2006), 

including cancer of the stomachs, colon, prostate, and breast as well as cardiovascular 

disease (CVD) (Hertog et al. , 1995), and vanous inflammatory disorders 

(Andriantsitohaina et al., 1999). 

Vegetables are rich sources of phytochemicals, in addition to other components 

that may act synergistically with phytochemicals to contribute to the nutritional and 

health benefits of these food cotnmodities. Two of the most widely consumed 

vegetables, onion, and potato have been extensively studied. Potatoes are one of the most 
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cotntnonly consun1ed vegetables throughout the world. Peels are the major byproduct of 

potato processing industries, which represents a major waste disposal problem for the 

industry concerned. Antioxidative compounds extracted from potato peels may therefore 

be of potential value for use in feed, food and health care industries (Habeebullah et al., 

201 0). 

Potato (Solanum tuberosum) is a major staple food of hutnan diet and the fourth 

largest crop that is grown worldwide after rice, wheat, and maize (Singh and Saldana, 

2011 ). Potato peels are a good source of phenolic compounds which when extracted can 

be used as natural antioxidants to prevent oxidation of food containing high amounts of 

lipid (Andrich et a!., 2003). Ahnost 50% of phenolics are located in the peel and 

adjoining tissues and decrease towards the centre of the tuber (Freidmen, 1997; Al

Weshahy and Rao, 2009). 

Phenolic compounds in potatoes can be present in both free and bound forms. 

They are tnostly substituted derivatives of hydroxycinnamic acid in the free form and 

hydroxybenzoic acid in the bound fonn (Shahidi and Naczk, 1995). The most common 

hydroxycinnamic acid derivatives in potato and potato peels were reported to be 

chlorogenic acid (CGA), caffeic acid (CF A), and ferulic acid (FA), while hydroxybenzoic 

acids present were gallic acid (GA), protocatechuic acid (PCA), and their derivatives 

(Kanatt et al., 2005; Nara et al., 2006; Al-Weshahy and Rao, 2009). Anthocyanins a sub

group within the tlavonoids, are present in substantial amounts in pigmented potatoes 

(Brown, 2008). The purple potato peel has a higher concentration of flavonoids than 

white potatoes which again their peels show higher contents and activities of antioxidant 
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than their flesh (Rodriguez de Sotillo et al., 1994; Lewis et al., 1998; Velioglu et al., 

1998). 

Though there have been extensive studies on the free phenolics and their 

antioxidant activities In potatoes (Mansour and Khalil, 2000; AI-Weshahy and Rao, 

2009), there appears to be very few studies on the esterified and bound phenolics in these 

vegetable, which underestimates the total phenolic content and their contribution to the 

overall antioxidant activity. In the present study, the phenolic constituents of potato peel 

and flesh were fractionated into their respective free, esterified, and insoluble-bound 

forn1s by alkali hydrolysis and the relative proportions of the various phenolic acids were 

determined using different chetnical assays and high-perfonnance liquid chromatography 

(HPLC). 

Onion (Allium cepa), another widely consutned vegetable, is classified based on 

its colour into yellow, red and white; based on taste, it is divided into sweet and non

sweet products (Shahidi and Naczk, 2004). Fresh and dehydrated onions are widely used 

in the human diet as a source of nutrient, spicy garnish and also non-nutritive health 

pro1noting compounds (Lee et a!., 2008). Onions contain scores of functional 

phytochemicals and their consumption has long been associated with health promotion 

and disease prevention; reducing the incidence of cancers in several tissues, preventing 

vascular and heart diseases, neurodegenerative disorders and cataract fonnation (Kaur et 

a!., 2008). Among phytochemicals with health benefit, the high quantities of flavonoids , 

fructans and organosulphur in the onions are considered to be important contributing 
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factors to the overal I antioxidant activity of the diet (Ames eta!. , 1993; Rice Evans eta!. , 

1997; Paganga et a!., 1996). 

Epiden1iological studies about the maJor sources of antioxidant intake have 

highlighted the importance of onions, for high levels of a specific class of flavonoids, the 

flavonols (Hertog et al., 1993; Suh et al., 1999). Red, yellow, and white onions are, in 

fact, known to contain a large amount of flavonols; the majority being glucosides of 

quercetin and keatnpferol (Rhodes and Price, 1996; Sellappan and Akoh, 2002). Onion 

skins also contain significantly higher content of flavonoids than the edible portion at 2-

10 g/kg (Suh et al., 1999). Regardless of high levels of flavonoids in outer scales of 

onion, they are peeled off and discarded before food processing such as cooking. The 

outer scales contain quercetin derivatives (Takaha1na and Hirota, 2000; Furusawa et a!., 

2002, 2003), which constitute tnore than 80% to the total content of flavonoids in onion 

(Furusawa et al., 2002, 2003; Galdon et al., 2008). Takahama and Hirota (2000) have 

suggested that quercetin is fonned by deglucosidation of its glucosides, followed by 

autoxidation to produce protocatechuic acid. Recently, sotne anti-platelet and membrane

rigidifying flavonoids have been isolated from the outer scales of onions and identified as 

quercetin, quercetin dimers, and querctin 4-glucoside (Furusawa et al., 2002, 2003). 

Further, dry onion skin has different amounts of quercetin derivatives compared to fleshy 

scales where as tnuch as 53o/o of total quercetin is present in the free fonn (Wiczkowski et 

a!., 2003). Although extracts from onion skins exhibit potent radical scavenging activities 

(Nuutila et al., 2003), the specific antioxidative components are not yet fully identified 

for different colour onions. 
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Furthern1ore, most studies are on the free phenolics and their antioxidant activities 

in onions, but little literature exists on the esterified and bound phenolics which under 

estimates the total phenolic content and their contribution to the overall antioxidant 

activity of onion. 

In this study, the phenolic constituents of onion skin and flesh were determined 

for the free, esterified, and bound forms using alkali hydrolysis before analysis. The 

green shoot from one of the sprouted onions was also evaluated along with the flesh to 

understand the changes that may take place in the phenolic constituents during 

gennination. The study aitned to provide information about the potential of using onion 

skin and extracts as an effective source of antioxidants in food systems; specifically to 

cotnpare four different varieties of onions which are pearl onion skin, red onion skin, 

yellow onion skin, white onion skin, red onion flesh, sprouted red onion flesh, and green 

shoots which sprouted from red onion flesh, with respect to their total phenolic content 

and antioxidant activity in order to investigate their potential as a source of natural 

antioxidants. Their antioxidant potential in food and biological tnodel systems was also 

investigated to highlight their efficiency. 

The study also provides data on free, esterified, bound phenolics of potato peels 

and flesh extracts as an effective source of antioxidants in food systems; specifically to 

cotnpare the phenolic content of the peel and flesh of four different potato varieties 

(Russet, Innovator, Purple and Y eli ow potatoes) and the antioxidant capacity of their 

extracts in in-vitro, both food and biological tnodel systetns. There is an existing gap in 

the literature as no systematic studies exist on different onions/potatoes and their peels 
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for their content and nature of phenolics in different forn1s of free, soluble, esterified, and 

insoluble-bound and corresponding antioxidant efficacy. 
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CHAPTER2 

LITERATURE REVIEW 

The itnportance of antioxidants contained in foods is well appreciated for both 

preserving the foods themselves and for supplying essential antioxidants in vivo (Shi and 

Noriko, 2001 ). Antioxidants are known to act at different levels in the oxidative sequence 

(Shahidi, 1997). There is mounting interest in natural antioxidants due to safety 

concerns for synthetic antioxidants. In this context, it is important to investigate the 

antioxidative properties of onion and potato, which are vegetables grown and consumed 

in large quantities all over the world. The following sections describe the importance of 

1 ipid oxidation and its itnplications in food and health, the role of reactive oxygen species 

(ROS), and synthetic and natural antioxidants. 

2.1 Lipid oxidation 

Lipid oxidation is a tnajor cause of food quality deterioration and generation of 

off odours and off flavours, decreasing shelf-life, altering texture and colour, and 

decreasing nutritional value of food (Alamed et al. , 2009). Various methods have been 

used since antiquity to inhibit lipid oxidation and off-flavour development in food 

systems. The practices of hydrogenation of unsaturated fatty acids (FA), removal of 

oxygen through vacuutn packaging, use of superoxide scavengers such as g lucose 

oxidase and ascorbic acid oxidase, removal or sequestering of metal ions, irradiation, 

refrigeration and freezing, and use of antioxidants are among approaches that are 

con11nonplace for the control of lipid oxidation (Subhashinee et al. , 2006). Antioxidants 
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have become an indispensable group of food additives mainly because of their unique 

properties of extending the shelf-life of food products without any damage to their 

sensory or nutritional quality. Historically, gun1 guaiac was the first antioxidant 

approved for stabilization of animal fats in the 1930s (Nanditha and Prabhasankar, 2009). 

Halliwell et a!. ( 1995) reported that antioxidants are also of interest to biologists and 

clinicians because they may help to protect the human body against damage by ROS. 

According to the United States Departtnent of Agriculture (USDA), "antioxidants are 

substances used to preserve food by retarding deterioration, rancidity or discoloration due 

to oxidation" (Shahidi and Wanasundara, 1992). Antioxidants, for use in food systems 

must be inexpensive, non-toxic and effective at low concentrations; high stability and 

capabi 1 ity of surviving processing; no odour, taste or colour of their own; easy to 

incorporate and have a good solubility in the product (Kiokias et al. , 2008). 

One of the primary pathways of lipid degradation is that of autoxidation . The 

process of autoxidation of polyunsaturated lipids in foods involves a free radical chain 

reaction that is generally initiated by exposure of lipids to light, heat, ionizing radiation, 

tnetal ions or metalloprotein catalysts. The enzyme lipoxygenase can also initiate 

oxidation (Shahidi and Naczk, 2004a). The classic route of autoxidation includes 

initiation (production of lipid free radicals), propagation and tennination (Production of 

nonradical products) reactions (Shahidi and Wanasundara, 1992). A general schematic 

pathway for autoxidation of polyunsaturated lipids is shown in Figure 2.1. 
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Figure 2.1. General scheme for autoxidation of lipids containing polyunsaturated 

fatty acids (RH) and its consequences. 
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Antiox idants act at different levels in the oxidative sequence involving lipid molecules. 

They may decrease oxygen concentration, intercept singlet oxygen ( 1 0 2), prevent first

cha in ini tiation by scaveng ing initia l radicals such as hydroxyl radicals, bind meta l ion 

catalysts, decompose primary products of oxidation to nonradi cal species and break chain 

reactions in order to prevent continued hydrogen abstraction from substrates (Shahidi, 

2000, 2002; Shahidi and Naczk, 2004). 

Hydroperoxides are the primary products of lipid oxidation, but hydroperoxides, 

despite the ir deleterious effects on health have no effect on fl avour qua lity of foods 

(Shahidi, 1998). However, these unstable molecules decompose readily to fonn a myriad 

of products such as a ldehydes, ketones, a lcohols and hydrocarbons, amongst others 

(Shahidi , 1998); these impart unpleasant fl avours and odours to fats, o ils and lipid 

containing foods. T hese aldehydes interact w ith sulphydry l and amine groups in proteins 

and thi s may alter the functionality of proteins (McClements and Decker, 2007). 

Fausttnan et a!. ( 1999) reported the ability of unsaturated aldehydes to react with 

histid ine in tnyoglobin and accelerate the ox idation of oxymyoglobin . 

Using antioxidants in food is to extend the shelf li fe of food stuffs and to reduce 

nutritiona l loss by inhibiting or delaying ox idation. In general, ant ioxidants are defined 

as organic cotnpounds capable of neutralizing reactive oxygen or nitrogen species; these 

compounds can donate an electron or hydrogen atom to quench free radicals (Eskin and 

Bird, 2007). The bioactive phenolic compounds acting as antioxidants are substances that 

when present at low concentrations compared w ith that of an oxidizable substrate 

significantly de lay or inhibit oxidation of that substrate (Subhashinee et al., 2006). These 
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antioxidants are now added intentionally to foods to prevent lipid oxidation and are either 

synthetic or natural in their origin (Halliwell and Gutteridge, 1999). Synthetic 

antioxidants that are approved for use in food include phenolic cotnpounds such as 

butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert

butylhyroquinone (TBHQ), propyl gallate (PG) (Figure 2.3), and non-phenolics such as 

ascorbic acid, erythhrobic acid, and ascobyl palmitate (Shahidi et al., 1987; Frankel, 

1996). Natural antioxidants include tocols and their derivatives (Shahidi and 

Wanasundara, 1992; Hall, 2001 ), carotenoids, antioxidant enzymes and a large number of 

phenolic compounds of tnainly plant origin. The importance of antioxidants contained in 

food is well appreciated for both preserving foods themselves and for supplying essential 

antioxidants in vivo. 

2.2 Mechanism of action of Phenolic Antioxidants 

The antioxidant potential of phenolic cotnpounds depends on the number and 

arrangetnent of the hydroxyl groups in the molecules of interest (Cao et al., 1997; Sang et 

al. , 2002). Phenolic antioxidants (AH) can donate hydrogen atotns to lipid radicals and 

produce lipid derivatives and antioxidant radicals (Reaction V), which are more stable 

and less readily available to promote autoxidation (Kiokias et al., 2008). The antioxidant 

free radical may further interfere with the chain-propagation reactions (Reactions VI and 

VII). 

R: I RO I Roo· + AH 

R0 1 ROO + A 

-~• A + RH I ROH I ROOH (V) 

-~• ROA I ROOA (VI) 

R00 + RH ---i•~ ROOH + R (VII) 
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As bond energy of hydrogen in a free radical scavenger decreases, the transfer of 

hydrogen to the free radical is more energetically favourable and thus tnore rapid 

(McClements and Decker, 2007). Any con1pound that has a reduction potential lower 

than the reduction potential of a free radical (or oxidized species) is capable of donating 

its hydrogen atom to that of the free radical unless the reaction is kinetically unfeasible. 

For example, FRS including a-tocopherol (E 0
' = 500 m V) which have reduction potential 

below that of peroxyl radicals (E ar = 1000 m V), are capable of donating their hydrogen to 

the peroxyl radical to form a hydroperoxide (McClements and Decker, 2007). The 

phenoxy! radical is stabilized by delocalization of its unpaired electron around the 

arotnatic ring (Figure 2.2) which participates in the termination reaction. 
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0 0 0 

• 

Figure 2.2. Resonance stabilization of phenoxyl radical 

Gorden ( 1990) reported that substitution at the para position with an ethyl or n-

butyl group rather than a methyl group itnproves the activity of the antioxidant; however, 

the presence of chain or branched alkyl groups in this position decreases the antioxidant 

activity. The stability of the phenoxy] radical is further increased by bulky groups in the 

2 and 6 positions as in 2,6-di-t-butyl-4-methylphenol (BHT) (Miller and Quakenbush, 

1957), since these substituents increase the steric hinderance in the region of the radical 

and thereby further reduce the rate of propagation reactions involving the antioxidant 

radical (Reactions VIII , IX, X). 

. . 
A + 0 2 • AOO (VIII) 

. . 
AOO + RH ... R + AOOH (IX) 
. . 

A + RH • AH + R (X) 

The effect of antioxidant concentration on autoxidation rates depends on n1any factors , 

including the structure of the antioxidant, oxidation conditions, and the nature of the 

san1ple being oxidized (Shahidi and Naczk, 2004a). Often phenolic antioxidants lose 
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their activity at high concentrations and behave as prooxidants (Gorden, 1990) by 

involvement in initiation reactions (Reactions XI, XII). 

AH +02 

AH + ROOH 
. . 

-~•~ RO +H20 +A 

(XI) 

(XII) 

Phenolic antioxidants are tnore effective in extending the induction period when added to 

any oil that has not deteriorated to any great extent. However, they are ineffective in 

retarding decon1position of already deteriorated lipids (Mabarouk and Dugan, 1961 ). 

Thus, antioxidants should be added to foodstuffs as early as possible during processing 

and storage in order to achieve maxitnum protection against oxidation (Shahidi and 

Wanasundara, 1992). 

2.3 Measurement of Antioxidant Activity 

The need to tneasure antioxidant activity is well documented; these are carried out 

for n1eaningful cotnparison of foods or commercial products and for provision of quality 

standards for regulatory issues and health claim (Shahidi and Ho, 2007). Lipid oxidation 

is conventional ly studied by determination of peroxide value (PV), thiobarbituric acid 

reactive substances (TSARS), conjugated dienes (CD), or para-anisidine value (p-A V) or 

by assessing volatile cotnpounds (Kristinova eta!., 2009). 

There are numerous methods for measuring antioxidant activity; these may be 

classified into two categories. The first category measures the ability of antioxidants in 

inhibiting oxidation in a model system by monitoring the associated changes using 
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physical, chemical or instrumental means. Radical scavenging assays include tnethods 

based on hydrogen atom transfer (HAT) or electron transfer (ET) mechanistns. Oxygen 

radical absorbance capacity (ORAC), total radical trapping antioxidant parameter 

(TRAP) and crocin bleaching assays are the major methods that measure HAT while 

trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) 

and 2,2-diphenyl- 1 -picrylhydrazyl (DPPH) assays represent ET -based methods (Shahidi 

and Ho, 2007). HAT -based methods measure the classical ability of an antioxidant to 

quench free radicals by hydrogen donation while ET -based methods detect the ability of a 

potential antioxidant to transfer one electron to reduce any compound, including metals, 

carbonyls and radicals (Shahidi and Zhong, 2005, 2007). Table 2.1 summarizes the 

methods con11nonly used to measure antioxidant activity and the units they carry. 
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Table 2.1. Antioxidant activity measurement methods and units 

Methods Measurement units 
Peroxide value (PV) 

Conjugated dienes and trienes 

Thiobarbituric acid reactive substances 
(TBARS) 

p-Anisidine value (p-An V) 

Electrical conductivity 

Oxygen radical absorbance capacity 
(ORAC) 

Total radical-trapping antioxidant 
parameter (TRAP) 

Trolox equivalent antioxidant capacity 
(TEAC) 

2,2-Diphenyl-1-picrylhydrazyl (DPPH) 

Ferric reducing antioxidant power 
(FRAP) 

milliequivalents of oxygen per kilogram of 
sample ( meq/kg) 

conjugable oxidation products (COPs) 

Milligrams of malondialdehyde (MDA) 
equivalents per kilogram sample or 
micromoles of MDA equivalents per gram 
of sample (meq/g) 

Absorbance of a solution resulting from the 
reaction of 1 g of fat in isooctane solution 
(1 00 ml) with p-anisidine 

Oil stability index (OSI) value, which is 
defined as the point of maximal change of 
the rate of oxidation 

J.tmol of trolox equivalents 

J.tmol per litre peroxyl radical deactivated 

mM Trolox equivalent to 1 mM test 
substance 

EC5o (Concentration to decrease 
concentration of test free radical by 50%); 
T Ecso (Time to decrease concentration of 
the test free radical by 50%); 
AE (Antiradical efficiency (1 /ECso) TEcso) 

Absorbance ofFe2
+ complex at 593 nm 

produced by antioxidant reduction of 
corresponding tripyridyltriazine 

2+ 1 Fe comp ex 
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OH OH OH 

2-BHA 3-BHA 

Butylated hydroxyanisole Butylated hydroxytoluene 

(BHA) (BHT) 

OH OH 

OH 

Tertiary-butylhydroquinone 

(TBHQ) 

HO OH 

COOC3H7 

Propyl gallate 

(PG) 

Figure 2.3. Structures of some synthetic antioxidants 

Natural sources of antioxidants are mainly found in a variety of foods. These 

include fruits, vegetables, and whole grains. According to Thiel and Nutropath (20 1 0) 

natural antioxidants found in food have distinctive benefits, which cannot be duplicated 

in synthetic antioxidants. This section will explore some sources of natural antioxidants 

and wi ll specifically discuss fruits and vegetables, onions, and potatoes as sources of 

natural antioxidants. 
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Naturally-occurring antioxidative compounds in food include flavonoids, phenolic 

acids, lignans, terpenes, tocopherols, phospholipids and polyfunctional organic acids, 

among others. As already mentioned, sources of natural antioxidants are primarily plant 

phenolics that occur in all parts of the plants. They can be found in fruits, vegetables, 

nuts, seeds, leaves, flours , roots and barks (Wanasundara et a!., 1996). There have been 

numerous studies on the biological activities of phenolics, which are potent 

antioxidants and free radical scavengers (Naczk and Shahidi, 2004; 2006; Tung et a!. , 

2007). Figure 2.4 provides the chemical structures of certain natural antioxidant 

compounds. 
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Figure 2.4. Chemical strucures of selected natural antioxidant compounds 
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2.4 Benefits of bioactive of polyphenolics 

Po1ypheno1s are one of the antioxidant groups of cotnpounds that are found in 

fruits and vegetables (Chodak and Tarko, 2011 ). There are over 4000 different species of 

plant phenols which have unique biological, chemical and physical properties that tnake 

the1n powerful antioxidants (Figure 2.5). Phenolic acids are structurally related to 

flavonoids and serve as precursors in their biosynthesis. Phenolic acids such as 

hydroxycina1nmic acids (caffeic, p-coutnanc, ferulic, and sinapic acids, 

hydroxycoumarine (scopoletin), and hydroxyl benzoic acids ( 4-hydroxybenzoic, gallic, 

protocatechuic, vanillic, salicylic, and gentisic acids) are phenolic compounds that can 

form complexes with tnetal ions. Antioxidant activity of these cotnpounds varies greatly 

and is also dependent on the food system. 
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Figure 2.5. Classification of dietary phytochemicals (Adapted from Shahidi and Ho, 2007). 
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2.4.1 Phenolic acids (hydroxybenzoic and hydroxycinnamic acids) 

Phenolic acids, known to serve as multipurpose bioactive compounds, are widely 

spread throughout the plant kingdo1n. Most of them are an integral part of the human 

diet, and are also consumed as medicinal preparations. Many of the health protective 

effects of phenolic compounds have been ascribed to their antioxidant, antimutagenic, 

anticarcinogenic, anti-inflammatory, antimicrobial , and other biological properties (Xu et 

al. , 2008). Substituted derivatives of hydroxybenzoic and hydroxycinnamic acids are the 

predo1ninant phenolic acids in plants, with hydroxycinnmnic acids being the n1ore 

common. These derivatives differ in the pattern of the hydroxylation and methoxylation 

in their aro1natic rings (Shahidi and Naczk, 2004; Mattila and Hellstrom, 2007). 

Technically speaking, only benzoic acid derivatives are phenolic acids and cinna1nic acid 

derivatives are phenylpropanoids (Figure 2.6 and 2.7). 

The basic pathway for synthesis of phenolic acids in plants begins fro1n sugars 

through to aron1atic atnino acids - phenylalanine, and, in some rare cases, tyrosine. The 

fonnation of trans-cinnamic acid from phenylalanine and p-hydroxycinnamic acid from 

tyrosine is catalyzed by phenylalanine amtnonia lyase (PAL) and tyrosine atn tnonia lyase 

(TAL), respectively (Amarowicz et al. , 2009) (Figure 2.6). 
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Figure 2.6. Formation of phenylpropanoids of cinnamic acid family as well as 
benzoic acid derivatives and corresponding alcohols from phenylalanine and 
tyrosine; PAL: phenylalanine ammonia lyase; and TAL: tyrosine ammonia lyase 
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Figure 2. 7. Chemical structures of naturally occurring phenolic acids and related 
compounds 
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Phenolic acids are present in some plant foods mostly in the bound fonn. The 

n1ost cotnmon hydroxycinnamic acids are caffeic, p-coumaric and ferulic acids, which 

frequently occur in foods as simple esters with quinic acid or glucose. Probably the n1ost 

well-known bound hydroxycinnamic acid is chlorogenic acid, which is combined caffeic 

and quinic acids. Unlike hydroxycinnan1ates, hydroxybenzoic acid derivatives are 

tnainly present in foods in the form of glucosides; p-hydroxybenzoic, vanillic and 

protocatechuic acids are the tnost common forms (Herrmann, 1989; Shahidi and Naczk, 

2004; Mattila and Hellstrom, 2007; Shahidi and Chandrasekara, 201 0). 

Phenolic acids behave as antioxidants, due to the reactivity of their phenol moiety 

(hydroxyl substituent on the aromatic ring). Although there are several mechanisms, the 

predominant tnode of antioxidant activity is believed to be radical scavenging via 

hydrogen atotn donation. Other established antioxidant, radical quenching mechanisms 

are through electron donation and singlet oxygen quenching (Shahidi and Wanasundara, 

1992). Substituents on the arotnatic ring affect the stabilization and therefore the radical

quenching ability of these phenolic acids. Different acids therefore have different 

antioxidant activities (Rice-Evans et al., 1996). The antioxidant behaviour of the free, 

esterified, and glycosylated phenolics has been reported (Robbins, 2003). 

There is an awareness and interest in the antioxidant behaviour and potential 

health benefits associated with these simple phenolic acids. It is their role as dietary 

antioxidants that have received the most attention in the literature (Rice-Evans et al. , 

1996; Robbins, 2003). Because of their ubiquitous presence in plant-based foods, 

hutnans consutne phenolic acids on a daily basis. The estitnated range of consumption is 
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25 mg - 1 g per day depending on the diet consumed (fruit, vegetables, grains, teas, 

coffees, and spices) (Clifford, 1999). 

2.4.2 Flavonoids 

Flavonoids contain a phenolic benzopyran structure (C6-C3-C6) where two 

arotnatic nngs A and 8 are attached to a heterocyclic ring C. As a function of 

hydroxylation pattern of ring C, tlavonoids are further classified into anthocyanin, tlavan-

3-ols, tlavones, tlavanones and tlavonols (Tsao, 201 0) (Figures 2.8 and 2. 9). The sub 

group chalcones is also considered in the flavonoid family, even though it lacks ring C. 

About 8000 flavonoids have been discovered and there are many more to be identified as 

of yet (Harborne and Williams, 2000). In plants, tlavonoids exist as either glycones or 

aglycones depending upon the glycosylation patterns. Like other phenolics, tlavonoids 

are crucial for normal growth and development and defence system ·in plants. Some 

tlavonoids are responsible for importing colour, flavour, odour to the flowers, fruits and 

leaves (Harborne, 1989; Gharras, 2009). Flavonoids constitute the largest subgroup of 

phenolics due to their presence as glycosides, methoxides and various acylation pattern 

on the three rings (Figure2.8). The examples are quercetin and kaempferol which have 

279 and 347 different glycosidic compounds, respectively (Tsao and McCallum, 2009; 

Williatns, 2006). 

Human intake of all flavonoids is estitnated at hundred milligrams, varying by 

nearly 50-fold, frotn 20 to 1,000 mg/day (Mullie eta!. , 2007). The total average intake of 
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flavonols (quercetin, myricetin, and kaempferol) was estimated at 23 mg/d, of which 

quercetin contributed "" 70%, kaempferol 17%, and myricetin 6o/o (Hertog et al. , 1993 
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2.5 Fruits and Vegetables as Sources of Antioxidants 

Numerous naturally occurring phenolic antioxidants have been identified in plant 

sources and vegetable extracts. A study conducted by Asgard et al. (2007) revealed that 

fruits and vegetables have optimal antioxidative status that boosts defense among patients 

with type 2 diabetes. In this study, it was noted that patients with type 2 diabetes suffer 

frotn oxidative stress due to diminished antioxidative defense. These result in further 

complications atnong these patients, including kidney problem, eye probletn and 

problems associated with the circulatory syste1n. This study attributed this diminished 

defense to the formation of hyperglycaemia which leads to the developtnent of ROS. 

Asgard et al. (2007) also noted that patient suffering from type 2 diabetes have higher 

levels of peroxidation products. The study revealed that high vegetable and fruit intake 

can lead to a significant reduction in the level of inflammation. 

A similar study was conducted by Ziebland and Roe (2002) who investigated the 

antioxidant potential of fruits and vegetables. The specific aim of this study was to 

explore the impact of consumption of fruits and vegetables on the concentration of 

plasma antioxidants and effects on blood pressure. Ziebland and Roe (2002) conducted 

an experiment that entailed a six-month controlled and randon1ized trial on 690 

participants. These healthy participants were dividing into two groups; the control and the 

experin1ental group. Individuals in the experimental groups were contacted regularly over 

the period of six months and given message to reinforce and encourage fruits and 

vegetables consumption. The control group was not contacted during this period. After 

the six tnonths period the concentration of a-tocopherol and ~-cryptoxanthin was 
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analyzed in both the control and the experirnental group. The results revealed that there 

was higher plasma concentration of a-tocopherol and f3-cryptoxanthin in the experimental 

group than in the control group. There was also a notable fall in blood pressure among 

individuals in the experimental group. This result supports the views that fruits and 

vegetables are essential sources of antioxidants. 

According to Ziebland and Roe (2002) the increase in plasma antioxidant level 

has a clinical significance as it can reduce the risk of coronary heart disease; carotid 

arteries; epithelial cancer and stroke. They also noted that though the small drop in blood 

pressure wou ld not produce significant clinical effects, it would lead to substantial 

reduction of cardiovascular ailments at the population level. According to research a 

reduction of diastolic blood pressure leads to a reduction of hypertension by 17o/o; 

reduction in cardiovascular incidence by 6o/o and reduction of risk of stroke by 15o/o . 

Fruits and vegetables contain hundreds of different antioxidant substances and other 

phytochemicals (Thiel , 20 1 0). These deoxidizing/ antioxidant substances are useful in 

managing oxidative stress which is caused by an imbalance between free radicals within 

the body and the antioxidant defense n1echanism (Asgard eta!. , 2007). 

2.5.1 Onion as a Rich Source of Flavonoid 

Onions are one of the richest sources of flavonoids in the human diet. Onions 

possess a high level of antioxidant activity, attributed to their fl avonoid constituents, 

namely quercetin, kaempferol, myricetin, and catechin (Patil et a!. , 1995; Cook and 

Samman, 1996). Two major components quercetin monoglucoside and quercetin 
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diglucoside account for 80% of the total flavonoids in onions (Rhodes and Price, 1996). 

Levels of quercetin glucosides are tnuch higher in onions than in other vegetables 

(Shahidi and Naczk, 2004). Anthocyan ins are only minor con1ponents of the flavonoid 

spectrutn in the edible portion of red onion varieties. However, the edible bulb of red 

onions is generaiiy higher in total flavonoids than the bulbs of white or sweet yellow 

onions due to the presence of anthocyanins (Rhodes and Price, 1996). Yellow onions 

have been found to contain higher levels of quercetin than red onions, with pink and 

white onions having the lowest concentration (Patil et al., 1995). However, Gokce et al. 

(20 1 0) suggested that red onions had higher antioxidant activities than yellow and white 

onions although yellow onions were richest in their phenolic contents. 

The dominant onion flavonoids are quercetin, quercetin-3-0-~-glucoside, 

quercetin-4'-0-~-glucoside, and quercetin-3 ,4'-di-0-~-glucoside and the highest 

contribution to the antioxidant capacity of onions was provided by quercetin-4'-0-~

glucoside (Zielinska et al. , 2008). These flavonol s are mostly concentrated in the skin. 

The abaxial epidermis of scales contained a higher level of flavonols than did the 

tnesophyll and approximately 50o/o of flavonols were detected in the top quarter part of 

the scales (Naczk and Shahidi, 2006). Onions also contain small quantities of phenolic 

acids bound to cell walls. Of these protocatechuic acid was the most abundant phenolic 

component in the papery scales and was not detected in other tissues. In addition ferulic , 

p -hydroxybenzoic, vanillic and coumaric acids have been found in the papery and fleshy 

scales (Ng et al., 2000). 
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Anthocyanins, namely peonidin 3- glucoside, cyanidin 3-glucoside and cyanidin 

3-arabinoside and their malonylated derivatives, cyanidin 3-laminariobioside and 

delphinidin and petunidin derivatives (Donner et a!., 1997), are located in the red onion 

skin and the outer fleshy layer (Gennaro et al., 2002). Fossen et a!. (1996) reported that 

3-( 6 "-malonyl-3 "-glucosylglucoside ), 3(3 ",6"ditnalonylgl ucoside ), 3-( 6"

malonylglucoside ), 3-(3 "-malonylglucoside ), 3-(3 "-glucosylglucoside) and 3-glucoside of 

cyanidin cotnprise over 95% of total anthocyan ins in whole red onion. Gennaro et al. 

(2002) have demonstrated that cyanidin and delphinidin derivatives constitue over 50 and 

30% of total anthocyanins in whole red onion, repectively. 

Recently pasteurized ' Recas' paste was chosen to be the most appropriate onion 

by-product for developing an antioxidant food ingredient among all the onion by

products analyzed (Roldan et a!. , 2008). It showed several advantages such as a 

remarkable antioxidant activity, moderately high bioactive composition (total phenols 

and quercetin), and an excellent antibrowning effect from a technological point of view. 

Nuutila eta!. (2003) cotnpared the antioxidant activities of onion and garlic extracts and 

found that onion had clearly higher radical scavenging activities than garlic; red onion 

being more active than yellow onion. The skin extracts of red and yellow onion 

possessed the highest activities. Table 2.2 sutnn1arizes the flavonoid content of sotne 

selected onions as mg/1 OOg of edible portion . 

The onion bulb consists of several layers with the outmost layers being a crispy 

and scaly skin that is often thrown discarded. However, studies have revealed that this 

outer layer of onion consists of very high content of fl avonoids, mainly quercetin (Park et 
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a!., 2007). Park eta!. (2007) exan1ined the impact of onion peel or flesh on lipid peroxide 

and DNA damage in old male rats. They reported that the total quercetin and antioxidant 

levels where highest in the diet containing onion peel extract, while onion peel powder 

came second, and ethanol extract of onion flesh had the third highest content. 
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Table 2.2. F l "d tent of lected (Adaoted f USDA .. 2007) 
' • / 

Onion Description Class 
Flavonoid Minimum Maximum 

(mg/ lOOg) (mg/ lOOg) 
Onion, spring, red, leaves (Allium 

Flavanols 
Kaempferol 4.10 4.10 

cepa) Quercetin 12.60 12.60 
Onions, cooked, boiled, drained, 

Flavanols 
Kaetnpferol 0.29 0.41 

without salt Quercetin 19.87 31.00 
Isorhamnetin 1.26 7.16 

Onions, raw (Allium cepa) Flavanols 
Kaempferol 0.00 1.00 
Myricetin 0.00 0.03 
Quercetin 1.50 11 8.70 
Cyanidin 1.3 23.99 

Anthocyanidins 
Delphinidin 0.10 3 .15 

Onions, red, raw (Allium cepa) 
Pelargonidin 0.02 0.02 
Peonidin 1.22 1.22 
Isorhamnetin 0.00 22.60 . 

Flavonols 
Kaempferol 0.00 4.50 
Myricetin 0.00 3.80 
Quercetin 0.00 191.70 

Onions, scallions (includes tops and Kaempferol 0.00 3.45 
bulb), raw (Allium cepa) 

Flavonols 
Myricetin 0.00 0.00 

Onions, sweet, raw (Allium cepa) Quercetin 6.7 30.60 
Kaempferol 0.00 1.98 

Flavonols Myricetin 0.00 4.13 
Quercetin 0.97 46.32 

Onions, welsh, raw (Allium 
Kaempferol 22.62 27.28 

Flavonols 
fistulosum) 

Onions, white, raw (Allium cepa) 
Kaempferol 0 .00 0.00 

Flavonols Myricetin 0.00 0.00 
Quercetin 0.00 63.40 

Onions, young green, tops only 
Flavonols 

Kaempferol 2.40 2.40 
(Al!~um cepa) Myricetin 0 .03 0.03 

--- -
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2.5.2 Potato as a Rich Source of Phenolic acids 

Potato is the third most important food crop in the world after rice and wheat in 

terms of human consumption. More than a billion people worldwide eat potato, and 

global total crop production exceeds 300 million metric tones based on F AO (2007) 

statistics. As the first modem "convenience food," potato is energy-rich, nutritious, and 

easy to grow on small plots, cheap to purchase, and ready to cook without expensive 

processing (Visser et al., 2009). 

Potatoes have been included in the list of foods as natural sources of antioxidants. 

Recent studies have proven that potatoes contain a variety of substances that makes them 

powerful sources of antioxidants. The chemistry, biochemistry, and dietary role of potato 

polyphenols have been reviewed by Friedman (1 997). Phenolic compounds in potatoes 

can be present in both free and bound forms. They are mostly substituted derivatives of 

hydroxycinnamic acid as free form and hydroxybenzoic acid as bound form (Shahidi and 

Naczk, 2004). The tnost comtnon hydroxycinnamic acid derivatives in potato and potato 

peels were reported to be chi orogenic acid (CGA), caffeic acid (CF A), and feru lic acid 

(FA), while the hydroxybenzoic acids were gallic acid (GA), protocatechuic acid (PCA), 

and their derivatives (Kanatt et al., 2005 ; Nara et al., 2006; AI-Weshahy and Rao, 2009). 

Anthocyanins a sub-group within the flavonoids was present in substantial amounts in 

pign1ented potato fl esh (Brown, 2008). 

Chlorognic acid (Figure 2. 1 0) the predominant phenol in potato constituted 90% 

of total phenolics, 50% found in potato peel which decreased gradually from outside 

toward the centre of the potato tuber (Friedman, 1997). Protocatechuic acid, vani llic acid, 
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p-coutnaric acid and caffeic acid were the second most abundant after chlorogenic acid. 

In the other studies major phenolics in potato were peel reported to be chlorogenic acid, 

gallic acid, protocatechuic acid, caffeic acid and quercetin (Rodriguez de Sotillo et a!. , 

1994a; Rodriguez de Sotillo et al., 1994b; Al-Saikhan et al., 1995; Nara et al., 2006). 

Other phenolic compounds in potato included ferulic acid, p-coumaric acid as well as 

small amounts of rutin, quercetin, myricetin, kaempferol, naringenin and other flavonoids 

(Reyes, 2005; Nara et al. , 2006). Purple-fleshed potato also contained petunidin- and 

tnalvidin-3-rutinoside-5-glycosides acylated with p-coutnaric and ferulic acids while red

fleshed potato had pelargonidin- and peonidin-3-rutinoside-5-glycosides acylated with p

coumaric and ferulic acids (Reyes, 2005; Rumbaoa and Geronimo, 2009a, 2009b ). A 

higher anthocyanidin content and tnore hydroxylated anthocyanidins (tnalvidin) can 

contribute to a higher antioxidant activity of purple-fleshed potatoes (Lachman et al., 

2008). Warner (20 12) found that Russet potato (cooked) had 4,649 mg/kg total 

antioxidant capacity which was higher than most fruits and vegetables. 

Polyphenolic compounds in potatoes exhibited antioxidative activity in several 

food systetns. Potato peel extract (with petroleun1 ether), exhibited strong antioxidant 

activity in soy bean oil during storage which was ahnost equal to the antioxidant activity 

of BHA and BHT. However, the level of potato peel extract needed was 8- 12 tin1es 

higher than that of BHA and BHT to control the development of rancidity during storage 

of cooking oi Is at elevated tetnperatures (Rehman et al. , 2004 ). In related studies, 

Onyeneho and Hettiarachchy ( 1993) evaluated the ability of freeze-dried extracts from 

37 

'------------------- -~ -- - ---------------------



six potato peel varieties to prevent soybean oil oxidation and confirmed their strong 

antioxidant activities. 

0 

OH 

0 

R 

OH OH 

OH 

Chlorogenic acid 

Figure 2.1 0. Chemical structure of chlorogenic acid 

2.6 Extraction of polyphenolics 

The chen1istry of polyphenols varies in different classes of phenolics and this is 

one of the in1portant factors influencing their extraction. Extraction of phenolics is 

dependent on the other factors such as sample particle size, solvent system, extraction 

tnethod, storage time and presence of other substances (Naczk and Shahidi, 2004). The 

different extraction solvents used for phenolics are methanol, ethanol, acetone, water, 

propanol, ethyl acetate and their various combinations. The extraction of phenolics can 
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be in1proved by adjusting sample- to-solvent ratio (Naczk and Shahidi, 1991 ). Sample 

particle size significantly influenced tannin recovery from dry beans (Deshpande, 1985). 

Optimization of polyphenolic extraction is essential due to large variation in their polarity 

and biochemical modifications such as glycosylation and esterification that affect the 

extraction output (Pellegrini eta!., 2007). Michiels eta!. (20 12) evaluated various solvent 

to satnple ratios and found that higher extraction of polyphenolics can be achieved at 

higher solvent-to-sample ratios. The proposed extraction conditions included extraction 

solvent, acetone-water-acetic acid mixture (70:28:2, v/v/v) with solvent-to-solid ratio of 

20:1 (v/w) and extraction for 1 h at 4°C. Komes et al. (20 11) demonstrated that 

hydrolysed extracts of 1nedicinal plants (using 60% ethanol and 5 1nL of 2 M 

hydrochloric acid) had higher total phenolic content than non-hydrolysed extracts. 

Krygier et al. (1982) extracted free, and esterified phenolic acids from oilseeds 

using a mixture of n1ethanol-acetone-water (7:7:6, v/v/v) at room temperature. First, the 

free phenolics were extracted with diethyl ether, and then the extract was treated with 4M 

NaOH under nitrogen. The hydrolyzate was acidified and the liberated phenolic acids 

were extracted with diethyl ether. After exhaustive extraction with a mixture of 

methanol-acetone- water, the left-over sa1nple was treated with 4M NaOH under nitrogen 

to liberate insoluble bound phenolic acids. Similarly, phenolic acids from onions and 

potatoes were extracted under the same conditions. 
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2. 7 Separation and Identification of Flavonols 

The extract of polyphenolics always contains a mixture of different classes of 

phenolic and non-phenolic substances. Further purification may be needed to isolate the 

desired phenolic compounds from the crude extract. Several difficulties arise because no 

universal tnethod can be used to isolate all phenolics. Flavonoids, the most prominent 

class of phenolics, include flavones, flavonols, flavonones, tlavanols, isoflavonoids, and 

anthocyanins and all have same basic structure. Nutnerous gas-so lid and liquid-solid 

phase adsorption techniques have been etnployed to adsorb target phenolics (Zagorodni, 

2007; Le Vav and Carta, 2007). Krammerer et al. (20 1 0) evaluated non-polar adsorbent 

and ion-exchange resins to optitn ize the recovery of different phenol ics. In their study, 

phloridzin and rutin were successfully recovered using acidic resin cation-exchange 

chromatography. 

Conventional n1ethods used for purification of polyphenolic include ion-exchange 

res tns and reversed-phase liquid chromatography. Counter-current chromatography 

(CCC) has recently been explored to be an excellent alternative for isolating various 

phenolic classes (Pauli et al., 2008). In CCC, separation of compounds is achieved on the 

basis of partition ratio between stationary liquid phase and mobi le liquid phase. Modern 

comtnercial CCC includes high-speed counter-current chromatography, n1ultilayer coi l 

counter-current chrotnatography and centrifugal partition chromatography. Anthocyanins 

from wine (Salas et al., 2005; Schwarz et al., 2003), flavanols and proanthocyanidins 

from green tea (Cao et al. , 2000) have been fractionated and isolated using CCC. 
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High perfonnance liquid chron1atography (HPLC) is the most widely used 

analytical technique for the separation and characterization of polyphenolics (Carrasco

Pancorbo et a!., 2007; Naczk and Shahidi, 2006; Valls et a!., 2009). Reversed-phase 

columns with C 18 stationary phase have enhanced the separation of different compounds 

(Gruz et al. , 2008). Mostly, electrochetnical, UV -visible, fluorescent, photodiode array 

detectors are used with HPLC methods for analysing food phenolics. The different 

classes of phenolic compounds have been successfully identified and quantified using 

n1ass spectrometry detectors coupled to HPLC. Mass spectrometry is selective and hence 

improves the characterization and identification of phenolic cotnpounds (Nicoletti et al. , 

2007; Buiarelli et a!. , 2007). Ion-trap mass spectrometry is an advanced and highly 

sensitive technique for identification of isotneric flavonoid glycosides which are not 

identified by n1ass spectrotnetry. It is based on the principle of sequential fragtnentation 

of molecular ions (Prasain eta!. , 2004). The other techniques for polyphenolic analysis 

are electrospray ionisation (ESI), atmospheric-pressure chemical ionization(APCI) and 

n1atrix-assisted laser desorption/ionization (MALDI) mass spectrometry (Valls et al. , 

2009). Liu et a!. (2008) separated and quantified different polyphenolics from water 

satnples using HPLC coupled with photodiode array detector. Owen et a!. (2003) 

elucidated the structures of polyphenolics present in carob fibre using nano ESI-MS and 

LC-ESI. 
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3.1 Materials 

CHAPTER3 

MATERIAL AND METHODS 

Onion samples, namely pearl, red, yellow, and white varieties were 

purchased frotn local tnarkets in St. John's, NL, Canada. Some of the red onions were 

allowed to sprout to test the phenolic cotnposition of the sprouted red onion flesh and the 

green shoots. Peels from Russet and Innovator variety of potatoes were procured frotn 

McCain Foods Litnited, Florencevi lle, NB, Canada; while the yellow and purple potatoes 

were purchased frotn local n1arkets in St. John's, NL, Canada. 

Trolox (6-hydroxy-2,5,7 ,8-tetratnethylchroman-2-carboxylic acid) was purchased 

from Acros Organics (Fair Lawn, NJ). Organic solvents and reagents such as tnethanol, 

acetone and sodiutn carbonate were purchased from Fisher Scientific Co. (Nepean, ON). 

2,2'-Azobis (2- tnethylpropionamidine) dihydrochloride (AAPH), 2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic acid) (ABTS), Polin and Ciocalteau's phenol reagent, 

2,2-diphenyl-1-picrylhydrazyl (DPPH), and all phenolic compound standards with a 

purity of >96o/o were obtained from Sigma-Aldrich Canada Ltd. (Oakville, ON). 

Hydrogen peroxide, sodium hydroxide, butylated hydroxyanisole (BHA), 5,5-dimethyl-1 -

pyrroline-N-oxide (DMPO), ferrous sulphate, ferric chloride as well as tnono- and dibasic 

sodium and potassium phosphates, ethylenediaminetetraacetic acid (EDTA), 

deoxyribonucleic acid (DNA) of pBR 322 (E. coli strain RRI) and human LDL 

42 



cholesterol were also purchased from Sigtna-Aldrich Canada Ltd. (Oakville, ON, 

Canada). 

3.2 Methods 

3.2.1 Preparation of crude extracts 

Onions were peeled manually, and the skin was freeze dried for 3 days at -48°C 

and 30 x 1 o-3 mbar (Freezone 6, model 77530, Labconco Co., Kansas City, MO). The 

flesh of red on ion and sprouted red onion were also separated, cut and freeze dried. The 

dried samples were then ground and sieved using a 0.5tnm sieve, vacuutn packed and 

stored in a freezer at -20°C until used for analysis within 5 days. All experiments were 

carried out in triplicates and the results were reported as n1ean ± standard deviation. The 

tnethodologies followed are described below. Yellow and purple potatoes were peeled 

tnanually, and their skins freeze dried for 3 days at -48°C and 30 X 1 o-3 mbar (Freezone 6, 

model 77530, Labanco Co., Kansas City, MO, USA). The flesh of Russet, Purple and 

Yell ow potatoes was also separated, cut and freeze dried. Peels from Russet and 

Innovator variety of potatoes, procured from McCain, were also immediately freeze 

dried; these were received as fresh-frozen samples) . The dried samples were then ground 

and to pass through a 0.5mtn sieve, vacuum packed and stored in a freezer at -20°C until 

analyzed. 
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Extraction of phenolics 

Free, esterified, and insoluble-bound phenolic compounds were extracted and 

fractionated as described by Krygier et al. (1982) as modified by Naczk and Shahidi 

(2006). Freeze dried onion skins and flesh samples (5g) were ultrasonicated for 20 min at 

30°C with 150 mL of a mixture of methanol- acetone- water (7:7:6, v/v/v). The resulting 

slurries were centrifuged at 4000 x g (ICE Centra MS, International Equipment Co., 

Needham Heights, MA) for 5 min and the supernatants collected. The residue was re

extracted under the same conditions. After centrifugation, the combined extracts were 

analyzed for free phenolic acids and soluble phenolic esters, and the residue was reserved 

for detennination of insoluble-bound phenolics. The combined supernatants were 

evaporated under vacuum at 40°C to remove the organic solvents, and the aqueous phase 

was adjusted to pH 2 before extraction with hexane to retnove interfering lipids (Krygier, 

1982). 

The free phenolic acids were then extracted 4 times with diethyl ether-ethyl 

acetate ( 1:1, v/v), dried under vacuum using a rotary evaporator and the extract was 

dissolved in 5 tnL of 80o/o methanol (HPLC grade). The esters retnaining in the aqueous 

phase were hydrolyzed with 4M NaOH and the liberated phenolic acids were extracted 

with diethyl ether-ethyl acetate (1: 1, v/v), dried and dissolved in 5 mL methanol as in the 

case of free phenolics. The residues were initially dispersed in 50 mL of 4 M NaOH and 

stirred for 4 hours under nitrogen. The solution was then acidified to pH 2, centrifuged 

and the bound phenolics were extracted with diethyl ether- ethyl acetate ( 1:1, v/v). 
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3.2.2 Chlorophyll removal 

Green shoots which sprouted from red onion flesh were separated as described in 

Section 3.2.1. However, most experiments for green shoots were carried out after 

dechlorophyllization of green shoot extracts. Chlorophyll removal was done using liquid

liquid extraction according to Alvarez-Parrilla eta!. (20 11 ) . The crude phenolic extracts 

( 1.5 g) were dissolved in 50mL of 80% methanol and poured into an extraction funnel. 

Twenty-five millilitres of CH2Cb were added; the separatory funnel was shaken and 

a ll owed to stand for phase separation. The organic phase was removed, and extraction 

was repeated one more time. Methanol was partially removed under vacuum at 45 °C, 

and the concentrated slurries were freeze-dried for 72 h at -45 °C (Labconco Corp). Dried 

extracts were stored at -20 °C. The yield of each extract was then determined. 

3.2.3 Determination of total phenolic content 

The total phenolic content was determined according to an improved version of 

the procedure explained by Singleton and Rossi (1965). The Folin Ciocalteu's phenol 

reagent (0.5tnL) was added to centrifuge tubes containing 0.5tnL of methanolic extracts. 

Contents were mixed thoroughly and 1 mL of sodium carbonate (75g/ L) was added to 

each tube. To the mixture, 1 OmL of distilled water were added and mixed thoroughly. 

Tubes were then allowed to stand for 45min at ambient temperature. Contents were 

centrifuged for 5min at 4000xg (ICE Centra M5, International Equipn1ent Co., Needham 

Heights, MA). Absorbance of the supernatant was read at 725nm. A blank satnple for 

each extract was used for background subtraction. Content of total phenolics in each 
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extract was determined using a standard curve prepared for gallic acid. Total extracted 

phenolics were expressed as mg of gallic acid equivalents per gram of extract. 

3.2.4 Determination of total flavonoid content 

Total flavonoid content was measured by the aluminum chloride chlorimetric 

assay (Zhishen et al., 1999). One millilitre of extracts or standard solution of quercetin 

(0.75, 1.5, 3 tng!tnL) was added to 1 OmL volumetric flask containing 4 mL distilled 

water. To the flask, 0.3 mL of 5o/o NaN02 was added. After 5 min, 0.3 tnL 10% AlCb 

was added. At the 6111 tnin, 2 tnL 1M NaOH solution were added and the total volume 

was made up to 10 mL with distilled water. The solution was mixed well and the 

absorbance was measured against prepared reagent blank at 510 nm. Total flavonoid 

content was expressed as n1g quercetin equivalents (QE)/g dry plant material. Satnples 

were analyzed in triplicates and the results were expressed as mean ± standard deviation. 

3.2.5 Determination of total anthocyanin content 

The content of anthocyan ins was determined by the pH-differential tnethod of 

Giusti and Wrolstand (200 1 ). Each extract (0.5 tnL of) was diluted with 2.5 mL of 0.025 

M potassium ch loride, pH 1.0 and 0.4 M sodium acetate buffer, pH 4.5, separately. The 

diluted solutions were then left at temperature room for 15 tnin, and the absorbance of 

each dilution was read at 520 and 700nm against a blank cell filled with distilled water. 

The anthocyanin content was calculated using the following equation: 

Anthocyan ins content (mg/ 1 OOg of dry tnatter) = A*MW*DFI (E* W) 
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Where A= absorbance (As20nm-A7oOnm) pH 1.0 - (As20nm-A7oOnm) pH 4.5, MW= molecular 

weight of cyanidin-3-glucoside (C 15 H 11 0 6, 449.2), OF= dilution factor, s= n1olar 

absorptivity (26900), and W sample weight (g). 

3.2.6 Measurement of total antioxidant capacity by trolox equivalent antioxidant 
capacity (TEAC) assay 

The TEAC assay is based on scavenging of 2,2' azinobis-(3-ethylbenzothiazol ine-

6-sulphonate) radical anion (ABTs·+). A solution of ABTs·+ was prepared in 2.Sn1M 

saline phosphate buffer (PH 7.4, 0.15M sodium chloride) (PBS) by mixing 2.5mM 2,2'-

azobis-(2-methylpropionamidine) dihydrochloride (AAPH) with 2.0 tnM ABTs+·. The 

solution was heated for 16 min at 60°C, protected from light and stored in the dark at 

rootn temperature until used. The radical solution was used within 2 h as the absorbance 

of the radical itself decreases with time. Onion extracts were dissolved in PBS at a 

concentration of 0.17 mg/ tnL and diluted accordingly to have them fit in the range of 

values in the standard curve. For measuring antioxidant capacity, 40 J.!L of the sample 

were mixed with 1.96 tnL of ABTs·+ solution. Absorbance of the above mixture was 

monitored at 734 nm over a six min period. The decrease in absorbance at 734 nn1, 6 tnin 

after the addition of a test compound, was used for calculating TEAC values. A standard 

curve was prepared by tneasuring the reduction in absorbance of ABTs·+ solution at 

different concentrations of trolox. Appropriate blank measurements (decrease in 

absorption at 734 ntn due to solvent without any compound added) were made and the 

values recorded (Van den Berg et al., 1999) as tnodified by Siriwardhana and Shahidi 

(2002). 
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TEAC values were determined as follows : 

L1A trolox - {A t=O trolox - A t=6 min trolox} - L1A solvent (0-6 min) 

L1A trolox = m X [trolox] 

TEAC = { L1A extract! n1 } X d 

Where, L1A= reduction in absorbance, A= absorbance at a given time, m= slope of the 

standard curve, [trolox] = concentration oftrolox, and d= dilution factor. 

3.2.7 DPPH radical scavenging capacity (DRSC) using electron paramagentic 
resonance (EPR) 

DRSC assay was carried out ustng the method expla ined by Madhujith and 

Shahidi (2006). Two millilitres of0.18 mM solution ofDPPH in methanol were added to 

500).!1 of appropriately diluted free, esterified and bound phenolics extracts in tnethanol. 

Contents were tni xed well, and after 1 Otnin . the tnixture was passed through the capillary 

tubing, which guides the sample through the satnple cavity of a Bruker e-scan EPR 

spectrophotometer (Bruker E-scan, Bruker Biospin Co., Billercia, MA). The spectrum 

was recorded on Bruker E-scan food analyzer (Bruker Biospin Co.). The paratneters were 

set as follows: 5.02 x 102 receiver gain, 1.86 G modulation atnplitude, 2.62 1 s sweep 

time, 8 scans, 100.000 G sweep width, 3495.258 G centre field, 5.1 2 tns time constant, 

9.795 GHz microwave frequency, 86.00 kHz modulation frequency, 1.86 G modulation 

atnp litude. For quantitative n1easuretnents of radical concentration ren1aining after 

reaction with the extracts, the method of comparative determination based on the 
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corresponding signal intensity of first-order derivative of absorption curve was used. 

DRSC of the extracts was calculated using the following equation: 

DPPH radical scavenging capacity% = 

1 00 - (EPR signal intensity for the mediun1 containing the additive/EPR signal intensity 

for the control medium) x 100. 

From the standard curve plotted for the DRSC of trolox, the scavenging activity 

of potato extracts was detennined and expressed as f.lmol TE /g dried onion peel/flesh. 

3.2.8 Determination of Oxygen Radical Absorbance Capacity (ORACFL) 

The determination of ORACFL was carried out using a Fluostar Optima plate 

reader (BMG Labtech, Durham, NC) equipped with an incubator and two injector pumps 

with fluorecsein as the probe and AAPH as the radical generator. The reaction was 

carried out in 7 5 tnM phosphate buffer (pH 7.4 ), at a final reaction volumes of 200 J.1L in 

a 96-well Costar 2650 black plate (Nepean, ON, Canada). Fluorescein dissolved in a 

phosphate buffer (120 J.1L; 64 nM, final concentration) was injected into each well using 

the first injector pun1p into the wells containing the extract (20 J.1L of onions extract). The 

mixture was incubated for 20 tnin at 37 oc in the built-in incubator, and subsequently 

APPH solution (60 J.1L; 29 mM final concentration) equilibrated at 37 oc was rapidly 

injected into the wells using the second pump. The plate was shaken for 4 s after each 

addition at a 4 mm shaking width. To optimize the signal amplification in order to obtain 

maxitnun1 sensitivity, a gain adjustlnent was performed at the beginning by tnanually 

pi petting 200 J.1L of fluorescein into a designated well. No n1ore than 35 inner wells of the 
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96-well plates were used due to increased cycle time. Fluorescence was determined and 

recorded every minute for 60 min using a Fluostar Optima plate reader, and the 

antioxidant activity of the extracts was calculated as trolox equivalents using a standard 

curve prepared with 1-10 J1M (final concentration) control (trolox, buffer, fluorescein, 

and AAPH) and positive control (phosphate buffer and fluorescein) were used. Filters 

with an excitation wavelength of 485 nm and an en1ission wavelength of 520 nm were 

used (Madhuj ith and Shahidi , 2006). 

3.2.9 Reducing power activity 

The reducing power of extracts was determined by the tnethod of Amarowicz et 

al. (1995a) and Oyaize (1986). Briefl y, each extract (0.2- 1.0 mg) was di ssolved in 1.0 

tn L of distill ed water to which \Vas added 2.5 n1L of a 0.2 M phosphate buffe r (pH 6.6) 

and 2.5 n1 L of a 1 <yo (w/v) solution of potassiutn ferricyanide for detennination of 

reducing power. The mixture was incubated in a water bath at 50 oc for 20 tnin . 

Subsequently, 2.5 tn l of a 1 Oo/o (w/v) solution of tri chloroacetic acid were added and the 

tn ixture was subsequently centri fuged at 1750xg for 10 tnin . afterwards, a 2.5-ln l of the 

supernatant vvas cotnbined with 2.5 n1l of disti lled water and 0. 5 ml of a 0.1% (w/v) 

solution of ferr ic chloride. Absorbance of the reaction tn ixture was read 

spectrophoton1etrically at 700 nn1 ~ the increased absorbance of the reaction n1ixture 

indicates greater reducing power. Results were expressed as ~.uno l es tro lox equi va lents of 

the extract versus absorbance at 700 nm. 
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3.2.1 0 Measurement of Iron (II) Chelation Capacity 

The chelation of ferrous ions by the extract was estin1ated by the method of 

Liyana-Pathirana et al. (2006) with some modifications. In brief, 0.5 mL of extract was 

mixed with 1.85 tnL of tnethanol and 0.05 mL of 1 mmol/L ferrozine, followed by 

vigorous shaking and allowing the mixture to react at room temperature for 10 min. The 

absorbance was measured spectrophototnetrically at 562 nm. The chelation capacities of 

onions were expressed as J.!mol ethylenediaminetetraacetic acid (EDTA) equivalents/g 

extract. The blank was devoid ferrozine. Iron chelation capacities of the extracts were 

calculated using the following equation: 

Fe (II) chelation capacity, o/o = (!-Absorbance)* ] 00/ blank Absorbance 

3.2.11 Supercoiled strand DNA scission by peroxyl and hydroxyl radicals 

The inhibition activity of the onion extracts against supercoiled DNA strand 

scission induced by peroxyl radical was evaluated according to the methods of Hiramoto 

et a!. ( 1996) and Chandrasekara and Shahidi (20 11 ). Plasmid supercoiled DNA (pBR 

322) was dissolved in 10 mM phosphate buffered saline (PBS) pH 7 .4. The DNA ( 4 11L) 

was added to 2 J.!L of extract samples, 4 J.!L of AAPH (22.5 tnM) dissolved in PBS. For 

peroxyl radical-induced oxidation, the mixture was mixed well and incubated at 37°C for 

1 h. Upon completion of incubation, 2 J.!L of the loading dye (consisting of 0.25o/o 

bromophenol blue and 0.25o/o xylene cyanol) was added to the extracts and loaded to a 

0. 7o/o (w/v) agarose gel. The gel was prepared in 40 mM Tris-acetic acid-EDT A buffer, 1 
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mM EDTA, pH 8.5. Thereafter, 5 !JL SYBR Safe were added to DNA gel, setting at 85 

Volt for 75 tn in at 4 °C. DNA strands were visualized under ultraviolet light. For 

hydroxyl radical-induced DNA oxidation, 2 !JL of test compounds, dissolved in 

methanol, were added into an Eppendorf tube and the solvent was evaporated under a 

stream of nitrogen. To the tube, 2 !JL of distilled water were added, fo llowed by through 

vortexing for 1 min. The fo llowing reagents were then added to the tube in the order 

stated: 2 !JL of PBS (pH 7.4), 2 !JL of supercoiled pBR322 DNA, 2 !JL of H20 2 and 2 !JL 

of FeS04. The tnixture ( 10 !Jl) containing 1 !JM test compound, 0. 1 M PBS, 10 ~Jg/mL 

DNA, 0 .2 n1M H20 2 and 0.1 mM FeS04 (final concentration/assay) was incubated at 

3 7°C for 1 hour. 

The protective effect of extracts was calculated DNA retention (o/o) based on the 

following equation. 

DNA retention (o/o) = (Supercoiled DNA content in sample/Supercoiled DNA content in 

control)* 1 00 

3.2.12.1 Cooked comminuted fish meat model system 

Fish model systems were prepared as described by Shahidi and Pegg ( 1990). 

Ground saltnon fish (80 g) was mixed with deionized water (20 mL) in Mason jars. 

Soluble extracts of onion (200 pptn based on phenolics content) as well as 200 ppm BHA 

and quercetin, respectively, were added separately to fish mixture in the Mason jars and 

thoroughly homogenized. A control sample containing no extract was also prepared. 

Samples were cooked in a thermostated water bath at 80 ± 2°C for 40 min while stirring 
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every 5 min with a glass rod. After cooling to roon1 temperature, fish samples were 

hotnogenized for 30 s, transferred into plastic bags, and then stored in a refrigerator at 

4 oc for 7 days. Samples for the analyses of TBARS were drawn on days 0 and 7. 

3.2.12.2 Determination of 2-thiobarbituric acid reactive substances (TBARS) 

The TBARS were determined using a tnodified version of the method of Siu and 

Draper ( 1978), as described by Shahidi and Hong ( 1991 ). Samples were analyzed for 

TBARS on days 0 and 7. Two grams of each sample were weighed into a centrifuge tube 

to which 5 mL of a 1 Oo/o (w/v) solution of trichloroacetic acid (TCA) were added and 

vortexed (Fisher Vortex Genie 2; Fisher Scientific, Nepean, ON) at high speed for 2 min . 

An aqueous solution (0.02 M) of TBA (5 mL) reagent was then added to each centrifuge 

tube, followed by further vortexing for 30 s. The sa1nples were subsequently centrifuged 

at 3000xg for 10 min and the supernatants were filtered through a Whatman No. 3 filter 

paper. Fi ltrates were heated in a boiling water bath for 45 1nin, cooled to roo111 

tetnperature in cold water, and the absorbance of the resultant pink-coloured chromogen 

read at 532nn1. A standard curve was prepared using 1,1 ,3,3-tetramethoxypropane as a 

precursor of the n1alondialdehyde (MDA; 0, 1, 2, 3 and 6 pptn). The TSARS values were 

then calculated using the standard curve and expressed as milligrams MDA equivalents 

per gratn satnple. Inhibition of TSARS fonnation was detennined using the equation: 

% inhibition= 100 ( 1-TBARS value for the treated sample/TBARS value for the control 

sample). 
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3.2.13 Determination of proximate composition of salmon fish 

Ground fish samples (11.0 g) were weighed into pre-weighed alutninum dishes 

and placed in a preheated forced-air oven (Fisher Isotemp 300, Fair Lawn, NJ). Satnples 

were n1aintained at 1 05± 1 oc until a constant mass was obtained. The moisture content 

was then calculated as the percent ratio of the weight difference of the sample before and 

after drying to (AOAC, 1990). 

Total fat content of the samples (25) was determined ustng the procedure 

described by Bligh and Dyer ( 1959). The total fat content was calculated as the percent 

value of the original satnples. 

3.2.14 Effect of Onion extracts on preventing cupric ion induced human low density 
lipoprotein (LDL) cholesterol peroxidation 

The tnethod of Chandrasekara and Shahidi (20 11) and Andreasen et al. (200 1) 

were used to tneasure inhibitory activities of onion extracts against human LDL 

cholesterol oxidation. Human LDL cholesterol (in PBS, pH 7.4, with 0.01 % EDTA) was 

dialyzed against 1 On1M PBS (pH 7.4, 0.15 M NaCl) for 12h under nitrogen at 4°C, and 

EDT A-free LDL was subsequently diluted with PBS to obtain a 0.1 mg/mL. The diluted 

LDL cholesterol solution (0.8 mL) was tnixed with 100 ~L of extract (0.125 and 0.5 

mg/n1L) in an Eppendorf tube. Oxidation of LDL cholesterol was initiated by adding 0.1 

mL of 100 ~M CuS04 solution in distilled water. The mixture was incubated at 37°C for 

20 hours. The initial absorbance (t=O) was read at 234nm imtnediately after mixing and 
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conjugated diene (CD) hydroperoxides fonned at the end of 20 h were measured. The 

corrected absorbance at 20 h against 0 h was employed to calculate the percentage 

inhibition of CD fonnation using the following equation: 

% inhibition of CD fonnation = (Absoxidative - Abssample)/ (Absoxidative - Absnative) X 100, 

where Absox idative = absorbance of LDL mixture and distilled water with CuS04 only, 

Abssample = absorbance of LDL with extract and CuS04, and Absnative = absorbance of 

LDL with distilled water. 

3.2.15 Determination of major phenolic compounds by HPLC/ESI-MS/MS 

Reversed phase high performance liquid chromatography with tandem tnass 

spectrometry was used to determine the major phenolic compounds present in the onion 

san1ples. A slightly modified version of the tnethod outlined by Zheng and Wang (200 1) 

was used. Briefly, samples were prepared by dissolving 0.5tnL of free, esterified, and 

bound phenolic extracts of onion in 2.0 mL of 50o/o HPLC grade methanol and passing 

through a 0.45-).ltTI syringe filter (purchased from Sigma-Aldrich Canada Ltd, Oakville, 

ON) before injection into a reverse phase C 18 colutnn (250 mm length, 4.6 mm i.d., 5 

J.liTI particle size, Sigma-Aldrich Canada Ltd., Oakville, ON) with a guard column. The 

tnobile phase was tnethanol (A) and acidified water containing 0.01 M phosphoric acid 

(B). The gradient was as follows: 0 min, 5o/o A; 10 min, 15o/o A; 30 min, 25% A; 35 min, 

30o/o A; 50 n1in, 55o/o A; 55 min, 90o/o A; 57 tnin, 1 OOo/o A and then held for 10 tnin 

before returning to the initial conditions. The flow rate was 1.0 mL/min and the 

wavelengths of detection were 280, 325, and 360 nm. HPLC of onion extracts was 
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analyzed online by using a rnass selective detector system (LC-MSD-Trap-SL, Agilent) 

in electrospray ionization (ESI) rnode. An external standard method using authentic 

compounds was used to confinn the identified compounds. 

3.2. 15 Statistical analysis 

All experirnents were carried out in triplicates and results were reported as mean 

± deviation. The significance of differences among the values was determined at p < 0.05 

using analysis of variance (ANOV A) followed by Tukey's tnultiple range tests (Snedecor 

and Cochran, 1980). 
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CHAPTER4 

RESULTS AND DISCUSSION: ONIONS AND BY-PRODUCTS 

4.1 Total phenolic content 

The total free, esterified and insoluble-bound phenolics were determined in onion 

satnples. The content of free phenolics in tested onion varieties in the decreasing order 

was: pearl onion skin > red onion skin > yellow onion skin > red onion flesh > sprouted 

red onion flesh > white onion skin (Table 4.1 ). The esterified and bound forms of 

phenolic compounds in the onion samples followed a sitnilar trend. White onion skin 

extract had the lowest atnount of free , esterified, and bound phenolics cotnpared to the 

others onion varieties (Table 4.1 ). There was no significant (p>0.05) difference between 

free phenolic content of red and yellow onion skins or between the non-sprouted and 

sprouted red onion fl esh. However, bound phenolic content in yel low onion skin was 

significantly (p<0.05) lower than that in red and pearl onion skins (Table 4.1 ). 

Phenolics were predotninantly present in the free form both in the onion skin and 

flesh, except in red onion skin where bound phenolics were present in slightly higher 

quantities ( 41.30o/o) than the free form (38.41 %). The percentage of free phenolics in the 

total phenolic content of pearl, red, yellow, white skin, red fl esh, sprouted red flesh and 

green shoot were 56.85, 38.42, 44.1 7.70.5 , 90.17, 87.0 and 95 .1 4 %, respectively. The 

bound phenolics were present in higher concentrations ( 4 1.30%) than the esterified forms 

(20.28%) in the skin; while the flesh had higher concentrations of the esterified (9.67o/o) 

as cotnpared to the bound form (0. 73%) of phenolic compounds. However, the free 
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phenolics content of white onion skin was 32 times lower than those present in red onion 

fl esh. Similar results were reported by Prakash et a/. (2007), though they studied only the 

free phenolics of different onion varieties. They reported the TPC of the skin and flesh of 

red onions as 74.1 and 21.5 mg GAE/g dried onion which is for white onion was also 

reported to be much lower than that of the red variety. Furthermore, Shon et a/. (2004) 

reported the phenolic content and antioxidant activity of red onion to be higher than those 

of yellow and white onions. 

The phenolic content in the red onion skin and fl esh were analyzed to detennine 

the di stribution of phenolics in onions in general. The red onions were also sprouted to 

study the changes in the phenolics during germination and its content in the green shoots 

that emerged during germination. As expected, the phenolic composition of the red onion 

flesh was 1.4 times lower than those found in the surrounding skin, but higher than those 

in the sprouted red onion fl esh satnples and green shoots. It is also interesting that the 

free and esterified fonns of phenolics were present at a higher concentration in the red 

fl esh and the sprouted flesh; green shoot had a higher content of bound phenolics. It is 

clear that the phenolics in the flesh decreased during germination. Though no such 

similar studies have been done for onions, Tian eta/. (2004; 2005) studied the changes in 

phenolic constituents of brown rice during gennination. They observed a reduction of 

approxitnately 70o/o in the concentration of feruloylsucrose and sinapoylsucrose, with an 

increase in the content of ferulic and sinapic acids in the light brown pericarp of rice 

grains during gennination. They speculated that this reduction was probably caused by 

the hydrolysis, indicating that germination caused the metabolism of phenolic 
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compounds. In addition, the total content of insoluble phenolic compounds increased 

fro111 18.4 7 mg/ 100 g of flour in brown rice to 24.78 1ng/ 100 g of flour in germinated 

brown rice, similar to that observed for sprouted onions. In the cell wall, phenolic 

cotnpounds, particularly hydroxycinnamates, are ester linked to insoluble fibres, 

polysaccharides, and lignin components. The increase in phenolic compounds during 

gennination could be explained as an increase in the free forms with alkaline hydrolysis, 

due to disn1antl ing of the cell walls during germination. It is speculated that, during 

germination, as product moisture increases, there is a potential for injury by oxidation 

and/or microorganism infiltration. Induced saccharolytic enzymes (carbohydrases) 

hydrolyze starch and other sugars, hence would produce free phenolic compounds having 

more effective antioxidant activity than hydroxycinnamate sucrose esters. As a result, the 

content of hydroxycinnamate sucrose esters decreased, whereas that of free phenolic 

cotnpounds increased (Tian et al., 2004). This may be due to the changes taking place in 

the sprouted red onion flesh ; however, this explanation requires experimental 

verification. 

4.2 Total flavonoids content 

In vitro and in vivo studies have demonstrated that flavonoids exhibit a variety of 

biological activities including antioxidative effects (Boyle et al. , 2000), reduction of 

cardiovascular disease and reduction of the risk of rheumatoid arthritis (Pattison et al. , 

2004). Flavonoids are important group of cotnpounds present in large amounts in onions 

(Ly et al. , 2005; Prakash et al., 2007). 

59 



In the present study, red onion skin exhibited the highest free flavonoid content 

(20.22 ± 0.39 tng/g sample), followed by pearl onion skin (19.64 ± 0.2 mg/g sample). 

There was, however, no significant difference (p>0.05) between the free, esterified and 

bound flavonoids of red and pearl onion skin. White onion skin contained the lowest free 

flavonoids content (0.08 ± 0.08 mg/g). Bonaccorsi et a!. (2008) also tnade a similar 

observation and found that the flavonol content in white onion bulb was about 7 mg/kg 

against 600-700 mg/kg in red and gold onion varieties. It is also clear that the free 

flavonoids were present in highest quantities in all varieties compared to the esterified 

and bound flavonoids (Table 4.1 ). As expected, the flavonoid content in red onion skin 

was also higher than those in red onion flesh. Price et al. ( 1996, 1997) and Boyles (20 11) 

have also indicated that the outer layers of onions are rich in flavonoids compared to the 

whole onion bulb or edible part. Moreover, there is evidence of decreasing trend in the 

content of sotne flavonoids from the dry skin to the inner rings (Pati I and Pike, 1995). 

Meanwhile USDA (2007) reported that the range of quercetin in different onions varied 

frotn 33.43 ± 2.38 mg/g in red onion bulb to 7.29 ± 1.27 mg/1 OOg in young green of 

onion (USDA, 2007). These results are similar to those of the present study for the free 

fonn of phenolics from sprouted red flesh onion and red flesh onion (Table 4.1 ) . 

Atnong the different varieties of onion, the highest level of quercetin has been 

reported in fleshy scales of yellow/brown onion ( 170-1200 mg/kg fresh weight) and in 

red onion (190-1900 mg/kg fresh weight), while lower levels were found in white onion 

(50-650 mg/kg fresh weight) (Tusushida and Suzuki 1995; Crozier et al., 1997; Price et 

al., 1997; Price and Rhodes, 1997; Lugasi and Hovari, 2000). The cotnpounds quercetin-
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4 ' -glucoside and quercetin-3,4' -diglucoside are two main derivatives of quercetin found 

in red onion (Leighton et a!., 1992). High concentration of quercetin has been found in 

dry red onion skin. This part of onion contains five-fold higher content of quercetin in 

cotnparison to the flesh layers (Patil and Pike, 1995). Dry onion skin also has a different 

content of quercetin derivatives compared to the flesh layers where as much as 53o/o of 

total quercetin was present in the free fonn (Wiczkowski eta!., 2003). This high atnount 

of quercetin in the outer layers of onion bulb is probably a consequence of exposure to 

sun I ight (sun I ight tnay promote rapid synthesis of quercetin) after the harvest (Hirota et 

a!., 1998; Harborn and Williatns, 2000; Lee eta!., 2008). 

4.3 Determination of total anthocyan ins 

Total anthocyanins content was determined in the soluble phenolics extracts as 

mg cyanidin-3-0-glucoside equivalents per gram of dry onion peel/flesh. Anthocyanins 

content in different varieties of onion in the decreasing order were: red onion skin > pearl 

onion skin > red onion flesh > sprouted red onion flesh > yellow onion skin > white 

onion skin > green shoots (Table 4.1 ). This is in agreement with the report of Gorinstein 

eta!. (2008) who found that white onion had a low content of anthocyan ins compared to 

coloured onions, both for skin and flesh. The highest content of anthocyanins was 

present in red onion skin (1 0.04 ± 0.90 tng/1 OOg), while anthocyanin content in white 

onion skin was 0.06±0.0 1 mg/ 1 OOg. This result is in agreement with that of Lauro and 

Francis (2000) who reported that the total anthocyan ins in red onions was 7-21 n1g/ 1 OOg 
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sample. There was also no significant difference (p>0.05) between green shoot of 

sprouted red onion and white onion skin. 

More than 20 derivatives of anthocyanins have been identified in red ontons 

(Slimestad et al., 2007). Cyanidin glucosides and acylated glucosides of cyanidins were 

the main anthocyan ins of red onions (Fossen et al., 1996; Donner et al. 1997). Moreover, 

cyanidin-3-(6" -malonyl)-glucoside represents tnore than 50o/o of the total anthocyan ins 

in different cultivars of red onion, and there is 20-250 mg/kg of anthocyanins in fresh 

weight of red onion (Fossen et al., 1996). Anthocyan ins constitute about 10% of the total 

flavonoid content of red onions (Rhodes and Price, 1996). Makris (20 1 0) reported the 

utilization of waste from tnore pigmented onions as well as consideration of factors such 

as tetnperature and particle size that could make onion wastes a promising source of 

water-soluble anthocyanin pigments. Rhodes and Price (1996) found that anthocyanins 

are heavily concentrated in the skin and in the outer fleshy layers, whereas in the edible 

tissue they are restricted to a single layer of cells in the epidermal tissue. Gennaro et al. 

(2002) reported that the dry skin of onions is rich in anthocyanins and flavonols , with 

high percentage of glycone forms that corresponds to 2% of the total weight in the 

portion that cannot be eaten and is generally discarded. Therefore, '""63% of total red 

onion anthocyanins are present in the dry skin and outer fleshy layers that accounts for 

15% of the total weight. Ferre res eta!. ( 1996) detected cyanidin 3-glucoside and cyanidin 

3-arabinoside and their tnalonated derivatives in red onions. Therefore, the skin of 

coloured onions can serve as an excellent source of natural cyanidin derivatives. 
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4.4.1 Measurement of total antioxidant capacity by trolox equivalent antioxidant 
capacity (TEAC) assay 

The TEAC n1ethod is frequently used for determination of antioxidant activity. 

TEAC assay is based on the scavenging of 2,2' -azinobis-((3-ethylbenzothiaoline-6-

sulphonate) radical cation (ABTS .+) by the antioxidant over a period of 6 min. The 

TEAC values of extracts were detennined and cotnpared with trolox. Trolox reacts 

instantly with ABTS .+ and the reaction is completed within one minute. However, due to 

the biphasic nature of most anti oxidative cotnpounds, 6 min which includes a greater part 

of the slow-biphasic reaction (Van den Berg et al., 1999) has shown good results. 

Therefore, 6 tnin was used as the titne point in the present study. Generally, samples with 

higher phenolic content were most effective as free radical scavengers. The free 

phenolics in the skin showed higher activity than the esterified and bound phenolics in 

the skin and fl esh as was the trend for their phenolic content. Table 4.2 lists the TEAC 

values of skin and flesh extracts of onions. Though pearl onions had a higher free 

phenolic content than red and yellow onions, they showed lower TEAC activity possibly 

because of the existing difference in the chen1ical nature of their phenolic constituents 

and hence activity differences. Esterified phenolic extracts showed low TEAC values, 

ranging frotn 0.05 (white skin) to 1.92 (pearl skin) mmoles TE/g dried sample. TEAC 

values of bound phenolic extracts varied from 0.04 mmoles TE/g for white onion skin to 

3.40 mn1oles TE/g for red onion skin. Red onion skin had the highest TEAC value, 

384.25 times higher than that of white onion skin in the free, esterified, and bound 

phenolics. TEAC method is useful in screening antioxidants, but antioxidant 
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effectiveness must a lso be studied by other methods because their activity in foods is 

dependent on a variety of factors, including polarity, solubility, metal-chelating capacity 

and the systetn used for their evaluation. Others have measured the TEAC activity CuM 

TE/g of DW) of different onions, (though not separately studying the activity of the free, 

esterified and bound phenolics) as 15.6 (Sellappan and Akon, 2002), 29.02 (Bahorun et 

al. , 2004) and 64.11 JiM TE/g ofDW (Proteggente et al., 2002). 

4.4.2 DPPH radical scavenging capacity (DRSC) using electron paramagentic 
resonance (EPR) 

Red onion skin showed the highest DRSC activity, followed by, yellow onion 

skin , pearl onion skin, red onion flesh , sprouted red onion flesh and white onion skin 

(Table 4.3). This trend is similar to those obtained for the phenolic and flavonoid 

contents of the samples and clearly indicates that satnples with higher phenolic content 

exhibit higher antioxidant activity. However, pearl onion skin that had a higher phenolic 

content than red onion skin showed a slightly lower, although insignificant (p>0.05), 

DRSC, possibly because the existing differences in the chemical constituents contributing 

to the scavenging activity. Velioglu et al. (1998) and Shahidi and Naczk (2004) reported 

that the antioxidant activity of a g iven food or food product depends on the chemical 

nature of its constituents and, not always their quantities, as the efficacies of cotnpounds 

present varies considerably. Furthennore, DRSC of the sprouted red 
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Table 4.1. Total phenolics, flavonoids and anthocyanin content of freeze dried onion samples 1 

Total phenolics Total flavonoids 
Total anthocyanins 
(tng anthocyanidin-

(mg GAE/g dried onion) (mg quercetin/g dried onion) 
3-g lucoside/1 OOg 

Onion sample 
dried onion) 

Free Esterified Bound Free Esterified Bound 
Soluble phenolics 

phenolics phenolics phenolics flavonoids flavonoids flavonoids 

Pearl skin 62.65 ±0.60a 22.62 ± 0.54a 24.92 ± 0.84 a 19.64 ± 0.2a 2.6 ± 0.66a 4.62 ± 1.16a 6.32 ± 0.06a 

Red skin 23 .67 ±0.16b 
25.45 ± 0.74 a 20.22 ±0.39a 2.57 ± 0.54a 4.69 ± 0.97a 1 0. 04 ± 0. 91 b 

12.50 ± 0.30b 

Yellow skin 22.7 1 ±2.86b 17.96 ± 0.43b 10.69 ±0.40b 0.56 ± 0.13b 1.25 ± 0.06b 0.21 ± 0.008c 
10.75 ± 1.12c 

White skin 0.54 ± 0.03c 0.213 ± 0.006c 0.08 ± 0.08c 0.006±0.005c 0.01 ± 0.01 c 0.06 ± 0.01 d 
0.013±0.003d 

Red flesh 0.14 ± 0.09c d 0.0 17±0.027d 0.001 ± 0.001 c 0.69 ± 0.03e 
17.33 ±0.98d 0.14 ± 0.06 

1.86 ± 0.16e 

Sprouted Red flesh 
15.66 ± 1.34d 1.81 ± 0 .006e 0.58 ± 0.0l c 0.42 ± 0.07d 0.03 ± 0.0 12d 0.003 ± 0.007c 0.86 ± 0.06e 

Green shoot 1 0.57±0.289e 0.34 ± 0.082d 0.20±0.00 1 c 0.14 ± 0.05 d 0.024 ± 0.02c 0.003 ± 0.005c 0.05 ± 0.03d 

1Data are expressed as means ± SD (n=3). Values with the same letter in the each column are not significantly different (p > 0.05). 
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onton flesh was tnainly contributed by its esterified phenolics, while in the red onion 

fl esh free phenolics displayed the highest activity. It is also interesting that the free 

phenolics in the onion satnples were stronger DPPH radical scavengers as compared to 

the bound and esterified forms except in the case of white onion peels and sprouted red 

onion flesh , where the esterified phenolics were more abundant and had a higher activity. 

In the DRSC assay, the onion extracts were able to reduce the stable radical DPPH to the 

yellow coloured diphenylpicrylhydrazine. Thus, the DRSC activity of onion extracts 

may be mostly related to their phenolic hydroxyl group. Red onion skin extracts 

possessed the highest activity (tnore than 5.63 times higher than those of red onion fl esh), 

the red onion being again n1ore active than the yellow onion. Prakash et al. (2007) and 

Gorinstein et al. (2008) a lso found a similar trend in the DRSC of red onion skin and 

flesh. 

4.4.3 Reducing power activity 

Reducing power of the onton extracts was detennined by the method of 

Atnarowicz et al. (2002). Compounds that have reduction potential, react with potassium 

ferricyanide (Fe3+) to form potassium ferrocyanide (Fe2+) which then react with ferric 

chloride to form a cotnplex that has an absorption tnaximutn at 700ntn. These compounds 

with reducing power indicate that they are electron donors and can reduce the oxidized 

intern1ediates of lipid peroxidation processes, so they can act as primary and secondary 

antioxidants (Jayanthi and Lalitha, 20 11). 
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Table 4.3 shows the reducing power of the free, esterified and bound phenolics of 

the extracts using the potassiutn ferricyanide reduction method. The reducing power of 

the different varieties followed the same trend as other antioxidant activity tests with free 

phenolics of pearl onion skin showing the highest (3.58 ± 0.01 mmoles TE/g smnple) and 

white onion skin the lowest (1.36 ± 0.07 tntnoles TE/g sample) activity. However, the 

reducing power of the bound phenolics were comparable to that of the free phenolics, 

unlike those for DPPH and TEAC assays. In general, it can be concluded that free 

phenolics are the dominant form of phenolics and contribute tnost to the antioxidant 

activity of onions followed by bound and esterified phenolics. There was no significant 

difference between free phenolics of red pearl onion skin and yellow onion skin. 

4.4.4 Measurement of Iron (II) Chelation Capacity 

Metals such as iron, copper, n1anganese, nickel and cobalt at their higher 

valence state are known to participate in direct initiation of lipid oxidation via electron 

transfer and lipid alkyl radical fonnation while lower valence metals can directly initiate 

lipid oxidation via the formation of reactive oxygen species (ROS) (Kanner, 1986). So, 

che lation of free iron can prevent the formation of free radicals as \veil as preventing the 

in1pa irn1ent of vita l organ function in vivo. The formation of a complex is formed 

between antioxidant and the n1etal renders metal ions inactive so that they cannot any 

longer act as initiator of lipid oxidation (Shahidi and Zhong, 2007). In the determination 

of iron chelating capacity of onion extracts, the iron chelating activity of free phenolics of 

onion skin, expressed as ~mol EDT A eq/ 1 OOg sample, indicated very strong activity. 
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Additionally, the free phenolics of pearl onion skin showed the highest iron chelating 

activity (2991.45 ± 403.30 ~moles EDTA eq /100 g dried onion), although not 

significantly different fron1 that of red and yellow onion skin. As expected the extracts 

from the red onions flesh and white onion skin. There were no significant differences (p> 

0.05) atnong the iron chelating activities of white onion skin, green shoot and red onion 

flesh samples. These results, presented in Table 4.3, follow the same trend as those 

observed for other antioxidant activity tests etnployed in this study. 

There were no significant differences (p> 0.05) among the iron chelating activities 

of white onion skin, green shoot and red onion flesh samples. These results, presented in 

Table 4.3, follow the same trend as those observed for other antioxidant activity tests 

etnployed in this study. 

Phenolic compounds are the tnajor fractions that chelate metal ions although non

phenolic constituents in the crude extracts may also participate in sequestering of n1etal 

ions (Wettasinghe and Shahidi, 2002). Onions are a rich source of flavonoids which can 

effectively deactivate prooxidant metal ions and thus prevent or retard metal ion-induced 

lipid oxidation. Quercetin, a dominant flavonoid in onions, is well known as a strong 

metal ion chelator (Prakash eta!., 2007). 

68 



Table 4.2. Antioxidant capacity (TEAC and DPPH) of crude extracts and corresponding fractions prepared from dried, 
frozen onion skin and corresponding fractions 

Onion sample 

Pearl skin 

Red skin 

Yellow skin 

White skin 

Red flesh 

Sprouted Red flesh 

Green shoot 

TEAC 

(mmoles trolox eq/g freeze dried onion) 

Free 

phenolics 

12.42 ± 0.85 a 

15.37 ± 0.24 a 

14.23 ± 0.24 a 

0.04 ± 0.005 b 

2.18 ± 0.05 c 

2.94 ± 0.44 c 

1.96 ± 0.44 c 

Esteri fied 
phenolics 

1.92 ± 0.5 a 

1.55 ± 0.1 0 a 

0.84 ±0.08 a 

0.05 ± 0.002 b 

0.39 ± 0.01 c 

0.13 ± 0.01 c 

0.05 ± 0.02 b 

Bound 
phenolics 

3.34 ± 0.05 a 

3.40 ± 0.77 a 

1.83 ± 0. 13 b 

0.04 ± 0.004 c 

0. 13 ± O.OO ld 

0.1 6 ± 0.004 d 

0.07 ± 0.02 c 

DPPH radical scavenging activity 

(mmoles trolox eq/g freeze dried onion) 

Free 

phenolics 

0.149 ± 0.005 a 

0.152 ±0.004 a 

0.086 ± 0.004 b 

0.001 ± 0.000 c 

0.027 ± 0.00 1 d 

0.002 ±0.000 c 

0.0 12 ± 0.000 e 

Esterified 

phenol ics 

0.047 ± 0.00 1 a 

0.054 ± 0.007 a 

0.004 ± 0.000 b 

0.024 ± 0.003 c 

0.003 ± 0.000 b 

0.0 14 ±0.002 c 

0.00 1 ± 0.000 b 

Bound 

phenolics 

0.045 ± 0.002 a 

0.04 7 ± 0.009 a 

0.014 ±0.002 b 

0.002 ± 0.000 c 

0.014 ± 0.001 b 

0.004 ± 0.000 c 

0.002 ± 0.000 c 

1Data are expressed as means± SD (n=3). Values with the same letter in the each column are not significantly different (p > 0.05). 
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There were no significant differences (p> 0.05) among the iron chelating activities 

of white onion skin, green shoot and red onion flesh satnples. These results, presented in 

Table 4.3, follow the same trend as those observed for other antioxidant activity tests 

etnployed in this study. 

Phenolic compounds are the major fractions that chelate metal ions although non

pheno lic constituents in the crude extracts may also participate in sequestering of metal 

ions (Wettasinghe and Shahidi , 2002). Onions are a rich source of fl avonoids which can 

effectively deactivate prooxidant metal ions and thus prevent or retard metal ion-induced 

lipid oxidation. Quercetin, a dominant flavonoid in onions, is well known as a strong 

metal ion che lator (Prakash et al. , 2007). 

4.4.5 Determination of Oxygen Radical Absorbance Capacity (ORACFL) 

Table 4.4 presents ORACFL values of free, esterified, and bound phenolic 

extracts; the ranges of values were 1347.46-6232.59, 255.16-3549.66, and 235 .63-

2 11 6.78 J.-Lmoles tro lox equivalent/g freeze dried onion, respectively. As observed from the 

DRSC data, the contribution of free phenolics of onion extracts towards the total 

ORACrL was s ignificantly higher than bound and esterified phenolics. Free phenolics of 

sprouted red onion flesh exhibited the highest total ORACFL fo llowed by pearl onion 

skin, ye llow onion skin, red onion skin, red fl esh onion, green shoot of sprouted red flesh 

onion, and white onion skin. ORACFL value is based on the inhibition of the peroxyl 

radical-induced oxidation initiated by thermal decomposition of azo compounds such as 

2,2 ' -azinobis [3-ethylbenzthiazoline-6- sulphonic acid] (AAPH). ORACFL is the only 
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assay that combines both inhibition time and degree of inhibition into a single quantity 

(Prior et al., 2005). 

Fluorescein (FL) is etnployed as the probe resulting in the loss of fluorescence, 

which is detected with a fluorometer (Shahidi and Zhong, 2007). The ORAC assay 

measures the radical chain breaking ability of antioxidants by monitoring the inhibition of 

peroxyl radical , and the fluorescence decay indicates its reaction with peroxyl radical. In 

the presence of antioxidative compounds FL decay is inhibited, and the intensity can be 

tneasured at 485 ntn excitation and 525 ntn emission. The results of this study 

demonstrated that free, esterified, and bound phenolics from onion extracts scavenge 

peroxyl radicals effectively, although the trend of scavenging differed among varieties 

tested (Table 4.4). The ORAC values of free and bound phenolic extracts of onion 

ranged from 134 7.46 to 6232.59 J.-Unol trolox eq/g of the skin and flesh onion extract, and 

frotn 255.16 to 3549.66 J.-Ltnol trolox eq/g of the esterified extract, and from 235.63 to 

2116.78 J.-Lmol trolox eq/g of the bound phenolic extracts. The ability of free phenolic 

extracts to scavenge peroxyl radicals was in the order of: sprouted red flesh onion > pearl 

onion skin > yellow onion skin > red onion flesh > red onion skin > green shoots > white 

onion skin. Red onion skin esterified phenolic extracts showed the highest peroxyl radical 

scavenging activity, followed by yellow onion skin, pearl onion skin, green shoots, red 

onion flesh, sprouted red flesh onion, and white onion skin. Bound phenolic extracts of 

red onion skin showed the highest peroxyl radical scavenging activity, followed by 

yellow onion skin, green shoots, pearl onion skin, white onion skin, red flesh onion, and 

sprouted red onion flesh. Interestingly, in the present study free phenolics in the extract of 
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sprouted red onion flesh exhibited ORAC values superior to those of other cultivars such 

as purple onion and white onion as reported by Ou eta!. (2002). This could be attributed 

to the high phenolic content in the skin compared to the flesh. However, the importance 

of size different in onion tested as well as existing differences between the skins which 

are dried and the flesh which has moisture content cannot be ignored. Cao et a!. ( 1996) 

showed that the ORAC values of onion indicated their strong antioxidant activity. The 

ORAC assay is based on the hydrogen atom transfer (HAT) reaction, and thus hydrogen

donating ability of phenolics in onion to scavenge peroxyl radical was demonstrated. 

Peroxyl radicals are intennediate species generated during oxidation of metnbrane lipids. 

Thus, the scavenging efficacy of peroxyl radicals by phenolic extracts of onion skin and 

flesh as a source of natural antioxidants to tnanage disease conditions is itnportant. No 

significant difference (p>0.05) existed between free phenolics of pearl onion skin and 

that of the sprouted red onion flesh. Sitnilarly, no such difference existed between 

esterified and bound phenolics of red onion skin and yellow onion skin (Table 4.4). 
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Table 4.3. Antioxidant capacity (Reducing power and iron chelation) of crude extracts and corresponding fractions prepared from 
dried, frozen onion skin and corresponding fractions 

Onion sample 

Pearl skin 

Red skin 

Yellow skin 

White skin 

Red flesh 

Sprouted Red flesh 

Green shoot 

Reducing power 

(1nmoles trolox eq/g freeze dried onion) 

Esterified 
Free phenolics 

phenolics 
Bound phenolics 

3.58 ± 0.01 a 0.79 ± 0.14 a 2 .01 ± 0.11 a 

3.45 ± 0.18 a 0.62 ± 0.01 a 1.68 ± 0.13 b 

3.37 ± 0.36 a 0.77 ± 0.15 a 1.50 ± 0.12 b 

1.36 ± 0.07b 0.43 ± 0.01 b 0.20 ± 0.007 c 

1.51 ± 0.14 b 0.31 ± 0.09 b 0.45 ± 0.005 d 

1.05 ± 0.12 c 0.18 ± 0.03 c 0.39 ±0.01 d 

0.94 ± 0.03 c 0.18 ± 0.01 c 0.19 ± 0.03 c 

Iron chelating activity 
(J.lmoles EDT A eq/ 1 00 g dried onion) 

Free phenolics 
Esterified 

Bound phenolics 
phenolics 

2991.45 ± 403.30 a 560.89 ± 113.32 a 961.54 ± 160.26 a. b 

2938.03 ± 403 .30 a 1228.63 ± 185.05 b 1282.05 ± 160.26 a. b 

26 17.52 ± 244.79 a 1121.79 ± 183.26 b 1495.73 ± 185.05 a 

1282.05 ± 160.26 b 16.03 ± 1.14 c 1442.31 ± 277.57 a. b 

1068.38 ± 333.60 b 11 21.79 ± 170.50 b 1228.63 ± 244.80 a. b 

694.44 ± 185.05 b 96 1.53 ± 105.80 b 908.12 ± 244.80 b 

961.53 ± 135 .67 b 1442.30 ± 131.21 b 1362.1 8 ± 113.32 a. b 

1Data are e~pressed as means ± SD (n=3). Values with the same letter in the each column are not significantly different (p > 0.05). 
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4.5 Inhibition of oxidation in fish model system 

During lipid oxidation, malondialdehyde (MDA), a tninor secondary oxidation 

product of fatty acids with 3 or more double bonds, is fonned . MDA reacts with 2-

thiobarbituric acid (TBA) to form a pink TBA-MDA complex that is measured 

spectrophotometrically at its absorption maximum at 532 ntn (Shahidi and Zhong, 2007). 

The muscle of salmon used for the analysis contained 12.73 ± 0.27o/o total lipids, 

In agreetnent with 12.7-17.9% value reported by Morkore et al.(2001 ). The moisture 

content in salmon was 62.18 ± 0.65 o/o. 

The TBARS values of antioxidant-treated fish meat samples stored at 4°C over 7 

days are shown in Table 3. The soluble onion extracts were added at 0.1% and the 

reference antioxidants, BHA and chlorogenic acid were each added at 200 ppm. The 

extracts were effective in inhibiting the oxidation of cooked saltnon in comparison with 

the control, which showed the highest TBARS value at the end of the 7 days of storage 

period. The samples arranged in the order of their effectiveness in inhibiting the 

fonnation of TBARS (%) was as follows: red onion skin (68.46o/o) > pearl onion skin 

(60.48o/o) > green shoot (53.29%) > BHA (51.89%) > red onion flesh (50.30o/o) > yellow 

onion skin (48.71 %) > white onion skin (46.51 %) > quercetin (36.72o/o) > sprouted red 

onion flesh (9.78o/o) > Control. This trend is similar to that obtained in other assays 

conducted in this study. Thus, onions are highly effective in inhibiting oxidation in a 

cooked fish meat system, especially the extracts from the skin of red and pearl onions and 

green shoot, which were found to be better than BHA. There was no significant 
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difference between quercetin, white skin, and green shoot on day 0 and day 7 (Table 4.5). 

Quercetin alone showed a lower inhibition activity, probably because the onion extracts 

contained other antioxidant compounds, the synergistic effects of which improved its 

efficiency in inhibiting fish meat oxidation. 

4.6 Effect of onion extracts in preventing cupric ion induced human low density 
lipoprotein (LDL) peroxidation 

Natural antioxidants from dietary sources that may inhibit LDL cholesterol 

oxidation are of great itnportance in the prevention of atherosclerosis and associated 

cardiovascular diseases. It has been shown that the uptake of oxidized LDL by 

macrophages and smooth muscle cells leads to the fonnation of fatty streaks or vascular 

lesions which further accumulate lipids (Decker et a!., 2001 ). In addition, phenolic 

compounds can protect endogenous antioxidants such as tocopherol, ~-carotene, lycopene 

and ubiquinol in LDL cholesterol molecule, or inhibit enzymes such as xanthine oxidase 

involved in the initiation of oxidation or cell-tnediated LDL cholesterol oxidation 

(Chandrasekara and Shahidi, 201 1 ). 

In this study, the protective activity of extracts of skin and flesh phenolics of 

onions for chelating cupric ions and thus reducing metal catalyzed oxidation of LDL 

cholesterol was demonstrated. It is noteworthy that at the beginning the rate of 

conjugated diene (CD) formation was slow as LDL cholesterol molecules contain 

antioxidant compounds such as tocopherol, ~-carotene and lycopene. The rapid oxidation 

started after the depletion of endogenous antioxidants of LDL cholesterol molecules. 
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Figure 4.4 shows the inhibitory activities of onion extracts at a concentration of 0.5 

tng!tnL against human LDL cholesterol oxidation induced by cupric ion. 

The ability of phenolic compounds to inhibit copper ion-tnediated LDL 

cholesterol oxidation may be attributed to their capacity to remove cupric ions from the 

medium (Decker et al., 2001 ). It was noted that red onion flesh had a low LDL 

cholesterol oxidation inhibition, accounting for 22.5±7.12%, whereas pearl onion skin 

and red onion skin extracts exhibited high inhibitory activities against LDL cholesterol 

oxidation, accounting for 46.45 and 43.6%, respectively (Table 4.6). The results also 

showed no significant difference (p>0.05) between pearl onion skin extract and red onion 

skin extract and between yellow onion skin extract and red onion flesh extract. Pearl 

onion skin that also has a high total phenolic content showed the highest inhibition of 

LDL cholesterol oxidation of 46.45o/o after 22 h of incubation (Figure 4.1 ) . This result is 

in agreement with that of Vinson et al. ( 1998) who reported that red and yellow onions 

had high antioxidant activity toward inhibition of LDL oxidation. In this study, onions 

have been found to contain high amounts of flavonoids which constitute the largest and 

n1ost studied group of plant phenolics. Flavonoids are powerful antioxidants and their 

activity is related to chetnical structures (Rice-Evan et al., 1995; Rice-Evan et al., 1996). 

Plant flavonoids are multifunctional and can act as reducing agents, as hydrogen atom

donating antioxidants, and as singlet oxygen quenchers. Certain flavonoids also act as 

antioxidants via their metal ion chelation properties (Brown et al. , 1998), thereby 

reducing the metal's capacity to generate free radicals. Flavonoids can act as potent 

inhibitors of LDL oxidation via several mechanisms like protection of the LDL-
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associated antioxidants a -tochopherol (vitamin E) and carotenoids from oxidation 

(Spencer et al., 2003). The protection of LDL against copper ion or free radical-induced 

oxidation by flavonoids depends on their response to copper ion, their partitioning 

between the aqueous and the lipophilic comparttnents within the LDL particle, and their 

hydrogen donating antioxidant properties (Brown et al. , 1998). 

Table 4.4. Oxygen radical absorbance capacity (ORACFL) of free, esterified, and 
bound phenolics of onion extracts. 

Onion types ORAC (11moles trolox eq/g freeze dried onion) 

Free Esterified Soluble 

Pearl Skin 5803.46±97. 73a 1907 .52±287 .66a 1193.75±183.95a 

Red skin 4889.47±474.14b 3549.66±985.69b 2116.78±721.10b 

Yellow skin 5433.86±0.0( 3158.29± 735.08b 2009.2 7±384. 70b 

White skin 1347.46±19.69d 255.16±156.22( 329.06±48.82( 

Sprouted red 

fl esh 6232.59±1.26a 415.19±101.80c 235.63±198.57d 

Red flesh 4889.57±2091.27b 848.03±663 .43d 291.11±82.28d 

Green shoots 3489.70±1045.27d 877 .63±114.42d 1199 .15±533. 72a 

*Values in each column having the same letter are not significantly different (p < 0.05). 
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Table 4.5. Effect of extracts from onion samples on the formation of 
malondialdehyde in a cooked fish model system 1 

Soluble extracts added to Fish TBARS (tng MDA eq/kg Fish) 

Day 0 Day 7 

Control 2.40 ± 0.05 5.01 ± 0.56 

Quercetin 2.66 ± 0.59 3.17±0.81 

BHA 1.43 ± 0.06 2.41 ± 0.37 

Pearl onion skin 0.20 ± 0.08c 1.98 ± 0.09 

Red onion skin 0.14 ±0.05c 1.58 ± 0.40 

White onion skin 2.19 ± 0.23 2.68 ± 0.53 

Yellow onion skin 
0.87 ± 0.04 2.82 ± 0.45 

Red onion flesh 
2.55 ± 0.27 2.49 ± 0.05 

Sprouted Red onion flesh 
2.40 ± 0.06 4.52 ± 0.32 

Green shoot 
2.74 ± 0.16 2.34 ± 0.20 

1 Data are expressed as means ± SD (n=3). Values with the same letter, in the same row or column, are not 

significantly different (p > 0.05). 2Soluble extracts from onion skin and flesh were added to the fi sh at 0.1 % 

level. The concentration of sample is eqalent to 200 ppm gallic acid equivalents calculated on the basis of 

total phenolic content. 
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Table 4.6. Effect of Onion extracts on preventing cupric ion induced human 
low density lipoprotein (LDL) peroxidation 

Onion Samples Inhibition (0/o) 

Pearl skin 46.45 ± 7. 12a 

Red skin 43.60 ± 2.40a 

Yellow skin 25 .66 ± 5.22b 

Red fl esh 22.50 ± 2.9 1 b 
Values with the same letter, in the same row or column, are not significantly 
different (p > 0.05). 
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Figure 4.1. Inhibition of cupric ion-induced human low density lipoprotein (LDL) 

cholesterol oxidation by Onions. LDL (0.2 mg of 0.1 mg protein/mL) was oxidized in 

PBS (pH 7.4) at 37 °C with 4 J!M CuS04, and absorbance was continuously 

monitored at 232 nm. Each column shows the individual 0/ o of different soluble 
samples (all 0.5 mg/mL). The control is LDL and CuS04 only. 
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4.7 Supercoiled strand DNA scission by peroxyl and hydroxyl radicals 

Oxidants produced as by-products of mitochondrial electron transport and 

products from lipid peroxidation that escape the numerous antioxidant defense systems 

can cause damage to cellular macromolecules, including DNA, and such dan1ages can 

lead to tnutation and cancer initiation (Atnes and Shigenaga, 1993). Oxidation damage of 

DNA results in a wide range of scission products, which include strand breaks and sister 

fonnation , chromatid exchange, DNA-DNA, and DNA-protein cross-links as well as base 

modification (Atnes and Shigenaga, 1993). DNA damage is often measured as single 

strand-breaks, double strand-breaks, or chrotnosomal aberrations (Breimer, 1990). In the 

present study, soluble (free and soluble esters) and bound phenolics of onion extracts 

were evaluated for their capacity in inhibiting peroxyl and hydroxyl radical-induced 

DNA supercoiled (form I) strand scission. Figures 4.1 A-C show the activity of soluble 

onion extracts for inhibiting peroxyl and hydroxyl radical-induced DNA supercoiled 

(form I) strand scission. 

DNA molecules are easily attacked by free radicals that induce base modification 

and strand scission; they lead to mutagenesis and possibly cancer. Thus, the effectiveness 

of the extracts to prevent the scission of the DNA strands is a reflection of their positive 

effects against many diseases in the biological systems. Peroxyl radicals, which are used 

in the present study, are known to exert oxidative damage in biological systems due to 

their comparatively long half-life and thus greater affinity to diffuse into biological fluids 

in cells (Hu et al. , 200 I). Soluble extracts from different onion varieties were dissolved 
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in PBS at a concentration of 3.5 mg/mL before tnixing them with the DNA. Figure 4.3A 

shows the percentage of supercoiled DNA strands retained after incubation with peroxyl 

radicals generated by AAPH. Soluble phenolic extracts from red onion skin were tnost 

effective showing a DNA strand scission inhibition of 94.45o/o followed by pearl onion 

skin (91.45o/o) and yellow onion skin (84.26o/o), while extracts from white onion skin, red 

onion flesh and sprouted red onion flesh showed a low activity of approximately 1 Oo/o. 

Radicals cleave supercoiled pBR 322 plasmid DNA (form I) to nicked circular 

DNA (form II) as shown in Fig.4.2B. Lane 1 represents the native DNA without AAPH 

and antioxidant additives and lane 2 represents the blank, where the reaction mixture does 

not contain any antioxidant. The presence of a high intensity form II (nicked) band and 

the disappearance of form I (supercoiled) band in lane 2 indicate that the DNA was 

cotnpletely nicked. The onion extracts which were added in the retnaining wells showed 

good strand scission inhibiting activity as already described. In the absence of any 

antioxidant, it may be expected that the peroxyl radical abstracts a hydrogen atotn from 

the nearby DNA to generate a new DNA radical, which in tum evokes a free radical 

chain reaction resulting in the cleavage of the DNA molecule. However, in the presence 

of antioxidants, this chain reaction is terminated by abstracting a hydrogen atotn from the 

antioxidant tnolecule (Hu and Kitts, 2000). 

In the present study, soluble onion extracts exhibited inhibition of hydroxyl 

radical- induced DNA nicking in both site-specific and non-site-specific models. 

However, no prooxidant effects were observed in the range of concentrations used in is 

this study. The concept of site-specific effect of hydroxyl radical was described by 
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Gutteridge ( 1984 ). In the absence of EDT A, iron ions bind to deoxyribose molecules and 

bring about a site-specific reaction in the molecule. However, in the presence of EDTA, 

iron ion is retnoved from binding site to form EDT A metal complex and produce 

hydroxyl radical that can be removed by hydroxyl radical scavenging. 

Onion extracts showed radical scavenging and antioxidant activities. The onion 

extracts have phenolic hydroxyl groups in their structures and these have been recognized 

to function as electron or hydrogen donors (Shahidi and Wanasundara, 1992). The 

antioxidants have attracted much interest with respect to their protective effect against 

free radical damage that may be the cause of many diseases, including cancer (Nakama et 

a!. , 1 993). The anti oxidative effect of onion extract is mainly due to its phenolic 

components, such as flavonoids (Pietta eta!., 1998). Sotne flavonoid and non-flavonoid 

compounds have been reported to show alkyl and peroxyl radical scavenging activity, 

thus reducing radical-mediated pathogenesis, e.g. carcinogenesis (Sawa et a!., 1999). 

Ethanolic extracts of onion also contain lipophilic antioxidants such as onion oil which 

contains dialkyl disulphides, their oxides and thiols, which can trap electrons from other 

systems. Thus it scavenges different free radicals including hydroxyl radicals (Kianns

Dieter, 1983). 

Hydroxyl radicals generated by Fenton reaction are known to cause oxidatively 

induced breaks in DNA strands to yield its open circular or relaxed forms. At a 

concentration of 20J.1glmL, free radical scavenging effect of 70% tnethanol/acetone/water 

solvents of soluble phenolic extracts of different onion skin and flesh were studied 

(Figure 4.2C) on plasmid DNA datnage. The extracts of soluble pearl onion skin and red 
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onion skin (lanes 3 and 4) showed a significant reduction in the formation of nicked DNA 

and increased native form of DNA. The protection offered by yellow onion skin extract 

was close to that of red onion skin extract (lane 5). The red onion flesh (lane 7) and 

sprouted red onion flesh extract (lane 8) showed moderate, while white onion skin (lane 

6) and green shoot of sprouted red onion flesh (lane 9) showed comparatively low 

protection. The pearl onion skin and red onion skin extracts with high phenolic content 

showed better protection compared to the others (Fig.4.3B), indicating that protection 

was directly proportional to the concentration of total phenolics present. Quercetin 

effectively protected DNA strand scission fron1 tert-butylhydroperoxide (Prakash et al., 

2007). Therefore, in the pearl onion skin and red onion skin extracts presence of high 

quantities of quercetin might be responsible for better protection of DNA. Polyphenols 

are potential protecting agents against the lethal effects of oxidative stress and offer 

protection to DNA by chelating redox-active transition tnetal ions. 

Onions are widely used all over the world and produce a large amount of waste, 

n1ainly skins. In the present study, it was found that pearl onion skin and red onion skin 

were rich sources of phenols with promising antioxidant and free radical scavenging 

activities and ability to provide protection against DNA damage caused by reactive 

oxygen species. Thus, they may be used in foods in order to protect them from spoilage 

and possible in supplen1ents to render health benefits. 
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Figure 4.2A. Effect of addition of onion skin and flesh phenolic extracts in peroxyl 
radical treated DNA system. 

Lane 1: Contro l (DNA only); Lane 2: Blank (DNA and AAPH); Lane 3: soluble Pearl 

onion skin extract; Lane 4 : soluble white onion skin extract; Lane 5: Soluble red onion 

skin extract; Lane 6: soluble yellow onion skin extract; Lane 7: Soluble sprouted Red 

onion flesh extract; Lane 8: soluble Red onion fl esh extract; Lane 9: soluble green shoot 

extract, S=supercoil ed plastnid DNA strands; and N= nicked DNA strands. 
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Figure 4.28. Representative figure to illustrate the effect of soluble onion extracts in 
preventing hydroxyl radical induced DNA scission. 
Lanel: DNA+PBS; Lane2= DNA+hydroxyl radical; Lane3= DNA+hydroxyl 

radical+Pearl skin; Lane4= DNA+hydroxyl radical+red skin; LaneS= DNA+hydroxyl 

radical+yellow skin; Lane6= DNA+hydroxyl radical+white skin; Lane7= DNA+hydroxyl 

radical+prouted red flesh; Lane8= DNA+hydroxyl radical+red flesh; and Lane9= 

DNA+hydroxyl radical+green shoot. 
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Figure 4.2C. Effect of bound onion extracts in preventing peroxyl radical induced 
DNA scission. 

Lane1: DNA+PBS; Lane2= DNA+ 1mM AAPH; Lane3= DNA+ 1mM AAPH +red onion 

skin; Lane4= DNA+ 1 mM AAPH+ yellow onion skin; LaneS= DNA+ 1 mM AAPH+pearl 

onion skin; Lane6= DNA+ 1mM AAPH +white onion skin; Lane7= DNA+ lmM AAPH 

+sprouted red onion flesh ; LaneS= DNA+ 1 mM AAPH +red onion flesh; and Lane9= 

DNA+ 1n1M AAPH +green shoot. 
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Figure 4.3A. Inhibition percentage of supercoiled pBR 322 plasmid DNA scission in 
peroxyl radical-mediated systems with extracts from different onion samples. 
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Figure 4.3B. Inhibition percentage of supercoiled pBR 322 plasmid DNA scission in 
hydroxyl radical-mediated systems with extracts from different onion samples. 

4.8 Determination of major phenolic compounds by HPLC/ESI-MS/MS 

The identity of soluble and bound phenolic compounds were ascertained using 

HPLC-DAD and HPLC-MS analyses and by comparison of their retention titnes and 

mass spectral data with those of the available standards and reports in the literature. The 

predotninant phenolic acids and flavonoids present in the onion samples that were 

identified and quantified (mg/g dried onion sample) using HPLC are li sted in Table 4.7. 

89 



Quercetin, quercetin 3,4' -diglucoside and kaempferol were predominant in the free form 

in all onion smnples; quercetin glucoside being the tnost abundant (Figure 4.4). 

Quercetin and kaempferol could easily be identified with standards. However, 

quercetin 3,4' -diglucoside was identified by its tnass spectral data. The use of 

fragtnentation in mass spectrometry allowed us to observe the corresponding flavonol 

aglycone as fragments of the molecular ion. Quercetin 3,4' -diglucoside at a retention time 

of 19.5 n1in showed molecular ion [M-Hr with mlz value of 625. The fragtnentation 

(MS2
) in the negative mode of the ion with mlz 625 resulted in a fragment with m/z 463 , 

by loss of 162 amu corresponding to the loss of a glucose moiety and mlz 301 

corresponding to yet another glucose moiety. Fragmentation by MS3 of the aglycone 

obtained (m/z 301) originated fragtnents common to those frotn the fragmentation of 

quercetin (m/z 151 , 179). Thus, frotn the respective fragmentation patterns we concluded 

that the peak at Rt 19.5 min corresponded to quercetin 3,4 ' -dig lucoside. 

The high level of antioxidant activity in onions is attributed to their flavonoid 

constituents, namely quercetin, kaempferol, myricetin, and catechin (Patil et al. , 1995; 

Cook and Samtnan, 1996). Two major components quercetin monoglucoside and 

quercetin diglucoside account for 80% of the total flavonoids in onions (Rhodes, and 

Price, 1996, Bonaccorsi et al., 2008) with levels of quercetin glucosides being much 

higher in onion than those in other vegetables (Proteggent et al., 2002; Sellappan and 

Akoh, 2002; Shahidi and Naczk, 2004). Similarly, Price and Rhodes (1997) reported that 

quercetin 3,4 ' -0-g lucoside and quercetin monoglucoside (quercetin 4 ' -0-glucoside) were 
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the tnajor flavonols in edible portions of onions, however, they were mostly concentrated 

in the skin. These conclusions correspond to those that can be drawn in this study. 

Additionally, in the present study, bound and esterified phenolic fractions of 

onion samples were present in much lower concentrations as compared to the free form. 

None of the phenolic compounds could be detected in the esterified and bound fractions 

of the white onion peels, but quercetin and quercetin glucoside were detected at lower 

concentrations in the esterified or bound fractions of all other onion peels. As expected, 

both the red onion and sprouted red onion flesh had much lower concentrations of 

phenolics as compared to the skin. However, surprisingly, the sprouted red onion flesh 

was found to contain higher concentrations of both quercetin and quercetin glucoside as 

con1pared to the ones not sprouted. As also determined through the Folin total phenolics 

test, pearl onion skin was found to contain the highest amount of total phenolic acids, 

followed by red and yellow onions, sprouted red onion flesh, red onion flesh and white 

onion skin. This result is in agreement with that of Patil et al. ( 1995) who reported that 

the red, pink, and yellow onions had higher atnounts of quercetin than white varieties. 

Prakash et al. (2007) also reported that the content of quercetin decreased in all varieties 

from outer to inner fleshy layers. 

Kaempferol, another flavonoid, was detected at much lower levels in the 

esterified and bound forms of onion skin and flesh; the highest atnount was observed in 

the free form of pearl onion skin fo llowed by red onion skin, yellow onion skin, red onion 

flesh , sprouted red onion flesh, green shoot of sprouted red onion flesh and white onion 

skin . Sellappan and Akoh (2002) reported that the kaempferol in onions were found to be 
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tn mtnor quantities tn companson to quercetin and kaetnpferol 3- and 4-glucosides. 

Onions grown in the United States were reported to have kaetnpferol at 0.68 g/kg in the 

outer dry skin and 3-7 mg/kg in outer and inner skins of the bulb (Bilyk et al., 1984), 

whereas onions grown in the United Kingdom did not have any detectable quantities of 

kaetnpferol (Crozier et al. , 1997). These variations may be due to many factors including 

variety, clitnatic conditions and maturity (Sellappan and Akoh, 2002). 

Another set of experitnents were carried out to test the efficiency of the solvent 

extraction method for dechlorophyllization of green shoots (to reduce the interference of 

pro-oxidants) using spectrophotometry and HPLC data. This was done by measuring the 

reduction in the absorbance of the solvent extracted sample at 660 nm 0 "-max for 

chlorophyll). The efficiency of the extraction was confirmed using HPLC analysis which 

showed the successful removal of chlorophyll (data not shown) without affecting the 

phenolic con1position of the extract (Table 4.7). 
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Table 4. 7. Content of prominent flavonoids (mg/g freeze dried sample) in the skin and flesh of four onion varieties 

Onion sample 

Pearl 

Red skin 

Yellow 

White 

Red flesh 

Sprouted Red 
onion flesh 

Green shoot 
(with chlorophyll) 

Green shoot 
( dechlorophyllized) 

Quercetin glucoside 

Free Esterified Bound Free 

9.59 2.54 1.44 8.33 

5.59 0.50 0.43 2.99 

2.57 0.16 0.19 3.11 

0.004 0.004 

2.54 0.05 0.01 0.15 

2.91 0.09 0.03 0.19 

2.32 0.06 0.01 0.14 

2. 11 0.08 0.02 0.11 
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Quercetin Kaempferol 

Esterified Bound Free Esterified Bound 

0.03 0.23 1.36 0.01 0.01 

0.01 0.151 1.15 0.005 

0.007 0.01 1.13 0.006 

0.003 

0.01 

0.003 0.03 

0.03 

0.001 0.02 
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Figure 4.4. HPLC chromatograms at 360 nm of free flavonoids extracted from skin 
of (PS) Pearl (RS), Red onion, and (YS) Yell ow onion varieties. 
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4.9 Active compounds in onion extracts 

Flavonoids 

Flavonoids in fruits, vegetables, and other plant foods have been linked to reduced 

risk of chronic diseases including cancer and cardiovascular disease (CVD. Flavonoids in 

nature occur as conjugates in glycosylated or esterified forms but can occur as aglycones, 

especially upon food processing. 

High performance liquid chrotnatographic (HPLC) analysis of onion extracts 

showed the presence of quercetin, keampferol, and myricetin. Each compound was 

tentatively identified by its retention time and by comparison with standards under the 

same conditions. The chromatograms obtained for HPLC analysis are illustrated in Figure 

4.4. 

4.9.1 Quercetin 

Quercetin is the major flavonol in onions. Levels of quercetin glucosides were 

tnuch higher in onion than those in other vegetables (Sellappan and Akoh, 2002). Hertog 

et al. ( 1992) reported that quercetin in white onion was present at 37.3 titnes higher level 

than that in different varieties of spanich tomato. Price and Rhodes (1997) reported that 

quercetin 3,4' -0-glucoside and quercetin monoglucoside (quercetin 4 ' -0-glucoside) were 

the n1ajor tlavonols in edible portions of onions, however, they were mostly concentrated 

in the skin. 

In the present study, the quercetins identified in the free form of onion extracts 

were quercetin and quercetin 3-glugoside. The highest amount of quercetin was found in 
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the free phenolics of extracts of pearl onion skin (9.585 mg/g), followed by red onion 

skin, yellow onion skin, sprouted red flesh onion, red flesh onion, and green shoots 

(dechlorophillized), respectively (Table 4.7). In addition, quercetin was found in both 

bound and esterified forms in lesser amounts than those in the free form, compared to 

those of myrcetin and kaempferol. The skin of pearl onion and red onion were the richest 

source of quercetin, myrcetin, and kaempferol. This result is in agreement with the 

findings of Patil eta!. (1995) who reported that red, pink, and yellow onions had higher 

amounts of quercetin than white varieties. Prakash eta!. (2007) reported that the content 

of quercetin was decreased in al l varieties from outer to inner fleshy layers. Proteggent et 

a!. (2002) further detnonstrated that the concentration of quercetin glycosides in onion 

extracts was higher compared to that found in different vegetables in the same study. 

Quercetin represented approximately 80o/o of the total flavonol content of onions (Rhodes 

and Price, 1996). 

From HPLC analysis, it was determined that quercetin represented the major 

flavonoid in onion skin and flesh, however the amount of quercetin in pearl onion skin 

and red onion skin was higher than other types and tnay be related to anthocyanins 

present in the red onion Allium Cepa. Geetha et a!. (20 12) reported that quercetin and 

cyanidin were the major flavonoids in big red onion peels. 

4.9.2 Anthocyanins 

Anthocyanins are polyphenolic pigtnents responsible for tnost of the colour 

diversity found in plants. In vivo, colour expression and the stability of anthocyan ins are 
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interpreted by extrapolation of the results acquired in vitro with model solutions of 

pigtnents obtained through extraction or laboratory synthesis. The colour of anthocyan ins 

is due to their chrotnophore uni ts and may be influenced by some constituents of the 

plant cells (Brouillard et al., 1997). 

Anthocyanins are stored in an organized aqueous mediutn in the cell vacuoles, 

where there is a slightly acidic environment and is rich in inorganic ions. Polyphenols are 

essential for transfonnations of these pign1ents that enable the formation of tnolecular 

complexes and subsequent colour changes and stabilization (Brouillard and Dangles, 

1993). 

Red onion contains a number of anthocyan ins that are mostly concentrated in the 

skin and outer fleshy layer, specifically, cyanidin derivatives which constitute over 50o/o 

of total anthocyanins and delphinidin derivatives which comprise about 30o/o of total 

anthocyan ins in whole red onions (Gennaro et al., 2002). Ferreres et al. ( 1996) detected 

cyanidin 3-glucoside and cyanidin 3-arabinoside and their malonated derivatives in red 

onions. Fuleki (1971) and Herrmann (1976) identified cyanidin 3-glucoside in the outer 

layers of onions. 

The four tnain anthocyan ins of red onion have previously been identified as 3-(3 "

g lucosyl-6" -malonylglucoside ), 3-(6" -malonylglucoside ), 3-(3 "-glucosylglucoside) and 

3-glucoside of cyanidin, respectively (Fossen et a!., 1996; Terahara et al. , 1994). In 

addition, sotne tninor anthocyanin pigments have been detected, namely 3-(3 ",6"

dimalonylglucoside), 3-(3"-tnalonylglucoside) and 3,5-diglucoside of cyanidin, 3-
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glucoside, 3,5-diglucoside and 3-malonylglucoside of peonidin (Donner et al., 1997; 

Fossen et al., 1996). 

Several studies have suggested that the anthocyanin content and their 

corresponding antioxidant activity contribute to the protective effect of fruits and 

vegetables against degenerative and chronic diseases (Heinonen et al., 1998; Record et 

a!., 2001 ). Some plants and fruit extracts with high phenolic content have been reported 

to act as inhibitors of mutagenesis and carcinogenesis (Kumpulainen and Salonen, 1998; 

Macheix et al., 1990). 

In the present study, total anthocyanins content in different onion varieties was 

determined as mg of cyanidin 3-glucoside/ 1 OOg OW of freeze-dried samples (section 

4.3). Both red onion skin and pearl onion skin contained the highest amounts of 

anthocyanins compared to those present in red onion flesh and sprouted red onion flesh , 

yellow on ion skin, white onion skin, and green shoots of red onion flesh. These results 

demonstrate the abi lity of red onion skin and pearl onion skin as natural antioxidant, or 

for using extracted anthocyanins as natural pigments to increase the antioxidants capacity 

in order to prevent food quality deterioration. 

4.9.3 Kaempferol 

Quantitative data of the amount of kaetnpferol in various skins and flesh of onion 

cultivars are summarized in Table 4.7 . A much smaller amount of kaempferol was found 

in the esterified and bound forms in onion skin and flesh, and the highest kaempferol 

content occurred in the free form in pearl onion skin fo llowed by red onion skin > yellow 
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onion skin > red onion flesh > sprouted red onion flesh > green shoot of sprouted red 

onion flesh > white onion skin. No kaempferol was detected in the esterified and bound 

fonns in red flesh onion, white onion skin, and green shoot of sprouted red onion flesh. 

Ewald eta!. ( 1999) found that kaempferol was lost during blanching of the raw onions, to 

even a larger extract than that for quercetin (64 vs 39o/o). Sellappan and Akoh (2002) 

reported that the kaetnpferol in onions occurred in minor quantities in cotnparison to 

quercetin and kaempferol 3- and 4-glucosides. Onions grown in the United States were 

reported to have kaempferol at 0.68 g/kg in the outer dry skin and 3-7 tng/kg in outer and 

inner skins of the bulb (Bilyk et al., 1 984), whereas onions grown in the United Kingdom 

did not have any detectable amount of kaempferol (Crozier eta!. , 1997). These variations 

may be due to tnany factors including variety, climatic conditions and maturity 

(Sellappan and Akoh, 2002). 
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CHAPTERS 

RESULTS AND DISCUSSION: POTATO AND BY-PRODUCTS 

5.1 Total phenolic content and fractions thereof 

The free, esterified and insoluble-bound phenolics in the extracts of potato peel 

and flesh samples are given in Table 5.1. Results indicate that purple potato peel 

contained the highest amount of free (7.2 mg GAE/g peel) and esterified (4.74 mg GAE/g 

peel) phenolics among all varieties analyzed, followed by Innovator potato peel, Russet 

potato peel, yellow potato peel, Russet potato flesh, purple potato flesh and yellow potato 

flesh, arranged in the decreasing order of their free phenolics. It is also interesting to note 

that the phenolics were predominantly found in the bound form in the peels of both the 

Innovator (51.07o/o of the total phenolics) and Russet (45.95% of total phenolics) varieties 

while the free and esterified phenolics were the predominant forms in both the purple and 

yellow potatoes (Table 5.1 ). As expected, the contents of free, esterified and insoluble

bound phenolics in flesh were significantly (p < 0.05) lower than those in the peels. 

These findings are comparable to those reported for total phenolics in the existing 

literature. Chlorogenic acid has been reported as being the predotninant phenolic in 

potato tuber, constituting up to 90o/o to the total atnount (Shahidi and Naczk, 2004). 

Friedtnan eta!. (1997) reported that approxitnately 50% of chlorogenic acid isotners were 

found in potato skin (peel) and adjoining tissues, while in the tuber cortex the level of 

chlorogenic acids gradually decreased from outside towards the centre of the potato 

tuber. There is also clear evidence that the total amount of phenolics in potato varies 

significantly an1ong different varieties (Brandl and Herrmann, 1984), as it was also 
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observed in the present study. Significant difference among varieties may be attributed to 

the genotypes and harvest location which influence the accutnulation of phenolic 

compounds by synthesizing different quantities and/or types of phenolics present 

(Shahidi and Naczk, 1995; Hesam et al., 2012). 

AI-Weshahy and Rao (2009) reported that the total phenolic content in stx 

varieties of potatoes, including purple and yellow potatoes, ranged from 1.51 to 3.32 mg 

GAE/g dry potato peel. These values are much lesser than the total phenolic content (sum 

of free, esterified and bound phenolics) in our study which was in the range of 4.64-13.85 

tng GAE/g dried potato peel. This clearly highlights the importance of including the 

esterified and bound phenolics in the determination of total phenolics. Some important 

factors such as sample treatment and extraction conditions may also affect the phenolic 

content of potatoes. Mohagheghi Samarin et al. (2008) found that ultrasound treatment 

can enhance the extraction of phenolics from potato peels. Thus, higher yield of total 

phenolics in their study compared to those in our work tnay be due to the use of 

ultrasound and vigorous shaking in their extraction process, however, effects of growing 

conditions and cultivation area on the content of phenolics cannot be ruled out. 

5.3 Determination of total anthocyan ins 

In the present study, soluble extracts of purple, Russet, and yellow potato peel and 

flesh, as well as Innovator potato peel were evaluated for their total anthocyanin content, 

presented as mg cyanidin-3-0-glucoside equivalents (Table 5.1 ). The purple potato peel 

(6.84 ± 4.03 mg/1 OOg) contained a higher amount of anthocyan ins cotnpared to that of its 
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flesh counterpart (0.64 ± 0.1 7mg/1 OOg), reflecting a 10.69 times higher content in the 

peel cotnpared to that of the flesh . These values were fol lowed by those for Russet 

potato peel > yellow potato peel > Innovator potato peel > yellow potato flesh > Russet 

potato flesh. No significant difference (p > 0.05) existed between yellow potato peel and 

Innovator potato peel. These results are in agreement with those of Brown et al. (2008) 

who found that pigmented potatoes (red and purple) had higher content of monotneric 

anthocyanins than those of non-pigmented varieties. An important attribute of these 

pign1ents is that they serve as potent dietary antioxidants (Brown et al., 2003; Brown et 

al., 2004) and are known to protect against oxidants, free radicals and LDL cholesterol 

oxidation (Hung et al., 1997). Acylated pign1ents constitute more than 98o/o of the total 

anthocyanins present in pigmented potatoes. Pigmented potatoes displayed two to three 

times higher antioxidant potential than their white-fleshed counterparts (Brown, 2004). 

Studies have also confirmed that the red- and/or purple-fleshed potatoes have signifi

cantly higher antioxidant values than white and yellow potatoes (Brown, 2004; Lachman 

and Hamouz, 2005). Lachman and Hamouz (2005) found that purple potatoes contained 

acylated anthocyanins and pigmented potatoes displayed two to three times higher 

antioxidant potential in comparison w ith white-fleshed potatoes, in agreement with the 

results obtained in the present study. 

5.4 Antioxidant activities of potato extracts 

Plant polyphenols are known to have multifunctional properties by acting as 

reducing agents, hydrogen donating antioxidants, tron chelators and singlet oxygen 
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quenchers. The most important property is their capacity to act as antioxidants, thus 

protecting the body against reactive oxygen species and tnay have an additive or 

synergistic effect with endogenous antioxidants (Shahidi and Naczk, 1995). Due to the 

different tnechanisms involved in the antioxidative processes, best conclusions could be 

drawn when at least two methods are used in a study. Taking this into consideration, in 

the present study, the antioxidant activities of the extracts were tneasured using different 

assays such as TEAC, DRSC (Table 5.2), reducing power and ORAC. There are two 

tnain mechanisms by which antioxidants can scavenge free radicals, hydrogen atom 

transfer (HAT) and single electron transfer (SET), however very few reactions 

exclusively follow one or the other (Prior et al., 2005). Frotn the antioxidant activity 

assays used in this study the only one that is believed to occur exclusively by HAT is 

ORAC. Reducing power tneasures antioxidant activity by a SET mechanism and DPPH ' 

scavenging and TEAC assays follow a mix of both HAT and SET. With respect to the 

antioxidant activity tests carried out, satnples which had the highest phenolic content 

were most effective as free radical scavengers (Tables 5.2 and 5.3). The extract frotn 

purple potato peel, which had the highest content of free phenolics among all varieties 

tested, exhibited the highest antioxidant activity in all tests except DRSC. In DRSC 

assay, the Innovator and Russet varieties showed the highest scavenging activity. Again, 

the activities in the flesh were tnuch lower than those exhibited by the peel. It is also 

noteworthy that the antioxidant activities of the bound phenolics in the peels of Russet 

and Innovator varieties were higher than those of the free phenolics, while the esterified 

phenolics n1ade an almost equal contribution to free phenolics in the antioxidant activities 
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of the purple potato peels which again correlated with the relative content of phenolics. 

In addition, though the purple potato peel showed much higher radical scavenging 

activity compared to other samples, its reducing power was comparable to those of 

Innovator and Russet varieties, thus demonstrating a better contribution to antioxidant 

activity via radical scavenging than the reducing tnechanism. 

Table 5.1. Total phenolics and anthocyanins in freeze dried potato samples1 

Potato 
sample 

Peel 

Flesh 

Potato 
variety 

Russet 

Innovator 

Purple 

Yellow 

Russet 

Purple 

Yellow 

Total phenolics 
(mg GAE2/g freeze dried sample) 

Free 
phenolics 

3.14 ± 0.05 3 

3.23 ± 0.393 

7.20 ± 0.1 ob 

2.15 ± 0.893 

1.18 ± 0.03d 

0.78 ± 0.06c 

0.45 ± 0.03c 

Esterified 
phenolics 

1.42 ± 0.0.23 

2.97 ± 0.07b 

4.74 ± 0.07c 

1.79 ± 0.053 

b 0.58 ± 0.14 

0.82 ± 0.06e 

0.41 ± 0.05b 

Bound 
phenolics 

4.76 ± 0.133 

5.27 ± 0.17 b 

1.91 ± 0.30c 

0.60 ± 0.01 d 

0.33 ± 0.01d 

0.45 ± 0.16d 
d 0.50 ± 0.16 

Total 
anthocyan ins 

(tng/1 OOg) 

Soluble 
phenolics 

0.40±0.33b 

0.24±0.05c 

6.84±4.03 3 

0.27±0.08c 

0.007±0.006e 

0.64±0.17d 
f 0.02±0.02 

' Data are expressed as means ± SO (n=3). Values in each column having the same letter are not 

significantly different (p > 0.05). 2GAE, gallic acid equivalents. 
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Hale (2003) noted that the flesh and skin of purple potato genotypes had higher 

antioxidant activity, possibly due to the presence of anthocyanins that serve as major 

contributors to antioxidant activity. Reyes et al. (2005) also reported that the ORAC of 

purple potatoes were two and a half folds higher than those of their white fleshed 

counterparts. This fundan1ental difference in antioxidant activity of purple and non

pigtnented varieties is related to their anthocyanin content (Brown et al., 2007; Lachman 

et al. 2008, 2009). Thus, it is clear that depending on the variety of potato, bound and 

esterified phenolics contribute as much or even more than free phenolics to the 

antioxidant activity of the peels; the extracts from purple variety exhibiting the highest 

activity. 

In order to shed light on the contribution of phenolics to antioxidant activity 

tneasured by different methods, the correlations between the free, esterified and bound 

phenolic content and total antioxidant activities were analyzed using the Pearson 

correlation test; correlation coefficients are sumtnarized in Table 5 .4. The total bound 

phenolic content positively and strongly correlated with TEAC (R2 = 0.88, p < 0.01 ), 

DRSC (R2 
= 0.97, p < 0.01), ORAC (R2 

= 0.99, p < 0.01) and reducing power (R2 
= 0.96, 

p < 0.01 ). As shown in Table 5.4, the total free and esterified phenolics also showed a 

strong linear relationship with TEAC, ORAC and reducing power. The positive 

correlation indicates that the higher phenolic content resulted in a higher antioxidant 

activity; the strongest correlation existed between bound phenolics and different 

antioxidant activity assays employed. However, in contrast to the earlier report by Hesam 

et al. (20 12), no significant linear relationship existed between total free or esterified 
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phenolic content and DRSC (R2 
= 0.56 and 0.54, respectively, p > 0.05) in this study. 

This may indicate the presence of components other than phenolics in potatoes that can 

directly react with radicals. Further analysis of potato extracts is necessary to clearly 

explain the different observation of the correlation between TPC and DRSC. 

5.5 Inhibition of oxidation in fish meat model system 

Lipid oxidation is a major cause of food quality deterioration, in general , and in 

n1uscle foods, in particular, thus leading to the fonnation of a number of products which 

are responsible for off-odour and off-flavour developn1ent (Shahidi and Zhong, 201 0). 

Secondary oxidation products are a reliable indicator of flavour deterioration in fish 

products (Shahidi 1998) and hence the TBARS assay was used in this study to assess the 

efficacy of extracts from different varieties of potato peel and flesh to retard the 

developtnent of oxidative rancidity in fish. Natural sources of antioxidants and preferred 

to synthetic antioxidants due to possible toxicity and carcinogenic potential of the latter 

(Barlow, 1990; Prior and Cao, 2000; Kaur and Kapoor, 2001 ). The muscle of fish used 

contained 62.18 ± 0.65% moisture and 12.73 ± 0.27o/o total lipids. The TBARS values of 

antioxidant-treated fish samples stored at 4°C over 7 days are shown in Table 5.5. The 

soluble potato extracts were added at 1 o/o level which is approxitnately equal to 200 ppm 

ga11ic acid (GA). BHA and chlorogenic acid were used as positive controls at 200 ppm. 

The extracts were effective in inhibiting the oxidation of cooked salmon in cotnparison 

with the control which showed the highest TBARS values at the end of the 7 day storage 

period. The order of effectiveness in inhibiting the formation of TBARS was: Russet 
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potato peel > SHA > purple potato peel > Innovator potato peel > chlorogenic acid > 

purple potato flesh > yellow potato peel > Russet potato flesh > yellow potato flesh > 

control. However, no significant (p > 0.05) difference existed for the efficacy of the 

Russet potato flesh, yellow potato flesh and the control. At the end of day 7 of storage, 

Russet, purple, Innovator and yellow potato peel extracts inhibited the formation of 

TSARS by 83.4, 39.7, 31.4 and 9.48%, respectively, while purple potato flesh inhibited 

oxidation by 14. 7o/o. Furthennore, SHA and chlorogenic acid at 200 ppm inhibited 

TSARS fonnation by 45.0 and 3l.Oo/o, respectively. The better efficacy of Russet potato 

peel co1npared to SHA in lowering TSARS values is of interest. Russet, purple and 

Innovator varieties also exhibited better antioxidant activity, as reflected in lower TSARS 

values than chlorogenic acid, possibly due to synergistic activity of different phenolics 

present in the extracts. 

5.6 Supercoiled strand DNA scission by peroxyl and hydroxyl radicals 

DNA molecules are easily attacked by free radicals that induce base modification 

and strand scission, leading to mutagenesis and possibly cancer. Thus, the effectiveness 

of the extracts to prevent the scission of DNA strands is a reflection of their positive 

effects against many diseases. Peroxyl radicals, used in the present study, are known to 

exert oxidative da1nage in biological systems due to their comparatively long half-life and 

thus greater affinity to diffuse into biological fluids in cells (Hu and Kitts, 2001 ). Soluble 

extracts fro1n different potato varieties were dissolved in PBS at a concentration of 17.8 

n1g/n1L before mixing them with the DNA. Figure 5.2 shows the percentage of 
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supercoiled DNA strands retained after incubation with peroxyl radicals generated by 

AAPH. Phenolic extracts from purple potato peels were most effective showing a DNA 

strand scission inhibition of 91.02%, while extracts from yellow flesh potato were least 

effective with 34.42% inhibition. 

Radicals cleave supercoiled pBR 322 plasmid DNA (fonn I) to nicked circular 

DNA (fonn II) as shown in Figure. 5.1 A. Lane 1 represents the native DNA without any 

additives and lane 2 represents the blank, where the reaction mixture does not contain any 

antioxidant. The presence of a high intensity form II band and the disappearance of fonn 

I band in lane 2 indicate that the DNA was completely nicked. Potato extracts which were 

added in the retnaining wells showed good strand scission inhibiting activity as greater 

intensity of fonn I band or the supercoiled plasmid DNA was clearly displayed. The 

DNA scission inhibitory effects of potato extracts in the present study may be due to their 

ab ility to scavenge peroxyl radicals as shown in ORAC and TEAC assays (Tables 5.2 and 

5.3). 

Hydroxyl radicals generated by Fenton reaction are known to cause oxidatively 

induced breaks in DNA strands to yield open circular or relaxed forms. The concentration 

of phenolic extracts of different potato peel and flesh was (2 11g!tnL) effect of 

methanol/acetone/water (7:7:6, v/v/v) soluble. In Figure 5.1 B, the soluble extracts of 

purple potato peel and russet potato peel (lanes 7 and 8) showed significant reduction 

(89. 7 and 79 .1 %, respectively) in the formation of nicked DNA and increased retention of 

the native fonn of DNA. The protection offered by Innovator potato peel (lane 9) 

(75.9o/o) was close to that of the Russet potato peel. The purple potato fl esh (lane 3, 
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74.2o/o) and yellow potato peel (lane 6, 65.4o/o) and Russet potato flesh (lane4, 60.2%) 

showed moderate, while yellow potato flesh (lane 5, 53.22o/o) showed comparatively low 

protection. The purple potato peel and Russet potato peel with high phenolic content 

showed better protection compared to the others, indicating that protection was directly 

proportional to the total phenolic content. Chlorogenic acid has been found to be the 

predominant phenolic acid in potato and constitutes up to 90% of total phenolics in potato 

tuber, and approxin1ately 50°/o of chlorogenic acid are found in the skin (Friedman, 1997; 

Shahidi and Naczk, 2004; Rice-Evans eta!., 1996). Further, chlorogenic acid can inhibit 

DNA damage in vitro (Margreet et a!., 2001 ). Margreet et a!. (200 1) showed that one 

third of chlorogenic acid and ahnost all of the caffeic acid were absorbed in the small 

intestine of humans. This implies that part of ch lorogenic acid from foods will enter into 

the blood circulation, but tnost will reach the colon. Therefore, in the purple potato peel 

and Russet potato peel presence of high quantities of chlorogenic acid tnight be 

responsible for better protection of DNA. In biological systems metal binding can occur 

on DNA leading to partial site-specificity of hydroxyl radical formation. Polyphenols are 

potential protecting agents against the lethal effects of oxidative stress and offer 

protection to DNA by chelating redox-active transition metal ions. 

Potato is widely used all over the world and their skin goes to the waste. In the 

present study, it was found that soluble portion of purple potato peel, Russet potato peel, 

and Innovator potato peel is rich in phenols which scavenge free radicals and provide 

protection against DNA damage caused by reactive oxygen species. Furthennore, bound 

phenolic extract (Figure 5 .2A) of purple potato peel (lane 4) showed highest inhibition of 
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78.3o/o followed by Russet potato peel at 67.5 o/o > Innovator potato peel at 66.2% > 

bound yellow potato peel at 55.5% (Figure 5.2B). 
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Potato 

Table 5.2. DPPH radical scavenging activity and trolox equivalent antioxidant capacities of freeze dried flesh and peel 

from different potato varieties 1 

TEAC2 DPPH radical scavenging activity 

Potato (Jlmoles trolox eq/g freeze dried potato) (Jlmoles trolox eq/g freeze dried potato) 

sample variety 
Esterified 

Peel 

Flesh 

Russet 

Innovator 

Purple 

Yellow 

Russet 

Purple 

Yellow 

Free phenolics 

348.27 ± 45 .57a 

301.82 ± 58.98a 

835.59 ± 48.72b 

203.22 ± 33.14a 

52.66± 17.93c 

79.33±13.41 d 

83.00±17.52d 

Esterified phenolics 

76.32 ± 4.94a 

149.78 ± 43.47b 

706.7 ± 10.95c 

23.10 ± 7.20d 

90.61± 17.93a 

88.20± 19.2a 

82.81± 11.23a 

Bound phenolics 

679.08 ± 8.27c 

1412.50 ± 52.84b 

594.41 ± 4.12c 

471.97 ± 27.34d 

175.73±7.27a 

183.88± 14.1 oa 

110.03± 15.57b 

Free phenolics 

9.96 ± 2.28a 

10.81 ± 0.65a 

6.38 ± 0.92 b 

5.56 ± 1.03b 

0.69 ± 0.30c 

2.74 ± 0.60d 

0.86 ±0.04c 

phenolics 

8.44 ± 0.27a 

11.96 ± 0.56b 

5.08±0.56c 

6.43 ± 1.19c 

0.13 ± 0.05d 

2.30 ± 0.61 e 

0.32 ± 0.10ct 

Bound phenolics 

9.61 ± 0.76a 

9.98 ± 0.68a 

5.64 ± 0.74b 

1.89 ± 0.28c 

0.08 ± 0.01 d 

1.79±0.28c 

0.04±0.02d 

1Data are expressed as means ± SD (n=3). Values in each column having the same letter are not significantly different (p < 0.05). 2 TEAC, trolox 

equivalent antioxidant capacity. 
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Potato 
sample 

Peel 

Flesh 

Table 5.3. ORAC and Reducing powers of freeze dried flesh and peel from different potato varieties 1 

Potato 
variety 

Russet 

Innovator 

Purple 

Yellow 

Russet 

Purple 

Yellow 

ORAC2 

(J.lmoles trolox eq/g freeze dried potato) 

Free phenolics 

882.45 ± 125.56a 

1211.14 ± 149.67b 

1832.92 ± 170.29c 

415.52 ± 15.59d 

158.97 ± 6. 79d 

186.45 ± 43.70d 

150.13 ± 24.20d 

Esterified phenolics 

23 7.59 ± 2.68a 

1100.21 ± 14.42b 

916.96 ± 26.16c 

187. 10 ± 12.79d 

99.64 ± 4.89e 

193.56 ± 16.31d 

128.96 ± 5.13e 

Bound phenolics 

1689.64 ± 28.75a 

1834.86± 171.19a 

417.36 ± 92.39b 

275.65 ± 19.72b 

71.72 ± 8.00c 

87.95 ± 7.12c 

95.92 ± 7.35c 

Reducing power 

(J.lmoles trolox eq/g freeze dried potato) 

Free phenolics 

602.41 ± 25.99a 

694.89 ± 43 .87a 

674.74 ± 52.88a 

223.72 ± 12.74b 

129.86 ± 10.59c 

128.73 ± 15.32c 

121 .20 ± 4.25c 

Esterified phenolics 

145.54 ± 24.63a 

276.36 ± 26.95b 

346.87 ± 20. 72c 

81.79 ± 13.26d 

107.92 ± 2.89a 

62.21 ± 20.82d 

89.60 ± 3.14d 

Bound 
phenolics 

785.93 ± 40.39a 

936.01 ± 43.19b 

158.15 ± 3.40c 

255.42 ± 39.69d 

38.89 ± 0.1 oe 

136.61 ± 11.62c 

11 7.56 ± 4.51 c 
1Data are expressed as means ± SD (n=3). *Values in each column having the same letter are not significantly different (p < 0.05). 2 

ORAC, oxygen radical absorbance capacity. 
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Table 5.4. Correlation analysis of total 
antioxidant activities3 

Antioxidant activities 

TEAC 

DPPH radical scavenging activity 

ORAC 

Reducing power 

a Correlation coefficient R 
* Significantly different p < 0.05 
**Significantly different p < 0.01 
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free, esterified, bound phenolics and 

Total phenolic content 

Free Esterified Bound 

0.99** 0.85* 0.88** 

0.56 0.54 0.97** 

0.96** 0.86* 0.99** 

0.82* 0.93** 0.96** 



Table 5.5. TBARS values as malondialdehyde (MDA) equivalents of soluble 

extracts of potato peel and flesh on days 0 and 7 of storage at 4°C 1 

Samples added to salmon2 
TBARS (mg MDA eq./kg fish) 

Day 0 Day 7 

Control 2.15 ± 0.04a 4.64 ± 0.11 a 

BHA 1.35 ± 0.03b 2.55 ± 0.50b 

Chloregenic acid 2.52 ± 0.70aZ 3.20 ± 0.72cZ 

Innovator peel 1.47 ± 0.02c 3.18 ± 0.04d 

Russet potato peel 1.56 ± 0.19 d 0.77 ± 0.04e 

Yellow peel 2.15 ± 0.29a 4.20 ± 0.70f 

Purple peel 0.83 ± 0.05e 2.80 ± 0.52g 

Russet flesh 1.6 ± 0.10 f 4.62 ± 0.85a 
4.98 ± 0.08a 

Yellow fl esh 2.79 ± 0.37a 

Purple potato flesh 2.69 ± 0. 16a 3.96 ± 0.23 11 

1Data are expressed as means ± SD (n=3). 
? 
-soluble extracts from potato peel and fl esh were added to fish tneat at 1 o/o level. 
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Figure S.t.A .Effect of addition of palm leaf and date seed phenolic extracts in 

peroxyl radical treated DNA system. 

Lane 1: Contro l (DNA only); Lane 2: Blank (DNA and AAPH); Lane 3: soluble Purple 

potato skin extract; Lane 4: soluble Russet potato peel extract; Lane 5: Soluble Yellow 

potato peel extract; Lane 6: soluble Innovator peel extract; Lane 7: Soluble purple potato 

flesh extract; Lane 8: soluble Russet potato fl esh extract; Lane 9: soluble Yellow potato 

flesh extract; S, supercoiled plasmid DNA strands; and N, nicked DNA strands 

I 15 

--- ---



Figure 5.1.B Effect of addition of bound phenolic potato peel extracts in hydroxyl 

radical treated DNA system. 
Lane 1: Blank (DNA and hidroxyl radical); Lane 2: Control (DNA only); Lane3: bound 

YP extract; Lane 4: bound PP extract; Lane 5: bound RP extract; Lane 6: bound IP 

extract; S: Supercoiled plasmid DNA strands; N , nicked DNA strands. Abbreviated: PF: 

Purple potato flesh , PP: Purple potato peel, RP: Russet potato peel, and IP: Innovator 

potato peel 
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peroxyl radical-mediated systems with soluble phenolic extracts from different 

potato samples. 
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Figure 5.2. Inhibition percentage of supercoiled pBR 322 plasmid DNA scission in 

hydroxyl radical-mediated systems with soluble phenolic extracts from different 

potato samples. 

5.7 Inhibition of Cupric Ion-induced Human LDL Cholesterol Oxidation 

Oxidation of polyunsaturated lipid components of LDL cholesterol by reactive 

oxygen species plays a key role in the pathogenesis of atherosclerosis (Esterbauer, 1993). 

Furthermore, transition metal ions may promote oxidative 1nodification of LDL 
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cholesterol through hydroperoxides (Decker et al., 2001; Chandrasekara and Shahidi, 

2011 a). According to Decker et al. (200 1) both free radical scavenging and copper 

chelating activity of antioxidants are responsible for inhibition of LDL cholesterol 

oxidation. 

In the present study, the antioxidant activity of potato extracts was determined by 

tneasuring the concentration of conjugated dienes (CD) formed during copper-catalyzed 

human LDL cholesterol oxidation in vitro, and the progression of oxidation of LDL over 

22 h. All satnples showed a rise in CD after 22h. Although the exact reason for this 

observation is not clear, there is a possibility that phenolic compounds at high 

concentrations may complex with protein moieties of the LDL cholesterol molecules, 

thus making them unavailable to inhibit oxidation of cholesterol (Chandrasekara and 

Shahidi , 2011b; Riedl et al. , 2001). Table 5.6 presents the results for the effectiveness of 

potato peel extracts in inhibition LDL cholesterol oxidation. The results show that purple 

potato peel extract was the strongest in inhibiting LDL cholesterol oxidation, followed by 

Russet potato extract, Innovator potato peel extract, and yellow potato peel extract. 
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Table 5.6. Effect of potatoes peel extracts on preventing cupric ion induced 

human low density lipoprotein (LDL) oxidation 1 

Potato Sample Inhibition (0/o) 

Purple peel 26.43±0.54a 

Russet peel 24.43±0.56b 

Innovator peel 21.88± 1.33c 

Yellow peel 17.06±5.20d 

' Data are expressed as means ± SO (n=3). *Values in each column having the same 

letter are not significantly different (p < 0.05). 2 ORAC, oxygen radical absorbance 

capacity. 

5.8 HPLC analysis of phenolic compounds 

The predotninant phenolic acids and tlavonoids in the potato satnples that were 

identified and quantified by HPLC are listed in Table 5.6. The chrotnatogran1s of the 

major phenolic compounds in potato samples are shown in Figure 5.1. The retention 

times of the standards, namely gallic, protocatechuic, chlorogenic, caffeic, p-coumaric 

and ferluic acids were 7.38, 11.35, 12.53 , 15.11 , 15 .54 tnin, respectively. Phenolic acids 

(chlorogenic, caffeic, p-coumaric and ferulic acids) predotninated in the potato peel 

satnples. Potato peels have been reported to be rich in phenolic acids, especially 

chlorogenic, gallic, cinnamic, ferulic, protocatechuic and caffeic acids (Onyeneho and 

Hettiarachchy, 1993; Im et al., 2008). In agreetnent with the present results, chlorogenic 

acid was by far the n1ost abundant phenolic compound present followed by caffeic acid, 

as has previously been reported for potato (Malmberg, 1984; ltn eta!. , 2008; AI-Weshahy 

120 



and Rao, 2009; AI-Weshahy et al., 2011 ). Chlorogenic acids are esters of trans-cinnamic 

acids and quinic acid, and exist in multiple forn1s. Phenolic acids such as chlorogenic 

acid, caffeic acid and ferulic acid are generally found in the UV -vis spectrum, with a 

maximum absorption at 325 nm. The peel extract exhibited an absorption maximum close 

to 325nm due to the presence of cinnamic acid. In the present study, caffeic and ferulic 

acids were present in all three fractions (free, esterified and insoluble-bound) of potato 

peels. Chlorogenic acid was the most abundant phenolic acid in the Innovator, Russet and 

purple potato peels in the free fonn only; while caffeic acid was the most abundant 

phenolic acid in the yellow potato in the free form. The amount of chlorogenic acid 

found in potato varieties varies considerably (Nara et al., 2006). 

Ferulic acid was the major phenolic acid in the bound form in all potato peel 

san1ples, followed by caffeic acid. Nara et al. (2006) also identified ferulic acid to be the 

prominent bound phenolic acid in potato peels. Chlorogenic acid was not detected in the 

bound and esterified forms, while p-coumaric acid was only detected in the bound 

fraction of Russet potato peels. The atnount of total phenolics, using HPLC, correlates 

with the results obtained using the Folin-Ciocalteau assay where purple potato peels 

contained the highest amounts of total phenolic acids, followed by Innovator, Russet and 

yellow varieties. 
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Table 5. 7. Content of prominent phenolic acids (mg/g freeze dried sample) in the extracts of potato peels quantified 
using HPLC 

Potato 
Chlorogenic acid Caffeic acid p-Coumaric acid Ferulic acid 

sample 
Free Esterified Bound Free Esterified Bound Free Esterified Bound Free Esterified Bound 

Innovator r 1.289 0.233 0.344 0.517 0.038 0.015 0.028 0.027 0.793 

Russet r 1.349 0.257 0.187 0.541 0.017 0.019 0.051 0.011 0.030 0.528 

Yellow P 0.163 0.006 0.268 0.004 0.025 . 0.026 0.031 0.034 0.060 
-

Purpler 3.074 0.575 0.658 0.103 0.159 0.05 0.024 0.014 0.055 

Purple F 0.144 0.003 0.001 0.008 0.001 0.004 

Russet F 0.150 0.001 0.022 0.001 - 0.002 0.001 0.001 0.028 0.003 

Yellow F 0.079 0.001 0.037 0.001 - 0.002 0.002 0.006 0.034 0.002 

t): Peel, (F): Flesh 
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Figure 5.4. HPLC chromatograms at 325 nm of free phenolics extracted from peels 

of (A) Innovator, (B) Russet, and (C) Yellow potato varieties. 
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CHAPTER6 

SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

6.1 Summary 

Onion skins are an excellent source of beneficial functional ingredients including 

antioxidant polyphenols. The present study compared four different varieties of onions 

with respect to their total phenolic content and antioxidant activity in order to 

detnonstrate their potential as a source of natural antioxidants. Their antioxidant potential 

and efficacy in a food and biological model systems was further investigated. The 

phenolic constituents of onion skin and flesh were fractionated into their respective free , 

esterified, and bound fonns to provide a complete picture of their phenolic cotnposition. 

The green shoot fro111 one of the sprouted onions was a lso evaluated along with the flesh 

to understand the changes that take place in the phenolic constituents during sprouting. 

The content of free phenolics in tested onion varieties was, in decreasing order, pearl 

onion skin > red onion skin > yellow onion skin > red onion flesh > sprouted red onion 

flesh > white onion skin. A similar trend was also followed by the esterified and bound 

forms of phenolic compounds in the onion samples. Phenolics were predominantly 

present in the free form both in the onion skin and flesh . With respect to the antioxidant 

activity tests carried out - trolox equivalent antioxidant capacity (TEAC) and DPPH 

radical scavenging capacity (DRSC), and reducing power, samples which had the highest 

phenolic and/or flavonoid content were most effective as free radical scavengers. Red 

onion skin showed the highest TEAC and DRSC radical scavenging activity, fo llowed by 

red pearl onion skin, yellow onion skin, red onion flesh, sprouted red onion flesh and 

124 



white onion skin . The extracts were also effective in inhibiting the oxidation of cooked 

saln1on in comparison with the control which showed the highest TSARS values at the 

end of a 7-day storage period. The satnples arranged in the order of their effectiveness in 

inhibiting the formation of TSARS and reported as malondialdehyde (MDA) equivalents 

(o/o) were as follows: red onion skin (68.46%) > pearl onion skin (60.48o/o) > green shoots 

from red onion (53.29o/o) > BHA (51.89o/o) > red onion flesh (50.30o/o) > yellow onion 

skin (48.71°/o) > white onion skin (46.51%) > quercetin (36.72o/o) > sprouted red onion 

flesh (9.78o/o) > control. Similarly, in a biological model system, soluble phenolic 

extracts frotn red onion skin was most effective in inhibiting DNA strand scission by 

94.45o/o, followed by pearl onion skin (91.45%) and yellow onion skin (84.26o/o) while 

extracts white onion skin, red onion and sprouted red onion flesh exhibited low activity 

of around 10% . The HPLC analysis of samples examined showed that gallic, 

protocatechuic and p-hydroxybenzoic acids were the most abundant phenolic acids. 

Quercetin, quercetin 3 glucoside and kaempferol were predominant flavonoids in the free 

forn1 in all the onion satnples; quercetin being the most abundant. The highest content of 

anthocyan ins was found in the coloured skin of coloured onions, while white onion skin 

had the lowest anthocyanin content. 

Potato peels are the by-products of the potato processtng industry and are an 

excellent source for the recovery of phenolic cotnpounds. Nearly 50o/o of phenolics are 

located in the peel and adjoining tissues of potatoes and their content decreases towards 

the centre of the tuber. In the present study, the phenolic constituents of four different 

potato varieties (Russet, Innovator, Purple and Yellow) potato peel and flesh were 
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fractionated into their respective free, esterified, and bound forms and the relative 

proportions of the various phenolic acids present were determined using chemical tests 

and high-performance 1 iquid chromatography (HPLC). The antioxidant capacities of their 

extracts were also studied in in-vitro food and biological model systen1s. Examination of 

the total free , esterified and bound phenolics indicated that purple potato peel contained 

the highest atnount of free (7.2 tng GAE/g peel) and esterified (4.74 mg GAE/g peel) 

phenolics among all varieties analyzed. It is also interesting to note that the phenolics 

cotnpounds were predon1inantly present in the bound form in the peels of both the 

Innovator (51.07o/o of the total phenolics) and Russet (45.95o/o of total phenolics) 

varieties; while the free and esterified phenolics were the predominant forms in both the 

purple and yellow potatoes. As expected, the flesh contained much lesser quantities of 

the phenolics as compared to the peels. With respect to the antioxidant activity tests 

carried out, extracts from purple potato peel , which had the highest phenolic content 

atnong all the varieties tested, exhibited the highest antioxidant activity in all tests except 

DRSC radical scavenging activity, where the Innovator potato peel and Russet potato 

peel varieties showed the highest scavenging activity for DRSC. Again, the activities in 

the flesh were much lower than those exhibited by the peel. It is also noteworthy that the 

antioxidant activities of the bound phenolics in the peels of Russet and Innovator 

varieties were higher than those of the free phenolics; while the esterified phenolics made 

an altnost equal contribution as the free phenolics to the antioxidant activities of the 

purple potato peel which again correlated with their relative contents in the peel. In 

addition, though the purple potato peel showed much higher radical scavenging activities 
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compared to the other samples, its reducing power was comparable to those of Innovator 

and Russet varieties. Thus, it is clear that depending on the variety of potato, bound and 

esterified phenolics contribute as much or even more than free phenolics to the 

antioxidant activity of the peels; with extracts fro1n purple variety showing the highest 

activity. The extracts were also effective in inhibiting the oxidation of cooked salmon in 

cotnparison with the control which showed the highest TBARS values at the end of a 7-

day storage period. The samples arranged in the order of their effectiveness in inhibiting 

TSARS formation were as follows: Russet potato peel > BHA > purple potato peel > 

Innovator potato peel > chlorogenic acid > purple potato flesh > yellow potato peel > 

Russet potato flesh > yellow potato flesh > control. In a biological tnodel system assay, 

phenolic extracts from purple potato peel were most effective in inhibiting DNA strand 

scission by 91.02%, while extracts from yellow potato flesh were least effective with 

34.42o/o inhibition. The HPLC analysis revealed that phenolic acids ( chlorogenic, caffeic, 

p-coumaric and ferulic acids) were predominant in the potato peel sa1nples. Chlorogenic 

acid was the tnost abundant phenolic acid in the Innovator and Russet peels in the free 

fonn only; caffeic acid was the most abundant phenolic acid in yellow potato in the free 

fonn. Ferulic acid was the major phenolic acid in the bound form in all potato peel 

satnples, followed by caffeic acid. Soluble extract of purple potato peel and flesh, Russet 

potato peel and flesh, yellow potato peel and flesh, and Innovator potato peel were 

evaluated for their total anthocyanin. A higher concentration of anthocyan ins, 10.9 times, 

was found in the purple potato peel compared to that in purple potato flesh , followed by 

Russet potato peel > yellow potato peel > Innovator potato peel > yellow potato flesh > 
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Russet potato flesh. Thus, anthocyanins in pigtnented potatoes display higher antioxidant 

potential in comparison with other potato peels and flesh. 

6.2 Conclusions and suggestions for future research 

Onion skin especially the darker coloured ones, are rich in a number of phenolic 

compounds that display antioxidative properties. The study reported here has clearly 

established that onion skin serves as a promising source of natural antioxidants for the 

development of nutraceuticals or value-added products. Moreover, the in vitro studies 

carried out further provides strong biochemical rationale for performing further in vivo 

anin1al and hutnan clinical studies to demonstrate the benefit of onion-based diet and to 

confirm safe use of such products, as such or as functional food ingredient. Absorption, 

accessibility and metabolistn ofphenolics involved should also be studied. Similarly, the 

studies reported here also demonstrated potato peels contain a number of antioxidant 

cotnpounds which can effectively scavenge various reactive oxygen species I free 

radicals under in vitro conditions. The broad range of activities of the extracts suggests 

that tnultiple mechanisms are responsible for the antioxidant activity of potato peel 

extracts and clearly indicates their potential application as food ingredients or specialty 

chemicals. For the first ti1ne, it extensively examined all three forms of phenolics, 

namely free-, esterified- and insoluble-bound phenolics along with their contribution to 

antioxidant activity and clearly highlighted the itnportance of including the esterified and 

bound phenolics in the analysis and reporting of total phenolics content. The 

qualitative/quantitative analysis of the extracts for phenolic acids showed the presence of 

128 



chlorogenic acid, caffeic acid p-coumaric and ferulic acids in potato peels and flesh, 

consistent with the earlier reports. However, further in vivo studies are needed to 

demonstrate the absorption and metabolism of potato peel phenolics. In addition, to in 

vivo studies, application of these as antioxidant food preservateves should be added. 

Also, while the potato peel may be a good source of phenolic acids, recovery of these 

from the industrial doenstream waste require further study as it is very tedious. 
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