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Abstract

Icebergs pose unique risks to shipping and offshore oil and gas operations on the
Grand Banks. These include risks of impact on fixed and floating installations, and risks
of scour on sub-sea installations, such as pipelines and wellheads. Iceberg size, shape and
stability are needed to determine the interactions and risks. A model is presented that
focuses on the relationship between iceberg motion and its stability. Then melting and
towing are considered separately. An example is shown to illustrate how changes in shape
due to melting can lead to instabilities that result in the iceberg’s reorientation to a new,
more stable position. Meanwhile some other examples are shown to demonstrate how
towing force and water drag force change the stability and motion of the iceberg. The
work is a first step towards an iceberg evolution model that will eventually incorporate a
detailed description of iceberg shape changes due to melting and fragmentation. Some of
the consequences of reorientation, such as changes in draft and hydrostatic forces
distribution, can then be considered. Such an iceberg evolution model will be a tool to aid

iceberg risk assessment and iceberg management.
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Chapter 1

Introduction

11 Aim

The main aim of this thesis is to provide a method for the evaluation of the stability
of an arbitrarily shaped iceberg. The changes in stability of an iceberg are mainly derived
from two sources. One source is external forces, such as towing, wind. waves and
currents. The other is shape change, due to melting and fragmentation. A numerical
iceberg evolution model is developed here that simulates the stability, floatation, and
motion of an iceberg. Changes in shape due to melting are then considered. Further, the
effects of a towing force are examined. The iceberg stability and evolution model will be

atool to aid iceberg risk assessment and iceberg management.



1.2 Scope

Icebergs off the east coast of Canada pose a unique hazard to shipping and petroleum
development. The probability of iceberg collision is decisive in evaluations of feasibility
for different types of offshore structures, such as detachable, fixed, or floating structures.
In order to avoid collision, the icebergs are tracked, and their drift trajectories are
predicted using iceberg drift models. If possible, icebergs are towed away. Icebergs
whose keels touch and plough through (scour) the soft sediments of the seabed may crush
and rupture seabed installations such as wellheads, anchors, mooring systems, pipelines,

and teleccommunication cables.

When studying iceberg drift, towing, grounding and scouring, the environmental
factors and the mechanical properties of the iceberg itself should be considered. Among
those factors, deterioration and stability are the key components to construct a more
accurate iceberg drift model, or instruct iceberg towing. If significant mass is lost by an
iceberg due to melting or calving, it can change the iceberg’s characteristics. Further, it
can lead to instability or change the iceberg’s drift trajectery. In this situation, the
resulting motion is sometimes unexpected. In order to handle this, an iceberg
deterioration model should be incorporated into iceberg drift models. The tendency of
icebergs to roll or heel over is well known, and so the potential hazards and difficulties of
towing unstable icebergs may be significant. It follows that there is a need for accurate

techniques for determining the stability of a towed iceberg.



According to the main aim of this thesis, it is clear that the focus of this research is
not impact, drift prediction, or scouring loads, but rather the iceberg itself. Icebergs in the
Newfoundland and Labrador offshore environment change rapidly as they migrate from
northern latitudes, where they originate, to the latitudes around Newfoundland where they
disappear. The changes are due to wave erosion and associated calving, natural and
forced convective melting, solar radiation melting, and fragmentation due to thermal,
hydrostatic, and motion induced stresses. The shape changes will result in changes to
stability. Then the stability changes of an iceberg will lead to changes in orientation and
floatation. They will also change the distribution of weight and buoyancy. As the
orientation and floatation position of an iceberg define its boundary conditions and
thereby control its deterioration totally, stability is an important point in modeling iceberg

evolution.

In this thesis, a method is presented that can be used to evaluate the stability,
floatation, and motion of an arbitrarily shaped iceberg. Changes in shape due to melting
and external forces, such as towing force and water drag force, are then considered. Some
examples are shown to illustrate how the method works. In order to model an evolving
iceberg shape, a substantial effort is required to keep an accurate and adaptive mesh. This

is foregone here in order to concentrate on the stability and motion issues.

In Chapter 2, a general review of the iceberg literature is presented. In order to

simulate the motion and melting of an iceberg, we need to know all its properties, such as



shape. volume, density, centroid, and moments of inertia. These components and other
important parameters. such as the iceberg’s generalized mass matrix and the selection of
coefficients, are the main subject of Chapter 3. A numerical simulation method is
described in Chapter 4 and some simulation results are presented and discussed.
Conclusions drawn from the work and suggestions for further research are shown in
Chapter 5. There are three appendices. Appendix A shows the basis of the numerical
methods used in the simulation. Appendix B describes the simulation program used in the
work in detail. And a sample of input model file for the program is listed in Appendix C

as a reference.



Chapter 2

Literature Review

In general, we can ize iceberg ioration as discrete or i The

melting processes are continuous and fragmentation processes are discrete. The focus of
this thesis is on the motion of a freely floating iceberg, including the reorientation
processes as stability changes due to melting or external forces, such as towing force and

water drag force.

Considering an arbitrarily shaped 3-dil i iceberg, three critical components
govern the relationship between the melting and movement. They are; ice
thermodynamics, the shape of the iceberg and the iceberg movement due to the change of
stability. In this chapter, a survey of previous work on iceberg melting, iceberg shape and
iceberg stability is presented. At the end of this chapter, several iceberg deterioration

models are also reviewed.



2.1 Ice thermodynamics

The deterioration of an iceberg is influenced mainly by five different processes

(White et al., 1980. El-Tahan et al., 1987. Hanson. 1990). They are:

Surface melting due to insolation.

Melting due to buoyant vertical convection.

Melting due to forced (air and water) convection.

Wave erosion.

Calving of overhanging ice, thermal stresses. ‘faults’ and wave induced

stresses.

Because the continuous deterioration processes are the emphases of this review, the

first four processes are considered here.

2.1.1 Surface melting due to insolation

Solar radiation on an iceberg surface is a minor but steady cause of mass loss from an
iceberg. especially in the summer months. Figure 2-1shows De Jong's (1973) values of
measured insolation for the center of the Labrador Sea (60'N) and for the waters east of

Newfoundland (50°N ). In Figure 2-1, it can be seen that the more northerly point, being



less foggy than reaches the il i ion ratio at about 50%.

Latitude (incidence angle with the sun), roughness of the iceberg’s surface. amount of
bubble content. snow or frost cover, and local meteorological conditions. such as fog and
cloud cover. are the key factors that affect the insolation on an iceberg. This is the reason
the measured values of ice insolation ratios in the literature vary from less than 10%
(clear, flat ice surface) to 60% (bubbly. frosted ice). Hobbs (1974) suggests 60% as
representative of Arctic ice, but De Jong (1973) and Budyko (1972) suggest 30% to 40%

as a mean value for sea ice.
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Figure 2-1 Iceberg surface melting rate due to insolation at 50°N latitude (after
‘White et al., 1980)

2.1.2 Melting due to buoyant vertical convection

Buoyant vertical convection is the result of and salinity
between the iceberg melt water and the seawater. When ice melts in seawater, melting at
the ice/water interface cools and dilutes the adjacent seawater. Because salinity effects
dominate temperature effects on density, a region of positively buoyant water is created

next to the ice wall that results in an upward flow. Further from the ice the salinity



quickly rises to its ambient value. but because of the comparatively larger thermal
diffusivity from the ice to the water, the temperature remains depressed. This cold water
of ambient salinity is negatively buoyant and sinks. Therefore, the complete flow field
consists of an inner upward-flowing boundary layer that becomes thicker in the upward
direction, and an outer downward-flowing boundary layer that becomes thicker in the
downward direction. Thus, thermal buoyancy will be downward and saline buoyancy will

be upward. Estimates of the net effect have been made by several authors.

Josberger (1977) used experimental and theoretical studies to estimate the buoyant
convective melting rate. The experiment looked at a freshwater ice wall melting in salt
water of uniform far-field temperature T_ and salinity S_ . Fieldwork was also done to
validate the laboratory work. In the experiment, three different flow regimes were
observed. There was a region of laminar flow at the bottom of the ice and one of turbulent
flow farther up the ice wall. The two regions were separated by a zone of transition from
laminar to turbulent flow. The interface temperature was observed to be dependent on
flow regime. The coldest temperature occurred at the bottom of the laminar region and
slowly increased with height until the turbulent region was encountered. In the turbulent
region the interface temperature remained uniform and warmer than the ice wall
temperature outside the turbulent region. The melting rate, measured normal to the
surface of the ice wall, also depended on flow region. In the laminar regime, the greatest
melt rate was found at the bottom of the ice wall, and decreased with increasing height

from the bottom. The highest melt rates were found in the region of transition from



laminar to turbulent flow. The author also found that the ice face was smooth in the
turbulent zone, and the melt rates in such zone were about 30% higher than in the laminar

zone.

A field study was carried out to compare with the laboratory work. In this field
measurement program, an iceberg with a waterline length of 100m, a height of 30m and a
draft of 100m was examined. Based on the resuits derived from the lab experiment, the
author estimated the melt rate of the iceberg was 0.Im-day” and the boundary layer
thickness was of the order 0.5m in the water with the temperature of +2.0°C and salinity

of 33.0%.

‘The melt rate equation obtained from the lab studies is given by

Vo =3.7x107(T, -T,)" m-day™ @n

where V_, is the melt rate due to buoyant vertical convection; 7, is the far field water

temperature; and 7} is the freezing temperature.

Russell-Head (1980) observed ice blocks melting in water of different temperatures
and salinities. The author examined the dependence of melt rate on salinity, water

temperature and ice block size. From the experiment results, the author found that the

<10-



melting mode in fresh water was different from in water of sea-salinity, and if the salinity
of water was between 17.5%c and 35.0%. the effect of salinity on the melt rates was
insignificant. The bottom and side melt rates were similar, and the bottom melt rates were
independent on the size of the ice block. Conversely, the side melt rate of the large block
was lower than that of the medium block due to the greater thickness of the melt plume

next to the large block.
From Russell-Head's study. a power relationship between the melt rate and
temperature difference between the water temperature and the temperature at the onset of

freezing of seawater (~1.8'C) can be denoted as

1.8x107(T, +1.8)* m-day™ 22

The third estimate of melt rate was given by Neshyba and Josberger (1979). The
authors” work was based on Morgan and Budd's (1977) analysis of Antarctic iceberg size
and latitude distributions. They fitted Morgan and Budd's eight data points to a least-
squares parabola and subtracted the constant intercept as a “calving wastage”. Finally,

they arrived at the following estimate of vertical buoyant melt rates:

Vs =0.007616(T, ~T,) +0.0012877(T, ~T,)m-day™ @3)

=1l



All of these three melt rate estimates are plotted in Figure 2-2. From the picture, we

can find that these three estimates differ ially. i at higher
gradients, the estimated melt rates differ more and more. The differences in the
experimental conditions, the scale factors between the model and the real iceberg, and the

effect of the waves and current in the tanks lead to such big differences.
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Figure 2-2 Three estimates of the convection melt rate of a nearly vertical ice surface

2.1.3 Melting due to forced (air and water) convection

The theory of forced convection iceberg melting is quite complex, as shown in a

theory by Griffin (1977). If the icebergs are relatively small and the wind-driven relative

-12-



velocities are relatively strong. such as 10 to 30cm/s. the melt rates of icebergs from
forced convection are significantly larger (about 6 times) than those from natural buoyant
convection (White et al., 1980). In this situation, melting due to forced convection (wind)
can be expected to be more important. When the wind speeds are very small or negligible.
we can ignore the effect of the wind. and consider the melting due to forced convection to
be largely dependent on the relative velocity and temperature of the water and ice. Even if
atmospheric pressure gradient effects are neglected, a thick velocity boundary layer will
be generated when the flow passes an iceberg. Because of the existence of this thick layer.
the temperature of the ice wall varies according to salinity intrusion at the melt interface.
An approximate means of evaluating the melt rates of tabular and non-tabular icebergs

was developed by White et al. (1980).

v, =2 (2.4)

where V,, is melt rate due to forced convection. p, is the density of ice, I is the latent
heat of melting of ice, and the heat transfer rate per unit area at the iceberg surface, g_. is

denoted as

=N xkxT, @s)

3=



where T_ is the water temperature, k is the thermal conductivity, and L is the maximum

waterline length.

The Nusselt number N, can be written approximately for non-tabular icebergs and

tabular icebergs as

N, =0.055R?*P°*  non-tabular
N, =0.058R**P**  tabular

2.6)
where R, and P, are the Reynolds and Prandtl numbers, respectively.
The melting rates from Eqn. (2.6) are plotted in Figure 2-3 for various iceberg lengths.

From Figure 2-3, it is noticeable that the average melt rates for non-tabular icebergs and

tabular icebergs differ only about 5%.

-14-
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Figure 2-3 Theoretical iceberg average melting rate due to forced convection, for
various waterline length (after White et al., 1980)

2.1.4 Wave erosion

Based on observations and laboratory experiments, we know that most of the melting
of an iceberg takes place on its submerged surfaces. Wave erosion at the water line of the
iceberg is the most important of the various mechanisms affecting iceberg deterioration. It
is clear from published observations of icebergs (e.g., Groen 1969) that waves, even in
cold waters, can rapidly erode a notch or ledge into the side of an iceberg, after which
calving or fracture can occur. In the summer months, wave erosion and calving may

together account for over 80% of iceberg mass loss.

0 3



Laboratory experiments on wave erosion of icebergs are few. In 1977. Josberger
examined the effect of small flapper-generated waves with a height of 5 cm and a period
of 0.4 sec on a vertical ice sheet in fresh water with a temperature of 4°C. A waterline
notch of 8 cm deep was carved by the waves in 45 minutes. The notch extended in the

vertical direction, one wave height notch above the waterline and about % below the

waterline, where k is wave number.

El-Tahan et al. (1987) observed that a sea state of 1 to 2 caused 0.5 to 1 m of erosion.
per day. Based on this observation, Bigg et al. (1997) extrapolated an approximate melt

rate equation that was denoted by
V,. =055, @n

where V__ is the iceberg wave erosion melt rate, and S, is the sea state, calculated as a
function of wind speed according to the marine Beaufort scale (Meteorological Office,

1969).

White et al. (1980) developed theoretical estimates of the amount of ice melted by
wave action. The coefficients of their model were selected based on the comparison to
Josberger's results and their own tests. They suggested that the iceberg wave erosion melt

rate V,, per degree Celsius of water temperature was a function of the mean height H

-16-



and period T of the waves, and the roughness height R of the iceberg surface for a rough
ice wall. For a smooth ice wall. V_, could be calculated in terms of the wave Reynolds

number

H:
= 2.8)
- = Tv. 238

where v, is the water kinematic viscosity.

The final correlations were given by

a2
V. x =noooua[ ] Rough wall
29)

v, =0.00015R " Smooth wall

T
H
T
“H

where % is the roughness ratio.

The smooth wall melt rates are plotted in Figure 2-4 for typical Reynolds numbers.
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Figure 2-4 Computed wave erosion rate profiles for a smooth surface at H=1m (after
White et al. 1980)

Robe and Maier (1977) reported another excellent wave erosion example. In their
report, a unique series of five photos taken of the same iceberg over a period of 25 days,
from 12 May to 6 June 1976, was presented. In general, icebergs normally change their
shape so rapidly by a combination of calving, melting and rolling, that it is hard to
identify them after only a few days. In this case, the iceberg had only 4m to 5m of
freeboard and stayed in a very stable position. In those 25 days, the iceberg decreased in
surface area from approximately 190,000m” to an area of 109,000m’. The rate of decrease
in surface area due to wave erosion, undercutting and minor calving, was nearly linear
(Shown in Figure 2-5).
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Figure 2-5 The reduction of the iceberg's sea level horizontal area as a function of
time (from Robe et al. 1977)

2.2 Deterioration Models

In general, the population, stability and size distribution of icebergs are largely

on their ioration rates. Several ioration models have been developed
in the past few decades (IIP, El-Tahan et al. (1984), Venkatesh et al. (1994), Venkatesh et
al. (1985), Diemand et al. (1986)). One of the main aims of the models has been to have a
way to predict gross changes in iceberg size over a period of days, to fill in the gaps
between visual (aircraft) sightings. Many environmental parameters such as wind
direction and speed, currents, waves, air and water temperatures were incorporated into
some sophisticated models to obtain more accurate results. In this section, several models

are reviewed.
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The International Ice Patrol (IIP)'s deterioration model is based on White et al.’s
report (1980). In this model, some of the physics, especially the continuous deterioration
processes, such as buoyant convective, wind forced convective, insolation, and wave
erosion melting were considered. The discrete deterioration processes, such as
fragmentation and calving, were not included in the model. In order to make use of the
equations in White et al.’s report, some associated environmental information, such as sea
surface temperature (SST). wave height, and wave period, have to be obtained. The
output from the deterioration model is presented in a simple form that gives the
percentage of the original length that has been melted by the model. According to the
requirement of [[P's model, each size of iceberg is assigned a characteristic length (Table
2-1). Four melting processes are discussed below in order of increasing importance

(Table 2-2).

Table 2-1 Characteristic length of icebergs (US Coast Guard, 2001)

SIZE CHARACTERISTIC LENGTH
Growler 16 meters
Small Iceberg 60 meters
Medium Iceberg 122 meters
Large Iceberg 225 meters

Table 2-2 Deterioration caused by each process considered methods over one day
assuming: Wave height=6ft, Wave period=10sec, and Relative Velocity=25cm/sec
(US Coast Guard, 2001)

MELTING CAUSED BY DETERIORATION [ % OF TOTAL




Insolation 0.02m/day 0.30%

Buoyant Convection 0.12m/day 1.60%
Forced Convection 0.93m/day 142%

; ‘Wave Induced 6.55m/day 84.0%

The equations used (o estimate melting due 1o forced convection are based on Figure
2-3 (White et al. 1980). Because there is a change in the slope of the linear
approximation at a relative velocity of about 25 cm/sec, the estimation equations were
divided into two parts, one for relative speed less than 25 cm/sec and the other for greater

than 25 cm/sec. The forced convective melting factor ( FC ) is written as

FC=(0.934-(0.202l0g,, L)S ., (cm/day/'C) less than 25cm/sec
FC=(0.660~(0.15110g,) L)XS s ~25)+(0.934-(0.20210g,, )25 (2.10)
(cm/day/"C) greater than 25cm/sec

where L is the present waterline length of the iceberg, and S, is the relative speed of
the iceberg with respect to the historical geostrophic current. Using FC we can obtain the

amount of deterioration due to forced convection:

1
FC-(T,~T)) Zpp >
100

Vo=

cm/day @11

-21-



where Z,_ is in units of half days (hence the 0.5) and the factor of 100 converts

centimetres to meters.

The wave erosion is the most important component of iceberg deterioration (as
shown in Table 2-2). The equation (2.9) is used to model the wave erosion. This equation

is solved for melting rate due to wave erosion in meters per day (IIP):

v o H-0000146-2.0/H)*-24-3600-2,,, -05-(@,-T))
- 100

-day’  (2.12)
In order to use this equation, we should first assume a value for the roughness on the
iceberg wall. The relationship between the iceberg roughness and the roughness factor is

shown in Figure 2-6. In this model. a value of 2.0 cm was chosen.



Assumed Valve

03

o

25

018

Roughness Factor (Using 8 Feet Wave Height)

15 2 25
Teeberg Roughness (cm)

Figure 2-6 Effect of iceberg roughness on wave erosion (US Coast Guard, 2001)

The total melt V,,, for a given time period is calculated as:

Vietr =V Vit + Vi + Vi

(2.13)

The final output (the percentage of the original length that has been melted by the

‘model) for the time period between the present P,

resent-melt

be calculated:
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Prrsenoce = Prreoens ot +£~lm (2.14)

where L. is the istic length of the iate size of iceberg. and P, o -

Pyrpesmes A€ the percent of the original length that has melted.

El-Tahan et al. (1984) proposed a deterioration model, which was also based on
White et al.’s report (1980). The model was used by the authors to simulate the
deterioration of three icebergs in the Grand Banks/Labrador Sea off the Canadian east
coast. Then the simulation results were compared with the observations. In their model,
five deterioration processes were considered. They were; surface melt due to insolation,
melting due to buoyant vertical convection, melting due to forced (air and water)
convection, wave erosion, and calving of overhanging ice slabs. Except for the last
process, the estimation equations adopted in the model were the same as the [IP's model.
Considering the fragmentation process, White et al. (1980) pointed out that the failure

length, Fl . could be estimated from

1
F1=033(37.5H +1') (.15

4=



where H is the wave height and ¢ is the thickness of the overhanging slab. For a steady
wave field, the time to calve, 7,. can be calculated based on the waterline erosion rate
v,

.16

It is notable that calving time decreases significantly with increasing wave height and
decreasing wave period. The authors validate the simulation results with some field data.
Three icebergs were involved in comparison. In the first case. the observation data of an
iceberg reported by Kollmeyer (1965) was used. The authors found that the model
simulations underestimated the mass loss by about 25% over the observation period. The
authors believed that there were two reasons that could lead to the underestimation. One
is the model did not account for mass loss resulting from calving induced by thermal
stresses. and the other was errors in the estimates of the observed wave heights and period.
In the other two cases, an iceberg reported by Robe et al. (1977) and an iceberg (iceberg
No. 032, observed at Ogmund E-72 (1980). an offshore Labrador iceberg surveiliance
program), the predicted mass losses were in good agreement with the observed mass

losses.

Venkatesh et al. (1993) examined two icebergs with their deterioration model. The

authors mainly considered wave erosion and calving - two deterioration processes that



accounted for nearly 80% of the deterioration rate. The estimation equations used in their
model were also based on White et al.’s report (1980). Unlike El-Tahan et al.’s model
(1987). the authors found that the calving events were well simulated. Meanwhile the

deterioration of icebergs as they emerged out of sea ice could be successfully modelled.

Venkatesh et al. (1985) reported a field study on the deterioration of two icebergs
grounded outside St. John's harbour. A lot of data, such as berg-related. meteorological
and oceanographic data, were collected during the period of 10-25 June 1983. The
authors also compared the observation data with the simulation data. In their comparison,
the deterioration model carried out by El-Tahan et al. (1984) was adopted. The mass
losses due to insolation, buoyant vertical convection, forced convection in air and water,
wave erosion and calving were simulated. The final conclusion was similar to the result
of El-Tahan et al. (1984). For one case, the predicted mass loss underestimated by 10%
with the observed mass loss. For the other case, the difference between the predicted and
observed mass loss rates was about 30%. The authors explained this great difference in
the same way as El-Tahan et al. (1984). The main reason was that the model could not
simulate calving correctly. Compared with Table 2-2 pointed out in [IP’s model, the
simulation supported the opinion that wave erosion and calving may together account for

over 80% of iceberg mass loss.

Diemand et al. (1986) the jorati ing in a different way. The

authors divided the studies of the deterioration of icebergs into three categories. The first
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was laboratory model tests in which melting phenomena involved in the ablation process
were studied. The second was large-scale statistical studies on iceberg populations. The
last was theoretical studies of calving of icebergs and glaciers based on known
mechanical and materials properties of ice. The authors focused on the construction of a
statistical model, and developed a simple Monte Carlo model to simulate the iceberg
deterioration. In their model, icebergs could be selected from an initial mass distribution,
and mass loss was assumed to be proportional to the product of a series of environmental

factors.

2.3 Iceberg Shape

There are two widely used kinds of iceberg size and shape classification: one is
defined by the IIP. and the other one is defined by the World Meteorological

Organization (WMO) (1970).

The WMO divides icebergs into three categories: icebergs, bergy bits, and growlers,
based on the size of the icebergs. A massive piece of glacial ice whose above water
volume. or sail. extends at least 5 m above the waterline and has a water plane area
greater than 300 m” is defined as an iceberg. A bergy bit's sail extends between | m and 5
m above the waterline and has a water plane area of about 100 to 300 m’. A growler has a

sail that extends less than | m above the waterline and a water plane area of about 20 m”.
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The IIP has two classifications. one is based on size, and the other one is based on
shape. The size classification is shown in Table 2-3. Venkatesh et al. (1988) extended the
size categories with more details. such as estimates of perimeter, mass, and surface area

(shown in Table 2-4). Some details of shape categories defined by the IIP are shown in

Table 2-5.
Table 2-3 IIP iceberg size categories (I[P website)
Category Height [m] | Length [m]
Growler <l <5
Bergy Bit 4 514
Small 5-15 15-60
Medium 16-45 61-122
Large 46-75 123213
Very Large >75 >213
Table 2-4 Average iceberg size (Venkatesh et al. (1988))
Length Mass Perimeter| Wetted surface| Total surface
Caemory [m] | (onnes) | [m] | aream?] | area[m’]
Growler (non tabular) 10 450 30 250 350
Small (non tabular) 55 75.000 155 8,000 10,300
Medium (non tabular) | 125 900,000 360 36,000 48,000
Large (non tabular) 225 5,500,000 650 110,000 150,000
Small (tabular) 80 250,000 235 15,000 20,000
Medium (tabular) 175 2,170,000 500 67,000 92,000
Large (tabular) 260 8,230,000 750 150,000 204,000




Table 2-5 IIP iceberg shape categories

Category Sub-category Description Ratio of water length
to sail height

Tabular Horizontal
Or >5:1
Flat tops
Steep sided
Non tabular Blocky And 25:1
Flat topped
A central spire
Or
Pinnacle A pyramid shape that NULL
may has several
pinnacles
A wave eroded U-shape
Dry dock slot between two or more NULL
columns or pinnacies
Smooth and rounded
Dome with low sides NULL

A recent report (Anon, 1999). sponsored by the Program for Energy Research and
Development (PERD). i three-dimensional shape and geometry for icebergs
observed on the Grand Banks of Canada into a single database. The database collected the

information of iceberg projects over the past 20 years, and contained dimensions for 872
icebergs, detailed 3-dimensional information for 28 iceberg keels as measured from sonar
profiling, detailed 3-dimensional information for 566 iceberg sails as measured from

stereo photography, and 2-dimensional profiles for 155 iceberg sails and keels.
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Based on this database. an iceberg visualization project was developed by Barker et al.
(1999). This project was also sponsored by the PERD. In this visualization database. 79
records that contained 3-dimensional data. in the form of x-y-z-coordinate data. could be
used to provide an informative view of actual icebergs, in which showing keels for 25

icebergs. sails for 52 icebergs and complete shapes for 3 icebergs.

2.4 Hydrostatics and Stability

Several stability evaluation models have been reported in the literature. In general,
two main methods have been used to study the stability of an iceberg. One is a potential

energy approach and the other is a shape/motion analysis approach.

2.4.1 Potential energy approach

The potential energy method to analyse the stability of a floating body has been
studied for several decades. In 1984, Bass and Peters developed an interactive computer

program to analyse the position of equilibrium of a floating body. In their

method, the stability of that equilibrium position was determined by the relative vertical
movements of centre of buoyancy B and centre of gravity G. The vertical distance of B
from G is a measure of the potential energy. The horizontal distance between B and G,

GZ. is defined as the lever arm of the gravity force and buoyancy (shown in Figure 2-7).



Water Line

A

Figure 2-7 Floating homogeneous body in dynamic equilibrium (from Bass and
Peters, 1984)

If the potential energy was at a minimum value, the iceberg is in a stable equilibrium
position. If the lever am GZ was equal to zero but the potential energy was not a
minimum. the iceberg was in an unstable equilibrium position. If GZ was identically zero
over some range of orientations, then the iceberg was said to be neutrally stable over that
range. In such a situation, the potential energy was constant over a neutrally stable range.
In their program, a 2-dimension model was divided into horizontal or vertical strips to
calculate the gravity and buoyancy. and the centres of gravity and buoyancy. Finally, the
relationship between righting lever and potential energy could be drawn. From such
relationship, they focused on the draft changes when the iceberg sought the more stable
position. In their work, they drew a conclusion that when an iceberg rolled from one
orientation to another, it may increase its draft by as much as 50%, and an average for the

increase in draft was i ly 25% for their 2-di ion models.
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A potential energy method was also used to find the stable position of an iceberg by
Lewis and Bennett (1984). The main aim of their study was to construct the relationship
between rolling and draft changes. They generated model icebergs randomly. and
calculated the potential energy as a function of angular displacement. Further, they
calculated the draft changes when the model moved from a local minimum potential
energy position to an absolute minimum one. The method the authors used is described as

follows briefly.

In their paper. an iceberg was defined as a convex model, and its cross section was an
n-sided polygon. To determine the potential energy for a given orientation. the iceberg
was first rotated through the specified angle, about the centre of mass. The height of the
waterline above the centre of mass was then adjusted using Regula Falsi method. Once
the height of the waterline above the centre of mass of the iceberg had been found, the

depth h,, of the centre of buoyancy below the centre of mass could be calculated. Then

the potential energy was given by

E=gpAh,L @17)

where A, was the area of the n-sided polygon, p, was the density of the iceberg, g was

the gravitational acceleration, and L was the length of the model iceberg in the direction

of the axis of rotation. They examined 36,000 icebergs, and found that more than 25% of

=



those icebergs increased their drafts during rolling. Meanwhile, they pointed out that the

majority of the changes were relatively minor, of the order of 10%.

Their model had several limitations and assumptions. First, the model icebergs were
2-dimensional. convex, and of constant, polygonal cross-section parallel to the axis of

rotation. Second. the dynamics of roll were not included in their consideration.

2.4.2 Shape/Motion analysis approach

In 1980. Bass reported a study of the stability of icebergs. His study was much
different from the potential energy method described above. He just considered the shape

of the iceberg.

The basic theory the author adopted is shown in Figure 2-8. C is the centre of gravity

of the portion of the iceberg above water, A, is the height above the water line, B and G
are the centrs of buoyancy and the centre of gravity of the body, H, is the depth below

the water line. and M is the metacentre. The distance BM can be written by the formula

(2.18)

-33-



where / is the area moment of inertia of the water-plane section of the body about the
major axis and V, is the below-water volume of the body. Furthermore, the distance GM

can be given as

GM=BM-BG
1 2.19)
=gy, 01250, +H,)

where V, is the volume of the above-water portion of the berg. The only unknown (unless
total information on the iceberg was available) is the value of H,. Everything else may

be calculated from the above-water portion.

Figure 2-8 Vertical cross-section of a floating homogeneous body, shown in
equilibrium and in a tilted position (from Bass, 1980)



To this end. three key parameters were introduced. The first one was the above-water
fullness coefficient, and the second one was the under-water fullness coefficient, and the
final one was the water-plane fullness coefficient. Using these three coefficients. the
author defined a measured stability ratio, which was the ratio of average width to average
height. If the measured stability ratio for a given iceberg with the above three coefficients
was greater than the critical ratio, the iceberg was stable. Otherwise, it was unstable. In
his paper. two simply shaped icebergs, the rectangular cubic model and the ellipsoidal
model. were presented as examples. The author also examined a large number of iceberg

types and gave their ing three fullness i The accuracy of his model

depended greatly on the exact shape of an iceberg.

As an iceberg melts, the resulting change of shape can cause it to list gradually or to
become unstable and topple over suddenly. Similarly, when an iceberg breaks up some of
the individual pieces may capsize. Nye and Potter (1980) used Zeeman's analysis
(Zeeman, 1977) of the stability of ships, which is based on Catastrophe theory, to analyse
this problem. In their work, two concepts, metacentre and buoyancy centre, were replaced
by metacentric locus and buoyancy locus. Together with the centre of gravity, one can
find the equilibrium attitudes of the iceberg, whether they are stable or unstable, and
whether a stable attitude is dangerously close to an unstable one. With the melting of the
iceberg, the metacentric locus evolves. Its relation to the centre of gravity determines how
the various equilibrium attitudes change and how attitudes of stable equilibrium might be

destroyed. The main advantage of adopting catastrophe theory is that it gives a three-
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dimensional geometrical picture that enables one to see all the possible equilibrium
attitudes of a given iceberg, whether they are stable or unstable. whether a stable attitude
is dangerously close to an unstable one, and how positions of stable equilibrium can be
destroyed as the shape of the iceberg evolves with time. There are some weaknesses in
catastrophe theory applied to iceberg analysis. The catastrophe theory modeling is more
suited to analyze stability for a ship than for an iceberg. For a ship. metacentric locus is
fixed while buoyancy locus is changeable. For an iceberg. both change. Catastrophe
theory appears to predict a rectangular iceberg will heel to a small angle when it becomes

unstable. In fact it rolls 90 degrees.

In Benedict’s paper (1980), three modeling techniques were used to calculate the
properties of an iceberg. Those properties included the centre of gravity, centre of
buoyancy, above- and below-water volumes, mass, cross-sectional areas, and moments of
inertia. The first technique was to fix a certain geometrical shape, which defined a class
of objects whose individual members were defined by specifying one or more parameters,
and to assume that the iceberg could be modelled as a member of this class. The second
method was to use a “building block™ approach, constructing the model by packing
together a number of identical elements. The third one was to represent the iceberg
surface as a series expansion in terms of analytic functions. In the first approach, the
metacentre height was calculated and used to judge whether the iceberg was stable or not.
In the second method, the author calculated the position of the centre of gravity and the

centre of buoyancy. By comparing these two positions, one could determine whether the



iceberg was stable or not. In the function method. the author could compute the properties

of the iceberg. and then analyse its stability.

All the models reviewed above share common features. First, all the studies deal with
the 2-dimensional models. Second. the authors examined some selected simple shapes.
Third. static conditions were considered in their models. Compared with dealing with the
simple 2-dimensional shape, an arbitrarily shaped 3-dimensional model is much more
complicated. More effort is required to compute the properties of the model. Further. the
results derived from the static analysis are not comprehensive. For example. if we do not
consider the inertia and motion of a model, it may stay in some local stable position. If
the above factors are considered. the model may pass through a local stable position and

move to another more stable one.
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Chapter 3

Methods

3.1 Scope

Evaluation of the hydrostatic. floatation. and stability properties of an arbitrarily
shaped floating body is not trivial. Some attempts have been made to set simple stability
criteria for iceberg shapes using information that can be estimated from the above water
portion of the iceberg (e.g. Weeks & Mellor 1977. Bass 1980). The approach taken here
is based on integration of pressure over the elemental areas that make up the iceberg’s

surface (see e.g. Witz & Patel 1984 and Harrison, Patel & Witz 1989).

3.2 Basic stability theory

To start, basic stability theory for an iceberg will be reviewed briefly.
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In Figure 3-1. G is the centre of gravity of the floating iceberg, and B is the centre of
buoyancy. For a floating body, there are two hydrostatic conditions that govern the static
position and orientation. The first, based on Archimedes Principle, is that the ratio of the
underwater volume to the total volume must equal the ratio of the density of ice to that of
seawater. That is to say, the weight of an iceberg must equal the buoyancy. The second is
that the centre of gravity must be vertically in line with the centre of buoyancy. This
means B and G should be on the same vertical line (Figure 3-1). Any iceberg should

satisfy these two conditions.

Water Line

LN~}

Figure 3-1 Vertical cross-section of an icebrg
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Once the equilibrium is broken, such as due to melting, fragmentation or an external
force. the iceberg will go to a new stable position. In order to determine the new stable

position. a clear understanding of hydrostatic stability is needed.

3.3 Shape definition and coordinate system transformation

3.3.1 Shape definition

A right-handed Cartesian coordinate system is used in this thesis as shown in Figure
3-2). Any change of orientation can be broken up into 3 individual rotations. The standard

order is: first yaw, then pitch, and finally roll.



y
YAW PITCH @

@X

Figure 3-2 Body coordinate system

The choice of method for representing the natural surfaces of icebergs in detail is
directed by the need for flexibility to describe the shape. keep track of and update shape
changes. determine hydrostatic. floatation. and stability characteristics, and evaluate

stresses.

A set of inertial. or space system denoted as O(x,. ¥,.3,) is fixed with respect to the
undisturbed water surface with the 2, axis pointing up. A non-inertia, or body system
I(x,.¥,.%,) is fixed with respect to the centre of mass of an iceberg. The surface of an

iceberg is divided into a series of triangles. Each triangle is defined by three points
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(x.%,.z,) in a body system and a unit normal vector & inside the body. Each point in a
triangle is explicitly associated with two nearby points to form a triangular surface plane:
unit tangents from the surface point to its two associated points define the surface normal
(x product) . The set of elemental triangular areas constitute the discretized surface area.
The relationship between space coordinate system and body system is shown in Figure

3.3

P(x.3.2)

Figure 3-3 Space and body coordinate systems
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Changes in shape due to continuous ablation processes are evaluated at each point at
specified time intervals: likewise the surface normals are evaluated at each point using the
new positions of the surface points. As the ablation processes involve a variety of
environmental conditions that are more or less directional, it is necessary that the vectors

defined in the body system be known in the space or inertial system as well. This can be

done with the i inate system ions (see e.g. Abkowitz 1969).
332 G system ion: position, ion velocity, and
force vectors

The orientation of a body axes relative to inertial axes is given by three consecutive
rotations through the Eulerian angles (®.6,¥). The coordinate transformation method
used here follows Abkowitz (1969). In Figure 3-4, a body axes system x,., y,, 2, is shown
with its initial orientation equal to some fixed axes (which for convenience can be
assumed to be coincident with x,, y,, z,. The first rotation is about the z, axis through an
azimuth angle ¥ the rotated body axes become x;, y,. ,. The rotation matrix T(¥) is

givenin Eqn. (3.1).

cos¥ sin¥ 0
T(¥)=|-sin¥ cos¥ 0 [€B)]
0 0 1
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PLANE VIEW N
1

[SOMETRIC VIEW

Figure 3-4 Rotation of bedy axes through azimuth angle ¥

The second rotation is about the y, axis through the trim angle 6, as illustrated in

Figure 3-5. The rotated body axes become x,, y;. z,. Its transformation matrix T(0) is

cos® 0 -sin@
T@)=| 0 1 o
sin@ 0 cos@

PLANE VIEY %3
X2 9
X2
13
ISOMETRIC VIEW 22

Figure 3-5 Rotation of body axes through trim angle 6
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The third rotation is about the x, axis through the roll angle @, as shown in Figure

3-6 where the x. y. : axes give the final orientation of the body with respect to the space

axes x,. -, - Its rotation matrix is T(®), written as.

1 0 0
T(@)={0 cos® sin® (3.3)
0 -sin® cos®

Z_ PLANE VIEW

L k1z

ISOMETRIC VIEW

Figure 3-6 Rotation of body axes through roll angle &

These three rotations must be done in this order to arrive at the required body axes

orientation. The rotation matrices can be combined to give the transformation matrix T, :
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T =T@)TE)Y)

cosBcos¥ cosOsin¥ -sin® |34
=| sin®sin@ cos¥ - cosPsin¥ in@sin¥ in® :
@ si ¥ +sin@sin¥ i in'¥ @ cos¥ L]

where the subscript T denotes that this transformation is for translational velocity.

position. and force vectors. The inverse of this transformation is T;' given by

cosOcos¥  sindsin@cos¥ —cosdsin¥ cos®sin®cos¥ +sinPsin?
T7 ! =| cosOsin®  sin@sinOsin® +cos@cos¥  cosPsin@sin¥ ~sin®cos¥ |(3.5)
=sin@ sin®cos@ cos® cos©

To apply the coordinate system transformation and the inverse transformation to the
calculation, let us consider the position vector 7,, which locates a point P(x,y,z) on a
body’s surface and whose components are given in its body axes. Given the position
vector in space of the body axes' origin, /, by R,, and the orientation angles (¢,6,¥),
the position vector in the space axes of the point P(x,y,z) is given by R, (shown in

Figure 3-3):
R, =R, +T7 (3.6)

‘The components of a vector given in the space coordinate system are determined in a

body coordinate system oriented at angles (9,6,%) to the space axes by the
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transformation matrix in Eqn. (3.4). The inverse transformation is applied in the opposite
case. such as in Eqn. (3.5). when components of a vector given in a body axes system are

10 be determined in the space axes.

333 Coordinate system transformation: angular velocity vectors

Excepting position. velocity, and force vectors. angular velocity and angular
acceleration are needed to describe the motion of the iceberg. Angular velocities
¥.0.and @ in space system are applied to the iceberg in succession and the angular
velocity @ in body system is determined by summing the vector components of azimuth,

trim. and roll velocities. Again the method presented here follows Abkowitz (1969).
Beginning with the azimuth velocity ¥ . the azimuth component of @ is

P 0
g} =T@)TO)T(¥){0 (X))
r {4

v

where p.g.and r are the components of the angular velocity vector @ about the body

system's x. y. and = axes.

Applying the trim velocity © second, the trim component of @ is



0
Cl
0

P
l q’ ~T@T®) 38
o

¥

Ending with the roll velocity @ . the roll component of @ is

=T(®){0 (39

®
Thus the total angular velocity, @, is given by

A4

o]
=T@)TOT¥ )[ 0} +T(®)TO)
Lo

(3.10)

0 &
6+ +T(®){0
0 0

which reduces to

=T, {6 @3.11)




where the transformation matrix is

1 0 -sin@
T, =|0 cos® sin®cosO® 3.12)
0 -sin® cos®cos®

The inverse transformation matrix can be used to find the angular velocity

components ¥, 6,and @ . when p.g.and r are known in the body system. It is written as

1 sin@tan® cosPtanO
T, =[0 cos® ~sin® (3.13)
0 sin@sec® cosPsecO

3.4 Pressure integration technique

Classical methods of calculating hydrostatic stability, either initial stability or
dynamic stability, rely on the calculation of centre of buoyancy and metacentre. Then the
position of the centre of buoyancy is determined from the submerged volume and the
position of the metacentre arises from consideration of the water plane’s second moments
of area. This approach to hydrostatic stability faces the difficulties of calculating
hydrostatic characteristics of an arbitrary shaped body by using its volume and water
plane area, and suffers from a very restrictive range of validity, such as the small angle

assumption and the ‘wall-sided’ assumption. In this thesis, another more fundamental
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approach is used: the physically more realistic pressure distribution acting over the
submerged body surface. The pressure integration technique (Witz & Patel, 1984,
Harrison et al. 1989) is used to yield all the hydrostatic characteristics of the ice body.
This method is a transformation of surface integrals to volume integrals that allows
conventional naval architectural quantities to be derived directly from the integration of
surface pressure. The method is implemented in a general purpose program that can
compute the hydrostatic characteristics of an arbitrary shaped floating body, with the
body surface defined as a series of panels. The pressure integration technique allows
complex geometries to be modelled accurately and provides accurate results for large
angle rotations. This method requires good discretization. In this thesis, the smooth
surface of the iceberg is re-meshed and the entire body surface is divided into panels,
such as triangles. This mesh process can be done by some meshing tools or some 3-

dimensional model construction tools.

Consider the arbitrary body shown in Figure 3-7 floating at the free surface between
air and water. The air is at a constant pressure equal to the free surface pressure. The
pressure is assumed to be constant across the free surface. The pressure P of the water
with respect to the free surface at any point (x, y, z) in space system below the free

surface is:

P=p.gz (3.14)



where p_ is the density of water, and g is the acceleration due to gravity. There are two
forces acting on the body. The first force is the weight of the body acting vertically
downwards. The second force is due to the fluid pressure acting on the body's submerged
surface. The incremental force dF acting on the a small surface patch dS due to fluid

pressure is

dF =p_gz-dS (3.15)

dF = p_gz-idS (3.16)

By integrating over the submerged surface of the body, the total buoyancy force, F,,

p.g[[z-ids (30}
s

where @iis the unit normal vector acting into the body and is a function of position vector
R(x, y. 2). Similarly, the incremental roll moment about the centre of gravity, due to

buoyancy, dM is:

dM = RxdF = Rx p_gz-2dS (3.18)
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Integrating

M= p,gﬂﬁxzids (3.19)
s

Centre of Gravity
R(x.y

Draught

Figure 3-7 Floating body equilibrium

To compute the mass moment of inertia, product of inertia, which are associated with

the volume integration, the divergence theorem is used here to transform volume

integration to surface integration.
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1av =§p(Pds, +0ds, + RS.) (320)
7

where dS,. dS, and dS_ are projections of an element of the surface § in the x. y and z

direction respectively pointing outwards from the surface of volume V .

In order to simulate the motion of an iceberg, we need to know its generalized mass
matrix. such as the mass of the iceberg. the moment of inertia and the product of inertia,

which is described as follows.

3.5 Volume and centre of mass

3.5.1 Volume of the ice model

The model assumes the ice has constant density. An Arctic iceberg can reasonably be
assumed to be of constant density (see Gammon et al 1983), although this assumption is
not always correct for Antarctic icebergs. In the present case the centroid of the volume is

equivalent to the centre of mass.

The total weight of the iceberg at rest in static equilibrium is equal to the buoyancy.
In order to obtain the volume of the ice model, let us assume the whole body is

submerged into the water, the total buoyancy F, ., is
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Fotus =P8V 321

which is also equal to the total vertical force due to hydrostatic pressure. for a full

submerged iceberg.

Fyre =P8 4p S (322)
7

where the subscript S, means the total surface of the iceberg.

From the Eqn. (3.21) and Egn. (3.22), the volume of the submerged body V . where

based on our assumption the volume of the ice model, can be calculated by

v =¢pz-ias (323)
4

352 Weight of the ice model

Because the body is in equilibrium, the weight F; is equal to the buoyancy F,

F,=F,=p.g[[z-hds (3.24)
5

s



where S is submerged surface of the ice model.

353 Centre of the buoyancy and centre of the mass

By applying the pressure integration technique and the divergence theorem, and
integrating over the whole submerged surface. S, of the body, we can write the centre of

buoyancy as follows:

=!!und3

(3.25)

(3.26)

=% 3.27]
s G

through integrating the total surface, S, , of the body, the centre of the mass can be

yielded
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(3.28)

(329

3.30)

3.6 Water plane area

The water plane area S, can also be derived from the pressure integration technique

S, =[[k-ids 331

5

where K is unit vector in z direction in space system (shown in Figure 3-7), and i, j are

unit vectors in x and y direction, respectively.



3.7 Properties of ice body

In order to simulate the motion of the iceberg, we need know the other mass
properties, such as moments of inertia and products of inertia. All of these elements can
be obtained through volume integration. Here we use the divergence theorem to transform

volume integration to surface integration.

3.7.1 Moment of inertia and product of inertia

The method used in this thesis to transfer volume integration to surface integration is
described as follows. The transformation is based on the divergence theorem (see Eqn.

(3.20)).

v

=afffo?

=P#l(£¥’*yz’-v::)ds +Ey ey -yads, + Gy + 57 - y'ods, )(3.32)
i it .

1=p,ffoc + v
="#“‘{z")”1'-1’2)«1.5' +CR x-S, + (2R + - x2S, ) (.33
3 *73 3 2



I =nf![u‘+y’uv

2 - 25, .5 G349
=p,tf?[(;x’m- £S5, + G040 xS, + (G0 + 07 - )
1= [foav
v
=pdpi-e s Leyas s 2o leyds s 2o leyas) 0
N6 2 B rENeT g Y
I =pf[[ xav
i 3.36)
=p,§§[(—gh- *2)ds, \»(--h-x 2)ds, +(——x’+ ~x0ds. |
i
’.:=P.HI)':JV
(3.37)
'ﬂ@[(--y +-y *2)dS, +(--y *-y *2)dS, *(——y * y'2)ds,]
3.8 Coordinate system transformation in simulation
3.8.1 Initial transformation matrix
The ion of the i system jon matrix has been described

above in section 3.3. Here we use T, as the initial transformation matrix, and T;' as the
initial inverse transformation matrix.
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3.82 Simulation process

Assuming at time r, that the ice model has rotated through three small angles

¥,.6,.0, compared with its initial status, and then the transformation matrix from space

system to body system is denoted as:

T=TT,

and the transformation matrix from body system to space system is denoted as:

™ =TT

At time 7, the corresponding transformation matrices become:

T=TT, 1,

TSR T

(3.38)

(3.39)

(3.40)
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3.9 Equations of motion for a body moving with six degrees

3.9.1 Motion equations

It is assumed that the motions of the iceberg are linear and harmonic. An iceberg
floating at sea is allowed to move in all the six degrees of freedom of motion, i.e.
translation along three orthogonal axes and rotation about each of the three axes. So it is
necessary to choose an axis system to describe these motions and the choice should be
one that is most convenient for the development of the motion analysis. To this end, a
right-handed coordinate system (x,y.z) fixed with respect to the mass centre of the ice
model with z vertically upward is used, which has been described in section 3.3. The
translatory displacements in the x. y. and z directions with respect to the origin are
1,. M. and 1. respectively, so that 7, is the surge, 7, is the sway, and 7, is the heave
displacement. The angular displacements due the rotational motion about the x, y, and z
axes are 1,. 7. and 1), respectively, where 7, is the roll, 7, is the pitch, and 7, is the

yaw angle (Salvesen, Tuck and Faltinsen, 1970).

Under the assumptions that the responses are linear and harmonic, the six linear
coupled differential equations of motion, without exciting force and moment, can be

written as:

.
UM, + A, +B 1, +Can, =0;j=1..6 (3.42)
]
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where M , are the components of the generalized mass matrix for the ice mass, A, and
B, are the added-mass and damping coefficients, and C,, are the hydrostatic restoring
coefficients. The weight. buoyancy. and the moments (i.e. all the C,, terms) due to the

difference between the weight and the buoyancy are taken in the thesis, as the external

forces that govemn the motion of the model.

During the simulation processes, the generalized mass matrix of the iceberg, the
position and the orientation of the iceberg will be updated continuously. Considering at
some time £, , which is a time interval Ar past the time ¢,_,, the iceberg moves and rotates
a very small displacement and angle compared with the position and the orientation at the
time 7__,. This is the reason small angle theory is adopted in this thesis.

In the model, the added mass coefficients and damping coefficients are taken to be
constants during the whole simulation process. In reality, all of these coefficients are
related to the iceberg's shape and frequency of oscillation. Improvement of the added

mass and damping coefficients are recommended for later version of this model.

The Runge-Kutta method (Pachner, 1984) was used to solve the motion equations.

In order to simplify the problem, some other couplings between hydrodynamical

effects are neglected. So the other nondiagonal elements in added-mass and damping
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matrices are eliminated. This might be a good first approximation for the iceberg stability

analysis.

The equations in matrix style can be rewritten as;

M A, %
% A ¥
= + A
1, -1, -l AL 0
-1, 1, -1 A é
e AV e
B“ x
B. y
5 B, : ={ (Fm}}
B, 0| |{Moment}
By 6
Byl lv
In compact model
H
¥
£ Force,
(-] ) o
6
4
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where M is generalized mass matrix. Detaching the variables

i
Force}
s femg) Shome] € 3.45
= 0 {{Mamm)} o4
6
v
¥
( {Force} 3
. e -M"B{" 3.46)
0 i{Momzm} ') 346)
6 6
v
i:#=ﬂlx..\n:.o-ﬂ.v.i.y..‘.o’.é.w;i=1«.6 (347)
If define F(x,y.2,0.6.¥)= Buovancy —Weight , then
%=/.[F(x..\'.:vvyg.w)vi,}'aé.é.é.'('];i:l...é (3.48)
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3.9.2 Forces and moments

3.9.2.1 Buoyancy and buoyancy centre

The buoyancy and buoyancy centre can be calculated from equation (3.22), (3.25).

(3.26) and (3.27).

3.9.2.2 Moment in space system

The moment acting on the ice model in space system in x direction and y direction

can be written as

M, =Fy(¥= ) (3.49)

and

M, =-F,(x,-x,) (3.50)

3.9.2.3 Force and moment in body system

By applying the transformation matrix, the force and moment acting on the ice model

can be converted from space system to body system by



F, 0

{Farcz)= F =T 0 3.51)
£ Fo=Fg
and
M, M,
{Moment}={M,}=T{M, (3.52)
M, 0
3.10 CoefTicient selection

Hydrodynamic coefficients such as added mass and damping are important in the
simulation model. In this thesis. in order to simplify our model, we regard the added mass
coefficients and damping coefficients as constants during the whole simulation process.
The selection of all of these coefficients depends on the iceberg shape and frequency of
oscillation, and the mass and the length of the iceberg are used for non-dimensionalisation
(Shown in Table 3-1). Bass and Sen's (1986) coefficients were used as a reference here.

The exact i need to be calil d using the i data in the future.

Table 3-1 Normalizing factors (Bass & Sen, 1986)

Parameter Dimensionless Dimensionless
Description Symbol  (Factor) (Parameter)
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Surge added mass coeff. A, m (A=A /m

Sway added mass coeff. A m [As)=A./m

Heave added mass coeff. A, m [Ay)=Ay/m

Roll added moment coeff. A, ml* [Au)= AL M(mL)

Pitch added moment coeff. A, ml? [Ay)= Ay (mL)

Yaw added moment coeff. A, ml® [Ag)= Ay (mL)

Surge damping coeff. B, mf7D)  (B,1=B,/m\(g71)
Sway damping coeff. B, m(g/D) [B,]= B, ((m{(g/L))
Heave damping coeff. B, mJ@ID  [By)=By/m{g/D))
Roll damping coeff. B, mEJ@ID)  (B,)=B./mLJ(g/L)
Pitch damping coeff. By, mCJ(IL)  (Byl=By (mL (g1 L))
Yaw damping coeff. B, mL J(g/L) [By)=By /(me(g/—U)

m=mass; L=berg length; g =gravitational acceleration

3.11 Simulation method

The Runge-Kutta method is used to solve the motion equation (3.48). Details of the

Runge-Kutta method are described in Appendix A.

3.12 Potential energy map

A potential energy method is used to determine the equilibrium positions that an

arbitrarily shaped body can assume. The energy approach is used here because it lends



itself to a thorough evaluation of the iceberg's possible stable orientations. This is useful
information because of the large number of possible stable orientations (Bass & Peters

1984, Lever et al. 1991).

For a given orientation, the draft at which the static equilibrium ( F; = F, ) is satisfied
can be found by iteration. The iteration routine finds the position at which the ratio of
underwater volume to total volume is equal to the ratio of iceberg density to water density.
Alternatively, it can be found directly by integrating the pressure on the underwater
surface until the buoyancy is equal to the known weight. For each orientation (pitch/roll
combination) the potential energy is found from the vertical distance between the centres
of gravity and buoyancy, BG. Stable equilibrium positions occur at minima of the energy

function.

E@©.9)=pgVBG (3.53)

3.13 Computer program design

A computer program named STABLE has been developed to simulate the dynamic
stability process, the stability changes due to melting, and the motion changes of the
iceberg due to some external forces. The interface of STABLE is shown in Figure 3-8.
The program is developed using Microsoft Visual C++ language and OpenGL graphics

library. The program has five modules. They are: static analysis of floating position and
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orientation; dynamic stability simulation; potential energy calculation; melting simulation,

l

and, towing and drag force simulation.

| %M&M |

o ‘é
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7]

Figure 3-8 User Interface of the STABLE program.

Here two key points of the program design are described. One is the input file format,

and the other is the data structure of the model in the program.




3.13.1 Format of input file

The Stereolithography. or STL file format is used to input the iceberg model into the
program. The Stereolithography format is an industry standard that is used to store 3-
dimensional models in many CAD software or finite element software. There are two
reasons to choose this file format. One is that the STL file format can store 3-dimensional
model information in a text format. It is easy to view and modify. The other is that we can
use many widely used engineering software packages, such as AutoCAD and Rhino to

mesh and construct an iceberg model.

A sample STL file, a box (10mx10mx10m) model, is listed in Appendix C as a

reference.

3.13.2 Data structure of the model in the program

To make the program work efficiently, a special data structure is designed to describe
the model in the program (shown in Figure 3-9). More details of the program design are

presented in Appendix A.



Mosel =g Faces =g Facemst

Figure 3-9 Data structure of the model in program
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Chapter 4

Results and Discussion

The results of the numerical model and program. described in Chapter 3. are
discussed in this Chapter. The initial aim of this research is to construct the relationship
between the shape changes and stability of the iceberg. For a complex ice model. the
shape changes due to the melting are hard to describe or re-mesh, and some adaptive
mesh geometry technology needs to be employed. Adaptive meshing is outside the scope
of this thesis. For this reason. some simple ice shapes are adopted to demonstrate the
melting process. On the other hand. because the correlation of the stability and motion is
well constructed and programmed, more attention will be paid to the model motion

simulation.

In this Chapter, the iceberg deterioration and stability model will be applied to some
icebergs. and then extended to other ocean engineering applications to illustrate its utility.

Here five applications are discussed. They are:

* To obtain the most stable position using potential energy map.

T~



To evaluate and simulate the stability of icebergs.

To explore the change of stability of an iceberg due to melting.

To simulate the iceberg towing process.

To extend to a simple iceberg drift model.

4.1 Potential energy shapes map and motion simulation

Potential energy maps are given for two samples: a relatively small cone
(@12mx20m high) and a blocky iceberg (roughly 48mx42mx45m). The static potential
energy map of a cone is shown in Figure 4-2. A close-up view is shown in Figure 4-3.
The solid bold line is the potential energy of the cone during the whole stability
simulation process. From these pictures, we can see that the model moves from an
unstable position to a stable one. The corresponding dynamic simulation of the cone is
shown in Figure 4-1. A similar series of figures for the iceberg shape are shown in Figure
4-5, Figure 4-6 and Figure 4-4. In both cases, we can easily figure out the most stable

position. and the maps indicate several local stable positions.
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tability simulation of a cone

Figure 4-1 S
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Figure 4-2 Energy map of a cone
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Figure 4-3 Energy map (close) of a cone
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Figure 4-4 Stability simulation of an iceberg
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Figure 4-6 Energy map (close) of an iceberg
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4.2 Stability evaluation and simulation

The advantage of the pressure integration technique is that it allows complex
geometries to be modelled accurately and provides accurate results for large angle
rotations. Because the program developed in this thesis integrates the pressure integration
technique completely, it is easily to extend to handle some complex models and large
angle problems. An example is presented here to illustrate the operation and performance

of this pressure integration approach to hydrostatic stability.

A simple test was done in the Fluid and Hydraulics lab in the Memorial University of
Newfoundland. A wax cubic model (0.59mx0.55mx0.48m) whose density was the same
as the real ice was adopted here. In the test. the cubic ice model was released with some
angle in the tank. The movement process was recorded using a digital camera. Similar to
the real test. a same dimensional numerical model was input into the program, and
released with the same angle. After selecting coefficients carefully, such as added mass
coefficient and damping coefficient, the movement process was simulated. The test

pictures and simulation pictures were shown in Figure 4-7.

From this example. we can clearly find that the simulation matches the real test very
well. The visual simulation of this process will help people to evaluate the stability more

accurately.



o



Figure 4-7 Real movement of an ice model compared with the simulation
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4.3 Melting simulation

A simulation that incorporates melting and motions for a simple cubic ice model was
examined (see Figure 4-8). As the melting proceeds, the block loses stability and rolls.
During melting all the mass and geometric properties need to be updated. These
properties include the volume, mass, buoyancy centre, weight centre, moments of inertia,
and products of inertia. With these changes, the stable positions change. Combining
motion and melting does not, in itself, present any difficulties. The mass properties and

equations of motion are easy to specify and solve.

-80-



Figure 4-10 Towing force acts above the centre of gravity
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4.4 Towing simulation

As a possible application of the STABLE program in iceberg management, a simple
towing module is developed. When towing a large iceberg, the initial shape of the iceberg
is quite important. If the iceberg is tabular the problems associated with rolling and
tipping during the tow should not become significant until the iceberg has been
extensively modified by melting and calving (Weeks et al., 1977). If the iceberg is too
narrow, or in some marginally stable position, it will be in great danger of rolling over.
The minimum requirement is that the metacentric height should be positive, but it would
be more reasonable to require a metacentric height at least equal to 10% of the iceberg

width. Although the ‘classical approach’ is easy to compute, it suffers from a very

restrictive range of validity, such as small angle ions and/or simple ies. In

this program, these ictit are avoided. the program can simulate

towing the iceberg in different positions with different forces.

In order to simplify the problem, we assume that the towing force remains horizontal

and acts on the point under or above the centre of gravity (shown in Figure 4-9).
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Figure 4-9 Towing force F, acted on the body at the water surface

Considering the towing force, the overturning moment, ., can be written as:

My =Frx(z-25) @.1)

where F; is the towing force vector and (z; - z,) is the vertical distance between the

point towing force and the centre of gravity. Comparing with the Eqns. (3.51) and (3.52),

the moment and force on the ice become:

F £,
{Force}={F,}=T{ F, “2)
£ B-W
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M, M +M;
{Moment}={M}=T{M +M, 43)
M, 0

where F, . F; and M, . M, _are the force and moment in the space system in x and y

directions respectively.

A cubic ice model (10mx10mx10m) is used as an example to present the towing
process. In the first case, a towing force of 200N, compared with its weight of 8820N,

acts at the water surface. It is clear that the ice model tilts downward (see Figure 4-10).



Figure 4-10 Towing force acts above the centre of gravity
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In the second case. a towing force of 200N. acts at -6m below the water surface
(shown Figure 4-11). The ice model tilts upward compared with the first case (see Figure

4121

Figure 4-11 Towing force F, acted on the body below the water surface



Figure 4-12 Towing force acts under the centre of gravity
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When the towing force becomes big enough. in this example 600N, the ice model

will roll over during the towing process (see Figure 4-13).
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Figure 4-13 Ice model rolls over
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4.5 Drift simulation

Another possible application of the programme STABLE in iceberg management is
to predict the drift of the iceberg. Because the original aim of this research is to construct
the relationship between the shape and the stability of the iceberg, further work needs to
be done to forecast the drift of the iceberg. To start, a general review of the iceberg drift

mechanism is presented.

An iceberg is assumed to drift under the influence of the vector sum of air drag F,,
water drag F,, pressure gradient force F,, radiation force F of surface waves, Coriolis

forcing. and towing force £, (Mountain, D. G., 1980, Smith, S. D. et al., 1983).

M@+ fxV)=F +F,+F,+ F+F, (4.4)

where M, a and V, are the mass, acceleration and velocity of the iceberg. The Coriolis

vector f =2Qsing points upward; the earth’s rate of rotation is Q =7.272x10"rad/s

and ¢ is the latitude.
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In this thesis. to explore the issue. the problem is simplified. and only considers the

water drag force F,, and towing force F, . The water drag force F, can be written as
1
F, =;p_DA|V_ -V|-v,-v) 4.5)

where p_ is the water density. D, is the drag coefficient in water. A, is the submerged
cross sectional area in a vertical plane of the iceberg, V, is the water velocity, and V, is

the iceberg velocity. We assume that the water drag force acts on the buoyancy centre of

the iceberg (shown in Figure 4-14). The drag coefficient can be selected from Table 4-1.

Water Line [_\:,

Figure 4-14 Water drag force acted on the body
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Table 4-1 Drag coefficients of various 3-D geometrical shapes (from Hoerner, 1965)

SHAPE ** DESCRIPTION Drag Coefficient D,

Q-
Solid sphere 0.47

Q Lo
Half sphere shell 038

0 o
Solid half sphere 042

\) KX
Solid ellipse 0.59

<=
- Solid cube 0.80

4=
Solid cone 0.50

. L.
Solid half sphere 117

, s
Half sphere shell 142

)~
Half ellipse shell 1.38

|_ o
Solid cube 1.05

**V is the flow direction

Considering the water drag force, the moment

M, , M, . and M, separately, can be written as:

-93-

in x,y, andz direction,




4.6)

M, =F,(5-%) @)

My =Fp (55— ¥c)+ Fp (x5~ X5) (4.8)

where F, . F, . and F, is the water drag force in space system in x. y. and = direction.
o, Fo, 2 pace sy

Integrating the towing force and water drag force, the moment and force on the ice

become:

F, F, +F,
{Force}={F.}=T{F, +F, 4.9
£ B-W
JM‘ M, +M +M,,
{Moment}={M}=T{M +M; +M, (4.10)

M, M,

Compared with the towing simulation, the water drag force will affect the tilt angle
and velocity of the iceberg motion (in Figure 4-15). For iceberg towing, it is interesting to
know how long it will take to accelerate an iceberg up to its full towing speed. Using this

model, after considering the other extemal forces, we can get an accurate result.
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Figure 4-15 Velocities of the iceberg
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Chapter 5

Conclusions and Suggestions for Further Research

Based on the theoretical analysis and simulation presented in this thesis, some

conclusions are drawn in this Chapter and suggestions for further research are listed.

5.1 Conclusions

The iceberg deterioration and stability model has been successfully demonstrated to
simulate the iceberg motion due to the melting and external forces, such as towing force
and water drag force. The simulation process is satisfactory. During this visual simulation
process, it can offer valuable information for iceberg management, and be a tool to aid

iceberg risk assessment.

A computer program has been developed to model the floatation and stability of an

ily shaped th i i floating rigid body, such as an iceberg.

Iceberg motions are incorporated into the model and shape changes due to simple melting



are accounted for. As an extension, the towing force and water drag force are also

considered.

Using the program. the visual simulation demonstrates the dynamic stability process.
The melting/stability model will be used 1o explore the reasons for the various shapes that
icebergs have. To fully explain shape evolution it will be necessary to include calving and

fracture, which is beyond the scope of the present model.

5.2 Suggestions for further research

This thesis provides a brief analysis, simulation, applications and some potential
applications in the iceberg deterioration and stability study. In order to make this research
more applied. much detailed study is needed. The suggestions for further research are

outlined as follows:

* The melting section needs to be strengthened. The most problematic aspect of
the work is related to describing the evolving shape through an adaptive mesh.
The melting model causes awkward results when applied to a general mesh.
Some computer graphics technology, such as graphic simplification algorithm,

adaptive meshing, can be used to make this work possible.

Similar to the water drag force, air drag force, pressure gradient force and

Coriolis forcing can be added into the program easily.
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* More effort should be put on the wave situation, if this program can be used as
a practical tool. Considering the wave acting on the iceberg, two effects should
be studied respectively. One is the radiation force of surface waves. The other

one is iceberg dynamics in waves.
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Appendix A

A-1 Runge-Kutta method

In this thesis. second Runge-Kutta method is used to solve motion equation. This is

an initial value problem, that is to say. its initial itions are known. The
of the method are described below. More details can be found in Pachner (1984). To
solve the iceberg motion equation in Eqn. (3.48), the Runge-Kutta method is applied to

approximate the values 7,(r,) at some time ¢, , which is a time interval Ar past the time

f,., at which the values n,(¢,_,) are known.

The Runge-Kutta method is a numerical iterative procedure to solve the equations.
Here we just pick up two continues time 7, and r,_, to deduce the general expression
which can be used in the program. The auxiliary coefficients of Runge-Kutta method are

denoted as follows.

ki = A F (8, Y1 20 90 BVt e e Bt Ot O Vi) (A
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Each time, when we calculate the buoyancy of the model, we should transform the

displacements and angles from body system to space system.

(A5)
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n
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Finally,

k,
n, =N, + A, , +—;ki) (A6)
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=l e et T @an
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Appendix B

B-1 Flow charts of the STABLE

Main flow chart
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Figure B-1 Main flow chart of program STABLE
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Figure B-2 Flowchart of the statistical analysis section
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Potential energy analysis section
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Figure B-3 Flowchart of potential energy analysis section
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Motion simulation section
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Figure B-4 Flowchart of motion simulation section
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Towing and drag simulation section
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Figure B-5 Flow chart of towing and drag forces simulation section
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Appendix C

C-1 A SLA format sample file

A 10mx10mx10m box stored in SLA format is listed as follows.

solid OBJECT
facet normal 0.000000e+000 0.000000e+000 -1.000000e+000
outer loop
vertex -5.000000e+000 -5.000000e+000 -5.000000e+000
vertex 5.000000e+000 5.000000e+000 -5.000000e+000
vertex 5.000000e+000 -5.000000e+000 -5.000000e+000
endloop
endfacet
facet normal 0.000000e+000 0.000000e+000 -1.000000e+000
outer loop
vertex 5.000000e+000 5.000000e+000 -5.000000e+000
vertex -5.000000e+000 -5.000000e+000 -5.000000e+000
vertex -5.000000e+000 5.000000e+000 -5.000000e+000
endloop
endfacet
facet normal 0.000000e+000 0.000000e+000 1.000000e+000
outer loop
vertex -5.000000e+000 -5.000000e+000 5.000000e+000
vertex 5.000000e+000 -5.000000e+000 5.000000e+000
vertex 5.000000e+000 5.000000e+000 5.000000e+000
endloop
endfacet
facet normal 0.000000e+000 0.000000e+000 1.000000e+000
outer loop
vertex 5.000000e+000 5.000000e+000 5.000000e+000
vertex -5.000000e+000 5.000000e+000 5.000000e+000
vertex -5.000000e+000 -5.000000e+000 5.000000e+000
endloop
endfacet
facet normal 0.000000e+000 -1.000000e+000 0.000000e+000
outer loop
vertex -5.000000e+000 -5.000000e+000 -5.000000e+000
vertex 5.000000e+000 -5.000000e+000 -5.000000e+000
vertex 5.000000e+000 -5.000000e+000 5.000000e+000
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endloop

endfacet
facet normal 0.000000e+000 -1.000000e+000 0.000000e+000
outer loop
vertex 5.000000e+000 -5.000000e+000 5.000000e+000
vertex -5.000000e+000 -5.000000e+000 5.000000e+000
vertex -5.000000e+000 -5.000000e+000 -5.000000e+000
endloop

facet normal 1.000000e+000 0.000000e+000 0.000000e+000
outer loop
vertex 5.000000e+000 -5.000000e+000 -5.000000e+000
vertex 5.000000e+000 5.000000e+000 -5.000000e+000
vertex 5.000000e+000 5.000000e+000 5.000000e+000
endloop
endfacet
facet normal 1.000000e+000 0.000000e+000 0.000000e+000
outer loop
vertex 5.000000e+000 5.000000e+000 5.000000e+000
vertex 5.000000e+000 -5.000000e+000 5.000000e+000
vertex 5.000000e+000 -5.000000e+000 -5.000000e+000
endioop
endfacet
facet normal 0.000000e+000 1.000000e+000 0.000000e+000

endloop

endfacet

facet normal -1.000000e+000 0.000000e+000 0.000000e+000
outer loop

vertex -5.000000e+000 5.000000e+000 -5.000000e+000
vertex -5.000000e+000 -5.000000e+000 -5.000000e+000

vertex -5.000000e+000 -5.000000e+000 5.000000e+000

endioop
endfacet
facet normal -1.000000e+000 0.000000e+000 0.000000e+000
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outer loop
vertex -5.000000e+000 -5.000000e+000 5.000000e+000
vertex -5.000000e+000 5.000000e+000 5.000000e+000
vertex -5.000000e+000 5.000000e+000 -5.000000e+000
endloop

endfacet
endsolid OBJECT
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