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Abstract

The main focus of this thesis is to address the relative localization problem of a

heterogenous team which comprises of both ground and micro aerial vehicle robots.

This team configuration allows to combine the advantages of increased accessibility

and better perspective provided by aerial robots with the higher computational and

sensory resources provided by the ground agents, to realize a cooperative multi robotic

system suitable for hostile autonomous missions. However, in such a scenario, the

strict constraints in flight time, sensor pay load, and computational capability of micro

aerial vehicles limits the practical applicability of popular map-based localization

schemes for GPS denied navigation. Therefore, the resource limited aerial platforms

of this team demand simpler localization means for autonomous navigation.

Relative localization is the process of estimating the formation of a robot team using

the acquired inter-robot relative measurements. This allows the team members to

know their relative formation even without a global localization reference, such as

GPS or a map. Thus a typical robot team would benefit from a relative localiza-

tion service since it would allow the team to implement formation control, collision

avoidance, and supervisory control tasks, independent of a global localization service.

More importantly, a heterogenous team such as ground robots and computationally

constrained aerial vehicles would benefit from a relative localization service since it

provides the crucial localization information required for autonomous operation of the
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weaker agents. This enables less capable robots to assume supportive roles and con-

tribute to the more powerful robots executing the mission. Hence this study proposes

a relative localization-based approach for ground and micro aerial vehicle cooperation,

and develops inter-robot measurement, filtering, and distributed computing modules,

necessary to realize the system.

The research study results in three significant contributions. First, the work designs

and validates a novel inter-robot relative measurement hardware solution which has

accuracy, range, and scalability characteristics, necessary for relative localization. Sec-

ond, the research work performs an analysis and design of a novel nonlinear filtering

method, which allows the implementation of relative localization modules and attitude

reference filters on low cost devices with optimal tuning parameters. Third, this work

designs and validates a novel distributed relative localization approach, which har-

nesses the distributed computing capability of the team to minimize communication

requirements, achieve consistent estimation, and enable efficient data correspondence

within the network. The work validates the complete relative localization-based sys-

tem through multiple indoor experiments and numerical simulations.

The relative localization based navigation concept with its sensing, filtering, and dis-

tributed computing methods introduced in this thesis complements system limitations

of a ground and micro aerial vehicle team, and also targets hostile environmental con-

ditions. Thus the work constitutes an essential step towards realizing autonomous

navigation of heterogenous teams in real world applications.
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Chapter 1

Introduction

1.1 Motivation - The Ground Aerial System

In the past few decades, mobile robots have emerged as one of the highly reliable

systems available for application in extreme settings where human presence is chal-

lenged. Disaster relief and associated activities such as bomb neutralization and threat

surveillance are some application domains in which mobile robots tend to dominate.

In recent years, the combined ground and aerial robotic system has emerged as a

new combination equipped to effectively undertake these disaster relief tasks [9]. As

an example, work reported in [10] performs a complete autonomous mapping of an

earthquake damaged building using a similar system which includes a quadrotor Micro

Aerial Vehicle (MAV) and an Unmanned Ground Vehicle (UGV).

The ground aerial multi-robot configuration has gained popularity in the robotics

community mainly due to the complementary characteristics that are inherent to

MAVs and UGVs. The MAV platforms offer aerial surveillance capability and the

ability to quickly maneuver through multi-floor buildings [11, 12, 13] which are of

high utility for the discussed application domains. However, the MAVs have low

1
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endurance for many practical missions with reported flight times limited to 15-25

min and payload capacity limited 500-1000 g in typical platforms [14, Table 1.1].

In contrast, the unmanned ground vehicles exhibit higher payload capacity allowing

them to operate for longer periods of time and to be equipped with powerful sensing

and actuation devices essential for interacting with the environment.

The evolution of this ground aerial configuration is a product of the significant ef-

fort by different research groups to push towards a world of heterogenous multi-robot

teams. The NSERC Canada Field Robotics Network (NCFRN) is a prominent ex-

ample, where many researchers across Canada work towards developing heterogenous

robot teams for outdoor missions. Another noteworthy example is the Robot Oper-

ating System (ROS) developer community, where close to 50,000 active developers

and users [16, pp.17] contribute to realize a framework where almost any robot can

unify and which has now become a standard tool catering to multi-robot research. A

central theme of this movement is combining robots operating in different domains,

varying capabilities, and different vendors, in an efficient and scalable team architec-

ture. Achieving this calls for incrementally involved designs and methods to solve the

core navigation functions of localization, planning, and control of multiple robots.

This research considers the localization problem of a heterogeneous Multi-Robot

System (MRS) consisting of ground mobile robots, and micro aerial vehicles, operat-

ing in environments with poor Global Positioning System (GPS) reception. Condi-

tions of poor or no GPS reception are often encountered by mobile robots operating

in indoor environments, underground mines, and urban canyons. An evolutionary

approach for localization of these devices in a GPS denied setting can be achieved by

empowering each agent with the ability to self localize using a map based localization

approach e.g.,[17]. However, this functionality is of high resource utilization and is

more suited for implementation among the powerful agents of a heterogenous system.
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Pod 1

Pod 2

Pod 3

Leader 1 Leader 2

Relative Positioning Service

Path planning by Leaders

Path Planner

Figure 1.1: The heterogenous navigation framework targeted by this thesis. The
powerful robots are identified as “Leaders” and the resource constrained robots are
identified as “Pods”. The leaders establish a relative positioning service, implement
SLAM for global localization, and perform path planning for the pods.

MAVs in particular have to dedicate a considerable portion of their sensor payload

and computational capability only for self-localization purposes, e.g.,[18, 19]. In a het-

erogenous team setting, a more efficient revolutionary approach is to allow a subset of

powerful robots to perform map based localization and establish a relative positioning

service to assist the operation of the weaker robots. The relative positioning service

would contribute to the improvement of localization estimates of the overall team, in

addition to acting as an enabler for autonomous navigation of the weaker agents.

In a ground aerial team where such efficient localization is achieved, the power

limitation of the MAVs can be circumvented by allowing them to land on UGVs to

save and recharge power. The mapping and exploration operation of the UGVs can be

assisted by the information rich multiple aerial perceptions and fast searching provided

by the aerial agents. The aerial agents can operate in the vicinity of powerful robots

while utilizing the relative positioning service. The UGVs can act as computational

power houses which perform complex mapping and planning operations of the mission,
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which overall achieves an efficient Heterogenous Navigation Framework (HNF) as

illustrated in Figure 1.1.

The overall system is mainly intended for mapping operations of GPS denied

environments using an efficient heterogenous team structure. The mapping capability

would cater many specific practical applications which include disaster assessment,

asset integrity inspection, or surveying applications such as radio signal strength map

generation of a given workspace.

1.2 Background

In general, the localization problem of a multi-robot system can be discussed along two

avenues. First is self localization, which refers to localization of each robot individually

using solely its onboard sensors. Second is relative localization, which is the process

of estimating the formation of a robot team using measurements related to each

other’s relative location. These measurements are identified as Inter-Robot Relative

Measurements(IRRM) in this thesis.

1.2.1 Self-localization with SLAM

In GPS denied environments, self localization of a mobile robot is achieved using a

method called Simultaneous Localization and Mapping (SLAM) [20]. In fact, SLAM

is the preferred approach even in outdoor environments due to poor accuracies of

GPS and unavailability of the service when travelling through urban canyons, tun-

nels, and canopies. As illustrated in Figure 1.2, SLAM performs the estimation of

both the location of the robot, and the location of environmental features (a map)

with respect to a predefined navigation frame. Although dead reckoning is an easy

alternative for self localization in an ideal world; noise, inaccuracies in modeling and
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Figure 1.2: (a) Single robot SLAM: the robot estimates its path and estimates a lo-
cal map of the environment using the exteroceptive measurements. (b) Three robots
implementing SLAM with navigation frames set to their respective mission start lo-
cations. (c) The global map generated by the robots after registration of the commu-
nicated individual local maps. Global map to robot transformation estimates can be
used to calculate the multi-robot formation.

numerical schemes cause unbounded drifting of these estimates, limiting the reliability

to short periods of time. In order to overcome this drawback SLAM methods employ

exteroceptive measurement sensors or sensing of the environment to arrive at a pose

estimate which drifts slower and automatically corrects its drift during subsequent

encounters of previously seen locations of a map.

Application of SLAM methods is more involved in MAVs than UGVs due to the

higher order state space and fast dynamics of the platforms. In MAV localization it is

reasonable to consider that roll and pitch rotations of the vehicles’ pose are reliably es-

timated using an attitude heading reference system (AHRS) . The magnetic reference

is often biased by the external magnetic fields present in indoor environments. Thus

it is common to consider both the position and the heading (yaw) states of an MAV

for localization purposes [21, 11, 22]. MAV self-localization using laser-based SLAM
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implementations are widely reported with successful studies in multi-floor buildings

[11, 18, 12]. Laser-based SLAM algorithms are generally fast to operate on a robot’s

onboard computers. In [18], a flight computer equipped with 1.6 GHz processing and

1 GB RAM was capable of performing laser scan matching-based self-localization of

an MAV. Recent studies report the development of laser-based localization for ag-

gressive indoor maneuvers for fast operation with obstacle avoidance [13]. Due to the

high payload requirement and cost of onboard laser scanners, many researchers have

attempted to develop vision-based techniques for self-localization. Stereo vision [19],

monocular vision [23], and appearance-based implementations [24] are some of the

reported methods where successful operation in a limited space is achieved. Monoc-

ular vision based SLAM methods have been successfully applied even in controlling

recreational quadrotor platforms such as the ArDrone [25].

1.2.2 Drawbacks of SLAM for Heterogenous MRS

Laser and vision-based SLAM methods are valuable capabilities for MAVs which war-

rant further research. However, SLAM methods alone do not serve as an efficient tool

to solve the localization problem faced by a heterogenous multi-robot system. This is

mainly due to three reasons.

• First, SLAM has considerably high system resource utilization [26, Fig.6]. This

has direct affects on the cost, computational budget, and the payload of a sys-

tem. Although technological advances have enabled SLAM implementations to

be realizable in single board computers equipped with vision or laser scanners,

the utility of the methods in resource limited platforms of a heterogenous team

is up to debate.

• Second, SLAM is not robust for environments with dynamic features and a
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limited number of features. The features of an environment can change due to

changing lighting conditions, seasonal changes, or due to moving objects. Robots

operating in long hallways, and under limited lighting conditions experience de-

privation of unique environmental features to support SLAM implementations.

Addressing these scenarios would require additional incremental resource uti-

lization in terms of perception capability and computational effort.

• The third problem is that using SLAM would only perform an implicit formation

estimate. This is illustrated in Figure 1.2(c), where the robots in the team

perform a registration of their individual local maps in order to estimate a

global map with their relative formation. Thus the confidence of this formation

estimate is quite low and is of questionable reliability to use for formation control

of the team.

It is important to note that SLAM is essential for global localization of robots.

However, for the task of estimating the formation of robots and more importantly to

realize a relative positioning service in the team as desired in this thesis, it is intuitive

to utilize more direct perception means which are available for robots in the form of

inter robot relative measurements.

1.2.3 Relative localization for Heterogenous MRS

Relative localization is the process of estimating each robot’s location

with respect to the other robots in the team by utilizing inter-robot rel-

ative measurements.. This constitutes an efficient solution to establish a relative

positioning service in the team. Figure 1.3(b) illustrates the process of relative local-

ization. Since relative localization estimates the formation of the team using more di-

rect means than those of SLAM (Figure 1.3(a)), it remains computationally tractable
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Figure 1.3: Overview of multi-robot localization strategies; (a) Single robot SLAM
(b) Relative localization (c) Hierarchical localization

by even the most basic robots in a team. This further enables the implementation

of a combined hierarchical localization approach as illustrated in Figure 1.3(c) where

weaker robots utilize a relative positioning service established by the more powerful

robots which implement SLAM.

The term Relative Localization first appeared in the works of [27, 28] and the term

was later adopted by many researchers which include [29, 30, 31, 32, 33]. Following

are similar terms used in literature relevant to the relative localization problem.

Cooperative Localization[34] In general cooperative localization refers to the shar-

ing of information for localization purposes without any specific regard to the

choice of the navigation frame. Relative localization specifically performs lo-

cation estimation with respect to a moving coordinate frame fixed on a robot,

hence can be considered as a branch of the more general problem of cooperative

localization. However, most reported work on cooperative localization adopts

a navigation frame which is stationary and which is common to all robots as

illustrated in Figure 1.2(c).
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Network Localization[35] refers to the relative localization problem in relation to

a stationary set of robots/ sensor nodes. The term is widely popular in research

related to wireless sensor networks.

Relative Mutual Localization[31] is a term adopted by Franchi et al., which

refers to the problem of relative localization under the conditions of unknown

data correspondence [31, 32, 33].

1.2.4 Issues related to relative localization

Relative localization has been less investigated in the context of mobile robots as

compared to other popular research problems such as SLAM and cooperative local-

ization. Therefore, relative localization faces a number of unaddressed issues which

require significant research effort, some of which are relevant to localization in general.

A brief insight into these issues follows.

Measurement availability : Relative localization requires the availability of rel-

ative measurements. This is realized in most studies through environmental

perception sensors on the robots. In [31], laser scanners are used for inter-

robot measurement, while in [27, 36] and [37], the robots’ cameras are used for

inter-robot measurements. These studies rely on exteroceptive sensors that are

not designed for the specific purpose which results in overhead computational

tasks such as feature recognition and data correspondence. The unavailability of

suitable IRRM sensors for robots has forced many researchers to use synthetic

measurements generated using ground truth validation systems for experiments

related to localization, e.g.,[22, 34].

Non line of sight conditions: The ability to perform relative localization becomes

impossible when robots go beyond the IRRM sensing range of each other. This
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cripples its applicability in a general setting as a dependable system for local-

ization. However, for heterogenous robot teams considered in this thesis, the

weaker robots are expected to operate in the vicinity of the powerful robots.

Thus in the context of heterogenous systems, more relevant problems are the

path planning of robots for maintaining line of sight, and the design of estima-

tors to handle short periods of non-line of sight operation.

Measurement filtering : The relative measurements are affected by sensor noise

and disturbances which necessitates the requirement for uncertainty handling

mechanisms. Probabilistic approaches use the system and measurement stochas-

tic models for estimation of the required states [17, 38]. For cooperative local-

ization purposes Kalman filter (KF) based methods are used for their recursive

state estimation capability and computational efficiency compared to the numer-

ically exhaustive sequential Monte Carlo (SMC) filters [34, 39]. Measurement

filtering additionally realizes state prediction capability which supports non-line

of sight operation for short periods of time.

Nonlinearity : Physical system models and measurement equations of a maneuver-

ing robotic system formulates a nonlinear system. This necessitates the use of

linearized filters such as the Extended Kalman Filter (EKF) which does not

guarantee convergence [40]. Filters specifically designed to handle the nonlin-

earity of a system attempts to address this non-ideal conditions by improving

its domain of convergence [41, 42].

Observability : Observability of a system measures the solvability of the required

set of states using the available sensor measurements and the system inputs.

Therefore, a relative localization filter for a given system should remain fully

observable for full state observation. Linearized and nonlinear observability rank
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conditions [43] allow analysis of the robotic system to design sensor combinations

and filters for full state observability.

Initialization : In order to achieve robust performance of recursive filters it is bene-

ficial to establish accurate state initialization schemes. Localization using inter-

robot measurements is addressed as a static case in network localization of

wireless sensor networks [44]. The positions of the sensor nodes are solved on a

snapshot basis without considering the temporal correlation of measurements.

Deterministic initialization from all measurements in a multi-robot system sys-

tem [45] and pairwise initialization using time series measurements [46] are also

reported for initialization purposes of filters. These methods constitute effective

means for state initialization.

Data correspondence : In addition to IRRM perception, an essential requirement

for relative localization is knowing the identity of the robot perceived. Due to

inherent limitations of some IRRM sensors, the output of the sensor remains in-

variant for different robots in the team. This problem is referred to as “unknown

measurement correspondence” or “anonymity of measurements” as identified in

[47]. Additionally, it is required to identify measurements as outliers or as clut-

ter due to numerous disturbances affecting IRRM sensors. These can be caused

by multi-path effects, diffraction, or signal interference.

Distributed computing : The relative localization process becomes efficient and

scalable only when it is performed in a distributed fashion among a set of pow-

erful robots in a team. This is mainly because of the robustness it brings to

the overall system and the reduction in overall communication that distributed

computing allows in comparison to a strictly centralized implementation. Pre-

liminary work by researchers assesses delayed state information filters[48], and
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distributed EKF[39] implementations for the task. However the area is not as

developed as the multi radar target tracking methods[49], which can be consid-

ered as the closest comparable body of work from the more established field of

target tracking.

All of the aspects outlined above should be effectively addressed to realize an

efficient relative localization based HNF.

1.3 Thesis Problem statement

The main focus of this research study is to address the localization problem

of a heterogenous system, using a relative localization-based navigation

framework. The target heterogenous system consists of UGVs and MAVs.

Although relative localization based approaches have been discussed by a number

of authors [37] [28] [50], a viable relative localization based system design suitable for

real world applications has not been fully developed. This thesis targets a relative

localization based HNF as illustrated in the system block diagram shown in Figure

1.4.

The robots with self localization capability are identified as “Leader” robots and

ones which lack resources for implementation of map based localization schemes are

identified as “Pod” robots in the figure. The three main modules related to achieving

relative localization are identified as the “IRRM sensor”, “Relative localization filter”

and the “Distributed relative localization module” in the illustrated HNF. In relation

to these modules, this thesis investigates the following three key problems.
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Figure 1.4: The control architecture of a powerful robot (top) and a less capable
robot(bottom) implementing a relative localization based HNF

1.3.1 Problem I: Spatial inter-robot relative sensing

Perception devices which can measure relative range and bearing between platforms

are essential for relative localization. For ground aerial systems, IRRM sensors should

additionally feature spatial sensing capability. Conventional approaches to enable

perception employ exteroceptive sensing devices such as laser scanners and vision

sensors which are not designed for the specific purpose. These devices demand ad-

ditional feature recognition and data correspondence steps to extract IRRMs from

countless environmental features perceived, e.g.,[27, 36, 31]. Therefore, designing a

spatial IRRM technology specifically for the purpose is required in order to achieve

relative localization in a robust manner.

Enabling spatial IRRM capability faces the following key challenges. The first
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challenge is achieving sufficient accuracy for indoor operations. Although strict stan-

dards are not available for the purpose, authors in [14] point out that errors must

not exceed ± 15cm for the purpose of indoor navigation of these platforms, based

on a typical platform size of 70 cm and a standard doorway size of 100cm [14, Fig.

1.3]. The second challenge is achieving a solution which has low cost, low power, and

low payload so that it is applicable to weak agents of a heterogenous system, i.e., the

perception devices remain economically and computationally feasible for the resource

constrained platforms of a heterogenous system. The third challenge is making the

method scalable beyond a pair of robots, since the perception devices are intended

to service multi-robot team implementations. Therefore, multiple access methods or

robust data correspondence mechanisms should be established.

IRRM base technologies for ground and aerial localization mainly utilize vision-

based approaches. Stereo vision-based visual 3D tracking solutions in [3] and monoc-

ular vision-based approaches in [37] track the robot’s specific features for identifying

robots in the perceived image. Application of vision-based measurement methods

in muti-robot scenarios faces difficulties mainly in solving the correspondence prob-

lem, FOV limitations, and robustness to changing lighting conditions. Ultrasonic and

IR-based approaches solve the correspondence issue at the hardware level by incorpo-

rating multiple access methods. In [51], an ultrasonic signal-based approach is used

for IRRM which possess the relative ranging capability in 3D. The method uses time

of arrival of emitted ultrasonic signals for range measurement in a network of robots.

Use of ultrasonic devices for relative measurement achieves centimeter level accura-

cies and favourable scalability characteristics as seen in indoor positioning systems

reported in [52]. Work in [8] proposes an Infra-Red (IR) receiver array for received

signal strength based range and bearing estimation. The method can be considered as

state of the art among IRRM technologies which are accurate, robust, and scalable.
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However, the array design takes a considerable volume of space and also demands

higher power for IR emission. The accuracies achieved by the design are not compa-

rable to ultrasonic only range estimation methods and vision based bearing estimation

methods.

This thesis specifically investigates the feasibility of ultrasonic and vision based

measurements as IRRM sources, in an attempt to design scalable sensor nodes which

are attachable to “Pod” agents of a heterogenous system. Priority is given to realizing

scalable and low resource demanding means of achieving relative measurements.

1.3.2 Problem II: Nonlinear filtering for relative localization

Nonlinear filtering specifically attempts to address nonlinearity of the relative local-

ization problem. Relative localization is traditionally addressed with a classical treat-

ment using an EKF. However the EKF performs linearization of the system dynamics

which leads to divergence and instability of estimates. A nonlinear treatment of the

problem attempts to circumvent the pitfalls associated with EKF based linearized

treatments.

Nonlinear filtering for relative localization faces the following additional chal-

lenges. The first challenge is system observability. This is a theoretical limitation for

the success or failure of an estimator for a given estimation problem. Thus observ-

ability limitations should be established for the problem of relative localization prior

to any attempts of estimator design. The second challenge is achieving low-cost filter-

ing. This is to reduce the computational demand of filters as much as possible since

most of the relative localization filtering modules would eventually be implemented in

low cost embedded systems. In terms of computational demand, deterministic filters

tend to consume the least. However, deterministic filtering should be complemented

with an optimal gain tuning procedure since the filtering approaches lose the optimal



16

estimation capability as a result of not considering the noise parameters of a system.

Nonlinear observability analysis methods are available for detailed observability

evaluation of a given problem[43]. In [53], the 2D relative localization problem is

analyzed and in [46], the 3D relative localization problem is evaluated. However, the

studies lack investigation into the effect of platform velocities on system observability.

This analysis is important since the availability of platform velocities of robots is not

guaranteed under conditions of communication drops and lack of sufficient velocity

sensing means. Thus observability constraints under limited platform input velocities

should be further investigated to gain insight into the problem of relative localization.

In order to achieve low cost filtering, deterministic nonlinear filter designs are

proposed for many comparable problems such as attitude filtering and localization

[54, 42]. However, they lack systematic design procedures which can be followed easily

for a different problem such as relative localization. Recent developments in geometric

nonlinear filtering allow systematic filter design for problems having symmetries[41].

The method allows filter implementation in stochastic forms[55] or implementation in

a more computationally efficient deterministic form[56]. However, establishing tuning

procedures to achieve near optimal performance is not discussed in these studies.

This thesis investigates the problem of low cost nonlinear filter design for rel-

ative localization using the recently developed symmetry preserving approach, and

attempts to establish optimal tuning procedures for the filters. Additionally, the the-

sis investigates the observability constraints of the system specifically in relation to

input velocities of the platforms.

1.3.3 Problem III: Distributed relative localization

The problem of distributed relative localization relates to the scalability of relative

localization to more than two robots. The problem is well studied for centralized
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implementations where EKF estimators are shown to produce reliable consistent re-

sults [34]. As the centralized EKF is computationally intractable with an increasing

number of robots and is prone to single point of system failure, a Distributed Relative

Localization (DRL) approach is preferred for implementation.

The key challenges faced by distributed relative localization are as follows. The

approach inherently demands high bandwidth communication channels to communi-

cate measurements of robots among the team for filtering purposes. Therefore, achiev-

ing multi-robot relative localization with efficient communication means remains a

key challenge. Additionally, when information is shared among platforms, successive

reuse of the same information tends to develop false confidence in results. Therefore,

achieving consistency of estimation is challenging for distributed implementations.

Furthermore, the existence of multiple robots complicates the data correspondence

effort when IRRM sources like lasers and cameras are incorporated in the estimation

framework.

In order to limit the communication requirement in multi-robot relative localiza-

tion, recent studies propose maintaining the history of measurements in an optimal

manner[57]. Studies in [48] propose the use of a delayed state information form as a

convenient statistic to establish such a framework. However, keeping a history of data

is seen as a brute force approach which does not scale well compared to distributed

methods used in target tracking literature [58]. In target tracking methods the strat-

egy is to maintain a state vector which acts as a single statistic incorporating all past

data. Target tracking approaches are equipped with well developed tools for handling

data correspondence such as Joint Probabilistic Data Association (JPDA) [59], and

Multi-Hypothesis Tracking (MHT) [60]. However, target tracking methods are not

well exploited to address the challenges related to communication bandwidth and data

correspondence issues encountered specifically in multi-robot relative localization.
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This thesis investigates the applicability of target tracking methods in order to

realize distributed relative localization. To this end the thesis attempts to identify

required modification for distributed multi-target tracker implementations for mobile

robots in order to achieve efficient communication, consistency in estimates, and data

correspondence.

In order to address these three identified problems related to relative localization,

the thesis assumes the following as the main objectives of this work.

1.4 Objectives and expected contributions

Objective 1 Design a scalable inter-robot relative measurement sensor for ground

and MAV localization.

• Contribution 1 : Hardware design of a novel scalable IRRM sensor net-

work with sufficient accuracy and range suitable for ground aerial systems

operating in indoor environments.

• Contribution 2 : Experimental evaluation and optimization of the novel

IRRM sensor design for UGV and MAV systems.

Objective 2 Design a geometric nonlinear filter for relative localization which is

capable of implementing in low cost hardware.

• Contribution 3 : An observability analysis of the relative localization prob-

lem considering unknown platform velocities.

• Contribution 4 : A geometric nonlinear filter module design for relative

localization.

• Contribution 5 : An optimal gain tuning approach for deterministic non-

linear filter designs related to relative localization.
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Objective 3 Design of an efficient Distributed Relative Localization (DRL) method.

• Contribution 6 : A target tracking inspired distributed design for relative

localization which supports asynchronous data communication and consis-

tent estimation.

• Contribution 7 : A distributed data correspondence approach for multi-

robot relative localization.

• Contribution 8 : A method of incorporating self localization estimates in

the proposed DRL scheme.

1.5 Organization of the thesis

Since this thesis considers three different problem areas related to relative localization

of robots, the background work related to each problem is discussed in detail in each

corresponding chapter (2,3,4, and 5). Following is a brief outline of each chapter.

Chapter 1 - Introduction Introduces the research topic and the main objectives

of this study.

Chapter 2 - Relative Localization: Sensor Design This chapter relates to ob-

jective 1 of the thesis. A hardware design of a novel IRRM sensor for relative

localization is presented detailing experimental evaluation of the device. The

chapter concludes discussing design evolutions targeted towards combined UGV

and MAV implementations.

Chapter 3 - Relative Localization: Observability This chapter relates to ob-

jective 2 of the thesis. The chapter details an observability analysis for relative

localization with an introduction to the system models, measurement models,

and associated notations used throughout the thesis.
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Chapter 4 - Relative Localization: Nonlinear Filtering This chapter relates to

objective 2 of the thesis. The chapter details a nonlinear filter design and an

optimal gain tuning approach for the relative localization problem.

Chapter 5 - Relative Localization: A Distributed Approach This chapter re-

lates to objective 3 of the thesis. A target tracking inspired design for distributed

relative localization is presented which features efficient communication and con-

sistent estimation.

Chapter 6 - Relative Localization of Heterogenous Multi-Robot Systems This

chapter develops the necessary axillary modules required for application of the

proposed methods in a heterogenous team of robots. The overall system is

validated using multiple numerical studies and experimental studies.

Chapter 7 - Conclusion This chapter concludes the thesis discussing the practi-

cality of the proposed method, its drawbacks, and topics that require further

research. The resulting publications of this work are outlined along with a

summary related to each research objective.



Chapter 2

Relative Localization: Sensor

Design

In order to realize relative localization between ground and aerial systems, first it is

necessary to establish reliable perception means for 3D relative position measurement.

This chapter1 develops a novel sensor applicable for 3D relative position sensing,

based on a combined vision and ultrasonic based approach. The sensor is low-power,

light-weight, low-cost, and designed to be applicable across many robotic platforms

including MAVs. The proposed sensor achieves a measurement accuracy of 0.96 cm

RMSE for range, and 0.3◦ RMSE for bearing with a maximum of 10 Hz update rate

over a detection range of 9 m. Correspondence between multiple robots is resolved

using time division multiple access methods. These features are verified by multiple

experimental evaluations on a multi-robot team with both ground and aerial agents.

The chapter concludes with a detailed review of the sensor discussing ongoing research
1This chapter is based on the following publications of the author [61, 62]: [61] O. De Silva, G. K.

I. Mann and R. G. Gosine, “Development of a relative localization scheme for ground-aerial multi-
robot systems," in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012,
pp. 870-875. [62] O. De Silva, G. K. I. Mann, and R. G. Gosine, “An Ultrasonic and Vision-Based
Relative Positioning Sensor for Multirobot Localization," IEEE Sensors Journal, vol. 15, no. 3, pp.
1716-1726, 2015.
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efforts targeting improved performance of the device.

2.1 Introduction

r12
b12

Node 1

Node 3

Node 2

r13
b12

r23

Figure 2.1: A relative localization based ground aerial system where range r and
bearing b measurements are made within a robot network using attachable sensor
nodes.

Relative 3D position sensing among ground and aerial platforms is a difficult task

facing numerous challenges. Chapter 1 established a set of key specifications required

for a candidate sensor design in order to realize effective relative positioning. These

are as follows:

• Spatial sensing capability between any pair of robots in a team. The spatial

sensing range should be sufficient at least for operation in a typical room of a

building (5 m).

• Minimum positioning accuracy of 15 cm or below. As identified in Chapter 1,

these minimum error bounds are necessary for a typical MAV platform with a

width of 70 cm to navigate through a standard doorway of 100 cm [14, Fig. 1.3].
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• Low payload, cost, and power consumption suitable for typical MAV and ground

robotic platforms. Upper bounds for these specifications can be justified con-

sidering a low cost MAV platform such as the ARDrone 2.0. The drone has a

200g payload, a cost of $400, and a power consumption of 100W . These can

be considered as absolute upper bounds for the purposes of sensor design.

• Scalable design with measurement correspondence mechanisms to handle multi-

robot teams.

Available sensor designs to address the problem of 3D relative positioning employ

a multitude of sensing technologies. A detailed review of these methods is discussed in

the next section. Among them, the vision based solutions report the best bearing mea-

surement accuracies [63]. The main drawback of vision based approaches is that they

require increased computational effort for robust data correspondence and experience

limited depth perception for multi-robot applications. The best range measurement

accuracies are achieved by acoustic and ultrasonic based means [6]. However, these

solutions are prone to environmental disturbances and report poor accuracies when

used for relative bearing measurement between two platforms [6]. The method pro-

posed by [8] which is based on IR received signal strength, is widely accepted as state

of the art in terms of relative positioning. Yet the current state of IR received signal

strength based sensors has several drawbacks which include high power consumption,

difficulty in miniaturizing the sensor, and poor accuracies in comparison to vision

based or acoustic based solutions.

This work proposes a solution based on both vision and ultrasonic sensors. An

ultrasonic sensor is used to measure the range and an infrared (IR) vision sensor is

integrated to measure the bearing of IR active markers on the robots. This brings

heightened accuracies in a small package which is capable of establishing time do-

main multiple access based measurement correspondence among sensors. The pro-
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posed sensor is designed to be scalable and attachable to ground and aerial systems.

Additionally, it is capable of operating alongside ultrasonic proximity sensors which

are used by mobile robots for obstacle avoidance, and height measurement purposes.

2.2 Background

In general, relative measurements among platforms are established using transmitter

and receiver pairs or arrays, which measure signal parameters related to Time Of

Arrival (TOA), Received Signal Strength (RSS), or frequency [35]. Depending on

the type of signal employed, the available relative measurement methods which are

applicable to indoor mobile robots can be classified into four different groups: (a)RF

transmitters and receivers, (b)image sensors and target features, (c)IR emitters and

receivers, and (d)ultrasonic transmitters and receivers. Table 2.3 reports the main

performance indicators relevant to available relative position measurement sensors. A

detailed discussion of each type of sensor follows according to the type of signal used.

2.2.1 RF based methods

Most reported work utilizing RF transmitters and receivers performs TOA-based

range measurement [64, 35] or RSS-based range measurement [30, 67] for localiza-

tion. These methods are capable of using modulated signals and separate channels

for data correspondence purposes [64], which allows easy scalability for multi-robot

applications. The reported RF-based methods measure only range information. As

a result, RF based methods require multiple and distinct measurements in order to

achieve lateration based range only localization. The reported RF range measure-

ment accuracies are in the order of meters [30] . This challenges the applicability of

RF based techniques for spatial localization purposes of MAVs since the applications
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Table 2.1: Summary of available IRRM solutions
Author Method Range/X

error1
Bearing/Y er-
ror

Operating
range

Corrrespondance
(Update rate)

Range only
Zickler et al, [30] 2D, RF, RSS 250.0cm - - FDMA (-)
Wymeersch et al, [64] 2D, RF UWB,

RTT
60cm - 20m FDMA (-)

Marziani et al. [65] 3D, Ultrasonic,
CDMA RTT

1.0cm - 6.7m CDMA (-)

Range and Bearing 2D
Rivard et al. [5] 2D, Ultrasonic,

TOA/AOA
5.0cm 10.0o 6.7m TDMA (10 Hz)

Pugh et al. [7] 2D, IR, RSS 20.0cm 15.1o 3.3m CSMA (30 Hz)

Range and Bearing 3D
Achtelik et al.[3] 3D, Stereo

vision (known
structure)

4.2cm (X) 12cm(Y) 4m FOV Color markers
(15 Hz)

Wenzel et al. [4] 3D, Monocular
vision (known
structure)

18cm(X) 23cm(Y) 5m FOV - (25 Hz)

Breitenmoser et al. [1] 3D, Monocular
vision (known
structure)

1.7cm(X) 1.7cm(Y) 2m FOV Color markers
(n/a)

Eckert et al. [66] 3D, Ultrasonic,
TOA/AOA

2.0cm 45o 5.6m TDMA
(<35Hz)3

Roberts et al. [8] 3D, IR,
RSS/AOA

45.4cm 3o 12m CSMA (1 KHz)

1 RMSE accuracies or max accuracies reported at a range of 6m. If the operating range of sensor is less than 6m
the accuracy at full range is reported
2 Although both position and bearing are measured by the IRRM, due to the large error in bearing estimation range
only localization is performed using multiple robots. The accuracies and range of reported localization are given in
brackets.
3 The authors do not provide an update rate, but a localization computation time of 10 ms for 4 nodes is reported.
This is combined with the ultrasonic propagation time for the operation range to calculate a feasible best case
update rate figure.

require accuracies in the order of a few centimeters.

2.2.2 Vision based methods

Image sensors are used to measure the pixel locations of target features in a recorded

image. They also allow 3D reconstruction of features using multiple cameras or us-

ing observations of known geometric structures. Commercial motion capture systems

like Vicon® have been used for indoor localization of MAVs, with 50µm level 3D re-

construction accuracies and up to 375Hz update rates [68]. Motion capture systems

can only be used in a fixed indoor work space, hence they are mainly reported as

ground truth validation systems for various robotic experiments [68]. A motion cap-
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IR Active 
Markers

Tracked by 
IR vision sensor

(c) Achtelik et al.

(b) Kim et al. (d) Wenzel et al.

Tracking 
Camera

Marker
Array

Checkerboard
TAG

Color Markers

(a) Breitenmoser et al.

Tracked by 
Stereo Camera

Figure 2.2: Relative positioning using (a)a marker array with known structure and a
monocular camera [1], (b)a calibration tag and a monocular camera [2], (c)coloured
markers and a stereo camera [3], (d)IR active marker array with known structure and
an IR vision sensor [4].

ture system is not designed as a mobile system since the whole system would require a

recalibration process even if one of the cameras of the system is repositioned. There-

fore a motion capture system is not readily applicable as a network of IRRM sensors

attached to robots.

Depth perception on mobile robot platforms is commonly performed using stereo

vision [3, 19] or monocular vision-based measurements of known structures [69, 4, 1].

Stereo vision tracking of an MAV fixed with coloured marker balls obtains accuracies of

5 to 10 cm at a 4 m range [3]. Known marker structure and monocular vision-based

tracking reports a maximum error of 12 cm at a 2 m range [1]. Another popular

visual feature to use is calibration tags such as checker board tags [2] and April tags

[70] which allow accurate tracking and correspondence. However this feature is rather

difficult to incorporate on a robot to achieve accurate omnidirectional positioning, e.g.

Figure 2.2(b). IR active markers and mono-vision tracking achieves 14 cm maximum

error at a 1 m range [69, 4]. It is known that the depth perception accuracy of vision-
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based approaches generally degrades with increasing range. Feature identification

and data correspondence in vision based methods demand significant computational

processing power. Moreover, in these methods the scalability of the team is limited

to the number of uniquely identifiable features that can be attached to the robots.

2.2.3 Ultrasonic based methods

(b) Eckert et al.(a) Rivard et al.

Transmitter/ 
receiver array

Figure 2.3: (a) 2D ultrasonic TOA and AOA based relative positioning sensor design
[5]. (b) 3D ultrasonic TOA based range measurement sensor proposed by [6].

Ultrasonic based relative measurement methods for robots are based on the

well developed indoor positioning systems which include Cricket [71], Active BAT

[72], 3D-LOCUS [73], and various other beacon-based acoustic localization networks

[74, 75, 76]. Direct sequence spread spectrum signals and array signal processing as re-

ported in [75], achieve sub-centimeter range measurement accuracies and 1-2◦ bearing

measurement accuracies. Application of spread spectrum methods for mobile plat-

forms is limited mainly due to the unavailability of commercial wide-band ultrasonic

transmitters [77]. Moreover, they also demand fast hardware signal processors, e.g.,

[74]. Therefore, the reported studies on robotic systems have employed narrow-band
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ultrasonic tones. As a result, the reported measurement errors for ground robotic

systems are 6 cm in range and 17◦ in bearing [5]. Accuracies of 2 cm in range and 22◦

in azimuth bearing are reported for 3D robotic systems [6]. Due to the poor perfor-

mance in bearing measurements, the range-based localization method as presented in

[6] requires lateration techniques for accurate localization. Additionally, the sensors

shown in Figure 2.3 [5, 6, 66] have failed to accommodate the strong narrow-band

ultrasonic disturbance sources that generally occur due to the height measurement

sensors of aerial robots and obstacle measurement sensors of ground platforms.

2.2.4 IR based methods

(a) Pugh et al. (b) Roberts et al.

2D IR transmitter/
receiver Array

3D IR transmitter/
receiver Array

Figure 2.4: (a) 2D IR transmitter/receiver array for RSS based relative position
measurement proposed by [7]. (b) The 3D spherical array design proposed by [8].

IR emitters and receivers employ modulated IR signals for RSS-based range and

bearing measurement. The 2D design presented in [7] achieves accuracies of 35 cm

for range and 15◦ for bearing over a 4 m range. The extension to 3D is reported in

[8], where a 14 cm range and 3◦ bearing accuracies are achieved at a 6m range. This

increased 3D detection field was realized by using spherical array designs and cas-

caded filtering [8]. The method facilitates fast refresh rates and robust measurement
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correspondence over acoustic and vision-based approaches. The main drawbacks of

the approach is its high power consumption and poor accuracies as compared to vi-

sion and ultrasonic systems. Additionally the large construction size of the sensor, as

illustrated in Figure 2.4, complicates the integration of the sensor to many MAVs and

ground robot platforms.

2.3 Proposed Approach

2.3.1 Measurement principle

RF Rx CAMUS Rx

IR TxUS TxRF Tx

RF Clock Sync
US-TOA Vision-AoA

Receiving 
Node

Transmitting
Node

Sensor on MAV

Figure 2.5: Inter-robot relative measurement principle and the designed sensor node

Figure 2.5 illustrates the proposed combined ultrasonic and vision-based relative

measurement method. The ultrasonic range measurement module measures the TOA

and the Angle Of Arrival (AOA) of an ultrasonic signal emitting from a transmitting

node. An RF module is integrated for clock synchronization between the two nodes.
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The receiving node can measure the time of acoustic signal reception. By knowing

the signal transmission time from the transmitting node, the receiver can measure

the TOA and the corresponding propagation distance of the signal. The difference

in TOA among an array of receivers provides an estimate of the direction of arrival.

A separate vision-based bearing measurement module measures the azimuth and the

elevation of an IR active marker located at the transmitting node.

The sensor node which is performing the measurements is identified as the “Local

node” while the sensor node which is being measured is identified as the “Target node”.

Similarly, the attaching robots of these sensors are termed as the “Local robot” and

the “Target robot” respectively.

2.3.2 Sensor node design
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Figure 2.6: Sensor node hardware architecture

Figure 2.6 illustrates a functional block diagram representing various signal pro-

cessing modules of transmitting and receiving nodes. The hardware has been designed

in such a way that all modules are embedded in a single node and the user has the

flexibility to choose the mode of operation (i.e. transmission or reception) using soft-

ware. The range measurement sensor design uses an array of directional ultrasonic
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transmitters (Prowave 250ST160) and an array of receivers (Prowave 250SR160). The

transmitter bursts an ultrasonic tone of 25 kHz with 20 Vpp amplitude. The received

signal undergoes an amplification, bandpass filtering, and envelope edge detection

process to generate a digital pulse corresponding to the received 25 kHz ultrasonic

tone. An RF transceiver pair ensures a clock synchronization of ± 5 µs, which only

contributes to the range measurement error by less than 4 mm. A micro-controller

measures the time between the RF synchronization pulse and the received processed

ultrasonic pulse for TOA measurement. It is necessary to introduce bandpass filter-

ing stages to filter out strong 40 kHz signals emitting from robots. These signals are

generated from the sonar-based obstacle avoidance sensors and height measurement

sensors attached to the robots which operate in close proximity to the 25 kHz receivers

of the proposed module. Subsequent fine tuning of the receiver gains was necessary

to remove the noise generated from the rotors of the MAVs.

The vision sensor used in the study is a PixArt computer vision IR target track-

ing sensor, which is commonly used for bearing estimation purposes of MAVs [69, 4].

The embedded processor of the sensor has the ability to perform image analysis and

target detection tasks in order to provide the pixel positions of perceived IR sources.

The image sensor has a limitation of recognizing only four targets. This limitation

is effectively surpassed by using synchronized illumination of the IR markers on the

robots, which in turn solves the measurement correspondence problem. An omnidi-

rectional IR source was employed using a circular array of pulsed IR LEDs as the

tracked target. A panning motor assembly performs IR Search and Track (IRST)

tasks to extend the field of view of the sensor. The IR target tracking sensor has low

computational overhead as compared to using a regular camera, mainly due to the

fact that it does not require additional feature detection tasks for bearing measure-

ment. Work in [8] reports modulation of IR signals with carrier frequencies of 455
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KHz, to improve detection and enable robust correspondence. However, the update

rate of the PixArt sensor is limited to a 100 Hz range, which makes it difficult to

implement IR signal modulation schemes to improve the signal detection capability

of the receiver.

The proposed sensor uses a dedicated Zigbee network for measurement communi-

cation. Additionally, each node is capable of establishing serial communication with

the attaching robot and this allows the system to use the Wifi network and other

resources of the attaching robot. The experimental system used for this study con-

sists of a centralized host running the Robot Operating System (ROS). ROS nodes

were used to communicate with each robot and each sensor node using the available

Wifi or Zigbee network. This allows measurement calibration, analysis, and filtering

operations to be performed at a centralized location for experimental purposes.

2.3.3 Sensor calibration

2.3.3.1 Ultrasonic range measurement calibration

r

CrΔt
r

s
AOA

{

αAOA

vx

ω

Figure 2.7: The experimental setup used for ultrasonic range and angle of arrival
calibration

The measurement model selected for range measurement is given by

r = Cairtr + br + νr (2.1)
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where r is the range between the two nodes, Cair is the sound propagation speed in

air, tr is the TOA of the ultrasonic signal, br is a measurement bias term, and νr

denotes the measurement noise term. The measurement noise is assumed to be drawn

from a zero mean Gaussian distribution with standard deviation σr. In order to

identify the parameters of the model given by (2.1), a calibration data set is required.

For this purpose, a mobile robot with a receiver node fixed at a known height was

maneuvered relative to another robot having a transmitter node. The measurements

tr were recorded from the receiver node along with a known set of range values r,

which were derived from laser measurements taken from the robots.

In order to identify the model parameters, a nonlinear least-squares optimization

process was performed using the Matlab Optimization ToolboxTM. For this purpose,

a cost function was defined as the sum of errors between the known range r, and

the measured range given by (2.1). An identical optimization process was used for

all parameter estimation tasks of this sensor. The values for parameter uncertainties

were found by a first order propagation of the error covariance. The identified model

parameters are given as follows.

Model parameters- Range measurement model (2.1)
Cair 0.34 mm/µs (± 4.7e-05)
br -384.23 mm (± 0.77)
E(νr) -0.098736 mm
σr 9.6978 mm
Optimization Data size: 18000

Outliers: 0.70 %

Figure 2.8 illustrates the error characteristics of the sensor and the results indicate

good agreement with the linear model (2.1). Figure 2.9 illustrates the error variation

with increasing distance between the transmitter and the receiver, where consistent

performance is observed within the measurable range.
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Figure 2.9: Ultrasonic range accuracy variation vs. separation between transmitter
and receiver

2.3.3.2 Ultrasonic angle of arrival measurement calibration

The AOA estimation is performed using the TOA measurements of different receivers

of the array. Due to the use of an array with four receivers, the receiver with minimum

TOA provides a coarse estimate of the signal’s direction of arrival with an accuracy

of ± 45◦. In order to improve this estimate the difference in TOA between receivers

is used. The mathematical model for angle of arrival of a far field acoustic source is
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given by

αAOA = cos−1
(
Cair∆tr
sAOA

)
+ λAOA + νAOA (2.2)

where sAOA is the separation between a pair of receivers, λAOA is a bias term, and ∆tr

is the difference in TOA between the receivers. The receivers that are not facing the

signal direction are prone to multi-path detection due to their directional sensitivity.

To avoid this situation, αAOA estimation is performed while considering only the min-

imum difference in TOA (∆tr) between all receiver pairs of the array. This allows the

nonlinear model given by (2.2) to be simplified into a linear model as given by

αAOA = π
2 + λAOA − Cair

sAOA
∆tr

αAOA = mAOA∆tr + bAOA + νAOA

(2.3)

where, the parameters mAOA and bAOA are the gradient and bias terms for each sensor

pair. The measurement noise is denoted by νAOA which is assumed to be a Gaussian

random variable with standard deviation σAOA.

For AOA calibration the sensor node shown in Figure 2.7 was rotated 360◦ to

record the TOA measurements of different receivers. The gyro corrected heading of

the attaching robot was used as a reference value for αAOA. The parameters of the

AOA measurement model were identified through an optimization process.

Model parameters- Linear difference in TOA model (2.3)
mAOA

[
−492 −385 −540 −348

]
±
[
12.73 8.89 8.07 7.16

]◦
/ms

bAOA

[
64.24 153.70 −51.25 −148.39

]
±
[
0.81 0.54 0.56 0.46

]◦
E(νAOA) 0.8423 ◦
σAOA 5.8005 ◦ ( 0.2 - 5 m )
Optimization Data size: 18000

Outliers: 2.11 %
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Figure 2.10: The test bed arrangement used for infrared bearing measurement cali-
bration

2.3.3.3 Infrared bearing measurement calibration

The transformation frames associated with a robot which are relevant to the vision

based bearing sensor calibration are introduced here. As illustrated in Figure 2.10, let

{S} be the transformation frame attached to the ultrasonic array, {C} be the frame

attached to the IR image sensor, {R} be the frame attached to the robot, {L} be the

frame attached to the laser and {O} denote the frame attached to the calibration rig.

For a given set of transformation frames {S} and {C}, let spc denote the position

of frame {S} with respect to frame {C}, and sRc denote the rotation matrix that

projects vectors expressed in frame {S} to frame {C}.

A pinhole camera model is selected for the image sensor as given by equation

(2.4). This is due to the low levels of nonlinear lens distortion reported for the image

sensor [78] and due to the computational simplicity the model provides.

bpx = Kc[cRo
cpo]xo + νpx (2.4)

For a given set of target points xo attached to a calibration rig, the model finds

its projection bpx = [1, xpx, ypx]T on the image plane. First, the points xo that are
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expressed in frame {O}, are transformed into the camera fixed frame C using the

matrix transformation [cRo
cpo]. The transformed points are then projected to the

image plane using a camera matrix Kc given by

Kc =


1 0 0

ccx fx 0

ccy 0 fy


where [fx, fy] denotes the focal lengths and [ccx, ccy] denotes the image centre. The

measurement noise νpx is assumed to be a random variable drawn from a zero mean

Gaussian distribution with covariance Σpx.

Calibration of the PixArt vision sensor is reported in different sources [78]. The

methods require pixel measurements of a known four-point 2D structure fixed on

frame {O} placed randomly at different poses. Therefore, each new image introduces

six unknown extrinsic parameters, to be estimated by using four projected measure-

ments. Due to the limited number of available measurements per image, the resulting

calibration has higher uncertainty.

This study performs calibration by using laser scan measurements to estimate

the changing extrinsic parameters, i.e., the transformation from frame {S} to frame

{O}. As a result, the effective number of parameters that should be optimized is

reduced to ten, which include the four intrinsic parameters of the camera and the six

common extrinsic parameters describing the transformation [cRs
cps] between frames

{C} and {S}.

The calibration rig was fabricated using four IR targets (LEDs) located at posi-

tions xo, which are expressed in frame {O}. In order to generate a calibration data set,

the calibration rig was fixed onto a vertical surface and the robot equipped with the

sensor was maneuvered on a horizontal plane as illustrated in Figure 2.10. The image
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sensor panning motor was set to incremental rotation during the calibration process

to capture errors generated by the sensor movement. For optimization, the parame-

ters were initialized using nominal values and measurements. The optimization was

performed to minimize the cost function given by

argmin
Kc, cRs, cps

∀k∑∣∣∣b(k)
px −Kc[cRs

cps](xo +s p(k)
o )

∣∣∣
where the superscript (k) was used to index the measurements b(k)

px and transforma-

tions [cR(k)
o

cp(k)
o ] related to each image k. The vector sp(k)

o was taken as a known

quantity, which is derived from the measurements of the laser scanner. The optimized

parameters of the bearing estimation model are as follows.

Model Parameters- Bearing measurement model (2.4)
fc

[
1345.0 −1346.1

]
±
[
18.5 13.6

]
px

cc
[
650.0 401.6

]
±
[
66.7 44.8

]
px

cRs

[
1.4 7.0 4.8

]
±
[
0.1 2.9 1.9

]◦
(roll, pitch, yaw)

cps
[
0.07 −20.4 21.50

]
±
[
0.40 0.40 4.70

]
mm

E(νpx)
[
−4.6e−05 3.91e−06

]
px

Σpx diag(
[
5.172 3.712

]
) px2

Optimization Data size (features): 4000, Outliers ≈0.0%

Figure 2.11 illustrates the pixel reprojection error of all images after the opti-

mization process. Figure 2.12 presents the bearing error measurement characteristics

against the range between the transmitter and the receiver. The calibrated bearing

measurement module was able to achieve sub-degree level consistent accuracy across

the measurement range.

2.3.4 Measurement configurations

The proposed sensor node is designed with the capability to attach to both ground

and aerial platforms. The nodes can be configured either to be a transmitter or a
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Figure 2.11: Pixel reprojection error of the calibrated vision sensor model.
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receiver dynamically using a network coordinator. A full sensor module performs the

ultrasonic processing, IR processing, motor control, communication, and computation

tasks in one measurement cycle. In order to accurately initialize each cycle, a network
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coordinator transmits RF timing synchronization pulses along with the information

describing the role each node should assume. Upon receiving this information, the

receiving sensor node executes the scheduled tasks corresponding to the role it is

assigned for that particular cycle. The scheduling of the tasks corresponding to the

different roles of the transmitters and receivers is illustrated in Figure 2.13. The

assignment of the roles establishes the network measurement configuration of the

multi-robot system.
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Figure 2.13: The scheduling of different tasks of the transmitter and receiver nodes:
Rx- reception, Tx- transmission, US- Ultrasonic, COM- Xbee or serial communication

This study discusses two measurement configurations of the sensor network. The

simplest is a static measurement configuration, with a single transmitting node and

multiple receiving nodes performing simultaneous range and bearing measurements

of the transmitter. This approach is termed as the Star measurement configuration

(Figure 2.14a). The time taken to complete one set of measurements in this configu-

ration is denoted by T (=100 ms).

Simultaneous measurement of multiple transmitters is possible using either code

division multiple access or frequency division multiple access methods. These meth-
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Figure 2.14: (a) Star measurement configuration. (b) Mesh measurement configura-
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ods have limited applicability for the proposed design due to the limited bandwidth of

the receivers used. Therefore, scaling beyond one transmitting node in the proposed

design is only realizable through Time Division Multiple Access (TDMA) methods,

where different time slots are used by each transmitting node in the system. The

Mesh measurement configuration (Figure 2.14b) uses TDMA to cycle the transmit-

ting role throughout the network while limiting signal transmission to only one node

during one cycle. The protocol takes nT total time to complete a full set of mea-

surements in a network of n nodes. Figure 2.15 illustrates the scheduling of different

tasks between the nodes in the case where three nodes are assuming a Mesh mea-

surement configuration. Table 2.2 summarizes the characteristics of the sensor node

and resource demand for each measurement configuration. Therefore, a Star configu-

ration is necessary for fastest update speeds, while a full Mesh network provides the

maximum information for filtering purposes.

The scheduling of tasks presented in Figure 2.13 is designed for sequential pro-

cessing. It is possible to achieve faster update rates by parallel implementation of IR

reception operations and Ultrasonic reception operations. Thus an optimized design

would allow the cycle times to be as low as 40 ms. This can only be achieved by em-

ploying fast micro-controller units with enough hardware resources to simultaneously
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Figure 2.15: TDMA scheduling between 3 nodes

process multiple threads.

The designed sensor does not utilize a standard clock synchronization approach

such as the network time protocol. Alternatively, the proposed method uses a basic

RF transmitter with direct physical layer access, to send a synchronization pulse to

initiate measurement cycles at each node. This is found to be simple and standard in

many similar applications [71, 6]. The worst case error contribution of this method

was calculated to be 3.0 mm for range measurement, and 0.015% for cycle time error.

These low error statistics can be considered insignificant for this particular application.

However, it is important to note that these errors can be minimized by opting for

clock synchronization methods such as [76], which provides a clock drift compensation

strategy applicable to ZigBee channels with Media Access Control (MAC) layer time

stamping capability.

The presented sensor nodes are capable of relative measurement in a network of

nodes independent of the attaching platforms and therefore are suitable for imple-

mentation in a wide class of robots.

2.3.5 Comparison with other IRRM solutions

Table 2.3 summarizes the main IRRM approaches reported in the literature for local-

ization of ground and aerial systems. Accordingly, the proposed approach introduces
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Table 2.2: Characteristics of the sensor network
Range Accuracy σr = 1.0 cm
Azimuth Accuracy σα = 0.3◦
Elevation Accuracy σβ = 0.2◦
Measurement Range 9 m
Power Consumption RX : 0.6 W TX : 6 W
Weight 120 g (with attach brackets)
Dimensions 140 x 85 x 45 mm (with attach brackets)

Configurations Mesh Star
Measurements / Cycle 4nC2 2(n− 1)
Cycle Time nT T=100 ms

Measurement Rate 4nC2
nT

2(n− 1)
T

Table 2.3: Summary of available 3D IRRM solutions
Author /Method Range error cm

RMSE (Max)
Azimuth error
RMSE (Max)

Elevation error
RMSE (Max)

Operating
range

Update
rate

3 m 6 m 3 m 6 m 3 m 6 m /robot

Eckert et al. [66] <1(<1) 1.5(2) 10.2◦ 22.6◦ - - 5.6 m 30 Hz
US-TOA/AOA
Roberts et al.[8] 10(14.2) 30(45) <3.1(4.3)◦ 3.1(13.9)◦ - 4.4(9.4)◦ 12 m 1 kHz
IR-RSS/AOA
Proposed method 1.0(3.7) 0.8(4.4) 0.2(1.0)◦ 0.3(1.3)◦ 0.2(0.1)◦ 0.2(0.1)◦ 9 m 10 Hz
US+Vision
Achtelik et al.[3] Localization error: X 4.2 cm Y 12 cm θ 2◦ 4 m FOV 15 Hz
Stereo vision

significant improvements of combined range and bearing measurement accuracies. The

signal filter designs and signal modulation in the proposed approach effectively han-

dles the common 40 kHz ultrasonic disturbance sources evident in robot networks.

This was a necessary improvement over the reported ultrasonic-only IRRM meth-

ods [5, 6, 66] for practical implementation. The correspondence problem faced by

vision-only approaches [3, 1] was addressed effectively in this design via synchronized

illumination of IR visual targets. Compared to the state-of-the-art system in [8], the

proposed approach focuses on multi-platform attachable, low-power and payload de-

sign with higher accuracy. It should be noted that the higher accuracies are achieved

at lower update rates when compared to [8]. However, the sensor networking pro-

tocols are designed so that multiple robots can simultaneously localize at a modest
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frequency of 10 Hz, which is sufficient for relative localization purposes.

2.4 Results

The experimental results validate three main features of the proposed sensor network.

The first experiment validates the capability of the sensor network to perform spatial

measurements while being scalable using TDMA methods. For this purpose a static

pose estimation case was considered where three sensor nodes performed measure-

ments using the Mesh protocol. The second experiment validates the ability of the

sensor to address acoustic disturbances from height sensors and obstacle avoidance

sensors under dynamic conditions. The third experiment validates the capability of

the sensor to operate onboard a flying MAV and analyzes the robustness of the system

to acoustic disturbances generated from rotors of an MAV.

2.4.1 Static 3D positioning

The experimental sensor network used for this localization exercise consisted of two

ground robots and one aerial robot. The relative measurements were captured at a

centralized location, where system performance was evaluated. The aerial robot was

fixed at an elevated location for this experiment. The height measurement sensors

and the ultrasonic obstacle avoidance sensors of the robot platforms were operating

at their nominal rates during this experiment. The laser scanners attached with the

ground robots were used for ground truth validation purposes. Figure 2.16 illustrates

the formation of the robot team and the real-time ROS visualization of the generated

measurements. Table 2.4 summarizes the positioning performance of the sensor net-

work, where a static localization accuracy in the order of centimeters was achieved

among all pairs of sensors in the network.



45

−2 −1 0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

3

4

5

x(m)

y(
m

) Robot 2

Robot 1

Robot 3

Measurements
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Table 2.4: Static positioning performance of the sensor network
Measuring Measured x error (m) y error (m) z error (m)

Node Node RMSE Max RMSE Max RMSE Max

1 3 0.0136 0.0503 0.0031 0.0114 0.0006 0.0020
2 1 0.0099 0.0233 0.0023 0.0054 0.0008 0.0017
3 2 0.0197 0.1013 0.0058 0.0296 0.0008 0.0043
3 1 0.0620 0.1629 0.0153 0.0404 0.0035 0.0091

2.4.2 Dynamic 3D positioning

For the purpose of dynamic 3D positioning error validation, the MAV was mounted on

a ground robot which allowed the MAV to be maneuvered along a smooth trajectory

and the position of the MAV to be derived from the laser-based localization capability
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Figure 2.17: Actual and estimated path for a circular trajectory localization experi-
ment

of the ground platform. Figure 3.13 illustrates the trajectory the MAV followed while

mounted on the robot, and Figure 2.18 and Figure 2.19 illustrate the performance

of the relative 3D positioning sensor. There were minimal occlusions and outliers

during this experiment. The sensor successfully performed accurate measurements

under these dynamic conditions while suppressing the disturbances introduced by the

height and obstacle avoidance sensors.

2.4.3 Dynamic 3D positioning of an MAV

In order to validate the applicability of the sensor for MAVs, the sensor was attached

and interfaced to a flying MAV and the measurements were sent to ROS through a

WiFi link for validation. An April Tag based ground truth system [70] was established

for ground truth validation. The MAV was maneuvered along a random trajectory
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Figure 2.18: The circular trajectory of the robot and the measurements from the
sensor

0 5 10 15 20 25 30 35 40 45 50
10−3

10−2

10−1

100

101

|B
ea

rin
g

er
ro

r(d
eg

)
|

0 5 10 15 20 25 30 35 40 45 50
10−3

10−2

10−1

100

101

|R
an

ge
er

ro
r(m

)
|

Azimuth
Elevation
Range

Time (s)

x

Figure 2.19: The measurement errors for the smooth circular trajectory of the robots

while the attached sensors on robots successfully positioned its flight path (Figure

2.20, Figure 2.21).

This particular experiment produced many outliers which are filtered in the re-

sults given in Figure 2.21 and Figure 2.22. The effect of the outliers and the sensor

noise can be filtered using an EKF in order to estimate a continuous trajectory from

the corrupted measurements. The results of an EKF applied to the measurements are

presented in Figure 2.23 and the estimated trajectory is superimposed on the actual

path of the MAV illustrated in Figure 2.20. Details relating to the EKF design for
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Figure 2.22: The measurement errors for the 3D trajectory of the flying MAV

the problem are discussed in later chapters.
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Figure 2.23: Localization results for the random flight trajectory using an EKF

The discrepancies between the trajectories of the AprilTags ground truth system

and the proposed sensor system, as seen in Figure 2.20, originated from two main

sources. The first is the accuracy limitation of the AprilTags system. The error

statistics of the AprilTags system were found to be σr = 2.8cm, σα = 0.05◦, and , σβ =

0.05◦, by using the calibration parameters of the camera used for the ground truth

system, and using a laser based range performance benchmarking of the AprilTags

estimates. These error statistics signify poor range estimation capability of the ground

truth reference system as compared to the proposed sensor. The second error source

is the reduced measurement detection rate that occurs when the sensor operates on
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a flying MAV. This decreased measurement rate causes the EKF updates to perform

sudden corrections when the platform is performing high velocity maneuvers as seen

in Figure 2.20. The effective measurement rate decreased mainly due to disturbances

caused by the rotors, power source noises generated by the running motors, and visual

occlusion of the IR emitters.

2.5 Conclusion

This chapter presented an innovative sensor network for spatial relative positioning

of indoor ground and aerial robots. The method requires a minimum of two robots

performing relative measurements of each other and achieves measurement accura-

cies of 0.97 cm RMSE for range and 0.3◦ RMSE for bearing. The sensor nodes are

scalable with Star or Mesh protocols with a maximum of 10 Hz update rates over

a detection range of 9 m. The nodes are applicable across many ground and aerial

robotic platforms with their ability to reject disturbance sources of acoustic obstacle

detection sensors, the low weight of 120 g, and a low mean power requirement. The

outlined features were successfully validated by multiple experiments on a ground and

aerial robotic system.

Although the proposed approach constitutes a working system, the design is not

optimized for measurement range, power consumption, and speed. Additionally, the

current iteration of the design suffers from the following main drawbacks:

• The vision based bearing measurement method has a limited field of view in

comparison to the omnidirectional reception capability of the acoustic modules.

Although a panning servo mechanism is implemented for improved field of view,

this has poor performance in terms of speed and increases the power consump-

tion of the sensor. In order to address the field of view limitation of the design,
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one possible improvement is to use an omnidirectional lens setup. Another

approach would be to establish better ultrasonic based bearing measurement

capability and use a vision sensor only for improvement of the estimates in its

field of view.

• In the current form the sensor is not applicable in outdoor settings. This is

mainly due to the inability of the vision sensor to operate under direct sunlight.

A solution for this is not to rely on IR features for bearing measurement and

use passive visual feature detection by a standard CMOS camera for bearing

measurement. However, the feature detection method employed should be kept

elementary to meet the computational constraints of the sensor. Improving the

ultrasonic bearing measurement capability would also contribute to enabling the

system in outdoor settings, since ultrasonic modules are equally applicable for

indoor and outdoor environments.

• The IR emitters consume a considerable amount of power in comparison to the

acoustic modules. This issue can also be addressed using passive features in

place of active features for bearing measurement.

• The ultrasonic sensors experience signal disturbances when running onboard

an MAV. Although the disturbances generated from obstacle measurement sen-

sors are effectively handled by bandpass filtering, the noise generated from the

rotors remains a dominant disturbance source for the ultrasonic modules. A

possible solution for this is to use encoded signals and better signal processing

for disturbance suppression.

The next major version of the sensor, which effectively addresses the said draw-

backs of the current design, is under development. The developed sensor uses ultra-

sonic modules with improved bearing measurement capability and keeps vision based
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passive feature detection as an auxiliary source for measurement improvement. This

is further inspired and enabled by recent developments in omni-directional MEMS

microphones [79] and surface mount ultrasonic sensors [80]. It is expected that an

optimized design of this sensor would constitute an integral part of a heterogenous

multi-robot system, allowing team-based localization without heavy resource demand

on the attaching platforms.



Chapter 3

Relative Localization:

Observability

Prior to the design of filters for a relative localization task, it is necessary to establish

theoretical limitations related to the problem. Nonlinear observability analysis tools

[43] allow to gain the necessary insight required for filter design. Although numerous

studies are reported for relative localization [81, 46], these studies do not investigate

the relative localization problem under constraints related to platform velocity sens-

ing capabilities. This chapter1 analyzes observability of relative localization in detail

for practical scenarios where there’s limited availability of platform velocities. The

analysis deduces the necessary conditions and design requirements relevant to a rel-

ative localization filter design, which are validated through multiple numerical and

experimental studies.
1 This chapter is based on the following publications of the author:

∗ O. De Silva, G. K. I. Mann, and R. G. Gosine, “Pairwise Observable Relative Localization in
Ground Aerial Multi-Robot Networks," in European Control Conference, 2014, pp. 324-329.

53
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3.1 Introduction

In a multi-robot team, observability refers to the ability of a robot to estimate the rel-

ative formation of neighbouring team members using available measurements. When

relative positions are measured among all robots, the problem can be solved in a deter-

ministic manner by considering the constraints introduced by the polygonal connec-

tivity between robots [32]. However, for robustness of a relative localization system,

it is desirable to have full observability between each pair of robots in the team. This

would allow the two robots to localize each other without relying on measurements

gathered by other robots in the network. This pairwise approach imposes a loose

set of constraints in terms of network connectivity for localization purposes. This

property enables a team to execute critical behaviours such as sense and avoidance

and formation maintenance with a minimum of two robots, provided that they are in

the measurable vicinity of each other.

Several factors affect the observability between a pair of robots. The first im-

portant factor is the availability of sufficient measurements for estimation. For the

relative localization problem, available measurements may include platform velocities,

IRRMs, and inertial sensors. The second factor is the complexity of the estimated

model. i.e, the number of states of the estimated model. For the relative localization

problem the states of a system may include relative position, relative orientation,

and unknown platform velocities. As the order of the estimated state increases, the

estimation task becomes mathematically complex and may even result in the system

losing its observability due to unavailability of sufficient measurements. The third fac-

tor relates to the dynamic constraints that are inherent to the system. The dynamics

of a platform introduce constraints in terms of the trajectory the system can assume,

hence provides more information to solve the observability problem. A nonlinear ob-

servability analysis provides the necessary insight into these factors and establishes the



55

theoretical limits governing estimators such as EKFs used for the relative localization

task.

Observability analysis relevant to relative localization of 2D multi-robot systems

is presented in [81], and extensions to 3D are presented in [46]. Both the studies derive

necessary conditions for observability assuming a scenario where platform velocity

inputs are known. However, most aerial platforms do not have reliable platform

velocity measurement systems, mainly due to the unavailability of sensors and the

drifting nature of MAVs. In the case where platform velocities are available, these

measurements would be only communicated intermittently at a low rate between the

robots to meet communication bandwidth limitations. Therefore it is necessary to

analyze the observability of multi robot systems for cases where platform velocity

measurements are unavailable, which allows gaining the necessary insight for the

purpose of implementing estimation frameworks.

This chapter performs a nonlinear observability analysis of a ground aerial sys-

tem considering the cases of unknown velocity inputs, along with the cases of differ-

ent relative measurement availability between the pair of robots. The IRRM sensing

modality selected for this study is a sensor which measures the relative position which

corresponds to main relative measurement methods proposed in literature for ground

and aerial systems [3, 8, 61] and the relative measurement sensor proposed in this

thesis. The chapter validates the theoretical constraints identified by the observ-

ability analysis using numerical simulations and experimental studies. The chapter

concludes discussing the implications of this study in designing and deploying relative

localization based robotic systems.



56

3.2 Preliminaries

This section introduces quaternion parameterizations, general notational definitions,

and operators used throughout the thesis.

3.2.1 3D Rotation parameterization

The parameterization and development of system models presented in this thesis are

primarily motivated by work in [85] and related standard text on classical mechanics.

Quaternion parametrization is preferred over Euler angles (roll, pitch, yaw) for its

singularity free representation of the rotation group [82]. A quaternion is denoted by

q̄ = (q0 q1 q2 q3)T = (q0 qT)T where for a unit quaternion ||q̄|| = 1. A unit quaternion

can be used to represent a rotation from a local frame {L} to a target frame {I}

about an axis represented by a unit vector a with an angle of θ.

q̄ = (cos θ/2 aT sin θ/2)T (3.1)

The inversion and multiplication(∗) operations related to a quaternion are defined as

follows.
q̄−1 = (q0 − qT)T

q̄ ∗ p̄ =



p0q0 − p1q1 − p2q2 − p3q3

p0q1 + p1q0 − p2q3 + p3q2

p0q2 + p2q0 + p1q3 − p3q1

p0q3 − p1q2 + p2q1 + p3q0


(3.2)

A vector v is expressed as v̄ = (0 vT)T when evaluating a quaternion expression.

Therefore, a quaternion multiplication between two vectors corresponds to the stan-

dard cross product between them. Using the rotation quaternion between two frames,

a vector vi in frame {I} can be expressed in frame {L}, i.e, (vi)l as (v̄i)l = q̄∗v̄i∗q̄−1.
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A matrix representation of the rotation operation from frame {L} to frame {I} can be

established using rotation matrices Rl,i, in which case the vector rotation between the

frames can be expressed as (vi)l = Rl,ivi. Both parameterizations allow global non

singular representation of the rotation group . The unit quaternions make it easier to

represent rotations as a state vector since it only has a dimensionality of 4, while the

rotation matrices provide familiar matrix operations which are preferred in deriving

filters. Rotation kinematics between two frames can be expressed in both quaternion

and rotation matrix parameterizations as follows.

˙̄q = 1
2 q̄ ∗ ω̄ Ṙ = RΩ (3.3)

where Ω = [ω]× is the relative angular velocity between the frames expressed in the

target frame ({I}). The operator [·]× is used to represent a vector v in its skew

symmetric form.

[v]× :=


0 −vz vy

vz 0 −vx

−vy vx 0

 (3.4)

The left and right matrix equivalents of quaternion multiplication are defined in (3.5).

Q+ = q0I +

0 −qT

q [q]×


Q− = q0I +

0 −qT

q −[q]×


q̄1 ∗ q̄2 = Q+

1 q̄2 = Q−2 q̄1

q̄−1
1 ∗ q̄−1

2 = Q+
1

Tq̄−1
2 = Q−2

Tq̄−1
1

(3.5)
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Using these relations a rotation matrix can be expressed using a quaternion as follows.

(v̄i)l = q̄ ∗ v̄i ∗ q̄−1 = Q+Q−
Tv̄i

⇒ R = I34Q
+Q−

T
IT

34

where I34 =


0 1 0 0

0 0 1 0

0 0 0 1


(3.6)

The axis angle representation of a rotation matrix takes the following form

R = eθ[a]× = I3 + sin θ[a]× + (1− cos θ)[a]2× (3.7)

where a is the axis of revolution and θ is the rotation angle. The Euler representation

of a rotation matrix takes the following form.

R = RθzRθyRθx

=


cos θy cos θz cos θz sin θx sin θy − cos θx sin θz sin θx sin θz + cos θx cos θz sin θy

cos θy sin θz cos θx cos θz + sin θx sin θy sin θz cos θx sin θy sin θz − cos θz sin θx

− sin θy cos θy sin θx cos θx cos θy


(3.8)

In (3.8) the Euler angles corresponding to roll (θx), pitch (θy), and yaw (θz) are applied

in the ZY X rotation sequence to arrive at the rotated frame.

The following relations are used throughout the text for differentiation of expres-

sions related to a quaternion q̄ and a vector v.

∂
∂q̄ q̄ ∗ v̄ ∗ q̄−1 = 2Q−T

V − ∂
∂q̄ q̄−1 ∗ v̄ ∗ q̄ = 2Q+T

V +

∂
∂vI34q̄ ∗ v̄ ∗ q̄−1 = R ∂

∂vI34q̄−1 ∗ v̄ ∗ q̄ = RT
(3.9)
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3.2.2 Relative localization problem in 3D

{L} {L*}

{I*}

{I}

pli, Rli

θz

θy

θx

=

=
>>

>>

Target 
Platform

Local 
Platform

r

b

b’

Figure 3.1: Relative localization frames of reference

Figure 3.1 illustrates the vector quantities of the frames {L} and {I} attached

to two robots. The frames {L∗} and {I∗} illustrated in Figure 3.1 are zero-roll-pitch

frames of robots, which are used in subsequent simplifications introduced in Section

3.3.4. As introduced in chapter 2 the term “target platform” is used to represent

robot i and the term “local platform” is used to represent robot l. The position

vector pl,i = (x, y, z)T carries the relative coordinates of the target platform. The

rotation matrix Rl,i carries the relative orientation which corresponds to roll (θx),

pitch (θy), and yaw (θz), angles of platform {I} relative to robot {L}. The double

subscripts li denote that the variable is a relative quantity of frame {L} with respect to

frame {I}, and is expressed in frame {L}. The double subscripts are only used where

necessary for clarity of presentation. Using quaternion parametrization the rotation

matrix Rl,i is denoted as Rq and the rotation kinematics are expressed in quaternion

form. The system model related to the two robots is captured using equation (3.10)
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which constitutes a 3D variable turn rate (VTR) model.

ẋ = f(x,u,w)ṗ

˙̄q

 =

 Rqvi − vl − ωl × p + wv

1
2 q̄ ∗ I43(ωi −RT

q ωl + wω)

 (3.10)

The set of inputs u = ( vT
l , ω

T
l , vT

i , ω
T
i )T captures the absolute velocities vl =

(vlx, vly, vlz)T, vi = (vix, viy, viz)T, and absolute angular speeds ωl = (ωlx, ωly, ωlz)T,

ωi = (ωix, ωiy, ωiz)T of robot {L} and robot {I} respectively. The single subscript

denotes that the vector is an absolute quantity relative to an inertial frame and is

expressed in the body fixed frame of the platform. The state vector x includes the

relative position p and the relative orientation q̄. The random variable w captures the

process noise which is assumed to be zero mean Gaussian with covariance E(wwT ) =

Q.

3.2.3 Measurement availability

This analysis considers three types of measurement sensors applicable for each plat-

form. These include relative positioning sensors, velocity sensors, and attitude refer-

ence sensors. The following is a discussion of each type of sensor. The sensor model

for each sensor is captured using a nonlinear measurement model as given in (3.11).

The random variable ν captures the process noise which is assumed to be zero mean

Gaussian with covariance E(ννT) = Ŕ.

3.2.3.1 Relative positioning sensor-yp, yp′

The local platform is assumed to be equipped with a sensor which can measure the

relative range r, and bearing b of a target platform. Similarly the target platform can

measure the range r′ and bearing b′ of the local platform, due to transformational
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invariance of range r = r′. Therefore the distinct quantities r, b, and b′ of these

measurements can be captured in a sensor model as follows.

y = h(x,ν)
r

b

b′

 =


||p||

p||p||−1

−RT
q p||p||−1

 +


νr

νb

νb′


(3.11)

The corresponding noise figures of the sensors are denoted by νr, νb, and νb′ . In

multi robot research it is advantageous to convert this model to a cartesian form given

by
y = h(x,ν)yp

yp′

 =

 p

−RT
q p

 +

νp
νp′

 (3.12)

where the measurements yp, and yp′ denotes the relative position measurements with

respect to local and target platforms respectively. The noise figures are captured in a

cartesian form as additive white noise through first order transformation of the original

noise parameters. However this is only valid if the noise parameters are considerably

small, which allows a cartesian sensor model to be a good approximation of the

polar noise distributions. This phenomenon is better illustrated by Figure 3.2 where

the first order approximation of measurement covariance under low noise statistics

exhibits good approximation of the underlying noise distribution. In this text we

opt for a cartesian model for relative positioning assuming a sensor with low noise

statistics as presented in Chapter 2.

Depending on the measurement configuration assumed, two cases of relative mea-

surement availability can be considered.

Star configuration: In Star measurement configuration, only yp is measured. For
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Figure 3.2: Comparison between the sampled points and the first order approximation
of noise figures related to a high noise relative portioning sensor and a low noise
sensor. The standard deviation of Sensor 1 - σr = 10cm, σθ = 20◦, Sensor 2 -
σr = 3cm, σθ = 1◦

the purposes of this observability study, the Star configuration relates to the

general case where the measurement yp′ is unavailable. This can occur due to

reasons ranging from measurement unavailability, communication constraints,

or field of view constraints.

Mesh configuration: InMeshmeasurement configuration, both yp and yp′ are mea-

sured.

3.2.3.2 Platform velocity sensor-yv, yω

Platforms can measure their velocities using numerous methods which include wheel

encoders, optical flow sensors, doppler velocity logs etc.. For the purpose of analysis

it is advantageous to consider these velocities as inputs of the model when available.

Hence this study considers the following three cases for analysis.

Case S1: All velocities of the local and target platforms are available. Thus vi,ωi,vl,ωl
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act as inputs to the model as given in equation (3.10).

Case S2: All velocities related to the local platform are available. For this case

only vl, ωl are inputs while vi, ωi are introduced as states with random walk

processes for estimation purposes. Hence the system model given by (3.10) is

concatenated with additional rows given below.

v̇i

ω̇i

 =

0

0

 +

wvi

wωi



Case S3: All velocities related to the target platform are available. For this case

only vi, ωi are inputs and vl, ωl are introduced as states with random walk

processes for estimation purposes. Hence the system model given by(3.10) is

concatenated with additional rows given below for Case S3.

v̇l

ω̇l

 =

0

0

 +

wvl

wωl



The special case where all velocities are unknown is well studied in target tracking

literature where a linear model such as the Constant Velocity(CV) model or the

Constant Turn Rate (CTR) model is used for estimation purposes.

3.2.3.3 Attitude reference sensors-ygi

These measurements are not explicitly considered in this thesis for relative localiza-

tion purposes. The attitude reference measurements are only used in subsequent

simplifications of the problem introduced in Section 3.3.4. Attitude reference sensing

is enabled through Inertial Measurement Units (IMU) attached to robots. Attitude

estimation using an IMU can be easily implemented by a nonlinear complimentary
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filter [54] with intuitive gain tuning approaches as proposed in Chapter 4. The at-

titude reference systems implicitly estimate the rotations of the body fixed frames

{I} and {L} of platforms relative to the zero roll pitch frames {I∗} and {L∗}. The

heading reference provided by digital compasses are biased due to disturbance caused

by power lines, fero-magnetic structures, and robotic motors, hence are not preferred

as reliable heading measurement systems in indoor settings. This fact is reported

in many studies [83, 84] and as a result most indoor multi-robot research considers

heading as an unknown quantity that require estimation through localization filters.

3.3 Materials and Methods

3.3.1 The system configurations

Table 3.1: All combinations relating to relative measurement and platform velocity
measurement availability

3- available 7- unavailable - Dont care entry

Measurement availability
Configuration pli pil vi, ωi vl, ωl

S1 −Mesh 3 3 3 3

S1 − Star 3 7 3 3

S2 −Mesh 3 3 7 3

S2 − Star 3 7 7 3

S3 −Mesh 3 3 3 7

S4 − Star 3 7 3 7

Dual Configurations 7 3 - -
Target tracking - - 7 7

Odometer 7 7 - -

Table 3.3.1 tabulates all possible configurations with regard to the availability of

relative measurements and platform velocities. The unique identifier which is used

to identify each configuration is given in the first column of Table 3.3.1. This work

analyzes the observability characteristics of the first six cases given in the table. The
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reasons for not explicitly considering the remaining three cases are as follows.

• The Dual configurations given in the table relate to all the configurations derived

simply by interchanging the local and target platforms of the first six configura-

tions. Hence the observability characteristics of the first six configurations hold

equally for its dual problems. For example, the filter estimating w.r.t. the local

platform for the S1 − Star configuration, can be used for its dual configuration

as well, by implementing the filter w.r.t. the target platform.

• The Target Tracking configuration given in the table relates to the case where

all platform velocities are unknown. This is the general approach taken in

target tracking methods which uses a constant velocity model. The states of

the constant velocity model only include the position and linear velocities of the

origin of {I}. This model is known to be fully observable when relative position

is measured, and the proof is rather straightforward [49].

• The class of configurations termed as Odometer given in Table 3.3.1 relates to

the cases where there are no relative measurements. Thus the model acts as an

odometer which predicts the location of the platform by integrating the velocity

estimates. As a result, the model experiences an unbounded increase of the

localization error for this case. I.e., the model is unobservable.

3.3.2 Observability of non-linear systems

Equation (3.13) gives the control affine form of a general nonlinear system.

ẋ = f0(x) +
∑
∀k=1:l

fk(x)uk

y = h(x)
(3.13)



66

The system model related to each configuration considered in this study as given in

(3.10) constitutes a nonlinear system which requires a nonlinear observability analysis.

The following classes of observability are introduced by [43] in relation to observability

of nonlinear systems.

Indistinguishable A pair of states x0 and x1 in state space X are indistinguishable

if the system (3.13) produces the same input output map for every admissible

input trajectory u.

Observable A system is observable if indistinguishability I of each state x ∈ X only

includes x. This is denoted as I(x) = {x}. I.e., each state x is distinguishable

from all other states in the state space X .

Locally Observable A system is locally observable if each state x ∈ X is dis-

tinguishable within any open neighbourhood U ⊆ X . This is denoted as

IU(x) = {x}. I.e., the system does not need to travel a considerable amount of

time for the state to be distinguishable from others.

Weakly Observable A system is weakly observable if each state x ∈ X is only

distinguishable in a subset V ⊆ X . This is denoted as I(x) ∩ V = {x}. This

implies the existence of multiple indistinguishable states in the state space.

Locally Weakly Observable If each state x ∈ X is only distinguishable within a

subset V ∈ X and it is distinguishable in any open subset (neighbourhood)

U ∈ V , the system is locally weakly observable. (IU(x) ∩ V = {x})

The relationship between various forms of observability discussed for nonlinear sys-

tems can be captured as follows. For linear systems all of these observability classes
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are equivalent.

Locally observable ⇒ Observable

⇓ ⇓

Locally weakly observable ⇒ Weakly observable

Hermman et al. have introduced the necessary and sufficient conditions under which

the nonlinear system shown in (3.13) can be locally weakly observable [43]. Following

the notation of [46], an observability matrix is defined as in (3.14), using all Lie

derivatives of the function h(x), with respect to fk(x). The system given by (3.13)

is said to be locally weakly observable, if matrix O satisfies the observability rank

conditions, i.e., rank(O) = n.

O = {∆Llfa,...fbh(x)|a, b = 0...k; l ∈ N} (3.14)

3.3.3 Observability analysis - 3D Relative localization prob-

lem

The 3D analysis is not incorporated in the final design process of localization filters

and the distributed computing modules, and is presented only for completeness of the

observability study. Therefore only the summary of the results are presented in Table

3.3.3 which is generated through evaluating the rank of the observability matrix using

the Matlab Symbolic toolbox. For this purpose the system equations given by (3.15)

were used which corresponds to different configurations related to relative localization.
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System Model Measurement Model

Case S1
ẋ = f1(x)vi + f2(x)ωi + f3(x)vl + f4(x)ωl(

ṗ
˙̄q

)
=
(

Rq

0

)
vi +

(
03×1
1
2Q

+

)
ωi +

(
−I3×3

0

)
vl +

(
p×
−1

2Q
−

)
ωl

Star Configuration
y = h(x,u)(
yp
)

=
(
p
)

Case S2
ẋ = f0(x) + f1(x)vl + f2(x)ωl

ṗ
˙̄q
v̇i
ω̇i

 =


Rqvi

1
2Q

+ωi
03×1
03×1

+


−I3×3
04×3
03×3
03×3

vl +


p×
−1

2Q
−

03×3
03×3

ωl
Mesh Configuration

y = h(x,u)(
yp
yp′

)
=
(

p
−RT

q p

)

Case S3
ẋ = f0(x) + f1(x)vi + f2(x)ωi

ṗ
˙̄q
v̇i
ω̇i

 =


−vl + p×ωl
−1

2Q
−ωl

03×1
03×1

+


Rq

04×3
03×3
03×3

vi +


03×3
1
2Q

+

03×3
03×3

ωi (3.15)

Table 3.2: Summary of the observability analysis for the 3D problem
3- Locally weakly observable 7- Unobservable

Configuration Rank(O) Full state
observability

S1 −Mesh 7 3

S1 − Star 7 3

S2 −Mesh 13 3

S2 − Star 9 7

S3 −Mesh 13 3

S3 − Star 12 7

3.3.4 The 2.5D simplification of the problem

3D systems can be approximated to 2.5D under the assumptions of low roll and pitch

dynamics. This is a common strategy used in research related to MAV localization

[22]. The 2.5D system considers the zero-roll-pitch frames of reference {L∗} and {I∗}

attached to the robots. The attitude reference systems attached to each platform

estimate the rotation between frames {L} and {L∗} denoted by Rl∗,l, and the rotation

between frames {I} and {I∗} denoted by Ri∗,i. Using these quantities the following
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simplifications are performed to the 3D system model given in (3.10) and the related

measurement equations.

• The rotation estimate Rl∗,l is used to express the measured vector quantities

vl,ωl,yp in the frame of reference {L∗}. I.e., v∗l = Rl∗,lvl and ω∗l = Rl∗,lωl

y∗p = Rl∗,lyp.

• Similarly, the rotation estimate Ri∗,i is used to express vector quantities vi,ωi, yp′

in the frame of reference {I∗}. I.e., v∗i = Ri∗,ivi and ω∗i = Ri∗,iωi y∗p′ = Ri∗,iyp′ .

• Simplify the system model by assuming negligible roll and pitch dynamics.

Therefore the angular speeds would only include the yaw rate, i.e. ωi =

(0, 0, ω∗iz)T,ωl = (0, 0, ω∗lz)T. The rotational kinematics can be simplified to

a one degree of freedom system which only considers the heading θz dynamics.

q̄ = 1
2 q̄ ∗ ω̄ → θz = ωz (3.16)

The following notational simplifications are incorporated when refering to 2.5D prob-

lems which assume zero-roll-pitch frames of references of each platform. θz → θ, Rq →

Rθ, v∗l → vl, v∗i → vi, ω∗lz → ωl, ω
∗
iz → ωi. After assuming these simplifications and

associated notation, the system and measurement models related to different cases

can be summarized by (3.17) .

Here e denotes the unit basis vectors of R3. I.e., [e1 e2 e3] = I3×3. For the purpose of

the analysis we define d
dθ

n Rθ := J(n)
θ .
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System Model Measurement Model

Case S1
ẋ = f1(x)vi + f2(x)ωi + f3(x)vl + f4(x)ωl(

ṗ
θ̇

)
=
(

Rθ

0

)
vi +

(
03×1

1

)
ωi +

(
−I3×3

0

)
vl +

(
p×e3
−1

)
ωl

Star Configuration
y = h(x,u)(
yp
)

=
(
p
)

Case S2
ẋ = f0(x) + f1(x)vl + f2(x)ωl

ṗ
θ̇
v̇i
ω̇i

 =


Rθvi
ωi

03×1
0

+


−I3×3

0
03×3

0

vl +


p×e3
−1

03×1
0

ωl
Mesh Configuration

y = h(x,u)(
yp
yp′

)
=
(

p
−RT

θ p

)

Case S3
ẋ = f0(x) + f1(x)vi + f2(x)ωi

ṗ
θ̇
v̇i
ω̇i

 =


−vl + p×e3ωl

−ωl
03×1

0

+


Rθ

0
03×3

0

vi +


03×1

1
03×1

0

ωi (3.17)

3.3.5 Observability analysis - 2.5D Relative localization prob-

lem

Case S1 −Mesh configuration observability

In this configuration, all platform velocities are known and both relative position

measurements with respect to the local and target platforms are available. An ob-

servability matrix can be formed by evaluating the Lie derivatives as follows.

L0h = h, ∇L0h =

 I3×3 03×1

−RT
θ −J(1)T

θ p


L1
f1h = ∇L0hf1 =

Rθej

−ej

 , ∀ej = {e1, e2, e3} ∇L1
f1h =

03×3 J(1)
θ ej

03×3 03×1


L1
f3h = ∇L0hf3 =

 −ej

RT
θ ej

 , ∇L1
f3h =

03×3 03×1

03×3 J(1)T

θ ej


O =

[
∇L0hT ∇L1

f1h
T ∇L1

f3h
T
]T
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The term −J(1)T

θ p of O is zero when x = y = 0. This occurs when the target robot is

directly on top of or below the local platform. The terms ∇L1
f1h, ∇L

1
f3h vanish when

the input velocities vl = vi = 0. Additionally, J(1)
θ e3 of ∇L1

f1h is always zero which

implies that the observability of θ is independent of the vertical velocity vlz. Similarly,

J(1)T

θ e3 of∇L1
f3h is always zero which implies that the observability of θ is independent

of the target’s vertical velocity viz. For all other conditions the matrix O has a column

rank of 4 which satisfies the observability rank conditions required for the system to

be locally weakly observable (Theorem 3.1 in [43]). Therefore the system is locally

weakly observable for all cases except when x = y = vix = viy = vlx = vly = 0. I.e.,

the system is only unobservable for an S1−Mesh configuration when the target robot

is directly on top of or below the local platform, and both robots are stationary on a

horizontal plane.

Case S1 − Star configuration observability

L0h = h = p, ∇L0h
[
I3×3 03×1

]
L1
f1h = ∇L0hf1 = Rθej, ∀ej = {e1, e2, e3} ∇L1

f1h
[
03×3 Jθej

]
O =

[
∇L0hT ∇L1

f1h
T
]T

The non zero terms of ∇L1
f1h

T vanish when vi = 0. The term Jθe3 of ∇L1
f1h

T is

always zero which implies that the observability of θ does not depend on the vertical

velocity viz. Therefore matrix O has a column rank of 4 which satisfies the observabil-

ity rank conditions ∀vix or viy 6= 0. I.e., the system is unobservable for an S1 − Star

configuration when the target robot is stationary on a horizontal plane.
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Case S2 −Mesh configuration observability

L0h = h, ∇L0h =

 I3×3 03×1 03×3 03×1

−RT
θ −J(1)T

θ p 03×3 03×1


L1
f0h = ∇L0hf0 =

 Rθvi

−vi − ωiJ(1)T

θ p

 ,

∇L1
f0h =

 03×3 J(1)
θ vi Rθ 03×1

−ωiJ(1)T

θ −ωiJ(2)T

θ p −I3×3 −J(1)T

θ p


L1
f1h = ∇L0hf1 =

 −ej

RT
θ ej

 , ∀j ∇L1
f1h =

03×3 03×1 03×3 03×1

03×3 J(1)T

θ ej 03×3 03×1


L2
f1,f0h = ∇L1

f1hf0 = ωiJ(1)T

θ ej, ∀j ∇L2
f1,f0h =

[
03×3 ωiJ(2)T

θ ej 03×3 J(1)T

θ ej
]

O =
[
∇L0hT ∇L1

f0h
T ∇L1

f1h ∇L
2
f1,f0h

]T

The matrix O loses the column rank of 8 when the term −J(1)T

θ p is zero and the terms

∇L1
f1h,∇L

2
f1,f0h vanish (vl = 0). J(1)T

θ e3 of ∇L1
f1h is always zero since observability

of θ is independent of the vertical velocity vlz. Therefore the system is locally weakly

observable for all cases except when x = y = vlx = vly = 0. I.e., the system is

unobservable for an S2−Mesh configuration when the target robot is directly on top

of or below the local platform and the local robot is stationary on a horizontal plane.

Case S2 − Star configuration observability

L0h = h = p, ∇L0h =
[
I3×3 03×1 03×3 03×1

]

The rank 3 matrix ∇L0h, has a column space that spans the 3-dimensional

vector space p. Therefore, states p can be fully determined. Now higher-order Lie

derivatives with gradients along [θ vi ωi], i.e.,∇[θ,vi,ωi]Lnf0,f1,f2h, which spans the vector

space [θ vi ωi], should be found to satisfy observability rank conditions.
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∇L1
f1h = ∇L2

f0,f1 = ∇L2
f2,f1 = 0

L1
f2h = [e3]T×p

∇[θ,vj ,ωj ]L1
f2 = 0

All remaining higher-order non-zero Lie derivatives are along vector combinations of

the set {f0, f2}, which can be summarized using equations (3.18).

Ln{f0,f2,..}h = ω
(m−1)
i (−1)(n−m)[−e3]s× J(n−1)

θ vi

∇[θ,vi,ωi]Ln{f0,f2,..}h = ωm−1
i (−1)n−m[−e3]s×

[
J(n)
θ vi J(n−1)

θ
m−1
ωi

J(n−1)
θ vi

]
(3.18)

In (3.18), n is the degree of the Lie derivative, m is the number of times it is evaluated

along f0, and s is the number of times the derivative is initially evaluated along f2. In

this general expression J (0)
θ is equivalent to Rθ. However, the rank of (3.18) is found

to be 4 (but should be 5 for full rank). This is because Colθ = −Colvixviy + Colviyvix.

Here the column vector of a particular state variable θ in O, is defined as Colθ. Full

rank is only observed for all vi 6= 0, when the transverse velocity state is constrained

(known to be zero), i.e., viy = 0. This is also valid for ground differential drive robots

where lateral velocities are not experienced.
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Case S3 −Mesh configuration observability

L0h = h, ∇L0h =

 I3×3 03×1 03×3 03×1

−RT
θ −J(1)T

θ p 03×3 03×1


L1
f0h = ∇L0hf0 =

 −vl + ωlp× e3

−RT
θ (−vl + ωlp× e3) + ωlJ(1)T

θ p

 ,

∇L1
f0h =

−ωl[e3]× 03×1 −I3×3 p[e3]×

− − RT
θ RT

θ [e3]×p + J(1)T

θ p


L1
f1h = ∇L0hf1 =

Rθej

−ej

 , ∀j ∇L1
f1h =

03×3 J(1)
θ ej 03×3 03×1

03×3 03×1 03×3 03×1


L2
f1,f0h = ∇L1

f1hf0 = −ωlJ(1)
θ ej, ∀j ∇L2

f1,f0h =
[
03×3 −ωlJ(2)

θ ej 03×3 −J(1)
θ ej

]
O =

[
∇L0hT ∇L1

f0h
T ∇L1

f1h
T ∇L2

f1,f0h
T
]T

Matrix O loses the column rank of 8 when the term −J(1)T

θ p is zero and the terms

∇L1
f1h,∇L

2
f1,f0h vanish (vi = 0). J(1)

θ e3 of ∇L1
f1h is always zero since observability

of θ is independent of the vertical velocity viz. Therefore the system is locally weakly

observable for all cases except when x = y = vix = viy = 0. I.e., the system is

unobservable for an S3−Mesh configuration when the target robot is directly on top

of or below the local platform and the target robot is stationary on a horizontal plane.

Case S3 − Star configuration observability

L0h = h, ∇L0h =
[
I3×3 03×1 03×3 03×1

]
L1
f1h = ∇L0hf1 =

[
Rθej

]
∀j, ∇L1

f1h =
[
03×3 J(1)

θ ej 03×3 03×1

]
L1
f0h =

[
−vl + ωlp× e3

]
, ∇L1

f0h =
[
−ωl[e3]× 03×1 −I3×3 −[e3]×p

]
L2
f1,f0h =

[
−ωlJ(1)

θ ej
]
, ∇L2

f1,f0h =
[
03×3 −ωlJ(2)

θ ej 03×3 −J(1)
θ ej

]
O =

[
∇L0hT ∇L1

f1h
T ∇L1

f0h
T ∇L2

f1,f0h
T
]T

Matrix O loses the column rank of 8 when the terms L1
f0h, ∇L

2
f1,f0h vanish
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(vi = 0). The term J(1)
θ e3 is always zero since observability of θ is independent of the

vertical velocity viz. Therefore the system is locally weakly observable for all cases

except when vix = viy = 0. I.e., when the target robot is stationary on a horizontal

plane its states are unobservable for an S3 − Star configuration.

Global uniqueness

The analysis given above establishes whether a system is “locally weakly observable”.

For a system to be “locally observable” it should be solvable for a unique global

solution instantaneously; i.e., all states x should be distinguishable using the inputs

and measurement quantities for any neighbourhood around x ∈ X . The following

four Lemmas complete the analysis by establishing global uniqueness of the solution

for each case.

Lemma 1. The system of equations related to all Mesh measurement configurations

has a globally unique solution for the relative pose between the platforms when x 6= 0

and y 6= 0.

Proof. Consider the two relative measurements yp and yp′ . The position can be

directly read from yp. To find orientation θ, first modify the vectors by removing

their z components which do not have any coupling with rotation in a 2.5D analysis.

yp ←
[
eT

1 yp eT
2 yp 0

]T
, yp′ ←

[
eT

1 yp′ eT
2 yp′ 0

]T

Using the relations yp = p and yp′ = −RT
θ p where p = [x y 0]T, the cross product

and the dot product can be found as follows:

yp′ × yp =
[
0 0 −(x2 + y2) sin θ

]T
, yT

p′yp = −(x2 + y2) cos θ
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Therefore when x2 + y2 6= 0 a globally unique solution for θ can be found.

θ̂ = arctan 2(−(yp′ × yp)Te3,−yT
p′yp)

Lemma 2. The system of equations given by S1 − Star measurement configuration

has a globally unique solution for the relative pose between the platforms when vix 6= 0

and viy 6= 0.

Proof. Consider the known measurements and their dynamics at any time instant k.

yp = p, ẏp = Rθvi − vl + yp×e3ωl (3.19)

For S1 configurations the vector of unknowns is (pT, θ)T. The position p can be read

directly from the first equation (p̂ = y). The second equation is modified by taking

all known quantities to R.H.S. and redefining them as γ.

Rθvi = γ

γ := ẏ + vl − yp × e3ωl

By expanding this vector equation, the following trigonometric equation can be

found.
cos θvix − sin θviy = eT

1γ

sin θvix + cos θviy = eT
2γ

viz = eT
3γ

This can be solved to find the solution for θ.

θ̂ := θ = arctan 2(eT
2γ, eT

1γ)− arctan 2
(

viy√
v2
ix+v2

iy

, vix√
v2
ix+v2

iy

)
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Therefore the S1−Star configuration has a globally unique solution given by (p̂T, θ̂)T

which is valid for all x when v2
ix + v2

iy 6== 0.

Lemma 3. The system of equations given by the S2−Star measurement configuration

where the transverse velocities are constrained (viy = 0), has two globally distinct

solutions for the relative pose between the platforms when vix 6= 0.

Proof. Following the same steps as above one arrives at the following set of equations:

cos θvix − sin θviy = eT
1γ

sin θvix + cos θviy = eT
2γ

viz = eT
3γ

For the S2 configurations the vector of unknowns is (pT, θ, vT
i , ωi)T. As required

by observability conditions viy, is forced to be zero. viz is directly found by the

third equations. The resulting trigonometric equations can be solved for two distinct

solutions by using the relation cos θ2 + sin θ2 = 1.

v̂ix = ±
√

eT
1γ

2 + eT
2γ

2

θ = arctan 2
(

eT
2γ

vix
,

eT
1γ

vix,k

)
, ∀vix 6= 0

ωi can be found as follows using ÿ.

γ ′ := ÿp + v̇l − ẏp×e3ωl − yp×e3ω̇l = Jθ(ωi − ωl)vi

ωi = ωl + eT
2γ
′−eT

1γ
′

2 sin θ

Therefore the S2−Star configuration has two globally distinct solutions. The solutions

for the unknown quantities (p, θ, vi, ωi) can be summarized as follows:

(p̂, θ̂, v̂i, ω̂i + ωl)

(p̂, π + θ̂, [ −vix, −viy, viz]T, −ω̂i + ωl), ∀vix 6= 0
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Lemma 4. The system of equations given by S3 − Star measurement configuration

has two globally distinct solutions for the relative pose between the platforms when

vix 6= 0 and viy 6= 0.

Proof. Consider the known measurement and its dynamics at a time instant k. We

assume that the target is moving at a trajectory where v̇i = ω̇i = 0.

yp = p,

ẏp = Rθvi − vl + yp×e3ωl

ÿp = Jθvi(ωi − ωl) + ẏp×e3ωl

(3.20)

By expanding this vector equation, the following trigonometric equation can be found.

(− sin θvix − cos θviy)(ωi − ωl) + ẏ2ωl = ÿ1

(cos θvix − sin θviy)(ωi − ωl)− ẏ1ωl = ÿ2

The equations produce the following quadratic equation for ωl, which can be solved

for two distinct solutions.

(ωi − ωl)2 = (ẏ2ωl − ÿ1)2 + (−ẏ1ωl − ÿ2)2

ω̂l = {ωl1 , ωl2}

θ and vl is found using the equation related to ẏ and ÿ

θ̂ = ATan2(ẏ2ω̂l − ÿ1,−ẏ1ω̂l − ÿ2)− ATan2(viy, vix), ∀vix ∧ viy 6= 0

v̂l = Rθ̂ − ẏ + yp×e3ω̂l

It is evident from the solutions that the S3 − Star configuration produces a globally

distinct solution ∀vix & viy 6= 0, if the local robot does not assume a turn rate (ωl = 0).

Otherwise the system produces two globally distinct solutions.
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The summary of analysis - 2.5D problem

The results of the observability analysis are summarized in Table 3.3.5.

Table 3.3: Summary of the observability analysis for the 2.5D problem
3- Locally observable 7- Unobservable

Configuration Observability Unobservable conditions

S1 −Mesh 3 x = y = vix = viy = vlx = vly = 0
S1 − Star 3 vix = viy = 0
S2 −Mesh 3 x = y = vlx = vly = 0
S2 − Star 7 See note1

S3 −Mesh 3 x = y = vix = viy = 0
S3 − Star 3 vix = viy = 0 See note2

1 - The S2 − Star configuration can be modified to be locally weakly observable by, 1)sensing at
least one horizontal velocity component of target, 2) constraining the target trajectory; i.e, make viy
known to be zero, 3) assuming platforms with constrained movement, e.g, differential drive robots
where viy = 0.
2 - This configuration is only locally observable for ωl = 0. Otherwise the configuration is locally
weakly observable.

3.3.6 Implications on estimator design

The observability study results in the following implications in the subsequent filter

design and the distributed estimation framework design.

• For full state observability communication must be established between plat-

forms. The measurement quantities which require communication to the local

platform are yp′ , vi and ωi. All observable configurations presented have uti-

lized at least one of these quantities. Therefore when the measurements yp′ or

(vi, ωi) are communicated between platforms the overall system becomes an

observable configuration.

• The third column of Table 3.3.5, reports the unobservable conditions of the sys-

tem as identified by the observability study. These results can be explained in a
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practical standpoint as follows. The S1−Mesh configuration is only unobserv-

able when both the local and the target robots are stationary and the two robots

align on top of each other. Under this condition the relative orientation of the

robots are unobservable, hence the orientation results of any estimator under

this configuration should be treated with low confidence. Similarly, S2 −Mesh

configuration is only unobservable when the local robot is stationary and the

two robots align on top of each other. S3 −Mesh configuration is only unob-

servable when the target robot is stationary and the two robots align on top

of each other. S1 − Star and S3 − Star configurations are only unobservable

when the target robot is stationary. S2− Star configuration is an unobservable

system.

• In the absence of communicated yp′ , vi and ωi measurements (S2−Star config-

uration), the system is unobservable. The study shows that in order to establish

an observable system under these conditions, one should either use platforms

which cannot produce transverse velocities (such as differential drive robots) or

assume trajectories which constrain the platform to have zero transverse veloc-

ities.

• Although S1−Star, S3−Star and the constrained S2−Star configurations are

observable under non stationary conditions, only the S1 − Star configuration

has a globally unique solution. S2−Star and S3−Star produce multiple global

solutions depending on the velocities assumed by the robots. This necessitates

robust initialization schemes to find a correct solution, or multiple hypothesis

estimation schemes to keep track of possible solutions.

• To incorporate this simplified 2.5D model studied in the localization filters,

an attitude reference system must be attached to each platform which allows
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the transformation of the measurement quantities to a zero-roll-pitch frame of

reference.

3.3.7 The EKF estimator

The EKF is a standard nonlinear stochastic estimator which can be used for the

relative localization task. In this section EKFs are derived for the different system

configurations considered, in order to use them as filters to validate the findings of the

observability study. An EKF for a given system model f(x,u) and a measurement

model h(x), takes the form (3.21). It has a prediction term f(x̂,u), and a correction

term KE, where x̂ is the state estimate and E is a linear output error term, i.e.,

E(x̂,y,ν) = y− h(x̂,u).

˙̂x = f(x̂,u) +K(y− h(x̂,u)) (3.21)

The EKF performs a first order Taylor series expansion of the system dynamics (3.10)

about the current state estimate (x = x̂, w = 0, ν = 0).

ẋ = f(x̂,u) + ∂f

∂x
(x− x̂) + ∂f

∂w
(w− 0)

y = h(x̂,u) + ∂h

∂x
(x− x̂) + ∂h

∂ν
(ν − 0)

(3.22)

The state error x̃ is defined as x̂ − x. The dynamics of the state error are found by

subtracting (3.22) from (3.21) to deduce a linear system.

˙̃x = (A−KC)x̃−Mw +KNν[
A = ∂f

∂x
, C = ∂E

∂x
, M = ∂f

∂w
, N = ∂E

∂ν

] ∣∣∣∣∣
(x̂,0,0)

The state transition jacobian A, output jacobian C, process noise jacobian M , and

the measurement noise jacobian N are used to perform Kalman gain computation
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and covariance propagation in its standard linear form as follows:

Ṗ = AP + PAT +MQMT

K = PCT (CPCT +NRNT )−1

P = (I −KC)P

Following this procedure the EKF derivation for the 3D S2 − Star configuration is

presented as an example.

Initialization

x̂ =
[

yp 1 0 0 0
]T

1×13
P = E(x̃x̃T ) = I Q = E(wwT ) R = E(ννT )

3D Observer
˙̂p
˙̂q
˙̂vi
˙̂ωi

 =


Rq̂v̂i − vl − ωl × p̂

1
2 (q̂ ∗ ˆ̄ωi − ω̄l ∗ q̂)

0

0


︸ ︷︷ ︸

+


KpE

KθE

KvE

KωE


︸ ︷︷ ︸

E =


yp − p̂

yvi − v̂i

yωi − ω̂i


︸ ︷︷ ︸

State Prediction State Correction Innovation

Gain Matrix K =
[
Kp Kθ Kvi Kω

]T
Covariance Prediction

A =


[−ω̂i]× 2Q+T

V +
i Q+Q−

T [p]×

0 1
2 (Ω̂−i − Ω̂+

l
) 0 1

2 Ω̂+
i

0 0 0 0

0 0 0 0

 M = I

Ṗ = AP + PAT + MQMT

Covariance Correction

C =


I 0 0 0

0 0 I 0

0 0 0 I

 N = I

K = PCT (CPCT + NRNT )−1 P = (I − KC)P

Similarly the filter derivation for the 2.5D relative localization problem reads:
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2.5D Observer

˙̂x =


˙̂p
˙̂
θ

vi

ωi

 =


Rθ̂vi − vl − ωl × p̂

ωi − ωl

0

0

+

(
KpE

KθE

)
E =

(
yp − p̂

)

EKF Matrices

A =


−[ωl]× Jθ̂vi Rθ̂ eT3 [p]×

0 0 0 0

0 0 0 0

 C =
[

I3 0 0 0
]

M = I4 N = I3 K =
[
Kp Kθ

]T

This standard EKF design procedure was used to derive filters for all other con-

figurations in a similar manner.

3.4 Results

The EKF estimator is used to validate the observability results derived in this chap-

ter. Numerical simulations are used to validate the different observability limitations

identified in this analysis for 2.5D simplifications. An experimental system is used to

reproduce these characteristics using real measurements logged by robots following a

simple linear trajectory and a 2.5D circular trajectory.

3.4.1 Simulations - 3D analysis results

This is a numerical simulation designed to demonstrate the capability of the EKF

to perform estimation of unknown states including unknown velocities as identified

by the observability analysis related to the full 3D system. Figure 3.3 illustrates a

trajectory that is assumed by two platforms. Figure 3.4 illustrates the position and

orientation estimation of an EKF and the ability of the EKF to estimate the unknown
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Figure 3.4: Localization results for the 3D EKF for unknown vix

forward velocity of the platform.

3.4.2 Simulations - 2.5D analysis results

This is a numerical simulation designed to validate the observability requirements

established for the 2.5D system. The different configurations were numerically simu-

lated with noise figures relevant to the selected sensor presented in chapter 2. This
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allows the numerical validation of the localization performance and observability for

each case. A pair of robots was simulated along a trajectory as illustrated in Figure

3.5.
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Figure 3.5: The Simulated path

Both the local and target robots only start movement at t = 6s, thereby allowing

the analysis of the localization capability for cases where input velocities are zero

(Figure 3.5). Figure 3.7 illustrates localization results for cases where input velocities

of the target platform are unknown. Figure 3.8 illustrates localization results for

cases where input velocities of the local platform are unknown. As identified in

the observability study, all Mesh configurations are observable irrespective of input

availability or zero inputs to the system. The S2−Star configuration is only observable

in scenarios where the target robot is moving and the transverse velocities of the robot

are constrained while the S3 − Star configuration is observable when vi 6= 0. The

filters for the S2 − Star configuration specifically demonstrate random stabilization

to one of the two global solutions. The results present a run which stabilized to

the correct global solution, thus necessitating the requirement of multi-hypothesis
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estimate propagation to handle incorrect initializations.
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3.4.3 Experimental validation - linear trajectory

Observability between two robots was evaluated similar to the simulations by moving

a pair of robots equipped with ultrasonic and vision based sensor nodes. Figure 3.9
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illustrates the trajectory of the robots while Figure 3.10 illustrates the localization

performance. Due to inaccuracies in laser localization of ground robots, the mean po-

sition error figures exhibit a small bias in ground truth validation. However, the error

variance figures exhibit good congruence with the numerical simulations. As identi-

fied in the observability study, the Star configurations required platform movement

for the states of the system to be observable.

10
0

10
2

Lo
g 

po
si

tio
n 

er
ro

r (
m

)

 
µ-Mesh

3σ-Mesh

µ-Star

3σ-Star

0 2 4 6 8 10 12 14 16 18 20

10
0

10
2

Lo
g 

he
ad

in
g 

er
ro

r (
de

g)

Time (s)

vl ,vi = 0 vl ,vi = 0

Figure 3.10: Localization results for known input cases (S1), of Mesh and Star con-
figurations

3.4.4 Experimental validation - circular trajectory

This experiment performs EKF relative localization for the elevated circular trajectory

between robots presented in chapter 2. Figure 3.13 illustrates the experimental system

and the trajectory it assumed, while Figure 3.14 presents the convergence of filters.

Here a Mesh configuration was not used due to field of view limitations experienced

by the sensor attached to the MAV. Results related to S1 − Star and S2 − Star

with constrained transverse velocity and S3−Star configuration are presented which

exhibits correct estimation.
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Figure 3.11: Localization results for unknown input cases (S2), of Mesh and Star
configurations
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Figure 3.12: Localization results for unknown input cases (S3), of Mesh and Star
configurations

3.5 Conclusion

This chapter presented an exhaustive observability analysis of the relative localization

problem. Configurations considering different availability of relative measurements

and input velocities were considered. Conditions required for full system observability

were identified, and validated through both numerical studies and an implementation
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of a multi-robot system equipped with relative positioning sensors.

Although the analysis is general in terms of input availability and measurement

availability, it provides valuable insight into the specific relative localization designs

considered in subsequent chapters of the thesis. Chapter 4 develops the S2 − Star

configuration to design nonlinear filters to be used with the proposed distributed

filtering framework, along with the attitude reference systems necessary for 2.5D

simplification of the problem. Chapter 5 establishes specific modules to communicate

measurement quantities at low rates, and handle uncertain initialization of the filters

using multi-hypothesis estimation. This is to propagate the globally distinct solutions

resulting from observability limitations of the S2 − Star configuration.

The work presented in this chapter completes the observability analysis for the

relative localization problem under input constraints. However the work identifies the

requirement of additional analysis relevant to relative localization. The main remain-

ing work is the 3D observability problem considering the full sensor suit consisting

of an IMU attached to each sensor. Since inertial sensing measures accelerations and

angular velocities of platforms, this analysis would point to interesting sensor design

strategies and path planning strategies to realize observable sensor networks.



Chapter 4

Relative Localization: Nonlinear

Filtering

The previous chapter identified the requirement of a relative pose filter and an attitude

estimator to support 2.5D relative localization pursued in this thesis. In a 2.5D

setting the relative pose filter’s task is to find the relative position and heading of the

platform while the attitude estimator finds the roll and pitch of the platform. The

previous chapter also introduced the EKF as an estimator for these filtering tasks

which can be considered as the most popular solution used for relative pose filtering

[39], and attitude estimation of robots [85]. However, the EKF constitutes a linear

formulation of the inherently nonlinear problem faced by robotic platforms. As a

result, the EKF does not extend well to low cost deterministic designs. This work

designs both relative pose and attitude estimation modules with particular attention

given to the nonlinearity of the problem, and low-cost implementation of the filters.

The chapter 1 presents a novel steady-state invariant extended Kalman filter design
1 This chapter is based on the following publications of the author:

∗ O. De Silva, G. K. I. Mann, and R. G. Gosine, “Relative Localization of Robots with Steady State
Invariant Extended Kalman Filtering," IEEE Transactions on Control System Technology, (Under
Review), 2015.

92
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approach applied to the attitude filtering and pose filtering modules. The proposed

approach incorporates a symmetry preserving observer design method proposed by

[41] to derive the filters for the attitude and relative pose filtering tasks. Then these

nonlinear filter designs are extended to low cost applications by identifying gain tuning

procedures which are based on process and measurement noise parameters of a system.

The chapter concludes with numerical and experimental validation of the proposed

filter designs along with a detailed discussion of its limitations.

4.1 Introduction

Estimating the pose (position and heading) and the attitude (roll and pitch) of robots

using available measurements is traditionally addressed using Extended Kalman Fil-

ters [39, 85]. In fact, EKF dominates as a popular filter in many nonlinear estimation

problems. Notable applications related to robotics are landmark localization [86],

SLAM [86], target tracking [49], AHRS [85], and inertial navigation systems [85] etc.

However, the use of the EKF has two main drawbacks when considering nonlinear

system models with additive white Gaussian noise figures.

The first problem of the EKF is associated with the fact that it considers a first

order approximation of the system model used for filtering. This causes the filter to

be unstable and even diverge in cases where the linearization is performed about an

inaccurately estimated trajectory. The linearized approximation additionally gives

an inaccurate representation of the covariance estimate which eventually leads to
∗ O. De Silva, G. K. I. Mann, and R. G. Gosine, “Relative Localization with Symmetry Preserving

Observers," in IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2014,
pp. 1-6.

∗ O. De Silva, G. K. I. Mann, and R. G. Gosine, “Automated Tuning of the Nonlinear Comple-
mentary Filter for an Attitude Heading Reference Observer," in IEEE Workshop on Robot Vision,
2013, pp. 171-176.
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inconsistent updates. The effect of this problem is reduced at the expense of more

computational resources in Unscented Kalman Filters(UKF) [87], and particle filters

[86] where better nonlinear propagation of state covariances is performed.

A second problem of the EKF is that it assumes a linear state error and a lin-

ear output error in its formulation. This error representation is inaccurate in many

practical applications because the EKF formulation tends to overlook the underlying

geometry of the system in consideration. This is common to even UKF solutions if

applied directly without changing the linear error state assumptions. This problem

has been well addressed by nonlinear filters which results in solutions with similar

or reduced computation demand in comparison to an EKF, but with increased diffi-

culty in systematic design for a general system. Attitude heading reference systems

are prime examples where exploiting the geometry of the rotation group SO(3) re-

sults in commercial grade solutions such as, the multiplicative extended Kalman filter

[82], and the nonlinear complimentary filter [54], that exhibit similar and reduced

computational demand respectively.

Correspondingly, multi-robot systems operate in the special Euclidean group

SE(3), i.e., the group of translations and rotations. Different nonlinear filter deriva-

tions are reported in literature where the solutions are deterministic formulations

and are not applicable in a systematic manner for a general nonlinear problem [42].

However, a recent breakthrough in nonlinear filter design reported in [41] proposes

a constructive method to derive nonlinear filters for systems possessing symmetries.

Combining this approach with error state Kalman filtering for gain stabilization [55]

allows one to systematically design localization filters for robots which explicitly con-

siders the nonlinearity of the problem.

This chapter considers the attitude reference and relative localization filter design

problems relevant to the HNF presented in Figure 1.4, and designs efficient nonlinear
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filters for the application. First a nonlinear symmetry preserving design approach is

followed to derive the filters. Then a novel approach is proposed to extended these

filters to deterministic forms preserving a Kalman like gain tuning procedure which

uses the process and measurement noise figures of the system. The resulting filters

require similar computational power as an EKF in its stochastic forms, and require

significantly low computational demand in its deterministic forms. The determinis-

tic designs additionally feature system noise based tuning capability. The proposed

filters are compared with generic filter designs for the problem, with comparative

performance analysis on estimation errors and gain convergence. The chapter con-

cludes with an experimental validation of the proposed attitude filters applied on an

experimental robotic system for validation of the proposed design methodology.

4.2 Background

Recall the EKF formulation introduced in Section 3.3.7. An EKF for a given system

model f(x,u) and a measurement model h(x,u), is represented by (4.1).

˙̂x = f(x̂,u) +K(y− h(x̂,u)) (4.1)

It consists of a linear output error term E(x̂,y,ν) = y − h(x̂,u) and a linear error

state x̃ = x̂ − x. The dynamics of x̃ was found by first order Taylor linearization of

the system model, from which the Kalman gain K was computed.

The EKF formulation inherently violates the geometry of SE(3) because it con-

siders a linear error state and a linear output error. From intuition, for SE(3), the

error between the estimator frame and the actual frame should be T̂−1T if a homoge-

nous transformation matrix parametrization T is assumed. Therefore, for the filter to

be consistent with the geometry of the state space, one should introduce the respective
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modifications for error state, output error, and the filter structure. The symmetry

preserving design approach presented in [41, 55], proposes a systematic method to

deduce a filter for systems which possess symmetries similar to the ones considered

in this chapter.

4.2.1 Symmetry preserving design

The symmetry preserving observer structure proposed by [41] takes the following form.

˙̂x = f(x̂,u) +WLE

This structure has the usual prediction term f(x̂,u) with a modified correction term

WLE , compared to the usual Kalman observer structure given in (3.21). This modified

form includes a gain L, and a nonlinear output error term E in place of the usual linear

output error E. The term W does the necessary transformation of the correction

term LE to the observer reference frame. The symmetry preserving filter design

methodology proposed in [41, 55] presents a systematic approach to identify the terms

W , E , and the nonlinear error state dynamics, used to design the gains L of the

observer.

Two main strategies can be followed to design the gains L using this method.

The first is to design a deterministic form of the filter [56, 41, 88]. This is enabled by

the nonlinear observer design procedure, which allows the identification of a simplified

nonlinear error state dynamic system for the problem. This is seldom achieved by

conventional direct linearization of the system dynamics. As a result, one can identify

constant gain designs for L or nonlinear gain functions for L which stabilize the filter,

by analyzing the simplified set of error state dynamic equations.

The second approach is to adopt an Invariant Extended Kalman Filter (IEKF)
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form of the observer. Here the gains are found using an error state Kalman filter

applied to the simplified set of nonlinear error state dynamic equations identified by

following the symmetry preserving design approach [55, 89, 88, 55]. The symmetry

preserving design approach is applied to pose filtering and attitude filtering problems

in both deterministic and stochastic forms. A review of pose filtering and attitude

filtering solutions is presented in the following sections.

4.2.2 Pose filtering

The filters reported for pose estimation in robotic applications are primarily EKF

based. The application of the symmetry preserving design approach has resulted in

stochastic filters for the full SE(3) inertial navigation problem [90]. Work in [88] pro-

poses a stochastic form applicable for the EKF SLAM problem with characteristic

gain stabilization capability under permanent trajectories. Work in [56] proposes a

deterministic filter derived on Lie groups for localization which exhibits compact sim-

ple notation, and [41] proposes a deterministic derivation of the filter for landmark

localization. However, the relative localization problem differs form the landmark

localization, inertial navigation, and SLAM problems discussed, due to the consider-

ation of a non-inertial body fixed reference coordinate frame.

This thesis specifically investigates a first application of the IEKF design ap-

proach for the problem of relative localization. The work focuses on a design which

only considers the locally available measurements to the platforms. This is to be

compatible with the overall filtering framework targeted in this thesis. The pro-

posed stochastic filter design for relative localization is intended for application in the

proposed HNF which provides more geometrically sound implementation than the

traditional EKF for the problem.

The proposed work then extends this design to a steady state formulation for
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low cost implementation with intuitive gain tuning capability that is based on the

system noise parameters. However, in the current state the deterministic design is

targeted for sensor networks where velocity sensing is available through fast inter

sensor communication networks. The case where the velocity is not available for the

low cost deterministic filter is not pursued in this thesis.

4.2.3 Attitude filtering

This section discusses the state of the art in attitude filtering for robotic applications.

The objective of an AHRS is to estimate the orientation of a platform using multiple

measurement sources which typically include accelerometers, magnetometers, gyro-

scopes, and velocity sensors. Lower end applications do not possess platform velocity

estimators and thus assume gravity as the only dominating signal of the accelerome-

ters. In more accurate applications it is assumed that velocity sensing of the platform

is present and the accelerometers experience significant accelerations with drift and

scale factor errors [85].

The conventional EKF is the de facto standard for attitude filtering reported in

many commercial grade IMUs [91]. The departure from considering the classical linear

error terms, to more geometrically accurate error definitions in EKF based AHRS is

introduced in [82, 85]. Here the more accurate multiplicative error term between two

rotated frames is considered; hence, the filter is termed the Multiplicative Extended

Kalman filter (MEKF). Further generalization of the MEKF is achieved recently

with the development of the IEKF for attitude filtering purposes. Specifically, the

right invariant extended Kalman filter (RIEKF) has demonstrated interesting results

where the gains stabilize to steady state values when following a particular class of

trajectories termed “permanent trajectories”.

Deterministic nonlinear filter formulations for the AHRS problem are also re-
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ported using a symmetry preserving design approach [41]. The nonlinear complimen-

tary filter (NCF) reported in [54] dominates as the deterministic solution for the

AHRS problem due to its simple set of equations, with global stability implications,

and low cost implementation capability on elementary embedded devices. However,

the tuning of gain parameters of these filters follows an ad-hoc trial and error ap-

proach which would benefit from a systematic intuitive tuning procedure based on

system noise figures similar to an EKF.

Since NCF is the preferred deterministic form for an AHRS, this work modifies

an IEKF for the problem to match with an NCF structure in order to identify a

stochastic error state system for tuning purposes. Then a steady state gain design is

identified which ultimately allows tuning of the gains of the NCF directly using the

system noise figures which achieve steady state optimal performance of the resulting

filter.

4.3 Materials and Methods

The IEKF designs derived in this work are based on the symmetry preserving design

approach proposed by Bonnabel et al. [41]. This work further extends the filter de-

signs to steady state deterministic implementations which are capable of incorporating

system noise parameters for tuning purposes. The IEKF design procedure follows a

differential geometric formulation. The following is a summary of important defini-

tions and necessary notation which are useful in deriving IEKFs, as discussed in the

original work on symmetry preserving design theory of Bonnabel et al. [41].
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4.3.1 Definitions

Definition 1 : A set G is a Group, if for all g ∈ G, we can define a Group operation

(multiplication) � with a corresponding identity element e, and an inverse element

g−1, which satisfies the conditions of closure and associativity.

As an example, the set of translations and rotations (p, θ) = g ∈ SE(2) × R1

in which the robots operate can be identified as a group with the group operation

for g0, g ∈ G defined as (4.2), which satisfies closure g0 � g ∈ G, and associativity

(g0 � g) � g = g0 � (g � g). An identity element e = (0, 0, 0, 0) ∈ G and an inverse

element g−1 = (−RT
θ p, −θ) ∈ G can be identified such that g � g−1 = e.

g0 � g =

p0

θ0

 �
p

θ

 =

Rθ0p + p0

θ + θ0

 (4.2)

More specifically g0�g is termed the left group operation. Similarly, the corresponding

right group operation g � g0 for the group (p, θ) = g ∈ SE(2) × R1 can be identified

as follows.

g � g=

p

θ

 �
p0

θ0

 =

Rθp0 + p

θ + θ0


Definition 2 : A smooth map φg is a Group action on a set (more generally a

manifold)M, if (g,m) ∈ G×M⇒ φg(m) ∈ M, s.t. φe(m) = m and φg1(φg2(m)) =

φg1�g2(m).

As an example consider transformation of linear velocity v ∈ R3 using a trans-

formation (p, θ) = g ∈ SE(2) × R1. The mapping is defined as φg(v) = Rθv ∈ R3.

Consider group elements g1, g2, e ∈ SE(2)×R1 where g1 = (p1, θ1), g2 = (p2, θ2), and

e = 0. φg can easily be identified as a smooth map according to definition 2 since

φe(v) = v, and φg1(φg2(v)) = Rθ1Rθ2v = φg1�g2(v).

Definition 3 : The system ẋ = f(x,u) isG-invariant if f(ϕg(x), ψ(u)) = Dϕg(x)◦
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f(x,u), for group actions ϕg(x) on states x ∈ X, and ψg(u) on inputs u ∈ U .

Definition 4 : The output y = h(x,u) is G-equivariant if h(ϕg(x), ψg(u)) = ρg(y),

for group action ρg(y) on outputs y ∈ Y .

Definitions 3 and 4 state the conditions to satisfy for the system and output

models to be considered as invariant, when subjected to smooth maps ϕg, ψg, ρg.

A symmetry is an operation that one can perform on a system (i.e. smooth maps)

which results in certain features (i.e. invariants) of the system to remain unchanged.

Therefore, one can find the symmetries of a system, by identifying the smooth maps

which satisfy definitions 3 and 4. Application of these definitions for identification of

symmetries for relative localization is presented in the filter derivations that follow.

Definition 5 : A function λ(X, Y, U) is an Invariant quantity if φg(λ) := λ(ϕg(X),

ρg(Y ), ψg(U)) = λ(X, Y, U).

As an example, consider the quantity λ = RT
θ ωl. This quantity remains un-

changed under the group actions ϕg0(Rθ) = Rθ0Rθ and ψg0(ωl) = Rθ0ωl for group

element g0 = (p0, θ0). i.e., φg(λ) = (Rθ0Rθ)T (Rθ0ωl) = RT
θ ωl = λ

The process of deriving the IEKF is separated into four main steps for clarity.

The steps are a) Identify system symmetries, b) Identify invariants of the system, c)

Identify the error state dynamics, and d) Perform error state Kalman filtering. This

work extends the procedure with the following steps. e) Identify a candidate steady

state deterministic form, f) find optimal steady state gains. First an IEKF is designed

for the relative localization problem followed by a steady state optimal design for the

problem. Then an IEKF is designed for the attitude estimation problem followed by

a steady state optimal AHRS design.
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4.3.2 IEKF design for relative localization

Recall the 2.5D relative localization problem which only uses the locally available

measurements.

ẋ = f(x,u,w) y = h(x,u,ν)

ṗ

θ̇

v̇i

ω̇i


=



Rθvi − vl − ωl × p + wp

ωi − ωl + wθ

0 + wvi

0 + wωi




yp

yvi

yωi

 =


p +νp

vi +νvi

ωi +νωi


(4.3)

Notice the inclusion of the target platform velocities as measurements. This is

so that platform velocities and constraints can be incorporated to the estimate, at

the low rates at which velocity communication occurs. The filter minimally requires

availability of yp and yviy = 0 for system observability as identified in Chapter 4.

Therefore these minimal conditions are assumed when validating the proposed filter

designs in the results section. What follows is a first application of the symmetry

preserving observer design procedure [41] for the relative localization problem given

by (4.3).

Step 1: Identify System Symmetries

Identifying symmetries of the system is the process of finding the actions on the

states x, inputs u, and outputs y, such that the system is G-invariant. Consider

the system given by (4.3) with noises removed i.e. ν = 0, w = 0. For group

G = SE(2) × R1, define the group actions on states ϕg : G × X → X, on input

ψg : G× U → U , and on measurements ρg : G× Y → Y as follows.
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ϕg



p

θ

vi

ωi


=



Rθ0p + p0

θ0 + θ

vi

ωi


ψg

vl

ωl

 =

Rθ0vl − [ωl]×p0

ωl

 ρg


yp

yvi

yωi

 =


Rθ0yp + p0

yvi

yωi


(4.4)

Consider a group element g0 = (p0, θ0) ∈ G. Equation set (4.5) verifies that the

system given by (4.3) is G-invariant under the group actions ϕg and ψg, i.e., Dϕg◦f(x,

u) = f(ϕg(x), ψg(u)).

Dϕg ◦ f(x,u) = d
dt
ϕg



p

θ

vi

ωi


=



Rθ0ṗ

θ̇

0

0



=



Rθ0(Rθvi − vl)−Rθ0ωl × p

ωi − ωl

0

0


= f(ϕg(x), ψg(u))

(4.5)

The measurement model given in (4.3) is found to be G-equivariant under the

group actions ρg, ϕg, ψg. i.e., ρg(y) = h(ϕg(x), ψg(u)).

h(ϕg(x), ψg(u)) =


Rθ0p + p0

vi

ωi

 =


Rθ0yp + p0

yvi

yωi

 = ρg(y) (4.6)

The particular group action ϕg acting on the state space relates to translation

and rotation of the reference coordinate system to a different location attached to
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the robot. The mappings of inputs u and outputs y to this new frame of reference

are defined by the group actions ψg, ρg. Thus, the group actions do not change the

intrinsic dynamics of the system; rather, they are transformed to a new coordinate

representation.

Step 2: Identify Invariants

To identify the complete set of invariants, the moving frame method is applied

[41]. The moving frame is identified by solving the equation φg(x) = e for g := γ(x),

where e is the group identity element.

ϕg

p

θ

 =

Rθ0p + p0

θ0 + θ

 =

0

I

⇒ γ(x) = (−RT
θ p,−θ)

Then the set of invariants I(x̂,u) is found by operating γ(x̂) on U and Y .

I(x̂,u) :=

Ivl
Iωl

 = ψγ(x̂)

vl

ωl

 =

RT
θ̂
vl + ωl ×RT

θ p̂

ωl



J (x̂,u) :=


Jyp

Jyvi
Jyωi

 = ργ(x̂)


yp

yvi

yωi

 =


RT
θ̂
yp −RT

θ̂
p̂

yvi

yωi


The trajectories in which the invariants I,J are constant are termed permanent tra-

jectories. The invariant frame W is defined as the mapping of basis vectors νi of the

tangent space T X, by the smooth map Dϕg. The basis vectors νi = ei for TR3, where

ei denoted the standard basis of R3. The invariant frame is found as follows.
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W = d

dτ

(
ϕγ(x̂)−1(νiτ)

)
|τ=0 =



Rθ̂ei

1

ei

1


Step 3: Identify Invariant Error State Dynamics

An invariant observer for a general G-invariant system ẋ = f(x,u), and a G-

equivariant output y = h(x,u), is given by Theorem 1 in reference [41]. It takes the

following general form.

F (x̂,u,y) = f(x̂,u) +W (x̂)L(I, E)E(x̂,u,y) (4.7)

The term f(x̂,u) is the usual forward prediction as seen in extended Kalman filters

and the term W.L.E is the correction term with gain L, output error E , and invariant

frame W . The output error E is not the usual linear innovation term h(x̂,u) − y in

EKFs; rather, it is a nonlinear invariant error term. This error is defined as E = J (x̂,

y)− J (x̂, h(x̂,u)) and is found as follows.

E(x̂,u,y) = ργ(x̂)(h(x̂))− ργ(x̂)(y) =


RT
θ̂

(p̂− yp)

v̂i − yvi

ω̂i − yωi


The invariant observer for the problem is obtained by substituting the invariant output



106

error and the invariant frame in (4.7).



˙̂p
˙̂
θ

˙̂vi
˙̂ωi


=



Rθ̂v̂i − vl − ωl × p̂

ω̂i − ωl

0

0


+



Rθ̂(LpE)

LθE

LvE

LωE


(4.8)

The invariant estimation error η of the observer is defined as η = ϕγ(x̂)(x̂)−ϕγ(x̂)(x).

Notice that this is different from the usual linear estimation error term (x̂ − x) seen

in EKFs. The invariant estimation error reads as

η = ϕγ(x̂)(x̂)− ϕγ(x̂)(x) =



RT
θ̂

(p̂− p)

θ̂ − θ

v̂i − vi

ω̂i − ωi


=:



ηp

ηθ

ηvi

ηωi



One can verify the invariance of the invariant quantities I, η, E under transformations

ϕg, φg, ρg, using Definition 5.

In order to perform error state Kalman filtering, a stochastic model of the system

should be deduced. The new stochastic model should also preserve the stochastic

versions of G-invariant and G-equivariant definitions given by the following equations.

Dϕg ◦ f(x,u,M(x)w) = f
(
ϕg(x), ψg(u),M(ϕg(x))w

)
ρg
(
h(x,u, N(x)ν)

)
= h

(
ϕg(x), ψg(u), N(φg(x))ν

) (4.9)

Here, the usual process noise w and measurement noise ν terms as seen in (4.3) are

replaced by invariant noises M(x)w and N(x)ν respectively. The definitions given

by (4.9) are satisfied when M(x) = Rθ and N(x) = Rθ for wp and νp respectively.
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All other noise terms remain unchanged. I.e., M(x), N(x) are identity mappings for

wθ,wvi, wωi,νvi, and νωi.

Now the error state dynamics of the system are derived as a function of η. The

invariant output error E in terms of η reads

E(x̂,u,y) = RT
θ̂

(p̂− yp) = RT
θ̂

(p̂− p−Rθνp)⇒ E(η,ν) = ηp −RT
ηθ
νp

The other output error terms corresponding to yvi , yωi , remain trivial. By differen-

tiating the estimation error state, we have



η̇p

η̇θ

η̇vi

˙ηωi


=



ṘT
θ̂

(p̂− p) + RT
θ̂

( ˙̂p− ṗ)
˙̂
θ − θ̇

˙̂vi − v̇i
˙̂ωi − ω̇i



By substituting the derivative terms from equations (4.3) and (4.8), and identifying

ṘT
θ = [ωl − ωi −wω]×RT

θ we can derive the error state dynamics of the observer.



η̇p

η̇θ

η̇vi

η̇ωi


=



[−ω̂i + ηωi]×ηp + (I3 −RT
ηθ

)(v̂i − ηvi)− [LθE ]×ηp −RT
ηθ

wv + LpE

LθE − wωi + ηωi

LviE −wvi

LωiE − wωi


(4.10)

The symmetry preserving observer for the system is (4.8). The gains L should

be designed so that the invariant error state dynamic system given by (4.10) is stable.

Step 4: Perform Error State Kalman Filtering

The gain design of the observer can be achieved using many methods. A de-
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terministic approach would consider the noiseless version of (4.10), and use stability

analysis tools such as Lyapunov, for gain design. For stabilization of (4.10), many

other standard stochastic filtering approaches are applicable which include error state

versions of Kalman filters, sigma point filters, and moving horizon methods. Here we

use an error state extended Kalman filtering approach as proposed by [55].

The error state EKF approach differs from the standard EKF formulation given

in Section 4.2. The standard EKF formulation first linearizes the system dynamics

before deducing the error state dynamics of the observer. In the error state Kalman

filter formulation, first the dynamics of the error state system is deduced without any

linearized approximations. Then it is linearized about the nominal value of the error

state to obtain the familiar Kalman structure given in (4.1).

The nonlinear error state dynamics for the system are already found by equation

(4.10). Next, a linearization of the error states ηp, ηθ, ηvi, ηωi, is performed by

applying the small signal assumption, and removing the resulting second order error

terms. This results in a linear Kalman like filter structure.



˙δηp
˙δηθ
˙δηvi
˙δηωi


= (A−KC)



δηp

δηθ

δηvi

δηωi


−M



wp

wθ

wvi

wωi


+KN


νp

νvi

νωi



The A,C,K,M,N matrices are identified from this linearized system. The resulting
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filter can be summarized as follows.

Initialization

x̂ =
[

yp 0 0 0
]T

P = E(ηηT ) = I Q = E(wwT ) R = E(ννT )

2.5D Observer
˙̂p
˙̂
θ

˙̂vi
˙̂ωi

 =


Rθ̂v̂i − vl − ωl × p̂

ω̂i − ωl

0

0


︸ ︷︷ ︸

+


Rθ̂(LpE)

LθE

LvE

LωE


︸ ︷︷ ︸

E =


RT
θ̂

(p̂− yp)

v̂i − yvi

ω̂i − yωi


︸ ︷︷ ︸

State Prediction State Correction Innovation

Gain Matrix K =
[
−Lp −Lθ −Lv −Lω

]T
Covariance Prediction

A =


[−ω̂i]× [−v̂i]×eT

3 I 0

0 0 0 1

0 0 0 0

0 0 0 0


M = I

Ṗ = AP + PAT + MQMT

Covariance Correction

C =


I 0 0 0

0 0 I 0

0 0 0 1


N = I

K = PCT (CPCT + NRNT )−1

P = (I − KC)P

This completes the IEKF filter design for relative localization. The validation of

this filter is presented in the results section. The formulation is equally applicable for

the full 3D (SE(3)) scenario which is presented in Appendix A.

4.3.3 Steady state IEKF design for relative localization

The steady state gain design procedure attempts to identify a parameterized gain

function for L which is tunable to produce comparable gains produced by the IEKF

under permanent trajectories. This is termed as “steady state optimal gains” in the

context of this work. For the steady state design it is assumed that the platform

velocities are available and the filter is intended to be applied on the sensor node

itself. I.e., ηvi = 0, v̂i = vi, ηωi = 0, ω̂i = ωi. The case where velocities are

unavailable is not pursued in this thesis in designing low cost nonlinear estimators.
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η̇p
η̇θ

 =

[−ωi + ηωi]×ηp + (I3 −RT
ηθ

)vi − [LθE ]×ηp −RT
ηθ

wv + LpE

−wω + LθE

 (4.11)

Under these simplifications the IEKF design simplifies to a 4-state filter, which ex-

hibits an important characteristic. i.e., the filter matrices are only dependant on the

inputs. Therefore the resulting gains would also be functions of only the inputs and

the noise parameters. As a result, it is possible to design a parameterized gain ma-

trix which is a function of the inputs and the system noise parameters. This gain

function design would enable low cost application of the filter to achieve comparable

steady state performance without using error state Kalman filtering for gain adapta-

tion. The gain function design is performed in two main steps. First, a steady state

filter is identified for the noiseless error state system corresponding to the 2.5D filter.

Next, a minimal set of parameters and a tuning approach is identified to incorporate

the noise parameters of the system in identifying the observer gains.

Step 5: Identify deterministic design

Consider the noiseless version of the 2.5D error state dynamics given by equations

(4.11). Note that this system has no approximations or small signal assumptions; thus,

a gain design would be valid in a global sense. Consider the gain proposition given

by

L =


Lp

Lθ

 =


−a0 + [ωi]× − a′2[vi]×Ie3 [vi]T×

−a′1[ωi]×[ωi]T× + [LθE ]×

−a′4eT3 [vi]×


where Ie3 := diag(0, 0, 1). Substituting the gain L in (4.11) gives the following
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system. 
η̇p

η̇θz

 =


(I3 −RT

ηθ
)vi +−a0ηp

−a′2[vi]×Ie3 [vi]T×ηp − a′1[ωi]×[ωi]T×ηp

−a′4(vixηy − viyηx)

 (4.12)

Global stability is analyzed assuming permanent trajectories where v̇i = 0 and ω̇i = 0,

hence (4.12) is an autonomous system. The error state space η ∈ X ≡ SE(2) × R1

has a unique equilibrium point at (ηp,Rηθ) = (0, I) ∈ X . Here the trajectory ηx =
vix/viyηy ⇒ η̇θ = 0 is not an equilibrium since, ηx = vix/viyηy ⇒ η̇x = vix/viy η̇y ⇒ η̇x,

η̇y 6= 0 when ηx, ηy 6= 0. A similar 2D error state system corresponding to global

localization of robots is considered in [41], where the authors reduce the error state

system to a form comparable to the dynamics of a pendulum. Exploiting this result,

a scalar function V is designed, which is comparable to a Lyapunov function used for

stability analysis of a simple pendulum.

V (η) = 1
2 η̇

2
θ + a′4(v2

ix + v2
iy)(1− cos ηθ) + 1

2η
2
z ≥ 0

The trajectory ηx = vix/viyηy is considered separately for clarity. Consider the space

X ′ = {η ∈ X |ηx 6= vix/viyηy ∨ (ηx, ηy) = 0}. When ηx 6= vix/viyηy, the function V (η)

is positive definite. I.e., V (0) = 0 and η 6= 0⇒ V > 0. Differentiating the expression

and substituting η̈θ, η̇p, cancels the trigonometric nonlinearities of the expression

which results in the following expression for V̇ (η).

V̇ (η) = −a′24 (viyηx − vixηy)2
(
a0 + a′1ω

2
i + a′2|vi|2

)
− a0η

2
z ≤ 0

The function V̇ (η) is negative semi-definite in the space X ′. I.e., ηθ 6= 0, ηp = 0 ⇒

V̇ = 0. Consider a set Ωl′ = {η ∈ X ′|V (η) ≤ l′, l′ = 2a′4(v2
ix + v2

iy)}. Since the

Lyapunov function V (η) > 0 for all η 6= 0 ∈ Ωl′ , and V̇ ≤ 0, the states in Ωl′ are
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0

−4

0

4

-π

π
ηθ

ηx,y,z

V(η)

V(η)=2a4(vix
2+viy

2)

V(η)=l >2a4(vix
2+viy

2)

Figure 4.1: The Lyapunov function and its level sets

Lyapunov stable, hence bounded. Consider the set S = {η ∈ Ωl′ |V̇ (η) = 0}. The set

S additionally includes the trajectories ηθ 6= 0 apart from the origin (ηp,Rηθ) = (0, I).

Observing the filter dynamics (4.12) one can verify that ηθ 6= 0 ⇒ η̇p 6= 0 ⇒ ηp 6∈ S

when vix, viy 6= 0. I.e the trajectory ηθ 6= 0 does not remain in S and the largest

invariant set of S only includes the origin (ηp,Rηθ) = (0, I). From LaSalle’s theorem

the origin is asymptotically stable in the domain of convergence Ωl′ .

In fact the domain of convergence shown here is much larger. Consider Figure

4.1. Although the level set Ωl is hard to define as closed in SE(2) when l > l′ =

2a′4(v2
ix + v2

iy), it is evident from the figure that set Ωl for l > l′ = 2a′4(v2
ix + v2

iy)

includes the space (−2a′24 v2
iyl− l′ < ηx < 2a′24 v2

iyl− l′, −2a′24 v2
ixl− l′ < ηy < 2a′24 v2

ixl− l′,

−2l − l′ < ηz < 2l − l′, Rηθ ∈ SO(2)) ∈ SE(2)× R1. Since l can be arbitrarily large

the domain of convergence spans the whole space X ′ when vix, viy 6= 0.

Consider the trajectory ηx = vix/viyηy ∈ X . In this case the error state system
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reduces to:



η̇x

η̇y

η̇z

η̇θ


=



(1− cos ηθ)vix − sin ηθviy − (a0 + a1ω
2
i )vixviy ηy

sin ηθvix + (1− cos(ηθ)viy − (a0 + a1ω
2
i )ηy

−a0ηz

0


(4.13)

The solutions for the system to remain in the trajectory η̇x = vix/viy η̇y can be found

only when ηθ = 0. I.e., when ηθ 6= 0 the trajectory exits from ηx = vix/viy · ηy to space

X ′ and the Lyapunov analysis shown above applies. When ηθ = 0 the system 4.13

reduces to the form η̇ = −aη which has a globally asymptotically convergent solution

at the equilibrium. Thus all trajectories in X including {η ∈ X |ηx = vix/viyηy} are

asymptotically convergent to the origin.

This completes the global convergence proof. The proposed filter with gain func-

tion L where a0, a
′
1, a
′
2, a
′
4 > 0 is asymptotically stable about any permanent trajectory

when vix, viy 6= 0 with a global convergence domain spanning the whole error state

space X .

For local stability analysis consider the linearized noiseless error state system

given by

δη̇p
δη̇θ

 =

−[vi]×δηθ − a0δηp − a′2[vi]×[vi]T×δηp − a′1[ωi]×[ωi]T×δηp

−a′4[vi]×δηp

 (4.14)

where δηθ = (0 0 δηθ)T and the second order error terms are removed for local analysis.

Local stability is analyzed assuming any trajectory, hence (4.14) is a non-autonomous

system. Consider the following candidate Lyapunov function V (η, t), which is lower



114

bounded.

V (η, t) = 1
2δη

T
p δηp + 1

a′4

1
2δη

T
θ δηθ ≥ 0

The derivative V̇ reads as follows.

V̇ (η, t) = −δηT
p [vi]×δηθ − a0δη

T
p δηp − a′2δηT

p [vi]×[vi]T×δηp

−a′1δηT
p a
′
1[ωi]×[ωi]T×δηp − δηT

θ [vi]×δηp ≤ 0

The δηT
θ [vi]×δηp terms cancel each other. The matrices of form [·]×[·]T× are positive

definite. A time invariant negative semi-definite dominant term −a0δη
T
p δηp can be

found implying Lyapunov stability. Therefore the state ηp and ηθ are bounded for

a bounded set of inputs (vi, ωi) and its derivatives (v̇i, ω̇i). The function V̈ is a

polynomial function of the terms δηp, δηθ, (vi, ωi), and (v̇i, ω̇i). Hence V̈ is bounded

⇒ V̇ and is uniformly continuous. From Barbalat’s lemma V̇ → 0 as t → ∞.

I.e. δηp → 0 as t → ∞. Analyzing the local error state dynamics (4.14), ˙δηp is

bounded and δ̈ηp is a polynomial function of δηp, δηθ, (vi, ωi), and (v̇i, ω̇i). Hence

δ̈ηp is bounded and ˙δηp is uniformly continuous. From Barbalat’s lemma ˙δηp → 0 as

t→∞. Since δηp → 0 as t→∞, this means that δηθ → 0 as t→∞. This completes

the local stability analysis.

Therefore the proposed filter with gain function L where a0, a
′
1, a
′
2, a
′
4 > 0 is

locally asymptotically stable about any trajectory and globally asymptotically stable

about any permanent trajectory when vix, viy 6= 0.

Step 6: Optimal gain design

The gain proposition above achieves a large domain of convergence (when vix,

viy 6= 0 and vix, viy are constant for global convergence). However this gain matrix

design is not unique. I.e., many other gain matrix proposals are available to stabilize

this error state system [42][41]. The convergence of these filters heavily depends on
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Figure 4.2: Results of gain parameter estimation for the gain matrix proposal.

the parameter selection of the gain matrix proposal, which however lacks a systematic

specification in all reported studies.

Here we attempt to redesign the proposed gain matrix so that its performance

is comparable to that of a steady state IEKF solution to the problem. This solu-

tion would be a highly favourable design for a low cost system due to its ability to

tune parameters to achieve IEKF like performance at steady state while demanding

significantly less computational processing during operation.

The linearized error state system given by (4.11) acts as a linear time invariant

system under permanent trajectories. This allows the application of the Eigen struc-

ture decomposition method [92], to find the steady state Kalman gains. A suitable

gain matrix proposal can be identified for a given Q and R matrix by analyzing the

steady state Kalman gain corresponding to different inputs in the operating region.

The identified gain matrix takes the following form.
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Figure 4.3: Results of gain parameter estimation for the modified gain matrix pro-
posal.

Lp = −a0 + [ωi]×dt− 1
|[a1 ωTi ]|2 [ωi]×[ωi]T×

− a2a2
3

|vi|3/2 |[a2
3 ωTi ]|2 [vi]×Ie3 [vi]T× + [LθE ]×dt

Lθ = − a4
|vi|e

T
3 [vi]×

Notice that the modification only replaces a′1, a′2, a′4 with positive normalized terms.

Therefore, it does not violate the stability conditions of the original gain matrix

proposal. The sampling time dt appears in the gain matrix in discrete implementations

of the filter. Parameter identification of the gain matrix is performed using a series

of surface fits against the steady state optimal gain values which are computed for a

range of operating velocity conditions −25m/s < vix, viy < 25m/s and −25rad/s <

ωiz < 25rad/s. Figure 4.2 illustrates the surface fits for the non-zero elements K11,

K12, K41 of the gain matrix. The terms K22, K21, K42 produce similar results due to

the symmetry of L. The black markers indicate the optimal gain corresponding to the

target platform velocities vix, viy, ωiz. The coloured surface illustrates the least squared
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fit surface using the identified parameterized gain function proposal. The sampling

time, process noise, and measurement noise covariances used for the estimation were

dt = 0.05s, Q = diag(0.3, 0.3, 0.3, 0.3)2dt2, R = diag(0.1, 0.1, 0.1)2.

Additional terms can be introduced to the gain matrix to capture the higher order

behaviour of the steady state optimal gain. These additional terms are captured in the

gain function L′ = (L′p, L′θ)T , which however does not carry any theoretical stability

proofs. Thus L′ is only applicable for verified system configurations and operating

regions, whereas L possesses desirable local and global stability implications for any

positive parameter selection.

L′p = Lp − a7
|vi| |[a1 ωTi ]|3

([
a7

|[1 a7ωTi ]|2

]
×

[vi]T×[vi]× + [vi]×[vi]T×
[

2a7
|[1 2a7ωTi ]|2

]
×

)
L′θ = Lθ − a5

|vi| |[a1 ωTi ]|3 eT3 [vi]×[ωi]× − a6
|vi| |[a1 ωTi ]|2 eT3 [vi]×[ωi]×[ωi]×

Figure 4.3 illustrates the surface fits for the non-zero elements K22, K21, K42 of

the gain matrix with additional terms. Table 4.1 presents gain parameter estimates

with increasing measurement noise conditions and different sampling times dt. The

goodness of fit is also evaluated using a normalized mean squared error cost function.

The results validate the tuning ability of the proposed gain function L to achieve

steady state Kalman performance for a range of operating conditions. In implemen-

tation this parameter estimation process will be performed off-line or at startup and

the identified gain matrix would allow deployment of the filter with low computational

demand compared to that of an EKF or an IEKF.

This completes the steady state IEKF design process for relative localization. The

next section designs the necessary attitude filters required for the implementation of

the 2.5D forms of the relative localization filters.
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Table 4.1: Gain parameter fits for different system configurations
dt Sensor Parameters a = [aα aβ ] Goodness of fit

Noise aα = [a0 a1 a2 a3 a4] R2

Multiplier aβ = [a5 a6 a7]
0.05 1 aα = [0.135 25.44 0.092 7.888 0.114] 0.7867

aβ = [124.5 0.101 0.030] 0.9885
0.05 103 aα = [0.005 20.17 0.0208 1.181 0.005] 0.7387

aβ = [3.802 0.005 0.025] 0.9730
0.05 10−2 aα = [0.741 75.46 0.143 63.02 0.510] 0.9836

aβ = [2003 − 0.5 2] 0.9830
0.1 1 aα = [0.253 19.88 0.171 13.38 0.173] 0.9441

aβ = [66.68 0.117 0.0457] 0.9896
0.25 1 aα = [0.530 31.39 0.275 21.54 0.186] 0.9945

aβ = [64.85 0.225 0.1008] 0.9943
0.5 1 aα = [0.788 61.92 0.262 34.67 0.122] 0.9992

aβ = [112.4 0.194 0.2647] 0.9986

4.3.4 IEKF design for attitude estimation

The Attitude filtering problem faced by robotic platforms can be summarized as

follows.

ẋ = f(x,u,w) q̇

ω̇b

 =

1
2q ∗ (ωm − ωb + wωm)

wωb

 (4.15)

y = g(x,ν)ya

yb

 =

−RT
q ge + νa

RT
q be + νb

 (4.16)

where ωm denotes the gyroscope measurement which is corrupted by a bias term

ωb, and a measurement noise term wωm . The gyroscopic bias follows a random walk

process with noise wωb . The measurement models ya and yb denote an accelerometer

and a magnetometer attached to the platform. For low cost attitude estimation it is

assumed that platform accelerations are absorbed in the accelerometer measurement

noise term given by νa; as a result, accelerations due to the gravity ge dominates
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the accelerometer measurements. The magnetometer assumes low external magnetic

disturbances and measures the magnetic reference vector be relative to the body fixed

frame corrupted with a noise term νb. The magnetometer is given less confidence in

indoor navigation considered in this work. Therefore the yaw estimates given by the

attitude reference system are considered unreliable and heavily prone to errors due to

local magnetic disturbances.

Standard EKF design can be followed for this problem and the resulting filter-

ing equations are summarized below. IEKF designs for this problem are also well

established in the work presented in [55]. It follows the symmetry preserving ob-

server design procedure to derive two forms of the filter. The left invariant extended

Kalman filter (LIEKF) and the right invariant extended Kalman filter (RIEKF). The

difference between these two filters is with the consideration of the corresponding left

group action and the right group action of the group. E.g. for group elements g = q,

g0 = q0 ∈ SO(3), g0♦g = q0 ∗ q and g0♦g = q ∗ q0 denotes the left and right group

actions respectively. The summary of filtering equations of the EKF, LIEKF, and the

RIEKF for the AHRS problem can be summarized as follows:

Filter Equations

System model Measurement model State Error Output Error

EKF :(
˙̂q
˙̂ωb

)
=

(
1
2 q̂ ∗ (ωm − ω̂b)

0

)
+KE

(
ŷa

ŷb

)
=

(
−R̂T

q ge

R̂T
q be

)
η =

(
q̂ − q

ω̂b − ωb

)
E =

(
ya − ŷa

yb − ŷb

)
LIEKF :(

˙̂q
˙̂ωb

)
=

(
1
2 q̂ ∗ (ωm − ω̂b)

0

)
+

(
q̂ ∗ LqE

LωbE

) (
ŷa

ŷb

)
=

(
−R̂T

q ge

R̂T
q be

)
η =

(
q−1 ∗ q̂

ω̂b − ωb

)
E =

(
R̂T
q ŷa − ya

R̂T
q ŷb − yb

)
RIEKF :(

˙̂q
˙̂ωb

)
=

(
1
2 q̂ ∗ (ωm − ω̂b)

0

)
+

(
LqE ∗ q̂

LωbE

) (
ŷa

ŷb

)
=

(
−R̂T

q ge

R̂T
q be

)
η =

(
q̂ ∗ q−1

Rq(ω̂b − ωb)

)
E =

(
−ge − R̂qya

be − R̂qyb

)
(4.17)
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Figure 4.4: Gain adaptation for a smooth trajectory for (a) The EKF, (b) The LIEKF,
(c) The RIEKF

Work in [55] presents detailed step by step derivation of these Invariant filters for

the AHRS problem, which follows the same steps 1 through 4 followed in the previous

section. Therefore the derivation related to these steps is not explained here.

Figure ?? illustrates the gain stabilization behaviour of the filters when the plat-

forms are excited on a random smooth trajectory. All filters show good convergence.

Out of the three filters, the RIEKF specifically exhibits steady state convergence of

its dominant gains. This is an important characteristic which allows to exploit steady

state behaviour of the filter in order to design low cost deterministic versions of the fil-

ter. Since this work targets a low cost design, we modify the IEKF designs to the form

comparable to that of the NCF. This is because the NCF exhibits good convergence

and wide acceptance as a deterministic, fixed gain, and low cost form, applicable to

attitude filtering. The NCF for the attitude estimation problem can be summarized

as follows.
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Initialization : x̂ =
[
1 0 0

]T
Filter Equations(

˙̂q
˙̂ωb

)
=

(
1
2 q̂ ∗ (ωm − ω̂b)

0

)
+

(
q̂ ∗ kpE

kiE

) (
ŷa

ŷb

)
=

(
−R̂T

q ge

R̂T
q be

)
Output Error E = k1(ŷa × ya) + k2(ŷb × yb) Gains

[
kp ki k1 k2

]T
> 0

This is directly comparable to the LIEKF given in 4.17 except for the output cross

product error definition assumed in the NCF. Therefore we modify the output error

definition of the LIEKF to take this cross product form.

E =

ya × ŷa

yb × ŷb



The sign change of the error definitions is usual in Luenberger type observers, which

cancels the effect by producing gains with the corresponding sign change. To be con-

gruent with the symmetry preserving framework, this output error definition should

satisfy conditions for invariance. The relevant symmetries of the LIEKF when oper-

ated by a group element (q0, ωb0) ∈ G = SO(3)×R3 can be summarized as follows,

which is found by applying Definitions 3 and 4.

ϕg

q

ωb

 =

 q0 ∗ q

ωb + ωb0

 ψg


ωm

ge

be

 =


ωm + ωb0

Rq0ge

Rq0be

 ρg

ya

yb

 =

ya

yb



Using these mappings the cross product error term is found to be invariant using
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Definition 5.

φg(E(x, u, y)) = E(ϕg(x), ψg(u), ρg(y))

φg

ya ×−R̂T
q ge

yb × R̂T
q be

 =

ya ×−R̂T
q RT

q0Rq0ge

yb × R̂T
q RT

q0Rq0be

 =

ya ×−R̂T
q ge

yb × R̂T
q be

 = E(x, u, y)

By applying this cross product error modification, the modified LIEKF denoted as

LIEKF∗ can be found following the IEKF design process. Similarly one can find

the modified RIEKF form using a comparable invariant cross product error term

applicable to right group actions.

E =

R̂q(ya × ŷa)

R̂q(yb × ŷb)



The following set of equations verifies the invariance of E for symmetries relevant to

right group actions.

ϕg

q

ωb

 =

 q ∗ q0

RT
q0ωb + ωb0

 ψg


ωm

ge

be

 =


RT
q0ωm + ωb0

ge

be

 ρg

ya

yb

 =

RT
q0ya

RT
q0yb



φg(E(x, u, y)) = E(ϕg(x), ψg(u), ρg(y))

φg

R̂q(ya ×−R̂T
q ge)

R̂q(yb × R̂T
q be)

 =

R̂qRq0(RT
q0ya ×−RT

q0R̂
T
q ge)

R̂qRq0(RT
q0yb ×RT

q0R̂
T
q be)

 =

R̂q(ya ×−R̂T
q ge)

R̂q(yb × R̂T
q be)


= E(x, u, y)

By applying this cross product error modification the modified RIEKF denoted as

RIEKF∗ can be found by following the IEKF design process. The attitude observers
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LIEKF∗ and RIEKF∗ are summarized in Table 4.2.

Table 4.2: Summary of LIEKF∗ and RIEKF∗

LIEKF ∗ RIEKF∗

Initialization
x̂ =

[
1 0 0

]T
P = E(ηηT ) = I Q = E(wwT ) R = E(ννT )

Filter Equations(
˙̂q
˙̂ωb

)
=
( 1

2 q̂ ∗ (ωm − ω̂b)
0

)
+
(

q̂ ∗ LqE
LωbE

)
(

ŷa
ŷb

)
=
(
−R̂T

q ge
R̂T

q be

)
E =

(
ya × ŷa
yb × ŷb

)
(

˙̂q
˙̂ωb

)
=
( 1

2 q̂ ∗ (ωm − ω̂b)
0

)
+
(

q̂ ∗ LqE
LωbE

)
(

ŷa
ŷb

)
=
(
−R̂T

q ge
R̂T

q be

)
E =

(
R̂q(ya × ŷa)
R̂q(yb × ŷb)

)
K =

[
−Lq −Lωb

]T

Filter Matrices(used to compute Kalman Gain K)

A =
[
[ωb − ωm]× − 1

2 I
0 0

]
C =

[
2[RqT ge]2× 0
2[RqTbe]2× 0

]
M =

[
−0.5I 0

0 −I

]
N =

[
I + [RqT ge]× 0

0 I− [RqTbe]×

]

A =
[

0 − 1
2 I

0 Rq(ωm − ωb)

]
C =

[
2[ge]2× 0
2[be]2× 0

]
M =

[
0.5I 0

0 −I

]
N =

[
I + [ge]× 0

0 I− [be]×

]

Notice that the cross product is a rank deficient operation which causes the noise

Jacobians to lose their rank. Therefore the noise Jacobians are modified to I +N to

preserve full rank and allow application of Kalman gain computation equations.
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Figure 4.5: Gain evolution for a smooth trajectory for (a) The RIEKF∗, (b) The
LIEKF∗, (c) The RINCF RINCF

Figures 4.5 (b) and (c) illustrate the gain stabilization of the LIEKF∗ and the

RIEKF∗ respectively. It is evident that the RIEKF form exhibits good stabilizing
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behaviour which allows the pursuit of a fixed gain design. Gain identification for the

LIEKF form will be difficult due to the strong coupling the steady state gains exhibit

with the system trajectory. Next we attempt to exploit particularly the RIEKF∗ to

propose a method to modify the nonlinear complimentary filter to achieve easy system

noise based tunability.

4.3.5 Steady state IEKF design for attitude estimation

Similar to the approach followed for relative localization, one can find a gain function

L which mimics the dynamics of the gains produced by the RIEKF∗. The nonlinear

error state dynamics for RIEKF∗ with its modified output error definition is found to

be

µ̇
β̇

 =

 −1
2β ∗ µ+ LµE

µ−1 ∗ Îω ∗ µ× β + µ−1 ∗ LβE ∗ µ

 E =

eg

eb

 =

µ ∗ ge ∗ µ−1 × ge

µ ∗ be ∗ µ−1 × be



where η is the error state defined by η = (µ, β) = (q̂ ∗ q−1, q(ω̂b − ωb) ∗ q−1), and

Îω is an invariant quantity defined as Îω = q̂ ∗ (ωm − ω̂b) ∗ q̂−1. The steps of the

derivations above were omitted since they follow the standard IEKF design steps. We

continue from step (e) of the filter derivation process in detail in order to identify an

optimal steady state design for attitude estimation.

Step 5: Identify deterministic design

The characteristic steady state behaviour of the RIEKF∗ shown in Figure 4.5 im-

plies that the optimal gain matrix mainly consists of a constant set of gains. Consider

the following constant gain matrix proposal.
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L =

Lµ
Lβ

 =

 Ia Ib

−Ic −Id

 ,
Ia = diag([a1 a2 a3])

Ib = diag([b1 b2 b3])

Ic = diag([c1 c2 c3])

Id = diag([d1 d2 d3])

By substituting L and linearizing the error state dynamics, the following set of error

state equations can be found.

 ˙δµ
˙δβ

 =

 −1
2δβ + Aµδµ

Îω × δβ + Aβδµ

 , Aµ =


−2g2

ea1 0 0

0 −2g2
ea2 − 2b2

eb2 0

0 0 −2b2
eb3

 ,

Aβ =


2g2

ec1 0 0

0 2g2
ec2 + 2b2

ed2 0

0 0 2b2
ed3


(4.18)

This system is found to be locally asymptotically stable using a candidate Lyapunov

function V as proposed in [93].

V = δβTδβ + (2Aβδµ)Tδµ ≥ 0

The derivative of the Lyapunov function is found to be:

V̇ = (4Aβδµ)TAµδµ

= −4δµ2
y(2b2b

2
e + 2a2g

2
e)(2d2b

2
e + 2c2g

2
e)− 16b3b

4
ed3δµ

2
z − 16a1c1g

4
eδµ

2
x

Here V̇ is negative semi-definite which implies Lyapunov stability. I.e. δµ and δβ are

bounded. V̈ is a polynomial function of δµ, δβ, Iω and İω. Hence V̈ is bounded and
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V̇ is uniformly continuous. From Barbalat’s lemma V̇ → 0 as t→∞, hence δµ→ 0

as t→∞. Analyzing the local error state dynamics (4.18), ˙δµ is bounded and δ̈µ is a

polynomial function of δµ, δβ, Iω and İω. Hence δ̈µ is bounded and ˙δµ is uniformly

continuous. From Barbalat’s lemma ˙δµ → 0 as t → ∞. Since δµ → 0 as t → ∞,

this means that δβ → 0 as t → ∞. Therefore the system is locally asymptotically

convergent to the equilibrium for any positive parameter selection for a1, a2, b2, b3,

c1, c2, d2, d3, . Work in [54] includes global stability implications of the filter, which

is not discussed in this text.

Step 6: Optimal gain design

The constant gain L can be found by applying the Eigen structure decomposi-

tion method using the matrices A,C,M,N relevant to the RIEKF∗. The time varying

components of the filter matrices are omitted in arriving at the steady state gain val-

ues. I.e., Îω = 0. This cannot be performed on the LIEKF∗ which in its noiseless

form is equivalent to the usual NCF proposed by [54]. It is evident that despite the

popularity of the NCF, the right invariant form of the NCF exhibits better perfor-

mance and tunability using system noise parameters, while a stochastic derivation of

the generic NCF does not allow one to identify the optimal gains easily due to the

dominant coupling the optimal gains exhibit with the system trajectory. Therefore

this thesis proposes the steady state RIEKF∗ as a natural extension to the NCF,

which by design inherits similar characteristics as the original NCF, but with added

tuning capability, using system and measurement noise figures. We term this formu-

lation the right invariant nonlinear complimentary filter (RINCF). The filter can be

summarized as follows.
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Initialization

x̂ =
[

1 0 0
]T

Q = E(wwT ) R = E(ννT )

Filter Equations(
˙̂q
˙̂ωb

)
=

(
1
2 q̂ ∗ (ωm − ω̂b)

0

)
︸ ︷︷ ︸+

(
LqE ∗ q̂

q̂−1 ∗ LωbE ∗ q̂

)
︸ ︷︷ ︸

(
ŷa

ŷb

)
=

(
−R̂T

q ge

R̂T
q be

)
︸ ︷︷ ︸

State Prediction State Correction Output Prediction

Output Error E =

(
R̂q(ŷa × ya)

R̂q(ŷb × yb)

)
Gain Matrix K =

[
−Lq −Lωb

]T
Gain Computation DARE(I +Adt, C, MQMT dt2, NRNT )

Filtering Matrices

A =

[
0 − 1

2 I

0 0

]
C =

[
2[ge]2× 0

2[be]2× 0

]

M =

[
0.5I 0

0 −I

]
N =

[
I + [ge]× 0

0 I− [be]×

]

The resulting filter has a low cost, and is easily tunable using the system noise

parameters off line. I.e., one can easily find K by using Matlab’s discrete algebraic

Riccatti equation (DARE) solving function with the 4 matrices given above as pa-

rameters. The resulting steady state gains are illustrated in Figure 4.5, where the

RINCF was capable of achieving the optimal steady state dominant gains achieved

by the RIEKF∗.

It is important to note that at high angular velocities the optimal gains produce

coupling with the angular velocities. By analyzing the behaviour it was identified

that the gain function approximates to the following form with 2 extra parameters.

L =

Lµ
Lβ

 =

 Ia Ib

−Ic + p1[−̂Iω]× −Id + p2[−̂Iω]×


The parameters p1 and p2 can be found by applying a DARE solving function

with Îω = (ωmax, 0, 0) and then reading of p1 and p2 from the gain matrix. I.e p1 =

K62/ωmax, p2 = −K56/ωmax. Figure 4.6 illustrates the gain adaptation achievable
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with this modified form for three different angular velocities. Figure 4.7 illustrates

the variation of the dominant gains over a wide range of angular velocities. The

surface represents the gains predicted by the tuning method and the black markers

denote the optimal steady state gain computed using the DARE solve function over

a range of values for Îω.
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Figure 4.6: Gain evolution for a smooth trajectory for The RIEKF∗ (top), The RINCF
(bottom), for ωmax = π/3 (left), ωmax = 2π/3 (middle), and ωmax = 5π/3 (right)

Table 4.3 evaluates the goodness of fit of this modified form for different noise

configurations. The gains were evaluated for ω ranging from −5 to 5rad/s. The noise

parameters used were Q = 0.1I6, and R = diag(0.3I6, 0.5I6).

The statistics suggest good approximation of the steady state optimal gains of the

RINCF by the proposed tuning method in a wide range of operating conditions. This

completes the low cost filter design procedure for relative localization. The results

section evaluates the comparative performance of the designed filters.
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Figure 4.7: Gain parameter fits using the modified criteria for the dominant gain
terms when Iωz = 0rad/s

Table 4.3: Gain parameter fits for the dominant gains for different system configura-
tions

dt Sensor Parameters a = [aα aβ ] Goodness of fit
Noise α = [p1 p2] R2

Multiplier
0.01 1 α = [0.6643 0.7083]e−4 0.9231
0.01 10 α = [0.4372 0.3058]e−4 0.9582
0.01 10−1 α = [0.0831 0.1144]e−3 0.8762
0.05 1 α = [0.7068 0.7392]e−3 0.8830
0.005 1 α = [0.2945 0.3166]e−5 0.9196
0.1 100 α = [0.0019 0.0013] 0.8389

4.4 Results

The previous section derived three different filters relevant to relative localization.

First is an IEKF for relative localization in 2.5D. This filter is applicable as an esti-

mator in the overall HNF proposed in this thesis. Second is a low cost steady state

IEKF for 2.5D relative localization. This filter is applicable in the embedded electron-

ics of a communicating set of sensor nodes when velocities are available. The filter

features low cost implementation and optimal steady state tunability. The third is
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the RINCF for attitude estimation. This filter is also capable of residing in embedded

electronics to support the 2.5D relative localization modules. The filter features low

cost reliable attitude estimation comparable to an NCF, with the ability to tune the

gain parameters to achieve optimal steady state performance. This section compares

the performance of these three filters to generic solutions reported in literature.

Numerical simulations are presented evaluating the performance of the filters in

terms of estimation accuracy and gain stabilization. Experimental validation of the

RINCF is presented using an MAV as validation of the nonlinear steady state filter

design procedure proposed in this work.

4.4.1 Performance of the IEKF for relative localization
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Figure 4.8: The simulated trajectory of the local and target robots used to validate
the relative localization filter designs

The following three cases are considered in evaluating the performance of the

proposed relative localization filters. Case 1 considers a low velocity permanent tra-

jectory, Case 2 considers a medium velocity discrete non-permanent trajectory, and

Case 3 considers a continuous non-permanent trajectory with high velocities.

Case 2 was used to analyze the filter’s response, in which the target platform

switches over eight permanent trajectories to follow a figure of eight. The relative

positioning sensor was enabled for this experiment while the velocities were estimated
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Figure 4.9: State estimation achieved by EKF and the IEKF for case 2

by the filter. As required by system observability conditions the transverse velocity

was constrained to zero. The vector quantities were transformed to zero-roll-pitch

frames of references as required by the 2.5D filter implementations.
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Figure 4.10: State estimation accuracy achieved by EKF and the IEKF for case 2

Figures 4.9 and 4.10 illustrate the performance of the state estimation and esti-
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mation error propagation of the IEKF for this case. Figure 4.11 illustrates the gain

propagation which exhibits the characteristic steady state gain stabilization behaviour

expected for IEKFs. Figure 4.12 illustrates the performance comparison of the EKF

and the IEKF for relative localization for all three cases. The results validate the

ability of the IEKF to achieve comparable performance to the EKF while estimating

the unknown velocities.
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4.4.2 Performance of the steady state IEKF for relative lo-

calization

Case 2 was used as a scenario to validate the steady state IEKF designs. For the steady

state IEKF (ssIEKF) it was assumed that the velocities which correspond to a sensor

network are available through dedicated fast communicating channels. The ssIEKF

was implemented using a discrete time single step EKF form [94]. This form produces

identical steady state gains corresponding to the gain solution of the discrete time

algebraic Riccati equation for the problem. The parameters of the gain matrix were

estimated using the globally stable gain matrix proposal given in the previous section.

These were found to be aα = [0.135 25.44 0.092 7.888 0.114] with R2 = 0.7867. Figure

4.13 illustrates the tracking performance of this steady state form which is comparable

to EKF and IEKF implementations to the problem. Figure 4.14 illustrates the values

of the parameterized gain matrix for the steady state forms with both aα and [aα, aβ].

The gain matrix with extra parameters closely compares to the steady state gains

produced by the IEKF.

The error comparisons for all cases are presented in Figure 4.15. The ssIEKF

was capable of successfully handling all different cases which correspond to different

operating conditions. It was identified that the extra parameters did not significantly

effect the estimation accuracy for the operating velocities considered in these sim-

ulations; thus, can be omitted depending on the application. The results validate

the proposed ssIEKF design for relative localization and the tuning method which

allows to achieve comparable steady state performance over a wide range of system

configurations.
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Figure 4.13: Position and heading estimation for case 2 using the IEKF and the
ssIEKF
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with additional parameters, for Case 2

4.4.3 Performance of the RINCF

The following three trajectories are used for numerical evaluation of the proposed

RINCF. The trajectories are randomly selected to evaluate the performance of the

filter along with its tuning procedure for low, medium, and high angular velocity
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trajectories.

Case 1 Case 2 Case 3

ωx = π/3 sin(2π0.7t+ π/3) ωx = π sin(2π0.7t) ωx = 5π/3 sin(2π.07t+ π/3)

ωy = π/3 sin(2π0.2t+ π) ωy = π sin(2π.02t+ π) ωy = 5π/3 sin(2π.02t+ π)

ωz = π/3 sin(2π0.4t) ωz = π sin(2π.04t+ π/3) ωz = 5π/3 sin(2π.04t)

The system noise parameters were taken as Q = 0.1I6, and R = diag(0.3I6,

0.5I6). The proposed RINCF was implemented and the parameters were found using

2 DARE runs in Matlab with ωmax taken as 5. The resulting tuning parameters

were (a1, a2, b2, b3, c1, c2, d2, d3) = (0.3326, 0.2517, 0.1511, 0.2630, 0.5666,

0.4412, 0.2648, 0.4332)e−3 and (p1, p2) = (6.6430, 3.9873)e−5 which were used in all

simulations presented. Figure 4.16 illustrates the estimation of roll, pitch, and yaw

for Case 1. RINCF is capable of good convergence and tracking of the attitude using

the proposed tuning approach which produces steady state optimal gains.

The results of the RINCF were compared against all other attitude estimators

introduced in this text for Case 1, which corresponds to typical operating velocities

of aerial platforms. Figure 4.17 illustrates the mean and standard deviation of the es-

timation error produced by the filters after 2.5 seconds. The filter denoted asWAB is
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Figure 4.16: The simulated trajectory of the platform and the estimation accuracy
provided by the RINCF for Case 1

the solution achieved by solving the Wahba’s problem using singular value decompo-

sition [95]. This denotes the attitude solution achievable using solely an accelerometer

and a magnetometer; thus corresponds to the worst case performance expected from

the attitude filters. RINCF1 and RINCF2 denotes the one with and without modi-

fying terms (p1, p2) respectively. The RINCFs provide as good comparable results as

all other estimators considered in this Chapter. Out of the filters presented in Figure

4.17, the NCF and the RINCFs are the only deterministic implementations applica-

ble in low cost domains. The RINCF dominates as the only deterministic filter with

system noise based gain tuning capability.

Figure 4.18 illustrates a comparison of the RIEKF∗ and the proposed RINCF

for the three cases. It is evident that the RINCF achieves comparable performance
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as the RIEKF∗ after convergence with increasing angular rates. The improvements

introduced by the modifying terms are only significant at higher angular velocities

(Case 3), thus can be neglected depending on the application. The results validate

the proposed RINCF design for attitude reference and the proposed tuning method

which allows to achieve comparable steady state performance over a wide range of

system configurations and trajectories.
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4.4.4 Experimental validation of the filters

The experimental validation of the RINCF was performed using an ARDrone 2.0

platform. The platform was programmed with custom firmware which records the raw
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measurements from the onboard accelerometers, gyroscopes, and magnetic compass.

Scale factors and bias values related to these sensors were identified. The identification

of the hard iron distortion effects of the magnetometer is presented in Figure 4.19 along

with the validation of the measurements by converting them back to a zero roll pitch

frame of reference. These calibrated measurements were used to validate each type of

filter.

Figure 4.19: Calibration of the magnetic compass of the ARDrone 2.0

It is important to note that the magnetic heading is highly biased depending

on the operating location of the drone. These errors were minimized by calibrating

the compass to a particular test location. This is the case even when the drone’s

yaw is to be controlled in a closed loop using the factory firmware. In this case the

factory software performs a 3600 rotating data capture from the magnetic compass

and identifies the hard iron distortion parameters in order to operate in the particular

environment. However, these errors are not expected to affect the relative localization

filters since the relative localization filters do not rely on the heading estimates of a

compass due to the unknown biases that affect the measurements.

Figure 4.20 illustrates the performance of an EKF for measurements captured

by the drone. Since a generic EKF with an additive noise assumption was used,

the results exhibit poor estimation capability. This is mainly due to the linearized
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Figure 4.20: Attitude heading estimate of the EKF and the RINCF

formulation of the filter and the biases of the magnetic sensors which ultimately affect

roll and pitch estimates due to coupling. In contrast the RINCF estimates (Figure

4.20) were found to perform better due to the selective updating capability of the

filter, where the magnetic compass is forced only to update the yaw estimates and the

accelerometers are forced to update only the roll and pitch estimates. This is possible

due to the right invariant formulation of the filter which carries the error states of

the system defined with respect to the filters’ navigation frame of reference. I.e. the

error states directly correspond to the errors in roll, pitch, and yaw. The following

equation reports the gain values estimated using the noise parameters related to the

sensors. In order to force the desired selective updating by the sensors, one simply

requires to set the corresponding blocks of the gain matrix KRINCF to zeros, which

are highlighted in bold. All other values are calculated using the discrete algebraic
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Ricatti solve function of Matlab. It was not necessary to introduce the additional p1

and p2 terms in calculating the gain matrix.

KRINCF = 10−2



0.0229 0 0 0 0 0

0 0.0228 0 0 0 0

0 0 0 −0.8837 0.5025 0.4929
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Figure 4.21: Attitude heading estimate of the different AHRS for the experimental
data

Results related to an EKF, NCF, RIEKF, and an RINCF are presented in Fig-

ure 4.21. Only the RIEKF and RINCF allowed the convenience of incorporating the

capability discussed above, where selective updating of estimates is achieved. The

EKF and the NCF only allowed to manipulate the confidence between the accelerom-

eter and the compass and did not allow the flexibility of forcing selective updating

of states, which is a valuable capability in practical applications. Therefore RINCF

constitutes an excellent innovative approach for the attitude filtering problem which
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has the added capability of tuning the filter using an intuitive approach which is based

on the system noise parameters, and the capability of deploying on devices with low

computational demand for attitude and heading estimation.

4.5 Conclusion

This chapter presented three nonlinear filter designs relevant to relative localization.

These include 1) a design of an IEKF for relative localization with unknown velocity

estimation capability, 2) a steady state IEKF for relative localization which requires

known platform velocities, and 3) a steady state IEKF for attitude estimation termed

the RINCF. A novel gain tuning procedure was proposed with parameterized gain

functions for low cost optimal implementation of the filters. The formulation is geo-

metrically sound and enables deployment with favourable computational demand and

a comparable performance to an EKF. The performance of these filters was evaluated

using both numerical and experimental studies. The IEKF design for relative localiza-

tion and the RINCF design for attitude estimation service the relative localization and

attitude filtering modules of the proposed HNF. The steady state IEKF for relative

localization is intended primarily for those applications where velocity communication

between sensor nodes is established using reliable communication channels. What fol-

lows is a discussion of limitations and future work related to the three filter designs

proposed in this thesis.

The IEKF for relative localization

It is important to note the following key limitations of the IEKF design. First,

the filter has a limitation of not translating well to polar parameterizations and to

associated range only and bearing only localization problems. This is due to the

difficulty of identifying the symmetries when a polar form is used. However, cartesian
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parametrization of a sensor model is a good approximation of the relative position

sensing technologies used by robots. Second, the filter is a 2.5D design which is suited

in applications where low roll and pitch dynamics can be assumed. A full SE(3)

formulation as presented in the appendix would complement those applications where

high velocity maneuvers are expected. Third, the presented IEKF design augments the

noise parameters of the system by introducing mappings in order to force symmetry

of the stochastic system. This would be inaccurate in some applications where the

noise mechanisms are well established and known to follow a process model. This

drawback can be surpassed by keeping the noise functions of the systems unchanged

in such applications. The IEKF design process allows this flexibility in its formulation.

The ssIEKF for relative localization

The ssIEKF faces the following additional drawbacks over the ones discussed

above. First, the filter in its current state is only applicable under known velocity

conditions and assumes that the velocity measurements of the target platform are

communicated for filtering purposes. Therefore, in practice the method is ideally

suited for low update rates which support the bandwidth limitations of the avail-

able communication channels. Second, the filter does not posses global convergence

guarantees under non-permanent trajectories. The filter guarantees local convergence

about any trajectory and the filter produced desirable performance for non-permanent

trajectories in experiments. However, further analysis and exhaustive experimenta-

tion is required to validate global convergence for non-permanent trajectories in order

to improve robustness of the filter. Future work will nvestigate the steady state form

for the unknown velocity cases with a detailed experimental validation of its stability

under non-permanent trajectories.

The RINCF

The RINCF in its current form faces the following limitations. First, the RINCF
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does not carry convergence guarantees for the additional p1 and p2 terms which are

used to mimic optimal gains at higher angular velocity conditions. However, in typical

applications as presented in experiments, the fixed gain form without the p1 and

p2 terms constitutes a desirable solution with local convergence guarantees about

any trajectory. For higher angular velocity excitations, it is desirable to establish

theoretical guarantees regarding the extra p1 and p2 terms introduced to the gain

matrix. Second, the RINCF formulation did not consider dynamics of the attaching

platforms. Recent work reported in [96, 97], has demonstrated the ability to use the

dynamic model of MAVs to achieve better attitude filtering and velocity estimation.

However, this capability was not exploited in this work since the formulation targets a

general 6DOF platform without considering any platform specific dynamic constraints.

Future work related to the RINCF design expects to investigate convergence

guarantees for optimal gains at higher angular velocities. Additionally, filter develop-

ments where the dynamics of the platform and couplings with pose filtering modules

present important research directions desirable for low cost application of attitude

estimators.



Chapter 5

Relative Localization: A

Distributed Approach

The previous chapter designed the necessary relative localization filters which allowed

a single robot to find the relative poses of its neighbours. However, in a multi robot

network many robots perform relative measurements within the team with respect

to their corresponding body fixed frames. In order to address this scenario a multi-

robot relative localization method should be in place. The main reported solutions for

the problem of multi-robot relative localization require synchronous communication

between robots, where the network should communicate each time a relative mea-

surement is logged in the team. This chapter1 proposes a localization method which

can accommodate communication at a low predefined rate rather than forcing com-

munication each time a measurement is logged. This is achieved without explicitly

accumulating past measurements locally at each robot. This capability is necessary to
1 This chapter is based on the following publications of the author:

∗ O. De Silva, G. K. I. Mann, and R. G. Gosine, “Efficient Distributed Multi-Robot Localization :
A Target Tracking Inspired Design," in IEEE International Conference on Robotics and Automation
(ICRA), 2015, (Accepted).
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support an increasing number of robots in a team, when operating within finite com-

munication and computation resources. The design includes a novel fusion strategy, a

consistent estimation method, and a state based initialization method, embedded in a

distributed target tracking framework. The design is efficient in terms of computation

demand, since it scales linearly with the number of robots. Additionally, the design is

efficient in terms of communication demand, since communication is neither required

to be synchronized with sensor readings, nor constrained to be in a specific topology.

The proposed approach is validated for its initialization capability, consistency of es-

timates, and robustness of performance, through several numerical simulations and

using a publicly available multi-robot data set.

5.1 Introduction

The traditional solution to the problem of relative localization is the centralized Ex-

tended Kalman Filter [39]. This is different from the local version of the EKF and

its nonlinear derivation, the IEKF used for relative localization in Chapters 3,4. The

centralized EKF for multi robot localization stacks all states of each robot in the team

together to form a single state vector. At each time step all measurements are com-

municated to the centralized EKF to perform the Kalman update. The drawbacks

of the EKF with regard to the nonlinearity of the localization problem were consid-

ered in detail in the previous chapter. In a multi-robot analysis, however, the more

pressing concern is efficient distributed implementation of the filter in the robot net-

work. Pioneering work which proposes centralized equivalent strategies to efficiently

distribute the filtering operation among a set of agents are demonstrated in [39][57].

However, these centralized and equivalent forms have two main drawbacks that make

it difficult for one to use them in practical situations.
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The first main drawback is that the centralized equivalent approaches require

ideal communication where each member is required to communicate its information

within the team at each occurrence of a measurement in the network. As the number

of robots in the team increases, this solution soon becomes less practical. To over-

come this issue, one strategy is to intermittently communicate packets of accumulated

raw data and incorporate this information to the filter in retrospect. The authors in

[57] propose a past sensor data management method to store the optimal amount

of data which allows the achievement of a centralized equivalent estimation at a fu-

sion center after communication. Work in [48] proposes the delayed state information

form to accumulate past data. This allows to exploit the additive property of the

extended information filters to fuse delayed data in a convenient manner. However,

explicitly accumulating past data has unbounded memory demand since the strategy

assumes that the information will soon be incorporated into a state estimate via com-

munication. Conversely, work presented in [98] and methods proposed in distributed

tracking approaches [49] accumulate past data in the form of recursive states rather

than explicitly maintaining a set of past raw measurements for each time step.

A second drawback in the centralized method is that the computation cost of the

approach scales quadratically with the number of robots. This is because it considers

the full cross correlation structure among all the robots to perform a centralized

equivalent update. In order to address this problem, it is necessary to use approximate

state correction schemes instead of maintaining the full cross correlation structure of

the robot group. In naive implementations, the estimation is performed assuming

that there is zero cross correlation between the states. This leads to overconfidence

of the localization estimates in cases where the measurement model is coupled across

multiple states. More intuitive implementations employ information matrix based

state de-correlation schemes as seen in [58], and Covariance Intersection (CI) based
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schemes as seen in [99], for approximate consistent fusion of the robots’ states.

In order to solve both the problems discussed above, this work identifies that

it is essential to implement a combination of an approximate state fusion scheme,

and a past data accumulation scheme in the form of recursive states. This is in-

spired by the well established field of distributed multi-sensor multi-target tracking

[49]. The underlying principles of target tracking have been well exploited in many

robotic applications, such as simultaneous localization, mapping and moving object

tracking [100], single leader multi-robot localization [33], and multi-object tracking in

the RoboCup standard platform league [101]. Unlike these studies, the proposed work

exploits methods in distributed target tracking in order to specifically address limi-

tations of communication and computation demand encountered in the multi-robot

relative localization problem.

The proposed approach results in a distributed multi-robot localization frame-

work which has no constraints with regard to timing or the topology of communication

among the robots. Additionally, the approach produces consistent estimates of the

team formation with a computational complexity that scales linearly with the number

of robots. Three main contributions originating from this design can be identified.

• A novel distributed fusion strategy with a complimentary set of statistics (states),

which allows to perform communication between robots at a low predefined rate.

This is a significant improvement over the conventional methods which commu-

nicate each time a measurement is logged in the network.

• A measurement registration method and a CI based fusion scheme, which incor-

porates communicated data to the current estimate of a robot in a consistent

manner irrespective of the communication topology. This is an improvement

over the conventional state de-correlation based fusion schemes.
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• A dynamic global registration scheme which utilizes communicated states from

other robots to initialize estimates. This is a necessary modification over the raw

measurement based global registration schemes [32], in order to achieve robust

initialization in the proposed distributed framework.

It is important to discuss the applicability of the nonlinear filtering methods

proposed in the previous chapter for application in the proposed distributed relative

localization framework. The right invariant nonlinear complimentary filter is applied

for attitude estimation of aerial platforms to perform 2.5D simplification of the relative

localization problem. I.e, transform all vector quantities to the zero roll pitch frame of

reference. The IEKF designed for relative localization is applied in place of a Kalman

filter in the DRL method which produces almost similar performance in the context

of stochastic filtering. The steady state IEKF is not applicable in the proposed DRL

since this is a deterministic filter which does not propagate the covariances required

for application of the method.

5.2 Preliminaries

The notations introduced in chapter 3 are modified to support multi robot applications

and filter designs as follows. In a multi robot scenario there are N number of robots in

a team identified as {R1, ... Ri , ...RN}. The body fixed frame of robot Ri is denoted

by {I}, and the fixed inertial navigation frame of robot Ri is denoted as {I∗}, i.e.,

the fixed frame attached to the ground at the starting location of each robot. Each

robot takes measurements of its own linear velocities vik, and angular velocities ωik.

The single superscript i is used to denote that the vector is an absolute quantity

(measured relative to an inertial navigation frame {I∗}) and it is expressed in frame

{I}. The relative measurements are denoted by zi,jk where double superscripts i, j are
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Figure 5.1: The multi-robot system and a snapshot of individual fusers proposed in
this work implemented on each robot

used to denote that the vector of frame {J} is measured relative to frame {I}, and it

is expressed in frame {I}. The subscript k denotes the time index and is used only

where necessary.

Assume that robot Rl performs a relative localization task. In this case, robot Rl

is the “local robot” and all neighbours {R1, ... Ri , ...RN}\{Rl} are “target robots”.

The relative localization filter attempts to establish accurate pose estimates of target

robots with respect to a local robot Rl, as illustrated in Figure 5.1. Recall the 2.5D

robot model introduced in Chapter 3. The system model of an arbitrary robot Ri

relative to a reference frame {L} can be expressed as follows.

ẋl,i = fi(xl,i,ul,ui,w)ṗl,i
θ̇l,i

 =

Rl,i
θ (vi + wvi)− (vl + wvl)− (ωl + wωl)× pl,i

(ωi + wωi)− (ωl + wωl)

 (5.1)

The velocities are taken as inputs here to introduce the centralized multi robot filter.

This assumption will be relaxed in the distributed design explained in Section 5.3.
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The vector quantities ui = (vi T, ωi)T and ul = (vl T, ωl)T denote the system inputs,

and w = (wT
vl, wωl, wT

vi, wωi)T denotes the process noise which is assumed to be

drawn from a Gaussian distribution with covariance Qi = diag(σvl, σωl, σvi, σωi)2.

This general expression given by (5.1) is valid for all frames {I}. Therefore, when the

superscript i = l∗, the resulting variables vl∗, wvl∗, ω
l∗, wωl∗ of the expression are

set to 0.

The measurement model of the relative position measurement zi,j is expressed

by

yi,j = hij(xl,i,xl,j,ν)

yi,jp = Ri,l
θ (pl,j − pl,i) +νp

(5.2)

where ν denotes the measurement noise, which is assumed to be drawn from a zero

mean Gaussian distribution with covariance Ŕ = diag(σp)2. This general expression

is valid for all frames {I} and {J}. Therefore, when the superscripts i or j = l, the

resulting variables pl,l and Rl,l
θ in the expression (5.2) are 0 and I respectively. The

measurements are assumed to be acquired with a detection probability of PD and they

are assumed to be corrupted by clutter, uniformly distributed in measurement space

with clutter rate following a Poisson clutter model of spacial density λ.

In order to perform a centralized localization task relative to robot Rl, the states

of all robots in the network are stacked to form a single state vector xk = (xl,l∗
T

k , xl,1
T

k ,

xl,2
T

k ... xl,i
T

k , ... xl,N
T

k )T. This results in a state covariance matrix P with dimension

N ×N . Correspondingly, the system model Jacobians Fi, process noise Jacobians Gi,

and process noise covariances Qi are also stacked to implement a centralized EKF for

the problem.

The noiseless version of the system model given by (5.1) can be used to perform

a mean prediction of the joint state. The covariance prediction of the joint state can
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be performed using the following equations.

F = blkdiag(Fl∗, ...Fi, ...FN) Fi = ∂fi
∂xl,i

G = blkdiag(Gl∗, ...Gi, ...GN) Gi = [ ∂fi
∂wul

∂fi
∂wui

]

Q = blkdiag(Ql∗, ...Qi, ...QN) Ṗ = FPFT +GQGT

(5.3)

To perform the Kalman correction step the noiseless version of the measurement model

given by (5.2) is used for measurement prediction. The Kalman correction step for

each measurement zi,j is given below.

Hij = ∂hij
∂x Rij = diag(σy)

Sij = HijPH
T
ij +Rij K = PHT

ijS
−1
ij

x = x +K(zi,j − yi,j) P = (I −KHij)P

(5.4)

The matrix P and associated computations scale quadratically with the increas-

ing number of robots. It is therefore advantageous to improve computation cost for

better scalability of the solution. The prediction step as described in equation (5.1)

requires the communication of input velocities of the target platforms vi, ωi ∀i 6= l, l∗

to the centralized filter. Additionally, the correction step requires communication of

all measurements which do not originate from the local platform, i.e., zi,j ∀i 6= l, l∗.

Such synchronous simultaneous communication between all robots cannot be sup-

ported in a network due to practical bandwidth limitations and channel limitations of

communication mediums. Therefore, it is necessary to design a distributed approach

which possesses better scalability in terms of computation, and which enables ad-hoc

asynchronous communication to support realistic communication mediums.
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5.3 Proposed Approach

The proposed approach assumes the following simplifications:

• The relative measurement modules measure the neighbouring robots with known

data correspondence. This is valid for a variety of vision based, acoustic based,

and IR based relative measurement modules including the measurement solu-

tion proposed in Chapter 2. Handling data correspondence using the proposed

framework is addressed separately in Chapter 6.

• The communication cost between a pair of robots for a given payload is assumed

constant. i.e., no routing of communication is considered.

Figure 5.1 illustrates a summarized version of the proposed distributed localiza-

tion framework. A distributed fusing module F i, also termed a “Fuser”, is imple-

mented on each robot Ri. The term “Track” is used to refer to an estimate of a robot

(or more generally an estimate of the coordinate frame of a robot). An indexed track

is denoted as T lm, where l is used to denote the reference frame of the fuser which main-

tains the track and m is used as an index to uniquely identify different tracks. A track

consists of a robot identifier Ar, an estimate of the state vector of the corresponding

robot x, its covariance P , and a weight w. i.e., F l 3 T lm = {x, P, w, Ar}.

The robot identifier Ar is used to maintain the track-to-robot correspondence. A

set of tracks which corresponds to the same robot provides a set of multiple estimates

with Gaussian statistics. Existence of multiple solutions for the same robot that can

be encountered in initialization and in unknown data correspondence scenarios will

be explained in Chapter 6. Therefore, a subgroup of tracks corresponding to the same

target robot is identified as a Gaussian mixture Gml,i = {T lm : T lm 3 Ar = i} with

weights of the mixture components being w. The tracks are kept as decoupled states

and necessary mechanisms are implemented in correction and fusion steps to main-
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tain consistency of the estimates. Maintaining decoupled states allows the proposed

approach to scale linearly with the number of robots.

Id:4

Id:2

Id:3
w:0.5

Id:3w:0.5
Track list

Tracks

Tracks with
multiple hypotheses

Prediction

Correction

Fusion

Local Registration

Global Registration

Prune Measurements from 
the local platform

Tracklist
from neighbours

2

1

3

56

4

1/p Hz Loop
1/c Hz Loop
1/f Hz Loop

Id:1

Figure 5.2: The proposed distributed localization framework. The prediction, correc-
tion and fusion operations are performed at different rates (p < c < f)

This work integrates an innovative state propagation scheme, a global registration

scheme, and a consistent fusion scheme to the general distributed target tracking

framework described in [58]. These non-trivial improvements are necessary to achieve

a distributed multi-robot localization solution. These operations are performed by

six different sub-modules as illustrated in Figure 5.2. In the following section, the

functionality of each sub-module is discussed in detail in the order which they are

enumerated in Figure 5.2.
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5.3.1 Local Registration

The fuser F l initializes a navigation frame at the location where the local robot

initiates its mission. When Rl perceives another robot Ri, it creates a new track

corresponding to the identity of the measured robot with a weight of PB ∗max(w ∈

Gml,i). PB is identified as the track birth probability which corresponds to the weight

given to initialize the first track of Gml,i. Since the orientation of the perceived robot

cannot be determined during initialization, the value for orientation is set randomly

with a high value for initial covariance, to imitate a uniform distribution. This local

initialization procedure is dynamic, where the registration routine constantly checks

and initializes new tracks. The measurements that are not absorbed by any of the

available tracks in the fuser for estimation are used to initialize new tracks.

5.3.2 Prediction

Following initialization, the tracks are propagated using the system model given by

(5.5). The velocities of neighbouring robots are unknown until such time communica-

tion occurs. To support these unknown velocities, the system model is modified from

the centralized version given in (5.1) to attain a constant velocity, turn rate model as

given in (5.5).

ẋl,i = fi(xl,i,u, ε)

ṗl,i

θ̇l,i

v̇i

ω̇i


=



Rl,i vi − vl − ωl × pl,i

ωi − ωl

0

0


+



εvl + εωl × pl,i

εωl

εv̇i

εω̇i


(5.5)

The state of each target robot is selected as xl,i = (pl,i T, θl,i, vi T, ωi)T. Addi-
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tionally, each robot propagates an estimate of its local velocity using its corresponding

navigation frame {L∗}. The state of frame {L∗} is selected as xl,l∗ = (pl∗,l T, θl∗,l,

vl T, ωl)T. The state and covariance are propagated using Kalman prediction equa-

tions.

5.3.3 Correction

The local measurements logged by the robots are used to perform the Kalman up-

date. The local measurements are the measurements made with respect to frame

{L}, which is same as the filter’s frame of reference. As a result, in this decoupled

form there is no requirement for any coordinate transformation, which in turn does

not develop any measurement to state correlation. This is not the case if a globally

fixed coordinate frame is considered as the reference frame of the filter (for example

{L∗}). In such a scenario, relative measurements are correlated between multiple

tracks, resulting in inconsistent Kalman updates if a decoupled form is used. In order

to handle measurement outliers, the correction step is preceded by a measurement

gating operation with a gate probability of PG.

The weight of each track is updated during the update step using the following

track management rules:

1. If the track was not associated with any measurement, the track weight is up-

dated with the track survival probability.

w = w(1− PDPG) (5.6)

2. If the track was associated with a measurement, it’s updated with the measure-
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ment likelihood.

w = wPDN (zi,j|(zi,j − yi,j), (HPHT + Ŕ))/λ (5.7)

3. If a measurement was not associated with any track, the local registration mod-

ule will initialize a track with the birth probability.

5.3.4 Pruning

The pruning step normalizes the Gaussian mixture Gml,i corresponding to each robot.

The tracks having weights below the track kill probability PK are removed. The

Mahalanobis distance between two tracks in a Gaussian mixture is used to combine

estimates that are similar.

Up to this step the framework only considered the locally available measurements

for the estimation process. The observability study of the problem presented in Chap-

ter 3 verified that localization using only the locally available set of information is

observable given that the robots move with non-zero velocities and the transverse

velocities of the robots are constrained (known to be zero). Therefore, incorporating

the communicated information is necessary in this framework in order to improve the

accuracy of the estimate and more importantly to handle the unobservable cases such

as: scenarios where all robots in the network are stationary; robots are moving with

non-zero transverse platform velocities; and the filter has converged to the incorrect

local solution out of the two possible global minima derived in Chapter 3.

5.3.5 Global Registration

The robots communicate the tracks between them in an asynchronous manner in

this distributed framework. Due to observability limitations of the problem, it is
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Algorithm 1: Global track registration
Data: Local track set T l = {x, P, w, Ar} of the local robot
Communicated track sets {T i, . . . } of all robots Ri which communicated
during the current time step
Result: T̃ l the initialized solutions for T l
T̃ l=T l
if any x ∈ T̃ lm is not initialized then

1. Find T i which matches Ar ∈ T̃ lm
2. RANSAC Binary registration of T̃ l and T i
S = ∅
while iteration < maximum iterations do

2.1 Sample 4 tracks T lv1, T lv2, T iv3, T iv4

s.t. v1 6= v2 , v3 6= v4
T lv1 3 Ar = T iv3 3 Ar, T

l
v2 3 Ar = T iv4 3 Ar ,

||T lv1 3 p− T lv2 3 p|| = ||T iv3 3 p− T iv4 3 p||

2.2 Initialize T̃ lm using the correspondences

i.e. T lv1 3 p := pv1, T lv2 3 p := pv2, T iv3 3 p := pv3,
T iv4 3 p := pv4, pv12 = pv2 − pv1, pv34 = pv4 − pv3
S← θ̃ = arctan 2(yv12, xv12)−ATan2(yv34, xv34)
S← p̃ = pv2 −Rθ̃pv4

3. Compute subset of independent solutions in S with sufficient inliers
4. Update T̃ lm with solutions in S

possible that none of the orientation estimates in T l,i will be properly estimated

during the time period leading up to the communication of tracks. In order to perform

initialization of these tracks, this thesis proposes a binary state registration algorithm.

This algorithm is derived from multi robot registration schemes presented in [32].

Each communicated track set T i is considered along with the local track set T l for the

binary state registration operation. The track set is augmented prior to implementing

the algorithm by introducing the origin of the transformation frames. i.e., a track with

states x = 0 is added to T l and T i with Ar set to l, i for each track respectively.

The algorithm presented in Table 1 first determines whether any estimate T l,im

corresponding to the communicating robot Ri requires initialization. This is per-
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formed by comparing the covariance of its orientation estimate and proceeding to

initialization if it’s above a threshold, which was selected as 0.003 rad2. In cases

where robot Ri requires initialization, a RANSAC based correspondence scheme is

performed. Although the tracks of both local and communicating robots are of known

correspondence, the RANSAC correspondence handling scheme is necessary since the

track list may include multiple hypotheses for the location of a robot occurring due

to outliers in measurements and multiple global solutions possible for the local filters.

The RANSAC based correspondence scheme additionally allows addressing cases of

unknown data correspondence under the proposed framework.

From each track set two matching track index pairs are selected. Then the two

pairs of matching vectors are used to generate a closed form solution for the relative

pose of the communicating robot. Next, an inlier count is performed following stan-

dard RANSAC steps. A solution is selected if there are more than two inliers. This

solution generation procedure is carried out until a predefined maximum number of

iterations is reached, or all number of possible putative correspondences are consid-

ered. Therefore, the algorithm remains bounded in computation and the initialization

routine is re-attempted in future communications in case of failure. The fusion scheme

only requires an adjustment of the mean of the orientation of tracks, which was orig-

inally set to a random value by the local registration routine. The global registration

routine proposed here effectively achieves this task.

This algorithm is first proposed in [32] to handle unknown correspondence using

raw measurement communication. The modified approach proposed here is an efficient

distributed implementation of the binary registration algorithm which is based on

system states rather than raw measurements. This approach significantly reduced the

communication demand.
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5.3.6 Fusion

The state fusion scheme incorporates the communicated information to the current

track set. The overall fusion procedure is performed as follows.

First, the communicated track set is transformed to the reference frame of the

local robot. This process is also termed as sensor registration. The sensor registration

routine can be summarized by the following equations:

zeq = T l,i ⊕ T i,j

Navigation frame fusion :

if j = i∗ H = [04 I4] zeq = Hxi,j

G = H Ŕeq = GP i,jGT

Mutual frame fusion :

if j = l H = [I4 04] zeq = 	Hxi,j

G = ∂zeq/∂x̃i,l Ŕeq = GP i,jGT

Indirect frame fusion :

if j 6= l, i∗ H = [I4 04] zeq = Hxl,i ⊕Hxi,j

G = ∂zeq/∂x̃i,j Ŕeq = P l,i +GP i,jGT

xl,i ⊕ xi,j =



pl,i + Ri,j
θ pi,j

θl,i + θi,j

vl,i + Ri,j
θ vi,j

ωl,i + ωi,j


	xi,l =



−(Ri,l
θ )Tpi,l

−θi,l

−(Ri,l
θ )Tvi,l

−ωi,l



(5.8)

where x̃ is used to denote the error state corresponding to a state variable x, and

a mapping matrix H is used to select only the relevant variables of states which

accumulate new locally measured information.

In the next step, the transformed set of communicated tracks (which is also re-
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ferred to as equivalent measurements) is associated with individual tracks of the local

track set. A gating procedure is incorporated to eliminate the equivalent measure-

ments that have originated from inaccurate initialization. The final step performs an

update of the local track set with its corresponding associated equivalent measure-

ments.

The equivalent measurements cannot be directly used to perform a conventional

Kalman update of the local track set. This is because the communicated tracks and

local tracks become correlated soon after the first update, resulting in inconsistent

updates thereafter. State de-correlation procedures are used in distributed tracking

literature to overcome this problem [58]. State de-correlation is the process of remov-

ing any common information related to the two sets of tracks prior to fusion. For this

purpose, each track separately propagates statistics for mean xc and covariance Pc cor-

responding to the common information between the communicating robots. Common

information only exists after the first communication, where during each subsequent

communication xc and Pc are replaced with the mean and covariance of the associ-

ated equivalent measurement. Using the additive property of the information form,

the de-correlation of an equivalent measurement can be performed by

Ŕeq = (Ŕ−1
eq − P−1

c,k|k−f )−1

zeq = (Ŕeq − Pc,k|k−f )−1(Ŕ−1
eq zeq − P−1

c,k|k−fxc,k|k−f )
(5.9)

Here the time index f corresponds to the time lapsed since the last communication.

After de-correlation of an equivalent measurement, it can be used to perform a usual

Kalman update. The state de-correlation procedure is only valid if the communication

network topology of the robots remains static, and remains hierarchical without any

feedback. Additionally, as pointed out in [58], this de-correlation procedure is ideally

valid when no process noise is present.
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In the proposed approach, a covariance intersection [102] based state fusion

scheme is employed, in order to achieve a solution that is independent from the

communication topology. CI is a conservative fusion scheme resulting in consistent

updates which inherently assumes that the track and the associated measurements

are correlated with an unknown cross correlation structure. CI does not require prop-

agation of additional statistics for common information, which bounds the memory

requirement to scale linearly.

w = argminw(|wP−1 + (1− w)HTŔ−1H|−1)0≤w≤1

P = P/w Ŕ = Ŕ/(1− w)
(5.10)

The CI update scheme solves the optimization problem given by (5.10) and re-

weights the state covariance and measurement covariance matrices using the scalar

w. Then the re-weighted state covariance P and measurement noise covariance Ŕ are

used to apply Kalman correction equations in order to realize the CI update. The

weights of the tracks are updated similarly to a local correction scheme where the

weight is multiplied by the likelihood of the equivalent measurement and likelihoods

of tracks used for coordinate transformation.

This completes the proposed distributed multi-robot relative localization frame-

work.

5.4 Results

The proposed framework was evaluated using several numerical simulations and an

experimental dataset. The results validate four different aspects. 1) The global initial-

ization capability, 2) Consistency of estimates, 3) Repeatability of results, 4) Validity

of the method for experimental data. For the first three simulations, the stochas-
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Figure 5.3: Robot configuration for the numerical tests. Left: Global initialization
test, Middle: Consistency study, Right: Repeatability study

tic system model presented in equation (5.1) was used to simulate each robot in a

predefined trajectory illustrated in Figure 5.3. The process noise values were set to

σvx = 0.01m/s, σω = 0.001rad/s. To better simulate actual scenarios, the sensor

models were simulated assuming polar forms with the corresponding range measure-

ment and bearing measurement noise figures set to σr = 0.01m, σα = 0.002rad, with

detection probability PD = 0.9. The centralized filter discussed in Section 5.2 was im-

plemented for comparison purposes. The proposed distributed filter was implemented

with parameters PG, PB, PK set to 0.9, 0.9, 0.001.

5.4.1 Simulations - Global initialization

The observability of a target robot Ri, relative to a local robot Rl is lost in the case

where the robot network remains stationary. Therefore, a stationary robot network

was selected as the scenario for validation of the global registration scheme. The

multi-robot network consists of 5 robots arranged as illustrated in Figure 5.3. The

sensing range of each robot was limited to 5m, to demonstrate hierarchical initializa-

tion that occurs as a result of this design. Each robot implements a fusing module

with broadcast communication of its tracks at a rate of 1 Hz starting from 1.5s. Fig-

ure 5.4 illustrates the dynamic initialization of robots which were unseen by L01.
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Figure 5.4: L01 Fuser delayed initialization by state communication and registration

Additionally, the mean and 3σ bound of position and heading estimate of each track

maintained by L01 is presented. At 1.5 s, the orientation of the robot L02 is initial-

ized. Similarly, in each fuser the corresponding orientations of locally observed robots

are initialized. The proposed global registration module creates new tracks for each

communicated fully initialized track. This results in fully initialized tracks for locally

unseen robots to appear in the track set of L01 in a hierarchical manner.

5.4.2 Simulations - Consistency study

The second set of results presents the consistency of the proposed localization scheme.

For this purpose, 3 robots were simulated along a trajectory as illustrated in Figure

5.3. No limitations on sensing range were imposed on this analysis. Robot L02 is given

a velocity along z to simulate a 2.5D trajectory. A centralized multi-robot relative

localization filter was implemented, to compare the consistency of results generated by

the proposed distributed localization approach. The distributed filtering framework

was implemented using both CI and State De-correlation (SD) based fusion schemes
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for comparison purposes.
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Figure 5.5: Consistency analysis for a hierarchical fusion case

Figure 5.5 illustrates the comparison of the centralized, distributed CI, and dis-

tributed SD based localization approaches for a hierarchically communicating set of

robots. The communication was set to 0.5 Hz. The figure illustrates the localization

results of L02 relative to L01, where both approaches were providing consistent esti-

mates; i.e, the 3σ bounds of the distributed schemes were above those of a centralized

filter.

Figure 5.6 presents the results for the same simulation setup with a different

communication topology. Communication was set to broadcast with different rates

for the three robots; i.e, 0.5 Hz, 1 Hz, and 0.3 Hz for robots R1, R2, and R3 in order.

As illustrated, the distributed CI filtering strategy resulted in robust and consistent

estimates. The distributed SD approach resulted in inconsistent estimates. The

results justify the selection of a CI based fusion scheme in place of the SD based fusion

scheme. By construction the CI approach scales linearly in terms of computational

demand, supports asynchronous communication, and supports dynamically changing
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Figure 5.6: Consistency analysis for a multi-rate decentralized fusion case

network topologies.

5.4.3 Simulations - Repeatability study

The third result set presents the repeatability and robustness of the proposed ap-

proach with an increased number of robots. Figure 5.3 illustrates the trajectory of

the 6 robots used for the simulation. Each robot implements a fuser with broadcast

fusion at a constant rate of 2 Hz. A Monte Carlo analysis of 50 runs was performed

with a stochastic simulation of the robots’ system models and sensor models. Figure

5.7 presents the average results for 50 runs, where performance of both centralized

and proposed distributed localization frameworks are presented. Table 5.1 presents

the average localization accuracy of the relative pose of the robot network as esti-

mated by L01. The average results only consider the estimation performance after

convergence, which occurs around 2 seconds. All runs successfully localized robots

with no inconsistency in estimates, verifying good repeatability of the method.
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Figure 5.7: Average results of 50 Monte Carlo runs. Only the average estimation
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Table 5.1: Summary of Monte Carlo average results
Robot x error (mm) y error (mm) z error (mm) θ error◦

RMSE 3σ RMSE 3σ RMSE 3σ RMSE 3σ

L02 0.79 139.5 0.38 166.4 0.0011 96.4 0.013 8.8
L03 1.20 146.3 0.54 158.9 0.0026 97.6 0.010 5.8
L04 1.05 166.8 1.04 140.8 0.0030 97.7 0.009 5.5
L05 0.59 135.3 1.15 166.0 0.0023 97.4 0.013 6.0
L06 0.33 145.5 0.75 160.9 0.0010 96.3 0.021 9.1
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5.4.4 Experimental data set
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Figure 5.8: Robot trajectories and estimates for the experimental data set. Left:
World frame, centralized estimates. Right: L01 frame, distributed estimates of fuser
L01

The performance of the proposed distributed scheme was evaluated using a pub-

licly available UTIAS multi-robot data set [36]. The multi-robot network consists of

5 robots. The odometry data from robots were used for the estimation. The ground

truth data from the experiment were used to synthesize relative measurements and to

validate the results. The actual relative measurements from the data set were not used

to validate performance of the algorithm because there are numerous occlusions in the

actual data which does not allow to appreciate the consistency of estimation which

is achieved by this approach. This drawback of the dataset comes from the vision

based relative measurement scheme used in the experiment which did not reproduce

decent relative measurement sets for relative localization purposes. The landmark

measurement data available in the data set were not used in these results since the

objective is to validate the relative localization performance. The next chapter in-

troduces a method to incorporate self localization with the proposed DRL approach

with experimental validation using the data set of [36].

Each robot runs the proposed distributed fusion module. Figure 5.8 illustrates
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the trajectory of the robots and the estimated path by robot L01. The mean and

covariance of estimates of each target robot as estimated by L01 are presented in

Figure 5.10. The consistency of estimates was evaluated by comparing them with a

centralized filter running on L01. The shaded area in Figure 5.9 illustrates the max-

imum 3σ value among all the robots using a centralized filter. This remains below

the distributed estimate of the covariance for each robot, verifying the consistency of

the proposed scheme. The following link (https://dl.dropboxusercontent.com/

u/62036046/Thesis/Ch5_attachment.mp4) provides a video of the experimental re-

sults which validates the consistency of the proposed multi robot relative localization

algorithm when implemented at 0.5Hz.
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Figure 5.10: Mean and covariance of the states x, y, z and θ of the distributed fuser
L01.

https://dl.dropboxusercontent.com/u/62036046/Thesis/Ch5_attachment.mp4
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5.5 Conclusion

This chapter proposed a novel distributed multi-robot localization framework. The

proposed approach is based on distributed target tracking frameworks and integrates

a state propagation scheme, a global state registration scheme, and a CI based fu-

sion scheme to address the specific problems related to multi-robot localization. The

resulting design performs consistent estimation, scales linearly with the number of

robots, and has no constraints in terms of network topology, rates, or scheduling of

communication between robots. These features of the proposed scheme were validated

by multiple experiments which simulate different scenarios. A repeatability study il-

lustrates good localization performance and convergence properties of the design.

The following limitations of this work can be identified.

• The method assumes perfect data correspondence. This assumption is not ap-

plicable in some robotic sensing modalities which include laser scanners and

vision based perception methods, where non distinct features are used for robot

detection purposes. However, the proposed method is extensible to unknown

data correspondence cases since the framework is based on the well established

field of target tracking where proven data correspondence approaches are avail-

able. The next chapter details the integration of a data correspondence scheme

to the proposed framework in order to address measurements with unknown

origins.

• The proposed method is not readily applicable to range only and bearing only

multi robot localization problems. This constitutes a potential research direction

which would allow the use of range only beacons, and bearing based perception

means such as cameras, for robot relative localization purposes in an efficient

manner where communication is performed at low rates in order to support
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practical bandwidth limitations.

• The proposed method does not complement theoretical performance bounds in

terms of minimum rates that can be supported by the algorithm, limiting com-

munication to achieve prescribed performance levels, and the effects of packet

routing and communication delays on the approach.

Investigation into these aspects is a necessary future direction of this research work

which would enable the proposed method to be applied as a general framework in

designing distributed multi robot systems which complement communication, com-

putational, and sensing limitations of platforms.



Chapter 6

Relative Localization of

Heterogeneous Multi-Robot

Systems

This chapter explains the experimental validation of the proposed distributed relative

localization method under limitations related to heterogenous multi-robot systems.

For this purpose, this chapter1 develops two auxiliary modules: 1) a method of in-

tegrating self localization capability of robots with the proposed distributed relative

localization approach; 2) a method to incorporate relative measurements which are

acquired without data correspondence in the proposed DRL scheme. The performance

of these two modules and the proposed DRL approach are validated using an experi-

mental multi-robot system. The chapter also summarizes the technical details related

to the mutli-robot system design which is used throughout the thesis for validation
1 This chapter is based on the following publications of the author:

∗ O. De Silva, G. K. I. Mann, and R. G. Gosine, “An Efficient Distributed Data Correspondence
Scheme for Multi-Robot Relative Localization,” in Proceedings, Moratuwa Engineering Research
Conference (MERCon), IEEE, 2015.
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of the proposed work.

6.1 Introduction

The previous chapter introduced a novel method for relative localization which does

not require forced communication within the team during each measurement log.

The method is capable of using conservative fusion schemes to achieve linearly scaling

computational cost for an increasing number of robots. The proposed DRL method

assumes that the robots are equipped with IRRM hardware which provides relative

measurements with known data correspondence. However, in a typical heterogenous

robot team there are many other information sources available to assist the relative

localization problem.

It is possible to have SLAM filters implemented on capable robots of a hetero-

geneous team which allows the particular robot to localize itself with respect to a

map. This is one reliable information source which provides the robot‘s location in

the environment with respect to a frame of reference attached to its locally generated

map. As a result, when multiple robots implement SLAM, the estimates of the loca-

tion provided by SLAM will be registered in different reference frames. Therefore, a

suitable method of incorporating SLAM estimates (or more generally self localization

estimates) is necessary in order for a robot to make use of SLAM filters to improve

the estimates given by the proposed DRL scheme.

A second source of information available to improve the estimates of the pro-

posed DRL method is the environmental perception sensors attached to the robots,

e.g. laser scanners and cameras. These sensors typically serve the SLAM filters for

self localization purposes. However, these sensors are equally capable of perceiving

the neighbouring robots often without any identification of whether it is a robot, a
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moving object, or some object similar to a robot. I.e, there is no data correspondence.

Therefore, these sensors can also be used to improve the estimates of the proposed

DRL scheme if a suitable method for addressing the problem of data correspondence

is established.

This chapter focuses on designing two modules, namely the self localization and

DRL integration module, and the data correspondence module, which are necessary in

realizing distributed relative localization in a typical heterogenous multi robot system.

In order to incorporate SLAM or some form of self localization to the proposed DRL

framework, this work proposes an approach where a global frame register is maintained

in the same communication framework which compliments the proposed DRL scheme.

This allows the robots in the team which implement SLAM to improve their awareness

of neighbours even when the IRRM sensors are out of range.

In order to design the data correspondence module this work employs a likeli-

hood based multiple hypothesis data association scheme commonly employed in tar-

get tracking [49]. The method allows to incorporate relative measurements logged by

laser scanners and vision sensors to improve estimates of the DRL approach without

compromising the efficient communication capability and the scaling capability es-

tablished in the design. The two modules are validated using numerical simulations

and experimental data sets. The chapter concludes with technical details related to

implementation of the experimental test bed which was used to validate the methods

proposed in this thesis.
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6.2 Material and Methods

6.2.1 Integrating SLAM with DRL

Figure 6.1 illustrates the different estimates provided by the proposed DRL approach

and SLAM filters running on robots. Recall the definitions of different frames intro-

duced in Section 5.2. The body fixed frame of a robot Rl was denoted by {L}. The

navigation frame which is the frame attached to the start location of the robot was

denoted by {L∗}. The SLAM filter estimates the transformation from the navigation

frame {L∗} to body fixed frame {L}. In the previous chapter an estimate related

to self localization of the robot was propagated using a separate track related to the

navigation frame. i.e., T l,l∗. Therefore, when SLAM is implemented on a robot, it

is used as the filter that propagates the navigation frame track T l,l∗. As a result, by

enabling SLAM on a robot of the team, the particular robot is capable of propagating

the navigation frame track with bounded estimate precision in an environment with

sufficient features to support SLAM.

As illustrated in Figure 6.1, there can be many robots in the team having SLAM

filters. However, the corresponding navigation frames of the robots which run SLAM

will not be common to the whole team. As a result, a method should be in place

so that each robot in the team is able to capture the transformations required to

register the communicated information to a common frame. In the method proposed

here each robot propagates a separate track collection termed the navigation frame

register. This allows for each robot to store and update the navigation frame of its

neighbours as necessary. Navigation frames related to two robots {L∗} and {I∗} are

illustrated in Figure 6.1.

The proposed algorithm allows incorporating estimates of multiple robots run-

ning SLAM and DRL in the same communication framework and conservative fusion
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Figure 6.1: Estimates provided by SLAM running on robots and the proposed DRL
approach running on robots

framework proposed in this thesis. Algorithm 2 details the steps involved in achiev-

ing this capability. The overall approach can be described in three main steps: 1)

navigation frame initialization, 2) navigation frame correction, and c) platform frame

correction.

6.2.1.1 Navigation frame initialization

Consider a local robot Rl and a communicating robot Ri. The navigation frame re-

lated to the two robots will be different in a heterogenous robot team, since robots will

not be able to establish the start location of each other in a general case. Therefore,

the two robots need to communicate to establish the transformations related to navi-

gation frames between the pair of robots. During the first instance of communication

between the robots, the SLAM integration module checks and initializes the naviga-

tion frame of Ri in its navigation frame register T l∗. For this purpose the navigation
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Algorithm 2: Algorithm to combine SLAM estimate with the DRL estimates
Data: Local track set T l = {x, P, w, Ar} of the local robot
Communicated track sets {T i, . . . } of all robots Ri which communicated
during the current time step
Tracks of the Navigation frame register of the local robot T l∗ = {x, P, w, Ar}
Result: T l the updated estimates of the local tracks,
T l∗ the updated estimates of the navigation frame tracks

for each communicating Ri do
select xl∗,l, P l∗,l ∈ T l∗,l ∈ T l
select xl,i, P l,i ∈ T l,i ∈ T l
select xi∗,i, P i∗,i, Ai∗,ir ∈ T i∗,i ∈ T i
if Track for Ri is not initialized in T l∗
& Track T l,i ∈ T l is initialized then

1. Initialize the track of Ri‘s navigation frame in Rl‘s navigation frame
register:

xl∗,i∗ = xl∗,l ⊕ xl,i 	 xi∗,i
P l∗,i∗ = P l∗,l + F1P

l,iF T
1 + F2P

i∗,iF T
2 , F1 = ∂xl∗,i∗

∂xl,i , F2 = ∂xl∗,i∗
∂xi∗,i

Al∗,i∗r = Ai∗,ir

T l∗ ← T l∗,i∗ = {xl∗,i∗, P l∗,i∗, 1, Al∗,i∗r }
else

select xl∗,i∗, P l∗,i∗ ∈ T l∗,i∗ ∈ T l∗
2. Perform navigation frame update

zl∗,i∗eq = xl∗,l ⊕ xl,i 	 xi∗,i

Rl∗,i∗
eq = P l∗,l + F1P

l,iF T
1 + F2P

i∗,iF T
2 , F1 = ∂xl∗,i∗

∂xl,i , F2 = ∂xl∗,i∗
∂xi∗,i

{xl∗,i∗, P l∗,i∗} ←Covariance intersection of {xl∗,i∗, P l∗,i∗} and
{zl∗,i∗eq , Rl∗,i∗

eq }

3. Perform platform frame update
zl,ieq = 	xl∗,l ⊕ xl∗,i∗ ⊕ xi∗,i
Rl,i
eq = F1P

l∗,lF T
1 + F2P

l∗,i∗F T
2 + F3P

i∗,iF T
3

F1 = ∂xl,i
∂xl∗,l , F2 = ∂xl,i

∂xl∗,i∗ , F3 = ∂xl,i
∂xi∗,i

{xl,i, P l,i} ←Covariance intersection of {xl,i, P l,i} and {zl,ieq, Rl,i
eq}

frame track T i∗,i available in the communicated track list of Ri is utilized. Frame

transformation and covariance propagation to frame {L∗} is performed to arrive at

an estimate of the state xl∗,i∗ and covariance P l∗,i∗ of the track used to concatenate

the navigation frame register. This registration process is illustrated in Figure 6.2
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Figure 6.2: (a) Navigation frame initialization in track set T l∗ (b) Navigation frame
update in track set T l∗ (c) Target frame update in track set T l

(a).

6.2.1.2 Navigation frame correction

Once the navigation frame of a communicating robot Ri is registered, this informa-

tion can be used to perform updates of various frame estimates during subsequent

communication. Figure 6.2 (b) illustrates one scenario of pose estimate improvement.

In this case the estimate of the initialized navigation frame is updated using a con-

servative covariance intersection approach. For this purpose the transformation from

frame {L∗} to {I∗} is estimated using the communicated track T i∗,i ∈ T i and the

local tracks T l∗,l, T l,i ∈ T l. Then this estimate is fused with T l∗,i∗, already available

from the navigation frame register T l∗.

6.2.1.3 Platform frame correction

During the platform frame update step, the estimate of each neighbouring robot

available from the DRL framework is updated using the SLAM estimate. Figure
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6.2 (c) illustrates one scenario of pose estimate improvement. For this purpose the

transformation from frame {L} to {I} is estimated using the communicated track

T i∗,i ∈ T i, the track T l∗,i∗ ∈ T i∗ which is available in the navigation frame register,

and the track T i∗,l ∈ T l. Then this estimate is fused with the estimate of the platform

frame T i,l already available in the track set T l generated by the DRL. These operation

are performed for each communicating robot Ri which allows the generated tracks of

the DRL approach to survive even when the relative measurements are not available

due to field of view constraints.

The results section details the validation of the proposed SLAM integration al-

gorithm using the UTIAS multi-robot localization dataset.

6.2.2 Data Correspondence module

The data correspondence module is used in the proposed DRL framework to make use

of such measurements that are available with unknown data correspondence (e.g., laser

scanners, vision sensors). The measurements generated by these sensors are denoted

as zl,†. The double superscript l, † denotes that that the relative measurement is made

with respect to frame {L} and the frame being measured is unknown. In order to

accommodate these measurements, the following additions are made to the proposed

DRL framework: 1) A multi hypothesis track management mechanism, and 2) a

distributed track weight update mechanism. The multi hypothesis track management

method allows maintaining all possible poses of a given robot based on the available

measurements. Recall that each track is associated to a weight which maintains

the likelihood of the particular track. The distributed weight update mechanism

updates these track weights using the information from the communicated tracks of

neighbours. This allows the improvement of the weight of the correct hypothesis for

a given robot while diluting the unlikely estimates.
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These two additions ensure that the maximum likelihood estimate for a given

neighbouring robot’s pose emerges from the overall DRL framework when it is intro-

duced to measurements with unknown correspondences.

6.2.2.1 Multi hypothesis track management

The operations described here replace the track management operations performed

following the correction module in Section 5.3.3. The track management operations

are modified here to improve the overall approach for handling cases with unknown

data correspondence. Consider a robot Rl, the track T l,im corresponding to m’th

hypothesis of a target robot Ri’s estimate, and the relative measurement zl,† taken by

Rl. The following track management rules are followed to realize a multi hypothesis

data correspondence scheme:

1. If a track T l,im is not associated to any relative measurement, the track weight

w ∈ T l,im is updated using the survival probability. I.e., w = w(1−PDPG), where

PD is the probability of detection related to the sensor and PG is the probability

of the measurement being within the measurement gate.

2. If a track T l,im is associated to a measurement zl,†, the measurement zl,† is flagged

as associated to the corresponding robotRi. Then the track T l,i is updated using

the measurement zl,† along with the track weight w which is updated using the

measurement likelihood. I.e, w = wPDN (zl,†|(zl,† − yl,i), (HPHT + Ŕ))/λ.

3. If a track T l,im is associated to multiple measurements, all measurements are

flagged as associated, and the nearest measurement is used to update the track.

All remaining in gate measurements branch in to a new set of tracks where each

is generated while updating the track T l,im using the measurements zl,†.
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4. When a track is associated to several measurements, a new hypothesis termed

as the “false alarm track ” is also generated. This hypothesis considers the

case that the in gate measurement is a false alarm in which case the weight is

updated with the survival probability of w = w(1− PDPG).

5. The measurements which are associated to a track T l,im of robot Ri, are not

considered with the tracks T l,il , l 6= m of the same robot for further hypothesis

generation.

6. If a measurement zl,† is not associated to any track (if the measurement is out

of gate for all tracks), the measurement is used to initialize new tracks for each

robot in the team. Hence for each out of gate measurement, N number of tracks

will be initialized corresponding to each robot Ri in the team. This is because

for a given measurement with unknown correspondence it is possible that the

measurement is generated from any robot in the team.

An illustration of track formation for multitude of possible scenarios is given in

Figure 6.3. In all the cases shown, all possible hypotheses are generated for estimation

purposes using the track management policy described above. The pruning step

ensures that the hypothesis count does not grow exponentially.

The weights of the tracks are only updated using the local likelihood measures in

the track management policy given here. For cases where there are no measurements

with known correspondence, these local likelihood updates only allow handling clutter

and false alarms in measurements. In order to differentiate the correct hypothesis from

the multiple tracks generated locally to each robot, it is necessary to communicate

information between robots and achieve a distributed track weight update mechanism.
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Figure 6.3: Tracks generated by the multi hypothesis track management policy for
different scenarios.

6.2.2.2 Distributed track weight update

The distributed track weight update mechanism is acquired using the global registra-

tion module and the fusion module of the DRL framework. The global track registra-

tion module, as presented in Section 5.3.5, performs the necessary pose initialization

of the robots by correcting the orientation of each track in cases where they have not

been initialized. The ability to handle unknown data correspondence is already incor-

porated in Algorithm 1. Therefore, in terms of initialization no explicit modifications

are necessary to handle measurements with unknown data correspondence.

The fusion module which follows the global registration module performs the sen-

sor registration task and conservative fusion of the estimates. When there is known

data correspondence of measurements, ideally there would be only one hypothesis for
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a given neighbouring robot. However, in the case of unknown measurement corre-

spondences there would be many hypotheses for a given robot. Therefore, the sensor

registration approach is performed in a multi hypothesis sense. Following is a descrip-

tive explanation of how the multi hypothesis registration scheme works.
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Figure 6.4: Multi hypothesis sensor registration example

Consider Figure 6.4(a) where a robot Rl has four tracks of two hypotheses each

for robots Ri and Rj. Consider the case where Ri communicates its track set to Rl.

The global registration module initializes the tracks in cases where the orientation of

the tracks of Rl does not converge. Then the initialized tracks given in Figure 6.4(b)

will be used to perform sensor registration as given by equation set (5.3.6). The sensor

registration and fusion modules perform the following three operations: 1) navigation

frame fusion, 2) mutual frame fusion, and 3) indirect frame fusion.

1. Navigation frame fusion updates the velocities of the local tracks using the

communicated navigation frame tracks of each robot. Since the velocities of the

platforms are known with measurement origin there is no requirement of explic-

itly handling data correspondence for this operation. After the DRL approach
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converges to the tracks with correct data correspondences, SLAM integration

module would further assist the data correspondence operation by weighting the

tracks which are consistent with the self localization estimates.

2. Figure 6.4(c) and (d) illustrate the registration of the tracks related to Ri in

Rl using two different hypothesis generated locally to Rl. This operation where

the robots use each other‘s tracks to perform fusion is termed mutual frame

fusion. The weight update for mutual frame correction considers a likelihood

based approach, where likelihood of the mutual measurement, and the likelihood

based on the indirect frame registrations resulting from the hypothesis, are both

used in the weight update process.

3. Then the corrected frame of Ri is used for the purpose of updating the tracks

of Rj. This is called an indirect frame fusion. The weights of the different hy-

potheses for Rj are updated using the likelihood calculated using the equivalent

measurements.

The multi hypothesis data correspondence scheme is a distributed efficient im-

plementation since it follows the same asynchronous communication and conservative

fusion scheme which is designed in chapter 4. This data correspondence method is

validated using multiple numerical simulations and an experimental data set in the

results section.

6.2.3 The Experimental Setup

The experimental setup is designed using equipment available at the Intelligent Sys-

tems lab of Memorial University of Newfoundland, for system validation of the relative

localization based navigation framework proposed in this thesis. The experimental

setup consists of pioneer mobile robots, iRobot create platforms, and ARDrone 2.0
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MAVs. As of June 2015, an OptiTrack motion capture system is used for the purposes

of ground truth validation which is used in the experimental results presented in this

chapter. Figure 6.5 illustrates the overview of the experimental setup used throughout

the thesis. Details of each element of this setup is presented in the following sections.

ARDrone
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Server

IRM
Server

XBee
IRM Server

ROS
HOST

IRM ROS
Client

Pioneer
ROS Client

ARDrone
ROS Client

IRM ROS
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XBee IRM 
ROS Client

COM

COM

WiFi

WiFi

Zigbee

OptiTrack
Motive Server

OptiTrack
ROS Client

Remote
ROS node

Ethernet

WiFi

iRobot

Figure 6.5: ROS enabled multi robot system used for experimental validation

6.2.3.1 The Pioneer robots

Pioneer P3-AT platforms from Adept are 4 wheel skid steer robot platforms. These

robots are equipped with wheel encoders for odometry, sonar for obstacle avoidance,

and laser scanners for mapping operations. The research resulted in development of

the AriaClinetDriver ROS node and associated firmware which allows to realize the

connectivity illustrated in Figure 6.5. All nodes that were developed are available in

the following Github repository. https://github.com/sendtooscar.

For implementation of SLAM, the gmapping ROS node was used which imple-

ments SLAM using a Rao-Blackwellized particle filter.

6.2.3.2 The Relative localization sensor nodes

The sensor node developed as part of the thesis is ROS enabled. The sensor com-

municates over USB to an IRRM measurement server implemented on the attaching

https://github.com/sendtooscar
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platform. The attaching platform connects to the centralized supervisory controller

through Wifi which implements a ROS node for communicating with the IRRM mea-

surement server running on the robot. XBee based communication to the ROS system

is also enabled where an XBee data server running on the micro controller of the sen-

sor node communicates with the ROS IRRM measurement client node to stream

measurement data to the ROS system.

6.2.3.3 ARDrone 2.0 robots

The AR Drone 2.0 MAV is used as the main aerial research platform in the multi

robot system. To connect the platform to the ROS system the ARdrone autonomy

stack developed by the Autonomy Lab of Simon Fraser university was used. The

data of the platform velocities, images from the front and bottom cameras, and the

estimates from the onboard AHRS are available as ROS topics.

For AHRS design experimentation and custom flight controller development, a

custom firmware was developed for ARDrone 2.0 which implements an AHRS tuned

using the methods proposed in this thesis.

6.2.3.4 Turtle bots

The turtle bot is a low cost mobile robot platform realized using a ROS enabled

computer attached to the iRobot create platform. A Hokuyo UST-20LX laser scanner

is attached to the platform to enable environmental sensing. The robot operates as

a ROS remote host which publishes the robot’s information and command signal

through the Wifi network.
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6.2.3.5 Laser and camera based relative measurements

The Laser scanners and cameras of the robot platforms serve as valuable sources for

measuring the neighbouring robots. The laser scans are used to generate relative

measurements using incremental scan matching and identifying moving objects in the

map.

6.2.3.6 The ground truth validation system

Ground truth validation of the experiments is performed primarily using three meth-

ods in this thesis. For measurement system calibration a laser based ground truth

validation was used. Prior to purchase of the Opti Track measurement system, an

April tags based ground truth validation method was used to capture robot trajec-

tories. For this purpose the Apriltags libraries were used to implement a minimal

implementation for the ROS system. The experiments presented in this chapter are

validated using an OptiTrack based ground truth validation system. For this purpose

the ROS nodes available for OptiTrack Tracking tools software was modified in order

to be compatible with the new OptiTrack Motive software which allowed to perform

multiple object ground truth validation. Table 6.1 reports all the ROS nodes used as

part of the thesis for designing the experimental system.

The overall system was used to validate the relative localization sensor, observ-

ability limitations, and RINCF filter for relative localization in Chapters 2, 3, and

4 respectively. In this chapter the system is used for validation of the overall DRL

framework, SLAM integration approach and the data correspondence approach using

mobile robots.
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Table 6.1: ROS nodes used in the experimental testbed
ROS node Author Description

AriaClientDriver IsLab The driver node and the robot server to con-
nect pioneer robots to a ROS system running
on a remote machine.

RelocSensorDriver IsLab The driver node and the measurement server
to connect an Arduino based relative mea-
surement sensor node to a ROS system run-
ning on a remote machine.

AprilTagsMinimal IsLab A minimal ROS implementation for april tag
system for ground truth validation of robots

IslabArdroneController IsLab A ROS enabled custom firmware for flight
dynamic research and onboard navigation fil-
ter research for ARDrone 2.0

mocap_optitrack Clearpath/
IsLab

A modified version of the mocap_optitrack
node from Clear path Robotics to be com-
patible with the new data stream protocol of
OptiTrack Motive software
link to the above ROS nodes: https://
github.com/sendtooscar/

ardrone_autonomy Manni
Monaj-
jemi

The driver node to connect AR Drone 2.0
MAVs to a ROS system running on a remote
machine.
https://github.com/AutonomyLab/
ardrone_autonomy

gmapping Brian
Gerkey

SLAM implementation available with the
navigation stack of ROS
http://wiki.ros.org/gmapping

urg_node Chad
Rockey

ROS driver node for Hokuyo laser scanners

http://wiki.ros.org/urg_node

6.3 Results

6.3.1 SLAM integration method validation - UTIAS dataset

Validation of the SLAM integration method was performed using the UTIAS public

multi robot localization dataset. Figure 6.6 illustrates the landmark locations of the

environment and the path the robots traversed during the experiment. An EKF

https://github.com/sendtooscar/
https://github.com/sendtooscar/
https://github.com/AutonomyLab/ardrone_autonomy
https://github.com/AutonomyLab/ardrone_autonomy
http://wiki.ros.org/gmapping
http://wiki.ros.org/urg_node
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Figure 6.6: The path of the two robots and the locations of the landmarks

SLAM filter was used for self localization purposes which produced the 2 maps shown

at the bottom of Figure 6.6. For implementing SLAM the actual odometer readings

and the relative measurement readings of the landmarks were used. As a result of

the rather noisy measurements of the iRobot create platforms, the localization filter

requires higher sensor noise settings for consistent localization estimates using SLAM.

The localization accuracy of the SLAM filters is presented in Figure 6.7.

The proposed DRL framework in chapter 5 is implemented to perform relative

localization of the robot team. The experiment assumed a sensor which had a 180o

field of view limitation. Therefore, the IRRMs between the robots are not available

during many instances of the experiment. Communication was implemented at 1 Hz
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Figure 6.7: Errors of SLAM self localization of robots

to limit the communication rate. Upon the first few information exchanges between

the robots, the DRL approach converges to a confident relative localization estimate.

This occurs for Fuser 1 at around 2 seconds and for Fuser 2 at around 25 seconds.

After convergence of the estimates the navigation frame register records the location

of the navigation frame track related to each neighbouring robot. Then this is used

for subsequent navigation frame estimate improvement and improvement of the target

robot estimates when there are no relative measurements to sustain the tracks.

Figure 6.8 illustrates the navigation frame register and the track list correspond-

ing to Fuser 1 and Fuser 2. Figure 6.9 illustrates the localization estimates achieved

by the DRL design together with the SLAM integration approach. In the 10 second

spans where relative measurements are non existent, shown in Figure 6.9, the navi-

gation frame register allows incorporating the self localization estimates to the track,

thereby limiting the growth of track which would otherwise cease to exist due to lack
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of relative measurements. Therefore this method would allow a fusing agent to esti-

mate a neighbouring robot which has a fairly accurate odometer for short periods of

non line of sight operation, and neighbouring robots with powerful SLAM filters for

long periods of non line of sight operation.

6.3.2 Data correspondence approach validation - simulated

dataset

Numerical simulations were performed to validate the data correspondence method

introduced in this chapter. For this purpose a team of three robots was simulated to

follow a path as shown in Figure 6.12. Robots L01 and L02 perform relative measure-

ments of the team using laser scanners which generate measurements with unknown

data correspondence. The Fusers communicate at a predefined rate of 2Hz. Robot
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P01 does not take any relative measurements and communicates only its velocity

data to be incorporated in the corresponding tracks at the set communication rate.
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This particular configuration was selected for the experiment because it corresponds

to a challenging scenario where the relative measurements do not have any correspon-

dence information about the measured robot and the team does not have all agents

performing relative measurements.

The DRL module was able to successfully converge to the correct track hypothe-

sis as illustrated in Figure 6.12. The log position and heading errors related to relative

localization are presented in Figure 6.11 which illustrates convergence after few infor-

mation exchanges and consistent estimation of both the mean and covariance related

to the pose estimates.
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Figure 6.10: Top: The path of three robots used for simulation 1. Bottom: Estimates
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In order to validate the robustness of the data correspondence approach, a Monte

Carlo analysis was performed. For this purpose a team of 5 robots was simulated on

a path as illustrated in Figure 6.12 . The simulation assumes a relative measurement

sensor where range is measured with known correspondence and bearing is measured

with unknown correspondence. These two types of measurements can be combined

to form a set of possible cartesian relative position measurements with known cor-

respondence for a given robot. This scenario was selected to validate the capability
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of handling measurements with both known and unknown correspondences and the

applicability of the method in a range of relative measurement scenarios.

25 Monte Carlo stochastic simulations were performed to obtain average local-

ization estimates for the experimental scenario illustrated in Figure 6.12. Figure 6.13

illustrates the time history of the average number of confirmed tracks of each robot

along with the RMS error of position and the orientation of the dominant hypothesis

corresponding to each robot. The results validate the capability of the proposed ar-

chitecture where it converges to the correct hypothesis corresponding to each robot’s

location with good reproducibility of results. The multimedia attachment presents

experiments with increased clutter, 50% increased noise, and an increased number of

20 robots. In all experiments the proposed data correspondence approach was able

to successfully initialize the robots in the network and track the robots while solving

for unknown correspondences.

6.3.3 System validation - Experimental multi robot system

of IS Lab

For experimental validation of the methods proposed in this thesis the multi-robot sys-

tem of IS Lab was employed. For this purpose three ground robots were maneuvered

along a trajectory in the capture volume of the available motion capture system. The

objective of this experiment is to validate the distributed relative localization method

and the ability of incorporating additional sensors such as laser scanners to the frame-

work using the data correspondence approach proposed in this chapter. The robots

use lasers as a means of measuring the neighbours with unknown correspondence. A

range only measurement sensor is assumed, which measures the relative range be-

tween the robots with known correspondence. The lasers used in this study have

a 1800 field of view constraint which does not produce sufficient measurements to
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achieve sustained data correspondence using only the lasers. Each robot implements

a fuser using the proposed DRL framework which runs at 10Hz. The odometer read-

ings of the robots were used for self localization. The robots communicate at 0.5Hz

to perform the distributed estimation task.

Figure 6.14 illustrates the path traversed by the robots along with the final

estimated trajectory achieved by the Fuser implemented on robot L03. Figure 6.15

illustrates the resulting estimates by each fuser implemented on L01, L02, and L03.
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Figure 6.13: The estimates of position and heading averaged for 25 Monte Carlo runs
of simulation 2.

The results validate the capability of the data correspondence module to solve for

the unknown correspondences of the measurements where the robots were capable of

localizing and identifying the neighbours in their field of view, as illustrated in the

trajectory estimates given in Figure 6.15.

The estimation errors achieved by the Fuser on L03 are given in Figure 6.16, and

Figure 6.17. It is important to note that the neighbours of robot L03 travel in its

field of view which allowed Fuser 3 to perform sustained location estimation of the

neighbours using both local and communicated tracks. Fusers on L01 and L02 do not

achieve sustained localization estimates since the neighbouring robots traverse out-

side its field of view. These short periods of non line of sight operation of robots are

effectively addressed by the method proposed in this chapter which allows to incorpo-

rate self localization estimates to the DRL framework. The multimedia attachment

is found in this link: https://dl.dropboxusercontent.com/u/62036046/Thesis/

https://dl.dropboxusercontent.com/u/62036046/Thesis/Ch6_attachment.mp4
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https://dl.dropboxusercontent.com/u/62036046/Thesis/Ch6_attachment.mp4
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Figure 6.16: The path traversed by robots during the experiment and the estimated
trajectory of the proposed DRL scheme.

Ch6_attachment.mp4 carries a descriptive video related to experiments detailed in

this chapter. The video includes numerical simulations related to validation of the

proposed two modules and a video of the experiment outlining the results achieved

by the distributed relative localization method, data correspondence method, and the

method proposed to incorporate self localization estimates to the framework.

https://dl.dropboxusercontent.com/u/62036046/Thesis/Ch6_attachment.mp4
https://dl.dropboxusercontent.com/u/62036046/Thesis/Ch6_attachment.mp4
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Figure 6.17: The path traversed by robots during the experiment and the estimated
trajectory of the proposed DRL scheme.

6.4 Conclusion

This chapter presented the design and validation of two axillary modules required by

the distributed relative localization method proposed in this thesis. This includes a

method to incorporate self localization estimates to the proposed DRL framework,

and a method to incorporate measurements with unknown data correspondence to

the proposed DRL scheme. These modules were designed to operate in the same effi-

cient communication and approximate fusion framework proposed in Chapter 5 of the

thesis. The two approaches were validated using the UTIAS multi robot dataset and

numerical simulations, where the designed method achieved consistent performance

under multiple simulated scenarios. The results section also presents the validation

of the overall DRL framework using multiple mobile robots equipped with laser scan-

ners. The experiment validates the performance of the distributed relative localization
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approach and the data correspondence approach, where accurate estimation of neigh-

bouring robots was achieved when the neighbouring robots were in the field of view

of a fuser. In a practical heterogenous robot mission, this field of view constraint can

be minimized using the method proposed in this chapter which allows to incorporate

self localization estimates in the DRL framework. This can effectively address short

periods of non line of sight operation for less capable robots in the team which rely

on odometers for self localization, while the more capable robots of a team can be

tracked for much longer durations depending on the quality of their self localization

estimates.

It is important to note that the case where all robots implement SLAM is an ideal

situation which would effectively allow the robots to derive the relative poses without

relying on any form of relative measurements. The significance of the DRL scheme is

that it operates irrespective of the availability of SLAM and also that it services the

robots which are not equipped with SLAM filters. Thus it serves as a team awareness

module for heterogenous teams in order to support tasks such as formation control,

and sense and avoidance. The method also allows attaining supervisory control of

less capable platforms in a robot team by enabling a relative localization service for

the less capable robots to operate in the vicinity of the fusers implementing SLAM.

Future work will attempt to further validate and improve the proposed localiza-

tion framework for a multitude of scenarios including different measurement combi-

nations, different rates of communication, and different levels of heterogeneity in the

team. This would allow the distributed relative localization approach to mature as a

sound method to serve the important function of providing localization estimates for

formation control and supervisory control tasks of a heterogenous multi robot team.



Chapter 7

Conclusion and Outlook

The focus of this research study was to address the localization problem of a multi-

robot system operating in GPS denied environments, using a relative localization-

based navigation framework. Each element of this full framework was studied target-

ing an application towards a ground aerial multi-robot system. The research study

formed three primary objectives:

1. Designing a scalable inter-robot relative measurement sensor for ground and

MAV localization.

2. Designing a nonlinear filtering solution for relative localization.

3. Designing an efficient distributed relative localization method.

The research summary related to each objective is presented in the following sections.

7.1 Research summary based on Objective I

As the first objective this research study focused on designing an inter-robot relative

measurement sensor applicable for ground and MAV localization. The research study
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performed an extensive literature review on the available methods for relative sensing

between robots. The outcome of this review indicated that the available solutions

suffer from multiple drawbacks that make it difficult to implement those solutions as

sensors for multi-robot studies. The strategy pursued by this study was an ultrasonic

and vision based approach. This is motivated by the unprecedented performance that

the two methods achieve individually in terms of range measurement and bearing

measurement, respectively. The approach allowed better accuracies over the state of

the art solution reported in [8], and allowed application of the sensor as a module

to ground robots as well as aerial robots at a maximum rate of 10Hz. This was a

considerable improvement over [8], which needed spherical array designs custom made

for the robot to achieve this capability at a lower accuracy, and a higher power demand

than the proposed approach. The proposed sensor was designed to be applicable in

multi-robot domains using TDMA for hardware level measurement correspondence

between robots and to coexist with other ultrasonic height measurement and obstacle

avoidance modules of robots. The sensor was evaluated in a multi-robot setting with

both ground and aerial robots, which validates its performance for practical multi-

robot applications.

7.2 Research summary based on Objective II

The second objective was related to filtering of these measurements. Specifically, the

relative localization problem faced by the robots and the design of nonlinear filters

which are capable of addressing the filtering problem in an efficient manner were anal-

ysed. The absence of observability studies for relative localization under conditions

of unknown velocities of platforms led this research to conduct a detailed analysis of

the problem and establish theoretical limitations related to relative localization. The
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necessary 2.5D simplifications of the filtering problem were established with filtering

requirements relevant to the simplification. The theoretical analysis and limitations

provided an excellent starting point for the filter designs pursued in this thesis.

Next, the research study developed the filters relevant to 2.5D relative localiza-

tion. The focus was on exploiting the symmetry of the problem in the filter design

approach and establishing optimal low cost filters which are applicable on the low

level embedded controllers of the sensors. A novel steady state invariant EKF design

approach was devised in this research study. Specifically three filters were designed

using this approach: 1) a low cost steady state Invariant EKF for attitude reference

systems, 2) a low cost steady state Invariant EKF for relative localization under known

velocity conditions, 3) an invariant EKF design for relative localization for cases of

unknown target platform velocities. The first two designs were complemented with a

novel optimal method for tuning the parameters of the filters using noise parameters

of the system, allowing the implementation of the filters on low cost embedded elec-

tronics. The third filter design is a stochastic filter which propagates the state and its

covariance together, and hence is applicable in subsequent distributed filter implemen-

tations proposed in this work. The filter designs and observability limitations were

experimentally evaluated to produce good validation of the proposed filters for low

cost applications as well as for distributed implementations attempted in objective 3.

7.3 Research summary based on Objective III

The third objective of this research study was to develop a distributed method in or-

der to perform the filtering operation in a multi-robot setting. The proposed method

has the ability to address the communication constraints that are prevalent in the

majority of available approaches, which extensively demand high bandwidth low la-
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tency communication in the network. In order to address this problem, the research

study proposed a method based on the well established distributed target tracking

frameworks. The use of a target tracking framework in a multi-robot domain allows

to perform communication at a prescribed low rate. This is a significant improve-

ment that is otherwise not possible using almost all reported methods for distributed

multi-robot localization. The study performed the necessary improvements to the dis-

tributed target tracking framework by establishing methods for consistent fusion of

the estimates, performing initialization/recovery from unknown positions, performing

sensor registration in a multi-robot setting, and achieving data correspondence in an

efficient distributed manner.

Finally this study integrated the proposed method with already established SLAM

filters running on some robots of the team. This integration allows a team of multi-

ple robots to sense each other, localize each other, globally localize themselves using

the knowledge of the network, and map the environment in a consistent manner, all

achievable in an efficient distributed implementation where communication is only

required at a preset low rate.

All these modules were validated as part of this research study. The research

study revealed drawbacks and limitations of different elements of the overall system

which are discussed in detail in Section 7.5.

7.4 Contributions

To summarize, this thesis made the following key contributions in relative localization

of ground aerial systems, fulfilling all of the outlined research objectives.

1. Contributions from Objective I:

(a) Hardware design of a novel scalable IRRM sensor network with sufficient
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accuracy and range suitable for ground aerial systems operating in indoor

environments.

(b) Experimental evaluation and optimization of the novel IRRM sensor design

for UGV and MAV systems.

2. Contributions from Objective II:

(c) An observability analysis of the relative localization problem considering

unknown platform velocities.

(d) A geometric nonlinear filter design for relative localization.

(e) An optimal gain tuning approach for low cost deterministic nonlinear filter

designs related to relative localization.

3. Contributions from Objective III:

(f) A target tracking inspired distributed design for relative localization which

supports asynchronous data communication and consistent estimation.

(g) A distributed data correspondence approach for multi-robot relative local-

ization.

(h) A method to incorporate self localization filters running on robots with the

proposed distributed relative localization framework.

This thesis lead to the following technical papers that report the contributions

of the proposed work.

1. O. De Silva, G. K. I. Mann, and R. G. Gosine, “An Ultrasonic and Vision-

Based Relative Positioning Sensor for Multirobot Localization,” IEEE Sensors

Journal, vol. 15, no. 3, pp. 1716-1726, 2015.
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2. O. De Silva, G. K. I. Mann, and R. G. Gosine, “Efficient Distributed Multi-

Robot Localization : A Target Tracking Inspired Design,” in Proceedings, IEEE

International Conference on Robotics and Automation (ICRA), 2015.

3. O. De Silva, G. K. I. Mann, and R. G. Gosine, “An Efficient Distributed Data

Correspondence Scheme for Multi-Robot Relative Localization,” in Proceedings,

Moratuwa Engineering Research Conference (MERCON), IEEE, 2015.

4. O. De Silva, G. K. I. Mann, and R. G. Gosine, “Pairwise Observable Relative Lo-

calization in Ground Aerial Multi-Robot Networks,” in Proceedings, European

Control Conference (ECC), IEEE, 2014, pp. 324-329.

5. O. De Silva, G. K. I. Mann, and R. G. Gosine, “Relative Localization with Sym-

metry Preserving Observers,” in Proceedings, Canadian Conference on Electri-

cal and Computer Engineering (CCECE), IEEE, 2014.

6. O. De Silva, G. K. I. Mann, and R. G. Gosine, “Automated Tuning of the

Nonlinear Complementary Filter for an Attitude Heading Reference Observer,”

in Proceedings, IEEE Workshop on Robot Vision, 2013, pp. 171-176.

7. O. De Silva, G. K. I. Mann, and R. G. Gosine, “Robot Operating System Based

Relative Localization Test Bed,” in Proceedings, Newfoundland Electrical and

Computer Engineering Conference, 2013.

8. O. De Silva, G. K. I. Mann, and R. G. Gosine, “Multiple Wii-mote based 3D

tracking system calibration,” in Proceedings, Newfoundland Electrical and Com-

puter Engineering Conference, 2012.

9. O. De Silva, G. K. I. Mann, and R. G. Gosine, “Development of a relative lo-

calization scheme for ground-aerial multi-robot systems,” in Proceedings, IEEE
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International Conference on Intelligent Robots and Systems (IROS), 2012, pp.

870-875.

Additionally the following completed papers are under review for publication:

10 O. De Silva, G. K. I. Mann, and R. G. Gosine, “Relative Localization of Robots

with Steady State Invariant Extended Kalman Filtering,” Under review in IEEE

Transactions on Control System Technology, 2015.

11 O. De Silva, G. K. I. Mann, and R. G. Gosine, “The Right Invariant Nonlinear

Complimentary Filter: A Low cost Optimal Design for Attitude Estimation”

Under review, 2015.

7.5 Future research directions

The overall final design validated in this thesis constitutes a practical and theoretically

sound solution to the problem of GPS denied relative localization of robots with

many avenues for improvement through further research. The relative sensing module,

filtering module, and the distributed localization module of the proposed approach can

be developed further along three main avenues as discussed in the following sections.

7.5.1 Phase III design of the relative measurement sensor

The current design of the sensor requires improvements in terms of realizing omnidi-

rectional sensing capability and operating in outdoor settings under direct sunlight

conditions. These capabilities are necessary if the sensor is to be used in practical

operations such as underground mines where better sensing volumes are required for
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the robots to locate each other, or earthquake damaged buildings where the robots are

required to operate in both indoor and outdoor environments under direct sunlight

exposure of the sensing system.

The objective of the next major version of the sensor is to achieve a solution

which has an extended field of view and which is capable of operating both in indoor

and outdoor environments. The design is expected to combine the capability of robust

camera based bearing estimation and ultrasonic array signal processing techniques.

This research would address the following limitations related to the current iteration

of the sensor.

• Field of view limitations of the relative sensing module: The vision

based bearing measurement method of the proposed relative sensing module has

a limited field of view in comparison to the omnidirectional reception capability

of the acoustic modules of the sensor. Although a panning servo mechanism is

implemented for improved field of view, this has poor performance in terms of

speed and increases the power consumption of the sensor. In order to effectively

address the field of view limitation of the design, the preferred approach is

to establish better ultrasonic based bearing measurement capability and use a

vision sensor only for improvement of the estimates in its field of view.

• Outdoor application of the relative measurement sensor: In the current

form, the proposed relative sensor module is not applicable in outdoor settings.

This is mainly due to the inability of the IR based vision sensor to operate

under direct sunlight. A solution for this is not to rely on IR features for

bearing measurement, and use passive visual feature detection with a standard

CMOS camera for bearing measurement. However, the feature detection method

employed should be kept elementary to meet the computational constraints of

the sensor. Improving the ultrasonic bearing measurement capability pursued
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as ongoing research work also contributes to enabling the system in outdoor

settings, since ultrasonic modules are equally applicable for indoor and outdoor

environments.

This design assumes the vision based passive feature detection modules are aux-

iliary sources for measurement improvement while ultrasonic modules provide both

range and bearing measurements. This development is inspired and enabled by recent

developments in omni-directional MEMS microphones [79] and surface mount ultra-

sonic sensors [80]. Other evolutionary improvements required for the sensor include,

improving the signal to noise ratio under flight conditions and optimizing the design

for weight and power consumption.

7.5.2 Design and implementation of estimators with dynamic

constraints

The localization filters designed in this thesis are 2.5D designs which suit applica-

tions where low roll and pitch dynamics can be assumed. A full SE(3) formulation

as presented in Appendix 1 would complement those applications where high velocity

maneuvers are expected. This was not considered in the overall DRL design, in order

to keep the formulation minimal and because the design did not consider the dynamic

constraints of the platforms which would otherwise require a full SE(3) analysis. Re-

cent work reported in [96, 97], has demonstrated the ability to use the dynamic model

of MAVs to achieve better attitude filtering and velocity estimation. Filter develop-

ment where the dynamics of the platform and couplings with pose filtering modules are

considered presents important research directions desirable for nonlinear filter designs

for relative localization. It is expected to investigate in to the full SE(3) design of the

filter with dynamic constraints, which would ultimately allow the filter’s application
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over a wide range of aggressive trajectories and under different dynamic constraints

of the attaching platforms. Other evolutionary developments that are required by the

relative localization filter design includes theoretical proofs related to performance of

the filters under non permanent trajectories, and incorporating dynamic constraints

to the steady state versions of the filter.

7.5.3 Multi robot exploration and mapping based on dis-

tributed relative localization

The overall DRL framework proposed in this thesis requires experimentation in the

field where the DRL method is applied in real life missions as the next step of the

validation process. This research study would design and deploy an autonomous map-

ping system which is primarily based on relative localization estimates. The following

limitations related to the current design of the DRL scheme would be addressed in

realizing autonomous mapping using the robots.

• Polar sensor models: The overall heterogenous navigation framework is de-

signed for a class of sensors; i.e., a robot network with relative position measure-

ments. The filters of the framework do not translate well to polar parametriza-

tion. This is due to the difficulty of identifying the symmetries when a polar

form is used, and the highly nonlinear characteristics of the polar form to carte-

sian mapping functions. However, cartesian parametrization of a sensor model

is a good approximation of the relative position sensing technologies used by

robots, under low noise conditions comparable to the levels experienced by the

designed sensor. Thus under low noise conditions the framework can be used

effectively when both range and bearing data are present, which is the case for

the proposed autonomous mapping application. However, the method is not



212

readily applicable to range only and bearing only multi-robot localization prob-

lems. This is a potential research direction which would allow the use of range

only beacons and bearing based perception means such as cameras to be ad-

dressed in an efficient manner where communication is performed at low rates,

to support practical bandwidth limitations.

• Theoretical performance bounds: The distributed relative localization de-

sign presented in this thesis lacks theoretical performance bounds in terms of

minimum rates that can be supported by the algorithm, limiting communication

to achieving prescribed performance levels, and including the effects of packet

routing and communication delays on the approach. These studies are valuable

extensions to the proposed method which would provide performance guarantees

of the system during the design process.

• Non line of sight operation: The current design of the DRL scheme does

not explicitly posses capability of confining less capable robots of the team

to an area which can be estimated using the DRL scheme. Therefore it is

necessary to establish control laws for the less capable agents of a team, and

improve navigation capability of the robots for short periods of non line of sight

operation.

• Validation of DRL for long period operation: The experimental validation

presented in this thesis is limited to operations which span a scale of few minutes.

Hence the experimental work of the thesis does not fully represent timescales of

practical missions which would span couple of hours. Therefore it is necessary

to validate the performance of the methods for more representative operational

periods by implementing a practical indoor mapping and exploration operation

using the DRL framework as future work.
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On site validation of the DRL scheme combined with suitable designs to overcome

the said limitations can be considered as the overall goal of future research study.

The completed research study of this thesis contributes a necessary, theoretically

valid, and experimentally validated body of work to the area of GPS denied localiza-

tion of ground aerial systems. The research opens up many interesting elements of

the overall system requiring further scientific research which is currently driving re-

search efforts of the Intelligent Systems lab at Memorial university of Newfoundland.

It is expected that this research would develop to achieve local field trials in the near

future, where the algorithms, sensors, and distribution modules of this work operate

in unison to attain a highly reliable and robust system applicable for real life missions

involving autonomous ground and aerial robots.



Appendices

A Relative localization in SE(3) using Invariant

Extended Kalman Filtering

This section provides the IEKF derivation for the relative localization problem in

SE(3). The S2 − Star configuration introduced in (3.15) is used for filter deriva-

tion since it constitutes the configuration which only considers the locally available

measurements for localization purposes and allows communicated target platform

quantities to be incorporated at low rates as measurements.

Step 1: Identify System Symmetries

Identifying symmetries of the system is the process of finding the actions on the

states x, inputs u, and outputs y, such that the system is G-invariant. Consider the

system given by S2 − Star configuration in (3.15) with noises removed i.e. ν = 0,

w = 0. For group G = SE(3) define group actions on states ϕg : G × X → X, on

input ψg : G× U → U , and on measurements ρg : G× Y → Y as follows.
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ϕg

 p

Rθ

 =

Rθ0p + p0

Rθ0Rθ



ψg


vl

ωl

gl

 =


Rθ0vl − [Rθ0ωl]×p0

Rθ0ωl

Rθ0gl



ρg



yp

ygi

yvi

yωi


=



Rθ0yp + p0

ygi

yvi

yωi



(1)

Consider a group element g0 = (p0, Rθ0) ∈ G. Equation set (2) verifies that the

system given by (3.15) is G-invariant under the group actions ϕg and ψg, i.e., Dϕg ◦

f(x,u) = f(ϕg(x), ψg(u)).

d
dt
ϕg

 p

Rθ

 = d
dt

Rθ0p + p0

Rθ0Rθ

 =

 Rθ0ṗ

Rθ0Ṙθ


=

Rθ0(Rθvi − vl − [ωl]×p)

Rθ0Rθ[ωi −RT
θ ωl]×



=


Rθ0Rθvi −

(
Rθ0vl

−[Rθ0ωl]×p0

)
− [Rθ0ωl]×(Rθ0p + p0)

Rθ0Rθ[ωi −RT
θ RT

θ0Rθ0ωl]×


=

ϕg(Rθ)ψg(vi)− ψg(vl)− [ψg(ωl)]×ϕg(p)

ϕg(Rθ)[ψg(ωi)− ϕg(Rθ)Tψg(ωl)]×


d
dt
ϕg

vi

ωi

 = d
dt

vi

ωi

 =

0

0


⇒ Dϕg ◦ f(x,u) = f(ϕg(x), ψg(u))

(2)
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Here we used the rotational invariance of the cross product as part of the deriva-

tion process. i.e., Rθ0(ωl × p) = Rθ0ωl × Rθ0p. The measurement model given

by (3.15) is found to be G-equivariant under the group actions ρg, ϕg, ψg. i.e.,

ρg(y) = h(ϕg(x), ψg(u)).

h(ϕg(x), ψg(u)) =



Rθ0p + p0

RT
θ RT

θ0Rθ0gl

vi

ωi


=



Rθ0yp + p0

ygi

yvi

yωi


⇒ ρg(y) = h(ϕg(x), ψg(u))

(3)

Step 2: Identify Invariants

The moving frame is identified by solving the equation φg(x) = e for g := γ(x),

where e is the group identity element.

ϕg

p

θ

 =

Rθ0p + p0

Rθ0Rθ

 =

0

I


⇒ γ(x) = (−RT

θ p,RT
θ )

Then the set of invariants I(x̂) is found by operating γ(x̂) on U and Y .


Ivl

Iωl

Igl

 = ψγ(x̂)


vl

ωl

gl

 =


RT
θ̂
vl + [RT

θ̂
ωl]×RT

θ̂
p̂

RT
θ̂
ωl

RT
θ̂
gl



J (x̂,u) = ργ(x̂)



yp

ygi

yvi

yωi


=



RT
θ̂
yp −RT

θ̂
p̂

ygi

yvi

yωi


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The trajectories for which the invariants I,J are constant are termed permanent

trajectories.

The Invariant frameW is defined as the mapping of basis vectors νi of the tangent

space T X, by the smooth map Dϕg. The basis vectors νi = ei for TR3 and νi = S(ei)

for TSO(3), where ei denotes the standard basis of R3. The invariant frame is found

as follows.

W = d

dτ

(
ϕγ(x̂)−1(νiτ)

)
|τ=0 =



Rθ̂ei

Rθ̂S(ei)

ei

ei


Step 3: Identify Invariant Error State Dynamics

The invariant observer for a general G-invariant system ẋ = f(x, u), and a G-

equivariant output y = h(x, u), is given by Theorem 1 in reference [41]. It takes the

following general form.

F (x̂,u,y) = f(x̂,u) +W (x̂)L(I, E)E(x̂,u,y) (4)

The invariant error E is defined as E = J (x̂,y)−J (x̂, h(x̂,u)) and is found as follows.

E(x̂,u,y) = ργ(x̂)(h(x̂))− ργ(x̂)(y)

=



RT
θ̂

(p̂− yp)

ĝi − ygi

v̂i − yvi

ω̂i − yωi


The invariant observer for the problem is obtained by substituting the invariant output
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error and the invariant frame in (4).



˙̂p

Ṙθ̂

˙̂vi
˙̂ωi


=



Rθ̂v̂i − vl − ωl × p̂

Rθ̂[ω̂i −RT
θ̂
ωl]×

0

0


+



Rθ̂(LpE)

Rθ̂S(LθE)

LvE

LωE


(5)

The invariant estimation error η of the observer is defined as η = ϕγ(x̂)(x̂)−ϕγ(x̂)(x).

The invariant estimation error reads as

η = ϕγ(x̂)(x̂)− ϕγ(x̂)(x)

=



RT
θ̂

(p̂− p)

I3 −RT
θ̂
Rθ

v̂i − vi

ω̂i − ωi


=:



ηp

I −RT
ηθ

ηvi

ηωi



In order to perform error state Kalman filtering, a stochastic model of the system

should be deduced. The new stochastic model should also preserve the stochastic

versions of G-invariant and G-equivariant definitions given by the following equations.

Dϕg ◦ f(x,u,M(x)w) = f
(
ϕg(x), ψg(u),M(ϕg(x))w

)
ρg
(
h(x,u, N(x)ν)

)
= h

(
ϕg(x), ψg(u), N(φg(x))ν

) (6)

The definitions given by (6) are satisfied when M(x) = Rθ for wp, while all other

noise terms remain unchanged. i.e., M(x), N(x) = I for wθ,wvi,wωi,νp,νgi,νvi, and

νωi.

Now the error state dynamics of the system is derived as a function of η. The
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invariant output error E in terms of η reads

E(x̂,u,y) = RT
θ̂

(p̂− yp)

= RT
θ̂

(p̂− p−Rθνp)

⇒ E(η, ν) = ηp −RT
ηθ
νp

The other output error terms corresponding to ygi , yvi , yωi , remain trivial. By

differentiating the estimation error state, we have



η̇p

Ṙηθ

˙ηvi

˙ηωi


=



ṘT
θ̂

(p̂− p) + RT
θ̂

( ˙̂p− ṗ)

ṘT
θ R̂θ + RT

θ
˙̂Rθ

˙̂vi − v̇i
˙̂ωi − ω̇i



By substituting the derivative terms and identifying ṘT
θ = S(RT

θ ωl − ωi − wω)RT
θ ,

ṘT
θ̂

= S(RT
θ̂
ωl−ωi−LθE)RT

θ , we can derive the error state dynamics of the observer.



η̇p

Ṙηθ

˙ηvi

˙ηωi


=



S(−ω̂i + ηωi)ηp + (I3 −RT
ηθ

)(v̂i − ηvi)

−S(LθE)ηp −RT
ηθ

wv + LpE

RηθS(ω̂i + LθE)− S(ω̂i − ηωi + wω)Rηθ

LviE −wvi

LωiE −wωi


(7)

The symmetry preserving observer for the system is (5). The gains L should be

designed such that the invariant error state system given by (7) is stable.

Step 4: Perform Error State Kalman Filtering

The gain design of the observer can be achieved using an error state extended

Kalman filtering approach.

The nonlinear error state system is already found by equation (7). Next a lin-
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earization is performed by applying the small signal assumption for the error states.

i.e., η = δη. Linearizing the rotation error dynamics Rηθ is difficult in its matrix

form. This is converted to a vector form as follows. For small angles δηθ, the rotation

matrix Rηθ is simplified as Rδηθ = I+[δηθ]×. This approximation is applied to Ṙηθ in

(7), and the second order error terms such as [δηωi]×[δηθ]×, [wθ]×[δηθ]× are removed.

By identifying that [δηθ]×[ω̂i]× − [ω̂i]×[δηθ]× = [δηθ × ω̂i]×, we get

Ṙδηθ = [δ̇ηθ]× = [δηθ × ωi]× + [δηωi]× − [wv]× + [LθE]×

Using this expression, the error state dynamic system for δηθ can be extracted.

δ̇ηθ = δηθ × ωi + δηωi −wv + LθE

Linearization of the error states ηp, ηθ, ηvi, ηωi, is performed by applying the small

signal assumption and removing the resulting second order error terms. This results

in a Linear Kalman like filter structure.



˙δηp
˙δηθ
˙δηvi
˙δηωi


= (A−KC)



δηp

δηθ

δηvi

δηωi


−M



wp

wθ

wvi

wωi


+KN



νp

νgi

νvi

νωi



The A,C,K,M,N matrices are identified from this linearized system. This completes

the design of the invariant Kalman filter for relative localization in 3D. The resulting
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filter can be summarized as follows.

Initialization

x̂ =
[

yp I 0 0
]T

P = E(ηηT ) = I

Q = E(wwT )

R = E(ννT )

3D Observer
˙̂p
˙̂Rθ

˙̂vi
˙̂ωi

 =


Rθ̂v̂i − vl − ωl × p̂

Rθ̂[ω̂i −RT
θ̂
ωl]×

0

0


︸ ︷︷ ︸

+


Rθ̂(LpE)

Rθ̂S(LθE)

LvE

LωE


︸ ︷︷ ︸

State Prediction State Correction

Innovation E =


RT
θ̂

(p̂− yp)

ĝi − ygi

v̂i − yvi

ω̂i − yωi


Gain Matrix K =

[
−Lp −Lθ −Lvi −Lω

]T
Covariance Prediction

A =


S(−ω̂i) S(−v̂i) I 0

0 S(−ω̂i) 0 I

0 0 0 0

0 0 0 0


M = I

Ṗ = AP + PAT + MQMT

Covariance Correction

C =


I 0 0 0

0 S(R̂T
θ gl) 0 0

0 0 I 0

0 0 0 I


N = I

K = PCT (CPCT + NRNT )−1

P = (I − KC)P
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