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Abstract 

“Availability” is the terminology used in asset intensive industries such as 

petrochemical and hydrocarbons processing to describe the readiness of equipment, systems 

or plants to perform their designed functions. It is a measure to suggest a facility’s capability 

of meeting targeted production in a safe working environment. Availability is also vital as it 

encompasses reliability and maintainability, allowing engineers to manage and operate 

facilities by focusing on one performance indicator. These benefits make availability a very 

demanding and highly desired area of interest and research for both industry and academia.  

In this dissertation, new models, approaches and algorithms have been explored to 

estimate and manage the availability of complex hydrocarbon processing systems. The risk of 

equipment failure and its effect on availability is vital in the hydrocarbon industry, and is also 

explored in this research. The importance of availability encouraged companies to invest in 

this domain by putting efforts and resources to develop novel techniques for system availability 

enhancement. Most of the work in this area is focused on individual equipment compared to 

facility or system level availability assessment and management. This research is focused on 

developing an new systematic methods to estimate system availability. The main focus areas 

in this research are to address availability estimation and management through physical asset 

management, risk-based availability estimation strategies, availability and safety using a 
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failure assessment framework, and availability enhancement using early equipment fault 

detection and maintenance scheduling optimization.  
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CHAPTER 1  

INTRODUCTION AND OVERVIEW 

 

1.1 Introduction 

 

High availability means effective utilization and management of equipment, 

processes and other resources. This helps to improve the return on investment for all 

stakeholders by ensuring the facilities produce to meet required demand. Availability is a 

function of reliability and maintainability; therefore, availability is an important measure 

in the processing industry. Over the last decade, there has been an increasing trend of 

companies integrating processes and utilizing excess available capacities in other places to 

achieve economies of scale and improve plant availability. The overall availability 

management process requires many systems working concurrently to reap the real benefits. 

This requires multiple departments to work together such as Maintenance and Operations; 

and many systems to be aligned toward a common goal, along with continuous monitoring 

and improvement for sustainability.  

There are many general methods to calculate the availability of systems and 

equipment. Different methods are used to estimate the availability of a product or a process. 
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Availability of processes has reliability and maintainability aspects embedded in the 

analysis, which makes it a powerful mechanism to manage businesses. Processing systems 

comprise different equipment with redundancies; for example, a liquefaction system 

converts gas into liquid by cooling and processing the gas through many compressors, 

turbines, vessels and valves. Estimation and management of availability in a complex 

operating facility is a challenging task, requiring the use of modern tools, engineering 

algorithms and engineering experience. In this research, we have developed some novel 

techniques to address availability using Markov-based state dependent models, risk based 

strategies, fault detection and its management along with maintenance scheduling 

optimization. 

This dissertation is organized based on the above-mentioned focus areas. Chapter 

1 is focused on introduction and overview of availability estimation and management. 

Some basic availability, risk and reliability concepts and definitions are also discussed in 

this chapter. The concept of PAM is vital and a foundation to the overall Availability 

Management (AM) process. AM mainly comprises two main components; one is asset 

maintenance management and the other is asset performance management is also part of 

this Chapter. In Chapter 2, a risk-based stochastic modeling approach based on the Markov 

Decision Process (MDP) is discussed to estimate availability of a plant. A model is 

developed based on critical equipment of a system to estimate overall processing unit 

availability. The developed model is applied on a gas absorption process to ensure its 

application on real-world problems. Chapter 3 describes a novel risk-based failure 

assessment approach to address the safety and availability of complex operating systems. 
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A structured process is proposed and validated using real-world failure assessment cases 

to prove the applicability and efficacy of the proposed model.  

In the next Chapter, early fault detection and management is explained to support 

availability and safety improvement. Decision Trees (DTs) are introduced as a predictive 

data mining tool to detect early faults and their management to improve system availability. 

To conclude the effectiveness of the model, the proposed model was successfully tested to 

detect faults using real plant machinery vibration data. As discussed earlier, maintainability 

is important in availability management and so maintenance and its optimization is 

considered in this research. In Chapters 5, multi-constrained, multi-objective maintenance 

scheduling optimization models are proposed. The optimization problem was developed 

considering the time-dependent equipment failure rate to optimize maintenance costs at 

different availability and reliability levels. These models were applied on a plant scenario 

to show the effectiveness of maintenance scheduling optimization on cost, availability and 

reliability.  

Finally, Chapter 6 concludes the research with the key findings, contributions and 

suggests possible expansion ideas for this work. 

 

1.2 Research Objective and Scope 

 

Availability is an extremely important parameter to ensure the continuous operation 

of facilities. Due to its importance and usefulness in asset intensive industries, we focused 

on developing comprehensive methods and models for availability estimation and 



   

4 

 

management. These new methodologies and models mainly help to address the critical 

issues of unwanted breakdowns in processing facilities. These breakdowns have severe 

financial consequences along with adverse health, safety and environment consequences. 

There are many ways to estimate and improve availability, as presented in the next 

Chapters. We proposed some new models and algorithms, which can help improve and 

manage the availability of a complex processing facility. Generally, processing facilities 

lose millions of dollars in lost production due to unwanted breakdowns or interruptions, 

this research effort is a great resource to minimize such losses by properly utilizing these 

developments.  

 

Figure 1.1: Overall research strategy 

The specific objectives of this research are to develop effective and novel 

availability estimation and management methodologies for complex processing systems. 

Availability 
Estimation and 
Management

Availability 
using 

maintenance 
optimization

Physical Asset 
Management

Risk -based 
estimation 

using Markov

Risk-based 
failure 

assessment 
frameork

Early  fault 
detection and 
management
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This research objective is realized by working on the following areas as presented in Figure 

1.1. 

a. Developed a physical asset management model and integrate for 

availability. 

b. Developed a state dependent risk-based availability estimation method 

using the Markov method. 

c. Developed a risk-based failure assessment framework to address safety and 

availability. 

d. Developed model for early fault detection and management to enhance 

availability. 

e. Developed multi-objective maintenance scheduling optimization models to 

enhance availability and reliability goals. 

1.3 General Terminology and Definitions 

 

To better understand the concepts in this dissertation, basic definition and 

terminology is discussed below. 

 

1.3.1 Operational Measures 

Many different measures are being used in the industry to monitor the efficiency 

and effectiveness of the processes, equipment and maintenance. Some of the key measures 

are defined below: 
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1.3.1.1 Availability 

Availability is to identify if the equipment or process is available at a given time 

to perform its intended function. Availability is a function of reliability and maintainability. 

There are many types of availabilities in literature so it is important to understand them to 

use them properly. Availability can be defined as, 

“Ability of an item to be in a state to perform a required function under given 

conditions at a given instant of time or during a given interval, assuming that the required 

external resources are provided” [1]. 

Other definition of availability, 

“It is probability that a system or component is performing its required function at 

a given point in time or over a stated period of time when operated and maintained in a 

prescribed manner” [2]. 

Availability is also a probability like reliability and maintainability. Availability, 

sometimes referred as Inherent or average availability is measured as, 

𝐴 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 (1.1) 

   𝐴 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
 

(1.2) 

Where MTBF – Mean Time between Failure 

MTTR – Mean Time to Repair 
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The other forms of steady state availability depend on the definition of uptime and 

downtime, the brief discussion about them follows: 

1.3.1.1.1 Achieved Availability 

Achieved availability is defined as, 

𝐴𝑎 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀 + 𝑀′
 (1.3) 

Where, 𝑀′= Mean System Downtime, 𝑀𝑇𝐵𝑀 = Mean Time Between Maintenance 

In this form, 𝑀′ is the mean system downtime and 𝑀𝑇𝐵𝑀 includes both 

unscheduled and preventive maintenance and is computed as, 

𝑀𝑇𝐵𝑀 =  
𝑡𝑑

𝑚𝑡𝑑 +
𝑡𝑑

𝑇𝑝𝑚
⁄

 
(1.4) 

Where, 𝑡𝑑= Unscheduled Downtime, 𝑇𝑝𝑚 = Preventive Maintenance Time 

1.3.1.1.2 Operational Availability 

Operational availability is defined as, 

𝐴𝑎 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀 + 𝑀′′
 (1.5) 

Where 𝑀′′ is determined by replacing MTTR with MTR. MTR is calculated using equation 

below, 

𝑀𝑇𝑅 = 𝑀𝑇𝑇𝑅 + 𝑆𝐷𝑇 + 𝑀𝐷𝑇 (1.6) 

Where,  𝑀𝑇𝑅 = Mean Repair Time, 𝑆𝐷𝑇 = Schedule Downtime 
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1.3.1.1.3 Generalized Operational Availability 

Generalized operational availability is;  

𝐴𝐺 =
𝑀𝑇𝐵𝑀 + 𝑟𝑒𝑎𝑑𝑦 𝑡𝑖𝑚𝑒

𝑀𝑇𝐵𝑀 + 𝑟𝑒𝑎𝑑𝑦 𝑡𝑖𝑚𝑒 + 𝑀′′
 (1.7) 

1.3.1.2 Reliability 

Reliability is a qualitative aspect of the system or equipment that performs 

intended function when we need it. “It is the probability of a non-failure over time”. It is 

ability of an item to perform required function under given conditions for a given time. 

One of the other industry accepted definition of reliability is;  

“It is a probability that a system will perform its intended function satisfactorily for a 

specified period of time under stated conditions” [3]. 

Mostly reliability is expressed in percentage and measures by the term MTBF for 

repairable systems. The same is usually measured in MTTF for non-repairable systems like 

bearing and seals. Many quantitative measure of reliability are available and expressed as 

follows: 

The distribution function is given by: 

𝐹(𝑡) = 1 − 𝑅(𝑡) = Pr {T < 𝑡} (1.8) 

The probability density function: 

𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
=  −

𝑑𝑅(𝑡)

𝑑𝑡
 (1.9) 

with the properties; 
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𝑓(𝑡) ≥ 0 𝑎𝑛𝑑 ∫ 𝑓(𝑡)𝑑𝑡

∞

0

= 1 

then, 

𝐹(𝑡) = ∫ 𝑓(𝑡′)𝑑𝑡

1

0

′ (1.10) 

𝑅(𝑡) = ∫ 𝑓(𝑡′)𝑑𝑡

∞

𝑡

′ 
(1.11) 

The reliability function 

𝑅(𝑡) = Pr{𝑇 ≥ 𝑡} 𝑓𝑜𝑟 𝑡 > 0 (1.12) 

Since the area under the entire curve is equal to 1, both reliability and failure probability 

will be defined so that, 

0 ≤ 𝑅(𝑡) ≤ 1  𝑎𝑛𝑑 0 ≤ 𝐹(𝑡) ≤ 1   

1.3.1.3 Maintainability 

In general, Maintainability (M) is how quickly the equipment can be restored 

back to be able to perform its function. It helps in quantifying the repair and restoration 

time in case of an equipment failure or breakdown. Restoration process is a key in terms 

of understanding the process involved while a repair is required. The main areas which can 

slow down the restoration include, availability of the spares, availability of technicians, 

release of the equipment to perform maintenance and type of process. In order to optimize 

the restoration time, process must be evaluated as whole rather than only failed equipment. 
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The parameter using by the industry to measure the maintainability is MTTR. As per 

industry accepted standards,  

“Ability of an item under given conditions of use, to be retained in, or restored to, a state 

in which it can perform a required function, when maintenance is performed under given 

conditions and using stated procedures and resources”[1]. 

 

1.3.1.4 Utilization 

Utilization is simply a ratio between the actual produced compared to planned 

production. This ratio gives us an idea how well we are performing compared to the 

planned or sometime called nameplate capacity. 

Mathematically can be written as Equation 1.13, 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 (1.13) 

1.3.1.5 System Categorization 

There are two types of system, repairable and non-repairable. When a system fails 

to perform its intended function, this state usually termed as non-functional and denoted 

by state 0. The other scenario is vice versa and that is when the system is working as 

intended and represented by state 1. If a system can be brought back from a failed sate to a 

functional state, the system categorizes as repairable system like compressor, pumps, and 

mechanical seals. In other condition, if the system cannot bring back into its functional 

state after failing the system is categorized as non-repairable systems, for example, 

bearings and gaskets. 
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1.3.1.5.1 Repairable System 

Repairable systems are the systems where we repair the system when fail. It 

usually has many changes in states from function to non-functional state as can be seen in 

Figure 1.2. 

Time (T)

State (0,1)

0

1

T1 T2 T3D1 D2

 

Figure 1.2: Repairable system 

As discussed earlier, MTBF is the functional time (T1+T2+…) when the system is in state 

1, i.e. functional time divided by the total time (T1=T2+T3+D1+D2+D3….). Similarly the 

down time is the non-functional time (D1+D2+…) divided the total time. The failure rate 

is estimated by using Equation1.14. 

1.3.1.5.2 Non Repairable System 

Non repairable systems or components have two states while using in a plant. 

The first is functional (working 100%) and other one is non-functional or failed state. 

Consider a system that is functional at time 0 and failed at time T, the life of the system or 

component will be T. State ‘0’ and ‘1’ represents the failed and function state, as illustrated 

in the Figure 1.3. The failure rate of this system is estimated by Equation 1.15. 
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Time (T)

State (0,1)

0

1

 

Figure 1.3: Non repairable system 

1.3.2 Basic Terminology 

Asset: Asset is defined as a formally accountable item [4]. In operation view, it 

is an item which intent to perform a function to support the process. 

Criticality: A relative measure of the consequence of a failure mode and its 

frequency of occurrences [4]. 

Failure: Failure is termination of the ability of an item to perform a required 

function [1]. There are many ways to declare that the asset is in failed state and 

mostly depends upon the criticality of the operation. Failure can be complete or 

partial (degraded function). 

Another interesting definition; failure can be defined as any change in a 

machinery part or component which causes it to be unable to perform its intended 

function or mission satisfactorily. [5] 

Failure Rate: In simple words, it is a measure to observe the failure frequency 

of an equipment or component over a period of time. It is also defined as, a rate 
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at which failure occurs as a function of time [6]. It is denoted by a symbol λ in 

this proposal. 

For repairable systems,  

𝜆 =
1

𝑀𝑇𝐵𝐹
 (1.14) 

For non-repairable systems; 

𝜆 =
1

𝑀𝑇𝑇𝑅
 (1.15) 

Repair Rate: It is a rate that an out of service component will return in service 

mode during a given interval. [7]  

Unavailability: It is a probability that item or equipment is not in functioning 

state. [6] 

Mean Time to Failure: It is a basic measure of reliability for non-repairable 

items [4]. The total number of system life units, divided by the total number of 

events in which the system becomes unavailable to initiate its mission during a 

stated period of time. It is denoted by MTTR. 

Mean Time between Failures: A measure of system reliability parameter related 

to availability and readiness [4]. The total number of system life units, divided by 

the total number of events in which the system becomes unavailable to initiate its 

mission during a stated period of time. It is applicable to repairable systems. It is 

denoted by MTBF. 
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Redundancy: In an item or system, the existence of more than one mean at a 

given instant of time for performing a required function [1]. 

Active Redundancy: Redundancy wherein all means for performing a required 

function are intended to operate simultaneously [1]. 

Standby Redundancy: Redundancy wherein a part of the means for performing 

a required function is intended to operate, while the remaining part(s) of the 

means are inoperative until needed [1]. It is often known a passive redundancy. 

Parallel System: In parallel configuration, one the components in a system, must 

be in working condition to keep the system functional. 

System reliability for a two component parallel system can be written as in 

Equation 1.16, 

𝑅𝑝 = 1 − [(1 − 𝑅1) × (1 − 𝑅2)]  (1.16) 
 

 

Series System: In series configuration, any failure of a component in a system is 

a failure of the entire system. 

System reliability for a three component series system can be written as in 

Equation 1.17, 

𝑅𝑠 = 𝑅1  ×  𝑅2  × 𝑅3 (1.17) 
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1.4 Literature Survey 

 

This Section mainly focuses on the literature survey conducted on availability 

estimation and management, early fault detection to improve availability and the role of 

maintenance in asset management. Availability estimation and management is not only to 

ensure availability of processes but also other important aspects like safety, risk and safe 

operations are embedded in the concept. A detailed literature survey is carried out to 

highlight the research available in this area and the outcomes are given below. 

 

1.4.1 Physical Asset Management1 

The concept of physical asset management (PAM) provides a foundation of 

availability management and comprises management of assets such as machines and 

equipment in plants. PAM is a systematic approach for managing assets from concept to 

disposal; generally termed the asset life cycle. The purpose of a PAM system is to provide 

timely information to operations and maintenance personnel to safely increase the total 

production output of a plant at a reduced cost per unit of output. These benefits occur as 

the manufacturing facility makes optimum operating and maintenance decisions through 

the application of a PAM system information solution. Operation and maintenance (O&M) 

                                                 

1Section 1.4.1  is based on the published work in a peer-reviewed proceedings of a gas processing 

symposium, Attou, A.K., and Ahmed, Q. (2009), “Asset Management Practices at Qatargas,” 

Proceedings of the 1st Annual Gas Processing Symposium, Elsevier B.V. To minimize duplication, 

all the references are listed in the reference list. The contribution of the authors is presented in 

Section titled, “Co-authorship Statement”. 
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personnel are constantly faced with decision-making based on limited information. PAM 

systems make this decision-making job easier by providing knowledge about the current 

and future condition of vital production assets. To achieve and meet production 

commitments, processing plants are increasingly turning to physical asset management as 

an optimization strategy to improve their process efficiency and reduce maintenance, and 

so enhancing their return on assets (ROA) [8]. It was noticed during literature survey that 

most of the work is performed by industrial experts in engineering magazines; and 

international technical journals have limited work available in this area. After realizing the 

opportunity, the University of Toronto started a physical asset management program, 

which is well received by industry due to the similar reasons for its usefulness and 

applicability. As discussed earlier, PAM can reduce maintenance costs, increase the 

economic life of capital equipment, reduce company liability, increase the reliability of 

systems and components, and reduce the number of repairs to systems and components. 

When properly executed, it can have a significant impact on an organization's bottom line 

[9]. 

Companies are reporting as much as a 30 percent reduction in maintenance budgets 

and up to a 20 percent reduction in production downtime or unavailability as a result of 

implementing a plant asset management strategy.  Since as much as 40 percent of 

manufacturing revenues are budgeted for maintenance, these savings contribute 

significantly to the bottom line of a company. Manufacturers are now moving to implement 

such PAM strategies. Industries such as petrochemicals and utilities are aggressively 

moving ahead in adopting asset optimization principles [8]. 
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The best PAM practices are the premier tools for maximizing availability, customer 

satisfaction, budget control, and a firm’s edge over its competitors. In this Section, we 

present a PAM framework, experiences, and practices [10]. PAM is a combination of 

management, financial, engineering, and maintenance practices applied to physical assets 

to achieve low life-cycle cost. A structured approach is required to ensure the best 

management of assets. An important motivation for PAM is to achieve best-in-class 

reliability and availability, and maintainability of equipment.  

It is important to focus on PAM from the early stages of design and development 

to reap the real benefits of the approach. Effective asset management typically produces a 

20-30% reduction in maintenance cost accompanied by a 15-25% increase in throughput 

with no capital investment in equipment [11]. PAM can only be achieved by a team effort. 

Before discussing PAM practices, essential terminologies required to comprehend the 

PAM practices will be discussed. 

It is a common misunderstanding to confuse asset maintenance management 

systems (AMMS) with asset performance management systems (APMS). In general, PAM 

covers a lot more than AMMS and APMS, but the scope of this Section is limited to 

discussion of the AMMS and APMS systems. 

 

1.4.1.1 Asset Maintenance Management System 

An AMMS contains information about equipment; its hierarchy in a plant; the 

manufacturers; technical and maintenance information including notifications; work 
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history; and spare parts usage. This system is a foundation of PAM and provides 

information to APMS to monitor the performance using available data.  

 

1.4.1.2 Asset Performance Management System 

An APMS is a tool that provides us the flexibility to use the data in AMMS and 

makes it available for analysis. This system monitors performance, maintenance execution, 

equipment reliability, process reliability, and availability. The best way to perform this task 

is to integrate the system to retrieve data, in an asset-centric approach (ACA) as discussed 

in [10] and shown in Figure 2.1. 

 

 

 

 

 

 

 

An asset centric approach is a requirement of AM to streamline the complete process [10]. 

It is important to have measurement data to manage and control the process. An APMS 

provides a platform to monitor performance, whereas AMMS presents a base to capture all 

the required data, which includes equipment data, maintenance data, and inspection data. 

To implement a successful PAM, it is essential to focus on both AMMS and APMS, 

simultaneously. The PAM program mainly focuses on reliability and availability, which 
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Figure 2.1: Asset Centric Approach 
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starts with comprehensive analysis generally referred to as gap analysis. The gap analysis 

enables a company to identify its shortcomings. It also provides an estimate to determine 

an assignment, which not only fulfills such shortages but also helps optimize the firm’s 

AM. Likewise many industrial analyses, including gap, availability, and reliability analyses 

are data driven. Therefore, precise data collection is essential to achieve desired outcomes 

from these analyses. 

An AM program has many components, including AMMS and APMS. The components 

are shown below: 

 

 Asset Maintenance Management System  

o Data Integrity and Quality  

o Maintenance Strategies  

o Condition Monitoring System  

 

 Asset Performance Management System  

o Utilization of Data from AMMS  

o Reliability Analytics  

o Root Cause and Failure Analysis Program  

o Loss Production Events  

o Scorecards, KPIs  
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The general strategy to implement PAM in a plant follows the five key steps. A 

graphical representation of these key steps is shown in Figure 2.2. 

 

 

Figure 2.2: General strategy – five key steps 

Besides the above mentioned steps, progressive teamwork is essential to a 

successful AM program. True success from a PAM program is foreseeable when a firm 

adopts a culture of continuous improvement. 

This Section briefly discusses the AM practices benefits to natural gas processing 

facilities. This effort comprises development of PAM and its implementation, including 

benefits and challenges. A significant improvement of availability is experienced with the 

implementation of PAM methodology. PAM provides a solid framework to estimate and 

manage availability. This Section also deals with the benefits and challenges experienced 

during implementation of PAM [10]. 
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The benefits that are realized with the implementation of PAM framework: 

 

i. Provides an up-to-date database with maintenance and equipment information 

ii. Helps with maintaining lower running costs for the plant 

iii. Improved availability and reliability (95-98%) 

iv. Proactive rather reactive approach to solving problems 

v. Higher profits and customer satisfaction 

vi. KPIs and scorecards to monitor performance 

 

Some of the challenges are also identified; outcomes can be improved by addressing them 

properly at an early stage of the implementation process.  

 

i. Data capturing, integrity, and quality 

ii. Integration among different systems 

iii. Cross-function team interaction 

iv. Upstream and downstream availability models 

 

1.4.2 Risk and Risk-Based Assessment 

To efficiently utilize resources and target poorly performing equipment, risk-

based approaches have been utilized by companies. In these methods, risk is usually 

evaluated to identify the action to mitigate them.  Chemical processes have great potential 

for random equipment breakdowns, system unavailability, production losses, toxic 

releases, fire or explosions. Probability of occurrence and the consequences generally are 
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primary drivers of risk analysis for unwanted events. Kaplan and Garrick define risk of an 

event as a set of scenarios, each of which has a probability (likelihood) and a consequence 

[12]. The likelihood is expressed either as a frequency (i.e., rate of an event occurring per 

unit time) or as probability (i.e., the chance of an event occurring in defined conditions), 

and the consequence is referred to as the degree of negative effects observed due to 

occurrence of an event. To facilitate the risk assessment process, many companies have 

developed a risk assessment matrix to quantify risk and its consequences as a baseline to 

identify actions to mitigate risk events based on the overall risk. 

 

In general, risk can be calculated using the equation, 

𝑅𝑖𝑠𝑘 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (1.18) 

 

Risk-based methodologies are commonly used in research and industry to optimize 

inspection and maintenance intervals, which maximizes a system’s availability based on 

risk. The methodology presented here is comprised of two steps: (i) Availability modeling 

and (ii) risk-based inspection and maintenance calculations. A risk-based approach is also 

helpful in making decisions regarding prioritization of the equipment for maintenance and 

determining appropriate maintenance intervals. The proposed method in this work is 

applied to a steam generating system of a thermal power plant. Risk analysis has been part 

of a standard operation requirement in the offshore industry for many years. Analyses are 

most effective when they are integrated into design work and planning of operations [13]. 

Risk-based approaches are effective in managing cost, resource planning and return on 
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investment. They are also effectively used in shutdown management to improve plant 

reliability and maintain it above a minimum operational reliability [14]. 

 

1.4.3 Availability Estimation 

Availability estimation is a critical parameter in all aspects of managing 

equipment in a plant. It is a main driver for maintenance, operations and others to plan their 

respective work. It includes all equipment and systems, and is not limited to production, 

engineering, commercial activities and shipping, safety, and machinery. Its importance is 

further enhanced by the fact that maintainability with reliability determines the availability 

of a plant. A plant must be reliable and easily maintainable to ensure maximum availability, 

and should be equipped with the resources needed to bring it back online in the shortest 

time in case of any failure. Availability is also important in communication networks and 

power networks. In this work, availability models of high-availability communication 

networks are discussed. Models were developed to estimate the effectiveness of radio 

communication link in achieving its purpose of availability estimation [15]. 

Availability estimation is vital in planning, maintenance and production of the 

processing plant. We will explore some the work performed in the area of availability 

estimation in this Section. Most of the equipment in a plant belongs to a repairable system 

category and an efficient approach to estimate the availability of the repairable system 

within a fixed time period in this work. [16]. Beta distribution has been used to estimate 

system availability. The authors applied the proposed model on an IT system. This system 

is providing a service to users, where availability is one the critical parameters for 
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monitoring and control. In another effort, availability estimation for an iron ore production 

system was performed using simulation. Simulation was used to ensure that the system has 

enough redundancies to meet the production requirement [17]. 

Performance of mining equipment depends on the reliability of the equipment used 

and many other parameters like maintenance efficiency, environment, and operator 

capability. Reliability analysis is required to identify bottlenecks in the system and to 

estimate the reliability of the system for a given designed performance [18]. In this work, 

parameters of some probability distribution such as Weibull, Exponential and Lognormal 

distribution have been estimated using software. The reliability of critical systems was 

identified, which proved to be the main bottleneck in achieving availability of plants. 

Modeling of availability for a reliability-based system using Monte Carlo 

simulation and Markov chain analysis is presented in this paper [19]. Operational 

availability, which is dependent on the mean time to repair and administrative logistic time, 

was assessed using breakdown maintenance and scheduled maintenance. The authors have 

used the continuous Markov chain analysis for evaluating the probability of each transition 

state. 

Bayesian estimation of reliability rates was used to estimate the LNG chain 

availability [20]. LNG plants usually have very high investment and operating cost. 

Improvement of reliability of a LNG chain will lead objectively to a substantial decrease 

of energy costs. It is difficult and challenging to model big systems, like LNG chains, 

because of their physical dimensions. In this research a systematic approach is used to 

discuss the space of the phases. A bottom-up technique was utilized to constitute the global 
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model of reliability of the chain. A Bayesian estimation approach is used to define failure 

and repair rates for the equipment. Errors in steady-state availability estimation by 2-state 

models of one-unit system, which can be represented by 3-state Makovian models, are 

evaluated. It has been concluded that the 2-state models result in large errors for the case 

in which degraded systems are not repaired, and so multistate models should be used [21]. 

Computer simulation is very common in industry to estimate availability and research was 

conducted to estimate the availability of a cement plant. Availability is estimated using the 

physical configuration of work stations, failure and service time distributing including 

buffer storage as inputs [22]. 

Classical statistical estimation techniques have limited usage in predicting system 

availability when a system is highly reliable like a computer. In this work, a Bayesian 

solution is suggested to derive both steady-state and instantaneous availabilities [23]. In 

refineries and chemical processes, decision making is based on the availability of the 

components and entire system. The use of Petri net simulation is common in availability 

analysis. In this work, an alternative generic Markov model is used to predict availability 

and reduce computational efforts by orders of magnitude [24]. Steady-state series 

availability details the importance between the “product rule” and the “correct availability” 

[25]. The failure pattern of repairable systems is often modeled by an alternating renewal 

process, which implies that a failed component is perfectly repaired. In practice, this is not 

true. The paper proposes a generalized availability model using general distribution, which 

is different from a new component [26]. 
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1.4.4 Availability Management 

Availability management is an important aspect of this research. Importance of 

availability management can be understood by the fact that it is not possible to reap the real 

benefits if the life cycle of equipment and plants is not managed properly. Management 

involves different strategies from design to disposal and must be implemented in a specific 

order. Availability is the most valuable parameter because it encompasses reliability and 

maintainability. Returns on investment can be maximized simply by properly managing 

the availability. In general, this area requires more focus as it is lacking in published 

research work. This is due mainly to being less analytical in nature and more related to 

development of processes and managing them properly.  

Extensive research is available on asset management (AM) but most of the work is 

published in professional magazines and consulting company websites. Limited AM work 

has been published in technical research journals. In this work, the basic elements of the 

availability management methodology in complex technical systems are discussed. This 

methodology primarily relates to information technology systems. The result of the 

implemented technology enhances the availability level through the clear identification and 

elimination of critical elements that affect the stability of IT infrastructure and ensures a 

continuing service provided by the system [27], and so the AM process should be given an 

appropriate level of service. In other work, an availability management framework (AMF) 

is presented to support the flexible management of availability for large distributed systems 

using object-oriented framework technologies. AMF flexibility is used to accommodate 

changing availability requirements, which vary with each application [28]. In a review by 
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ABB automation technologies, various aspects of ABB’s life-cycle management program 

for improved product and system availability is discussed. ABB has created a life-cycle 

management program that ensures customers get the best possible return on their assets 

and benefit from a smooth transition to new generations of products [29]. A new approach 

to integrate reliability, availability, maintainability and safety is presented. This approach 

covers all phases of product development and is aimed at complex products like safety 

systems. The proposed approach is based on a new life-cycle model for product 

development and integrates this model into the safety life cycle of IEC 61508 [30]. In this 

paper, a result of applying the framework to support availability of an RFID system is also 

discussed. 

1.5 Constraints and Limitations 

 

A considerable effort has been made by researchers and industry experts in the area 

of availability estimation of repairable systems and equipment, but the literature on 

availability management is limited in technical journals. One of the reasons for this 

research is the importance of availability of the system and its application in industry. The 

concept is applicable to almost all the industries including IT, airlines, medical, and gas 

processing. The proposed work mainly focuses on the petrochemical or gas processing 

plant availability estimation and management, so the objective of this Section is mainly to 

identify the constraints and limitations within this domain. 

Data availability and quality are keys to such quantitative analysis. Regardless of 

its key role in such studies, unavailability of good quality data is one the biggest challenge 
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researchers face when estimating the availability and reliability of systems. In this case, 

because of the same reason, a Bayesian approach was used to define the failure rates and 

repair rates of different equipment [20]. In the processing industry, the issue of 

nonexistence of data is critical [31]. Researchers are using engineering judgments with 

available data like OREDA, EXIDA, and other data sources. It is challenging to use 

existing data. In case of the OREDA, the data is based on offshore equipment, where the 

failure modes are different from the similar equipment installed onshore. Extreme care 

must be practiced when using this type of data in validating the proposed models. 

Risk is also difficult to calculate because the probability of failure is dependent 

upon the quality of the data. As discussed earlier, risk is a product of probability of failure 

and the consequence of an event. If the probability calculation is based on poor data, there 

is a great chance that all effort can go to waste. Data analysis usually describes statistical 

manipulations, which are carried out on raw failure data to provide estimates of component 

reliability and availability. All the data analysis gives only limited information if no proper 

risk assessment is performed. To determine the safety, reliability, and availability 

implications, a proper risk analysis required [32]. 

To address the above challenges, we have taken extreme care in data collection, 

cleansing and analysis. In certain cases, consultation with subject matter experts, along 

with personal field experience, was used to ensure the correct data is used in developing 

and validating the developed models. 
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1.6 Thesis Structure 

 

This thesis follows the objective sequence as discussed earlier. The Chapter 

structure is discussed below:  

 

 Chapter 1 provides a brief introduction to physical asset management (PAM); 

operation measures like availability, reliability, and maintainability; and other basic 

terminology. Section 1.4.1 has detailed discussion on physical asset management. 

It attempts to answer why PAM is important and also emphasizes its relationship 

with cost, maintenance, and availability management. This Chapter also focuses on 

assumptions and limitations; research objectives; a brief literature survey; and the 

dissertation structure.  

 Chapter 2 discusses the overall risk-based availability estimation process using 

Markov method. This Chapter includes an introduction to Markov modeling, its 

usefulness, and limitations. State models and other modeling work are included in 

this Chapter. Analysis results and validation using the gas absorption unit is also 

covered. 

 Chapter 3 describes a novel risk-based failure assessment approach to address the 

safety and availability of complex operating systems. A structured process is 

proposed and validated using real-world failure assessment cases to prove the 

applicability and efficacy of the proposed model.  
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 Chapter 4 explored early fault detection and management to support availability 

and safety improvement. In this Chapter, decision trees (DTs) are introduced as a 

predictive data mining tool to detect early faults and their management to improve 

system availability. To conclude the effectiveness of the model, the proposed model 

was successfully tested to detect faults using real plant machinery vibration data.  

 Chapter 5 mainly focuses on multi-constrained, multi-objective maintenance 

scheduling optimization. The optimization problem was developed considering a 

time-dependent equipment failure rate to optimize maintenance costs at different 

availability and reliability levels. These models were applied on a plant scenario to 

show the effectiveness of maintenance scheduling optimization on cost, 

availability, and reliability.  

 Finally, Chapter 6 concludes the research with the key findings, novelty and 

contributions and suggests possible expansion ideas for this work. This Chapter 

also discusses the learnings from this research work and its contribution toward 

improvement of industrial issues. 
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CHAPTER 2 

RISK-BASED AVAILABILITY ESTIMATION USING A MARKOV 

MODEL 2 

 

Abstract 

Asset intensive process industries are under immense pressure to achieve a 

promised return on investments and production targets. This can be accomplished by 

ensuring the highest level of availability, reliability, and utilization of critical equipment in 

processing facilities. To achieve designed availability, asset characterization and 

maintainability play a vital role. The most appropriate and effective way to characterize 

the assets in a processing facility is based on risk and consequence of failure.  

                                                 

2 This Chapter is based on the published work in a peer-reviewed journal. Qadeer Ahmed, Faisal 

I. Khan, Syed A. Raza, (2014) "A risk-based availability estimation using Markov method", 

International Journal of Quality & Reliability Management, Vol. 31 Iss: 2, pp.106 – 128. To 

minimize the duplication, all the references are listed in the reference list. The contribution of the 

authors is presented in Section titled, “Co-authorship Statement”. 
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In this Chapter, a risk-based stochastic modeling approach using a Markov Decision 

Process (MDP) is investigated to assess processing unit availability, which is referred to as 

the Risk Based Availability Markov Model (RBAMM). The RBAMM will not only 

provide a realistic and effective way to identify critical assets in a plant but also a method 

to estimate availability for efficient planning purposes and resource optimization. A unique 

risk matrix and methodology is proposed to determine the critical equipment with direct 

impact on the availability, reliability, and safety of the process. A functional block diagram 

is then developed using critical equipment to perform efficient modeling. A Markov 

process is utilized to establish state diagrams and create steady-state equations to calculate 

the availability of the process. The RBAMM is applied to the natural gas (NG) absorption 

process to validate the proposed methodology. In the conclusion, other benefits and 

limitations of the proposed methodology are discussed.  

 

Acronyms and Abbreviations 

 

Symbol/Abbreviation Description 

AS System Availability 

AU Unit Availability 

Ass Availability – System Static Equipment 

AsR Availability – System Rotating Equipment 

HP High Pressure 

LP Low Pressure 

MDP Markov Decision Process 

MTBF Mean Time Between Failures 

MTTR Mean Time to Repair 
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OREDA Offshore Reliability Data 

𝜇 Repair Rate 

RA Risk Assessment 

RAM Risk Assessment Matrix 

RBAMM Risk Base Availability Markov Model 

RBD Reliability Block Diagram 

SR System Rotating Equipment 

SRn Subsystem in Rotating Equipment 

SS System Static Equipment 

SSn Subsystem in Static Equipment 

SHE Safety, Health, and Environment 

𝜆 Failure Rate 

 

2.1 Introduction 

 

In the processing industry, high availability and reliability are the means to 

effectively utilize and manage processes, equipment, and other resources. This is done to 

ultimately improve the return on investment (ROI) for all stakeholders with management 

of cost, lowest dangerous emission levels, and highest safety. In recent years, fierce 

competition and slim margins have driven economies of scale; companies are trying to 

integrate and manage processes while utilizing excess capacities available in other places 

to improve upon the availability of the plant. It becomes very critical in the processing 

industry to focus on the reliability and availability of the plant to ensure fulfillment of the 

global sales commitments with other visionary objectives. In general, availability can be 

defined as probability that a system or component is performing its required function at a 
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given point in time or over a stated period of time when operated and maintained in a 

prescribed manner [1]. There are many ways to measure and estimate the availability and 

reliability of the systems and products. In this work, a processing unit is comprised of many 

subsystems incorporating many pieces of equipment. To work on such systems, there are 

certain ways to calculate the availability and reliability of the systems. The availability of 

the process has embedded reliability and maintainability of the equipment, as in Equation 

2.1 and Equation 2.2. To work on availability enhancement and estimation, focus must be 

given to both reliability and mean time to failure. Improved availability can be considered 

as improved reliability and maintainability. Availability, sometime referred as inherent or 

average availability, is measured as: 

𝐴 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 

 (2.1) 

  

   𝐴 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
 

(2.2) 

 

Processing systems usually consist of many types of equipment, with different 

redundancies and architecture to achieve the required level of functionality and availability. 

For example, in gas liquefaction systems, the gas is converted into liquid by cooling it 

down to a -160°C temperature, and numerous compressors, turbines, motors, vessels, and 

valves are utilized to attain this objective [2]. The calculation of availability and reliability 

is not an easy task in this type of configuration due to the large equipment base [3]. There 

are tools and methods that can be utilized effectively with engineering experience to 
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estimate such parameters. In general, availability can be estimated by considering all the 

equipment in a processing unit or plant; given the fact that there are numerous maintainable 

pieces of equipment in a processing facility, a detailed monitoring of all equipment is 

usually a prohibitive task. In addition, such an investigation of equipment would engage 

large amounts of resources both in terms of monitoring systems and personnel. With all 

the effort, it may not result in an optimal solution in real-time even with such substantial 

investment. But this problem could be solved by using a risk-based assessment approach 

that is very effective in identifying the critical systems and handling them appropriately in 

a processing plant, as presented in this Chapter.  

The goal of this work is to develop a risk-based modeling technique for a 

continuous gas processing unit to calculate availability using a Markov methodology and 

applying the model to estimate the availability of the gas sweetening Section of a plant, as 

in Figure 2.4. The proposed research offers four distinct contributions: first, a risk-based 

assessment approach is introduced to identify the most critical components in a typical 

plant. Second, using the outcomes of the risk-based assessment; a stochastic modeling 

approach based on the Markov Decision Process (MDP) is utilized to develop models that 

estimate plant availability. Third, the models developed are calibrated on a gas processing 

unit with available plant data and offshore reliability data (OREDA). Lastly, bottleneck 

and limiting factors affecting availability will be identified with the benefits of the 

proposed methodology.  
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2.1.1 Literature Review 

In the literature, extensive work on availability and reliability modeling is available 

on repairable equipment but very limited application of full system modeling is observed 

in the process industry, i.e., gas processing and other petrochemical facilities. Due to 

interest and opportunity, the topic was considered as a means to develop a methodology to 

estimate the availability of a complete processing network or unit rather than a single piece 

of equipment or a single system. For example, the availability estimation of a gas 

compressor as single equipment can be performed easily compared to the complete 

liquefaction unit in a gas processing facility. 

Availability is widely used in a very generic sense in the existing literature. Many 

authors have worked on different availabilities like operational availability, achieved 

availability, and inherent availability. Simply, availability is a probability that a system will 

be operational when needed to serve a purpose and this usually is termed inherent 

availability [4]. Availability has a strong relationship with reliability and maintainability. 

Khan et al. [5] proposed a risk-based methodology to maximize a system’s availability by 

considering the modeling and risk-based inspection/maintenance calculation. The 

discussed methodology is based on two steps: (i) availability modeling and (ii) risk-based 

inspection and maintenance calculations. Maintainability has vital importance in 

operational availability. Sonawane et al. [6] discussed operational availability where the 

mean time to repair and administrative logistic time are important. 

Markov analysis is one the many techniques in the literature used to calculate 

availability and reliability of multi-state repairable systems. Pil et al. [7] used a time 

file:///C:/controller/servlet/Controller%3fCID=quickSearchCitationFormat&searchWord1=%7bSonawane,+B.U.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
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dependent Markov approach to evaluate the reliability of the re-liquefaction system and 

developed a maintenance optimization model and applied it to the re-liquefaction system. 

Keeter [8] discussed the availability of powerful computers to run long and extensive 

models for availability and reliability calculations. These tools have enabled us to 

understand the gain achieved from improving equipment reliability, and also other benefits 

like asset utilization. Jacob et al. [9] explored the difficulties in determining reliability and 

availability for repairable and non-repairable systems. The analysis is difficult when the 

failure distribution is not exponential and becomes even more difficult when the systems 

are hybrid and complex rather than only series, parallel or a combination of two. In his 

work, Jacob presents a binary decision diagram to calculate a system’s reliability and 

availability. 

Moore [10] pointed out that mechanical availability as a function of maintenance 

cost under different maintenance strategies, i.e., the mechanical availability, will be lowest 

in reactive strategies and highest in reliability-focused maintenance strategies. Mobley et 

al. [11], stressed that availability differs slightly from utilization; the main difference is 

that the scheduled run time varies between facilities and is changed by factors such as 

schedule maintenance action, logistics and administrative delays. Ouhbi et al. [12] utilized 

a semi-Markov system to estimate the reliability and availability of a system and applied it 

on turbo-generator’s availability and reliability estimation. Cekyay et al. [13] presented a 

work to analyze mean time to fail and availability of mission based system under maximal 

repair policy. Csenki [14] explored the concept of work mission availability to approach 

the cumulative operational time. Two methods of availability estimation and capacity 
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distribution have been discussed [15]. The first method is based on capacity outage 

probability tables, and although estimations performed by this method are exact they have 

limited applications. The second method is based on a probability mass function series, 

which is computer intensive but the results are better with increasing computation. An 

optimal reliability, availability and maintenance management strategy is presented to 

optimize the service levels with minimal cost [16]. The focus is on inventory management 

and a new model has been introduced to improve the service level, which only covers the 

maintainability part of the scope. Availability assessment of offshore oil and gas fields 

reveals that the equipment failure and production losses can exceed the allocated budget 

[17]. This work explores the probability distribution of downtimes and random equipment 

failure in design optimization to improve availability of the production systems. Genetic 

algorithms have been used to optimize the availability of the equipment [18]. The 

availability optimization was done using different project costs, weight, and availability of 

maintenance workforce. The proposed model is a novel and practical contribution, which 

presents the risk-based availability estimation using state dependent models. 

 

2.1.2 Brief LNG Process 

Liquefied natural gas (LNG) is a liquid form of natural gas. This state of gas 

increases its marketability and makes it feasible for transportation around the globe for 

utilization in power generation, households and other applications. In liquid form, the 

temperature of LNG is usually around -160°C and the volume is around 1/600 times of the 

gas at room temperature. It is colorless, odorless and non-corrosive in nature. LNG is 
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cryogenic liquid, which means it can be kept in liquid form at temperature -160°C with the 

condition of constant pressure [19]. Once LNG arrives at a receiving terminal, it is usually 

re-gasified to use in the industry and homes. An LNG process plant is asset intensive and 

a great deal of safety is necessary to ensure a safe work environment. In the same context, 

availability is also vital to guarantee meeting customers’ demands around the globe by 

producing as per schedules. A general LNG manufacturing process consists of following 

several major steps. Raw gas is received from a reservoir to the inlet receiving area, which 

is followed by treatment (removal of corrosive and hazardous contents), liquefaction of 

natural gas, storage, shipping of the LNG and finally the regasification at the receiving end 

for use. The simplification is shown in block diagram Figure 2.1. 

 

Figure 2.1: Simplified LNG process flow 

 

Generally, from the reservoir, a three-phase feedstock is sent to the onshore 

receiving area where the gas, condensate and water are separated. Gas usually contains 

many hazardous and non-hazardous elements, which in most cases must be removed prior 

to natural gas (NG) liquefaction. These elements are usually sulfur in the form of hydrogen 
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sulfide, carbon dioxide, water, helium, mercury, other sulfur species and heavy 

hydrocarbon. The NG feedstock is treated to remove sulfur and water. Other contaminants 

like mercury and mercaptan are removed from the gas prior to the liquefaction process. 

Liquefaction of natural gas is a physical process that is achieved by successive cooling 

through exchange of heat using refrigerants. LNG is stored in full containment tanks that 

are heavily insulated to minimize the heat transfer and boil-off of the liquid. LNG is 

shipped through special ships to the destination where it is re-gasified for use in power 

generation and returned into country’s gas circuit for home and other domestic use. 

2.2 Risk and Risk Assessment 

 

Risk and criticality are two synonyms often used in the oil and gas industry. Risk 

can be defined in many ways; simply put, it is the likelihood of an unwanted event times 

its unwanted consequence [20]. Risk assessment (RA) is an engineering process of 

performing a cross-functional team-based analysis on functions, systems and equipment to 

evaluate the risk of a given situation or scenario. In this research, a unique risk assessment 

methodology is proposed to effectively select the critical equipment affecting the function 

of a system, hence affecting availability. RA is foundation to the proposed research. 

Different companies have different exposures to risk depending upon their business, 

geographical location, and financial structure and so on. They develop mitigation plans 

based on the riskiness/criticality of an unwanted event to avoid them. It is also very 

important to understand why the risk assessment is being performed so that attention may 

be focused on the right consequences. For example, the oil and gas industry has different 
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financial risks due to its asset intensiveness and price fluctuations compared to other 

industries, especially those that do not have physical assets. The industry also has operating 

risks and hazards because of high operating pressure and low temperatures. These 

operating parameters have severe consequences in case of equipment failure. The risk 

assessment approach developed in this research to estimate availability is unique because 

the approximation of risk is established using consequences like reliability and 

maintainability along with others. The advantage of this approach will provide the benefit 

of keeping focus on the categories that directly affect the availability, including others like 

safety, health, and environment (SHE), and economics. The main objective of the company 

is to identify the risk and develop mitigation plans to address the critical scenarios to as 

low as reasonably possible (ALARP) levels. It is not possible to bring the risk to zero, so 

importance lies in assessment, mitigation plan and management of risk. Literature and 

other standards have defined risk in many ways. The most useful and widely applicable 

definition of risk is as follows: “Risk is a measure of potential loss occurring due to natural 

or human activities” [20]. Another meaning of risk is a “measure to human injury, 

environmental damage or economic loss in terms of both the incident likelihood and the 

magnitude of the loss of injury” [21].  

The outcome of the risk assessment establishes that either the scenario or equipment 

is critical. Riskiness is also known as criticality. The criticality number is a measurement 

used to establish whether the assessed scenario or system is critical or not. If the system is 

critical, it has to be managed properly to ensure plant target availability. Usually, different 

companies have different methods to evaluate risk. One of the most common methods is to 
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evaluate risk using a risk assessment matrix, as shown in Figure 2.2. We used the risk 

assessment matrix with four important consequences categories, including: HSE, 

Economic (business loss/maintenance cost), Reliability, and Maintainability. It is very 

common in the industry to evaluate risk using the first two consequence categories, but the 

uniqueness of this risk assessment comes from the consequence categories of reliability 

and maintainability, which helps identify the assets that really affect or can affect the 

availability of the equipment or processing unit. The details of the risk categories are 

explained in Section 2.4.2 of this Chapter. The level to accept risk or level of classification, 

i.e., high, medium, or low, depends upon the company management, regulations and other 

requirements. The criticality zones shown in the assessment matrix are simply guidelines; 

every company has its own risk assessment matrix and defined risk boundary.  

 

 

Figure 2.2: Risk assessment matrix 

Higher consequences mean higher risk and criticality. As an example, if the 

consequence is as high as 4 and the probability of the incident is probable as 3, the risk is 

high, as shown in Figure 2.2. If the risk is high and the potential threat to the company’s 

business or society is high, it must be assessed properly. Risk analysis is mainly used to 

estimate the magnitude of a potential loss and can be done by using qualitative or 
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quantitative analysis or combination of both terms as mixed qualitative-quantitative risk 

analysis [20]. The criticality risk may vary for different companies depending upon the 

business; a petrochemical plant may have different criteria for classification than a LNG 

plant. Risk is often expressed as a function of the frequency or probability of the incident 

and consequence of the incident, as shown in Equation 2.1 and 2.2.  

𝑅𝑖𝑠𝑘 = Probability of failure × Consequence  (2.3) 

𝑅 = 𝑃 × 𝐶  (2.4) 

Individual risks can be calculated using the following equations:  

𝑅𝑆𝐻𝐸 = 𝑃 × 𝐶𝑆𝐻𝐸 (2.5) 

𝑅𝐸 = 𝑃 × 𝐶𝐸 (2.6) 

𝑅𝑅 = 𝑃 × 𝐶𝑅 (2.7) 

𝑅𝑀 = 𝑃 × 𝐶𝑀 (2.8) 

 

Overall risk, R, can be selected using Equation 2.9.   

 

𝑅 = 𝑅𝑆𝐻𝐸 ×  𝑅𝐸  ×  𝑅𝑅 × 𝑅𝑀 (2.9) 

where, R = Overall risk due to unwanted event, P = probability of failure, C = Consequence, 

RSHE = Risk due to SHE consequence, RE = Risk due to Economic consequence, RR = Risk 

due to Reliability consequence, RM = Risk due to Maintainability consequence. 

The output of the risk assessment is a categorization of equipment causing 

functional failure of a system, unit or equipment. In this research, risk has been categorized 
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in three categories, high, medium, and low. Quantitatively, assessment can also be done 

using the numbers and selecting the biggest value as the max value as criticality. Once the 

ranking has been established, the critical equipment within a system can be chosen and 

functional block diagram should be developed to move forward toward a Markov model, 

as discussed in the framework in Figure 2.3. 

2.3 Risk-based Availability Modeling Framework 

 

The risk based availability concept is based on identifying critical equipment which 

causes functional failure in a complex system or unit. Functional failure is an interruption 

in production and can be addressed using economic category of the risk assessment matrix. 

The proposed framework provides a unique way to identify critical equipment. Asset 

intensive unit can be simplified using the risk-based proposed methodology without 

violating the functional integrity of the system to estimate availability. The main advantage 

of this methodology includes but not limited to identifying the bottlenecks early in the 

process and addressing them to optimize resources and cost. Selected systems based on the 

risk will pinpoint the equipment that has a direct impact on availability. The system has 

many pieces of equipment but not all are critical and should be treated accordingly to 

balance the risk and available resources. We will further discuss in detail the Markov based 

model to estimate availability. 

In order to keep the process consistent and effective, the following steps have been 

proposed in this research to develop the model to estimate availability. The graphical 

presentation of the complete process can be observed in Figure 2.3. 
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1. Selection of system / operating unit or plant: Develop a boundary diagram of the 

system to be studied, which helps team to be focused and prepared. 

2. Establish a cross-functional team: Important in order to identify real critical 

equipment. 

3. Develop or review existing risk assessment matrix to ensure all team members 

understand the consequence and probability categories. 

4. Perform risk assessment: Ensure risk assessment is done in a cross-functional 

environment to identify critical assets.  

5. Breakdown of processing unit into small units: After identification of all critical 

assets, we developed a functional model to place the equipment in the process 

functional flow sequence.  

6. Develop functional block diagram to develop state diagram: In this step, a 

functional block diagram is developed using the previous step data and represents 

the architecture of the systems.  

7. Develop a Markov model: State diagrams using functional block diagram are 

developed in this step; differential equations are established from the state 

diagrams. 

8. Collect all required data: The main input of this data is from maintenance history 

and other available databases like OREDA [22]. 

9. Run the model using available failure rate and repair rate data.  

10. Estimate availability: Individual subsystems and overall system availability can be 

estimated using the independent system data. The series and parallel systems are 
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dealt accordingly to estimate the final availability of the selected system or 

operating unit. 

 

2.3.1 Modeling Technique using Markov Model 

In general, mathematical modeling of systems is an area of great engineering 

interest and process modeling makes it even more challenging. It is not a simple task to 

calculate the availability of a unit with a higher number of equipment using individual 

equipment failure and repair rates. It is often a model using operating parameters like 

production loss, name plate capacity, and sustainable capacity to estimate operational 

availability and reliability. The conclusion is usually based on production rates rather than 

equipment failure rates. Technically, the outcome is operational availability rather than the 

process availability based on the failure date. 

The above discussion can be explained further by this example: assuming that you 

are assigned to produce 100 tons in 30 days and you are able to produce 100 tons in a given 

period with a failure, your availability will be 100% even with a failure. The reason that 

the availability is still 100% is that the calculation is based on the production targets rather 

than using equipment MTBF and MTTF. The reason you were able to achieve 100% 

availability with a failure is that you have utilized your equipment beyond the normal 

operating window and were able to achieve the targets. It is indeed a very cumbersome 

process to model the complete system and use the real failure rates of equipment for 

estimation where the unit consists of thousands of functional locations. The proposed risk 

based methodology works great in these situations. Some limitations exist in the proposed 
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Markov methodology, i.e. constant failure and repair rates are independent events and the 

probability of being in any state depends upon the immediately previous state. 

 

 

Figure 2.3: Flow diagram of risk based availability model  

As discussed, we will use the failure and repair rates of the equipment and systems 

to estimate the availability. This is one of the reasons the risk based approach was adopted 

to handle the number of equipment and still obtain reasonable estimates to address the 
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issue. Risk based approach plays a vital role by optimizing the resources and still achieves 

comparable results. If a model is developed using 100 pieces of equipment, state space 

goes very high and becomes very difficult to handle; as an example, if there are 100 pieces 

of equipment and each has 2 states, the total will be 2^100 and that would be around 

1.3E+30 states. Quantity can be reduced or the problem can be simplified by breaking 

down the system into a series of independent subsystems [3]. 

In this research, we approach the problem from a user real experience angle and 

come up with a risk based approach to estimate process availability. Units have been 

broken down into smaller sub-systems to calculate availability, as shown in Figure 2.4. 

Markov based state dependent methodology is used to develop state models. A Markov 

model is a technique in which a system can be studied with several states, like operational, 

failure, and degraded. An approach is presented in this work to estimate the availability of 

the unit using different equipment and sub-system individual availabilities within the unit. 

State models have been developed using a real plant case, which helped us to model factual 

conditions. The proposed method provides a tool to solve the process, which will be 

discussed later in the methodology. A Markov model can be mathematically written as 

follows [10]: 

∑ 𝑅𝑎𝑡𝑒 𝑖𝑛𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑓𝑟𝑜𝑚 𝑗 ×  𝑃𝑗

.

𝑗

=  𝑅𝑎𝑡𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑖 ×  𝑃𝑖 

(2.10) 
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If 𝑃𝑖(𝑡) is the probability of being in state 𝑖 at time 𝑡, the summation of all 

probabilities can be written as follows:  

 

𝑃1(𝑡) + 𝑃2(𝑡) + 𝑃3(𝑡) + ⋯ 𝑃𝑛(𝑡) = 1 (2.11) 

 

At any given point of interest in time t, system availability is the probability of the 

system in one of the success states, 𝑃𝑖(𝑡). The simplest case for determining the steady 

state availability is a single system with both a constant failure rate, λ , and a constant repair 

rate, r. Assume that the system will be one of the two possible states; state 1 is operating 

and state 2 under repair or failed state. The basic concept of the state diagram, sometimes 

called the transition rate diagram, can be shown as in Figure 2.6 and 2.7. The general 

equation for n independent equipment in a series has an equipment availability,  𝐴𝑖(𝑡), and 

the system’s availability is given by Equation 2.12 [1]: 

𝐴𝑆(𝑡) = ∏ 𝐴𝑖

𝑛

𝑖=1

(𝑡) (2.12) 

 

Similarly, the general equation for n independent equipment in parallel 

configuration has an equipment availability,  𝐴𝑖(𝑡). The system’s availability is shown in 

Equation 2.13 [1]. 

𝐴𝑆(𝑡) = 1 − ∏(1 − 𝐴𝑖

𝑛

𝑖=1

(𝑡)) (2.13) 
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2.4 Application of Proposed Methodology 

 

The proposed methodology has many applications and can be used on any 

continuous process, as well as other production processes with some modifications to the 

methodology. In this Chapter, the proposed methodology is applied to a gas absorption 

process, where high availability is a must in order to safely and economically run the 

process. The unavailability of this unit will cause all downstream processes to halt. In order 

to apply the methodology in the most effective way, it is essential to review the functional 

details of the process to understand the operating nature of the process. It will help to 

understand the hazards and their consequences. Secondly, a knowledgeable team with 

strong exposure to the process and equipment is required.  The foundational step is to 

identify the critical components that cause functional failure to the process unit to develop 

the model, functional block diagram and other steps as discussed in framework. The 

following Section shows the implementation of methodology explored in Figure 2.3. 

 

2.4.1 Brief Description of Absorption Process 

 A gas sweetening unit is one of the major gas treatment units in a gas processing 

plant prior to other processes in the plant like liquefaction, fractionation, and gas 

separation. It mainly consists of acid gas removal from the gas stream. This unit primarily 

consists of absorption, regeneration and reclaiming Sections. In order to observe the 

proposed methodology, we will only focus on the absorption Section of the process. The 

simplified block diagram Figure 2.5 explains the functionality. 
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The absorption Section absorbs hydrogen sulphide and carbon dioxide. The 

regeneration Section mainly regenerates the solvent and sends stripped out lean acid gas to 

the sulfur recovery unit, subsequently; the regenerated solvent is circulated back into the 

absorption Section for natural gas sweetening process. Natural gas consists of mainly 

gaseous hydrocarbons, partly heavy hydrocarbon and around 1 to 2 percent of acidic gases 

like hydrogen sulfide and carbon dioxide and other sulphur compounds. Acidic gases are 

highly corrosive and will cause severe damage to cryogenic vessels during liquefaction 

process; therefore, it is necessary to remove these gases and contaminants before they reach 

the final stages of liquefaction. In the acid gas absorbers, hydrogen sulfide and carbon 

dioxide gases are absorbed completely in the solvent and sweet natural gas is routed to the 

gas drying Section and liquefaction units. The sour gas from the inlet receiving area enters 

in the reception Section where gas is preheated at optimal value to avoid condensation prior 

to introduction in the gas sweetening Section. The acid gases enter absorber column where 

H2S, CO2 and sulfur compounds are removed by counter current contact of the gases with 

a lean solvent in order to meet the required specification of sweet gas. Since the natural gas 

sweetening process is very critical in terms of operation and commitment of the LNG 

production, the availability of all the equipment remains under focus and operational 

integrity is monitored closely. For reliable processing of the gas sweetening unit, all static 

and rotating equipment are monitored closely for corrosions due to acidic streams, wall 

losses due to erosion caused by high velocities or turbulences. Rotating equipment are 

surveyed with their historical records and failure history. To estimate the availability, the 

above mentioned framework has been followed in the remaining Section. 
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Figure 2.4: Simplified gas absorption process 

 

2.4.2 Risk Assessment 

As discussed earlier, risk assessment (RA) is a systematic approach in performing 

risk analysis to identify the failure probability and consequence of the failure due to 

exposure to hazards. The goal of RA is to evaluate the magnitude and probability of actual 

and potential harm or an actual event [20]. The main hazards in the processing industry are 

hydrocarbon, high pressure, high and low temperatures, and poisonous gases. The 

consequences can be due to any reason, i.e. equipment breakdown means lower MTBFs, 

operating beyond operating windows, higher MTTRs, gas release or human mistakes. This 

step is one of the foundations of the complete process. Companies have risk matrix and 

risk evaluation methods that can be used to identify critical equipment in a processing unit 

and sometimes information is already provided in computerized maintenance management 
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system. Categorization of the equipment is carried out this step whereas; in next step, a 

simplified block diagram is developed with critical elements in the process. Usually the 

outcome of this process is a list of equipment with high, medium and low priority. The 

critical equipment can also be ranked using ranking numbering, sometime referred as the 

criticality number, i.e. if the consequence is extreme or 5 and the probability is frequent or 

5, the product represents the risk or criticality, which is 25. It is recommended to use only 

critical equipment but other equipment based on the consequence can be included. Simply, 

risk is estimated based on the risk assessment matrix using Equation 2.1. In general, if the 

risk belongs to a safety consequence category, it takes precedence and is considered as 

critical. The following criterion is utilized to identify the critical equipment that can cause 

functional failure of the unit. In addition to usual risk criteria, we have introduced the 

reliability and maintainability consequence because they directly relate to the availability 

of the processing unit. Individual categories can be explained as follows: 

 

Table 2.1: Safety Health and Environment 

Ranking Description (SHE) 

Extreme (5) Fatalities, sever environmental impact 

High (4) Permanent disabilities, major environmental impact 

Medium (3) Major injury, local environmental impact 

Minor (2) Minor Injury, plant-wide environmental impact 

Negligible (1) First Aid , no environmental impact 
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Table 2.2: Economics, Reliability and Maintainability 

Ranking Description (Economics) Description (MTBF) Description (MTTR) 

Extreme (5) Downtime > X3 hrs MTBF < Y hrs MTTR > Z3 hrs 

High (4) Downtime > X2 < X3 hrs MTBF > Y < Y1 hrs MTTR > Z2 < Z3 hrs 

Medium (3) Downtime > X1 < X2 hrs MTBF > Y1 < Y2 hrs MTTR > Z1 < Z2 hrs 

Minor (2) Downtime > X < X1 hrs MTBF > Y2 < Y3 hrs MTTR > Z < Z1 hrs 

Negligible (1) Downtime < X hrs MTBF > Y3 hrs MTTR < Z hrs 

 

Parameter ranges X, Y and Z in Table 2.2 to rank the consequence are dependent 

upon the company business and business guidelines. After the identification of the critical 

equipment, the next step is to develop a functional block diagram based on identified 

critical equipment, as shown in Figure 2.5. This methodology can be used to include 

medium critical equipment in the block diagram depending upon the consequences but it 

will increase the size of the model.  

 

2.4.3 Simplified Functional Block Diagram 

As discussed earlier, we have selected this system due to the criticality of its 

application; presence of poisonous gases, safety impacts on plant and society in case of 

unwanted breakdown, including financial consequences. We have presented the unit in 

small systems to manage it properly for calculation purposes. This unit consists of 

stationary assets and rotary assets as well as piping and valves, as is the case in other oil 

and gas processing units. We have developed a block diagram to better understand the 

system view of the rotating machinery and static assets in the system. This includes pumps, 
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motors, valves, vessel piping, and other equipment. The block diagram shows the 

redundancy level and criticality of the equipment.  

The pumping system consists of a pump and motor as a single functional location 

but the failure rates are added to represent the real picture. The pump and motor are 

considered as a system in order to calculate the required parameter and are later utilized in 

the comprehensive model. In this step, we can also include a well-judged value of the 

failure rates of other critical systems to bring results closer to the real case. All the piping 

is considered a system and the applicable failure modes have been used to determine the 

piping failure rate, and similar is true for valves. There may not be any impact on 

availability of the system but reliability may be different if there is a failure in the redundant 

system. The individual capacities available are shown in the block diagram in Figure 2.5. 

 

Figure 2.5: Functional block diagram  
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2.4.4 Failure Data for Analysis 

Failure data is a key to the proposed methodology or even for any statistical 

analysis. Equipment’s historical maintenance and repair data availability and quality is an 

industry concern, which discouraged us from using the data directly from maintenance 

history database. Estimations were developed with the help of engineers and technicians in 

order to use the best data. Inconsistency in the available data drove us to get help from 

OREDA. OREDA data was not even directly utilized in the analysis but data was sorted 

and compiled. The applicable realistic failure modes from the field were identified to 

estimate failure rate and repair rates. To effectively model the process and outcome, the 

real data and OREDA was utilized together. OREDA database has many failure modes for 

any equipment but all are not applicable to every facility. Instead of using all failure modes, 

only applicable failure modes were used to estimate the mean failure rate and repair rates. 

As an example, OREDA estimates mean time between failures for a pump which is 4 years 

based on all failure modes but some of the failure modes are not experienced as per the 

failure history. Those failure modes have been taken out to estimate the realistic mean time 

between failures.  Once taken out the failure modes, mean time between failures improves 

to 5 years which is best representative of our case. Active repair rates [22] were used in the 

calculation, which refers to the actual time spent on the repair operation rather than the 

total downtime or man-hours. 

Failure is classified when the equipment is not working or degraded, such as small 

leak or passing, when the system is partially available or functional. In vessels, columns 

and piping, leaks have taken as a degraded and failed state. Both motor and pump are 
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considered as pumping system in order to avoid confusion because the systems will not 

work without one another and will represent the real scenario. All the valves and piping in 

the process have been taken as a sub-system and corresponding failure rate and repair rates 

have been used to simplify the process. The inclusion of piping and other sub-systems is 

also very critical as they experience failures as well to estimate the availability. 

Data was used with extreme care, and consideration was given to feasible and 

experienced failure modes to estimate the failure rates. In case of rotating machines, 

calendar time was used in active systems and operational data was used in standby systems 

to be more precise in the calculations. The static equipment data was collected based on 

the calendar time, as they were all functional all the time. Availability of the 

instrumentation and electrical system is usually very high due to its inherent design so the 

system is not selected as part of the process, but the control valves and other emergency 

shutdown valves are included in the system. Table 2.3 contains the rotating equipment data, 

including both active system failure rates and repair rates as well the standby system rates. 

Table 2.4 has all static failure rates and repair rates. 

Table 2.3: Rotating Equipment 

 

 

Code Description Active Failure 

Rate  

S/B Failure 

Rate (/Hr) 

Repair Rate 

(/Hr) 

S/B Repair 

Rate (/Hr) 

SR1 Pumping System 490.7E-06 13.65 33.0 14.0 

SR2 Circulation System 322.4E-06 5.71 28.9 33.7 

SR3 Sol. Pumping System 168.9E-06 13.92 7.5 2.5 

SR4 A-Foam Inj. System 1.4E-03 - 6.0 - 

SR5 Oil Pumping System 1.2E-03 14.9 8.5 7.8 
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Table 2.4: Static Equipment 

 

 

2.4.5 Risk based Availability Markov Model (RBAMM) 

RBAMM proposed in this Chapter has been applied to validate the applicability of 

the model in a real plant situation. It is very difficult to calculate the availability of a unit 

with a higher number of equipment based on the individual equipment failure rate. That is 

why it is often modeled using operating parameters like production loss, name plate 

capacity and sustainable capacity to estimate operation availability and reliability. The 

outcome is usually based on the production output rather than on equipment failure rate. 

Selection of the unit for this research is based on risk assessment. To develop the model of 

the system under study, system is broken down into many small manageable systems of 

the same function, as can be seen in Figure 2.5. Most of the operating units are modeled 

using a Markov state process. One of the state diagrams has shown below in Figure 2.6. It 

is a very cumbersome process to model the complete system and use real failure rates of 

Code Description Failure Rate 

(/Hr) 

Degraded 

Failure Rate 

(/Hrs) 

Repair Rate 

(/Hrs) 

Degraded 

Repair Rate 

(/Hrs) 

SS1 Washing Column 2.8E-05 2.01E-04 14.0 51.4 

SS2 Absorbing Column 5.7E-05 3.4E-04 75.1 24.3 

SS3 HP Drum 3.4E-05 

 

5.4E-06 4.8 8.5 

SS4 HP Column 9.1E-05 2.8E-05 27.1 13.1 

SS5 LP Drum 3.4E-05 5.45E-06 449.6 17.0 

SS6 LP Column 9.1E-05 2.8E-05 27.1 13.1 

SS7 Drain Drum 2.5E-05 2.8E-05 29.8 8.5 

SS8 Piping 4.4E-05 - 2.0 - 

SS9 Valves 8.5E-06 8.0E-06 6.79 9.1 
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equipment where the unit consists of thousands of functional locations. In order to make it 

simpler, block diagram Figure 2.5 was developed using a risk matrix. Critical equipment 

has been chosen based on the RAM to simplify the system for availability estimation. In 

addition to using simplified block diagram, we proposed to calculate the availability of the 

independent sub-systems and later Equation 2.3 to solve for the complete system. In the 

given critical system, if we choose to model the system as a whole with only 2 states of 14 

sub-systems, the total state equations would be 16384. The size of the model will 

exponentially go even higher if we opt to apply the methodology on the complete system. 

The model developed has three real plant conditions; they are: 1. all functional, 2. 

degraded running and, finally, 3. failed state. The block diagram has been broken down 

into smaller entities based on the functionality of the equipment. A real plant scenario has 

been used to model the system. Mainly, the systems have been broken down into five 

essential systems, i.e. static equipment, rotating equipment, piping, valve systems and 

others mainly consisting of electrical. Though the pumping system drivers are mainly 

electrical motors, due to the functional reasons they have been considered as one system 

because if the motor or pump failed the output is a failed state for the system. The Markov 

methodology has been used to develop state models, which provide an opportunity to 

model realistic operating scenarios, like operational, failure, and degraded state. A real 

plant case has been used in modeling the real conditions. A general model has been 

discussed in the beginning; specific details are shown below. Complete system has been 

broken down in the following sub systems as shown in Table 2.5. In this approach, once 

the availabilities of the subsystems are calculated, the block diagram will be used to 
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calculate the total availability of the system. The advantage of separately calculating the 

static, rotating and other equipment will provide the flexibility to identify if any one of the 

systems is a bottleneck and requires more focused work to improve availability and 

reliability. There are many different operating scenarios that can be easily modeled using 

a Markov process. In this system, two different systems available were commonly used 

during the Markov modeling process. Pumping systems with redundancies were modeled 

using the state diagram shown in Figure 2.6, and a non-redundant system i.e. Absorber 

Column, is modeled with three operating states as in Figure 2.7. In this model, state 1 

represents the equipment is functional as designed and state 2 reflects the equipment is 

working but not meeting the functional requirements. For example, valve is passing and 

process is still functional with degraded performance. State 3 represents the complete 

failure where the repair is inevitable. At state 3, once the equipment is repaired the system 

goes back to state 1, and from this state system cannot go back to degraded state. Once the 

system is fixed, it will only go to its initial state 1. 

 

 

Figure 2.6: State diagram of two pieces of equipment in parallel with failure in standby 
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Figure 2.7: State diagram of a three state degraded system with repair 

The set of steady state equations using Equation 2.10 to calculate probabilities of system 

shown in Figure 2.6 are: 

 

State 1:   (𝜆1 + 𝜆2)𝑃1 = 𝑟1𝑃2 + 𝑟2𝑃3 (2.14) 

State 2: (𝜆2 + 𝑟1)𝑃2 = 𝜆1𝑃1 + 𝑟2𝑃4 (2.15) 

State 3: (𝜆1 + 𝑟2)𝑃3 = 𝜆2𝑃1 + 𝑟1𝑃4 (2.16) 

State 4: (𝑟2 + 𝑟1)𝑃4 = 𝜆2𝑃2 + 𝜆1𝑃3 (2.17) 

             𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 = 1 (2.18) 

 

In general, availability of a system can be written as [4]: 

𝐴𝑆 = ∑ 𝑃𝑖 

.

𝑎𝑙𝑙 𝑠𝑢𝑐𝑒𝑠𝑠 
𝑠𝑎𝑡𝑒𝑠 𝑖

 (2.19) 

 

Using Equation 2.19, the availability of the system shown in Figure 2.6. can be written as: 

𝐴(𝑠) = 𝑃1 + 𝑃2 + 𝑃3 (2.20) 
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Similarly, three state systems and other system equations can be developed to 

calculate a system’s availability. Providing all the static systems in series, Equation 2.22 

can be used to determine the overall availability of the static system and similar process 

can be done for rotating equipment. The overall unit availability will be calculated using 

Equation 2.24. 

𝐴𝑆𝑅  = ∏ 𝐴𝑆𝑅𝑛

𝑗

𝑛=1

 (2.21) 

𝐴𝑆𝑆 = ∏ 𝐴𝑆𝑆𝑛

𝑗

𝑛=1

 (2.22) 

𝐴(𝑈𝑛𝑖𝑡) = ∏  (𝑆𝑢𝑏 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑖𝑛 𝑠𝑒𝑟𝑖𝑒𝑠)   (2.23) 

𝐴𝑈 = ∏ 𝐴𝑖

𝑛

𝑖=1

 (2.24) 

where, AU = Unit Availability, ASR = Availability – Rotating System, ASS = Availability – 

Static System and i = individual sub systems. 

2.5 Numerical Analysis and Results 

 

 Certain constraints are important to understand prior to interpreting results. The 

most important is that the data used in the analysis is a combination of real process data 

with OREDA. Applicable failure modes were identified and used to calculate MTBF and 

MTTR for individual systems. The standby system failure rate is also calculated using the 

historical data and OREDA. This aids us in using our real plant data to reduce bias in the 
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results. Proposed methodology helps to calculate the availability of the individual sub 

system and can be used to identify bottleneck in the system. Table 2.5 shows the 

availability of the individual subsystem whereas Table 2.6 shows the availabilities of static 

and rotating as well the unit availability. In the existing approach to estimate availability 

at facility, it is very difficult to calculate the individual availability of the subsystems, but 

the proposed methodology has the flexibility to estimate all availabilities. 

 

Table 2.5: Individual Availabilities of Subsystems 

Code Description Availability 

SR1 Water Pumping System 0.945 

SR2 Water Circulation System 0.998 

SR3 Solvent Pumping System 0.909 

SR4 Anti-Foam Inj. System 0.995 

SR5 Skim Oil Pumping System 0.768 

SS1 Water Washing Column 0.957 

SS2 Acid Gas Absorbing 

Column 

0.968 

SS3 High Pressure Drum 0.999 

SS4 High Pressure Column 0.947 

SS5 Low Pressure Drum 0.999 

SS6 Low Pressure Column 0.947 

SS7 Drain Drum 0.926 

SS8 All Piping 0.999 

SS9 Valves 0.999 

 
 

 

Steady states equations were developed using Equation 2.1 and solved by using 

Excel to calculate probabilities of certain states to estimate the availability of subsystems. 

Once the availabilities have been judged, Equation 2.11 is used to determine the availability 



 

64 

 

of the complete unit, which is the product of static equipment and rotating equipment 

availabilities. The difference in the existing methodology and the proposed methodology 

is almost very small, as the results differ by only half a percent. 

 

Table 2.6: Comparison of Availabilities

 

 

The suggested approach provides certain benefits over the existing methodology 

and is discussed in Section 2.5. It is difficult to compare the availability at unit or subsystem 

levels because data at a subsystem level is not available in current practices. Overall, 

availability is comparable and the proposed methodology results are promising; the 

difference in results can be explained by the data estimation and other engineering 

judgments during the process. Figure 2.8 graphically shows that the proposed methodology 

provides flexibility to estimate the availability of subsystems in a processing unit.  

Description Existing Approach Proposed Approach % Difference 

Static Equipment  99.89 - 

Rotating Equipment  99.13 - 

Overall Unit 99.50 99.02 0.5 
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Figure 2.8: Graphical comparison of availabilities 

Prior to the proposed methodology, unit availability is a value, which is 99.5%, and 

represented by a straight line. It was difficult to estimate subsystem availabilities quickly 

to identify the bottleneck and area of concern. With the proposed scheme, subsystems 

availabilities are estimated from the start, which makes it easier to identify areas of concern 

and efficient utilization of resources. 

2.5.1 Advantages and Limitations of Proposed Methodology 

The proposed methodology has shown very promising results and comparable to 

existing availability of the processing unit with other important benefits. The advantages 

mentioned below provide better control and understanding of the processing unit. Some 
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supremacy of the risk-based proposed methodology has been proven and is discussed 

below.  

a. Efficient planning tool; allocation of resources as the individual asset system 

availabilities are available to identify poor performers as shown in Figure 2.8. Poor 

performing systems can easily be identified and detailed analysis can be performed. 

b. Identification of real plant critical equipment that affect the availability of the plant. 

c. Prioritization of the maintenance work based on criticality classification. 

d. Risk assessments performed can be used in reliability centered maintenance 

activities. 

e. Long term planning, once plant model is developed; quick identification of bad 

actors. 

f. Initiative to enhance the maintenance history data program. 

g. Better spare parts and maintenance planning to reduce MTTR. 

h. Effective tool to optimize turn around and inspection shutdown. 

 

The proposed framework is flexible and easy to use when using the step by step 

process discussed in Section 2.3. Proper attention must be given to step by step execution 

while performing studies using this approach. The risk matrix used in risk-based 

assessment must reflect the company risk criteria rather than individual departmental 

criteria. It is an experience that different departments have their own risk matrices to 

prioritize their work. Use of the matrix ensures that the experienced personnel are involved 

in performing risk assessment with good understanding of the system and its failure 
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consequences. Failure history data must be used with care and questionable data must be 

scrutinized or normalized properly. The state models must consider all the experienced 

failed states to obtain more realistic results. 

2.6 Conclusion 

 

Many methods have been discussed in the literature review to estimate the 

availability of independent systems, but efforts toward the estimation of processing 

facilities, like gas plants or refineries, were found to be limited. The proposed methodology 

establishes an efficient and effective way to manage assets, as well as estimate and improve 

availability. The suggested approach to estimate the availability using RBAMM of a 

processing unit is unique and has shown promising results compared to existing 

methodology. The exclusivity of this proposal is the risk-based approach, which tends to 

alleviate the data scarcity situation by selecting the critical equipment in a unit and utilizing 

the failure databases smartly.  

The method discussed addresses a real field issue and provides a solution to the 

issue with a high level of confidence. Data was reviewed and adjusted based on engineering 

judgment in conjunction with OREDA to make it suitable for use. This methodology 

provides an opportunity to identify subsystem availability, which helps us identify the true 

bottleneck in a processing unit. The proposed research engages the issue of calculating the 

availability of a continuous operating plant. The model is validated on the real 

configuration of the plant and the real operating scenarios so that the results will be 
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realistic. This research also highlights the need and importance of good quality 

maintenance history and effective utilization of the existing data to perform similar studies 

with more confidence.  

A risk-based methodology can be extended to develop a computer application using 

the proposed approach for operating plant use. It is an optimal risk based solution for users 

to efficiently utilize resources and achieve better results with less operating cost. The 

effective utilization of the suggested method will help reduce cost and improve plant 

reliability and availability. 
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CHAPTER 3 

IMPROVING AVAILABILITY USING A RISK-BASED FAILURE 

ASSESSMENT APPROACH 3 

 

Abstract 

 A structured risk-based failure assessment (RBFA) approach is presented, which 

provides a complete solution to avoid repeated and potential failures to improve overall 

plant safety and availability. Technological advancements and high product demand have 

encouraged designers to design mega-capacity systems to enhance system utilization and 

improve revenues. These benefits make the systems more complex and so prone to failure. 

                                                 

3 This Chapter is based on the published work in a peer-reviewed journal. Qadeer Ahmed, Faisal 

Khan, Salim Ahmed (2014), “Improving safety and availability of complex systems using a risk-

based failure assessment approach,” Journal of Loss Prevention in the Process Industries, Volume 

32, November 2014, pages 218-229. To minimize the duplication, all the references are listed in 

the reference list. The contribution of the authors is presented in Section titled, “Co-authorship 

Statement”. 
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In general, despite the elaborately planned maintenance and monitoring activities, 

equipment still fails. In reality, it is an overwhelming task to address all the failures due to 

limited resources and time constraints. This leads to substandard and poor quality failure 

assessments, which cause repeated failures. To address this common industry concern, a 

four phase RBFA framework is proposed, which is not limited to the identification of root 

cause(s) but also includes all the other actions essential for a successful assessment. The 

four phases include the plan phase, the assessment phase, the analysis phase, and the 

implementation-tracking phase. These phases cover identification of failure and failure 

analysis; root cause(s) along with corrective actions are mooted, prioritized, and monitored 

for implementation. In this Chapter, the applicability and advantages of the proposed 

approach are examined through two real case studies pertaining to bearing failure and drive 

coupling failure. Significant improvements have been experienced in the mean time 

between failure (MTBF) and system availability for both the cases.  

3.1 Introduction 

 

  In a processing facility, equipment and systems are anticipated to perform their 

function safely and reliably to meet production requirements. Despite the best maintenance 

and operating strategies, systems and equipment fail. These failures must be analyzed 

properly to identify the root cause(s) and implement corrective actions to avoid repetition. 

Repeated failures are very common where the failure assessment is done poorly and 

corrective actions are implemented without proper validation of the root cause(s). In a 
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study [1], the failure history shows that the fuel oil pump experienced 14 failures during 

an operating life of 10 years. In another study of repeat failures, the authors mentioned that 

18 events of compressor failures occurred during the last 12 years. These examples 

highlight the fact that failure investigations are either not handled properly or corrective 

actions are not implemented properly. A thorough and structured investigation process is 

therefore needed to avoid the general problem of repeated failures [2].  

Failure is defined as an “inability to perform the intended function,” whereas a fault 

is “an abnormal condition or defect at the component, equipment or subsystem level, which 

may lead to a failure” [3-4]. Risk-based failure analysis in this work is defined as, “a 

structured process that discovers root cause(s) — physical, human, or latent of an incident 

(failure or fault) and addresses these causes with corrective actions to improve the 

availability and safety of the workplace.” Failure and availability are two sides of a coin; 

reduction in equipment failures greatly improves the availability of the system and vice 

versa. Failure can be eliminated or reduced by effective maintenance, adequate operation, 

proper design, and other parameters. In case of a failure, proper failure investigation is 

important to identify and eliminate the root cause(s). Availability improvement is neither 

one size fits all nor a piece of technology or software solution; it is a strategic objective to 

be met. Therefore, all the factors affecting availability are essentially considered with their 

importance. An appropriate combination of assessment approach, tools, and technologies 

is vital to reduce failures but the list also contains skills and good planning to achieve this 

goal. Availability suggests the readiness of the system when required. Many factors affect 

the readiness of the system, including planned downtime for preventive maintenance, 
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unplanned breakdowns, and availability of spares. Availability can be significantly 

improved by reducing the equipment downtime by either addressing reliability or 

maintainability [5]. A major factor of poor availability is repeat failure or recurrence of a 

failure, which can be reduced by a structured and smarter root cause analysis approach, 

with the assurance that the corrective actions have been implemented. Analyzing failures 

correctly improves the failure rate, which means minimization of downtime and repair 

time, ensuring better mean time between failures (MTBF) and mean time to repair (MTTR) 

as represented in Equations 3.1 and 3.2. 

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐴) =  
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 (3.1) 

 

Availability can also be written as,  

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐴) =  
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
 (3.2) 

where, MTBF = Mean Time Between Failures and MTTR = Mean Time to Repairs 

 

Equation 3.2 can also be expresses as,  

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐴) =
𝜇

(𝜆 + 𝜇)
  (3.3) 

where, λ = Failure Rate and µ=Repair Rate 
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As an illustration, an improvement in MTBF by 90 days and repair time by 5 days 

in a year, results in an overall availability improvement of 2.5%. Highly structured failure 

analysis approaches are required to achieve such objectives in asset intensive industries 

like gas processing, nuclear, and aerospace.  

Failure analysis is a multifaceted and challenging task but with a structured 

methodology, knowledgeable and skilled team, the real root cause(s) can be efficiently 

identified. The identification of the root cause(s) does not lead to the conclusion of the 

objective because the real solution is to develop corrective actions and to implement them 

to avoid repeat failures. A structured approach is a way to analyze failures because 

unstructured processes only support opinions and are unable to produce lasting results. As 

a result, supporting a structured approach in problem solving is highly desirable [6]. Failure 

consequences drive the classification of the failure investigation. Classification is required 

so that the investigation can be performed based on the criticality of the failure. Failure 

investigation can be classified by the importance and criticality of a failure, which derives 

the need of a detailed analysis [7]. Based on the risk consequences, failure analysis is 

categorized as high, medium, or low. Brief investigations are performed on non-critical 

failures whereas a detailed analysis is required on critical failures along with effective 

management of the corrective actions. Investigations limited to only identifying the reason 

of a material failure and restricted to a component analysis are usually classified as 

component failure analysis and do not address the system issues. For example, a bearing 

analysis is performed and the result indicates a lack of lubrication but the reasons of the 

lack of lubrication are not discussed. Root cause(s) investigation covers other causes, i.e., 
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human causes but does not explore the latent causes. Root cause and failure analysis cover 

all three areas of cause identification as discussed above but still the other parts of the 

complete process are not included. In this research, a complete failure analysis process, 

risk-based failure assessment, is proposed that starts from a failure or fault event, to 

identification of root cause(s), to implementation of recommendations and extends up to 

the effectiveness of corrective actions. In this Chapter, a four-phase RBFA framework is 

proposed, which is not limited to the identification of root cause(s) only but also includes 

all the other actions essential for a successful assessment. The applicability and advantages 

of the proposed RBFA approach are examined through two case studies pertaining to 

bearing failure and drive coupling failure. 

The remainder of the Chapter is organized as follows: Section 3.2 explores the 

research work done in this area. Section 3.3 discusses the risk-based failure assessment 

framework. Section 3.4 presents two case studies to observe the application of proposed 

approach and the results. Section 3.5 discusses the critical success factor of the proposed 

methodology. At the end, in Section 3.6, a conclusion and contributions are discussed.  

3.2 Background Study 

 

 Failures and faults are the most undesirable events that adversely affect the 

availability of an operating facility. To avoid such events, engineers do their best to 

effectively operate and maintain the system. Many tools such as condition monitoring and 

process monitoring are available to proactively predict and analyze such unwanted events 
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but failures still exist. Along with other efforts, proper failure analysis is the key to address 

these unwanted events by identifying the real root cause(s) along with developing and 

implementing corrective actions.   

In industry, many tools are available to carry out root cause analysis of a failure. 

Some of the common tools employed are 5 Whys, Fault Tree Analysis, Ishikawa Diagrams 

(commonly known as Fishbone Diagrams), and Failure Mode and Effects Analysis 

(FMEA). Use of these tools is questionable as witnessed by many recurrences and repeated 

failures. In one study, the performance of three popular root-cause analysis tools namely, 

Cause-and-Effect Diagram, the Interrelationship Diagram, and the Current Reality Tree 

were analyzed [8]. It was found that these tools have the capacity to find root causes with 

varying degrees of accuracy and quality due to their individual unique characteristics and 

application constraints. In the literature, different methodologies have been used to 

estimate the availability ranging from fault detection, reliability block diagrams, FMEA, 

fault tree analysis, and so forth [2, 9, 10, and 11]. A great opportunity exists in addressing 

system availability using a risk-based systematic approach, which is proposed in this work. 

Production pressure and operating constraints necessitate that investigations must be 

completed quickly. Quick complex failure analysis contributes to repeated failures and 

wrong root cause(s) due to limited focus on identification of the real root cause(s), 

accepting or rejecting all failure possibilities, and bypassing a structured failure 

investigation. The other common problem is the lack of focus on the implementation of 

corrective actions, which is one of the major contributors to repeated failures. In this work, 

there is more focus on the "operate and maintain phase," which is truly the longest phase 
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in the life-cycle of equipment as shown in Figure 3.1. The proposed model can be used 

effectively to assess potential failures or conditions in design and construction.   

 

 

 

 

Figure 3.1: Availability – operate and maintain 

Fault Tree Analysis (FTA) is a top-down failure investigation approach to perform 

studies to improve the availability, reliability, and safety of the systems. The approach 

discussed in [12] does not provide a holistic solution to address repeated failures and 

availability. In another work, plant safety and availability improvement is suggested using 

reliability engineering tools [13]. In this technological era, signal processing has been 

proven to be very effective in performing fault diagnostics and prognostics to improve 

availability and maintainability of complex operating systems. The Kalman filter based 

ensemble approach is used to predict the remaining useful life of a turbine blade creep 

degradation process [14].  Stochastic models are great in predicting the useful life of 

equipment, but they lack an approach for addressing real plant failure causes. Prognostic 

and health management is a research area that may provide a solution and guidance to 

industry to maintain the availability of the systems, safety, and economics of the operating 

facilities. A technical framework of equipment health management based on six key 

elements during the design stage for complex mechanical systems is proposed [15]. A 

Availability Analysis 

Design 
Construction 

Operate and Maintain 
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comparison between the traditional and proposed health management framework is 

performed along with validation using case studies, which works well proactively to avoid 

failure rather than assess failures. In an another effort, a novel and highly sophisticated 

layered dynamic hybrid fault modeling and extended evolutionary game theory is proposed 

for reliability, survivability, and fault tolerance analysis [16]. Due to the complexity and 

sophistication, the authors have recommended developing software to implement such a 

sophisticated model for ensuring the integrity of the modeling technique. Complex and 

highly advanced tools sometime hinder efforts and make it difficult to analyze failure 

effectively. To evaluate the consequences of a certain fault or failure, risk is an important 

aspect to evaluate in complex systems. To study the relationship between risk, availability 

and its consequences in certain scenarios, a risk-based availability analysis model is 

presented [17]. The proposed model helps in maximizing reliability and improving the 

maintainability of systems, which enhances availability as shown in Equation 3.2. 

Avoidance of repeated failures improves reliability and availability, which can be easily 

achieved by proper failure investigation and implementation of the recommendations of 

this study. As proposed in [18], a risk-based availability model is used to optimize 

maintenance strategies. In this work, imperfect maintenance has been discussed in context 

with equipment availability. Virtual age models of imperfect maintenance are used to 

estimate the availability of the equipment.  An availability model of repairable equipment 

based on virtual age is defined and, by using a simulation availability function, availability 

is estimated. Imperfect maintenance is also a source of failure and requires proper attention 

to improve maintenance. In another study, a model for fault detection and availability in 
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complex services is investigated [19]. A realistic reliability model to study the asset 

allocation problem to obtain the desired level of availability is presented. The model is 

validated using a real case of a multimedia communication service.  

As discussed above, many different techniques and methodologies are presented to 

estimate availability but limited work seems to have been done to address availability using 

proper failure analysis. In this Chapter, a risk-based failure analysis approach is proposed, 

which addresses the issue of an equipment failure, repeat and potential failures to enhance 

availability. This approach is based on a structured risk-based process, which helps in 

streamlining the process of identifying the real root cause(s), and to develop and prioritize 

corrective actions for implementation.  

3.3 Risk-Based Failure Assessment (RBFA) Framework 

 

Reducing risk and improving availability are the prime objectives of any 

processing facility. Risk can greatly be reduced by avoiding repeated and potential failures. 

A structured and robust risk-based failure assessment process is a result-oriented tool to 

address this issue. Failure assessment is one of the basic availability enhancement tools 

and can be performed in formal and informal setups [20]. To effectively use the assessment 

process, the classification of failure is required. It is extremely important to conduct the 

assessment either formally or informally to ensure the optimal and efficient use of the 

resources. The classification of a failure drives the criticality of the failure and suggests the 

level of failure investigation required. In certain cases, a simple process is an effective way 
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to perform failure assessment and on the other hand, in critical cases, a thorough 

investigation with irrefutable evidences and a knowledgeable team has to be conducted to 

uncover the real root cause(s). An RBFA approach presented covers the complete process 

of failure assessment and enables us to use the optimal way of performing failure 

investigations. The proposed assessment process does not only cover the failure analysis 

and identifies the root cause (s) but it also provides a complete business process from 

identification, resolution to the avoidance of repeat failures. In complex plants and 

machines, failures have significant consequences and the equipment can fail in many ways, 

which requires the active involvement of knowledgeable personnel in the investigation 

process. The RBFA approach suggests performing failure assessment based on its 

criticality and the consequences of a failure. The risk-based philosophy helps in addressing 

the critical failures as formal and the non-critical ones as informal, which ultimately help 

organizations to allocate the right resources to high risk events. Proper investigation of all 

incidents and identification of the real root cause (s) is essential to avoid them in future; 

hence helping improve availability. The complete RBFA process has been divided into 

four phases and nine steps within the phases to elaborate the proposed methodology.  The 

four phases and their steps are discussed below and are shown in Figure 3.2.  The complete 

methodology of RBFA and recommendation management is discussed in Figure 3.3. 
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3.1.1 Plan Phase 

The planning phase is the most important phase in the proposed RBFA approach. 

Proper planning helps in understanding and defining the scope of the investigation. This 

phase provides the opportunity to have a first-hand feel and sets the stage for what to do 

and how to do it. This phase mainly covers the identification of an incident (failure) or 

potential incident (fault), and the collection of preliminary information. This phase 

provides the foundation upon which the remaining phases can be built. It has a significant 

impact on the complete approach. The three steps in this phase are as follows: 

3.1.1.1 Identify and Record Failure/Fault 

The first step in this phase is to identify and record an unwanted event i.e., a 

failure or a fault. The incident must be recorded in the maintenance management system 

or any other designated system with the basic failure information such as failure 

Figure 3.2: Four phases – risk-based failure assessment  
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description, time, equipment number, and consequences of the failure. In order to develop 

a formal system, a separate platform is introduced and interfaced with asset performance 

management and asset maintenance management system [21]. The system facilitates the 

investigation process for proper execution and control. 

3.1.1.2 Preserve Site and Data 

The second step in this phase is to preserve the failure site and basic data. This 

step is critical in the investigation because it is in this step that the failed equipment is 

thoroughly observed, data is collected, pictures are taken for future reference and shared 

with the team during formal investigation. Failure assessment quality is dependent on the 

quality of the information. Therefore, the focus must be given to the right information from 

trustworthy sources. 

3.1.1.3 Collect Preliminary Information 

Good quality, realistic information is the core of an effective investigation 

process. During the planning phase, the preliminary and basic data must be collected prior 

to moving forward to the assessment phase. Preliminary data includes, but not limited to, 

equipment history, process flow diagrams, operating conditions, and process 

instrumentation diagrams. It may include interviews for the operation and maintenance to 

collect all the basic information.  
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3.1.2 Assessment Phase 

In this phase, based on the collected information, a decision is made about the 

level of failure investigation that is required. Information is interrelated among the phases 

that make all the phases critical to each other. The input to the assessment phase mainly 

comes from the plan phase and other sources.  Many investigations fail due to improper 

assessment of the failure. The personnel assigned to the investigation will review the 
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planning phase information and make a decision about the personnel needed to be involved 

to assess the situation and be able to perform the criticality assessment. 

3.1.2.1 Form an Investigation Team 

Formation of an investigation team is a critical step in performing a thorough and 

formal investigation. Quality of the outcome also depends upon the involvement of subject 

matter experts in the related area. Successful investigation is only possible by choosing the 

right, responsible, autonomous and accountable team. 

3.1.2.2 Evaluate Risk due to Failure or Fault Consequence 

The failure risk assessment step is to evaluate the consequences of the failure, its 

impact on business, safety and health and the availability of the system. This assessment is 

a quantitative measure and is represented by a term, “Risk Index (RI)”. This assessment 

drives the level of the failure analysis effort, such as an investigation should be done 

informally or formally. Informal investigation is done by a small group of people following 

the same approach whereas the formal investigation is done by a structured group with a 

charter and a formal facilitator to conduct the assessment.  

 

 

Figure 3.4: Risk assessment matrix 
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Assessment criteria should not be very stringent or shallow but should strike a 

balance among the consequences. The team should be able to easily use it to come to the 

conclusion. A 3x3 level risk matrix is sufficient for the purpose of failure classification to 

perform failure assessment. The outcome of the matrix can be qualitative in terms of low, 

medium or high as shown in Figure 3.4 or it can be quantitative in terms of Risk Index (RI) 

to assign a level of assessment and Equation 3.4 can be used for this purpose. 

 

𝑅𝑖𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 (𝑃𝑜𝐹) × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 (3.4) 

 

For risk assessment, 

𝑅𝑖𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 = 𝑃𝑜𝐹 × (𝑆𝑎𝑓𝑡𝑒𝑦 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑡

× 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡) 

(3.5) 

Subject to, 

 
(3.6) 

 

Risk index is a better measure as it is quantitative rather qualitative. Risk Index, as 

estimated from Equation 3.4, helps to establish the level of failure analysis required. It is a 

numerical value ranging from a minimum value to a maximum value. The higher is the 

consequence and probability of failure, the higher would be the risk index. As an example, 

for a 3 X× 3 matrix with three consequence categories, the max value is 9. Risk index will 

range from 0 to 9, hence guidelines can be developed to categorize the level of assessment 

using RI. 
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3.1.3 Analysis Phase 

In this phase, all the activities related to failure investigation are performed. Most 

of the companies have systems or preferred methods in place to conduct formal and 

informal investigations. However, not all follow a structured approach for the complete 

process. Simple 5-Why approach for simple failures and other complex techniques for 

formal investigations can be used. The proposed framework can be effectively used for 

both formal and informal investigations. There are three key steps in this phase which focus 

on the identification of the root cause(s) and the corrective actions. 

3.1.3.1 Develop Historical Timeline  

In this step, historical time sequence of the events prior to failure is established 

which includes the events and other critical information with data and time as shown in 

Figure 3.7. Failure timeline provides extremely useful information and suggests the 

changes made during the life of the equipment, from design to operation. This information 

is extremely important and the timeline must be factual, precise, and quantified to ensure 

its best use. 

3.1.3.2 Perform Root Cause Analysis  

Root cause analysis is the heart of the proposed framework. After establishing a 

failure or fault incident, possible failure modes based on the information are developed and 

also the actions or causes that contribute to the failure mode are also developed. At this 

stage, all the causes to failure modes are hypothetical before evidence is obtained to support 

the real cause of a specific failure mode.  All the technical possible failure modes are 



 

86 

 

generally evaluated to ensure thorough investigation. Once all hypotheses are developed, 

they are rejected or accepted with the sound engineering knowledge, and facts based on 

laboratory test results. If the possible cause cannot be rejected, it should have a 

recommendation for it. In general, there are more than one causes of a failure so all the 

causes must be supported by well documented evidences and facts. There are some chronic 

challenges in this step like stopping too early with multiple root causes, or mistaking a 

symptom for a root cause, is very common. In this step, we identify the root cause(s) and 

use all the test results, material analysis and information from previous steps to make 

decisions. 

3.1.3.3 Identify Root Cause(s) 

Once the root cause analysis step is complete, the next step is the classification 

of the direct and contributing causes. Physical, human and latent causes are classified. 

There may be more than one cause of a failure, so it must be ensured that the possible 

failures have been explored. Root cause must be supported by factual data and evidences. 

This is also a critical step which may lead to repeat failures if the real root cause(s) are not 

identified. 

 

3.1.4 Implement and Track Phase 

This phase is extremely important for the success of the investigation process, as 

the real value of the complete assessment process lies in the implementation of the 

recommendations. It is very common in industry to implement the main recommendation 

and move on with the operations and ignore or overlook the remaining recommendations. 
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The poor implementation and tracking of recommendations is one of the basic causes of 

the repeat failures. In this phase, it is suggested that the recommendations are classified 

based on a prioritization matrix.  The implementation priority is decided by the fact that 

how much a recommendation is contributing in avoidance of the failure. The stronger the 

correlation, more chances are that it will get a high priority. 

3.1.4.1 Develop Corrective Actions 

Proper and effective corrective actions and their implementation is a barrier to 

repeat failures or a failure in case of minor fault. Once the root cause(s) are identified, 

proper, effective and smart recommendations must be developed. The corrective action 

must be specific and open ended recommendations must be avoided. The corrective action 

must be technically feasible and should not be an over kill, thereby making the system 

over-designed. There are disadvantages of the poor corrective actions which may not be 

addressing a root cause and may shift failure to other weaker components or parts of the 

system. 

3.1.4.2 Prioritize and Implement   

There are certain ways to classify recommendations. Critical recommendations 

are the ones that have a greater impact on continuous operation and should be implemented 

first. Impact and difficulty matrix can be used to classify low hanging fruits. An example 

of the modified priority matrix is shown in Figure 3.5 [6].   



 

88 

 

 

Figure 3.5: Prioritization matrix for corrective actions 

Priority Index (PI) can be calculated as, 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 (𝑃𝐼) = 𝐼𝑚𝑝𝑎𝑐𝑡 × 𝐸𝑓𝑓𝑜𝑟𝑡 (3.7) 

Subject to, 

 

(3.8) 

 

Priority Index (PI) is mainly a quantitative measure which suggests which 

corrective action or recommendation should be implemented first. The higher the priority 

index, the more beneficial is the corrective action for the company’s flawless operations. 

A company-wide recommendation management system is a solution to this issue to ensure 

proper implementation of all the recommendations. 

3.1.4.3 Track and Monitor 

The last step of the proposed methodology is about tracking the implementation 

of all the recommendations and to monitor the effectiveness of the corrective actions. Some 

recommendations and changes need a long time to implement as people retire, change jobs, 

go on vacation, etc.  The probability of losing good recommendations is very high. A 
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formal management system is highly recommended. Once all the recommendations are 

completed, the investigation should be closed in the system, which tells the team that all 

the corrective actions have been implemented. The monitoring feedback mostly uses 

performance indicators to evaluate the quality of the investigation and corrective actions. 

System availability is a parameter to track and evaluate the quality of the investigation and 

the effectiveness of the recommendations.  

3.4 Application of Proposed Approach using Case Studies  

 

Equipment fails and failure assessment is performed to identify the root cause(s) 

and corrective actions to avoid repeat failures. Failure assessment is also conducted on 

faults which may lead to a failure like “near-miss” in safety terminology. So, it is critical 

to conduct the fault assessment. In processing facilities, consequences of a failure are 

humongous, both financially and in terms of safety. Section 3.4 discusses the two real case 

studies to demonstrate the proposed methodology and their impact on system availability. 

  

3.4.1 Case Study: Bearing Failure 

In rotating machines like pumps and compressors, bearing is an important 

component and is often proactively monitored for proper functionality through predictive 

tools. In this case [22], there are two motors driving solvent pumps to supply solvent to a 

column, as shown in the schematic in Figure 3.6. These pumps have n+1 redundancy and 

are critical to the continuous operation of the plant. In this event, the plant experienced 
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unwanted interruption in production, when both pumping systems failed due to a common 

failure mode.  

 

Figure 3.6: Pumping system 

The risk-based failure assessment methodology comprising of the four phases, as 

described in Section 3.3, was applied and is briefly discussed in the following Section.  

3.4.1.1 Plan Phase 

Failure assessment process was started with the reporting of the incident in 

maintenance management system and failure assessment was requested. Along with failure 

report in maintenance management system, the failure mode and the related preliminary 

data was recorded. The investigation was assigned to a trained engineer to lead the 

assessment. Following step 2 of the plan phase, the site was preserved, and the initial 

findings were collected from the field. Along with this activity, preliminary information 

via interviews, plant online information system was used to collect the online data like 
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process conditions, equipment datasheet, maintenance history, cross-Sectional drawings, 

before setting up an investigation team.   

3.4.1.2 Assessments Phase:  

Based on the collected information, subject matter experts were invited to 

effectively evaluate the failure with the available information. With all the information and 

the right people, failure consequence assessment was performed using a consequence 

assessment criterion as per Figure 3.4, to identify the scope and level of this investigation. 

Risk index suggested that this incident required a formal failure investigation as it involved 

a major financial consequence. After the assessment phase, it was concluded a formal 

failure investigation be performed.  

3.4.1.3 Analysis Phase 

The first step in the analysis process was to develop an incident event timeline as 

shown in Figure 3.7. 

 

Figure 3.7: Failure event timeline 
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In the event timeline, all the key critical events were captured to understand the 

operations and maintenance of the equipment. The transient condition experienced by the 

equipment was also captured during the timeline to assess the impact of transients.  Once 

the timeline was developed, the identified failure was chosen and identification of possible 

failure modes was started.  

 

 

Figure 3.8: Failure cause relationship tree 

After selecting the possible failure modes, possible triggers or actions which could 

cause the failure mode were developed with the help of expert knowledge and the available 

information. After developing these actions, called hypotheses, they were assigned to team 

members to work on to accept or reject them, based on the data or engineering experience 

supported by theory or the inspection of failed parts or using the material analysis reports 

and the results as shown in Figure 3.8 and 3.9. In this case, there was strong evidence of 
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bearing failure supported by the inspection of failed parts and the vibration data as provided 

in Figure 3.9 and 3.10. The bearing failure frequency matched with the bearing ball pass 

frequency, which is solid evidence that the failure initiated at the bearing balls. The root 

causes may be physical, human or latent but accepted propositions should be used to 

identify the root causes. 

 

Figure 3.9: Evidence – failed part condition 

 

Figure 3.10: Vibration Trend – overall vibration and bearing frequency 

3.4.1.4 Implement and Track Phase:  

After identifying the root causes, effective recommendations were developed and 

prioritized using a prioritizing matrix. All the recommendations were not critical; some 

were critical for the operation of the repaired equipment and some were good to improve 
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the design. Prioritization was performed using the matrix as given in Figure 3.5 to ensure 

the critical recommendations were implemented first and the remaining recommendations 

followed thereafter. During the last phase, the focus was to ensure the recommendations 

were implemented and that they have addressed the real root causes by monitoring the 

equipment performance.    

3.4.1.5 Availability Estimation: 

Failure assessment was performed using a structured approach which greatly 

helps in improving the availability of the system. As shown in Figure 3.6, the failure of 

both the pumps greatly affected the availability of the system.  It caused process 

interruption which affected both safety as in terms of flaring and production loss. 

Availability was estimated by using Equation 3.2. Equipment data was analyzed and 

converted into system level which is summarized in Table 3.1. 

Table 3.1: Failure and Repair Data of Pumping System 

System (Equipment) System Mean Time 

Between Failure 

(Months) 

Mean Time to Repair 

(Months) 

   

Lean Pumping System – at failure 3.49 0.05 

Lean Pumping System – 6 years 34.48 0.06 

 

 

Availability is estimated using the above mean time between failures and mean time to 

repair. Significant system availability improvement is experienced between the failure and 

6 years period. The structured failure assessment also helps in understanding the nature of 

the failure, to order spare parts, lacking in training and other influential factors, hence, 
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improving maintainability. System standby redundancy model is used to estimate the 

system MTBF and availability [23]. Based on the physical plant configuration, appropriate 

models can be used to estimate mean time between failures and system availability. 

MTBF of an active redundant system is given by, 

 

(3.9) 

 

Availability of an active redundant system with failure rate λ and repair rate µ is given by, 

 

(3.10) 

 

Where, N = Number of Equipment, λ = Failure Rate, i= Number of Active Equipment and 

µ = Repair Rate 

For two equipment redundant system, Equation 3.10 can be simplified as,  

 

(3.11) 

 

Summary of availability estimation comparison is shown in Table 3.2. 

Table 3.2: Results – Availability Improvement 

 

Pumping System Availability 

  

Lean Pumping System - at failure 29.1% 

Lean Pumping System - 6 years 94.3% 

Improvement (Change) 65.2% 
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3.4.1.6 Results 

True identification of the failure causes along with their corrective action 

implementation greatly expands the availability and reliability of the equipment. 

Availability is improved by 65.2% points whereas significant improvement in MTBF is 

also realized using the proposed risk-based approach. The structured process helps 

developing the confidence of the team by using a consistent and structured proposed 

methodology. This structured failure assessment approach also helps in identifying the 

other underlying issues during investigation i.e., system maintainability, critical parts 

required to improve maintainability and other latent issues of training and procedures.  

 

3.4.2 Case Study: Drive Coupling Failure 

Coupling is an essential component of rotating machinery. The main function of 

a coupling is to transmit torque to drive equipment from a driver and compensate for slight 

misalignments. Misalignment can be due to installation error or limitations and operating 

conditions. The failure of a coupling means failure of the system. The proposed approach 

was used to investigate the failure of the coupling. The methodology suggested in Figure 

3.3 was used for identification of root cause(s), manage recommendations and estimate the 

availability enhancement. The system configuration is given in Figure 3.11. The system 

consisted of 5 centrifugal pumps where 4 out of the 5 were required to operate the system 

at 100% load.  
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Figure 3.11: Simple supply system configuration 

3.4.2.1 Plan Phase 

As discussed earlier, the investigation process started with the reporting of 

incident in maintenance management system along with the request to conduct failure 

assessment. The failure report in maintenance management system, the failure mode and 

the related preliminary data were recorded.  The site was preserved, initial findings via 

plant personnel interviews and plant information system were collected prior to initiating 

the investigation.   

3.4.2.2 Assessment Phase 

A team was formed to investigate the incident. The team, with all the information 

and subject matter experts, performed failure consequence assessment using a consequence 

assessment criterion as given in Figure 3.4 to identify the scope and level of the 

investigation. Risk index suggested that this incident required formal failure investigation 

as it involved a major financial consequence.   
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3.4.2.3 Analysis Phase 

The process started with development of an event timeline. Event timeline 

provides very useful information about the historical events. In event timeline, all the key 

critical events are captured to understand the operations and maintenance of the equipment. 

The transient conditions like startup, trips and shutdowns experienced by the equipment 

are also captured during the timeline to assess the impact of transients. This failure 

incidence happened during the startup of the facility when the equipment usually 

experiences multiple startups and trips. This information was very useful while performing 

the investigation and can be obtained from the event timeline.  From the developed 

timeline, identified failure was taken and identification of failure modes started.  

 

Figure 3.12: Coupling and bearing failure 

In this failure event, the only focus on component failure analysis could have led to 

the wrong root cause. The proposed methodology was employed to evaluate all the possible 

failure modes and possible causes. In this incident, both the failed parts are consequential 

to improper or wrong operation and design. The failure of the coupling and bearing was 

caused by the forces exerted by the reaction forces during the trip or shutdowns from the 

discharge header as shown in Figure 3.13. Usually, during commissioning and startup the 
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system experiences many startups and shutdowns and that is what this system also 

experienced. Under these events of shutdown and trips, the flow suddenly stopped as the 

trip valve shuts down quickly and the back pressure from the discharge header exerted a 

pressure on the pumps which caused them to move against the direction of flow as shown 

in Figure 3.14. The pumps kept running under misalignment and experienced this failure. 

This phenomena of pump movement caused misalignment which exceeded the allowed 

tolerances.  

 

Figure 3.13: Forces on pump caused excessive movement 

 

Couplings are designed to work with small misalignments but in this case, the 

misalignment exceeded the design limits and continuous operation under excessive 

misalignment caused the coupling to fail.  

 

Figure 3.13: Pump misalignment condition 
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A support system was available to counteract the hydraulic forces in case of trips 

and shutdown but was found broken. This supported the fact that the reaction forces were 

higher than the design strength. All the measurements and component analysis was done 

to ensure the wrong operation and insufficient design were the causes that contributed to 

this event.  

3.4.2.4 Implement and Track Phase 

After identifying the root causes, recommendations were developed and 

prioritized using a prioritizing matrix as shown in Figure 3.5. The prioritization matrix 

helped in selecting the critical recommendations which were implemented first, before the 

less important corrective actions. As a corrective action in this case, the operating 

philosophy was changed, improvement in the strength of the supports along with other 

recommendations. During the last phase, the attention is to ensure that the 

recommendations have been implemented and they have addressed the real root cause by 

monitoring the equipment performance during tracking. In the last, estimated the 

availability and failure rate to ensure root cause was correctly found and the right corrective 

action were developed and implemented.   

3.4.2.5 Availability Estimation: 

A structured approach has proven to be a great tool in enhancing availability of 

the system. As shown in Figure 3.12, the failure of multiple pumps greatly affected the 

availability and reliability of the system and caused process interruption and production 
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lost. In this case, availability estimation is performed to evaluate the improvements. System 

MTBF for N equipment is given in Equation 3.11.  

 

 

(3.12) 

 

For the system shown in Figure 3.11, the Equation 3.11 becomes,  

 

 

(3.13) 

 

System failure rates are given in Table 3.3,  

 

Table 3.3: Failure and Repair Data of a Pumping System 

 

System (Equipment) System Mean Time 

Between Failures  

(Months) 

Mean Time to Repair 

(Months) 

   

Pumping System – at failure 4.38 0.5 

Pumping System – 6 years 41.66 0.6 

 

Equation 3.11 is used to estimate the availability of this system and the equation as 

expanded for four out of the five system configurations is given below. 

  

 

 

(3.14) 
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System availability before and after is given in Table 3.4, 

 

Table 3.4: Results – Availability Estimation 

 

System (Equipment) Availability 

  

Pumping System - at failure 16% 

Pumping System - 6 years 98% 

Improvement (Change) 82% 

 

3.4.2.6 Results 

The proposed risk-based approach has shown excellent results for identifying root 

causes(s) and ensuring implementation of corrective actions; leading to improved MTBF 

and system availability. Table 3.4 shows significant improvement in availability from 16% 

to 98%. The low availability of the system at the start is due to multiple infant mortality 

failures. The system did not experience critical failures after the failure assessment using 

the proposed RBFA approach, which supports the effectiveness of the proposed approach. 

3.5 Critical Success Factors – RBFA Methodology 

 

Many lessons have been learned during the development and implementation of 

this approach. Some of them are extremely crucial for the success of a critical investigation. 

A listing of the salient features is given below, which will help in addressing the critical 

points in similar situations. 
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1. The proposed process must be followed: A proper understanding of the structured 

process is required.  

2. Communication: A proper communication platform should be available to ensure 

that the cross-functional team has proper and timely information. 

3. Team members: The team leader must be properly trained on the methodology and 

other facilitation techniques. Other team members must be knowledgeable and 

skilled in the area of the investigation. 

4. Tracking and implementation: Experience has shown that most of the repeat 

failures are the result of a lack of implementation of the recommendations or 

corrective actions. A suitable and traceable recommendation management system 

should be developed. 

5. Recognition: Team efforts should be appreciated by management to ensure team 

motivation and development of a proactive reliability culture in the organization.  

3.6 Conclusion 

 

The proposed risk-based failure assessment methodology has shown far-reaching 

improvements in handling equipment fault and failures to enhance safety and availability. 

Risk-based quantitative analysis to identify the level of root cause analysis and corrective 

action prioritization is extremely effective and efficient. The proposed method can be 

equally applied on potential failures and faults to proactively address the potential failure; 
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greatly reducing the maintenance costs and loss production events. Learning of an 

assessment can be shared and applied to other similar equipment, which can optimize the 

maintenance and maintainability. Highly encouraging results have been accomplished 

from the implementation of the proposed framework. In this work, the presented cases have 

shown great improvements in system availability; 65.2% in case 1 and 82% in case 2. The 

proposed approach is user friendly and can be used by following the step by step process. 

A software solution will greatly enhance the efficiency of the failure assessment process 

along with the other benefits of data structuring and availability. There are other methods 

that complement improvements in availability; but the proposed risk-based approach 

suggests an optimal and effective solution to a general industry problem of repeat failures 

and faults. 
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CHAPTER 4  

SYSTEM AVAILABILITY ENHANCEMENT USING DECISION 

TREES 4 

 

Abstract 

System availability is a key performance measure in the process industry. It ensures 

continuous operation of facilities to meet production targets, personnel safety and 

environmental sustainability. Process machinery condition assessment, early fault 

detection and its management are vital elements to assure overall system availability. These 

elements can be explored and managed effectively by extracting hidden knowledge from 

machinery vibration information to improve plant availability and safe operations.  

                                                 

4 This Chapter is based on the published work in a peer-reviewed journal. Qadeer Ahmed, Fatai 

A. Anifowose, Faisal Khan (2015), “System Availability Enhancement using Computational 

Intelligence based Decision Tree Predictive Model,” Accepted in Journal of Risk and Reliability 

Engineering. To minimize the duplication, all the references are listed in the reference list. The 

contribution of the authors is presented in Section titled, “Co-authorship Statement”. 
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This Chapter describes a Decision Tree (DT) based computational intelligence 

model using machinery vibration data to detect machinery faults, their severity, and 

suggests appropriate actions to avoid unscheduled failures. Vibration data for this work 

were collected using a machinery simulator and real-world machine to show the 

applicability of the proposed model. Later, the data was analyzed to detect faults using DT 

based model that was developed in MATLAB. Fault detection classification accuracies of 

98% during training and 93% during testing showed excellent performance of the proposed 

model. The suggested model also revealed that the proposed formulation has capability of 

detecting faults correctly in the range of 98% to 99%. The results highlight that the 

suggested predictive decision tree based model is effective in evaluating the condition of 

process machinery and predicting unscheduled equipment breakdowns with better 

accuracy and with reduced human effort. 

4.1 Introduction 

 

Early fault detection and management (FDM) are two main aspects of successful 

and continuous plant operations at low cost. Computational intelligence and technological 

advancements have provided us a platform to develop intelligent systems where machinery 

vibration data and process information can be used for assessing equipment health. 

Equipment vibration and process information have proven to be very effective in 

performing fault diagnostics and prognostics to improve the overall availability, reliability 

and maintainability of complex operating systems. Proper analysis of vibration signals is 
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an important tool that enables engineers to timely detect and identify faults to avoid system 

failures. Although faults and failures are synonymously used in industry but they represent 

different equipment conditions. In simple terms, a fault is a state where the equipment is 

functional but with degraded performance or does not function properly when required [1]. 

A failure is described as a condition where the equipment fails to perform its defined 

function and is in a state of a complete breakdown [2]. To avoid failures and keep repair 

costs in control, faults should be detected and managed efficiently during their infancy 

stage. Proper maintenance action helps in managing faults to avoid failures, which usually 

costs three to four times higher than a planned repair cost [3]. Presently, vibration data are 

usually collected during routine maintenance and analyzed by operators to assess the 

condition of equipment. This assessment is very much dependent upon the skill level of 

the operator and any wrong interpretation can have negative consequences. Early and 

correct detection of faults and its management help improving availability by addressing 

both dependencies of availability, i.e. reliability and maintainability as presented in 

Equation 4.1.  

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑀𝑇𝐵𝐹)

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑀𝑇𝐵𝐹) + 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑀𝑇𝑇𝑅)
 (4.1) 

 

where, MTBF = Mean time between failures and MTTR = Mean time to repair. 

 

Equipment condition, maintenance cost, operating time and overall risk are 

interrelated as shown in Figure 4.1. In this figure, the x-axis represents the operating time 
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and the y-axis represents the equipment condition and influence of cost. The 𝐶1 range 

represents the equipment with minor signs of degradation; the 𝐶2 range shows the signs of 

some damage; and 𝐶3 is the condition where the condition is worst and major action is 

required. 𝐹 is a point where the equipment failed to perform its function and is classified 

as a point of failure or potential failure. Overall risk of a failure includes failure cost, 

environmental impact along with personnel safety and production loses. If a fault is 

detected in zone 𝐶1, the cost and risk would be significantly less compared to the fault that 

is identified in zone 𝐶3. Early fault detection can be effectively addressed by a normal 

maintenance action like greasing and tightening of bolts. A fault in the advanced stage 

would require component replacement and higher repair cost. Due to these benefits, cost 

avoidance and improvement in plant availability, equipment condition monitoring is 

gaining significant importance. The outcome of equipment condition based on past history 

is classified as diagnostics while the prediction of remaining equipment life is generally 

termed as prognostics, as presented in Figure 4.1. This work mainly focuses toward the 

fault diagnosis and its management rather than the prediction of remaining useful life. 
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Figure 4.1: Diagnostic-prognostic concept with equipment condition, risk and cost  

 

Machines are complex systems and usually exhibit many faults, however, this 

research focuses on two faults and they are: unbalance and misalignment. Unbalance is 

defined as “a condition when the center-of-gravity of the rotor is out of alignment with its 

axis-of-rotation” [4]. Misalignment is defined as “a condition when relative center lines of 

shaft of two machines are not in line with each other” [5]. These two faults are top 

contributors to machine diagnostic processes and among 90% of the reported faults in 

machinery failures [6]. Vibration data in fault detection is extremely helpful as a fault in a 

machine can be represented by frequency components and their severity by signal 

amplitude. Figure 4.2 shows the general spectrum of the unbalance and misalignment 

where good understanding of spectrum, component frequencies and signal amplitude limits 

greatly helps in fault detection.  
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Figure 4.2: Spectrum snapshot of misalignment and unbalance 

Presently, fault diagnosis is carried out using different condition monitoring 

techniques, i.e. oil condition monitoring, vibration and other process parameters 

monitoring. These methods are prone to human errors, excessive man-hours, and are 

sometimes inaccurate due to the misunderstanding of the correlation of these parameters 

for a single output. To ensure effective prediction and generalization, all known possible 

machine conditions and fault scenarios should have representation in the training data. To 

address this limitation, suggested model formulation is dynamic and easily updated to 

allow the addition of new possible scenarios without having to re-model from the scratch. 

Second, it is based on the machine learning paradigm rather than the conventional 

statistical interpolations, due to these reasons, its improved and robust performance is 

guaranteed. The proposed computational intelligence based holistic fault diagnostic and 

management scheme methodology utilizes machinery and simulator data to predict faults, 

their severity using decision tree (DT) algorithms  
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Computational intelligence through data mining offers promising methods to 

extract hidden information patterns from these datasets, which are extremely difficult to 

discover with simple statistical analysis. These hidden patterns can be explored and used 

to predict some future trends with good quality data. Data mining can be done using 

different techniques. Some of the most popular methods are: classification, clustering, 

deviation detection and estimation etc. We are focused on classification as we predict using 

a pre-labeled classified condition; i.e., machinery unbalance and misalignment. 

Classification is a robust method for predicting the illustration class from pre-labeled 

instances. Classification is an important task in data mining where a classifier is built based 

on some attributes to describe the objects or one attribute to describe the group of the 

objects. Later, the classifier is used to predict the group attributes of other cases [7]. 

The remainder of the Chapter is organized as follows: Section 4.2 discusses the present 

state of literature and the work performed in the field of fault diagnostics using smart 

algorithms. Section 4.3 provides the formulation of the proposed fault detection model and 

fault management strategy. Section 4.4 describes the detailed research methodology 

including data collection, experimental setup, the criteria used to evaluate the performance 

of the model and the validation of the model with real operational data. Section 4.5 presents 

the results with discussion. Conclusions and the contributions are highlighted in Section 

4.6. 
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4.2 Literature Review 

 

Fault diagnostics using condition monitoring has become an area of great interest 

in industry. The capability of detecting an early fault enables engineers and operators to 

reduce the probability of damage and loss.  Faults, if not addressed properly can have 

catastrophic consequences in terms of lost production, maintenance costs and safety. Due 

to these reasons, a number of data mining and optimization techniques have been applied 

to fault classification, diagnostics and its management [8-14]. We have explored a holistic 

data-driven model, where the focus is on detection and management of faults. In data 

driven modeling approach, the available data is generally used to learn hidden patterns and 

extract knowledge to detect faults. Academic and industry researchers in the field of 

artificial intelligence, pattern recognition, and data mining have considered DTs as an 

effective technique. This is one of the reasons for exploring DT for the problem at hand. 

Many researchers have used artificial intelligence algorithms to detect machinery faults 

and some of them are discussed in this Section. Support vector machine (SVM) models (c-

SVC and nu-SVC) with four kernel functions were used for classification of faults using 

statistical features extracted from vibration signals under good and faulty conditions of 

rotational mechanical system [15]. A DT algorithm was used to select the prominent 

features. These features were given as inputs for training and testing the c-SVC and nu-

SVC model of SVM and their fault classification accuracies were compared. We are 

targeting a simpler model compared to hybrid DT-SVM model but with improved, or at 

least competitive, detection accuracy. In another work, DT was used for fault detection in 
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bearings using sound signal [16]. Data was collected from the near-field area from good 

and faulty bearings with classification accuracy in the range of 68.8 - 95.5%. To detect 

motor faults, DTs were also used in another work [17]. A layered dynamic hybrid fault 

modeling and extended evolutionary game theory was proposed for reliability, 

survivability and fault tolerance analysis [18]. Due to the complexity of the model, the 

authors recommended development and implementation of a software program. The DT 

model of this work ensures simplicity of implementation with good accuracy. Risk is an 

important aspect to evaluate the consequences of certain faults or failures in complex 

systems. The operation of such complex systems involves multiple hazards and 

consequences in case of breakdown. This makes the area of risk assessment and 

quantification extremely important and related to fault detection and management, 

availability and maintenance of the systems. To study the relationship between risk, 

availability and its consequences in certain scenarios, a risk-based availability analysis 

model is presented [19].  

As discussed above, fault diagnostics and prognostics through monitoring condition 

data have merits. Some of these fault diagnostics techniques are explored further to express 

the novelty of this work. A DT-based formulation is developed to identify the causes of the 

abnormal vibration [20]. This work mainly focused on automating the vibration diagnosis 

process for rotating machinery, which is applicable to vibration diagnosis expert system 

rather than detecting faults. Fault diagnosis using DTs is carried out using vibration signals 

from a gear box [21]. Features were extracted from vibration data and important features 

were used to develop a classification model using a DT algorithm. This work is more 
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focused on helical gear application and general abnormality detection rather than finding 

specific faults. In another work, vibration signals from a bearing are used to collect 

condition data and develop a pattern to establish conditions [22]. The statistical features 

are extracted from vibration signals and representative features that discriminate the 

different fault conditions of the bearing are selected using a DT. A rule set is formed from 

the extracted features and input to a fuzzy classifier based on intuition and domain 

knowledge. Later, the fuzzy classifier is developed and successfully tested. Fault 

diagnostics has gained momentum and the latest technologies have been adopted to detect 

faults. In [23], data mining is used for fault diagnostic where DT-based principal 

component analysis is proposed. Principal component analysis is used to extract features 

and a C4.5 algorithm is used for training. A laboratory simulator was used to simulate faults 

such as unbalance, shaft cracks, etc. The results show that DT-based principal component 

analysis is a better method compared to other advance methods such as back-propagation 

neural networks. In another work, bearing defects in rotating machines is explored by 

identifying expert rules [24]. Data are collected from vibration signals measured in an 

experimental setup to determine statistical parameters. The DT is then constructed by 

applying a C4.5 algorithm on the dataset, and so expert rules are established to detect faults. 

DTs have been used in a number of previous studies but ours is more rigorous and 

exploratory as we considered and implemented a number of innovative approaches to the 

machine-learning based modeling paradigm. These mainly include: 
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i. Using a stratified sampling methodology to ensures that each data sample has 

an equal chance of being selected for training or validation which allows a good 

mix of representative data samples. 

ii. In addition to condition monitoring and prediction, our methodology includes 

the prediction of the levels of the severity of the machine conditions and how 

to manage the fault condition.  

iii. The data sets used were obtained from a rigorous experimental procedures and 

real machine operating scenarios therefore, more comprehensive and better 

representation of real machine fault and operating conditions. 

 

The presented work consists of a fault and its severity assessment. Later, the fault 

management strategy is implemented that addresses the handling of detected fault 

condition, efficiently, which is indeed a requirement while working in real plant situations. 

 

4.3 Proposed Fault Detection and Management Framework  

 

A health assessment for equipment mainly depends on an effective fault diagnostics 

and management process. In this work, identification of a fault, its location and severity is 

mainly a diagnostic activity and estimation of a condition based on the severity of the fault, 

along with its impact on the operating system, is part of the fault management task. The 

proposed framework has three main steps: fault detection, fault severity, and management 
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of faults through proper maintenance action. Maintenance actions depend mostly on the 

severity of the fault, which is established by comparing the fault severity with 

internationally developed machinery vibration limits. Most failures of rotating equipment 

appear in a vibration spectrum by some frequencies, and the severity depends on the level 

of amplitude. Many common machinery faults have a strong relationship with running 

speed and two important speed factors are unbalance and misalignment, which have been 

focused in this Chapter. We classify fault severity risk into three categories: low 

(acceptable), medium (caution) and high (dangerous). The low fault level suggests a 

machine that can be used continuously with monitoring; medium or caution is a level where 

it is required to perform some extra monitoring to track the condition of the equipment. 

The last level is for a high or dangerous condition where the machine must be stopped 

promptly to avoid a catastrophic failure and a proper investigation shall be performed prior 

to another startup. The effective usage of the proposed model, as shown in Figure 4.3, will 

help to avoid catastrophic failures, and therefore improving the availability of the systems 

in a plant. The proposed framework mainly has three distinct steps, which are discussed in 

the following Sections. 

 

4.3.1 Fault Detection 

  In this step, data are acquired along with feature selection. The feature or variable 

must be carefully selected during model development as the accuracy of classification is 

greatly dependent upon the right features being considered. Once the features are finalized, 

we need to categorize the collected data in faults by assigning labels. Data stratification is 
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performed to ensure a good mix of data without any bias. The data are then used in the 

development of a DT model that provides the results in the form of training, and testing 

accuracy of the model and its capability of detecting faults. 

 

 

 

Figure 4.3: Fault detection and management framework 
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4.3.1.1 Decision Trees in Fault Detection 

Decision trees are widely used in many real-life applications, which include 

control systems, biomedical engineering, object recognition, power systems and many 

more applications. Decision trees are based on the rules, which depend on human 

experiences, as well as machinery behavior, which makes it widely used and accepted in 

fault detection. DTs have other advantages such as simplicity in design and accurate 

prediction [25]. They are also relatively faster in execution compared to other classification 

models. In classification models, feature selection is an important process as the accuracy 

of the outcome is highly dependent on the relativity of the feature with the problem being 

analyzed. Therefore, to ensure optimal solutions, only the best features must be used. We 

have tackled the problem uniquely, where a DT algorithm is used to detect machinery faults 

along with the severity of the fault. The construction of the DT is based on a training set, 

𝑆, which is a set of different experiments. Each experiment or condition specifies the values 

for a collection of attributes and for a class. Let the classes be denoted by 𝐶𝑖. There exist 

experiments with 𝑛 outcomes that partition the training set 𝐾 into subsets 𝐾𝑖…𝑛. Assume 

that 𝑆 is a set of cases, f𝑟𝑒𝑞 (𝐶𝑖, 𝑆) is the number of cases in S that belong to class 𝐶𝑖, and 

|𝑆| is the number of cases in set 𝑆. If we select a case at random from set 𝑆 and assume its 

relationship with class𝐶𝑖, probability can be computed as, 

𝑓𝑟𝑒𝑞 (𝐶𝑖 ,
𝑆

|𝑆|
) (4.2) 

and the information it provides is,  

− 𝑙𝑜𝑔2 {𝑓𝑟𝑒𝑞 (𝐶𝑖,
𝑆

|𝑆|
)} (4.3) 
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The information required to establish a class of an experiment in 𝑆 is given in Equation 

4.4. The procedure for designing a DT model follows the steps described below:  

Step 1: Calculate 𝐼𝑛𝑓𝑜(𝑆) to identify the class in the training set 𝑆. 

𝐼𝑛𝑓𝑜(𝑆) = − ∑ [{𝑓𝑟𝑒𝑞 (𝐶𝑖,
𝑆

|𝑆|
)} 𝑙𝑜𝑔2 {𝑓𝑟𝑒𝑞 (𝐶𝑖,

𝑆

|𝑆|
)}]

𝐾

𝑖=1

 (4.4) 

 

where |𝑆| is the number of cases in the training set; 𝐶𝑖 is a class; I = 1,2,3, … ; 𝐾 is the 

number of classes; and 𝑓𝑟𝑒𝑞(𝐶𝑖, 𝑆) is the number of cases. 

Step 2: Calculate the expected information value, 𝑖𝑛𝑓𝑜𝑋(𝑆) for test 𝑋 to partition samples 

in 𝑆. 

𝐼𝑛𝑓𝑜𝑋(𝑆) = − ∑ [(
|𝑆𝑖|

|𝑆|
) 𝐼𝑛𝑓𝑜(𝑆𝑖)]

𝐾

𝑖=1

 (4.5) 

 

where 𝐾 is the number of outputs for test, 𝑋, 𝑆𝑖 is a subset of 𝑆 corresponding to 𝑖𝑡ℎ output 

and is the number of cases of subset 𝑆𝑖.   

Step 3: Calculate the information gain,  

𝐺𝑎𝑖𝑛(𝑋) = 𝐼𝑛𝑓𝑜(𝑆) − 𝐼𝑛𝑓𝑜𝑋(𝑆) (4.6) 

 

𝐺𝑎𝑖𝑛(𝑋) = − ∑ [{𝑓𝑟𝑒𝑞 (𝐶𝑖,
𝑆

|𝑆|
)} 𝑙𝑜𝑔2 {𝑓𝑟𝑒𝑞 (𝐶𝑖,

𝑆

|𝑆|
)}]

𝐾

𝑖=1

     

+ ∑ [(
|𝑆𝑖|

|𝑆|
) 𝐼𝑛𝑓𝑜(𝑆𝑖)]

𝐾

𝑖=1

 

(4.7) 
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Step 4: Calculate the partition information value 𝑆𝑝𝑙𝑖𝑡𝑖𝑛𝑓𝑜(𝑋) acquiring for 𝑆, 

partitioned into 𝐿 subsets, 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑋) = −
1

2
 ∑ [

|𝑆𝑖|

|𝑆|
𝑙𝑜𝑔2

|𝑆𝑖|

|𝑆|
+ (1 −

|𝑆𝑖|

|𝑆|
) 𝑙𝑜𝑔2(1

𝐿

𝑖=1

−
|𝑆𝑖|

|𝑆|
)] 

(4.8) 

Step 5: Classification tree splits nodes based on either impurity or node error [26]. There 

are three general arguments to split the node and they are: 

i. Gini’s Diversity Index: The Gini index of a node is given by: 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 −  ∑ 𝑝2(𝑖)

𝑖

 (4.9) 

 

where the sum is over the classes 𝑖 at a node, and 𝑝(𝑖) is the observed fraction of classes 

with class 𝑖 that reaches the node. A node with one class has index 0, otherwise any positive 

value. 

ii. Deviance Diversity Index: The deviance of a node is given by: 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  − ∑ 𝑝(𝑖)𝑙𝑜𝑔𝑝(𝑖)

𝑖

 (4.10) 

 

where the sum is over the classes 𝑖 at a node, and 𝑝(𝑖)is the observed fraction of classes 

with class 𝑖 that reaches the node. A pure node has deviance 0, otherwise it is positive. 

iii. Twoing Index: It is not a purity measure but a different way to split a node. The 

Twoing function is given by: 
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𝑇𝑤𝑜𝑖𝑛𝑔 = 𝑃(𝐿)𝑃(𝑅) [∑ 𝐿(𝑖)

𝑖

− 𝑅(𝑖)]

2

 (4.11) 

 

where 𝑃(𝐿)𝑎𝑛𝑑 𝑃(𝑅) are the fraction of observation that split to the left and right, 

respectively. In this case, if the expression is large, each node is purer; but if the expression 

is small each child node will be similar to each other. 

Step 6: Calculate the gain ratio, 

 

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜(𝑋) = 𝐺𝑎𝑖𝑛(𝑋) −  𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑋) (4.12) 

 

The overall gain ratio is given by: 

 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑋)

= − ∑ [{𝑓𝑟𝑒𝑞 (𝐶𝑖 ,
𝑆

|𝑆|
)} 𝑙𝑜𝑔2 {𝑓𝑟𝑒𝑞 (𝐶𝑖,

𝑆

|𝑆|
)}]

𝐾

𝑖=1

+ ∑ [(
|𝑆𝑖|

|𝑆|
) 𝐼𝑛𝑓𝑜(𝑆𝑖)]

𝐾

𝑖=1

1

2
 ∑ [

|𝑆𝑖|

|𝑆|
𝑙𝑜𝑔2

|𝑆𝑖|

|𝑆|

𝐿

𝑖=1

+ (1 −
|𝑆𝑖|

|𝑆|
) 𝑙𝑜𝑔2(1 −

|𝑆𝑖|

|𝑆|
)] 

(4.13) 

 

The advantage of a gain ratio is that it compensates for weaker points in step 3, 

which represents the quantity of information provided by a training set. This allows the 

attribute with the highest gain ratio be selected as the root of the DT. 
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4.3.2 Fault Severity 

All the faults in a system have different importance and that was the reason we 

have chosen to collect the data with a known severity condition, which was used in training 

and testing. In other words, we have implanted the severity in the fault data during the 

experiment design. Table 4.2 represents all the tests with different faults and their severity 

conditions. 

 

4.3.3 Fault Management Strategy 

The last part of the proposed approach is fault management, which can only be 

performed once the fault is detected and its severity is established. The action is mainly 

dependent on the severity of the fault. If the fault is in the low risk category, continuous 

monitoring can help to ensure that any further development of the fault is quickly 

identified. Such faults may actually not be a real fault but the machine’s inherent response 

at that operating level. Later, if the trend increases along with the amplitude of the 

vibration, it has to be investigated properly using both frequency and time domains to 

understand the fault. Faults can be investigated using spectrum as certain frequencies in 

machines represent certain components in machines. The bearing frequencies, gear 

frequencies, unbalance conditions, and misalignment conditions can be detected using 

spectrums. Lastly, if a machine experiences very high vibration levels and reaches the 

reference limits of vibration monitoring standards or other experienced based levels, it must 

be stopped properly and a detailed root cause failure investigation must be performed to 

understand the underlying reason of the faults. There are many reference standards 
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available based on the machinery categories [27]. Some of them are ISO/7919, ISO/10816 

and ISO 7919-1. These standards also recommend which data are required, and how to 

collect and analyze the data to extract useful information. As an example, the reference 

suggests the safe and dangerous operating levels that should be followed when comparing 

the machine data. Table 4.1 shows the fault management matrix, which contains 

information about the severity of machine conditions after comparison with the allowed 

limits of reference vibration for specific equipment. This is only to show that the direction 

as faults should be managed by taking timely and proper actions rather than waiting for the 

failure. The corrective action may be different based on the severity of the service of the 

equipment and may suggest the shutdown even if the equipment is in the medium severity 

level. 

Table 4.1: Fault Management Matrix 

Fault 

Condition 

Fault Severity Levels  

Low  Medium High 

Unbalance 1. Continue to operate 

2. Collect data 

3. Continue monitoring  

1. Continue to operate 

2. Collect data and trend 

3. Increase monitoring 

frequency 

4. Plan to switch over in 

case of redundant 

equipment 

1. Equipment Shutdown  

2. Collect historical data and 

analyze 

3. Obtain spectrum, waveform 

and analyze 

4. Switch over in case of 

redundant equipment 

5. Identify vibration cause 

prior to startup 

Misalignment 1. Continue to operate 

2. Collect data 

3. Continue monitoring  

1. Continue to operate 

2. Collect data and trend 

3. Increase monitoring 

frequency 

1. Equipment Shutdown 

2. Collect historical data and 

analyze 
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4. Plan to switch over in 

case of redundant 

equipment 

3. May require to open the 

casing 

3. Obtain spectrum, waveform 

and analyze 

4. Switch over in case of 

redundant equipment 

5. Identify vibration cause 

prior to startup 

 

4.4 Experimental Setup and Data Collection 

 

In this Section, application of the proposed framework is demonstrated. This 

Section is broken down into two main sub-Sections; i.e., experimental setup and data 

collection. 

 

4.4.1 Experimental setup 

The experimental setup comprised the fault simulator with sensor, data 

acquisition and experiment as shown in Figure 4.4. A laboratory rotor kit as a rotating 

machinery simulator was used to closely simulate the actual rotating machine behavior 

[28]. The rotor kit is capable of simulating real machine faults, which makes it useful for 

laboratory studies to understand the effect of machine faults and failure modes. The rotor 

kit consists of a mechanical base comprising the motor, coupling, rotor shaft, two balance 

wheels, two journal bearings and bearing blocks, six proximity probes, three probe mounts, 

a rub screw, and three safety covers as show in in Figure 4.4 [28]. 
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Figure 4.4: Experimental setup in a laboratory 

To ensure that all the possible fault scenarios data are collected, an experiment test 

table was developed as shown in Table 4.2. This table contains all the test requirements, 

which are capable of providing all the information needed for the validation of the proposed 

model. Equipment was setup to collect all four vibrations from two bearings, phase angle 

information and the speed of the machine. From experience and discussion, these are the 

main features that can help to predict faults and are required for the DT model. The format 

of the data collection is given in Table 4.3. The overall strategy to develop and validate the 

proposed scheme is based on three main tasks. The first task is to collect data using certain 

fault conditions in the laboratory environment. Second task requires to build the DT model 

in MATLAB to train and test the model using laboratory data. The last task is to collect the 

data from real plant fault scenarios, validate the applicability of model, and to suggest the 

actions needed to address the fault condition. The models were implemented in three 

phases: using the noisy and unfiltered vibration data; using cleaned and filtered data; and 

using real-life plant data. In the first phase, we estimated the accuracy of the training and 

testing classification using all the data. In the second phase, the collected data were cleaned 
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by taking out the possible noise areas, i.e. startup data. At the end, we used real machine 

data to validate the applicability of model in detecting faults in real plant conditions. 

 

Table 4.2: Experimental Setup for the Laboratory Test 

 Unbalance Misalignment Labels 

Test 1  0 0 0 

Test 2 2.2 grams 0 1 

Test 3 4.4 grams 0 2 

Test 4 0 Minimum 3 

Test 5 0 Maximum 4 

Test 6 4.4 grams Maximum 5 

  

Table 4.3: Data Collection Strategy for the Test 

Test 1-6 Speed *DE-X *DE-Y *NDE-X *NDE-Y Phase(1X) 
Overall  

Amplitude (1X) 

Units rpm Microns microns microns microns Degrees microns 

* DE is Drive End and NDE is Non Drive End 

 

4.4.2 Vibration Data Collection 

Vibration data collected as Test 1 represents the baseline, which is the "no fault" 

or a baseline condition. Tests 2-6 represent different fault conditions with different 

magnitudes. The conditions of the tests were set on the test rig and the data were collected 

with a certain frequency to ensure the transient or spikes in the data are not missed. Two 

levels of unbalance data were collected, which were 2.2 grams and 4.4 grams. Two levels 
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of combined misalignment were introduced and classified as minimum and maximum, as 

it was really difficult to numerically measure and differentiate the angular and vertical 

misalignments on the machinery simulator kit. Experiments were designed to ensure that 

all the required data in terms of faults and features are captured for the study. Tests for 

unbalance and misalignment were conducted independently, and then a worst case scenario 

of the combined fault tests was run to capture common machine operating conditions. The 

test plan shown in Table 4.2 ensured that all the critical conditions were considered and 

tested. It would be noted that Test 6 was designed to run the combined effect of faults with 

the highest severity. Labels were assigned to the different machine conditions with "0" 

representing "normal condition" and 5 representing the “worst condition”.  

The rotor kit was set up to ensure that it is perfectly balanced with no misalignment. 

Data were collected to startup and shutdown the simulator for all the fault conditions and 

a baseline test with no faults. Features that were selected in data acquisition included speed, 

overall amplitude, 1X amplitude and 1X phase. These features were selected based on 

engineering understanding and experience with the machines. The target variable was the 

operational condition of the machine. The data initially consisted of 8,491 samples 

representing different degrees of these faults. Frequency components of unbalance 

conditions can be observed in waterfall plots as shown in Figure 4.5. In base condition, 

there is no significant component of 1X of speed but with the introduction of unbalance, 

1X of speed component becomes dominant. There are some other orders can be observed 

in waterfall plot at different speeds but they are not dominant. A bode plot of an unbalance 

condition of 2.2 grams is shown in Figure 4.6 to understand the effect of unbalance on 
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amplitude. The change in the magnitudes can be observed as conditions change from no 

fault to higher level of fault. The changes can also be observed among all four due to the 

different faults. 

 

Figure 4.5: Waterfall plot for Unbalance under three different unbalance conditions 

 

Figure 4.6: Snap Shot of Bode Plots with 2.2 grams of Unbalance 
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Descriptive statistics of the vibration data, used both from the rotating equipment 

simulator and real plant, are given in Tables 4.4 and 4.5. The detail of the data used 

provides statistics for comparative analysis. The common parameters like mean, standard 

deviation and count, are presented the tables below. 

 

Table 4.4: Equipment Simulator Descriptive Data Statistics 

 Speed 

Overall 

Amplitude Amplitude Phase 

Mean 2183.8 27.0 18.4 155.9 

Standard Error 8.1 0.3 0.3 1.0 

Standard Deviation 647.4 22.1 22.7 83.1 

Sample Variance 419163.9 486.7 513.9 6912.6 

Range 2038.0 168.8 169.8 359.0 

Count 6460.0 6460.0 6460.0 6460.0 

 

 

Table 4.5: Real Plant Descriptive Data Statistics 

 Speed 

Overall  

Amplitude Amplitude Phase 

Mean 1537.8 61.9 55.6 183.0 

Standard Error 16.0 1.3 1.3 1.5 

Standard Deviation 641.9 53.4 53.1 61.9 

Sample Variance 412093.1 2851.5 2818.9 3831.0 

Range 2324.0 165.4 164.9 270.0 

Count 1619.0 1619.0 1619.0 1619.0 
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4.5 Results and Discussion 

 

Result are presented in two sub-Sections: the first Section will discuss the findings 

based on the data collected using a laboratory simulator while the second Section will 

discuss the model validation using real equipment data with a fault condition. 

 

4.5.1 Model Design and Testing using Rotating Equipment Simulator Data 

With the noisy and unfiltered vibration data, Tables 4.6-4.8 show the results of 

the three DT splitting criteria viz. Gini, Towing and Deviance, respectively. Data 

stratification is part of the model design methodology to eliminate the bias among different 

label categories. The randomized stratification method was used to ensure that all the fault 

cases are well represented in the subsets. This was also to ensure fairness in the evaluation 

of the performance of the models. Using a fixed stratification would have resulted in a set 

of faults being used in training and others used in testing. This will be unfair to the model 

performance evaluation. To study the effect of the stratification on the performance of the 

models, we evaluated three cases with different percentage of stratification viz. 70%, 80% 

and 90%. With these stratification strategies, 70%, 80% and 90% of the entire dataset was 

used for training while the remaining data was used for testing. The results of these are 

summarized in Tables 4.6 through 4.8.     
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Table 4.6: Fault Classification Accuracy using Gini Index Split 

 S – 70% S – 80% S – 90% 

Classification R – 1 R - 2 Avg. R - 1 R - 2 Avg. R - 1 R - 2 Avg. 

Training (%) 95.6 95.1 95.3 95.7 95.6 95.6 95.7 95.6 95.6 

Testing (%) 84.1 85.7 84.9 87.8 86.2 87.0 85.8 86.7 86.2 

 

Table 4.7: Fault Classification Accuracy using Twoing Split 

 S – 70% S – 80% S – 90% 

Classification R – 1 R - 2 Avg. R - 1 R - 2 Avg. R - 1 R - 2 Avg. 

Training (%) 95.1 95.5 95.3 95.7 95.5 95.6 96.3 96.1 96.2 

Testing (%) 85.7 86.8 86.2 87.3 85.9 86.6 87.7 87.1 87.4 

 

Table 4.8:  Fault Classification Accuracy using Deviance Split 

 S – 70% S – 80% S – 90% 

Classification R – 1 R - 2 Avg. R - 1 R - 2 Avg. R - 1 R - 2 Avg. 

Training (%) 95.5 96.0 95.75 96.3 96.1 96.2 96.0 96.2 96.1 

Testing (%) 86.1 86.0 86.0 87.7 87.1 87.4 89.6 88.3 88.9 

 

Classification problems are highly dependent on the features. The use of the most 

relevant features is capable of greatly improving the classification accuracy. To understand 

the impact on training and testing classification accuracy, different applicable features were 

selected and used. Table 4.9 shows the effect of the number of features. The training and 

testing classification improved from 56.4% to 95.4% and from 30.5% to 85.7%, 

respectively; which can be observed graphically in Figure 4.7. It was observed that the 

greater the number of features, the better the models predicted. The gap between training 
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and testing with one feature was 25.9%. This gap significantly reduced with four features 

to 9.7%.  

 

Table 4.9: Effect of the Number of Features on Average Classification Accuracy 

# of Features Training Classification  

Accuracy 

Testing Classification  

Accuracy 

1 56.4% 30.5% 

2 82.4% 58.0% 

3 88.7% 71.6% 

4 95.4% 85.7% 

 

 

Figure 4.7: Effect of features on classification accuracy 

 

To improve the classification accuracy, the data were reviewed and filtered. Some 

initial start data were taken off due to the presence of noise and abnormalities. Table 4.10 
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shows the results after data cleanup and a significant improvement was noticed. The testing 

classification accuracy was improved by 5-6% and testing accuracy marginally improved 

by 2%. There was no significant difference noticed among the three split criteria, but the 

Deviance split performed slightly better than the other two. The stratification effect shows 

slight improvement in classification as we moved from 70-90%. The combined effect of 

stratification and splitting criteria can be seen in Figure 4.8. The training and testing graphs 

correspond to the three training options that are available in the Decision Tree algorithm, 

Gini, Twoing and Deviance at 70, 80 and 90% stratification respectively. Each of these 

algorithms has been described in Section 4.3.  Gini is the commonly used algorithm, 

however, we found it necessary to investigate the effect of the other algorithms. Deviance 

algorithm performed slight better than the other two algorithms in this case. On the average, 

the slight positive change is not shown only in the 90% stratification but also in the 80%. 

The reason for improvement, which also confirms our conclusion, is that generalization 

(testing) improves with increase in the number of training samples, when the proportion of 

the training stratification increases. 
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Figure 4.8:  Classification accuracies — stratification levels and algorithms 

D1 and D2 represent the model performance, at similar conditions, with unfiltered 

and filtered data, respectively. Training classification improved in the range of 1.6-2.1%. 

The testing classification accuracy demonstrated good improvement, which ranged from 

5.3-6.2%, as can be seen in Table 4.10. 

 

Table 4.10: Test Results after Data Cleanup at 70% Stratification 

 Gini Twoing Deviance 

Classification D1 D2 Improvement D1 D2 Improvement D1 D2 Improvement 

Training (%) 95.3 97.3 2.1% 95.3 97.4 2.2% 95.7 97.2 1.6% 

Testing (%) 84.9 90.2 6.2% 86.2 90.8 5.3% 86.0 90.9 5.7% 

 

It was also observed that the different split criteria caused slight improvements in 

the model implementation. The number of input features and their relevancy to the problem 

had significant impact in this problem. This agrees with similar observations published in 



 

135 

 

the fault classification problems discussed by Amarnath et al. [16] and Sugumaran et al. 

[21]. 

 

4.5.2 Model Validation using Real Plant Equipment 

To ensure the model works with real machinery data, some data with unbalance 

condition were collected and used on the same model. To ensure the similar comparison, 

similar features and the same split criterion were used. In this analysis, we used a 70% 

stratification factor rather than comparing different ranges as we observed that there was 

no significant improvement among the stratification strategies. Table 4.11 shows the 

performance results of the model at different split criteria. It was observed that the model 

was able to generalize well with real equipment data as the features in the real plant are not 

controlled like in the laboratory setup. The training accuracy is comparable to that of 

cleaned data. Testing accuracy improved by 2.1%, 0.7% and 2.3% with the Gini, Twoing 

and Deviance split criteria, respectively. The Area under Curve (AUC) also slightly 

improved in the range of 99.7-99.9%, which shows that the model is capable of excellent 

generalization with real operational data. 

 

Table 4.11: Real Plant Equipment Data Results 

Classification Gini Twoing Deviance 

Training (%) 97.8 97.5 97.9 

Testing (%) 92.3 91.5 93.4 

Area Under Curve (%) 99.8 99.7 99.9 
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Comparison of classification accuracy was performed to show the difference 

between real plant data and laboratory data as shown in Figure 4.9. The plant data showed 

an average of 6.7% training classification improvement and around 2.3% for testing. The 

improvement shown in the plant data is extremely beneficial due the potential improvement 

by applying proposed model to real life industrial problems. 

 

 

Figure 4.9: Classification accuracy comparison 

 

The results of the fault detection accuracy using real plant data are shown in Table 

4.12. Real plant machinery vibration data were used to detect unbalance fault using the DT 

based proposed algorithm. The model has shown that on average the model has the 

capability of detecting faults correctly in ranges from 98.4 - 99.4% with an incorrectly 

detecting a fault range from 0.53 - 1.26%. In published research [16], a DT based fault 

detection model was proposed using acoustic signals for fault detection. The results showed 

the true positive accuracy ranges from 93.3 - 96.7% and incorrect detection was around 3.3 
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- 6.7%. In another work presented by Sugumaran et al [21], where the vibration signals are 

used to detect faults, 86% of true accuracy and 14% of incorrect detection is reported. We 

acknowledge that there are some differences among other published works [16-17, 20, 22] 

and this work, such as different systems, different faults and sensors. However, the 

commonality is that all have used DTs based models for fault detection.  Based on this 

commonality, the proposed model in this research delivers a true positive level that is 

comparable to the results reported by others utilizing similar methods. 

 

 Table 4.12: Fault detection using the proposed DT based model 

Description Fault Labeled  

Correctly (%) 

Fault Labeled  

Incorrectly (%) 

Average – Gini 99.47 0.53 

Average – Twoing 98.44 1.56 

Average – Deviance 98.74 1.26 

4.6 Conclusion 

 

Fault detection and management plays a vital role in managing system availability. 

An application of DTs for detecting machinery faults and addressing them through proper 

management action has been successfully presented. A DTs based predictive model was 

developed to detect faults and their severity using vibration data. The overall testing 

classification accuracy was about 97% and the testing accuracy was 92% has achieved, 

which is comparable with other DTs based fault detection models.  
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We observed a 5% overall improvement in the classification accuracies when 

filtered data were used instead of an initial noisy and unfiltered data. Results also showed 

significant improvements using optimal features as the training classification accuracy with 

4 features is around 95% and testing classification accuracy is around 85%. The highest 

classification accuracy performance of 85% with 7 features and about 83% with 4 features 

is also reported in another work [21], which is in-line with this work finding. The model 

validation using real plant data compared to laboratory data was outstanding as the testing 

and training accuracies improved by 6.7% and 2.3%, respectively. The proposed model has 

shown that on average the model has the capability of detecting faults correctly in ranges 

from 98.4 - 99.4% with an incorrectly detecting fault range between 0.5 - 1.2%. This indeed 

is a great benefit for plant engineering in handling faults.  

Although, this work is limited to three fault conditions, but model can be extended 

to dynamic online system to diagnose other machinery faults under different operating 

conditions. The other limitation experienced during the development of this model is 

changing operating conditions and possible fault scenarios in testing data. To address this 

limitation, we have developed the dynamic model which has capability of updating the 

training sets to include the new possible scenarios without building the model from scratch. 

The performance of the proposed model demonstrated that it can be practically used for 

detecting fault conditions and their severities in real and operational scenarios of rotating 

machines. Along with detection of faults, the proposed fault management strategy also 

plays an important role in enhancing plant availability. The machine learning-based holistic 
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approach from detection to management proposed would be of great help to avoid 

unscheduled breakdowns and improving the availability of facilities. 
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CHAPTER 5 

A MULTI-CONSTRAINED MAINTENANCE SCHEDULING 

OPTIMIZATION 5  

 

Abstract 

A maintenance scheduling optimization model considering equipment risk, total 

maintenance cost, system reliability, and availability is proposed. This work is motivated 

by gas processing operator concern for high maintenance costs, poor availability and 

reliability caused by inefficient maintenance scheduling. The approach presented in this 

                                                 

5 This Chapter is based on the published work in a peer-reviewed journal. Qadeer Ahmed, Kamran 

S. Moghaddam, Syed A. Raza, Faisal I. Khan (2015), “A Multi Constrained Maintenance 

Scheduling Optimization Model for Hydrocarbon Processing Facilities,” Journal of Risk and 

Reliability Engineering, accepted for publication. To minimize the duplication, all the references 

are listed in the reference list. The contribution of the authors is presented in Section titled, “Co-

authorship Statement”. The contribution of the authors is presented in Section titled, “Co-

authorship Statement”. 
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Chapter addresses the optimization of maintenance costs by efficiently scheduling 

maintenance tasks subject to reliability and availability constraints. Four maintenance 

actions are considered for equipment; namely corrective, replacement, maintenance, and 

inspection. The proposed solution develops maintenance schedules for complex repairable 

system with equipment operating in series. Two single objective, nonlinear mathematical 

models are presented to find the optimal maintenance cost subject to reliability and system 

reliability subject to availability constraint. A goal programming model is also proposed to 

simultaneously deal with multiple criteria based on their importance and defined goals. A 

gas absorption system of a hydrocarbon processing facility is used to ensure the practicality 

of the proposed formulation to real industry problems. A comparison of existing and 

proposed formulation is carried out to show that the proposed optimization approach is an 

efficient method for optimizing maintenance schedules and flexibility to adjust schedules 

in complex operating systems. 

5.1 Introduction 

 

Equipment availability and effective maintenance are two strongly related 

important criteria for ensuring safe operative system that is capable of handling production 

requirements. Proper maintenance of deteriorating equipment prevents unwanted 

breakdowns, which lead to poor system reliability and high production cost. Low system 

reliability and availability negatively impact the company’s image and commitment to 

deliver on-time quality products. Equipment breakdowns are unsafe and generally cost the 
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company a huge amount of capital along with jeopardizing its reputation in industry. These 

issues encourage organizations to develop smarter and effective strategies to significantly 

improve maintenance schedules to achieve safe operations with high equipment 

availability and lower costs. A balance between expense and profit is also an objective for 

any organization to stay in business and meet the expectations of stakeholders. The benefits 

of maintenance schedule optimization have led researchers to develop optimization 

methods and techniques, which have been proposed and published over the years. The 

proposed methods have a wide range of objectives, constraints, and optimization 

methodologies with a common goal of achieving low cost and effective solutions. In 

general, maintenance is critical to ensure system availability, but advances in technology 

and new heuristic algorithms have paved new roads to efficiently optimize maintenance 

actions. Maintenance has become a vital function as maintenance cost is a significant 

portion of the total operating cost in asset intensive industries such as petrochemical and 

gas plants. Different types of maintenance tasks have been introduced and practiced in 

industry including preventive, predictive, reactive, and corrective maintenance. Realistic 

maintenance requirements must be properly understood and action plans should be 

properly developed to address the equipment failure modes. Maintenance has two critical 

aspects; what and when? “What” relates to a maintenance task or activity; and “when” 

explains the time characteristics of maintenance. Both features are critical and, if not 

handled correctly, can negatively impact both availability and cost. We will concentrate on 

maintenance scheduling optimization, which includes corrective, preventive, replacement, 

and inspection maintenance. 
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Maintenance is defined as “a task performed to retain or restore a function of 

equipment during its life cycle” [1]. Much maintenance, including preventive, corrective, 

reactive, operational, and others are available to ensure improved functionality of the 

equipment. In this research, we have considered four major maintenance tasks, namely 

inspection, maintenance, corrective, and replacement. Preventive maintenance can be 

defined as, “a fundamental, planned maintenance activity designed to improve equipment 

life and avoid any unplanned maintenance activity [1].” Preventive maintenance has a 

direct impact on availability necessitating selection of appropriate tasks at proper intervals. 

Corrective maintenance is defined as “a maintenance task performed to repair or restore 

function of equipment after a breakdown.” This category of maintenance is often expensive 

due to the failure of multiple components in an unscheduled breakdown event [2]. 

Replacement maintenance is a task where the component of equipment is replaced based 

on the established life of components. In this maintenance activity, the cost is lower due to 

the prior planning of component replacement. An inspection task is defined as “the task 

performed on equipment while in operation to spot any abnormality.” This task generally 

requires cleaning, lubrication, minor adjustment, and reporting of any abnormality found 

during inspection. While inspection is generally performed by plant operators; other 

maintenance tasks are performed by maintenance technicians and maintenance engineers. 

Predictive maintenance is also a maintenance activity classified as “a technique that helps 

determine the condition of in-service equipment in order to predict when maintenance 

should be performed” [3]. A predictive approach offers some benefits over other 

maintenance actions, but requires good quality data and experienced individuals to 
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interpret the data to make correct decisions. There is a great effort in development of smart 

diagnostics and prognostics algorithms to enhance the prediction accuracy; but it is not part 

of this work. 

Maintenance optimization is a very important area of research due to its potential 

benefits to industry. It has gained exposure as a result of significant change in traditional 

and contemporary maintenance, where maintenance has no longer only an organization’s 

support function but considered as business driver. These days maintenance focus is not 

only to keep the plant in operation but emphasis is also on efficient utilization of equipment. 

Maintenance management becomes extremely important in industries such as liquefied 

natural gas (LNG) due to the presence of a large number and wide variety of critical 

equipment. Processing LNG is a hazardous process requiring considerable safety. It is a 

cryogenic process where the operating temperature is around -164°C and any failure can 

have catastrophic consequences. As a result, effective and optimized maintenance is a key 

to safety, optimal availability, and reduced overall maintenance cost of the facilities. 

Maintenance in hydrocarbon processing facilities is important not only  because of critical 

application but also unplanned breakdown equipment cost is significant in terms of 

production loss and customer satisfaction by missing the promised deliveries. These are 

some reasons that many researchers from industry and academia are involved in the 

formulation of new maintenance optimization models and algorithms to address this area. 

Maintenance optimization has progressed through different stages as the knowledge and 

tools become available to solve complex problems. Advances in optimization algorithms 

have paved the road for solving multi-objective maintenance optimization. Earlier, 
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maintenance optimization models were more focused on cost minimization and 

maintenance task schedules. This may be due to the limitation of the advanced data 

processing tools, i.e., computerized maintenance management systems (CMMS), asset 

performance management (APM) systems, efficient simulators and high speed processors, 

along with lack of understanding of the influence of maintenance relationships with other 

variables. Developments in technology and innovation have introduced processing of 

utilized data and data mining to understand equipment failure modes and their 

consequences for developing the right maintenance actions.  Understanding risk and 

consequences of failure of equipment greatly helps in the selection of optimal execution of 

maintenance intervals through risk-based prioritization. Risk-based maintenance 

scheduling optimization can greatly influence maintenance costs as it addresses equipment 

criticality and prioritization of tasks accordingly. Risk is a product of probability of 

equipment failure and its consequence to environment, production and personnel [4]. The 

term, Equipment Risk Index (ERI) classifies the equipment criticality and helps to 

prioritize maintenance actions. This risk index ranges from high to low; a higher ERI score 

is used to determine the maintenance priority. 

Nowadays, extensive research in maintenance scheduling optimization is being 

conducted due to its usefulness and benefits to industry. This includes maintenance 

scheduling using dynamic programming and introduction of heuristic algorithms in 

maintenance optimization with reliability, availability, and budget criteria [5]. In other 

work, integer programming and branch-and-bound was introduced. Branch-and-bound is a 

technique for solving integer linear programming (ILP) problems but integer programming 
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has limitations in solving nonlinear objective functions [6]. Some other meta-heuristics, 

like genetic algorithms, have been introduced to effectively handle optimization problems 

in maintenance and reliability contexts [7-9]. A genetic algorithm (GA) is efficient in 

addressing nonlinearity. Most meta-heuristic algorithms are approximate and mostly non-

deterministic; similarly, GAs are approximate and cannot guarantee an optimal solution. 

Newer research covers many areas in maintenance optimization, which includes cost, 

manpower, resources, operation, and equipment shutdown schedules to reap real benefit 

by properly optimizing maintenance tasks. In this work, different maintenance tasks are 

used to minimize maintenance cost subject to reliability, and maximize reliability subject 

to system availability. A gas absorption unit in a gas processing plant is used to implement 

the proposed maintenance schedule optimization. 

 

5.1.1 Description of a Natural Gas Treatment and Gas Absorption System 

A natural gas processing plant is asset intensive and demands proper care of 

equipment to ensure safe and continuous operation. In these asset intensive plants, proper 

and timely maintenance is vital to guarantee safety and meet customers’ demands from 

around the globe by producing product on schedule. This makes maintenance scheduling 

and optimization an important function in process plants. Gas is produced at plants in both 

forms, i.e., gas and liquid. In liquid form, the temperature of natural gas is usually around 

-160°C and the volume is around 1/600 times that of gas at room temperature. A general 

gas process consists of following several major steps as shown in Figure 5.1. Raw gas is 

received from a reservoir to the inlet receiving area, which is followed by treatment of 
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corrosive and hazardous contents, liquefaction of natural gas or storage, and shipping of 

the gas.  

 

 

Figure 5.1: General product flow in a gas processing plant [4]  

Generally, from the reservoir, a three-phase feedstock is sent to the onshore 

receiving area where the gas, condensate, and water are separated from feedstock. Natural 

gas from wells usually contains many hazardous and non-hazardous elements, which in 

most cases must be removed prior to NG liquefaction. These hazardous elements are 

usually sulfur in the form of hydrogen sulfide, carbon dioxide, water, helium, mercury, 

other sulfur species, and heavy hydrocarbons. They have detrimental effects on equipment 

and require efficient maintenance and operation to improve system availability. The natural 

gas feedstock is treated in gas sweetening unit to remove sulfur and water. Other 

contaminants like mercury and mercaptan are removed from gas prior to the other process 

to enhance the life of the equipment, i.e., aluminum exchangers. In this research, a Section 

of a gas sweetening unit in a gas processing plant is selected to optimize maintenance 

schedule under constraints. It mainly consists of acid gas removal from the gas stream. The 
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absorption unit is very critical for both safety and production as it absorbs hydrogen sulfide 

and carbon dioxide. These gases are highly corrosive and will cause severe damage to 

cryogenic vessels during the liquefaction process; therefore, it is necessary to remove these 

gases and contaminants before they reach the final stages of liquefaction. In the acid gas 

absorbers, hydrogen sulfide and carbon dioxide gases are absorbed completely in the 

solvent and sweet natural gas is routed to the gas drying Section and liquefaction units. 

Since the natural gas sweetening process is very critical in terms of operations and 

commitment needed for production, the availability and reliability of all the equipment 

remains under focus and operational integrity is monitored closely. For reliable processing 

of the gas sweetening unit, all required equipment must be maintained for overall operation 

of the plant. 

 

5.1.2 Research Objective and Contributions 

While maintenance is one of the important activities in processing facilities; it 

should not be taken as an inevitable source of cost savings to ensure continuous and safe 

operation. The importance of maintenance management and optimization is reflected in 

many publications by researchers, as discussed in Section 5.2 of this Chapter. We have 

addressed optimal maintenance scheduling in a gas absorption system of a natural gas 

processing plant where maintenance is critical and extremely important due to the risk 

posed by high gas pressure, low operating temperatures, and the presence of hazardous 

hydrocarbons. We expanded previous work by developing a framework and mathematical 

formulation that is applicable to repairable systems using four different maintenance 
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actions of inspection, preventive, corrective, and replacement [5]. Corrective maintenance 

action due to equipment breakdown is also considered, which can negatively impact 

availability, reliability, and safe work environment. The advantages offered by optimal 

maintenance scheduling are two-fold; it minimizes maintenance durations to ensure plant 

availability and directs optimum maintenance scheduling actions to keep the maintenance 

cost low for a desired level of availability and reliability. This work mainly presents four 

major contributions, which are: 

1. Developed two single objective optimization models, (1) minimization of 

maintenance cost subject to reliability constraints, and (2) maximization of system 

reliability subject to availability constraints. 

2. Developed a goal programming model that simultaneously considers multiple 

criteria; cost, reliability, and availability. This model was applied on a gas 

absorption system using different goals and weights to obtain Pareto-optimal 

maintenance schedules to demonstrate the formulation applicability to real industry 

problems. 

3. Maintenance costs, maintenance duration, system reliability, and availability of an 

existing gas absorption system were estimated to compare with proposed 

formulation results.  

4. Introduced the concept of the ERI while handling real plant maintenance 

prioritization. The ERI is used to classify equipment criticality, which helps with 

prioritizing the maintenance task particularly during a resource or schedule 
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constraint. The effect of the ERI on maintenance schedules is presented in Section 

5.3.2. 

This work proposes a maintenance scheduling optimization approach that 

minimizes maintenance costs subject to desired plant reliability and availability targets. 

Section 5.1 provides the introduction of maintenance, maintenance optimization, and a 

brief description of a gas absorption system; and Section 5.2 provides the literature survey. 

Section 5.3 encompasses the problem formulation and constraint development. In Section 

5.4, three optimization models are developed. In Section 5.5, an analysis of the proposed 

models is carried out. Section 5.6 presents the results of developed model when applied to 

a gas absorption system and maintenance cost comparison is performed using the existing 

maintenance practices. Finally, in Section 5.7 the results are summarized in a conclusion. 

 

5.2 Literature Research 

 

Maintenance and reliability optimization have been investigated by many 

researchers for the last couple of decades. In general, optimization is a mathematical model 

to find the best or optimal solution from all possible solutions. These models have been 

developed to optimize different objective functions, including but not limited to, revenues, 

maintenance schedules, system availability, and costs in different industries. In this work, 

we are focused on maintenance scheduling optimization of a processing facility, and so 

some related work is explored. Several optimization techniques in single objective 
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optimization have been introduced, and now researchers are more focused on multi-

objective optimization due to its extensive application and utilization in real life 

applications. A single-objective optimization problem in which more than one criterion is 

considered simultaneously becomes multi-objective optimization [10]. Maintenance is 

important to ensure availability and manage maintenance cost, which makes it an 

interesting area of research both from an academia and industry perspective.  

In this Section, we have discussed the work performed in the area of maintenance 

schedule optimization. Maintenance optimization in hydrocarbon facilities is not explored 

extensively, which provides an opportunity to expand in this area. A joint production and 

maintenance scheduling model with multiple preventive maintenance services is presented 

[11]. To handle this problem, a mixed integer nonlinear programming model is developed 

and then a population-based variable neighborhood search algorithm is devised for a 

solution method. The simulation outcome shows the outstanding performance of traditional 

genetic algorithms and basic variable neighborhood search in terms of both effectiveness 

and robustness. A cost minimization objective function with system reliability is presented 

to optimize the maintenance schedule [12]. A component-based heuristic algorithm was 

developed to solve the optimization model for a real field system while maintaining the 

architecture or components in a traction catenary system. A meta-heuristic model is 

presented for maintenance scheduling of generators using hybrid improved binary particle 

swarm optimization based coordinated deterministic and stochastic approach [13]. The 

objective function focuses on reducing the loss of load probability and minimizing the 

annual supply reserve ratio deviation for a power system as a measure of power system 
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reliability. The proposed method yields better results by improving search performance and 

better convergence characteristics compared to the other optimization methods and 

conventional method. A technique based on one of the artificial immune system techniques 

known as the clonal selection algorithm to obtain the optimal maintenance schedule outage 

of generating units is proposed [14]. It has successfully been used to solve the maintenance 

scheduling sub-problem to obtain the optimal maintenance outage of each unit. 

Risk is a critical component in decision making processes and plays a vital role in 

maintenance optimization. Risk-based optimizations are also gaining momentum to 

explore the detrimental effects of equipment breakdowns on the operation of processing 

facilities. These effects cover production revenue loss, downtime, environmental, and 

safety concerns due to the unavailability of equipment. Many researchers have worked on 

risk-based approaches to maintenance optimizations [15-17]. A risk-based optimization 

model for system maintenance scheduling problems is proposed, which consists of 

optimizing availability and the cost of the system by balancing between system 

maintenance risk and failure risk [18]. A genetic algorithm is used to obtain the sequence 

of maintenance actions providing a desired level of reliability with minimum system risk. 

Results obtained from the modeling approach support the validity of the model in 

optimizing maintenance schedules. A new version of the simulated annealing method for 

solving the generator maintenance scheduling problem is presented [19]. The model 

considered in this paper is formulated as a mixed integer program, with a reliability 

optimality criterion, subject to a number of constraints. The proposed simulated annealing 

algorithm performs very well compared to other methods on the benchmark test system 
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presented in literature. A preventive maintenance scheduling problem with interval costs 

to schedule preventive maintenance of the components is proposed [20]. A study is 

performed from a polyhedral and exact solution point of view, as opposed to previously 

studied heuristics. As a result, the proposed model can be effectively used as a building 

block to model several types of maintenance planning problems possessing deterioration 

costs. A hybrid evolutionary algorithm is explored to tackle the reliability based generator 

maintenance scheduling problem [21]. Uncertainties in the generating units and the load 

variations are included so that a more realistic scheduling is obtained. A new local search 

method, which is derived from external optimization and genetic algorithm, is presented to 

tackle the problem. This method can be used as a local optimizer to further improve the 

potential solutions in the genetic algorithm. An advanced progressive real coded genetic 

algorithm is applied to optimize the availability of standby systems with preventive 

maintenance scheduling [22]. Results from an emergency system are compared with those 

obtained by some standard maintenance policies, and previously published papers. 

A modified genetic algorithm approach to long-term generation maintenance 

scheduling to enhance the reliability of the units is presented [23]. Maintenance scheduling 

establishes the outage time scheduling of units in a particular time horizon. The proposed 

methodology is used for finding the optimum preventive maintenance scheduling of 

generating units in power system. The objective function is to maintain the utility power 

system units as early as possible under constrains such as spinning reserve, duration of 

maintenance and maintenance crew are being taken into account. A selection of multiple 

maintenance strategy in process equipment is presented [24]. Three maintenance strategies 
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namely, repair maintenance, preventive maintenance, and preventive replacement on 

equipment reliability was analyzed. The harmony search algorithm was designed to solve 

the model, and the diversity of solutions was ensured by generating the new solution and 

the replacement process. A non-dominated sorting genetic algorithm based optimization 

approach is presented for an optimum maintenance to improve the average reliability of 

ship's operations at sea at minimum cost [25]. The advantages are explored that can accrue 

from introducing short maintenance periods for a select group of machinery, within the 

constraints of mandatory operational time, over the method of following a common 

maintenance interval for all the machinery. An integrated model for the joint determination 

of both optimal inspection strategy and optimal repair policy is discussed for a 

manufacturing system whose resulting output is subject to system state [26]. In this paper, 

an intensity control model adapted to partial information provides an optimal inspection 

intensity and repair degree of the system as an optimal control process to yield maximum 

revenue. A numerical example is provided to illustrate the behavior of the optimal control 

process. An inspection and replacement policy for a protection system is described in 

which the inspection process is subject to error, and false positives and false negatives are 

possible [27]. Two models are developed, one in which a false positive implies renewal of 

the protection system and the other does not implies renewal. The model allows situations 

in which maintenance quality differs between alternative maintainers to be investigated. 

Reliability is one of the most efficient and important method to study safe operation 

probability of hydraulic systems. The reliability of a hydraulic system of four rotary drilling 

machines has been analyzed [28]. The data analysis shows that the time between failures 
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of two machines obey the Weibull distribution. Also, the time between failures of two other 

machines obey the lognormal distribution. Later, preventive reliability-based maintenance 

time intervals for 80% reliability levels for machines are presented. 

The problem of determining operations and maintenance schedules for a 

containership equipped with various subsystems is studied during its sailing according to 

a predetermined navigation schedule [29]. A mixed integer programming model is 

developed. Then, due to the complexity of the problem, a heuristic algorithm that 

minimizes the sum of earliness and tardiness between the due date and the actual start time 

for each maintenance activity is discussed and improvement is reported over the experience 

based conventional method. A novel cost-reliability model, which allows the use of a 

flexible interval between maintenance interventions, is proposed [30]. It allows a 

continuous fitting of the schedules to deal with the changing failure rates of the 

components. A single objective optimization model was explored to determine the optimal 

maintenance policy by minimizing cost and respecting availability constraint for a series-

parallel system [31]. In [32], an overview and tutorial about multi-objective formulation is 

explored. Another work proposed a multi-objective maintenance problem in relation to a 

system that needs to operate without interruption between two consecutive stops with a 

reliability level not lower than a fixed value. [33]. A multi-objective formulation is 

proposed to minimize the cost and maximize the availability of a global system [34]. In 

this proposed model, availability allocation to a repairable system at the design level is 

considered rather than availability in the operating phase.  
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The complex landscape of maintenance optimization and its huge impact on 

industry has received considerable attention among academia and industry to come up with 

methods to develop efficient maintenance schedules. In this work, we have explored the 

concept of equipment failure risk in maintenance by identifying critical equipment using 

risk assessment. Goal programming is an extension of linear programming, which provides 

flexibility to handle a decision concerning multiple and conflicting goals [35]. This 

approach is extensively applied in optimization research. Due to its handling of multiple 

criteria simultaneously, we have used goal programming to solve a model to study the 

impact of cost, reliability, and availability based on defined goals and weights. Under 

different goals and weights, a developed model was applied to a gas absorption system to 

obtain optimized maintenance schedules. To the author’s knowledge, maintenance 

scheduling optimization has a great research potential because of the complexity of 

equipment failure patterns, resource availability, risk to production and society, etc. All 

these constraints, i.e., maintenance factor, reliability, and availability have the potential to 

explore and provide a great value to industry by developing maintenance strategies and 

optimizing them. As a result, this work is expected to contribute by developing a practical 

solution to the industry’s concern for efficient maintenance scheduling. 

5.3 Formulation of a Maintenance Optimization Model 

 

Effective maintenance is one of the key functional areas in industry to address plant 

uptime, maintenance cost, safety, and availability. To address these objectives, 
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maintenance optimization has gained momentum in understanding equipment failure 

modes, equipment age, remaining useful life, and the disadvantages of only performing 

time-based maintenance. The estimation of equipment age is a difficult task, which drives 

conservative maintenance schedules to avoid unscheduled breakdowns. This results in 

performing maintenance too early when it is not required and possibly introducing the 

effect of poor workmanship. If the maintenance is performed too late, equipment may run 

the risk of an unscheduled breakdown. This all makes maintenance scheduling a 

demanding area of interest for the industry and researcher. A maintenance schedule 

optimization is developed to minimize cost subject to system reliability and availability 

constraints. 

 

Notation 

A. Sets  

M Number of equipment 

T Number of intervals over the planning horizon 

  

B. Indexes  

𝑚 Index for an equipment, ∀ 𝑚 = {1,2,3, … , 𝑀} 

𝑡 Index for time period, ∀ 𝑡 = {1,2,3, … , 𝑇} 

  

C. Parameters  

L Length of the planning horizon 

𝑇𝐶 Total cost  

𝐶𝐹𝑚 Cost of corrective (failure) task of equipment, 𝑚 

𝐶𝑅𝑚 Cost of replacement of components in equipment, 𝑚 
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𝐶𝑀𝑚 Cost of maintenance of equipment, 𝑚 

𝐶𝐼𝑚 Cost of inspection of equipment, 𝑚 

𝐶𝑂𝑚 Cost of operation task of equipment, 𝑚 

𝐶𝑀𝑇𝑚 Cost of the material of equipment, 𝑚 

𝐶𝐿𝐹𝑚 Labor cost/hour to perform a corrective task for equipment, 𝑚 

𝐶𝐿𝑅𝑚 Labor cost/hour to perform a replacement task for equipment, 𝑚 

𝐶𝐿𝑀𝑚 Labor cost/hour to perform a maintenance task for equipment, 𝑚 

𝐶𝐿𝐼𝑚 Labor cost/hour to perform an inspection task for equipment, 𝑚 

𝜌𝑚 Failure cost factor for equipment, 𝑚 

𝑇𝐹𝑚 Time required to perform a corrective repair for equipment, 𝑚 

𝑇𝑅𝑚 Time required to replacement equipment, 𝑚 

𝑇𝑀𝑚 Time required to perform maintenance on equipment, 𝑚 

𝑇𝐼𝑚 Time required to inspect equipment, 𝑚 

𝛽𝑚 Shape parameter of equipment, 𝑚 

𝜆𝑚 Scale parameter of equipment, 𝑚 

𝛼𝑚 Improvement factor of equipment, 𝑚 

𝜈𝑚 Rate of occurrence of failure (ROCOF) 

𝐸[𝑁𝑚𝑡] Expected number of failures of equipment, 𝑚, and time, 𝑡 

𝐸𝑅𝐼𝑚 Equipment Risk Index of equipment, 𝑚 

𝑈𝐵 Upper bound 

𝐿𝐵 Lower bound 

𝑅𝑚𝑡 Reliability of equipment, 𝑚, at time, 𝑡 

𝐴𝑚𝑡 Availability of equipment, 𝑚, at time, 𝑡 

𝑅𝑡𝑎𝑟𝑔𝑒𝑡 Required reliability of a complete system 

𝐴𝑡𝑎𝑟𝑔𝑒𝑡 Required availability of a complete system 
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D. Decision variables 

𝐴𝑆𝑚𝑡 Age of equipment, 𝑚, at the start of period, 𝑡 

𝐴𝐸𝑚𝑡 Age of equipment, 𝑚, at the end of period, 𝑡 

  

𝑋𝑚𝑡 {
1 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑓𝑜𝑟 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡, 𝑚, 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑡
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑌𝑚𝑡 {
1 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑓𝑜𝑟 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡, 𝑚, 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑡
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑍𝑚𝑡 {
1 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑓𝑜𝑟 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡, 𝑚, 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑡
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  

 

5.3.1 Maintenance Task Description 

Many maintenance tasks have been developed to ensure the functionality of 

equipment by properly capturing their failure modes and assigning suitable tasks. In this 

Section, discussion will be about the mathematical formulation of the maintenance models. 

5.3.1.1 Failure Model 

In general, manufacturing and chemical processing plants have two types of 

equipment; they are classified as repairable and non-repairable. Repairable systems are 

subject to repair after a breakdown or failure, whereas non-repairable systems and 

components are replaced with similar or improved design upon failure. Weibull 

distribution is commonly used to model the time-to-failure of non-repairable systems; but 

for repairable systems, the time to failure events are not independent from each other. A 

non-homogeneous Poisson process (NHPP) is used to model time-dependent random 

failures. The system used for this type of optimization problem includes a repairable system 
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consisting of equipment, 𝑀, subject to failure, repair, replacement, and inspection where 

equipment time to failure follows the NHPP. Each piece of equipment in the system is 

assumed to have an increasing failure rate, which suggests a shape parameter to be greater 

than 1. A shape parameter less than 1 represents a decreasing failure rate, and when equal 

to 1 the parameter corresponds to a constant failure rate. Maintenance and repair actions 

restore the function of equipment; as a result, we have modeled the occurrence of the failure 

using a stochastic non-homogeneous Poisson process. In a non-homogeneous Poisson 

process, failure rate is function of time. As we are considering increasing failure rate, Rate 

of Occurrence of Failure (ROCOF), 𝜈𝑚(𝑡) is given by [5], 

 

𝜈𝑚(𝑡) = 𝜆𝑚. 𝛽𝑚 . 𝑡(𝛽𝑚−1), ∀ 𝑚 = 1, … , 𝑀 (5.1) 

 

One of the objectives of this work is to develop a schedule that is generally 

understood as an inspection task, preventive maintenance, and a replacement or failure 

repair task for each equipment item, 𝑚, for a planning horizon, 𝐿. The overall planning 

horizon has equally spaced periods, i.e., 𝐿/𝑇. At the end of each period, the system is 

evaluated, and a maintenance task or replacement task, or least inspection task, is 

performed. Under these conditions, if the maintenance task or repair task is performed, the 

inspection task should not be performed as it has taken place during other tasks. In a real-

world experience, we observed that an inspection task is usually carried out even when a 

maintenance task is just performed, which is considered to be a non-value-added cost and 

burden to the operators. To evaluate the age and condition of the equipment, it is assumed 
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that the age at the beginning of the period, 𝑡, is denoted by 𝐴𝑆𝑚𝑡  and the end of period is 

denoted by 𝐴𝐸𝑚𝑡. From this assumption, we can write for an equipment item, 𝑚, and 

period, 𝑡. 

𝐴𝐸𝑚𝑡 = 𝐴𝑆𝑚𝑡 +
𝐿

𝑇
, ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … , 𝑇 (5.2) 

 

Using Equation 5.1, an expected number of failures can be expressed as: 

 

𝐸[𝑁𝑚𝑡] = ∫ 𝜈𝑚

𝐴𝐸𝑚𝑡

𝐴𝑆𝑚𝑡

(𝑡)𝑑𝑡, ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.3) 

𝐸[𝑁𝑚𝑡] = ∫ 𝜆𝑚. 𝛽𝑚 . 𝑡𝛽𝑚−1

𝐴𝐸𝑚𝑡

𝐴𝑆𝑚𝑡

𝑑𝑡, ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.4) 

𝐸[𝑁𝑚𝑡] = 𝜆𝑚 (𝐴𝐸𝑚𝑡)𝛽𝑚 − 𝜆𝑚 (𝐴𝑆𝑚𝑡)𝛽𝑚 , ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.5) 

 

In minimization of a cost model, we have considered time to carry out maintenance 

or repair activity compared to the total period, which is significant in some repairs. Four 

different tasks are commonly used in industry. Following are explanations of the different 

tasks and the contexts in which they are being used in this work. The overall maintenance 

types are presented in Figure 5.2. 
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Figure 5.2: Maintenance types in a time period 

5.3.1.2 Corrective Task 

Corrective maintenance tasks correspond to the activities where a random failure 

is experienced while the system is operational. The maintenance terms used have different 

meanings; correction task and replacement task. A corrective action corresponds to the 

activities when a random failure is experienced while the system is in operation. In this 

case, the cost is significant and usually at least three to four time of the preventive repair 

and this is one of the reasons to perform appropriate maintenance to avoid such failures 

[2]. This corrective repair action will bring the system back to good-as-new condition or 

even better provided an improved technology or robust material is used in components for 

the corrective repair. In case of a random failure, failure investigation is mostly performed 

to understand the root cause of a failure, and in certain cases improved design or material 

is suggested to make the equipment as good as new or even better. If a failure occurred in 

a period, 𝑡, the age of the equipment at the start of next period, 𝑡 + 1, be considered as 

new, as shown in Equation 5.6. 
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𝐴𝑆𝑚,𝑡+1 = 0 , ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.6) 

 

Corrective cost is a function of repair time, man-hour, material cost and a failure 

cost factor, 𝜌𝑚. The failure cost factor (𝜌𝑚) allows for the capture of cost impact due to an 

equipment breakdown. In a real plant equipment breakdown situation, we have observed 

that the corrective cost is higher than other non-breakdown maintenance events. This 

difference in cost is captured in the model by introducing a factor, 𝜌𝑚,  which increases the 

repair cost and brings it closer to real plant maintenance cost. This factor depends upon 

different critical parameters, i.e., equipment history, size, crew usage, and production lost. 

We estimated this factor using the above parameters for each piece of equipment. The 

difference in 𝜌𝑚  is justified by the variation in different parameters for each equipment 

item. Mathematically, this can be written as: 

 

𝐶𝐹𝑚 =  𝜌𝑚 ×  𝐶𝑅𝑚, ∀ 𝑚 = 1, … , 𝑀 (5.7) 

𝐶𝐹𝑚 =  𝜌𝑚(𝑇𝐹𝑚  × 𝐶𝐿𝐹𝑚 + 𝐶𝑀𝑇𝑚), ∀ 𝑚 = 1, … , 𝑀 (5.8) 

 

As the cost of material does not have an impact on schedule, to make it simple, 

material cost is removed from Equation 5.8, which becomes: 

 

𝐶𝐹𝑚 =  𝜌𝑚(𝑇𝐹𝑚  × 𝐶𝐿𝐹𝑚), ∀ 𝑚 = 1, … , 𝑀 (5.9) 
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5.3.1.3 Inspection Task 

Inspection task and operator task are synonymously used in industry. It is referred 

to the task where plant operators evaluate the condition of the equipment by visual 

inspection and take appropriate action during the daily routine rounds. The earlier concept 

of a “do-nothing” operator is fading even with the availability of predictive technologies 

such as condition monitoring tools. In reality, this maintenance activity provides plant 

operations with the confidence that the equipment is running in an acceptable condition. 

This task does not significantly improve the condition of equipment but rather helps avoid 

faster degradation of the equipment as shown in Figure 5.3. The conceptual background of 

this approach is adopted from a similar concept for failure rate by Moghaddam and Usher 

[5]. We have extended the concept to reliability under different maintenance actions. 

During the inspection phase, a slight change in reliability occurs due to the equipment time 

in service. Reliability depends on the time and failure rate, so by performing inspection 

and some minor tasks we maintained the equipment condition, although there was a slight 

change in reliability due to the effect of aging. In conclusion, inspection helps keep 

machines in a reliable running condition over a long time period. For example, if an 

operator notices an abnormal sound from equipment, a necessary action will be taken as 

soon as possible by the operator, such as topping up the grease in a bearing or tightening a 

bolt. Similarly, if an operator sees a slight leak, an action can be taken to avoid machine 

failure and degradation caused by insufficient lubrication. There is minimal physical work 

performed on the system, but the benefits are considerable both in terms of cost and 

equipment life. Due to this reason, most of the companies have added such tasks in operator 
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rounds. In this task, operators visit the site to observe operating parameter readings and 

abnormalities, along with routine checks and actions like adding oil and topping up water. 

In certain cases, they perform the activity and, where required, they notify the maintenance 

personnel to perform work using a maintenance crew. As discussed, inspection tasks 

improve the degradation mechanism of equipment but do not improve the failure rate. As 

we see no or minimal effect on reliability, each inspection task is associated with a fixed 

cost 𝐶𝐼𝑚 regardless the condition of the equipment. Mathematically, this can be represented 

as 

 

𝐴𝑆𝑚𝑡+1 = 𝐴𝐸𝑚𝑡 , ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.10) 

𝜈𝑚(𝐴𝑆𝑚𝑡+1) = 𝜈𝑚(𝐴𝐸𝑚𝑡), ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.11) 

 

 

Figure 5.3: Conceptual effect on reliability under different maintenance tasks 
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As discussed earlier, an inspection task improves the degradation mechanism of 

equipment and extends the useful life of equipment, which can be written mathematically 

as follows:  

 

𝐶𝐼𝑚 =  (𝑇𝐼𝑚  × 𝐶𝐿𝐼𝑚), ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.12) 

 

5.3.1.4 Maintenance Tasks 

Under certain conditions, preventive maintenance is required to ensure smooth 

operation of equipment to improve the overall availability and reliability of the plant. In 

this research, maintenance and preventive maintenance is synonymously used, which helps 

to improve the condition for future periods. Preventive maintenance improves conditions, 

but it can also negatively influence the condition of equipment because of improper 

maintenance. To include the impact of maintenance on the condition of the equipment, a 

term 𝛼 is introduced [5]. Maintenance action during a period, 𝑡, improves the failure rate. 

The value of 𝛼 ranges from 0 to 1; with 0 indicating that maintenance brought the 

equipment back to “good-as-new” condition and 1 indicating that the equipment condition 

is as “bad-as-old.” The effect of maintenance tasks on the condition of the equipment can 

be written as follows:  

 

𝐴𝑆𝑚𝑡+1 = 𝛼𝑚. 𝐴𝐸𝑚𝑡 , ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.13) 

 

The maintenance cost of an activity can be written as follows: 
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𝐶𝑀𝑚 =  (𝑇𝑀𝑚  × 𝐶𝐿𝑀𝑚), ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.14) 

 

5.3.1.5 Replacement Task 

One of the maintenance actions to ensure equipment reliability and availability 

throughout the equipment life-cycle is replacement tasks. In a replacement task, the 

equipment is refurbished or completely overhauled during a period of time, 𝑡, and the 

system is considered as “good-as-new.” This replacement task is required to avoid 

catastrophic random failures where the component of equipment is operating in a wear-out 

region. All degraded components, like seals, bearings, and other major components are 

replaced with new and improved components. The replacement is based on the historical 

estimated life of the component or can be identified using condition monitoring techniques, 

i.e., lubrication analysis, vibration data analysis, etc. In the real world, this replacement 

activity is sometimes performed under the domain of opportunistic maintenance; for 

example, if there is a planned shutdown of a processing unit, this task can be performed to 

avoid the risk of failure during normal operation based on the condition of equipment. The 

replacement task brings the equipment back to new condition or even improves the 

condition where existing components have been replaced with new improved design or 

material for the next period. For example, if a repair is performed at the end of a period, 𝑡, 

the system is considered new for the next period, 𝑡 + 1. 

 

𝐴𝑆𝑚𝑡+1 = 0, ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.15) 
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Replacement cost can be estimated using Equation 5.17; while the material cost is 

independent of the maintenance schedule so we take it out for schedule optimization, per 

the following formula:  

 

𝐶𝑅𝑚 =  (𝑇𝑅𝑚  × 𝐶𝐿𝑅𝑚 +  𝐶𝑀𝑇𝑚), ∀ 𝑚 = 1, … , 𝑀  (5.16) 

𝐶𝑅𝑚 =  (𝑇𝑅𝑚  × 𝐶𝐿𝑅𝑚), ∀ 𝑚 = 1, … , 𝑀  (5.17) 

 

5.3.2 Equipment Risk Index (ERI) 

The Equipment Risk Index is a quantitative measure to estimate the importance 

or criticality of equipment in an operating plant. Many qualitative and quantitative methods 

are available to define and establish risk. The risk in general is the probability of an event 

and its consequence as suggested in Equation 5.18. The consequences can be classified 

based on different categories, which are considered important in a business such as safety 

and health, production lost, and the operating history of the equipment. In this work, the 

main objective of risk categorization is to establish an ERI, which can be used as a basis to 

prioritize maintenance. 

 

𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑅𝑖𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  (5.18) 

 

The risk categorization also helps to give due importance to equipment, 

prioritization of maintenance work, managing spare parts, and other related activities. A 

similar concept has been used in an earlier work [4] to establish equipment risk, but that 

was mainly to simplify the system based on equipment criticality. In this work, ERI is more 
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useful in maintenance prioritization. In general, there are three categories of risk, which 

are high, medium and low. The ERI can be effectively used to prioritize maintenance based 

on the equipment unavailability consequences rather than handling them with some other 

criteria.  

 

5.3.3 Formulation of Reliability Constraint 

The objective in this formulation is minimizing cost by optimizing the 

maintenance schedule and ensuring a certain level of system reliability is achieved. The 

system under study is an absorption system in a gas plant and equipment are operating in 

series. The system contains the static equipment, i.e., vessels and columns and rotating 

machines. The scope of this problem formulation is based on optimization of the 

maintenance schedule for rotating equipment and motorized valves. Static equipment is 

generally subject to regulatory compliance for inspection where optimization can suggest 

violation of regulatory requirements and guidelines. To develop the system reliability 

constraint, we have assumed the failure follows increasing failure pattern. As discussed 

earlier, the rate of failure of occurrence for repairable a system follows NHPP, so the failure 

rate is replaced with ROCOF. The formulation of system reliability is presented as, 

 

𝑅𝑚𝑡 = 𝑒−𝐸[𝑁𝑚𝑡]  , ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇  (5.19) 

 

where, the failure rate is replaced with the ROCOF function, 
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𝑅𝑚𝑡 = 𝑒
−(∫ 𝜈𝑚

𝐴𝐸𝑚𝑡
𝐴𝑆𝑚𝑡

(𝑡)𝑑𝑡)
  , ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.20) 

𝑅𝑚𝑡 = 𝑒−(𝜆𝑚 (𝐴𝐸𝑚𝑡)𝛽𝑚−𝜆𝑚 (𝐴𝑆𝑚𝑡)𝛽𝑚), ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.21) 

 

For a system in series, reliability is given by, 

 

𝑅𝑠𝑦𝑠𝑡𝑒𝑚  = ∏ ∏ 𝑒−(𝜆𝑚 (𝐴𝐸𝑚𝑡)𝛽𝑚−𝜆𝑚 (𝐴𝑆𝑚𝑡)𝛽𝑚)

𝑇

𝑡=1

𝑀

𝑚=1

  (5.22) 

 

5.3.4 Formulation of Availability Constraint 

Availability is a probability that a system is available when required to provide a 

function and indeed a key requirement. One of the other objectives of this model is to 

develop an optimized reliability model subject to availability constraint. Availability is a 

function of failure rate and repair rate. If the equipment is not maintained properly, its 

unavailability increases over time due to increasing failure rate. Second, availability is also 

affected by the schedule maintenance activities so it is desired to optimize the schedule 

downtime as well to ensure the equipment is available. Mathematically, system availability 

for equipment and a series system can be written as, 

 

𝐴 =
𝑈𝑝𝑡𝑖𝑚𝑒 

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
  (5.23) 

𝐴𝑚𝑡  =
𝐴𝐸𝑚𝑡 − 𝐴𝑆𝑚𝑡 

(𝐴𝐸𝑚𝑡 − 𝐴𝑆𝑚𝑡)  + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
, ∀  𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.24) 
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𝐴𝑚𝑡

=
𝐴𝐸𝑚𝑡 − 𝐴𝑆𝑚𝑡  

(𝐴𝐸𝑚𝑡 − 𝐴𝑆𝑚𝑡) + 𝑇𝐹𝑚[𝜆𝑚 (𝐴𝐸𝑚𝑡)𝛽𝑚 − 𝜆𝑚 (𝐴𝑆𝑚𝑡)𝛽𝑚] + (𝑇𝑀𝑚 . 𝑋𝑚𝑡 + 𝑇𝑅𝑚 . 𝑌𝑚𝑡)
,

∀  𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 

(5.25) 

𝐴𝑠𝑦𝑠𝑡𝑒𝑚  

= ∏ ∏ [
𝐴𝐸𝑚𝑡 − 𝐴𝑆𝑚𝑡 

(𝐴𝐸𝑚𝑡 − 𝐴𝑆𝑚𝑡) + 𝑇𝐹𝑚[𝜆𝑚 (𝐴𝐸𝑚𝑡)𝛽𝑚 − 𝜆𝑚 (𝐴𝑆𝑚𝑡)𝛽𝑚] + (𝑇𝑀
𝑚

. 𝑋𝑚𝑡 + 𝑇𝑅𝑚. 𝑌𝑚𝑡)
]

𝑇

𝑡=1

𝑀

𝑚=1

 
(5.26) 

 

5.4 Optimization Models 

 

In this Section, three maintenance scheduling optimization models are developed. 

The objective function of the first model is to minimize maintenance cost subject to 

reliability constraints. The second model explores the maximization of reliability subject 

to system availability constraints. The last model is based on goal programming where the 

multiple criteria are used to develop maintenance schedules and the effect of weights under 

different goals was observed. All pieces of equipment are in series, and a model is 

developed based on the series system as shown in Figure 5.4. Details of each model are 

given in the respective Sections. 
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Figure 5.4: Overall Schematic of a Gas Absorption System [4] 

 

5.4.1 Minimize Total Maintenance Cost subject to Reliability Constraints 

In this optimization model, the objective is to minimize cost by optimizing the 

maintenance schedule based on the condition or age of the equipment and ensure that the 

plant meets the required reliability targets. All the equipment items are in series, and the 

model is developed based on the series as shown in Figure 5.4. Formulation of the total 

cost model is subject to the reliability constraints given below: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡

= ∑ ∑[𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐶𝑜𝑠𝑡 + 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡]

𝑇

𝑡=1

𝑀

𝑚=1

  
(5.27) 
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= ∑ ∑[𝐶𝐹𝑚. 𝐸[𝑁𝑚𝑡]+{(𝐶𝑀𝑚. 𝑋𝑚𝑡) + (𝐶𝑅𝑚 . 𝑌𝑚𝑡) +  (𝐶𝐼𝑚. 𝑍𝑚𝑡)}] 

𝑇

𝑡=1

𝑀

𝑚=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝐴𝑆𝑚1 = 0, ∀ 𝑚 = 1, … , 𝑀 (5.28) 

𝐴𝑆𝑚𝑡 = (𝐴𝐸𝑚𝑡−1)𝑍𝑚𝑡 + (𝛼𝑚. 𝐴𝐸𝑚𝑡−1). 𝑋𝑚𝑡,

∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 2, … 𝑇 
(5.29) 

𝐴𝐸𝑚𝑡 = 𝐴𝑆𝑚𝑡 +
𝐿

𝑇
, ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.30) 

∏ ∏ 𝑒−(𝜆𝑚 (𝐴𝐸𝑚𝑡)𝛽𝑚−𝜆𝑚 (𝐴𝑆𝑚𝑡)𝛽𝑚)

𝑇

𝑡=1

𝑀

𝑚=1

≥  𝑅𝑡𝑎𝑟𝑔𝑒𝑡 (5.31) 

𝑋𝑚𝑡 + 𝑌𝑚𝑡 + 𝑍𝑚𝑡 = 1 (5.32) 

𝐴𝑆𝑚𝑡, 𝐴𝐸𝑚𝑡 ≥ 0 (5.33) 

𝑋𝑚𝑡, 𝑌𝑚𝑡, 𝑍𝑚𝑡 = {0, 1} (5.34) 

 

5.4.2 Maximize System Reliability subject to Availability Constraints 

In this optimization model, the objective is to maximize reliability subject to 

availability targets. All the equipment items are in series, and the model is developed based 

on the series shown in Figure 5.4. Formulation of the maximization of reliability is subject 

to the availability constraint given below: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ∏ ∏ 𝑒−(𝜆𝑚 (𝐴𝐸𝑚𝑡)𝛽𝑚−𝜆𝑚 (𝐴𝑆𝑚𝑡)𝛽𝑚)

𝑇

𝑡=1

𝑀

𝑚=1

  (5.35) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  
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𝐴𝑆𝑚1 = 0, ∀ 𝑚 = 1, … , 𝑀 (5.36) 

𝐴𝑆𝑚𝑡 = (𝐴𝐸𝑚𝑡−1)𝑍𝑚𝑡 + (𝛼𝑚. 𝐴𝐸𝑚𝑡−1). 𝑋𝑚𝑡,

∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 2, … 𝑇 
(5.37) 

𝐴𝐸𝑚𝑡 = 𝐴𝑆𝑚𝑡 +
𝐿

𝑇
, ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.38) 

∏ ∏ [
𝐴𝐸𝑚𝑡 − 𝐴𝑆𝑚𝑡 

(𝐴𝐸𝑚𝑡 − 𝐴𝑆𝑚𝑡) + 𝑇𝐹𝑚[𝜆𝑚 (𝐴𝐸𝑚𝑡)𝛽𝑚 − 𝜆𝑚 (𝐴𝑆𝑚𝑡)𝛽𝑚] + (𝑇𝑀
𝑚

. 𝑋𝑚𝑡 + 𝑇𝑅𝑚. 𝑌𝑚𝑡)
]

𝑇

𝑡=1

𝑀

𝑚=1

≥  𝐴𝑡𝑎𝑟𝑔𝑒𝑡 

(5.39) 

𝑋𝑚𝑡 + 𝑌𝑚𝑡 + 𝑍𝑚𝑡 = 1 (5.40) 

𝐴𝑆𝑚𝑡, 𝐴𝐸𝑚𝑡 ≥ 0 (5.41) 

𝑋𝑚𝑡, 𝑌𝑚𝑡, 𝑍𝑚𝑡 = {0, 1} (5.42) 

 

5.4.3 Minimization of Deviation from Goals using Goal Programming 

Goal programming is an effective tool in multi-criteria decision making. It is an 

extension of linear programming to handle multiple optimization objectives. It is an 

optimization program and works with a given target value and importance to the decision 

variables. Deviations are minimized from goals using an achievement function. All three 

criteria were used with different goals and weights to come up with strategies. Formulation 

of the goal programming objective function, which is minimization of summation of 

deviation from designated goals, is given below: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 =  𝑤1𝑑1
+ + 𝑤2𝑑2

−+ 𝑤3𝑑3
− (5.43) 
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Where, 

𝑤 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑚𝑝𝑟𝑜𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑐ℎ𝑖𝑒𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑔𝑜𝑎𝑙 

𝑑+, 𝑑− = 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑜𝑣𝑒𝑟 𝑎𝑛𝑑 𝑢𝑛𝑑𝑒𝑟 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑜𝑎𝑙 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

(
𝐶𝑜𝑠𝑡−𝐶𝑜𝑠𝑡𝐿𝐵

𝐶𝑜𝑠𝑡𝑈𝐵−𝐶𝑜𝑠𝑡𝐿𝐵
) + (𝑑1

− − 𝑑1
+) = (

𝐶𝑜𝑠𝑡𝐺𝑜𝑎𝑙−𝐶𝑜𝑠𝑡𝐿𝐵

𝐶𝑜𝑠𝑡𝑈𝐵−𝐶𝑜𝑠𝑡𝐿𝐵
)  (5.44) 

(
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦−𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝐵

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑈𝐵−𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝐵
) + (𝑑2

− − 𝑑2
+) = (

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐺𝑜𝑎𝑙−𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝐵

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑈𝐵−𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝐵
)  (5.45) 

(
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝐵

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑈𝐵−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝐵
) + (𝑑3

− − 𝑑3
+) =

(
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐺𝑜𝑎𝑙−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝐵

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑈𝐵−𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝐵
)  

(5.46) 

𝐴𝑆𝑚1 = 0, ∀ 𝑚 = 1, … , 𝑀 (5.47) 

𝐴𝑆𝑚𝑡 = (𝐴𝐸𝑚𝑡−1)𝑍𝑚𝑡 + (𝛼𝑚. 𝐴𝐸𝑚𝑡−1). 𝑋𝑚𝑡,

∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 2, … 𝑇 
(5.48) 

𝐴𝐸𝑚𝑡 = 𝐴𝑆𝑚𝑡 +
𝐿

𝑇
, ∀ 𝑚 = 1, … , 𝑀 ; 𝑡 = 1, … 𝑇 (5.49) 

𝑋𝑚𝑡 + 𝑌𝑚𝑡 + 𝑍𝑚𝑡 = 1 (5.50) 

𝐴𝑆𝑚𝑡, 𝐴𝐸𝑚𝑡 ≥ 0 (5.51) 

𝑋𝑚𝑡, 𝑌𝑚𝑡, 𝑍𝑚𝑡 = {0, 1} (5.52) 
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5.5 Data and Computational Results Summary 

 

Gas absorption subsystem data is used to illustrate the effectiveness of the proposed 

optimization model as shown in Table 5.1 and 5.2. The data was collected and normalized 

based on the equipment condition and experience from field experts to represent a real 

plant situation. Seven equipment items and a 24 month planning horizon are considered in 

this problem. 

 

Table 5.1: Maintenance Task Cost Data 

Equipment (m) CLFm CLRm CMm CLIm ρm 

1 170 80 80 60 2 

2 210 135 95 120 2.5 

3 210 135 95 120 2.5 

4 170 80 80 60 3 

5 170 80 80 60 3 

6 120 80 80 60 1.5 

7 120 80 80 60 1.5 
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Table 5.2: Maintenance Task Duration and Reliability Data 

 Durations of Tasks (Hours) Reliability Parameters 

Equipment (m) TFm TRm TMm TIm ERI βm λm αm 

1 24 6 4 0.3 6 1.6 2293 0.4 

2 36 8 2 0.4 9 1.4 3434 0.6 

3 40 8 2 0.4 8 1.5 6574 0.6 

4 20 6 3 0.2 5 1.2 7598 0.5 

5 16 6 3 0.2 4 1.3 9057 0.4 

6 24 4 4 0.15 8 2.1 15065 0.3 

7 24 4 4 0.15 6 1.9 13263 0.3 

 

5.5.1 Gas Absorption System: Maintenance Cost, Reliability, and 

Availability  

To illustrate the formulation effectiveness, a real gas absorption system of a gas 

plant is used [4]. Total maintenance cost with existing maintenance schedule is calculated 

and later compared with the optimized maintenance cost obtained using the proposed 

formulation. Generally, a plant consists of rotating equipment and static equipment, along 

with instrumentation and control devices. Static equipment usually has predefined 

inspection and maintenance schedules to ensure equipment integrity is in line with 

regulatory requirements; but rotating equipment has no fixed plan other than original 

equipment manufacturer (OEM) recommendations, so a great opportunity exists to 
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optimize machinery maintenance. A real plant gas absorption subsystem, as shown in 

Figure 5.4, is considered to evaluate the proposed optimization formulation.  

 

5.5.1.1 Total Maintenance Cost using the Current Maintenance Schedule 

Existing maintenance model is based on time-based maintenance regardless of 

the condition of the equipment as the work orders are automatically generated by 

computerized maintenance management system. Sometimes, all the tasks within an 

operating unit occur together and cause scheduling problem of available resources. Using 

the existing maintenance model, the cost is calculated as shown in Table 5.3 and an existing 

maintenance schedule is shown in Table 5.4. Total maintenance cost, including both the 

maintenance and failure is around $ 33,092 over a period of 2 years. In this cost estimation, 

materials cost is not included because it varies among failures and, similarly, the materials 

cost is excluded while calculating the maintenance cost using the proposed formulation.   

 

5.5.1.1.1 Estimation of Current Maintenance Cost  

In this Section, the total existing maintenance cost and duration of the task are 

estimated. Mathematically, the function of the total maintenance cost is given below: 

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 (𝑇𝐶) =  ∑ ∑[𝐶𝑀𝑚

24

𝑡=1

+ 𝐶𝑅𝑚 + 𝐶𝑂𝑚] + [𝐶𝐹𝑚]

7

𝑚=1

 (5.53) 
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A processing plant usually consists of thousands of equipment items, and there is  

a great opportunity for optimizing maintenance costs, which is one of the reasons 

maintenance optimization is a highly demanded area in research and industry. 

Table 5.3: Existing Maintenance Cost  

 Total Maintenance Event Failure Event 

 

Maintenance Cost – US$ 33,092 29,592 3,500 

 

Table 5.4:  Existing Maintenance Schedule for Gas Absorption System 

Planning Horizon (Month) 

                        

Equipment (m1 – m5) 

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

I I I I I I I I I I I I I I I I I I I I I I I I 

  M   M   M   M   M   M   M   M 

           R            R 

                        

Equipment (m6 – m7) 

I I I I I I I I I I I I I I I I I I I I I I I I 

  M   M   M   M   M   M   M   M 

                       R 

 

 

5.5.1.1.2 Estimation of Existing System Reliability and Availability 

The overall system availability is estimated using the state dependent model. 

The model shown in Figure 5.4 is used and only related equipment is considered in this 

estimation. The general equation for 𝑛 independent equipment items operating in a series 

has an equipment availability, 𝐴𝑖(𝑡); and the system availability is given by Equation 5.55: 
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𝐴𝑠(𝑡) = ∏ 𝐴𝑖

𝑛

𝑖=1

(𝑡) (5.54) 

Where, 

 𝐴𝑖  = 𝐴𝑣𝑖𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖  

 

In general, availability of a system can be written as, 

𝐴𝑖 = ∑ 𝑃𝑖 

.

𝑎𝑙𝑙 𝑠𝑢𝑐𝑒𝑠𝑠 
𝑠𝑎𝑡𝑒𝑠 𝑖

 
(5.55) 

 Where, 

 𝑃𝑖  = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑠𝑡𝑎𝑡𝑒𝑠  

 

Similarly, the system reliability equation for a unit having series system can be written as,  

 

𝑅𝑆(𝑡) = ∏ 𝑅𝑖

𝑛

𝑖=1

(𝑡) (5.56) 

Where,  

𝑅𝑖 = 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑖 

 

The reliability is also estimated using the simplified system as shown in Figure 5.4. 

To capture the uncertainty in the failure data, a 2.5% sensitivity factor is used. These values 

represent the existing availability ranging from 96.4-98.8%, whereas reliability ranges 

from 92.0-94.4%, as shown in Table 5.5.  
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Table 5.5: Gas Absorption System – Availability and Reliability 

Description Values 

Availability 96.4 - 98.8% 

Reliability 92.0 - 94.4% 

 

The results obtained from the existing maintenance schedule are discussed and 

compared with the proposed formulation model results. 

 

5.5.2 Proposed Formulation Model Results 

In this Section, three developed models are solved. The proposed single objective 

optimization models and goal programming are solved using LINGO 14.0. It is a 

comprehensive platform designed to build and solve linear, nonlinear, stochastic, and 

integer optimization models. It includes a powerful language for expressing optimization 

models with built-in solver [36]. The outcome and results are discussed below. 

 

5.5.2.1 Model 1 - Minimum Cost subject to Reliability Constraint 

In this model, two cases at different target reliability are solved. The value of an 

objective function for the optimum solution at 90% reliability is $8,450.30 compared to 

the existing maintenance cost of $ 33,092. In the second run, the maintenance cost at a 

target reliability of 95% is $27,422 compared to the similar reliability and total cost of 

$33,092. Proposed models suggest a 17% improvement in maintenance cost when 

compared to similar reliability targets. A good mix of maintenance, inspection and 
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replacement tasks are observed. It can be also be concluded that by increasing the reliability 

threshold the number and frequency of replacement actions increases. Tables 5.6 and 5.7 

show the schedules of the optimized maintenance activities at given reliability targets.  

 

Table 5.6: Total Maintenance Cost Subject to Reliability Constraints 

 Total Cost = $8450.3; Reliability = 90.0% 

m Planning Horizon (Month) 

 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

1 I I I I I I R I I I I R I I I I R I I I I I I I 

2 I I I I I I I I I I M I I M I I I I I I I I I I 

3 I I I I I I I I I I I M I I I M I I I I I I I I 

4 I I I I I I I I I I I I I I I I I I I I I I I I 

5 I I I I I I I I I I I I I I I I I I I I I I I I 

6 I I I I I I I R I I I I R I I I I R I R I I I I 

7 I I I I I I I I I I R I I I I I I I R I I I I I 

 

Table 5.7: Total Maintenance Cost Subject to Reliability Constraints 

Total Cost = $ 27,422.1; Reliability = 95.0% 

m Planning Horizon (Month) 

 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

1 I R R M R M R R R R R R I R M R R R R R R R R R 

2 I I I M M M M M M I I R I M M M M M M M M M I I 

3 I I I M M M I I R I I M M M M M M M M M M I I I 

4 I I I I I I I I I I I I I I I I I I I I I I I I 

5 I I I I I R I I I I I I R I I I I I I I I R I I 

6 I I R I R I R I R I R I I R I I R I I I I I R I 

7 I I I R I R I R I R I R I R I R I I I I I R I I 

 

The ERI can be effectively utilized in the scenarios where multiple tasks are 

required to be schedules, as in case of the schedule in Table 5.7. The use of the ERI in such 
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cases makes it useful for field engineers and maintenance planners to plan maintenance on 

critical equipment prior to scheduling less critical equipment to avoid consequences posed 

by the failure of critical equipment. Table 5.8 shows the impact of equipment criticality on 

the maintenance schedule and this becomes very useful during the scheduling of a complete 

unit or plant maintenance tasks. 

 

Table 5.8: Effect of ERI on the Maintenance Schedule 

 Total Cost = $ 27,422.1; Reliability = 95.0% 

m ERI Planning Horizon (Month) 

  1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2 9 I I I M M M M M M I I R I M M M M M M M M M I I 

3 8 I I I M M M I I R I I M M M M M M M M M M I I I 

6 8 I I R I R I R I R I R I I R I I R I I I I I R I 

1 6 I R R M R M R R R R R R I R M R R R R R R R R R 

7 6 I I I R I R I R I R I R I R I R I I I I I R I I 

4 5 I I I I I I I I I I I I I I I I I I I I I I I I 

5 4 I I I I I R I I I I I I R I I I I I I I I R I I 

 

5.5.2.2 Model 2 - Maximize Reliability subject to Availability Constraint 

In this model, two cases at different target availability are solved. The value of 

the objective function, reliability, for the optimum solution at 80% availability is 90.2%. 

In the second run, the value of the objective function is 89.1% at a target availability of 

85%. A mix of maintenance, inspection, and replacement tasks are observed. The results 

show that, with the increase in availability threshold, the system is performing more 

inspections compared to maintenance and replacement task as evident in the schedules. 
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Table 5.9 and Table 5.10 show the detailed schedules of the optimized maintenance 

activities at given availability targets. 

 

Table 5.9: Maximize Reliability Subject to Availability Constraint 

 Reliability = 90.2%; Availability = 80.0% 

m Planning Horizon (Month) 

 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

1 I I I I R I I I I I R I I I I I R I I I R I I I 

2 I I I I I I I I I I I M I I I I I I I I I I I I 

3 I I I I I I I I I I I I I I I I I I I I I I I I 

4 I I I I I I I I I I I I I I I I I I I I I I I I 

5 I I I I I I I I I I I I I I I I I I I I I I I I 

6 I I I I I R I I I I R I I I I I R I I I I I I I 

7 I I I I I I R I I I I R I I I I I I I R I I I I 

 

 

Table 5.10: Maximize Reliability Subject to Availability Constraint 

Reliability = 89.1%; Availability = 85.0% 

m Planning Horizon (Month) 

 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

1 I I I I I I I R I I I I I I R I I I I R I I I I 

2 I M I I I I I I I I I I I I I I I I I I I I I I 

3 I I I I I I I I I I I I I I I I I I I I I I I I 

4 I I I I I I I I I I I I I I I I I I I I I I I I 

5 I I I I I I I I I I I I I I I I I I I I I I I I 

6 I I I I I I I R I I I I I I I I R I I I I I I I 

7 I I I I I I I I I R I I I I I I I I I R I I I I 
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5.5.2.3 Model 3 – Minimization of Deviation from Goals using Goal Programming 

In this model, minimization of deviation, as an objective function, is developed 

using a goal programming approach. Deviations are minimized from the goal using an 

achievement function. All three criteria were used with different goals and weights to come 

up with strategies. Table 5.11 shows the different runs with assigned goals and weights. 

The goal programming model is flexible as different goals and weights can be assessed in 

a dynamic way and schedules can be adjusted on the plant requirements. 

 

Table 5.11: Goals and Weights for Goal Programming 

Exp.  Total Maintenance Cost Reliability Availability 

E - 1 
Goal 6000 1 1 

Weight 1 0 0 

E - 2 
Goal 6000 1 1 

Weight 0 1 0 

E - 3 
Goal 6000 1 1 

Weight 0 0 1 

E - 4 
Goal 6000 1 1 

Weight 0.5 0.4 0.1 

E - 5 
Goal 6000 1 1 

Weight 0.3 0.6 0.1 

 

Table 5.12 and 5.13 shows the optimized maintenance schedule. Table 5.11 shows 

the results in the form of maintenance cost, reliability, and availability under predefined 

goal and weights. Many required scenarios can be run by changing the weights and goals. 

The maintenance cost of $7,589.5 is estimated with a reliability of 89.0% and availability 

of 86.4% subject to cost, reliability, and availability weights of 0.5, 0.4, and 0.1, 

respectively. The maintenance cost of $8,749.7 is estimated with a reliability of 90.3% and 
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availability of 80.3% subject to cost, reliability, and availability weights of 0.3, 0.6, and 

0.1, respectively. Other scenarios can be developed and evaluated based on the business 

requirements to come up with optimized maintenance schedule. The goal programming 

model was solved using LINGO software to find out the optimal maintenance policy, and 

cost under different weights and goals. 

 

Table 5.12: Schedule – Weights for Cost: 0.5, Reliability: 0.4, and Availability: 0.1 

 E4: Total Cost = $7,589.5; Reliability = 89.0%; Availability = 86.4% 

m Planning Horizon (Month) 

 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 
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9 

2
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2
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3 
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4 

1 I I I I I I I R I I I I I I I I R I I I I I I I 

2 I I I I I I I I I I I I I I I I I I I I I I I I 

3 I I I I I I I I I I I I I I I I I I I I I I I I 

4 I I I I I I I I I I I I I I I I I I I I I I I I 

5 I I I I I I I I I I I I I I I I I I I I I I I I 

6 I I I I I R I I I I I I R I I I I I R I I I I I 

7 I I I I I I I R I I I I I R I I I I I I I I I I 

 

Table 5.13: Schedule – Weights for Cost: 0.3, Reliability: 0.6 and Availability: 0.1 

 E5: Total Cost = $8,749.7; Reliability = 90.3%; Availability = 80.3% 

m Planning Horizon (Month) 

 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

1 I I I I I I I R I I I R I I I I R I I I I I I I 

2 I I I I I I I I I I M I I M I I I I I I I I I I 

3 I I I I I I I I I M I I I M I I I I I I I I I I 

4 I I I I I I I I I I I I I I I I I I I I I I I I 

5 I I I I I I I I I I I I I I I I I I I I I I I I 

6 I I I I I I R I I I I I R I I I I I R I I I I I 

7 I I I I I R I I I I R I I I I I I I R I I I I I 
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Table 5.14 summarizes the results of the goal programming model with certain 

model runs, goals, and weights can be changed to evaluate the other scenarios. 

 

Table 5.14: Summary of Results – Goal Programming 

 Total Maintenance Cost Reliability Availability 

E - 1 5,645.9 0.810 0.977 

E - 2 98,038.6 0.970 0.018 

E - 3 5,645.9 0.810 0.977 

E - 4 7,589.5 0.890 0.864 

E - 5 8,749.7 0.903 0.803 

 

5.6 Conclusion 

 

This research work proposes two nonlinear mixed-integer optimization models and 

a goal programming model for maintenance scheduling of a complex real plant gas 

absorption system of a hydrocarbon facility. These proposed formulation attempts to 

minimize cost and maximize reliability, and the goal programing model handles multiple 

and conflicting objective to optimize the maintenance schedule. The proposed models have 

given promising results and proved to be a useful tool to industry for handling maintenance 

scheduling optimization under various constraints. The proposed model successfully 

optimized the existing maintenance schedule of a gas absorption system and suggested 

17% improvement in maintenance cost when compared to similar system reliability levels. 

A huge maintenance cost improvement is expected, once the proposed model is applied to 

a complete plant. The goal programming model provides flexibility to engineers and 
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planners to develop maintenance schedules considering different conflicting objectives. 

The overall results derived from the proposed optimization models confirm the 

applicability of the approach to real-world maintenance optimization problem and its 

application to other asset intensive industries where maintenance is important to ensure 

safety, availability, and reliability of the facilities.  

In future work, the proposed formulation will be extended to solve similar problems 

and compare the effectiveness of the results using multi-objective meta- heuristic 

techniques. 



 

 

 

CHAPTER 6  

CONCLUSION, CONTRIBUTIONS AND FUTURE WORK 

 

6.1 Introduction 

 

Availability is an important measure in complex systems and applicable to many 

industries, such as refineries, gas plants, power systems, and communication. It is a key 

measure to have confidence in the processes used to meet requirements for meeting 

production, safety, and financial targets. Availability and reliability are considered, but 

both are different. High reliability on its own is not sufficient to ensure system availability. 

Quick restoration of equipment back to service, essentially termed as maintainability, is 

also important for maximization of availability. Different industries have different 

requirements for availability to meet customer expectations. There are many ways to 

maximize availability such as optimized and robust design, cost, manpower, skill level of 

the maintenance crew, etc. In the communication and power sector, high availability is 

obtained through redundant, highly reliable equipment, and schedule maintenance [1]. 

Power systems are designed for availability close to 100%, using modest reliable design 

but highly redundant and perfectly maintained equipment with a sharing option. In the 



 

 

process industry, availability is achieved by highly reliable equipment with low 

maintainability [1]. The significance of availability in different industries makes it an 

important topic for research. The need for availability improvement has motivated authors 

to contribute by developing some new and novel methods to address this most desired area 

of industry interest.  

In this research, availability estimation and management is addressed by focusing 

on different areas such as risk-based availability estimation; early fault detection; effective 

equipment failure investigation; and maintenance scheduling optimization. Based on the 

author’s experience, developments in these areas can significantly contribute to addressing 

availability.   

6.2 Research Contributions 

 

In this thesis, an overall solution is developed to estimate and manage the 

availability of complex processing systems and plants. Availability is an important factor 

for companies to use to reap real benefits from monitoring and managing equipment. The 

benefits of managing availability have many facets, such as high reliability, low 

maintainability, optimized plant design, and cost. The need for availability estimation and 

management models provides us an opportunity to work on this topic and develop tools 

and models that can be used effectively to benefit different organizations and to help them 

achieve their objectives. As discussed earlier, availability is a key performance parameter, 

which is applicable to many industries. Availability management is a process, if managed 



 

 

correctly, can be used to optimize design, cost, safety, reliability, availability and 

maintainability. 

Following is a summary of the major contributions of this dissertation. 

 Availability Estimation using Markov Process 

An overall risk based availability estimation process using Markov is developed. In 

general, asset intensive industries, such as refineries and petrochemical plants, have 

thousands of equipment items, which make it difficult to estimate equipment and 

system availability. This research addresses the concern by developing a risk-based 

availability estimation methodology using state-dependent models. It includes an 

introduction to Markov modeling, and its usefulness and limitations. State models 

and other modeling work are performed. The developed model successfully 

validated using the gas absorption unit. 

 A Framework to Address Failure to Enhance Safety and Availability 

A novel risk-based failure assessment approach to address safety and availability 

of the complex operating systems is developed. There are many different failure 

assessment processes; however, they are more focused on failure investigation 

rather addressing the issue holistically. In this work, we have contributed by 

developing a structured process to encompass all the action needed perform 

assessment to enhance availability and safety. Later, the concept is validated using 

the real-world failure assessment cases to prove the applicability and efficacy of 

the proposed model. 



 

 

 Fault Detection to Improve Availability using Decision Trees 

As discussed earlier, availability encompasses maintainability and reliability. The 

novel idea in this work was to develop algorithm using machinery data to detect 

early faults prior they became threat to unscheduled downtime. Early fault detection 

indeed helps improving reliability and availability, hence, ensure availability. To 

detect early faults, a novel fault detection and management model is developed 

using decision trees to support system availability and safety improvement. 

Decision trees model is developed in MATLAB as a predictive data mining tool to 

detect early faults, and their management to improve system availability. To 

conclude the effectiveness of the model, the proposed model was successfully 

tested to detect faults using real plant machinery vibration data. 

 Multi-Constrained Maintenance Scheduling Optimization 

Maintenance is vital for improving the availability and reliability of the equipment 

and facilities. Multi-constrained, multi-objective maintenance scheduling 

optimization models are proposed using exact and optimized solutions. The model 

was developed in commercial software LINGO to solve optimization problem. The 

optimization problem was developed considering the time-dependent equipment 

failure rate to optimize maintenance cost at different availability and reliability 

levels. Different optimization scenarios were considered, such as minimization of 

cost, maximization of availability and reliability etc… These models were applied 

on a plant scenario to show the effectiveness of maintenance scheduling 

optimization on cost, availability, and reliability. 



 

 

 Physical Asset Management 

An introduction of physical asset management is carried out to understand the 

difference between maintenance management and performance management. This 

area is of great interest now a days and latest development in this field is issuance 

of ISO 55000 series guidelines for asset management. Maintenance and 

performance management are both necessary for improving system availability. We 

also explored the assumptions and limitations to efficient asset management. This 

research also attempted to answer why PAM is important and also emphasized its 

relationship to cost, maintenance, and availability management. In order to validate 

its effectiveness, the asset management concept was applied to real plant and great 

results have realized. 

6.3 Conclusion 

 

In this dissertation, new models, approaches and algorithms have been explored to 

estimate and manage the availability of complex hydrocarbon processing systems. The risk 

of equipment failure and its effect on availability is vital in the hydrocarbon industry, and 

is also explored in this research. The importance of availability is encouraging companies 

to invest in this domain by putting efforts and resources in developing solutions for 

enhancing system availability. This research works toward developing an integrated and 

systematic strategic framework to achieve system availability targets. The main focus areas 

in this research are to address availability estimation and management through physical 



 

 

asset management, risk-based availability estimation strategies, availability and safety 

using a failure assessment framework, and availability enhancement using early equipment 

fault detection and maintenance scheduling optimization.  

In conclusion, this research will contribute to the field by providing a wide range 

of solutions to industry in terms of availability estimation and management. The challenges 

faced during the research, such as the availability and quality of the equipment historical 

data, is dealt by normalizing the data with experience and recommendations from subject 

matter experts. The algorithms, models, and solutions developed and presented in this 

dissertation are valuable for estimating system availability and management. The proposed 

solutions can assist strategic and tactile plant management in making decisions; and to 

effectively and efficiently optimize system availability and cost. 

 

6.4 Recommendations for Future Research Work 

 

In this research, along with development of new methods, we have key findings to 

enhance or extend the developed work. Some of them are discuss below: 

1. A risk-based methodology of availability estimation is proposed. This 

methodology assumed a constant failure rate, but work can be extended to develop state-

dependent models with different failure behaviors. The model can be extended to 

equipment dominant failure modes. The flexibility of state-dependent models can be very 



 

 

useful in these circumstances. Not only in regard to failure mode but also for other 

constraints such as maintenance manpower, delays related to obtaining spare parts, and 

equipment release for maintenance can be included to extend this work. 

2. A risk-based failure assessment framework is explored for managing 

availability and safety. This work can be extended to develop software tools which provide 

users with a graphic user interface to follow the proposed framework. The proposed 

framework has four key phases, which require multiple data handling and storage solutions. 

A software tool developed based on the proposed framework greatly helps with 

streamlining the process. It will also help with storing evidence, photos, and other 

documents in a common database. Along with these benefits it will help with the tracking 

and implementation of the recommendations. 

3. Fault detection is an important aspect of availability enhancement. A 

decision tree-based fault detection scheme is proposed in this dissertation, but there are 

other algorithms available to detect incipient machinery faults. The work can be extended 

to evaluate the performance of other algorithms and filtering techniques in detecting 

machinery faults such as neural networks, Kalman filters, real coded genetic algorithms, 

wavelet-based algorithms, and other hybrid algorithms. The suggested work extension will 

explore the efficiency and suitability of decision trees and other algorithm responses to 

detect incipient faults. The work can also be extended to explore other machinery failure 

modes such as cracked shafts, rubbing, looseness, etc.  

4. Maintenance optimization is an area of research for ensuring the safety, 

reliability, and availability of equipment and systems. The exact and Pareto-optimal 



 

 

solutions for multi-constrained maintenance scheduling optimization are discussed in this 

dissertation. This work can be extended to optimize maintenance scheduling to include 

other constraints such as maintenance manpower, equipment shutdown opportunity, 

seasonal product demand changes, and spare availability. There are optimization 

algorithms such as harmony, nature-inspired optimization, simulated annealing, and other 

hybrid algorithms that can be explored further to develop maintenance schedules and 

compare their optimization efficiency with proposed genetic algorithms.  
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