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Abstract 

In this thesis, two recently proposed modes of operation for block ciphers, 

referred to as statistical cipher feedback (SCFB) mode and optimized cipher feedback 

(OCFB) mode, are investigated. Both cipher modes can achieve the capability of self­

synchronization to recover from bit slips or insertions in the communication channel 

automatically. Compared to CFB mode, both cipher modes can obtain higher efficiency 

with modest buffer size and reasonable latency. Hence, both modes can be applied to 

high-speed digital hardware implementation and they have been identified as being 

suitable for physical layer security for applications such as SONET/SDH. 

In this thesis, both modes are implemented in software and hardware. In 

particular, the hardware structure and method of hardware implementation are 

investigated. Parallel and serial transfers are applied to the hardware implementation of 

SCFB mode and OCFB mode, respectively. Very High Speed Integrated Circuit 

Description Language (VHDL) and LSI design with 0.18 CMOS technology supported 

by Canadian Microelectronics Corporations (CMC) are used in the process of hardware 

implementation. The hardware structures of both modes are synthesized by using 

Synopsis tools provided by CMC as well. 

In addition, the performances of both modes are analyzed with respect to 

characteristics such as the theoretical efficiency, synchronization recovery delay, and the 

error propagation factor. Furthermore, the relationship between efficiency, probability of 
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queue overflow, and buffer size is investigated. It is definite that both of modes can 

obtain higher efficiency than cipher feedback mode. OCFB mode performs marginally 

better with respect to error propagation and synchronization recovery delay in some 

circumstances. SCFB mode is able to achieve higher efficiency with a given buffer size 

and probability of buffer overflow in an efficient hardware implementation. Similarly, for 

a given efficiency and buffer size, SCFB mode has a lower probability of buffer overflow 

than OCFB mode. In fact, while for SCFB it is possible to guarantee no overflow with 

50% efficiency and a buffer size equal to the block size, it is not possible to guarantee no 

overflow for efficiencies that are much less than 50% for OCFB mode. These results 

imply that SCFB is a mode more suitable for high speed physical layer security than 

OCFB mode. 
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Chapter 1 

Introduction 

Information security is an old science which can be traced back several centuries. 

The sender tries to hide information in order that it can reach the receiver safely without 

being recognized by the enemy. In many ways, cryptography can be seen as a war 

without the smoke of gunpowder. 

The main task of information security is to ensure the security of information 

during the process of transmission. Three key criteria mentioned in information security 

are confidentiality, integrity, and authentication. The confidentiality of the information 

means that only authorized access is allowed and unauthorized access is prevented. It 

guarantees that the information is hidden from the unauthorized users. The integrity of 

information ensures that the information transferred is original and not modified. The 

authentication of information ensures that the information is not processed during the 

transmission and both of the transmitter and the receiver are correct. It prevents the 

storage and the processing of information and a third party masquerading as one of the 

two parties. 

The use of cryptographic systems offers the highest level of security together with 

maximum flexibility. A cryptographic system includes an encryption system and a 

decryption system. The encryption system utilizes algorithms and keys to convert the 

original meaningful data into the nonsense data. If the modified information is obtained 
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or accessed by an unauthorized user, it cannot be figured out without the knowledge of 

algorithms and keys. In reality, the algorithms are usually published, but the keys are kept 

secret. The security of keys decides the security of information. Hence, it is no doubt that 

a cryptographic system can offer the information security by correct management and 

implementation. 

1.1 Motivation 

Today, the development and application of high quality and high-speed networks 

makes bandwidth capability and data confidentiality more and more important. Suitable 

modes of operation not only protect the data but also have the ability to maximize the use 

of network bandwidth. This thesis will focus on the studies of two recently proposed 

modes of operation, referred to as statistical cipher feedback (SCFB) mode and optimized 

cipher feedback (OCFB) mode, which can not only obtain the ability of self­

synchronization, but also have high efficiency compared to cipher feedback (CFB) mode. 

The ability to implement these modes for high-speed networks is also investigated. 

1.2 Objective of the Thesis 

The objective of the thesis firstly focuses on the hardware implementation of 

SCFB mode and OCFB mode. Hardware structure and the implementation method are 

discussed. The relative hardware characteristics with respect to the buffer size, 

probability of queue overflow, and the implementation efficiency are investigated. 
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The second objective of the thesis is to performance analysis on theoretical 

efficiency, error propagation delay, synchronization recovery delay and the relationships 

between buffer size, efficiency, and buffer overflow. 

By the analysis and comparison of hardware and performance, the conclusion of 

which mode is more suitable for high speed networks can be drawn. 

1.3 Thesis Outline 

This thesis includes seven chapters. Chapter 1 is the introduction part. Chapter 2 

provides the background related to the research. In this chapter, conventional modes of 

operation for the Data Encryption Standard (DES) [1] are discussed and the performances 

are analyzed in detail. Advanced Encryption Standard (AES) [2] algorithm is also 

provided as it is currently the most important block cipher. 

Chapter 3 explains the environment for the design and the use of Computer Aided 

(CAD) tools used for hardware implementation in detail. This chapter also describes the 

processes of how to make a chip or board from an idea or an algorithm. 

Chapter 4 introduces the algorithm of SCFB mode and considers the 

implementation of SCFB mode in hardware. The hardware characteristics with respect to 

the requirement on buffer size, the complexity, and timing analysis are discussed. 

Chapter 5 introduces the algorithm of OCFB mode and considers the 

implementation of OCFB mode in hardware. Again, the hardware characteristics with 
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respect to the requirement on buffer size, the complexity, and timing analysis are 

discussed. 

Chapter 6 analyzes the performance of SCFB mode and OCFB mode with respect 

to theoretical efficiency, synchronization recover delay, error propagation factor, and the 

relationship among buffer size, full-queue efficiency, and probability of overflow. 

Comparisons of these properties between SCFB mode and OCFB mode are then 

provided. 

Finally chapter 7 will draw a conclusion for this thesis and suggest some future 

work. 
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Chapter 2 

Background of Research 

This chapter introduces the background material for the research and provides a 

view of previous work. In general, an operational mode is needed to realize an 

encryption/decryption system. The mode of operation which is selected has a great 

influence on the security and the efficiency of system implementation. Therefore, it is 

significant to study the modes of operation. 

Besides the introduction of the modes of operation, the Rijndael algorithm which 

was announced as the Advanced Encryption Standard (AES) by the National Institute of 

Standards and Technology (NIST) recently is explained in this chapter. 

2.1 Symmetric Encryption Systems 

Conventional encryption, also referred to as symmetric encryption, is an 

encryption technology which uses the same key at the transmitter and receiver to encrypt 

and decrypt the message. Figure 2.1 illustrates the conventional encryption process [3]. 

The encryption system converts the original meaningful data, referred to as plaintext, into 

the nonsense data, referred to as ciphertext. The process of conversion combines the 

secret key shared by the transmitter and the receiver with a certain algorithm to produce 

the ciphertext. The secret key is independent of the plaintext. The ciphertext is sent into 
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the communication channel and collected by the receiver. The receiver then uses a 

decryption algorithm with the same key to decrypt the ciphertext to recover the plaintext. 

Secret key shared by Secret key shared by 

transmitter and receiver transmitter and receiver 

-- ----

® ® 
---- --

-- Communication ---- --
channel 

Plaintext Encryption algorithm Decryption algorithm Plaintext 

Figure 2.1 Conventional encryption models 

2.2 Stream Ciphers and Block Ciphers 

Block ciphers and stream ciphers are two important classes of encryption 

algorithms. A block cipher is a scheme which encrypts a fixed length of plaintext as a 

whole to produce the same length of ciphertext. The same plaintext produces the same 

output if the same key is provided. The benefit of the usage of fixed length of the block is 

its ease of implementation in software. Furthermore, it enables the incorporation of the 

encryption scheme into existing protocols or hardware components. A bit error in a block 

will cause a whole block error in the recovered plaintext. 

In contrast to the block cipher, a stream cipher [4] is an algorithm in which 

plaintext is encrypted bit-by-bit or symbol-by-symbol to produce the corresponding 

ciphertext. A stream cipher usually generates a pseudo random keystream to exclusive-or 
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(XOR) with plaintext to produce ciphertext. The output of a stream cipher is varied 

relative to the plaintext depending on the pseudo random keystream during the encryption 

process. Stream ciphers have relatively simple circuits and faster encryption speed in 

hardware compared with the block ciphers. Therefore, a stream cipher is suitable for 

high-speed networks or the physical layer in a communication channel. In addition, 

stream ciphers can have the significant property of no error propagation. A single bit of 

ciphertext error results in a single bit of plaintext error. This property makes stream 

cipher suitable for systems with high error probabilities in transmission. If a ciphertext bit 

is lost in transmission, a stream cipher will cause complete nonsense data for the rest of 

the recovered plaintext unless special measures are taken. Hence, stream ciphers need the 

ability of resynchronization through either a special signalling channel or the method of 

self-synchronization. This research will discuss the modes of operation which configure 

block ciphers as stream ciphers capable of self-synchronization. 

Bit slips are defined as the loss of a bit or bits in the process of data transmission. 

It is possible for the data transmitted to pass by several network switches and then arrive 

at the destination. Clock differences between network nodes, could cause bit slips or 

insertions.The ability to recover from bit slips and insertions is inevitable to consider 

when the modes of operation are discussed. 

There is a class of stream cipher, referred to as self-synchronizing stream ciphers, 

which can recover from bit slips or errors automatically. It looks for a sync pattern in the 

ciphertext to extract an Initialization Vector (IV) to synchronize the encryption and 

decryption system. This works because the ciphertext is shared by the encryption and 
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decryption system. Self-synchronizing makes the cryptographic system more efficiently 

use bandwidth than the stream ciphers which require an extra signalling channel to 

transfer IV to synchronize the encryption and decryption system periodically because it 

does not need additional bandwidth for synchronization purposes. 

Interestingly, there are several modes of operation that can configure a block 

cipher as a stream cipher to produce a pseudo random keystream and attain the ability of 

self-synchronization. Before we discuss self-synchronization explicitly, let us introduce 

the conventional modes of operation. 

2.3 Conventional Modes of Operation 

There are four operational modes for block ciphers that were published in 

December 1980 [4]. They are listed as follows: 

1. Electronic codebook mode (ECB) 

2. Cipher block chaining mode (CBC) 

3. Cipher feedback mode (CFB) 

4. Output feedback mode (OFB) 

Electronic Code Book (ECB) [3] is a mode in which each block of plaintext 

produces a corresponding ciphertext value according to the key. In other words a 

plaintext always has the same ciphertext given the same key. When data is applied to 

ECB mode, data is separated into blocks and then each block is encrypted independently. 

Figure 2.2 illustrates ECB mode [3]. ECB mode is not fitted for a system with small 

block sizes because the repetition possibility of the block becomes high and that will 

cause a decreasing of the security. That situation may be improved by the addition of 
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random pad bits in the block. Another method to increase the security is to enlarge the 

block size. A large size block has the ability to prevent a codebook attack since it 

contains enough unique entropy. However, a bit error will cause a whole block of data 

errors. 

Plaintext block Ciphertext block 

Key Key 
Encryption Algorithm Decryption Algorithm 

Ciphertext block Plaintext block 

Figure 2.2 ECB mode 

Cipher Block Chaining (CBC) [3] is the mode in which each plaintext block 

XORs with the previous ciphertext block, and then is encrypted with the key to produce 

the next ciphertext. The first ciphertext block is provided by an IV. Figure 2.3 illustrates 

CBC mode. In the figure, PJ represents the current plaintext with bits, P represents the 

recovered plaintext, E represents encryption algorithm, E.1 represents decryption 

algorithm, B represents block size, and Co represents the first ciphertext which is usually 

given by IV. CJ.J represents the previous ciphertext, and CJ represents the current 

ciphertext. In the figure, Ei3 represents the bitwise XOR of a block. The chaining structure 

makes the current ciphertext block entirely dependent on the previous ciphertext block. 

The same ciphertext block for a given plaintext can be obtained only if the same key and 
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the previous ciphertext block is the same. For CBC mode, a bit slip will cause the whole 

block and the remaining blocks to be random with respect to the plaintext. 

Figure 2.3 CBC mode 

Cipher Feedback (CFB) [3] mode utilizes a pseudo-random keystream which is 

generated by a block cipher to encrypt plaintext. Because the encryption of plaintext is bit 

by bit, CFB mode can fall into the class of stream ciphers. The significant characteristics 

of CFB mode is that it feedbacks the ciphertext into a shift register at the input of the 

block cipher to produce the next key stream block. CFB mode is illustrated in Figure 2.4. 

In this figure, m and B are the feedback and block size and m could be B or less than B, 

and E represents the block cipher with a block size of B. 

Similar to CBC mode, an IV as the initial input of the block cipher is provided to 

CFB mode to guarantee the same start on both the transmitter and the receiver. The value 

of m greatly influences the properties of CFB mode. When m = 1, CFB mode has the 

ability to recover from bit slips or insertions. When m > 1 and a single bit slip occurs, the 

input to the block cipher at the receiver will become misaligned and resynchronization 
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will not occur. CFB mode can be categorized as a self-synchronizing cipher when m = 1. 

However, it is very inefficient from the view of implementation [5]. How to increase the 

efficiency becomes an interesting topic. One single bit error in the communication 

channel will cause the recovered plaintext bit to be in error and the next whole block of B 

recovered plaintext bits to be corrupted. 

m m 

Ciphertext 

m m 

Figure 2.4 CFB mode 

Output Feedback (OFB) mode [3] can be used to construct a stream cipher by 

making use of a block cipher as a pseudo-random generator. As with CFB mode, it uses 

an IV as the input of block cipher initially. It then takes the previous output of the block 

cipher (not the previous ciphertext) as the next input to the block cipher to produce the 

next key stream block. OFB mode is illustrated in Figure 2.5. 

Of all operational modes, OFB mode offers minimal error propagation. A bit error 

will cause only one bit error because the generation of the key only has a relationship 

with the output of the block cipher rather than the ciphertext. It can be implemented with 
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high data throughput as well by performing the XOR of plaintext with keystream in 

blocks of B bits. However, it does not have the ability to resynchronize. To ensure that 

the communication system is working properly, OFB mode needs an extra signalling 

channel to periodically transfer an IV from the transmitter to the receiver to recover from 

any synchronization loss that may occur due to bit slips. 

OFB mode has a subtle security problem. Because the output of the block cipher 

is fed back as the input of the block cipher and the fixed length of the block size is used, 

it is possible to cause the repetitive usage of the keystream. That means the cryptanalyst 

can figure all subsequent messages transferred from the repeated parts, if the system is 

accessed by cryptanalyst and the cryptanalyst finds the repetition cycle of data. Thus, the 

security of OFB mode is decreased. 

m m 

Ciphertext 

m m m m 

Figure 2.5 OFB mode 
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2.4 Other Modes of Operation 

The conventional modes of operation discussed above were recommended to be 

used with DES [1]. With concerns of the security of DES, Triple-DES and AES have 

taken its place. This brings some new modes of operation and applications. 

Counter mode [6] also turns a block cipher into a stream cipher. It generates the 

next keystream block by encrypting successive values of a "counter". The counter can be 

any simple function, which produces a sequence that is guaranteed not to repeat for a 

long time, although an actual counter is the simplest and most popular. In counter mode, 

the state vector is simply a number the same size as the block of the block cipher. To 

encrypt any block, the number is incremented, then the incremented number is encrypted, 

the output of that encryption is XORed to the plaintext, and the result of the XOR is the 

ciphertext. The problem of the OFB mode having cycles of unpredictable (and potentially 

short) periods in some cases is solved. Since the counter doesn't cycle until it was stepped 

through all 28 numbers (assuming block size B). Obviously, counter mode should not be 

used with block ciphers whose blocks are so short that there is a risk of running a full 

cycle on one key. Hence, counter mode has to be applied on 64-bits or larger blocks. 

Counter mode has similar error propagation characteristics to OFB. 

Many other modes of operation besides counter mode are modified from the 

conventional modes of operation and counter mode, such as cipher-chain-cipher mode, 

propagation cipher feedback (PCBC) mode, CFB64 mode, etc [6]. 
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2.5 Advanced Encryption Standard (AES) 

AES [2] was developed by NIST to replace DES and protect sensitive government 

information well into the twenty-first century. Among five finalists, the Rijndael 

algorithm won out and has become the proposed AES algorithm. 

Before describing the cipher Rijndael algorithm, there are several parameters that 

need to be explained. State describes the intermediate data and is expressed as a byte 

array which has four rows and Nb columns. Nb is the block size divided by 32. The 

cipher key is expanded with the key schedule to generate round keys, w[iJ]. The number 

of rounds, Nr, is decided by the length of the cipher key. 

The cipher Rijndael consists of: 

• An initial round key addition 

• Nr-1 intermediate rounds 

• A final round. 

Initially a round key is added in to enhance the system security. In the 

intermediate Nr-1 rounds, each round is composed of four different transformations to 

realize confusion, diffusion, and key mixing [3]. The final round is slightly different from 

the previous Nr-1 rounds. 

Figure 2.6 [3] illustrates the structure of AES using the 128-bit block as an 

example. During the encryption and decryption, the State array is initialized as the 

plaintext and modified at each stage of the transformations. The 128-bit cipher key is 

arranged into the matrix of bytes to be expanded into 44 words of key schedule for 10 

rounds and each round takes 128 bits as the round key from the key expansion. In the 
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diagram, the inverse substitute bytes, the inverse shift rows, and the inverse mix columns 

are the inverse of the corresponding transformations. The details on the inverse 

transformations and other length of the cipher key are described in [2] and [3]. 
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The functions of four transformations on the Sate are briefly explained here. 

• Substitute bytes: This transformation uses a nonlinear substitution table 

called an S-box to substitute each State byte-by-byte. 

• Shift rows: This transformation is a simple permutation according to the 

rules that the first row does not shift, the second row performs circular left 

shift by 1-byte, the third row performs circular left shift by 2-bytes, and the 

fourth row performs circular left shift by 3-byte. 

• Mix columns: This is a linear transformation on each column of State over 

GF (28
) to generate new columns. 

• Add round key: This transformation XORs the current block with the round 

key. 
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Chapter 3 

Design and Implementation 

Environment 

An algorithm or an abstract idea can be implemented by software and hardware 

through a design process, and made into a system or a chip. A design has to depend on 

current particular technology, especially for hardware design. With systems or chips 

becoming more and more complex and the sizes of systems becoming smaller and 

smaller, a hardware technology, referred to as Very Large Scale Integration (VLSI), has 

become very popular. Computer Aided Design (CAD) tools are utilized in the design and 

implementation. This chapter will give some basic background to these issues. 

3.1 Software vs. Hardware Implementation 

Software implementation is prevalently used to check the correctness and the 

feasibility of a system or an algorithm due to its flexibility, ease of use, relatively low 

cost, and relatively short implementation time compared to hardware implementation. 

However, hardware implementation plays an important role in the system 

implementation due to its concurrent characteristics and the capability of satisfying speed 

that system requires. In hardware each part of a system can work concurrently such that 

the system efficiency can be improved. Hence, hardware implementation becomes more 

attractive for high speed applications such as broadband communication networks. 
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3.2 Design Methodology 

Unlike software, hardware implementation is a complicated process. Figure 3.1 

illustrates the design process of full ASIC from an idea to a chip or a board [8]. There are 

seven steps from an initial design idea to the final hardware implementation. Before it is 

passed to the next step, the result is checked to guarantee correctness of the 

transformation. In the end, a stream file which describes mask layer information for a 

circuit is generated for chip fabrication after Design Rule Checking (DRC) is completed. 

During the design process a Hardware Description Language (HDL) is used 

widely. Among many HDLs, the Very High Speed Integrated Circuit (VHSIC) Hardware 

Description Language (VHDL) is very popular in the research and industry domains. In 

our work we have made use of design methodology which is prevalently used in the 

process of a system design focused on the digital Integrated Circuit (IC) design flow 

recommended by Canadian Microelectronics Corporation (CMC) [8]. 

Instead of trying to implement the design of a large system all at once, a divide­

and-conquer strategy is taken in a top-down design process. Top-down design is referred 

to as recursive partitioning of a system into its subcomponents until all subcomponents 

become manageable design parts. By "manageable design parts" is meant that the 

components designed can be found in a library provided. Figure 3.2 outlines the recursive 

partitioning in a top-down design process. In the figure, the shadowed sub-components 

represent the manageable parts by hardware mapping in a library [8]. 
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Figure 3.1 A digital system design process 
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SUD: System Under Design SSC: System Sub-Component 

Figure 3.2 Top-down design and bottom-up implementation 

When the top-down design process is completed, a partition tree is available. 

Then, the bottom-up implementation process begins. During this process, hardware 

components corresponding to the leaves of the tree are recursively bound until the system 

is completed. 

3.3 Design Flow, Functional Test and Verification 

Figure 3.3 shows the digital system design flow using the Deep-Sub-Micron 

(DSM) technology recommended by CMC. From the figure, it can be seen that the design 

flow is divided into two parts. The first four steps, which are referred to as front-end 

design part, use the VHDL language and Synopsys CAD tools and the remaining five 

steps, which compose the back-end design part, use Verilog and Cadence CAD tools. In 

the front-end design, a design idea is converted to a gate-level netlist. The gate-level 

netlist is then passed to the back-end design part for placing and routing. 
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Step one uses the VHDL language to transform the design idea to Register 

Transfer Level (RTL) codes and verify the functionality of RTL code. The top-down 

design and bottom-up implementation are the main strategies in this process. 

Step two accepts RTL codes and synthesizes them. The synthesis turns VHDL 

code automatically into gate-level code depending on the current libraries. This process 

may bring in many unnecessary circuits because of the limitations of the CAD tools [9]. 

The result could be unoptimizable. The situation may get worse when synthesizing a 

large design. However, for small and simple designs, it is efficient and trustworthy to use 

CAD tools for an excellent job. It is recommended in the Synopsys documentation that 

large designs not be imported directly to the synthesis tool. A hierarchical bottom-up 

approach should be used instead. Importing large designs leads to crashing the synthesis 

tool and in some cases may result in an unoptimized design [8]. In this research each 

module of the design is designed, synthesized and tested separately, based on this bottom 

up implementation approach. 

In the synthesis step, each component is analyzed and elaborated usmg the 

Synopsys Design Analyzer tool. Higher-level components are then built up when the 

synthesis results of all the bottom components are saved in the database or the work 

library. After the complete design is successfully imported, it is constrained based on the 

designer's performance objectives. In most cases, the constraints include input/output 

(I/0) pads specification, scan style definition, output load definition, and clock definition. 

If all pre-set constraints are met, the constrained design is then synthesized into gates. 
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Otherwise, the RTL code needs to be modified, simulated and then synthesized until all 

constraint requirements are met. 

Step three is the scan insertion for the design test by the standard scan-based 

Design for Testability (DFT) techniques. 

Step four is the gate-level simulation. This simulation is different from the RTL 

simulation in step one which ensures the design is functionally correct. Timing is not 

considered at that time because hardware timing information, which is tightly associated 

with the targeted technology and is defined in the library, is not available to the design 

yet. Hence, this step is the gate-level simulation with timing information considered for 

the design. 

Floor planning, which is step five, is to create a floor plan for the design. 

Step six, placement, is to use forward-annotated timing information from 

Synopsys tools to perform core cells placement. 

Clock tree generation is step seven to add clock buffer cells and nets to create a 

balanced clock tree . 

Step eight is routing and timing verification, which verify the gate-level circuit 

generated from the step previous. 

The last step is stream file. This step verifies the placed and routed design and 

fixes minor violations. The stream output is used for chip fabrication. 

This concludes the complete digital system design process based on CMC 

recommended design flow. 
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Chapter 4 

Statistical Cipher Feedback (SCFB) 

Mode 

In this chapter, statistical cipher feedback (SCFB) mode [10] is investigated. The 

algorithm of the SCFB mode was first described in [10] and the name was given in [5] 

because the cipher feedback is statistical which depends on the frequency of recognizing 

sync pattern. SCFB mode is a form of stream cipher which can utilize a block cipher to 

produce a keystream to XOR with plaintext data. Compared with conventional block 

cipher modes, SCFB mode can achieve self-synchronization with high efficiency, 

reasonable latency and modest buffer sizes. Hence, SCFB mode has the capability to 

recover from bit slips in the communication channel. 

Firstly, the working theory of SCFB mode is introduced. Then the top-down 

design and the bottom-up implementation are provided. The performance analysis of 

SCFB mode will be discussed in Chapter 6. 

4.1 Introduction to SCFB Mode 

In Chapter 2, it was shown that CFB mode with m = 1 is an inefficient mode with 

the property of self-synchronization. Hence, how to improve system efficiency and to 

keep the property of self-synchronization becomes a research direction. To save 

communications bandwidth, one way to control synchronizations of the encryption 

system and the decryption system is to check for a sync pattern in the ciphertext data 
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because the encryption system and the decryption system can obtain the same ciphertext. 

The sketch of SCFB mode is shown in Figure 4.1 where E represents the block cipher 

and the input register is used to store data as the input of the block cipher [10]. The scan 

block is used to scan ciphertext to find a sync pattern and collect the IV after a sync 

pattern is found. If the sync pattern is not recognized and the status of the system is not in 

the collection of new IV, the switch is put into the position A and SCFB mode can be 

thought of as OFB mode because its block cipher uses the previous output of the block 

cipher as the next input of block cipher to produce a block of keystream. If the sync 

pattern occurs, the switch is put into position B while the new IV is collected from 

ciphertext. After the collection of IV is completed, a new IV has been loaded into the 

input register to synchronize the system. During the collection of IV, SCFB mode is 

considered as CFB mode because its block cipher uses ciphertext as the next input to 

produce a block of keystream. 
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E 

A 
plaintext 

ciphertext 

Encryption 

Communication 
channel 

E 
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ciphertext 

Decryption 

Figure 4.1 SCFB system 
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Hence, SCFB mode is a combination of CFB mode and OFB mode. SCFB mode 

conquers the deficiency of OFB mode by turning into CFB mode following the detecting 

of a sync pattern in the ciphertext to provide the capability of self-synchronization. As 

well, the efficiency of SCFB mode is improved significantly compared to the 

conventional CFB mode since SCFB mode works as OFB mode most of time. From this 

figure it can also be know that the decryption system has the same structure as the 

encryption system except the plaintext instead of the ciphertext is shifted into the input 

register. 

4.2 Implementation of SCFB Mode 

4.2.1 Software Implementation 

To precisely describe the operation of SCFB mode, the flowchart of SCFB mode 

is shown in Figure 4.2. In the figure, Xo ... Xs-1 and Yo ... Ys-1 represent plaintext bits and 

ciphertext bits, respectively. Furthermore, Wo ... Wn-1 represents an n-bit window that is 

used to compare with a sync pattern and Qo ... Qn-1 represents then-bit sync pattern. Ek (') 

represents the block cipher with the key k and block size B. Zo ... Zs-1 is a register to 

collect the B-bit IV. The flag, loading_IV, is used to indicate whether or not the collecting 

of IV is underway. The flag, new_IV, indicates whether or not the collection of the new 

IV is completed. 

From the flow chart, it is clear that block cipher operation is triggered by either 

the case that the sync pattern is found or the case that the encryption of B bits of plaintext 

is completed. If the sync pattern is found, the system starts to collect the B-bit new IV to 

26 



save in the Z register and waives checking for the sync pattern until a new IV is ready. 

All plaintext bits following the new IV are encrypted as a new OFB keystream. If the 

sync pattern is not found and the encryption of a B-bit plaintext is finished, the system 

works in OFB mode to trigger Ek 0 to produce a new B-bit block of keystream and 

continues to check for the sync pattern in ciphertext. 

No 

start 

Initialization 
Ia adlng_IV f- false 

Xo ... XB-1 <E- Initial value 
W0 ... Wrl_1 f-o ... o 

jf-0 

Yes 
End of 
data? 

No 

Figure 4.2 Flow chart of SCFB system 
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Although a description of software can clarify the algorithm of SCFB mode, the 

property of sequential logic gives a limitation on explaining and simulating how the 

system works efficiently. The system will become more efficient only if components in 

the system are used simultaneously and only a fewer components remain idle at any time. 

That is the fundamental reason why the hardware implementation is investigated in this 

thesis. 

4.2.2 Hardware Implementation 

4.2.2.1 Top-down Hardware Design of SCFB Mode 

The completed system of SCFB mode consists of the encryption system and the 

decryption system as shown in Figure 4.3. 

IV Key Pattern IV Key Pattern 

Clk Clk 

Plaintext Communication Channel Plaintext 
SCFB Encryption 

Ciphertext 
SCFB Encryption 

Reset System 
Reset 

System 

Figure 4.3 General diagram of SCFB system 

In the figure, IV, key and pattern are known by both the encryption system and the 

decryption systems. The port IV provides an initial IV to the inputs of block cipher. The 

key port gives a key to the block cipher. The pattern port provides a sync pattern to the 

system. Plaintext data is encrypted by the encryption system and sent to the decryption 
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system through a communication channel. The decryption system will then decrypt the 

encrypted data to recover the plaintext data. The input and output ports of the encryption 

system are displayed in Figure 4.4. 
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Figure 4.4 I/0 ports of the encryption system 

Encryption system 

I 

I I 

Plaintext subsystem Keystream subsystem Ciphertext subsystem 

I Storage part I I Calculating part I Keystream t I I 
generation part Scan part Storage part I I Calculating 

part 

Figure 4.5 Block diagram of the encryption system 

The encryption system can be divided into three subsystems according to different 

functions: plaintext subsystem, keystream subsystem and ciphertext subsystem as shown 
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in Figure 4.5. In practice, a plaintext buffer and a ciphertext buffer are required in order 

to provide the elasticity needed to ensure that the incoming and outgoing data speeds are 

the same even while the processing of data inside the system is not constant. 

The plaintext subsystem is used to collect plaintext data and send data out after 

the collection of B bits of data is completed. Because the plaintext subsystem needs to 

store incoming data in a queue which is named plaintext queue (PQ), there is a storage 

part in the figure. The calculating part is used to calculate the queue position at which 

incoming data should be placed. The keystream subsystem is used to generate the 

keystream and scan the ciphertext for the sync pattern to synchronize the encryption and 

the decryption systems. Therefore, the keystream subsystem has two functions: the 

keystream generation part produces the keystream using a secure block cipher, and the 

scan part recognizes a sync pattern. If the sync pattern occurs, the scan part will collect a 

block of ciphertext as the new IV to send to the keystream generation part as the new IV. 

If the sync pattern does not occur, the keystream subsystem uses the previous output of 

the block cipher as the input to produce keystream and the scan part continues to scan for 

the sync pattern. The ciphertext subsystem stores ciphertext data and sends ciphertext 

data to communication channel. The ciphertext subsystem has the same queue structure 

as the plaintext subsystem and hence, requires storage (referred to as the ciphertext queue 

(CQ)) and the calculating part to manage the queue data positions. 

4.2.2.2 Parallel Transfer vs. Serial Transfer 

Parallel transfer and serial transfer are two methods to transfer data bits from the 

PQ to CQ. In parallel transfer the incoming plaintext data bits are not sent to XOR with 
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the keystream until there are enough data bits in the PQ and the block cipher finishes the 

production of a block of keystream. In the case which SCFB mode works as OFB mode 

and the sync pattern is not recognized, the PQ collects B data bits depending on the 

frequency of clock and then sends the whole block of data to XOR with B bits of 

keystream at a time. In the case that the sync pattern is found but the collection of the 

new IV is not completed, the PQ collects data bits until it has the number of bits needed 

by the new IV and then sends the exactly needed data out to XOR with a partial block of 

keystream to produce a partial block of ciphertext. 

In contrast to parallel transfer, serial transfer sends plaintext data out bit by bit to 

XOR with keystream bits and the CQ receives the ciphertext data bit by bit. Serial 

transfer generally requires a simpler circuit than parallel transfer. However, unlike 

parallel transfer which has no clock limitation and can obtain high efficiency, serial 

transfer has clock limitation which constrains the system efficiency. In this thesis, to 

investigate the tradeoffs between these two methods, parallel transfer and serial transfer 

are applied to SCFB mode and OCFB mode (which will be discussed in Chapter 5), 

respectively. 

4.2.2.3 Implementation Structure of an SCFB System 

According to the discussion above, a general figure for the encryption system is 

drawn in Figure 4.6 [5]. While the plaintext data is being collected, a keystream block of 

B bits is generated by the block cipher. The input of the block cipher can be either the 

output of the block cipher or the IV from the ciphertext depending on whether n bit sync 

pattern is recognized. After a block of keystream is ready and the collection of B bits of 
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plaintext data is finished when the sync pattern is not found, the B bits of the keystream 

will be XORed with B bits of the plaintext data to produce the same length of ciphertext 

which is then stored into the CQ. When the sync pattern is recognized, the number of 

plaintext bits needed by the portion of new IV not in the same encrypted block as the 

sync pattern is collected to XOR with the keystream and then sent to CQ. The CQ will 

send data bit by bit into the communication channel at a constant rate. In the figure, the 

low case d refers to the number of bits transferred out of PQ which could be less than or 

equal to B bits. The queue which collects ciphertexts to compare with the n-bit sync 

pattern in the figure is named new IV queue (IVQ) and is used to provide new IV for the 

system. The block cipher described as E in this figure adopts the AES algorithm with the 

128-bit block length which was implemented by NIST and the results are published in the 

implementation of SCFB mode. 

B 

E 

plaintext 
queue 

I • • • • I I 
I• ~I 

< 
7 

B or 
d<B 

New IV 

Key -
I I 

I• 
( 

7 
B or 
d<B I• 

I 

B 

IV queue 
n 

++-I 
••••• 

I 
I .... 

ciphertext 
queue 

I 
•I 

•I 
I I 

Figure 4.6 Structure of the encryption system 

32 

I 

7 ~ .. 



The decryption system has a structure similar to the encryption system except that 

the position of the checking the sync pattern occurs on the input (i.e., ciphertext) side 

rather than the output (i.e., recovered plaintext) side. The input switching of the block 

cipher from the output of the block cipher to the new IV is again dependent on the 

detection of the sync pattern. 

4.2.2.4 Discussion on Queuing 

Initially the PQ is empty and the CQ is full with arbitrary data. When the PQ is 

collecting data at a fixed rate, the CQ is sending data out bit by bit at the same fixed rate. 

Because the rate of incoming data to the PQ is exactly the same as the rate of departing 

data from the CQ, the CQ becomes empty when the PQ fills up. When the PQ sends a 

whole block of data to XOR with the keystream to produce a block of ciphertext, the 

block of ciphertext data is put in the CQ. Hence, the PQ empties and the CQ fills up. This 

process represents the elastic property of the queues. If resynchronization occurs 

frequently in a short time, it will cause the PQ overflow. To avoid the overflow, the size 

of the PQ has to be large enough to reduce the probability of overflow to as small as 

possible. 

The size of queue has an influence on the delay when data passes through the 

system. If k represents the number of bits in the PQ and M represents the size of PQ 

which is the same as the size of CQ, the CQ should have (M - k) bits because the 

incoming speed of the PQ is identical with the outgoing speed of the CQ when no sync 

pattern is found. The delay through the system is k + (M- k) = M bits [5]. To minimize 

the delay, the buffer size M should be as small as possible. However, M has to be large 
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enough to save the incoming data when the block cipher gets delayed producing the 

keystream due to a burst of resynchronizations. M should be greater than or equal to B 

because PQ continues to collect data while the system collects all B bits of IV after the 

sync pattern is recognized. It is possible that the last bit of IV could happen anywhere 

within a block of ciphertext and there is a scenario where only part of the block needs to 

be XORed since all bits following the last bit of IV have to be encrypted by the new 

block of keystream. Although this partial plaintext block is XORed with the keystream as 

soon as possible, it still gives some delay to the system. Hence, M should not be less than 

B bits so that it has enough space to store the data and does not have data overflow [5]. 

4.2.2.5 Bottom-up Hardware Implementation 

In this section, the plaintext subsystem, ciphertext subsystem and keystream 

subsystem implementation are discussed in detail. The encryption system is then built up. 

(The decryption system of SCFB mode has a similar structure to the encryption system.) 

In this implementation, the Rijndael algorithm with a 128 bit block size is used as 

the core algorithm of the block cipher. To mitigate buffer overflow, the sizes of PQ and 

CQ are 256 bits. The sync pattern is chosen as "10000000" with a length of 8 bits. 

• Plaintext Subsystem 

The main task of the plaintext subsystem is to collect plaintext data and send data 

to XOR with the keystream when there is enough data in the queue. There are two 

scenarios for the PQ. One is that the PQ collects B bits data and then sends them out 

when the sync pattern does not occur. When the sync pattern is found, the keystream 
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subsystem will take the data following the sync pattern as the first part of IV and then the 

scan part of the keystream subsystem calculates how many bits beyond a block boundary 

are needed to finish the collection of all B bits of IV. The value calculated is then 

delivered to the plaintext subsystem. After the value is received, the plaintext subsystem 

compares it with the number of bits in the queue. If the number is greater than the value 

received, the plaintext subsystem sends the exact number of bits needed by the keystream 

subsystem to XOR with the keystream to produce a partial ciphertext block as the rest of 

IV. If the number is less than the value, the plaintext subsystem will wait until there are 

enough data bits in the queue and then send them to XOR with the keystream. 

The plaintext subsystem includes two main parts which are the storage part and 

the calculation part as shown in Figure 4. 7. There are two parts included in the storage 

part: buffers and pointers. From the figure, it can be seen that there are two buffers. The 

upper buffer with the size of 256 bits stores incoming data and the lower buffer saves the 

128-bit data extracted from the upper buffer to be ready to XOR with the keystream. The 

part between the upper buffer and the lower buffer is the pointer part which extracts 128 

bits of data from the 256 bit queue to store into the lower buffer according to the result of 

the calculation part. Although there is a scenario that only a partial block of plaintext is 

needed when the sync pattern is recognized, the PQ part always provides 128 bits to XOR 

keystream. The task of extracting the exact number of valid data bits is left to the 

ciphertext subsystem and the scan part of the keystream subsystem. The extracted data is 

conceptually removed from the 256 bit queue by adjusting the appropriate pointer. 
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Because the addresses of the 128 bits of data extracted are contiguous, there are 128 

MUXes to select 128 bits from the upper buffer. 

The calculation part includes two parts: calculation and comparison. The 

calculation part is in charge of the number of bits in the upper buffer and sends the 

number calculated to the pointer part of the queue. There are two cases for the 

calculation. If the sync pattern is not found, every 128-bit data is sent out from the 

plaintext subsystem and 128 is subtracted from the upcounter which is used to count the 

number of bits for the upper buffer as shown in the figure. If the sync pattern is found, the 

number subtracted from the upcounter is varied from 1 to 128 depending on where a sync 

pattern occurs. Thus, the pointers move according to the results of the calculation part. 

The comparison part is used to compare the number of bits in the upper buffer with the 

number of bits in a partial block which the new IV needs if the sync pattern is recognized. 

If the sync pattern does not occur, the comparison part is used to control the time when a 

block plaintext should be sent out from the lower queue. In other words, only if there are 

enough bits in the plaintext queue and the keystream is ready, is it the time to send out 

the plaintext data and the flag, ready, is set to '1' to indicate that data is ready. 

• Ciphertext Subsystem 

The diagram of ciphertext block is illustrated in Figure 4.8. The task of the 

ciphertext subsystem is to receive the incoming block of ciphertext data and put them into 

the corresponding positions in the CQ. Again, there are two scenarios. If the sync pattern 

is not found, it accepts 128 bits of data. However, if sync pattern is found, it only accepts 
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the number of bits needed. Obviously, there are two parts included in the ciphertext 

subsystem. One is the 256-bit buffer which receives 128 or less bits of ciphertext to put in 

the corresponding positions according to the pointer and sends data out bit by bit. The 

other part is used to calculate the position in the ciphertext buffer for the incoming 128 or 

less bits of ciphertext . 

From the figure, the ctrl_de signal stands for the first pointer to point to the 

position into which the incoming ciphertext bits are moved. Because the addresses of the 

incoming ciphertext data are continuous, only the address of the first pointer needs to be 

calculated. The ready_data signal indicates when the pointer value is valid for the CQ. 

When part of the block of ciphertext data is coming, the queue part only accepts the exact 

number needed and the pointer has to move to the corresponding position. 

From the discussion above, it can be seen that the ciphertext part, Demux, has the 

function that accepts 128 or less bits data and distributes each data bit into the 

corresponding position and shifts data out every clock period. 

• Key Subsystem 

The key subsystem includes the key generation part shown in Figure 4.9 and the 

scan part shown in Figure 4.11. The key generation part accepts either the previous 

output of the block cipher or the new IV from the scan part as the input of the block 

cipher which is decided by the recognition of the sync pattern. There are two registers, 

upper Reg and lower Reg. The upper Reg, initialized by the IV, stores the input of the 

block cipher and the lower Reg stores the output of the block cipher to XOR with the 

plaintext data. The block cipher shown as E block in the Figure 4.9 adopts to the 
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Rijndael algorithm to be used to generate the pseudo-random keystream. The 

implementation of Rijndael algorithm is published by NIST. The encryption of Rijndael 

algorithm causes some delay which is related with the number of rounds involved in 

encryption. 

The controller controls the enable pins of the upper Reg and the lower Reg to 

decide the loading time of a new block of data. Its state machine is illustrated in Figure 

4.10. Combined with the Figure 4.9, it is clear that the controller controls the signals of 

En_regx, En_regy, Data_Load, Cv_Load, Cv_size, and Conmux. The signal En_regx is 

the enable signal of the upper Reg, En_regy is the enable signal of the lower Reg, 

Conmux is the signal to control the selection of the input of the block cipher, and the 

signals of Data_Load, Cv _Load, and Cv _size are provided to the Rijndael algorithm of 

the block cipher. 

When started, the system is reset and the controller goes into the state of RST to 

initialize the parameters. After reset changes to '0' from '1 ', the state of the controller 

goes to Gen_keyl, which generates a new block of keystream, on the rising edge of the 

system clock. When the signal of CipherDone, which stands for whether the generation 

of the new block of the key is completed or not, is set to '1 ', the controller changes to the 

state of Taken_keyl, which means that the new block of the keystream is ready and can 

be used to XOR with the new block of the plaintext. In this state, the controller sets the 

output signal, Done, to '1' to indicate the encryption system that the keystream is ready. 

The encryption system is waiting for the completion of the collection of the block of the 

plaintext. After the collection of the plaintext is finished, a block of keystream XORs 
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with B bits or less than B bits plaintext data at a time which depends on whether or not 

the sync pattern is recognized and the encryption system sets the signal, Ready_data, to 

'1' from '0'. The change of the signal Ready_data makes the state turn into More_time 

from Taken_keyl. This state gives one more clock cycle time to the controller. Because 

the parallel comparators are applied to find the sync pattern in the ciphertext, the finding 

can be finished in one clock cycle. Hence, in the state of More_time, the signal, 

jlag_New!V, can be decided. Then the controller turns into the state of Load_input, which 

sets the control signal, Conmux, to '1' and loads the new input of the block cipher. After 

the new input is provided to the block cipher, the new round of the controller of the 

keystream is started. 

CipherDone 
='1 Ready_data= 

'1 

Figure 4.10 State machine of the controller of the keystream subsystem 

The scan part [11] is the most important and complicated part in the whole 

implementation of the encryption system as shown in Figure 4.11. As mentioned above, 

the scan part has two tasks. One is to check for the sync pattern and the other is to collect 
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the new IV when the sync pattern is found. Before implementation, there are several 

issues which need to be considered. 

• How to check for the sync pattern? 

Because the data is encrypted block-by-block, it is necessary to consider the 

situation of the borders of the blocks since there is a possibility that the sync pattern is 

split across blocks. Copying the last n-1 bits of the previous comparison block to the next 

first n-1 bits of the current comparison block is a useful approach to solve this problem. 

That is why the queue of the sync pattern has n-1 more bits than the block size B. The 

number of B comparators is needed to check the (B+n-1) bits of data at once. 

• How to collect the new IV after the sync pattern is recognized? 

It is impossible to fulfill the collection in one block. Hence, how to calculate the number 

of bits remaining in the new IV past a block boundary is an issue. The data following the 

new IV should be encrypted by the key which is generated by the new IV. Therefore for 

the collection of the second part of the new IV, the PQ needs only collected to the 

number of bits that the new IV needs to XOR with the keystream to generate the rest of 

the new IV. The comparators compare the data with the sync pattern and the controller is 

used to control when the result of the comparison is sent to the encoder because SCFB 

mode does not check the sync pattern during the collection of the new IV. After the flag, 

''founcf', changes from '0' to '1 ', the control part closes the output of the comparators and 

keeps the previous value to the encoder. If the sync pattern is found, the encoder can 

translate the results of the comparison into the position where the sync pattern is. 
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According to the pointer of the encoder, the number that the new IV needs for the rest can 

be calculated by use of the adders. This value is sent to the plaintext subsystem and the 

ciphertext subsystem. 

• How to extract the new IV from the queue if the sync pattern is found? 

The two components of "MUX 2:1" on the right side of the figure are used to 

point to the correct positions. The upper "MUX 2:1" points out the position of the data 

extracted from the queue and the lower "MUX 2:1" points out the position where the bits 

extracted are going to. The "MUX 135:1" outputs the data pointed to and the component, 

SDemux, accepts the data from 128 "MUX 135:1" to form the new IV according to the 

pointer of the position. When the collecting of the new IV is completed, a flag in the 

"MUX 2:1" indicates the new IV done. 

• Encryption System 

An encryption system is formed by putting the plaintext subsystem, the keystream 

subsystem and the ciphertext subsystem together. The encryption of the system needs to 

wait until the keystream and the 128 bits of plaintext data (or the number needed) are 

ready. When the ready signal of the keystream subsystem, Done, and the ready signal of 

the plaintext subsystem, Ready, are set to '1 ', the system starts to send plaintext data to 

XOR with the keystream to generate a block of ciphertext data and sets the flag, 

ready _data, to '1'. This indicates that the current ciphertext data are valid ciphertext data. 

The ciphertext subsystem can place it in the queue. 
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The encryption system, coded using VHDL and simulated by the Synopsys tool [8] and 

the waveforms are shown in Figure 4.12, Figure 4.13, and Figure 4.14. The Figure 4.12 

displays that the first block of keystream is ready and the ready flag, key_ready,becomes 

'1'. Data_out (127:0) in the figure stands for a block of plaintext data sent out to XOR 

with the keystream. In this figure the collection of 128 bits of plaintext data is not ready. 

The Figure 4.13 indicates that the first 128 bits of plaintext data is ready and the new 

block of ciphertext data is generated. The encryption system sets the flag, ready_data, to 

'1'. The sync pattern is found after the ready _data flag is set to '1 '. The system calculates 

instantly the number needed by the second part of new IV which is shown as OE in 

hexadecimal. The finding of the sync pattern makes the keystream subsystem restart to 

generate the new block of keystream. After several clock cycles, the key _data becomes 

'1' and 15 bits of plaintext data is ready. It produces the new 15-bit ciphertext data and 

the ready _data flag becomes '1' again. The new IV is sent to the block cipher as the new 

input to produce the new block of keystream. The collection of the new block of plaintext 

data is ready in the Figure 4.14. The new block of ciphertext data is produced and no 

sync pattern is found in this round. More waveforms of simulation results of the 

encryption system are shown in Appendix A 

• Decryption System 

The decryption system has the same structure as the encryption system except the 

plaintext instead of the ciphertext is shifted in the last bit of the upper Reg. The 

simulation waveforms of the decryption system are shown in Appendix A. 
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4.2.2.6 Test Methodology 

To test the full encryption system, a system was built up by combining the 

encryption system and the decryption system. Random bit patterns generated by C++ 

code were used as the plaintext input and saved to an input file. The random plaintext is 

encrypted by the encryption system and then sent to the decryption system. By 

decryption, the ciphertext are turned into recovered plaintext. Comparing the plaintext 

recovered with the original input, we can know whether or not the system working is 

correct. One special case of the inputs and outputs of the system is shown in Appendix A 

to make results easy to check is to let all of the input be '1 's at the encryption system. 

The first 128 bits of the output of the decryption system in the Appendix A are the initial 

bits in the CQ of the decryption system. In this implementation, the CQ of the decryption 

system is initialized as all '0'. 

4.2.2.7 Complexity of Hardware Implementation 

The hardware implementation of SCFB mode utilizes the Synopsys tool based on 

0.18 f.1rrt CMOS technology to perform the front-end synthesis of the design. The 

hardware complexity as shown in Table 4.1 is reported by the design analyzer of the 

Synopsis tool with the constraint of the system clock of 10 ns. With the system clock rate, 

no slack is generated during the process of synthesis. No slack means that the design 

circuit can satisfy the required speed. The synthesized result of the Rijndael algorithm 

comes from [12]. When the circuit is synthesized it gets a report indicating a number of 

different gates, timing and a total overall area. One common way to estimate the circuit 

size is to use the number of equivalent 2-input NAND gates as a metric of the circuit size. 
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The area of synthesized circuits, which is in square microns (jtm2
), is converted to the 

gate count by using the two-input NAND gate which has the area of 12.197 j.Jm
2 as a 

basis for comparison. 

The table shows that estimated total gates of the encryption system is 1255644, 

out of which the Rijndael algorithm needs 612834 gates. Hence, the whole keystream 

subsystem including the key generation and the scan part occupies 60% of the hardware 

complexity of the system. 

4.2.2.8 Discussion of Other Structures 

There are other structures that are suitable to implement the SCFB system. One 

approach would be to remove the PQ and the CQ and thus remove elasticity in the flow 

of data through the system. A block cipher output must then be generated within one bit 

time of incoming data. This would clearly minimize delay through the system as the 

block cipher runs at the rate of B times of link rate. The system efficiency becomes 1/B, 

which is the same as for the CFB mode. Hence, this approach has little value [5]. 

4.3 Conclusion 

This chapter introduces the concepts of SCFB mode and describes the structure of 

a hardware implementation of an SCFB system. In the hardware implementation of 

SCFB mode, parallel transfer is applied to obtain high working efficiency. The hardware 

aspects of SCFB mode such as the queuing requirement, the relationship between queue 

sizes, and the data delay during the transmission from the plaintext queue to the 

ciphertext queue are discussed briefly. These will be further discussed in Chapter 6. 
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For a hardware implementation, SCFB system has the ability of self-

synchronization and can obtain much higher efficiency than CFB mode. Compared to 

Rijndael algorithm, the system doubles in hardware complexity. We conclude that SCFB 

systems are well suited to high-speed digital hardware implementation. 

Component Combinational Noncombinational 
Total Area Total Gate 

Name Area Area 

Plaintext 
2,237,383 89,662 2,327,046 190,788 

subsystem 

Keystream 
generation 

11,298 13,221 24,519 2,010 
part without 

Rijndael 

Scan part of 
keystream 1,512,222 148,470 1,660,693 136,155 
subsystem 

Rijndael 612,834 
algorithm 

Ciphertext 
3,759,299 68,801 3,828,101 313,856 

subsystem 

Encryption 1,255,644 
system 

Table 4.1 Hardware complexity of the encryption system of SCFB mode 
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Chapter 5 

Optimized Cipher Feedback (OCFB) 

Mode 

In this chapter, optimized cipher feedback (OCFB) mode [13] is investigated. As 

with the SCFB mode, OCFB mode can configure the block cipher as a stream cipher by 

using the output of the block cipher as the keystream to XOR with the plaintext to 

produce a block of ciphertext. 

Compared with CFB mode, OCFB mode attains higher efficiency and the ability 

of self-synchronization by checking for a sync pattern in the process of producing 

ciphertext. OCFB mode is quite similar to SCFB mode except OCFB mode keeps 

checking for the sync pattern all the time even during the IV collection phase. These 

differences influence the method of implementation and the properties of the system. 

This chapter describes the working theory first and then the top-down design is 

given. Finally it provides the hardware implementation of OCFB mode in detail. In the 

next chapter, the discussion on the performance analysis of OCFB mode will be 

combined with performance analysis of SCFB mode. 

As we discussed in Chapter 4, the serial transfer from the PQ to the CQ is adopted 

in the hardware implementation of OCFB mode instead of the parallel transfer of our 

SCFB mode implementation in order to analyze the influences given by the different 

methods of implementation. As we shall see, the serial transfer reduces the hardware 
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complexity but brings a complicated timing relationship to the implementation of OCFB 

mode which limits its operating efficiency. 

5.1 Introduction of OCFB mode 

The motivation of OCFB mode is to optimize CFB mode by improving the 

efficiency while still achieving the ability of self-synchronization. The approach is 

illustrated in Figure 5.1. OCFB mode is optimized by buffering all output bits of block 

cipher into the shift register SR2 as keystream to produce ciphertext. The ciphertext is 

sent out to the communication channel and the shift register SRI as the input of the block 

cipher simultaneously. A counter, named shiftcounter, is used to trigger execution of the 

block cipher after enough bits are collected in SRI. However, synchronization would be 

destroyed due to bit slips or insertions in a communication channel because the counters 

of the encryption system and the decryption system would lose synchrony relative to the 

ciphertext stream. Hence, resynchronization has to be done for both sides of counters. 

The only way to obtain resynchronization is to check for a sync pattern in the ciphertext 

because the ciphertext can be obtained for both the encryption and the decryption. The 

encryption system and the decryption system in the figure compare the current content of 

SRI with the sync pattern on each clock cycle. The counters are not reset until the sync 

pattern is found. This causes the counters of the encryption system and the decryption 

system to obtain synchronization again. 

Unlike SCFB mode, OCFB mode continues to check for the sync pattern in all of 

the ciphertext bits even when IV is collecting. Here we define IV to be the next B bits 

following the last bit of the sync pattern. This gives the OCFB mode more opportunity to 
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resynchronize. However, for a hardware implementation we shall see that the result is 

that it is more likely to have a buffer overflow resulting in a decrease of the system 

performance. 

---..EB-----.l.......l!---------------l----_.,-4+--l~ 

Encryption Decryption 

Figure 5.1 OCFB system 

5.2 Implementation of OCFB mode 

5.2.1 Software Implementation 

To precisely illustrate the operation of OCFB mode, the flowchart of OCFB mode 

is shown in Figure 5.2. In the flowchart, B represents the block length and shiftcount 

represents the counter with logz B bits which is used to keep track of which bit is being 

XORed with plaintext. SRI i and SR2i represent the i-th bit of SRI and SR2, respectively. 

The notation SRio ... SRis-J ~ SRh ... SRis-IC]+i is used to indicate the shifting of SRI from 

the higher bit position to the lower bit position and the highest position is substituted by 

the ciphertext bit. The IV that is known by both the encryption system and the decryption 

system is loaded into SRI after the start of the systems. The pattern represents the sync 
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pattern which is used to resynchronize the system. The block cipher Ek encrypts B bits of 

data to produce the same length of output as keystream and is stored in SR2. We assume 

the Ekrepresents 128-bit Rijndael with 128 bit key. 

Yes 

Yes 

j~j+l 

Start 

Initialization 

SR1 0 .•• SR1 8_1 f-lnltlal Value 

jH 

SR20 ••. SR2 8., ~E,(SR1 0 ... SR1 8 .,) 
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Ci+i~pl+l XOR SR20 

SR1 0 ... SR1 8 _1 ~SR1 1 •.. SR1 8_1CI+I 

SR20 .•• SR28 _1 ~SR2 1 ••. SA28 _10 

i= i+1 

Figure 5.2 Flow chart of OCFB system 

After the system is started, an IV is loaded into SRI and the system encrypts IV to 

produce the first block of keystream. The symbol i representing the shiftcounter is cleared 

to '0'. The system starts to compare the 1st n bits of the current content of SRI with the 
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sync pattern. If it is equal to the sync pattern, the system sets i to B and triggers Ek to 

encrypt B-bit SRI and save the B-bit output into register SR2. If the content of SRI is not 

equal to the sync pattern, i will add one. If i does not reach B, SRI and SR2 shift one bit 

position and the ciphertext generated by the previous SR2 bit is moved into the last bit of 

SRI. Meanwhile, the ciphertext is sent out to the communication channel. This process is 

repeated until all of the data is encrypted. 

The software implementation of the OCFB mode is simple. Because software 

executes sequentially and does not take advantage of concurrency to gain efficiency, 

hardware implementation realizes the full value of an OCFB system. The advantage of a 

hardware implementation is that components can run concurrently thereby minimizing 

the idle time for each part to improve the system efficiency. 

5.2.2 Hardware Implementation 

5.2.2.1 Top-down Hardware Design of the OCFB Mode 

From the description of the OCFB mode, it is clear that six data input ports and 

one output port are required as shown in Figure 5.3. The clki port provides the system 

clock. The Reset port is used to reset the system. The Key port provides the primary 

cipher key for the Rijndael algorithm. The Plaintext data port serially collects the 

incoming data bits. The IV port provides the first IV to the system. The encryption system 

and the decryption system initially have the same IV and primary key to give the system 

the same starting point. 

The encryption system can be divided into three functional subsystems which 

have different tasks: the plaintext subsystem, the keystream subsystem, and the ciphertext 
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subsystem as shown in Figure 5.4. The plaintext subsystem is in charge of collection, 

storage and sending out plaintext data. The keystream subsystem prepares for the 

keystream bits and controls the synchronization between the keystream and the 

corresponding plaintext. The ciphertext subsystem takes charge of collection of 

ciphertext bits and sends them to the communication channel. 

clk1 

Reset 

Key 

Ciph~ext 

Plaintext Data 
Encryption system of OCFB Mode 1 

/ 
1 

IV 

Pattern 

Figure 5.3 Port relationships of the encryption system 

Encryption System 

l l 
Plaintext subsystem Keystream subsystem Ciphertext subsystem 

Figure 5.4 Block diagram of the encryption system 

The OCFB system needs PQ and CQ to store the data bits in order to ensure that 

the incoming and outgoing data speed are the same even while the processing of data 
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inside the system is not at a constant rate. The queues provide the storage for the 

incoming and outgoing data while a new block of keystream is being generated because 

the production of the new keystream block requires more time than one clock cycle and 

data may have to wait until the new block of the keystream is ready. 

The keystream subsystem uses a register SRI to store the input of the block cipher 

and a register SR2 to store the output of the block cipher. A counter, called shiftcounter, 

should be used to count the amount of shifting and a comparator is needed to check for a 

sync pattern in the ciphertext. 

The general sketch of the encryption system of OCFB mode is illustrated in 

Figure 5.5. In the figure, B stands for the length of a cipher block and n stands for the 

length of the synchronization pattern. R is the rate of data corning into the PQ and R' is 

the rate the plaintext bits that leave from the PQ. Re is used to represent the rate of 

encryption of the block cipher. It makes sense that the outgoing rate of keystream bits is 

equal to R' since the keystream bits directly XOR with the outgoing plaintext data. As 

well, the incoming bit rate of the CQ has to be the rate of outgoing from PQ, R', 

otherwise it will cause the loss of data or duplication. In order that data comes into the 

system and leaves the system at a uniform rate, the outgoing rate of data in the CQ should 

be equal toR. To reduce the possibility of PQ overflow as much as possible, R' must be 

greater than R to compensate for delay in producing keystream blocks due to the block 

cipher process when resynchronization occurs. 

In the figure, there are three clocks, clkl, clk2, and clk3, to control the running 

speeds of the data transfer and the block cipher. Among these three clocks, the clkl is the 
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fastest clock and it can be the system clock in the implementation. The clk2 and the clk3 

can be derived from the clkl. Since the data collection of PQ is based on the clk2, the rate 

of incoming plaintext data of PQ, R, is directly equal to the frequency of the clk2. As 

well, R' is equal to the frequency of the clkl andRe is equal to the frequency of the clk3. 

The system efficiency can be controlled by adjustment of these three clock frequencies. 
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F\ 0 B 1 (..) 
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R 1 R' R 1 
dk2 dk2 

Plaintext queue Ophertext queue 

Figure 5.5 Structure of the encryption system 

In each subsystem, the plaintext subsystem, the keystream subsystem, and the 

ciphertext subsystem, there are two different rates. The plaintext subsystem collects 

incoming data at the rate R and sends data out at rate R '. The ciphertext subsystem has 

the reverse situation of the plaintext subsystem. For the keystream subsystem, the 

interfaces of the keystream subsystem use the rate R' to keep the same pace with the 

interfaces of the plaintext subsystem and the ciphertext subsystem. The core component 
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of the keystream subsystem, the block cipher, adopts the rate Re to control the running 

time of the block cipher in order to reduce the idle time of the keystream subsystem to 

improve the system efficiency. Hence, there are two conversions of the rate in the 

keystream subsystem. One is from SRi to the block cipher and the other is from the block 

cipher to SR2. 

5.2.2.2 Discussion on Queuing 

Both PQ and CQ have the same buffer size. While bits are coming into PQ, bits 

are leaving from CQ at exactly the same rate, like SCFB mode. During the period that the 

block cipher encrypts to produce the new block of keystream, the incoming plaintext bits 

are stored into the queue until the block of keystream is available. After the keystream is 

ready, PQ starts to shift bits out until the counter counts to the maximum or the sync 

pattern is found. The block cipher is then triggered to generate the new keystream block. 

The input of PQ therefore accepts bits at a uniform rate, but the output of the PQ shifts bit 

by bit only when the keystream is available. 

CQ has exactly the reverse situation as PQ. When the keystream is available, the 

CQ starts to accept the incoming data bit by bit. While the block cipher encrypts to 

generate the new keystream, CQ stops collecting data until the keystream is ready. 

However, the output of CQ keeps the uniform rate to send bits out. The CQ is initialized 

with arbitrary data so that it is in the full state initially when the PQ is empty. When PQ 

fills up, CQ goes to empty. The situation of overflow of the PQ is exactly the same as the 

situation of underflow of the CQ. Hence, the overflow condition of PQ only needs to be 

considered. 
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The size of the queue has an influence on the delay of data passing through the 

system. Let k represent the number of bits in PQ and M represent the size of PQ and CQ. 

The delay of data passing through is k + (M - k) = M bit times. To minimize the delay, 

the buffer size M should be as small as possible. However, M has to be large enough to 

save the incoming data when the block cipher produces the keystream. Because OCFB 

mode checks for the sync pattern all the time, bits fill up in PQ easily causing overflow if 

resynchronizations occur frequently. (This manifests as an underflow in CQ.) Loss of 

data bits will then occur. Whether or not PQ overflows is related to the occurring 

frequency of the sync pattern, the size of M, the time spent by keystream generation, and 

the incoming rate of plaintext bits. Of these four factors, the last three can be decided 

when the system is set up. However, the first factor relates to the size of the sync pattern 

and the time between sync patterns is given approximately as the geometric probability 

distribution [5]. The relationship between the probability of overflow and the buffer size 

will be discussed in Chapter 6. In order to minimize the probability of overflow, PQ has 

to be large enough and outgoing data rate leaving the PQ has to be greater than the 

incoming data rate. Hence, there is an important relationship among the rate Re of the 

block cipher encryption, the rateR' of bits removed from PQ, the rateR of bits coming 

into PQ and the buffer size. 

5.2.2.3 Discussion on Timing Characteristics of Implementation 

Clearly, there are two working threads in the OCFB system. One is the generation 

of the keystream and the other is data movement in the queues. In order to obtain higher 

system efficiency, the encryption of the keystream and the data transfer in the queue have 
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to work concurrently and shorten the idle time of each subsystem. The different rates, R', 

R, and Re, introduce the different times, T', T, and Te. T' represents the time spent 

sending one block (i.e. B bits) of plaintext data out of PQ, Tis the time collecting one 

block of plaintext data in PQ, and Te is the time generating one block of keystream. 

In this thesis for ease of implementation 50% efficiency is examined. 50% 

efficiency implies that for every B bits entering the queue, 2B bits are removed from the 

queue. Unlike SCFB mode, 50% efficiency does not have special meaning for OCFB 

mode. 50% efficiency is chosen because it allows the system to generate clocks that are 

integer multiples of the system clock clkl. This results in the following equations where 

R, R' andRe are in units of bits I second: 

Efficiency = R I Re = 50% 

R' = 2 * R 

R'=Re· 

From the three equations above, it is easy to deduce the equations as below: 

T' = T/2 

T' = Te 

Re =BITe 

From the equations above, it is seen that the generating time of one block of 

keystream, Te, is the same as the leaving time of one block of plaintext data, T'. Te and T' 

are equal to half of T. This implies that the generation of one block of keystream and the 

XORing of one block of plaintext have to be completed in the time of T I 2 for 50% 

efficiency. 
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The encryption processing of OCFB system can be described as follows. After the 

system is reset, the keystream subsystem starts to produce a new block of keystream and 

the plaintext subsystem begins to collect the incoming data. Since the collecting speed of 

the plaintext data is two times slower than the generation speed of one block of 

keystream, it can be imagined that B I 2 bits would be in PQ when the generation of one 

block of keystream is finished. Then PQ starts to send data out to XOR with keystream 

generated bit by bit after the keystream is ready. During B bits of keystream XOR with 

the B bits of plaintext data bit by bit, PQ still collects incoming data at the rate of R. This 

can happen only when resynchronization does not occur. If resynchronization occurs, 

only part of the B bits in PQ XOR with the key and the rest of the bits will stay in the 

queue to wait until the new keystream block is generated. It is clear that bits will fill up in 

the queue and might cause overflow if resynchronization occurs frequently. Enlarging the 

queue size may be a better way to decrease the probability of overflow, but it will suffer 

from longer delay. 

Figure 5.6 illustrates the timing relationships between the data flow associated 

with PQ, CQ and the keystream. This figure also shows some detailed considerations for 

implementation. In the diagram, clk2 = 2 * clkl since R' = 2 * R. The up I down arrows 

indicate that the components are triggered by the rising/falling edge of clock. The lower 

case s stands for shifting and the lower case w for writing. Because a component in the 

hardware implementation cannot resolve two signals simultaneously, the rising and 

falling edges are selected to avoid two signals affecting one component at the same time. 

Writing into the PQ is controlled by clk2. The rising and falling edges of clk2 are always 
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on the rising edge of clkl. Hence, there is no limitation on the selecting of the rising or 

the falling edge for the writing of the PQ. However, the control of the shifting of PQ has 

to use the falling edge since writing has already occupied the rising edge. CQ has the 

same situation except writing is using the falling edge of clkl and shifting is using the 

rising edge of clk2. Because a plaintext bit is shifted out on the falling edge of clkl, the 

keystream has to keep the same pace as the plaintext bit to guarantee the synchronization. 

Hence, the interfaces of the keystream part have to use the falling edge of clkl. The 

writing of CQ triggered by falling edge cannot write the latest bit but the previous one 

because the generations of plaintext and keystream depend on the falling edge of clkl. 

Therefore, the data of CQ is delayed one clkl cycle. 

PQ s s s s s s s s s s 

elk 

w w w w w 

elk~ J l J J L 
CQ w w w w w w w w w w 

elk 

s s s s s 

elk~ r r r J L 
Keystream s s s s s s s s s s 

elk 

Figure 5.6 Timing relationships between PQ, CQ, keystream 
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5.2.2.4 Bottom-up Hardware Implementation 

In this part, the plaintext subsystem, the ciphertext subsystem and the keystream 

subsystem are implemented individually as foundational subsystems and then encryption 

system is built up from them. (The decryption system of OCFB mode has the same 

structure as the encryption system.) 

Some conditions are assumed before the implementation. In this implementation 

the Rijndael algorithm is used as the core algorithm of the block cipher. Alternatively, 

triple DES, DES or other algorithms which are thought to be secure can be used as the 

block cipher. For Rijndael, the length of each block is 128 bits. Hence, the sizes of SRI 

and SR2 must be 128 bits as well. To decrease the delay as data passes through the system 

and to make the possibility of overflow I underflow low, the sizes of PQ and CQ are 

chosen as 256 bits. The sync pattern is chosen as "10000000" and the length is 8 bits. 

• Plaintext Subsystem 

As mentioned above, PQ is a 256 bit queue and collects data bits while the 

keystream subsystem produces a new block of keystream. After the new block of 

keystream is ready, the PQ starts to send bits out. The writing of PQ is triggered by the 

rising edge of clk2 and shifting out is triggered by the falling edge of clkl under the 

condition that the valid signal, named val, is '1'. The PQ is illustrated in Figure 5.7. 

The implementation of PQ should include the following interface parts: 

a. The val signal indicates whether the output of PQ is valid or not. 

b. One 8-bit write pointer points to the correct position for writing. 

65 



c. The signal clk2 is generated for clkl and is twice clkl because of 

50% efficiency. 

d. One data input port and one data output port 

val 
/ 

clk2 [> 
1----J /1 

Plaintext queue 0 < clk1 
255 254 1 

Data bit 

/1 h plaintext 

/1 

/ 
v 8 

Write_pointer 

Figure 5.7 Structure of the plaintext queue 

• Ciphertext Subsystem 

The ciphertext queue has the reverse situation of PQ and is shown in Figure 5.8. It 

collects data bits according to the falling edge of clkl when the val signal is '1' and stops 

collecting bits when the val is '0'. The output of the CQ is timed by the rising edge of 

clk2. The write pointer points to the position for the incoming data bits. The CQ starts 

from the full state with arbitrary data. To make checking easier, the initial value of CQ is 

set to all of '1 's. Hence, the write pointer starts from 255, increases by one at the falling 

edge of clkl when val is '1 ', and decreases by one on each rising edge of clk2. 
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clk1 > 255 254 Ciphertext queue 1 0 ciphertext 
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Write_pointer 

Figure 5.8 Structure of the ciphertext queue 
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• Keystream Subsystem 

The keystream block consists of two 128-bit registers SRI and SR2, the core block 

cipher, and a shiftcounter which includes one 8-bit comparator and a counter, as shown in 

Figure 5.9. 
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Figure 5.9 Hardware structure of the keystream subsystem 

This part mainly takes charge of the generation of keystream. The 8-bit 

comparator compares the first 8 bits of SRI with the sync pattern until the sync pattern is 

found. The eq signal in the figure is the output of 8-bit comparator. It sets the counter to 

the maximum when eq is equal to '1 '. The counter then sends a done signal out to the 

core algorithm of the block cipher. This counter _done signal triggers the block cipher to 

load the 128-bit data of SRI as the input of the block cipher. Rijndael, the core algorithm 

of the block cipher, controlled by clk3 is in charge of the generation of the keystream. 
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The time spent by the Rijndael algorithm is mainly constrained by the method of 

implementation of the algorithm and the current hardware technology. The frequency of 

clk3 is derived from the system clock, clkl, and is equal tog * clkl where g is an integer 

and decided by system efficiency, the time used by the generation of one block of 

keystream and the time used by collection of one block of plaintext data. After the new 

keystream is produced, the key _done signal is set to '1 '. Due to the connection between 

key_done signal and the loading port directly, SR2 loads the output of the block cipher 

asynchronously and then shifts data by the falling edge of clkl. The data shifted out from 

SR2 is XORed with the plaintext bit to produce the ciphertext bit. 

• Encryption System 

The plaintext subsystem, the ciphertext subsystem, and the keystream subsystem 

together make up an encryption system. After the system is reset, PQ starts to collect 

data, CQ starts to shift data out and the block cipher is triggered to generate the 

keystream block. Simulation waveforms are shown in Figure 5.10, Figure 5.11, Figure 

5.12, Figure 5.13, and Figure 5.14. PQ is initialized to all '0' and CQ is initialized to all 

'1'. Because the input data of PQ is always given to '1', it is easy to check data 

movement in PQ. 

Figure 5.10 shows the movement of data in both PQ and CQ after the system is 

started. Figure 5.11 shows that the generation of the keystream is done. The keystream 

generated is then XORed with plaintext to produce ciphertext until the counter counts to 

128 in Figure 5.12. The eq signal turns to '1' in Figure 5.13. It is implied that the current 

process is stopped and the new key will be generated by the block cipher. The new 

keystream is generated in Figure 5.14. More waveforms are shown in Appendix B. 
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Figure 5.14 Simulation waveform of the encryption system 



• Decryption System 

The decryption system has the same structure as the encryption system except the 

plaintext rather than ciphertext is shifted into the last bit of SRI. The simulation 

waveforms of the decryption system are shown in Appendix B. 

5.2.2.5 Test Methodology 

After implementation, it is very important to prove that the implementation is 

correct. We can use ANSI C I C++ programming to generate random plaintext to store in 

an input file. A test bench is able to take data from the input file. After encryption, 

ciphertext data is saved in an output file. The test bench of the decryption system 

automatically reads data from the output file as input data. It will store the output of the 

decryption system in another output file. Therefore, the content of the output file of the 

decryption system can be compared with the input file of encryption system to check for 

the correctness of implementation. 

The result of the decryption of the OCFB mode is shown in Appendix B. It 

demonstrates that the structure and the method used to implement OCFB mode are 

correct. 

5.2.2.6 Complexity of Hardware Implementation 

The hardware implementation of the OCFB mode is implemented using VHDL 

and synthesized using Synopsis with 0.18 pm CMOS technology. The hardware 

complexity is collected by design analyzer of the Synopsis tool with the constraint of the 

system clock frequency of 10 ns. The area of synthesized circuits, which is in square 
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microns (Jtm2
), is converted to the gate count by using the two-input NAND gate which 

has the area of 12.197 Jtm2 as a basis for comparison. 

The resulting synthesized Rijndael algorithm comes from [12]. From Table 5.1, it 

is obvious that the implementation of Rijndael algorithm occupies over 90% area in an 

encryption system when the OCFB mode is implemented by serial transfer. 

Component Combinational Noncombinational 
Total Area Total Gate 

Name Area Area 

Plaintext 
265167 158 265167 21740 

subsystem 

Keystream 
subsystem 

20575 28799 49375 4048 
without 
Rijndael 

Rijndael 
612834 

algorithm 

Ciphertext 
264045 1122 265326 21753 

subsystem 

Encryption 
660376 

system 

Table 5.1 Hardware complexity of the encryption system of OCFB mode 

5.2.2.7 Discussion of Other Structures 

There are other structures that are suitable for the implementation of the OCFB 

system. One approach would be to remove the PQ and the CQ and let the incoming rate 

of data and outgoing rate of data be consistent. A block cipher output must then be 

generated within one bit time. This would clearly minimize the delay through the system. 
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However, the block cipher part of the system is in an idle state for most of time. This 

implies that the block cipher runs at the rate of B times the data rate. The system 

efficiency becomes 1/B, which is the same as CFB mode. Hence, this approach has little 

value. 

5.3 Conclusion 

This chapter introduces the concepts of OCFB mode and investigates the 

hardware structure of an OCFB system. In the hardware implementation of OCFB mode, 

serial transfer is applied to the hardware implementation of OCFB system to simplify the 

hardware structure. For the investigation of hardware implementation, it is shown that it 

is practical to achieve the ability of self-synchronization from bit slips or insertions in 

communication channel and still obtain higher efficiency than CFB mode (50% in our 

implementation). Hence, OCFB system can be used for high speed network applications. 
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Chapter 6 

Performance Analysis of SCFB and 

OCFB Modes 

This chapter analyzes the performance of SCFB mode and OCFB mode with 

respect to theoretical efficiency, synchronization recovery delay, error propagation factor, 

full-queue efficiency, practical system efficiency, and the relationships between 

efficiency, buffer size, and the probability of buffer overflow [5]. The characteristics of 

SCFB mode and OCFB mode then are compared. 

6.1 Basic Parameters of Performance Analysis 

In this section, the concepts of basic metrics of performance analysis are 

introduced. These metrics indicate the system abilities of efficiency, synchronization 

recovery, and error recovery. 

• Theoretical efficiency 

Theoretical efficiency is defined as [5]: 

1
. D/ B 

rJ = lm--------------
D-7= E{ #block cipher operation forD bits} 

(6-1) 

Here the denominator is the expected number of block cipher operations required 

for the encryption of D bits. The numerator represents the number of blocks 
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corresponding to the encryption of D bits. The theoretical efficiency represents a rate at 

which the stream cipher can encrypt compared with the rate of the block cipher. 

For OFB mode, 1J can be 1 because all B output bits of the block cipher can be 

used in the stream cipher keystream. For CFB mode, if it is guaranteed to resynchronize 

from individual bit slips, CFB must have m = 1. Then 1J = liB << 1. That is the reason 

why the CFB mode is a very inefficient mode and why an investigation of SCFB mode 

and OCFB mode is of interest. 

• Synchronization Recovery Delay (SRD) 

The SRD is defined as the expected number of bits between the synchronization 

loss and resynchronization. It is a measure of the recovery speed from the sync loss. It is 

worth noting that the SRD does not include the lost bits and there is no explicit 

specification on the number of bits lost in the slip [5]. 

• Error Propagation Factor (EPF) 

The EPF measures the bit errors on the output of the decryption when a bit error 

occurs in the communication channel. It is a metric to examine the influence of a bit error 

on the data recovered. It is defined as the bit error rate of the plaintext recovered by the 

decryption system divided by a bit error rate in the communication channel [5]. 

6.2 Performance Analysis of SCFB Mode 

The performance analysis on SCFB mode is presented in [5]. However in order to 

provide the background and to compare it with OCFB mode, it is repeated below. 
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6.2.1 Theoretical efficiency 

The theoretical efficiency is used to indicate that the rate at which the block 

cipher must operate to avoid data growing without bounds in PQ. For SCFB mode, the 

ciphertext bits in the communication channel can be categorized as shown in Figure 6.1. 

In the figure, n represents then bit sync pattern, B represents the B bit IV and k represents 

the number of bits following IV until the sync pattern occurs, which is referred to as OFB 

block. A synchronization cycle consists of the data bits from the beginning of the sync 

pattern to the beginning of the next sync pattern. Hence, the size of the synchronization 

cycle is equal to n+B+k. Because k is the amount of data before the sync pattern is found, 

k is a random variable and decided by a probability distribution dependent on the sync 

pattern used (e.g. 1111..11, or 1000 .. 00, etc.). Assuming that 0 and 1 have equal 

probability in ciphertext and each n-bit sequence is independent, then the distribution of k 

is geometric and the probability of a particular sync pattern is 1/2n . 

....... , n B k B 

Figure 6.1 Synchronization cycle 

Strictly, the distribution of k is related to the sync pattern used (e.g. 11...11, or 

10 ... 00, etc) and not the geometric distribution because each n-bit sequence is not 

independent but overlaps n-1 bits of adjacent sequences when checking for the sync 

pattern. However we use the geometric distribution for k as an approximation [5]. 

Hence, the probability of a particular n-bit sync pattern is 1/2n and the probability 

distribution of k is 
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(6-2) 

As a result, the expected value of k is 

(6-3) 

and the second moment of k is 

(6-4) 

The expected synchronization cycle size is 

J1 = n + B + 2n -1 . (6-5) 

It is always true that n+B +k = a B+O where a and o are integers and o <B. 

Hence, the block cipher has to run (a +1) block encryptions to produce enough 

keystream to encrypt a B+ 0 plaintext bits and the running rate of the block cipher 

should be greater than the rate of straight block encryption. From the equation (6-1), we 

can get 

E{sync cycle size}/B 

1J = E{#block cipher operations per sync cycle} 
(6- 6) 

This leads to 

fl/B 
1J = -~---'------- (6- 7) 

2: p(k) ·I (k +n+ B)/ Bl 
k=O 

By deduction, we can get that I] becomes a function of nand B [5]: 
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j.t/B 
(6- 8) 

Figure 6.2 shows the relationship between sync pattern size n and theoretical 

efficiency fJ with 64, 128, and 256 bits block. It is obvious that all the theoretical 

efficiencies are greater than 50%. This is because at least one full block is used in each 

synchronization cycle since B bits are associated with the IV. Therefore, the theoretical 

efficiency of SCFB mode is much better than CFB mode. With the increases of the sync 

pattern size, the theoretical efficiency gets larger. For larger n, the stream cipher can be 

run at a rate very close to the rate of straight block encryption as the theoretical efficiency 

approaches 1. Because large n has lower the occurring probability than small n, most bits 

in the synchronization cycle belong to OFB block. This causes the SCFB mode with large 

n mainly running as OFB mode. Hence, SCFB mode with larger n can attain much higher 

theoretical efficiency. The graph also demonstrates that the theoretical efficiency is lower 

when block length B is larger. The efficiencies are still much higher than conventional 

CFB mode and are close to 1. 

6.2.2 SRD 

SRD of SCFB mode is tested by experiment and the result is shown in Figure 6.3 

which is plotted as the logarithm base-2 of the SRD. From the figure, it can be seen that 

SRD is approximately 2n for large n (n 2: 10). For small n (n ~ 4), there is a situation that 

the probability of a slip occurring near the end of the OFB block is much higher than the 
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case of n ~ 4. Hence, it is more likely that the receiver will interpret the next valid sync 

pattern bits as part of the false IV and will ignore them. As a result, resynchronization 

will be delayed until the next proper sync pattern. If misinterpretation happens several 

times, it will cause higher SRD. Unfortunately as can be seen from the figure, this 

phenomenon is prevalent for small n. The experimental results are obtained under the 

condition that the sync pattern chosen is of the form of 100 ... 00, 109 bits are encrypted 

and the probability of a bit slip rate is 10·5. The Rijndael algorithm is used as the block 

cipher with a block length of 128 bits. 

1.2 
~ 
r::: 
Q) 

~ 0.8 
w 
iij 0.6 
1.1 

ti 0.4 
g 

..r::: 0.2 
1-

-+- B = 64 bits 
-B = 128 bits 

B = 256 bits 

0 2 3 4 5 6 7 8 9 10 11 12 

Sync Pattern Size 

Figure 6.2 Theoretical efficiency vs. sync pattern size 

6.2.3 EPF 

In this section, the characteristics of EPF are examined. Figure 6.4 illustrates the 

experimental results which assume that the error probability is 10-5
, 109 bits are encrypted 

in the experiment and errors are randomly generated in the communication channel. It is 

clear that EPF is a function of n with fixed block length. The position in which an error 
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occurs in the synchronization cycle has a great influence on EPF [5]. The two basic cases 

are: 

• If the error happens in n+B bits of synciiV block, the synchronization will 

be lost and (n+B+k) I 2 bits are the expected error. 

• If the error happens in k bits of the OFB block and no false sync occurs, 

only one bit error can be caused at output of decryption. 

When the value of n is small, there is a higher possibility that the error will 

happen in n+B bits necessary to cause missing of the sync pattern or the incorrect IV. 

That will cause EPF to be higher when n is small. As n is getting larger, most bits in the 

synchronization cycle belong to OFB block and most errors happen in the OFB block, 

which makes EPF relatively lower. EPF of SCFB mode is on the same order as for CFB 

mode (EPF = B I 2) and is higher than that of OFB mode (EPF = 1). 

6.2.4 Practical Efficiency of SCFB Mode 

The theoretical efficiency is an ideal efficiency and represents the upper bound of 

efficiency [5]. In reality, the addition of queuing and the method of implementation have 

a great influence on system efficiency. "Full-queue efficiency" represents the system 

efficiency while PQ has data to process. It is the efficiency at which the system operates 

at its peak rate. Assume a is the full queue efficiency and R is the rate at which bits enter 

the PQ in bits per unit time, the system will remove bits from the queue in blocks of B 

bits at a rate of (11 a) x RIB blocks per second if there are more than B bits in the queue. 

50% efficiency implies that for every B bits entering the queue, 2B bits are removed from 

the queue to XOR with the keystream. 
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Figure 6.3 Synchronization recovery delay vs. sync pattern size with B = 128 
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Figure 6.4 Error propagation factor vs. sync. pattern size with B = 128 

"Average efficiency" is greater than full-queue efficiency. Because the average 

efficiency represents the average rate at which system operates including the period that 

the PQ has fewer than B bits and the system has to wait and the period that the PQ has 

more than B bits. If the system is stable, the full-queue efficiency must be less than the 

average efficiency and the average efficiency must be less than the theoretical efficiency 

[5]. 
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6.2.5 Relationship Between Buffer Size and Overflow Probability 

In this section, the requirement on buffer size in the practical implementation of 

SCFB mode is investigated experimentally. The experiment is based on the Rijndael 

algorithm and the 8-bit sync pattern of "10000000". Figure 6.5 shows that the probability 

of overflow is a function of buffer size with 78.1 %, 84.4%, and 90.6% full-queue 

efficiency, respectively. In theory, the system can attain the efficiency of 91.1% but it is 

clearly seen that the system will suffer from significant buffer overflow even for a buffer 

size up to 512 bits. 

--+-Full-queue efficiency = 78.1% 

-111- Full-queue efficiency = 84.4% 

Full-queue efficiency = 90.6% 
0.12 

~ 0.1 0 
'E 
~ 0.08 
0 - 0.06 0 

~ :c 0.04 
C!l 
..c 
0 0.02 ... c.. 

0 

,rvco ,ro<:::J ...._O;rv rvrf rv'<:Jro rv<oco ~rv<:;:, ~'<:Jrv ~co"> ">"ro .j<co ">co<:::J '<:J"rv 
Buffer Size 

Figure 6.5 Probability of overflow vs. buffer size with Rijndael 

It is noteworthy that the system will not overflow for a buffer size of B with 50% 

efficiency. With this efficiency the block cipher is being run at two times the rate of 

incoming bits of PQ. Hence, even for the worst case that block cipher needs two 

complete encryptions to finish the encryption of B + l (n ~ l ~ B) bits when sync pattern is 

found. Hence, it is guaranteed that no overflow will occur for 50% efficiency with B bit 

buffers and delay exactly B bits times. 
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6.2.6 Relationship Between Encryption Efficiency and Overflow 

Probability 

Figure 6.6 shows that the probability of overflow is a function of the full-queue 

efficiency with fixed buffer size. The probability of overflow increases dramatically with 

the increase of the full-queue efficiency. In the figure, the buffer size is fixed at 192, 224, 

or 256 bits and the block cipher uses the Rijndael algorithm. As expected the probability 

of overflow will get higher as the buffer size is smaller. 

6.3 Performance Analysis of OCFB Mode 

6.3.1 Theoretical Efficiency 

In this thesis, the efficiency of OCFB mode does not adopt the definition in [13]. 

Because the efficiency of OCFB mode needs do comparison with the result of SCFB 

mode, I adopted the definition of the efficiency that [5] provided. The differences of these 

two efficiencies lie on that the efficiency in [13] is absolute efficiency and the efficiency 

in [5] is comparative efficiency. 

For OCFB mode, the ciphertext transmitted in the communication channel can be 

categorized as illustrated in Figure 6.7. In the figure, n represents the size of the sync 

pattern and k represents the length of data without the sync pattern. A synchronization 

cycle is referred to as a set of bits from the beginning of the sync pattern to the beginning 

of the next sync pattern. Because OCFB mode checks for the sync pattern at anytime, 

there is no B-bit new IV block in the synchronization cycle as in SCFB mode. Hence, a 

synchronization cycle consists of n + k bits. 
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Because k is the amount of data before the sync pattern is found, k is a random 

variable decided by the probability distribution dependent on the sync pattern used (e.g. 

1111..11, or 1000 .. 00, etc.). Assuming that 0 and 1 have equal probability in ciphertext 

and each n-bit sequence is independent, then the distribution of k is geometric and was 

already given in the equation (6-2). The corresponding expect value of k and the second 

moment of k have given in the equation (6-3) and (6-4). The probability of a particular 

sync pattern is 1/2n. 

-Buffer Size= 192 bits 
-+-Buffer Size = 224 bits 

Buffer Size= 256 bits 

Full-Queue Efficiency 

Figure 6.6 Probability of overflow vs. efficiency with Rijndael 

n k k 

Figure 6.7 Synchronization cycle of OCFB mode 

Strictly, the distribution of k is not the geometric distribution because each n-bit 

sequence is not independent but overlaps n-1 bits of adjacent sequences when checking 
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for the sync pattern. However we use the geometric distribution for k as an 

approximation. Hence, the expected synchronization cycle size f.1 is: 

(6-9) 

From the basic definition of theoretical efficiency (6-1), the equation below can 

be derived 

E{sync cycle size}/ B 
17 = E{#block cipher operations per sync cycle} 

It is easy to deduce that: 

f-l/B 17 = _00 __ ...;....__ ___ _ 

LP(k)· !Ck+n)!Bl 
k=O 

Following the approach in [5], the following equation can be deduced 

17 = (1-l/ 2n)B-n+l 
1 + --'---------'---::-

= 

1- (1-l/2n )8 

(n+2n -1)/ B 
(1-1 / 2n )B-n+l 

1+-----=-
1-(1-l/2nl 

(6-10) 

(6-11) 

(6-12) 

From equation (6-12), it can be seen that theoretical efficiency is converted to a 

function of n and B. This equation is plotted in Figure 6.8 with the block size of 64, 128, 

and 256 bits. It is obvious that the theoretical efficiency increases with the increase of the 

sync pattern size. For large n, the efficiency can approach 100% implying that OCFB 
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mode can obtain high efficiency. However, for small n, the efficiency is close to 0, which 

results from the system continuously resynchronizing. 

If the size of the sync pattern is larger than 4 whenever B is 64, 128 or 256 the 

theoretical efficiency is definitely higher than the efficiency of CFB mode. For n = 8, the 

theoretical efficiencies are 89.1 %, 79.6%, 64.4% for 64, 128, and 256 bit blocks, 

respectively. This is much better than the efficiency of CFB mode which is 1/128 and is 

approaching the efficiency of 100% for OFB mode. 
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----8 = 128 bits 

8 = 256 bits 

~ 1.2 
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0 
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Figure 6.8 Theoretical efficiency vs. sync pattern size 

6.3.2 SRD 

The resynchronization properties of OCFB mode are examined experimentally. 

As described above, SRD is used to measure the speed of recovery from bit slips. The 

relationship between SRD and sync pattern size is illustrated in Figure 6.9 using a plot of 

the logarithm base-2 of SRD. 
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Figure 6.9 Sync Recovery Delay vs. Sync Pattern Size (B=128) 

The simulation is run under the condition that the probability of a bit slip is 10-5 

and 109 bits are encrypted. It is assumed that there are no multiple bit slips. In the figure, 

the SRD is increased exponentially with the increase of n. SRD is approximately 2n when 

n ~ 10. When n < 10, SRD is larger than 2n. This is because the sync pattern with small n 

has higher frequency in ciphertext data than large n. The probability that bit slips occur in 

the sync pattern to cause missed synchronization is much higher than the cases with large 

n. But compared with SCFB mode, SRD of OCFB mode with small n is lower. 

6.3.3 EPF 

It is important to analyze the variety of situations where errors occur before the 

effect of error propagation factor (EPF) to the communication system is analyzed. There 

are two likely situations according to the effect of error. 
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• If the error happens in sync pattern, it will cause missing synchronization 

until the next correct sync pattern occurs. The average number of bit errors 

are (n+k)/2. 

• If the error happens not in sync pattern but no false sync pattern is 

generated, it will cause only one bit error at the receiver. 

The error propagation factor is examined experimentally and the results are 

shown in Figure 6.10. The simulation results are obtained with Pe = 10-5
• In this figure, 

EPF becomes a function of n when B = 128. There are two main factors to affect the 

value of EPF. One is the probability of the sync pattern occurring in ciphertext and the 

other is the position where error occurs in the synchronization cycle. The probability of 

the sync pattern represents the recovering capability of the system from an error in the 

sync pattern. The position where error occurs influences on the number of error bits 

according to the discussion above. When the value of n is small, there is a higher 

possibility that the error happens in n-bit sync pattern to cause missing of the sync 

pattern. However, it has stronger capability on recovering from error because the 

probability of the sync pattern with small n is higher than that of the sync pattern with 

larger n. Due to the frequent resynchronization for the system with small n, EPF is 

reduced. As n is getting larger, the decreasing of the probability of the sync pattern 

reduces the capability of the system resynchronization, although the probability that error 

occurs in the sync pattern is also decreased. The result is EPF is generally about B I 2 = 

64. 
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Figure 6.10 Error propagation factor vs. sync pattern size with B = 128 

6.3.4 Practical Efficiency of OCFB Mode 

Practical efficiency of OCFB mode can be represented by eff = R I Re where R is 

the rate of data coming into PQ and Re is the rate of encryption of the block cipher. The 

ratio between R and Re can be adjusted to attain high efficiency. Since Re is constrained 

by current technology, R is constrained by Re. That means that the maximum throughput 

is constrained by the rate that a block encryption performs. Because of the serial transfer 

from PQ to CQ, the data rate R' leaving from the PQ needs to be considered. However 

data leaving PQ does not have regular data transfer rate because bits might be moved for 

some periods and bit transfer might stall for other periods. On average, data is moved 

from the PQ to the CQ at a rate less than R '. It makes sense that R' = Re and R' > R. It can 

be deducted that Re > R. Efficiency might approach 1 if all of outputs of the block cipher 

can be used to XOR a block of plaintext. However, if it is guaranteed that 

resynchronization can be regained from bit slips or bit errors, the partial block of the 

output of the block cipher would be used in the block following the sync pattern. 
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6.3.5 Relationship Between Buffer Size and Probability of Overflow 

The relationship between buffer size and the probability of overflow is 

investigated based on full-queue efficiency of 78.1 %, 84.4%, and 90.6%. The 

experimental results with Rijndael based on sync pattern "10000000" are shown in Figure 

6.11. It is quite straightforward to note that the probability of overflow is lower when the 

buffer size is larger. It is noteworthy that OCFB mode requires much more buffer size 

than SCFB mode. From the figure, it can be seen that it is easy to overflow with the high 

efficiency even with the larger buffer size. In order to achieve the smallest probability of 

data loss, modest efficiency and larger buffer sizes are recommended for OCFB mode. 

For lower probability of overflow, OCFB mode still can obtain relatively high efficiency 

compared with CFB mode. 

--+--Full-queue efficiency= 78.1% 

-Full-queue efficiency= 84.4% 

Full-queue efficiency= 90.6% 

Buffer Size 

Figure 6.11 Probability of overflow vs. buffer size with Rijndael 
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6.3.6 Relationship Between Encryption Efficiency and Probability of 

Overflow 

The relationship based on Rijndael between encryption efficiency and probability 

of overflow is illustrated in Figure 6.12. From this figure, it can be seen that the 

probability of overflow approaches 0 when efficiency is below 50% whether the buffer 

size is 192, or 224, or 256. Hence, OCFB mode with high efficiency requires much more 

buffer size in order to minimize the probability of overflow. The probability of overflow 

appears to exponentially follow the increase of efficiency. As expected, large buffer size 

will provide lower probability of overflow for a given efficiency. 
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Figure 6.12 Probability of overflow vs. efficiency with B = 128 
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6.4 Performance Comparison between SCFB Mode and 

OCFB Mode 

6.4.1 Theoretical efficiency 

It is known that both SCFB mode and OCFB mode can achieve high efficiency as 

shown in Figure 6.2 and Figure 6.8. However, the difference between them is obvious. 

SCFB mode achieves at least 50% theoretical efficiency and highest efficiency can arrive 

to 100%, but the theoretical efficiency of OCFB mode can vary from 0% to 100%. This 

difference is decided by the characteristics of these two modes. SCFB mode does not 

check for the sync pattern in IV after the sync pattern is found. This makes SCFB mode 

at least use one full block, B bits, in one synchronization cycle, n+B+k. OCFB mode 

checks each n bits for the sync pattern without exception, even in IV. The frequency of 

resynchronization occurring greatly influences the theoretical efficiency of OCFB mode. 

If the sync pattern occurs frequently, the system is busy resynchronizing. This makes the 

theoretical efficiency of OCFB mode decreased and close to 0% for small value of n. 

However, it is possible to obtain high efficiency for OCFB mode by increasing the size of 

the sync pattern. 

6.4.2 SRD 

SCFB mode and OCFB mode have a similar trend shown in Figure 6.13 in SRD 

when the sync pattern size n is increased. However, SCFB mode has much higher SRD 

than OCFB mode when n ~ 6. This indicates that OCFB mode recovers more quickly 

from the loss of synchronization because OCFB mode checks all ciphertext for the sync 

pattern. As mentioned before, the possibility that a bit slip occurs in the first n+B bits of a 
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sync cycle is higher when n is small than when n is large. This will lead to either missed 

resynchronization or wrong IV at receiver. Because SCFB mode does not check the sync 

pattern in IV block after the sync pattern is recognized, this phenomenon results in SCFB 

mode needing a longer time to recover for small n. 
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Figure 6.13 Sync recovery delay vs. sync pattern size with B = 128 

6.4.3 EPF 

From Figure 6.14, EPF of OCFB mode is better than EPF of SCFB mode whether 

the sync pattern size is small or large. This can be explained by the property of OCFB 

mode which checks sync pattern in all ciphertext whether or not it is the first n+B bits of 

a sync cycle. This property gives OCFB mode a fast resynchronization. Another result 

from Figure 6.14 is that when n is small SCFB mode has a much higher EPF. This is 

because false synchronization due to bit errors is prevalent when n is small and SCFB 

will take much longer to resynchronize in these circumstances. Hence, the influence of 

errors on OCFB mode is smaller than on SCFB mode. 
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--+-- OCFB_MODE - SCFB_MODE 
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Figure 6.14 Error propagation factor vs. sync pattern size with B = 128 

6.4.4 Relationships Between Probability of Overflow and Buffer Size 

To clearly compare the relationship between probability of overflow and buffer 

size of SCFB mode and OCFB mode, Figure 6.15, Figure 6.16, and Figure 6.17, Figure 

6.18, are presented. 

-+- SCFB rrode ---- OCFB rrode 

Buffer size 

Figure 6.15 Probability of overflow vs. buffer size with full-queue efficiency= 50% 
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--+-SCFB mode -11-0CFB mode 

Figure 6.16 Probability of overflow vs. buffer size with full-queue efficiency= 78.10% 

--+-SCFB mode --OCFB mode 
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Figure 6.17 Probability of overflow vs. buffer size with full-queue efficiency= 84.40% 
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Figure 6.18 Probability of overflow vs. buffer size with full-queue efficiency= 90.60% 
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As explained previously for SCFB mode, Figure 6.15 tells us that 50% efficiency 

with B bit buffer size guarantees the system does not have any buffer overflow. It can 

also be seen from Figure 6.15 that OCFB mode suffers from higher probability of 

overflow than SCFB mode when full-queue efficiency is 50% and buffer size is 128 bits. 

The probability of buffer overflow is decreased with the increase of buffer size. When 

buffer size is 256 bits, the probability of buffer overflow is close to 0. 

For the implementation of this thesis, 256 bit buffer size is applied although for 

SCFB mode at 50%, 128 bits would have been sufficient. There are several 

considerations. One consideration is that the system efficiency higher than 50% may be 

implemented. It requires larger buffer size to avoid buffer overflow. The second 

consideration is that OCFB mode requires more buffer size than SCFB mode under the 

same condition of efficiency and low buffer overflow. Hence, the selection of 256 bit 

buffer size is quite reasonable although for SCFB mode only a buffer of 128 bits is 

required. 

Figure 6.16, Figure 6.17, and Figure 6.18 further presents that SCFB mode 

requires significantly less buffer space than OCFB mode for the same probability of 

overflow. OCFB mode needs more buffer size because of its tendency towards more 

frequent resynchronization. 

6.4.5 Relationship Between Probability of Overflow and Efficiency 

Again, because of the frequent resynchronization of OCFB mode, when the 

probability of overflow is the same and the buffer size is fixed, the OCFB efficiency is 

significantly less than SCFB mode as shown in Figure 6.19, Figure 6.20, and Figure 6.21. 
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-+- OCFB rrode -111- SCFB rrode 
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Figure 6.19 Probability of overflow vs. full-queue efficiency with B = 192 
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Figure 6.20 Probability of overflow vs. full-queue efficiency with B = 224 
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-+- OCFB rrode -111- SCFB rrode 

Full-queue efficiency 

Figure 6.21 Probability of overflow vs. full-queue efficiency with B = 256 

6.5 Conclusion 

This chapter analyzes the performance of SCFB and OCFB modes with respect to 

the theoretical efficiency, the synchronization recovery delay, and the error propagation 
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factor. In addition, the relationships between efficiency, probability of buffer overflow, 

and buffer size, are investigated. It is definite that both modes can obtain higher 

efficiency than CFB mode. From the above analysis, it is concluded that OCFB mode can 

obtain better error propagation and synchronization recovery delay than SCFB mode. 

However, SCFB mode is able to achieve higher efficiency with a given buffer size and 

lower probability of buffer overflow than OCFB mode. Furthermore, SCFB mode can 

guarantee that the system with 50% efficiency and B bit buffer size would have no buffer 

overflow. OCFB cannot guarantee no overflow for any level of efficiency. 

Hence, SCFB mode is more suitable for high speed physical layer security than 

OCFB mode. 
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Chapter 7 

Conclusions and Future Work 

7.1 Summary of the Research 

This thesis investigates two modes of operation, Statistical Cipher Feedback 

(SCFB) mode and Optimized Cipher Feedback (OCFB) mode. These two modes can 

configure a block cipher to operate as a stream cipher and are categorized as self-

synchronizing stream ciphers. 

SCFB mode improves efficiency over CFB mode by turning into OFB mode and 

working as OFB mode most of time. SCFB mode also achieves the ability of self-

synchronization by checking for the sync pattern in ciphertext and turning into CFB 

mode to periodically obtain the IV after the sync pattern is found. SCFB mode is 

implemented in software to analyze the characteristics of synchronization recovery delay, 

error propagation factor and the relationship between buffer size, probability of overflow, 

and full-queue efficiency. In addition, design and hardware implementation of SCFB 

mode was considered by using the Synopsis tool with 0.18 J.tm CMOS technology to 

study the timing issues and hardware properties. In order to compare the performances of 

SCFB mode and OCFB mode and the influences of the different methods of hardware 

implementation on SCFB mode and OCFB mode, our SCFB mode implementation 

adopts a parallel transfer method to encrypt a block of data and then store it into the 

ciphertext queue. For simplicity, the implementation of SCFB mode in this thesis only 
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has approximately 10% efficiency. The key generation part is sitting in an idle state most 

of time due to the usage of the same clock in the system to drive the block cipher and 

data transfer. This situation can be changed by using different clocks to drive the block 

cipher and the data transfer into and out of the system. Since, for a higher efficiency, the 

block cipher clocking must be slower, it is simple to derive a slow block cipher clock 

from the data link clock, thereby increasing efficiency. Thus the time of generating the 

keystream can be extended which will shorten the idle time and improve the efficiency of 

whole system. Parallel transfer would allow implementation of efficiency > 50%. The 

penalty with parallel transfer, however, is that a large amount of hardware is required. 

OCFB mode utilizes all of the output of the block cipher to XOR plaintext data to 

produce ciphertext to attain high efficiency and recognizes the sync pattern in ciphertext 

to synchronize the encryption system and the decryption system. The analysis of OCFB 

mode adopts the same analysis method as SCFB mode. OCFB mode has been 

implemented by software to study the performances of SRD, EPF, and the relationships 

between buffer size, full-queue efficiency and probability of overflow. Further OCFB 

mode has been designed and simulated in hardware by using the Synopsis tool with 0.18 

~m CMOS technology. The method of hardware implementation on OCFB mode uses the 

serial transfer from the PQ to the CQ. Serial transfer has relatively simple hardware 

components but suffers from difficulties on the timing relationship between key 

generation part, PQ, and CQ. The method of coordinating these three clock frequencies to 

improve the system efficiency becomes an important part in the implementation of OCFB 

mode. In this study, OCFB mode with 50% efficiency is implemented in hardware. 
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The analysis of the performances of OCFB mode and SCFB mode reveal that 

under the same probability of overflow SCFB mode requires significantly less buffer size 

compared with OCFB mode. With the same buffer size and probability of overflow, 

SCFB mode can achieve higher efficiency than OCFB mode. However, due to the 

characteristic that SCFB mode does not check for the sync pattern in the B-bit IV 

collection phase, SCFB mode has the relatively large SRD compared with OCFB mode. 

As well, SCFB mode has a marginally higher EPF than OCFB mode. SCFB mode can 

obtain at least 50% theoretical efficiency without any buffer overflow and up to close to 

100% efficiency with some buffer overflow. OCFB mode can achieve the efficiency from 

0 to approximately 100% but always suffers from some buffer overflow. 

The parallel implementation method of SCFB mode provides the simple timing 

relationship and the lower requirement on buffer size but has complicated hardware 

implementation. Serial implementation method of OCFB mode simplifies hardware 

structure but increases the complexity on timing issues and constrains efficiency to no 

higher than 50%. 

From the analysis and comparison of SCFB mode and OCFB mode, it can be 

concluded that SCFB mode and OCFB mode are quite similar modes except that OCFB 

mode checks the sync pattern all the time without any exception while SCFB mode does 

not check the sync pattern during the collection of the B-bit IV. Another difference 

between these two modes is that OCFB mode always accepts ciphertext as the input of 

the block cipher but SCFB mode turns into CFB mode from OFB mode according to the 

occurrence of the sync pattern. This property of SCFB mode gives an attacker an 
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opportunity due to the birthday paradox because there is a possibility that IV is the same 

as one of the outputs of block cipher when SCFB mode works as OFB mode. However, 

this possibility is virtually negligible for a large block size such as 128 bits [5]. 

7.2 Suggestion for Future Work 

A number of directions can be taken for future work. SCFB mode can be 

implemented using serial transfer and the difference from parallel transfer can be 

compared in the future. The hardware implementation efficiency of SCFB mode can be 

improved by giving different clocks to drive data transfer and the block cipher. OCFB 

mode can be implemented using parallel transfer and the difference from serial transfer 

can be compared in the future. The hardware structures of SCFB mode and OCFB mode 

can be optimized and the area utilization can be improved by adding more constraints. 

Further hardware synthesis for these two modes can be done to fulfill the work of placing 

and routing in a real VLSI device. FPGAs technologies today provide flexible design, 

cost effective, reprogrammed capability compared with traditional fixed-logic ASICs. 

These features make FPGAs technology become key system-level technology. SCFB 

mode and OCFB mode can be implemented in FPGAs. Test on the real chip is required 

as the important step for the chip design. As well, the current used mode in reality and 

other new modes can be compared with SCFB mode and OCFB mode to select a better 

mode which can be applied for physical layer of high speed network. 
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Appendix A 

Waveforms of the Hardware 

Implementation of SCFB Mode 

The signals used in the waveforms are described below. 

Name of Signal Function 

/SCFB_ENCRYP _TEST_BENCHIRESET Reset the system 

/SCFB_ENCRYP _TEST_BENCH/CLK System clock 

/SCFB_ENCRYP _TEST _BENCH/SERIAL_IN Data bit incoming into PQ 

/SCFB_ENCRYP _TEST_BENCH/SERIAL_OUT Data bit outgoing from CQ 

/SCFB_ENCRYP _TEST_BENCH/IV 

/SCFB_ENCRYP _TEST_BENCH/PATTERN 

/SCFB_ENCRYP _TEST _BENCH/CV _IN 

/SCFB_ENCR YP _TEST _BENCH/tscfbO/found 

/SCFB_ENCRYP _TEST _BENCH/ tscfbO/num 

/SCFB_ENCRYP _TEST_BENCH/ 
tscfbO/ready _data 

/SCFB_ENCRYP _TEST_BENCH/ 
tscfbO/key _ready 

/SCFB_ENCRYP _TEST_BENCH/ tscfbO/subkey 

/SCFB_ENCRYP _TEST_BENCH/ 
tscfbO/Data_out 
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Initialization Vector 

Sync pattern 

Initial key 

The flag that the sync patter 
is found or not 
The number needed by the 
new IV 
The flag to sign that the 
new block of ciphertext data 
is ready 
The flag that the new block 
of keystream is ready 

The current keystream 

The current plaintext data 
sent out by the plaintext 
subsystem 



The waveforms of the encryption system 
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....... 

....... 
0 

/SCFB_ENCRYP_TEST_BENCHVCLK 

/SCFB_ENCRYP_TEST_BENCHVRESET 

/SCFB_ENCRYP _TEST _BENCH/SERIAL_IN 

/SCFB_ENCRYP _TEST _BENCHVSERIAL_OUT 

!> /SCFB_ENCRYP _TEST_BENCH/IV(127:0) 

r> /SCFB_ENCRYP _TEST_BENCH/PATTERN(7:D) 

!>- /SCFB_ENCRYP _TEST _BENCH/CV _IN(255:D) 

/SCFB_ENCRYP _TEST _BENCH/tscfbO/found 

1> /SCFB_ENCRYP _TEST _BENCH/tscfb0/num(7:0) 

0 

0 

FFDOAA550FF0330DFFCCOB332460777Bii FFOOAA550FF03300tFCCOB332460777B I 
80 

8525485254852548525485254852548525~~525495254952549525485254952549525 

0 

DO 

/SCFB_ENCRYP _TEST _BENCHVtscfbOfready_data ll 0 

/SCFB_ENCRYP _TEST _BENCHVtscfbOfkey_ready 

1> /SCFB _ ENCRYP _TEST _BENCHVtscfbO/subkey( 127:0) E8AAA6A 1301 03612470481 00070A 1 C06 pDDDDDOODOOOOOOOOOO* 8AAA6A 1301 036124* } 

1> /SCFB_ENCRYP _TEST _BENCHVtscfbOf0ata_out(127:0) OOOOOOOOOOOODOOOODOOOOOOOOOOOOOO OOOODOOOOOOOOOOO )000000000000000 !/jl 
1> fSCFB_ENCRYP _TEST _BENCHVtscfbO/ciphertext( 127:0) E8AAA6A 1301 03612470481 00070A 1 COG, pDDOOOOOOOOOOOOOOOO* 8AAA6A 1301 036124* , •..• 



........ 

........ 

........ 

/SCFB_ENCRYP_TEST_BENCH/CLK 

/SCFB_ENCRYP_TEST_BENCHIRESET 

/SCFB_ENCRYP _TEST _BENCH/SERIAL IN 

/SCFB_ENCRYP _TEST _BENCH/SERIAL_ OUT 

D>- /SCFB_ENCRYP _TEST _BENCH/IV(127:0) 

1> /SCFB_ENCRYP _TEST _BENCf-VPA TTERN(7:0) 

t> /SCFB_ENCRYP _TEST _BENCf-VCV _IN(255:0) 

/SCFB_ENCRYP _TEST _BENCf-VtsclbO/found 

t> /SCFB_ENCRYP _TEST _BENCf-VtsclbO/num(7:0) 

/SCFB _ ENCRYP _TEST_ BENCf-VtsclbO/ready _data 

Z58Z 

0 

0 

0 

FFOOAA550FF03300FFCCD833246D777 

80 

852549525495254952549525495254952 

0 

00 

/SCFB_ENCRYP _TEST _BENCf-VtsclbO/key _ready II o 

t> /SCFB_ENCRYP _TEST _BENCH/tsclbO/subkey(127:0) E8AAA6A 130103612470481 D0070A 1 

t> /SCFB_ENCRYP _TEST _BENCH/tsclb0/Data_out(127:0) 7478D47C6903628027E5DB756495FC13 

11> /SCFB ENCRYP TEST BENCf-VtsclbO/ciphertext( 127:0) 9CD272D0541 3549260315AA5639FEO 15 - - - rr---~----------------------~ 



....... 

....... 
N 

/SCFB_ENCRYP_TEST_BENCHICLK 

/SCFB_ENCRYP_TEST_BENCHIRESET 

/SCFB_ENCRYP _TEST_BENCHISERIAL IN 

/SCFB_ENCRYP _TEST _BENCH/SERIAL_ OUT 

1> /SCFB_ENCRYP _TEST _BENCHIIV(127:0) 

1> /SCFB_ENCRYP _TEST _BENCH/PA TTERN(7:0) 

1> /SCFB_ENCRYP _TEST _BENCH/CV _IN(255:D) 

/SCFB_ENCRYP _TEST _BENCH/tsclbO/found 

1> /SCFB_ENCRYP _TEST _BENCH/tsclb0/num(7:0) 

/SCFB_ENCRYP _TEST _BENCH/tsclbO/ready_data 

0 

0 

FFODAA55DFF03300FFCCDB33246077781:1 

1

FFOOAA550FF03300FFCCtB332460777B fT 
80 

95254952549525495254952549525495251r52549525495254952549525f5~54952549525*1 
DE 

/SCFB_ENCRYP _TEST _BENCH/tsclbO/key_ready II 0 

11> /SCFB_ENCRYP _TEST _BENCH/tsclbO/subkey(127:0) 134F4AD15E5COOC9895BFF703F9E5449 t:ol-\1-\1-\oR 1.:>u 1 u.:>o 1 u+r -II.:>'+ '+RU 1 ::.t:::.L.uu~..-::~ · y 

1> /SCFB_ENCRYP _TEST _BENCH/tsclb0/Data_out(127:0) DOOOOOOOOOOOOOOODD00000000007F11 I7478D47C6903628027E5087 ~OOOOOOOOOOOOO* f 
1> /SCFB_ENCRYP _TEST _BENCHitsclbO/ciphertext( 127:0) 134F4AO 1 5E5CDDC9895BFF703F9E2858 j9CD2720054135492603*167* 1 34F 4AD 15E5CO* :l:i!i 



1--' 
1--' 
w 

[lie _Edit _Marker §oTo Y)ew 

/SCFB_ENCRYP_TEST_BENCHICLK 

/SCFB_ENCRYP_TEST_BENCHIRESET 

/SCFB_ENCRYP _TEST _BENCHISERIAL_IN 

/SCFB_ENCRYP _TEST_BENCHISERIAL_OUT 

1> /SCFB_ENCRYP _TEST_BENCHIIV(127:0) 

1> /SCFB_ENCRYP _TEST_BENCH/PATTERN(7:0) 

1> /SCFB_ENCRYP _TEST _BENCH/CV _IN(255:0) 

/SCFB_ENCRYP _TEST _BENCH/tscfbO/found 

1> /SCFB_ENCRYP _TEST _BENCH/tscfb0/num(7:0) 

0 

0 

FFOOAA550FF03300FFCCDB33246D77 

80 

9525495254952549525495254952549525~ll52549 
0 

00 

/SCFB_ENCRYP _TEST _BENCH/tscfbO/ready_data li 0 

/SCFB_ENCRYP _TEST _BENCH/tscfbO!key_ready 

1> /SCFB_ENCRYP _TEST _BENCH/tscfbO/subkey( 127:0) 7 A09F 1571 C98A6DA 79DF79C583FF3656 134F4AO 15E5CODC* 17 A09F 1571 C98A6DA 79D* '~ 

1> /SCFB_ENCRYP _TEST _BENCH/tscfbO/Data_ out( 127:0) 00000000000000000000000000007F 11 0000000000000 000000000000007F 11 

1> /SCFB_ENCRYP _TEST _BENCH/tscfb0/ciphertext(127:0) 7 A09F 1571 C98A6DA 79DF79C583FF 4947 134F4AO 15E5CODC"I7 A09F 1571 C98A6DA 79D* ~f' 



The waveforms of the decryption system 
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1--" 
1--" 
Vl 

Eile J;:dit Marker §oTo Window 

/SCFB_OECRYP_TEST_BENCHICLK 

/SCFB_OECRYP_TEST_BENCI-VRESET 

/SCFB_OECRYP _TEST _BENCHISERIAL_IN 

/SCFB_OECRYP _TEST _BENCH/SERIAL_ OUT 

!> /SCFB_OECRYP _TEST _BENCH/IV(127:0) 

!> /SCFB_OECRYP _TEST _BEN CHIP A TTERN(7:0) 

!> /SCFB_OECRYP _TEST _BENCHICV _IN(255:0) 

/SCFB_OECRYP _TEST _BENCI-VtsclbO/found 

0 

0 

0 

FFOOAA550FF03300FFCCOB332460777B 

80 

8000000000000000000000000000000000001 800000000000 000000000000000000000000* 

0 

,.._ /SCFB_OECRYP _TEST _BENCI-Vtsclb0/num(7:0) II 00 

/SCFB_OECRYP _TEST _BENCHitsclbO/ready_data 0 

/SCFB_OECRYP _TEST _BENCH/tsclbOikey_ready , 

!> /SCFB_OECRYP _TEST _BENCH/tsclb0/subkey(127:0) E8AAA6A 130103612470481 00070A 1 C06 00000000000* 8AAA6A 130103612470481 0*
1 

.•• 

1> /SCFB_OECRYP _TEST _BENCI-Vtsclb0/0ata_out(127:0) oooooooooooooooooooooooooooooooo 000000000 0000000000000000000000 k~ 

1> /SCFB_OECRYP _TEST _BENCI-VtsclbO/ciphertext(127:0) E8AAA6A 130103612470481 00070A 1 C06 00000000000* 8AAA6A 130103612470481 O*l 



"""'"' """'"' 0\ 

/SCFB_OECRYP_TEST_BENCHICLK 

/SCFB_OECRYP _TEST _BENCH/RESET 

/SCFB_OECRYP _TEST _BENCH/SERIAL_IN 

/SCFB_OECRYP _TEST_BENCH/SERIAL_OUT 

1>- /SCFB_OECRYP _TEST _BENCHIIV(127:0) 

1>- /SCFB_OECRYP _TEST _BENCH/PATTERN(7:0) 

1>- /SCFB_OECRYP _TEST _BENCH/CV _IN(255:0) 

/SCFB_OECRYP _TEST _BENCH/tscfbOifound 

2560 

0 

0 

0 

FFOOAA550FF03300FFCCDB33246D777B 

80 

800000000000000000000000000000000 

0 

1>- /SCFB_OECRYP _TEST _BENCH/tscfbO/num(7:0) II 00 

/SCFB _ OECRYP _TEST _BENCH/tscfbO/ready _data 

/SCFB_OECRYP _TEST _BENCH/tscfbO/key_ready 0 

1>- /SCFB_OECRYP _TEST _BENCH/tscfb0/subkey(127:0) E8AAA6A 130103612470481 00070A 1 C06 

1>- /SCFB_OECRYP _TEST _BENCH/tscfb0/Data_out(127:0) 9CD272DD5413549260315AA5639FE015 

1> /SCFB_OECRYP _TEST _BENCH/tscfb0/ciphertext(127:0) 7478D47C6903628027E508756495FC13 



1-' 
1-' 
-..l 

[lie _Edit .Marker §o To YJew 

/SCFB_DECRYP_TEST_BENCHVCLK 

/SCFB_DECRYP_TEST_BENCHVRESET 

/SCFB_DECRYP _TEST_BENCH/SERIAL IN 

/SCFB_DECRYP _TEST _BENCHVSERIAL_OUT 

1> /SCFB_DECRYP _TEST _BENCHVIV(127:0) 

I> /SCFB_DECRYP _TEST_BENCH/PATTERN(?:O) 

t>- /SCFB_DECRYP _TEST _BENCH/CV _IN(255:0) 

/SCFB DECRYP TEST BENCH/tscfbO/found 

;moo 

0 

0 

FFODAA550FF0330DFFCCDB33246D777B 

80 

8000000000000000000000000000000000001 80000000000000000000 000000000000000* 

1> /SCFB=DECRYP =TEST =BENCH/tscfbO/num(?:O) II DE 

/SCFB_DECRYP _TEST _BENCH/tscfbO/read)!_data 

/SCFB_DECRYP _TEST _BENCH/tscfbO/key_ready 0 

1> /SCFB_DECRYP _TEST _BENCH/tscfb0/subkey(127:0) 134F4A015E5CODC9895BFF703F9E5449 

1> /SCFB_DECRYP _TEST _BENCH/tscfb0/Data_out(127:0) 00000000000000000000000000006B58 

1> /SCFB_DECRYP _TEST _BENCH/tscfbO/ciphertext( 127:0) 134F 4AO 15E5CODC9895BFF703F9E3F 11 



....... 

....... 
00 

/SCFB _ DECRYP _TEST_ BENCH/CLK 

/SCFB_DECRYP_TEST_BENCHIRESET 

/SCFB_DECRYP _TEST _BENCHISERIAL_IN 

/SCFB_DECRYP _TEST _BENCH/SERIAL_ OUT 

t»- /SCFB_DECRYP _TEST _BENCH/IV(127:0) 

t»- /SCFB_DECRYP _TEST_BENCH/PATTERN(7:0) 

11> /SCFB_DECRYP _TEST _BENCH/CV _IN(255:0) 

/SCFB_DECRYP _TEST _BENCHitsctbO/found 

0 

FFOOAA550FF03300FFCCD833246D7778 

t»- /SCFB_DECRYP _TEST _BENCH!tsctbO/num(7:0) II 00 

/SCFB_DECRYP _TEST _BENCH!tsctbO/ready_data 0 

/SCFB_DECRYP _TEST _BENCH!tsctbO/key_ready 

t»- /SCFB_DECRYP _TEST _BENCH/tsctbO/subkey( 127:0) 7 A09F 1571 C98A6DA 79DF79C583FF3656 

1> /SCFB_DECRYP _TEST _BENCH!tsctb0/Data_out(127:0) 00000000000000000000000000006858 

t»- /SCFB_DECRYP _TEST _BENCHitsctbO/ciphertext( 127:0) 7 A09F 1571 C98A6DA 79DF79C583FF5DOE 

0000000000000000000000000000* 



The plaintext data in the input file of the encryption system: 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 
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The plaintext data recovered in the output file of the decryption system: 

00000000000000000000000000000000000000000000000000 

00000000000000000000000000000000000000000000000000 

00000000000000000000000000001111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 
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Appendix B 

Waveforms of the Hardware 

Implementation of OCFB Mode 

The signals used in the waveforms are described below: 

Name of Signal 

/OCFB_ENCRYPT _TEST _BENCH/RESET 

/OCFB_ENCRYPT_TEST_BENCH/CLK1 

/OCFB_ENCRYPT_TEST_BENCH/ ten0/en0/CLK2 

/OCFB_ENCRYPT_TEST_BENCH/CLK3 

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN 

/OCFB_ENCRYPT_TEST_BENCH/SERIAL_OUT 

/OCFB_ENCRYPT_TEST_BENCH/IV 

/OCFB_ENCR YPT _ TEST_BENCH/KEY 

/OCFB_ENCRYPT_TEST_BENCH/ tenO/key_done 

/OCFB_ENCRYPT_TEST_BENCH/ tenO/val 

/OCFB_ENCR YPT _TEST _BENCH/ tenO/plaintext 

/OCFB_ENCR YPT _TEST _BENCH/ tenO/en llk4/eq 

/OCFB_ENCR YPT _TEST _BENCH/ tenO/keystream 

/OCFB_ENCRYPT _TEST _BENCH/ 
ten0/en1/k4/cc 1/i_counter 

121 

Function 

Reset the system 

System clock 

Clock for Leaving from PQ 
and incoming to 
CQ 

Clock for block cipher 

Data bit incoming into PQ 

Data bit outgoing from CQ 

Initialization Vector 

Initial key 

Done signal for encryption 
of block cipher 

Validation of data 

Plaintext bit outgoing from 
PQ 

Flag for sync pattern 

Keystream bits 

Counter 



The waveforms of the encryption system 
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......... 
N 
VJ 

/OCFB_ENCRYPT _TEST _BENCH/RESET 

/OCFB_ENCRYPT _TEST _BENCH/CLK 1 

/OCFB_ENCRYPT _TEST _BENCH/CLK3 

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN 

/OCFB _ENCRYPT_ TEST_ BENCH/SERIAL_ OUT 

11> /OCFB_ENCRYPT _TEST _BENCH/IV(127:D) 

11> /OCFB_ENCRYPT _TEST _BENCH/KEY(255:D) 

/OCFB_ENCRYPT _TEST _BENCH/tenD/key _done 

/OCFB _ENCRYPT_ TEST_ BENCH/tenD/val 

/OCFB_ENCRYPT _TEST _BENCH/tenD/plaintext 

D 

D 

D /OCFB_ENCRYPT _TEST _BENCH/tenD/en 1/k4/eq 

/OCFB_ENCRYPT _TEST _BENCH/tenD/keystream 

/OCFB_ENCRYPT _TEST _BENCH/tenD/en1/k4/cc1/i_counter 11111 

/OCFB_ENCRYPT _TEST _BENCH/tenD/ciphertext 



,.._.. 
N 
+:>. 

/OCFB_ENCRYPT _TEST _BENCH/RESET 

/OCFB_ENCRYPT _TEST _BENCH/CLK 1 

/OCFB_ENCRYPT_TEST_BENCH/CLK3 

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN 

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_ OUT 

1>- /OCFB_ENCRYPT _TEST _BENCH/IV(127:D) 

1>- /OCFB_ENCRYPT _TEST _BENCH/KEY(255:D) 

/OCFB_ENCRYPT _TEST _BENCH/tenD/key_done 

/OCFB_ENCRYPT _TEST _BENCH/tenD/val 

/OCFB_ENCRYPT _TEST _BENCH/tenD/plaintext 

D 

D 

D 

/OCFB_ENCRYPT _TEST _BENCH/tenD/en 1/k4/eq ll D 

/OCFB_ENCRYPT _TEST _BENCH/tenD/keystream II D 

/OCFB ENCRYPT_ TEST _BENCH/tenD/en 1/k4/cc 1/i_counter 118 

/OCFB_ENCRYPT _TEST _BENCH/tenD/ciphertext 



....... 
N 
Ul 

/OCFB_ENCRYPT _TEST _BENCH/RESET 

/OCFB_ENCRYPT _TEST _BENCH/CLK 1 

/OCFB_ENCRYPT _TEST _BENCH/CLK3 

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN 

/OCFB _ENCRYPT_ TEST _BENCHISER I AL _OUT 

1> /OCFB_ENCRYPT _TEST _BENCI-VIV(127:D) 

1> /OCFB_ENCRYPT _TEST _BENCI-VKEY(255:D) 

/OCFB_ENCRYPT _TEST _BENCH/tenD/key_done 

/OCFB_ENCRYPT _TEST _BENCH/tenD/val 

/OCFB_ENCRYPT _TEST _BENCH/tenD/plaintext 

/OCFB_ENCRYPT _TEST _BENCH/tenD/en1/k41eq 

/OCFB _ENCRYPT_ TEST_ BENCH/tenD/keystream 

D 

D 

D 

D 

D 

D 

/OCFB_ENCRYPT _TEST _BENCI-VtenD/en1/k41cc1/i_counter ll11 9 

/OCFB_ENCRYPT _TEST _BENCI-VtenD/ciphertext 



......... 
N 
0\ 

/OCFB_ENCRYPT _TEST _BENCH/RESET 

/OCFB_ENCRYPT _TEST _BENCH/CLK 1 

/OCFB_ENCRYPT _TEST _BENCH/CLK3 

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN 

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_ OUT 

1> /OCFB_ENCRYPT _TEST _BENCH/IV( 1 Z7:D) 

1> /OCFB_ENCRYPT _TEST _BENCH/KEY(Z55:D) 

/OCFB_ENCRYPT _TEST _BENCH/tenD/key_done 

/OCFB_ENCRYPT _TEST _BENCH/tenD/val 

/OCFB_ENCRYPT _TEST _BENCH/tenD/plaintext 

/OCFB_ENCRYPT _TEST _BENCH/tenD/en1/k41eq 

/OCFB_ENCRYPT _TEST _BENCH/tenD/keystream 

D 

D 

D 

D 

D 

D 

/OCFB_ENCRYPT _TEST _BENCH/tenD/en1/k4/cc1/i_counter ll 119 

/OCFB_ENCRYPT _TEST _BENCH/tenD/ciphertext 



The waveforms of the decryption system 
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.......... 
N 
00 

file f.dit M_art<er .§oTo Ylew .Qptions '!'llndow 

~JIIIll!liifiilillllllll z+l z-IIIIE 

/OCFB_DECRYPT _TEST _BENCH/RESET 

/OCFB_DECRYPT_TEST_BENCH/CLKl 

/OCFB_DECRYPT_TEST_BENCHICLK3 

/OCFB_DECRYPT _TEST _BENCHISERIAL_IN 

/OCFB_DECRYPT _TEST _BENCH/SERIAL_ OUT 

1> /OCFB_DECRYPT _TEST _BENCH/IV(127:D) 

1> /OCFB_DECRYPT _TEST _BENCH/KEY(255:D) 

/OCFB_DECRYPT _TEST _BENCH/tenD/key_done 

/OCFB_DECRYPT _TEST _BENCH/tenD/val 

/OCFB_DECRYPT _TEST _BENCH/tenD/plaintext 

/OCFB_DECRYPT _TEST _BENCH/tenD/en1/k4/eq 

/OCFB_DECRYPT _TEST _BENCH/tenD/keystream 

D 

D 

D 

D 

/OCFB _DECRYPT_ TEST _BENCH/tenD/en 1/k4/cc 1/i_ counter I! 1 

/OCFB_DECRYPT _TEST _BENCH/tenD/ciphertext 



......... 
N 
10 

/OCFB_DECRYPT _TEST _BENCH/RESET 

/OCFB_DECRYPT _TEST _BENCH/CLK 1 

/OCFB_DECRYPT _TEST _BENCHICLK3 

/OCFB_DECRYPT _TEST _BENCH/SERIAL_IN 

/OCFB_DECRYPT _TEST _BENCH/SERIAL_ OUT 

t> /OCFB_DECRYPT _TEST _BENCHIIV(127:D) 

t> /OCFB_DECRYPT _TEST _BENCH/KEV(255:D) 

/OCFB_DECRYPT _TEST _BENCH/tenD/key_done 

/OCFB_DECRYPT _TEST _BENCH/tenD/val 

/OCFB_DECRYPT _TEST _BENCH/tenD/plaintext 

/OCFB_DECRYPT _TEST _BENCH/tenD/en1/k41eq 

/OCFB_DECRYPT _TEST _BENCH!tenD/keystream 

/OCFB_DECRYPT _TEST _BENCH/tenD/en1/k41cc1/i_counter 

/OCFB _DECRYPT_ TEST _BENCH/tenD/ciphertext 

D 

D 

D 



........ 
UJ 
0 

/OCFB_DECRYPT _TEST _BENCH/RESET 

/OCFB_DECRYPT _TEST _BENCH/CLK 1 

/OCFB_DECRYPT _TEST _BENCH/CLK3 

/OCFB_DECRYPT _TEST _BENCH/SER IAL_IN 

/OCFB_DECRYPT _TEST _BENCH/SERIAL_ OUT 

1> /OCFB_DECRYPT _TEST _BENCH/I V(127:D) 

1> /OCFB_DECRYPT _TEST _BENCH/KEY(255:D) 

/OCFB_DECRYPT _TEST _BENCH/tenD/key_done 

/OCFB_DECRYPT _TEST _BENCH/tenD/val 

/OCFB_DECRYPT _TEST _BENCH/tenD/plaintext 

D 

D 

D 

D 

D 

D /OCFB_DECRYPT _TEST _BENCH/tenD/en 1/k41eq 

/OCFB_DECRYPT _TEST _BENCH/tenD/keystream 

/OCFB_DECRYPT _TEST _BENCH/tenD/en1/k4/cc1/i_counter 11128 

/OCFB_DECRYPT _TEST _BENCH/tenD/ciphertext 



/OCFB_DECRVPT _TEST _BENCH/RESET D 

/OCFB_DECRVPT _TEST _BENCH/CLK 1 D 

/OCFB_DECRVPT _TEST _BENCH/CLK3 D 

/OCFB_DECRVPT _TEST _BENCH/SERIAL_IN D 

/OCFB_DECRVPT _TEST _BENCH/SERIAL_ OUT 

1>- /OCFB_DECRVPT _TEST _BENCH/IV(1 27:D) 

1>- /OCFB_DECRVPT _TEST _BENCH/KEV(255:D) 

....... /OCFB_DECRVPT _TEST _BENCH/tenD/key_done liD 
w 
....... /OCFB_DECRVPT _TEST _BENCH/tenD/val 

/OCFB_DECRVPT _TEST _BENCH/tenD/plaintext 

IOCFB _DE CRYPT_ TEST_ BENCHAena'en1/k4/cq r 
/OCFB_DECRVPT _TEST _BENCH/tenD/keystream D 

/OCFB DECRYPT TEST_BENCH!tenD/en1/k4/cc1/i_counter , 111 111 ! i!! 0; '111'1:1 :::::i: Cl 

/OCFB_DECRVPT _TEST _BENCH/tenD/ciphertext 



The plaintext data in the input file of the encryption system: 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 
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The plaintext data recovered in the output file of the decryption system: 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 
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