
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

!Without Author's Permission)

lJiil'
' ·-' ' •Mill·· f.

ANALYSIS AND IMPLEMENTATION OF

STATISTICAL CIPHER FEEDBACK

MODE AND OPTIMIZED CIPHER

FEEDBACK MODE

St. John's

by

Fang Yang, B.Eng.

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

January 2004

Newfoundland Canada

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 0-494-09932-1
Our file Notre reference
ISBN: 0-494-09932-1

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I' Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits meraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

Dedication

To My Dearest Father, Mother, Sister, and Cheng

Abstract

In this thesis, two recently proposed modes of operation for block ciphers,

referred to as statistical cipher feedback (SCFB) mode and optimized cipher feedback

(OCFB) mode, are investigated. Both cipher modes can achieve the capability of self­

synchronization to recover from bit slips or insertions in the communication channel

automatically. Compared to CFB mode, both cipher modes can obtain higher efficiency

with modest buffer size and reasonable latency. Hence, both modes can be applied to

high-speed digital hardware implementation and they have been identified as being

suitable for physical layer security for applications such as SONET/SDH.

In this thesis, both modes are implemented in software and hardware. In

particular, the hardware structure and method of hardware implementation are

investigated. Parallel and serial transfers are applied to the hardware implementation of

SCFB mode and OCFB mode, respectively. Very High Speed Integrated Circuit

Description Language (VHDL) and LSI design with 0.18 CMOS technology supported

by Canadian Microelectronics Corporations (CMC) are used in the process of hardware

implementation. The hardware structures of both modes are synthesized by using

Synopsis tools provided by CMC as well.

In addition, the performances of both modes are analyzed with respect to

characteristics such as the theoretical efficiency, synchronization recovery delay, and the

error propagation factor. Furthermore, the relationship between efficiency, probability of

I

queue overflow, and buffer size is investigated. It is definite that both of modes can

obtain higher efficiency than cipher feedback mode. OCFB mode performs marginally

better with respect to error propagation and synchronization recovery delay in some

circumstances. SCFB mode is able to achieve higher efficiency with a given buffer size

and probability of buffer overflow in an efficient hardware implementation. Similarly, for

a given efficiency and buffer size, SCFB mode has a lower probability of buffer overflow

than OCFB mode. In fact, while for SCFB it is possible to guarantee no overflow with

50% efficiency and a buffer size equal to the block size, it is not possible to guarantee no

overflow for efficiencies that are much less than 50% for OCFB mode. These results

imply that SCFB is a mode more suitable for high speed physical layer security than

OCFB mode.

II

Acknowledgement

I sincerely thank my supervisor Dr. Howard Heys for his guidance and support

throughout my master's study. Numerous meetings and discussion with you are the

important step to complete my study. Your precious attitude to questions and patience

impresses me very much.

This is also a chance to thank members of the Computer Engineering Research

Laboratories (CERL) that provided a friendly and resourceful environment for my

research. Thanks especially to Reza Shahidi who helped me to solve many computer

problems I came across. As well, I would like to thank my friends, Lu Xiao, Janaka

Deepakumara, Zhiwei An, Padmini Vellore, and many friends whose names are not

mentioned.

I genuinely thank my father, Hongkui Yang, mother, Guoyu Fu, and sister, Li

Yang, for their continuous encouragement and support. In these two years of my Master's

study, my dearest sister had gotten cancer and did not have a chance to say goodbye to

me in order to let me concentrate on my studies. My parents had endured anguish on the

loss of my sister and kept it secret from me for one year. I can't imagine I could finish the

research if I had known this sad news at the beginning. I wish my sister could know I so

love her and miss her.

I also have to honestly thank my dearest husband, Cheng Li, for all his love, care,

encouragement, and suggestion. He is always my strongest supporter. When I feel tired,

he gives his shoulder to let me have a rest. When I meet some problems, he is my best

advisor. When I feel depressed, he encourages me and gives me strength. Words can't

express my gratitude to your love. I am so rich with your care and love. I dedicate my

thesis to you.

III

Table of Contents

ABSTRACT ... I

ACKN"OWLEDGEMENT ... III

TABLE OF CONTENTS .. IV

LIST OF FIGURES .. VIII

LIST OF TABLES .. XI

NOTATION AND LIST OF ABBREVIATIONS .. XII

CHAPTER 1 INTRODUCTION ... !

1.1 MOTIVATION .. 2

1.2 OBJECTIVE OF THE THESIS .. 2

1.3 THESIS OUTLINE .. 3

CHAPTER 2 BACKGROUND OF RESEARCH .. 5

2.1 SYMl'viETRIC ENCRYPTION SYSTEMS ... 5

2.2 STREAM CIPHERS AND BLOCK CIPHERS ... 6

2.3 CONVENTIONAL MODES OF OPERATION .. 8

2.4 OTHER MODES OF OPERATION ... 13

2.5 ADVANCED ENCRYPTION STANDARD (AES) .. 14

CHAPTER 3 DESIGN AND IMPLEMENTATION ENVIRONMENT •.............. 17

3.1 SOFfW ARE VS. HARDWARE IMPLEMENTATION .. 17

3.2 DESIGNME1110DOLOGY ... 18

3.3 DESIGN FLOW, FUNCTIONAL TEST AND VERIFICATION 20

CHAPTER 4 STATISTICAL CIPHER FEEDBACK (SCFB) MODE•.... 24

4.1 INTRODUCTION TO SCFB MODE .. 24

IV

4.2 IMPLENIENTATION OF SCFB MODE .. 26

4.2.1 Software Implementation ... 26

4.2.2 Hardware Implementation .. 28

4.2.2.1 Top-down Hardware Design of SCFB Mode 28

4.2.2.2 Parallel Transfer vs. Serial Transfer .. 30

4.2.2.3 Implementation Structure of an SCFB System 31

4.2.2.4 Discussion on Queuing .. 33

4.2.2.5 Bottom-up Hardware Implementation .. 34

4.2.2.6 Test Methodology ... 49

4.2.2. 7 Complexity of Hardware Implementation ... 49

4.2.3 Discussion of Other Structures ... 50

4.3 CONCLUSION .. 50

CHAPTER 5 OPTIMIZED CIPHER FEEDBACK (OCFB) MODE 52

5.1 INTRODUCTION OF OCFB MODE .. 53

5.2 IMPLENIENTATION OF OCFB MODE .. 54

5.2.1 Software Implementation ... 54

5.2.2 Hardware Implementation .. 56

5.2.2.1 Top-down Hardware Design of the OCFB Mode 56

5.2.2.2 Discussion on Queuing .. 60

5.2.2.3 Discussion on Timing Characteristics of Implementation 61

5.2.2.4 Bottom-up Hardware Implementation .. 65

5.2.2.5 Test Methodology ... 74

5.2.2.6 Complexity of Hardware Implementation ... 74

5.2.2.7 Discussion on other structures ... 75

5.3 CONCLUSION .. 76

v

CHAPTER 6 PERFORMANCE ANALYSIS OF SCFB AND OCFB MODES ... 77

6.1 BASIC PARAMETERS OF PERFORMANCE ANALYSIS .. 77

6.2 PERFORMANCE ANALYSIS OF SCFB MODE .. 78

6.2.1 Theoretical efficiency ... 79

6.2.2 SRD .. 81

6.2.3 EPF ... 82

6.2.4 Practical Efficiency of SCFB Mode ... 83

6.2.5 The Relationship Between Buffer Size and the Overflow Probability .. 85

6.2.6 The Relationship Between Encryption Efficiency and the Overflow

Probability .. 86

6.3 PERFORMANCE ANALYSIS OF OCFB MODE ... 86

6.3.1 Theoretical Efficiency .. 86

6.3.2 SRD .. 89

6.3.3 EPF ... 90

6.3.4 Practical Efficiency of OCFB Mode .. 92

6.3.5 The Relationship Between Buffer Size and the Probability of Overflow

.. 93

6.3.6 The Relationship Between Encryption Efficiency and Probability of

Overflow ... 94

6.4 PERFORMANCE COMPARISON BETWEEN SCFB MODE AND OCFB MODE 95

6.4.1 SRD .. 95

6.4.2 EPF ... 96

6.4.3 The Relationships Between Probabilities of Overflow and Buffer Size 97

6.4.4 The Relationship Between Probability of Overflow and Efficiency 99

6.5 CONCLUSION .. 100

VI

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 102

7.1 SUJ\1MAR Y OF THE RESEARCH .. 102

7.2 SUGGESTION FOR FUTURE WORK .. 105

REFERENCES .. 106

APPENDIX A WAVEFORMS OF THE HARDWARE IMPLEMENTATION OF

SCFB MODE ... 108

APPENDIX B WAVEFORMS OF THE HARDWARE IMPLEMENTATION OF

OCFB MODE .. 121

VII

List of Figures

Figure 2.1 Conventional encryption models ... 6

Figure 2.2 ECB mode .. 9

Figure 2.3 CBC mode .. 10

Figure 2.4 CFB mode .. 11

Figure 2.5 OFB mode .. 12

Figure 3.1 A digital system design process ... 19

Figure 3.2 Top-down design and bottom-up implementation ... 20

Figure 3.3 Design flow recommended by CMC ... 23

Figure 4.1 SCFB system ... 25

Figure 4.2 Flow chart of SCFB system ... 27

Figure 4.3 General diagram of SCFB system ... 28

Figure 4.4 Port relationships of the encryption system ... 29

Figure 4.5 Block diagram of the encryption system ... 29

Figure 4.6 Structure of the encryption system .. 32

Figure 4.7 Hardware structure of the plaintext subsystem .. 37

Figure 4.8 Hardware structure of the ciphertext subsystem .. 39

Figure 4.9 Hardware structure of key generation part .. 39

Figure 4.10 State machine of the controller of the keystream subsystem 41

Figure 4.11 Hardware structure of the scan part of the keystream subsystem44

Figure 4.12 Simulation waveform of the encryption system .. 45

Figure 4.13 Simulation waveform of the encryption system .. 46

Figure 4.14 Simulation waveform of the encryption system .. 47

Figure 5.1 OCFB system ... 54

VIII

Figure 5.2 Flow chart of OCFB system .. 55

Figure 5.3 Port relationships of the encryption system ... 57

Figure 5.4 Block diagram of the encryption system ... 57

Figure 5.5 Structure of the encryption system .. 59

Figure 5.6 Timing relationships between PQ, CQ, keystream .. 64

Figure 5. 7 Structure of the plaintext queue ... 66

Figure 5.8 Structure of the ciphertext queue ... 66

Figure 5.9 Hardware structure of the keystream subsystem ... 67

Figure 5.10 Simulation waveform of the encryption system .. 69

Figure 5.11 Simulation waveform of the encryption system .. 70

Figure 5.12 Simulation waveform of the encryption system .. 71

Figure 5.13 Simulation waveform of the encryption system .. 72

Figure 5.14 Simulation waveform of the encryption system ... 73

Figure 6.1 Synchronization cycle .. 79

Figure 6.2 Theoretical efficiency vs. sync pattern size ... 82

Figure 6.3 Synchronization recovery delay vs. sync pattern size with B = 128 84

Figure 6.4 Error propagation factor vs. sync. pattern size with B = 128 84

Figure 6.5 Probability of overflow vs. buffer size with Rijndael.. 85

Figure 6.6 Probability of overflow vs. efficiency with Rijndael.. 87

Figure 6.7 Synchronization cycle of OCFB mode .. 87

Figure 6.8 Theoretical efficiency vs. sync pattern size ... 89

Figure 6.9 Sync Recovery Delay vs. Sync Pattern Size (B=128) 90

Figure 6.10 Error propagation factor vs. sync pattern size with B = 128 92

Figure 6.11 Probability of overflow vs. buffer size with Rijndael.. 93

Figure 6.12 Probability of overflow vs. efficiency with B = 128 94

IX

Figure 6.13 Sync recovery delay vs. sync pattern size with B = 128 96

Figure 6.14 Error propagation factor vs. sync pattern size with B = 128 97

Figure 6.15 Probability of overflow vs. buffer size with full-queue efficiency= 50% 97

Figure 6.16 Probability of overflow vs. buffer size with full-queue efficiency= 78.10%98

Figure 6.17 Probability of overflow vs. buffer size with full-queue efficiency= 84.40%98

Figure 6.18 Probability of overflow vs. buffer size with full-queue efficiency= 90.60%98

Figure 6.19 Probability of overflow vs. full-queue efficiency with B = 192 100

Figure 6.20 Probability of overflow vs. full-queue efficiency with B = 224 100

Figure 6.21 Probability of overflow vs. full-queue efficiency with B = 256 100

X

List of Tables

Table 4.1 Hardware complexity of the encryption system of SCFB mode 51

Table 5.1 Hardware complexity of the encryption system of OCFB mode 75

XI

Notation and List of Abbreviations

n

B

k

M

d

R

R'

Re

T

T'

Te

m

1J

p(k)

E(k)

fl

eft

QoS

DES

AES

CAD

:The length of sync pattern

: The length of a block

: The length of data bit between the previous sync pattern and the

next sync pattern in ciphertext

: The size of queue

: The number of data in the queue

: The rate of incoming data of plaintext queue

: The rate of outgoing data of plaintext queue

: The operating rate of the block cipher

: The collection time of one block of plaintext data

: The leaving time of one block of plaintext data

: The operating time of one block of data for the block cipher

: The number of data less than or equal to the length of a block

: The theoretical efficiency

: The probability of k

: The expectation of k

: The expect synchronization cycle size

: The practical efficiency

: Quality of Service

: Data Encryption Standard

: Advanced encryption Standard

: Computer Aided Design

XII

ASIC

SCFB

OCFB

NIST

XOR

IV

ECB

CBC

CFB

OFB

CTR

sv

PCBC

VLSI

DRC

HDL

VHSIC

VHDL

IC

CMC

SPLD

CPLD

FPGA

FPIC

DFT

: Application-Specific Integrated Circuit

: Statistical Cipher Feedback

:Optimized Cipher Feedback

:National Institute of Standards and Technology

: Exclusive-or

: Initialization Vector

: Electronic Code Book

:Cipher Block Chaining

: Cipher Feedback

: Output Feedback

: Counter mode

: State Vector

: Propagation Cipher Feedback

: Very Large Scale Integration

: Design Rule Checking

: Hardware Description Language

:Very High Speed Integrated Circuit

: VHSIC Hardware Description Language

: Integrated Circuit

: Canadian Microelectronics Corporation

: Simple Programmable Logic Devices

: Complex Programmable Logic Devices

: Field Programmable Gate Arrays

: Field Programmable InterConnect

:Design For Testability

XIII

PDP : Physical Design Planner

LVS : Layout-Versus-Schematic

PQ : Plaintext queue

CQ : Ciphertext queue

IVQ :IV queue

SRD : Synchronization Recovery Delay

EPF : Error Propagation Factor

XIV

Chapter 1

Introduction

Information security is an old science which can be traced back several centuries.

The sender tries to hide information in order that it can reach the receiver safely without

being recognized by the enemy. In many ways, cryptography can be seen as a war

without the smoke of gunpowder.

The main task of information security is to ensure the security of information

during the process of transmission. Three key criteria mentioned in information security

are confidentiality, integrity, and authentication. The confidentiality of the information

means that only authorized access is allowed and unauthorized access is prevented. It

guarantees that the information is hidden from the unauthorized users. The integrity of

information ensures that the information transferred is original and not modified. The

authentication of information ensures that the information is not processed during the

transmission and both of the transmitter and the receiver are correct. It prevents the

storage and the processing of information and a third party masquerading as one of the

two parties.

The use of cryptographic systems offers the highest level of security together with

maximum flexibility. A cryptographic system includes an encryption system and a

decryption system. The encryption system utilizes algorithms and keys to convert the

original meaningful data into the nonsense data. If the modified information is obtained

1

or accessed by an unauthorized user, it cannot be figured out without the knowledge of

algorithms and keys. In reality, the algorithms are usually published, but the keys are kept

secret. The security of keys decides the security of information. Hence, it is no doubt that

a cryptographic system can offer the information security by correct management and

implementation.

1.1 Motivation

Today, the development and application of high quality and high-speed networks

makes bandwidth capability and data confidentiality more and more important. Suitable

modes of operation not only protect the data but also have the ability to maximize the use

of network bandwidth. This thesis will focus on the studies of two recently proposed

modes of operation, referred to as statistical cipher feedback (SCFB) mode and optimized

cipher feedback (OCFB) mode, which can not only obtain the ability of self­

synchronization, but also have high efficiency compared to cipher feedback (CFB) mode.

The ability to implement these modes for high-speed networks is also investigated.

1.2 Objective of the Thesis

The objective of the thesis firstly focuses on the hardware implementation of

SCFB mode and OCFB mode. Hardware structure and the implementation method are

discussed. The relative hardware characteristics with respect to the buffer size,

probability of queue overflow, and the implementation efficiency are investigated.

2

The second objective of the thesis is to performance analysis on theoretical

efficiency, error propagation delay, synchronization recovery delay and the relationships

between buffer size, efficiency, and buffer overflow.

By the analysis and comparison of hardware and performance, the conclusion of

which mode is more suitable for high speed networks can be drawn.

1.3 Thesis Outline

This thesis includes seven chapters. Chapter 1 is the introduction part. Chapter 2

provides the background related to the research. In this chapter, conventional modes of

operation for the Data Encryption Standard (DES) [1] are discussed and the performances

are analyzed in detail. Advanced Encryption Standard (AES) [2] algorithm is also

provided as it is currently the most important block cipher.

Chapter 3 explains the environment for the design and the use of Computer Aided

(CAD) tools used for hardware implementation in detail. This chapter also describes the

processes of how to make a chip or board from an idea or an algorithm.

Chapter 4 introduces the algorithm of SCFB mode and considers the

implementation of SCFB mode in hardware. The hardware characteristics with respect to

the requirement on buffer size, the complexity, and timing analysis are discussed.

Chapter 5 introduces the algorithm of OCFB mode and considers the

implementation of OCFB mode in hardware. Again, the hardware characteristics with

3

respect to the requirement on buffer size, the complexity, and timing analysis are

discussed.

Chapter 6 analyzes the performance of SCFB mode and OCFB mode with respect

to theoretical efficiency, synchronization recover delay, error propagation factor, and the

relationship among buffer size, full-queue efficiency, and probability of overflow.

Comparisons of these properties between SCFB mode and OCFB mode are then

provided.

Finally chapter 7 will draw a conclusion for this thesis and suggest some future

work.

4

Chapter 2

Background of Research

This chapter introduces the background material for the research and provides a

view of previous work. In general, an operational mode is needed to realize an

encryption/decryption system. The mode of operation which is selected has a great

influence on the security and the efficiency of system implementation. Therefore, it is

significant to study the modes of operation.

Besides the introduction of the modes of operation, the Rijndael algorithm which

was announced as the Advanced Encryption Standard (AES) by the National Institute of

Standards and Technology (NIST) recently is explained in this chapter.

2.1 Symmetric Encryption Systems

Conventional encryption, also referred to as symmetric encryption, is an

encryption technology which uses the same key at the transmitter and receiver to encrypt

and decrypt the message. Figure 2.1 illustrates the conventional encryption process [3].

The encryption system converts the original meaningful data, referred to as plaintext, into

the nonsense data, referred to as ciphertext. The process of conversion combines the

secret key shared by the transmitter and the receiver with a certain algorithm to produce

the ciphertext. The secret key is independent of the plaintext. The ciphertext is sent into

5

the communication channel and collected by the receiver. The receiver then uses a

decryption algorithm with the same key to decrypt the ciphertext to recover the plaintext.

Secret key shared by Secret key shared by

transmitter and receiver transmitter and receiver

-- ----

® ®
---- --

-- Communication ---- --
channel

Plaintext Encryption algorithm Decryption algorithm Plaintext

Figure 2.1 Conventional encryption models

2.2 Stream Ciphers and Block Ciphers

Block ciphers and stream ciphers are two important classes of encryption

algorithms. A block cipher is a scheme which encrypts a fixed length of plaintext as a

whole to produce the same length of ciphertext. The same plaintext produces the same

output if the same key is provided. The benefit of the usage of fixed length of the block is

its ease of implementation in software. Furthermore, it enables the incorporation of the

encryption scheme into existing protocols or hardware components. A bit error in a block

will cause a whole block error in the recovered plaintext.

In contrast to the block cipher, a stream cipher [4] is an algorithm in which

plaintext is encrypted bit-by-bit or symbol-by-symbol to produce the corresponding

ciphertext. A stream cipher usually generates a pseudo random keystream to exclusive-or

6

(XOR) with plaintext to produce ciphertext. The output of a stream cipher is varied

relative to the plaintext depending on the pseudo random keystream during the encryption

process. Stream ciphers have relatively simple circuits and faster encryption speed in

hardware compared with the block ciphers. Therefore, a stream cipher is suitable for

high-speed networks or the physical layer in a communication channel. In addition,

stream ciphers can have the significant property of no error propagation. A single bit of

ciphertext error results in a single bit of plaintext error. This property makes stream

cipher suitable for systems with high error probabilities in transmission. If a ciphertext bit

is lost in transmission, a stream cipher will cause complete nonsense data for the rest of

the recovered plaintext unless special measures are taken. Hence, stream ciphers need the

ability of resynchronization through either a special signalling channel or the method of

self-synchronization. This research will discuss the modes of operation which configure

block ciphers as stream ciphers capable of self-synchronization.

Bit slips are defined as the loss of a bit or bits in the process of data transmission.

It is possible for the data transmitted to pass by several network switches and then arrive

at the destination. Clock differences between network nodes, could cause bit slips or

insertions.The ability to recover from bit slips and insertions is inevitable to consider

when the modes of operation are discussed.

There is a class of stream cipher, referred to as self-synchronizing stream ciphers,

which can recover from bit slips or errors automatically. It looks for a sync pattern in the

ciphertext to extract an Initialization Vector (IV) to synchronize the encryption and

decryption system. This works because the ciphertext is shared by the encryption and

7

decryption system. Self-synchronizing makes the cryptographic system more efficiently

use bandwidth than the stream ciphers which require an extra signalling channel to

transfer IV to synchronize the encryption and decryption system periodically because it

does not need additional bandwidth for synchronization purposes.

Interestingly, there are several modes of operation that can configure a block

cipher as a stream cipher to produce a pseudo random keystream and attain the ability of

self-synchronization. Before we discuss self-synchronization explicitly, let us introduce

the conventional modes of operation.

2.3 Conventional Modes of Operation

There are four operational modes for block ciphers that were published in

December 1980 [4]. They are listed as follows:

1. Electronic codebook mode (ECB)

2. Cipher block chaining mode (CBC)

3. Cipher feedback mode (CFB)

4. Output feedback mode (OFB)

Electronic Code Book (ECB) [3] is a mode in which each block of plaintext

produces a corresponding ciphertext value according to the key. In other words a

plaintext always has the same ciphertext given the same key. When data is applied to

ECB mode, data is separated into blocks and then each block is encrypted independently.

Figure 2.2 illustrates ECB mode [3]. ECB mode is not fitted for a system with small

block sizes because the repetition possibility of the block becomes high and that will

cause a decreasing of the security. That situation may be improved by the addition of

8

random pad bits in the block. Another method to increase the security is to enlarge the

block size. A large size block has the ability to prevent a codebook attack since it

contains enough unique entropy. However, a bit error will cause a whole block of data

errors.

Plaintext block Ciphertext block

Key Key
Encryption Algorithm Decryption Algorithm

Ciphertext block Plaintext block

Figure 2.2 ECB mode

Cipher Block Chaining (CBC) [3] is the mode in which each plaintext block

XORs with the previous ciphertext block, and then is encrypted with the key to produce

the next ciphertext. The first ciphertext block is provided by an IV. Figure 2.3 illustrates

CBC mode. In the figure, PJ represents the current plaintext with bits, P represents the

recovered plaintext, E represents encryption algorithm, E.1 represents decryption

algorithm, B represents block size, and Co represents the first ciphertext which is usually

given by IV. CJ.J represents the previous ciphertext, and CJ represents the current

ciphertext. In the figure, Ei3 represents the bitwise XOR of a block. The chaining structure

makes the current ciphertext block entirely dependent on the previous ciphertext block.

The same ciphertext block for a given plaintext can be obtained only if the same key and

9

the previous ciphertext block is the same. For CBC mode, a bit slip will cause the whole

block and the remaining blocks to be random with respect to the plaintext.

Figure 2.3 CBC mode

Cipher Feedback (CFB) [3] mode utilizes a pseudo-random keystream which is

generated by a block cipher to encrypt plaintext. Because the encryption of plaintext is bit

by bit, CFB mode can fall into the class of stream ciphers. The significant characteristics

of CFB mode is that it feedbacks the ciphertext into a shift register at the input of the

block cipher to produce the next key stream block. CFB mode is illustrated in Figure 2.4.

In this figure, m and B are the feedback and block size and m could be B or less than B,

and E represents the block cipher with a block size of B.

Similar to CBC mode, an IV as the initial input of the block cipher is provided to

CFB mode to guarantee the same start on both the transmitter and the receiver. The value

of m greatly influences the properties of CFB mode. When m = 1, CFB mode has the

ability to recover from bit slips or insertions. When m > 1 and a single bit slip occurs, the

input to the block cipher at the receiver will become misaligned and resynchronization

10

will not occur. CFB mode can be categorized as a self-synchronizing cipher when m = 1.

However, it is very inefficient from the view of implementation [5]. How to increase the

efficiency becomes an interesting topic. One single bit error in the communication

channel will cause the recovered plaintext bit to be in error and the next whole block of B

recovered plaintext bits to be corrupted.

m m

Ciphertext

m m

Figure 2.4 CFB mode

Output Feedback (OFB) mode [3] can be used to construct a stream cipher by

making use of a block cipher as a pseudo-random generator. As with CFB mode, it uses

an IV as the input of block cipher initially. It then takes the previous output of the block

cipher (not the previous ciphertext) as the next input to the block cipher to produce the

next key stream block. OFB mode is illustrated in Figure 2.5.

Of all operational modes, OFB mode offers minimal error propagation. A bit error

will cause only one bit error because the generation of the key only has a relationship

with the output of the block cipher rather than the ciphertext. It can be implemented with

11

high data throughput as well by performing the XOR of plaintext with keystream in

blocks of B bits. However, it does not have the ability to resynchronize. To ensure that

the communication system is working properly, OFB mode needs an extra signalling

channel to periodically transfer an IV from the transmitter to the receiver to recover from

any synchronization loss that may occur due to bit slips.

OFB mode has a subtle security problem. Because the output of the block cipher

is fed back as the input of the block cipher and the fixed length of the block size is used,

it is possible to cause the repetitive usage of the keystream. That means the cryptanalyst

can figure all subsequent messages transferred from the repeated parts, if the system is

accessed by cryptanalyst and the cryptanalyst finds the repetition cycle of data. Thus, the

security of OFB mode is decreased.

m m

Ciphertext

m m m m

Figure 2.5 OFB mode

12

2.4 Other Modes of Operation

The conventional modes of operation discussed above were recommended to be

used with DES [1]. With concerns of the security of DES, Triple-DES and AES have

taken its place. This brings some new modes of operation and applications.

Counter mode [6] also turns a block cipher into a stream cipher. It generates the

next keystream block by encrypting successive values of a "counter". The counter can be

any simple function, which produces a sequence that is guaranteed not to repeat for a

long time, although an actual counter is the simplest and most popular. In counter mode,

the state vector is simply a number the same size as the block of the block cipher. To

encrypt any block, the number is incremented, then the incremented number is encrypted,

the output of that encryption is XORed to the plaintext, and the result of the XOR is the

ciphertext. The problem of the OFB mode having cycles of unpredictable (and potentially

short) periods in some cases is solved. Since the counter doesn't cycle until it was stepped

through all 28 numbers (assuming block size B). Obviously, counter mode should not be

used with block ciphers whose blocks are so short that there is a risk of running a full

cycle on one key. Hence, counter mode has to be applied on 64-bits or larger blocks.

Counter mode has similar error propagation characteristics to OFB.

Many other modes of operation besides counter mode are modified from the

conventional modes of operation and counter mode, such as cipher-chain-cipher mode,

propagation cipher feedback (PCBC) mode, CFB64 mode, etc [6].

13

2.5 Advanced Encryption Standard (AES)

AES [2] was developed by NIST to replace DES and protect sensitive government

information well into the twenty-first century. Among five finalists, the Rijndael

algorithm won out and has become the proposed AES algorithm.

Before describing the cipher Rijndael algorithm, there are several parameters that

need to be explained. State describes the intermediate data and is expressed as a byte

array which has four rows and Nb columns. Nb is the block size divided by 32. The

cipher key is expanded with the key schedule to generate round keys, w[iJ]. The number

of rounds, Nr, is decided by the length of the cipher key.

The cipher Rijndael consists of:

• An initial round key addition

• Nr-1 intermediate rounds

• A final round.

Initially a round key is added in to enhance the system security. In the

intermediate Nr-1 rounds, each round is composed of four different transformations to

realize confusion, diffusion, and key mixing [3]. The final round is slightly different from

the previous Nr-1 rounds.

Figure 2.6 [3] illustrates the structure of AES using the 128-bit block as an

example. During the encryption and decryption, the State array is initialized as the

plaintext and modified at each stage of the transformations. The 128-bit cipher key is

arranged into the matrix of bytes to be expanded into 44 words of key schedule for 10

rounds and each round takes 128 bits as the round key from the key expansion. In the

14

diagram, the inverse substitute bytes, the inverse shift rows, and the inverse mix columns

are the inverse of the corresponding transformations. The details on the inverse

transformations and other length of the cipher key are described in [2] and [3].

Aaintext
Aat~ H

,.--__I:I===.Ad:l==I'Cll.rd-==key====:::!f: :----+-V\{0,3]---.._.L__ __ .Ad:l_I'Oll"d--..--key __ ___j

' I &tstitute bytes I
I Expard key

' ; I SHitrcMS I
~ '---------~,~------~

Mxoolurrns ~ I I
L-----~,~----~ r-1
I .Ad:l rourd key :14----1------+- V\{4,7] ---------"~

r
' I &tst~ute bytes I

• ~ I SHitrcMS I
§ '---------.,--------_J

tt I I Mxoolurrns
L__ __ ---::I:·:-----__.J

I
.Ad:l rCll.rd key :14---1------+-V\{36,39]1----+-~

'
I &tstitute bytes I

0 ' i I SHit rcMS I tt '---------,,,;:--------_.J

I .Ad:li'Oll"d key I

' Ophertext

Ercryption system

~ ' ~--- V\{40,43] ---~

Inverse sl.b bytes

Inverse stilt rcMS

Inverse rrix ools

Inverse sl.b bytes

Inverse stilt rcMS

Ophertext

D3ctwtion system

Figure 2.6 AES encryption and decryption

15

....
0

::0
0
t:
::J c.
(.0

::0
0
t:
::J c.

The functions of four transformations on the Sate are briefly explained here.

• Substitute bytes: This transformation uses a nonlinear substitution table

called an S-box to substitute each State byte-by-byte.

• Shift rows: This transformation is a simple permutation according to the

rules that the first row does not shift, the second row performs circular left

shift by 1-byte, the third row performs circular left shift by 2-bytes, and the

fourth row performs circular left shift by 3-byte.

• Mix columns: This is a linear transformation on each column of State over

GF (28
) to generate new columns.

• Add round key: This transformation XORs the current block with the round

key.

16

Chapter 3

Design and Implementation

Environment

An algorithm or an abstract idea can be implemented by software and hardware

through a design process, and made into a system or a chip. A design has to depend on

current particular technology, especially for hardware design. With systems or chips

becoming more and more complex and the sizes of systems becoming smaller and

smaller, a hardware technology, referred to as Very Large Scale Integration (VLSI), has

become very popular. Computer Aided Design (CAD) tools are utilized in the design and

implementation. This chapter will give some basic background to these issues.

3.1 Software vs. Hardware Implementation

Software implementation is prevalently used to check the correctness and the

feasibility of a system or an algorithm due to its flexibility, ease of use, relatively low

cost, and relatively short implementation time compared to hardware implementation.

However, hardware implementation plays an important role in the system

implementation due to its concurrent characteristics and the capability of satisfying speed

that system requires. In hardware each part of a system can work concurrently such that

the system efficiency can be improved. Hence, hardware implementation becomes more

attractive for high speed applications such as broadband communication networks.

17

3.2 Design Methodology

Unlike software, hardware implementation is a complicated process. Figure 3.1

illustrates the design process of full ASIC from an idea to a chip or a board [8]. There are

seven steps from an initial design idea to the final hardware implementation. Before it is

passed to the next step, the result is checked to guarantee correctness of the

transformation. In the end, a stream file which describes mask layer information for a

circuit is generated for chip fabrication after Design Rule Checking (DRC) is completed.

During the design process a Hardware Description Language (HDL) is used

widely. Among many HDLs, the Very High Speed Integrated Circuit (VHSIC) Hardware

Description Language (VHDL) is very popular in the research and industry domains. In

our work we have made use of design methodology which is prevalently used in the

process of a system design focused on the digital Integrated Circuit (IC) design flow

recommended by Canadian Microelectronics Corporation (CMC) [8].

Instead of trying to implement the design of a large system all at once, a divide­

and-conquer strategy is taken in a top-down design process. Top-down design is referred

to as recursive partitioning of a system into its subcomponents until all subcomponents

become manageable design parts. By "manageable design parts" is meant that the

components designed can be found in a library provided. Figure 3.2 outlines the recursive

partitioning in a top-down design process. In the figure, the shadowed sub-components

represent the manageable parts by hardware mapping in a library [8].

18

Design Idea

Behavioral Design

Flow Graph,
r Pseudo Code

Data Path Design

Bus & Register
r

Structure

Logic Design

... Gate Wirelist,
r

NP.tli~t

Physical Design

Transistor List,
Layout

Manufacturing

Chip or Board

Figure 3.1 A digital system design process

19

SUD

SUD: System Under Design SSC: System Sub-Component

Figure 3.2 Top-down design and bottom-up implementation

When the top-down design process is completed, a partition tree is available.

Then, the bottom-up implementation process begins. During this process, hardware

components corresponding to the leaves of the tree are recursively bound until the system

is completed.

3.3 Design Flow, Functional Test and Verification

Figure 3.3 shows the digital system design flow using the Deep-Sub-Micron

(DSM) technology recommended by CMC. From the figure, it can be seen that the design

flow is divided into two parts. The first four steps, which are referred to as front-end

design part, use the VHDL language and Synopsys CAD tools and the remaining five

steps, which compose the back-end design part, use Verilog and Cadence CAD tools. In

the front-end design, a design idea is converted to a gate-level netlist. The gate-level

netlist is then passed to the back-end design part for placing and routing.

20

Step one uses the VHDL language to transform the design idea to Register

Transfer Level (RTL) codes and verify the functionality of RTL code. The top-down

design and bottom-up implementation are the main strategies in this process.

Step two accepts RTL codes and synthesizes them. The synthesis turns VHDL

code automatically into gate-level code depending on the current libraries. This process

may bring in many unnecessary circuits because of the limitations of the CAD tools [9].

The result could be unoptimizable. The situation may get worse when synthesizing a

large design. However, for small and simple designs, it is efficient and trustworthy to use

CAD tools for an excellent job. It is recommended in the Synopsys documentation that

large designs not be imported directly to the synthesis tool. A hierarchical bottom-up

approach should be used instead. Importing large designs leads to crashing the synthesis

tool and in some cases may result in an unoptimized design [8]. In this research each

module of the design is designed, synthesized and tested separately, based on this bottom

up implementation approach.

In the synthesis step, each component is analyzed and elaborated usmg the

Synopsys Design Analyzer tool. Higher-level components are then built up when the

synthesis results of all the bottom components are saved in the database or the work

library. After the complete design is successfully imported, it is constrained based on the

designer's performance objectives. In most cases, the constraints include input/output

(I/0) pads specification, scan style definition, output load definition, and clock definition.

If all pre-set constraints are met, the constrained design is then synthesized into gates.

21

Otherwise, the RTL code needs to be modified, simulated and then synthesized until all

constraint requirements are met.

Step three is the scan insertion for the design test by the standard scan-based

Design for Testability (DFT) techniques.

Step four is the gate-level simulation. This simulation is different from the RTL

simulation in step one which ensures the design is functionally correct. Timing is not

considered at that time because hardware timing information, which is tightly associated

with the targeted technology and is defined in the library, is not available to the design

yet. Hence, this step is the gate-level simulation with timing information considered for

the design.

Floor planning, which is step five, is to create a floor plan for the design.

Step six, placement, is to use forward-annotated timing information from

Synopsys tools to perform core cells placement.

Clock tree generation is step seven to add clock buffer cells and nets to create a

balanced clock tree .

Step eight is routing and timing verification, which verify the gate-level circuit

generated from the step previous.

The last step is stream file. This step verifies the placed and routed design and

fixes minor violations. The stream output is used for chip fabrication.

This concludes the complete digital system design process based on CMC

recommended design flow.

22

Synopsys

Cadence

RTL Simulation VHDL

Synthesis Design Analyzer

Scan I nsertation Design Analyzer

Gate-Level Simulation VHDL

Placement DP!Qplace

Clock Tree Generation DPICTGen

Routing & liming
'v'erifi~tion

Stream File

Silicon
Enserrble

DR/

Figure 3.3 Design flow recommended by CMC

23

Chapter 4

Statistical Cipher Feedback (SCFB)

Mode

In this chapter, statistical cipher feedback (SCFB) mode [10] is investigated. The

algorithm of the SCFB mode was first described in [10] and the name was given in [5]

because the cipher feedback is statistical which depends on the frequency of recognizing

sync pattern. SCFB mode is a form of stream cipher which can utilize a block cipher to

produce a keystream to XOR with plaintext data. Compared with conventional block

cipher modes, SCFB mode can achieve self-synchronization with high efficiency,

reasonable latency and modest buffer sizes. Hence, SCFB mode has the capability to

recover from bit slips in the communication channel.

Firstly, the working theory of SCFB mode is introduced. Then the top-down

design and the bottom-up implementation are provided. The performance analysis of

SCFB mode will be discussed in Chapter 6.

4.1 Introduction to SCFB Mode

In Chapter 2, it was shown that CFB mode with m = 1 is an inefficient mode with

the property of self-synchronization. Hence, how to improve system efficiency and to

keep the property of self-synchronization becomes a research direction. To save

communications bandwidth, one way to control synchronizations of the encryption

system and the decryption system is to check for a sync pattern in the ciphertext data

24

because the encryption system and the decryption system can obtain the same ciphertext.

The sketch of SCFB mode is shown in Figure 4.1 where E represents the block cipher

and the input register is used to store data as the input of the block cipher [10]. The scan

block is used to scan ciphertext to find a sync pattern and collect the IV after a sync

pattern is found. If the sync pattern is not recognized and the status of the system is not in

the collection of new IV, the switch is put into the position A and SCFB mode can be

thought of as OFB mode because its block cipher uses the previous output of the block

cipher as the next input of block cipher to produce a block of keystream. If the sync

pattern occurs, the switch is put into position B while the new IV is collected from

ciphertext. After the collection of IV is completed, a new IV has been loaded into the

input register to synchronize the system. During the collection of IV, SCFB mode is

considered as CFB mode because its block cipher uses ciphertext as the next input to

produce a block of keystream.

key
E

A
plaintext

ciphertext

Encryption

Communication
channel

E

A

ciphertext

Decryption

Figure 4.1 SCFB system

25

key

plaintext

Hence, SCFB mode is a combination of CFB mode and OFB mode. SCFB mode

conquers the deficiency of OFB mode by turning into CFB mode following the detecting

of a sync pattern in the ciphertext to provide the capability of self-synchronization. As

well, the efficiency of SCFB mode is improved significantly compared to the

conventional CFB mode since SCFB mode works as OFB mode most of time. From this

figure it can also be know that the decryption system has the same structure as the

encryption system except the plaintext instead of the ciphertext is shifted into the input

register.

4.2 Implementation of SCFB Mode

4.2.1 Software Implementation

To precisely describe the operation of SCFB mode, the flowchart of SCFB mode

is shown in Figure 4.2. In the figure, Xo ... Xs-1 and Yo ... Ys-1 represent plaintext bits and

ciphertext bits, respectively. Furthermore, Wo ... Wn-1 represents an n-bit window that is

used to compare with a sync pattern and Qo ... Qn-1 represents then-bit sync pattern. Ek (')

represents the block cipher with the key k and block size B. Zo ... Zs-1 is a register to

collect the B-bit IV. The flag, loading_IV, is used to indicate whether or not the collecting

of IV is underway. The flag, new_IV, indicates whether or not the collection of the new

IV is completed.

From the flow chart, it is clear that block cipher operation is triggered by either

the case that the sync pattern is found or the case that the encryption of B bits of plaintext

is completed. If the sync pattern is found, the system starts to collect the B-bit new IV to

26

save in the Z register and waives checking for the sync pattern until a new IV is ready.

All plaintext bits following the new IV are encrypted as a new OFB keystream. If the

sync pattern is not found and the encryption of a B-bit plaintext is finished, the system

works in OFB mode to trigger Ek 0 to produce a new B-bit block of keystream and

continues to check for the sync pattern in ciphertext.

No

start

Initialization
Ia adlng_IV f- false

Xo ... XB-1 <E- Initial value
W0 ... Wrl_1 f-o ... o

jf-0

Yes
End of
data?

No

Figure 4.2 Flow chart of SCFB system

27

Although a description of software can clarify the algorithm of SCFB mode, the

property of sequential logic gives a limitation on explaining and simulating how the

system works efficiently. The system will become more efficient only if components in

the system are used simultaneously and only a fewer components remain idle at any time.

That is the fundamental reason why the hardware implementation is investigated in this

thesis.

4.2.2 Hardware Implementation

4.2.2.1 Top-down Hardware Design of SCFB Mode

The completed system of SCFB mode consists of the encryption system and the

decryption system as shown in Figure 4.3.

IV Key Pattern IV Key Pattern

Clk Clk

Plaintext Communication Channel Plaintext
SCFB Encryption

Ciphertext
SCFB Encryption

Reset System
Reset

System

Figure 4.3 General diagram of SCFB system

In the figure, IV, key and pattern are known by both the encryption system and the

decryption systems. The port IV provides an initial IV to the inputs of block cipher. The

key port gives a key to the block cipher. The pattern port provides a sync pattern to the

system. Plaintext data is encrypted by the encryption system and sent to the decryption

28

system through a communication channel. The decryption system will then decrypt the

encrypted data to recover the plaintext data. The input and output ports of the encryption

system are displayed in Figure 4.4.

elk

Reset

Key

Ciphertext

Plaintext Data Encryption System of SCFB Mode
1

1

IV

Pattern

Figure 4.4 I/0 ports of the encryption system

Encryption system

I

I I

Plaintext subsystem Keystream subsystem Ciphertext subsystem

I Storage part I I Calculating part I Keystream t I I
generation part Scan part Storage part I I Calculating

part

Figure 4.5 Block diagram of the encryption system

The encryption system can be divided into three subsystems according to different

functions: plaintext subsystem, keystream subsystem and ciphertext subsystem as shown

29

in Figure 4.5. In practice, a plaintext buffer and a ciphertext buffer are required in order

to provide the elasticity needed to ensure that the incoming and outgoing data speeds are

the same even while the processing of data inside the system is not constant.

The plaintext subsystem is used to collect plaintext data and send data out after

the collection of B bits of data is completed. Because the plaintext subsystem needs to

store incoming data in a queue which is named plaintext queue (PQ), there is a storage

part in the figure. The calculating part is used to calculate the queue position at which

incoming data should be placed. The keystream subsystem is used to generate the

keystream and scan the ciphertext for the sync pattern to synchronize the encryption and

the decryption systems. Therefore, the keystream subsystem has two functions: the

keystream generation part produces the keystream using a secure block cipher, and the

scan part recognizes a sync pattern. If the sync pattern occurs, the scan part will collect a

block of ciphertext as the new IV to send to the keystream generation part as the new IV.

If the sync pattern does not occur, the keystream subsystem uses the previous output of

the block cipher as the input to produce keystream and the scan part continues to scan for

the sync pattern. The ciphertext subsystem stores ciphertext data and sends ciphertext

data to communication channel. The ciphertext subsystem has the same queue structure

as the plaintext subsystem and hence, requires storage (referred to as the ciphertext queue

(CQ)) and the calculating part to manage the queue data positions.

4.2.2.2 Parallel Transfer vs. Serial Transfer

Parallel transfer and serial transfer are two methods to transfer data bits from the

PQ to CQ. In parallel transfer the incoming plaintext data bits are not sent to XOR with

30

the keystream until there are enough data bits in the PQ and the block cipher finishes the

production of a block of keystream. In the case which SCFB mode works as OFB mode

and the sync pattern is not recognized, the PQ collects B data bits depending on the

frequency of clock and then sends the whole block of data to XOR with B bits of

keystream at a time. In the case that the sync pattern is found but the collection of the

new IV is not completed, the PQ collects data bits until it has the number of bits needed

by the new IV and then sends the exactly needed data out to XOR with a partial block of

keystream to produce a partial block of ciphertext.

In contrast to parallel transfer, serial transfer sends plaintext data out bit by bit to

XOR with keystream bits and the CQ receives the ciphertext data bit by bit. Serial

transfer generally requires a simpler circuit than parallel transfer. However, unlike

parallel transfer which has no clock limitation and can obtain high efficiency, serial

transfer has clock limitation which constrains the system efficiency. In this thesis, to

investigate the tradeoffs between these two methods, parallel transfer and serial transfer

are applied to SCFB mode and OCFB mode (which will be discussed in Chapter 5),

respectively.

4.2.2.3 Implementation Structure of an SCFB System

According to the discussion above, a general figure for the encryption system is

drawn in Figure 4.6 [5]. While the plaintext data is being collected, a keystream block of

B bits is generated by the block cipher. The input of the block cipher can be either the

output of the block cipher or the IV from the ciphertext depending on whether n bit sync

pattern is recognized. After a block of keystream is ready and the collection of B bits of

31

plaintext data is finished when the sync pattern is not found, the B bits of the keystream

will be XORed with B bits of the plaintext data to produce the same length of ciphertext

which is then stored into the CQ. When the sync pattern is recognized, the number of

plaintext bits needed by the portion of new IV not in the same encrypted block as the

sync pattern is collected to XOR with the keystream and then sent to CQ. The CQ will

send data bit by bit into the communication channel at a constant rate. In the figure, the

low case d refers to the number of bits transferred out of PQ which could be less than or

equal to B bits. The queue which collects ciphertexts to compare with the n-bit sync

pattern in the figure is named new IV queue (IVQ) and is used to provide new IV for the

system. The block cipher described as E in this figure adopts the AES algorithm with the

128-bit block length which was implemented by NIST and the results are published in the

implementation of SCFB mode.

B

E

plaintext
queue

I • • • • I I
I• ~I

<
7

B or
d<B

New IV

Key -
I I

I•
(

7
B or
d<B I•

I

B

IV queue
n

++-I
•••••

I
I

ciphertext
queue

I
•I

•I
I I

Figure 4.6 Structure of the encryption system

32

I

7 ~ ..

The decryption system has a structure similar to the encryption system except that

the position of the checking the sync pattern occurs on the input (i.e., ciphertext) side

rather than the output (i.e., recovered plaintext) side. The input switching of the block

cipher from the output of the block cipher to the new IV is again dependent on the

detection of the sync pattern.

4.2.2.4 Discussion on Queuing

Initially the PQ is empty and the CQ is full with arbitrary data. When the PQ is

collecting data at a fixed rate, the CQ is sending data out bit by bit at the same fixed rate.

Because the rate of incoming data to the PQ is exactly the same as the rate of departing

data from the CQ, the CQ becomes empty when the PQ fills up. When the PQ sends a

whole block of data to XOR with the keystream to produce a block of ciphertext, the

block of ciphertext data is put in the CQ. Hence, the PQ empties and the CQ fills up. This

process represents the elastic property of the queues. If resynchronization occurs

frequently in a short time, it will cause the PQ overflow. To avoid the overflow, the size

of the PQ has to be large enough to reduce the probability of overflow to as small as

possible.

The size of queue has an influence on the delay when data passes through the

system. If k represents the number of bits in the PQ and M represents the size of PQ

which is the same as the size of CQ, the CQ should have (M - k) bits because the

incoming speed of the PQ is identical with the outgoing speed of the CQ when no sync

pattern is found. The delay through the system is k + (M- k) = M bits [5]. To minimize

the delay, the buffer size M should be as small as possible. However, M has to be large

33

enough to save the incoming data when the block cipher gets delayed producing the

keystream due to a burst of resynchronizations. M should be greater than or equal to B

because PQ continues to collect data while the system collects all B bits of IV after the

sync pattern is recognized. It is possible that the last bit of IV could happen anywhere

within a block of ciphertext and there is a scenario where only part of the block needs to

be XORed since all bits following the last bit of IV have to be encrypted by the new

block of keystream. Although this partial plaintext block is XORed with the keystream as

soon as possible, it still gives some delay to the system. Hence, M should not be less than

B bits so that it has enough space to store the data and does not have data overflow [5].

4.2.2.5 Bottom-up Hardware Implementation

In this section, the plaintext subsystem, ciphertext subsystem and keystream

subsystem implementation are discussed in detail. The encryption system is then built up.

(The decryption system of SCFB mode has a similar structure to the encryption system.)

In this implementation, the Rijndael algorithm with a 128 bit block size is used as

the core algorithm of the block cipher. To mitigate buffer overflow, the sizes of PQ and

CQ are 256 bits. The sync pattern is chosen as "10000000" with a length of 8 bits.

• Plaintext Subsystem

The main task of the plaintext subsystem is to collect plaintext data and send data

to XOR with the keystream when there is enough data in the queue. There are two

scenarios for the PQ. One is that the PQ collects B bits data and then sends them out

when the sync pattern does not occur. When the sync pattern is found, the keystream

34

subsystem will take the data following the sync pattern as the first part of IV and then the

scan part of the keystream subsystem calculates how many bits beyond a block boundary

are needed to finish the collection of all B bits of IV. The value calculated is then

delivered to the plaintext subsystem. After the value is received, the plaintext subsystem

compares it with the number of bits in the queue. If the number is greater than the value

received, the plaintext subsystem sends the exact number of bits needed by the keystream

subsystem to XOR with the keystream to produce a partial ciphertext block as the rest of

IV. If the number is less than the value, the plaintext subsystem will wait until there are

enough data bits in the queue and then send them to XOR with the keystream.

The plaintext subsystem includes two main parts which are the storage part and

the calculation part as shown in Figure 4. 7. There are two parts included in the storage

part: buffers and pointers. From the figure, it can be seen that there are two buffers. The

upper buffer with the size of 256 bits stores incoming data and the lower buffer saves the

128-bit data extracted from the upper buffer to be ready to XOR with the keystream. The

part between the upper buffer and the lower buffer is the pointer part which extracts 128

bits of data from the 256 bit queue to store into the lower buffer according to the result of

the calculation part. Although there is a scenario that only a partial block of plaintext is

needed when the sync pattern is recognized, the PQ part always provides 128 bits to XOR

keystream. The task of extracting the exact number of valid data bits is left to the

ciphertext subsystem and the scan part of the keystream subsystem. The extracted data is

conceptually removed from the 256 bit queue by adjusting the appropriate pointer.

35

Because the addresses of the 128 bits of data extracted are contiguous, there are 128

MUXes to select 128 bits from the upper buffer.

The calculation part includes two parts: calculation and comparison. The

calculation part is in charge of the number of bits in the upper buffer and sends the

number calculated to the pointer part of the queue. There are two cases for the

calculation. If the sync pattern is not found, every 128-bit data is sent out from the

plaintext subsystem and 128 is subtracted from the upcounter which is used to count the

number of bits for the upper buffer as shown in the figure. If the sync pattern is found, the

number subtracted from the upcounter is varied from 1 to 128 depending on where a sync

pattern occurs. Thus, the pointers move according to the results of the calculation part.

The comparison part is used to compare the number of bits in the upper buffer with the

number of bits in a partial block which the new IV needs if the sync pattern is recognized.

If the sync pattern does not occur, the comparison part is used to control the time when a

block plaintext should be sent out from the lower queue. In other words, only if there are

enough bits in the plaintext queue and the keystream is ready, is it the time to send out

the plaintext data and the flag, ready, is set to '1' to indicate that data is ready.

• Ciphertext Subsystem

The diagram of ciphertext block is illustrated in Figure 4.8. The task of the

ciphertext subsystem is to receive the incoming block of ciphertext data and put them into

the corresponding positions in the CQ. Again, there are two scenarios. If the sync pattern

is not found, it accepts 128 bits of data. However, if sync pattern is found, it only accepts

36

w
-.)

Storage Part

256

Calculation
Part

r··
Num

Loading

Upcounter

Clrbar
~

En

Comparison
Part

~--~~-_j
~L

r-

128 L Data_out

Greater

Figure 4. 7 Hardware structure of the plaintext subsystem

Comparator
(with 128)

01

0-'--------.-----' Clrbar

Found

Num

Ready

the number of bits needed. Obviously, there are two parts included in the ciphertext

subsystem. One is the 256-bit buffer which receives 128 or less bits of ciphertext to put in

the corresponding positions according to the pointer and sends data out bit by bit. The

other part is used to calculate the position in the ciphertext buffer for the incoming 128 or

less bits of ciphertext .

From the figure, the ctrl_de signal stands for the first pointer to point to the

position into which the incoming ciphertext bits are moved. Because the addresses of the

incoming ciphertext data are continuous, only the address of the first pointer needs to be

calculated. The ready_data signal indicates when the pointer value is valid for the CQ.

When part of the block of ciphertext data is coming, the queue part only accepts the exact

number needed and the pointer has to move to the corresponding position.

From the discussion above, it can be seen that the ciphertext part, Demux, has the

function that accepts 128 or less bits data and distributes each data bit into the

corresponding position and shifts data out every clock period.

• Key Subsystem

The key subsystem includes the key generation part shown in Figure 4.9 and the

scan part shown in Figure 4.11. The key generation part accepts either the previous

output of the block cipher or the new IV from the scan part as the input of the block

cipher which is decided by the recognition of the sync pattern. There are two registers,

upper Reg and lower Reg. The upper Reg, initialized by the IV, stores the input of the

block cipher and the lower Reg stores the output of the block cipher to XOR with the

plaintext data. The block cipher shown as E block in the Figure 4.9 adopts to the

38

ready

ready_data

Clk

Clrbar

8
Down_loadi

ng

Downcounter

Ready_data Ciphertext

128

ready_data

ctrl_de

8

Figure 4.8 Hardware structure of the ciphertext subsystem

Clk Reset IV Key Flag_NewiV

128
~ 128 v Output_y

'>~/ Conmu>:
lnputx'

'< IV 128

128
lnputx

128 -- f.;j r-
X Reg

128

Data_ ac

controller
Enc_D c

Cv_Lo c E 128

Cv Si

128

~ E
Reg

128

Done 1· Key
stream

Plaintext Ciphertext
128 stream + stream 12e

Figure 4.9 Hardware structure of key generation part

39

Rijndael algorithm to be used to generate the pseudo-random keystream. The

implementation of Rijndael algorithm is published by NIST. The encryption of Rijndael

algorithm causes some delay which is related with the number of rounds involved in

encryption.

The controller controls the enable pins of the upper Reg and the lower Reg to

decide the loading time of a new block of data. Its state machine is illustrated in Figure

4.10. Combined with the Figure 4.9, it is clear that the controller controls the signals of

En_regx, En_regy, Data_Load, Cv_Load, Cv_size, and Conmux. The signal En_regx is

the enable signal of the upper Reg, En_regy is the enable signal of the lower Reg,

Conmux is the signal to control the selection of the input of the block cipher, and the

signals of Data_Load, Cv _Load, and Cv _size are provided to the Rijndael algorithm of

the block cipher.

When started, the system is reset and the controller goes into the state of RST to

initialize the parameters. After reset changes to '0' from '1 ', the state of the controller

goes to Gen_keyl, which generates a new block of keystream, on the rising edge of the

system clock. When the signal of CipherDone, which stands for whether the generation

of the new block of the key is completed or not, is set to '1 ', the controller changes to the

state of Taken_keyl, which means that the new block of the keystream is ready and can

be used to XOR with the new block of the plaintext. In this state, the controller sets the

output signal, Done, to '1' to indicate the encryption system that the keystream is ready.

The encryption system is waiting for the completion of the collection of the block of the

plaintext. After the collection of the plaintext is finished, a block of keystream XORs

40

with B bits or less than B bits plaintext data at a time which depends on whether or not

the sync pattern is recognized and the encryption system sets the signal, Ready_data, to

'1' from '0'. The change of the signal Ready_data makes the state turn into More_time

from Taken_keyl. This state gives one more clock cycle time to the controller. Because

the parallel comparators are applied to find the sync pattern in the ciphertext, the finding

can be finished in one clock cycle. Hence, in the state of More_time, the signal,

jlag_New!V, can be decided. Then the controller turns into the state of Load_input, which

sets the control signal, Conmux, to '1' and loads the new input of the block cipher. After

the new input is provided to the block cipher, the new round of the controller of the

keystream is started.

CipherDone
='1 Ready_data=

'1

Figure 4.10 State machine of the controller of the keystream subsystem

The scan part [11] is the most important and complicated part in the whole

implementation of the encryption system as shown in Figure 4.11. As mentioned above,

the scan part has two tasks. One is to check for the sync pattern and the other is to collect

41

the new IV when the sync pattern is found. Before implementation, there are several

issues which need to be considered.

• How to check for the sync pattern?

Because the data is encrypted block-by-block, it is necessary to consider the

situation of the borders of the blocks since there is a possibility that the sync pattern is

split across blocks. Copying the last n-1 bits of the previous comparison block to the next

first n-1 bits of the current comparison block is a useful approach to solve this problem.

That is why the queue of the sync pattern has n-1 more bits than the block size B. The

number of B comparators is needed to check the (B+n-1) bits of data at once.

• How to collect the new IV after the sync pattern is recognized?

It is impossible to fulfill the collection in one block. Hence, how to calculate the number

of bits remaining in the new IV past a block boundary is an issue. The data following the

new IV should be encrypted by the key which is generated by the new IV. Therefore for

the collection of the second part of the new IV, the PQ needs only collected to the

number of bits that the new IV needs to XOR with the keystream to generate the rest of

the new IV. The comparators compare the data with the sync pattern and the controller is

used to control when the result of the comparison is sent to the encoder because SCFB

mode does not check the sync pattern during the collection of the new IV. After the flag,

''founcf', changes from '0' to '1 ', the control part closes the output of the comparators and

keeps the previous value to the encoder. If the sync pattern is found, the encoder can

translate the results of the comparison into the position where the sync pattern is.

42

According to the pointer of the encoder, the number that the new IV needs for the rest can

be calculated by use of the adders. This value is sent to the plaintext subsystem and the

ciphertext subsystem.

• How to extract the new IV from the queue if the sync pattern is found?

The two components of "MUX 2:1" on the right side of the figure are used to

point to the correct positions. The upper "MUX 2:1" points out the position of the data

extracted from the queue and the lower "MUX 2:1" points out the position where the bits

extracted are going to. The "MUX 135:1" outputs the data pointed to and the component,

SDemux, accepts the data from 128 "MUX 135:1" to form the new IV according to the

pointer of the position. When the collecting of the new IV is completed, a flag in the

"MUX 2:1" indicates the new IV done.

• Encryption System

An encryption system is formed by putting the plaintext subsystem, the keystream

subsystem and the ciphertext subsystem together. The encryption of the system needs to

wait until the keystream and the 128 bits of plaintext data (or the number needed) are

ready. When the ready signal of the keystream subsystem, Done, and the ready signal of

the plaintext subsystem, Ready, are set to '1 ', the system starts to send plaintext data to

XOR with the keystream to generate a block of ciphertext data and sets the flag,

ready _data, to '1'. This indicates that the current ciphertext data are valid ciphertext data.

The ciphertext subsystem can place it in the queue.

43

.j:::..

.j:::..

Ready_data

00000111

134

g
[
m-

elk

eq

128

135

135

G
G

B

ciphertext

135

00000111 outer1

ctrl_lowhalf

pointer

SDemux
128:128

128

Figure 4.11 Hardware structure of the scan part of the keystream subsystem

clrbar

.j:::..
Ul

iliisynopsys Waveform V1ewer- SCFB_ENCRVP ...,;TES1UBENCH.jaguar;~t8SH .. IIl¥t~O ""{Unti~ ~ :»,'%fu:-~" "•\>;[~ ""' ' 0i ~
GoTo View

IRIRIIII

/SCFB_ENCRYP _TEST _BENCH/CLK

/SCFB_ENCRYP _TEST _BENCH/RESET

/SCFB_ENCRYP _TEST _BENCH/SERIAL_IN

/SCFB_ENCRYP _TEST _BENCH/SERIAL_ OUT

1> /SCFB_ENCRYP _TEST _BENCH/IV(127:0)

1> /SCFB_ENCRYP _TEST _BENCHIP A TTERN(7:0)

1> /SCFB_ENCRYP _TEST _BENCH/CV _IN(255:0)

/SCFB_encryp_test_bench/tsclbD/found

1> /SCFB_encryp_test_benchltsclbD/num(7:0)

/SCFB_encryp_test_benchltsclbD/ready_data

/SCFB_encryp_test_benchltsclbD/key_ready

1> /SCFB_encryp_test_bench/tsclbD/subkey(127:0)

1> /SCFB_encryp_test_bench/tsclbD/Data_out(l27:0)

1> /SCFB_encryp_test_bench/tsclbD/ciphertext(l27:0)

Figure 4.12 Simulation waveform of the encryption system

'~:ij~~~

.j:::..
0\

!;synopsys Waveform Vtewer- SCf'D_ENCRYP _TEST_8E'NC:H.,Ja(N:af!:.l85'96 .. ow;Q- [untnJ¢4] :;;:;2 $¥!% m"' @t-,m""8:>"' kd'>\%@,~

Eile Marker §_oTo 'itiew

/SCFB_ENCRVP _TEST _BENCH/CLK

/SCFB_ENCRVP _TEST _BENCH/RESET

/SCFB_ENCRVP _TEST _BENCH/SERIAL_IN

Window

0

/SCFB_ENCRVP _TEST _BENCH/SERIAL_ OUT II o

1> /SCFB_ENCRVP _TEST _BENCH/IV(1 27:0)

1> /SCFB_ENCRVP _TEST_BENCH/PATTERN(7:0)

1> /SCFB_ENCRVP _TEST _BENCHICV _IN(255:0)

/SCFB_encryp_test_benchltscfbO/found

1> /SCFB_encryp_test_benchltscfbOfnum(7:0)

FFOOA.

80

0

00

/SCFB _ encryp _test_ benchltscfbOfready _data II 0

/SCFB_encryp_test_bench/tscfbOfkey_ready 0

1> /SCFB_encryp_test_bench/tscfbOfsubkey(1 27:0)

1> /SCFB _ encryp _test_ bench/tscfbOIOata_out(1 27:0)

E8AA

1> /SCFB encryp test_bench/tscfbOfciphertext(1 27:0) II EBAA - -

FFOOAA550FF03300FFCCDB33246D777B
F==============F==

80

95254952549~254952549525495254952549525495254952549525495254952D

00 OE 00

E8AAA6A 1 3DI 03612470481 D0070A 1 C06

0000000000000000000000 7 478D47C6903628027E5DB756495F C 1 3 IOOOOOOOOOOOOOOOOOOOOOOOOC

BAAA6A 1 3D1 0361 247D4,9CD272DD541 354926031 5/>.A5639FEO* 167* j1 34F4A01 5E5CODC9895BF*j7

Figure 4.13 Simulation waveform of the encryption system

i_llsynopsys Waveform Viewer- 5CFB_-E'fli«:RVP....:TEST_BENC:H.;jagual':.t8596~:0 .. {Uht:itte.d} "'" :fi,~ " A~ ~":~if m :"'W ' fl ~

/SCFB~ENCRYP ~TEST ~BENCH/CLK

11: /SCFB~ENCRYP ~TEST ~BENCH!RESET

!SCFB~ENCRYP ~TEST ~BENCH!SERIAL~IN

!SCFB~ENCRYP ~TEST ~BENCH!SERIAL~OUT

1> !SCFB~ENCRYP ~TEST ~BENCH!I V(127:0)

1> !SCFB~ENCRYP ~TEST ~BENCH!PA TTERN(7:0)

1> !SCFB~ENCRYP ~TEST ~BENCH/CV ~IN(255:0)

fSCFB~encryp~test~benchftscfbO/found

ll:o 1> fSCFB~encryp~test~benchltscfbO/num(7:0)

/SCFB~encryp~test~benchltscfbOiready~data

/SCFB~encryp~test~benchltscfbotkey ~ready liD

1> !SCFB~encryp~test~ benchltscfbotsubkey(127:0)

+:>. 1> /SCFB~encryp~test~ benchltscfbO!Data~out(127:0)
-...)

1> !SCFB~encryp~test~ benchltscfbOfciphertext(127:0)

Figure 4.14 Simulation waveform of the encryption system

The encryption system, coded using VHDL and simulated by the Synopsys tool [8] and

the waveforms are shown in Figure 4.12, Figure 4.13, and Figure 4.14. The Figure 4.12

displays that the first block of keystream is ready and the ready flag, key_ready,becomes

'1'. Data_out (127:0) in the figure stands for a block of plaintext data sent out to XOR

with the keystream. In this figure the collection of 128 bits of plaintext data is not ready.

The Figure 4.13 indicates that the first 128 bits of plaintext data is ready and the new

block of ciphertext data is generated. The encryption system sets the flag, ready_data, to

'1'. The sync pattern is found after the ready _data flag is set to '1 '. The system calculates

instantly the number needed by the second part of new IV which is shown as OE in

hexadecimal. The finding of the sync pattern makes the keystream subsystem restart to

generate the new block of keystream. After several clock cycles, the key _data becomes

'1' and 15 bits of plaintext data is ready. It produces the new 15-bit ciphertext data and

the ready _data flag becomes '1' again. The new IV is sent to the block cipher as the new

input to produce the new block of keystream. The collection of the new block of plaintext

data is ready in the Figure 4.14. The new block of ciphertext data is produced and no

sync pattern is found in this round. More waveforms of simulation results of the

encryption system are shown in Appendix A

• Decryption System

The decryption system has the same structure as the encryption system except the

plaintext instead of the ciphertext is shifted in the last bit of the upper Reg. The

simulation waveforms of the decryption system are shown in Appendix A.

48

4.2.2.6 Test Methodology

To test the full encryption system, a system was built up by combining the

encryption system and the decryption system. Random bit patterns generated by C++

code were used as the plaintext input and saved to an input file. The random plaintext is

encrypted by the encryption system and then sent to the decryption system. By

decryption, the ciphertext are turned into recovered plaintext. Comparing the plaintext

recovered with the original input, we can know whether or not the system working is

correct. One special case of the inputs and outputs of the system is shown in Appendix A

to make results easy to check is to let all of the input be '1 's at the encryption system.

The first 128 bits of the output of the decryption system in the Appendix A are the initial

bits in the CQ of the decryption system. In this implementation, the CQ of the decryption

system is initialized as all '0'.

4.2.2.7 Complexity of Hardware Implementation

The hardware implementation of SCFB mode utilizes the Synopsys tool based on

0.18 f.1rrt CMOS technology to perform the front-end synthesis of the design. The

hardware complexity as shown in Table 4.1 is reported by the design analyzer of the

Synopsis tool with the constraint of the system clock of 10 ns. With the system clock rate,

no slack is generated during the process of synthesis. No slack means that the design

circuit can satisfy the required speed. The synthesized result of the Rijndael algorithm

comes from [12]. When the circuit is synthesized it gets a report indicating a number of

different gates, timing and a total overall area. One common way to estimate the circuit

size is to use the number of equivalent 2-input NAND gates as a metric of the circuit size.

49

The area of synthesized circuits, which is in square microns (jtm2
), is converted to the

gate count by using the two-input NAND gate which has the area of 12.197 j.Jm
2 as a

basis for comparison.

The table shows that estimated total gates of the encryption system is 1255644,

out of which the Rijndael algorithm needs 612834 gates. Hence, the whole keystream

subsystem including the key generation and the scan part occupies 60% of the hardware

complexity of the system.

4.2.2.8 Discussion of Other Structures

There are other structures that are suitable to implement the SCFB system. One

approach would be to remove the PQ and the CQ and thus remove elasticity in the flow

of data through the system. A block cipher output must then be generated within one bit

time of incoming data. This would clearly minimize delay through the system as the

block cipher runs at the rate of B times of link rate. The system efficiency becomes 1/B,

which is the same as for the CFB mode. Hence, this approach has little value [5].

4.3 Conclusion

This chapter introduces the concepts of SCFB mode and describes the structure of

a hardware implementation of an SCFB system. In the hardware implementation of

SCFB mode, parallel transfer is applied to obtain high working efficiency. The hardware

aspects of SCFB mode such as the queuing requirement, the relationship between queue

sizes, and the data delay during the transmission from the plaintext queue to the

ciphertext queue are discussed briefly. These will be further discussed in Chapter 6.

50

For a hardware implementation, SCFB system has the ability of self-

synchronization and can obtain much higher efficiency than CFB mode. Compared to

Rijndael algorithm, the system doubles in hardware complexity. We conclude that SCFB

systems are well suited to high-speed digital hardware implementation.

Component Combinational Noncombinational
Total Area Total Gate

Name Area Area

Plaintext
2,237,383 89,662 2,327,046 190,788

subsystem

Keystream
generation

11,298 13,221 24,519 2,010
part without

Rijndael

Scan part of
keystream 1,512,222 148,470 1,660,693 136,155
subsystem

Rijndael 612,834
algorithm

Ciphertext
3,759,299 68,801 3,828,101 313,856

subsystem

Encryption 1,255,644
system

Table 4.1 Hardware complexity of the encryption system of SCFB mode

51

Chapter 5

Optimized Cipher Feedback (OCFB)

Mode

In this chapter, optimized cipher feedback (OCFB) mode [13] is investigated. As

with the SCFB mode, OCFB mode can configure the block cipher as a stream cipher by

using the output of the block cipher as the keystream to XOR with the plaintext to

produce a block of ciphertext.

Compared with CFB mode, OCFB mode attains higher efficiency and the ability

of self-synchronization by checking for a sync pattern in the process of producing

ciphertext. OCFB mode is quite similar to SCFB mode except OCFB mode keeps

checking for the sync pattern all the time even during the IV collection phase. These

differences influence the method of implementation and the properties of the system.

This chapter describes the working theory first and then the top-down design is

given. Finally it provides the hardware implementation of OCFB mode in detail. In the

next chapter, the discussion on the performance analysis of OCFB mode will be

combined with performance analysis of SCFB mode.

As we discussed in Chapter 4, the serial transfer from the PQ to the CQ is adopted

in the hardware implementation of OCFB mode instead of the parallel transfer of our

SCFB mode implementation in order to analyze the influences given by the different

methods of implementation. As we shall see, the serial transfer reduces the hardware

52

complexity but brings a complicated timing relationship to the implementation of OCFB

mode which limits its operating efficiency.

5.1 Introduction of OCFB mode

The motivation of OCFB mode is to optimize CFB mode by improving the

efficiency while still achieving the ability of self-synchronization. The approach is

illustrated in Figure 5.1. OCFB mode is optimized by buffering all output bits of block

cipher into the shift register SR2 as keystream to produce ciphertext. The ciphertext is

sent out to the communication channel and the shift register SRI as the input of the block

cipher simultaneously. A counter, named shiftcounter, is used to trigger execution of the

block cipher after enough bits are collected in SRI. However, synchronization would be

destroyed due to bit slips or insertions in a communication channel because the counters

of the encryption system and the decryption system would lose synchrony relative to the

ciphertext stream. Hence, resynchronization has to be done for both sides of counters.

The only way to obtain resynchronization is to check for a sync pattern in the ciphertext

because the ciphertext can be obtained for both the encryption and the decryption. The

encryption system and the decryption system in the figure compare the current content of

SRI with the sync pattern on each clock cycle. The counters are not reset until the sync

pattern is found. This causes the counters of the encryption system and the decryption

system to obtain synchronization again.

Unlike SCFB mode, OCFB mode continues to check for the sync pattern in all of

the ciphertext bits even when IV is collecting. Here we define IV to be the next B bits

following the last bit of the sync pattern. This gives the OCFB mode more opportunity to

53

resynchronize. However, for a hardware implementation we shall see that the result is

that it is more likely to have a buffer overflow resulting in a decrease of the system

performance.

---..EB-----.l.......l!---------------l----_.,-4+--l~

Encryption Decryption

Figure 5.1 OCFB system

5.2 Implementation of OCFB mode

5.2.1 Software Implementation

To precisely illustrate the operation of OCFB mode, the flowchart of OCFB mode

is shown in Figure 5.2. In the flowchart, B represents the block length and shiftcount

represents the counter with logz B bits which is used to keep track of which bit is being

XORed with plaintext. SRI i and SR2i represent the i-th bit of SRI and SR2, respectively.

The notation SRio ... SRis-J ~ SRh ... SRis-IC]+i is used to indicate the shifting of SRI from

the higher bit position to the lower bit position and the highest position is substituted by

the ciphertext bit. The IV that is known by both the encryption system and the decryption

system is loaded into SRI after the start of the systems. The pattern represents the sync

54

pattern which is used to resynchronize the system. The block cipher Ek encrypts B bits of

data to produce the same length of output as keystream and is stored in SR2. We assume

the Ekrepresents 128-bit Rijndael with 128 bit key.

Yes

Yes

j~j+l

Start

Initialization

SR1 0 .•• SR1 8_1 f-lnltlal Value

jH

SR20 ••. SR2 8., ~E,(SR1 0 ... SR1 8 .,)

IH

No

No

Ci+i~pl+l XOR SR20

SR1 0 ... SR1 8 _1 ~SR1 1 •.. SR1 8_1CI+I

SR20 .•• SR28 _1 ~SR2 1 ••. SA28 _10

i= i+1

Figure 5.2 Flow chart of OCFB system

After the system is started, an IV is loaded into SRI and the system encrypts IV to

produce the first block of keystream. The symbol i representing the shiftcounter is cleared

to '0'. The system starts to compare the 1st n bits of the current content of SRI with the

55

sync pattern. If it is equal to the sync pattern, the system sets i to B and triggers Ek to

encrypt B-bit SRI and save the B-bit output into register SR2. If the content of SRI is not

equal to the sync pattern, i will add one. If i does not reach B, SRI and SR2 shift one bit

position and the ciphertext generated by the previous SR2 bit is moved into the last bit of

SRI. Meanwhile, the ciphertext is sent out to the communication channel. This process is

repeated until all of the data is encrypted.

The software implementation of the OCFB mode is simple. Because software

executes sequentially and does not take advantage of concurrency to gain efficiency,

hardware implementation realizes the full value of an OCFB system. The advantage of a

hardware implementation is that components can run concurrently thereby minimizing

the idle time for each part to improve the system efficiency.

5.2.2 Hardware Implementation

5.2.2.1 Top-down Hardware Design of the OCFB Mode

From the description of the OCFB mode, it is clear that six data input ports and

one output port are required as shown in Figure 5.3. The clki port provides the system

clock. The Reset port is used to reset the system. The Key port provides the primary

cipher key for the Rijndael algorithm. The Plaintext data port serially collects the

incoming data bits. The IV port provides the first IV to the system. The encryption system

and the decryption system initially have the same IV and primary key to give the system

the same starting point.

The encryption system can be divided into three functional subsystems which

have different tasks: the plaintext subsystem, the keystream subsystem, and the ciphertext

56

subsystem as shown in Figure 5.4. The plaintext subsystem is in charge of collection,

storage and sending out plaintext data. The keystream subsystem prepares for the

keystream bits and controls the synchronization between the keystream and the

corresponding plaintext. The ciphertext subsystem takes charge of collection of

ciphertext bits and sends them to the communication channel.

clk1

Reset

Key

Ciph~ext

Plaintext Data
Encryption system of OCFB Mode 1

/
1

IV

Pattern

Figure 5.3 Port relationships of the encryption system

Encryption System

l l
Plaintext subsystem Keystream subsystem Ciphertext subsystem

Figure 5.4 Block diagram of the encryption system

The OCFB system needs PQ and CQ to store the data bits in order to ensure that

the incoming and outgoing data speed are the same even while the processing of data

57

inside the system is not at a constant rate. The queues provide the storage for the

incoming and outgoing data while a new block of keystream is being generated because

the production of the new keystream block requires more time than one clock cycle and

data may have to wait until the new block of the keystream is ready.

The keystream subsystem uses a register SRI to store the input of the block cipher

and a register SR2 to store the output of the block cipher. A counter, called shiftcounter,

should be used to count the amount of shifting and a comparator is needed to check for a

sync pattern in the ciphertext.

The general sketch of the encryption system of OCFB mode is illustrated in

Figure 5.5. In the figure, B stands for the length of a cipher block and n stands for the

length of the synchronization pattern. R is the rate of data corning into the PQ and R' is

the rate the plaintext bits that leave from the PQ. Re is used to represent the rate of

encryption of the block cipher. It makes sense that the outgoing rate of keystream bits is

equal to R' since the keystream bits directly XOR with the outgoing plaintext data. As

well, the incoming bit rate of the CQ has to be the rate of outgoing from PQ, R',

otherwise it will cause the loss of data or duplication. In order that data comes into the

system and leaves the system at a uniform rate, the outgoing rate of data in the CQ should

be equal toR. To reduce the possibility of PQ overflow as much as possible, R' must be

greater than R to compensate for delay in producing keystream blocks due to the block

cipher process when resynchronization occurs.

In the figure, there are three clocks, clkl, clk2, and clk3, to control the running

speeds of the data transfer and the block cipher. Among these three clocks, the clkl is the

58

fastest clock and it can be the system clock in the implementation. The clk2 and the clk3

can be derived from the clkl. Since the data collection of PQ is based on the clk2, the rate

of incoming plaintext data of PQ, R, is directly equal to the frequency of the clk2. As

well, R' is equal to the frequency of the clkl andRe is equal to the frequency of the clk3.

The system efficiency can be controlled by adjustment of these three clock frequencies.

-c
:::J

F\ 0 B 1 (..)

.:t::
SP2 :c

(f)

R 1 R' R 1
dk2 dk2

Plaintext queue Ophertext queue

Figure 5.5 Structure of the encryption system

In each subsystem, the plaintext subsystem, the keystream subsystem, and the

ciphertext subsystem, there are two different rates. The plaintext subsystem collects

incoming data at the rate R and sends data out at rate R '. The ciphertext subsystem has

the reverse situation of the plaintext subsystem. For the keystream subsystem, the

interfaces of the keystream subsystem use the rate R' to keep the same pace with the

interfaces of the plaintext subsystem and the ciphertext subsystem. The core component

59

of the keystream subsystem, the block cipher, adopts the rate Re to control the running

time of the block cipher in order to reduce the idle time of the keystream subsystem to

improve the system efficiency. Hence, there are two conversions of the rate in the

keystream subsystem. One is from SRi to the block cipher and the other is from the block

cipher to SR2.

5.2.2.2 Discussion on Queuing

Both PQ and CQ have the same buffer size. While bits are coming into PQ, bits

are leaving from CQ at exactly the same rate, like SCFB mode. During the period that the

block cipher encrypts to produce the new block of keystream, the incoming plaintext bits

are stored into the queue until the block of keystream is available. After the keystream is

ready, PQ starts to shift bits out until the counter counts to the maximum or the sync

pattern is found. The block cipher is then triggered to generate the new keystream block.

The input of PQ therefore accepts bits at a uniform rate, but the output of the PQ shifts bit

by bit only when the keystream is available.

CQ has exactly the reverse situation as PQ. When the keystream is available, the

CQ starts to accept the incoming data bit by bit. While the block cipher encrypts to

generate the new keystream, CQ stops collecting data until the keystream is ready.

However, the output of CQ keeps the uniform rate to send bits out. The CQ is initialized

with arbitrary data so that it is in the full state initially when the PQ is empty. When PQ

fills up, CQ goes to empty. The situation of overflow of the PQ is exactly the same as the

situation of underflow of the CQ. Hence, the overflow condition of PQ only needs to be

considered.

60

The size of the queue has an influence on the delay of data passing through the

system. Let k represent the number of bits in PQ and M represent the size of PQ and CQ.

The delay of data passing through is k + (M - k) = M bit times. To minimize the delay,

the buffer size M should be as small as possible. However, M has to be large enough to

save the incoming data when the block cipher produces the keystream. Because OCFB

mode checks for the sync pattern all the time, bits fill up in PQ easily causing overflow if

resynchronizations occur frequently. (This manifests as an underflow in CQ.) Loss of

data bits will then occur. Whether or not PQ overflows is related to the occurring

frequency of the sync pattern, the size of M, the time spent by keystream generation, and

the incoming rate of plaintext bits. Of these four factors, the last three can be decided

when the system is set up. However, the first factor relates to the size of the sync pattern

and the time between sync patterns is given approximately as the geometric probability

distribution [5]. The relationship between the probability of overflow and the buffer size

will be discussed in Chapter 6. In order to minimize the probability of overflow, PQ has

to be large enough and outgoing data rate leaving the PQ has to be greater than the

incoming data rate. Hence, there is an important relationship among the rate Re of the

block cipher encryption, the rateR' of bits removed from PQ, the rateR of bits coming

into PQ and the buffer size.

5.2.2.3 Discussion on Timing Characteristics of Implementation

Clearly, there are two working threads in the OCFB system. One is the generation

of the keystream and the other is data movement in the queues. In order to obtain higher

system efficiency, the encryption of the keystream and the data transfer in the queue have

61

to work concurrently and shorten the idle time of each subsystem. The different rates, R',

R, and Re, introduce the different times, T', T, and Te. T' represents the time spent

sending one block (i.e. B bits) of plaintext data out of PQ, Tis the time collecting one

block of plaintext data in PQ, and Te is the time generating one block of keystream.

In this thesis for ease of implementation 50% efficiency is examined. 50%

efficiency implies that for every B bits entering the queue, 2B bits are removed from the

queue. Unlike SCFB mode, 50% efficiency does not have special meaning for OCFB

mode. 50% efficiency is chosen because it allows the system to generate clocks that are

integer multiples of the system clock clkl. This results in the following equations where

R, R' andRe are in units of bits I second:

Efficiency = R I Re = 50%

R' = 2 * R

R'=Re·

From the three equations above, it is easy to deduce the equations as below:

T' = T/2

T' = Te

Re =BITe

From the equations above, it is seen that the generating time of one block of

keystream, Te, is the same as the leaving time of one block of plaintext data, T'. Te and T'

are equal to half of T. This implies that the generation of one block of keystream and the

XORing of one block of plaintext have to be completed in the time of T I 2 for 50%

efficiency.

62

The encryption processing of OCFB system can be described as follows. After the

system is reset, the keystream subsystem starts to produce a new block of keystream and

the plaintext subsystem begins to collect the incoming data. Since the collecting speed of

the plaintext data is two times slower than the generation speed of one block of

keystream, it can be imagined that B I 2 bits would be in PQ when the generation of one

block of keystream is finished. Then PQ starts to send data out to XOR with keystream

generated bit by bit after the keystream is ready. During B bits of keystream XOR with

the B bits of plaintext data bit by bit, PQ still collects incoming data at the rate of R. This

can happen only when resynchronization does not occur. If resynchronization occurs,

only part of the B bits in PQ XOR with the key and the rest of the bits will stay in the

queue to wait until the new keystream block is generated. It is clear that bits will fill up in

the queue and might cause overflow if resynchronization occurs frequently. Enlarging the

queue size may be a better way to decrease the probability of overflow, but it will suffer

from longer delay.

Figure 5.6 illustrates the timing relationships between the data flow associated

with PQ, CQ and the keystream. This figure also shows some detailed considerations for

implementation. In the diagram, clk2 = 2 * clkl since R' = 2 * R. The up I down arrows

indicate that the components are triggered by the rising/falling edge of clock. The lower

case s stands for shifting and the lower case w for writing. Because a component in the

hardware implementation cannot resolve two signals simultaneously, the rising and

falling edges are selected to avoid two signals affecting one component at the same time.

Writing into the PQ is controlled by clk2. The rising and falling edges of clk2 are always

63

on the rising edge of clkl. Hence, there is no limitation on the selecting of the rising or

the falling edge for the writing of the PQ. However, the control of the shifting of PQ has

to use the falling edge since writing has already occupied the rising edge. CQ has the

same situation except writing is using the falling edge of clkl and shifting is using the

rising edge of clk2. Because a plaintext bit is shifted out on the falling edge of clkl, the

keystream has to keep the same pace as the plaintext bit to guarantee the synchronization.

Hence, the interfaces of the keystream part have to use the falling edge of clkl. The

writing of CQ triggered by falling edge cannot write the latest bit but the previous one

because the generations of plaintext and keystream depend on the falling edge of clkl.

Therefore, the data of CQ is delayed one clkl cycle.

PQ s s s s s s s s s s

elk

w w w w w

elk~ J l J J L
CQ w w w w w w w w w w

elk

s s s s s

elk~ r r r J L
Keystream s s s s s s s s s s

elk

Figure 5.6 Timing relationships between PQ, CQ, keystream

64

5.2.2.4 Bottom-up Hardware Implementation

In this part, the plaintext subsystem, the ciphertext subsystem and the keystream

subsystem are implemented individually as foundational subsystems and then encryption

system is built up from them. (The decryption system of OCFB mode has the same

structure as the encryption system.)

Some conditions are assumed before the implementation. In this implementation

the Rijndael algorithm is used as the core algorithm of the block cipher. Alternatively,

triple DES, DES or other algorithms which are thought to be secure can be used as the

block cipher. For Rijndael, the length of each block is 128 bits. Hence, the sizes of SRI

and SR2 must be 128 bits as well. To decrease the delay as data passes through the system

and to make the possibility of overflow I underflow low, the sizes of PQ and CQ are

chosen as 256 bits. The sync pattern is chosen as "10000000" and the length is 8 bits.

• Plaintext Subsystem

As mentioned above, PQ is a 256 bit queue and collects data bits while the

keystream subsystem produces a new block of keystream. After the new block of

keystream is ready, the PQ starts to send bits out. The writing of PQ is triggered by the

rising edge of clk2 and shifting out is triggered by the falling edge of clkl under the

condition that the valid signal, named val, is '1'. The PQ is illustrated in Figure 5.7.

The implementation of PQ should include the following interface parts:

a. The val signal indicates whether the output of PQ is valid or not.

b. One 8-bit write pointer points to the correct position for writing.

65

c. The signal clk2 is generated for clkl and is twice clkl because of

50% efficiency.

d. One data input port and one data output port

val
/

clk2 [>
1----J /1

Plaintext queue 0 < clk1
255 254 1

Data bit

/1 h plaintext

/1

/
v 8

Write_pointer

Figure 5.7 Structure of the plaintext queue

• Ciphertext Subsystem

The ciphertext queue has the reverse situation of PQ and is shown in Figure 5.8. It

collects data bits according to the falling edge of clkl when the val signal is '1' and stops

collecting bits when the val is '0'. The output of the CQ is timed by the rising edge of

clk2. The write pointer points to the position for the incoming data bits. The CQ starts

from the full state with arbitrary data. To make checking easier, the initial value of CQ is

set to all of '1 's. Hence, the write pointer starts from 255, increases by one at the falling

edge of clkl when val is '1 ', and decreases by one on each rising edge of clk2.

val/

<
clk2

1
clk1 > 255 254 Ciphertext queue 1 0 ciphertext

Data bit/ /

/1 /1

Ya
Write_pointer

Figure 5.8 Structure of the ciphertext queue

66

• Keystream Subsystem

The keystream block consists of two 128-bit registers SRI and SR2, the core block

cipher, and a shiftcounter which includes one 8-bit comparator and a counter, as shown in

Figure 5.9.

IV
,.}

1

128

~ SR1 I ciphertext

I

I 8-bit comparator ,J/128 - 8

.-:~q //1

clk3 (>
input

~
Counter_done Block cipher kev

> shiftcounter
/ 1 ~ load Key done

output

/
/ 128 /1

eli> 1
1 SR2

1

~!_a-ding

121

I /

1

~ keystream

Figure 5.9 Hardware structure of the keystream subsystem

This part mainly takes charge of the generation of keystream. The 8-bit

comparator compares the first 8 bits of SRI with the sync pattern until the sync pattern is

found. The eq signal in the figure is the output of 8-bit comparator. It sets the counter to

the maximum when eq is equal to '1 '. The counter then sends a done signal out to the

core algorithm of the block cipher. This counter _done signal triggers the block cipher to

load the 128-bit data of SRI as the input of the block cipher. Rijndael, the core algorithm

of the block cipher, controlled by clk3 is in charge of the generation of the keystream.

67

The time spent by the Rijndael algorithm is mainly constrained by the method of

implementation of the algorithm and the current hardware technology. The frequency of

clk3 is derived from the system clock, clkl, and is equal tog * clkl where g is an integer

and decided by system efficiency, the time used by the generation of one block of

keystream and the time used by collection of one block of plaintext data. After the new

keystream is produced, the key _done signal is set to '1 '. Due to the connection between

key_done signal and the loading port directly, SR2 loads the output of the block cipher

asynchronously and then shifts data by the falling edge of clkl. The data shifted out from

SR2 is XORed with the plaintext bit to produce the ciphertext bit.

• Encryption System

The plaintext subsystem, the ciphertext subsystem, and the keystream subsystem

together make up an encryption system. After the system is reset, PQ starts to collect

data, CQ starts to shift data out and the block cipher is triggered to generate the

keystream block. Simulation waveforms are shown in Figure 5.10, Figure 5.11, Figure

5.12, Figure 5.13, and Figure 5.14. PQ is initialized to all '0' and CQ is initialized to all

'1'. Because the input data of PQ is always given to '1', it is easy to check data

movement in PQ.

Figure 5.10 shows the movement of data in both PQ and CQ after the system is

started. Figure 5.11 shows that the generation of the keystream is done. The keystream

generated is then XORed with plaintext to produce ciphertext until the counter counts to

128 in Figure 5.12. The eq signal turns to '1' in Figure 5.13. It is implied that the current

process is stopped and the new key will be generated by the block cipher. The new

keystream is generated in Figure 5.14. More waveforms are shown in Appendix B.

68

0\
1.0

llsynopsys Waveform Viewer- OCt=B_fr-.!CRYPT_TEST_BENC:H.jaguar~t¥#12 .. aur.O- {Ubtitted] '1 ~ ¥ W &~~0 MW£ ~"" +w~g4$_-~ ,.
File _Edit Marker J;ioTo ~iew Qptions Window Help

n1~r,.1 .x.t~l~t aJ•I•I•t~\t*f~t:,;lmr '~<t~t~r»T+I...!...IIiilll.~~·" : ••. ·• .·· ·Ffiri ff:i'?E·> ...• ::t'\~. Liit• t'\

/OCFB_ENCRYPT _TEST _BENCH/RESET

/OCFB_ENCRYPT _TEST _BENCH/CLK 1

/OCFB_ENCRYPT _TEST _BENCH/CLK3

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_ OUT

.,.. /OCFB_ENCRYPT _TEST _BENCH/IV(127:D)

.,.. /OCFB_ENCRYPT _TEST _BENCH/KEY(255:D)

/OCFB _encrypt_ test_ benchltenO/counter _done

/OCFB _encrypt_ test_ benchltenO/key _done

/OCFB_encrypt_test_benchltenO/val

.,.. /OCFB_encrypt_test_bench/tenD/enD/parai(255:D)

.,.. /OCFB_encrypt_test_bench/tenO/enD/w _prt(7:D)

/OCFB_encrypt_test_bench/tenD/enD/plaintext

/OCFB_encrypt_test_bench/tenD/keystream

/OCFB _encrypt_ test_ bench/tenD/ciphertext

.,.. /OCFB_encrypt_test_bench/tenD/en3/parai(255:D)

.,.. /OCFB_encrypt_test_bench/tenD/en3/w_prt(7:D)

/OCFB_encrypt_test_bench/tenD/en1/k4/cc1/i_counter

/OCFB _encrypt_ test_ bench/tenD/en 11k4/eq

/OCFB_encrypt_test_bench/ten0/en3/ctrl2_i

/OCFB _encrypt_ test_ benchltenO/cipher

ll 14 ~~ , , l , ... , , , , 5~ , , , , , , , ,
1 ~0 , ,

D 355D25B47 A2ABAB2BB2BCD715354EAAD

495254952549525495254952549520 549525495254952549525495254952549525495254952549E

DDD000000000000000000000000001

FFFFFFFFFFFFFFFFFFFFFFFFFFF

F7

Figure 5.10 Simulation waveform of the encryption system

-..l
0

~Synopsys Wavefom1 Viewer- OCFB ENCRVPT_TfST_BENCM .. @guar~J1Af!Jaow:O- f]Untitl:ed]j ~ ~"§!!$~'\, ~~¥h ~~ :WHgS'i r'?t ' ...J
Eile Edit Marker §oTo Yiew Qptions Window .!::!_elp

iPI~IIiilfa~.lt,i"t$J~f.•· BIBIIIIIII. z-f'lz..:IIIIIIJ 1 t<l.:... l4:li>>l+f ..!lJJiiJI.I ~!·i~f~~s : .•• , •... ·. :~! .. l!·§~l?"'d· ·;±z:?~I··,:¥W,AY" .··.

/OCFB_ENCRVPT _TEST _BENCH/RESET

/OCFB_ENCRVPT _TEST _BENCH/CLK 1

/OCFB_ENCRVPT _TEST _BENCH/CLK3

/OCFB_ENCRVPT _TEST _BENCH/SER IAL_I N

/OCFB_ENCRVPT _TEST _BENCH/SERIAL_ OUT

ll>- /OCFB_ENCRVPT _TEST _BENCH/IV(127:D)

t> /OCFB_ENCRVPT _TEST _BENCHIKEV(255:D)

/OCFB _encrypt_ test_ bench/tenD/counter_ done

/OCFB _encrypt_ test_ bench/tenO/key _done

/OCFB _encrypt_ test_ bench/tenD/val

ll>- /OCFB_encrypt_test_bench/tenO/enD/parai(255:D)

ll>- /OCFB_encrypt_test_ benchltenO!enD/w _prt(7:D)

/OCFB_encrypt_test_bench/tenO!enD/plaintext

/OCFB_encrypt_test_bench/tenO!keystream

/OCFB _encrypt_ test_ bench/tenD/ciphertext

t> /OCFB_encrypt_test_bench/tenD/en31parai(255:D)

ll>- /OCFB_encrypt_test_bench/ten0/en31w_prt(7:D)

/OCFB _encrypt_ test_ bench/tenD/en 1/k4/cc 1/i_ counter

/OCFB _encrypt_ test_ bench/tenD/en 1/k4/eq

/OCFB_encrypt_test_benchlten0/en3/ctrl2_i

/OCFB_encrypt_test_bench/tenO!cipher

...

(1

50 100
24

D 55D25B47 A2ABAB2BB2BCD715354EAAD

5485254852548525485254852548525485254~525485
48525485254852548525485254852D i~====r===~~===

u

DDDDDDDDODDDDDODODOODOOOOD0003

FFFFFFFFFFFFFFFFFFFFFFFFFFF

F7

Figure 5.11 Simulation waveform of the encryption system

-..)
........

~5ynopsys Waveform Viewer- 0Cf8_ENCRYPT_:TEST_BENCH.jaguar.l:J!412.ow,:O- [untitlid] ~S ~ ~ ~ei1'4t& "~ ~'a~ :~~

Eile _Edit Marker §oTo Y:iew Qptions Window .!::!_elp

t:OI~Ir.lf'.;Y.I~l~l IIIIIIBIIBJ ~-tfz-IBL kf;:.tf~I>?I+H~ lii.Jil ~r <•,;;~Ji.'~lt::x~X;~i~t7:l';l> · ..•• :2 ··¥~!~£!; ~·'··· ·

; • 11 787 '"'
0

w:~·~•l• 1;••1 1 1 1 1 8~0 1 1 1 1 1 1 1 1 ~·8~~1 1
/OCFB_ENCRYPT_TEST_BENCHIRESET

/OCFB_ENCRYPT_TEST_BENCHICLK1

/OCFB_ENCRYPT_TEST_BENCHICLK3

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_ OUT

1> /OCFB_ENCRYPT _TEST _BENCH/IV(127:0)

1> /OCFB_ENCRYPT _TEST _BENCHIKEY(255:0)

/OCFB_encrypt_test_bench/tenO/counter _done

/OCFB_encrypt_test_benchltenOikey _done

/OCFB_encrypt_test_benchltenotval

1> /OCFB_encrypt_test_bench/tenO/enOiparal(255:0)

1> /OCFB_encrypt_test_benchlteno/eno/w_prt(7:0)

/OCFB_encrypt_test_benchltenO/enO/plaintext

/OCFB_encrypt_test_bench/tenO/keystream

/OCFB_encrypt_test_bench/tenO/ciphertext

1> IOCFB_encrypt_test_bench/ten01en3/paral(255:0)

1> /OCFB_encrypt_test_benchlten01en3/w_prt(7:0)

/OCFB_encrypt_test_benchlten01en1/k41cc11i_counter

/OCFB _encrypt_ test_ bench/tenOien 1/k41eq

/OCFB_encrypt_test_bench/ten0/en3/ctrl2_i

/OCFB_encrypt_test_bench/tenO/cipher

D I 355025 47A2ABAB2882BCD715354EAAD

495254952549525495254952549520 52549525495254952 49525495254952549525495254952549525495:

00000000000001 FFFFFFFFFFFFFFF"*

FFFFFFFFFFFFFFFFFFFFFFFFFFF

Figure 5.12 Simulation waveform of the encryption system

ii.IS-tiVSW"'"tfufm-·OCI'IU'NCR'I'I'T_'I'f'l!T~~.U'4t~~ !lli"!ilb'!ll ,z:-·::W ,·,&,·· ~ ,

/OCFB_ENCRYPT_ TEST _BENCH.I'RESET

/OCFB_ENCR'r'PT _TEST _BENCH!CLK 1

!OCFB_ENCRYPT _TEST _&N<::W'CLK3

IOCFB_c~T ~TEST _6£N<.r!ISER!Al_1N

JOCF!;LENCRYPT _TEST _!3EI'..ICHI'S£R!At_OUT

"" /OCFB_ENCRYPT_TEST _BENCHftV{1270}

1\>- fOCFB_ENCR:YPT_ TEST~BENCHlKtY{£"f.>B:Oj

i<JCF 8 _ er>C~"lf't_ te st,}nntt:hll:t%n1:Veovnter _ tiOtle

tOO'~ _ener,'l}\,,tc";>t,,bent:Men(l!key 3krne

/OCF!;)_encrypt_test_uen~hitcnfifva!

-.J ' N 1>- fOCFB _em;rypt_tesl'_ bencl"l!:t:TM:O.tenntpara!(Z55:{f)

10- /OCFB_en&!)'l}t_ tes~_ beneMenalen&'4> _;:n~{?:fll

tOCF B _ eno'1'1}t_~et>t __ bene!v\ct'[iitmttrr,faintext

JOCFB ,.encrypt _tec.~._be,eMer:V.'Keysveam

JOCFB _ enc!)'l}t_ te;;t_ benchl!:nnQ!clphertuA

"" /OCFB_ encr,'l}t_ test_ bena::hltenntcn:Yparal(ZSS:fl)

• fOCFB _ enel)'J)t_ tesurencM~Oten3Jv; _ptt{i£1)

tOCFB_enci)I'Pt_teJ>,t_bettchi'tenotent!K4/ceUi_ctturtter

JOCFB_encl)"Pt_tel>t}>et'lt:iv'tent:.Jen1lk41'eq

i0CF8_ern:;rypr_wst_ bet'ICMl!!'nOlen:YctriZ_i

/OCFB _encl"ypt_ test_b:encMenO/clpher

• !OCFB_nncl)'l}{_tnst_~rt&eni~aUI(lZ7:0l

Figure 5.13 Simulation waveform of the encryption system

-..1
w

ii!S-"vsW«VEfurm~-OO'Il.J!NCI!;YPT_TE!iT~~.Uitt~>< ~ ,ii), ,~';,:<,''""·"•We J.~l;~ , ,• "'

IOCFfUC:NCfr'fPT ~TEST _BENCHmE:StT

/OCFEU~NCfWPT _ TEST.J~ENCHtCLK 1

lOCFB_ENCftVPT_ TEST ~BENCKiClK::il

ft">CFSJSNCRVPT_ n:rn _!3ENCHISEJ'tiAl_U\!

!OCFS_E:NCRVPT_TEST_SENCHlS£P.ii<-L_OVT

*""' /OCFS_ENCR'ff'T _TEST __ SENCH!IV(12:7::Q}

.,.. /OCFB_ENCRVPT_TEST _BENCH!XEY{2SS:D)

IOCFB _encrypt_test_ hcnclv'terrntcoonu.:r _done

fOCFB _il'ncrypt_ tes~_ bl':'ntn.'l'er1\li'hy _done

!OC.f': B _ ttncl)<pl_tes~_ben ctv'l:en&val

• !OC.F B_ ttnci)'Pt~test.})enchlte•lC'Jer~a<al{2SEdl)

• J{)CFB_ enc~",'Pt-~e::.t_t>enct'!.•'te<~t:llenOtw -~7:0)

JOCF B,,_er,cr)rpt_te1't_benclvten\VenQ!plak~

tOCFB.,enetypt,}e.,t)>enenttenwh;.yzMweam

f{)CFELem::rypt_test_ b~hi'mnnfcJpherteJ&

• /OCFB_enerypt_J.esA'_ bencMenf\lem3/para!(ZSS:tl)

*""' fOCH~_encryp!_te!>t_beru::hlteneten$!'.v _prt(?:tl}

IOCFB _ ancrypt_test_lrem:Mentlfen llL<~l:c 11\.:Ct.n.mter

iOCFO _enctypt_te:.t_ hem::MenQf-en1/k4teq

!OCFB_ enci)'Pt_test_ ooncMroQfen3/ctrll.J

fOCFB_encl)<pt_te:.U:lent:Menurc~ph1tt

:5

496?54952$4$S254S5254SS25425tD

A lli'$$0C4 !Dn$S03E:"ll•.s5? t~:IJ<~A!;i

Figure 5.14 Simulation waveform of the encryption system

• Decryption System

The decryption system has the same structure as the encryption system except the

plaintext rather than ciphertext is shifted into the last bit of SRI. The simulation

waveforms of the decryption system are shown in Appendix B.

5.2.2.5 Test Methodology

After implementation, it is very important to prove that the implementation is

correct. We can use ANSI C I C++ programming to generate random plaintext to store in

an input file. A test bench is able to take data from the input file. After encryption,

ciphertext data is saved in an output file. The test bench of the decryption system

automatically reads data from the output file as input data. It will store the output of the

decryption system in another output file. Therefore, the content of the output file of the

decryption system can be compared with the input file of encryption system to check for

the correctness of implementation.

The result of the decryption of the OCFB mode is shown in Appendix B. It

demonstrates that the structure and the method used to implement OCFB mode are

correct.

5.2.2.6 Complexity of Hardware Implementation

The hardware implementation of the OCFB mode is implemented using VHDL

and synthesized using Synopsis with 0.18 pm CMOS technology. The hardware

complexity is collected by design analyzer of the Synopsis tool with the constraint of the

system clock frequency of 10 ns. The area of synthesized circuits, which is in square

74

microns (Jtm2
), is converted to the gate count by using the two-input NAND gate which

has the area of 12.197 Jtm2 as a basis for comparison.

The resulting synthesized Rijndael algorithm comes from [12]. From Table 5.1, it

is obvious that the implementation of Rijndael algorithm occupies over 90% area in an

encryption system when the OCFB mode is implemented by serial transfer.

Component Combinational Noncombinational
Total Area Total Gate

Name Area Area

Plaintext
265167 158 265167 21740

subsystem

Keystream
subsystem

20575 28799 49375 4048
without
Rijndael

Rijndael
612834

algorithm

Ciphertext
264045 1122 265326 21753

subsystem

Encryption
660376

system

Table 5.1 Hardware complexity of the encryption system of OCFB mode

5.2.2.7 Discussion of Other Structures

There are other structures that are suitable for the implementation of the OCFB

system. One approach would be to remove the PQ and the CQ and let the incoming rate

of data and outgoing rate of data be consistent. A block cipher output must then be

generated within one bit time. This would clearly minimize the delay through the system.

75

However, the block cipher part of the system is in an idle state for most of time. This

implies that the block cipher runs at the rate of B times the data rate. The system

efficiency becomes 1/B, which is the same as CFB mode. Hence, this approach has little

value.

5.3 Conclusion

This chapter introduces the concepts of OCFB mode and investigates the

hardware structure of an OCFB system. In the hardware implementation of OCFB mode,

serial transfer is applied to the hardware implementation of OCFB system to simplify the

hardware structure. For the investigation of hardware implementation, it is shown that it

is practical to achieve the ability of self-synchronization from bit slips or insertions in

communication channel and still obtain higher efficiency than CFB mode (50% in our

implementation). Hence, OCFB system can be used for high speed network applications.

76

Chapter 6

Performance Analysis of SCFB and

OCFB Modes

This chapter analyzes the performance of SCFB mode and OCFB mode with

respect to theoretical efficiency, synchronization recovery delay, error propagation factor,

full-queue efficiency, practical system efficiency, and the relationships between

efficiency, buffer size, and the probability of buffer overflow [5]. The characteristics of

SCFB mode and OCFB mode then are compared.

6.1 Basic Parameters of Performance Analysis

In this section, the concepts of basic metrics of performance analysis are

introduced. These metrics indicate the system abilities of efficiency, synchronization

recovery, and error recovery.

• Theoretical efficiency

Theoretical efficiency is defined as [5]:

1
. D/ B

rJ = lm--------------
D-7= E{ #block cipher operation forD bits}

(6-1)

Here the denominator is the expected number of block cipher operations required

for the encryption of D bits. The numerator represents the number of blocks

77

corresponding to the encryption of D bits. The theoretical efficiency represents a rate at

which the stream cipher can encrypt compared with the rate of the block cipher.

For OFB mode, 1J can be 1 because all B output bits of the block cipher can be

used in the stream cipher keystream. For CFB mode, if it is guaranteed to resynchronize

from individual bit slips, CFB must have m = 1. Then 1J = liB << 1. That is the reason

why the CFB mode is a very inefficient mode and why an investigation of SCFB mode

and OCFB mode is of interest.

• Synchronization Recovery Delay (SRD)

The SRD is defined as the expected number of bits between the synchronization

loss and resynchronization. It is a measure of the recovery speed from the sync loss. It is

worth noting that the SRD does not include the lost bits and there is no explicit

specification on the number of bits lost in the slip [5].

• Error Propagation Factor (EPF)

The EPF measures the bit errors on the output of the decryption when a bit error

occurs in the communication channel. It is a metric to examine the influence of a bit error

on the data recovered. It is defined as the bit error rate of the plaintext recovered by the

decryption system divided by a bit error rate in the communication channel [5].

6.2 Performance Analysis of SCFB Mode

The performance analysis on SCFB mode is presented in [5]. However in order to

provide the background and to compare it with OCFB mode, it is repeated below.

78

6.2.1 Theoretical efficiency

The theoretical efficiency is used to indicate that the rate at which the block

cipher must operate to avoid data growing without bounds in PQ. For SCFB mode, the

ciphertext bits in the communication channel can be categorized as shown in Figure 6.1.

In the figure, n represents then bit sync pattern, B represents the B bit IV and k represents

the number of bits following IV until the sync pattern occurs, which is referred to as OFB

block. A synchronization cycle consists of the data bits from the beginning of the sync

pattern to the beginning of the next sync pattern. Hence, the size of the synchronization

cycle is equal to n+B+k. Because k is the amount of data before the sync pattern is found,

k is a random variable and decided by a probability distribution dependent on the sync

pattern used (e.g. 1111..11, or 1000 .. 00, etc.). Assuming that 0 and 1 have equal

probability in ciphertext and each n-bit sequence is independent, then the distribution of k

is geometric and the probability of a particular sync pattern is 1/2n .

....... , n B k B

Figure 6.1 Synchronization cycle

Strictly, the distribution of k is related to the sync pattern used (e.g. 11...11, or

10 ... 00, etc) and not the geometric distribution because each n-bit sequence is not

independent but overlaps n-1 bits of adjacent sequences when checking for the sync

pattern. However we use the geometric distribution for k as an approximation [5].

Hence, the probability of a particular n-bit sync pattern is 1/2n and the probability

distribution of k is

79

(6-2)

As a result, the expected value of k is

(6-3)

and the second moment of k is

(6-4)

The expected synchronization cycle size is

J1 = n + B + 2n -1 . (6-5)

It is always true that n+B +k = a B+O where a and o are integers and o <B.

Hence, the block cipher has to run (a +1) block encryptions to produce enough

keystream to encrypt a B+ 0 plaintext bits and the running rate of the block cipher

should be greater than the rate of straight block encryption. From the equation (6-1), we

can get

E{sync cycle size}/B

1J = E{#block cipher operations per sync cycle}
(6- 6)

This leads to

fl/B
1J = -~---'------- (6- 7)

2: p(k) ·I (k +n+ B)/ Bl
k=O

By deduction, we can get that I] becomes a function of nand B [5]:

80

j.t/B
(6- 8)

Figure 6.2 shows the relationship between sync pattern size n and theoretical

efficiency fJ with 64, 128, and 256 bits block. It is obvious that all the theoretical

efficiencies are greater than 50%. This is because at least one full block is used in each

synchronization cycle since B bits are associated with the IV. Therefore, the theoretical

efficiency of SCFB mode is much better than CFB mode. With the increases of the sync

pattern size, the theoretical efficiency gets larger. For larger n, the stream cipher can be

run at a rate very close to the rate of straight block encryption as the theoretical efficiency

approaches 1. Because large n has lower the occurring probability than small n, most bits

in the synchronization cycle belong to OFB block. This causes the SCFB mode with large

n mainly running as OFB mode. Hence, SCFB mode with larger n can attain much higher

theoretical efficiency. The graph also demonstrates that the theoretical efficiency is lower

when block length B is larger. The efficiencies are still much higher than conventional

CFB mode and are close to 1.

6.2.2 SRD

SRD of SCFB mode is tested by experiment and the result is shown in Figure 6.3

which is plotted as the logarithm base-2 of the SRD. From the figure, it can be seen that

SRD is approximately 2n for large n (n 2: 10). For small n (n ~ 4), there is a situation that

the probability of a slip occurring near the end of the OFB block is much higher than the

81

case of n ~ 4. Hence, it is more likely that the receiver will interpret the next valid sync

pattern bits as part of the false IV and will ignore them. As a result, resynchronization

will be delayed until the next proper sync pattern. If misinterpretation happens several

times, it will cause higher SRD. Unfortunately as can be seen from the figure, this

phenomenon is prevalent for small n. The experimental results are obtained under the

condition that the sync pattern chosen is of the form of 100 ... 00, 109 bits are encrypted

and the probability of a bit slip rate is 10·5. The Rijndael algorithm is used as the block

cipher with a block length of 128 bits.

1.2
~
r:::
Q)

~ 0.8
w
iij 0.6
1.1

ti 0.4
g

..r::: 0.2
1-

-+- B = 64 bits
-B = 128 bits

B = 256 bits

0 2 3 4 5 6 7 8 9 10 11 12

Sync Pattern Size

Figure 6.2 Theoretical efficiency vs. sync pattern size

6.2.3 EPF

In this section, the characteristics of EPF are examined. Figure 6.4 illustrates the

experimental results which assume that the error probability is 10-5
, 109 bits are encrypted

in the experiment and errors are randomly generated in the communication channel. It is

clear that EPF is a function of n with fixed block length. The position in which an error

82

occurs in the synchronization cycle has a great influence on EPF [5]. The two basic cases

are:

• If the error happens in n+B bits of synciiV block, the synchronization will

be lost and (n+B+k) I 2 bits are the expected error.

• If the error happens in k bits of the OFB block and no false sync occurs,

only one bit error can be caused at output of decryption.

When the value of n is small, there is a higher possibility that the error will

happen in n+B bits necessary to cause missing of the sync pattern or the incorrect IV.

That will cause EPF to be higher when n is small. As n is getting larger, most bits in the

synchronization cycle belong to OFB block and most errors happen in the OFB block,

which makes EPF relatively lower. EPF of SCFB mode is on the same order as for CFB

mode (EPF = B I 2) and is higher than that of OFB mode (EPF = 1).

6.2.4 Practical Efficiency of SCFB Mode

The theoretical efficiency is an ideal efficiency and represents the upper bound of

efficiency [5]. In reality, the addition of queuing and the method of implementation have

a great influence on system efficiency. "Full-queue efficiency" represents the system

efficiency while PQ has data to process. It is the efficiency at which the system operates

at its peak rate. Assume a is the full queue efficiency and R is the rate at which bits enter

the PQ in bits per unit time, the system will remove bits from the queue in blocks of B

bits at a rate of (11 a) x RIB blocks per second if there are more than B bits in the queue.

50% efficiency implies that for every B bits entering the queue, 2B bits are removed from

the queue to XOR with the keystream.

83

16

14

12

c~ 10
a:
~ 8
Cl
g 6~~~~~

4

2

0
2 4 6 8 10 12 14

Sync Pattern Size

Figure 6.3 Synchronization recovery delay vs. sync pattern size with B = 128

140

120

100

LL 80
c.
w 60

40

20

0
2 4 6 8 10 12

Sync Pattern Size

Figure 6.4 Error propagation factor vs. sync. pattern size with B = 128

"Average efficiency" is greater than full-queue efficiency. Because the average

efficiency represents the average rate at which system operates including the period that

the PQ has fewer than B bits and the system has to wait and the period that the PQ has

more than B bits. If the system is stable, the full-queue efficiency must be less than the

average efficiency and the average efficiency must be less than the theoretical efficiency

[5].

84

6.2.5 Relationship Between Buffer Size and Overflow Probability

In this section, the requirement on buffer size in the practical implementation of

SCFB mode is investigated experimentally. The experiment is based on the Rijndael

algorithm and the 8-bit sync pattern of "10000000". Figure 6.5 shows that the probability

of overflow is a function of buffer size with 78.1 %, 84.4%, and 90.6% full-queue

efficiency, respectively. In theory, the system can attain the efficiency of 91.1% but it is

clearly seen that the system will suffer from significant buffer overflow even for a buffer

size up to 512 bits.

--+-Full-queue efficiency = 78.1%

-111- Full-queue efficiency = 84.4%

Full-queue efficiency = 90.6%
0.12

~ 0.1 0
'E
~ 0.08
0 - 0.06 0

~ :c 0.04
C!l
..c
0 0.02 ... c..

0

,rvco ,ro<:::J_O;rv rvrf rv'<:Jro rv<oco ~rv<:;:, ~'<:Jrv ~co"> ">"ro .j<co ">co<:::J '<:J"rv
Buffer Size

Figure 6.5 Probability of overflow vs. buffer size with Rijndael

It is noteworthy that the system will not overflow for a buffer size of B with 50%

efficiency. With this efficiency the block cipher is being run at two times the rate of

incoming bits of PQ. Hence, even for the worst case that block cipher needs two

complete encryptions to finish the encryption of B + l (n ~ l ~ B) bits when sync pattern is

found. Hence, it is guaranteed that no overflow will occur for 50% efficiency with B bit

buffers and delay exactly B bits times.

85

6.2.6 Relationship Between Encryption Efficiency and Overflow

Probability

Figure 6.6 shows that the probability of overflow is a function of the full-queue

efficiency with fixed buffer size. The probability of overflow increases dramatically with

the increase of the full-queue efficiency. In the figure, the buffer size is fixed at 192, 224,

or 256 bits and the block cipher uses the Rijndael algorithm. As expected the probability

of overflow will get higher as the buffer size is smaller.

6.3 Performance Analysis of OCFB Mode

6.3.1 Theoretical Efficiency

In this thesis, the efficiency of OCFB mode does not adopt the definition in [13].

Because the efficiency of OCFB mode needs do comparison with the result of SCFB

mode, I adopted the definition of the efficiency that [5] provided. The differences of these

two efficiencies lie on that the efficiency in [13] is absolute efficiency and the efficiency

in [5] is comparative efficiency.

For OCFB mode, the ciphertext transmitted in the communication channel can be

categorized as illustrated in Figure 6.7. In the figure, n represents the size of the sync

pattern and k represents the length of data without the sync pattern. A synchronization

cycle is referred to as a set of bits from the beginning of the sync pattern to the beginning

of the next sync pattern. Because OCFB mode checks for the sync pattern at anytime,

there is no B-bit new IV block in the synchronization cycle as in SCFB mode. Hence, a

synchronization cycle consists of n + k bits.

86

Because k is the amount of data before the sync pattern is found, k is a random

variable decided by the probability distribution dependent on the sync pattern used (e.g.

1111..11, or 1000 .. 00, etc.). Assuming that 0 and 1 have equal probability in ciphertext

and each n-bit sequence is independent, then the distribution of k is geometric and was

already given in the equation (6-2). The corresponding expect value of k and the second

moment of k have given in the equation (6-3) and (6-4). The probability of a particular

sync pattern is 1/2n.

-Buffer Size= 192 bits
-+-Buffer Size = 224 bits

Buffer Size= 256 bits

Full-Queue Efficiency

Figure 6.6 Probability of overflow vs. efficiency with Rijndael

n k k

Figure 6.7 Synchronization cycle of OCFB mode

Strictly, the distribution of k is not the geometric distribution because each n-bit

sequence is not independent but overlaps n-1 bits of adjacent sequences when checking

87

for the sync pattern. However we use the geometric distribution for k as an

approximation. Hence, the expected synchronization cycle size f.1 is:

(6-9)

From the basic definition of theoretical efficiency (6-1), the equation below can

be derived

E{sync cycle size}/ B
17 = E{#block cipher operations per sync cycle}

It is easy to deduce that:

f-l/B 17 = _00 __ ...;....__ ___ _

LP(k)· !Ck+n)!Bl
k=O

Following the approach in [5], the following equation can be deduced

17 = (1-l/ 2n)B-n+l
1 + --'---------'---::-

=

1- (1-l/2n)8

(n+2n -1)/ B
(1-1 / 2n)B-n+l

1+-----=-
1-(1-l/2nl

(6-10)

(6-11)

(6-12)

From equation (6-12), it can be seen that theoretical efficiency is converted to a

function of n and B. This equation is plotted in Figure 6.8 with the block size of 64, 128,

and 256 bits. It is obvious that the theoretical efficiency increases with the increase of the

sync pattern size. For large n, the efficiency can approach 100% implying that OCFB

88

mode can obtain high efficiency. However, for small n, the efficiency is close to 0, which

results from the system continuously resynchronizing.

If the size of the sync pattern is larger than 4 whenever B is 64, 128 or 256 the

theoretical efficiency is definitely higher than the efficiency of CFB mode. For n = 8, the

theoretical efficiencies are 89.1 %, 79.6%, 64.4% for 64, 128, and 256 bit blocks,

respectively. This is much better than the efficiency of CFB mode which is 1/128 and is

approaching the efficiency of 100% for OFB mode.

-+- 8 = 64 bits
----8 = 128 bits

8 = 256 bits

~ 1.2
c
.!!! 1
.!:! ffi 0.8
- 0.6
.~ 0.4
~ s 0.2

.: 0
0

~,-·

~-----/~
//- ...

Ln,'i""'~ -r-

2 3 4 5 6 7 8 9 10 11 12

Sync Pattern Size

Figure 6.8 Theoretical efficiency vs. sync pattern size

6.3.2 SRD

The resynchronization properties of OCFB mode are examined experimentally.

As described above, SRD is used to measure the speed of recovery from bit slips. The

relationship between SRD and sync pattern size is illustrated in Figure 6.9 using a plot of

the logarithm base-2 of SRD.

89

16

14

12

c 10
a:
~ 8
(!)

g 6

4+----~

2+-~..;.;;_~

0 +-----r_,;.w

2 4 6 8 10 12 14

Sync Pattern Size

Figure 6.9 Sync Recovery Delay vs. Sync Pattern Size (B=128)

The simulation is run under the condition that the probability of a bit slip is 10-5

and 109 bits are encrypted. It is assumed that there are no multiple bit slips. In the figure,

the SRD is increased exponentially with the increase of n. SRD is approximately 2n when

n ~ 10. When n < 10, SRD is larger than 2n. This is because the sync pattern with small n

has higher frequency in ciphertext data than large n. The probability that bit slips occur in

the sync pattern to cause missed synchronization is much higher than the cases with large

n. But compared with SCFB mode, SRD of OCFB mode with small n is lower.

6.3.3 EPF

It is important to analyze the variety of situations where errors occur before the

effect of error propagation factor (EPF) to the communication system is analyzed. There

are two likely situations according to the effect of error.

90

• If the error happens in sync pattern, it will cause missing synchronization

until the next correct sync pattern occurs. The average number of bit errors

are (n+k)/2.

• If the error happens not in sync pattern but no false sync pattern is

generated, it will cause only one bit error at the receiver.

The error propagation factor is examined experimentally and the results are

shown in Figure 6.10. The simulation results are obtained with Pe = 10-5
• In this figure,

EPF becomes a function of n when B = 128. There are two main factors to affect the

value of EPF. One is the probability of the sync pattern occurring in ciphertext and the

other is the position where error occurs in the synchronization cycle. The probability of

the sync pattern represents the recovering capability of the system from an error in the

sync pattern. The position where error occurs influences on the number of error bits

according to the discussion above. When the value of n is small, there is a higher

possibility that the error happens in n-bit sync pattern to cause missing of the sync

pattern. However, it has stronger capability on recovering from error because the

probability of the sync pattern with small n is higher than that of the sync pattern with

larger n. Due to the frequent resynchronization for the system with small n, EPF is

reduced. As n is getting larger, the decreasing of the probability of the sync pattern

reduces the capability of the system resynchronization, although the probability that error

occurs in the sync pattern is also decreased. The result is EPF is generally about B I 2 =

64.

91

72

70

68
u..
D. 66 w

64

62

60
2 4 6 8 10 12

Sync Pattern Size

Figure 6.10 Error propagation factor vs. sync pattern size with B = 128

6.3.4 Practical Efficiency of OCFB Mode

Practical efficiency of OCFB mode can be represented by eff = R I Re where R is

the rate of data coming into PQ and Re is the rate of encryption of the block cipher. The

ratio between R and Re can be adjusted to attain high efficiency. Since Re is constrained

by current technology, R is constrained by Re. That means that the maximum throughput

is constrained by the rate that a block encryption performs. Because of the serial transfer

from PQ to CQ, the data rate R' leaving from the PQ needs to be considered. However

data leaving PQ does not have regular data transfer rate because bits might be moved for

some periods and bit transfer might stall for other periods. On average, data is moved

from the PQ to the CQ at a rate less than R '. It makes sense that R' = Re and R' > R. It can

be deducted that Re > R. Efficiency might approach 1 if all of outputs of the block cipher

can be used to XOR a block of plaintext. However, if it is guaranteed that

resynchronization can be regained from bit slips or bit errors, the partial block of the

output of the block cipher would be used in the block following the sync pattern.

92

6.3.5 Relationship Between Buffer Size and Probability of Overflow

The relationship between buffer size and the probability of overflow is

investigated based on full-queue efficiency of 78.1 %, 84.4%, and 90.6%. The

experimental results with Rijndael based on sync pattern "10000000" are shown in Figure

6.11. It is quite straightforward to note that the probability of overflow is lower when the

buffer size is larger. It is noteworthy that OCFB mode requires much more buffer size

than SCFB mode. From the figure, it can be seen that it is easy to overflow with the high

efficiency even with the larger buffer size. In order to achieve the smallest probability of

data loss, modest efficiency and larger buffer sizes are recommended for OCFB mode.

For lower probability of overflow, OCFB mode still can obtain relatively high efficiency

compared with CFB mode.

--+--Full-queue efficiency= 78.1%

-Full-queue efficiency= 84.4%

Full-queue efficiency= 90.6%

Buffer Size

Figure 6.11 Probability of overflow vs. buffer size with Rijndael

93

6.3.6 Relationship Between Encryption Efficiency and Probability of

Overflow

The relationship based on Rijndael between encryption efficiency and probability

of overflow is illustrated in Figure 6.12. From this figure, it can be seen that the

probability of overflow approaches 0 when efficiency is below 50% whether the buffer

size is 192, or 224, or 256. Hence, OCFB mode with high efficiency requires much more

buffer size in order to minimize the probability of overflow. The probability of overflow

appears to exponentially follow the increase of efficiency. As expected, large buffer size

will provide lower probability of overflow for a given efficiency.

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

0 .

-Buffer Size = 256 bits
-Buffer Size = 224 bits
--Buffer Size = 192 bits

"" rt' coco (l.<o ro" rt' ~co !P "" -"<o lbco (l.<o ro" (l.co <:>" (1.'-' ,..._co ro~ ~" ~OJ ~ro ~<:> e>· l><<o 9:J<:> l><<:S
~ e>· .,ro ~ ~ '>~ <oco ~ x,OJ co\:J co~ OJ"

()· ()· ()· ()· ()· ()· ()· ()· ()· ()·

Fuii_Queue Efficiency

Figure 6.12 Probability of overflow vs. efficiency with B = 128

94

6.4 Performance Comparison between SCFB Mode and

OCFB Mode

6.4.1 Theoretical efficiency

It is known that both SCFB mode and OCFB mode can achieve high efficiency as

shown in Figure 6.2 and Figure 6.8. However, the difference between them is obvious.

SCFB mode achieves at least 50% theoretical efficiency and highest efficiency can arrive

to 100%, but the theoretical efficiency of OCFB mode can vary from 0% to 100%. This

difference is decided by the characteristics of these two modes. SCFB mode does not

check for the sync pattern in IV after the sync pattern is found. This makes SCFB mode

at least use one full block, B bits, in one synchronization cycle, n+B+k. OCFB mode

checks each n bits for the sync pattern without exception, even in IV. The frequency of

resynchronization occurring greatly influences the theoretical efficiency of OCFB mode.

If the sync pattern occurs frequently, the system is busy resynchronizing. This makes the

theoretical efficiency of OCFB mode decreased and close to 0% for small value of n.

However, it is possible to obtain high efficiency for OCFB mode by increasing the size of

the sync pattern.

6.4.2 SRD

SCFB mode and OCFB mode have a similar trend shown in Figure 6.13 in SRD

when the sync pattern size n is increased. However, SCFB mode has much higher SRD

than OCFB mode when n ~ 6. This indicates that OCFB mode recovers more quickly

from the loss of synchronization because OCFB mode checks all ciphertext for the sync

pattern. As mentioned before, the possibility that a bit slip occurs in the first n+B bits of a

95

sync cycle is higher when n is small than when n is large. This will lead to either missed

resynchronization or wrong IV at receiver. Because SCFB mode does not check the sync

pattern in IV block after the sync pattern is recognized, this phenomenon results in SCFB

mode needing a longer time to recover for small n.

-+-SCFB_MODE --11--0CFB_MODE

16
14
12

iS 10 a:
(/) 8 ._.
(!)
0 6
..J

4
2
0

2 4 6 8 10 12 14

Sync Pattern Size

Figure 6.13 Sync recovery delay vs. sync pattern size with B = 128

6.4.3 EPF

From Figure 6.14, EPF of OCFB mode is better than EPF of SCFB mode whether

the sync pattern size is small or large. This can be explained by the property of OCFB

mode which checks sync pattern in all ciphertext whether or not it is the first n+B bits of

a sync cycle. This property gives OCFB mode a fast resynchronization. Another result

from Figure 6.14 is that when n is small SCFB mode has a much higher EPF. This is

because false synchronization due to bit errors is prevalent when n is small and SCFB

will take much longer to resynchronize in these circumstances. Hence, the influence of

errors on OCFB mode is smaller than on SCFB mode.

96

--+-- OCFB_MODE - SCFB_MODE

140
120
100

LL 80
c. w 60

40
20

0
2 4 6 8 10 12

Sync Pattern Size

Figure 6.14 Error propagation factor vs. sync pattern size with B = 128

6.4.4 Relationships Between Probability of Overflow and Buffer Size

To clearly compare the relationship between probability of overflow and buffer

size of SCFB mode and OCFB mode, Figure 6.15, Figure 6.16, and Figure 6.17, Figure

6.18, are presented.

-+- SCFB rrode ---- OCFB rrode

Buffer size

Figure 6.15 Probability of overflow vs. buffer size with full-queue efficiency= 50%

97

--+-SCFB mode -11-0CFB mode

Figure 6.16 Probability of overflow vs. buffer size with full-queue efficiency= 78.10%

--+-SCFB mode --OCFB mode

oo N m o ~ oo N m o ~ oo
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Buffer size

Figure 6.17 Probability of overflow vs. buffer size with full-queue efficiency= 84.40%

~ 0.2

i 0.15

; 0.1

:s 0.05
_g
e o

D..

--+-SCFB mode --OCFB mode

~ ~ ~ 8 ~ , ~ ~ ~ ~ ~
~ ~ ~ N N ,~ N N M M M

Buffer size

Figure 6.18 Probability of overflow vs. buffer size with full-queue efficiency= 90.60%

98

As explained previously for SCFB mode, Figure 6.15 tells us that 50% efficiency

with B bit buffer size guarantees the system does not have any buffer overflow. It can

also be seen from Figure 6.15 that OCFB mode suffers from higher probability of

overflow than SCFB mode when full-queue efficiency is 50% and buffer size is 128 bits.

The probability of buffer overflow is decreased with the increase of buffer size. When

buffer size is 256 bits, the probability of buffer overflow is close to 0.

For the implementation of this thesis, 256 bit buffer size is applied although for

SCFB mode at 50%, 128 bits would have been sufficient. There are several

considerations. One consideration is that the system efficiency higher than 50% may be

implemented. It requires larger buffer size to avoid buffer overflow. The second

consideration is that OCFB mode requires more buffer size than SCFB mode under the

same condition of efficiency and low buffer overflow. Hence, the selection of 256 bit

buffer size is quite reasonable although for SCFB mode only a buffer of 128 bits is

required.

Figure 6.16, Figure 6.17, and Figure 6.18 further presents that SCFB mode

requires significantly less buffer space than OCFB mode for the same probability of

overflow. OCFB mode needs more buffer size because of its tendency towards more

frequent resynchronization.

6.4.5 Relationship Between Probability of Overflow and Efficiency

Again, because of the frequent resynchronization of OCFB mode, when the

probability of overflow is the same and the buffer size is fixed, the OCFB efficiency is

significantly less than SCFB mode as shown in Figure 6.19, Figure 6.20, and Figure 6.21.

99

-+- OCFB rrode -111- SCFB rrode

rP ~ c.. <o '\<o '\<o ~ r-,.<o c..<o c..<o ~ c.. <o
'V(() !Dco <§> .._co 'V· ... co" co" ~ 'V'? [:)co 0)<>:>

'VI((> 'V· 'V"':- 'V·' 'V· 'V~ 'Vo; 'V·

Full-queue efficiency

Figure 6.19 Probability of overflow vs. full-queue efficiency with B = 192

-+- OCFB rrode -111- SCFB rrode

0.2 ~~.,----·--··-------~,_,.,..~
0.15

0.1

0.05

0

rP ~ c..<o '\<o '\<o ~ r-,.<o '\<o c..<o ~ c..<o
'V(() co<oco (()co -""co 'V· "'co" cp" ~<>:> 'V'? n.'Vco "cp<>:>

'V· 'V 'V· 'V· 'V 'V· 'V'P v

Full-queue efficiency

Figure 6.20 Probability of overflow vs. full-queue efficiency with B = 224

~
0

~ 0.2
0 0.15
0 0.1
>-= 0.05
:c 0
~
£

-+- OCFB rrode -111- SCFB rrode

Full-queue efficiency

Figure 6.21 Probability of overflow vs. full-queue efficiency with B = 256

6.5 Conclusion

This chapter analyzes the performance of SCFB and OCFB modes with respect to

the theoretical efficiency, the synchronization recovery delay, and the error propagation

100

factor. In addition, the relationships between efficiency, probability of buffer overflow,

and buffer size, are investigated. It is definite that both modes can obtain higher

efficiency than CFB mode. From the above analysis, it is concluded that OCFB mode can

obtain better error propagation and synchronization recovery delay than SCFB mode.

However, SCFB mode is able to achieve higher efficiency with a given buffer size and

lower probability of buffer overflow than OCFB mode. Furthermore, SCFB mode can

guarantee that the system with 50% efficiency and B bit buffer size would have no buffer

overflow. OCFB cannot guarantee no overflow for any level of efficiency.

Hence, SCFB mode is more suitable for high speed physical layer security than

OCFB mode.

101

Chapter 7

Conclusions and Future Work

7.1 Summary of the Research

This thesis investigates two modes of operation, Statistical Cipher Feedback

(SCFB) mode and Optimized Cipher Feedback (OCFB) mode. These two modes can

configure a block cipher to operate as a stream cipher and are categorized as self-

synchronizing stream ciphers.

SCFB mode improves efficiency over CFB mode by turning into OFB mode and

working as OFB mode most of time. SCFB mode also achieves the ability of self-

synchronization by checking for the sync pattern in ciphertext and turning into CFB

mode to periodically obtain the IV after the sync pattern is found. SCFB mode is

implemented in software to analyze the characteristics of synchronization recovery delay,

error propagation factor and the relationship between buffer size, probability of overflow,

and full-queue efficiency. In addition, design and hardware implementation of SCFB

mode was considered by using the Synopsis tool with 0.18 J.tm CMOS technology to

study the timing issues and hardware properties. In order to compare the performances of

SCFB mode and OCFB mode and the influences of the different methods of hardware

implementation on SCFB mode and OCFB mode, our SCFB mode implementation

adopts a parallel transfer method to encrypt a block of data and then store it into the

ciphertext queue. For simplicity, the implementation of SCFB mode in this thesis only

102

has approximately 10% efficiency. The key generation part is sitting in an idle state most

of time due to the usage of the same clock in the system to drive the block cipher and

data transfer. This situation can be changed by using different clocks to drive the block

cipher and the data transfer into and out of the system. Since, for a higher efficiency, the

block cipher clocking must be slower, it is simple to derive a slow block cipher clock

from the data link clock, thereby increasing efficiency. Thus the time of generating the

keystream can be extended which will shorten the idle time and improve the efficiency of

whole system. Parallel transfer would allow implementation of efficiency > 50%. The

penalty with parallel transfer, however, is that a large amount of hardware is required.

OCFB mode utilizes all of the output of the block cipher to XOR plaintext data to

produce ciphertext to attain high efficiency and recognizes the sync pattern in ciphertext

to synchronize the encryption system and the decryption system. The analysis of OCFB

mode adopts the same analysis method as SCFB mode. OCFB mode has been

implemented by software to study the performances of SRD, EPF, and the relationships

between buffer size, full-queue efficiency and probability of overflow. Further OCFB

mode has been designed and simulated in hardware by using the Synopsis tool with 0.18

~m CMOS technology. The method of hardware implementation on OCFB mode uses the

serial transfer from the PQ to the CQ. Serial transfer has relatively simple hardware

components but suffers from difficulties on the timing relationship between key

generation part, PQ, and CQ. The method of coordinating these three clock frequencies to

improve the system efficiency becomes an important part in the implementation of OCFB

mode. In this study, OCFB mode with 50% efficiency is implemented in hardware.

103

The analysis of the performances of OCFB mode and SCFB mode reveal that

under the same probability of overflow SCFB mode requires significantly less buffer size

compared with OCFB mode. With the same buffer size and probability of overflow,

SCFB mode can achieve higher efficiency than OCFB mode. However, due to the

characteristic that SCFB mode does not check for the sync pattern in the B-bit IV

collection phase, SCFB mode has the relatively large SRD compared with OCFB mode.

As well, SCFB mode has a marginally higher EPF than OCFB mode. SCFB mode can

obtain at least 50% theoretical efficiency without any buffer overflow and up to close to

100% efficiency with some buffer overflow. OCFB mode can achieve the efficiency from

0 to approximately 100% but always suffers from some buffer overflow.

The parallel implementation method of SCFB mode provides the simple timing

relationship and the lower requirement on buffer size but has complicated hardware

implementation. Serial implementation method of OCFB mode simplifies hardware

structure but increases the complexity on timing issues and constrains efficiency to no

higher than 50%.

From the analysis and comparison of SCFB mode and OCFB mode, it can be

concluded that SCFB mode and OCFB mode are quite similar modes except that OCFB

mode checks the sync pattern all the time without any exception while SCFB mode does

not check the sync pattern during the collection of the B-bit IV. Another difference

between these two modes is that OCFB mode always accepts ciphertext as the input of

the block cipher but SCFB mode turns into CFB mode from OFB mode according to the

occurrence of the sync pattern. This property of SCFB mode gives an attacker an

104

opportunity due to the birthday paradox because there is a possibility that IV is the same

as one of the outputs of block cipher when SCFB mode works as OFB mode. However,

this possibility is virtually negligible for a large block size such as 128 bits [5].

7.2 Suggestion for Future Work

A number of directions can be taken for future work. SCFB mode can be

implemented using serial transfer and the difference from parallel transfer can be

compared in the future. The hardware implementation efficiency of SCFB mode can be

improved by giving different clocks to drive data transfer and the block cipher. OCFB

mode can be implemented using parallel transfer and the difference from serial transfer

can be compared in the future. The hardware structures of SCFB mode and OCFB mode

can be optimized and the area utilization can be improved by adding more constraints.

Further hardware synthesis for these two modes can be done to fulfill the work of placing

and routing in a real VLSI device. FPGAs technologies today provide flexible design,

cost effective, reprogrammed capability compared with traditional fixed-logic ASICs.

These features make FPGAs technology become key system-level technology. SCFB

mode and OCFB mode can be implemented in FPGAs. Test on the real chip is required

as the important step for the chip design. As well, the current used mode in reality and

other new modes can be compared with SCFB mode and OCFB mode to select a better

mode which can be applied for physical layer of high speed network.

105

References

[1] National Institute of Standards and Technology, "Data Encryption Standard

(DES)", Federal Information Processing Standard 46, 1997

[2] National Institute of Standards and Technology, AES web site:

csrc.nist.gov/encryption/aes

[3] W. Stallings, Cryptography and Network Security, Prentice Hall press,

second edition, 2003

[4] A.J. Menezes, P.van Oorschot, and S.A. Vanstone, Handbook of Applied

Cryptography, CRC Press, 1997

[5] H. M. Heys, "Analysis of the Statistical Cipher Feedback Mode of Block

Ciphers," IEEE Transactions on Computer, vol.52, no. 1, pp. 77-92, Jan.

2003

[6] 0. Jung, S. Kuhn, C. Ruland, and K. Wollenweber, "Enhanced Modes of

Operation for the Encryption in High-Speed Networks and their Impact on

QoS," ACISP 2001, pp. 344-359

[7] J. Pitman, Probability, Springer-Verlag press, 1993

[8] Canadian Microelectronics Corporation, Tutorial on CMC's Digital IC

Design Flow, October 2002, Document ICI-096

[9] Y. EI-Sayed, Performance Analysis, Design and Reliability of the Balanced

Gamma Network, Ph.D. thesis, Memorial University, 1999

[10] O.Jung and C. Ruland, "Encryption with Statistical Self-Synchronization in

Synchronous Broadband Networks," Cryptographic Hardware and

106

Embedded Systems- CHES'99, Lecture Notes in Computer Science 1717,

Springer-Verlag, pp. 340-352, 1999

[11] F. Yang, H. M. Heys, "Implementation of Statistical Cipher Feedback

Mode", NECEC conference, Dec. 2002

[12] T. Ichikawa, T. Kasuya, and M. Matsui, "Hardware evaluation of the AES

finalists," in Proc. 3rd AES Candidate Conference, New York, pp. 279-285,

Apr. 2000

[13] A.Alkassar, A. Geraldy, B. Pfitzmann, A-R. Sadeghi, "Optimized Self­

Synchronizing Mode of Operation," Fast Software Encryption Workshop -

FSE 2001, Yokohama, Japan, Apr. 2001.

107

Appendix A

Waveforms of the Hardware

Implementation of SCFB Mode

The signals used in the waveforms are described below.

Name of Signal Function

/SCFB_ENCRYP _TEST_BENCHIRESET Reset the system

/SCFB_ENCRYP _TEST_BENCH/CLK System clock

/SCFB_ENCRYP _TEST _BENCH/SERIAL_IN Data bit incoming into PQ

/SCFB_ENCRYP _TEST_BENCH/SERIAL_OUT Data bit outgoing from CQ

/SCFB_ENCRYP _TEST_BENCH/IV

/SCFB_ENCRYP _TEST_BENCH/PATTERN

/SCFB_ENCRYP _TEST _BENCH/CV _IN

/SCFB_ENCR YP _TEST _BENCH/tscfbO/found

/SCFB_ENCRYP _TEST _BENCH/ tscfbO/num

/SCFB_ENCRYP _TEST_BENCH/
tscfbO/ready _data

/SCFB_ENCRYP _TEST_BENCH/
tscfbO/key _ready

/SCFB_ENCRYP _TEST_BENCH/ tscfbO/subkey

/SCFB_ENCRYP _TEST_BENCH/
tscfbO/Data_out

108

Initialization Vector

Sync pattern

Initial key

The flag that the sync patter
is found or not
The number needed by the
new IV
The flag to sign that the
new block of ciphertext data
is ready
The flag that the new block
of keystream is ready

The current keystream

The current plaintext data
sent out by the plaintext
subsystem

The waveforms of the encryption system

109

.......

.......
0

/SCFB_ENCRYP_TEST_BENCHVCLK

/SCFB_ENCRYP_TEST_BENCHVRESET

/SCFB_ENCRYP _TEST _BENCH/SERIAL_IN

/SCFB_ENCRYP _TEST _BENCHVSERIAL_OUT

!> /SCFB_ENCRYP _TEST_BENCH/IV(127:0)

r> /SCFB_ENCRYP _TEST_BENCH/PATTERN(7:D)

!>- /SCFB_ENCRYP _TEST _BENCH/CV _IN(255:D)

/SCFB_ENCRYP _TEST _BENCH/tscfbO/found

1> /SCFB_ENCRYP _TEST _BENCH/tscfb0/num(7:0)

0

0

FFDOAA550FF0330DFFCCOB332460777Bii FFOOAA550FF03300tFCCOB332460777B I
80

8525485254852548525485254852548525~~525495254952549525485254952549525

0

DO

/SCFB_ENCRYP _TEST _BENCHVtscfbOfready_data ll 0

/SCFB_ENCRYP _TEST _BENCHVtscfbOfkey_ready

1> /SCFB _ ENCRYP _TEST _BENCHVtscfbO/subkey(127:0) E8AAA6A 1301 03612470481 00070A 1 C06 pDDDDDOODOOOOOOOOOO* 8AAA6A 1301 036124* }

1> /SCFB_ENCRYP _TEST _BENCHVtscfbOf0ata_out(127:0) OOOOOOOOOOOODOOOODOOOOOOOOOOOOOO OOOODOOOOOOOOOOO)000000000000000 !/jl
1> fSCFB_ENCRYP _TEST _BENCHVtscfbO/ciphertext(127:0) E8AAA6A 1301 03612470481 00070A 1 COG, pDDOOOOOOOOOOOOOOOO* 8AAA6A 1301 036124* , •..•

........

........

........

/SCFB_ENCRYP_TEST_BENCH/CLK

/SCFB_ENCRYP_TEST_BENCHIRESET

/SCFB_ENCRYP _TEST _BENCH/SERIAL IN

/SCFB_ENCRYP _TEST _BENCH/SERIAL_ OUT

D>- /SCFB_ENCRYP _TEST _BENCH/IV(127:0)

1> /SCFB_ENCRYP _TEST _BENCf-VPA TTERN(7:0)

t> /SCFB_ENCRYP _TEST _BENCf-VCV _IN(255:0)

/SCFB_ENCRYP _TEST _BENCf-VtsclbO/found

t> /SCFB_ENCRYP _TEST _BENCf-VtsclbO/num(7:0)

/SCFB _ ENCRYP _TEST_ BENCf-VtsclbO/ready _data

Z58Z

0

0

0

FFOOAA550FF03300FFCCD833246D777

80

852549525495254952549525495254952

0

00

/SCFB_ENCRYP _TEST _BENCf-VtsclbO/key _ready II o

t> /SCFB_ENCRYP _TEST _BENCH/tsclbO/subkey(127:0) E8AAA6A 130103612470481 D0070A 1

t> /SCFB_ENCRYP _TEST _BENCH/tsclb0/Data_out(127:0) 7478D47C6903628027E5DB756495FC13

11> /SCFB ENCRYP TEST BENCf-VtsclbO/ciphertext(127:0) 9CD272D0541 3549260315AA5639FEO 15 - - - rr---~----------------------~

.......

.......
N

/SCFB_ENCRYP_TEST_BENCHICLK

/SCFB_ENCRYP_TEST_BENCHIRESET

/SCFB_ENCRYP _TEST_BENCHISERIAL IN

/SCFB_ENCRYP _TEST _BENCH/SERIAL_ OUT

1> /SCFB_ENCRYP _TEST _BENCHIIV(127:0)

1> /SCFB_ENCRYP _TEST _BENCH/PA TTERN(7:0)

1> /SCFB_ENCRYP _TEST _BENCH/CV _IN(255:D)

/SCFB_ENCRYP _TEST _BENCH/tsclbO/found

1> /SCFB_ENCRYP _TEST _BENCH/tsclb0/num(7:0)

/SCFB_ENCRYP _TEST _BENCH/tsclbO/ready_data

0

0

FFODAA55DFF03300FFCCDB33246077781:1

1

FFOOAA550FF03300FFCCtB332460777B fT
80

95254952549525495254952549525495251r52549525495254952549525f5~54952549525*1
DE

/SCFB_ENCRYP _TEST _BENCH/tsclbO/key_ready II 0

11> /SCFB_ENCRYP _TEST _BENCH/tsclbO/subkey(127:0) 134F4AD15E5COOC9895BFF703F9E5449 t:ol-\1-\1-\oR 1.:>u 1 u.:>o 1 u+r -II.:>'+ '+RU 1 ::.t:::.L.uu~..-::~ · y

1> /SCFB_ENCRYP _TEST _BENCH/tsclb0/Data_out(127:0) DOOOOOOOOOOOOOOODD00000000007F11 I7478D47C6903628027E5087 ~OOOOOOOOOOOOO* f
1> /SCFB_ENCRYP _TEST _BENCHitsclbO/ciphertext(127:0) 134F4AO 1 5E5CDDC9895BFF703F9E2858 j9CD2720054135492603*167* 1 34F 4AD 15E5CO* :l:i!i

1--'
1--'
w

[lie _Edit _Marker §oTo Y)ew

/SCFB_ENCRYP_TEST_BENCHICLK

/SCFB_ENCRYP_TEST_BENCHIRESET

/SCFB_ENCRYP _TEST _BENCHISERIAL_IN

/SCFB_ENCRYP _TEST_BENCHISERIAL_OUT

1> /SCFB_ENCRYP _TEST_BENCHIIV(127:0)

1> /SCFB_ENCRYP _TEST_BENCH/PATTERN(7:0)

1> /SCFB_ENCRYP _TEST _BENCH/CV _IN(255:0)

/SCFB_ENCRYP _TEST _BENCH/tscfbO/found

1> /SCFB_ENCRYP _TEST _BENCH/tscfb0/num(7:0)

0

0

FFOOAA550FF03300FFCCDB33246D77

80

9525495254952549525495254952549525~ll52549
0

00

/SCFB_ENCRYP _TEST _BENCH/tscfbO/ready_data li 0

/SCFB_ENCRYP _TEST _BENCH/tscfbO!key_ready

1> /SCFB_ENCRYP _TEST _BENCH/tscfbO/subkey(127:0) 7 A09F 1571 C98A6DA 79DF79C583FF3656 134F4AO 15E5CODC* 17 A09F 1571 C98A6DA 79D* '~

1> /SCFB_ENCRYP _TEST _BENCH/tscfbO/Data_ out(127:0) 00000000000000000000000000007F 11 0000000000000 000000000000007F 11

1> /SCFB_ENCRYP _TEST _BENCH/tscfb0/ciphertext(127:0) 7 A09F 1571 C98A6DA 79DF79C583FF 4947 134F4AO 15E5CODC"I7 A09F 1571 C98A6DA 79D* ~f'

The waveforms of the decryption system

114

1--"
1--"
Vl

Eile J;:dit Marker §oTo Window

/SCFB_OECRYP_TEST_BENCHICLK

/SCFB_OECRYP_TEST_BENCI-VRESET

/SCFB_OECRYP _TEST _BENCHISERIAL_IN

/SCFB_OECRYP _TEST _BENCH/SERIAL_ OUT

!> /SCFB_OECRYP _TEST _BENCH/IV(127:0)

!> /SCFB_OECRYP _TEST _BEN CHIP A TTERN(7:0)

!> /SCFB_OECRYP _TEST _BENCHICV _IN(255:0)

/SCFB_OECRYP _TEST _BENCI-VtsclbO/found

0

0

0

FFOOAA550FF03300FFCCOB332460777B

80

8000000000000000000000000000000000001 800000000000 000000000000000000000000*

0

,.._ /SCFB_OECRYP _TEST _BENCI-Vtsclb0/num(7:0) II 00

/SCFB_OECRYP _TEST _BENCHitsclbO/ready_data 0

/SCFB_OECRYP _TEST _BENCH/tsclbOikey_ready ,

!> /SCFB_OECRYP _TEST _BENCH/tsclb0/subkey(127:0) E8AAA6A 130103612470481 00070A 1 C06 00000000000* 8AAA6A 130103612470481 0*
1

.••

1> /SCFB_OECRYP _TEST _BENCI-Vtsclb0/0ata_out(127:0) oooooooooooooooooooooooooooooooo 000000000 0000000000000000000000 k~

1> /SCFB_OECRYP _TEST _BENCI-VtsclbO/ciphertext(127:0) E8AAA6A 130103612470481 00070A 1 C06 00000000000* 8AAA6A 130103612470481 O*l

"""'"' """'"' 0\

/SCFB_OECRYP_TEST_BENCHICLK

/SCFB_OECRYP _TEST _BENCH/RESET

/SCFB_OECRYP _TEST _BENCH/SERIAL_IN

/SCFB_OECRYP _TEST_BENCH/SERIAL_OUT

1>- /SCFB_OECRYP _TEST _BENCHIIV(127:0)

1>- /SCFB_OECRYP _TEST _BENCH/PATTERN(7:0)

1>- /SCFB_OECRYP _TEST _BENCH/CV _IN(255:0)

/SCFB_OECRYP _TEST _BENCH/tscfbOifound

2560

0

0

0

FFOOAA550FF03300FFCCDB33246D777B

80

800000000000000000000000000000000

0

1>- /SCFB_OECRYP _TEST _BENCH/tscfbO/num(7:0) II 00

/SCFB _ OECRYP _TEST _BENCH/tscfbO/ready _data

/SCFB_OECRYP _TEST _BENCH/tscfbO/key_ready 0

1>- /SCFB_OECRYP _TEST _BENCH/tscfb0/subkey(127:0) E8AAA6A 130103612470481 00070A 1 C06

1>- /SCFB_OECRYP _TEST _BENCH/tscfb0/Data_out(127:0) 9CD272DD5413549260315AA5639FE015

1> /SCFB_OECRYP _TEST _BENCH/tscfb0/ciphertext(127:0) 7478D47C6903628027E508756495FC13

1-'
1-'
-..l

[lie _Edit .Marker §o To YJew

/SCFB_DECRYP_TEST_BENCHVCLK

/SCFB_DECRYP_TEST_BENCHVRESET

/SCFB_DECRYP _TEST_BENCH/SERIAL IN

/SCFB_DECRYP _TEST _BENCHVSERIAL_OUT

1> /SCFB_DECRYP _TEST _BENCHVIV(127:0)

I> /SCFB_DECRYP _TEST_BENCH/PATTERN(?:O)

t>- /SCFB_DECRYP _TEST _BENCH/CV _IN(255:0)

/SCFB DECRYP TEST BENCH/tscfbO/found

;moo

0

0

FFODAA550FF0330DFFCCDB33246D777B

80

8000000000000000000000000000000000001 80000000000000000000 000000000000000*

1> /SCFB=DECRYP =TEST =BENCH/tscfbO/num(?:O) II DE

/SCFB_DECRYP _TEST _BENCH/tscfbO/read)!_data

/SCFB_DECRYP _TEST _BENCH/tscfbO/key_ready 0

1> /SCFB_DECRYP _TEST _BENCH/tscfb0/subkey(127:0) 134F4A015E5CODC9895BFF703F9E5449

1> /SCFB_DECRYP _TEST _BENCH/tscfb0/Data_out(127:0) 00000000000000000000000000006B58

1> /SCFB_DECRYP _TEST _BENCH/tscfbO/ciphertext(127:0) 134F 4AO 15E5CODC9895BFF703F9E3F 11

.......

.......
00

/SCFB _ DECRYP _TEST_ BENCH/CLK

/SCFB_DECRYP_TEST_BENCHIRESET

/SCFB_DECRYP _TEST _BENCHISERIAL_IN

/SCFB_DECRYP _TEST _BENCH/SERIAL_ OUT

t»- /SCFB_DECRYP _TEST _BENCH/IV(127:0)

t»- /SCFB_DECRYP _TEST_BENCH/PATTERN(7:0)

11> /SCFB_DECRYP _TEST _BENCH/CV _IN(255:0)

/SCFB_DECRYP _TEST _BENCHitsctbO/found

0

FFOOAA550FF03300FFCCD833246D7778

t»- /SCFB_DECRYP _TEST _BENCH!tsctbO/num(7:0) II 00

/SCFB_DECRYP _TEST _BENCH!tsctbO/ready_data 0

/SCFB_DECRYP _TEST _BENCH!tsctbO/key_ready

t»- /SCFB_DECRYP _TEST _BENCH/tsctbO/subkey(127:0) 7 A09F 1571 C98A6DA 79DF79C583FF3656

1> /SCFB_DECRYP _TEST _BENCH!tsctb0/Data_out(127:0) 00000000000000000000000000006858

t»- /SCFB_DECRYP _TEST _BENCHitsctbO/ciphertext(127:0) 7 A09F 1571 C98A6DA 79DF79C583FF5DOE

0000000000000000000000000000*

The plaintext data in the input file of the encryption system:

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

119

The plaintext data recovered in the output file of the decryption system:

00

00

00000000000000000000000000001111111111111111111111

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

120

Appendix B

Waveforms of the Hardware

Implementation of OCFB Mode

The signals used in the waveforms are described below:

Name of Signal

/OCFB_ENCRYPT _TEST _BENCH/RESET

/OCFB_ENCRYPT_TEST_BENCH/CLK1

/OCFB_ENCRYPT_TEST_BENCH/ ten0/en0/CLK2

/OCFB_ENCRYPT_TEST_BENCH/CLK3

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN

/OCFB_ENCRYPT_TEST_BENCH/SERIAL_OUT

/OCFB_ENCRYPT_TEST_BENCH/IV

/OCFB_ENCR YPT _ TEST_BENCH/KEY

/OCFB_ENCRYPT_TEST_BENCH/ tenO/key_done

/OCFB_ENCRYPT_TEST_BENCH/ tenO/val

/OCFB_ENCR YPT _TEST _BENCH/ tenO/plaintext

/OCFB_ENCR YPT _TEST _BENCH/ tenO/en llk4/eq

/OCFB_ENCR YPT _TEST _BENCH/ tenO/keystream

/OCFB_ENCRYPT _TEST _BENCH/
ten0/en1/k4/cc 1/i_counter

121

Function

Reset the system

System clock

Clock for Leaving from PQ
and incoming to
CQ

Clock for block cipher

Data bit incoming into PQ

Data bit outgoing from CQ

Initialization Vector

Initial key

Done signal for encryption
of block cipher

Validation of data

Plaintext bit outgoing from
PQ

Flag for sync pattern

Keystream bits

Counter

The waveforms of the encryption system

122

.........
N
VJ

/OCFB_ENCRYPT _TEST _BENCH/RESET

/OCFB_ENCRYPT _TEST _BENCH/CLK 1

/OCFB_ENCRYPT _TEST _BENCH/CLK3

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN

/OCFB _ENCRYPT_ TEST_ BENCH/SERIAL_ OUT

11> /OCFB_ENCRYPT _TEST _BENCH/IV(127:D)

11> /OCFB_ENCRYPT _TEST _BENCH/KEY(255:D)

/OCFB_ENCRYPT _TEST _BENCH/tenD/key _done

/OCFB _ENCRYPT_ TEST_ BENCH/tenD/val

/OCFB_ENCRYPT _TEST _BENCH/tenD/plaintext

D

D

D /OCFB_ENCRYPT _TEST _BENCH/tenD/en 1/k4/eq

/OCFB_ENCRYPT _TEST _BENCH/tenD/keystream

/OCFB_ENCRYPT _TEST _BENCH/tenD/en1/k4/cc1/i_counter 11111

/OCFB_ENCRYPT _TEST _BENCH/tenD/ciphertext

,.._..
N
+:>.

/OCFB_ENCRYPT _TEST _BENCH/RESET

/OCFB_ENCRYPT _TEST _BENCH/CLK 1

/OCFB_ENCRYPT_TEST_BENCH/CLK3

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_ OUT

1>- /OCFB_ENCRYPT _TEST _BENCH/IV(127:D)

1>- /OCFB_ENCRYPT _TEST _BENCH/KEY(255:D)

/OCFB_ENCRYPT _TEST _BENCH/tenD/key_done

/OCFB_ENCRYPT _TEST _BENCH/tenD/val

/OCFB_ENCRYPT _TEST _BENCH/tenD/plaintext

D

D

D

/OCFB_ENCRYPT _TEST _BENCH/tenD/en 1/k4/eq ll D

/OCFB_ENCRYPT _TEST _BENCH/tenD/keystream II D

/OCFB ENCRYPT_ TEST _BENCH/tenD/en 1/k4/cc 1/i_counter 118

/OCFB_ENCRYPT _TEST _BENCH/tenD/ciphertext

.......
N
Ul

/OCFB_ENCRYPT _TEST _BENCH/RESET

/OCFB_ENCRYPT _TEST _BENCH/CLK 1

/OCFB_ENCRYPT _TEST _BENCH/CLK3

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN

/OCFB _ENCRYPT_ TEST _BENCHISER I AL _OUT

1> /OCFB_ENCRYPT _TEST _BENCI-VIV(127:D)

1> /OCFB_ENCRYPT _TEST _BENCI-VKEY(255:D)

/OCFB_ENCRYPT _TEST _BENCH/tenD/key_done

/OCFB_ENCRYPT _TEST _BENCH/tenD/val

/OCFB_ENCRYPT _TEST _BENCH/tenD/plaintext

/OCFB_ENCRYPT _TEST _BENCH/tenD/en1/k41eq

/OCFB _ENCRYPT_ TEST_ BENCH/tenD/keystream

D

D

D

D

D

D

/OCFB_ENCRYPT _TEST _BENCI-VtenD/en1/k41cc1/i_counter ll11 9

/OCFB_ENCRYPT _TEST _BENCI-VtenD/ciphertext

.........
N
0\

/OCFB_ENCRYPT _TEST _BENCH/RESET

/OCFB_ENCRYPT _TEST _BENCH/CLK 1

/OCFB_ENCRYPT _TEST _BENCH/CLK3

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_IN

/OCFB_ENCRYPT _TEST _BENCH/SERIAL_ OUT

1> /OCFB_ENCRYPT _TEST _BENCH/IV(1 Z7:D)

1> /OCFB_ENCRYPT _TEST _BENCH/KEY(Z55:D)

/OCFB_ENCRYPT _TEST _BENCH/tenD/key_done

/OCFB_ENCRYPT _TEST _BENCH/tenD/val

/OCFB_ENCRYPT _TEST _BENCH/tenD/plaintext

/OCFB_ENCRYPT _TEST _BENCH/tenD/en1/k41eq

/OCFB_ENCRYPT _TEST _BENCH/tenD/keystream

D

D

D

D

D

D

/OCFB_ENCRYPT _TEST _BENCH/tenD/en1/k4/cc1/i_counter ll 119

/OCFB_ENCRYPT _TEST _BENCH/tenD/ciphertext

The waveforms of the decryption system

127

..........
N
00

file f.dit M_art<er .§oTo Ylew .Qptions '!'llndow

~JIIIll!liifiilillllllll z+l z-IIIIE

/OCFB_DECRYPT _TEST _BENCH/RESET

/OCFB_DECRYPT_TEST_BENCH/CLKl

/OCFB_DECRYPT_TEST_BENCHICLK3

/OCFB_DECRYPT _TEST _BENCHISERIAL_IN

/OCFB_DECRYPT _TEST _BENCH/SERIAL_ OUT

1> /OCFB_DECRYPT _TEST _BENCH/IV(127:D)

1> /OCFB_DECRYPT _TEST _BENCH/KEY(255:D)

/OCFB_DECRYPT _TEST _BENCH/tenD/key_done

/OCFB_DECRYPT _TEST _BENCH/tenD/val

/OCFB_DECRYPT _TEST _BENCH/tenD/plaintext

/OCFB_DECRYPT _TEST _BENCH/tenD/en1/k4/eq

/OCFB_DECRYPT _TEST _BENCH/tenD/keystream

D

D

D

D

/OCFB _DECRYPT_ TEST _BENCH/tenD/en 1/k4/cc 1/i_ counter I! 1

/OCFB_DECRYPT _TEST _BENCH/tenD/ciphertext

.........
N
10

/OCFB_DECRYPT _TEST _BENCH/RESET

/OCFB_DECRYPT _TEST _BENCH/CLK 1

/OCFB_DECRYPT _TEST _BENCHICLK3

/OCFB_DECRYPT _TEST _BENCH/SERIAL_IN

/OCFB_DECRYPT _TEST _BENCH/SERIAL_ OUT

t> /OCFB_DECRYPT _TEST _BENCHIIV(127:D)

t> /OCFB_DECRYPT _TEST _BENCH/KEV(255:D)

/OCFB_DECRYPT _TEST _BENCH/tenD/key_done

/OCFB_DECRYPT _TEST _BENCH/tenD/val

/OCFB_DECRYPT _TEST _BENCH/tenD/plaintext

/OCFB_DECRYPT _TEST _BENCH/tenD/en1/k41eq

/OCFB_DECRYPT _TEST _BENCH!tenD/keystream

/OCFB_DECRYPT _TEST _BENCH/tenD/en1/k41cc1/i_counter

/OCFB _DECRYPT_ TEST _BENCH/tenD/ciphertext

D

D

D

........
UJ
0

/OCFB_DECRYPT _TEST _BENCH/RESET

/OCFB_DECRYPT _TEST _BENCH/CLK 1

/OCFB_DECRYPT _TEST _BENCH/CLK3

/OCFB_DECRYPT _TEST _BENCH/SER IAL_IN

/OCFB_DECRYPT _TEST _BENCH/SERIAL_ OUT

1> /OCFB_DECRYPT _TEST _BENCH/I V(127:D)

1> /OCFB_DECRYPT _TEST _BENCH/KEY(255:D)

/OCFB_DECRYPT _TEST _BENCH/tenD/key_done

/OCFB_DECRYPT _TEST _BENCH/tenD/val

/OCFB_DECRYPT _TEST _BENCH/tenD/plaintext

D

D

D

D

D

D /OCFB_DECRYPT _TEST _BENCH/tenD/en 1/k41eq

/OCFB_DECRYPT _TEST _BENCH/tenD/keystream

/OCFB_DECRYPT _TEST _BENCH/tenD/en1/k4/cc1/i_counter 11128

/OCFB_DECRYPT _TEST _BENCH/tenD/ciphertext

/OCFB_DECRVPT _TEST _BENCH/RESET D

/OCFB_DECRVPT _TEST _BENCH/CLK 1 D

/OCFB_DECRVPT _TEST _BENCH/CLK3 D

/OCFB_DECRVPT _TEST _BENCH/SERIAL_IN D

/OCFB_DECRVPT _TEST _BENCH/SERIAL_ OUT

1>- /OCFB_DECRVPT _TEST _BENCH/IV(1 27:D)

1>- /OCFB_DECRVPT _TEST _BENCH/KEV(255:D)

....... /OCFB_DECRVPT _TEST _BENCH/tenD/key_done liD
w
....... /OCFB_DECRVPT _TEST _BENCH/tenD/val

/OCFB_DECRVPT _TEST _BENCH/tenD/plaintext

IOCFB _DE CRYPT_ TEST_ BENCHAena'en1/k4/cq r
/OCFB_DECRVPT _TEST _BENCH/tenD/keystream D

/OCFB DECRYPT TEST_BENCH!tenD/en1/k4/cc1/i_counter , 111 111 ! i!! 0; '111'1:1 :::::i: Cl

/OCFB_DECRVPT _TEST _BENCH/tenD/ciphertext

The plaintext data in the input file of the encryption system:

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

132

The plaintext data recovered in the output file of the decryption system:

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

133

