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ABSTRACT

Data integration systems offer wuniform access to a set of
autonomous and heterogeneous data sources. One of the main
challenges in data integration is reconciling semantic differences
among data sources. Approaches that been used to solve this
problem can be categorized as schema-based and attribute-based.
Schema-based approaches use schema information to identify the
semantic similarity in data; furthermore, they focus on reconciling
types before reconciling attributes. In contrast, attribute-based
approaches use statistical and structural information of attributes
to identify the semantic similarity of data in different sources. This
research examines an approach to semantic reconciliation based on
integrating properties expressed at different levels of abstraction
or granularity using the concept of property precedence. Property
precedence reconciles the meaning of attributes by identifying
similarities between attributes based on what these attributes
represent in the real world. In order to use property precedence

for semantic integration, we need to identify the precedence of



attributes within and across data sources. The goal of this research
is to develop and evaluate a method and algorithms that will
identify precedence relations among attributes and build property

precedence graph (PPG) that can be used to support integration.
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1 Introduction

Data is scattered everywhere. It can be isolated in local databases
or shared on the World Wide Web. The invention of the Internet
and emergence of the World Wide Web makes it easier for people
and organizations to access and share data all around the world.
The shared data can be structured, semi-structured or
unstructured. However, the amount of structured data in the web
increased after the World Wide Web Consortium (W3C) adapted a
new vision for the web. This vision is represented in the sematic
web(Berners-Lee, Hendler, & Lassila, 2001), and it recommends
sharing data in the Resource Description Framework (RDF) data

model, which tends to be structure format.

Large enterprises may have dozens or hundreds of disparate and
autonomous data sources and these data sources can be found
online, on the Web or inside the local network of the enterprise.
These sources may vary on multiple dimensions, such as the data
model and the query language that they support. As a result of such

situations, automating a lot of straight-forward processes inside



the enterprise or providing business support decisions through
Business Intelligence (BI) tools is impossible because of the lack of
communication between these data sources. To provide such
communication and integration between data sources, data
integration can be used. Moreover, modern enterprises are more
interested in establishing such communication with other data
sources outside the boundaries of their systems to provide
complete services to customers and to enhance the capabilities of
the (BIl) tools by providing more useful information from multiple

sources.

The traditional way to solve the data integration problem was to
use data warehousing, which is based on transforming data from
multiple sources and store it in a central database through three
main processes: extracting, transforming and loading (ETL). Data
warehouse concept was originally developed to perform deeper
analysis for enterprises (Doan, Halevy, & Ives, 2012). But industry
adapted data warehousing as an approach for data integration. This
approach for data integration did not last long as a standard due to
a lot of disadvantages such as high cost, long implementation time

and out of date data.



In the late 1990’s, a virtual integration approach or Enterprise
Information Integration (EIl) - as it is known in the industrial field -
moved from labs to the industry area (Halevy, Rajaraman, & Ordille,
2006). This approach does not require transforming data and
storing them in a central database, but rather provides a uniform
interface called mediated schema or global schema for posing
gqueries. This mediated schema shows data as if it is stored in a

single database.

Nowadays, the concept of data integration refers to virtual
integration approach for data integration. Halevy (2001) defined
data integration systems as systems that provide a uniform query
interface to a multitude of autonomous and heterogeneous data

sources.

1.1 Motivation

To build a data integration system, the application designer needs
to specify the mediated schema and sources description. A
mediated schema captures relevant domain aspects and data source

descriptions that will be used to link sources with the mediated



schema. Each source description contains a schema that describe
the source content and a semantic mapping that maps relevant
attributes in the data source to the corresponding attributes in the
mediated schema. This mapping process requires data semantic
reconciliation. Parsons and Wand (2003) argue that the proposed
approaches for attribute-based semantic reconciliation do not use
the real semantic information that can be extracted from attributes
or the data itself, rather use statistical or structural information
about the attributes. Therefore, they propose a new approach for
semantic reconciliation based on the concept of property

precedence.

Creating a semantic mapping manually is a labor-intensive and
error-prone process. Automating this process is one of the main

challenges in data integration field.

To construct matches between attributes using the real semantics
of data and to automate the creation of sematic matches between
attributes my thesis will focus on the following: Examine property
precedence approach for semantic reconciliation, Use a bottom up

approach (subsumed scope of attributes and data) for identifying



the ©precedence relations between attributes, Develop and
implement algorithms for building property precedency graph (PPG)
that can be used as basis for the integration process, Show how to
reformulate the queries posed against DBpedia data source using

PPG.

Building PPG automatically to -enable the use of property
precedence approach in semantic reconciliation is the main

contribution for my research.

1.2 Thesis outline

In the next chapter | provide a comprehensive review of the
literature in information integration. Subsequently, | discuss the
problem of semantic heterogeneity reconciliation and introduce
Property Precedence approach for semantic reconciliation. In
Chapter 4 | show how to identify all local precedence relations
between attributes in data source and how to use the precedence
relations in reformulating queries. In Chapter 5 | discuss the results
of implementing the algorithms used to build property precedence

graph on DBpedia data source.



2 Chapter 2: Literature Review

2.1 Data Integration

Data integration systems are widely used in applications that need
to query multiple independent and heterogeneous data sources.
According to Ventana research value index (San ,2012) more than
half of organizations integrate six or more data sources. Moreover,
they projected that this number should reach to 68% of
organizations by 2013. The values index results are based on a
survey that target 13 vendor with relevant data integration

products.

The main purpose of data integration systems is to fetch data on
demand from disparate data sources and get the most up-to-date
version of data. Solving the data integration problem is hard for
several reasons: data sources may run on different hardware, data
sources may use different data models, each data source may
support a different query language, data sources may have
heterogeneous schema and the values of attributes in the different

data sources may represented in different ways.



As mentioned in Chapter 1 data warehousing and virtual integration
(EIl) can be used to solve data integration problem. The main focus
on this thesis is on virtual integration. Virtual integration provides
users with a global schema (mediated schema) to pose their queries
and uses mappings to reformulate the queries to queries over the
data sources. Figure 1-1 shows the architecture of virtual

integration system.

Mediated Schema

Wrapperl Wrapper2 Wrapper3

DataSourcel DataSource? DataSource3

Figure 1-1: Virtual Integration Architecture



On the bottom of figure 1-1, we have the data sources involved in
the integration process. Data sources may vary in different
dimensions, for example, the data model that they use and the
guery language that they support. Above each data source we have
a program called a wrapper. The wrapper’s role is to send queries
to data sources, receive answers, and possibly apply some
transformation processes on the queries and the received answer.
For example, a wrapper for a website would receive queries posed
on the mediated schema and transform them to HTTP request to
that website, when the answer comes back as a HTML page, the
wrapper will extract the query answer tuples from the webpage and

send them to the mediated schema.

Users interact with a data integration system by posing their
gueries over the mediated schema (Global Schema), which provides
a generic interface for users to pose queries. A mediated schema is
a logical schema that does not store any data. It contains a subset
of data sources’ attributes that are relevant to the integration

application domain. As we explain in the next section, source



description plays the main role in transforming queries from the

mediated schema into queries over the data sources.

2.2 Source Descriptions

In data integration systems users pose their queries over the
mediated schema. Query processing in data integration system
begins by reformulating each query over the mediated schema into
a set of queries over the data sources. Then these queries are
executed efficiently with an engine that creates execution plans for
queries over data sources. To accomplish the reformulation
process, data integration system must know which sources are
available, which data exists in each source and how to access these
sources. A source description in the data integration system

provides such information.

Source descriptions also contain other information, such as
information to optimize queries for data sources, what type of
gquery the source supports and the access pattern limitation that
will prevent illegal access patterns. Such information will help in

transforming the logical query plan into an executable plan.



2.3 Schema Mapping

Schema mapping is one of the main components in source
descriptions (Halevy, Rajaraman, & Ordille, 2006) . It explains what
data exists in the data source and how the terms in this source
schema are related to the terms in another target schema, in other
words, it is a set of high level expressions that describe the
relationship between two schemas regarding the implementation

(mediated schema and source schema in data integration system).

Schema mapping is used in reformulating queries over mediated
schema into a set of appropriate queries over data sources. The
result of the reformulation process is called a logical query plan. In
addition to wusing schema mapping to support the query
reformulation process in data integration systems, schema mapping
is used in data exchange and data warehouse. In data warehouse
schema mapping is used to map data from the source schema to the
target schema, which is usually a data warehouse. Furthermore, it
may be used in merging two autonomous data sources since it

provides the semantic relationship between these two sources.

10



As a result of the query reformulation process we get the logical
query plan, which is a query expression that is related only to the
relations on the data sources. The logical query plan will be later
optimized for efficiency. The problem of creating a logical query
plan is related with answering query over views (Levy, Rajaraman,

& Ordille, 1996).

Schema mapping should be able to handle different types of
heterogeneity and reconcile these heterogeneities by discovering
the semantics between related elements. Even if these schemas
refer to the same domain, such heterogeneity exists because data
sources were not created for the exact purpose and their schema is
built by different designers. Therefore each schema has a different
view and naming scheme for schema elements. Heterogeneity may

be in schema level or in data level.

Schema level heterogeneity may takes different forms, such as:

e Different names for relations and attributes to refer to the

same real world object and its properties. For example, using

11



the attribute “rating” or the attribute “classification” and

o« ”

sex” or “gender”.

Multiple attributes in one schema correspond to a single
attribute in another. For example, “first_name” attribute and
“last_name” attribute in one schema refer to the “name”
attribute in another.

Tabular organization is when the number of relations s
different in each schema, the coverage and details of each
data source are also different, since each data source created
for different purpose (Doan, Halevy, & lves, 2012).

Entities or attributes may have the same name but this does

not mean that they refer to the same concept.

Data level heterogeneity may take different forms, such as:

Different measurements units. For example, GPA using letter
scale versus numerical values.
Different strings used to refer to the same real world

concept, like using HP as company name or Hewlett Packard.

12



Reconciling heterogeneity is a hard process because schemas do
not capture all semantics for data. Even if some schemas provide a
written description for its tables and attributes, it is still hard to
understand the intended meaning of the data. Moreover, schema
clues are unreliable since schemas may use the same words to refer
to different real-world concepts and semantics can be subjective.
Using the priori approach for reconciling heterogeneity, in which
database designers follow domain standards for modeling data
(e.g., use HL7 for modeling data in health care domain), this is not

sufficient solution for reconciling heterogeneity.

Creating standards is not a practical approach since it is hard to
specify the boundary of each domain and it is hard to agree on the
standards because some organizations already establish their own
schemas and follow their own standards. However, such an
approach works if there are a small number of attributes and
tables, for example, exchanging money between banks or exchange

patient information between different health care systems.

13



2.3.1 Schema Mapping Modeling Languages

The language of schema mapping should be flexible by allowing the
addition of new sources easily, and enabling the expression of a
wide variety of relations between data sources. It should also be
efficient in reformulating queries over the mediated schema. Three
different modeling languages for schema mapping: Local-As-View
(LAV), Global-As-View (GAV) and Global-Local-As-View (GLAV) which

combines features from both LAV and GAV.

Global-As-View (GAV) schema mapping modeling language was used
before the LAV approach in data integration systems. It is first
introduced in research project TSIMMIS(Garcia-Molina et al., 1997).
In GAV each relation (table, class or entity) in the mediated schema
(Global schema) is specified as a view over the data sources
relations. To reformulate a query using GAV schema mapping, we
simply need to unfold the query posed over the mediated schema
by replacing the expressions in that query with the corresponding

view according to the schema mapping definition.

14



This modeling language of schema mapping is suitable for systems
that are based on a stable number of data sources. Adding a new
data source for such systems will affect the definition of the
mediated schema mapping, which is defined as a view over the data
sources. As a result, adding such sources will require redefining the
affected definitions. MOMIS (Mediator envirOnment for Multiple
Information Sources) (Beneventano et al., 2000) system and The
TSIMMIS (Standford-IBM Manager of Multiple Information Sources)
(Garcia-Molina et al., 1997) are examples of data integration

systems that use GAV schema mapping modeling language.

Local-As-View(LAV) schema mapping modeling language was one of
the main contributions of the information manifold project for data
integration (Kirk, Levy, Sagiv, & Srivastava, 1995) which includes
integrating more than 100 data sources, most of them on the World
Wide Web. In LAV, each relation in the source schema is described
as a view over the mediated schema. This modeling language for
schema mapping is suitable for systems that have a stable mediated
schema. Adding data sources using LAV does not require modifying
schema mapping relations on other sources and it does not require

modifying the mediated schema, since schema mapping for each

15



source is defined independently from other data sources. However,
guery reformulation using LAV is more complicated than GAV so
this leads to increase the computing complexity for reformulation
process. The IM (Information Manifold) data integration
system(Manolescu, Florescu, & Kossmann, 2001) is an example of

systems that use LAV.

Global-Local-As-View (GLAV) was first introduced in Navigational
Plans For Data Integration (Friedman, Levy, & Millstein, 1999).
GLAV combines the two approaches mentioned above since it
defines mapping by describing the relation between views over
data sources and views over the mediated schema. This language
has mainly been proposed to model data sources that are websites
which need the expressive power of both GAV and LAV. GLAV s
more expressive than both previous schema mapping languages and

the query rewriting is not harder than LAV (Friedman et al., 1999).

2.3.2 Schema Mapping Generation

To build schema mapping we begin by specifying semantic matches

between schemas and then elaborate them into mapping. Dividing

16



the process into two steps, schema matching and schema mapping,
will reduce the overall complexity of the whole process. We begin
by schema matching because it is easier to obtain matches from
designers based on their domain knowledge; such matches require
designers to reason about individual schema elements. Matches can
be found by designers in a visual interface that represents both
schemas (source and mediated) elements. However, such a
techniqgue is tedious, error-prone, labor-intensive and time
consuming in case of a large number of schemas with a large

number of tables and attributes.

Automatic or semi-automatic schema matching system provides a
more convenient way for schema matching, it provides designers
with a set of matches and gives them the ability to refine, confirm
or reject matches. In contrast, manual schema matching systems
require designers to build such matches from the scratch.
Automatic matching can be done using different heuristics but it
does not guarantee accurate matches. One type of heuristic might
be based on the similarities between the schema element’s names.
Another type of heuristic might be based on the similarities

between schema element’s values or on how attributes are used in

17



queries. To provide a more accurate system, most schema matching

systems combine multiple matching techniques.

Most schema matching solutions focus on one-to-one matches
where one element in the source schema corresponds to another
element in the mediated schema. However, matches in real world
schemas can be more complex - such as many-to-one - where more
than one source schema element corresponds to one element in the
mediated schema. For example, name attribute in the mediated
schema corresponds to the <concatenation of firstName and

lastName attributes in the source schema.

Figure 1-2 shows the architecture of a schema matching system

(Doan et al., 2012).

18



[ Math Selector ]

Constraint Enforcer

Combiner

[ Matcher 1 ] [ Matcher n ]

Figure 2-1: schema Matching System Architecture

Schema matching system components:

e Matchers: take two schemas, source schema S and mediated
schema M to produce a similarity matrix. Each element in this
matrix represents a pair-one from S and the other from M.
These pairs will assigned a value between 0 and 1, were a
higher value means the matcher is more confident that this

match is correct.

19



e Combiner: merges all similarity matrices output from
matchers to produce one similarity matrix. Combiner may use
maximum, minimum, average or more complex techniques to
merge these matrices.

e Constraints Enforcer: uses domain knowledge to prune the
matches that do not convey domain constraints. It transforms
the matrix produced by the combiner to another matrix that
better reflects the domain constraints.

e Match Selector: produce the matches from the similarity
matrix output from the constraint enforcer. It may use
different techniques to do that, the simplest one is by
selecting all pairs with similarity score that exceed particular

value and return them as a match set.

Schema matching systems wusually perform repetitive tasks to
generate the matches, for example, comparing tens or hundreds of
data sources against the mediated schema. Therefore some schema
matching systems use machine learning techniques to reuse the
previous matches and learn from them to produce new matches.

LSD (Learning Source Descriptions) is one of the systems that uses

20



machine learning techniques in schema matching (Doan, Domingos,

& Halevy, 2001).

The elaboration process from matches to mapping requires
combining and converting matches to full coherent transformation
expression, these expressions will be used for transforming data
from the source schema to the target schema. Matches specify the
relationship between schema elements but they do not specify
which data value has a relationship with which data value and what
operations need to be performed to transform data between
schemas. In other words, matches specify SELECT and FROM clause,
while mapping specifies the WHERE clause that relates to a schema
elements value. Mapping also specifies any other functions that
need to be applied on the data. In this way mapping transforms
data between mediated schema and data sources or vice versa
depending on the mapping language (LAV, GAV or GLAV). Different
techniques for partial automatic schema matching are described in

(Rahm & Bernstein, 2001).

In the early years, schema mapping was generated manually:

designers wrote scripts that transform data from source schema to

21



target schema (mediated schema) or vice versa. To write such
scripts, they should have a good understanding of the semantics for
both schemas. As schemas get bigger, writing mapping manually
becomes a harder process that takes a long time and requires a lot
of effort since the knowledge of schema semantics is distributed on
multiple people. Therefore all of them need to combine their

knowledge to create the desired mapping.

Automatic or semi-automatic schema mapping systems become vital
to produce mappings in large and complex schemas. Such systems
take the set of matches constructed by the schema matcher and
produce all possible mapping between source relations and target
relations. Moreover, some of these systems provide ranking for the
produced mapping and allow the designer to modify the ranking

and choose the correct mapping.

Clio (Herndndez, Miller, & Haas, 2001) , a tool developed by IBM, is
one of the first automatic mapping tools, Clio employs a mapping-
by-example approach by showing how a value from a target
attribute can be generated from a value of source attribute. Clio

takes two schemas and allows users to define the correspondence

22



in a visual interface and then generates the desired mapping as an
SQL expression, while providing users with data samples and other

feedback, to give them the chance to understand the produced

mapping.

2.4 Summary

Building data integration systems begins with specifying the
correspondences between attributes in the mediated schema and
the attributes in the source schema. Then matches will be
elaborated into mapping. Mapping provides a transformation
expression that relates schema values in the different sources.
Finding the matches and generating mapping manually using the
designer’s knowledge is not an efficient approach. While
automating schema matching and mapping become one of the main

challenge in data integration field.
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3 Chapter3: Semantic Heterogeneity

Semantic heterogeneity occurs as a consequence of different
interpretations for real-world concepts by designers in the process
of conceptualization(George, 2005). This happens because
designers may describe same real-world objects in different ways
by using different terms to refer to the same concept (e.g., gender
and sex), or they refer to different real-world objects using the
same terms (e.g., court to refer the place where people playing
sport and to refer a tribunal presided over by a judge or group of
judges) because this term may give different meaning depending

on the context.

As discussed earlier schema mapping is the main component in
source description. To create a schema mapping, we should be able
to reconcile semantics of data sources to produce the
correspondences (matches). This is done in the early process of
information integration, and these <correspondences will be

elaborated later into mapping.

24



3.1 Semantic Heterogeneity Reconciliation

Semantic reconciliation is important for information
interoperability; it enables systems to communicate with each
other and it is essential in data integration. Matchers need to
create correspondences between attributes. Therefore, they need

to reconcile the semantics of attributes.

Approaches used to reconcile data heterogeneity can be
categorized as schema-based and attribute-based. Schema-based
approaches use schema information to identify the semantic
similarity in data. Furthermore, they focus on reconciling types
before reconciling attributes. In contrast, attribute-based
approaches use statistical and structural information of attributes
to identify the semantic similarity of data in different sources

(Parsons & Wand, 2003).

Manually, reconciling heterogeneity of data sources using
designer’s knowledge and data source documentation is not a
practical solution. Designers might, for example, forget about the

semantics of the data source, retire, or move to another company.
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Furthermore, the documentation that they wrote might be out of

date (Doan & Halevy, 2005).

Using clues discovered from schema information and data itself will
not recover the full semantics of the data sources since these clues
(e.g., data type for attributes, attributes name and integrity
constraints...) only cover the representation and syntax side of the
concepts. As a result, we need another type of clue that reflects
the real semantics of entities and attributes in the data sources.
Using domain ontology as a clue for the semantic reconciliation can
provide higher level of information that can be used for semantic
reconciliation. In this technique the schema of data sources will be
mapped into the ontology and later matches will be constructed
based on the relationships on that ontology. However, this
approach may not be a practical solution in real life integration
scenarios (Wang & Pottinger, 2008) because it is hard to specify the
border of each domain and it is hard to agree on the standards
since some organizations already establish their own schemas and

follow their own standards.
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As discussed before, a schema matcher is used to create
correspondences between attributes while giving users the ability
to refine matches on a visual interface. Generated correspondences
from matchers are not expressive enough to represent semantics
between data sources. Deepening mapping semantics by modeling
the relationship between attributes more accurately produces
richer application integration semantics (Wang & Pottinger, 2008).
This can be done by modeling the relationship between attributes
more accurately, for example, schema matching may discover that
“Juice” in one schema equals to “Beverage” in another one.
However, more accurate modeling is by saying that “Juice” is
specialization of “Beverage”. SeMap (Wang & Pottinger, 2008) is a
system that construct richer mapping by taking into account the

following relationship types: ‘Has-a’, ‘Is-a’, ‘Associates’ and

‘Equivalent’.

In existing schema mapping techniques, the semantic reconciliation
between data sources is performed by matchers, which find the
correspondences between attributes of similar or the same
meaning. In contrast, attribute-based semantic reconciliation of

multiple data sources (Parsons & Wand, 2003) is an approach for
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semantic reconciliation based on the relations between properties
instead of the similarity in meaning. This approach uses ontology to
deal with semantic heterogeneity, based on the fact that databases

store information that describes things and concepts. Ontology is a

‘ 7

field interested in describing what ‘is’ in the real world, in
particular, things and their properties. More specifically Parsons
and Wand (2003) use the notion of property precedence in Bunge’s

ontology (Bunge, 1977) to identify the semantics of properties.

3.2 Property Precedence:

Parsons and Wand argue that the problem of semantic
reconciliation can be reduced by addressing the semantics of
attributes independently from any other higher-level constructs
such as class or entity type (Parsons & Wand, 2003). The concept of
property precedence proposed by Parsons and Wand for semantic
reconciliation relaxes the assumption of inherent classification, the
idea that database instances explicitly or implicitly belongs to

classes or entity types (Parsons & Wand, 2000).
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Anchoring instances with <classes or entity types cause data
integration to be more complicated. A solution for this problem
was proposed in (Parsons & Wand, 2000), which recommends the
separation of representing instances and properties from any
specific classification. More specifically, they defined classes as a
second layer above instances and their properties. Classes are
defined as certain set of properties and the meaning of a class are
these instances that possess the specified properties. Parsons and
Wand believe that the semantics of data can be captured at

attribute level.

Bunge’s ontology (Bunge, 1977) describes the semantics of a
property according to the relationships with other properties.
Parsons and Wand use Bunge’s ontology because they want their
approach to be general and independent of any domain. Bunge’s
ontology deal with systems in general and it is comprehensive

ontology that includes many other ontologies.

One of the main relationships in Bunge’s ontology is property
precedence. Parsons & Wand (2003) use the notion of property

precedence as a basis to reconcile the heterogeneity of attributes.
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The key to their approach is that “attributes that appear different

|II

may represent the same concept at a more generic level” (Parsons
& Wand, 2003). For example, in a database that describes
characteristics of people, a person who has the attribute “Having
black hair” and the person who has the attribute “Having brown
hair”, both have hair. Since having a color for their hair implies
that these people are not bald. In other words, we can say that, the

attribute “having hair” precede both attributes “having black hair”

and “having brown hair”.

Property precedence has been defined as following (Parsons &

Wand 2003):

Let P1 and P2 two designate properties. Pl said to precede
property P2, if every instance X possessing property P2 possesses
P1 as well. In other words, if the set of instances that possess P2
are a subset of the instances that possess P1, then P1 precedes P2.
It is also equal to say that p2 is preceded by pl (P2 Preceded
by(P1)). We will refer to this relation between properties as a

subsumption relation, which will be the basic for building the
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Property Precedency Graph (PPG). For example, attribute “having

eyes” precedes attribute “having green eyes”.

Using property precedence we can infer implicit properties from
explicit properties. For example, the property “having two legs”
and the property “having legs”, as long as a thing is possessing the
property “has two legs” it is also correct to say that this thing “has
legs” as well. Possessing the explicit property “has two legs” allow

us to infer the implicit property “has legs”.

The following are definitions for concepts that will be used in this

thesis:

Definition 3.1: The scope of a property P is the set of all instances

that possess the property P. Denoted by Scope (P). *

According to definition 3.1, precedence can be defined as
following: Property Pl precedes property P2, if and only if the
Scope(P2) € Scope(P1). It is also valid to say that property P2 is

preceded by property P1 (P2 Preceded by(P1)).
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Definition 3.2: The form of an instance X is the set of all properties

possessed by X. Denoted by Form(X).*

*Definition 3.3: A manifestation of a property P in an instance X,

is a property of X preceded by P. Denoted by Manifest(P,X)

Form(X) n Preceded by (P) .*

*Definition 3.4: The property P is said to be fully manifested by a
set of preceded properties S if everything possess the property P

possess at least one of the properties in S. *

Manifestation of a generic property can have two types. First,
generic property manifested using a specific value. For example,
the generic property “age” can be manifested by having a specific
age X. In this type of manifestation there is no meaning for the
property value without attaching it to the generic property.
Second, generic property manifested using a specialization of the
generic property,.For example, the generic property “move” can be

manifested as “swim”, “run”, "walk” or “crawls”. Notice that unlike

the previous type of manifestation, the values that manifesting the
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generic property have meaning independently without attaching it

to the generic value “move”.

3.3 Use Precedence and Manifestation to Identify Semantic

Similarities

Parsons and Wand (2003) use the notion of property precedence
and manifestation to <create a new definition for properties
similarity. According to this definition, property P1 is similar to
property P2 if and only if they are a manifestation of the same
higher level property P. In other words, property P1 and P2 are

similar if both are preceded by property P.

This definition provides a new approach for semantic reconciliation
and data integration, showing that attributes that appear different
may be manifested by the same higher-level property. For example,
finding all grad students in a wuniversity database can be
accomplished a query that searches for all students who registered
in a grade course, or by a query that searches for all students with
a supervisor. Although registering in a grad course and having a

supervisor are not similar properties both can be manifestations of
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the same higher level property “Being a grad student”. This
example shows how the similarities of properties are inferred if
they are manifestation of the same general property (i.e., preceded
by the same general property), even if the properties are from

different domain and have different meaning.

To use this approach for data integration, we need to find a way to
identify the interior precedence (precedence relations between
properties in a data source), the exterior precedence (precedence
relations between properties across different data sources) and the
common generic properties of properties in different sources. The
properties and the precedence relation between properties in the
data source will form a directed non-connected graph. We will refer
to this graph as a Property Precedence Graph (PPG). It is non-
connected because not all properties are guaranteed to have
precedence relationship between them. As a result, we will have

some nodes (properties) without a path between them.

PPG= (V, E):

e V is aset of attributes called vertices or nodes.
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e E is set of ordered pairs of vertices, called arcs or edges.
Having the pair (V1, V2) in E means that the attribute V1
precedes the attribute V2. In other words there is a path from

V1 to V2.

Definition 3.5: A generic property P is fully manifested by a set of
properties S, if everything that possesses P possesses at least one
of the properties in S. In other words, if the union of all property

scopes in S equals the scope of P. *

Two Lemmas can be used to establish relationship between
properties based on the precedence and manifestation (Parsons &

Wand, 2003).

Lemma 1: Let P1 and P2 two generic properties, and S1 and S2 set
of preceded properties for P1 and P2, respectively. P1 precedes P2
if P2 is fully manifested by S2 and every property in S2 is preceded

by a property in S1. *

This lemma enables us to infer the precedency relation between
generic properties based on the relationship between their
manifestations. For example, suppose the property “age category”
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(P1) manifested by S1= {“child”, “teenage”, “adult”, “middle age”,
“old”}, and the property “age” (P2) is fully manifested by age
values {5, 16, 25, 38, 60}, there is already a known mapping
between manifestation for S2 and S1, since every age can be

mapped to one of the age group values then the property “age

category” precedes the property “age”.

Lemma 2: Let P1 and P2 two generic properties, S1 and S2 set of
preceded properties for P1 and P2, respectively. Each property in
S2 is preceded by one or more properties in S1, if P2 is preceded by

P1 and P1 is fully manifested by S1% *

This lemma enables us to infer the precedence relation between
the manifestations based on the relationship of their generic
properties. For example, suppose that the property “being
employee” (P1) is fully manifested by S1= {“full time”, “part time”},

“"

and the property job role” (P2) is manifested by S2=
{“programmer”, “database administrator”, “analyst”, “designer”},

in order to have a job role you should be an employee ( the

% Taken from Parsons and Wand(2003)
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property “job role” preceded by the property “being employee” ),
by applying lemma 2, the manifestation of the property “job role”
preceded by one or more properties in the manifestation of the

property “being employee”.

The previous two lemmas enable us to establish semantic relations
between properties across sources. Furthermore, the first lemma
enables us to identify generic properties across several sources

that are not defined within data sources.

We notice that using property precedence for semantic
reconciliation enables us to infer implicit properties from explicit
properties. For example, for gender specific diseases we can infer
the gender of the patient depending on his disease. For example,
one can infer that a patient is female if the patient is suffering
from cervical cancer. Such information from property precedence
enables us to produce -enhanced correspondences between
attributes and, as a result, richer mapping between data sources.
Other researches consider Ilimited type of relations between

attributes, such as, hypernyms/hyponyms relation that are
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considered in (Do, H. H., & Rahm, 2007). However, property

precedence covers such relation between properties.

3.4 Conclusion

Semantic heterogeneity is one of the main obstacles in building
data integration systems. Reconciling semantic heterogeneity can
be accomplished using matchers; matchers produce
correspondences between similar or same attributes. However,
these correspondences may produce poor mapping between sources
because they do not model the relationship between attribute in
accurate way. Modeling the relationship between attributes more
accurately will produce richer mapping. Parsons and Wand (2003)
proposed an approach for semantic reconciliation based on the
relations between properties instead of the similarity in meaning.
They use the notion of property precedence as described in Bunge’s
Ontology. In order to use this approach for data integration, we
need to find a way to identify the precedency between attributes in
and across data sources and common generic properties of

properties in different sources. The precedence relations between
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attributes will form non-connected directed graph, which we refer

to as a Property Precedence Graph (PPG).

4 Chapterd: Use Property Precedence to Support

Data Integration

In the previous chapter, we show how to discover the semantics
between attributes using the notion of property precedence and
manifestation. In this chapter we will show how to identify all local
precedence relations between attributes in data source, how to
identify the generalized properties that can be used to bind
multiple data sources and how to use the precedence relations in

reformulating queries.

4.1 Build Property Precedence Graph

To be able to use property precedence in data integration we need
to identify the local precedence between properties within data

sources (these precedencies will form the PPG) and the global
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precedence relations between attributes across data sources.
Global precedence relations will be used to bind data sources. We
propose two algorithms to build two types of local PPG for each

data source.

The precedence relations between properties in a data source will
form a property precedence graph that can be used to reconcile
heterogeneity at schema level, we will call such a graph a, property
precedence graph for schema (PPGs). In contrast, the precedence
relations between the manifestations of properties will form
property precedence graph that can be used to reconcile
heterogeneity at data level, we will call such a graph a, property

precedence graph for data (PPGd).

We use a bottom-up approach to build both PPGs and PPGd by using
data itself. Consequently, although the precedence relations are
correct at the time they are discovered, they may disappear when
more instances are known. Moreover, although data in a single
field of a database may represent several facts (Properties), our

approach can only create relations between single properties. As a
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result, data should be transformed such that each field represents

a single fact before the PPG is constructed.

Our approach for building PPGs is based on subsumption scopes of
properties without taking into account the manifestation of these
properties. Algorithm | shows how to get properties scope (Scope
of a property is the set of all instances that possess this property)

in schema S.

Algorithm I: Find Scopes for Schema Properties

Input: Set of all properties P= {p1, p2, p3..pi} in schema S

Set of all instances | = {i1, iz, i3 .. ij} in schema S

Output: List of scopes, a scope for each property p, Scopes=
[scope;, scope,, scopes .. scope;] and each scope will be
represented as a set of instances.

Begin:
Scopes«—][ ] of size i
For each property pjin P do {
Scopejc—{ }
For each instance x in | do {
If x possesses property p; then
Scopej<—Scope; U x}

Insert Scopejin Scopes list at index j }
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Return Scopes;

After identifying the scopes of all properties in the schema, these
scopes can be used in Algorithm Il to discover all precedence
relations between properties. Algorithm Il shows how to extract all

precedence relations between properties in schema S.
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Algorithm IlI: Find Property Precedence Relations for Schema
Properties (PPGs)

Input: Set of all properties P= {p1, p2, p3..pi} in schema S

List of all Scopes, Scopes = [scope;, scope,, scopes
scope;] and each scope will be represented as a set of instances.

Output: Set of order pairs of properties R= {r1, rp, r3 .. r;} for
schema S, where r is in form of r= (px, py), meaning property py
precedes property py.

Begin:
R=1{1}
For each property pxin P do {
Scopey -get the scope of px from scopes list at index k
For each property p, in pg+1 do {
Scope, -get the scope of p, from scopes list at index z
If Scopeg.size >= Scope,.size do
Intersection= Scopex N Scope,
If intersection = Scope, do
R=R U (Px,P;)
If Scopeg.size < Scope,.size do
Intersection= Scopex N Scope,
If intersection = Scopey do
R=R U(P, Py) }1}

Return R;
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The set of all precedence relations between properties R can be
used to form the PPGs, where the vertices of PPGs will be the set of
all properties P in schema S and the edges between vertices will be
according to the pairs in the set R, where there is a directed edge
between py and p, if there exist a pair (px,py) in R. Note that PPGs
is directed graph, the pair (px,py) means that the property py

precedes the property p, but not vice versa.

Algorithm IlIl shows how to identify the scopes of properties
manifestations. The scope for each manifestation will take into
account the property that has this manifestation since some
manifestations may have different meaning depending on what
property they attached to. Moreover, other manifestations do not
have any meaning without attaching them to their property, for
example, numerical values do not have any meaning without
attaching them to a property. As a result we may find more than
one scope for each manifestation if there is more than one
property with the same manifestation. Identifying manifestation
scope will be based on both the property that has this

manifestation and the manifestation itself.
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Algorithm Ill: Find the Scope of Schema Properties and its
Manifestations

Input: Set of all properties P= {p1, p2, p3..pi} in schema S.
Set of all manifestations for each property p, M={m, m;,
ms..m;}, where m is in form of, my=(vy v;, vs..) the
manifestation for property p«.

Set of all instances | = {iy, iz, i3 .. ij} in schema S

Output: List of scopes, a scope for each manifestation value v of a
property p, Scopes= [scope;, scope,, scopes ..] and each scope will
be identified by two keys, the property p and the value v of the
manifestation.

Begin:
Scopes<«—/ 1]
For each property pjin P do {
m;<—>List all values for p
For each value vy in m; do {
Scopex={}
For each instance i in | do {

If instance i possesses p; and p; has vy in the
manifestation set do

Scopey <—Scopey U i }
Insert Scopeyin Scopes list with two keys to identify that

scope the property p; and the value vy } }

Return Scopes;
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After identifying the scopes of all manifestations in the schema,
these scopes can be used in Algorithm IV to discover all precedence
relations between manifestations. Algorithm IV shows how to
extract all precedence relations between manifestations in schema
S, while taking into account which property is having that

manifestation.

Algorithm 1V: Find Property Precedence Relations for Schema
Manifestations (PPGd)

Input: Set of all properties P= {p1, p2, p3..pi} in schema S.

List of all manifestation scopes, Scopes = [scope;, scope,,
scopes ..], and each scope will be represented as a set of instances.

We can identify a particular scope by using the property and the
manifestation as a key.

Output: Set of precedence relations R= {ry, rp, r3 .. rj} for schema S,
where ris in form of r= (pa:vp, Pc:Vye), means value vy precedes the
value vqy when v, is manifestation of p, and vy is a manifestation of

Pec.

Begin:
R=1{1}
For each scope scopegin Scopes do {
For each scope scope, in Scopesy+1 do {
If scopeg.size >= scope,.size do

Intersection= scopex N scope,
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If intersection = scope;, do
R=R U ( pkiVk, pz:Vs )
If Scopeg.size < Scope,.size do
Intersection= Scopex N Scope,
If intersection = Scopey do

R=R U (pzvy, pPxivik ) }}

Return R;

The set of all precedence relations between manifestations in R
can be used to form the PPGd, where the set of pairs of properties
and their manifestation will form the vertices of PPGd and the
edges between vertices will be according to the pairs in the set R,
where there is a directed edge between the vertex py:vx and py:v, if
there exist a pair (px:Vvx, py:Vy) in R. Note that PPGs is directed
graph, which means the directed path (px:vx, py:vy) means that the
manifestation v, precedes the manifestation v, when v, is a
manifestation for py and v, is a manifestation for p, but not vice

versa.

Updating the database might affect the scope of properties and/or
the scope of property manifestations. To avoid re-running

algorithms | and/or Ill to re-calculate the scopes, storing and
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tracking each property scope and each “Property value” scope will
solve this problem. For example, when the database update causes
an instance to possess a new property, the instance will be added
to that property scope, If the database update causes an instance
to possess a new property and stop possessing an old property, the
instance will be removed from the old property scope and added to

the new property scope.

As a result of scope changes, the precedence relations might
change as well. To avoid re-running algorithm Il and/or IV and
guarantee that the PPG reflects the status of data, we can make
partial updates for PPG as follows: remove all the edges (incoming
and outgoing) between the property that has new scope (Property
x) and the rest of the properties that are connected to this
property, re-intersect the new scope for property x with the rest of
the properties updated the property precedence relations. These
relations will connect property x with the rest of the properties in

the graph.

We implemented Algorithms |-1V using Jena library and demonstrate

the running of these algorithms on a data set from DBpedia. The
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result is a set of precedence relations that can be used to form
PPGs and partial precedence relations in PPGd ( partial because
there is large number of scopes for manifestations that need to be
compared) We will return to the implementation and results in

chapter 5.

4.2 Use Property Precedence Graph in Creating Common

Generic View Over Multiple Data Sources

After building PPGs and/or PPGd for data sources using the
algorithms in section 4.1 (PPGd if we want to reconcile
heterogeneity at data and schema level and PPGs if we want to
reconcile heterogeneity at schema level only), data sources can be
joined using generalized properties that define common semantics

across data sources.

We can define a generalization of properties using property

precedence as following:

Definition: A generalization property G for a set of properties
{p1,p2,p3....} is a property that precedes all the properties in that

set.
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If there is no explicit common generalized properties that can be
used to bind two data sources, we can identify the generalized
property for properties in two separated data sources using
Lemmal as described in section 3.3. However, Lemma 1 can be used
if data sources contain different level of data granularity; one of
the data sources contains more specific property than the other,
and if there is a known mapping between the manifestations of the
generic properties in both sources. In this way Lemma 1 can be
used to infer implicit properties in the source that contains more
specific properties, from explicit properties in the source that

contains more generalized properties.

In our approach, we will use the generalized properties to bind
data sources. For example, suppose we have two data sources that
provide information about students in a university. In source 1 the
property “being student” precedes both properties “graduate
student” and “undergraduate student” and in source 2 the property
“program of study” precedes a list of academic programs. If there is
a known mapping between the manifestation of the property “being
student” in source 1 and the manifestation of the property

“program of study” in source 2 (some programs are only offered for

50



graduate students like MPA or only for undergrad students like
Bachelor of science) then, according to Lemma 1, we can infer that
the property “being student” precedes the property “program of
study”. The property “being student” will be consider now as a
generalized property that can be used to bind these data sources.

This scenario is described in Figure 4-1

Source 1

Source 2
Student

Program of study

Graduate

Programl Programa2

Figure 4-1: Generalized property example (dashed lines represent manifestation
relation and the solid lines represent a precedence relation)
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Other techniques can used to identify the generalized property If
the two conditions that we mentioned before do not hold to use
Lemmal. For example, it may be possible to map the PPG for both
data sources to an ontology and identify the generic properties
that hold common semantics for both data sources using that

ontology.

The common generalized properties can be used to form a generic
view over multiple data sources. This view can be used to pose
gueries against these sources and the resulting ©property
precedence relation between the generalized property and the local
property in the data source “Global precedence relations” will be

used in query rewriting along with the Local precedence relations.

4.3 Use Property Precedence Graph in Rewriting Queries

Query rewriting is defined as the following problem: for a query q
find a query q° or set of queries such that the answer of g over the
source schema returns the same result as the answer of q° over the

target schema (Arenas 2004).The basic query rewriting algorithm
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consists of four main stages, rule generation, query translation,

guery optimization and query assembly (Bellahsene, 2011)

Relying on property correspondences is not enough to handle all
the semantic heterogeneity in rewriting queries. Use PPGs or PPGd
along with the generalized properties in rewriting queries will

provide opportunities to obtain more potential answers.

Sekhavat (2014) propose two algorithms to rewrite queries using
the PPG and generalized properties, each of them use different
guery expansion technique (expansion through generalization and
expansion through specialization) resulting a data integration
system that can be configured according to the user preference.
Users can choose the query rewrite type based on their preference

for sound (complete) or accurate answers.

If the user prefers to get accurate answers then the query rewriting
will be by replacing generalized property (preceding property in the
precedence relation) in the target query with a more specific
property (preceded property in the precedence relation) in the

source schema to retrieve data that match this specific property.
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On the other hand, if the user prefers to get a complete answer
then the query rewriting will be by replacing the specific property
(preceded property in the precedence relation) in the target query
with a more general property (preceding property in the
precedence relation) in the source schema to retrieve correct data

as well as some unwanted data.

For example, if a target query asks for name of patients who suffer
from Acne aestivalis, this can be rewritten using expansion through
generalization by querying all the patients in the source schema
who suffer from cutaneous condition (there is a known precedence
relation that cutaneous condition precedes Acne aestivalis). In this
way we retrieve all patients who suffer from Acne aestivalis and
other patients who might suffer from Acne aestivalis while other
techniques might fail to retrieve some patients if they do not

explicitly possess the attribute Acne aestivalis.

4.4 Conclusion:

In order to use property precedence approach in data integration

we need to identify local precedence relations in data sources and
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global precedence relations between data sources. We use a
bottom up approach to identify local precedence in a data source
using subsumption scope of attributes and data. We propose and
implement four algorithms to build two type of PPG, each which
can be used to reconcile heterogeneity of data in different level

(PPGs for schema level and PPGd for data level).

To identify the generalized properties that can be used to bind two
data sources, Lemmal can be used if data sources contain different
level of data granularity and if there is a known mapping between
the manifestations of the generic properties in both sources. The
generalized properties can serve as a common view for users to

pose their queries.

Rewriting queries using PPG allow users to retrieve answers based
on their preference of completeness and accuracy. Replacing a
property in the target query with the preceding property will
retrieve more potential answers (completeness) while replacing
property in the target query with the preceded property will

retrieve data that will match the preceded property (accuracy).
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5 Experiment to build PPG on a Dataset from

DBpedia

In the previous chapter we proposed algorithms to build PPG (PPGd
and PPGs) using scope of attributes and manifestations. We also
explain how to use the precedence relations in rewriting queries
and in creating a common view over multiple data sources. In this
chapter we discuss the implementation of the previous algorithms
on a dataset from DBpedia and we will show our results with
examples on how to rewrite query using the extracted

precedencies.

5.1 DBpedia

DBpedia is a crowd-sourced community that aimes to extract
structured data from Wikipedia and make it available in the web.
The extracted structured data is available in machine readable
format “Resource Description Format” allowing semantic web
techniques to be employed against this data source, such as, linking

DBpedia with other open linked dataset, asking sophisticated
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guestions against DBpedia and building applications based on the

DBpedia contents (Auer, 2007).

The DBpedia dataset is interlinked with many other open linked
data sources using RDF links. Figure 5-1 contains an image taken
from the linkeddata.org website showing how DBpedia serves as a
hub for open linked data sources in the semantic web. This figure

been added to show the scope of open linked data.

inked Datasets as of August 2014 @ @

Figure 5-1 Linking Open Data cloud diagram 2014, by Max Schmachtenberg,
Christian Bizer, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/
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Resource Description Framework (RDF) represents data as triples of
subject, predicate and objects, each of these will be represented
using uniform resource identifier (URI) which is unique for each
concept. A triple will represent a specific fact about the subject,
for example, the following triple represent a fact about Canada’s

population (Canada, population, 35 million).

Each triple can be linked with other triples using predicates that
link the object of the first triple with the subject of the second
triple. For example, taking the triple (Stephen Harper, prime
minister, Canada) and the triple (Canada, capital, Ottawa) are
linked together since the object of the first triple is the subject of
the second triple. This can be possible because Canada s

represented using the same URI in both triples.

DBpedia consists of multiple RDF dataset that represent different
parts of the Wikipedia page, Title dataset, short abstract dataset,
long abstract dataset, geographic dataset, weblinks dataset, info

box dataset and categories dataset.
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5.2 Experiment and results

We choose DBpedia as an experiment data source to demonstrate
that our property precedence and our approach in extracting the
precedency is not limited to one domain since DBpedia is a cross

domain data source.

In our experiment, we combine the triples (records or facts) of
three different DBpedia datasets, title dataset, categories dataset
and info box dataset to apply our algorithms and to create the PPG.
These datasets were chosen because data in these sets are
normalized which make it possible to apply our algorithms without
any prior processing for data. The resulted dataset contains
41931660 triple that describes almost 4 million different concepts

using 1374 predicates (property).

We use Jena APl (free open source Java library to build semantic
web and linked data applications) to implement our algorithms and
to manipulate the RDF triples in DBpedia. TDB (triple data store) is
used to host and store DBpedia dataset locally rather than querying

DBpedia online.
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First we build PPGs by running algorithm | and algorithm Il, we use
algorithm | to identify the set of all instances that possess each
predicate (scope) and the output of this algorithm used as an input
for algorithm Il. Algorithm Il identifies the precedence relations
between predicates by intersecting all predicates scope with each

other to identify the subsumption relation between them.

After eliminating the 38 cases of equal scopes (e.g.,
http://dbpedia.org/ontology/lastFlightStartDate and
http://dbpedia.org/ontology/fuelCapacity ) from our results since
there is no meaning for predicates with equal scope in property
precedence (if two predicates have the same scope this does not
mean that these predicates are similar) we got 2019 precedence

relation.

Then we build partial PPGd by running algorithm Ill and IV. We
could not identify all the precedence relations in this case since we
have huge number of scopes that need to be compared. Each
attribute will have multiple values and each value associated with
the attribute will have its own scope. The number of precedence

relations discovered after running algorithm IV for one week was
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542. We write our results in JSON file as a source and target nodes

in order to visualize them using D3 library, the following is a

sample of the JSON file:

FOUrCe:

Source:

Source:

FOUrCe:

FOULCe:

SOoUrce;

Source:

FOUrCe:

FOUrCe:

"http://dbpedia.org/ontology/status",

"hitp://dbpedia. org/ontol ogy/ status"”,

"hitp://dbpedia, org/ontology/ status",

"http://dbpedia. org/ontology/status",

"http://dbpedia.org/ontology/status",
"http://dbpedia. org/ontology/ status",

"hitp://dbpedia, org/ontology/ status",

"http://dbpedia. org/ontology/status",

"http://dbpedia.org/ontology/status",

target:
target:
target:
target:
target:
target:
target:
target:
target:

"http://dbpedia. org/ontology/waterwayThroughTunnel”, type: "sult" },

"http://dbpedia. org/ontology/satellitesDeployed”, type: "suit" |,

"http://dbpedia. org/ontology/contractiward”, type: "suit" |},
"http://dbpedia. org/ontology/lastFlight”, type: "suit” |},
"http://dbpedia.org/ontology/associatedRocket”, type: "sult" |,
"http://dbpedia. org/ontology/lastlaunchDate", type:"sult" },

"http://dbpedia. org/ontology/mirDockings”, type: "suit” },

"http://dbpedia. org/ontology/misaions", type: "suit"” },

"http://dbpedia. org/ontology/firstlaunchbate”, type: "auit" },

Figure 5-2: Sample of the precedence relations extracted by algorithm I

The following figure shows partial PPGs build from algorithm II,

nodes in this graph represent the attributes and the direct edges

represent the precedence relation between attributes. Notice that

most of the attributes are connected together with multiple edge

(i.e., they precede or are preceded by other attributes)
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Figure 5-3 Subgraph from PPGs build from DBpedia
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The following is a smaller sub graph of the PPGs showed in figure

5-3.
issions
waterwayThroughTunnel
satellitesDeployed
Status contractAward

astFlight

astLaunchDate

irstLunchDate

Figure 5-4: Subgraph from PPGs
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This graph can be used to rewrite a target query that asks for the
status of a particular mission using expansion though
generalization technique that we explain in chapter 4, the property
mission in the target query will be replaced by status property in
the source, this will retrieve complete results of instances that
possess mission status as well as instances that do not explicitly

possess mission status.

The following table shows a comparison between number of unique
instances retrieved when executing a query using expansion
through generalization and without using the expansion technique.
Query rewriting using expansion through generalization is done by
replacing the property in the Where clause with a more generic

property (preceding property).

Where Expansion through Without expansion
Clause generalization

Property

missions 37254 539
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bowlRecord 5481 533

Port2Docked 82 1

Time

Table 5-1 query expansion through generalization

We notice the increase in recalls while we are sure that we did not
lose the precision in the resulted set since the instances that
possess the generalized property will include the instances that

possess the specific property.

Another subgraph is represented by the following relations:

(sources "itps/dbpedia, orgjontoloy/ Tengusge", tazgst: "hetp://dbpedua org/ontology afficiallanguage”, type: "surt” |,

(sources "itps/dbpedia, orgjontaloy/ Tengusge", tazgst: "http://dbpedus org/ontology regionallanguage”, type: "surt” |,

A target query that has language in the queried attributes can be
reformulated using expansion through specification to get accurate
results about the official language by replacing the attribute

language with the attribute officialLanguage.
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The following table shows a comparison between number of
instances retrieved when executing a query using expansion
through specialization and without using the expansion technique.
Query rewriting using expansion through specialization (when
general property has one or more specific property) is done by
replacing the property in the Where clause with a more specific

property (preceded property).

Attribute Expansion through Without expansion

specialization

|anguage 201 72858
Capital 2 3016
College 4 12895

Table 5:2 Table 5-1 query expansion through specialization

We notice that there is less recalls while the precision is increased
because the resulted set will only have the instances that possess

that specific property.
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As we show, the constructed graph for each data source can be
used as metadata for query rewriting and for reconciling the
semantics of properties inside each data source. Furthermore, by
combining these graphs using generalized properties we can form a
bigger graph that can be used to reconcile the semantics of

attributes between different data sources.

The following relations were constructed using algorithm 1V, it
represent some precedence relations for values of the property

LastFlightStartDate.
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Value http://dbpedia.org/resource/doviet Union of Predicate hitp://dbpedia.org/ontology/countryPrecede

Frecede
Value 1989-12-29http://mmw.wd. org/2001/ %ML Schematfdate of Predicate http://dbpedia.org/ontology/lastFlight3tartDate

Value http://dbpedia.org/resource/Category: Space Shuttle Challenger disaster of Predicate http://purl.org/de/terms/subjectPrecede

Frecede
Value 198A-01-26"http:/ /o, wd.org/2001/ %ML Schematfdate of Predicate http://dbpedia.org/ontology/lastFlight3tartDate

Value http://dbpedia.org/resource/Cateqory:Manned spacecraft of Predicate http://purl.org/de/terms/subjectPreceds
Frecede
Value 198A-01-26"http:/ /o, wd.org/2001/ %ML Schematfdate of Predicate http://dbpedia.org/ontology/lastFlight3tartDate

Value http://dhpedia.org/resource/Cateqory: 1986 disasters of Predicate http://purl.org/de/terms/subjectPrecede

Frecede
Value 198A-01-26"http:/ /o, wd.org/2001/ %ML Schematfdate of Predicate http://dbpedia.org/ontology/lastFlight3tartDate

Value http://dbpedia.org/resource/Category: Space Shuttle orbiters of Predicate http://purl.org/de/terms/subjectPrecede

Frecede
Value 198A-01-26"http:/ /o, wd.org/2001/ %ML Schematfdate of Predicate http://dbpedia.org/ontology/lastFlight3tartDate

Value http://dbpedia. org/resource/Category: Destroyed spacecraft of Predicate hitp://purl.org/de/terms/subjectErecede

Frecede
Valus 1986-01-28""http://wne.w3. org/2001/XML3chemadidate of Predicate http://dbpedia.org/ontology/lastFlightStartDate

We notice two important things; first, the values that precede
LastFlightStartDate values are from total different domain,
lastFlightStartDate values point to specific dates and other properties
value are strings without any date relation except one case
“1986_disaters”. Second, in each relation the property name
(country _precede and subject _precede) is totally different from
LastFlightStartDate. Despite the differences in value domain and in
attributes name our approach was able to construct a relation (match)

between these values.
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To prove that the precedence relations mentioned above is not a fake
relations I investigate the first precedence relation pair
(Soviet_Union, 1989-12-29), if we search in the history we find that In
August, 1968 Warsaw Pact (headquarter in Soviet Union “Moscow”)
invade Czechoslovakia, 1989-12-28 was the end of velvet revolution
which ends the communist rule in Czechoslovakia after the Warsaw
Pact invasion and cause the conversion to a parliamentary republic.
Despite the fact that 1989-12-29 and Soviet _Union are not directly
related but our techniqgue was able to find a relation between these

two properties.

Using PPG for semantic reconciliation provides advantages over other
techniques discussed in the literature review:

e |t provides definite relations (matches) between properties. If
one property precedes another property this means that there
is a definite match between these two properties even if they
have different names and different domain of values (the two
properties represent the same concept at different level of

abstraction). In contrast other techniques that we discuss
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before give a rate for each match which indicates how
accurate this match is,

e It provides matches that other techniques cannot discover.
Matches in PPG do not require similarity in properties name
or domain for property values.

e Query rewriting using property precedence graph can provide
potential answers that other techniques cannot retrieve since
using expansion through generalization might retrieve
answers without even requiring the instances to possess the
searched property/value. This technique will increase false
positive results but we get a complete set of answers that

other techniques cannot provide.

5.3 Conclusion:

In this chapter we show the results of implementing the algorithms
developed in chapter 4 on DBpedia data source with a few examples
on how to reformulate queries using both technigues expansion
though specialization and expansion through generalization.

Advantages of the constructed PPG were discussed as well.
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6 Conclusion and future work

In this thesis we introduce and implement algorithms to build
property precedence graph. We implement these algorithms on a
dataset from DBpedia that contains 42 million triple with a size of 7

gigabyte.

Property precedence graph can be used as a metadata for semantic
reconciliation in data integration system, so rather than trying to
find matches between attributes in different data sources using
different type of matchers, this graph can be used to lookup
matches between attributes inside each data source and between

attributes in different data sources.

Matches provided by property precedence graph are accurate and
definite so if there is a precedence relation between two attributes
we are confident that these attributes are similar, in contrast with
the matches provided by other techniques might be wrong because
they are based on linguistic and statistics clues. Such techniques

require a human to confirm such match. As a result most data
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integration systems use more than one type of matcher to combine

the results of each match and get more accurate matches.

We also explain how to use expansion through generalization or
expansion through specialization to rewrite queries using PPG, this
way of query rewriting will guarantee answers that cannot be
retrieved by other rewriting techniques, since in this type of
rewriting technique instances do not have to explicitly possess

properties to be in the retrieved result set.

The concepts discussed in this thesis (property precedence,
property precedence graph, generalized property) can be used as
the basis of a new data integration architecture. In this
architecture a PPG will be created for each data source and these
data sources will be combined using generalized. As a result we will
have a bigger graph for rewriting queries, the generalized
properties in this graph will serve as a mediated schema for users

to pose query against.

This thesis focuses on how to extract the property precedence

relation from one data source and the data in this data source
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should be complete and normalized. Further research is required to
identify precedence relations if the dataset is not complete and
future experiments should include more than one data source as an

effort to combine the resulted PPG to one large PPG.

In this thesis we only have one method to extract the generalized
property (Chapter 4 Lemma 2). Further research is required on
approaches that can be used to identify the generalized properties
between multiple data sources. It may be feasible to use the
relations in online knowledge base like Freebase to solve this
problem. Enhancing query rewriting technique, expansion through

generalization, is required to reduce the false positive results.
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