
Generalized Atoms In Molecules Approach
(GAIM Approach)

by
©Ahmad Ibrahim Alrawashdeh

A Thesis Submitted to

the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Department of Chemistry

Memorial University of Newfoundland

Oct 2015

St. John’s Newfoundland



Table of Contents

Table of Contents v

List of Tables vi

List of Figures viii

Dedication ix

Acknowledgments x

Abstract xi

1 Introduction 2

1.1 Molecular Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Atoms in Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Hilbert Space Analyses . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Three-dimensional (3D) Physical Space Analyses . . . . . . . . 5

1.2.2.1 Quantum Theory of Atoms in Molecules (QTAIM) . . 5

1.2.2.2 Fuzzy Atom Approaches . . . . . . . . . . . . . . . . . 5

1.2.3 Properties of Atoms in Molecules . . . . . . . . . . . . . . . . . 9

1.2.4 Atoms in Molecules from Radial Density . . . . . . . . . . . . . 9

1.3 Energy Decomposition Analysis (EDA) . . . . . . . . . . . . . . . . . . 10

References 12

ii



2 Theoretical Background 15

2.1 Wavefunction Electronic Structure Theories . . . . . . . . . . . . . . . 16

2.1.1 Hartree-Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1.1 Restricted Hartree-Fock Theory (RHF) . . . . . . . . . 21

2.1.1.2 Unrestricted Open-Shell Hartree-Fock Theory (UHF) . 25

2.1.1.3 Restricted Open-Shell Hartree-Fock Theory (ROHF) . 28

2.1.2 Post-Hartree-Fock Theories . . . . . . . . . . . . . . . . . . . . 32

2.1.2.1 Configuration Interaction Theory . . . . . . . . . . . . 33

2.1.2.2 Coupled Cluster Theory . . . . . . . . . . . . . . . . . 35

2.1.2.3 Møller-Plesset Perturbation Theory . . . . . . . . . . . 36

2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Local Density Approximation (LDA) . . . . . . . . . . . . . . . 44

2.2.2 Generalized Gradient Approximation (GGA) . . . . . . . . . . . 44

2.2.3 The Meta-GGAs . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.4 Hybrid Functionals . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Pople Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.2 Correlation-Consistent Basis Sets . . . . . . . . . . . . . . . . . 49

2.4 Basis Set Superposition Error . . . . . . . . . . . . . . . . . . . . . . . 49

References 52

3 Generalized Atoms In Molecules Approach (GAIM) 58

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 GAIM Expression of the Total Electronic Energy . . . . . . . . 59

3.2.1.1 Total Electronic Energy as a Sum of Atomic Contribu-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1.2 Kinetic and Nuclear Attraction Energies . . . . . . . . 61

iii



3.2.1.3 Interaction Energies Between Electrons . . . . . . . . . 62

3.2.2 Minimization of the Energy . . . . . . . . . . . . . . . . . . . . 65

3.2.3 Introduction of Basis Sets . . . . . . . . . . . . . . . . . . . . . 72

3.2.3.1 Expansion of AOs Using the Full Basis Set {ϕµ} . . . 72

3.2.3.2 Expansion of AOs Using the Basis Sets {ϕAµ} and {ϕBµ } 78

3.3 The H2 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

References 87

4 Solution of the GAIM Equations 88

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Solution of the High-Spin ROHF Method . . . . . . . . . . . . . . . . . 89

4.3 Solution of GAIM Equations . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Computational Methodology . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Performance of GAIM . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References 96

5 Conclusions and Future Work 97

6 A Computational Study on the Deamination Reaction of Adenine

with OH–/nH2O (n=0, 1, 2, 3) and 3H2O 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Computational Methodology . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Pathway A: Deamination of Adenine with OH– . . . . . . . . . 105

6.3.2 Pathways B −→ D:

Deamination of Adenine with OH–/nH2O (n=1, 2, 3) . . . . . . 106

6.3.3 Pathway E: Deamination of Adenine with 3H2O . . . . . . . . . 107

6.4 Thermodynamic Properties for the Deamination Reaction of Adenine . 108

iv



6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7 Supporting Information Available . . . . . . . . . . . . . . . . . . . . . 110

References 127

A Integral of Gaussian Functions 130

References 133

B Input File of OSHF Code 134

C Input File of GAIM Code 135

D Output File of GAIM Code 149

v



List of Tables

2.1 Some values for the diagonal canonicalization parameters used in the

high-spin ROHF calculations. . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Total energy of H2 (hartree) calculated at different RAB (bohr) using

GAIM and HF with STO-2G basis set. . . . . . . . . . . . . . . . . . . 86

4.1 Total energy in hartree for some high-spin atoms calculated with 6-31G

basis set using the OSHF code in MUNgauss and the ROHF codes that

are available in the MUNgauss and Gaussian 09 programs. . . . . . . . 89

6.1 Activation energies and Gibbs energies of activation (kJ mol−1) at 298.15

K for deamination of adenine with OH– (pathway A). . . . . . . . . . . 111

6.2 Activation energies and Gibbs energies of activation (kJ mol−1) at 298.15

K for deamination of adenine with OH–/H2O (pathway B). . . . . . . . 111

6.3 Activation energies and Gibbs energies of activation (kJ mol−1) at 298.15

K for deamination of adenine with OH–/2H2O (pathway C). . . . . . . 112

6.4 Activation energies and Gibbs energies of activation (kJ mol−1) at 298.15

K for deamination of adenine with OH–/3H2O (pathway D). . . . . . . 112

6.5 Activation energies and Gibbs energies of activation (kJ mol−1) at 298.15

K for deamination of adenine with 3H2O (pathway E). . . . . . . . . . 112

6.6 Thermodynamic properties (kJ mol−1) at 298.15 K for deamination of

adenine with OH–/nH2O and 3H2O (all pathways). . . . . . . . . . . . 113

vi



List of Figures

3.1 Coordinate system for H2 molecule. . . . . . . . . . . . . . . . . . . . . 81

3.2 Potential energy curve for H2 molecule, calculated using GAIM/STO-2G

(solid curve) and RHF/STO-2G (dashed curve). . . . . . . . . . . . . 86

4.1 Dissociation curve for the H2 molecule, calculated using GAIM/6-31G

(solid curve) and RHF/6-31G (dashed curve). . . . . . . . . . . . . . . 93

4.2 Dissociation curve for the LiH molecule, calculated using GAIM/6-31G

(solid curve) and RHF/6-31G (dashed curve). . . . . . . . . . . . . . . 93

4.3 Dissociation curve for the Li2 molecule, calculated using GAIM/6-31G

(solid curve) and RHF/6-31G (dashed curve). . . . . . . . . . . . . . . 94

4.4 Dissociation curve for the BH molecule, calculated using GAIM/6-31G

(solid curve) and RHF/6-31G (dashed curve). . . . . . . . . . . . . . . 94

4.5 Dissociation curve for the HF molecule, calculated using GAIM/6-31G

(solid curve) and RHF/6-31G (dashed curve). . . . . . . . . . . . . . . 95

4.6 Dissociation curve for the HCl molecule, calculated using GAIM/6-31G

(solid curve) and RHF/6-31G (dashed curve). . . . . . . . . . . . . . . 95

6.1 Structures and atom numbering for adenine tautomers. . . . . . . . . 114

6.2 Deamination of adenine with OH–/nH2O and 3H2O. . . . . . . . . . . 114

6.3 Schematic outline of pathways A, B, C, and D for the deamination of

adenine with OH–/nH2O, (n = 0, 1, 2, 3). . . . . . . . . . . . . . . . . 115

vii



6.4 Schematic outline of pathway E for the deamination of adenine with

3H2O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Optimized geometries along pathway A for the deamination of adenine

with OH– at HF/6-31G(d) level of theory. . . . . . . . . . . . . . . . . 117

6.6 Pathway A for the deamination of adenine with OH–. Relative energies

at G3MP2B3 level of theory in the gas phase. . . . . . . . . . . . . . . 118

6.7 Optimized geometries along pathway B for the deamination of adenine

with OH–/H2O at HF/6-31G(d) level of theory. . . . . . . . . . . . . . 119

6.8 Pathway B for the deamination of adenine with OH–/H2O. Relative

energies at G3MP2B3 level of theory in the gas phase. . . . . . . . . . 120

6.9 Optimized geometries along pathway C for the deamination of adenine

with OH–/2H2O at HF/6-31G(d) level of theory. . . . . . . . . . . . . 121

6.10 Pathway C for the deamination of adenine with OH–/2H2O. Relative

energies at G3MP2B3 level of theory in the gas phase. . . . . . . . . . 122

6.11 Optimized geometries along pathway D for the deamination of adenine

with OH–/3H2O at HF/6-31G(d) level of theory. . . . . . . . . . . . . 123

6.12 Pathway D for the adenine deamination with OH–/3H2O for the gas

phase (dashed line), PCM (solid line). Relative energies at G3MP2B3

level of theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.13 Optimized geometries along pathway E for the deamination of adenine

with 3H2O at B3LYP/6-31G(d) level of theory. . . . . . . . . . . . . . 125

6.14 Pathway E for the adenine deamination with 3H2O for the gas phase

(dashed line), PCM (solid line). Relative energies at G3MP2B3 level of

theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



Dedication

To

the Memory of

My father,
My mother, and My sister.

I also would like to dedicate this thesis to:

My brother Abdulla

(Abu Tariq)

My sisters and My brothers

Prof. Raymond Poirier

My Dear Salam Khalil

ix



Acknowledgements

During my journey towards achieving my Ph.D. degree, I had challenging years of

hard study, sleepless nights, and limitless ambition, but I am truly blessed to have

Prof. Raymond A. Poirier, the best person, teacher, and advisor I have ever met, as a

supervisor. I am extremely grateful and thankful to him for his continuous guidance,

encouragement, support, and invaluable advice he has provided me throughout my

study. I must confirm that this work could not have been done without his constant

inspiration and supervision.

I would like to thank my supervisory committee members, Dr. Christopher Flinn

and Dr. Peter Warburton for their help and useful suggestions, and also for proofread-

ing this thesis. My deep thankfulness and appreciation goes also to each of the present

and former members of the computational and theoretical group in the Chemistry

Department in Memorial University of NL; Mansour Almatarneh, Fatima Shaheen,

Dawn M. Shaw, Kabir M. Uddin, Zuzana Istvankova, Jean-Paul Becker, Fozia Wasim,

Devin Nippard, Saleh Riahi, Jessica Besaw, Oliver Stueker, Ibrahim Awad, and Matyas

Csongor.

My deep gratefulness goes to Prof. Ali Mahasneh, the former Head of Chemistry

Department in Al-Hussien Bin Talal University, for his help and support. I am es-

pecially grateful to Dr. Osama Ali and his wife for their effort in proofreading the

second chapter of this thesis. I also would like to thank Amira Abu Kabir and Sheila

Rowe for their help. My thanks extends to all of my friends and colleagues who have

encouraged me and prayed for me during these years of research and writing. I am

x



warmly thankful to my dear Salam Khalil for everything she did for me.

I would also like to acknowledge the Department of Chemistry and the School of

Graduate Studies at Memorial University of NL. I also wish to thank Al-Hussien Bin

Talal University and NSERC for financial support, Compute Canada and ACEnet for

computational resources.

Finally, I am forever indebted to my beloved family who always support, motivate,

and encourage me. To my sisters, Rawda and Asma, and my brothers Abdulla, Mah-

moud, Mansour, and Mohammed, you are truly a gift in my life. To the souls of my

parents, Ibrahim and Maryam, and my sister Hayat, I dedicate this work. Thanks my

dearly beloved family for everything that you have done for me, and everything that

you have given to me.

xi



Abstract

This thesis involves two parts. The first is a new-proposed theoretical approach

called generalized atoms in molecules (GAIM). The second is a computational study

on the deamination reaction of adenine with OH–/nH2O (n=0, 1, 2, 3) and 3H2O.

The GAIM approach aims to solve the energy of each atom variationally in the first

step and then to build the energy of a molecule from each atom. Thus the energy of

a diatomic molecule (A-B) is formulated as a sum of its atomic energies, EA and EB.

Each of these atomic energies is expressed as,

EA = HA + V AA
ee + 1

2V
A↔B
ee

EB = HB + V BB
ee + 1

2V
A↔B
ee

where; HA and HB are the kinetic and nuclear attraction energy of electrons of atoms

A and B, respectively; V AA
ee and V BB

ee are the interaction energy between the electrons

on atoms A and B, respectively; and V A↔B
ee is the interaction energy between the

electrons of atom A with the electrons of atom B. The energy of the molecule is then

minimized subject to the following constraint,

∫
ρA(r)dr +

∫
ρB(r)dr = N

where ρA(r) and ρB(r) are the electron densities of atoms A and B, respectively, and

N is the number of elecrons. The initial testing of the performance of GAIM was done

xii



through calculating dissociation curves for H2, LiH, Li2, BH, HF, HCl, N2, F2, and Cl2.

The numerical results show that GAIM performs very well with H2, LiH, Li2, BH, HF,

and HCl. GAIM shows convergence problems with N2, F2, and Cl2 due to difficulties

in reordering the degenerate atomic orbitals Px, Py, and Pz in N, F, and Cl atoms.

Further work for the development of GAIM is required.

Deamination of adenine results in one of several forms of premutagenic lesions

occurring in DNA. In this thesis, mechanisms for the deamination reaction of ade-

nine with OH–/nH2O, (n = 0, 1, 2, 3) and 3H2O were investigated. HF/6-31G(d),

B3LYP/6-31G(d), MP2/6-31G(d), and B3LYP/6-31+G(d) levels of theory were em-

ployed to optimize all the geometries. Energies were calculated at the G3MP2B3 and

CBS-QB3 levels of theory. The effect of solvent (water) was computed using the polar-

izable continuum model (PCM). Intrinsic reaction coordinate (IRC) calculations were

performed for all transition states. Five pathways were investigated for the deamina-

tion reaction of adenine with OH–/nH2O and 3H2O. The first four pathways (A-D)

begin with by deprotonation at the amino group of adenine by OH–, while pathway

E is initiated by tautomerization of adenine. For all pathways, the next two steps

involve the formation of a tetrahedral intermediate followed by dissociation to yield

products via a 1,3-hydrogen shift. Deamination with a single OH– has a high activation

barrier (190 kJ mol−1 using G3MP2B3 level) for the rate-determining step. Addition

of one water molecule reduces this barrier by 68 kJ mol−1 calculated at G3MP2B3

level. Adding more water molecules decreases the overall activation energy of the re-

action, but the effect becomes smaller with each additional water molecule. The most

plausible mechanism is pathway E, the deamination reaction of adenine with 3H2O,

which has an overall G3MP2B3 activation energy of 139 and 137 kJ mol−1 in the gas

phase and PCM, respectively. This barrier is lower than that for the deamination with

OH–/3H2O by 6 and 2 kJ mol−1 in the gas phase and PCM, respectively.

xiii
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Generalized Atom In Molecule Approach
(GAIM Approach)

1



Chapter 1

Introduction

I like relativity and quantum theories because I don’t understand them and
they make me feel as if space shifted about like a swan that can’t settle,
refusing to sit still and be measured; and as if the atom were an impulsive
thing always changing its mind.

(David H. Lawrence, Relativity)

1.1 Molecular Density

In molecular orbital theory (MOT), each molecule contains a set of orbitals called

molecular orbitals, {ψa}, from which the molecular wavefunction can be constructed as

an antisymmetrized product. Each molecular orbital (ψa) can be described as a linear

combination of a finite set of basis functions, {ϕµ}, in the form

ψa =
K∑
µ=1

Cµaϕµ a = 1, 2, . . . , K (1.1)

where, K is the number of basis functions in the set, and Cµa are the expansion

coefficients. The molecular electron density, ρ(r), can be obtained from these orbitals

as follows,

ρ(r) =
∑
a

ηaψa(r)ψ∗a(r) (1.2)

2



where ηa is the occupancy of the ath molecular orbital (MO), and the sum is over all

occupied MOs. The substitution of the expansion (1.1) into equation (1.2) leads to

ρ(r) =
∑
a

ηa
K∑
µ=1

Cµaϕµ(r)
K∑
ν=1

C∗νaϕ
∗
ν(r) (1.3)

Equation (1.3) may be rearranged into,

ρ(r) =
K∑
µν

(∑
a

ηaCµaC
∗
νa

)
ϕµ(r)ϕ∗ν(r)

ρ(r) =
K∑
µν

Pµνϕµ(r)ϕ∗ν(r) (1.4)

where,

Pµν =
∑
a

ηaCµaC
∗
νa (1.5)

is the density matrix. Integration of ρ(r) gives the total number of electrons (N)

belonging to all atoms in a molecule.

∫
ρ(r)dr =

K∑
µν

Pµν

∫
ϕ∗ν(r)ϕµ(r)dr =

K∑
µν

PµνSνµ = N (1.6)

where,

Sνµ =
∫
ϕ∗ν(r)ϕµ(r)dr (1.7)

is the matrix of overlaps between basis functions.

1.2 Atoms in Molecules

Atoms can combine together to form chemical compounds. Chemists usually con-

sider a molecule as a system that involves a finite number of atoms which are interacting

with each other and are held together by chemical bonds.1–3 Quantum mechanics (QM)

treats the molecule as a mathematical system which depends on the coordinates of the

3



nuclei and the electrons that constitute it.4 Therefore the atom within a molecule is

not a quantum mechanical observable and there is no unambiguous definition of an

atom in a molecule.5,6 Since chemistry is built upon atoms, the concept of atoms in

molecules (AIM) and the decomposition of molecular properties into its atomic contri-

butions are of great importance in chemistry.

Over the last decades a lot of scientific effort has been devoted to the AIM de-

scriptions and to molecular energy decomposition schemes,1–18 and they are still active

research topics. The common motivation of such analysis approaches are to connect

QM results with the genuine chemical concepts in order to get better understanding

of issues such as atomic transferability and molecular similarity.3,11,15 Such posteriori

analyses can be classified into two main groups; the Hilbert-space analysis in which

each basis function is assigned to one of the atoms in the molecule, and the three-

dimensional (3D) physical space analysis in which the physical space of the molecule

is partitioned into atomic domains.4,19,20

1.2.1 Hilbert Space Analyses

In Hilbert space analyses, the molecular basis set space is divided into atomic sub-

space contributions.4 The population analyses of Mulliken21 and Löwdin22 are famous

among the Hilbert space approaches,

qMulliken
A = ZA −

∑
µ∈A

(PS)µµ (1.8)

qLöwdin
A = ZA −

∑
µ∈A

(S 1
2 PS

1
2 )µµ (1.9)

where qA is the net charge associated with atom A, ZA is the nuclear charge of atom

A, S and P are the overlap and density matrices, respectively. Neither Mulliken nor

Löwdin analysis is unique and they depend very much on the basis set applied.23,24

4



1.2.2 Three-dimensional (3D) Physical Space Analyses

In the 3D physical space analysis, the molecular space is divided into atomic regions

by means of the Quantum Theory of Atoms in Molecules (QTAIM) or by fuzzy atom

approaches.7,17,20

1.2.2.1 Quantum Theory of Atoms in Molecules (QTAIM)

QTAIM which was developed by Richard Bader7 is one of the most significant

contributions to the subject of atoms and bonding in molecules. This theory is based

on the assumption that every measurable property of a molecule can be measured as

a sum of contributions from its composite atoms.7,10 In QTAIM, the molecular space

is divided into non-overlapping regions (atoms) bounded by the so-called zero flux

surfaces that satisfy the following condition,25,26

∇ρ(r) · n(r) = 0 for all r on the atomic surface (1.10)

where ∇ρ(r) is the gradient vector field of the electron density and n(r) is the unit

vector normal to the atomic surface. Bader’s analysis yields non-spherical and non-

overlapping atomic regions that have sharp boundaries but they possess a high degree

of transferability.5 There are some disadvantages of this analysis including the appear-

ance of one or more regions of the space, called non-nuclear attractors, that have no

associated nuclei, and the high computational cost of the QTAIM calculations.27,28

1.2.2.2 Fuzzy Atom Approaches

The fuzzy atom approaches often start by introducing a weight function, wA(r), for

each atom A at each point r of the molecular space such that,29,30

N∑
A=1

wA(r) = 1, 0 ≤ wA(r) ≤ 1, ∀r ∈ R3 (1.11)

5



where N is the number of atoms. There are two types of weight functions; the binary

weight functions where 0 or 1 are the only allowed values, and the fuzzy weight functions

where all values between 0 and 1 are allowed.31 The binary weight functions give non-

overlapping atoms with sharp boundaries while the fuzzy weight functions give atoms

that have overlapping and indistinct boundaries.31,32 In the fuzzy weight functions,

the value of wA(r) is ∼ 1 near the nucleus A and gradually vanishes with distance from

the nucleus A becoming 0 in the vicinity of another nucleus.29

Hirshfeld Weight Function

Hirshfeld proposed a weight function for each atom in a molecule, which is the

ratio of the electron density of the isolated atom, ρoA(ri), to the electron density of the

promolecule, ρpro(ri), at each point ri in the 3D molecular space17

wA(ri) = ρoA(ri)
ρpro(ri)

, ρpro(ri) =
N∑
A

ρoA(ri) (1.12)

The ρpro(ri) is calculated by summing over all densities, ρoA(ri), of non-interacting

atoms placed at the same points as of the molecule of interest. The Hirshfeld approach

is sometimes referred to as the stockholder approach as each atom at each point gets a

fraction of the actual molecular density in proportion to its contribution to the ρpro(ri).

Hirshfeld analysis tends to give neutral atoms which are similar to the isolated atoms

and depend on the choice of the state of free atoms used in the promolecule.15,31

The iterative Hirshfeld scheme proposed by Bultinck11 and the iterative stockholder

analysis (ISA) proposed by Weatley17 are extensions of the original Hirshfeld method

intended to improve it.

Becke Weight Function

In 1988, Axel D. Becke proposed a weight function for the partitioning of molecular

density into single-center components.18 Becke weight was initially introduced as a tool

6



for simplifying the problem of numerical integration in molecular systems by decom-

posing the molecular integrals into atomic integral terms.1,18 In the Becke scheme, the

molecular space is divided into atomic cells (Voronoi cells or Voronoi polyhedra). Each

atomic cell contains all grid points (i) that are closer to a particular nucleus than to

any other nucleus, and then the boundaries between these cells are softened to create

fuzzy cells.18,33

Becke utilized the confocal elliptical coordinate system (λ, µ, φ) for defining his

weight. In this coordinate system, λiAB = (riA + riB)/RAB can take on values from 1

to∞, µiAB = (riA−riB)/RAB ranges in value from −1 to 1, and φ is the angle (0−2π)

about the AB axis. Here riA and riB are the distances from the grid point i to nuclei

A and B, respectively, RAB is the distance between nuclei A and B. The Becke weight

function wA(ri) is defined using cell functions, PA(ri), as

wA(ri) = PA(ri)∑
B PB(ri)

, PA(ri) =
N∏

B 6=A
s(µiAB) (1.13)

where N is the number of nuclei in the molecule. The sum in the denominator is

run over all the nuclei of the molecule while in the s(µiAB) product, the nucleus A is

excluded. s(µiAB) is the following step function,

s(µiAB) =


1 − 1 ≤ µiAB ≤ 0

0 0 < µiAB ≤ 1
(1.14)

s(µiAB) is also known as the cutoff function or the cutoff profile. The cell function

(PA) defines a region of molecular space that is belonging to atom A, i.e., defines the

Voronoi polyhedron surrounding the nucleus A. These cell functions play the same role

as the promolecule densities in the Hirshfeld scheme. The value of PA(ri) is 1 if ri lies

in the cell, and 0 if ri lies outside.18

In order to avoid discontinuities in wA(ri) at µiAB = 0 (riA = riB), a smoothing
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algebraic function fk(µiAB) is used and s(µiAB) is rewritten in terms of it as:18,34

sk(µiAB) = 1
2 [1− fk(µiAB)] (1.15)

where fk(µiAB) is defined for each value of k as,

f1(µiAB) = h(µiAB)

f2(µiAB) = h[h(µiAB)]

f3(µiAB) =h{h[h(µiAB)]}
...

where,
h(µiAB) = 3

2µiAB −
1
2µ

3
iAB (1.16)

Here k is the stiffness parameter which controls the shape of the cutoff profile. The

larger the value of k the steeper is the cutoff profile, and if k is too large the s(µiAB) of

equation (1.14) is recovered.18,34 However, the choice of the parameter k is arbitrary.

A value of k = 3 was chosen by Becke on the basis of the best performance of his

numerical integration scheme with this value.18 As a consequence of the use of the

s3(µiAB) cutoff profile, the Becke weight gives overlapping atomic regions that have no

sharp boundaries (fuzzy atoms).

The Becke scheme described above is suitable only for homonuclear systems as

the faces of the Voronoi cells lie exactly at internuclear midpoints. In order for the

Becke weights to be valid for describing heteronuclear systems, Becke shifted the cell

boundaries according to the relative size of the atoms A and B using the following

transformed coordinate,18,33,34

viAB = µiAB + aAB(1− µ2
iAB) (1.17)
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where,

aAB = uAB
u2
AB − 1 , uAB = χAB − 1

χAB + 1 , χAB = RA

RB

(1.18)

here RA and RB are Bragg-Slater radii of elements A and B, respectively. With the use

of Bragg-Slater radii, the Becke weights assign proportionally larger regions to larger

atoms and smaller regions to smaller atoms in the molecule.

1.2.3 Properties of Atoms in Molecules

The weight function wA(r) obtained with any partition approach can be used for

deriving atomic properties such as atomic densities, atomic population, etc., from the

corresponding molecular properties. For examples, the electron density of atom A,

ρA(r), is derived from the molecular density, ρ(r), as,

ρA(r) = wA(r)ρ(r) (1.19)

the electron population of atom A, qA, is defined as the integral of the electron density

of atom A,

qA =
∫
ρA(r)dr =

∫
wA(r)ρ(r)dr (1.20)

and the atomic overlap matrix of atom A, SAµν , over basis functions, {ϕi}, is derived

from the molecular overlap matrix, Sµν , as,

SAµν =
∫
wA(r)ϕ∗µ(r)ϕν(r)dr (1.21)

1.2.4 Atoms in Molecules from Radial Density

An alternative approach, proposed by Warburton, Poirier, and Nippard,15 for look-

ing at AIM is the use of atomic radial densities (AIMRD) and the total radial density

(TRD) in partitioning the molecular space into atomic regions.

The radial density, ρradA (ri), of the atom A in a molecule at the point ri in the

9



molecular space is defined as,

ρradA (ri) = r2
iAwA(ri)ρ(ri) = r2

iAρA(ri) (1.22)

where riA is the distance between nucleus A and the point ri, wA(ri) and ρ(ri) are

the Becke weight of atom A and the molecular electron density at that point, respec-

tively. The TRD, ρrad(ri), at the point ri is calculated by summing over all AIMRD

contributions,

ρrad(ri) =
N∑
A=1

r2
iAwA(ri)ρ(ri) =

N∑
A=1

r2
iAρA(ri) (1.23)

where N is the number of atoms in the molecule, and the total sum of wA(ri) has value

unity at each point in space.

The preliminary results15 show that the AIMRDs are quite similar to the radial

densities of free atoms, and therefore it would be more easily fit AIMRDs in order to

generate TRDs and total densities of molecules. This approach provides an intuitive

way for partitioning the molecular space into atomic regions and bonding regions.15,16

1.3 Energy Decomposition Analysis (EDA)

The decomposition of the total molecular energy into chemically intuitive compo-

nents or into one-, two-, or more-atomic contributions gives insight into the nature

of atomic and molecular interactions.35 It also provides us with meaningful energy

contributions such as exchange, correlation, electrostatic, polarization, charge transfer,

etc.36 Therefore, a significant number of EDA schemes has been proposed in both

Hilbert and 3D physical spaces.2–4,6, 13,19,27–30,32,35–38,40–43 One of the most popular

EDA schemes is the Kitaura-Morokuma (KM) scheme,38 in which the HF interaction

energy is decomposed into the six energy components; electrostatic (EES), polariza-

tion (EPL), exchange repulsion (EEX), charge transfer (ECT ), exchange polarization

(EEXPL), and a coupling term (EMIX). Another scheme is the natural energy decom-

10



position analysis (NEDA) proposed by Glendening and Streitwieser,35 in which the HF

interaction energy is partitioned into electrostatic, charge transfer, and deformation

components. More recently, the NEDA has been extended to density functional the-

ory. István Mayer has proposed several EDA methods over the last ten years using

both the Hilbert space and the 3D physical space analyses.6,13,19,32,40–43 His formalisms

allow for analyzing different atomic and diatomic properties in a systematic manner

based on the so called the atomic decomposition of identity. The atomic decomposition

of identity means that the identity operator, Î, is written as a sum of single-atomic

operators, ÔA,

Î =
∑
A

ÔA (1.24)

In his approaches, the total molecular energy is decomposed into atomic and diatomic

components.

E =
∑
A

EA +
∑
A<B

EAB (1.25)

As the decomposition of the molecular energy can be done in many ways, the defini-

tions of the different energy components in EDA schemes are arbitrary.39
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Chapter 2

Theoretical Background

As far as the laws of mathematics refer to reality, they are not certain; and
as far as they are certain, they do not refer to reality.

(Albert Einstein)

Chemistry is the science of studying the construction, transformation, and properties

of substances. Although chemistry has been deliberated as an experimental science,

theory has played a crucial role in its development. Theoretical chemistry is concerned

with the rationalisation of chemical phenomena using mathematical methods along

with the laws of physics and chemistry.1–3 It also provides a variety of efficient and

useful tools for describing, explaining, and predicting chemical problems. Computa-

tional chemistry has emerged naturally as an extension of theoretical chemistry. It

is a fast-developing discipline which incorporates theoretical chemistry methods with

computer science in order to study, model, and simulate chemical systems. Compu-

tational chemistry methods are becoming important tools for investigating chemical

problems as well as discovering new realms of chemistry. These methods are used to

perform calculations on a number of systems including inorganic and organic molecules,

drugs, polymers, and biomolecules.1 Achieving a direct and an accurate calculation to

determine the structure or properties of a molecule in theoretical and computational

chemistry is quite challenging. Today, with advanced computing power and efficient

algorithms, computational chemistry can deal with complex chemical and biological
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systems with improving accuracy.4 There are a wide range of theoretical and com-

putational chemistry methods, which vary from highly accurate methods, that are

derived from quantum mechanics such as wavefunction and density functional meth-

ods, to highly approximate methods, that are based on classical mechanics such as

molecular mechanics.4,5 A brief review of the theoretical methods most often used in

computational studies are presented in this chapter.

2.1 Wavefunction Electronic Structure Theories

In wavefunction electronic structure theories, molecular structures are calculated

using only the electronic Schrödinger equation (2.6), which is derived by applying the

Born-Oppenheimer approximation6 to the non-relativistic time-independent Schrödinger

equation (2.1) as follows,

ĤΨ({ri}; {RA}) = EΨ({ri}; {RA}) (2.1)

where, Ψ is the molecular wavefunction, which is a function of the electronic, {ri},

and nuclear, {RA}, coordinates; E is the total non-relativistic energy of the system;

and Ĥ is the total non-relativistic Hamiltonian of the molecular system which has the

following form in the atomic units:7

Ĥ =− 1
2

N∑
i=1
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

∑
j>i

1
rij

− 1
2

M∑
A=1

1
MA

∇2
A +

M∑
A=1

M∑
B>A

ZAZB
RAB

(2.2)

Here, N is the number of electrons,M is the number of nuclei, ZA is the atomic number

of nucleus A, MA is the ratio of the mass of nucleus A to the mass of the electron,

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator, riA is the distance between the

electron i and the nucleus A, rij is the distance between the electrons i and j, and

RAB is the distance between the nuclei A and B. The Ĥ is the operator corresponding
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to the total energy of the system, i.e., the sum of the kinetic energy operators (terms

1 and 4 in equation (2.2)) and the potential energy operators (terms 2, 3 and 5 in

equation (2.2)).7,8

The Born-Oppenheimer approximation is based on the fact that the electrons have

much smaller masses than the nuclei. In other words, the electrons move much faster

than the nuclei. Thus, the electrons in a molecule are considered to be moving in

a field of fixed nuclei. This approximation allows us to separate the Hamiltonian

into the electronic Hamiltonian, Ĥelec, and the nuclear Hamiltonian, Ĥnucl. Therefore,

the molecular wavefunction becomes the product of the electronic and the nuclear

wavefunctions, i.e.,2,5–8

(
Ĥelec + Ĥnucl

)
ΨR
elecΨnucl = E ΨR

elecΨnucl (2.3)

where, ΨR
elec = ΨR

elec({ri}) is the electronic wavefunction, which depends on the elec-

tronic coordinates and depends parametrically on the nuclear coordinates, and Ψnucl =

Ψnucl({RA}) is the nuclear wavefunction, which depends on the nuclear coordinates.7,9

Within the Born-Oppenheimer approximation, the kinetic energy of the nuclei is zero

and the repulsion, VNN , between the nuclei in a particular configuration can be con-

sidered to be constant, so that equation (2.3) becomes

(
Ĥelec + VNN(RA)

)
ΨR
elecΨnucl = E ΨR

elecΨnucl (2.4)

where

VNN =
M∑
A=1

M∑
B>A

ZAZB
RAB

(2.5)

Because VNN is constant in a given nuclear configuration, it has no effect on the oper-

ator’s eigenfunction and can be added to the eigenvalue of that operator.2,7 Therefore,
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the electronic Schrödinger equation can now be written as,

ĤelecΨR
elec({ri}) = Eelec(R)ΨR

elec({ri}) (2.6)

where, Eelec(R) is the electronic energy of the molecular system which depends on

the coordinates of the electrons and depends parametrically on the coordinates of the

nuclei. The total energy of the system in a given nuclear configuration Etotal must

include the VNN , so that

Etotal = Eelec + VNN (2.7)

The total molecular energy as a parametric function of the nuclear positions is called

potential energy surface (PES).10 The exploration of PESs is the first step in the inves-

tigation of the chemical processes and properties of molecules, e.g., their equilibrium

geometry and vibrational frequencies.10–12

The Ĥelec and Ĥnucl can now be defined as,7

Ĥelec = −1
2

N∑
i=1
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

∑
j>i

1
rij

(2.8)

Ĥnucl = −1
2

M∑
A=1

1
MA

∇2
A + Etotal({R}) (2.9)

The Etotal represents the potential energy part in the nuclear Hamiltonian. There-

fore, “the nuclei in the Born-Oppenheimer approximation move on a PES obtained by

solving the electronic problem”7 for different nuclear configurations. Hence, one can

obtain the molecular translational, vibrational, and rotational energy levels for a given

electronic state by solving the nuclear Schrödinger equation using the Etotal({R}) for

that state.13

ĤnuclΨnucl = EΨnucl (2.10)
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where E is the Born-Oppenheimer approximation to the total non-relativistic energy

of the system which includes the electronic, translational, vibrational, and rotational

energy.7 However, we will concentrate solely on solving the electronic Schrödinger

equation in this chapter.

2.1.1 Hartree-Fock Theory

The Hartree-Fock (HF) method is a central well-established approximation in mod-

ern electronic structure theory. It provides a good starting point towards more accurate

theories.14 In HF theory, the N -electrons wavefunction, Ψ, is built up as an antisym-

metrized product of molecular spin orbitals (MSO).15 The MSO, χ(x), is a one-electron

wavefunction which depends on the space and spin coordinates, x, of that electron.

Thus, the Ψ is written as,

Ψ (x1,x2, . . . ,xN) = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1 (x1) χ2 (x1) . . . χN (x1)

χ1 (x2) χ2 (x2) . . . χN (x2)
... ... . . . ...

χ1 (xN) χ2 (xN) . . . χN (xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.11)

where, (N !)−1/2 is the normalization factor, and the determinant of the MSOs is called

a Slater determinant. Writing a wavefunction in determinantal form fulfills the indis-

tinguishability and antisymmetry requirements. The Ψ could also be written in a more

compact and convenient form as,7

|Ψ〉 = |χ1χ2 · · ·χiχj · · ·χN〉 (2.12)

In this shorthand notation, the normalization factor is dropped and only the diagonal

elements of the determinant are included.

The HF energy is the expectation value of the electronic Hamiltonian and the
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HF wavefunction, 〈Ψ|Ĥelec|Ψ〉. According to the variation principle, the ground state

wavefunction, Ψ0, is the one which gives the lowest possible energy, E0,

E0 = 〈Ψ0|Ĥelec|Ψ0〉

=
N∑
i

〈i|ĥ|i〉+ 1
2

N∑
i,j

〈ij‖ij〉 (2.13)

Here ĥ is the core-Hamiltonian operator, which describes the kinetic energy, 〈i|ĥ|i〉, for

an electron and its attraction energy with the nuclei. The ĥ omits all interaction with

the other electrons.

ĥ = −1
2∇

2
1 −

M∑
A=1

ZA
r1A

(2.14)

and 〈ij‖ij〉 is the antisymmetrized two-electron integral,

〈ij‖ij〉 = 〈ij|ij〉 − 〈ij|ji〉

=
∫∫ χ∗i (x1)χ∗j(x2)(1−P12)χi(x1)χj(x2)

r12
dx1dx2 (2.15)

where, P12 is the permutation operator which interchanges the coordinates of electrons

one and two. The minimization of the energy of the wavefunction Ψ0 (equation 2.13)

with respect to the MSOs leads to the HF equations,

f̂(x1)χi(x1) = εiχi(x1) (2.16)

where, εi is the energy of the ith spin orbital, and f̂ is the Fock operator.

f̂(x1) = ĥ(x1) +
N∑
j=1

Ĵj(x1)− K̂j(x1) (2.17)
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Here Ĵj(x1) is the Coulomb operator, and K̂j(x1) is the exchange operator,

Ĵj(x1)χi(x1) =
(∫ χ∗j(x2)χj(x2)

r12
dx2

)
χi(x1)

K̂j(x1)χi(x1) =
(∫ χ∗j(x2)P12χj(x2)

r12
dx2

)
χi(x1) (2.18)

The minimization is carried out by varying the spin orbitals under the constraint that

they remain orthogonal
(
〈χi|χj〉 = δij, where δij = 1 if i = j and 0 otherwise

)
using

the Lagrange’s method of undetermined multipliers.7,15,16

For computational purposes, the HF equations must be expressed over spatial or-

bitals so that the spin functions α and β must be integrated out. There are three

types of spatial HF wavefunctions (determinants): restricted closed-shell HF (RHF),

restricted open-shell HF (ROHF), and unrestricted HF (UHF) wavefunctions. In the

RHF and ROHF determinants, electrons with α and β spins are forced to have the same

spatial orbital, while in the UHF determinant, each electron has its own spatial orbital.

The closed-shell configuration refers to a wavefunction which is made up of complete

electron shells.15 Therefore, in contrast to the open-shell systems, all molecular orbitals

in closed-shell systems are doubly occupied.

2.1.1.1 Restricted Hartree-Fock Theory (RHF)

The N -electrons restricted closed-shell ground state determinant is

|Ψ0〉 = |ψ1ψ2 · · ·ψaψb · · ·ψN
2
〉 (2.19)

where each spatial orbital, ψa, has two electrons with opposite spins. The spatial

HF equations for the closed-shell system can be derived by integrating out the spin

functions from the analogous spin orbital HF equations.17 Thus, the closed-shell ground
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state energy, E0, is

E0 = 〈Ψ0|Ĥelec|Ψ0〉

= 2
N/2∑
a=1

(a|ĥ|a) +
N/2∑
a,b

2(aa|bb)− (ab|ba)

= 2
N/2∑
a=1

haa +
N/2∑
a,b

2Jab −Kab (2.20)

where haa is the kinetic and attraction energy of an electron described by ψa. Jab and

Kab are the Coulomb and exchange energies, respectively, for two electrons described

by ψa and ψb. The closed-shell eigenvalue equation has the same form as the spin

orbital equation.

f̂(r1)ψa(r1) = εaψa(r1) (2.21)

where the closed-shell Fock operator is given by

f̂(r1) = ĥ(r1) +
N/2∑
a=1

2Ĵa(r1)− K̂a(r1) (2.22)

The practical method for solving the RHF equations (2.21) is the expansion of

each molecular orbital as a linear combination of known basis functions with unknown

coefficients. Therefore, the problem of determining the wavefunction is equivalent to

calculating these coefficients. Thus, by introducing a set of K basis functions, {ϕµ},

each molecular orbital can be expanded as,

ψa =
K∑
µ=1

Cµaϕµ (2.23)

where Cµa is the expansion coefficients. The substitution of this expansion into equa-

tion (2.21) leads to

f̂(r1)
K∑
ν=1

Cνaϕν(r1) = εa
K∑
ν=1

Cνaϕν(r1) (2.24)
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By multiplying both sides by ϕ∗µ(r1) and integrating with respect to r1, we get

∑
ν

Cνa

∫
ϕ∗µ(r1)f̂(r1)ϕν(r1) dr1 = εa

∑
ν

Cνa

∫
ϕ∗µ(r1)ϕν(r1) dr1 (2.25)

If we use the following notations for the matrix elements of the Fock operator, f̂(r1),

and for the overlap between basis functions,

Fµν =
∫
ϕ∗µ(r1)f̂(r1)ϕν(r1) dr1

Sµν =
∫
ϕ∗µ(r1)ϕν(r1) dr1 (2.26)

then the result is algebraic equations known as Roothaan’s equations,15,17

∑
ν

FµνCνa = εa
∑
ν

SµνCνa (2.27)

which can be written as a single matrix equation.

FC = εSC (2.28)

Here, C is the molecular orbital expansion coefficients matrix, S is the overlap matrix,

ε is a diagonal matrix of the orbital energies, and F is the Fock matrix which represents

the Fock operator in terms of the basis functions. Equation (2.28) is not a standard

eigenvalue equation. In order to convert it into a standard eigenvalue equation, orthog-

onalization of the basis is necessary. The orthogonalization is carried out by defining

a new coefficient matrix, C′, related to the old C by (C = XC′). The X matrix must

transform the S to the identity matrix, i.e., X†SX = I. Substituting C = XC′ into the

equation (2.28) and multiplying on the left by X† results in an eigenvalue equation,7

F′C′ = εC′ (2.29)
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where F′ = X†FX. The elements of the F over the basis function are

Fµν =
∫
ϕ∗µ(r1)f̂(r1)ϕν(r1) dr1

=
∫
ϕ∗µ(r1)

[
ĥ(r1) +

N/2∑
a

2Ĵa(r1)− K̂a(r1)
]
ϕν(1) dr1

= (µ|ĥ|ν) +
N/2∑
a

2(µν|aa)− (µa|aν) (2.30)

By inserting the molecular orbital expansion into the two-electron integrals part, we

obtain

Fµν = (µ|ĥ|ν) +
∑
λ,σ

N/2∑
a

2CλaC∗σa[(µν|σλ)− 1
2(µλ|σν)]

= Hµν +
∑
λ,σ

Pλσ[(µν|σλ)− 1
2(µλ|σν)]

= Hµν +Gµν (2.31)

where, Pλσ are the elements of the density matrix which is defined as,

Pλσ = 2
N/2∑
a

CλaC
∗
σa (2.32)

or in a matrix form as,

P = 2CC† (2.33)

Hµν is the core-Hamiltonian matrix or the one-electron part of the Fock matrix, andGµν

is the two-electron part of the Fock matrix. G depends on the two-electron integrals

of the basis functions and on P. Since the matrix F depends, through P, on its

eigenvectors, the Roothaan equations are nonlinear and must be solved iteratively

using a well-known procedure called the self-consistent field (SCF).4,7, 17

The SCF procedure starts by defining the input data that specify a molecule such

as nuclear coordinates, atomic numbers, number of electrons, and basis set. Therefore,
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all the required integrals, Sµν , Hµν , and {(µν|λσ)} as well as the matrix X can be

obtained. Then, an initial guess for C is given, and P is calculated. F is obtained and

transformed to F′ = X†FX. Then C′ and ε are obtained by diagonalizing F′. A new

C = XC′ is calculated and the procedure is iterated until some convergence criteria are

met. Once self-consistency has been reached, many properties of the system such as

the dipole moment, quadruple moment, atomic population, electronic energy, etc., can

be obtained as expectation values of the wavefunction with one-electron or two-electron

operators. For example, the closed-shell ground state energy, E0, is the expectation

value 〈Ψ0|Helec|Ψ0〉 which is given over the basis functions by

E0 = 1
2
∑
µν

Pνµ (Hµν + Fµν) (2.34)

A drawback of the HF method is that it does not describe the interaction between

electrons correctly. In other words, it neglects correlations between electrons with

opposite spins.7

2.1.1.2 Unrestricted Open-Shell Hartree-Fock Theory (UHF)

The UHF method, the most commonly used method for open-shell molecules, was

first formulated by J. A. Pople and R. K. Nesbet in 1953.18 In the UHF wavefunc-

tion, different sets of spatial molecular orbitals are assigned for spin-up and spin-down

electrons.7,19 Thus, the form of an unrestricted set of spin orbitals {χi} is written as,7

χi(x) =


ψαj (r)α(ω) j = 1, 2, . . . , K

ψβj (r)β(ω) j = 1, 2, . . . , K
(2.35)

where, {ψαj } and {ψ
β
j } are the sets of spatial orbitals for α and β electrons, respectively.

The UHF wavefunction has the form,

ΨUHF = |ψα1ψ
β
1 . . . ψ

α
Nαψ

β
Nβ〉 (2.36)
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here, Nα and Nβ are the number of α and β electrons, respectively. The total unre-

stricted open-shell energy, EUHF , is expressed as,7,18

EUHF =
Nα∑
a

hαaa +
Nβ∑
a

hβaa + 1
2

Nα∑
ab

(Jααab −Kαα
ab ) + 1

2

Nβ∑
ab

(
Jββab −K

ββ
ab

)
+

Nα∑
a

Nβ∑
b

Jαβab

(2.37)

where; hαaa, Jααab , and Kαα
ab are the kinetic and nuclear attraction energy, the Coulomb

energy, and the exchange energy, respectively, for electrons of α spin; hβaa, J
ββ
ab , andK

ββ
ab

are the kinetic and nuclear attraction energy, the Coulomb energy, and the exchange

energy, respectively, for electrons of β spin; Jαβab is the Coulomb interaction energy

between α and β electrons. The summations in equation (2.37) are over occupied α or

β orbitals.

The first variation of the energy in equation (2.37) with respect to α and β spatial

orbitals, subject to the orthonormality conditions, and then the unitary transformation

of the α and β orbitals among themselves leads to7,18

fα(r)ψαj (r) = εαj ψ
α
j (r)

fβ(r)ψβj (r) = εβjψ
β
j (r) (2.38)

where; εαj and εβj are the energy of the spatial orbitals ψαj and ψβj , respectively; fα(r)

and fβ(r) are the Fock operators for electrons of α and β spin, respectively, that have

the forms,

f̂α(r) = ĥα(r) +
Nα∑
a

(
Ĵαa (r)− K̂α

a (r)
)

+
Nβ∑
a

Ĵβa (r)

f̂β(r) = ĥβ(r) +
Nβ∑
a

(
Ĵβa (r)− K̂β

a (r)
)

+
Nα∑
a

Ĵαa (r) (2.39)

here ĥ, Ĵ , and K̂ are the core-Hamiltonian, the Coulomb, and the exchange operators,

respectively, defined in equations (2.14) and (2.18).
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The UHF equations (2.38) can be solved by expanding the α and β molecular

orbitals as a linear combination of K known basis functions,{ϕµ}.

ψαi =
K∑
µ=1

Cα
µiϕµ i = 1, 2, . . . , K

ψβi =
K∑
µ=1

Cβ
µiϕµ i = 1, 2, . . . , K (2.40)

Substitution of the expansions (2.40) into the UHF equations (2.38) leads to two matrix

equations, known as Pople–Nesbet equations.7,19

FαCα = SCαεα

FβCβ = SCβεβ (2.41)

where; S is the matrix of overlaps between basis functions; Cα and Cβ are the α and

β molecular orbitals coefficient matrices; εα and εβ are diagonal matrices of α and β

orbital energies; Fα and Fβ are the α and β Fock matrices, which have the forms,

Fα
µν = Hµν +

∑
λσ

P T
λσ (µν|σλ)− Pα

λσ (µλ|σν)

F β
µν = Hµν +

∑
λσ

P T
λσ (µν|σλ)− P β

λσ (µλ|σν) (2.42)

where; (µν|σλ) are the two-electron integrals over basis functions in chemist’s notation;

Hµν is the core-Hamiltonian matrix; Pα
λσ, P

β
λσ, and P T

λσ are the α-electron density, the

β-electron density, and the total electron density matrices, respectively, that are defined

as,

Pα
µν =

Nα∑
a

Cα
µaC

α∗
νa , P β

µν =
Nβ∑
a

Cβ
µaC

β∗
νa , P T

µν = Pα
µν + P β

µν (2.43)

The Fα and Fβ depend explicitly on each other through PT . Therefore, the Pople–Nesbet

equations (2.41) must be solved simultaneously. The unrestricted SCF procedure used
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to solve these equation is quite analogous to the SCF procedure used to solve the RHF

equations. It first begins with a guess for the two coefficient matrices Cα and Cβ, and

then the density matrices Pα, Pβ, and PT are computed. The Fock matrices Fα and

Fβ are obtained and transformed to Fα′ = X†FαX and Fβ′ = X†FβX. Then Cα′, Cβ′,

εα, and εβ are obtained by diagonalizing Fα′ and Fβ′. New Cα = XCα′ and Cβ = XCβ′

are calculated and the procedure is iterated until some convergence criteria are met.

A drawback of the UHF method is that, it is not an eigenfunction to the total spin

angular momentum operator.7,19,20

2.1.1.3 Restricted Open-Shell Hartree-Fock Theory (ROHF)

The ROHF method was first formulated by Roothaan in 1960.17 In contrast to

the UHF wavefunction, the ROHF wavefunction is an eigenfunction to the total spin

angular momentum operator.7,20–23 On the other hand, the ROHF method has its own

limitations, such as lacking of a unique Fock operator and having a higher variational

energy than that for the UHF method.7,20,22,23 In the ROHF wavefunction, occupied

spatial orbitals are partitioned into two subsets; a closed-shell (doubly occupied) subset

and an open-shell (partially occupied) subset.24 Therefore, the ROHF wavefunction

can be written in the form

ΨROHF = |ψc1ψ
c

1ψ
c
2ψ

c

2 · · ·ψcncψ
c

ncψ
o
1ψ

o
2 · · ·ψono〉 (2.44)

here; the overbar denotes the occupation with a β spin electron; c and o denote the

closed and open-shell orbitals, respectively; nc and no are the total number of the closed

and open-shell orbitals, respectively.

The total restricted open-shell electronic energy, EROHF , can be expressed as,20,25,26

EROHF = 2
n∑
i

fihii +
n∑
ij

fifj (2aijJij − bijKij) (2.45)
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where; hii, Jij, and Kij are the kinetic and nuclear attraction energy, the Coulomb

energy, and the exchange energy, respectively; n = nc + no is the number of occupied

orbitals; fi is the occupation number for orbital i (fi = 1 for the closed-shell subset,

and 0 < fi < 1 for the open-shell subset);17 aij and bij are the coupling coefficients

and their values depend on the case under study. Equation (2.45) is considered to

be the starting point to the ROHF formulation. The minimization of the energy of

equation (2.45) with respect to the spatial orbitals, subject to the orbital orthogonality

constraint, leads to the Euler equation,17,25

F̂i|ψi〉 =
n∑
j

εji|ψj〉 (2.46)

where εji are the Lagrange multipliers. The Fock operator, F̂ i, has the form25

F̂i = fi

ĥ+
n∑
j

fj
(
2aijĴj − bijK̂j

) (2.47)

here ĥ, Ĵ , and K̂ are the core-Hamiltonian, the Coulomb, and the exchange operators,

respectively, defined in equations (2.14) and (2.18). Unlike the closed-shell case, there

is no unitary transformation that transforms all the orbitals among themselves in order

to bring equation (2.46) into a pseudo-eigenvalue equation.17 However, in the ROHF

case, there are only unitary transformations that transform the closed and open-shells

subsets within themselves.16,17 It should be noted that such transformations cannot

eliminate the off-diagonal Langrange multipliers coupling the closed and open-shell

subsets.17 By ignoring the off-diagonal closed-open coupling terms, one can transform

equation (2.46) into two separate pseudo-eigenvalue equations, one for the closed-shell

subset and one for the open-shell subset. That is,

F̂ cψci = εciψ
c
i

F̂ oψoi = εoiψ
o
i (2.48)
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where; εc and εo are the orbital energies for the closed and open-shell orbitals, respec-

tively, which do not satisfy Koopmans’ theorem; F̂ c and F̂ o are the Fock operators for

the closed and open-shell orbitals, respectively, that have the form,17,25,27

F̂ c = ĥ+
(
2Ĵc − K̂c

)
+ f

(
2Ĵo − K̂o

)
F̂ o =f

[
ĥ+

(
2Ĵc − K̂c

)
+ f

(
2aĴo − bK̂o

)]
(2.49)

where

Ĵc =
nc∑
i

Ĵi, Ĵo =
no∑
i

Ĵi, K̂c =
nc∑
i

K̂i, K̂o =
no∑
i

K̂i, (2.50)

In case of high-spin open-shell systems (f = 1/2, a = 1, and b = 2), the ROHF

calculations can be performed using alpha and beta Fock operators (fα and fβ) of

the UHF method.16,20,25,27 For such open-shell systems, one can find the following

relations between the ROHF and UHF Fock operators:

F̂c = (f̂α + f̂β)/2, f̂α = 2f̂o, f̂β = 2(f̂c − f̂o) (2.51)

The molecular orbitals are expressed as linear combinations ofK known basis functions.

A set of K molecular orbitals can be constructed from such combinations, which is par-

titioned into three subsets; nc closed-shell (doubly occupied), no open-shell (singly oc-

cupied), and (K−n) virtual (unoccupied) molecular orbitals.24 Using equation (2.48),

a single Fock matrix (Fhs
ROHF ) for high-spin open-shell systems in the molecular orbital
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basis can be constructed as,24,27,28

closed open virtual

Fhs
ROHF =


Fcc
ψ 2(Fc

ψ − Fo
ψ) Fc

ψ

2(Fc
ψ − Fo

ψ) Foo
ψ 2Fo

ψ

Fc
ψ 2Fo

ψ Fvv
ψ


closed

open

virtual

(2.52)

or equivalently, using the alpha and beta Fock matrices of the UHF method, as20,24,27,28

closed open virtual

Fhs
ROHF =


Fcc
ψ Fβ

ψ (Fα
ψ + Fβ

ψ)/2

Fβ
ψ Foo

ψ Fα
ψ

(Fα
ψ + Fβ

ψ)/2 Fα
ψ Fvv

ψ


closed

open

virtual

(2.53)

where; Fc
ψ and Fo

ψ are the ROHF Fock matrices in molecular orbital basis that represent

f̂ c and f̂ o, respectively; Fα
ψ and Fβ

ψ are the α and β unrestricted Fock matrices in

molecular orbital basis, that can be obtained by performing the UHF calculations on

the system under study. The diagonal blocks in equations (2.52) and (2.53) have the

forms

Fcc
ψ = AccFα

ψ +BccFβ
ψ

Foo
ψ = AooFα

ψ +BooFβ
ψ

Fvv
ψ = AvvFα

ψ +BvvFβ
ψ (2.54)

here Axx and Bxx (x = c, o, v) are called the canonicalization coefficients. These pa-

rameters can be arbitrarily chosen as they do not affect the total density, energy, or

wavefunction.20,28 But they do affect the rate of convergence, the orbital energy, and

the orbital coefficients because their values alter the produced canonical orbitals.22 A
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number of different values for the canonicalization coefficients are listed in Table (2.1).

Table 2.1: Some values for the diagonal canonicalization parameters used in the high-spin
ROHF calculations.

Acc Bcc Aoo Boo Avv Bvv

Roothaan17 -1/2 3/2 1/2 1/2 3/2 -1/2

Davidson29 1/2 1/2 1 0 1 0

Guest and Saunders24 1/2 1/2 1/2 1/2 1/2 1/2

McWeeny and Diercksen21 1/3 2/3 1/3 1/3 2/3 1/3

GAMESS GVB program22 1/2 1/2 1/2 0 1/2 1/2

Binkley, Pople, and Dobosh30 1/2 1/2 1 0 0 1

In chapter four, we will discuss the SCF procedure that is used for solving high-spin

ROHF equations in detail.

2.1.2 Post-Hartree-Fock Theories

In the HF method, the molecular wavefunction is approximated by a single Slater

determinant. The use of a single determinant wavefunction is insufficient to describe

the correlation between electrons. While the antisymmetry of the determinantal wave-

function partially correlates the motion of electrons with same spin by the exchange

interaction, the motion of electrons with opposite spins is not correlated. The correla-

tion energy (Ecorr) is defined as the difference between the exact non-relativistic energy

of the system (E0) and the HF energy (Elimit) in the limit of a complete basis set.

Ecorr = E0 − Elimit (2.55)

Since the HF is a variational method, the Ecorr is always negative because the Elimit

is an upper bound to the exact energy. The HF method is able to provide about

99% of the total energy, but the remaining ∼ 1% is crucial for describing chemical
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properties.1,31 This small percentage of the total energy can be higher than bond

energies, even for a small molecule. There are several electronic structure theories

which use the HF wavefunction as a starting point to improve the HF results by taking

into account the electron correlation. These methods are called Post-HF or electron

correlation methods. Three Post-HF methods are discussed in the following sections.

2.1.2.1 Configuration Interaction Theory

Of all the Post-HF methods, configuration interaction (CI) theory is the simplest to

understand, but the most expensive to implement on a computer.1,32 A full CI wave-

function, |Φ0〉, is obtained variationally as the best linear combination of all possible

Slater determinants that describe different electronic configurations of the system.33

|Φ0〉 = c0|Ψ0〉+
∑
ar

cra|Ψr
a〉+

∑
a<b
r<s

crsab|Ψrs
ab〉+

∑
a<b<c
r<s<t

crstabc|Ψrst
abc〉+ · · · (2.56)

Where, a, b, and c denote occupied orbitals and r, s, and t denote virtual orbitals, |Ψ0〉

is the ground-state HF wavefunction, |Ψr
a〉 is the singly exited determinants, |Ψrs

ab〉 is

the doubly exited determinants, |Ψrst
abc〉 is the triply exited determinants, etc., and c0,

cra, crsab, etc. are the CI expansion coefficients.

The CI problem is a direct application of the linear variation method.34 Thus, if

the CI wavefunction is substituted into the Schrödinger equation, then multiplied on

the left by its complex conjugate and integrated over the space, the result is

Hc = Ec (2.57)

Here, c is the CI expansion coefficients vector, E is a diagonal matrix of energies of

the corresponding determinants, and H is the CI matrix, where each of its elements is

given by

HIJ = 〈ΨI |Ĥ|ΨJ〉 (2.58)
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Equation (2.57) has the form of the usual matrix eigenvalue problem, so the CI expan-

sion coefficients and energy of each determinant can be obtained by diagonalizing it.

In principle, the full CI wavefunction gives an exact solution to the Schrödinger

equation within the chosen basis. In practice, however, the dimension of the full CI

matrix increases rapidly with the size of the system and the full CI calculations be-

come impractical very quickly. Therefore, the CI expansion must be truncated to a

finite number of configurations.35–37 Truncating the CI expansion at the excitations

level one (CI with single excitations, CIS) does nothing to the HF result because single

excitations do not mix with |Ψ0〉. Thus, the double excitation level is the lowest level

which improves the HF result. Including the doubles, gives CI with the single and

double excitations (CISD) method.38 The CISD has become a popular approach of

calculating correlation energies for a large variety of molecules.7 The other common

truncated CI methods are QCISD (Quadratic CISD) and QCISD(T) (Quadratic CISD

with triple excitations added perturbatively).32

In addition to being an exact variational theory for non-relativistic electronic struc-

ture problems, the full CI is also size consistent and size extensive. Unfortunately, the

truncating CI methods are neither size consistent nor size extensive. A method is

called size consistent if it gives for a system consisting of non-interacting particles an

energy that equals the sum of their individual energies, i.e. E(1, 2) = E(1) + E(2). A

method is said to be size extensive if the total energy of a system scales linearly with

the number of particles in that system,39 i.e. E(nA) ≡ nE(A). As mentioned previ-

ously, the CISD method is the most applicable CI approach and it has been applied to

a wide range of molecules.34 The lack of size-consistency and size-extensivity are the

major drawbacks of the CISD method and all other truncated CI methods. Several

approximate corrections have been added to the CISD energies in order to correct the

lack of size-consistency and size-extensivity.38,40,41 The first proposed correction was

made in 1974 by Langhoff and Davidson,38 and it is known as the renormalized David-

son correction.42 In this correction, the contribution of the entire set of quadruples is
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approximated as,

∆EQ = (1− C2
0)∆ECISD (2.59)

where ∆EQ is the quadruples contribution, ∆ECISD is the CISD correlation energy,

and C0 is the leading coefficient of the CISD wavefunction.38 Other forms of more

sophisticated correction formulas were also proposed.1

2.1.2.2 Coupled Cluster Theory

The coupled-cluster (CC) method was first formulated at the end of the 1950s by

Coester and Kummel to study nuclear physics phenomena.43,44 The theory was intro-

duced later to quantum chemistry by Čížek and Paldus.45,46 Unlike the linear expan-

sion of the CI wavefunction, the CC wavefunction, |ΨCC〉, is written as an exponential

expansion of the HF wavefunction, |Ψ0〉,

|ΨCC〉 = eT̂ |Ψ0〉

=
(

1 + T̂ + 1
2! T̂

2 + 1
3! T̂

3 + · · ·
)
|Ψ0〉 (2.60)

where the cluster operator T̂ for N -electon system is given by

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂N (2.61)

the T̂i operator when acting on |Ψ0〉 produces all ith-exited determinants, e.g.,

T̂1|Ψ0〉 =
∑
ar

cra|Ψr
a〉

T̂2|Ψ0〉 =
∑
a<b
r<s

crsab|Ψrs
ab〉 (2.62)
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The exponential operator eT̂ can also be written as

eT̂ = 1 + T̂1 +
(
T̂2 + 1

2! T̂
2
1

)
+
(
T̂3 + T̂2T̂1 + 1

3! T̂
3
1

)
+ · · · (2.63)

when it operates on |Ψ0〉, the first term produces the reference HF and the second

gives all single excitations. The first parenthesis generates all double excitations, while

the second generates all triple excitations. It should be emphasized that there is only

one way to generate singly-excited states, T̂1, but two ways to generate doubly-excited

states; pure double excitations, T̂2, and two successive single excitations, T̂ 2
1 . While

three ways to generate triply-excited states; pure triple excitations, T̂3, double and

single excitations, T̂2T̂1, or three successive single excitations, T̂ 3
1 .

If the cluster operator T̂ (equation 2.61) contains all terms to the T̂N , then |ΨCC〉 is

exact and equivalent to the full CI wavefunction as it comprises all possible excitations.

Due to the complexity of the CC equations and the related computational cost, the

T̂ is truncated at a certain excitation level.47 Including only T̂1 and T̂2 in the cluster

operator yields the couple-cluster singles and doubles (CCSD) method, which is the

only generally applicable CC method. Higher-order CC methods such as CCSDT and

CCSDTQ are only used for small molecules.1 The well-known coupled-cluster singles

and doubles plus perturbative triples method, CCSD(T), is one of the most accurate

methods for evaluating electron correlation effects.48 The CC method is size extensive

at any level of the truncation of T̂ , but the method is not variational, i.e. the CC

energy is not upper bound to the exact non-relativistic energy.

2.1.2.3 Møller-Plesset Perturbation Theory

In 1934, Møller and Plesset49 applied the Rayleigh-Schrödinger perturbation theory

(RSPT) for treating N -electron systems in which the sum of Fock operators is used as
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the zeroth-order Hamiltonian, Ĥ(0).

Ĥ(0) =
N∑
i=1

f̂(i) =
N∑
i=1

ĥ(i) +
N∑
j=1

[Ĵj(i)− K̂j(i)]
 (2.64)

where f̂(i) is the Fock operator of the ith electron. The ground-state HF wavefunction,

|Ψ(0)〉, is taken as the zeroth-order approximation to the exact wavefunction, |Φ〉.49

Thus, the zeroth-order energy, E(0) = 〈Ψ(0)|Ĥ(0)|Ψ(0)〉 = ∑
a
εa, is the sum of the energies,

εa, of the occupied spin orbitals in the |Ψ(0)〉.

In Møller-Plesset perturbation theory (MPPT), the difference between the exact

electronic Hamiltonian, Ĥ, and the Ĥ(0) is considered a small perturbation, V̂.

V̂ = Ĥ − Ĥ(0)

=
N∑
i=1

ĥ(i) +
N∑
i=1

N∑
j>i

1
rij
−

N∑
i=1

ĥ(i) +
N∑
j=1

[Ĵj(i)− K̂j(i)]


=
N∑
i=1

N∑
j>i

1
rij
−

N∑
i=1

N∑
j=1

[Ĵj(i)− K̂j(i)]

=
N∑
i=1

N∑
j>i

1
rij
−

N∑
i=1

vHF (i) (2.65)

The perturbation, V̂, is just the deviation of the effective HF potential, vHF (i), from

the exact electron-electron potential. This deviation is often called the fluctuation

potential.1 The exact wavefunction, |Φ〉, which is supposed to lie near the |Ψ(0)〉, and

the exact energy, E, which is also supposed to lie near the E(0) can be expanded in a

Taylor series in powers of an ordering parameter, λ, which is later set to unity,

|Φ〉 = |Ψ(0)〉+ λ|Ψ(1)〉+ λ2|Ψ(2)〉+ · · ·

E = E(0) + λE(1) + λ2E(2) + · · · (2.66)

where the |Ψ(1)〉, |Ψ(2)〉, . . . and E(1), E(2), . . . are the first-, second-, . . . order correc-

tions to the |Ψ(0)〉 and to the E(0), respectively. If these expansions are substituted
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into the Schrödinger equation, along with Ĥ = Ĥ(0) + λV̂, and then the terms of the

same order λn are collected, the result is the zeroth-, first-, second-, up to nth-order

perturbation equations.

Ĥ(0)|Ψ(0)〉 = E(0)|Ψ(0)〉

Ĥ(0)|Ψ(1)〉+ V̂|Ψ(0)〉 = E(0)|Ψ(1)〉+ E(1)|Ψ(0)〉

Ĥ(0)|Ψ(2)〉+ V̂|Ψ(1)〉 = E(0)|Ψ(2)〉+ E(1)|Ψ(1)〉+ E(2)|Ψ(0)〉 (2.67)
...

Ĥ(0)|Ψ(n)〉+ V̂|Ψ(n−1)〉 =
n∑
i=0

E(i)Ψ(n−i)

To calculate the nth-order energies, one can multiply each of the above equations on the

left by 〈Ψ(0)| and use the orthogonality relation, 〈Ψ(0)|Ψ(n)〉 = 0 where n = 1, 2, 3, · · · ,

and the turnover rule, 〈Ψ(0)|Ĥ(0)|Ψ(n)〉 = 〈Ψ(n)|Ĥ(0)|Ψ(0)〉
∗, to get,1,7, 49

E(0) = 〈Ψ(0)|Ĥ(0)|Ψ(0)〉 (2.68)

E(1) = 〈Ψ(0)|V̂|Ψ(0)〉 (2.69)

E(2) = 〈Ψ(0)|V̂|Ψ(1)〉 (2.70)

In general,

E(n) = 〈Ψ(0)|V̂|Ψ(n−1)〉 (2.71)

It is clear that solving for the |Ψ(n−1)〉 by using the set of equations (2.67) is required

in the determination of the E(n) for n ≥ 2 using the equations (2.71). However, the

total energies of MPPT, EMPn, up to the third order are:

EMP0 = E(0) = 〈Ψ(0)|Ĥ(0)|Ψ(0)〉 =
∑
a

εa (2.72)

The zeroth-order “unperturbed” energy, EMP0, is just the sum of energies of the
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occupied MOs in the |Ψ(0)〉.

EMP1 = E(0) + E(1)

= 〈Ψ(0)|Ĥ(0) + V̂|Ψ(0)〉 = E0 (2.73)

The first-order MPPT, EMP1, is exactly the ground state HF energy, E0. Thus, the

first correction to the HF energy comes at the second-order of MPPT,

EMP2 = E(0) + E(1) + E(2)

= E0 + 〈Ψ(0)|V̂|Ψ(1)〉

= E0 +
∑
a<b
r<s

〈ab||rs〉
εa + εb − εr − εs

(2.74)

where, a, b refer to occupied orbitals, and r, s refer to virtual orbitals. Second-order

MPPT, MP2, is one of the most widely used methods by computational chemists.

Expressions for the higher-order corrections become gradually more complex than the

E(2). Calculations of MP3, MP4, and MP5 are now available in most of the computa-

tional chemistry software packages.1,4 The MPn methods are size consistent but not

variational.

2.2 Density Functional Theory

An alternative scheme for the determination of the quantum N -electron systems,

is density functional theory (DFT). In contrast with the wavefunction based meth-

ods, such as HF and the post-HF methods, DFT is based upon the electron density

ρ(r).50 The origin of DFT dates back to the end of the 1920s with the proposition of

the Thomas–Fermi model.51,52 In the years 1964 and 1965, modern DFT was estab-

lished as a promising method to study many-electron systems by Hohenberg, Kohn,

and Sham.53,54 Hohenberg and Kohn presented two theorems which are the essential
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pillars of DFT, known as the HK theorems. The first theorem states that the ex-

ternal potential, Vext, and hence any ground state property, of an N-electron system

is a unique functional of the ground state electron density, ρ0(r) = ρ0(x, y, z), which

depends only on three spatial variables. The second theorem states that the electron

density which optimizes the total energy is the ρ0(r).

According to the first theorem, the total energy of an electronic system can be

written as the following functional of the electron density,

E[ρ(r)] = Vext[ρ(r)] + F [ρ(r)] (2.75)

where, the square brackets designate the functional relation, Vext is the external po-

tential in which the electrons are moving that depends on the system under study, and

F [ρ(r)] is the universal functional which does not depend on any external potential.

F [ρ(r)] is the sum of the kinetic energy functional of the system, T [ρ(r)], and the

electron-electron interaction energy functional, Vee[ρ(r)].

F [ρ(r)] = T [ρ(r)] + Vee[ρ(r)] (2.76)

For molecules in the absence of any external effects, the external potential ,Vext[ρ(r)],

is the Coulomb attraction between electrons and nuclei, Vne[ρ(r)],

Vext[ρ(r)] = Vne[ρ(r)] = −
M∑
A=1

∫ ZA
|r− rA|

ρ(r)dr (2.77)

and the Vee[ρ(r)] is given by,

Vee[ρ(r)] = Jee[ρ(r)] + ∆Vee[ρ(r)]

= 1
2

∫∫ ρ(r1)ρ(r2)
|r1 − r2|

dr1dr2 + ∆Vee[ρ(r)] (2.78)

where it is divided into the classical Coulomb repulsion Jee[ρ(r)] and all the non-
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classical corrections to the electron-electron interaction energy, ∆Vee[ρ(r)].

In order to express the kinetic energy of an N -electron system as a functional of

the electron density, Kohn and Sham in 1965 introduced a new approach.54 In this

approach, the kinetic energy of the real system is approximated by the kinetic energy

of a fictitious system consisting of non-interacting electrons and their corresponding

orbitals. These orbitals are called Kohn-Sham (KS) orbitals, {ψKSi }, from which the

exact wavefunction of the non-interacting system is constructed as a Slater determi-

nant. The electron density of the fictitious KS-system, ρKS(r), must equal the ground

state electron density of the real system, ρ0(r), i.e.,

ρKS(r) =
N∑
i=1

ψKS∗i (r)ψKSi (r) = ρ0(r) (2.79)

The kinetic energy of the real system is written as,

T [ρ(r)] = Tni[ρ(r)] + ∆T [ρ(r)]

= −1
2

N∑
i=1
〈ψKSi (1)|∇2

1|ψKSi (1)〉+ ∆T [ρ(r)] (2.80)

where, Tni[ρ(r)] is the kinetic energy of the non-interacting electrons, and ∆T [ρ(r)]

is the correction to the kinetic energy. By substituting equations (2.76) to (2.78),

and (2.80) into equation (2.75), one can write the total energy functional for the real

systems as follows

E[ρ(r)] = Vext[ρ(r)] + F [ρ(r)]

= T [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)]

= Tni[ρ(r)] + Vne[ρ(r)] + Jee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)]

= −1
2

N∑
i=1
〈ψKSi (1)|∇2

1|ψKSi (1)〉+
M∑
A=1

∫ ZA
|r− rA|

ρ(r)dr

+ 1
2

∫∫ ρ(r1)ρ(r2)
|r1 − r2|

dr1dr2 + Exc[ρ(r)] (2.81)
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Where, Exc[ρ(r)] is the exchange-correlation energy functional which is defined as

Exc[ρ(r)] = ∆T [ρ(r)] + ∆Vee[ρ(r)]

=
(
T [ρ(r)]− Tni[ρ(r)]

)
+
(
Vee[ρ(r)]− Jee[ρ(r)]

)
(2.82)

In spite of its misleading name, Exc[ρ(r)] involves the correction for the difference in the

kinetic energy between the real and the fictitious systems, ∆T [ρ(r)], and the correction

to the electron-electron interaction energy, ∆Vee[ρ(r)]. The ∆Vee[ρ(r)] includes all the

non-classical corrections to the electron-electron repulsion energy such as the exchange

energy, the correlation energy, and the correction to the self-interaction error (SIE) in

the Jee.55 The SIE results from the fact that the Jii 6= 0, but, of course, the electron

does not repel itself. The correction to the SIE is one of the most serious problems

of DFT.56,57 In HF theory, the self-interaction energy is exactly canceled with the

corresponding exchange energy, i.e. Jii−Kii = 0. However, in the DFT, the correction

to the exchange energy does not completely cancel the self-interactions.57

As stated in the second HK theorem, the ρ0(r) and the ground state energy,

E[ρ0(r)], can be obtained by minimizing the Kohn-Sham energy expression of equa-

tion (2.81). The variation of this expression with respect to the Kohn-Sham orbitals,58

under the constraint that the orbitals remain orthonormal, leads to the celebrated

Kohn-Sham equations.

ĥKS(r1)ψKSi (r1) = εiψ
KS
i (r1) (2.83)

Where,

ĥKS(r1) = −1
2∇

2
1 −

M∑
A=1

ZA
r1A

+
∫ ρ(r2)

r12
dr2 + v̂xc(r1) (2.84)

is the Kohn-Sham one-electron operator, εi is the ith Kohn-Sham orbital energy, and

v̂xc is the exchange-correlation operator which is defined as,

v̂xc(r) = δExc[ρ(r)]
δρ(r) (2.85)
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Equation (2.83) differs from the HF equations (2.16) only by the v̂xc(r). The ĥKS,

like the Fock operator, depends on its eigenvector through the ρ(r) (equation 2.79),

therefore the Kohn-Sham equations must be solved self-consistently. In general, the

Kohn-Sham equations are solved in the same way as the HF equations. The only

difference is that the integrals of the Exc are calculated numerically because they do

not have analytic expressions.

If all terms in the Kohn-Sham equations are known, DFT will be exact. Unfor-

tunately, the form of the v̂xc(r) is unknown, therefore, approximations to it must be

used.50 The total exchange-correlation energy of the system is expressed as

Exc =
∫
ρ(r)εxc[ρ(r)]dr (2.86)

where εxc[ρ(r)] is the exchange-correlation energy per electron which is generally written

as a sum of exchange, εx[ρ(r)], and correlation, εc[ρ(r)], contributions.

εxc[ρ(r)] = εx[ρ(r)] + εc[ρ(r)] (2.87)

Various kinds of approximations to the exchange-correlation energy have been pro-

posed since the early days of DFT. By now there is a long list of exchange-correlation

functionals with varying levels of complexity and accuracy.59–73 In spite of this fact,

the development of more accurate functionals remains an ongoing and active area

of research.74 We now review in brief the most common types of the approximate

exchange-correlation functionals:
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2.2.1 Local Density Approximation (LDA)

LDAs are the simplest exchange-correlation functionals that depend only on the

ρ(r) to some power. The εx and Ex in LDA are known and given as,75

εLDAx [ρ(r)] = −3
4

(
3ρ(r)
π

)1/3

(2.88)

ELDA
x [ρ(r)] = −3

4

( 3
π

)1/3 ∫
ρ(r)4/3dr (2.89)

while the εc and Ec have different approximate forms that can be obtained by fitting to

the many-body free electron gas data. For open-shell systems, the alpha and beta spin-

densities, ρα(r) and ρβ(r) with ρ(r) = ρα(r)+ρβ(r), must be used in the approximation,

which is called the local spin-density approximation (LSDA).61 The Ex in LSDA is

written as,

ELSDA
x [ρα(r), ρβ(r)] = −3

4

( 6
π

)1/3 ∫ (
ρα(r)4/3 + ρβ(r)4/3

)
dr (2.90)

The Perdew-Wang (PW92)63 and Vosko-Wilk-Nusair (VWN)59 functionals are common

examples of LDA functionals.

2.2.2 Generalized Gradient Approximation (GGA)

In GGA, the Exc is given as a functional of both the density and its gradients at

each point.

EGGA
xc [ρ(r)] =

∫
ρ(r)εGGAxc [ρ(r),Oρ(r)]dr (2.91)

The GGA often shows a large improvement over the LDA results when studying atoms,

molecules, and solids. Several GGA functionals have been developed and used by

computational chemists, e.g., Becke-88 (B88),61 Perdew-Wang-91 (PW91),63,65 and

Perdew–Burke–Ernzerhof (PBE)66 functionals.
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2.2.3 The Meta-GGAs

The meta-GGA functionals use the Laplacian of the density, ∇2ρ(r), and the kinetic

energy density, τ [ρ(r)] = −1
2
∑
i |∇ψKSi |

2, of the occupied Kohn–Sham orbitals into the

Exc as additional degrees of freedom.

EmGGA
xc [ρ(r)] =

∫
ρ(r)εmGGAxc [ρ(r),Oρ(r),∇2ρ(r), τ ]dr (2.92)

Perdew-Kurth-Zupan-Blaha (PKZB)67 and Lee-Yang-Parr (LYP)62 functionals are meta-

GGA functionals.

2.2.4 Hybrid Functionals

The hybrid functionals incorporate a portion of the HF exchange with a combination

of different levels of exchange and correlation functionals. For instance, the combina-

tion of the LSDA and B88 exchange functionals and the HF exchange, along with the

VWN and LYP correlation energy functionals leads to the B3LYP functional.62,64

EB3LY P
xc = (1− a0− ax)ELSDA

x + a0E
exact
x + axE

B88
x + (1− ac)EVWN

c + acE
LY P
c (2.93)

Where a0, ax, and ac are parameters, and Eexact
x is the HF exchange energy. The

B3LYP, Becke three parameter exchange functional (B3)64 and the Lee-Yang-Parr cor-

relation functional (LYP),62 is the most popular density functional in computational

chemistry.

2.3 Basis Sets

A basis set is a set of mathematical functions from which the atomic or molecular

orbitals are constructed.55 In practice, each unknown orbital, ψi, is represented by a
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linear combination of a finite set of known functions, {ϕµ}, i.e., a basis set.7

ψi =
K∑
µ=1

Cµiϕµ i = 1, 2, . . . , K (2.94)

Where, Cµi are the expansion coefficients, and K is the total number of basis functions

(or the size of the basis set). The use of K basis functions yields a set of N occupied

orbitals and a set of (K−N) virtual orbitals. The choice of appropriate basis functions

is undoubtedly of great importance in electronic structure calculations. Two main con-

siderations should be taken into account when choosing the basis functions. The first is

that the basis functions should provide the best representation of the unknown orbitals

with the fewest possible terms in the expansion (2.94). The second is that the basis

functions should allow for the two-electron integrals to be evaluated with as cheap a

computational cost as possible.7,55,76

There are two types of the basis functions employed in electronic structure calcula-

tions:77 Slater Type Functions or Orbitals (STFs or STOs) and Gaussian Type Func-

tions or Orbitals (GTFs or GTOs). The STO, Slmn(ζ, r), and the GTO, Glmn(α, r),

centered on nucleus A have the following forms in Cartesian coordinates,7,55,77

Slmn(ζ, r) = Nlmn(x−XA)l(y − YA)m(z − ZA)ne−ζ|r−RA| (2.95)

Glmn(α, r) = Nlmn(x−XA)l(y − YA)m(z − ZA)ne−α|r−RA|2 (2.96)

where, ζ is the Slater orbital exponent, α is the Gaussian orbital exponent, Nlmn is

the normalization factor, l, m, and n are non-negative integers which determine the

type of orbital (e.g., l+m+n = 2 is a d-orbital with six possible combinations leading

to the Cartesian d-functions: x2, y2, z2, xy, xz, and yz), r = (x, y, z) is the position

vector of an electron, and RA = (XA, YA, ZA) is the position vector of the nucleus A.

The STOs are similar to the orbitals obtained from the solution of the hydrogen atom.

Because of this similarity, the STOs give better description to the qualitative features
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of the orbital ψi with fewer basis functions in the expansion (2.94) than do GTOs.

Whilst the evaluation of the two-electron integrals with the STOs is an extremely

difficult and time-consuming process, it is an easy and fast process with the GTFs.

For this pragmatic reason, the GTFs have become the most used basis functions in

computational chemistry.

In order to merge the attractive features of the STFs with that for the GTFs, fixed

linear combinations, called contractions, of the GTFs are used to mimic the STFs or any

other desired orbitals.7,55 These contractions lead to new Gaussian functions named

Contracted Gaussian Functions (CGFs),

ϕCGF
µ (r) =

L∑
p=1

dpµGp(αpµ, r) (2.97)

where, L is the number of Gaussians used in the contraction (also called the degree of

contraction), and dpµ are the contraction coefficients. The Gaussian functions Gp used

in such contractions are called primitives. Their exponents and contraction coefficients

are generally optimized by means of relatively inexpensive atomic SCF calculations.77

The CGFs basis set can either be constructed from segmented or generalized contraction

of an optimized-primitives basis set. In the segmented basis sets, each primitive does

not contribute to more than one (or maybe two) contracted function.78 In contrast,

the general contraction scheme allows each of the primitives to be contributed to every

single contracted function.79

The basis sets are described by: (i) the number of primitives per CGF, (ii) the

number of CGFs per atomic orbital, (iii) the number and the types of other augmented

functions might be added, such as polarization and diffuse functions. The polarization

functions are Gaussians of higher angular number than any of the occupied orbitals

in the corresponding atom (i.e., p, d, . . . in H, He and d, f, . . . in Li −→ Ar). The

polarization functions can be of great importance for describing chemical bonding

because they give more flexibility to the valence-shell orbitals. The diffuse functions
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are Gaussians, usually of s or p type, with small exponents so that they decay slowly

and spread over space. Therefore, they are essential for calculations describing anions

or Rydberg states.1,4, 55 A large number of CGF-type basis sets have been developed

for the quantum chemical calculations. The smallest sets are called minimal or single-

zeta (SZ) basis sets in which each occupied orbital in an atom is described by one and

only one CGF. The following is a brief description of the two families of basis sets

widely-used by chemists:

2.3.1 Pople Basis Sets

Pople basis sets consist of the minimal STO-NG basis sets and the split-valence

(SV) basis sets. The minimal STO-NG basis set (where, N = 2 − 6) means a Slater-

Type Orbital (STO) is fitted by N primitives. The most popular set of this group is the

STO-3G in which each atomic orbital of an atom is approximated by 3 primitives.4,7, 55

The split-valence basis sets are either double split valence (DZV) basis sets denoted

k-lmG, or triple split valence (TZV) basis sets denoted k-lmnG, where k is the number

of primitives used in a given core orbital.80 In the DZV basis sets, each valence orbital

is spilt into two CGFs represented by l and m primitives. While in the TZV basis sets,

each valence orbital is split into three CGFs represented by l, m, and n primitives.

For example, a 6-31G is a DZV basis set in which each core orbital described by 6

primitives, and each valence orbital is split into two CGFs that are described by 3 and

1 primitive, respectively. Pople’s basis sets might be augmented by adding polarization

functions of d or d and f types on heavy atoms, (e.g., 6-31G(d), 6-31G(df), 6-31G(2df),

6-31G(3d2f)) and of p or p and d types on H and He atoms (e.g., 6-31G(d,p), 6-

31G(3df,pd)).7 Diffuse functions can also be added to heavy atoms (+) or to heavy

and H atoms (++), .e.g. 6-311+G(d,p), 6-311++G(d).55 The Pople style basis sets

were constructed with the s-p constraint which means that the exponents of the s

and p valence orbitals are forced to be identical.1 This increases the efficiency of the
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computations but decreases the flexibility of the resulting orbitals.76

2.3.2 Correlation-Consistent Basis Sets

The correlation-consistent (cc) basis sets have been developed by Dunning and

co-workers for high-accuracy calculations with electron-correlation methods.81–84 The

cc-basis sets are optimized using CISD energy because the basis sets obtained at the HF

level might not be ideal for calculations of electron-correlation.80 They are designated

cc-pVXZ, where p stands for polarized, V for valence, X (= D,T,Q, 5, 6) for the

number of shells the valence orbitals are split into, and Z for zeta. The cc-pVXZ can

be augmented (aug-cc-pVXZ) by adding diffuse functions, of types f, d, p, and s on

heavy atoms and of types d, p, and s on H and He, to the all types of basis functions

in the set.1,76 The cc-pVDZ consists of 3s2p1d = 14 basis functions for Li −→ Ne and

2s1p = 5 basis functions for H and He. In general, the cc-pV(X+1)Z contains for each

shell (l) one extra basis function compared to the cc-pVXZ. Thus, the cc-pVTZ has

4s3p2d1f = 30 basis functions for Li −→ Ne and 3s2p1d = 14 for H and He, while the

cc-pVQZ has 5s4p3d2f1g = 55 basis functions for Li −→ Ne and 4s3p2d1f = 30 for H

and He.85 The correlation consistent basis sets give better results than Pople’s basis

sets that need the same CPU time.76 Moreover, results obtained by the correlation

consistent basis sets are systematically improved with increasing their size.86,87

2.4 Basis Set Superposition Error

Finite basis sets suffer from a problem known as a basis set superposition error

(BSSE).77 The BSSE is a serious problem when calculating for weak interactions, such

as hydrogen bonding, van der Waals, dipole-dipole interactions, etc., between two or

more species (atoms or molecules).76,88 If two molecules A and B approach each other

to form a dimer AB, then the interaction energy, Eint, between A and B can be trivially
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written as

Eint = E(AB)ab − E(A)a − E(B)b (2.98)

where, E(AB)ab, E(A)a, and E(B)b are the energies of AB, A, and B, respectively.

The subscripts a and b indicate the basis sets for the molecules A and B, respectively,

and ab = a
⋃
b is the full basis set of AB. Equation (2.98) is valid only if the basis

sets a and b are complete or if the intermolecular distance between A and B is very

large. However, when using finite basis sets, there is an extra lowering in the energy

of AB compared to the sum of the individual A and B energies. This extra lowering

in the E(AB) is referred to as basis set superposition error (BSSE). In AB, the basis

functions of B are available to A, so A in AB has a larger basis set than does isolated A,

and similarly for B. Therefore, the larger basis set is artificially decreasing the E(AB)

compared to the individual energies of A and B, resulting in the BSSE.76,88,89

The most widely used technique to correct for the BSSE is the counterpoise (CP)

correction method of Boys and Bernardi.90 In the CP correction, the energy belonging

to the BSSE, EBSSE, is given by

EBSSE = E(A · · · ∗)ABab + E(∗ · · ·B)ABab − E(A)ABa − E(B)ABb (2.99)

where superscript AB describes the geometry of A and B in the structure they adopt

in the dimer AB. The E(A · · · ∗) and the E(∗ · · ·B) are calculated using the full ba-

sis set by neglecting all the electrons and the protons of B when calculating for the

E(A · · · ∗), and by neglecting all the electrons and the protons of A when calculating

for the E(∗ · · ·B). Hence, the CP-corrected interaction energy, ECP
int , is obtained by

the subtraction of the EBSSE form the Eint in equation (2.98).

ECP
int = Eint − EBSSE (2.100)
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It is recommended to use the CP correction for calculations of weak-interaction energies

even if it usually overestimates the BSSE without providing a clear way to correct for

this overestimation.55,91
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Chapter 3

Generalized Atoms In Molecules

Approach (GAIM)

I have gotten lots of results! If I find 10,000 ways something won’t work, I
haven’t failed. I am not discouraged, because every wrong attempt discarded
is often a step forward.

(Thomas Edison)

3.1 Introduction

We propose a new theoretical approach for calculating total energies of molecules,

called Generalized Atoms In Molecules Approach (GAIM). Unlike other AIM or energy

decomposition approaches which try to partition the molecular energy into its atomic

contributions, GAIM aims to solve the energy of each atom variationally in the first

step and then build the energy of molecule from the atomic energies.

Atoms are the building blocks of molecules. Accordingly (as QTAIM shows) “every

measurable property of a system, finite or periodic, can be equated to a sum of contri-

butions from its composite atoms”.1,2 Based on this fact, the energy of the diatomic

molecule A−B is formulated in the GAIM as a sum of its atomic energies. Whereas

each atomic energy is expressed rigorously by adding the energy of the isolated atom

58



to the contribution of that atom to the interaction energy between them. The energy

of the molecule is then optimized subject to the constraint that the sum of integrals of

atomic densities is equal to the total number of electrons.

3.2 Theory

In the GAIM approach, electrons of atom A are described by a set of orthonormal

spatial atomic orbitals, {ψAa }, and electrons of atom B are described by a different

set of orthonormal spatial atomic orbitals, {ψBa }, while the two sets are taken to be

orthogonal to each other. Our intention in this approach is not to construct a molecular

wavefunction from these orbitals as HF and valence bond theories do for describing the

molecular system. Instead we are concerned about finding a set of AIM wavefunctions

that describe each atom in a molecule as well as the whole molecular system. We know

this is not an easy task but a challenging one that needs time and great effort to be

achieved.

3.2.1 GAIM Expression of the Total Electronic Energy

The total electronic energy of a diatomic molecule (A−B) can be expressed as a

sum of the electronic energy (E◦A) of isolated atom A, the electronic energy (E◦B) of

isolated atom B, and the electronic energy (EAB) of interactions between them,

E = E◦A + E◦B + EAB (3.1)

E◦A and E◦B are defined as

E◦A = TA + V AA
en + V AA

ee

E◦B = TB + V BB
en + V BB

ee (3.2)
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TA and TB are the kinetic energies of the electrons in atoms A and B, respectively. V AA
en

and V BB
en are the attraction energies between the electrons and the nuclei of isolated

atoms A and B, respectively. V AA
ee and V BB

ee are the interaction energies between the

electrons of atoms A and B, respectively.

The interaction energy EAB between the two atoms in the molecule is written as

EAB = V AB
en + V BA

en + 1
2V

AB
ee + 1

2V
BA
ee (3.3)

V AB
en is the attraction energy between the electrons of atom A and nucleus B. V BA

en

is the attraction energy between the electrons of atom B and nucleus A. The inter-

action energy between the electrons of atom A with the electrons of atom B that can

be denoted as (V AB
ee or V BA

ee ) is divided equally between the two atoms as shown in

equation (3.3).

3.2.1.1 Total Electronic Energy as a Sum of Atomic Contributions

Our interest in the GAIM approach is to write the total electronic energy of a

molecule as a sum of AIM energy contributions (EA and EB). Thus, the total electronic

energy for a diatomic molecule (A−B) is defined as

E = EA + EB (3.4)

Here EA and EB are rigorously defined by adding the contribution of each atom in

EAB (equation 3.3) to its isolated energy.

EA = E◦A + V AB
en + 1

2V
AB
ee = TA + V AA

en + V AB
en + V AA

ee + 1
2V

AB
ee

EB = E◦B + V BA
en + 1

2V
BA
ee = TB + V BB

en + V BA
en + V BB

ee + 1
2V

BA
ee (3.5)
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Equations (3.5) can also be written as

EA = HA + V AA
ee + 1

2V
AB
ee

EB = HB + V BB
ee + 1

2V
BA
ee (3.6)

where HA and HB

HA = TA + V AA
en + V AB

en

HB = TB + V BB
en + V BA

en (3.7)

are the kinetic and nuclear attraction energy of electrons of atoms A and B, respec-

tively.

3.2.1.2 Kinetic and Nuclear Attraction Energies

HA and HB are defined as

HA =
∑
a

ηAa h
A
aa =

∑
a

ηAa 〈ψAa (r1)|ĥ(r1)|ψAa (r1)〉

HB =
∑
a

ηBa h
B
aa =

∑
a

ηBa 〈ψBa (r1)|ĥ(r1)|ψBa (r1)〉 (3.8)

where the sums are over all occupied atomic orbitals (AOs) of atoms A or B. ηAa and

ηBa are the occupancies of orbitals ψAa and ψBa , respectively. hAaa and hBaa are the kinetic

and nuclear attraction energies of an electron described by the ath AO centered on

atom A or B, respectively. ĥ(r1) is the one-electron core Hamiltonian operator which

contains the kinetic energy and nuclear attraction potential energy operators.

ĥ(r1) = −1
2∇

2
1 −

ZA
r1A
− ZB
r1B

(3.9)

61



Here ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator. ZA and ZB are the nuclear

charges of atoms A and B, respectively. r1A and r1B are the distances between the

electron one and the nuclei A and B, respectively.

3.2.1.3 Interaction Energies Between Electrons

The electron-electron interaction energy (Vee) can be split into three energy com-

ponents as follows

Vee = ECR + Ecorr + Eex (3.10)

where ECR is the Coulomb repulsion energy, Ecorr is the correlation energy, and Eex

is the exchange energy. Here we assign the occupancy coefficients that will be used

for defining the electron-electron interaction energy components. These occupancy

coefficients are

CAAab = ηAa η
A
b , XAA

ab =
(
ηαAa ηαAb + ηβAa ηβAb

)
CBBab = ηBa η

B
b , XBB

ab =
(
ηαBa ηαBb + ηβBa ηβBb

)
CABab = ηAa η

B
b , XAB

ab =
(
ηαAa ηαBb + ηβAa ηβBb

)
CBAab = ηBa η

A
b , XBA

ab =
(
ηαBa ηαAb + ηβBa ηβAb

)
(3.11)

where ηαAa , ηβAa , ηαBa , and ηβBa are the occupancies of the ath AO on atoms A and B

with α and β electrons, respectively. For the V AA
ee and V BB

ee in equations (3.6), EAA
CR

and EBB
CR are defined as follows

EAA
CR = 1

2
∑
a,b

CAAab J
AA
ab −

1
2
∑
a

XAA
aa J

AA
aa

EBB
CR = 1

2
∑
a,b

CBBab J
BB
ab −

1
2
∑
a

XBB
aa J

BB
aa (3.12)

The summations in equations (3.12) run over the occupied AOs of atom A or B. The

purpose of the second sums in these equations are to eliminate the self-interaction
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Coulomb energies that arise from the first sums in these equations. The Coulomb

integrals JAAab and JBBab are given by

JAAab = 〈ψAa (r1)ψAb (r2)|ψAa (r1)ψAb (r2)〉

JBBab = 〈ψBa (r1)ψBb (r2)|ψBa (r1)ψBb (r2)〉 (3.13)

For the V AB
ee and V BA

ee in equations (3.6), EAB
CR and EBA

CR are defined as follows

EAB
CR = 1

2
∑
a,b

CABab J
AB
ab

EBA
CR = 1

2
∑
a,b

CBAab J
BA
ab (3.14)

where the sums are over all occupied AOs of atoms A or B. The energies EAB
CR and

EBA
CR are equivalent to each other, and the Coulomb integrals JABab and JBAab are defined

as

JABab = 〈ψAa (r1)ψBb (r2)|ψAa (r1)ψBb (r2)〉

JBAab = 〈ψBa (r1)ψAb (r2)|ψBa (r1)ψAb (r2)〉 (3.15)

Before discussing the correlation and exchange energies (EA
corr, EB

corr, EA
ex, and EB

ex)

for atoms A and B in the molecule, we rewrite the expressions for EA and EB (equa-

tion 3.6) by using equations (3.8, 3.10, 3.12, and 3.14).

EA =
∑
a

ηAa h
A
aa + 1

2
∑
a,b

CAAab J
AA
ab −

1
2
∑
a

XAA
aa J

AA
aa + 1

2
∑
a,b

CABab J
AB
ab + EA

corr + EA
ex

EB =
∑
a

ηBa h
B
aa + 1

2
∑
a,b

CBBab J
BB
ab −

1
2
∑
a

XBB
aa J

BB
aa + 1

2
∑
a,b

CBAab J
BA
ab + EB

corr + EB
ex

(3.16)

In this thesis, we present the first version of the GAIM approach in which the cor-

relation energies EA
corr and EB

corr are considered to be zero, and the exchange energies
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EA
ex and EB

ex are expressed in the same way as in HF theory. We therefore expect that

the values of E for diatomic molecules near their equilibrium distances obtained by

GAIM to be close to those obtained by HF calculations. Thus HF values serve as a

reference for testing the performance and validity of our approach.

Analogous to the definition of Coulomb repulsion energies in equations (3.12)

and (3.14), the exchange energies EA
ex and EB

ex are

EA
ex = −1

2

∑
a,b

XAA
ab K

AA
ab −

∑
a

XAA
aa K

AA
aa +

∑
a,b

XAB
ab K

AB
ab


EB
ex = −1

2

∑
a,b

XBB
ab K

BB
ab −

∑
a

XBB
aa K

BB
aa +

∑
a,b

XBA
ab K

BA
ab

 (3.17)

where the sums are over all occupied atomic orbitals of atoms A or B. As in HF theory,

the EA
ex and EB

ex are negative quantities. The second terms in the above equations cancel

the self-exchange energies calculated in the first terms. The exchange integral KAA
ab ,

KBB
ab , KAB

ab , and KBA
ab are given by

KAA
ab = 〈ψAa (r1)ψAb (r2)|ψAb (r1)ψAa (r2)〉

KBB
ab = 〈ψBa (r1)ψBb (r2)|ψBb (r1)ψBa (r2)〉

KAB
ab = 〈ψAa (r1)ψBb (r2)|ψBb (r1)ψAa (r2)〉

KBA
ab = 〈ψBa (r1)ψAb (r2)|ψAb (r1)ψBa (r2)〉 (3.18)

The substitution of equations (3.17) into equations (3.16) leads to

EA =
∑
a

ηAa h
A
aa + 1

2
∑
a,b

(
CAAab J

AA
ab − XAA

ab K
AA
ab

)
+ 1

2
∑
a,b

(
CABab J

AB
ab − XAB

ab K
AB
ab

)

EB =
∑
a

ηBa h
B
aa + 1

2
∑
a,b

(
CBBab J

BB
ab − XBB

ab K
BB
ab

)
+ 1

2
∑
a,b

(
CBAab J

BA
ab − XBA

ab K
BA
ab

)
(3.19)
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Adding the above two equations to each other and using the definitions (3.8, 3.13, 3.15,

and 3.18) of h, J and K integrals, the total energy expression of GAIM becomes

E = EA + EB

=
∑
a

ηAa 〈ψAa (r1)|ĥ(r1)|ψAa (r1)〉

+ 1
2
∑
a,b

(
CAAab 〈ψAa (r1)ψAb (r2)|ψAa (r1)ψAb (r2)〉 −XAA

ab 〈ψAa (r1)ψAb (r2)|ψAb (r1)ψAa (r2)〉
)

+ 1
2
∑
a,b

(
CABab 〈ψAa (r1)ψBb (r2)|ψAa (r1)ψBb (r2)〉 −XAB

ab 〈ψAa (r1)ψBb (r2)|ψBb (r1)ψAa (r2)〉
)

+
∑
a

ηBa 〈ψBa (r1)|ĥ(r1)|ψBa (r1)〉

+ 1
2
∑
a,b

(
CBBab 〈ψBa (r1)ψBb (r2)|ψBa (r1)ψBb (r2)〉 −XBB

ab 〈ψBa (r1)ψBb (r2)|ψBb (r1)ψBa (r2)〉
)

+ 1
2
∑
a,b

(
CBAab 〈ψBa (r1)ψAb (r2)|ψBa (r1)ψAb (r2)〉 −XBA

ab 〈ψBa (r1)ψAb (r2)|ψAb (r1)ψBa (r2)〉
)

(3.20)

In the next section, we shall minimize E with respect to the AOs in order to get the

GAIM equations.

3.2.2 Minimization of the Energy

As the energy (E[{ψa}]) is a functional of the AOs, one can vary the orbitals in order

to minimize the energy. Therefore the minimization of GAIM E[{ψa}] with respect

to the AOs is carried out subject to the constraint that the sum of atomic densities

remains equal to the total number of electrons.

Before minimizing the energy, we need to write down the form of the constraint.

The total electron density of a diatomic molecule (A–B) can be written as,

ρ(r) = ρA(r) + ρB(r) =
∑
a

ηAa |ψAa (r)|2 +
∑
a

ηBa |ψBa (r)|2 (3.21)
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where the atomic densities are expressed as a sum of AO densities
(
|ψAa (r)|2 and

|ψBa (r)|2
)
with occupancies ηAa and ηBa for the AOs of atoms A and B, respectively.

The integral of these AO densities over all space is just the total number of electrons

∫
ρA(r)dr +

∫
ρB(r)dr =

∑
a

ηAa

∫
|ψAa (r)|2dr +

∑
a

ηBa

∫
|ψBa (r)|2dr

=
∑
a

ηAa +
∑
a

ηBa = N (3.22)

Since ψAa and ψBa are normalized orbitals, each integral on the right side of the above

equation has value of one. Using Dirac notation, equation (3.22) can be rewritten as

∑
a

ηAa 〈ψAa |ψAa 〉+
∑
a

ηBa 〈ψBa |ψBa 〉 =
∑
a

ηAa +
∑
a

ηBa (3.23)

By rearranging the above equation, the form of the constraint becomes

∑
a

ηAa (〈ψAa |ψAa 〉 − 1) +
∑
a

ηBa (〈ψBa |ψBa 〉 − 1) = 0 (3.24)

The standard method for finding minimum values subject to a constraint is La-

grange’s method of undetermined multipliers. The constraint equations are each mul-

tiplied by some constant, called Lagrange multiplier, and added to the expression to

be optimized. Thus, we define a new functional L[{ψ}],

L[{ψ}] = E[{ψa}]−
[∑
a

ηAa λ
A
a

(
〈ψAa |ψAa 〉 − 1

)
+
∑
a

ηBa λ
B
a

(
〈ψBa |ψBa 〉 − 1

)]
(3.25)

The unknown constants λAa and λBa are the Lagrange multipliers. The quantity L

(as well as E) is a functional of the atomic orbitals {ψa} and the problem is to find

stationary points of L. That is, given infinitesimal changes in the atomic orbitals,

ψa → ψa+δψa, the change in L, (L→ δL), should be zero. Thus partial differentiation
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of L[{ψ}] (equation 3.25) with respect to {ψa} gives

δL = δE −
(∑

a

ηAa λ
A
a δ〈ψAa |ψAa 〉+

∑
a

ηBa λ
B
a δ〈ψBa |ψBa 〉

)

= δE −
(∑

a

ηAa λ
A
a

[
〈δψAa |ψAa 〉+ 〈ψAa |δψAa 〉

]
+
∑
a

ηBa λ
B
a

[
〈δψBa |ψBa 〉+ 〈ψBa |δψBa 〉

])

= δE −
[(∑

a

ηAa λ
A
a 〈δψAa |ψAa 〉+

∑
a

ηBa λ
B
a 〈δψBa |ψBa 〉

)
+ c.c.

]
= 0 (3.26)

where the first variation of the energy (δE) with respect to infinitesimal change in the

{ψa} is

δE =
[∑

a

ηAa 〈δψAa |ĥ|ψAa 〉

+ 1
2
∑
a,b

2
(
CAAab 〈δψAa ψAb |ψAa ψAb 〉 −XAA

ab 〈δψAa ψAb |ψAb ψAa 〉
)

+ 1
2
∑
a,b

2
(
CABab 〈δψAa ψBb |ψAa ψBb 〉 −XAB

ab 〈δψAa ψBb |ψBb ψAa 〉
) ]

+ c.c.

+
[∑

a

ηBa 〈δψBa |ĥ|ψBa 〉

+ 1
2
∑
a,b

2
(
CBBab 〈δψBa ψBb |ψBa ψBb 〉 −XBB

ab 〈δψBa ψBb |ψBb ψBa 〉
)

+ 1
2
∑
a,b

2
(
CBAab 〈δψBa ψAb |ψBa ψAb 〉 −XBA

ab 〈δψBa ψAb |ψAb ψBa 〉
) ]

+ c.c. (3.27)

In order that E may reach its absolute minimum compatible with the constraint (equa-

tion (3.24)), the δL (but not necessarily δE) must be zero. Thus, by substituting
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equation (3.27) into equation (3.26), the first variation of L becomes

δL =
∑
a

[
ηAa 〈δψAa |ĥ|ψAa 〉

+
∑
b

(
CAAab 〈δψAa ψAb |ψAa ψAb 〉 −XAA

ab 〈δψAa ψAb |ψAb ψAa 〉
)

+
∑
b

(
CABab 〈δψAa ψBb |ψAa ψBb 〉 −XAB

ab 〈δψAa ψBb |ψBb ψAa 〉
) ]

+ c.c.

+
∑
a

[
ηBa 〈δψBa |ĥ|ψBa 〉

+
∑
b

(
CBBab 〈δψBa ψBb |ψBa ψBb 〉 −XBB

ab 〈δψBa ψBb |ψBb ψBa 〉
)

+
∑
b

(
CBAab 〈δψBa ψAb |ψBa ψAb 〉 −XBA

ab 〈δψBa ψAb |ψAb ψBa 〉
) ]

+ c.c.

−
[(∑

a

ηAa λ
A
a 〈δψAa |ψAa 〉+

∑
a

ηBa λ
B
a 〈δψBa |ψBa 〉

)
+ c.c.

]
= 0 (3.28)

Equation (3.28) can be written in the form

δL =
∑
a

∫
δψA∗a (r1)

[
ηAa ĥ(r1)

+
∑
b

(
CAAab

∫ ψA∗b (r2)ψAb (r2)
r12

dr2 −XAA
ab

∫ ψA∗b (r2)P̂12ψ
A
b (r2)

r12
dr2

)

+
∑
b

(
CABab

∫ ψB∗b (r2)ψBb (r2)
r12

dr2 −XAB
ab

∫ ψB∗b (r2)P̂12ψ
B
b (r2)

r12
dr2

)

− ηAa λAa
]
ψAa (r1)dr1 + c.c.

+
∑
a

∫
δψB∗a (r1)

[
ηBa ĥ(r1)

+
∑
b

(
CBBab

∫ ψB∗b (r2)ψBb (r2)
r12

dr2 −XBB
ab

∫ ψB∗b (r2)P̂12ψ
B
b (r2)

r12
dr2

)

+
∑
b

(
CBAab

∫ ψA∗b (r2)ψAb (r2)
r12

dr2 −XBA
ab

∫ ψA∗b (r2)P̂12ψ
A
b (r2)

r12
dr2

)

− ηBa λBa
]
ψBa (r1)dr1 + c.c. = 0 (3.29)
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If we use the following definition for the Coulomb operator ĴXb and the exchange oper-

ator K̂X
b ,

ĴXb (r1)ψa(r1) =
[ ∫ ψX∗b (r2)ψXb (r2)

r12
dr2

]
ψa(r1)

K̂X
b (r1)ψa(r1) =

[ ∫ ψX∗b (r2)P̂12ψ
X
b (r2)

r12
dr2

]
ψa(r1) (3.30)

equation (3.29) becomes

δL =
∑
a

∫
δψA∗a (r1)

[
ηAa ĥ(r1) +

∑
b

(
CAAab Ĵ

A
b (r1)−XAA

ab K̂A
b (r1)

)
+
∑
b

(
CABab ĴBb (r1)−XAB

ab K̂B
b (r1)

)
− ηAa λAa

]
ψAa (r1)dr1 + c.c.

+
∑
a

∫
δψB∗a (r1)

[
ηBa ĥ(r1) +

∑
b

(
CBBab ĴBb (r1)−XBB

ab K̂B
b (r1)

)
+
∑
b

(
CBAab ĴAb (r1)−XBA

ab K̂A
b (r1)

)
− ηBa λBa

]
ψBa (r1)dr1 + c.c. = 0 (3.31)

Partitioning ηAa into (ηαAa + ηβAa ) and ηBa into (ηαBa + ηβBa ), and using the definitions of

the occupancy coefficients Cab and Xab of equations (3.11) give

δL =
∑
a

∫
δψA∗a (r1)

[
{ηαAa + ηβAa }ĥ

+
∑
b

(
{ηαAa + ηβAa }ηAb ĴAb (r1)− {ηαAa ηαAb + ηβAa ηβAb }K̂A

b (r1)
)

+
∑
b

(
{ηαAa + ηβAa }ηBb ĴBb (r1)− {ηαAa ηαBb + ηβAa ηβBb }K̂B

b (r1)
)

− {ηαAa + ηαAa }λAa
]
ψAa (r1)dr1 + c.c.

+
∑
a

∫
δψB∗a (r1)

[
{ηαBa + ηβBa }ĥ(r1)

+
∑
b

(
{ηαBa + ηβBa }ηBb ĴBb (r1)− {ηαBa ηαBb + ηβBa ηβBb }K̂B

b (r1)
)

+
∑
b

(
{ηαBa + ηβBa }ηAb ĴAb (r1)− {ηαBa ηαAb + ηβBa ηβAb }K̂A

b (r1)
)

− {ηαBa + ηαBa }λBa
]
ψBa (r1)dr1 + c.c. = 0 (3.32)
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By taking out each of ηαAa ,ηβAa ,ηαBa , and ηβBa as a common factor, we get

δL =
∑
a

ηαAa

∫
δψA∗a (r1)

[(
ĥ(r1) +

∑
b

[ηAb ĴAb (r1)− ηαAb K̂A
b (r1)]

+
∑
b

[ηBb ĴBb (r1)− ηαBb K̂B
b (r1)]

)
ψAa (r1)− λAa ψAa (r1)

]
dr1 + c.c.

+
∑
a

ηβAa

∫
δψA∗a (r1)

[(
ĥ(r1) +

∑
b

[ηAb ĴAb (r1)− ηβAb K̂A
b (r1)]

+
∑
b

[ηBb ĴBb (r1)− ηβBb K̂B
b (r1)]

)
ψAa (r1)− λAa ψAa (r1)

]
dr1 + c.c.

+
∑
a

ηαBa

∫
δψB∗a (r1)

[(
ĥ(r1) +

∑
b

[ηBb ĴBb (r1)− ηαBb K̂B
b (r1)]

+
∑
b

[ηAb ĴAb (r1)− ηαAb K̂A
b (r1)]

)
ψBa (r1)− λBa ψBa (r1)

]
dr1 + c.c.

+
∑
a

ηβBa

∫
δψB∗a (r1)

[(
ĥ(r1) +

∑
b

[ηBb ĴBb (r1)− ηβBb K̂B
b (r1)]

+
∑
b

[ηAb ĴAb (r1)− ηβAb K̂A
b (r1)]

)
ψBa (r1)− λBa ψBa (r1)

]
dr1 + c.c. = 0 (3.33)

The quantities in the biggest square brackets of equation (3.33) must be zero for all

values of a, therefore

(
ĥ(r1) +

∑
b

[ηAb ĴAb (r1)− ηαAb K̂A
b (r1)] +

∑
b

[ηBb ĴBb (r1)− ηαBb K̂B
b (r1)]

)
ψAa (r1) = λAa ψ

A
a (r1)

(
ĥ(r1) +

∑
b

[ηAb ĴAb (r1)− ηβAb K̂A
b (r1)] +

∑
b

[ηBb ĴBb (r1)− ηβBb K̂B
b (r1)]

)
ψAa (r1) = λAa ψ

A
a (r1)

(
ĥ(r1) +

∑
b

[ηBb ĴBb (r1)− ηαBb K̂B
b (r1)] +

∑
b

[ηAb ĴAb (r1)− ηαAb K̂A
b (r1)]

)
ψBa (r1) = λBa ψ

B
a (r1)

(
ĥ(r1) +

∑
b

[ηBb ĴBb (r1)− ηβBb K̂B
b (r1)] +

∑
b

[ηAb ĴAb (r1)− ηβAb K̂A
b (r1)]

)
ψBa (r1) = λBa ψ

B
a (r1)

(3.34)
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By defining operators f̂αA, f̂βA, f̂αB, and f̂βB as,

f̂αA(r1) = ĥ(r1) +
∑
b

[ηAb ĴAb (r1)− ηαAb K̂A
b (r1)] +

∑
b

[ηBb ĴBb (r1)− ηαBb K̂B
b (r1)]

f̂βA(r1) = ĥ(r1) +
∑
b

[ηAb ĴAb (r1)− ηβAb K̂A
b (r1)] +

∑
b

[ηBb ĴBb (r1)− ηβBb K̂B
b (r1)]

f̂αB(r1) = ĥ(r1) +
∑
b

[ηBb ĴBb (r1)− ηαBb K̂B
b (r1)] +

∑
b

[ηAb ĴAb (r1)− ηαAb K̂A
b (r1)]

f̂βB(r1) = ĥ(r1) +
∑
b

[ηBb ĴBb (r1)− ηβBb K̂B
b (r1)] +

∑
b

[ηAb ĴAb (r1)− ηβAb K̂A
b (r1)] (3.35)

equations (3.34) take the forms

f̂αA(r1)ψAa (r1) = λAa ψ
A
a (r1)

f̂βA(r1)ψAa (r1) = λAa ψ
A
a (r1)

f̂αB(r1)ψBa (r1) = λBa ψ
B
a (r1)

f̂βB(r1)ψBa (r1) = λBa ψ
B
a (r1) (3.36)

The Lagrange multipliers (λAa and λBa ) in the above equations are just the orbital

energies (εαAa , εβAa , εαBa , and εβBa ). Therefore, the GAIM equations are written as

f̂αA(r1)ψAa (r1) = εαAa ψAa (r1)

f̂βA(r1)ψAa (r1) = εβAa ψAa (r1)

f̂αB(r1)ψBa (r1) = εαBa ψBa (r1)

f̂βB(r1)ψBa (r1) = εβBa ψBa (r1) (3.37)

Equations (3.37) and (3.35) can be written in general format as,

f̂ θA(r1)ψAa (r1) = εθAa ψAa (r1) (3.38)

f̂ θB(r1)ψBa (r1) = εθBa ψBa (r1) (3.39)
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f θA(r1) = ĥ(r1) +
∑
b

[ηAb ĴAb (r1)− ηθAb K̂A
b (r1)] +

∑
b

[ηBb ĴBb (r1)− ηθBb K̂B
b (r1)] (3.40)

f θB(r1) = ĥ(r1) +
∑
b

[ηBb ĴBb (r1)− ηθBb K̂B
b (r1)] +

∑
b

[ηAb ĴAb (r1)− ηθAb K̂A
b (r1)] (3.41)

where we have used θ to denote α or β spin.

3.2.3 Introduction of Basis Sets

Using a Roothaan-like approach,4 the differential equations (3.37) are converted

to matrix equations by expanding the AOs {ψAa } and {ψBa } as a linear combination

of known basis functions. We have used two different ways for expanding the atomic

orbitals of atoms A and B; (1) Expanding the orbitals for each atom as linear combi-

nations of basis functions
(
{ϕAµ | µ = 1, 2 . . . , KA} or {ϕBµ | µ = 1, 2 . . . , KB}

)
centered

only on that atom, (2) Expanding the orbitals for each atom as linear combinations of

all basis functions on the two atoms {ϕµ | µ = 1, 2 . . . , K}, where K=KA+KB.

This section is divided into two separate subsections. In subsection (3.2.3.1) we

convert the equations (3.37) using the full basis set {ϕµ}, while in subsection (3.2.3.2)

we convert equations (3.37) into matrix equations by expanding the AOs using the

basis sets {ϕAµ} and {ϕBµ }.

3.2.3.1 Expansion of AOs Using the Full Basis Set {ϕµ}

The atomic orbitals {ψAa } and {ψBa } of atoms A and B can be expanded in terms

of the full basis functions {ϕµ | µ = 1, 2, . . . , K} in the molecule as follows

ψAa =
K∑
µ=1

CA
µaϕµ (3.42)

ψBa =
K∑
µ=1

CB
µaϕµ (3.43)
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Here we will concentrate on atom A and analogous results will be obtained for atom

B. Thus, the substitution of the expansion (3.42) into equation (3.38) leads to

f̂ θA(r1)
K∑
ν=1

CA
νaϕν(r1) = εθAa

K∑
ν=1

CA
νaϕν(r1) (3.44)

If both sides of the above equation are multiplied by ϕ∗µ(r1) and integrated over the

coordinates of electron one, r1, the result,

K∑
ν=1

CA
νa

∫
ϕ∗µ(r1)f̂ θA(r1)ϕν(r1)dr1 = εθAa

K∑
ν=1

CA
νa

∫
ϕ∗µ(r1)ϕν(r1)dr1 (3.45)

are Roothaan-like matrix equations, which can be expressed in matrix form as

FθACA = εθASCA (3.46)

εθA is a diagonal matrix of orbital energies. CA is the matrix of the expansion coeffi-

cients CA
µa. FθA is the matrix representation of f̂ θA in the basis {ϕµ}.

F θA
µν =

∫
ϕ∗µ(r1)f̂ θA(r1)ϕν(r1)dr1 (3.47)

S is the overlap matrix that has the elements

Sµν =
∫
ϕ∗µ(r1)ϕν(r1)dr1 (3.48)

Similarly for atom B. Therefore, four matrix equations can be written for a diatomic

molecule (A–B). The first two equations are for α and β electrons of atom A,

FαACA = εαASCA

FβACA = εβASCA (3.49)
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and the other two are for the α and β electrons of atom B.

FαBCB = εαBSCB

FβBCB = εβBSCB (3.50)

3.2.3.1.1 Definition of Density Matrices

We have defined the total charge density of a diatomic molecule (A–B) in equa-

tion (3.21) as a sum of atomic densities. The charge density can also be rewritten

as the sum of charge densities contributed by electrons of α and β spins in each atom,

ρ(r) = ραA(r) + ρβA(r) + ραB(r) + ρβB(r)

=
∑
a

(ηαAa + ηβAa )|ψAa (r)|2 +
∑
a

(ηαBa + ηβBa )|ψBa (r)|2 (3.51)

The substitution of the basis set expansions (3.42 and 3.43) of the AOs into the ex-

pression (3.51) leads to

ρ(r) =
K∑
µ,ν

∑
a

(ηαAa + ηβAa )CA
νaC

A∗
µa (r)ϕν(r)ϕ∗µ +

K∑
µ,ν

∑
a

(ηαBa + ηβBa )CB
νaC

B∗
µa ϕν(r)ϕ∗µ(r)

=
K∑
µ,ν

(PαA
νµ + P βA

νµ )ϕν(r)ϕ∗µ(r) +
K∑
µ,ν

(PαB
νµ + P βB

νµ )ϕν(r)ϕ∗µ(r) (3.52)

where the density matrices PαA
νµ and PαB

νµ for α electrons and the density matrices P βA
νµ

and P βB
νµ for β electrons are defined by

PαA
νµ =

∑
a

ηαAa CA
νaC

A∗
µa PαB

νµ =
∑
a

ηαBa CB
νaC

B∗
µa

P βA
νµ =

∑
a

ηβAa CA
νaC

A∗
µa P βB

νµ =
∑
a

ηβBa CB
νaC

B∗
µa (3.53)
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In addition to these matrices, one can define the total density matrices (PA
νµ) and (PB

νµ)

as

PA
νµ = PαA

νµ + P βA
νµ =

∑
a

ηAa C
A
νaC

A∗
µa

PB
νµ = PαB

νµ + P βB
νµ =

∑
a

ηBa C
B
νaC

B∗
µa (3.54)

3.2.3.1.2 Explicit Forms for the FθA and FθB over Basis Functions

The explicit expressions of FθA matrices are obtained by substituting the expres-

sion (3.40) of f̂ θA and the basis set expansion (3.42) into equation (3.47). That is,

F θA
µν =

∫
ϕ∗µ(r1)f̂ θA(r1)ϕν(r1)dr1

=
∫
ϕ∗µ(r1)

[
ĥ(r1) +

∑
b

[ηAb ĴAb (r1)− ηθAb K̂A
b (r1)]

+
∑
b

[ηBb ĴBb (r1)− ηθBb K̂B
b (r1)]

]
ϕν(r1)dr1 (3.55)

By using chemists’ notation, equation (3.55) becomes

F θA
µν = (ϕµ|ĥ|ϕν) +

∑
b

[
ηAb (ϕµϕν |ψAb ψAb )− ηθAb (ϕµψAb |ψAb ϕν)

]
+
∑
b

[
ηBb (ϕµϕν |ψBb ψBb )− ηθBb (ϕµψBb |ψBb ϕν)

]
(3.56)

The substitution of the basis set expansions (3.42 and 3.43) for ψAb and ψBb leads to

F θA
µν = Hµν +

K∑
λ,σ

∑
b

[
ηAb C

A∗
λb C

A
σb(ϕµϕν |ϕλϕσ)− ηθAb CA∗

λb C
A
σb(ϕµϕσ|ϕλϕν)

]

+
K∑
λ,σ

∑
b

[
ηBb C

B∗
λb C

B
σb(ϕµϕν |ϕλϕσ)− ηθBb CB∗

λb C
B
σb(ϕµϕσ|ϕλϕν)

]
(3.57)
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and with definitions of density matrices (3.53) and (3.54), we get

F θA
µν = Hµν +

K∑
λ,σ

[
PA
σλ(µν|λσ)− P θA

σλ (µσ|λν)
]

+
K∑
λ,σ

[
PB
σλ(µν|λσ)− P θB

σλ (µσ|λν)
]

= Hµν +GθA
µν (3.58)

where GθA
µν is the two-electron part of the F θA matrix, which depends on the density

matrices and the two-electron integrals.

For the diatomic molecule (A–B), we have the following expressions for the α and

β electrons of atom A,

FαA
µν = Hµν +

K∑
λ,σ

[
PA
σλ(µν|λσ)− PαA

σλ (µσ|λν)
]

+
K∑
λ,σ

[
PB
σλ(µν|λσ)− PαB

σλ (µσ|λν)
]

F βA
µν = Hµν +

K∑
λ,σ

[
PA
σλ(µν|λσ)− P βA

σλ (µσ|λν)
]

+
K∑
λ,σ

[
PB
σλ(µν|λσ)− P βB

σλ (µσ|λν)
]

(3.59)

and the following expressions for the α and β electrons of atom B.

FαB
µν = HB

µν +
K∑
λ,σ

[
PB
σλ(µν|λσ)− PαB

σλ (µσ|λν)
]

+
K∑
λ,σ

[
PA
σλ(µν|λσ)− PαA

σλ (µσ|λν)
]

F βB
µν = HB

µν +
K∑
λ,σ

[
PB
σλ(µν|λσ)− P βB

σλ (µσ|λν)
]

+
K∑
λ,σ

[
PA
σλ(µν|λσ)− P βA

σλ (µσ|λν)
]

(3.60)

3.2.3.1.3 Total Electronic Energy over Basis Functions

The total electronic energy (E) for the diatomic molecule (A–B) is expressed as the

sum of atomic energies EA and EB, see equation (3.20). To derive an expression for E

over basis functions {ϕµ}, we substitute the basis set expansions of the AOs (3.42 and

3.43) of atoms A an B into equation (3.20).

For simplicity, we will concentrate on the EA part of the equation (3.20); an anal-
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ogous result will be obtained for EB, so that

EA =
K∑
µ,ν

∑
a

ηAa C
A∗
µaC

A
νa(µ|ĥ|ν)

+ 1
2

K∑
µ,ν

K∑
λ,σ

∑
a,b

CA∗
µaC

A
νaC

A∗
λb C

A
σb

[
CAAab (µν|λσ) − XAA

ab (µσ|λν)
]

+ 1
2

K∑
µ,ν

K∑
λ,σ

∑
a,b

CA∗
µaC

A
νaC

B∗
λb C

B
σb

[
CABab (µν|λσ) − XAB

ab (µσ|λν)
]

(3.61)

By partitioning the ηAa into (ηαAa +ηβAa ), and using the definitions of the CXYab and XXY
ab

coefficients (equation 3.11), we get

EA = 1
2

K∑
µ,ν

(∑
a

2{ηαAa + ηβAa }CA∗
µaC

A
νaHµν

+
K∑
λ,σ

∑
a,b

CA∗
µaC

A
νaC

A∗
λb C

A
σb

[
{ηαAa ηAb + ηβAa ηAb }(µν|λσ)

− {ηαAa ηαAb + ηβAa ηβAb }(µσ|λν)
]

+
K∑
λ,σ

∑
a,b

CA∗
µaC

A
νaC

B∗
λb C

B
σb

[
{ηαAa ηBb + ηβAa ηBb }(µν|λσ)

− {ηαAa ηαBb + ηβAa ηβBb }(µσ|λν)
] )

(3.62)

Using the definitions of the density matrices (3.53) and (3.54) leads to

EA = 1
2

K∑
µ,ν

(
PA
νµHµν + {PαA

νµ + P βA
νµ }Hµν

+
K∑
λ,σ

[
{PαA

νµ P
A
σλ + P βA

νµ P
A
σλ}(µν|λσ) − {PαA

νµ P
αA
σλ + P βA

νµ P
βA
σλ }(µσ|λν)

]

+
K∑
λ,σ

[
{PαA

νµ P
B
σλ + P βA

νµ P
B
σλ}(µν|λσ) − {PαA

νµ P
αB
σλ + P βA

νµ P
βB
σλ }(µσ|λν)

] )
(3.63)
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This expression can be simplified by taking out each of PαA
νµ and P βA

νµ as a common

factor, that is

EA = 1
2

K∑
µ,ν

(
PA
νµHµν + PαA

νµ

[
Hµν +

K∑
λ,σ

{
PA
σλ(µν|λσ)− PαA

σλ (µσ|λν)
}

+
K∑
λ,σ

{
PB
σλ(µν|λσ)− PαB

σλ (µσ|λν)
} ]

)

+ P βA
νµ

[
Hµν +

K∑
λ,σ

{
PA
σλ(µν|λσ)− P βA

σλ (µσ|λν)
}

+
K∑
λ,σ

{
PB
σλ(µν|λσ)− P βB

σλ (µσ|λν)
} ])

(3.64)

where the quantities in square brackets are just FαA
µν and F βA

µν , therefore

EA = 1
2

K∑
µ,ν

[
PA
νµHµν + PαA

νµ F
αA
µν + P βA

νµ F
βA
µν

]
(3.65)

Similarly for EB, so the total electronic energy is

E = 1
2

( K∑
µ,ν

[
PA
νµHµν + PαA

νµ F
αA
µν + P βA

νµ F
βA
µν

]
+

K∑
µ,ν

[
PB
νµHµν + PαB

νµ F
αB
µν + P βB

νµ F
βB
µν

])
(3.66)

3.2.3.2 Expansion of AOs Using the Basis Sets {ϕAµ} and {ϕBµ }

In the previous subsection we have converted the GAIM equations (3.37) into matrix

equations by expanding each AO on atoms A and B in terms of the full basis set {ϕµ}.

We have also derived explicit expressions for FαA
µν , F βA

µν , FαB
µν , F βB

µν and E over the full

basis set. In the current subsection, we convert equations (3.37) into matrix equations

and derive explicit expressions for FαA
µν , F βA

µν , FαB
µν , F βB

µν and E in terms of the basis

sets {ϕAµ} and {ϕBµ }.

The atomic orbitals {ψAa } and {ψBa } of atoms A and B can also be expanded in

terms of the basis functions {ϕAµ |µ = 1, 2, . . . , KA} and {ϕBµ |µ = 1, 2, . . . , KB} that
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centered on each of the atoms A and B in the molecule as follows

ψAa =
KA∑
µ=1

CA
µaϕ

A
µ (3.67)

ψBa =
KB∑
µ=1

CB
µaϕ

B
µ (3.68)

Using a procedure similar to that used to convert the GAIM equations (3.37) into

matrix equations in the previous subsection, one can use the expansions (3.67 and

3.68) to convert the equations (3.37) into the following matrix equations for atom A,

FαACA = εαASACA

FβACA = εβASACA (3.69)

and the following matrix equations for atom B in the molecule A−B.

FαBCB = εαBSBCB

FβBCB = εβBSBCB (3.70)

Here SA and SB are the matrices of overlaps between the basis functions {ϕAµ} and

{ϕBµ } on the atoms A and B, respectively, that have the elements,

SAµν =
∫
ϕA∗µ (r1)ϕAν (r1)dr1

SBµν =
∫
ϕB∗µ (r1)ϕBν (r1)dr1 (3.71)
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FαA
µν and F βA

µν are the matrix representations of the operators f̂αA and f̂βA, respectively,

in the basis sets {ϕAµ} and {ϕBµ },

FαA
µν =

∫
ϕA∗µ (r1)f̂αA(r1)ϕAν (r1)dr1

= HA
µν +

KA∑
λ,σ

[
PA
σλ(µAνA|λAσA)− PαA

σλ (µAσA|λAνA)
]

+
KB∑
λ,σ

[
PB
σλ(µAνA|λBσB)− PαB

σλ (µAσB|λBνA)
]

(3.72)

F βA
µν =

∫
ϕA∗µ (r1)f̂βA(r1)ϕAν (r1)dr1

= HA
µν +

KA∑
λ,σ

[
PA
σλ(µAνA|λAσA)− P βA

σλ (µAσA|λAνA)
]

+
KB∑
λ,σ

[
PB
σλ(µAνA|λBσB)− P βB

σλ (µAσB|λBνA)
]

(3.73)

where HA
µν = (ϕAµ |ĥ|ϕAν ). FαB

µν and F βB
µν are the matrix representations of the operators

f̂αB and f̂βB, respectively, in the basis sets {ϕAµ} and {ϕBµ }.

FαB
µν =

∫
ϕB∗µ (r1)f̂αB(r1)ϕBν (r1)dr1

= HB
µν +

KB∑
λ,σ

[
PB
σλ(µBνB|λBσB)− PαB

σλ (µBσB|λBνB)
]

+
KA∑
λ,σ

[
PA
σλ(µBνB|λAσA)− PαA

σλ (µBσA|λAνB)
]

(3.74)

F βB
µν =

∫
ϕB∗µ (r1)f̂βB(r1)ϕBν (r1)dr1

= HB
µν +

KB∑
λ,σ

[
PB
σλ(µBνB|λBσB)− P βB

σλ (µBσB|λBνB)
]

+
KA∑
λ,σ

[
PA
σλ(µBνB|λAσA)− P βA

σλ (µBσA|λAνB)
]

(3.75)
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where HB
µν = (ϕBµ |ĥ|ϕBν ). The total electronic energy for diatomic molecules is ex-

pressed in terms of the basis sets {ϕAµ} and {ϕBµ } as follows

E = 1
2

( KA∑
µ,ν

[
PA
νµH

A
µν + PαA

νµ F
αA
µν + P βA

νµ F
βA
µν

]
+

KB∑
µ,ν

[
PB
νµH

B
µν + PαB

νµ F
αB
µν + P βB

νµ F
βB
µν

])
(3.76)

3.3 The H2 model

The purpose of this section is to show that the expansion of the AOs using the basis

sets {ϕAµ} and {ϕBµ } is insufficient for describing potential energy curves of diatomic

molecules. Therefore, we shall calculate the potential energy curve of H2 as an illus-

trated example of using {ϕAµ} and {ϕBµ } basis sets.

Figure (3.1) shows the coordinate system for H2 molecule. The first atomic orbital,

Figure 3.1: Coordinate system for H2 molecule.

1sA, is centered on the hydrogen atom A (HA) and the second atomic orbital, 1sB, is
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centered on the hydrogen atom B (HB). e1 and e2 refer to the two electrons of H2 at

points r1 and r2, respectively. RAB is the distance between nuclei A and B. r12 is the

distance between the two electrons. r1A and r2A are the distances between nucleus A

and electrons e1 and e2, respectively.

In GAIM, the total electronic energy (EH2) can be written as a sum of electronic

energies (EHA and EHB) of individual atoms,

EH2 = EHA + EHB

= ηA1 〈1sA1 (1)|h(1)|1sA1 (1)〉

+ 1
2
[
CAA11 〈1sA1 (1)1sA1 (r2)|1sA1 (1)1sA1 (2)〉 −XAA

11 〈1sA1 (1)1sA1 (2)|1sA1 (2)1sA1 (1)〉
]

+ 1
2
[
CAB11 〈1sA1 (1)1sB1 (2)|1sA1 (1)1sB1 (2)〉 −XAB

11 〈1sA1 (1)1sB1 (2)|1sA1 (2)1sB1 (1)〉
]

+ ηB1 〈1sB1 (1)|h(1)|1sB1 (1)〉

+ 1
2
[
CBB11 〈1sB1 (1)1sB1 (2)|1sB1 (1)1sB1 (2)〉 −XBB

11 〈1sB1 (1)1sB1 (2)|1sB1 (2)1sB1 (1)〉
]

+ 1
2
[
CBA11 〈1sB1 (1)1sA1 (r2)|1sB1 (1)1sA1 (2)〉 −XBA

11 〈1sB1 (1)1sA1 (2)|1sB1 (2)1sA1 (1)〉
]

(3.77)

The H2 molecule has two occupied AOs; one is 1sA1 centered on H atom A that has

an electron with α spin, the other is 1sB1 centered on H atom B that has an electron

with β spin. If we substitute the following occupancy coefficients ηαA1 = ηβB1 = 1,

ηβA1 = ηαB1 = 0, CAA11 = CBB11 = 1, XAA
11 = XBB

11 = 1, and XAB
11 = XBA

11 = 0 in equation

(3.77), the electronic energy of H2 becomes

EH2 = 〈1sA1 (1)|h(1)|1sA1 (1)〉+ 1
2〈1s

A
1 (1)1sB1 (2)|1sA1 (1)1sB1 (2)〉

+ 〈1sB1 (1)|h(1)|1sB1 (1)〉+ 1
2〈1s

B
1 (1)1sA1 (r2)|1sB1 (1)1sA1 (2)〉 (3.78)

or,

EH2 = hA11 + hB11 + 1
2J

AB
11 + 1

2J
BA
11 (3.79)
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To evaluate the energy of H2, we use the minimal STO-2G basis set to define the

AOs (1sA1 and 1sB1 ), so that

1sA1 = CA
11

(
GA

1 +GA
2

)
= CA

11

(
[d12g

A
1s(α12)] + [d22g

A
1s(α22)]

)
= CA

11

(
[(0.162342)gA1s(0.233136)] + [(0.375320)gA1s(1.309757)]

)
(3.80)

and

1sB1 = CB
11

(
GB

1 +GB
2

)
= CB

11

(
[d12g

B
1s(α12)] + [d22g

B
1s(α22)]

)
= CB

11

(
[(0.162342)gB1s(0.233136)] + [(0.375320)gB1s(1.309757)]

)
(3.81)

GA and GB are primitive Gaussian functions that are used to construct STO-2G basis

set with coefficients (d12 and d22) and exponents (α12 and α22) shown in the above

equations. Each of CA
11 and CB

11 can be determined, to be 1, from the fact that 1sA1 and

1sB1 are normalized as follows,

∫
1sA∗1 (r)1sA1 (r)dr =

∫ [
CA

11

(
GA

1 +GA
2

)]∗ [
CA

11

(
GA

1 +GA
2

)]
dr

= |CA
11|2

∫ (
GA

1 +GA
2

)∗ (
GA

1 +GA
2

)
dr

= |CA
11|2 = 1 =⇒ CA

11 = 1 (3.82)

Similarly for CB
11. The next step for calculating the energy of H2 is the solving of the

following GAIM equations;

FαACA = εαASACA

FβBCB = εβBSBCB (3.83)
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Here we will calculate the energy of H2 at RAB = 1.4 bohr as shown in the coordinate

system of figure (3.1):

1. The elements of SA and SB can be calculated, using equations (3.71) and (A.2)

in Appendix A to be, SA = SB = 1. Thus the GAIM equations (3.83) become,

FαA = εαA

FβB = εβB (3.84)

2. The elements of (FαA and FβB) are the sums of elements of (HA and HB) and

elements of (GA and GB), i.e.,

FαA
µν = HA

µν +GαA
µν

F βB
µν = HB

µν +GβB
µν (3.85)

(a) The matrices (HA and HB) are the sums of the kinetic energy matrices (TA

and TB) and the nuclear-electron attraction matrices (VA and VB)

HA = TA + VA

HB = TB + VB (3.86)

Using the formulae (A.3 and A.4) in appendix A, the elements of T and V

can be calculated to be,

TA = TB = 0.734883 h

VA = VB = −1.841796 h

Therefore, HA = HB = 0.734883− 1.841796 = −1.106912 h

(b) For H2 molecules; PA = PαA, PβA = 0, PB = PβB, and PαB = 0; therefore
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GαA and GβB of equations (3.72) and (3.75) become

GαA
µν =

KB∑
λ,σ

PB
σλ(µAνA|λBσB)

GβB
µν =

KA∑
λ,σ

PA
σλ(µBνB|λAσA) (3.87)

The two-electron integrals in the above equations can be calculated using equa-

tion (A.6) in appendix A, while PB
σλ and PA

σλ can be obtained using equations

(3.53 and 3.54) to be 1. Thus, GαA
µν = GβB

µν = 0.569146 h

3. Using equation (3.79),

EH2 = (−1.106912) + (−1.106912) + 1
2(0.569146) + 1

2(0.569146) = −1.644678 h

4. The nuclear-nuclear repulsion energy (Vnn = 1
RAB

= 1
1.4 = 0.714286 h).

5. Therefore, the total energy of H2 is,

ET
H2 = −1.644678 + 0.714286 = −0.930392 h.

Following the procedure discussed above, one can find ET
H2 at different RAB. Table

(3.1) shows different values of ET
H2 in hartrees calculated at different RAB using GAIM

and the corresponding HF values. Figure (3.2) shows the potential energy curve for H2

calculated using GAIM/STO-2G and RHF/STO-2G. The GAIM results around the

equilibrium distance are too positive compared to the HF results. This is due to the

use of the {ϕAµ} and the {ϕBµ } basis sets. Therefore the expansion of the AOs using a

full basis set is essential. In the next chapter we shall discuss the solution of the GAIM

equations using a full basis set.
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Table 3.1: Total energy of H2 (hartree) calculated at different RAB (bohr) using GAIM and
HF with STO-2G basis set.

RAB ET
H2 (GAIM) ET

H2 (HF)
0.40 0.137733 0.091063
0.80 -0.791653 -0.918275
1.20 -0.920820 -1.085419
1.40 -0.930392 -1.093407
1.80 -0.928166 -1.056993
2.00 -0.924653 -1.026296
3.00 -0.912159 -0.861517
5.00 -0.908825 -0.660601

Figure 3.2: Potential energy curve for H2 molecule, calculated using GAIM/STO-2G (solid
curve) and RHF/STO-2G (dashed curve).
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Chapter 4

Solution of the GAIM Equations

4.1 Introduction

This chapter presents the SCF procedure that was used for solving the GAIM equa-

tions as well as the performance of GAIM. But before we proceed to discuss the solution

of the GAIM equations, we consider the validity of the method that we have used in

solving these equations. This method is based on the diagonalization of a single Fock

matrix (for each atom) in AOs basis, which is constructed from α and β Fock matrices

belonging to the same atom.

We investigated the validity of this method using HF theory before applying it

to GAIM. This had been done by implementing the high-spin restricted open-shell

Hartree-Fock (ROHF) method,1 based on the diagonalization of a single Fock matrix

in the MOs basis,2–6 with the MUNgauss program.7 Several open-shell systems were

tested using this method. The calculated results were compared with the results ob-

tained from the ROHF codes that are available in the MUNgauss and Gaussian 098

programs.

In the first section of this chapter, we will discuss the solution of the high-spin

ROHF method based on diagonalizing a single Fock matrix. While in the other sec-

tions, we will discuss the solution of GAIM and its performance.
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4.2 Solution of the High-Spin ROHF Method

The high-spin ROHF method based on the diagonalization of the single Fock matrix

of equation (2.53) has been implemented using the MUNgauss program. MUNgauss

implements several SCF methods such as RHF, UHF, ROHF, and GVB. The high-

spin ROHF code is built from the UHF code, and called OSHF (Open-Shell HF). In

this code, an initial guess for the coefficients matrix (C) is given, and the density

matrices Pα and Pβ are calculated. Fock matrices (Fα
ϕ and Fβ

ϕ) over basis functions

are obtained and transformed to Fα
ψ = C†Fα

ϕC and Fβ
ψ = C†Fβ

ϕC. A Fock matrix

(Fhs
OSHF ) in molecular orbital basis is built from Fα

ψ and Fβ
ψ using equation (2.53) with

the Guest and Saunders diagonal canonicalization parameters set (see Table 2.1). Then

T and ε are obtained by diagonalizing Fhs
OSHF , i.e., T†Fhs

OSHFT. A new C = ColdT is

calculated and the procedure is iterated until the self-consistency is reached.

In order to test the validity of this method, the energies of following high-spin atoms

(H, Li, B, N, Na, P) are calculated using the OSHF code which we have written within

MUNgauss and the ROHF codes that are available in the MUNgauss and Gaussian

09 programs. A sample of the input files used with the OSHF code is available in

appendix B. The calculated values are shown in Table 4.1. For all the atoms studied,

Table 4.1: Total energy in hartree for some high-spin atoms calculated with 6-31G basis set
using the OSHF code in MUNgauss and the ROHF codes that are available in the MUNgauss
and Gaussian 09 programs.

OSHF ROHF
MUNgauss MUNgauss Gaussian 09

H -0.498233 -0.498233 -0.498233
Li -7.431235 -7.431235 -7.431235
B -24.519348 -24.519348 -24.519348
N -54.382051 -54.382051 -54.382051
Na -161.841392 -161.841392 -161.841392
P -340.688937 -340.688937 -340.688937

the total energies calculated using OSHF code are identical to those calculated using

the ROHF codes that are available in the MUNgauss and Gaussian 09 programs. Based
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on these results, the method of diagonalizing a single Fock matrix (for each atom) in

AOs basis has been used to solve the GAIM equations.

4.3 Solution of GAIM Equations

The FθA and FθB depend on both PθA and PθB and also explicitly on each other

through PθA and PθB. Therefore, the GAIM equations (3.49 and 3.50) must be solved

self-consistently and simultaneously. The solution of the GAIM equations has been

implemented within the MUNgauss program. A code called mun.GAIMT.f90 was

written within the framework of MUNgauss for solving the GAIM equations and the

solution is carried out in the following steps:

1. Define input data that specify a molecule such as nuclear coordinate (RAB),

atomic numbers (ZA, ZB), and basis set ({ϕi}).

2. Define input data that specify the atoms A and B in the molecule such as the

number of electrons on each atom (NA, NB), the occupancy of each occupied

atomic orbital of the two atoms, and the number of basis functions on each

atom.

3. Calculate all required molecular integrals over the basis functions such as Sµν ,

Hµν , and {(µν|λσ)}.

4. Obtain initial guesses for CA and CB. In order to generate initial guesses for CA

and CB, two HF calculations should be done on the molecule A-B at some large

internuclear distance. One is for calculating E(A · · · ∗) and the coefficient matrix

is used as an initial guess for CA, while the other is for calculating E(∗ · · ·B) and

the coefficient matrix is used as an initial guess for CB (see section 2.4). Then

a GAIM calculation is performed at that distance and the resulting CA and CB

are saved and then used as initial guesses for other shorter distances.
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5. Calculate the density matrices PθA, PθB, PA, and PB using equations 3.53

and 3.54.

6. Obtain the matrices FθA and FθB using equations 3.59 and 3.60.

7. Transform FθA and FθB in the AOs basis;

FθA
ψ = CA†FθACA, FθB

ψ = CB†FθBCB (4.1)

8. Construct a single Fψ matrix for each atom with the Roothaan’s diagonal canon-

icalization parameters set (see Table 2.1) as,

closed open virtual

FA
ψ =


(3FβA

ψ − FαA
ψ )/2 FβA

ψ (FαA
ψ + FβA

ψ )/2

FβA
ψ (FαA

ψ + FβA
ψ )/2 FαA

ψ

(FαA
ψ + FβA

ψ )/2 FαA
ψ (3FαA

ψ − FβA
ψ )/2


closed

open

virtual

(4.2)

closed open virtual

FB
ψ =


(3FαB

ψ − FβB
ψ )/2 FαB

ψ (FβB
ψ + FαA

ψ )/2

FαB
ψ (FβB

ψ + FαB
ψ )/2 FβB

ψ

(FβB
ψ + FαB

ψ )/2 FβB
ψ (3FβB

ψ − FαB
ψ )/2


closed

open

virtual

(4.3)

8. Diagonalize FA
ψ and FB

ψ to obtain TA and TB.

9. Store CA and CB.

10. Calculate new CA = CA
oldTA, and new CB = CB

oldTB.

11. Check whether CA matches the stored CA, if not, reorder CA. Similarly with

CB.
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12. Compute new density matrices; PθA, PθB, PA, and PB.

13. Calculate the electronic energy (E) using equation 3.66.

14. Calculate total energy; Etot = E + VNN , where VNN is the nuclear repulsion

energy.

15. Check for convergence: if Ei+1 − Ei 6 1× 10−6 then save CA and CB and exit,

otherwise return to step (6).

4.4 Computational Methodology

The energies of the molecules studied were calculated using GAIM/6-31G and

RHF/6-31G. All calculations were performed using the MUNgauss program. The input

and output files of LiH molecule used with the GAIM code are available in appendixes C

and D.

4.5 Performance of GAIM

An initial testing of the performance of GAIM is given through calculation of the

dissociation curves of H2, LiH, Li2, BH, HF, HCl, N2, F2, Cl2 using both HF theory

and GAIM with the 6-31G basis set. As discussed in section (3.2.1.3), we expect that

GAIM energies will be close to HF energies at bond lengths close to equilibrium bond

lengths. But unlike HF, molecules with GAIM have correct dissociation limit.

Figures (4.1-4.6) show the dissociation curves of H2, LiH, Li2, BH, HF, and HCl,

respectively, calculated using both GAIM and HF theory. GAIM performs well with

these cases. In each of the six cases above, GAIM energies at short distances and near

the equilibrium bond length are identical to those of RHF theory. Unlike HF theory,

GAIM behaves well at long internuclear distances and gives the correct dissociation

limit for each of the six molecules. GAIM shows convergence problems with N2, F2,
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and Cl2. This is due to difficulties in reordering the degenerate atomic orbitals px, py,

and pz in N, F, and Cl atoms. Future development in the GAIM code is required in

order to solve this problem.

Figure 4.1: Dissociation curve for the H2 molecule, calculated using GAIM/6-31G (solid
curve) and RHF/6-31G (dashed curve).

Figure 4.2: Dissociation curve for the LiH molecule, calculated using GAIM/6-31G (solid
curve) and RHF/6-31G (dashed curve).

93



Figure 4.3: Dissociation curve for the Li2 molecule, calculated using GAIM/6-31G (solid
curve) and RHF/6-31G (dashed curve).

Figure 4.4: Dissociation curve for the BH molecule, calculated using GAIM/6-31G (solid
curve) and RHF/6-31G (dashed curve).
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Figure 4.5: Dissociation curve for the HF molecule, calculated using GAIM/6-31G (solid
curve) and RHF/6-31G (dashed curve).

Figure 4.6: Dissociation curve for the HCl molecule, calculated using GAIM/6-31G (solid
curve) and RHF/6-31G (dashed curve).
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Chapter 5

Conclusions and Future Work

We proposed a new approach for calculating the total energy of molecules called

generalized atoms in molecules approach. This thesis presents the first version of GAIM

in which: (i) the energy is formulated for diatomic molecules only, (ii) the correlation

energy is considered to be zero, (iii) the exchange energy is expressed in the same

way as in HF theory. In this approach, the energy is formulated as a sum of atomic

energy contributions. An initial testing of the performance of GAIM is given through

calculating the dissociation curves of H2, LiH, Li2, BH, HF, HCl, N2, F2, Cl2 using both

HF theory and GAIM with the 6-31G basis set. The numerical results show that GAIM

performs very well with H2, LiH, Li2, BH, HF, and HCl. GAIM shows convergence

problems with N2, F2, and Cl2 due to difficulties in reordering the degenerate atomic

orbitals px, py, and pz in N, F, and Cl atoms. Further work for the development of

GAIM is required.

Further future work includes:

1. Developing an algorithm to generate better initial guesses for CA and CB.

2. Developing an algorithm to deal with degenerate orbitals.

3. Extending the GAIM approach to molecules that have more than two atoms.

4. Including electron correlation in the GAIM appoach.
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5. Developing a density functional version of the GAIM approach.

6. Developing an efficient Fortran code for solving the GAIM equations within the

framework of MUNgauss.1
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Chapter 6

A Computational Study on the

Deamination Reaction of Adenine

with OH–/nH2O (n=0, 1, 2, 3) and

3H2O

6.1 Introduction

Extensive knowledge and understanding of genetic material and its physicochemical

properties is one of the natural goals of science. One of the essential components of

genetic material is adenine (Ade). Indeed, adenine is central to life functions in most,

if not all, organisms.1 It is one of the five nucleobases utilized in forming nucleotides

of the nucleic acids.2,3 Adenine has a diversity of vital roles including energy transfer,

as a part of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine

monophosphate (AMP) and the cofactors nicotinamide adenine dinucleotide (NAD)

and flavin adenine dinucleotide (FAD), and protein synthesis, as a component of DNA

and RNA.2–4 The nucleobases play a specific role with their ability to establish hy-

drogen bonds responsible for the encoding and the expression of genetic information.5
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Adenine is complementary to either thymine in DNA6 or uracil in RNA,7 and binds to

each of them via two hydrogen bonds to assist in stabilizing the two nucleic acids.

Adenine as well as the other nucleobases can exist in more than one tautomeric

form. Tautomerism may cause spontaneous mutations by altering the hydrogen bond-

ing pattern of bases producing incorrect base pairing during DNA replication.3,8 Nu-

merous studies, both computational8–15 and experimental5,15,16 have been devoted to

the tautomerism of adenine. These studies have provided reliable structures of ade-

nine tautomers and their relative stabilities. Four possible tautomeric structures (9H,

7H, 3H, and 1H) have been found for adenine in its amino form. Geometries of these

tautomers are shown in Figure 6.1. In the gas phase, the relative stabilities in the

ground-state are 9H > 7H > 3H > 1H,5,10,15 whereas for the lowest singlet excited

state, this order is found to be different: 3H > 1H > 9H > 7H. It should be noted

here that the tautomers with N−H fragments in the five-membered ring of adenine are

more stable in the ground state, while the tautomers with N−H fragments in the six-

membered ring of adenine are more stable in the excited state.10 In solution adenine

exists as a mixture of 9H and 7H tautomers and as the 7H tautomeric form in the

crystalline state.15 Among the different tautomers, 9H is the dominant form in both

aqueous solution and the gas phase.8,10,15

Mutations can be caused by deamination where a nucleobase converts to a base con-

taining a keto group instead of the original amino group. The deamination of adenine

produces hypoxanthine (HPX) which pairs with cytosine instead of thymine which, if

not repaired by hypoxanthine-DNA glycosylase, results in a post-replicative A·T →

G·C transition mutation. The deamination of nucleobases has been investigated ex-

tensively.17–31 Deamination events at adenine residues occur slowly in DNA17,18 and

the rate of deamination is known to increase in the presence of various reagents such

as NO,19 HNO2,20 and bisulfite.3,21 The rate constant for deamination of adenine in

single-stranded DNA is 4×10−8s−1 at pH=7.6 and 110°C.17 Under the same conditions

the rate of deamination of cytosine to uracil is 40 times faster.22
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Karan et al. proposed that “adenine deamination is one of several forms of hy-

drolytic damage that may occur as spontaneous premutagenic lesions in DNA in vivo”.17

Barlow et al.18 investigated the hydrolytic deamination of 1-(2-hydroxy-1-phenylethyl)

adenosine in [18O] water and analyzed the reaction products by electrospray mass spec-

troscopy. They found that deamination takes place by direct attack of H2O on C6 of

adenine with displacement of the exocyclic amino group.

The hydrolytic deamination of adenine has been studied at the B3LYP/6-31G(d,p)

level by Zhang et al.24 They found that the reaction of adenine with H2O is very

slow both in gas phase and in water. Their accepted mechanism is that a tetrahedral

intermediate is formed first, followed by hydrogen transfer from the hydroxyl group

to the amino group. More recently, Wang et al.25 employed B3LYP/6-311G(d,p) to

study the proton-catalyzed hydrolytic deamination of adenine. Four pathways initiated

from four different protonation sites of adenine have been investigated in their study.

They have found that the preferred pathway is for the N1-protonated adenine. In this

pathway, nucleophilic attack results in a tetrahedral intermediate, followed by a water

mediated transfer of a hydrogen atom to the amino group. Their reported activation

energy is 140 kJ mol−1.

No computational studies of the deamination reaction of adenine with OH– have

been reported. This chapter provides a detailed computational study of the deamina-

tion reaction of adenine with OH–/nH2O, (n = 0, 1, 2, 3) and 3H2O. Our previous

studies on deamination of formamidine,26 cytosine,28,29 guanine,31 and 8-oxoguanine32

were useful for this work. One of the main aims of this study is to determine the

most likely mechanism for the deamination reaction of adenine with OH–/nH2O. In

order to achieve this goal, the effect of explicit H2O molecules on the mechanism and

energetics has been explored for four different pathways. In addition, we explored the

role of solvent using the polarized continuum model (PCM). Our group has recently

found that the overall activation energy for the deamination of cytosine with 3H2O is

in excellent agreement with the experimental value.33 For this reason, the deamination
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of adenine with 3H2O has also been investigated.

6.2 Computational Methodology

The Gaussian 0934 package was used to perform all the computations. The geome-

tries of all reactants, transition states, intermediates, and products were fully optimized

at the HF/6-31G(d), B3LYP/6-31G(d), B3LYP/6-31+G(d), and MP2/6-31G(d) levels

of theory. Thermodynamic properties (∆E, ∆H, and ∆G), activation energies, en-

thalpies, and Gibbs energies of activation were calculated for each reaction pathway

at the G3MP2B335 and CBS-QB336 levels. G4MP237 and G3B338 calculations were

also performed for the deamination with OH– (pathway A). These Gaussian-n theo-

ries agree within 8 kJ mol−1 (see Tables 6.1 and 6.2), which is within the reported

error of the Gaussian-n theories. All structures for the deamination with OH–/3H2O

and 3H2O were further calculated at G3MP2B3 level using the polarizable continuum

model (PCM).39 Intrinsic reaction coordinate (IRC) analysis was performed to ensure

that each transition state is connected to the appropriate minima (reactant, product or

intermediate). The last IRC structures in both directions were then further optimized.

Frequency calculations were performed to confirm whether the structures are minima

with all real frequencies or transition states with only one imaginary frequency.

6.3 Results and Discussion

Only one adenine tautomer (9H) has been considered in this study due to its domi-

nance in both aqueous solution and the gas phase. The deamination reaction of adenine

with OH–/nH2O, (n = 0, 1, 2, 3) and 3H2O are shown in Figure 6.2. For the deam-

ination of adenine with OH–/nH2O, the hypoxanthine anion (HPX–) is the favored

product (compared to OH– or NH–
2) due to significant negative charge delocalization

in the purine ring. Figure 6.3 outlines the four pathways denoted as pathways A
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−→ D for the deamination of adenine with OH–/nH2O, for n=0, 1, 2, 3, respectively.

Figure 6.4 outlines pathway E for the deamination of adenine with 3H2O. Since the

N10-C6-N1-C2 side of adenine is normally hydrogen bonded to thymine or uracil, H2O

molecules have been added to the N10-C6-C5-N7 side of adenine to generate possible

hydrogen-bonded complexes with H2O molecules.

The activation energies and Gibbs energies of activation for the deamination of

adenine at the different levels of theory for all pathways are given in Tables 6.1 to 6.5.

Thermodynamic properties for the deamination reaction of adenine at the different

levels of theory are listed in Table 6.6. The geometries and relative energies for the

reactant, intermediates, transition states, and product involved in all pathways are

shown in Figures 6.5 to 6.14. Unless otherwise stated, all values in the text are for the

G3MP2B3 level of theory.

6.3.1 Pathway A: Deamination of Adenine with OH–

The optimized structures and the relative energies for pathway A are shown in Fig-

ures 6.5 and 6.6, respectively and outlined schematically in Figure 6.3. The activation

energies and Gibbs energies of activation computed at different levels of theory for

pathway A are given in Table 6.1.

Initially, a deprotonation at the amino group of adenine leads to the formation

of a highly resonance-stabilized adenine anion−H2O complex (RA), as shown in Fig-

ures 6.3, 6.5 and 6.6. We have not considered deprotonation at N9 since the sugar

moiety binds at this position. Nucleophilic addition of H2O to C6 with a simultaneous

hydrogen transfer from H2O to the imine nitrogen (TS1A) generates a tetrahedral

intermediate (IA). This step is the rate-determining step. Finally, a hydrogen-transfer

from the hydroxyl group to the amino group through the four-centered transition state

(TS2A) results in a hydrogen-bonded complex of a hypoxanthine anion and ammonia

(PA). PA is 35 kJ mol−1 more stable than the individual products. The mechanism
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for deamination of adenine is similar to that for the deamination of formamidine,26

cytosine,28,29 guanine,31 and 8-oxoguanine32 with OH–. The activation energy of the

rate-determining step is 190 kJ mol−1 compared to 148 and 155 kJ mol−1 for cytosine28

and guanine,31 respectively. The Gaussian-n values differ by no more than 9 kJ mol−1,

and the results of B3LYP are in good agreement with the Gaussian-n theories (see

Table 6.1).

6.3.2 Pathways B −→ D:

Deamination of Adenine with OH–/nH2O (n=1, 2, 3)

The optimized structures for pathways B, C, and D are shown in Figures 6.7, 6.9,

and 6.11, respectively. The relative energies for pathways B, C, and D are shown in

Figures 6.8, 6.10, and 6.12, respectively. They are all outlined schematically in Fig-

ure 6.3. The activation energies and Gibbs energies of activation computed at different

levels of theory for pathways B, C, and D are given in Tables 6.2, 6.3, and 6.4, respec-

tively.

The deamination of adenine is initiated by deprotonation at the amino group of

adenine to form complexes RB, RC and RD for pathways B, C, and D, respectively

as shown in Figures 6.3, 6.7, 6.9, and 6.11. The next step in these pathways is similar

to pathway A, where tetrahedral intermediates IB, IC and ID form via four-centered

transition states TS1B, TS1C and TS1D with activation energies of 122, 111, and

105 kJ mol−1 for pathways B, C, and D, respectively. In the last step, the intermediates

IB and ID convert to products PB and PD by single water mediated 1,3-hydrogen

shifts from the hydroxyl group to the amine nitrogen atom via six-centered transition

states TS2B and TS2D with activation energies of 88 and 68 kJ mol−1 for pathways

B and D, respectively. Pathway C branches into two different pathways, CA and CB.

For pathway CA, deamination occurs by a 1,3-hydrogen shift assisted by single water

molecule via a six-centered transition state (TS2CA) with an activation energy of 65
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kJ mol−1. While for pathway CB, deamination occurs by a 1,3-hydrogen shift assisted

by two water molecules via an eight-centered transition state (TS2CB) with an ac-

tivation energy of 73 kJ mol−1. The three water-mediated transition state does not

appear to exist and the deamination favors the single water-mediated mechanism.

The overall activation energies are 176, 163, 155, and 145 kJ mol−1 for pathways B,

CB, CA, and D, respectively. Addition of water molecules decreased the overall activa-

tion energy for the deamination of adenine with OH–, but the effect becomes smaller

with each additional water molecule. This effect can be explained by considering the

role of water molecules in the reaction. Water molecules can act not only as solvent

but also as a catalyst to promote hydrogen transfer. The first water molecule has a

major effect on the activation energy as it mediates the 1,3-hydrogen shift, while the

effect of the second and third water molecules is significantly less as they simply act

as solvent. Using PCM, the overall activation energy for pathway D is 139 kJ mol−1,

lower by only 6 kJ mol−1 compared with the result of the gas phase.

6.3.3 Pathway E: Deamination of Adenine with 3H2O

In order to determine if hydroxide ion is essential for the deamination of adenine we

have investigated a mechanism with 3H2O, pathway E. The optimized structures and

the relative energies for pathway E are shown in Figures 6.13 and 6.14, respectively.

Pathway E is outlined schematically in Figure 6.4. The activation energies and Gibbs

energies of activation computed at different levels of theory for pathway E are given in

Table 6.5.

Pathway E is a three-step reaction mechanism. In the first step, a hydrogen-bonded

complex of the amine 9H-tautomer of adenine (RE) forms the imine tautomer of

adenine (I1E) via transition state (TS1E) as shown in Figures 6.4 and 6.13. The

gas-phase activation energy for this step is 77 kJ mol−1, which is higher compared to

that found for cytosine (72.6 kJ mol−1)28 and lower compared to that found for guanine
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(85 kJ mol−1).31 This gas-phase activation energy is lowered by 3 kJ mol−1 using the

PCM solvation model. In the second step, which is rate-determining, nucleophilic

addition of a water molecule to C6 and simultaneous hydrogen transfer from H2O

to the exocyclic imine nitrogen results in the formation of a tetrahedral intermediate

(I2E) via transition state (TS2E). Finally, the hypoxanthine-ammonia-water complex

(PE) is formed via the six-centered transition state (TS3E), which involves a 1,3-

hydrogen transfer of the hydroxyl hydrogen to the amino group. We should note

that for TS3E, we have also investigated a 1,3-hydrogen shift mediated by two and

three water molecules. Our calculations have revealed that the single water-mediated

transition state is more energetically favored than the two water-mediated transition

state, while the three water-mediated mechanism does not appear to exist for TS3F.

This finding agrees with our previous work on the 1,3-hydrogen shift in formamidine

decomposition.40

The gas-phase activation energies are 85 kJ mol−1 and 70 kJ mol−1 for the rate-

determining and final steps, respectively, resulting in an overall gas-phase activation

energy of 139 kJ mol−1. The predicted overall gas-phase activation energy is higher by

2 kJ mol−1 while the gas-phase activation energy for rate-determining step is lower by

15 kJ mol−1 compared with the results using PCM. The overall activation energies at

CBS-QB3, B3LYP/6-31G(d) and B3LYP/6-31+G(d) are in excellent agreement with

the G3MP2B3 value, differing by no more than 3 kJ mol−1.

6.4 Thermodynamic Properties for the Deamina-

tion Reaction of Adenine

The thermodynamic properties for the deamination of adenine with OH–/nH2O,

(n = 0, 1, 2, 3) and 3H2O are listed in Table 6.6. The deamination reactions of

adenine with OH–/nH2O, (n = 0, 1, 2, 3) are exothermic and exergonic at all levels
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of theory for the separated species or for complex to complex in all pathways. This

is in contrast to the deamination of adenine with 3H2O which is endothermic and

endergonic at G3MP2B3 and CBS-QB3 levels. The B3LYP/6-31+G(d) results are

in better agreement with G3MP2B3 results than HF, B3LYP, and MP2 using the 6-

31G(d) basis set. As shown in Table 6.6, the addition of diffuse functions is important.

6.5 Conclusion

The deamination of adenine with OH–/nH2O, (n = 0, 1, 2, 3) and 3H2O has been

studied using ab initio calculations. Five pathways have been investigated in order to

obtain the most plausible mechanism for the deamination reaction of adenine. The

deprotonation of adenine by OH– is a very exothermic process due to the formation

of a highly resonance-stabilized anion. Adding water molecules decreased the overall

activation energy for the deamination reaction of adenine with OH–, but the effect

becomes smaller with each additional water molecule. Our results support the single

water-mediated transition state mechanism rather than two water-mediated mecha-

nism. The overall activation energy for the deamination of adenine with OH–/3H2O,

pathway D, is 145 kJ mol−1 in the gas phase and 139 kJ mol−1 with PCM. The most

plausible mechanism is the deamination of adenine with 3H2O, pathway E, that is

initiated by tautomerization of adenine, followed by formation of a tetrahedral inter-

mediate which dissociates to products via a 1,3-hydrogen shift. The overall activation

energy of pathway E is lower than that for pathway D by 6 and 2 kJ mol−1 for gas

phase and PCM, respectively. The use of PCM does not significantly affect the mech-

anism or the activation energy compared to the gas phase. The B3LYP results are in

better agreement with G3MP2B3 results than HF, and MP2.
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Table 6.1: Activation energies and Gibbs energies of activation (kJ mol−1) at 298.15 K for
deamination of adenine with OH– (pathway A).

TS1A TS2A Overall
Theory/Basis Set Ea ∆G# Ea ∆G# Ea
HF/6-31G(d) 213 219 141 139 250
B3LPY/6-31G(d) 187 193 92 90 203
B3LYP/6-31+G(d) 183 186 89 88 201
MP2/6-31G(d) 201 208 123 121 223
G3MP2B3 190 194 108 107 206
G4MP2 189 197 112 112 207
G3B3 187 191 108 107 206
CBS-QB3 196 199 111 109 208

Table 6.2: Activation energies and Gibbs energies of activation (kJ mol−1) at 298.15 K for
deamination of adenine with OH–/H2O (pathway B).

TS1B TS2B Overall
Theory/Basis Set Ea ∆G# Ea ∆G# Ea
HF/6-31G(d) 168 180 126 132 228
B3LYP/6-31G(d) 122 126 71 74 171
B3LYP/6-31+G(d) 121 132 65 71 167
MP2/6-31G(d) 136 149 97 99 183
G3MP2B3 122 134 88 92 176
CBS-QB3 121 129 90 91 177
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Table 6.3: Activation energies and Gibbs energies of activation (kJ mol−1) at 298.15 K for
deamination of adenine with OH–/2H2O (pathway C).

TS1C TS2CA TS2CB Overall ∆Ea
Theory/Basis Set Ea ∆G# Ea ∆G# Ea ∆G# CA CB

HF/6-31G(d) 149 158 108 112 116 124 212 219
B3LYP/6-31G(d) 117 125 64 68 65 71 156 170
B3LYP/6-31+G(d) 115 120 51 55 59 65 152 160
MP2/6-31G(d) 130 138 81 84 83 87 179 180
G3MP2B3 111 124 65 76 73 79 155 163
CBS-QB3 116 125 60 67 65 72 161 167

Table 6.4: Activation energies and Gibbs energies of activation (kJ mol−1) at 298.15 K for
deamination of adenine with OH–/3H2O (pathway D).

TS1D TS2D Overall
Theory/Basis Set Ea ∆G# Ea ∆G# Ea
HF/6-31G(d) 132 143 107 110 194
B3LYP/6-31G(d) 109 124 61 64 145
B3LYP/6-31+G(d) 111 113 52 54 141
MP2/6-31G(d) 113 130 67 74 150
G3MP2B3 105 120 68 71 145
CBS-QB3 101 114 68 71 140
G3MP2B3 (PCM) 110 121 58 59 139

Table 6.5: Activation energies and Gibbs energies of activation (kJ mol−1) at 298.15 K for
deamination of adenine with 3H2O (pathway E).

TS1E TS2E TS3E Overall
Ea ∆G# Ea ∆G# Ea ∆G# Ea

HF/6-31G(d) 133 142 145 164 116 127 197
B3LYP/6-31G(d) 76 84 83 101 50 59 137
B3LYP/6-31+G(d) 74 85 87 101 53 62 136
G3MP2B3 77 95 85 105 70 79 139
CBS-QB3 75 83 97 115 69 77 141
G3MP2B3 (PCM) 74 84 100 118 46 60 137
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Table 6.6: Thermodynamic properties (kJ mol−1) at 298.15 K for deamination of adenine
with OH–/nH2O and 3H2O (all pathways).

HF/ B3LYP/ B3LYP/ G3MP2B3 CBS-QB3
6-31G(d) 6-31G(d) 631+G(d)

Ad + OH− → HPX− + NH3
∆H -302 -332 -208 -204 -204
∆G -306 -336 -211 -208 -208

Ad + 3H2O → HPX + NH3 + 2H2O
∆H -4 -14 -3 17 16
∆G -3 -14 -1 18 18

RA → PAa

∆H -50 -41 -28 -9 -13
∆G -59 -49 -39 -17 -21

RB → PBa

∆H -57 -43 -38 -22 -24
∆G -68 -54 -49 -33 -35

RC → PCa

∆H -54 -34 -24 -12 -10
∆G -67 -45 -39 -18 -15

RD → PDa

∆H -65 -33 -40 -22 -19
∆G -77 -43 -56 -33 -31

RE → PEb
∆H -26 -23 -21 -1 -1
∆G -29 -28 -26 -9 -7

aStructures of these complexes are shown in Figure 6.3.
bStructures of these complexes are shown in Figure 6.4.
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Figure 6.1: Structures and atom numbering for adenine tautomers.

Figure 6.2: Deamination of adenine with OH–/nH2O and 3H2O.
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Figure 6.3: Schematic outline of pathways A, B, C, and D for the deamination of adenine
with OH–/nH2O, (n = 0, 1, 2, 3).
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Figure 6.4: Schematic outline of pathway E for the deamination of adenine with 3H2O.
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Figure 6.5: Optimized geometries along pathway A for the deamination of adenine with
OH– at HF/6-31G(d) level of theory.
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Figure 6.6: Pathway A for the deamination of adenine with OH–. Relative energies at
G3MP2B3 level of theory in the gas phase.
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Figure 6.7: Optimized geometries along pathway B for the deamination of adenine with
OH–/H2O at HF/6-31G(d) level of theory.
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Figure 6.8: Pathway B for the deamination of adenine with OH–/H2O. Relative energies
at G3MP2B3 level of theory in the gas phase.
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Figure 6.9: Optimized geometries along pathway C for the deamination of adenine with
OH–/2H2O at HF/6-31G(d) level of theory.
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Figure 6.10: Pathway C for the deamination of adenine with OH–/2H2O. Relative energies
at G3MP2B3 level of theory in the gas phase.
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Figure 6.11: Optimized geometries along pathway D for the deamination of adenine with
OH–/3H2O at HF/6-31G(d) level of theory.
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Figure 6.12: Pathway D for the adenine deamination with OH–/3H2O for the gas phase
(dashed line), PCM (solid line). Relative energies at G3MP2B3 level of theory.
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Figure 6.13: Optimized geometries along pathway E for the deamination of adenine with
3H2O at B3LYP/6-31G(d) level of theory.
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Figure 6.14: Pathway E for the adenine deamination with 3H2O for the gas phase (dashed
line), PCM (solid line). Relative energies at G3MP2B3 level of theory.

126



Bibliography

[1] Oestreicher, N.; Ribard, C.; Scazzocchio, C. Fungal Genet Biol. 2008, 45, 760.

[2] Neidle, S. Oxford Hand Book of Nucleic acid structure; Oxford University Press

Inc.: NewYork, 1999.

[3] Stoken, H. S. Organic and Biological Chemistry; Brooks/Cole Pub Co.: Belmont,

2008.

[4] Neidle, S. Nucleic acid structure and recognition; Oxford University Press Inc.:

NewYork, 2002.

[5] Mons, M.; Dimicoli, I.; Piuzzi, F.; Tardivel, B.; Elhanine, M. J. Phys. Chem. A.

2002, 106, 5088.

[6] Topal, M. D.; Fresco, J. R. Nature 1976, 263, 285.

[7] Topal, M. D.; Fresco, J. R. Nature 1976, 263, 289.

[8] Gu, J.; Leszczynski, J. J. Phys. Chem. A 1999, 103, 2744.

[9] Mennucci, B.; Toniolo, A.; Tomasi, J. J. Phys. Chem. A 2001, 105, 4749.

[10] Salter, L. M.; Chaban, G. M. J. Phys. Chem. A 2002, 106, 4251.

[11] Domcee, W.; Sobolkwski, A. L. Eur. Phys. J. D. 2002, 20, 369.

[12] Broo, A. J. Phys. Chem. A 1998, 102, 526.

127



[13] Xue, Y.; Xu, P.; Xie, D.; Yan, G. Spectrochim Acta A. 2000, 56, 1929.

[14] Broo, A.; Holmén, A. J. Phys. Chem. A 1997, 101, 3589.

[15] Nowak, M. J.; Rostkowska, H.; Lapinski, L. J. Phys. Chem. 1994, 98, 2813.

[16] Kim, N. J.; Jeong, G.; Kim, S. Y.; Sung, J.; Kim, S. K.; Park, Y. D. J. Chem.

Phys. 2000, 113, 10051.

[17] Karran, P.; Lindahl, T. Biochemistry 1980, 19, 6005.

[18] Barlow, T.; Ding, J.; Vouros, P.; Dipple, A. Chem. Res. Toxicol. 1997, 10, 1247.

[19] Hogden, B.; Rayta, S.; Glaser, R. Org. Lett. 2003, 5, 4077.

[20] Glaser, R.; Rayat, S.; Lewis, M.; Son, M. S.; Meyer, S. J. Am. Chem. Soc. 1999,

121, 6108.

[21] Chen, H.; Shaw, B. R. Biochemistry 1994, 33, 4121.

[22] Lindahl, T.; Nyberg, B. Biochemistry 1974, 13, 3405.

[23] Shapiro, R.; Klein, R. S. Biochemistry 1966, 5, 2358.

[24] Zhang, A.; Yang, B.; Li, Z. J. Mol. Struct. (Theochem) 2007, 819, 95.

[25] Wang, H.; Meng, F.; Theo. Chem. Acc. 2010, 127, 561.

[26] Flinn, C. G.; Poirier, R. A.; Sokahski, W. A. J. Phys. Clem. A 2003, 107, 11174.

[27] Zhu, C.; Meng, F. Struct. Chem. 2009, 20, 685.

[28] Almatarneh, M. H.; Flinn, C. G.; Poirier, R. A.; Sokalski, W. A. J. Phys. Chem.

A 2006, 110, 8227.

[29] Almatarneh, M. H.; Flinn, C. G.; Poirier, R. A. J. Chem. Inf. Model. 2008, 48,

831.

128



[30] Zheng, H.; Meng, F. Struct. Chem. 2009, 20, 943.

[31] Uddin, K. M.; Almatarneh, M. H.; Shaw, D. M.; Poirier, R. A. J. Phys. Chem.

A 2011, 115, 2065.

[32] Uddin, K. M.; Poirier, R. A. J. Phys. Chem. B 2011, 115, 9151.

[33] Uddin, K. M.; Flinn, C. G.; Warburton, P. L.; Poirier, R. A. (unpublishedwork).

[34] Frisch, M. J.; Trucrs, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;

Cheeseman, J. R.; Scalmani, G.; Barnne, V.; Menoucci, B.; Petersson, G. A. et

al. Gaussian 09, revision A.02; Gaussian, Inc.:Wallingfokd, CT, 2009.

[35] Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople, J. A J.

Chem. Phys. 1999, 110, 4703.

[36] Wood, G. P. F.; Radom, L.; Petersson, G. A.; Barnes, E. C.; Frisch, M. J.;

Montgomery, J. Jr. J. Chem. Phys. 2006, 125, 094106:1.

[37] Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 2007, 126,

084108:1.

[38] Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys.

1999, 110, 7650.

[39] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113,

6378.

[40] Almatarneh, M. H.; Flinn, C. G.; Poirier, R. A. Can. J. Chem. 2005, 83, 2082.

129



Appendix A

Integral of Gaussian Functions

In molecular calculations, MOs or AOs are expanded as linear combinations of

basis functions ϕµ, whereas basis functions are constructed as linear combinations

of P primitive Gaussian functions. The following is an example for basis functions

constructed from 1s primitive Gaussians,1

ϕµ(r1) =
P∑
p=1

dpµ

(2αpµ
π

)3/4
e−αpµ|r1−Rµ|2 (A.1)

where, r1 is the coordinates of electron one, Rµ is the point where ϕµ is centered, dpµ

and αpµ are the contraction coefficients and the exponents, respectively, that are defined

for a given basis set. The computational advantage of using Gaussian functions is that

the product of two Gaussian functions is another Gaussian. This appendix contains

the formulae needed for evaluating overlap, kinetic energy, nuclear-electron attraction,

and two-electron repulsion integrals over basis functions that use 1s primitive Gaussian

functions.
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Overlap Integral

The elements of the overlap integral over basis functions that use 1s primitive

Gaussians can be evaluated as follows,1

Sµν =
∫
ϕ∗µ(r1)ϕν(r1)dr1

=
P∑
p=1

Q∑
q=1

dpµdqν

(
π

αpµ + αqν

)3/2

e
− αpµαqν
αpµ+αqν

R2
µν (A.2)

where Rµν is the distance between the two points where the ϕµ and ϕν are centered.

Kinetic Energy Integral

The elements of the kinetic energy integral over basis functions that use 1s primitive

Gaussians can be evaluated as,1

Tµν = −1
2

∫
ϕ∗µ(r1)O2

1ϕν(r1)dr1

=
P∑
p=1

Q∑
q=1

dpµdqν

(
αpµαqν
αpµ + αqν

)(
3− 2αpµαqν

αpµ + αqν
R2
µν

)(
π

αpµ + αqν

)3/2

e
− αpµαqν
αpµ+αqν

R2
µν

(A.3)

Nuclear-Electron Attraction Integral

The elements of the nuclear-electron attraction integral over basis functions that

use 1s primitive Gaussians can be evaluated as follows,1

Vµν = −
M∑
A=1

ZA

∫ ϕ∗µ(r1)ϕν(r1)
r1A

dr1

= −
M∑
A=1

P∑
p=1

Q∑
q=1

dpµdqν

(
πZA

αpµ + αqν

)
e
− αpµαqν
αpµ+αqν

R2
µν

(
π

(αpµ + αqν)R2
µρ

)1/2

erf
(
Rµρ

√
αpµ + αqν

)
(A.4)
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where, ZA is the charge of nucleus A, “erf” is the error function, and Rµp is the distance

between the point where the ϕµ is centered and the center ρ which is defined by

Rρ = αpµRµ + αqνRν

αpµ + αqν
(A.5)

Two-Electron Repulsion Integral

The elements of the two-electron repulsion integral over basis functions that use 1s

primitive Gaussians can be evaluated as follows,1

(µν|σλ) =
∫ ∫ ϕ∗µ(r1)ϕν(r1)ϕ∗µ(r2)ϕν(r2)

r12
dr1dr2

=
P∑
p=1

Q∑
q=1

R∑
r=1

S∑
s=1

dpµdqνdrσdsλ π5/3

(αpµ + αqν) (αrσ + αsλ)
√
αpµ + αqν + αrσ + αsλ

×
(
e
− αpµαqν
αpµ+αqν

R2
µν−

αrσαsλ
αrσ+αsλ

R2
σλ

)
Rρθ

√√√√π (αpµ + αqν + αrσ + αsλ)
(αpµ + αqν) (αrσ + αsλ)

× erf
(
Rρθ

√√√√ (αpµ + αqν) (αrσ + αsλ)
(αpµ + αqν + αrσ + αsλ)

) (A.6)

where Rρθ is the distance between the point Rρ and the point Rθ which is defined by

Rθ = αrσRσ + αsλRλ

αrσ + αsλ
(A.7)
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Appendix B

Input File of OSHF Code

Input File for Li Atom

MOLECULE CHARGE = 0 MULTIPLICITY = 2

Title="Li"

FREEZ

Li

end

END ! molecule

BASIS

name = 6-31G

END

!OUTput OBject=QM:CMO%ROHF end

OUTput OBject=QM:CMO%OSHF end

stop

G03: SCF Done: E(ROHF) = -7.43123499367

134



Appendix C

Input File of GAIM Code

Input File for LiH Molecule

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 8.0 end

END

basis name=6-31G print end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 5.0 end
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END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 4.5 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 4.0 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH
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END

DEFine LiH= 3.5 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 3.0 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 2.5 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix
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Li

H Li LiH

END

DEFine LiH= 2.0 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.9 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.85 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end
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molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.8 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.75 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.7 end

END

basis name=6-31G end
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OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.65 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.6 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.55 end
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END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.50 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.45 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH
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END

DEFine LiH= 1.4 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.35 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.3 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix
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Li

H Li LiH

END

DEFine LiH= 1.25 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.2 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.15 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end
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molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.1 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.05 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 1.0 end

END

basis name=6-31G end
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OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 0.95 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 0.9 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 0.85 end
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END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 0.8 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 0.75 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH
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END

DEFine LiH= 0.70 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 0.65 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 0.6 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix
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Li

H Li LiH

END

DEFine LiH= 0.55 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

molecule

FREEZmatrix

Li

H Li LiH

END

DEFine LiH= 0.50 end

END

basis name=6-31G end

OUTPUT OBJ=QM:CMO%GAIMT end

stop
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Appendix D

Output File of GAIM Code

Output File for LiH Molecule
Welcome to MUNgauss - August 12, 2014 Version

N_molecules: 1
Molecule is a symmetric top.

Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 8.00000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 8.000000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 8.00000000 0.00000000 0.00000000 15.11780791

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.198441468

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
The basis set has now been re-ordered FDPS
Basis set (normalized) for this calculation (exponents are scaled:) 6-31G (6D/10F)
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***************************************************************************************
ATOMIC ORBITAL GAUSSIAN FUNCTIONS

***************************************************************************************
ATOM NO. TYPE SCALE FACTOR EXPONENT COEFF
***************************************************************************************
LITHIUM

Shell 1
1- 3 2P 1.03000

2.3249183E+00 8.9415080E-03
6.3243032E-01 1.4100946E-01
7.9053430E-02 9.4536370E-01

Shell 2
4- 6 3P 1.12000

3.5961972E-02 1.0000000E+00
---------------------------------------------------------------------------------------
HYDROGEN

Shell 3
7 1S 1.20000

1.8731138E+01 3.3494604E-02
2.8253946E+00 2.3472695E-01
6.4012174E-01 8.1375733E-01

Shell 4
8 2S 1.15000

1.6127775E-01 1.0000000E+00
---------------------------------------------------------------------------------------
LITHIUM

Shell 5 CORE
9 1S 1.00000

6.4241892E+02 2.1426078E-03
9.6798515E+01 1.6208872E-02
2.2091120E+01 7.7315572E-02
6.2010702E+00 2.4578605E-01
1.9351177E+00 4.7018900E-01
6.3673579E-01 3.4547084E-01

Shell 6
10 2S 1.03000

2.3249183E+00 -3.5091746E-02
6.3243032E-01 -1.9123284E-01
7.9053430E-02 1.0839878E+00

Shell 7
11 3S 1.12000

3.5961972E-02 1.0000000E+00
***************************************************************************************

Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.198441468 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

439 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 56 IJKJ: 105 IJJL: 46 IIKK: 95
IJJJ: 13 IIIL: 13 IIII: 11 IJKL: 100

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 32 IJKJCN: 69
IIKLCN: 38 IJKLCN: 54
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TOTAL OF 439 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

The basis set has now been re-ordered FDPS
Projecting extended Huckel matrix (STO-3G) to 6-31G
BLD_GUESS_MO_UHF> Generate UHF guess

UHF Open Shell (Doublet ) SCF, Nuclear Repulsion Energy: 0.000000000 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation

1 -6.454936050 -6.454936050
2 -7.429740824 -7.429740824 8.11727E-02
3 -7.430658963 -7.430658963 3.73081E-03
4 -7.430951857 -7.430951857 2.13552E-03
5 -7.431093629 -7.431093629 1.41228E-03
6 -7.431307908 -7.431307908 4-POINT
7 -7.431235840 -7.431235840 3.35048E-03
8 -7.431235847 -7.431235847 2.03337E-05
9 -7.431235848 -7.431235848 9.23247E-06

At Termination Total Energy is -7.431236 Hartrees

S = 0.500 ( 0.500 EXPECTED), S(S+1) = 0.7500 ( 0.7500 EXPECTED)
UHF Open Shell (Doublet ) SCF, Nuclear Repulsion Energy: 0.000000000 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation

1 9.551901474 9.551901474
2 -0.221923977 -0.221923977 3.87480E-01
3 -0.300601691 -0.300601691 1.45691E-01
4 -0.307875866 -0.307875866 5.90208E-02
5 -0.314956105 -0.314956105 4-POINT
6 -0.312915484 -0.312915484 7.46663E-02
7 -0.312952722 -0.312952722 3.44320E-03
8 -0.312966489 -0.312966489 1.71293E-03
9 -0.312990516 -0.312990516 4-POINT

10 -0.312980394 -0.312980394 3.45510E-03
11 -0.312980404 -0.312980404 3.03843E-05
12 -0.312980409 -0.312980409 2.41686E-05
13 -0.312980423 -0.312980423 4-POINT
14 -0.312980414 -0.312980414 7.01995E-05

At Termination Total Energy is -0.312980 Hartrees

S = 0.500 ( 0.500 EXPECTED), S(S+1) = 0.7500 ( 0.7500 EXPECTED)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.106970913 -7.908529444
Cycle 2 -8.127538029 -7.929096561
Cycle 3 -8.127829971 -7.929388502
Cycle 4 -8.127852020 -7.929410551

At Termination Total_Energy is -7.929411 Hartrees
--------------------------------

N_molecules: 2
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 5.00000000
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Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 5.000000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 5.00000000 0.00000000 0.00000000 9.44862994

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.317506349

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.317506349 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

624 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 77 IJKJ: 159 IJJL: 65 IIKK: 106
IJJJ: 16 IIIL: 16 IIII: 11 IJKL: 174

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 85
IIKLCN: 42 IJKLCN: 64
TOTAL OF 624 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.247049231 -7.929542882
Cycle 2 -8.247131400 -7.929625051

At Termination Total_Energy is -7.929625 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 4.50000000

Z MATRIX FOR: HLi, (C(inf)v)
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------------------------------------------------------------------------------------------------
I AN Z1 BL Z2 ALPHA Z3 BETA Z4

------------------------------------------------------------------------------------------------
1 3
2 1 1 4.500000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 4.50000000 0.00000000 0.00000000 8.50376695

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.352784833

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.352784833 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

637 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 79 IJKJ: 165 IJJL: 67 IIKK: 108
IJJJ: 16 IIIL: 16 IIII: 11 IJKL: 175

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 637 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.282559412 -7.929774580
Cycle 2 -8.282606179 -7.929821346

At Termination Total_Energy is -7.929821 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 4.00000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
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------------------------------------------------------------------------------------------------
1 3
2 1 1 4.000000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 4.00000000 0.00000000 0.00000000 7.55890395

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.396882937

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.396882937 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

642 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 79 IJKJ: 165 IJJL: 67 IIKK: 108
IJJJ: 16 IIIL: 16 IIII: 11 IJKL: 180

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 642 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.327052897 -7.930169960
Cycle 2 -8.327138742 -7.930255806

At Termination Total_Energy is -7.930256 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 3.50000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
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2 1 1 3.500000 ( 1)
------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 3.50000000 0.00000000 0.00000000 6.61404096

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.453580499

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.453580499 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

643 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 79 IJKJ: 165 IJJL: 67 IIKK: 109
IJJJ: 16 IIIL: 16 IIII: 11 IJKL: 180

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 643 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.384736015 -7.931155516
Cycle 2 -8.384953738 -7.931373239
Cycle 3 -8.385042919 -7.931462420

At Termination Total_Energy is -7.931462 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 3.00000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 3.000000 ( 1)
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------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 3.00000000 0.00000000 0.00000000 5.66917797

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.529177249

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.529177249 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

674 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 82 IJKJ: 174 IJJL: 72 IIKK: 109
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 674 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.463002443 -7.933825194
Cycle 2 -8.463530785 -7.934353536
Cycle 3 -8.463803234 -7.934625985
Cycle 4 -8.463963107 -7.934785858
Cycle 5 -8.464057540 -7.934880291

At Termination Total_Energy is -7.934880 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 2.50000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
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2 1 1 2.500000 ( 1)
------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 2.50000000 0.00000000 0.00000000 4.72431497

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.635012699

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.635012699 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

676 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 109
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 676 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.576038607 -7.941025909
Cycle 2 -8.577112823 -7.942100124
Cycle 3 -8.577905222 -7.942892523
Cycle 4 -8.578449151 -7.943436452
Cycle 5 -8.578828432 -7.943815733
Cycle 6 -8.579095666 -7.944082967
Cycle 7 -8.579285712 -7.944273013
Cycle 8 -8.579422016 -7.944409318
Cycle 9 -8.579520533 -7.944507834

At Termination Total_Energy is -7.944508 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 2.00000000
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Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 2.000000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 2.00000000 0.00000000 0.00000000 3.77945198

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.793765874

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.793765874 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.752790147 -7.959024274
Cycle 2 -8.753482161 -7.959716287
Cycle 3 -8.755207808 -7.961441935
Cycle 4 -8.756525623 -7.962759750
Cycle 5 -8.757562399 -7.963796525
Cycle 6 -8.758389258 -7.964623384
Cycle 7 -8.759056286 -7.965290412
Cycle 8 -8.759599901 -7.965834028
Cycle 9 -8.760047038 -7.966281164
Cycle 10 -8.760417884 -7.966652011
Cycle 11 -8.760727760 -7.966961887
Cycle 12 -8.760988423 -7.967222550
Cycle 13 -8.761208998 -7.967443124
Cycle 14 -8.761396640 -7.967630766
Cycle 15 -8.761557019 -7.967791146
Cycle 16 -8.761694669 -7.967928796
Cycle 17 -8.761813249 -7.968047375
Cycle 18 -8.761915734 -7.968149860
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Cycle 19 -8.762004566 -7.968238693

At Termination Total_Energy is -7.968239 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.90000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.900000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.90000000 0.00000000 0.00000000 3.59047938

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.835543025

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.835543025 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.808237240 -7.972694215
Cycle 2 -8.808302409 -7.972759385
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At Termination Total_Energy is -7.972759 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.85000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.850000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.85000000 0.00000000 0.00000000 3.49599308

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.858125269

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.858125269 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.832859503 -7.974734235
Cycle 2 -8.832960786 -7.974835518
Cycle 3 -8.833057195 -7.974931927

At Termination Total_Energy is -7.974932 Hartrees
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--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.80000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.800000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.80000000 0.00000000 0.00000000 3.40150678

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.881962082

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.881962082 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.858580012 -7.976617930
Cycle 2 -8.858634036 -7.976671954

At Termination Total_Energy is -7.976672 Hartrees
--------------------------------
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N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.75000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.750000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.75000000 0.00000000 0.00000000 3.30702048

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.907160998

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.907160998 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.885173641 -7.978012642
Cycle 2 -8.885207426 -7.978046428

At Termination Total_Energy is -7.978046 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.
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The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.70000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.700000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.70000000 0.00000000 0.00000000 3.21253418

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.933842204

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.933842204 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.912817682 -7.978975478
Cycle 2 -8.912829683 -7.978987479

At Termination Total_Energy is -7.978987 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
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Li
H Li LIH

VARIABLES:
LIH = 1.65000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.650000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.65000000 0.00000000 0.00000000 3.11804788

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.962140453

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.962140453 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.941572324 -7.979431871
Cycle 2 -8.941564671 -7.979424218

At Termination Total_Energy is -7.979424 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH
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VARIABLES:
LIH = 1.60000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.600000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.60000000 0.00000000 0.00000000 3.02356158

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 0.992207342

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 0.992207342 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -8.971509305 -7.979301963
Cycle 2 -8.971484550 -7.979277208

At Termination Total_Energy is -7.979277 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
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LIH = 1.55000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.550000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.55000000 0.00000000 0.00000000 2.92907528

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.024214030

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.024214030 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.002707808 -7.978493778
Cycle 2 -9.002667818 -7.978453788

At Termination Total_Energy is -7.978454 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.50000000
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Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.500000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.50000000 0.00000000 0.00000000 2.83458898

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.058354498

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.058354498 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.035253043 -7.976898545
Cycle 2 -9.035198519 -7.976844021

At Termination Total_Energy is -7.976844 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.45000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------
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I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.450000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.45000000 0.00000000 0.00000000 2.74010268

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.094849481

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.094849481 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.069236038 -7.974386558
Cycle 2 -9.069166406 -7.974316925

At Termination Total_Energy is -7.974317 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.40000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------
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1 3
2 1 1 1.400000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.40000000 0.00000000 0.00000000 2.64561638

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.133951248

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.133951248 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.104754208 -7.970802960
Cycle 2 -9.104667677 -7.970716430

At Termination Total_Energy is -7.970716 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.35000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.350000 ( 1)
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------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.35000000 0.00000000 0.00000000 2.55113008

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.175949442

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.175949442 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.141912498 -7.965963056
Cycle 2 -9.141806160 -7.965856718
Cycle 3 -9.141810762 -7.965861320

At Termination Total_Energy is -7.965861 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.30000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.300000 ( 1)

------------------------------------------------------------------------------------------------
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Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.30000000 0.00000000 0.00000000 2.45664379

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.221178267

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.221178267 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.180830946 -7.959652679
Cycle 2 -9.180695719 -7.959517452
Cycle 3 -9.180699772 -7.959521505

At Termination Total_Energy is -7.959522 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.25000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.250000 ( 1)

------------------------------------------------------------------------------------------------
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Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.25000000 0.00000000 0.00000000 2.36215749

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.270025398

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.270025398 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.221622557 -7.951597160
Cycle 2 -9.221457982 -7.951432585
Cycle 3 -9.221462258 -7.951436860

At Termination Total_Energy is -7.951437 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.20000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.200000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)
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------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.20000000 0.00000000 0.00000000 2.26767119

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.322943123

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.322943123 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.264430268 -7.941487146
Cycle 2 -9.264230474 -7.941287352
Cycle 3 -9.264235107 -7.941291985

At Termination Total_Energy is -7.941292 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.15000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.150000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)
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------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.15000000 0.00000000 0.00000000 2.17318489

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.380462389

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.380462389 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.309408464 -7.928946075
Cycle 2 -9.309166574 -7.928704186
Cycle 3 -9.309171608 -7.928709219

At Termination Total_Energy is -7.928709 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.10000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.100000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
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COORDINATES IN ANGSTROMS COORDINATES IN BOHR
I EL AN X Y Z X Y Z

------------------------------------------------------------------------------------------------------------------
1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.10000000 0.00000000 0.00000000 2.07869859

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.443210679

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.443210679 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.356733249 -7.913522570
Cycle 2 -9.356441871 -7.913231192
Cycle 3 -9.356447312 -7.913236633

At Termination Total_Energy is -7.913237 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.05000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.050000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR
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I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.05000000 0.00000000 0.00000000 1.98421229

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.511934997

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.511934997 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.406610893 -7.894675895
Cycle 2 -9.406262704 -7.894327706
Cycle 3 -9.406268533 -7.894333536

At Termination Total_Energy is -7.894334 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 1.00000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 1.000000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
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------------------------------------------------------------------------------------------------------------------
1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000 1.88972599

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.587531747

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.587531747 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.459290916 -7.871759169
Cycle 2 -9.458879684 -7.871347937
Cycle 3 -9.458885864 -7.871354117

At Termination Total_Energy is -7.871354 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 0.95000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 0.950000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------
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1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 0.95000000 0.00000000 0.00000000 1.79523969

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.671086049

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.671086049 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.515086300 -7.844000251
Cycle 2 -9.514608490 -7.843522441
Cycle 3 -9.514614976 -7.843528927

At Termination Total_Energy is -7.843529 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 0.90000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 0.900000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
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2 H 1 0.00000000 0.00000000 0.90000000 0.00000000 0.00000000 1.70075339
------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.763924163

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.763924163 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.574404298 -7.810480135
Cycle 2 -9.573861492 -7.809937328
Cycle 3 -9.573868269 -7.809944106

At Termination Total_Energy is -7.809944 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 0.85000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 0.850000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 0.85000000 0.00000000 0.00000000 1.60626709
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------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 1.867684408

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.867684408 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.637793034 -7.770108626
Cycle 2 -9.637195372 -7.769510964
Cycle 3 -9.637202541 -7.769518133

At Termination Total_Energy is -7.769518 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 0.80000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 0.800000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 0.80000000 0.00000000 0.00000000 1.51178079

------------------------------------------------------------------------------------------------------------------
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Nuclear repulsion energy: 1.984414684

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 1.984414684 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.706010340 -7.721595657
Cycle 2 -9.705381228 -7.720966545
Cycle 3 -9.705389211 -7.720974527

At Termination Total_Energy is -7.720975 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 0.75000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 0.750000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 0.75000000 0.00000000 0.00000000 1.41729449

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 2.116708996
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Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 2.116708996 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.780123116 -7.663414120
Cycle 2 -9.779505412 -7.662796416
Cycle 3 -9.779515434 -7.662806438

At Termination Total_Energy is -7.662806 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 0.70000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 0.700000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 0.70000000 0.00000000 0.00000000 1.32280819

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 2.267902496
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WARNING: Distance between atoms 2 and 1 is 1.3228
Check the geometry

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 2.267902496 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.861645700 -7.593743204
Cycle 2 -9.861109704 -7.593207208
Cycle 3 -9.861125009 -7.593222514

At Termination Total_Energy is -7.593223 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 0.65000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 0.650000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 0.65000000 0.00000000 0.00000000 1.22832189

------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 2.442356534
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WARNING: Distance between atoms 2 and 1 is 1.2283
Check the geometry

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 2.442356534 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -9.952726556 -7.510370022
Cycle 2 -9.952380741 -7.510024207
Cycle 3 -9.952409670 -7.510053137

At Termination Total_Energy is -7.510053 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 0.60000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 0.600000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 0.60000000 0.00000000 0.00000000 1.13383559

------------------------------------------------------------------------------------------------------------------
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Nuclear repulsion energy: 2.645886245

WARNING: Distance between atoms 2 and 1 is 1.1338
Check the geometry

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 2.645886245 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -10.056394910 -7.410508665
Cycle 2 -10.056401988 -7.410515743

At Termination Total_Energy is -7.410516 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 0.55000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 0.550000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 H 1 0.00000000 0.00000000 0.55000000 0.00000000 0.00000000 1.03934929

------------------------------------------------------------------------------------------------------------------
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Nuclear repulsion energy: 2.886421358

WARNING: Distance between atoms 2 and 1 is 1.0393
Check the geometry

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 2.886421358 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -10.176761090 -7.290339732
Cycle 2 -10.177454555 -7.291033197
Cycle 3 -10.177627997 -7.291206638
Cycle 4 -10.177688793 -7.291267435

At Termination Total_Energy is -7.291267 Hartrees
--------------------------------

N_molecules: 1
Molecule is a symmetric top.

The program objects/defaults have been reset
Free format Z-Matrix for: HLi, (C(inf)v)
Li
H Li LIH

VARIABLES:
LIH = 0.50000000

Z MATRIX FOR: HLi, (C(inf)v)
------------------------------------------------------------------------------------------------

I AN Z1 BL Z2 ALPHA Z3 BETA Z4
------------------------------------------------------------------------------------------------

1 3
2 1 1 0.500000 ( 1)

------------------------------------------------------------------------------------------------

Cartesian coordinates for: HLi, (C(inf)v)

------------------------------------------------------------------------------------------------------------------
COORDINATES IN ANGSTROMS COORDINATES IN BOHR

I EL AN X Y Z X Y Z
------------------------------------------------------------------------------------------------------------------

1 Li 3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
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2 H 1 0.00000000 0.00000000 0.50000000 0.00000000 0.00000000 0.94486299
------------------------------------------------------------------------------------------------------------------
Nuclear repulsion energy: 3.175063494

WARNING: Distance between atoms 2 and 1 is 0.9449
Check the geometry

Charge= 0, Number of electrons= 4

The basis set has now been re-ordered FDPS
6-31G Basis Set - Total number of basis functions: 11

GAIMT Open Shell (Singlet ) SCF, Nuclear Repulsion Energy: 3.175063494 Hartrees
Convergence on Density Matrix Required is 5.0000E-06
Cycle Electronic Energy Total Energy Convergence Extrapolation
All integrals will be kept INCORE
NOTE: INTEGRALS .LE. 1.00E-07 (I2EACC) WERE NOT KEPT
Exponent cutoff used: 2.00E+01 PQCUT2 cutoff used: 1.00E-16

677 TWO-ELECTRON INTEGRALS CALCULATED IN ISPCLC (RAW)
TOTAL NUMBER OF EACH OF THE 8 TYPES OF INTEGRALS SAVED:
IIKL: 84 IJKJ: 174 IJJL: 72 IIKK: 110
IJJJ: 17 IIIL: 17 IIII: 11 IJKL: 192

Number of integrals in INCORE buffers:
IIKKCN: 55 IJJLCN: 36 IJKJCN: 87
IIKLCN: 42 IJKLCN: 64
TOTAL OF 677 TWO-ELECTRON INTEGRALS CALCULATED (RAW)

GAIM’s Electronic and Total Energies:
Cycle 1 -10.320202536 -7.145139042
Cycle 2 -10.321702792 -7.146639298
Cycle 3 -10.322037436 -7.146973942
Cycle 4 -10.322168990 -7.147105496
Cycle 5 -10.322227464 -7.147163970

At Termination Total_Energy is -7.147164 Hartrees
--------------------------------

PROGRAM> end of inputs

Program terminated normally

Job: RUN ended on :30-Oct-15 at 15:18:20
User: aalrawas
Cpu time: 00h00m00s15c on clhead
Elapsed time: 00h00m00s00c
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